
HAL Id: tel-03664821
https://theses.hal.science/tel-03664821

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical description of quarkonium dynamics in the
quark gluon plasma with a quantum master equation

approach
Stéphane Delorme

To cite this version:
Stéphane Delorme. Theoretical description of quarkonium dynamics in the quark gluon plasma with
a quantum master equation approach. High Energy Physics - Theory [hep-th]. Ecole nationale
supérieure Mines-Télécom Atlantique, 2021. English. �NNT : 2021IMTA0264�. �tel-03664821�

https://theses.hal.science/tel-03664821
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÉRIEURE MINES-TÉLÉCOM ATLANTIQUE
BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 596
Matière, Molécules, Matériaux
Spécialité : Physique Subatomique et Instrumentation Nucléaire

Par

Stéphane DELORME
Theoretical description of quarkonia dynamics in the Quark Gluon
Plasma with a quantum master equation approach

Thèse présentée et soutenue à Nantes, le 01/10/2021
Unité de recherche : Laboratoire SUBATECH, UMR 6457
Thèse No : 2021IMTA0264

Rapporteurs avant soutenance :

Nora BRAMBILLA Professeur, Technical University Munich
Elena GONZALES FERREIRO Professeur, Universidad de Santiago de Compostella

Composition du Jury :

Président : Jean-Paul BLAIZOT Professeur émerite, CEA Saclay
Examinateurs : Nora BRAMBILLA Professeur, Technical University Munich

Elena GONZALES FERREIRO Professeur, Universidad de Santiago de Compostella
Alexander ROTHKOPF Associate Professor, University of Stavanger

Dir. de thèse : Pol-Bernard GOSSIAUX Professeur, IMT Atlantique
Co-dir. de thèse : Thierry GOUSSET Professeur, Université de Nantes

Invité(s) :

Roland KATZ Docteur, CNRS/SUBATECH





i

Remerciements
Après exactement trois ans (la précision suisse sans doute. . . ), mon aventure docto-
rale arrive à son terme, et j’aimerais remercier "quelques" personnes. Tout d’abord,
les membres de mon jury de thèse Elena Gonzales Ferreiro, Nora Brambilla, Alexan-
der Rothkopf et Jean-Paul Blaizot pour avoir accepté de participer à ma soutenance.
Merci à Elena et Nora pour leur travail de rapporteuse et leur corrections. Merci à
Alexander pour les nombreux échanges que nous avons eu pendant la rédaction du
projet pour la Marie-Curie. Merci à Jean-Paul pour son rôle de président du jury, de
membre de mon CSI, ainsi que pour les discussions que nous avons eu pendant ma
thèse, qui ont toujours été très intéressantes et utiles. Je remercie également Philippe
Pillot pour son rôle de membre de mon CSI.

Une thèse ne se fait pas seulement avec un thésard, donc j’aimerais remercier
mes deux directeurs de thèse Pol-Bernard Gossiaux et Thierry Gousset. D’abord
Thierry, merci pour toutes les discussions informelles (ou formelles) que nous avons
pu avoir, notamment au moment de dériver ces fichus termes supplémentaires ou
sur la manière de jouer avec les facteurs de couleur. Merci pour tes conseils et ton
encadrement. Pol, merci beaucoup pour tout ce que tu as fait pendant ma thèse, à
chaque fois que j’avais un problème (et on peut dire qu’il y en a eu un sacré paquet),
tu proposais une piste (ou plusieurs !) pour essayer de mieux comprendre ce qu’il
se passait et corriger les pépins. Merci d’avoir toujours dégagé du temps pour moi,
alors même que tu croulais sous toutes tes autres responsabilités. Merci également
pour tes conseils. On se souviendra de cette fameuse soirée de janvier à galérer dans
Paris en rentrant de Quarkonia as Tools !

Puisqu’on parle d’encadrants, j’en profite pour remercier mon "presque-encadrant"
Roland Katz. C’était un plaisir d’avoir bossé avec toi (et un plaisir qui va continuer
encore !), merci pour tous tes conseils, tes encouragements, ton aide. . . ça serait sans
doute plus simple de faire la liste de ce pourquoi je ne te remercie pas ! Ah si, merci
aussi de m’avoir supporté dans le bureau à chaque fois que je trouvais une erreur et
que j’employais un langage fleuri à mon égard !

Je ne vais pas tous les citer car je risquerais d’oublier des gens mais j’aimerais
remercier tous les membres du labo avec qui j’ai pu interagir, notamment le service
communication et le service administratif (en particulier Farah, Isabelle, Tanja, Sté-
phanie, les deux Sophie et Séverine) pour toute l’aide qu’ils m’ont apporté pendant
ma thèse. Merci également aux membres du groupe théorie avec qui j’ai pu interagir



ii

pendant ces trois ans.
Qui dit un thésard, dit bien souvent plusieurs thésards (et ex-thésards !), et je les

remercie pour toute la bonne humeur et les discussions qu’on a pu avoir. Merci
à Florian, Anthony, Erwann, David Henaff, Manu, Chloé, Maria, Yajing, Yuwei,
Flavien, Victor, Maxime, Thomas, Emeline, Etienne, Claudia, Mahbobbeh, Denys,
Michael pour son aide informatique, Johannes alias le spécialiste pour toutes les
discussions plus ou moins intelligentes à base de vieux monsieur et de roscasse,
Gabriel pour m’avoir lancé dans une aventure à base de tickets et de clochettes
(ou peut-être que je te remercie pas pour ça, je sais pas trop en fait. . . ), Rita pour
ta bonne humeur constante avec ou sans boules de papier et ce depuis Grenoble,
Ophélie et Quentin pour toutes nos discussions autour d’un café ou thé, à base de
pandas ou encore de fables géométriques (au passage, j’ai perdu!), courage Ophélie
c’est bientôt terminé ! Une pensée pour les petits nouveaux aussi, courage à vous !

Je garde le bureau H221 pour la fin, dans ses deux incarnations pré-Covid et
post-Covid (qu’on ne remercie pas d’ailleurs). Merci à David Fuseau et Grégoire
pour tous les délires plus absurdes les uns que les autres avec Roland, toujours pré-
sent (enfin après 14h. . . ) pour en rajouter une couche et pour la génèse de grandes
légendes telles que la delormalisation (toujours à définir) et Steph-Chan. Vivement
que je puisse voir David aux Oscars, il paraît que c’est bien parti ! Merci à Nathan,
qui a eu la lourde tâche de remplacer David comme partenaire de choc de Grégoire,
tu as l’air de très bien t’en tirer !

Un grand merci à la "délégation franc-comtoise" Coraline et Clément, qui s’est
déplacée pour assister à ma soutenance, mais aussi pour tous les bons souvenirs de
Licence (il y en a trop pour les citer). Merci en particulier à Clément pour toutes
ces soirées à casser des cubes dans un jeu cubique, ou à s’énerver à taper sur des
notes de façon plus ou moins rapide et précise (un jour on fera des 8*, enfin je crois),
courage pour la fin de thèse, on se revoit cet été !

Enfin, un grand merci à ma famille et mes parents pour leur soutien pendant la
thèse (et avant !). En particulier, merci à mon père pour m’avoir supporté pendant
les phases de bien et de moins bien, pendant toutes mes envolées lyriques quand je
m’énervais sur des choses plus ou moins futiles, et pour m’avoir toujours soutenu.
Enfin, une pensée émue à ma mère, qui n’a pas pu assister à tout ça, merci pour tout,
où que tu sois, on se reverra un jour.



iii

Contents

Remerciements i

Introduction 1

1 The Standard Model and the Quark-Gluon Plasma 3
1.1 The Standard Model of particle physics . . . . . . . . . . . . . . . . . 3

1.1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Quarkonia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 The Quark-Gluon Plasma . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Phase diagram of the nuclear matter . . . . . . . . . . . . . . . 14
1.2.2 Heavy ion collisions . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Probes of the QGP . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Phenomenology of quarkonia suppression 25
2.1 Quarkonia suppression and recombination . . . . . . . . . . . . . . . 25

2.1.1 Cold nuclear effects on suppression . . . . . . . . . . . . . . . 25
2.1.2 QGP effects on suppression . . . . . . . . . . . . . . . . . . . . 28
2.1.3 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 Experimental measurements at RHIC and LHC . . . . . . . . 31

2.2 Theoretical models of quarkonia suppression . . . . . . . . . . . . . . 38
2.2.1 Sequential suppression . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Co-movers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Statistical hadronization . . . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Transport models . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



iv

3 Open Quantum Systems 47
3.1 Density operator and quantum master equations . . . . . . . . . . . . 47
3.2 Dynamics of open quantum systems . . . . . . . . . . . . . . . . . . . 49
3.3 The Linblad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Weak coupling limit and Born-Markov approximation . . . . . . . . . 53
3.5 The quantum optical limit . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6 The quantum brownian motion . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Quarkonia as open quantum systems . . . . . . . . . . . . . . . . . . 59

3.7.1 Early phenomenological approaches . . . . . . . . . . . . . . . 59
3.7.2 Katz and Gossiaux . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.3 Akamatsu et al.: Quarkonium quantum master equation in

the Lindblad form . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.4 Brambilla et al.: A pNRQCD based quantum master equation

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.5 Yao et al.: Boltzmann equation derived from pNRQCD effec-

tive theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.6 Blaizot et al.: Quantum dynamics of heavy quarks in the QGP 66

3.8 Quantum dynamics of heavy quarks in the QGP and semi-classical
approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Extension of the Blaizot-Escobedo equations and restoration of positivity 75
4.1 Alternative time discretization . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Derivation of the L′
3 terms . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Derivation of the L4 terms . . . . . . . . . . . . . . . . . . . . . 79
4.1.3 Derivation for QCD . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Reduction of the center of mass degrees of freedom . . . . . . . . . . 84
4.2.1 Reduction of the L0 terms . . . . . . . . . . . . . . . . . . . . . 85
4.2.2 Reduction of the L1 terms . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Reduction of the L2 terms . . . . . . . . . . . . . . . . . . . . . 87
4.2.4 Reduction of the L′

3 terms . . . . . . . . . . . . . . . . . . . . . 88
4.2.5 Reduction of the L4 terms . . . . . . . . . . . . . . . . . . . . . 90

4.3 Conservation of the trace . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.1 Trace at the L2 level . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.2 Trace at the L′

3 level . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3 Trace at the L4 level . . . . . . . . . . . . . . . . . . . . . . . . 99



v

4.4 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.1 Positivity at the L2 level . . . . . . . . . . . . . . . . . . . . . . 102
4.4.2 Positivity at the L′

3 level . . . . . . . . . . . . . . . . . . . . . . 105
4.4.3 Positivity at the L4 level . . . . . . . . . . . . . . . . . . . . . . 108
4.4.4 Full QCD case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

L2 level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
L′

3 level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
L4 level: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5 UV divergences and minimal set . . . . . . . . . . . . . . . . . . . . . 115
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Numerical implementation 117
5.1 One-dimensionnal equations . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 One dimensional potential for quarkonia in the Quark-Gluon Plasma 120

5.2.1 Generalized Gauss law model . . . . . . . . . . . . . . . . . . 120
5.2.2 Real part of the one dimensional potential . . . . . . . . . . . 122
5.2.3 Imaginary part of the one dimensional potential . . . . . . . . 125
5.2.4 Spectral decomposition . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4 Trace conservation and determination of numerical parameters . . . 131
5.5 Positivity conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Quarkonium dynamics in the Quark-Gluon Plasma 141
6.1 Quarkonium dynamics at fixed temperature . . . . . . . . . . . . . . 141

6.1.1 Color dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.1.2 Dynamics of a cc̄ pair . . . . . . . . . . . . . . . . . . . . . . . . 145
6.1.3 Projections on vacuum states . . . . . . . . . . . . . . . . . . . 155

6.2 Quarkonium dynamics in an evolving medium . . . . . . . . . . . . . 160
6.2.1 Projections on vacuum states . . . . . . . . . . . . . . . . . . . 161
6.2.2 cc̄ dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 164

Conclusion 167



vi

A Derivation of QCD terms 169
A.1 Derivation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
A.2 QCD color factors and QCD equations . . . . . . . . . . . . . . . . . . 171

B Résumé en français 177

Bibliography 191



vii

List of Figures

1.1 Table of particles in the Standard Model. [7] . . . . . . . . . . . . . . . 4
1.2 Left panel: Gluon splitting into a virtual pair of quarks leading to

screening. Right panel: Gluon self-interaction leading to antiscreen-
ing. [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 QCD coupling constant as a function of the transfered energy Q be-
tween two color charges [20] . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Illustration of the gluon string breaking, leading to two new compos-
ite systems. [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Representation of the lattice used to discretize space-time in Lattice
QCD. [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Left panel: Mass spectrum of charmonia states. Right panel: Same for
bottomonia states. [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Left panels: Sources of prompt J/Ψ. Right panels: Sources of prompt
Υ(1S). [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Schematic view of the phase diagram of QCD as function of temper-
ature and baryon chemical potential [19] . . . . . . . . . . . . . . . . . 15

1.9 Schematization of the whole evolution [19] . . . . . . . . . . . . . . . 16
1.10 Representation of the initial heavy-ion collision [7] . . . . . . . . . . . 17
1.11 Representation of the Björken scenario with and without a QGP phase

[46] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.12 Normalized production rates of hyperons and antihyperons in Pb-Pb

collisions at
√

sNN = 17.3 GeV with respect to production rates in p-Be
collisions measured by the NA57 experiment at the SPS [50] . . . . . 20

1.13 Schematic view of a peripheral heavy ion collision. [7] . . . . . . . . . 21
1.14 Schematic view of the reaction plane. [7] . . . . . . . . . . . . . . . . . 21
1.15 v2 coefficient measured by the PHENIX and STAR experiments in Au-

Au collisions at
√

sNN = 200 GeV. [55] . . . . . . . . . . . . . . . . . . 22



viii

1.16 Nuclear modification factor RAA as function of the jet transverse mo-
mentum for different centrality classes and isolation cone radius mea-
sured by CMS in Pb-Pb collisions at

√
sNN = 5.02 TeV [56]. . . . . . . 23

2.1 Nuclear modification factor RAA for J/Ψ (upper panels) and Υ (lower
panels) using the EPS09 nPDFs as function of rapidity (left panels)
and transverse momentum (right panels). [61] . . . . . . . . . . . . . 26

2.2 Dependence of σabs on energy for the J/Ψ at mid-rapidity [66] using
the EKS98 and CTEQ61L nPDFs [67–70] . . . . . . . . . . . . . . . . . 28

2.3 Potential describing the QQ̄ pair interaction as function of the dis-
tance between the two quarks and temperature [80] . . . . . . . . . . 29

2.4 Illustration of the dissociation of a quarkonium state and the hadroniza-
tion of the free quarks into open heavy hadrons. . . . . . . . . . . . . 30

2.5 Illustration of the recombination of two uncorrelated quarks to form
a quarkonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Dependence on multiplicity of the nuclear modification factor RAA

for the Υ(1S) (bottom panel) and of the integrated RAA for the Υ(1S+2S+3S)
(top panel) in Au-Au collisions at 200 GeV and U-U collisions at 193
GeV from the STAR experiment. [83] . . . . . . . . . . . . . . . . . . . 32

2.7 Left panel: Dependence on transverse momentum of the nuclear mod-
ification factor RAA for the Υ(1S) and Υ(2S) in Pb-Pb collisions at 2.76
TeV from the CMS experiment. Right panel: Dependence on rapidity.
[84] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Dependence on multiplicity of the nuclear modification factor RAA

for the Υ(1S) and Υ(2S) in Pb-Pb collisions at 2.76 TeV from the CMS
experiment. [84] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Left panel: Dependence on transverse momentum of the RAA of the
Υ(1S) in Pb-Pb collisions at 5.02 TeV from the ALICE experiment.
Right panel: Dependence on rapidity from ALICE and CMS. [85] . . . 34

2.10 Dependence on multiplicity of the nuclear modification factor RAA

for the Υ(1S) and Υ(2S) in Pb-Pb collisions at 5.02 TeV from the ALICE
experiment.[85] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 J/Ψ RAA from STAR as function of multiplicity in Au-Au collisions
at 200 GeV in two different rapidity range. [87] . . . . . . . . . . . . . 35



ix

2.12 J/Ψ RAA from CMS in Pb-Pb collisions at 2.76 and 5.02 TeV as func-
tion of rapidity (top left panel), multiplicity (top right panel) and
transverse momentum (bottom panel).[88] . . . . . . . . . . . . . . . 36

2.13 J/Ψ RAA from ALICE in Pb-Pb collisions at 2.76 TeV as function of
multiplicity (left panel) and transverse momentum (right panel).[89] 36

2.14 Prompt J/Ψ and Ψ(2S) RAA from CMS in Pb-Pb collsions at 5.02 TeV
as function of multiplicity (left panels) and transverse momentum
(right panels) at central rapidities (top panels) and forward rapidity
(bottom panels).[88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Left panel: Sequential suppression for J/Ψ. Right panel: Sequential
suppression for Υ(1S). [33] . . . . . . . . . . . . . . . . . . . . . . . . 38

2.16 Illustration of the dissociation of charmonium states through the dis-
appearence of spectral functions [95]. . . . . . . . . . . . . . . . . . . . 39

2.17 pT dependence of the J/Ψ RAA in Pb-Pb collisions at
√

sNN = 2.76
TeV with the comovers interaction model (shadowed area) [102]. Left
panel: Comparison to CMS [105, 106] data at mid-rapidity. Right panel:
Comparison to CMS [105] data and ALICE [107] data at forward ra-
pidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.18 J/Ψ transverse momentum spectrum in Pb-Pb collisions at
√

sNN =
5 TeV obtained from ALICE data [117] and comparison to results
from the statistical hadronization model. Predictions for the Ψ(2S)
transverse momentum spectrum. [118]. . . . . . . . . . . . . . . . . . 42

2.19 Left panel: Nuclear modification factor RAA for J/Ψ dependence on
charged particle multiplicity at forward rapidity obtained from the
SHM and comparison to experimental data. Right panel: Same at
mid-rapidity. Data are for Au-Au collisions from STAR (green points)
[123] and PHENIX (blue points) [87, 124] and for Pb-Pb collisions
from ALICE (red points) [89, 125]. . . . . . . . . . . . . . . . . . . . . 43

2.20 Left panel: Dependence on transverse momentum of the nuclear mod-
ification factor for the Υ(1S) and Υ(2S). Left panel: Dependence on
multiplicity of the nuclear modification factor for the Υ(1S), Υ(2S)
and Υ(3S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Schematic view of an open quantum system . . . . . . . . . . . . . . 49
3.2 Global picture of the open quantum systems evolution . . . . . . . . 53



x

3.3 Main steps and assumptions of the derivation of a Lindblad equation 58
3.4 Evolution of the quarkonium states populations over time (left) and

(right) comparison of ratios of bottomonium populations obtained
with the master equation (symbols) and with expected Boltzmann
distributions (solid) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Evolution of the populations of quarkonium states over time obtained
with the stochastic potential model . . . . . . . . . . . . . . . . . . . . 60

3.6 Weights of the lowest 3 vacuum eigenstates for different temperatures
and initial states without friction and stochastic forces (solid lines)
and with friction and stochastic forces (dashed and thick lines, re-
spectively with the vacuum and temperature dependant potentials) . 61

3.7 Occupation number of the ground and 1st excited state over time
(left). Occupation number of the ground and 1st excited state over
time with and without dissipation (right). . . . . . . . . . . . . . . . . 63

3.8 Left panel: Bottomonium RAA for the 30-50% class of centrality. Right
panel: Same for the 50-100% class of centrality. The error bands are
due to unconstrained transport coefficients used in the computation. 64

3.9 Left panel: RAA as a function of the number of participants for the
first three Υ states computed from coupled Boltzmann equations and
compared to experimental data in

√
sNN = 2.76 TeV Pb-Pb collisions.

Right panel: RAA as a function of the number of participants for the
Υ(2S) and χb(1P) states computed from coupled Boltzmann equations. 65

3.10 Top left panel: Fraction of surviving pairs at T = 150 MeV for 2, 10 and
50 initial pairs. Top right panel: Same for T = 190 MeV. Bottom left panel:
Same for T = 220 MeV. Bottom right panel: Fraction of surviving pairs
at T = 190 MeV for 10 initial bottomonium or charmonium pairs . . . 66

5.1 Real part of the potential for different temperatures in GeV (Left panel).
Imaginary part of the potential for different temperatures in GeV (Right
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 One-dimensional potential at different temperatures for the charmo-
nia (left panel) and for the bottomonia (right panel). . . . . . . . . . . 123



xi

5.3 (Left panel) Charmonium mass spectrum of the S states for the one-
dimensional potential (solid lines) obtained from the expectation val-
ues of the Hamiltonian compared to the three-dimensional case (dashed
lines). (Right panel) Same for the bottomonia. . . . . . . . . . . . . . . 124

5.4 (Left panel) Comparison of the root-mean-square radiuses of the char-
monium S states obtained with the one and three-dimensional poten-
tials. (Right panel) Same for the bottomonia. . . . . . . . . . . . . . . 124

5.5 (Left panel) Imaginary part of the one-dimensional potential for the
bottomonia. (Right panel) Large distance behaviour of the imaginary
part of the one and three-dimensional potentials for the bottomonia. 125

5.6 (Left pannel) Charmonium decay widths obtained with the one and
three-dimensional potentials. (Right pannel) Same for bottomonia. . 126

5.7 Spectral decomposition of the imaginary part of the potential ImV1D =

α ImV1D
c + β ImV1D

s at different temperatures (in GeV) for the (left
pannel) charmonia and (right pannel) bottomonia. . . . . . . . . . . . 127

5.8 Evolution in time of Tr [D0(0)]− Tr [D0(t)]. . . . . . . . . . . . . . . . 132
5.9 Tr [D0(0)]− Tr [D0(20)] for ∆s = 0.04,0.05,0.1 and 0.2 fm, with smax =

10 fm and ∆t = 0.1 fm/c. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.10 Tr [D0(0)] − Tr [D0(20)] for ∆s = 0.02,0.04 and 0.05 fm, with smax =

5 fm and ∆t = 0.1 fm/c. . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.11 Tr [D0(0)]− Tr [D20(0)] for smax = 2,5 and 10 fm, with ∆s = 0.05 fm

and ∆t = 0.1 fm/c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.12 Tr [D0(0)] − Tr [D20(0)] for smax = 10,15,20 and 25 fm, with ∆s =

0.1 fm and ∆t = 0.1 fm/c. . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.13 Tr [D0(0)] − Tr [D0(20)] for ∆t = 10−1, 10−2 and 10−3 fm/c, with

smax = 10 fm and ∆s = 0.05 fm. . . . . . . . . . . . . . . . . . . . . . . 136
5.14 Cumulated distribution of the eigenvalues of Ds at t = 20 fm/c with

(blue line) and without (orange line) the L4 terms. . . . . . . . . . . . 138
5.15 Projections on vacuum eigenstates for T = 300 MeV. . . . . . . . . . . 139

6.1 Evolution over time of the deviation from the equilibrium value of the
trace of Ds (blue curves) and Do (orange curves) for an initial singlet
state (solid curves) and octet state (dotted curves). . . . . . . . . . . . 142



xii

6.2 Evolution over time of the deviation from the equilibrium value of the
trace of Ds (blue curves) and Do (orange curves) for an initial S-like
singlet state, at T = 200 MeV (solid curves), 300 MeV (dotted curves)
and 400 MeV (dashed curves). . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Evolution over time of the weights of the first three vacuum eigen-
states at T = 300 MeV in the QED-like case (solid curves) and in the
QCD case (dotted curves) . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.4 Evolution of the singlet density matrix Ds over time. From top left
panel to bottom right panel: 0.1, 1, 5, 10, 15 and 20 fm/c . . . . . . . . 146

6.5 Left panel: Evolution of the singlet density matrix Ds over time along
the s= s’ axis. Right panel : Same along the s = -s’ axis . . . . . . . . . 147

6.6 Wigner transforms at different values of s+s′
2 and time. Three types

of distributions appear: gaussian and positive Wigner distributions
(top left panel), non-gaussian but still positive distributions (top right
panel) and negative distributions (bottom panel). . . . . . . . . . . . 148

6.7 Evolution of the mean squared momentum
√
〈p2〉 over time at differ-

ent values of s+s′
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.8 Evolution of the singlet density matrix Ds over time. From left panel
to right panel: 1, 10 and 20 fm/c. From top to bottom: medium
temperature of 200 MeV, 300 MeV and 400 MeV . . . . . . . . . . . . 150

6.9 Left panel: Evolution of the mean squared momentum
√
〈p2〉 over

time at different values of s+s′
2 for T = 200 MeV. Right panel: Same for

T = 400 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.10 Evolution of the mean squared momentum

√
〈p2〉 for different values

of s+s′
2 at t = 15 fm/c for a medium temperature T = 200, 300 and

400 MeV. For each temperature, the corresponding value of
√

MT
2 is

shown by the dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . 152
6.11 Evolution of the singlet density matrix Ds over time. From top left

panel to bottom right panel: 0.1, 1, 5, 10, 15 and 20 fm/c . . . . . . . . 153
6.12 Left panel: Evolution of the singlet density matrix Ds over time along

the s= s’ axis. Right panel : Same along the s = -s’ axis . . . . . . . . . 154
6.13 Wigner distributions at s+s′

2 = 0 fm at different times. . . . . . . . . . 154
6.14 Evolution of the mean squared momentum

√
〈p2〉 over time at differ-

ent values of s+s′
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



xiii

6.15 Left panel: Evolution over time of the weights of the first three vacuum
eigenstates with an initial 1S-like singlet state at T = 200 (solid curves),
300 (dotted curves) and 400 MeV (dashed curves). Right panel: Same
but zoom on late time evolution. . . . . . . . . . . . . . . . . . . . . . 156

6.16 Left panel:Evolution over time of the weights of the first three vacuum
eigenstates at T = 300 MeV with an initial 1P-like singlet state. Right
panel: Same with an initial 2S-like singlet state. . . . . . . . . . . . . . 157

6.17 Evolution over time of the weights of the first three vacuum eigen-
states at T = 300 MeV with an initial 1S-like singlet state (solid lines)
and an initial P-like octet state (dotted lines). . . . . . . . . . . . . . . 158

6.18 Evolution over time of the weights of the first three vacuum eigen-
states at T = 300 MeV with an initial 1S-like singlet state with a total
pair momentum ptot = 0, 5 and 10 GeV. . . . . . . . . . . . . . . . . . . 159

6.19 Left panel:Evolution over time of the weights of the first three vacuum
eigenstates for T = 200 MeV with (solid lines) and without (dashed
lines) the L4 terms. Right panel: Same for T = 300 MeV. . . . . . . . . . 160

6.20 Evolution over time of the weights of the first three vacuum eigen-
states with an initial 1S-like singlet state with an initial medium tem-
perature T0 = 600 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.21 Evolution of the singlet density matrix Ds over time with an initial
temperature T0 = 600 MeV. From top left panel to bottom right panel:
0.1, 1, 5, 10, 15 and 20 fm/c . . . . . . . . . . . . . . . . . . . . . . . . 162

6.22 Evolution of the singlet density matrix Ds along the s = s’ axis over
time for a medium with initial temperature T0 = 600 MeV and for a
medium with fixed temperature T = 300 MeV. From top left panel to
bottom right panel: 0.1, 1, 5, 10, 15 and 20 fm/c. . . . . . . . . . . . . 163

6.23 Evolution of the mean squared momentum
√
〈p2〉 over time at differ-

ent values of s+s′
2 with an initial temperature T0 = 600 MeV. . . . . . . 163

A.1 Diagrams representing the different types of terms we can encounter
in the equations. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.1 Principales étapes et hypothèses de la dérivation d’une équation de
Lindblad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181



xiv

B.2 Gauche: Partie réelle du potentiel à une dimension pour les bottomo-
nia. Droite: Partie imaginaire du potentiel à une dimension pour les
bottomonia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B.3 Evolution au cours du temps des poids des trois premiers états pro-
pres du vide pour T = 300 MeV dans le cas sans (lignes pleines) et
avec degrés de liberté de couleur (lignes pointillées) . . . . . . . . . . 186

B.4 Evolution de l’opérateur densité singulet Ds au cours du temps. De
haut en bas et de gauche à droite: 0.1, 1, 5, 10, 15 et 20 fm/c . . . . . . 186

B.5 Evolution de l’impulsion carrée moyenne
√
〈p2〉 au cours du temps

pour différentes valeurs de s+s′
2 . . . . . . . . . . . . . . . . . . . . . . . 187

B.6 Evolution au cours du temps des poids des trois premiers états pro-
pres du vide pour un état initial singulet type 1S, pour une tempéra-
ture T = 200 (lignes pleines), 300 (lignes pointillées) et 400 MeV (lignes
discontinues) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.7 Evolution au cours du temps des poids des trois premiers états pro-
pres du vide pour une température T = 300 MeV pour un état initial
singulet type 1S (lignes pleines) et un état initial octet type P (lignes
pointillées). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.8 Evolution au cours du temps des poids des trois premiers états pro-
pres du vide pour une température initiale T0 = 600 MeV pour un état
initial singulet type 1S . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



xv

List of Tables

2.1 Dissociation temperatures obtained from LQCD calculations [94] with
TC = 172.5 MeV. Only an upper limit is given for the Ψ(2S) and
Υ(4S) due to the lack of data below this limit. . . . . . . . . . . . . . . 40

4.1 Summary of the terms contained in the minimal set . . . . . . . . . . 116

5.1 Parameters for the real part of the 1D potential ReV1D. . . . . . . . . . . . 123
5.2 Coefficients for the imaginary part of the one-dimensional potential ImV1D. 125
5.3 Values of Tr [D0(0)]− Tr [D0(20)] for two different configurations . . 137
5.4 Parameters used for the resolution of the equations . . . . . . . . . . 137

6.1 Values of the timescale τ for T = 200, 300 and 400 MeV. . . . . . . . . 144





1

Introduction

It is theorized that under extreme temperatures and/or densities, such as the
ones of the early Universe, nuclear matter reaches a new state, composed of decon-
fined quarks and gluons (while they are confined in usual hadronic matter), called
Quark-Gluon Plasma (QGP). In the last forty years, theoretical and experimental
physicists have carried an intensive study of the existence and the properties of this
new state of matter. The only way on Earth to produce a QGP is to collide heavy ions
at ultrarelativistic speeds in colliders like the Relativistic Heavy Ion Collider (RHIC)
or the Large Hadron Collider (LHC). An observable of choice for the study of the
Quark-Gluon Plasma is the so-called quarkonia suppression, which corresponds to
a smaller production of quarkonia ( heavy QQ̄ composite particles) in heavy ion
collisions compared to proton-proton collisions. This phenomenon, predicted in
1986 by Matsui and Satz [1], was studied intensively at colliders, where experiments
revealed that the suppression is a very complex process, requiring a robust theoreti-
cal understanding. In recent years, a lot of work has been done towards a dynamical
description of heavy quarkonia inside the QGP, using the open quantum systems
formalism. In this framework, one can get a real-time description of a quantum
system (the quarkonium) in interaction with a thermal bath (the QGP) by studying
the system reduced density matrix. In this thesis we present an approach based on
open quantum systems that aims at describing the dynamics of a heavy quarkonium
inside the Quark-Gluon Plasma. The thesis is structured as follows:

The first chapter is focused on an introduction to the Standard Model of parti-
cles physics and to the Quark-Gluon Plasma. We first discuss the contents of the
Standard Model and describe the theory of strong interactions, called Quantum
Chromodynamics (QCD), and describe composite particles called quarkonia, and
their production. We then explore the phase diagram of nuclear matter to introduce
the Quark-Gluon Plasma, before describing how it is produced experimentally and
finally review several observables used to study it.
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The second chapter is dedicated to quarkonia suppression. We first describe the
physical effects at play before reviewing experimental measurements on suppres-
sion at current colliders. In a second part, we present several model that aims at
describing quarkonia suppression. We present their approaches, compare them to
experimental results and discuss their assumptions.

In chapter 3, we present the open quantum systems (OQS) formalism. We describe
the basics of this framework and show how to derive quantum master equations
within it. We then review existing approaches based on the OQS formalism and fo-
cus on a specfic one developped by Blaizot & Escobedo [2] describing the dynamics
of a QQ̄ pair in the QGP, which is the basis of this thesis work. In order to motivate
our work, we discuss the shortcomings of their approach/

We present in chapter 4 the theoretical developments done during this thesis. We
extend the equations derived by Blaizot & Escobedo to ensure they satisfy key prop-
erties of well-defined quantum master equations. We then prove that the equations
satisfy unitarity and positivity and propose a strategy to get rid of divergences
present in the equations.

The numerical strategy to resolve the equations is presented in chapter 5. We present
the one-dimensional equations that will be resolved and a new potential, tailored
for one-dimensional studies. We present the Crank-Nicolson method that will be
used and determine numerical parameters by analyzing the numerical conservation
of unitarity. We finish by briefly showing that positivity is satisfied numerically,
validating the numerical implementation.

Finally in chapter 6, we resolve numerically the equations shown in chapter 5 to
study the dynamics of a cc̄ bar in the QGP, in the case of a medium with a fixed
temperature and in the case of a cooling medium. In both cases, the cc̄ pair density
matrix is analyzed and the projection to vacuum eigenstates is done to study the
evolution of the eigenstates weights.
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Chapter 1

The Standard Model and the
Quark-Gluon Plasma

This introductory chapter presents the basics of the Standard Model of particle
physics and of an extreme state of matter called the Quark-Gluon Plasma (QGP).
In the first section, the Standard Model of particle physics is briefly introduced,
followed by an introduction to the theory of the strong interaction, called Quantum
Chromodynamics (QCD). A focus on quarkonia and their production concludes the
first section. In the second section, the QGP is introduced and several interesting
probes used to study it are presented.

1.1 The Standard Model of particle physics

1.1.1 The Standard Model

Nowadays, it is known that matter is composed of molecules, which are com-
posed of atoms, themselves composed of nuclei with electrons "orbiting" around
them. It was then revealed, thanks to the experiments of Rutherford [3] and Chad-
wick [4], that nuclei are in fact composed of more elementary particles called protons
and neutrons. First theorized by Gell-Mann [5] and Zweig [6], protons and neutrons
were also revealed to be composed of smaller constituents, called quarks, which are
(according to current knowledge) elementary particles. In parallel, the development
of particle accelerators led to the discovery of many more composite particles, now
called hadrons. In order to describe all known particles and their interactions, the
Standard Model of particle physics was developped in the 70s. In this model, the
particles are separated into two groups: bosons and fermions (see figure 1.1).
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Bosons have an integer spin and are the mediators of the fundamental interactions.
The photon (γ) is the mediator of the well-known electromagnetic interactions. The
W and Z bosons are the mediators of the weak interaction, which is notably respon-
sible for radioactive decays. Gluons (g) are the mediators of the strong interaction,
which binds protons and neutrons inside the nuclei and also quarks inside hadrons.
The Higgs boson is a special case as it does not mediate a specific interactions but
gives their masses to elementary particles. Finally, a mediator for the gravitation-
nal force, called the graviton, may exist but is not yet observed. All bosons obey
Bose-Einstein statistics as they have integer spins.

FIGURE 1.1 – Table of particles in the Standard Model. [7]

Fermions have a half-integer spin and compose matter. They are divided in 3
generations (or families) [8] with increasing masses. Each generation is composed
of 2 quarks and 2 leptons, leading to 6 quarks (up, down, charm, strange, top and
bottom) and 6 leptons (electron, muon, tau and their corresponding neutrinos).
They all obey Fermi-Dirac statistics and must respect Pauli’s exclusion principle.
Due to the latter, two fermions can not be in the same quantum state. The existence
of particles like the ∆++, which is composed of three up quarks, would obviously
not respect it, therefore quarks must have another quantum number, called color [9].
Each quark carry a color (either blue, red or green by analogy with visible colors),
which is the charge of the strong interaction (similar to the electric charge for the
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electromagnetic interaction).

Through the years, the Standard Model was tested to a very high precision level
and predicted many particles that were later discovered in particles accelerators
and colliders such as the Higgs boson. [10, 11] However, while the Standard Model
is undoubtedly successful, it also has its flaws. It can not describe gravitation or
explain (among other important questions) neutrino oscillations [12, 13] and the
matter-antimatter asymmetry in the universe, which indicates that it is a not a com-
plete theory.

On a more formal aspect, the Standard Model is a relativistic quantum field the-
ory [14] where dynamical fields describe particles. The interactions are related
to the field gauge symmetries, which are internal transformations under which a
Lagrangian is invariant. The work of Yang and Mills on gauge invariance [15]
allowed to define a gauge symmetry under which the Standard Model is invariant:
SU(3) × SU(2) × U(1). The U(1) symmetry is the basis for the electromagnetic
interaction, the SU(2) symmetry is the basis for the weak interaction and the SU(3)
symmetry is the basis for the strong interaction. The dynamics and interactions of
particles are described by the Lagrangian of the Standard Model LSM, from which
cross-sections for physical processes can be calculated. In this thesis, we will only
focus on the strong interaction. However, the open quantum systems formalism that
will be presented in chapter 3 go beyond this interaction, as it was originally used
in condensed matter physics and quantum chemistry, which are based on Quantum
Electrodynamics (QED), the theory of the electromagnetic interaction.

1.1.2 Quantum Chromodynamics

Within the Standard Model, the strong interaction is described by Quantum
Chromodynamics (QCD) [16], which describes the dynamics of partons (quarks and
gluons) and their interactions. As mentionned in section 1.1.1, quarks are repre-
sented by quarks fields denoted ψi

j, where i goes from 1 to Nc the number of colors
(i.e. Nc = 3) and j goes from 1 to N f the number of quark flavors (i.e. N f = 6). The
free quark field,
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ψj =


ψ1

j

ψ2
j

ψ3
j

 , (1.1)

Lagrangian writes [17, 18]:

L f ree = ψ̄j
(
iγµ∂µ − mj

)
ψj, (1.2)

where sums on j and µ (a Lorentz index) are implicit.

The QCD Lagrangian has to be invariant under the SU(3) color gauge symmetry
transformation:

ψj(x) → ψ̃j(x) = e−θa(x)Ta
ψj(x), (1.3)

where a runs from 1 to 8, θa are real functions and Ta the generators of the SU(3)
group (related to the Gell-Mann matrices λa by Ta = λa

2 ), defined by:

[
Ta, Tb

]
= i f abcTc, (1.4)

with f abc the structure constants of SU(3).

However, the free quark Lagrangian defined as in equation (1.2) is not invariant
under such transformation. To obtain the invariance, the ∂µ derivative must be
replaced by the covariant derivative:

Dµ = ∂µ − igsTaGa
µ, (1.5)

where gs =
√

4παs is the gauge coupling parameter and Ga
µ the eight gauge fields

corresponding to gluons. This transformation leads to the introduction of interac-
tions terms between quarks and gluons.
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One also needs to add the gauge invariant Lagrangian for gluonic field, defined
as:

Lg = −1
4

Fa
µν(x)Fµν

a (x), (1.6)

where sums over µ,ν and a are implied. Fa
µν is the gluonic field tensor, defined as:

Fa
µν = ∂µGa

ν − ∂νGa
µ − gs f abcGb

µGc
ν. (1.7)

The first two terms of the right-hand side of equation (1.7) describe the gluon free
dynamics and are equivalent to the terms in the electromagnetic field tensor Fµν in
Quantum ElectroDynamics (QED). The last term describes the gluon self-interactions,
arising from the non-Abelian nature of SU(3) (see equation (1.4)). The QCD La-
grangian thus writes:

LQCD = ψ̄j
(
iγµDµ − mj

)
ψj −

1
4

Fa
µνFµν

a . (1.8)

FIGURE 1.2 – Left panel: Gluon splitting into a virtual pair of quarks
leading to screening. Right panel: Gluon self-interaction leading to

antiscreening. [19]

The gluon self-interactions have important consequences on the properties of the
strong interaction. When a gluon is exchanged during an interaction between two
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colored particles, it is possible that the gluon splits into a virtual pair of quarks (see
figure 1.2) at next-to-leading order (NLO) in the perturbative expansion. However,
it can also self-interact (unlike the photon in QED for example), leading to different
effects. In the case of a splitting into a virtual quark pair, the interactions between
two partons will be screened 1 while in the case a gluon self-interacts and splits into
a virtual gluon pair, antiscreening effects will arise. This leads to a modification
of the interaction coupling and to the well-known "running" of the QCD coupling
"constant" with respect to the energy transfered Q between the two color charges
(see figure 1.3) 2.

FIGURE 1.3 – QCD coupling constant as a function of the transfered
energy Q between two color charges [20]

Two regimes can be observed, separated by the typical QCD energy scale ΛQCD ∼

1. A similar effect exists in QED, where a photon creates a loop of charged particles, screening the
electromagnetic interaction between two charged particles

2. The running of the coupling constant is also observed in QED, but in that case the coupling
decreases at large distance, while it increases in QCD.
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200 MeV:

— At high energies (Q ≥ ΛQCD) or small coupling constant (αs ≤ 1), per-
turbative QCD (pQCD) can be applied. When Q � ΛQCD, one reaches
the asymptotic freedom regimes, where the interaction between two colored
particles becomes weak. The color charges can then behave as if they were
free (in the limit Q → ∞).

— At low energies (Q ≤ ΛQCD) or large coupling constant (αs ≥ 1), pQCD
can not be applied anymore as the interaction becomes highly non-linear
and the coupling is not small anymore. Non-perturbative methods, such
as Lattice QCD (LQCD), are needed. In this regime, partons are confined
inside hadrons and can not be observed individually, a phenomenon known
as confinement. In the Lund model [21] this is described as a consequence
of the breaking of a gluon string into a quark-antiquark pair (see figure 1.4
. The interaction between two partons becoming stronger and stronger with
increasing distance, it is more favorable energy-wise to create a pair, therefore
converting the energy accumulated in the string.

FIGURE 1.4 – Illustration of the gluon string breaking, leading to two
new composite systems. [22]

Perturbative QCD allows expansions in power of αs as αs should be small where
pQCD is applicable. For a given process, one should take into account all possible
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Feynmann diagrams to obtain a precise prediction. The very high number of possi-
ble diagrams due to gluon self interactions (compared to QED) limits the order that
can be attained in the perturbative expansion, thus limiting the precision of results
even more than for pure QED processes. pQCD is usually considered applicable for
energy scales superior to a few GeV.

FIGURE 1.5 – Representation of the lattice used to discretize space-time
in Lattice QCD. [7]

The Lattice QCD method was proposed in 1974 by Wilson [23] and explores
the non-perturbative regime of QCD by numerically calculating Feynman’s path
integrals [24]. The principle of LQCD is to discretize QCD on a four-dimensional
Euclidian lattice 3 with step size a. Quark fields are situated on the the nodes of the
lattice while gluon field propagate on the links between the nodes (see figure 1.5).
The state of the system can be accessed through the partition function:

Z =
∫

[dx]e−S, (1.9)

3. This requires to perform a Wick rotation on the time variable, which limits the applicability of
the method
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where S =
∫

d4xL is the action. Note that due to the discretization procedure, L is
not the QCD Lagragian. However the action S is discretized in such way that in the
limit a → 0, it is the QCD action.

Monte-Carlo algorithms can then evaluate the path integral by obtaining the most
probable field configuration. LQCD computations are thus very costly in terms
of numerical computing power, limiting the lattice grid size and step available,
therefore increasing the uncertainties on LQCD results. Fortunately, the increasing
computing power and new action modelizations help to reduce those uncertainties.

1.1.3 Quarkonia

Quarkonia are flavorless heavy mesons composed of a heavy quark and its own
antiquark. Bound states composed of a charm and an anticharm quark are called
charmonia while the states composed of a bottom and an antibottom quark are called
bottomonia. Quarkonia composed of a top quark and antiquark (a topponia) are not
expected to exist as the top quark decays too quickly to form a bound state due to
its large mass. The mass spectra of charmonia and bottomonia are shown in figure
1.6.

FIGURE 1.6 – Left panel: Mass spectrum of charmonia states. Right panel:
Same for bottomonia states. [25]
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Quarkonium production

The production of quarkonia involves perturbative and non-perturbative aspects
of QCD. The production of the QQ̄ pair that will form the quarkonium is expected to
be a perturbative process while its binding into a quarkonium is non-perturbative.
In most of the models describing quarkonium production, a factorization between
the pair production and its binding into a quarkonium is involved. Different ap-
proaches exist, mainly differing in their treatment of hadronization.

The Color Evaporation Model (CEM) [26, 27] connects the cross-section to produce
a quarkonium to the cross-section to produce a QQ̄ pair in a range in invariant
mass where hadronization into a quarkonium is expected to be possible. This range
is between 2mq (the quark pair production mass threshold) and 2mH (the lightest
open-heavy flavor hadron pair mass threshold). Therefore, one can express the
cross-section as:

σΦ = FΦ

∫ 2mH

2mq

dσQQ̄

dmQQ̄
dmQQ̄, (1.10)

with FΦ a phenomenological factor related to the probability that a pair hadronizes
in the state Φ. An example of such factor can be found in [28]. A factorization
between the QQ̄ pair production and its binding is implied but do not rely on a
factorization proof.

The Color Singlet Model (CSM) [29, 30] assumes that the quantum state of the
pair do not evolve between its production and its hadronization. Assuming that
quarkonia are non-relativistic bound states, the production cross-section can be ex-
pressed as the product of the production cross-section of a QQ̄ pair in a color singlet
state with zero relative velocity and the same quantum numbers as the considered
quarkonium state (i.e. for a J/Ψ, we have a cc̄ pair with quantum numbers L = 0, J
= 1 and S = 1) and of the square of the quarkonium wave function at the origin. The
cross-section thus writes:

σΦ = σQQ̄|ΨΦ(0)|2 (1.11)

In the case of P-wave states, |ΨΦ(0)|2 obviously vanishes and its derivative |Ψ′
Φ(0)|

2

should be used instead. Furthermore, when treating the decay of P-waves, the
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CSM is affected by infrared divergences, which can be cured in the framework of
Non-Relativistic QCD (NRQCD)

NRQCD [31, 32] is a rigorous effective field theory of QCD, based on the factor-
ization of soft and hard scales, with a scale hierarchy Mv2 � Mv � ΛQCD << M.
v is the typical velocity if the heavy quark in the quarkonium rest frame (v2 ∼ 0.3 for
the charmonium and v2 ∼ 0.1 for the bottomonium), Mv is the typical momentum
of the heavy quark in the quarkonium rest frame and Mv2 is the binding energy of
the quark and antiquark. In the NRQCD framework, the production cross-section is
expressed in the following way:

σΦ = ∑
n

σQQ̄[n]

〈
OΦ[n]

〉
, (1.12)

with σQQ̄[n] the production cross-section of a QQ̄ pair in the Fock state n (which
can be a color-octet state) and

〈
OΦ[n]

〉
long distance matrix elements (LDMEs)

describing the hadronization QQ̄[n] → Φ, which are universal and extracted from
experimental data.

Experimentally, the production of quarkonia can be separated in non-prompt produc-
tion (only for charmonia) from the decays of B mesons and bottomonia and in prompt
production, either from hadronization of QQ̄ pairs (so-called direct production) or
from "feed-down" (decays) of excited quarkonia states. The contribution of direct
production and feed-downs for the J/Ψ and Υ(1S) is shown in figure 1.7.
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FIGURE 1.7 – Left panels: Sources of prompt J/Ψ. Right panels: Sources
of prompt Υ(1S). [33]

1.2 The Quark-Gluon Plasma

QCD is well tested in the perturbative regime but less in the non-perturbative
regime. The Quark-Gluon Plasma (QGP) is a unique system to test the strong inter-
action and QCD predictions. Notably, QGP physics allow to study the equation of
state of nuclear matter for high energy densities or the interactions between partons
and a colored medium.

1.2.1 Phase diagram of the nuclear matter

To study the different phases of nuclear matter and the transitions between them,
one can study its phase diagram. This phase diagram, represented on figure 1.8,
is parametrized by two quantities: the temperature T and the baryon chemical
potential µB. 4 As said in section 1.1, under normal conditions of temperature and
baryon chemical potential, quarks and gluons are confined inside hadrons. How-
ever, QCD predicts that at extreme temperature and/or baryon chemical potential,
a new state of nuclear matter exists, called the Quark-Gluon Plasma , where quarks
and gluons are deconfined. This new phase of matter is supposed to be the state

4. The baryon chemical potential translates the change in free energy with respect to a change in
baryon number composition.
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of the universe a few microseconds after the Big Bang and may compose the core
of neutron stars. Note that at very large chemical potential and low temperature, a
color superconducting phase called Color-Flavor Locking is predicted [34].

FIGURE 1.8 – Schematic view of the phase diagram of QCD as function
of temperature and baryon chemical potential [19]

While it is impossible a priori to observe in Nature a Quark-Gluon Plasma, it
is possible to produce small amounts of it at high-energy colliders (such as the
Relativistic Heavy Ion Collider (RHIC) or the Large Hadron Collider (LHC)) in heavy ion
collisions. As observed on figure 1.8, the QGP phase can exist at high temperatures
but also at large values of µB. The increase in temperature, and thus in energy, leads
to a weaker coupling between partons, while the increase of the baryon chemical
potential can be understood as an increase of the parton density, resulting in a
larger net color charge density which leads to a screening of the interaction between
the partons. The diagram predicts the existence of two types of transitions [35], a
first order phase transition (discontinuity in the first derivative of the free energy),
corresponding to a sudden phase transition and a crossover, corresponding to a
smoother transition 5 where the medium is not purely hadronic nor deconfined. In
all cases, the transition only occurs at a critical temperature TC, which is estimated
for example from Lattice QCD calculations [36] at TC ≈ 175 MeV at µB = 0. The

5. Note however that a crossover is not a phase transition (in the Ehrenfest classification sense)
as there are no discontinuities in the derivatives of the free energy, even though there is a change of
phase.
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point in the phase diagram separating the crossover and the first-order transition is
called the critical point and its determination is an active field of research.

1.2.2 Heavy ion collisions

In order to produce a Quark-Gluon Plasma, extreme conditions of temperatures
and/or density are needed. The only way to reach such conditions for now is to
accelerate and collide heavy ions (U, Au, Pb, Cu....) at high energy colliders such as
the RHIC and the LHC. The high amoiunt of nucleons contained in heavy ions and
the ultrarelativistic velocities to which the ions are accelerated lead to the production
of numerous particles in a very small volume which may satisfy the conditions
required for the production of a deconfined state. If one assumes that a QGP is
formed during a high-energy heavy ion collisions, the latter can be described by
the Bjorken model [37], from the initial colliding ions to the hadrons observed in
the experimental detectors (see figure 1.11. In this model, the collision is divided
in 3 main phases phases: the pre-equilibrium phase, the expansion phase and the
hadronization phase.

FIGURE 1.9 – Schematization of the whole evolution [19]

The initial collision and the pre-equilibrium phase

Due to relativistic effects, the initial ions are contracted along the beam axis, tak-
ing a "pancake" shape in the laboratory frame (see figure 1.10). The pre-equilibrium
immediately follows the initial collision. This phase lasts for about 1 fm/c (∼ 10−24

s) and it is during it that most hard processes occur and particles produced during
this phase will witness the entire evolution and, as such, be interesting probes of the
medium.
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FIGURE 1.10 – Representation of the initial heavy-ion collision [7]

As the medium is not in thermal equilibrium during this phase, its theoretical de-
scription is difficult. Several models have been developped to describe the medium
at the end of the pre-equilibrium phase:

— MC-Glauber [38]: Nuclei are described as ensembles of nucleons distributed
according to a charge density distribution obtained experimentally.

— MC-KLN [39]: Based on the MC-Glauder model but incorporate the Color
Glass Condensate (CGC) effective theory [40] which includes gluon satura-
tion at small-x.

— IP-GLASMA [41]: Also based on the CGC, but also add fluctuations of color
charges and partially treat the out-of-equilibrium evolution.

— Several transport models that evolves dynamically an out-of-equilibrium sys-
tem to obtain initial conditions such as UrQMD [42] or EPOS [43].

The QGP phase

If the energy density is high enough, then a plasma is produced, which size
depends on the initial energy density. This phase can last for up to 10 fm/c, de-
pending on the initial size of the QGP. During it, interactions between partons occur,
modifying their momentum distribution compared to collisions without formation
of a QGP. At the same time, the medium expands quickly and brutally, expansion
that can be described by hydrodynamical models [44, 45]. This expansion can last
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up to 20 fm/c at current energies and lead to the progressive cooling of the QGP,
until a critical temperature TC is reached, and a crossover occurs to an hadronic
phase.

FIGURE 1.11 – Representation of the Björken scenario with and without
a QGP phase [46]

The hadronic phase

As the hadronic gas continues to cool down, it will first reach a chemical freeze-
out temperature where the nature of particles is frozen as inelastic collisions stop.
The gas finally reaches a kinetic freeze-out, where elastic collisions stop and the
momentum distribution of particles is also frozen. The resulting hadrons can then
propagate towards the detectors. For certain observables, it is necessary to take
into account further interactions between hadrons, as it is done for example in the
UrQMD model [42].
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1.2.3 Probes of the QGP

We now present a list of probes used to study the Quark-Gluon Plasma in heavy
ion collisions. They are usually separated into two categories: the soft probes, more
affected by the physics near the freeze-out and the hard probes, which are known
for being more sensitive to the plasma phase.

Soft probes

Strangeness enhancement

It is one of the first proposed signatures of the formation of a QGP in nucleus-
nucleus collisions [47, 48]. In proton-proton collisions, the production of strange
hadrons is difficult. There are two ways of producing them:

— Direct production through ππ → hh̄ processes. However, the production
thresholds are quite high: 2.233 GeV for ΛΛ̄, 2.642 GeV for ΞΞ̄ and 3.344
GeV for ΩΩ̄.

— Cascade production with the chain of processes: πN → KΛ, πΛ → KΞ
and πΞ → KΩ (with N denoting a nucleon). In this case the production
thresholds are reduced (540, 560 and 710 MeV), but the production of multi-
strange baryons is done through several processes, which is unlikely. [49]

However, in nucleus-nucleus collisions, to get strange hadrons in the final state, only
the production of ss̄ pairs is required, which only requires around 300 MeV as the
strange quark mass gets smaller due to chiral symmetry restoration. On top of that,
the gluon density in the deconfined phase is very high, favoring the production of
a ss̄ pair through gluon fusion gg → ss̄.[49] This should lead to an increase to the
production of hyperons (strange baryons) in nucleus-nucleus collisions compared
to proton-proton or proton-nucleus collisions.

Measurements at the LHC in Pb-Pb collisions of the production of hyperons and
antihyperons, normalized by the production in p-Be collisions at the SPS showed an
enhancement of the production of strange hadrons (see figure 1.12), interpreted as
a sign of the presence of a QGP medium. This enhancement for greater for hadrons
with multiple strange quarks (such as the Ω) as they are less produced in p-Be
collisions.
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FIGURE 1.12 – Normalized production rates of hyperons and
antihyperons in Pb-Pb collisions at

√
sNN = 17.3 GeV with respect to

production rates in p-Be collisions measured by the NA57 experiment
at the SPS [50]

Thermal photons and leptons

The QGP medium radiates photons and e+e− pairs (from pion annihilation ππ →
e+e−) called thermal photons and leptons.[35, 51] This should lead to an excess in the
mass invariant spectrum of e+e− or transverse momentum pT spectra of photons
with respect to purely hadronic contributions. The NA54 experiment at the SPS
measured the mass invariant spectrum of electron-positron pairs in p-p, p-Pb and
Pb-Au collisions [52]. A good agreement in p-p and p-Pb collisions with predictions
from hadronic processes was found and an excess at low masses was found for
Pb-Au collisions. The PHENIX experiment at the RHIC measured an excess in the
photon transverse momentum spectrum at low pT. [53] Those results indicate that
a QGP medium is indeed formed in nucleus-nucleus collisions.

Anisotropic flow

For peripheral collisions, the QGP medium has an almond shape (see figure
1.13). This induces a stronger pressure gradient in the reaction plane than else-
where, which leads to different thrusts for partons depending on their distance to
the reaction plane, resulting in an azimuthal anisotropy of the particle momentum
distribution in the final state called anisotropic flow.
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FIGURE 1.13 – Schematic view of a peripheral heavy ion collision. [7]

The final state particle yield can be decomposed as a Fourier series:

E
d3N
d3p

=
1

2π

d2N
pTdpTdy

(
1 +

∞

∑
n=1

2vn cos [n(φ − φRP)]

)
, (1.13)

with E the energy of the particle, p its momentum, pT its transverse momentum,
φ its azimuthal angle, y the rapidity and φRP the reaction plane angle (see figure
1.14). The vn coefficients represent different anisotropies in the flow of particles in
the medium.

FIGURE 1.14 – Schematic view of the reaction plane. [7]
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The v2 coefficient, corresponding to the elliptic flow was measured at RHIC by the
STAR and PHENIX experiments in Au-Au collisions (see figure 1.15 and found to
be non-zero, confirming the presence of collective effects, which is consistent with
the production of a QGP. However, measurements in p-p collisions at the LHC by
the ATLAS experiment [54] also revealed a non-zero elliptic flow, which raises the
question of whether the anisotropic flow is a good probe of the Quark-Gluon Plasma
or if the proton-proton system is a good reference system without any collective
effect.

FIGURE 1.15 – v2 coefficient measured by the PHENIX and STAR
experiments in Au-Au collisions at

√
sNN = 200 GeV. [55]

Hard probe

Jet quenching

Proton-proton collisions are usually seen as a reference system in which no QGP
is produced. The particle multiplicities in nucleus-nucleus collisions are then com-
pared to the ones in proton-proton collisions, through the study of the nuclear
modification factor RAA, defined as:

RAA(pT, η) =
d2NAA/d2pTη

〈Ncoll〉 d2Npp/d2pTη
, (1.14)
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where pT is the tranverse momentum of the particles and η the pseudo-rapidity,
defined as η = − ln

[
tan

(
θ
2

)]
, with θ the angle of a particle relatively to the beam

axis (usually defined as the z-axis). 〈Ncoll〉 is the total number of binary collisions,
which scales the multiplicities in nucleus-nucleus and proton-proton collisions. In
the absence of a QGP medium, the RAA should be equal to 1, as the A-A collision
would simply be a superposition of p-p collisions. However, in the presence of a
medium, the RAA can be smaller than 1, indicating a suppression of the production
of particles, or higher than 1, indicating an enhancement of the production.

Jets are a flux of collimated particles originating from the fragmentation of a highly
energetic parton traversing the QGP. The partons from the jet interact in the medium
and lose energy via gluonstrahlung (emission of gluons induced by the medium) or
collisions with partons from the medium. This leads to a jet which energy is smaller
than it would have been without the QGP medium, a phenomenon known as jet
quenching. The resulting RAA then shows a suppression of the number of particles
which depends on the centrality of the collision (see figure 1.16). It also shows a rise
in the RAA for high transervse momentum.

FIGURE 1.16 – Nuclear modification factor RAA as function of the jet
transverse momentum for different centrality classes and isolation cone
radius measured by CMS in Pb-Pb collisions at

√
sNN = 5.02 TeV [56].

The parton that created the jet is usually produced in a hard process, back-to-
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back with another particle. The other particle can be another parton, leading to a
"dijet" or a particle that will not lose energy in the medium such as a photon, leading
to a "gamma-jet" event. This second case is of particular interest since one can get
access to the initial energy of the parton, the gamme-jet system is thus a very good
experimental probe of energy loss in the medium. [7, 57]

1.3 Summary

Experimental results presented in this chapter all seem to confirm the production
of a new state of nuclear matter called Quark-Gluon Plasma in heavy ion collisions.
We presented several probes of the QGP, testing different properties of the medium.
Another very interesting probe is the so-called quarkonia suppression that occurs
in heavy-ion collisions, which may be sensitive to the medium temperature. This
observable will be central to the rest of this thesis, therefore we present in more
details this observable, from both a theoretical and experimental point of view, in
the next chapter.
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Chapter 2

Phenomenology of quarkonia
suppression

We will focus in this chapter on quarkonia suppression, which is an important
observable of the Quark-Gluon Plasma. As the quarkonia are said to be suppressed
when the number of detected quarkonia per binary nucleus-nucleus collision is
smaller to the one in proton-proton collisions (once properly rescaled by the equiv-
alent number of proton-proton collisions, Ncoll), quarkonia suppression is usually
quantified by the nuclear modification factor RAA defined in the previous chapter
in equation (1.14). We will describe which effects play a role in the suppression
of quarkonia and discuss experimental results from the RHIC and the LHC before
presenting several types of models that aim at describing quarkonia suppression.

2.1 Quarkonia suppression and recombination

2.1.1 Cold nuclear effects on suppression

Those effects are usually classified in two categories: Initial cold nuclear effects,
which happen before the creation of a QQ̄ pair, and final cold nuclear effects, which
occur after the creation.

Shadowing and antishadowing

The main production mechanism for QQ̄ pairs production is gluon fusion. It
depends on the initial gluon density, which can be described by nuclear Parton Distri-
bution Functions (nPDFs) which use the DGLAP evolution equation [58–60] and de-
scribe the saturation of partons at small Björken x. In heavy ion collisions, the gluon
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density of the colliding nuclei is modified by the interaction between the nucleons
composing the nuclei. This can either either lead to a decrease (called shadowing)
or increase (called anti-shadowing) of the heavy quark production depending on the
energy and rapidity of the collisions. As shown on figure 2.1, the suppression for
both charmonia and bottomonia decreases with increasing transverse momentum
and becomes small at high-pT. It also decreases at large rapidities (both forward
and backward) for both systems. Finally, the suppression is expected to be smaller
for bottomonia than for charmonia as the probed energy fractions x1 and x2 of the
colliding partons are larger for a given invariant energy.

FIGURE 2.1 – Nuclear modification factor RAA for J/Ψ (upper panels)
and Υ (lower panels) using the EPS09 nPDFs as function of rapidity

(left panels) and transverse momentum (right panels). [61]

One can also describe the parton saturation using the Color Glass Condensate
(CGC) [40] effective theory, which is based on non-linear evolution equations such
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as the Balitsky-Kovchegov (BK)[62–64] or JIMWLK equations.

Cronin effect

In the initial stage of the collision, the initial parton from the projectile can scatter
elastically multiple times on the colliding target nucleus. As they scatter, the partons
acquire transverse momentum at each collision, which leads to a broadening of
the quarkonium pT distributions in proton-nucleus and nucleus-nucleus collisions
compared to proton-proton collisions. This broadening is known as the Cronin
effect. [65]

Nuclear absorption

It is a dissociation mechanism of quarkonia bound states induced by inelastic
scatterings inside a nucleus with spectator nucleons in the final state. The survival
probability of a quarkonium inside a nucleus can be expressed as:

Sabs = e−ρAσabsL, (2.1)

with ρA the nuclear density, σabs an effective cross-section for the quarkonium break-
ing and L the mean propagation length. The cross-section σabs can be extracted from
proton-nucleus collisions data and extrapolated to nucleus-nucleus collisions using
the Glauber model.

As shown on figure 2.2, the cross-section σabs decreases with the energy of the colli-
sion. Extrapolating the results to LHC energies leads to a negligeable cross-section
and thus a negligeable effect of nuclear absorption in high energy heavy ion colli-
sions.



28 Chapter 2. Phenomenology of quarkonia suppression

FIGURE 2.2 – Dependence of σabs on energy for the J/Ψ at mid-rapidity
[66] using the EKS98 and CTEQ61L nPDFs [67–70]

Parton energy loss

The QQ̄ pairs produced during the collisions can lose energy in the nuclei, which
may decrease its total momentum. This can lead to a lower quarkonium production
at high pT. Parton energy loss arguments date back to the 90s, and the energy loss
was considered to be moderate. A model describing parton coherent energy loss
[71–75] showed that the energy loss is not moderate if we add the coherent energy
loss mechanism. This model provides a good description of J/Ψ suppression in
proton-nucleus collisions over a large range of energies, from fixed-target to collider
energies. However, its application to nucleus-nucleus collisions failed to reproduce
experimental data overall, especially for the Υ(1S) at RHIC energies [76].

2.1.2 QGP effects on suppression

At zero temperature, the interaction potential between the quark and antiquark
of the pair can be modelized by the Cornell potential [77]:
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V(r) = −α

r
+ σr, (2.2)

with the σr a term describing the non-perturbative confinement at long distance and
− α

r a perturbative Coulombic interaction term at short distance. σ is a string tension
coefficient, that can be taken as σ = (1.65 − π/12)/r2

0 (with r0 = 0.5 fm) [78] and
α = π/12 a coefficient that can be determined by fitting to lattice results [79].

In the presence of a QGP medium, i.e at non-zero temperatures, the presence of
color charges induces a Debye-like color screening of the QQ̄ interaction, which is
similar to the screening of the electromagnetic interaction in a plasma composed of
electrons and ions. As the density of color charges increases with temperature, the
QQ̄ interaction is also more and more screened, as shown on figure 2.3, and its range
is reduced.

FIGURE 2.3 – Potential describing the QQ̄ pair interaction as function
of the distance between the two quarks and temperature [80]

By analogy with an electromagnetic plasma, this range is usually described by
the Debye radius, which is inversely proportionnal to the square root of the color
charge density in the QGP. When the range of the interaction becomes smaller than
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the quarkonium size, the strong interaction can not bind the quarkonium anymore.
This leads to the bound state dissociation and to the suppression of the quarkonia
production in the final state.

Alongside this static screening effect, there are also dynamical processes. The pres-
ence of light quarks and gluons in the medium will lead to collisions between the
quarkonium and the medium particles. Those collisions may lead to the dissociation
of the quarkonium through reactions of the type g Φ → QQ̄ (gluo-dissociation) or
p Φ → QQ̄p ("quasi-free" dissociation, with p = q, q̄, g). [81, 82] This in turn will
further suppress quarkonia production.

c
c̄

ū

d

c
ū

d
c̄

FIGURE 2.4 – Illustration of the dissociation of a quarkonium state and
the hadronization of the free quarks into open heavy hadrons.

2.1.3 Recombination

The production of c and c̄ quarks is higher at high center of mass energies due
to greater production cross-sections, as at the LHC. The high amount of c quarks
and antiquarks can lead to a phenomenon of recombination of those quarks into
charmonia, increasing the production of such particles. This recombination can
happen during the evolution, notably from quarks that come from dissociated pairs,
or during the hadronization phase at the freeze-out as illustrated on figure 2.5. This
recombination mechanism can therefore counterbalance the charmonium suppres-
sion which should be stronger at higher energy.

In the case of b and b̄ quarks, the production cross-section also increases with the
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collision center of mass energy. However, the number of b quarks and antiquarks
in the medium remains small, even at high energies, and the contribution of the
recombination mechanism to bottomonium production is still small.

c

c̄
c

c̄

FIGURE 2.5 – Illustration of the recombination of two uncorrelated
quarks to form a quarkonium

2.1.4 Experimental measurements at RHIC and LHC

In this section, we present experimental results from both RHIC and LHC exper-
iments for bottomonia and charmonia suppression. 1

Bottomonia

Results from Au-Au collisions at
√

sNN = 200 GeV and U-U collisions at
√

sNN

= 193 GeV at RHIC show a strong suppression for the Υ(1S) at high multiplicity
(i.e. for more central collisions) and a stronger suppression in U-U collisions (see
figure 2.6). Similar observations can be made for the integrated RAA measured of
Υ(1S+2S+3S), however, in that case, the suppression in U-U collision isn’t stronger
than in Au-Au collisions.

1. Results on quarkonia suppression at the SPS exist but will not be presented in this thesis
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FIGURE 2.6 – Dependence on multiplicity of the nuclear modification
factor RAA for the Υ(1S) (bottom panel) and of the integrated RAA for
the Υ(1S+2S+3S) (top panel) in Au-Au collisions at 200 GeV and U-U

collisions at 193 GeV from the STAR experiment. [83]

At the LHC, CMS measured the nuclear modification factor of the Υ(1S) and
Υ(2S) in Pb-Pb collisions at

√
sNN = 2.76 TeV. They observed a stronger suppression

of the Υ(2S) compared to the Υ(1S) for all kinematics. Compared to RHIC energies,
the Υ(1S) state is more suppressed at higher center of mass energies which is ex-
pected. No clear dependence on transverse momentum or rapidity was observed
(see figure 2.7) but both Υ states clearly show a stronger suppression at high multi-
plicity (see figure 2.8), which corroborates results from RHIC.
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FIGURE 2.7 – Left panel: Dependence on transverse momentum
of the nuclear modification factor RAA for the Υ(1S) and Υ(2S) in
Pb-Pb collisions at 2.76 TeV from the CMS experiment. Right panel:

Dependence on rapidity. [84]

FIGURE 2.8 – Dependence on multiplicity of the nuclear modification
factor RAA for the Υ(1S) and Υ(2S) in Pb-Pb collisions at 2.76 TeV from

the CMS experiment. [84]
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Finally, measurements of the RAA of the Υ(1S) and Υ(2S) with ALICE in Pb-Pb
collisions at 5.02 TeV confirmed the stronger suppression of the Υ(2S). No depen-
dence on transverse momentum was observed but a decrease of the suppression at
forward rapidity was shown for the Υ(2S) (see figure 2.9) while an increase of the
suppression was found for the Υ(1S). As for CMS results, a stronger suppression of
both Υ(1S) and Υ(2S) is observed at high multiplicity, which saturates for the most
central collisions (see figure 2.10).

FIGURE 2.9 – Left panel: Dependence on transverse momentum of
the RAA of the Υ(1S) in Pb-Pb collisions at 5.02 TeV from the ALICE
experiment. Right panel: Dependence on rapidity from ALICE and

CMS. [85]

FIGURE 2.10 – Dependence on multiplicity of the nuclear modification
factor RAA for the Υ(1S) and Υ(2S) in Pb-Pb collisions at 5.02 TeV from

the ALICE experiment.[85]
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The comparison of results from ALICE in Pb-Pb collisions at 2.76 and 5.02 TeV
[86] shows a slightly reduced suppression at higher energies, indicating the presence
of (still marginal) recombination for bottomonia.

Charmonia

Measurements of the nuclear modification factor of the J/Ψ at RHIC in Au-Au
collisions at

√
sNN = 200 GeV showed stronger suppression at forward rapidity than

at mid-rapidity (see figure 2.11). Stronger suppression at high multiplicity (i.e. for
more central collisions) was also observed. As of now, no data was published from
RHIC experiments on RAA of the Ψ(2S) in A-A collisions.

FIGURE 2.11 – J/Ψ RAA from STAR as function of multiplicity in Au-
Au collisions at 200 GeV in two different rapidity range. [87]

At the LHC, measurements in Pb-Pb collisions at 2.76 and 5.02 TeV by CMS for
transverse momentum higher than 6.5 GeV showed no dependence on rapidity (see
figure 2.12). Similar suppression with respect to multiplicity as RHIC is obtained
with a slightly higher suppression at higher energies.
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FIGURE 2.12 – J/Ψ RAA from CMS in Pb-Pb collisions at 2.76 and 5.02
TeV as function of rapidity (top left panel), multiplicity (top right panel)

and transverse momentum (bottom panel).[88]

FIGURE 2.13 – J/Ψ RAA from ALICE in Pb-Pb collisions at 2.76 TeV as
function of multiplicity (left panel) and transverse momentum (right

panel).[89]

ALICE measured the J/Ψ RAA at low transverse momentum and also observed
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an increase of the suppression with respect to multiplicity (see figure 2.13). At very
low pT (0-2 GeV), an enhancement of the J/Ψ production is observed, indicative
of recombination of c and c̄ quarks in the medium, while a significant suppression
(> 50%) is observed for transverse momenta between 3 and 10 GeV. This can be
explained as recombination is a process that is less relevant at higher transverse
momentum.

FIGURE 2.14 – Prompt J/Ψ and Ψ(2S) RAA from CMS in Pb-Pb collsions
at 5.02 TeV as function of multiplicity (left panels) and transverse
momentum (right panels) at central rapidities (top panels) and forward

rapidity (bottom panels).[88]

Measurements of the Ψ(2S) suppression were done by CMS in Pb-Pb collision at
5.02 TeV. A stronger suppression of the Ψ(2S) compared to J/Ψ was observed with
respect to multiplicity and transverse momentum (for pT > 6.5 GeV) at mid-rapidity.
However, at more forward rapidity, the uncertainties on the Ψ(2S) RAA remain quite
large but suppression is still observed to be stronger nonetheless.
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2.2 Theoretical models of quarkonia suppression

In this section, we review the main models that try to describe quarkonia sup-
pression in heavy-ion collisions.

2.2.1 Sequential suppression

Matsui & Satz [1] first predicted quarkonium suppression as a sign of the for-
mation of a Quark-Gluon Plasma. As described in section 2.1.2, the screening of the
interaction between the quark and antiquark is described by the Debye screening
radius rD, which decreases with increasing temperature. If the Debye radius gets
smaller than the radius of a quarkonium state, the quarkonium will dissociate.

The idea of sequential suppression is that for each quarkonium state, there exists
a dissociation temperature Td

Φ for which rD < rΦ, where rΦ is the mean radius
of quarkonium state Φ. At the start of the QGP phase, if the temperature of the
medium is higher than Td

Φ, the state is melted and the heavy quarks evolve freely in
the medium. If this scenario is realized, then one should observe a suppression
by steps for each state with the most excited states being the most suppressed.
Quarkonia suppression can then be seen as a early time thermometer of the plasma.

FIGURE 2.15 – Left panel: Sequential suppression for J/Ψ. Right panel:
Sequential suppression for Υ(1S). [33]

In this approach, one needs to determine the dissociation temperatures Td
Φ, which

is not obvious. Two main methods are usually used to determine them. One can ei-
ther model the interquark potential V(r, T) (by parametrizing it, or by using LQCD
results) [78, 90, 91] or compute the quarkonium spectral functions using LQCD
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[92–94]. In the latter case, the dissociation temperature of the quarkonium state
Φ is obtained when the peak in the spectral function corresponding to the state Φ
disappears (see figure 2.16).

FIGURE 2.16 – Illustration of the dissociation of charmonium states
through the disappearence of spectral functions [95].

The sequential suppression model assumes that the whole dynamics of quarko-
nium in the medium is decided in the early stage of the QGP phase, which is also
assumed to be stationnary as far as its effects on quarkonia are concerned. If the
medium initial temperature is greater than the dissociation temperature Td

Φ of the
quarkonium Φ, then the state is melted and the QQ̄ pair evolves freely until hadroniza-
tion. In that case the QQ̄ pair decorrelates quickly which is not obvious as residual
interactions are still present. If the medium initial temperature is lower than the
dissociation temperature, then the state is formed and evolves adiabatically without
any dissociation or transitions to other states which is also highly debatable. In
another version of the sequential suppression model, where the medium is assumed
to be quasi-stationnary, the quarkonium formation times are taken into account and
the dissociation temperatures are compared to the medium local temperature after
such a formation time. However, the determination of the dissociation temperatures
and formation times remains complicated as different prescriptions can result in
different values and as the physics which is continuous is replaced by discretized
criteria.
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State J/Ψ Ψ(2S) Υ(1S) Υ(2S) Υ(3S) Υ(4S)
Tdiss/TC 1.37+0.08

−0.07 < 0.95 2.66+0.49
−0.14 1.25+0.17

−0.05 1.01+0.03
−0.03 < 0.95

TABLE 2.1 – Dissociation temperatures obtained from LQCD
calculations [94] with TC = 172.5 MeV. Only an upper limit is given

for the Ψ(2S) and Υ(4S) due to the lack of data below this limit.

2.2.2 Co-movers

This model [96–100] was originally introduced to explain the "abnormal" sup-
pression of charmonia in proton-nucleus collisions at SPS. It takes into account
shadowing and nuclear absorption effects, which are described by suppression fac-
tors Ssh and Sabs, with the latter defined in a similar fashion as in section 2.1.1 (see
equation (2.1)). It originally described the suppression of the production of quarko-
nia caused by inelastic interactions with the "co-moving" hadrons (i.e. with similar
rapidity as the quarkonium) of the type QQ̄ + hco → D/B + D̄/B̄ + X during the
hadronization phase (D and B refer to either D or B generic mesons). The model was
later extended to also take into account recombination by the same mechanism [101],
via reactions of the type D/B+ D̄/B̄ → QQ̄+X. This dissociation or recombination
due to co-movers is described by another suppression factor Sco, which is derived
from a rate equation governing the final state quarkonium density:

Sco = exp

(
−σco

[
Nco −

NQNQ̄

NΦ

]
ln

[
Nco

N f

])
, (2.3)

where NQ and NΦ are respectively the densities of the considered heavy quark
and quarkonium state and σco is the quarkonium dissociation cross-section with the
comoving medium of density Nco.

The model is in overall good agreement with data from A-A collisions at LHC [102]
(see figure 2.17) and RHIC [101]. It was also applied to excited charmonium states
(in p-A collisions) [103] and to bottomonia [104]. However, the nature of co-movers
is not clearly identified and the cross-sections used are tuned and are not related to
QCD.
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FIGURE 2.17 – pT dependence of the J/Ψ RAA in Pb-Pb collisions at√
sNN = 2.76 TeV with the comovers interaction model (shadowed area)

[102]. Left panel: Comparison to CMS [105, 106] data at mid-rapidity.
Right panel: Comparison to CMS [105] data and ALICE [107] data at

forward rapidity.

2.2.3 Statistical hadronization

The statistical hadronization model (SHM) was first used to describe light hadrons
multiplicity [108–111] and then also applied to quarkonia yields [112–114]. It is
based on the possible production of quarkonia at the phase boundary from re-
combination of uncorrelated Q and Q̄. The QQ̄ pairs produced by the initial col-
lision are screened in the QGP at the start of the deconfined phase and only un-
correlated quark and antiquarks remain as all correlations are considered to dis-
appear. The single heavy quarks freely evolve in the medium and then hadronize
at the phase boundary into open hadrons or quarkonia, based on their statistical
weights and masses. This production mechanism requires the number of uncorre-
lated heavy quarks in the medium to be non-negligeable compared to the number of
light quarks. It depends on the number of initial QQ̄ pairs produced at the start of
the collision, which should increase with the center of mass energy and centrality of
the collision. At the LHC, one expects the production of a hundred of QQ̄ pairs [115]
and ten times less at the RHIC [116], therefore the contribution should be important
at LHC energies and moderate at RHIC energies. The number of cc̄ pairs produced
is also expected to be much greater than the number of bb̄ pairs, this production
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mechanism should thus not be dominant for bottomonia.

FIGURE 2.18 – J/Ψ transverse momentum spectrum in Pb-Pb collisions
at

√
sNN = 5 TeV obtained from ALICE data [117] and comparison to

results from the statistical hadronization model. Predictions for the
Ψ(2S) transverse momentum spectrum. [118].

The statistical hadronization model reproduces well data from RHIC on the J/Ψ
RAA dependence on rapidity and centrality and data from the NA50 experiment
at the SPS on the Ψ(2S)/J/Ψ ratio [119, 120]. More recent results show a good
agreement with ALICE data on the J/Ψ transverse momentum spectrum at mid
rapidity and low pT [118]. A discrepancy at high pT is observed (see figure 2.18)
and is expected as the statistical recombination is a low pT phenomenon (because
it only applies to thermalized charm quarks). Predictions for the Ψ(2S) were also
made. Results on the dependence on charged particles multiplicity of the J/Ψ RAA

at midrapidity and forward rapidity were shown in [121]. A good agreement within
uncertainties with RHIC data was observed as well as with ALICE data (see figure
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2.19). The statistical hadronization model also made predictions on J/Ψ and Ψ(2S)
yields for 5.02 TeV Pb-Pb collisions [122].

FIGURE 2.19 – Left panel: Nuclear modification factor RAA for
J/Ψ dependence on charged particle multiplicity at forward rapidity
obtained from the SHM and comparison to experimental data. Right
panel: Same at mid-rapidity. Data are for Au-Au collisions from STAR
(green points) [123] and PHENIX (blue points) [87, 124] and for Pb-Pb

collisions from ALICE (red points) [89, 125].

Despite its successes, this model makes several assumptions regarding char-
monia that are debatable. First of all, and contrary to the sequential suppression
model, it assumes that the fate of quarkonia is decided at a quasi-stationnary phase
boundary. The initial cc̄ pairs are assumed to be completely dissociated and then
equilibrate with the medium. Both assumptions are questionable as it is not obvious
that the heavy quarks completely thermalize in the dynamic medium [126] and
it is also not obvious that the initial pairs completely decorrelate. Finally, it is
implied that the quarkonia production is "instantaneous", even though production
timescales for heavy quarks are rather long due to their masses.

2.2.4 Transport models

Transport models rely on a more dynamical view of the dissociation and re-
combination and usually include most of the effects affecting quarkonia production
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(shadowing, nuclear absorption...). Feed-down from excited quarkonia and non-
prompt charmonia from b-decays are also included and formation times are taken
into account [127]. They usually describe the phase-space distribution of quarkonia
in the QGP using the relativistic Boltzmann or Langevin equation, from which one
can obtain, assuming a spatially homogeneous medium and the thermalization of
open heavy states, the rate equation:

dNΦ

dτ
= −ΓΦ(T)

[
NΦ − Neq

Φ (T)
]
, (2.4)

with τ the proper time, NΦ the number of quarkonia Φ, ΓΦ the inelastic reaction rate
(taking into account both dissociation and recombination) and Neq

Φ the quarkonium
equilibrium limit.

The reaction rate ΓΦ is computed from inelastic scattering processes of quarkonia on
the particles present in the medium. Two processes are relevant: 1) if the state Φ is
tightly bound (i.e. if its binding energy Eb is greater than the medium temperature
T), gluo-dissociation gΦ → QQ̄ is dominant [81] and 2) if the state Φ is loosely
bound (i.e. Eb < T), it is the "quasi-free" dissociation pΦ → QQ̄p (p = g, q, q̄) that is
dominant. [82]

To describe the medium space-time evolution, transport models usually use an isotrop-
ically expanding fireball model, which reproduces measured hadrons yields and
pT spectra while also resembles basic features of hydrodynamical models. [128]
The single heavy quarks in the medium are evolved with a Boltzmann equation
containing an additionnal diffusive term obtained from the elastic cross-section of
the Qp → Qp process.

The two main transport models are the TAMU model from Zhao et al. and the THU
model from Liu et al. [129, 130]. The TAMU model was applied to both charmonia
[131] and bottomonia[132]. More recent results obtained from the TAMU model
on the dependence on pT and multiplicity of the J/Ψ and Ψ(2S) RAA for Pb-Pb
collisions at

√
sNN = 5.02 TeV can be found in [133] and can be found in [134] for

case of the Υ with comparison to CMS data (see figure 2.20).
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FIGURE 2.20 – Left panel: Dependence on transverse momentum of
the nuclear modification factor for the Υ(1S) and Υ(2S). Left panel:
Dependence on multiplicity of the nuclear modification factor for the

Υ(1S), Υ(2S) and Υ(3S).

While transport models are a more dynamical approach to quarkonia suppres-
sion, the rates for dissociation and recombination are obtained from inelastic cross-
sections, which can be questionable as:

— The initial and final states can not be defined asymptotically, which is one of
the postulates of cross-sections [14]

— All quantum effects are not taken into account

2.3 Summary

We presented in this chapter a review of the various aspects of quarkonia sup-
pression. This suppression is the result of the interplay between cold nuclear matter
effects, dissociative effects in the QGP medium and recombination of heavy quarks
into quarkonia. We discussed experimental results from both RHIC and LHC and
presented four types of model that aims at describing quarkonia suppression. Those
models are in overall good agremment with experimental data, but their assump-
tions are often questionnable. Instead, one can turn its attention to the real-time
dynamics of heavy quarkonia in the Quark-Gluon Plasma, which is a very complex
quantum field theory problem at finite temperature. In recent years, a lot of efforts
in the theoretical community has be done towards such a real-time description using
the open quantum systems formalism. In this framework, one can treat a QQ̄ pair
as a quantum system in interaction with an environment, which is the QGP. In the
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next chapter, we review this formalism and several models that were developped in
the past ten years to tackle the problem of quarkonia suppression.
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Chapter 3

Open Quantum Systems

Heavy quarkonium physics requires to understand the reaction of a heavy QQ̄
pair to a Quark-Gluon Plasma environment with which it is not initially equili-
brated. If the system degrees of freedom can be separated in an environment E
and a subsystem S, we can describe it through the open quantum system formalism.
This framework is used extensively, notably in condensed matter physics, and in the
past years, it has also been applied to the case of heavy quarkonia. Indeed, thanks
to the hierarchy of scales at play, one can separate the QGP (the environment) from
the QQ̄ pairs (the subsystem).

We give in this chapter an introduction to this formalism, applied to the case of
a heavy QQ̄ pair in interaction with the Quark-Gluon Plasma. We will first intro-
duce the concept of open quantum systems before deriving a very general quantum
master equation called the Lindblad equation that describes the subsystem dynam-
ics. We will then make a review of the various approaches that have been used
in the community to describe quarkonium dynamics using open quantum systems.
Finally, the last part of this chapter will be devoted to the discussion of an approach
by Jean-Paul Blaizot and Miguel Escobedo [2], which will be the basis of the work
presented in the following chapters.

3.1 Density operator and quantum master equations

The quantum state of a system can be described by an object called a density
operator. A density matrix is a representation of this operator, obtained by choosing
a basis in the space the operator acts on. In the remaining part of this manuscript,
both terms may be used interchangeably but one has to keep in mind that they do
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not strictly point to the same objects.

Let us consider the case of a quantum system with N possible states, labelled |ψi〉,
with i going from 1 to N. The most general expression of the density operator
(denoted ρ) describing the system is:

ρ = ∑
i

pi |ψi〉 〈ψi| , (3.1)

with pi the probability for the system to be in the state |ψi〉 and ∑
i

pi = 1.

If there is only one index i for which pi 6= 0 then we simply have

ρ = |ψi〉 〈ψi| , (3.2)

and the system state is called a pure state (note that in this specific case, one may
also call the density operator a projector on the state |ψi〉). If the system is not in a
pure state, it is said to be in a mixed state. We can then see the density operator as
a generalization of state vectors, in the sense that the latter can only describe pure
states, while the former can describe both pure and mixed states.

Let us now consider a system with an initial state ρ(t0) at a time t0. The evolution
of the density operator ρ is then given by:

ρ(t) = U(t, t0)ρ(t0)U†(t, t0), (3.3)

with U(t, t0) an evolution operator from time t0 to time t, defined as:

U(t, t0) = Te−i
∫ t

t0
dsH(s), (3.4)

where H(t) is the time-dependant Hamiltonian of the system and T the time-ordering
operator.

By differentiating (3.4) with respect to time, we get an equation of motion for the
density operator:

d
dt

ρ(t) = −i [H(t), ρ(t)] . (3.5)
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This equation is known as the (Liouville)-von Neumann equation. By analogy with
the classical Liouville equation, equation (3.5) can also be written as:

d
dt

ρ(t) = L(t)ρ(t). (3.6)

L is often called the Liouville super-operator (because it is an operator acting on
another operator) and is here defined such that L(t)ρ(t) = −i [H(t), ρ(t)].
Equations (3.5) and (3.6), describing the evolution of the density operator, are called
quantum master equations.

3.2 Dynamics of open quantum systems

In section (3.1), we only considered the case of a closed system, and described
its dynamics by introducing a density operator. In this section, we describe the
dynamics of an open quantum system. As previously said, an open quantum system
is composed of a quantum subsystem S in interaction with an environment E. We
assume here that the total system S+E is closed. As time evolves, the state of the
subsystem will change due to its interactions with the environment and its own
internal dynamics. One is usually not interested in the dynamics of the total system
but in the dynamics of the subsystem S, which is in general non-unitary, due to its
correlations with the environment.

Subsystem S

Environment E

Total system S+E

Interactions

FIGURE 3.1 – Schematic view of an open quantum system
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The Hilbert space of the total system is given by H = HS ⊗HE, with ⊗ denoting
the tensor product and HS(HE) the system (the environment) Hilbert space. The
Hamiltonian H(t) of the total system can then be then written in a general way:

H(t) = HS ⊗ 1E + 1S ⊗ HE + Hint(t), (3.7)

with HS the subsystem’s free Hamiltonian, HE the environment free Hamiltonian
and Hint(t) the Hamiltonian describing the interactions between the system and the
environment which can be time-dependent.

In the physical case of interest, the subsystem is the heavy QQ̄ pair and the envi-
ronment is the QGP. Therefore, we can write the Hamiltonian of our total system in
the same way as in (3.7):

Hsys(t) = HQQ̄ ⊗ 1QGP + 1QQ̄ ⊗ HQGP + Hint(t). (3.8)

Recalling the equation (3.5), the equation of motion describing the evolution of our
total system is:

d
dt

ρ(t) = −i
[
Hsys(t), ρ(t)

]
. (3.9)

As we are only interested by the dynamics of the heavy quark-antiquark subsystem,
we introduce its reduced density operator, denoted ρQQ̄. It is obtained by tracing out
the QGP degrees of freedom, which is done by performing the partial trace of the
global density matrix on the Hilbert space of the QGP:

ρQQ̄ = TrQGP[ρ]. (3.10)

Recalling (3.3), we can evolve in time the initial reduced density operator for the
pair:

ρQQ̄(t) = TrQGP

[
U(t, 0)ρ(0)U†(t, 0)

]
, (3.11)

assuming the following factorization of the initial density operator:

ρ(0) = ρQQ̄(0)⊗ ρQGP(0), (3.12)
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where ρQGP(t) is the reduced density operator for the QGP and U(t, 0) = Te−
∫ t

0 dsHint(s).

This evolution is non-unitary (contrary to the evolution of the total density oper-
ator), which leads to dissipative effects as we shall see later. Until that point, no
major approximations were made and the quantum master equation obtained is
still quite general. The next section will introduce a more specific class of quantum
master equations that are widely used to describe the dynamics of heavy quarkonia,
called the Lindblad equation.

3.3 The Linblad equation

Before going further, it is useful to look at the different relevant timescales of our
system, since further approximations will rely on hierarchies between them. In the
physical problem we are interested in, there are 3 relevant timescales:

— τE the environment correlation timescale along which correlations in the QGP
decay.

— τS the subsystem intrinsic timescale, estimated through ∆E × τS ∼ 1 with ∆E
the typical energy gap between two of the subsystem eigenenergies.

— τR the subsystem relaxation timescale, i.e. the typical timescale needed for
the initially unequilibrated subsystem to go back to equilibrium with its en-
vironment.

We can rewrite the evolution equation of ρQQ̄ (3.11) in the following way:

ρQQ̄(t) = V(t)ρQQ̄(0), (3.13)

where V(t) is called a dynamical map. This map is in general quite complicated,
however, there exists a class of systems for which V(t) satisfies the following prop-
erty:

V(t1)V(t2) = V(t1 + t2) (3.14)

This property means that there are no memory effects and that the next step in the
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evolution of the subsystem only depends on its current state. If this property is
satisfied, the subsystem dynamics is said to be Markovian.

There is a specific regime where the hierarchy of timescales will allow us to neglect
those effects: when τR and τE can be separated and τR � τE, meaning that the envi-
ronment correlations decay fast on the timescale set by the subsystem relaxation. In
this specific regime, we can write:

d
dt

ρQQ̄(t) = LρQQ̄(t), (3.15)

where L is a generator of V such that V(t) = eLt.

The most general form for (3.15) was derived by Gorini, Kossakowski and Sudar-
shan [135] and independantly by Lindblad [136] and is called the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) or simply Lindblad equation:

d
dt

ρQQ̄(t) = −i
[

HQQ̄, ρQQ̄(t)
]
+ ∑

i
γi

[
LiρQQ̄(t)L†

i −
1
2

{
LiL†

i , ρQQ̄(t)
}]

. (3.16)

The Li are called Lindblad operators and encode the subsystem’s interaction with
the environment. This equation is particularly interesting since it preserves three
fundamental properties of ρQQ̄:

— positivity: 〈ψi|ρQQ̄|ψi〉 ≥ 0 ∀ |ψi〉
— hermiticity: ρ†

QQ̄ = ρQQ̄

— unitarity: Tr
[
ρQQ̄

]
= 1.

The derivation of the Lindblad equation actually involves several approximations.
In sections 3.4 to 3.6, we show how to derive it for a general physical system, in two
regimes of interest : the quantum optical limit and the quantum brownian motion.



3.4. Weak coupling limit and Born-Markov approximation 53

Total system

ρ(t = 0)

Evolution of the total system

ρ(t) = U(t, 0)ρ(0)U(t, 0)†

ρQQ̄(0) = TrQGP [ρ(0)] ρQQ̄(t) = TrQGP
[
U(t, 0)ρ(0)U(t, 0)†]

Reversible
dynamics

Irreversible
dynamics

Trace out environment degrees of freedom

d
dt ρ(t) = −i[H(t), ρ(t)]

d
dt ρQQ̄(t) = LρQQ̄(t)

FIGURE 3.2 – Global picture of the open quantum systems evolution

3.4 Weak coupling limit and Born-Markov approxima-

tion

We now want to derive the Lindblad equation from a microscopic theory. This
derivation is based on a chain of approximations with the first one being that we
assume a weak coupling between the subsystem and the environment.

In the interaction representation, the Von Neumann equation (3.5) is written as:

d
dt

ρ(t) = −i[Hint(t), ρ(t)], (3.17)

with Hint the interaction Hamiltonian.

The formal solution of (3.17) is:

ρ(t) = ρ(0)− i
∫ t

0
ds[Hint(s), ρ(s)]. (3.18)

By substituting (3.18) in (3.17), we get:

d
dt

ρ(t) = −i[Hint(t), ρ(0)]−
∫ t

0
ds[Hint(t), [Hint(s), ρ(s)]]. (3.19)
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The evolution of the reduced density operator is obtained by performing the partial
trace on the environment degrees of freedom:

d
dt

ρS(t) = −
∫ t

0
ds TrE [[Hint(t), [Hint(s), ρ(s)]]], (3.20)

where we assume TrE {[Hint(t), ρ(0)]} = 0.

The weak coupling approximation we mentionned earlier allows us to use the ansatz
that ρ(s) = ρS(s) ⊗ ρE(0). It is justified when the environment is large enough to
not be affected by the subsystem thanks to the weak coupling between the two. This
is know as the Born approximation.

In the case where τR � τE, we can replace ρS(s) by ρS(t), which is known as the
Markovian approximation. Moreover, due to the timescale hierarchy involved here,
the initial environment correlations are lost for times t ∼ τR, which allows us to
extend the time integration domain in (3.20) to (−∞, t). Finally, performing the
change of variables s = t − s, we get the following master equation:

d
dt

ρS(t) = −
∫ ∞

0
ds TrE {[Hint(t), [Hint(t − s), ρS(t)⊗ ρE(0)]]}. (3.21)

This equation is not yet a Lindblad equation. Depending on the timescales hierarchy
considered, two limits can be defined:

— τR � τE ; τR � τS : the quantum optical limit
— τR � τE ; τS � τE : the quantum brownian motion

In each of those regimes, another approximation is needed to get the Lindblad
equation. Sections 3.5 and 3.6 are devoted to its derivation in each of those limits.
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3.5 The quantum optical limit

The quantum optical regime is reached when the system satisfies the hierarchy
of scales τR � τS. This is typically satisfied when considering a quantum optical
system (a two-level atom interacting with a gas of photons for example), hence the
name of this limit.

By introducing a spectral decomposition of the subsystem’s Hamiltonian HS, we
can rewrite Hint so that [137]:

Hint(t) = ∑
n,ω

e−iωtOn
S(ω)⊗ On

E(t) = ∑
n,ω

eiωtOn†
S (ω)⊗ On

E(t), (3.22)

with On
S and On

E operators of the subsystem and environment.

By injecting (3.22) in (3.21), we get:

d
dt

ρS(t) = ∑
ω,ω′

∑
n,m

ei(ω′−ω)t
∫ ∞

0
dseiωs TrE [ρE(0)On

E(t)O
m
E (t − s)]

×
[
Om

S (ω)ρS(t)On†
S (ω′)− On†

S (ω′)Om
S (ω)ρS(t)

]
+ h.c,

(3.23)

where h.c denotes the hermitian conjugate.

The phase factor ei(ω′−ω)t is oscillating with the timescale τS. Since we are in the
regime where τR � τS, in the timescale τR, only the ω = ω′ phase factor remains.
This is known as the rotating wave approximation. Adding to that the assumption that
the environment is invariant under time translation, the master equation reads:

d
dt

ρS(t) = ∑
ω

∑
n,m

Γnm(ω)
[
Om

S (ω)ρS(t)On†
S (ω′)− On†

S (ω′)Om
S (ω)ρS(t)

]
+ h.c (3.24)

with Γnm(ω) =
∫ ∞

0 dseiωs TrE [ρE(0)On
E(s)O

m
E (0)].

This Γnm(ω) can then be decomposed into :
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Γnm(ω) =
1
2

γnm(ω) + iSnm(ω) ; γ∗
nm(ω) = γmn(ω) ; S∗

nm(ω) = Smn(ω), (3.25)

leading to the following quantum master equation:

d
dt

ρS(t) = −i[∆HS, ρS(t)]

+∑
ω

∑
n,m

γnm(ω)

[
Om

S (ω)ρS(t)On†
S (ω)− 1

2

{
On†

S (ω)Om
S (ω), ρS(t)

}]
, (3.26)

with ∆HS = ∑
ω

∑
n,m

Snm(ω)On†
S (ω)Om

S (ω) a modification to the subsystem Hamilto-

nian due to the coupling to the environment called the Lamb shift.

Finally, to obtain the Lindblad equation, one has to come back to the Schrödinger
representation and choosing an appropriate linear combination of O operators in
order to diagonalize γnm and rescale it to δnm.

3.6 The quantum brownian motion

We mentionned in 3.4 that there is another limit of interest, the quantum Brownian
motion. Similarly to the previous section, we can approximate (3.21) by using a
specific hierarchy of timescales. If τS � τE, i.e. if the subsystem dynamics is slow
compared to that of the environment, we are in the quantum brownian regime. The
latter can be seen as the quantum counterpart of the well-known Brownian motion.

A more explicit form of equation (3.21) is:

d
dt

ρS(t) =
∫ ∞

0
ds ∑

n,m
TrE [ρE(0)On

E(t)O
m
E (t − s)]

× [Om
S (t − s)ρS(t)On

S(t)− On
S(t)O

m
S (t − s)ρS(t)] + h.c.

(3.27)

The approximation involved in the quantum Brownian motion limit is to approxi-



3.6. The quantum brownian motion 57

mate the subsystem operators OS using the gradient expansion:

On
S(t − s) ≈ On

S(t)− sȮn
S(t) + · · · (3.28)

This approximation is only valid because the environment correlations only exist for
a short time (τE � τS).

Assuming once again that the environment is invariant under time translation, we
introduce the following quantities:

∫ ∞

0
ds TrE [ρE(0)On

E(s)O
m
E (0)] =

1
2

γnm + iSnm∫ ∞

0
ds s TrE [ρE(0)On

E(s)O
m
E (0)] = ηnm,

(3.29)

with, γ∗
nm(ω) = γmn(ω) and S∗

nm(ω) = Smn(ω). Those quantities are the environ-
ment correlations functions at zero frequency.

We then obtain the following quantum master equation:

d
dt

ρS(t) = ∑
n,m

[
γnm

[
Om

S (t)ρS(t)On
S(t)−

1
2
{On

S(t)O
m
S (t), ρS(t)}

]

− iSnm[On
S(t)O

m
S (t)ρS(t)− ρS(t)On

S(t)O
m
S (t)]

− ηnm
[
Ȯm

S (t)ρS(t)On
S(t)− On

S(t)Ȯ
m
S (t)ρS(t)

]
− η∗

nm
[
On

S(t)ρS(t)Ȯm
S (t)− ρS(t)Ȯm

S (t)O
n
S(t)

]]
. (3.30)

If we assume that γ−1
nm exists (i.e. that γnm is a positive definite matrix), then we can

turn (3.30) into a Lindblad equation:
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d
dt

ρS(t) = −i[∆HS, ρS(t)] + ∑
n,m

γnm

[
Õm

S (t)ρS(t)Õn†
S (t)− 1

2

{
Õn†

S (t)Õm
S (t), ρS(t)

}]
,

(3.31)

where we redefined the On
S operators:

Õn
S(t) ≡ On

S(t)− ∑
mk

γ−1
nmηmkȮk

S(t) Õn†
S (t) ≡ On

S(t)− ∑
mk

η∗
mkȮk

S(t)γ
−1
mn, (3.32)

and the subsystem Hamiltonian:

∆HS ≡ ∑
nm

SnmOn
S(t)O

m
S (t) +

i
2 ∑

nm

[
ηnmOn

S(t)Ȯ
m
S (t)− η∗

nmȮm
S (t)O

n
S(t)

]
. (3.33)

Until now, we have not derived any quantum master equation specifically for the
physical problem of a heavy quarkonium in interaction with the Quark-Gluon Plasma.
We will now make a review of the various open quantum systems approaches that
were used in recent years to tackle the problem of quarkonium dynamics inside the
QGP.

Total system: Von-Neumann equation

Subsystem: Non-unitary evolution

Lindblad equation
(quantum optical limit)

Lindblad equation
(quantum Brownian motion)

Born-Markov approx.
(Weak coupling)

τR � τE
τR � τS

τR � τE
τS � τE

Trace on environment

FIGURE 3.3 – Main steps and assumptions of the derivation of a
Lindblad equation
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3.7 Quarkonia as open quantum systems

In this section, we present several approaches based on open quantum systems
that were developped in recent years. We start with early approaches, that were
more phenomenology oriented before describing the most recent ones that are all
derived from QCD first principles but use different strategies 1.

3.7.1 Early phenomenological approaches

Borghini and Gombeaud [138] proposed a phenomenological model based on
the Einstein rate equation:

d
dt

ρS
ii(t) = − ∑

k 6=i
Γi→kρS

ii(t) + ∑
k 6=i

Γk→iρ
S
kk(t) (3.34)

with Γi→k the transition rate from quarkonium state i to k and ρS
ii(t) the ith quarko-

nium state population. Those transition rates are given by Fermi’s golden rule
and the interaction between the heavy quark and antiquark is taken as the vacuum
Coulomb potential.

FIGURE 3.4 – Evolution of the quarkonium states populations over
time (left) and (right) comparison of ratios of bottomonium populations
obtained with the master equation (symbols) and with expected

Boltzmann distributions (solid)

As shown on figure 3.4, they observed that at a constant temperature, all the bot-
tomonium states they considered decayed at the same rate after a transient phase.

1. A more focused review can be found in [137]
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They also observed a discrepancy between the temperature dependance of ratios of
the bottomonium populations after the transient phase and in the case of a thermally
equilibrated system (expected to follow a Boltzmann distribution). This difference
is due to an incomplete modelling of the transitions between bound and free states.

Young and Dusling [139] used the Caldeira-Leggett [140] model to study the effect
of interactions with the Quark-Gluon Plasma on the heavy quark-antiquark cor-
relators. More precisely, they looked at how the masses, potential and drag force
affected those correlators.

Akamatsu and Rothkopf [141] derived a quantum master equation and added a
stochastic term in the unitary evolution operator.

FIGURE 3.5 – Evolution of the populations of quarkonium states over
time obtained with the stochastic potential model

This leads to decoherence and an exponential suppression of the ground states
(see figure 3.5). However, their model lacks a friction term, which causes the system
to be unable to reach thermalization as friction effects become important at later
times and leads to uniform state populations at late times. The absence of friction
also leads to the rise of the energy of the system.
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3.7.2 Katz and Gossiaux

Katz and Gossiaux [142] proposed another approach based on a Langevin-like
extension of the Schrödinger equation called the Schrödinger-Langevin equation (SLE):

ih̄
d
dt

Ψ(x, t) =
[

H0 + h̄A
(

S(x, t)−
∫

Ψ∗(x, t)S(x, t)Ψ(x, t)dx
)
− xFR(t)

]
× Ψ(x, t)

(3.35)

where A is a friction coefficient, S(x, t) the real phase of the wavefunction and FR(t)
a fluctuation operator.

In particular they applied this formalism in one dimension to the case of bottomonia
suppression in ultra-relativistic heavy ion collisions [143].

FIGURE 3.6 – Weights of the lowest 3 vacuum eigenstates for different
temperatures and initial states without friction and stochastic forces
(solid lines) and with friction and stochastic forces (dashed and
thick lines, respectively with the vacuum and temperature dependant

potentials)



62 Chapter 3. Open Quantum Systems

Similarly to Borghini & Gombeaud [138] in section 3.7.1, they observed an asymp-
totic regime with uniform decay for all states considered after a transient phase (see
figure 3.6). The latter was interpreted as a re-equilibration leading to a mixed state
in thermal equilibrium with the environment. They also noted that stochastic forces
had a greater role in destroying the bottomonium states at small temperatures while
screening had a greater role at high temperatures.

This is one of the first approaches based on a stochastic Schrödinger equation, which
includes both a stochastic force and friction. However, it is not derived from first
QCD principles and can not be related to a Lindblad equation (for more details on
their approach, see also [19]).

3.7.3 Akamatsu et al.: Quarkonium quantum master equation in

the Lindblad form

Akamatsu [144] first derived a quantum master equation for a heavy quarko-
nium system. He later extended [145] this work using the influence functionnal
formalism [146], which is the path-integral form of open quantum systems to derive
a master equation in the Lindblad form. He derived in this paper explicit Lindblad
equations for both the case of a single heavy quark and of a heavy quarkonium. He
also derived the equivalent stochastic Schrödinger equation for the heavy quarko-
nium using a stochastic potential as in [141].

This stochastic Schrödinger equation was then resolved in one dimension [147], in
the case of an expanding QGP following a Björken-like expansion for both char-
monia and bottomonia. It should be noted that only the color singlet sector was
considered in the resolution. In this paper, it was shown that the decoherence
induced by the noise terms was an important mechanism for quarkonium sup-
pression. A dependance on the system (bottomonium or charmonium) was also
observed. An extension of this work to the case of a 3-dimensionnal system and
taking into account the complete color structure was done in [148].

Another strategy to resolve the Lindblad equation derived in [145] was presented
in [149] in the case of a single heavy quark in one dimension. In this paper, another
type of stochastic Schrödinger equation was derived, using the Quantum State Dif-
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fusion method [150][151]. This approach was then generalized to the heavy quarko-
nium case in one dimension in [152].

(A) (B)

FIGURE 3.7 – Occupation number of the ground and 1st excited state
over time (left). Occupation number of the ground and 1st excited state

over time with and without dissipation (right).

As shown on figure 3.7, they obtained for a fixed temperature a thermal steady
state independent of the initial state, and which follows a Boltzmann distribution of
the population. They also observed the differences that appear when the dissipative
term is not included, both in the initial evolution and the late-time steady state. This
is due to the fact that disspation prevents the pair from dissociating and balances the
thermal fluctuations. They compared the results for both charmonia and bottomonia
and also extended the analysis to the case of a cooling QGP medium [147].

More recently, a direct resolution of the Lindblad equation in the one dimensionnal
case and for the singlet color space was done using a novel difference operator in
[153].

3.7.4 Brambilla et al.: A pNRQCD based quantum master equation

approach

Brambilla et al. used the potential Non-Relativistic QCD (pNRQCD) [154][155],
an effective field theory formalism to derive a quantum master equation in the
Lindblad form to describe quarkonium dynamics inside the Quark-Gluon Plasma
[156][157]. They used pNRQCD to compute the evolution operators for the reduced
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density matrix and only considered S-like and P-like states by performing an expan-
sion in spherical harmonics to simplify the problem. They resolved those equation
in an evolving medium following a Björken expansion for the bottomonium system.

FIGURE 3.8 – Left panel: Bottomonium RAA for the 30-50% class of
centrality. Right panel: Same for the 50-100% class of centrality. The
error bands are due to unconstrained transport coefficients used in the

computation.

As shown in figure 3.8, they observed that for mid-central collisions, the 2S state
reached a steady state and is more strongly suppressed than in peripheral collisions.

They recently also turned their equation into a stochastic Schrödinger equation [158],
using a different method than Akamatsu et al.[152] called the Monte-Carlo Wave
Function method [159] and using transport coefficients computed in [160]. They
published their code as an open-source package called QTraj [161], which they re-
cently used to study the suppression and elliptic flow of bottomonia at the LHC
[162]. Their results on the nuclear modification factors are in good agreement with
experimental data and the predicted elliptic flow is compatible within experimental
uncertainty with the data.

3.7.5 Yao et al.: Boltzmann equation derived from pNRQCD effec-

tive theory

Yao and Mehen [163] derived some coupled Boltzmann transport equations us-
ing the pNRQCD formalism, the include dissociation and recombination. More pre-
cisely, they first derived a Lindblad equation from first principles, using pNRQCD
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to describe the interaction Hamiltonian. Then, they used the Wigner transform of
the density matrix to derive the Boltzmann equation. The derivation of a transport
equation from an effective field theory is of particular relevance as compared to
models based on cross-sections for the dissociation and recombination rates like in
[164][165].

They later applied this approach to study bottomonium dynamics in heavy ion
collisions [166]. They resolved numerically the coupled Boltzmann equations using
Monte-Carlo techniques and compared their results to experimental data from the
LHC and RHIC.

(A) (B)

FIGURE 3.9 – Left panel: RAA as a function of the number of participants
for the first three Υ states computed from coupled Boltzmann equations
and compared to experimental data in

√
sNN = 2.76 TeV Pb-Pb

collisions. Right panel: RAA as a function of the number of participants
for the Υ(2S) and χb(1P) states computed from coupled Boltzmann

equations.

Their results on RAA (see figure 3.9) are compatible with experimental data from
the LHC, but are still subject to large uncertainties. They may not be compatible
with RHIC data, where more precise measurements are needed. They also made a
prediction on the suppression of Υ(2S) and χb(1P), concluding that the χb(1P) may
be more suppressed than the Υ(2S) due to the recombination mechanism. Yao et
al. also plan to extend this work to the charmonia states. A complete review of this
approach can be found in [167].
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3.7.6 Blaizot et al.: Quantum dynamics of heavy quarks in the QGP

The final approach we will address in this section is an approach by Blaizot et
al. [168]. Using the influence functionnal formalism, they first derived a quantum
master equation for a heavy quark-antiquark pair in the case of an Abelian plasma.
They then performed a semi-classical approximation to get a Langevin equation.
This allow them to treat multiple pairs at the same time, which remains a theoretical
challenge, and is mandatory if one wants to make accurate predictions for charmo-
nia at the LHC.

FIGURE 3.10 – Top left panel: Fraction of surviving pairs at T = 150
MeV for 2, 10 and 50 initial pairs. Top right panel: Same for T =
190 MeV. Bottom left panel: Same for T = 220 MeV. Bottom right panel:
Fraction of surviving pairs at T = 190 MeV for 10 initial bottomonium

or charmonium pairs

They computed the fraction of surviving pairs over time (see figure 3.10) at
different temperatures and for different amounts of pairs. From those results, they
infered the dissociation and recombinaison rates of the pairs. As could be expected,
they observed lower survival fractions at higher temperatures. They also observed
the effect of recombination when the amount of pairs involved is large, as the sur-
vival fractions were higher for a large amount of pairs. They also showed that the
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bottomonium states survive more than charmonium states, for the same amount of
initial pairs, which is also expected.

While derived from first principles, the quantum master equation is not a Lindblad
equation, as positivity is not preserved. This was resolved in [169] where De Boni
extended the derivation to get a master equation preserving positivity by adding
quadratic terms by hand.

As we mentionned, this approach has the merit to tackle the challenging problem
of multiple QQ̄ pairs. The next section of this chapter is devoted to the extension of
this work to the case of a non-Abelian plasma (i.e. a proper Quark-Gluon Plasma),
which will be the basis of the work presented in the remaining chapters of this thesis.

3.8 Quantum dynamics of heavy quarks in the QGP

and semi-classical approximation

In this section we present the approach from Blaizot and Escobedo [2] in the case
of a non-Abelian plasma. Their approach is based on two main approximations: 1) a
weak coupling between the heavy quarks and the plasma constituents and 2) a fast
plasma response to the perturbation caused by the heavy quarks compared to the
typical timescales of the heavy quarks. We start from the von Neumann equation:

d
dt

D = −i[H,D] (3.36)

with H = H0 + H1; H0 = HQQ̄ + HQGP where HQQ̄ is the free Hamiltonian of
the pair and HQGP is the QGP Hamiltonian; H1 = −g

∫
r Aa

0(r)n
a(r) the interaction

between the plasma and the heavy quarks, where na(r) is the color charge density
of the heavy quarks, Aa

0 is the chromo-electric potential and r the distance between
the quark and antiquark. A sum on the color index a is implied.

As we did in section 3.4, we can get the following equation in the interaction repre-
sentation:
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d
dt

D I = −i
[

H1(t),D I(t0)
]
−
∫ t

t0

dt′
[

H1(t),
[

H1(t′),D I(t′)
]]

(3.37)

Thanks to the weak coupling approximation, we can factorize the density matrix:

D I(t) = D I
QQ̄(t)⊗D I

QGP(t0) (3.38)

Performing the trace over the environment degrees of freedom, we obtain:

d
dt

D I
QQ̄ = −

∫ t

t0

dt′
∫

x,x’

([
na(t, x), na(t′, x’)D I

QQ̄(t
′)
]
∆>(t − t′, x - x’)

+
[
D I

QQ̄(t
′)na(t′, x’), na(t, x)

]
∆<(t − t′, x - x’)

)
(3.39)

where the ∆ are the gauge field correlators in the plasma, defined as:

TrQGP

[
Ab

0(t1, x)D I
QGP(t0)Aa

0(t2, x’)
]
= δab∆>(t2 − t1, x’ - x)

= δab∆<(t1 − t2, x - x’) (3.40)

As in section 3.6, we can apply the Markovian approximation and replace D I(t′)
by D I(t) in (3.39). If we now go back to the Schrödinger representation and define
τ = t − t′, we get:

d
dt

DQQ̄ + i
[

HQQ̄,DQQ̄

]
=

−
∫

x,x’

∫ t−t0

0
dτ
[
na

x, UQQ̄(τ)n
a
x’U

†
QQ̄(τ)DQQ̄(t)

]
∆>(τ, x - x’)

−
∫

x,x’

∫ t−t0

0
dτ
[
DQQ̄(t)UQQ̄(τ)n

a
x’U

†
QQ̄(τ), na

x

]
∆<(τ, x - x’) (3.41)

Since only small values of τ are relevant, we can perform a series expansion of the
evolution operators U : e−iHQQ̄τ ' 1− iHQQ̄τ. Keeping only terms up to linear order
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in τ, we have:

UQQ̄(τ)n
a
x’U

†
QQ̄(τ) = U†

QQ̄(−τ)na
x’UQQ̄(−τ) = na

x’(−τ) (3.42)

with na
x’(−τ) = na

x’(τ)− τṅa
x’(−τ). This gives us 2:

d
dt

DQQ̄ + i
[

HQQ̄,DQQ̄

]
' −

∫
x,x’

[
na

x, na
x’DQQ̄

] ∫ ∞

0
dτ∆>(τ, x - x’)

−
∫

x,x’

[
DQQ̄na

x’, na
x

] ∫ ∞

0
dτ∆<(τ, x - x’)

+
∫

x,x’

[
na

x, ṅa
x’DQQ̄

] ∫ ∞

0
dττ∆>(τ, x - x’)

+
∫

x,x’

[
DQQ̄ṅa

x’, na
x

] ∫ ∞

0
dττ∆<(τ, x - x’) (3.43)

It can be shown [170][171] that the time integrals involves the zero-frequency time-
ordered propagator ∆(ω = 0) which is identified to a complex potential V(r) +
iW(r). This complex potential has been derived using the Har Thermal Loop (HTL)
perturbation theory [170][171] in [172][173]. We finally get the quantum master
equation:

d
dt

DQQ̄ = LDQQ̄ (3.44)

with L = L0 + L1 + L2 + L3 and:

L0DQQ̄ = −i
[

HQQ̄,DQQ̄

]
L1DQQ̄ = − i

2

∫
x,x’

V(x - x’)
[
na

xna
x’,DQQ̄

]
L2DQQ̄ =

1
2

∫
x,x’

W(x - x’)
({

na
xna

x’,DQQ̄

}
− 2na

xDQQ̄na
x’

)
L3DQQ̄ =

i
4T

∫
x,x’

W(x - x’)
([

na
x, ṅa

x’DQQ̄

]
−
[
na

x,DQQ̄ṅa
x’

])
(3.45)

2. Like in section 3.4, we extended the time integration domain to (0,∞).
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If we omit the L3 terms, the equation (3.45) has the same structure as of a Lindblad
equation. Unfortunately, the L3 terms are responsible for the breaking of positivity
and thus this master equation can not be put in the Lindblad form. This positivity
breaking problem will be further investigated and resolved in chapter 4.
The color charge density for a heavy quark-antiquark pair in QCD is given by:

na
x = δ(x - r)ta ⊗ 1− 1⊗ δ(x - r)t̃a (3.46)

We then decompose the reduced density matrix into a color singlet and a color octet
components:

DQQ̄ = Ds |s〉〈s|+Do ∑
c
|oc〉〈oc| (3.47)

with |s〉〈s| a projector on a color singlet state and |oc〉〈oc| a projector on a color octet
state. We now have the following coupled equations:

d
dt

(
Ds

Do

) (
r1, r2, r′1, r′2

)
= L

(
Ds

Do

)
(r1, r2, r′1, r′2) (3.48)

where r1 and r2 are the coordinates of the quark and antiquark and the r′1 and r′2 are
conjugated variables that were introduced to keep the time real in the derivation. We

have L =

(
Lss Lso

Los Loo

)
where the Lss,so,os,oo operators describe color state transitions.

Introducing the following notation Wab = W(ra − rb), we define:

Wa = W11′ + W22′ Wb = W21′ + W12′

Wc = W12 + W1′2′ W± = Wa ± Wb, (3.49)

one can write the different expressions for the L operators (see Appendix A for
details on the computation):
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L0
ss = L0

oo =
1

2M

[
∇2

r1
+∇2

r2
+∇2

r′1
+∇2

r′2

]
L1

ss = CF[V12 − V1′2′ ] L1
oo = − 1

2Nc
[V12 − V1′2′ ]

L2
ss = CF[2W(0)− Wc]

L2
oo = 2CFW(0) +

1
2Nc

Wc −
N2

c − 2
2Nc

Wa +
1

Nc
Wb

L2
so = −CFW− L2

os = − 1
2Nc

W−

L3
ss =

CF

4MT

[
2∇2W(0)−∇2Wc −∇Wc · ∇c

]
L3

oo =
CF

2MT
∇2W(0) +

1
4MT

1
2Nc

[
∇2Wc +∇Wc · ∇c

]
− 1

4MT

{
N2

c − 2
2Nc

[
∇2W− +∇W− · ∇−

]
+

Nc

4

[
∇2W+ +∇W+ · ∇+

]}
L3

so = − CF

4MT

[
∇2W− +∇W− · ∇−

]
L3

os = − 1
4MT

1
2Nc

[
∇2W− +∇W− · ∇−

]
(3.50)

with ∇Wc · ∇c = ∇1W12 · (∇1 −∇2) +∇1′W1′2′ · (∇1′ −∇2′) and similar notations.

Blaizot & Escobedo used another set of variables more relevant for the analysis,
based on the center of masses and relative coordinates,

R =
R + R′

2
Y = R − R′

y = s − s′ r =
s + s′

2
(3.51)

where R, R′, s and s′ are defined by:

R =
r1 + r2

2
R′ =

r′1 + r′2
2

s = r1 − r2 s′ = r′1 − r′2. (3.52)
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The y variable measures the deviation from a diagonal matrix, which is reached
in the classical limit. They then performed a small-y expansion, that can be then
interpreted as a semi-classical approximation:

W(y) ' W(0) +
1
2

y · H(0) · y + · · · (3.53)

with H(y) the Hessian matrix of W.

They then performed a Wigner transform on the resulting equations, leading to
a Langevin equation. The correlation of the noise in this Langevin equation is
given by the second order derivative of the imaginary part of the potential W. The
latter Langevin equation can be used to simulate multiple QQ̄ pairs simultaneously,
which is still a challenging problem. The work of Blaizot & Escobedo is truly pio-
nneering since it was one of the first approaches which uses a Langevin equation
derived from a master equation.

However, several issues remain:
— The validity of the semi-classical approximation was never verified by actu-

ally solving the equations directly and only motivated by a scale analysis. A
more systematic study of the feasability of a semi-classical treatment is thus
needed to find out if there exists a physical regime where it is possible. If such
regime exists, the simultaneous treatment of multiple pairs, which is crucial
for phenomenology, would be accessible.

— The coupled master equations derived in their paper break positivity as will
be explicitely shown in the next chapter in section 4.4. This limits the validity
range of those equations.

— Blaizot & Escobedo mentionned that it is possible to get Lindblad equations
(albeit not in the Lindblad form) by adding higher-order terms, However,
they have not derived those terms, assuming them to be subleading and
without significant effects on the dynamics. The importance of those terms
will be studied in this thesis.

— The present quantum master equations were never resolved directly, which
is a challenging problem, to explore all the physics they contain.
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All of this leads us to the approach that will be developped in the remaining chapters
of this thesis. In chapter 4, we first follow the procedure described in their original
paper to derive properly the higher-order terms that will restore the positivity of the
reduced density operator. We will show that the new equations derived satisfy the
properties of a Lindblad equation. Then, in chapter 5, we will proceed to show how
we resolve numerically the new equations that will be derived without performing
the semi-classical approximation. Finally, in chapter 6, we will study the dynamics
of a heavy quarkonium in the Quark-Gluon Plasma and test the range of validity of
the semi-classical approximation.
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Chapter 4

Extension of the Blaizot-Escobedo
equations and restoration of positivity

In this chapter, we develop a strategy to treat one of the major shortcomings
of the approach by Blaizot & Escobedo, the breaking of positivity. To do so, we
first follow a procedure to derive new terms that should restore positivity. We will
then prove that both unitarity and positivity are preserved with the new equations.
The last part will be devoted to the treatment of divergences that arise in the new
equations. This will lead to a global strategy to study the dynamics of a heavy
quarkonium in the Quark-Gluon Plasma, which will be done in chapter 6.

4.1 Alternative time discretization

In the appendix B of their paper [2], Blaizot & Escobedo used another time
discretization to derive their master equations, which leads to some new terms
they however never derived completely in the direct space. They started from the
following equation (equation B.9 in their paper):

d
dt

DQQ̄(t) + i
[

HQ,DQQ̄(t)
]
= − i

2

∫
x,x’

V(x - x’)
[
na

xna
x’,DQQ̄

]
+

1
2

∫
x,x’

W(x - x’)
({

na
xna

x’,DQQ̄

}
− 2na

xDQQ̄na
x’

)
− i

4T

∫
x,x’

W(x - x’)
(

ṅa
xDQQ̄na

x’ − na
xDQQ̄ṅa

x’

)
− i

8T

∫
x,x’

W(x - x’)
{
DQQ̄, [ṅa

x, na
x’]
}

. (4.1)
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The equation (4.1) doesn’t preserve positivity, however, it is possible to transform
it to this end. One can first notice that up to the second line, the equation (4.1) is a
Lindblad equation. Moreover, it is possible to obtain the third and fourth lines of
equation (4.1), by performing the following transformation in the second line:

1
2

∫
x,x’

W(x - x’)
({(

na
x −

i
4T

ṅa
x

)(
na

x’ +
i

4T
ṅa

x’

)
,DQQ̄

}
−2
(

na
x +

i
4T

ṅa
x

)
DQQ̄

(
na

x’ −
i

4T
ṅa

x’

))
. (4.2)

Equation (4.2) generates three types of terms:
— The terms without any ṅ, which correspond to the second line of equation

(4.1) and are the original L2 terms.
— The terms linear in ṅ, which correspond to the third and fourth lines of

equation (4.1). They will be refered later as L′
3 (since they are different from

the original L3 terms).
— The terms quadratic in ṅ, which correspond to higher order terms in 1

MT and
are the new terms that will restore the positivity. They will be refered as L4

terms.

We will follow the same procedure as in Appendix A of this thesis to derive the
new terms: we first derive them in the QED case and identify the LQQ,a,LQQ̄,a,LQQ,b

and LQQ̄,b operators. The equations in the QCD case can then be easily derived
using those operators. A small disclaimer is necessary: in the following sections,
the operators may be written as L3,QQ,a or L3

QQ,a (and similar notations for higher
order terms) but both notations point to the same operators.

4.1.1 Derivation of the L′
3 terms

By observing the terms of the form nDQQ̄ṅ or ṅDQQ̄n, which correspond to the
L3

QQ,b and L3
QQ̄,b operators, in both discretizations, we see that they are actually the

same. The computation is thus straightforward and one gets (as in equations (3.49)
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and (3.50)):

〈
r1r2

∣∣LQQ,bDQQ̄
∣∣r′1r′2

〉
= − 1

4MT
[∆Wa +∇Wa · ∇a]

〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
〈
r1r2

∣∣LQQ̄,bDQQ̄
∣∣r′1r′2

〉
=

1
4MT

[∆Wb +∇Wb · ∇b]
〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
. (4.3)

In the new discretization, the L3
QQ,a and L3

QQ̄,a contributions correspond to:

L′
3aDQQ̄ =

i
8T

∫
xx′

Wxx′
[
DQQ̄nxṅx′ + nxṅx′DQQ̄ −DQQ̄ṅx′nx − ṅx′nxDQQ̄

]
. (4.4)

By comparing with the original discretization, one can see that:

L′
3aDQQ̄ =

1
2
L3aDQQ̄ +

i
8T

∫
xx′

Wxx′
[
DQQ̄nxṅx′ − ṅx′nxDQQ̄

]
. (4.5)

Let us start by computing the second term of the right-hand side of equation (4.5).
Introducing completion relations, we obtain:

i
8T

∫
xx′

Wxx′
〈
r1r2

∣∣DQQ̄nxṅx′
∣∣r′1r′2

〉
=

i
8T

∫
xx′
aa′
bb′

Wxx′
〈
r1r2

∣∣DQQ̄
∣∣aa′

〉 〈
aa′
∣∣nx
∣∣bb′〉 〈bb′∣∣ṅx′

∣∣r′1r′2
〉

, (4.6)

with Wxx′ = W(x − x′). As shown in Appendix A the expressions of the charge
density matrix elements and their derivatives are :

〈
r1r2

∣∣nx
∣∣r′1r′2

〉
= δ11′δ22′ [δx1 − δx1′ ]〈

r1r2
∣∣ṅx
∣∣r′1r′2

〉
= − 1

2iM
[∇1δ11′ ] · ∇x[δx1′ + δx1]δ22′

+
1

2iM
[∇2δ22′ ] · ∇x[δx2′ + δx2]δ11′ , (4.7)
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with δ11′ = δ(3)(r1 − r′1), δx1′ = δ(3)(x − r′1) and similar notations.

The equations (4.6) and (4.7)

i
8T

∫
xx′
aa′
bb′

Wxx′
〈
r1r2

∣∣DQQ̄
∣∣aa′

〉 〈
aa′
∣∣nx
∣∣bb′〉 〈bb′∣∣ṅx′

∣∣r′1r′2
〉

=
1

16MT

∫
xx′
aa′
bb′

Wxx′
〈
r1r2

∣∣DQQ̄
∣∣aa′

〉
δabδa′b′ [δxa − δxb]

×
{
[∇b′δb′2′ ] · ∇x′ [δx′2′ + δx′b′ ]δb1′

−[∇bδb1′ ] · ∇x′ [δx′1′ + δx′b]δb′2′

}
=

1
16MT

∫
xx′
aa′

[Wax′ − Wa′x′ ]
〈
r1r2

∣∣DQQ̄
∣∣aa′

〉
×
{
[∇a′δa′2′ ] · ∇x′ [δx′2′ + δx′a′ ]δa1′

−[∇aδa1′ ] · ∇x′ [δx′1′ + δx′a]δa′2′
}

. (4.8)

Performing first an integration by parts on x′ then on either a or a′ depending on the
term, and using the fact that ∇W(0) = 0, one finds:

i
8T

∫
xx′

Wxx′
〈
r1r2

∣∣DQQ̄nxṅx′
∣∣r′1r′2

〉
=

1
8MT

[∆W(0) + ∆W1′2′ +∇W1′2′ · ∇1′2′ ]
〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
. (4.9)

One can see that the last term of equation (4.5) will lead to the same contribution
with 1′ → 1 and 2′ → 2. We recall the expression for L3a:

L3aDQQ̄ =
1

4MT
[2∆W(0)− ∆W12 − ∆W1′2′ −∇W12 · ∇12 −∇W1′2′ · ∇1′2′ ]DQQ̄,

(4.10)
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which gives us, using (4.5) and (4.9):

〈
r1r2

∣∣L′
3aDQQ̄

∣∣r′1r′2
〉
=

1
4MT

[2∆W(0)]
〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
. (4.11)

In the new discretization, the L3
QQ̄,a operator is actually null while the L3

QQ,a one
remains unchanged. Later in the chapter, we will see that this difference will have
consequences on how the conservation of the trace (i.e. unitarity) is realized.

4.1.2 Derivation of the L4 terms

The terms corresponding to L4a are given by:

〈
r1r2

∣∣L4aDQQ̄
∣∣r′1r′2

〉
=

1
32T2

∫
xx′

Wxx′
〈
r1r2

∣∣(ṅxṅx′DQQ̄ −DQQ̄ṅxṅx′
)∣∣r′1r′2

〉
, (4.12)

while the one corresponding to L4b is:

〈
r1r2

∣∣L4bDQQ̄
∣∣r′1r′2

〉
= − 1

16T2

∫
xx′

Wxx′
〈
r1r2

∣∣ṅx′DQQ̄ṅx
∣∣r′1r′2

〉
. (4.13)

Following the same procedure as in section 4.1.1, the L4b contribution becomes:

∫
xx′
aa′
bb′

Wxx′
〈
r1r2

∣∣ṅx′DQQ̄ṅx
∣∣r′1r′2

〉
=− 1

4M2

∫
xx′
aa′
bb′

Wxx′{[∇2δ2a′ ] · ∇x′ [δx′a′ + δx′2]δ1a − [∇1δ1a] · ∇x′ [δx′a + δx′1]δ2a′}

× {[∇b′δb′2′ ] · ∇x[δx2′ + δxb′ ]δb1′ − [∇bδb1′ ] · ∇x[δx1′ + δxb]δb′2′}
×
〈
aa′
∣∣DQQ̄

∣∣bb′〉 . (4.14)

There are 4 terms to compute in the right-hand size of equation (4.14), the first one
being:
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L4b1 = − 1
4M2

∫
xx′
a′b′

Wxx′ [∇2δ2a′ ] · ∇x′ [δx′a′ + δx′2]

× [∇b′δb′2′ ] · ∇x[δx2′ + δxb′ ]
〈
r1a′

∣∣DQQ̄
∣∣r′1b′〉 . (4.15)

We first integrate by parts on x and x′, then use the relation ∇AδAB = −∇BδAB and
finally proceed to integrate by parts on a′ and b′, resulting in:

L4b1 = − 1
4M2

[
−∂4W22′ − 2∇∇2W22′ · ∇22′ + 4∂i∂jW22′∂

i
2∂

j
2

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
,

(4.16)

where ∇∇2W22′ has to be understood as gradients with respect to the variable of W,
taken at r2 − r′2. One can see that the last term of the equation (4.14) will be the exact
same as with L4b1 , with 2 → 1 and 2′ → 1′, giving us:

L4b4 = − 1
4M2

[
−∂4W11′ − 2∇∇2W11′ · ∇11′ + 4∂i∂jW11′∂

i
1∂

j
1′

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
.

(4.17)

Similarly, the second term of (4.14):

L4b2 =
1

4M2

∫
xx′
a′b

Wxx′ [∇2δ2a′ ] · ∇x′ [δx′a′ + δx′2]

× [∇bδb1′ ] · ∇x[δx1′ + δxb]
〈
r1a′

∣∣DQQ̄
∣∣br′2

〉
, (4.18)

leads to:

L4b2 =
1

4M2

[
−∂4W21′ − 2∇∇2W21′ · ∇21′ + 4∂i∂jW21′∂

i
2∂

j
1′

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
.

(4.19)
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Once again, it is possible to obtain the last remaining term by performing the change
2 → 1 and 1′ → 2′ in equation (4.19), giving us:

L4b3 =
1

4M2

[
−∂4W12′ − 2∇∇2W12′ · ∇12′ + 4∂i∂jW12′∂

i
1∂

j
2′

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
.

(4.20)

As there are no exchanges between a quark and a antiquark (1 ↔ 1′ or 2 ↔ 2′) in
the L4b1 and L4b4 contributions, they correspond to the LQQ,b operator, while the
other two contributions correspond to the LQQ̄,b operator. Regrouping the terms
and using the Wa and Wb notations introduced in the previous chapter, we obtain:

LQQ,b =
1

64M2T2

[
−∂4Wa − 2∇∇2Wa · ∇a + 4∂i∂jWa

(
∂i∂j

)a]
LQQ̄,b =

1
64M2T2

[
∂4Wb + 2∇∇2Wb · ∇b − 4∂i∂jWb

(
∂i∂j

)b
]

, (4.21)

with the following definition:

∂i∂jWa

(
∂i∂j

)a
= ∂i∂jW11′∂

i
1∂

j
1′ + ∂i∂jW22′∂

i
2∂

j
2′ , (4.22)

and similar definitions for Wb and Wc.

There are 3 types of terms at the L4 level:
— Terms involving no derivatives on DQQ̄, they will be refered later as Lcst

4

terms.
— Terms involving 1st order derivatives of DQQ̄, they will be refered as Llin

4 .

— Terms involving 2nd order derivatives of DQQ̄, they will be refered as Lquad
4 .

We now treat the L4a terms given by equation (4.12). We only compute the first term
of the right-hand side of the equation (4.12) since a closer inspection shows that the
contribution from the second term can be obtained from the first one by performing
the change (1, 2) → (1′, 2′). The term under consideration is the following:
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∫
xx′
aa′
bb′

Wxx′
〈
r1r2

∣∣ṅxṅx′DQQ̄
∣∣r′1r′2

〉
=− 1

4M2

∫
xx′
aa′
bb′

Wxx′{[∇2δ2a′ ] · ∇x[δxa′ + δx2]δ1a − [∇1δ1a] · ∇x[δxa + δx′1]δ2a′}

× {[∇a′δa′b′ ] · ∇x′ [δx′b′ + δx′a′ ]δab − [∇aδab] · ∇x′ [δx′b + δx′a]δa′b′}
×
〈
bb′∣∣DQQ̄

∣∣r′1r′2
〉

. (4.23)

Just as before, it is only useful to compute two terms of equation (4.23), as the other
two can be obtained from them by performing adequate change of variables. The
first contribution writes:

L1
4a1 = − 1

4M2

∫
xx′
a′b′

Wxx′ [∇2δ2a′ ] · ∇x[δxa′ + δx2]

× [∇a′δa′b′ ] · ∇x′ [δx′b′ + δx′a′ ]
〈
r1b′∣∣DQQ̄

∣∣r′1r′2
〉

. (4.24)

Using the same procedure as for the L4b terms, one finds (using ∇∇2W(0) = 0,
thanks to isotropy):

L1
4a1 =

1
4M2

[
∂4W(0) + 4∂i∂jW(0)∂i

2∂
j
2′

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
. (4.25)

The second term is given by:

L1
4a2 =

1
4M2

∫
xx′
a′b

Wxx′ [∇2δ2a′ ] · ∇x[δxa′ + δx2]

× [∇1δ1b] · ∇x′ [δx′b′ + δx′1]
〈
ba′
∣∣DQQ̄

∣∣r′1r′2
〉

. (4.26)
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which leads to:

L1
4a2 =

1
4M2

[
∂4W12 ++2∇∇2W12 · ∇12 + 4∂i∂jW12∂i

1∂
j
2

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
. (4.27)

The third term is immediately obtained from (4.27) as one can see that it leads to
the same contribution. The last term is obtained from (4.25) by replacing 2 → 1.
Regrouping all the terms leads to:

L1
4a =

1
64M2T2

[
∂4W(0) + 2∂i∂jW(0)

[
∂i

1∂
j
1 + ∂i

2∂
j
2

]
+∂4W12 + 2∇∇2W12 · ∇12 − 4∂i∂jW12∂i

1∂
j
2

] 〈
r1r2

∣∣DQQ̄
∣∣r′1r′2

〉
. (4.28)

The contribution L2
4a obtained from the second term of (4.23) is obtained by doing

the change (1, 2) → (1′, 2′) in L1
4a. Regrouping both contributions, we can identify

the LQQ,a and LQQ̄,a operators, written as:

LQQ,a =
1

64M2T2

[
2∂4W(0) + 2∂i∂jW(0)

(
∂i

1∂
j
1 + ∂i

1′∂
j
1′ + ∂i

2∂
j
2 + ∂i

2′∂
j
2′

)]
,

LQQ̄,a =
1

64M2T2

[
∂4Wc + 2∇∇2Wc · ∇c − 4∂i∂jWc

(
∂i∂j

)c]
. (4.29)

4.1.3 Derivation for QCD

From the terms derived in the QED-like case at each level, we can obtain the
equations in the QCD case, by constructing the Lss,Lso,Los and Loo operators as
explained in Appendix A:
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Lss = CF

[
LQQ,a + LQQ̄,a

]
, Lso = CF

[
LQQ,b + LQQ̄,b

]
, Los =

1
2Nc

[
LQQ,b + LQQ̄,b

]
,

Loo = CFLQQ,a −
1

2Nc
LQQ̄,a +

N2
c − 2
2Nc

LQQ,b −
1

Nc
LQQ̄,b. (4.30)

The different operators involve different types of transitions. In the case of Lss, only
direct transitions with even ∆L (L being the angular momentum) are present. In the
case of both Lso and Los, we only have transitions where ∆L is odd, meaning than
singlet to octet or octet to singlet transitions will change parity. Finally, in the case of
Loo both types of transitions are present, so we have transitions between octet color
states that change parity and other that do not.

Before studying the conservation of unitarity and positivity, we will perform an-
other approximation to simplify the equations we derived.

4.2 Reduction of the center of mass degrees of freedom

In this section, we will perform a quite common reduction, which consists in
tracing out the center of mass degrees of freedom. Since the pair is heavy and
weakly interacts with the medium, the center of mass motion does not vary much
and it seems legitimate that we can integrate it out. However, for some of the terms
at the L4 level, this will not be the case, leading to terms depending on the total
momentum of the pair. To do so, we first introduce the center of mass and relative
coordinates:

R =
r1 + r2

2
, R′ =

r′1 + r′2
2

,

s = r1 − r2, s′ = r′1 − r′2, (4.31)

and the reduced density operator in the center of mass:

〈
s
∣∣D∣∣s′〉 = ∫

d3Rd3R′δ(3)
(
R − R′) 〈Rs

∣∣D∣∣R′s′
〉

. (4.32)
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It is then possible to formulate the time derivative of 〈s|D|s′〉:

d
dt
〈
s
∣∣D∣∣s′〉 = ∫

d3Rd3R′δ(3)
(
R − R′) 〈Rs

∣∣LD∣∣R′s′
〉

. (4.33)

The goal is to show that the right-hand side of the equation 4.33 can be expressed as
an operator only acting on 〈s|D|s′〉, which is not trivial. We will start from the L0

terms and go through each level.

4.2.1 Reduction of the L0 terms

We had for both Ds and Do:

L0D121′2′ = −i

(
p2

1 + p2
2 − p2

1′ − p2
2′

2M

)
D121′2′ , (4.34)

with L0D121′2′ = 〈r1r2|L0D|r′1r′2〉 and D121′2′ = 〈r1r2|D|r′1r′2〉.

Using (4.32), we have:

∇1 =
1
2
∇R +∇s, ∇2 =

1
2
∇R −∇s, (4.35)

and similar notations for the conjugated variables.

We then get:

〈
Rs
∣∣L0D

∣∣R′s′
〉
=

ih̄2

2M

(
1
2

∆R + 2∆s −
1
2

∆R′ − 2∆s′

) 〈
Rs
∣∣D∣∣R′s′

〉
. (4.36)

By going to the Fourier space for the R and R′ variables, we have:
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〈
s
∣∣D∣∣s′〉 = ∫

d3kd3k′δ(3)
(
k − k′) 〈ks

∣∣D∣∣k′s′
〉

〈
s
∣∣L0D

∣∣s′〉 = ∫
d3kd3k′δ(3)

(
k − k′) 〈ks

∣∣L0D
∣∣k′s′

〉
, (4.37)

while from (4.36):

〈
ks
∣∣L0D

∣∣k′s′
〉
=

ih̄2

2M

(
2[∆s − ∆s′ ] +

1
2

[
‖k‖2 −

∥∥k′∥∥2
]) 〈

ks
∣∣D∣∣k′s′

〉
. (4.38)

One easily sees that we obtain:

〈
s
∣∣L0D

∣∣s′〉 = ih̄2

M
(∆s − ∆s′)

〈
s
∣∣D∣∣s′〉 , (4.39)

which is indeed properly formulated as an operator acting on 〈s|D|s′〉.

4.2.2 Reduction of the L1 terms

We have at the L1 level:

L1D121′2′ = iC(V12 − V1′2′)D121′2′ , (4.40)

with C a color factor: CF for Ds and − 1
2Nc

for Do.

As the potentials here are expressed as functions of the relative variables 1, the
reduction of the center of mass degrees of freedom is immediate:

〈
s
∣∣L1D

∣∣s′〉 = iC
[
V(s)− V(s′)

] 〈
s
∣∣D∣∣s′〉 . (4.41)

1. The behaviour of the potential could depend on the speed of the cc̄ pair, which would involve
operators acting on R and R′
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4.2.3 Reduction of the L2 terms

Starting from the L2 level, we will treat separately the LQQ,a, LQQ̄,a, LQQ,b and
LQQ̄,b terms in the QED case. The QCD case is restored by using the combinations
given in equation (4.30). Starting with the LQQ,a term:

L2
QQ,aD121′2′ = 2W(0)D121′2′ , (4.42)

the reduction is immediate and we obtain:

〈
s
∣∣L2

QQ,aD
∣∣s′〉 = 2W(0)

〈
s
∣∣D∣∣s′〉 . (4.43)

The LQQ̄,a term are given by:

L2
QQ̄,aD121′2′ = −[W12 + W1′2′ ]D121′2′ . (4.44)

Similarly to the L1 level, this leads to:

〈
s
∣∣L2

QQ̄,aD
∣∣s′〉 = −

[
W(s) + W(s′)

] 〈
s
∣∣D∣∣s′〉 . (4.45)

We continue by looking at the LQQ,b term:

L2
QQ,bD121′2′ = −[W11′ + W22′ ]D121′2′ . (4.46)

According to the change of variables (4.32), we have:

r1 − r′1 = R − R′ +
s − s′

2
,

r2 − r′2 = R − R′ − s − s′

2
. (4.47)

Using the relationW(−r) = −W(r), we perform the reduction and obtain, thanks to
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the equation (4.32):

〈
s
∣∣L2

QQ,bD
∣∣s′〉 = −2W

(
s − s′

2

) 〈
s
∣∣D∣∣s′〉 . (4.48)

Finally, we have the LQQ̄,b term:

L2
QQ̄,bD121′2′ = −[W12′ + W21′ ]D121′2′ . (4.49)

Once again, using (4.32), we have:

r1 − r′2 = R − R′ +
s + s′

2
,

r2 − r′1 = R − R′ − s + s′

2
, (4.50)

which leads to: 〈
s
∣∣L2

QQ̄,bD
∣∣s′〉 = 2W

(
s + s′

2

) 〈
s
∣∣D∣∣s′〉 . (4.51)

4.2.4 Reduction of the L′
3 terms

We proceed in the same way and evaluate the reduction of the LQQ,a term at the
L′

3 level:

L3′
QQ,aD121′2′ =

1
2MT

∆W(0)D121′2′ , (4.52)

which immediately gives us:

〈
s
∣∣L3′

QQ,aD
∣∣s′〉 = h̄2

4MT
∆W(0)

〈
s
∣∣D∣∣s′〉 , (4.53)

where we restored proper h̄ counting so that the term clearly has the dimension of
an energy. We will restore the h̄ constants for every term from now on. The LQQ̄,a

term is equal to zero and thus trivial, so we proceed with the LQQ,b term:
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L3′
QQ,bD121′2′ =

1
4MT

[∆W11′ + ∆W22′ +∇W11′ · ∇11′ +∇W22′ · ∇22′ ]D121′2′ , (4.54)

where we have:

∇11′ = ∇1 −∇1′ =
1
2
(∇R −∇R′) +∇s −∇s′ ,

∇22′ = ∇2 −∇2′ =
1
2
(∇R −∇R′)−∇s +∇s′ . (4.55)

Combining the equations (4.54) and (4.55), we get:

〈
Rs
∣∣L3′

QQ,bD
∣∣R′s′

〉
=

1
4MT

{
∆W

(
R − R′ +

s − s′

2

)
+ ∆W

(
R − R′ − s − s′

2

)
+∇W

(
R − R′ +

s − s′

2

)
·
[

1
2
(∇R −∇R′) +∇s −∇s′

]
+∇W

(
R − R′ − s − s′

2

)
·
[

1
2
(∇R −∇R′)−∇s +∇s′

]}

×
〈
Rs
∣∣D∣∣R′s′

〉
. (4.56)

Using the relation ∇W(−r) = −∇W(r), we easily see from the equation (4.56) that
no dependence on R or R′ after the trace on R and R′:

〈
s
∣∣L3′

QQ,bD
∣∣s′〉 = h̄2

2MT

[
∆W

(
s − s′

2

)
+∇W

(
s − s′

2

)
· (∇s −∇s′)

] 〈
s
∣∣D∣∣s′〉 .

(4.57)

Finally, from the LQQ̄,b term:

L3′
QQ̄,bD121′2′ =

1
4MT

[∆W12′ + ∆W21′ +∇W12′ · ∇12′ +∇W21′ · ∇21′ ]D121′2′ , (4.58)
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where we have:

∇12′ = ∇1 −∇1′ =
1
2
(∇R −∇R′) +∇s +∇s′ ,

∇21′ = ∇1 −∇1′ =
1
2
(∇R −∇R′)−∇s −∇s′ , (4.59)

Again, combining the equations (4.58) and (4.59) yields:

〈
Rs
∣∣L3′

QQ̄,bD
∣∣R′s′

〉
=

1
4MT

{
∆W

(
R − R′ +

s + s′

2

)
+ ∆W

(
R − R′ − s + s′

2

)
+∇W

(
R − R′ +

s − s′

2

)
·
[

1
2
(∇R −∇R′) +∇s +∇s′

]
+∇W

(
R − R′ − s − s′

2

)
·
[

1
2
(∇R −∇R′)−∇s −∇s′

]}

×
〈
Rs
∣∣D∣∣R′s′

〉
, (4.60)

and we obtain after the trace:

〈
s
∣∣L3′

QQ̄,bD
∣∣s′〉 = h̄2

2MT

[
∆W

(
s + s′

2

)
+∇W

(
s − s′

2

)
· (∇s +∇s′)

] 〈
s
∣∣D∣∣s′〉 .

(4.61)

4.2.5 Reduction of the L4 terms

We end the reduction of the center of mass degrees of freedom with the L4 terms.
The LQQ,a term writes:

L4
QQ,aD121′2′ =

1
64M2T2

[
2∂4W(0) + 2∂i∂jW(0)

(
∂i

1∂
j
1 + ∂i

2∂
j
2

+∂i
1′∂

j
1′ + ∂i

2′∂
j
2′

)]
D121′2′ . (4.62)

We have:
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∂i
1∂

j
1 + ∂i

2∂
j
2 =

1
2

∂i
R∂

j
R + 2∂i

s∂
j
s, (4.63)

with similar notations for primed variables.

In contrast to other L levels, there are still terms in ∂R, which inhibits the reduction
in general. One can however still perform it assuming special dependences on R
and R′. Assuming for instance a state with perfectly defined total momentum, we
have:

D121′2′ = eiptot·(R−R′) 〈s∣∣D∣∣s′〉 . (4.64)

Then, we obtain:

〈
s
∣∣L4

QQ,aD
∣∣s′〉 = h̄4

64M2T2

[
2∂4W(0) + 4∂i∂jW(0)

[
∂i

s∂
j
s + ∂i

s′∂
j
s′

]
−2ptot · H(0) · ptot

] 〈
s
∣∣D∣∣s′〉 , (4.65)

with H the Hessian matrix of W.

We see that at the L4 level there are terms depending on the velocity of the state,
which was not the case at the other levels. For the L4

QQ̄,a operator, we have:

L4
QQ̄,aD121′2′ =

1
64M2T2

[
∂4W12 + ∂4W1′2′ + 2∇∇2W12 · ∇12

+ 2∇∇2W1′2′ · ∇1′2′ − 4∂i∂jW12∂i
1∂

j
2

−4∂i∂jW1′2′∂
i
1′∂

j
2′

]
D121′2′ , (4.66)

with:
∂i

1∂
j
2 =

1
4

∂i
R∂

j
R − ∂i

s∂
j
s, (4.67)
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and a similar notation for the conjugated variables.

We obtain after performing the trace on R and R′:

〈
s
∣∣L4

QQ̄,aD
∣∣s′〉 = h̄4

64M2T2

[
∂4W(s) + ∂4W(s′) + 4∇∇2W(s) · ∇s

+ 4∇∇2W(s′) · ∇s′ + 4∂i∂jW(s)∂i
s∂

j
s

+ 4∂i∂jW(s′)∂i
s′∂

j
s′ + ptot · H(s) · ptot

+ptot · H(s′) · ptot

]
. (4.68)

Then, for the L4
QQ,b term:

L4
QQ,bD121′2′ =

1
64M2T2

[
−∂4W11′ − ∂4W22′ + 2∇∇2W11′ · ∇11′

+ 2∇∇2W22′ · ∇22′ − 4∂i∂jW11′∂
i
1∂

j
1′

−4∂i∂jW22′∂
i
2∂

j
2′

]
D121′2′ , (4.69)

with:

∂i
1∂

j
1′ =

1
4

∂i
R∂

j
R′ + ∂i

s∂
j
s′ +

1
2

∂i
R∂

j
s′ +

1
2

∂i
s∂

j
R′ ,

∂i
2∂

j
2′ =

1
4

∂i
R∂

j
R′ + ∂i

s∂
j
s′ −

1
2

∂i
R∂

j
s′ −

1
2

∂i
s∂

j
R′ . (4.70)
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Using the parity of the derivatives of W, we get:

〈
s
∣∣L4

QQ,bD
∣∣s′〉 = h̄4

64M2T2

[
−2∂4W

(
s − s′

2

)
− 4∇∇2W

(
s − s′

2

)
· [∇s −∇s′ ]

+ 8∂i∂jW
(

s − s′

2

)
∂i

s∂
j
s′

+ 2ptot · H
(

s − s′

2

)
· ptot

] 〈
s
∣∣D∣∣s′〉 . (4.71)

And finally we proceed with the reduction of the L4
QQ̄,b term:

L4
QQ̄,bD121′2′ =

1
64M2T2

[
∂4W12′ + ∂4W21′ + 2∇∇2W12′ · ∇12′

+ 2∇∇2W21′ · ∇21′ − 4∂i∂jW21′∂
i
2∂

j
1′

−4∂i∂jW21′∂
i
2∂

j
1′

]
D121′2′ , (4.72)

with:

∂i
1∂

j
2′ =

1
4

∂i
R∂

j
R′ − ∂i

s∂
j
s′ −

1
2

∂i
R∂

j
s′ +

1
2

∂i
s∂

j
R′ ,

∂i
2∂

j
1′ =

1
4

∂i
R∂

j
R′ − ∂i

s∂
j
s′ +

1
2

∂i
R∂

j
s′ −

1
2

∂i
s∂

j
R′ . (4.73)

Once again, using the parity of the derivatives of W, we obtain:

〈
s
∣∣L4

QQ̄,bD
∣∣s′〉 = h̄4

64M2T2

[
2∂4W

(
s + s′

2

)
+ 4∇∇2W

(
s + s′

2

)
· [∇s +∇s′ ]

+ 8∂i∂jW
(

s + s′

2

)
∂i

s∂
j
s′

− 2ptot · H
(

s + s′

2

)
· ptot

] 〈
s
∣∣D∣∣s′〉 . (4.74)

The terms involving ptot do not represent an energy loss but a different internal
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dynamics when we consider a pair with fixed velocity.

In section 4.1.3, we mentionned that different types of transitions were involved. A
simple calculation can show that transitions with even DeltaL correspond to terms
only depending on s or s′ which are only present in LQQ,a or LQQ̄,a terms while
transitions with odd DeltaL correspond to terms depending on combinations of s
and s′ which are only present in LQQ,b or LQQ̄,b. This imply that a color transition
will indeed always change the parity. On the contrary transitions not changing the
color state (singlet→singlet or from an octet to the same octet) will not change the
parity.

Now that the reduction of the center of mass degrees of freedom is done, we can
proceed to prove that the trace and positivity are indeed preserved.

4.3 Conservation of the trace

We now demonstrate explicitely the trace conservation for the new equations in
the QCD case. The trace of either Ds or Do is not conserved, however, there is a
combination for which it is:

d
dt

Tr
[
Ds +

(
N2

c − 1
)
Do

]
= 0, (4.75)

which is simply the sum of all possible color states.

The procedure will be the following: we will compute the trace at the L2 level, then
at the L3 and L4 levels. The trace should be conserved level by level as the prefactors
are different for each level ( 1

4MT for L3, 1
64M2T2 for L4...). The first two levels L0

and L1 obviously conserve the trace as they are akin to a Schrödinger equation. At
each level, we will compute the trace of the Lss, Lso, Los and Loo operators, before
regrouping all terms to compute (4.75), written as:
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Tr
[

d
dt

Ds +
(

N2
c − 1

) d
dt

Do

]
= Tr

[{
Lss +

(
N2

c − 1
)
Los

}
Ds

+
{
Lso +

(
N2

c − 1
)
Loo

}
Do

]
, (4.76)

therefore, we are going to prove that:

Tr
[{

Lss +
(

N2
c − 1

)
Los

}
Ds

]
= 0,

Tr
[{

Lso +
(

N2
c − 1

)
Loo

}
Do

]
= 0. (4.77)

The Lss term represents in reality a loss of the singlet probability while the Los term
represents the gain term of the same quantity from the perspective of the octet. The
Loo term correspond to a net loss of the octet density to the singlet density with the
octet to octet losses compensating each other. The quantity lost in the octet sector is
gained in the singlet sector and is represented by the Lso term.

4.3.1 Trace at the L2 level

From the trace on Ds, combining equations (4.30), (4.43) and (4.45), we have:

LssDs = CF
[
2W(0)− W(s)− W(s′)

]
Ds(s, s′). (4.78)

The trace is then given by:

Tr [LssDs] = CF

∫
d3sd3s′δ(3)

(
s − s′

)[
2W(0)− W(s)− W(s′)

]
Ds(s, s′)

= 2CF

∫
d3s[W(0)− W(s)]Ds(s, s), (4.79)

where we will simply note Ds(s, s) as Ds (and a similar notation later for Do).

Combining equations (4.30), (4.48) and (4.51), the Los term writes:
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LosDs =
1

Nc

[
−W

(
s − s′

2

)
+ W

(
s + s′

2

)]
Ds(s, s′). (4.80)

Performing the trace, we obtain:

Tr [LosDs] =
1

Nc

∫
d3s[−W(0) + W(s)], (4.81)

from which it is immediate to see that:

Tr
[{

Lss +
(

N2
c − 1

)
Los

}
Ds

]
= 0. (4.82)

For the trace on Do, the Lso term is the same as Los, with a different color factor,
leading to:

Tr [LsoDo] = CF

∫
d3s[−W(0) + W(s)]Ds. (4.83)

Finally, following equation (4.30), the Loo contribution is given by:

LooDo =
[
2CFW(0) +

1
2Nc

(
W(s) + W(s′)

)
−N2

c − 2
Nc

W
(

s − s′

2

)
− 1

Nc
W
(

s + s′

2

)]
Do(s, s′), (4.84)

from which we obtain:

Tr [LooDo] =
1

Nc

∫
d3s[W(0)− W(s)]Do. (4.85)

Regrouping Lso and Loo, we get:

Tr
[{

Lso +
(

N2
c − 1

)
Loo

}
Do

]
= 0, (4.86)

thus proving that the trace is conserved at the L2 level.
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4.3.2 Trace at the L′
3 level

The global factor h̄2

4MT will be omitted for simplicity as it is common to all L′
3

terms. From equation (4.53), the trace on the Lss term is straightforward:

Tr [LssDs] = 2CF

∫
d3s∆W(0)Ds. (4.87)

Combining equations (4.57) and (4.61), the term Los writes:

LosDs =
1

Nc

[
−∆W

(
s − s′

2

)
+ ∆W

(
s + s′

2

)
−∇W

(
s − s′

2

)
· (∇s −∇s′)

+∇W
(

s + s′

2

)
· (∇s +∇s′)

]
Ds(s, s′). (4.88)

Using the relation ∇W(0) = 0, we get:

Tr [LosDs] =
1

Nc

∫
d3s[−∆W(0) + ∆W(s) +∇W(s) · (∇s +∇s′)]Ds(s), (4.89)

with Ds(s) = Ds(s, s′)
∣∣
s=s′ . Regrouping equations (4.87) and (4.89), we obtain:

Tr
[{

Lss +
(

N2
c − 1

)
Los

}
Ds

]
= 2CF

∫
d3s[∆W(s) +∇W(s) · (∇s +∇s′)]

×Ds(s). (4.90)

We can write:

∇W(s) · (∇s +∇s′)Ds = ∇W(s) ·
(
D(1,0)

s +D(0,1)
s

)
= ∇W(s) · ∇Ds(s), (4.91)
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with the second ∇ representing a total derivative on s. We thus have:

Tr
[{

Lss +
(

N2
c − 1

)
Los

}
Ds

]
= 2CF

∫
d3s∇[Ds∇W(s)] = 0. (4.92)

One can notice here something that will be important in the next chapters. At the L2

level, the trace was conserved locally in s (that is for each value of s in the integrand)
since terms exactly compensated each other. Here, we still need to perform the
integral on s to prove that this quantity is indeed equal to 0. Analytically, this has
not much of an importance, however this is not the case numerically as we shall see
in chapter 5.

Just as we did at the L2 level, we have:

Tr [LsoDo] = 2CF

∫
d3s[−∆W(0) + ∆W(s) +∇W(s) · (∇s +∇s′)]Do(s). (4.93)

As for the Loo term, we have:

LooDo =

[
2CFW(0)

− N2
c − 2
Nc

(
∆W

(
s − s′

2

)
+∇W

(
s − s′

2

)
· (∇s −∇s′)

)
− 2

Nc

(
∆W

(
s + s′

2

)
+∇W

(
s + s′

2

)
· (∇s +∇s′)

)]
Do(s, s′). (4.94)

Using relation (4.91) and equations (4.93) and (4.94), we compute the trace:

Tr [LooDo] =
∫

d3s
[

1
Nc

∆W(0)− 2
Nc

{∆W(s) +∇W(s) · (∇s +∇s′)}
]
Do(s).

(4.95)

Which finally leads to, after integration on s:
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Tr
[{

Lso +
(

N2
c − 1

)
Loo

}
Do

]
= 0. (4.96)

The trace at the L′
3 level is thus conserved.

4.3.3 Trace at the L4 level

The global factor h̄4

64M2T2 will be omitted for simplicity as it is common to all
L4 terms. The procedure is the same as before, we will simply give directly the
expression of the trace of each operator. Using equations (4.65) and (4.68), the trace
of the Lss term is given by:

Tr [LssDs] = CF

∫
d3s
[
2∂4{W(0) + W(s)}+ 4∇∇2W(s) · (∇s +∇s′)

+ 4∂i∂j[W(0) + W(s)]
{

∂i
s∂

j
s + ∂i

s′∂
j
s′

}
−2ptot · H(0) · ptot + 2ptot · H(s) · ptot

]
Ds. (4.97)

We proceed with the trace of Los, using the fact that ∇∇2W(0) = 0 and equations
(4.71) and (4.74):

Tr [LosDs] =
1

Nc

∫
d3s
[
∂4{−W(0) + W(s)}+ 2∇∇2W(s) · (∇s +∇s′)

+ 4∂i∂j[W(0) + W(s)]∂i
s∂

j
s′

+ptot · H(0) · ptot − ptot · H(s) · ptot

]
Ds. (4.98)

Regrouping both terms, we obtain:
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Tr
[{

Lss +
(

N2
c − 1

)
Los

}
Ds

]
= 4CF

∫
d3s
[
∂i∂jW(0)

{
∂i

s∂
j
s + ∂i

s′∂
j
s′ + 2∂i

s∂
j
s′

}
+ ∂4W(s) + 2∇∇2W(s) · (∇s +∇s′)

+∂i∂jW(s)
{

∂i
s∂

j
s + ∂i

s′∂
j
s′ + 2∂i

s∂
j
s′

}]
Ds. (4.99)

One can show that:

∂i∂jW(0)
{

∂i
s∂

j
s + ∂i

s′∂
j
s′ + 2∂i

s∂
j
s′

}
Ds = ∂i∂jW(0)∇i

s∇
j
sDs, (4.100)

and that:[
∂4W(s) + 2∇∇2W(s) · (∇s +∇s′) + ∂i∂jW(s)

{
∂i

s∂
j
s + ∂i

s′∂
j
s′ + 2∂i

s∂
j
s′

}]
Ds

= ∇i
s∇

j
s
[
Ds∂i∂jW(s)

]
. (4.101)

Both contributions vanish when performing the remaining integration on s, leading
to:

Tr
[{

Lss +
(

N2
c − 1

)
Los

}
Ds

]
= 0. (4.102)

As already observed with L′
3, the conservation is not local.

The trace of Lso is straightforward:

Tr [LsoDo] = 2CF

∫
d3s
[
∂4{−W(0) + W(s)}+ 2∇∇2W(s) · (∇s +∇s′)

+ 4∂i∂j[W(0) + W(s)]∂i
s∂

j
s′

+ptot · H(0) · ptot − ptot · H(s) · ptot

]
Do. (4.103)

Whereas the trace of Loo is given by:
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Tr [LooDo] =
∫

d3s

[
2CF

(
∂4W(0) + ∂i∂jW(0)

{
∂i

s∂
j
s + ∂i

s′∂
j
s′

})
− 1

Nc

(
∂4W(s) + 2∇∇2W(s) · (∇s +∇s′)− 2∂i∂jW(s)

{
∂i

s∂
j
s + ∂i

s′∂
j
s′

})
+

N2
c − 2
Nc

(
∂4W(0) + 4∂i∂jW(0)∂i

s∂
j
s′

)
− 2

Nc

(
∂4W(s) + 2∇∇2W(s) · (∇s +∇s′) + 4∂i∂jW(s)∂i

s∂
j
s′

)
− 1

Nc
ptot · H(0) · ptot +

1
Nc

ptot · H(s) · ptot

]
Do. (4.104)

Regrouping all the terms in equations (4.103) and (4.104) and performing the inte-
gration on s using relations (4.100) and (4.101), we get:

Tr
[{

Lso +
(

N2
c − 1

)
Loo

}
Do

]
= 0. (4.105)

The new equations indeed preserve the trace, but it is not conserved locally in s as it
was with the original equations. Now that we have demonstrated this conservation,
we will study the positivity.

4.4 Positivity

In the new discretization, positivity conservation is ensured by construction.
Nonetheless, it is still interesting to demonstrate it and see how it is realized. Let
us recall the Lindblad equation:

d
dt

ρ = −i[H, ρ] +
N

∑
i

γi

(
LiρL†

i −
1
2

{
LiL†

i , ρ
})

. (4.106)

By adopting a basis in which ρ is diagonal, we define the weights wn = 〈n|ρ|n〉,
with |n〉 one of the eigenstates of ρ. In the case N = 1, we have:
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ẇn = ∑
m

LnmwmL†
mn − L†

nmLmnwn

= ∑
m

LnmwmL∗
nm − L∗

mnLmnwn. (4.107)

Defining tnm ≡ LnmL∗
nm > 0, we obtain:

ẇn = ∑
m

tnmwm − tmnwn, (4.108)

with tnmwm a gain term from the m state and tmnwn a loss term from the n state. If
all tmn are positive, then we can define Γn = ∑m tmn so that (4.108) becomes:

ẇn = −Γnwn + s, (4.109)

where s is a source term which is strictly positive. Even if we consider s = 0, wn can
not become negative, which preserves positivity.

Starting from the L2 level, we will derive systematically the gain term tnm and show
that it is positively defined at each level before demonstrating how to retrieve the
terms leading to the associated loss term tmn at the L2 and L′

3 levels. We will first
prove the positivity conservation in the simpler case where color degrees of freedom
are ignored. We will then analyse the full QCD case. Contrary to the trace, positivity
is not conserved level by level and we will need to combine L3 and L4 terms to
conserve it.

4.4.1 Positivity at the L2 level

We define DQQ̄ = ∑l wl |l〉〈l| with wl ≥ 0. We have at the L2 level:

ẇn = 〈n|ḊQQ̄|n〉 = 〈n|L2DQQ̄|n〉

=
∫

d3sd3s′ 〈n|s〉
〈
s
∣∣L2DQQ̄

∣∣s′〉 〈s′∣∣n〉 , (4.110)
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where we separate L2 in L2a and L2b which correspond respectively to a loss term
and a gain term as we shall see. We will start with L2b by assuming that we can
write:

W(r) = −
∫

d3qρ(q)
(

eiq·r − 1
)

, (4.111)

where ρ(q) is the spectral density of W which is even with respect to q, the gain
term can then be written as:

−2
(

W
(

s − s′

2

)
− W

(
s + s′

2

))
= 2

∫
d3qρ(q)

(
ei q

2 ·(s−s′) − ei q
2 ·(s+s′)

)
= 4

∫
d3qρ(q) sin

(q
2
· s
)

sin
(q

2
· s′
)

. (4.112)

We thus have for the gain term:

ẇn = 4 ∑
l

wl

∫
d3sd3s′ψl(s)ψ

∗
l (s

′)ψ∗
n(s)ψn(s

′)
∫

d3qρ(q) sin
(q

2
· s
)

sin
(q

2
· s′
)

.

(4.113)

By defining the transition amplitude:

Tnl(q) ≡ 2
∫

d3sψ∗
n(s) sin

(q
2
· s
)

ψl(s), (4.114)

the equation (4.113) becomes:

ẇn = ∑
l

wl

∫
d3qρ(q)Tnl(q)Tln(q). (4.115)

One can note that the transition amplitude Tnl(q) changes the parity of ψl(s). Since
one has Tln(q) = T∗

nl(q), we immediately have:
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ẇn = ∑
l

wl

∫
d3qρ(q)|Tnl(q)|

2

= ∑
l

wltnl, (4.116)

where we defined tnl ≡
∫

d3qρ(q)
∣∣Tnl(q)

∣∣2.
L2b corresponds to a gain term. Similarly, for L2a, we can write:

ẇn = 2wn

∫
d3qρ(q)

∫
d3sψn(s)ψ

∗
n(s)

(
eiq·s − 1

)
, (4.117)

where, using parity arguments, only the real part contributes:

ẇn = −2wn

∫
d3qρ(q)

∫
d3sψn(s)ψ

∗
n(s)[1 − cos(q · s)]

= −4wn

∫
d3qρ(q)

∫
d3sψn(s)ψ

∗
n(s) sin

(q
2
· s
)2

= −4wn

∫
d3qρ(q)

∫
d3sd3s′δ(3)

(
s − s′

)
ψ∗

n(s
′) sin

(q
2
· s′
)

sin
(q

2
· s
)

ψn(s).

(4.118)

Using a completion relation δ(3)(s − s′) = ∑l ψl(s
′)ψ∗

l (s), we get:

ẇn = −4wn ∑
l

∫
d3qρ(q)

∫
d3sd3s′ψ∗

n(s
′) sin

(q
2
· s′
)

ψl(s
′)ψ∗

l (s) sin
(q

2
· s
)

ψn(s).

= −∑
l

∫
d3qρ(q)Tnl(q)Tln(q)wn

= −∑
l

tlnwn, (4.119)

which is indeed the associated loss term.

Combining the gain and loss terms, we obtain the formulation of a master equation
as shown at the start of this section with equation (4.108) if and only if ρ(q) is
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globally positive as the tln are positive only if it is the case.

4.4.2 Positivity at the L′
3 level

Similarly to the L2 level, one can start again with the gain term, associated to the
L′

3b terms given in section 4.2.4. We first focus on the Laplacian term. With:

W
(

s + s′

2

)
− W

(
s − s′

2

)
=
∫

d3sρ(q)
[
ei q

2 ·(s−s′) − ei q
2 ·(s+s′)

]
, (4.120)

we have:

h̄2

2MT

(
∆W

(
s + s′

2

)
− ∆W

(
s − s′

2

))
= − h̄2

2MT

∫
d3sρ(q)‖q‖2

[
ei q

2 ·(s−s′) − ei q
2 ·(s+s′)

]
= − h̄2

MT

∫
d3sρ(q)‖q‖2 sin

(q
2
· s
)

sin
(q

2
· s′
)

.

(4.121)

And one obtains, using the definition (4.114) :

ẇn = − h̄2

4MT ∑
l

∫
d3sρ(q)‖q‖2|Tnl(q)|

2wl (4.122)

For the second contribution in L′
3b, we have:

∇W
(

s + s′

2

)
=
∫

d3qρ(q)q · sin
(q

2
·
{

s + s′
})

=
∫

d3qρ(q)q ·
[
sin
(q

2
· s
)

cos
(q

2
· s′
)
+ sin

(q
2
· s′
)

cos
(q

2
· s
)]

.

(4.123)

We also have:

∇W
(

s − s′

2

)
=
∫

d3qρ(q)q ·
[
sin
(q

2
· s
)

cos
(q

2
· s′
)
− sin

(q
2
· s′
)

cos
(q

2
· s
)]

.

(4.124)
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Using those relations we get:

h̄2

2MT

[
∇W

(
s + s′

2

)
· (∇s +∇s′)−∇W

(
s − s′

2

)
· (∇s −∇s′)

]
=

h̄2

MT

∫
d3qρ(q)

[
sin
(q

2
· s
)

cos
(q

2
· s′
)

q · ∇s′ + sin
(q

2
· s′
)

cos
(q

2
· s
)

q · ∇s

]
.

(4.125)

We thus have:

ẇn =
h̄2

MT ∑
l

∫
d3qρ(q)

∫
d3sd3s′ψn(s

′)ψ∗
n(s)

[
sin
(q

2
· s
)

cos
(q

2
· s′
)

q · ∇s′

+ sin
(q

2
· s′
)

cos
(q

2
· s
)

q · ∇s

]
ψl(s)ψ

∗
l (s

′)wl. (4.126)

We define new transition operators:

T(3)
nl (q) ≡ h̄2

2MT

∫
d3sψ∗

n(s) cos
(q

2
· s
)

q · ∇sψl(s). (4.127)

As the Tnl(q) operators, those new transition operators also change the parity of
ψl(s). Using those newly defined operators and the previous Tnl operators from
equation (4.114), we obtain:

ẇn = ∑
l

∫
d3qρ(q)

[
Tnl(q)T

(3)∗
nl (q) + T∗

nl(q)T
(3)
nl (q)

]
wl. (4.128)

Combining (4.115),(4.122) and (4.128), tnl writes:

tnl ≡
∫

d3qρ(q)

[(
1 − h̄2‖q‖2

4MT

)
|Tnl(q)|

2 +
(

Tnl(q)T
(3)∗
nl (q) + c.c

)]
(4.129)

which is not positively defined.
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We now study the associated loss term, by first studying the contribution associated
to (4.128). To do so, we go back to equation (4.126) and perform the change l ↔ n:

ẇn
wn

= − h̄2

MT ∑
l

∫
d3qρ(q)

∫
d3sd3s′ψl(s

′)ψ∗
l (s)

[
sin
(q

2
· s
)

cos
(q

2
· s′
)

q · ∇s′

+ sin
(q

2
· s′
)

cos
(q

2
· s
)

q · ∇s

]
ψn(s)ψ

∗
n(s

′). (4.130)

Using the completion relation, one finds:

ẇn
wn

= − h̄2

MT

∫
d3qρ(q)

∫
d3s
[
sin
(q

2
· s
)

cos
(q

2
· s
)

q · ∇s

+ sin
(q

2
· s
)

cos
(q

2
· s
)

q · ∇s

]
ψn(s)ψ

∗
n(s).

= − h̄2

2MT

∫
d3qρ(q)

∫
d3s sin(q · s)q · ∇s(ψ

∗
n(s)ψn(s)). (4.131)

Integrating by parts, we obtain:

ẇn
wn

=
h̄2

2MT

∫
d3qρ(q)‖q‖2

∫
d3s|ψn(s)|

2 cos(q · s). (4.132)

Following the same procedure for the loss term associated to equation (4.128), we
obtain:

ẇn
wn

=
h̄2

2MT

∫
d3qρ(q)‖q‖2

∫
d3s|ψn(s)|

2(1 − cos(q · s)). (4.133)

Regrouping both contributions leads to the following loss term:

ẇn
wn

=
h̄2

2MT

∫
d3qρ(q)‖q‖2

∫
d3s|ψn(s)|

2 =
h̄2

2MT
∆W(0), (4.134)
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which is exactly L′
3a.

We showed that the L′
3 contribution by itself can’t form master equation terms

preserving positivity. We shall now demonstrate that adding the L4 contribution
leads to conservation of positivity.

4.4.3 Positivity at the L4 level

We start with the gain term given by the contributions Lquad
4b , Llin

4b and Lcst
4b

defined in section 4.1.2. The Lquad
4b term is:

Lquad
4b =

h̄4

8M2T2

[
∂i∂jW

(
s − s′

2

)
∂i

s∂
j
s′ + ∂i∂jW

(
s + s′

2

)
∂i

s∂
j
s′

]
. (4.135)

Using the spectral decomposition of W, we obtain:

∂i∂jW
(

s + s′

2

)
=
∫

d3qρ(q)qiqj

[
cos
(q

2
·
(
s + s′

))
+ i sin

(q
2
·
(
s + s′

))]
=
∫

d3qρ(q)qiqj cos
(q

2
·
(
s + s′

))
, (4.136)

where we used parity considerations. Similarly:

∂i∂jW
(

s − s′

2

)
=
∫

d3qρ(q)qiqj cos
(q

2
·
(
s − s′

))
. (4.137)

We can then write:

Lquad
4b =

h̄4

4M2T2

∫
d3qρ(q)

[
cos
(q

2
· s
)

q · ∇s

][
cos
(q

2
· s′
)

q · ∇s′
]
. (4.138)
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Proceeding as for the L2 and L′
3 contributions, we obtain:

ẇn = ∑
l

∫
d3sd3s′ψn(s

′)ψ∗
n(s)

∫
d3qρ(q)

[
cos
(q

2
· s
) h̄2q · ∇s

2MT

]

×
[

cos
(q

2
· s′
) h̄2q · ∇s′

2MT

]
ψl(s)ψ

∗
l (s

′)wl, (4.139)

where we can recognize the T(3)
nl (q) operators we introduced with equation (4.127)

so that:

ẇn = ∑
l

∫
d3qρ(q)T(3)

nl (q)T(3)∗
nl (q)wl. (4.140)

We can see something really interesting by regrouping the results from equations
(4.115), (4.128) and (4.139):

tpos
nl ≡

∫
d3qρ(q)

∣∣∣Tnl(q) + T(3)
nl (q)

∣∣∣2, (4.141)

which is positively defined. This grouping of terms will be of particular interest in
the following section as we shall see.

The Llin
4b contribution writes:

Llin
4b =

h̄4

16M2T2

[
−∇∇2W

(
s − s′

2

)
· (∇s −∇s′) +∇∇2W

(
s + s′

2

)
· (∇s +∇s′)

]
.

(4.142)
The spectral decomposition of W gives us:

∇∇2W
(

s + s′

2

)
= −

∫
d3qρ(q)‖q‖2q

[
sin
(q

2
· s
)

cos
(q

2
· s′
)

+ sin
(q

2
· s′
)

cos
(q

2
· s
)]

, (4.143)
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and:

∇∇2W
(

s − s′

2

)
= −

∫
d3qρ(q)‖q‖2q

[
sin
(q

2
· s
)

cos
(q

2
· s′
)

− sin
(q

2
· s′
)

cos
(q

2
· s
)]

. (4.144)

Combining equations (4.142),(4.143) and (4.144) leads to:

Llin
4b = − h̄4

8M2T2

∫
d3qρ(q)‖q‖2

[
sin
(q

2
· s
)

cos
(q

2
· s′
)

q · ∇s′

+ sin
(q

2
· s′
)

cos
(q

2
· s
)

q · ∇s

]
, (4.145)

which gives the following term:

ẇn = −∑
l

∫
d3qρ(q)

‖q‖2

8MT

[
Tnl(q)T

(3)∗
nl (q) + T∗

nl(q)T
(3)
nl (q)

]
wl. (4.146)

Finally, the Lcst
4b term is given by:

Lcst
4b =

h̄4

32M2T2

[
−∂4W

(
s − s′

2

)
+ ∂4W

(
s + s′

2

)]
. (4.147)

One has:

∂4W
(

s + s′

2

)
= −

∫
d3qρ(q)‖q‖4 cos

(q
2
·
[
s + s′

])
∂4W

(
s − s′

2

)
= −

∫
d3qρ(q)‖q‖4 cos

(q
2
·
[
s − s′

])
. (4.148)
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By taking into account the parities, we have:

Lcst
4b =

∫
d3qρ(q)

[
h̄2‖q‖2

8MT
2 sin

(q
2
· s
)][ h̄2‖q‖2

8MT
2 sin

(q
2
· s′
)]

, (4.149)

which leads to:

ẇn = ∑
l

∫
d3qρ(q)

∣∣∣∣∣ h̄2‖q‖2

8MT
Tnl(q)

∣∣∣∣∣
2

wl. (4.150)

Regrouping the equations (4.139),(4.146) and (4.150), one obtains the gain term at
the L4 level:

ẇn = ∑
l

∫
d3qρ(q)

[
T(3)

nl (q)T(3)∗
nl (q) +

h̄4‖q‖4

64M2T2 |Tnl(q)|
2

−‖q‖2

8MT

[
Tnl(q)T

(3)∗
nl (q) + T∗

nl(q)T
(3)
nl (q)

]]
wl (4.151)

Regrouping the equations (4.129) and (4.151) and redefining Tnl(q) such that

T̃nl(q) =

(
1 − h̄2‖q‖2

8MT

)
Tnl(q), we finally obtain the gain term for the L2,L′

3 and L4

levels:

tnl ≡
∫

d3qρ(q)
∣∣∣T̃nl(q) + T(3)

nl (q)
∣∣∣2, (4.152)

indeed proving that the new equation preserves positivity if ρ(q) is globally posi-
tive.

We will not demonstrate how to derive the associated loss term, however it is com-
patible with L4a and the procedure is the same as the one used to derive the loss
terms at the L2 and L′

3 levels. Another point that should be discussed is the contri-
bution of the ptot terms. It is easy to show that for these terms, the gain part writes:

tnl ≡
h̄4

64M2T2

∫
d3qρ(q)(ptot · q)2|Tnl(q)|

2, (4.153)
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which also preserves positivity.

4.4.4 Full QCD case

We now prove that positivity is preserved when taking into account the color
degrees of freedom. For that, we will proceed in the same way as in sections sec-
tions 4.4.1 to 4.4.3 and interpret the QCD operators in terms of transition rates.

L2 level:

In the octet-octet color sector we have 2:

Loo
2b = −

(
N2

c − 4
4Nc

W− +
Nc

4
W+

)
, (4.154)

with W± defined in chapter 3 with the equation (3.49).

The W− term was leading to:

ẇo
n = ∑

l

N2
c − 4
4Nc

tnlw
o
n. (4.155)

For the W+ term, one has:

ẇo
n = ∑

l

Nc

4
t+nlw

o
n, (4.156)

with t+nl =
∫

d3qρ(q)
∣∣T+

nl (q)
∣∣2 and:

T+
nl (q) ≡ 2

∫
d3sψ∗

n(s) cos
(q

2
· s
)

ψl(s). (4.157)

2. It is more convenient to write the terms this way to exploit the results already obtained
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One immediately sees that T+
nl (q) do not change the parity of ψl(s). This implies

that Loo has terms changing the parity and other that do not. The terms associated
to singlet↔octet transitions are proportional to W−, with color factors specific to
each type of transition. Therefore, the gain terms have the same structure as those
given by the equation (4.155) and preserve positivity.

Taking into account the associated loss term for both octet→octet and octet→singlet
transitions (computed in the same way as in section 4.4.1, one obtains:

Loo
2a = 2CFW(0) +

1
2Nc

Wc, (4.158)

which indeed corresponds to what we had in section 3.8.

L′
3 level:

As for the L2 level, the gain term for singlet↔octet transitions is the same as in
the QED case with a different color factor (this will also be the case to the L4 level
gain terms). The octet→octet gain term has two contributions: one that is the same
as in the QED case with a N2

c −4
2Nc

color factor and another "W+":

Loo,+
3b = − h̄2

4MT
Nc

4
[∆W+ +∇W+ · ∇+]. (4.159)

The computation is the same as for the QED case. Combining this contribution and
the one from the L2 level, one gets:

t+nl =
∫

d3qρ(q)

[(
1 − h̄2‖q‖2

4MT

)∣∣T+
nl (q)

∣∣2 + (T+
nl (q)T

+(3)∗
nl (q) + c.c

)]
, (4.160)

with T+(3)
nl (q) = h̄2

2MT

∫
d3sψ∗

n(s) sin
(q

2 · s
)
q · ∇sψl(s).

We will not show how to derive the loss term at the L′
3 level but the procedure

is the same as before.
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L4 level:

Proceeding as in the previous section, the Lquad
4b term for octet→octet transitions

writes:

ẇo
n = ∑

l

Nc

4

∫
d3qρ(q)T+(3)

nl T+(3)∗
nl (q)wo

l . (4.161)

As in the QED case, combining the same contributions as in equation (4.141) leads
to an interesting result:

tpos,+
nl ≡

∫
d3qρ(q)

∣∣∣T+
nl (q)− T+(3)

nl (q)
∣∣∣2. (4.162)

Note that in the QCD case, there is a "-" sign and not a "+" sign. This grouping will
be very useful in the last section of this chapter. We now treat the Llin

4b term, giving
us:

ẇo
n =

Nc

4 ∑
l

∫
d3qρ(q)

h̄2‖q‖2

8MT

[
T+

nl (q)T
+(3)∗
nl (q) + T+∗

nl (q)T+(3)
nl (q)

]
wo

l . (4.163)

Finally, we focus on the Lcst
4b term, leading to:

ẇo
n =

Nc

4 ∑
l

∫
d3qρ(q)

∣∣∣∣∣ h̄2‖q‖2

8MT
T+

nl (q)

∣∣∣∣∣
2

wo
l . (4.164)

Regrouping the contributions from all three levels, one finally finds:

t+nl ≡
∫

d3qρ(q)
∣∣∣T̃+

nl (q)− T+(3)
nl (q)

∣∣∣2, (4.165)

with T̃+
nl (q) =

(
1 − h̄2‖q‖2

8MT

)
T+

nl (q).

We can see that positivity is indeed preserved in the QCD case if ρ(q) is globally
positive. We will not prove it here for the terms involving ptot but the procedure is
the same. We will also not show how to derive the loss term at the L4 level but the
procedure is the same as before.
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4.5 UV divergences and minimal set

The equations presented in 4.1 are positivity and trace preserving which are
key properties of well-defined master equations. However, they involve 3rd and 4th

derivatives of the imaginary part of the potential W, which are actually divergent if
we take the expression of W derived from HTL perturbation theory:

W(r) ∝
∫

d3z
‖z‖2(

‖z‖2 − 1
)2

(
1 − sin(z · r)

z · r

)
. (4.166)

For example, one can show that ∂4W(0) is UV-divergent.

As we go higher and higher in the order of the derivatives of the imaginary part
W, we leave the domain of validity of the Hard Thermal Loop approximation that
is used to derive W, leading to the UV-divergences found. We will hereafter explain
the pragmatic method that we adopt that avoids those divergences while embed-
ding most of the terms identified in the L2, L′

3 and L4 operators. We showed
in equation (4.141) that a specific grouping of terms was enough to ensure that
positivity is preserved. This grouping will be referred as the minimal set and it does
not lead to UV divergences By only taking those terms (alongside the corresponding
La terms and the terms depending on ptot) we neglect several others, especially at
the L′

3 level. It is however possible to regenerate most of the missing terms by
redefining the imaginary part W of the complex potential in the following way:

W̃(r) ≡ −
∫

d3qρ(q)

(
1 − h̄2‖q‖2

8MT

)(
eiq·r − 1

)
. (4.167)

Using this new potential in the minimal set of equations, most of the missing terms
are regenerated and even higher order terms (that we could call L5, L6...) are
generated. Those higher order terms are supposed to be truly negligeable, as L4

terms are already subleading. However, the potential (4.167) still leads to some UV
divergences

This leads us to the actual strategy that we will retain for the study of the dynamics
of a heavy quarkonium:

— We take the so-called minimal set of terms.
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— We use the redefined imaginary part W to regenerate most terms, using the
following prescription to avoid the divergencies of the prescription used in
equation (4.167):

ρ̃(q) =
ρ(q)(

1 + h̄2‖q‖2

8MT

)2 . (4.168)

Using this redefined potential has an additional advantage. It ensures that higher
order (> 2) derivatives of W are now regularized and not divergent anymore. This
is crucial since 3rd order derivatives remain in the final equations. The type of terms
contained in the minimal set are regrouped in table 4.1 (without any prefactor).

Level Terms
L0,L1,L2 all

L3

∇W(s) · ∇s
∇W(s′) · ∇s′

∇W
(

s−s′
2

)
· (∇s −∇s′)

∇W
(

s+s′
2

)
· (∇s +∇s′)

L4

ptot terms
∇2W(0)

(
∇2

s +∇2
s′
)

∇2W(s)∇2
s

∇2W(s′)∇2
s′

∇∇2W(s) · ∇s
∇∇2W(s′) · ∇s′

∇2W
(

s−s′
2

)
∇s∇s′

∇2W
(

s+s′
2

)
∇s∇s′

TABLE 4.1 – Summary of the terms contained in the minimal set

4.6 Conclusion

In this chapter, we derived the new master equations that we will use to describe
the quarkonium dynamics. We proved that they indeed preserves the trace and
positivity of the reduced density operator and we provided a strategy to properly
treat divergences. Before applying those equations to study the dynamics of a heavy
quarkonium, we show how the resolution is performed in the next chapter.
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Chapter 5

Numerical implementation

In chapter 4, we presented new equations, extending the work done by Blaizot
& Escobedo [2], now exhibiting the properties of a Lindblad equation. This chapter
aims to present the numerical implementation of those equations and the numerical
scheme used to resolve them, in a one dimensional case. A new phenomenological
complex potential, developped to be better suited for one dimensional studies, is
also presented. The numerical code is finally tested to ensure that the trace of
the density matrix and its positivity, which are preserved analytically as proved
in chapter 4, are also preserved numerically.

5.1 One-dimensionnal equations

One last simplification will be made: the resolution of the equations derived in
chapter 4 will not be done in three dimensions and is limited to the one-dimensionnal
case. This simplification will reduce the computational cost required to resolve
the equations while still allowing to gain insight on the dynamics and especially
on the validity of the semi-classical approximation 1. The transformation to one-
dimensionnal equations is straightforward and one obtains:

1. Another strategy would be to perform a expansion on the first spherical harmonics and then
treat the one-dimensional radial space
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Lss =
ih̄2c2

M

[
∂2

s − ∂2
s′

]
− CF

[
V(s)− V(s′)

]
+ CF

[
2W(0)− W(s)− W(s′)

]
− h̄2c2CF

2MT
[
W ′(s)∂s + W ′(s′)∂s′

]
+

h̄4c4CF

64M2T2

[
4W ′′(0)

(
∂2

s + ∂2
s′

)
− 2p2

totW
′′(0)

]
+

h̄4c4CF

64M2T2

[
4W ′′(s)∂2

s + 4W ′′(s′)∂2
s′ + 4W ′′′(s)∂s

]
+

h̄4c4CF

64M2T2

[
4W ′′′(s′)∂s′ + p2

totW
′′(s) + p2

totW
′′(s′)

]

Lso = CF

[
−2W

(
s − s′

2

)
+ 2W

(
s + s′

2

)]
+

h̄2c2CF

2MT

[
−W ′(

s − s′

2
)(∂s − ∂s′) + W ′(

s + s′

2
)(∂s + ∂s′)

]
+

h̄4c4CF

8M2T2

[
W ′′
(

s − s′

2

)
∂s∂s′ + W ′′

(
s + s′

2

)
∂s∂s′

]
+

h̄4c4CF

32M2T2

[
p2

totW
′′
(

s − s′

2

)
− p2

totW
′′
(

s + s′

2

)]

Los =
1

2Nc

[
−2W

(
s − s′

2

)
+ 2W

(
s + s′

2

)]
+

1
2Nc

h̄2c2

2MT

[
−W ′(

s − s′

2
)(∂s − ∂s′) + W ′(

s + s′

2
)(∂s + ∂s′)

]
+

1
2Nc

h̄4c4

8M2T2

[
W ′′
(

s − s′

2

)
∂s∂s′ + W ′′

(
s + s′

2

)
∂s∂s′

]
+

1
2Nc

h̄4c4

32M2T2

[
p2

totW
′′
(

s − s′

2

)
− p2

totW
′′
(

s + s′

2

)]
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Loo =
ih̄2c2

M

[
∂2

s − ∂2
s′

]
+

1
2Nc

[
V(s)− V(s′)

]
+ 2CFW(0) +

1
2Nc

[W(s) + W(s)]

− N2
c − 2
Nc

W
(

s − s′

2

)
− 2

Nc
W
(

s + s′

2

)
+

1
2Nc

h̄2c2

2MT
[
W ′(s)∂s + W ′(s′)∂s′

]
− N2

c − 2
2Nc

h̄2c2

2MT
W ′(

s − s′

2
)(∂s − ∂s′)

− 1
Nc

h̄2c2

2MT
W ′(

s + s′

2
)(∂s + ∂s′)

+
h̄4c4CF

64M2T2

[
4W ′′(0)

(
∂2

s − ∂2
s′

)
− 2p2

totW
′′(0)

]
− 1

2Nc

h̄4c4

64M2T2

[
4W ′′(s)∂2

s + 4W ′′(s′)∂2
s′ + 4W ′′′(s)∂s

]
− 1

2Nc

h̄4c4

64M2T2

[
4W ′′′(s′)∂s′ + p2

totW
′′(s) + p2

totW
′′(s′)

]
+

N2
c − 2
2Nc

h̄4c4CF

64M2T2

[
8W ′′

(
s − s′

2

)
∂s∂s′ + 2p2

totW
′′
(

s − s′

2

)]
− 1

Nc

h̄4c4CF

64M2T2

[
8W ′′

(
s + s′

2

)
∂s∂s′ − 2p2

totW
′′
(

s + s′

2

)]
, (5.1)

with:

h̄
d
dt

Ds = LssDs + LsoDo

h̄
d
dt

Do = LosDs + LooDo. (5.2)

One should note that the color factors associated to the L1 terms have changed
compared to chapter 4. For the color singlet equation, we have −CF instead of
CF and for the color octet equation, we have 1

2Nc
instead of − 1

2Nc
. This difference

is due to a change of convention in the expression of the potential derived in the
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perturbative Hard Thermal Loop formalism in the paper from Blaizot & Escobedo
[2] and its expression in [172], which is the one we are using.

In one dimension, several potentials have been used [149, 152, 153, 169], usually
based on a tunable parameter to explore different regimes. The connection to phe-
nomenology using those potentials is often difficult due to the disconnection from
quantitative quarkonium physics. There is thus a need for a more suited one-dimensional
potential.

5.2 One dimensional potential for quarkonia in the Quark-

Gluon Plasma

N.B.: This section is mostly inspired by the paper "One-dimensional imaginary
potentials for quarkonia in a quark-gluon plasma" written by Katz, Delorme and
Gossiaux [174].

In this section, we propose a one dimensional potential based on a three dimensional
potential inspired by lattice data [80, 94]. This potential aims to reproduce properties
from the original 3D potential which are the decay widths of the eigenstates and
their masses, which depend on temperature.

5.2.1 Generalized Gauss law model

Lattice QCD results can provide three dimensional potentials that are relevant
for phenomenology. In particular, a potential based on the linear response theory
and a generalized Gauss law ansatz was proposed [80, 94]. This potential can be
decomposed in two parts: a Coulombic part VC, which is equivalent to the HTL
potential derived in [172, 173] and a string-like part VS which is linear at vanishing
temperatures. The potential writes:

Re V = Re VC + Re VS + c Im V = Im VC + Im VS, (5.3)

with c a constant and the Couombic part given by:
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Re VC(r) = −αs

[
mD +

e−mDr

r

]
, Im VC(r) = αsTφ(mDr)

φ(r) = 2
∫ ∞

0
dz

z

(z2 + 1)2

(
1 − sin(zr)

zr

)
, (5.4)

with αs the QCD running coupling constant and mD the Debye mass. The string
part writes:

Re VS(r) =
2σ

mD
− e−mDr(2 + mDr)σ

mD
Im VS(r) =

σT
mD

χ(mDr)

χ(r) = 2
∫ ∞

0
dp

2 − 2 cos(pr)− pr sin(pr)√
p2 + ∆2

D(p2 + 1)2
, (5.5)

with σ a phenomenological parameter corresponding to the string constant and
∆D = ∆

mD
≈ 3.0369 with ∆ a regularization scale. The QCD running coupling

constant αs is computed at one loop and at scale 2πT:

αs(T) =
g2(T)

4π
=

2π(
11 − 2

3 n f
)

log
(

2πT
ΛQCD

) , (5.6)

with n f = 3 massless flavors and the QCD scale taken to be ΛQCD = 0.250 GeV [2,
175]. The Debye mass mD is given by its HTL approximation:

m2
D(T) =

2π

3
(6 + n f )αsT2 =

3
2

g2T2. (5.7)

The real and imaginary part of the three dimensional potential are shown in
figure 5.1.
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FIGURE 5.1 – Real part of the potential for different temperatures
in GeV (Left panel). Imaginary part of the potential for different

temperatures in GeV (Right panel).

5.2.2 Real part of the one dimensional potential

The one dimensional real part of the potential is parametrized to reproduce the
mass spectrum temperature dependance of the three dimensional potential. The real
part is saturated to the large distance three dimensional potential value in order to
mimic the temperature dependant Debye screening. The real part is parametrizeed
in the following way:

ReV1D(x, T) =

{
1/2 K|x| e−µ1|x| + µ2 + C when 1/2 K|x| e−µ1|x| + µ2 + C < VSB

VSB when 1/2 K|x| e−µ1|x| + µ2 + C ≥ VSB
(5.8)

with
µ1(x, T) = a1 (T − T0)

b1 e−λ(T−T0) |x| µ2(T) = a2 (T − T0)
b2 (5.9)

with VSB ≈ 0.835 GeV and T0 ≈ 0.126 such that mD(T0) = 0.

The µ2 term leads to a decrease in the mass spectrum values as temperature in-
creases. The e−µ1|x| term curves the potential at intermediate distances and cancels
at large distances due to the e−λ(T−T0)|x| factor. All the values of the parameters
of the real part of the potential are summed up in table 5.1 for the charmonia and
bottomonia.
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ReV1D parameters K C a1 b1 λ a2 b2

Charmonia 1.724 -0.115 7.5 0.98 1.5 -0.96 0.97
Bottomonia 2.692 -0.55 7.7 1.15 1.5 -0.58 1.15

TABLE 5.1 – Parameters for the real part of the 1D potential ReV1D.

The potentials for both charmonia and bottomonia are shown in figure 5.2.
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FIGURE 5.2 – One-dimensional potential at different temperatures for
the charmonia (left panel) and for the bottomonia (right panel).

One feature of this one-dimensional potential is the dependence on the heavy
quark mass although it is not the case for the three dimensional potential. This
dependence arises as the focus is made on keeping the phenomenological features
of the three dimensional potential and not the exact expression. One can note that
in the bottomonia case, the well of the potential is deeper and narrower than in the
charmonia case due to larger K and smaller C.

The temperature dependence of the mass spectra obtained from the one dimensional
and three dimensional potentials is compared for the two systems in figure 5.3
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FIGURE 5.3 – (Left panel) Charmonium mass spectrum of the
S states for the one-dimensional potential (solid lines) obtained
from the expectation values of the Hamiltonian compared to the
three-dimensional case (dashed lines). (Right panel) Same for the

bottomonia.

In the charmonia case, both mass spectra are in good agreement at any temper-
ature. In the bottomonia case, the agreement is up to T ≈ 550MeV, which includes
the QGP physics expected range of temperatures.

The lack of a Coulombic part in the one dimensional potential compared to the three
dimensional case leads to significant differences in the root mean square radii of S
states, especially at high temperatures (see figure 5.4). The S states radii are larger
for the three dimensional potential, the difference being smaller for the 2S state than
for the 1S state.
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FIGURE 5.4 – (Left panel) Comparison of the root-mean-square
radiuses of the charmonium S states obtained with the one and
three-dimensional potentials. (Right panel) Same for the bottomonia.
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5.2.3 Imaginary part of the one dimensional potential

The imaginary part is parametrized to reproduce at best the temperature de-
pendence of the three dimensional decay widths. The one dimensional imaginary
part is obtained by symmetrizing the radial imaginary part of the three dimensional
potential and adding two parameters which allows some tuning:

Im V1D(x, T) = α Im VC(|x|, T) + β Im VS(|x|, T). (5.10)

This allows to retain the small distance harmonic behaviour and the large distance
asymptotic behaviour from the three dimensional potential. The best parameters α

and β are given in table 5.2.

ImV1D coefficients α β

Charmonia 1.7 0.8
Bottomonia 1.4 0.9

TABLE 5.2 – Coefficients for the imaginary part of the one-dimensional
potential ImV1D.
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FIGURE 5.5 – (Left panel) Imaginary part of the one-dimensional
potential for the bottomonia. (Right panel) Large distance behaviour
of the imaginary part of the one and three-dimensional potentials for

the bottomonia.

Figure 5.5 shows the imaginary part of the bottomonia potential for different
temperatures. One can also observe a difference in the large distance asymptotic
value of the potentials, from T ≈ 250MeV, due to the effect of the coefficient α

which raises the large distance saturation.
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The decay widths are obtained by using the eigenstates obtained with Re V1D and
computing the expectation value of Im V1D. Figure 5.6 shows the decay widths for
charmonium and bottomonium states obtained with the one dimensional and three
dimensional potentials.
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FIGURE 5.6 – (Left pannel) Charmonium decay widths obtained with
the one and three-dimensional potentials. (Right pannel) Same for

bottomonia.

The one dimensional decay widths are in good agreement with the three di-
mensional ones, with the exception of the J/Ψ state. The discrepancy at high tem-
perature for the Υ(1S) state is notably due to the large distance differences in the
bottomonium potential (see figure 5.5). One should also note that this discrepancy
is at temperatures where the states are almost unbound.

5.2.4 Spectral decomposition

It can be shown that to ensure positivity of the Lindblad equation, the spectral
decomposition of the imaginary part of the potential must be globally either positive
or negative (see section 4.4.1), depending on the convention used. In the case of the
one dimensional potential, it can be computed analytically. The Fourier transform
of the Coulombic part writes:

ImṼ1D
c =

αsT
2π

∫ ∞

−∞
dx φ

(mD

h̄c
|x|
)

cos(qx), (5.11)

which leads to, after integration by parts:

ImṼ1D
c =

αsT
2

[
q

q2 + (mD
h̄c )

2 +
h̄c

mD

(
arctan

(
h̄c

mD
q
)
− π

2

)]
, (5.12)
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where the −π
2 term is added to get rid of the asymptotic value. The string part

spectral decomposition is obtained in the same way:

ImṼ1D
s =

σT
2πm2

D

∫ ∞

−∞
dx χ

(mD

h̄c
|x|
)

cos(qx), (5.13)

leading to:

ImṼ1D
s = −σTh̄c

m3
D

 2√
∆D

2+
(

h̄c
mD

q
)2
(

1+
(

h̄c
mD

q
)2
)2 +

∆D
2
(

1−3
(

h̄c
mD

q
)2
)
−4
(

h̄c
mD

q
)4

(
1+
(

h̄c
mD

q
)2
)3(

∆D
2+
(

h̄c
mD

q
)2
)3/2

.

(5.14)

The spectral decomposition of the imaginary part of the potential is shown in figure
5.7. One can see that Im Ṽ1D is indeed negative for all q and all temperatures
considered. The spectral decomposition is thus negative and the one dimensional
imaginary part will satisfy the positivity requirement of the Lindblad equation.
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FIGURE 5.7 – Spectral decomposition of the imaginary part of the
potential ImV1D = α ImV1D

c + β ImV1D
s at different temperatures (in

GeV) for the (left pannel) charmonia and (right pannel) bottomonia.

Now that we have a suitable one dimensional potential, we present how the
equations will be resolved.

5.3 Numerical method

We present in this section the numerical algorithm that will be used to resolve
the equations.



128 Chapter 5. Numerical implementation

The differential equations that will be resolved can be written as:

d
dt

D(s, s′) = g
(
D; ∂sD; ∂s′D; ∂2

sD; ∂2
s′D; ∂s∂s′D

)
, (5.15)

where D is either Ds or Do and g a function. For simplicity, the right-hand side will
be written as g(D).

The equations are discretized on a grid of size [−smax; smax] × [−smax; smax] with a
spatial step ∆s for both the s and s′ axis. Those parameters with be determined in
section 5.4. The equations are resolved using the Crank-Nicolson [176] method and
become:

Dt+1
i,j −Dt

i,j

∆t
=

1
2

[
g
(
Dt+1

i,j

)
+ g
(
Dt

i,j

)]
, (5.16)

with g
(
Dt

i,j

)
the value of the density matrix at point (i, j) of the grid at time t and

∆t the time step, also to be determined in section 5.4. i is an index on the s′ axis and
j is an index on the s axis.

As one can see, a system of equations has to be resolved to obtain Dt+1
i,j , the Crank-

Nicolson method is said to be an implicit method. It has a higher computing cost
(and this will limit the accessible parameters phase space as we shall see in section
5.4) than an explicit method like the Runge-Kutta method 2 and is more difficult
to implement. However, explicit methods proved to be unstable for the equations
considered, hence the choice of this method, as implicit methods are more stable.

The time derivative is discretized using the Crank-Nicolson method and we choose
to discretize the spatial derivatives on Di,j using a central difference scheme:

2. In this case, the value of Dt+1
i,j would be obtained explicitely without resolving any equation.
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∂sDi,j =
Di,j+1 −Di,j−1

2∆s
∂s′Di,j =

Di+1,j −Di−1,j

2∆s

∂2
sDi,j =

Di,j+1 +Di,j−1 − 2Di,j

(∆s)2 ∂2
s′Di,j =

Di+1,j +Di−1,j − 2Di,j

(∆s)2

∂s∂s′Di,j =
Di+1,j+1 −Di+1,j−1 −Di−1,j+1 +Di+1,j+1

4(∆s)2 . (5.17)

At the edges, those definitions can obviously not be used and forward and backward
difference schemes are used instead. (5.16) can be written in another form to better
show the system that needs to be resolved:

Dt+1
i,j − 1

2
∆t g

(
Dt+1

i,j

)
= Dt

i,j +
1
2

∆t g
(
Dt

i,j

)
, (5.18)

which can be put in matrix form:

Ax = b, (5.19)

with b a vector containing all values of Dt
i,j +

1
2 ∆t g

(
Dt

i,j

)
, x a vector containing all

values of Dt+1
i,j , which are to be determined, and A = 1− 1

2 ∆t gM a matrix where 1

is the identity matrix and gM a matrix representing g such that gMx = g
(
Dt+1

i,j

)
.

The vector x is constructed in the following way:

x =



Dt+1
s;0,0

Dt+1
o;0,0

Dt+1
s;0,1

Dt+1
o;0,1
...

Dt+1
s;N,N

Dt+1
o;N,N


, (5.20)

and a similar construction for b with Dt
0,0. x and b are thus 2N2-dimensionnal
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vectors, and A is thus a 2N2 × 2N2 matrix. Taking into account the discretiza-
tion scheme used for the spatial derivatives, one may recognize that A is a block-
tridiagonal matrix of the form (for N = 3):

A =

A0 B0 0
C0 A1 B0

0 C1 A2

 , (5.21)

with Ai,Bi,Ci matrices of dimension 2N × 2N (in the N = 3 case, they are of dimen-
sion 6 × 6 and A of dimension 18 × 18).

Using this property, the systems of equations (5.19) can be resolved using the Block
Tridiagonal algorithm, which is the generalization of the famous Thomas algorithm
[177] (or tridiagonal matrix algorithm) to the case of block tridiagonal matrices. This
method is based on a block LU decomposition. For the N = 3 case, we have:

L =

 1 0 0
L1 1 0
0 L2 1

 L =

U0 B0 0
0 U1 B1

0 0 U2

 . (5.22)

For a general value of N, the Li and Ui are determined by:

U0 = A0

LiUi−1 = Ci i : 1 → N − 1

Ui = Ai − LiBi−1 i : 1 → N − 1. (5.23)

The system (5.19) can then be resolved with:
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y0 = b0

yi = bi − Liyi−1 i : 1 → N − 1

UN−1xN−1 = yN−1

Uixi = yi − bixi+1 i : N − 2 → 0. (5.24)

We will now proceed to benchmark the numerical code by first checking if the trace
is conserved numerically. This will allow us to also determine the parameters that
will be used for the resolution.

5.4 Trace conservation and determination of numerical

parameters

Three numerical parameters need to be determined:
— the grid size smax

— the spatial step ∆s
— the time step ∆t.

One also has to verify that the trace is conserved. As a first test, the following
parameters are chosen:

smax = 10 fm ∆s = 0.05 fm ∆t = 0.1 fm/c. (5.25)

The procedure is as follows: we resolve the equation until t = 20 fm/c and compute
at each time the trace of the density matrix and compare it to the trace of the density
matrix at the start of the evolution (t = 0 fm/c). This will give us the deviation from
trace conservation during the whole evolution in time.
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FIGURE 5.8 – Evolution in time of Tr [D0(0)]− Tr [D0(t)].

Figure 5.8 shows the evolution in time of Tr [D0(0)] − Tr [D0(t)] where D0 =
1

N2
c

(
Ds +

[
N2

c − 1
]
Do
)
. The trace of D0 should be conserved as proved in chapter

4. One can see a clear deviation from the analytical result as one would expect
a constant value. As it is a numerical resolution, this behaviour is expected as
numerical results are always subject to errors. However, one would expect a smaller
deviation than what is obtained here if it was purely round-off errors.

In chapter 4, it was shown that the conservation of trace required at the L′
3 and

L4 levels to perform an integration to be realized. The numerical computation of
this integral is not exact and its precision depends on the spatial step ∆s. On top
of that, one can show that the discretization scheme used for the terms ∝ ∂s∂s′D
also contributes to the error. Indeed, these terms appear in the computation of the
trace in groupings of the form ∂2

sD+ ∂2
s′D+ 2∂s∂s′D. One can show that errors from

each terms due to the discretization schemes do not cancel each other, leading to
non-conservation of the trace. This problem was already observed in the literature
and a strategy to resolve it was proposed very recently in [153].

This strategy will not be used in this work. Instead, we choose to minimize the
deviation from conservation. To do so, the effect of each parameters on it is studied,
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with only one parameter varying at a time and the other two fixed. We then resolve
the equations until t = 20 fm/c and compute Tr [D0(0)]− Tr [D0(20)]. We start by
studying the effect of the spatial step ∆s. We fix ∆t = 0.1 fm/c and smax = 10 fm
and resolve the equations for ∆s = 0.04,0.05,0.1 and 0.2 fm.
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FIGURE 5.9 – Tr [D0(0)]− Tr [D0(20)] for ∆s = 0.04,0.05,0.1 and 0.2 fm,
with smax = 10 fm and ∆t = 0.1 fm/c.

Figure 5.9 show a clear effect of the spatial step on the error on the trace. Due
to memory limitations, it is not possible to go to values of ∆s smaller than 0.04 fm
with smax = 10 fm. We see that the error is smaller at smaller ∆s, as expected. One
can also note that the error seems to reach a plateau around ∆s = 0.04 fm. To verify
this hypothesis, we reduce the grid size to smax = 5 fm, and resolve the equations for
∆s = 0.05,0.04 and 0.02 fm.
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FIGURE 5.10 – Tr [D0(0)]− Tr [D0(20)] for ∆s = 0.02,0.04 and 0.05 fm,
with smax = 5 fm and ∆t = 0.1 fm/c.

Figure 5.10 confirms that the reduction of the error is smaller when taking an
even smaller ∆s. However, we will determine ∆s after we study the effect of smax.
We fix ∆s = 0.05 fm and ∆t = 0.1 fm/c and resolve the equations with smax = 2,5 and
10 fm.

We see on figure 5.11 that the deviation from trace conservation is indeed influenced
by the grid size, as the deviation is smaller at large grid sizes. To see if the reduction
of the deviation is still significant at higher smax, we fix this time ∆s = 0.1 fm and
resolve the equations for smax = 10,15,20 and 25 fm.
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FIGURE 5.11 – Tr [D0(0)] − Tr [D20(0)] for smax = 2,5 and 10 fm, with
∆s = 0.05 fm and ∆t = 0.1 fm/c.
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FIGURE 5.12 – Tr [D0(0)] − Tr [D20(0)] for smax = 10,15,20 and 25 fm,
with ∆s = 0.1 fm and ∆t = 0.1 fm/c.
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As seen on figure 5.12, a plateau is indeed reached at very large smax. It seems
to be reasonable to take a grid size of at least 15 fm based on those observations,
however, again due to computing resources limitations, a larger spatial step will be
needed.

We finally study the effect of the time step ∆t. We fix smax = 10 fm, ∆s = 0.05 fm
and choose ∆t = 10−1, 10−2 and 10−3 fm/c.
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FIGURE 5.13 – Tr [D0(0)] − Tr [D0(20)] for ∆t = 10−1, 10−2 and
10−3 fm/c, with smax = 10 fm and ∆s = 0.05 fm.

Figure 5.13 shows no effect of the time step ∆t at a 10−4 precision level. We
choose to fix ∆t = 0.1 fm/c as it will not add truncation errors to the computation
while decreasing the computation time.

To fix both the spatial step and the grid size, we have 3 constraints:
— smax should be chosen as large as possible, to minimize the deviation from

trace conservation but also to avoid finite grid size effects at the boundaries.
— ∆s should be chosen as small as possible to minimize the errors and the

deviation.
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— The computing resources are limited (a rough estimate is a maximum grid of
500 × 500 points due to the resolution method), thus a compromise between
grid size and spatial step has to be found.

Among several, we will retain the following two configurations: either we choose
smax = 15 fm and ∆s = 0.06 fm or we choose smax = 10 fm and ∆s = 0.04 fm.

smax (fm) ∆s (fm) Tr [D0(0)]− Tr [D0(20)]
15 0.06 2.550×10−3

10 0.04 1.487×10−3

TABLE 5.3 – Values of Tr [D0(0)] − Tr [D0(20)] for two different
configurations

Table 5.3 gives the deviation from trace conservation in both cases. We can
clearly see from the results that the most important parameter is the spatial step
as the second case with ∆s = 0.04 fm leads to a smaller deviation. We recap in table
5.4 the parameters that will be used in chapter 6.

smax (fm) ∆s (fm) ∆t (fm/c)
10 0.04 0.1

TABLE 5.4 – Parameters used for the resolution of the equations

5.5 Positivity conservation

The last check we perform is the one on positivity. One has:

Ax = λx, (5.26)

where A is a square matrix, x one of its eigenvectors and λ the associated eigenvalue.
Multiplying by xT on each side, one finds:

xTAx = λxTx. (5.27)

xTx is obviously positive so the sign of the left-hand side depends on the sign of the
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eigenvalue λ.

A matrix A is positive definite if xTAx > 0 ∀ non-zero x and positive semidefinite
if the condition is ≥ 0. As x is obviously non-zero as it is an eigenvector, there exists
a link between matrix positivity and the eigenvalues sign of said matrix:

— If λ > 0 ∀ λ, the matrix is positive definite.
— If λ ≥ 0 ∀ λ, the matrix is positive semidefinite.

The check of the positivity preservation is fairly straightforward. One would need
to compute the eigenvalues of the evolution operator and verify that none of them is
negative. This would guarantee that the positivity is preserved for any intial state.
We choose another way of doing it. We resolve the equations with the parameters
from table 5.4 and at t = 20 fm/c, the eigenvalues of Ds are computed and we check
if they are all positive (≥ 0). If this is the case, the positivity is indeed preserved.
The cumulated distribution of the eigenvalues of Ds are shown in figure 5.14 in the
case with the L4 terms and in the case without the L4 terms.
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FIGURE 5.14 – Cumulated distribution of the eigenvalues of Ds at t =
20 fm/c with (blue line) and without (orange line) the L4 terms.
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We can see that with the L4 terms, all the eigenvalues are either positive or
equal to zero, proving that positivity is indeed preserved numerically. However, if
we remove the L4 terms, we see that eigenvalues of Ds can be negative, showing
that the L4 are necessary to ensure positivity of the density matrix.

We will end the analysis of the numerical code by looking at its stability over time.
To do so, we will resolve the equations until t = 50 fm/c and see if we can observe
any behaviour compatible with the presence of any instability on projections.
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FIGURE 5.15 – Projections on vacuum eigenstates for T = 300 MeV.

As shown on figure 5.15, we do not observe any evidence for instability in the
code, even after 50 fm/c, which demonstrate the stability of the code over time.

5.6 Conclusion

In this chapter, we presented the numerical implementation of the equations
derived in the previous chapter, in the one-dimensional case. We introduced a
novel one dimensional potential, parametrized to reproduce as best as possible the
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features of a three dimensional potential obtained from Lattice QCD data while
focusing on phenomenological features. The numerical scheme used was presented
and the determination of the important parameters was done to minimize the nu-
merical error on trace conservation as much as possible. Finally we proved that
positivity was also preserved numerically. We thus have a robust numerical tool to
finally study the dynamics of heavy quarkonium in the Quark-Gluon Plasma, which
is the focus of the next chapter.
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Chapter 6

Quarkonium dynamics in the
Quark-Gluon Plasma

In this chapter, we proceed with the resolution of the equations presented in
the chapter 4, using the methodology presented in the chapter 5. We focus on the cc̄
system and, unless stated otherwise, we take the total pair momentum ptot equal to 0
GeV. We first consider a QGP medium at a fixed temperature. We start by analyzing
how the color equilibrates for different temperatures. We then study the dynamics
of the cc̄ pair by analyzing the density matrix at different temperatures and for
different initial states. An analysis of the legitimity of a semi-classical treatment,
using the Wigner transform of the density matrix, is also presented. We finally focus
on the projections on vacuum eigenstates again for different conditions and initial
states. In a second part, we study a simple QGP scenario following a Björken-like
temperature evolution and look at the projections on vacuum states over time. The
complex potential used is the one-dimensional potential presented in the chapter 5,
with the real part given by the equations (5.8) and (5.9) and the imaginary part given
by the equation (5.10). As shown in the chapter 3, several works on quarkonium
real-time dynamics exist, however, the point of this chapter is not the systematic
comparison of the results presented with the ones obtained from other models.

6.1 Quarkonium dynamics at fixed temperature

We first consider the case of a static QGP medium with a fixed temperature
during the whole evolution.
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6.1.1 Color dynamics

The equations that are resolved couple the singlet and octet density operators
through the Lso and Los operators. It is interesting to study if and how color equi-
librates over time. One can then access the color relaxation time. To do so, we
consider two different initial states, prepared from a S-like state in the vacuum (T =
0 MeV), one in a singlet color state and the other in a octet color state and resolve
the equations for a medium temperature of T = 300 MeV:

Ds = |ΨS〉〈ΨS| and Do = 0

OR Ds = 0 and Do = |ΨS〉〈ΨS| . (6.1)

We then compute the deviation of the trace of both Ds and Do from the expected
equilibrium value (given by

∣∣∣1
9 − TrD

∣∣∣, with D either Ds or Do) at each time, with
the trace on Do is divided by 8 to only consider one octet state:
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FIGURE 6.1 – Evolution over time of the deviation from the equilibrium
value of the trace of Ds (blue curves) and Do (orange curves) for an

initial singlet state (solid curves) and octet state (dotted curves).
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Figure 6.1 shows the progressive equilibration of the singlet color channel in
the medium. We can however see that for the octet color component, we start to
deviate from the equilibrium value after 5 fm/c in the case of an initial octet state
and after around 12 fm/c in the case of an initial singlet state. This may be explained
by a regeneration of an octet component that is not equilibrated induced by the
discretization scheme that we use. We can also see that the relaxation time (shown
as the slope of the cuves on figure 6.1 is not universal but depends on the initial
state. We now only consider a color singlet initial state, still formed from a S-like
vacuum state, and resolve the equations for T = 200, 300 and 400 MeV.
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FIGURE 6.2 – Evolution over time of the deviation from the equilibrium
value of the trace of Ds (blue curves) and Do (orange curves) for an
initial S-like singlet state, at T = 200 MeV (solid curves), 300 MeV

(dotted curves) and 400 MeV (dashed curves).

We can observe on figure 6.2 that for every temperature, we have an exponential
decrease of the deviation from the equilibrium value. For T = 400 MeV, this expo-
nential decrease only lasts until around 7 fm/c. To study the typical time needed
for equilibration further, one can fit the curves representing the evolution of the
deviation from the equilibrium value of the trace of Ds by the following expression:
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∣∣∣∣19 − TrDs(t)
∣∣∣∣ ≡ Ae−t/τ, (6.2)

with A a global factor that is not of interest and τ the timescale we search. The
values of τ for each temperatures are given in table 6.1 (The fit was only realized on
the time range [0-7] fm/c as the curves do not all follow an exponential evolution
after this time, which may be due to "bouncing" on the edges of the numerical grid).

T (MeV) τ (fm/c)
200 7.77
300 2.13
400 1.19

TABLE 6.1 – Values of the timescale τ for T = 200, 300 and 400 MeV.

The relation between τ and T is clearly non trivial and an more precise analysis
will be done in the near future to better characterize it.

We now consider a QED-like case, described by the equation on Ds with Ds = Do,
meaning that color is completely equilibrated and there are no color transitions. We
initialize the density matrix as a 1S-like vacuum state (in a singlet color state for the
QCD case) and project at each time the density matrix on the vacuum eigenstates,
giving us the weights of the different states:

wQED
n =

〈
ΨQED

n

∣∣∣D∣∣∣ΨQED
n

〉
wQCD

n =
〈

ΨQCD
n

∣∣∣Ds

∣∣∣ΨQCD
n

〉
, (6.3)

and we resolve the equations for a medium temperature of 300 MeV.
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FIGURE 6.3 – Evolution over time of the weights of the first three
vacuum eigenstates at T = 300 MeV in the QED-like case (solid curves)

and in the QCD case (dotted curves)

Figure 6.3 shows the evolution of the weights in both cases. As expected, the
survival probability of the initial 1S-like in the QCD case is much lower than in
the QED-like case. This is explained by the transitions between color states that
are present, which transfer a fraction of the norm in the octet sector. The same
observation can be made for the 1P-like and 2S-like eigenstates. It is thus quite clear
that color transitions are crucial to get a good understanding of the cc̄ pair dynamics.

6.1.2 Dynamics of a cc̄ pair

In this section, we investigate the dynamics of a cc̄ pair by studying the singlet
density matrix Ds. We take as a reference a QGP medium with a temperature T =
300 MeV and the initial state is taken as the 1S-like vacuum eigenstate in a singlet
color state.
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FIGURE 6.4 – Evolution of the singlet density matrix Ds over time.
From top left panel to bottom right panel: 0.1, 1, 5, 10, 15 and 20 fm/c

Figure 6.4 shows the evolution of the singlet density matrix Ds over time. The
initial 1S-like singlet state is progressively delocalized along the s = s’ axis and
we also observe the progressive decoherence of the initial state, indicated by the
narrowing of the density matrix distribution along the s = -s’ axis (see right side
of figure 6.5). The singlet density matrix Ds at later times exhibits two different
behaviours: a central core is present which is a remnant on the initial state and on
the edges of the s = s’ axis, we observe a semi-classical like component.
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FIGURE 6.5 – Left panel: Evolution of the singlet density matrix Ds over
time along the s= s’ axis. Right panel : Same along the s = -s’ axis

To analyse the semi-classical nature of Ds, we compute its Wigner transform
f (r, p), defined as:

f (r, p) =
1

2πh̄

∫
ei py

h̄ Ds

(
r +

y
2

, r − y
2

)
dy, (6.4)

with r = s+s′
2 and y = s − s′, with iso-r lines corresponding to lines with s = −s′.

We compute in reality a discretized version of the Wigner transform, defined as:

f (k, p) =
1

2πh̄

2imax−k

∑
l=−(2imax−k)

ei p∆sl
h̄ D

k+l
2 , k−l

2
s , (6.5)

where k = i + j and l = i − j with r + y
2 = i∆s and r − y

2 = j∆s.

If we observe the Wigner distributions obtained (see figure 6.6), three behaviours
appear. The first distribution type is a gaussian distribution, the second one a
non-gaussian distribution but still positive and finally Wigner distributions that are
partially negative.
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FIGURE 6.6 – Wigner transforms at different values of s+s′
2 and

time. Three types of distributions appear: gaussian and positive
Wigner distributions (top left panel), non-gaussian but still positive
distributions (top right panel) and negative distributions (bottom

panel).

We continue by fixing r and compute the mean squared momentum
√
〈p2〉,

given by:

√
〈p2〉(r) =

∑p p2W(r, p)

∑p W(r, p)
, (6.6)

with a sum on p as we compute a discretized Wigner transform. We then proceed to
compute

√
〈p2〉 for values of s+s′

2 between 0 fm and 5 fm, with 0 fm corresponding
to the anti-diagonal of Ds and 5 fm corresponding to half of the accessible range of
s+s′

2 , at different times.
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FIGURE 6.7 – Evolution of the mean squared momentum
√
〈p2〉 over

time at different values of s+s′
2 .

We can see that at later times (dashed green and red curves on figure 6.7),
√
〈p2〉

is converging towards a specific value (which should scale as the thermal wave

number
√

MT
2 with M the mass of the charm quark) for most of the range considered

, indicating that the system reached thermalization. There exists a small range (∼0-1
fm) in s+s′

2 , which corresponds to the central core observed in the two-dimensional
representation of Ds where the value of

√
〈p2〉 has not yet converged. This indi-

cates that there may still be quantum effects due to the real part of the potential
V binding the c and c̄ quarks of the pair. We can also note two regimes, a small
distance regime (∼0-1.5 fm), corresponding to where the state is at the beginning
of the evolution) and a long distance regime (∼3-5 fm) with different behaviours.
At small distances,

√
〈p2〉 is below the asymptotic value and increases with time

while at larger distances, it is the opposite with an evolution "from above" and
decreasing values. Finally, we can remark that at early times (0.1 fm/c), the value of〈

p2〉 becomes negative around 2.5 fm, meaning that the Wigner transform acquires
negative part, as illustrated on figure 6.6. This may be due to quantum interference
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effects, however one has to be careful as we are at very early times and we look at
quite large distance, which may not have a clear physical sense.

We now consider a QGP medium with a temperature T = 200 MeV or T = 400
MeV. Figure 6.8 shows the evolution of the singlet density matrix for the three
temperatures.
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FIGURE 6.8 – Evolution of the singlet density matrix Ds over time.
From left panel to right panel: 1, 10 and 20 fm/c. From top to bottom:

medium temperature of 200 MeV, 300 MeV and 400 MeV

At T = 200 MeV (top panels of figure 6.8), the effects of the medium are not
strong enough to delocalize the pair and the potential still binds the two quarks
together for large times. At T = 400 MeV (bottom panels of figure 6.8), there are
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more dynamical processes in the medium and the pair is delocalized quicker than
at T = 300 MeV.
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2 for T = 200 MeV. Right panel:
Same for T = 400 MeV.

We proceed to study the evolution of the mean squared momentum
√
〈p2〉 for T

= 200 MeV and T = 400 MeV. For both temperatures, we can observe (see figure 6.9)
the small and large distance regimes, alongside the gap in s+s′

2 where the Wigner
transform becomes negative. For T = 200 MeV, the small distance regime extends
from 0 to 2.5 fm while for T = 400 MeV, it extends from 0 to 1 fm, which is consistent
with the idea that the potential attraction zone is bigger at lower temperatures.
The global behaviour of the small and large distance regimes is the same for all
temperatures.

For a medium temperature T = 200 MeV, the system has not reached thermalization
at t = 15 fm/c while the system reaches it faster for T = 400 MeV (already reached
at t = 10 fm/c) than for T = 300 MeV. We can also note that the range in s+s′

2 where
the value of

√
〈p2〉 has not reached the asymptotic value is bigger (0̃-2.5 fm) for T =

200 MeV and smaller (0̃-0.5 fm) for T = 400 MeV than for T = 300 MeV. This matches
with the observation done on the two-dimensional representation of Ds on the effect
of the real part of the potential V.

The asymptotic value at large distance for T = 200 MeV is smaller than for T = 300
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MeV, and the asymptotic value for T = 400 MeV is higher than for T = 300 MeV. On
figure 6.10, we show the evolution of

√
〈p2〉 for all temperatures at t = 15 fm/c. We

observe that the asymptotic values do not scale with
√

MT
2 , except for T = 200 MeV.

A possible explanation is that this scaling depends on a balance between the L2

and L3 terms at large distance, however this balance may not be reached perfectly
as our L3 term is slightly modified in the minimal set. This should be studied to
understand the precise origin of this deviation.
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FIGURE 6.10 – Evolution of the mean squared momentum
√
〈p2〉 for
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2 at t = 15 fm/c for a medium temperature T =

200, 300 and 400 MeV. For each temperature, the corresponding value

of
√

MT
2 is shown by the dashed lines.

To study how the presence of a localized initial bound state influences the dy-
namics, we prepare the initial state as a P-like vacuum eigenstate in the octet color
channel and study its ensuing evolution.
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FIGURE 6.11 – Evolution of the singlet density matrix Ds over time.
From top left panel to bottom right panel: 0.1, 1, 5, 10, 15 and 20 fm/c

Figure 6.11 shows that, starting from a P-like octet state, we first have a transition
to a S-like state in the singlet channel (also visible on the left panel of figure 6.12).
This can be seen better on figure 6.17. As time evolves, we observe the progressive
delocalization along the s = s’ axis. The final state is similar to the one obtained from
an initial 1S-like state in the singlet color channel, with a slightly stronger central
component, showing that the system reaches a steady state.
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FIGURE 6.12 – Left panel: Evolution of the singlet density matrix Ds
over time along the s= s’ axis. Right panel : Same along the s = -s’ axis

The evolution of the mean squared momentum for the initial octet P-like state is
shown on figure 6.14. The mean squared momentum reaches the same asymptotic
value as for an initial 1S-like singlet state, however the system reaches thermaliza-
tion much quicker. We can also note that starting from 4 fm/c, the distribution
of
√
〈p2〉 is already rather flat. Another important feature is the different small

distance behaviour. At very early times (0.1 fm/c), the Wigner transform is not
positive for all values of p at small distances (see top left panel of figure 6.13) as we
just started to populate the singlet color channel.
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FIGURE 6.13 – Wigner distributions at s+s′
2 = 0 fm at different times.
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However, even though the small distance regime is different from the singlet
initial state case, there is still a small range in s+s′

2 from 0 to 0.5 fm where the mean
squared momentum is not equal to the asymptotic value. Again, this shows the
importance of the real part of the complex potential V.
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FIGURE 6.14 – Evolution of the mean squared momentum
√
〈p2〉 over

time at different values of s+s′
2 .

6.1.3 Projections on vacuum states

It is also useful to look at the projections on vacuum eigenstates to learn more
about the dynamics and the influence of the different parameters: the temperature,
the choice of the initial state and the total pair momentum. As before, we start
from an initial 1S-like singlet state for a medium temperature T = 200, 300 and
400 MeV. The reader should however be careful to only consider those projections
as instantaneous projections that would result from a sudden freeze-out, as the
eigenstates may not exist at the temperatures considered.



156 Chapter 6. Quarkonium dynamics in the Quark-Gluon Plasma

0 5 10 15 20

Time (fm/c)

10−3

10−2

10−1

100

P
ro

b
ab

ili
ti

es

ptot = 0 GeV singlet 1S-like initial state

1S-like

1P-like

2S-like

T = 200 MeV

T = 300 MeV

T = 400 MeV

1S-like

1P-like

2S-like

T = 200 MeV

T = 300 MeV

T = 400 MeV

15 16 17 18 19 20

Time (fm/c)

10−3

10−2

10−1

100

P
ro

b
ab

ili
ti

es

ptot = 0 GeV singlet 1S-like initial state

1S-like

1P-like

2S-like

T = 200 MeV

T = 300 MeV

T = 400 MeV

1S-like

1P-like

2S-like

T = 200 MeV

T = 300 MeV

T = 400 MeV

FIGURE 6.15 – Left panel: Evolution over time of the weights of the first
three vacuum eigenstates with an initial 1S-like singlet state at T = 200
(solid curves), 300 (dotted curves) and 400 MeV (dashed curves). Right

panel: Same but zoom on late time evolution.

One can observe on figure 6.15 the effect of temperature on the weights of vac-
uum eigenstates. The early-time evolution (up to ∼ 5 fm/c) is characterized by a
transient phase corresponding to the re-equilibration of populations. The excited
1P-like and 2S-like states get populated at first due to transitions in the medium
before decaying. The 2S-like immediately starts to get populated while the 1P-like
state gets populated later. This is explained by the nature of the transitions involved.
To populate the 1P-like state, one has to consider dipolar transitions, changing the
parity of the state. Those transitions can also induce a transition from a singlet
(an octet) to an octet (a singlet) color state but also from an octet to another octet
state. One would first need to populate a P-like octet state and only then induce a
second dipolar transition from an octet to another octet state to populate the 1P-like
singlet state. In the case of the 2S-like state, the direct transition from a 1S-like is
possible and due to the real part of the potential V, the 2S-like state can thus be
populated earlier. As temperature increases the weight of the 1S-like state decrease,
which is expected due to the stronger medium effects, inducing more transitions.
We can also observe that the 2S-like state is more populated for T = 400 MeV but
also decays quicker than for T = 300 MeV. We can also see that for T = 200 MeV, the
behaviour of the populations is very different compared to their behaviour for the
other temperatures.
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The late-time evolution is the same for S-like states at T = 300 MeV and T = 400
MeV. By analyzing in more detail the late-time evolution (see right panel of figure
6.15), we can see that the gap between the 1S-like state and the 1P-like and 2S-like
states becomes smaller as temperature increases. This is remniscent of the Maxwell-
Boltzmann distribution, however, as we are not in the quantum optical regime, we
do not expect the statistical equilibrium of the distributions.

We now fix the medium temperature to T = 300 MeV and modify the initial state
to study its influence. We start by taking as initial states the 1P-like and 2S-like
vacuum eigenstates in the singlet channel.
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FIGURE 6.16 – Left panel:Evolution over time of the weights of the first
three vacuum eigenstates at T = 300 MeV with an initial 1P-like singlet

state. Right panel: Same with an initial 2S-like singlet state.

We can see on figure 6.16 that in both cases, we start by a transient phase where
the populations are reordered. In the case of the 1P-like initial state, the 2S-like
state is populated first while for the 2S-like initial state, it is the 1S-like state that
is populated first as direct transitions between the 2S-like and 1S-like states are
possible . The late time evolution in both cases is the same as for the initial 1S-like
singlet state, which suggests the existence of a unique stationnary point.
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FIGURE 6.17 – Evolution over time of the weights of the first three
vacuum eigenstates at T = 300 MeV with an initial 1S-like singlet state

(solid lines) and an initial P-like octet state (dotted lines).

If we now take as initial state a P-like state in the octet channel as in section 6.1.2,
we observe on figure 6.17 the formation of singlet bound states from an initial octet
state at intermediate times (∼1-4 fm/c) due to color transitions. The S-like states
are more populated at first since terms introducing transitions from octet to singlet
color states also change parity. After the initial transient phase, the evolution is the
same as for the other initial states. However, the weights of all three eigenstates are
greater for an initial P-like octet state, which is expected as we have transitions from
all the possible octet channels.

We showed in chapter 4 that the new L4 terms added a dependence on the total
pair momentum ptot. We now study the influence of those terms on the evolution of
the populations of eigenstates.
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FIGURE 6.18 – Evolution over time of the weights of the first three
vacuum eigenstates at T = 300 MeV with an initial 1S-like singlet state

with a total pair momentum ptot = 0, 5 and 10 GeV.

We can see on figure 6.18 that the global evolution is the same for all 3 ptot

considered. However, as ptot increases, the weights of the three eigenstates are
smaller. The increase of the total pair momentum leads to an effective increase of the
interactions between the cc̄ pair and the QGP, leading to a decrease of the weights.

Finally, we study the effect of the L4 terms that are supposed to be subleading by
comparing the projections on vacuum eigenstates with and without them. This is
shown on figure 6.19.
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FIGURE 6.19 – Left panel:Evolution over time of the weights of the
first three vacuum eigenstates for T = 200 MeV with (solid lines) and
without (dashed lines) the L4 terms. Right panel: Same for T = 300 MeV.

We see that for T = 200 MeV, the effect of the L4 is quite important. This effect is
much smaller for T = 300 MeV, showing that as temperature increases, the L4 terms
are more and more subleading, as expected.

6.2 Quarkonium dynamics in an evolving medium

In the previous section, we considered a static medium with fixed temperature
during the whole evolution, which is not realistic. We will now relax this last
condition and consider a medium with a decreasing temperature over time. We
consider a QGP medium with a temperature following a Björken-like temperature
dependence[37]:

T(t) = T0

(
t0

t0 + t

)1/3

, (6.7)

with T0 the initial temperature of the medium and t0 a parameter, taken to be 1
fm/c. In this section, we consider a QGP medium with a starting temperature T0 =
600 MeV and an initial 1S-like singlet state. As before, we stop the evolution at t = 20
fm/c, which corresponds to a final temperature T ≈ 217 MeV. We will first analyze
the projections on vacuum states before looking at the density matrix itself.
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6.2.1 Projections on vacuum states

As in section 6.1.3, we perform the instantaneous projection on vacuum eigen-
states at several times. The evolution over time of the weights is given on figure
6.20
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FIGURE 6.20 – Evolution over time of the weights of the first three
vacuum eigenstates with an initial 1S-like singlet state with an initial

medium temperature T0 = 600 MeV.

We can observe the same features as for the fixed temperature case: A tran-
sient phase at early times followed by a phase corresponding to the decay of the
eigenstates. As we start from a higher temperature (600 MeV), the transient phase
is shorter and we reach a steady state where all 3 eigenstates decay in the same
way. However, after around 13 fm/c, the 1S-like state starts to behave as it was
repopulated. This also seems to happen to the excited states after 15 fm/c. This can
be explained by the progressive cooling of the medium which leads to the dynamical
binding of excited cc̄ as well as cc̄ from the continuum. It is then possible to observe
an increase of the weight of the 1S-like state. If we compare with the results for
a medium with fixed temperature T = 200 MeV (see left panel of figure 6.15), we
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can see that this behaviour was not present in the fixed temperature case, which
confirms that this is a physical effect.

6.2.2 cc̄ dynamics

We proceed to analyze the evolution of the singlet density matrix Ds over time.
This evolution is shown on figure 6.21. If we compare with figure 6.4, which rep-
resents the case of a medium with fixed temperature T = 300 MeV, the early time
evolution is much faster in the present case, as the initial temperature is much
higher. Starting from 10 fm/c the evolution is slower and we reach the same kind
of final state. However, if we look at the values of Ds along the s = s’ axis (see
figure 6.22), we can see that they are slightly larger for the evolving temperature
case, which is consistent with the observation we made in section 6.2.1.
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As in section 6.1.2, we now compute the Wigner transform of Ds and look the
mean squared momentum

√
〈p2〉 for different values of s+s′

2 . As for the fixed
temperature case, we observe the progressive appearance of an asymptotic value at
large distance which decreases as time progresses due to the cooling of the medium.
However, at small distances (0 to 1.5 fm), those asymptotic values are not reached,
clearly showing that the system is not fully thermalized and the potential V still
plays an important role.

6.3 Summary and conclusion

In this chapter, we have studied the dynamics of a single cc̄ pair in a QGP
medium in the case of both a fixed and a decreasing temperature. We showed the
importance of the color degrees of freedom in the dynamics by analyzing how color
equilibrates in the medium through the evolution of the trace of the density matrix
in the singlet and octet color channels. The analysis of the projections on the vacuum
eigenstates showed that for all initial conditions considered, the global evolution
was separated into two phases: a transient phase of re-equilibration followed by a
decay phase. We demonstrated that at higher temperatures, the final populations
were much smaller, especially for the 1S-like state and that the total momentum of
the pair was also impacting the final populations.

By looking at the singlet density matrix Ds itself, we observed the progressive
decoherence induced by the medium on the initial state and its delocalization along
the s = s’ axis. Two components were identified: a central core, which was still under
the effect of the real part of the potential V, and a semi-classical like component on
the edges. To study further this last component and the feasability of a semi-classical
treatment of the problem, we performed the Wigner transform of Ds and looked
at the mean squared momentum

√
〈p2〉 at different distances between the c and

c̄ quarks. We could clearly observe that the system reaches thermalization, at a
speed that depends on the temperature. However, we could also note that at small
distances, the real part of the potential V still plays a role, even at late times. A fully
semi-classical treatment may thus not be possible and a genuine quantum treatment
of V may be needed. This work is a first step and the consequences of semi-classical
approximations will be studied in the near future.
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Finally, we extended this work to the case of a cooling QGP medium. We observed
the repopulation at later times of the 1S-like state, due to the binding of excited
cc̄ pairs and cc̄ pairs from the continuum due to the cooling of the medium. This
physical effect was not observed in the fixed temperature case and shows the
importance of having a realistic medium.
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Conclusion

In this thesis, we have investigated the real-time dynamics of a heavy charmo-
nium in the Quark-Gluon Plasma. This work aimed at 1) describing the effects of
the color screening and the collisions in the QGP on the cc̄ pair and its dynamics,
2) obtaining a dynamical description of dissociation, recombination and transitions
between bound states and 3) studying the feasability of a semi-classical treatment
of a heavy quarkonium dynamics, which would allow the treatment of multiple
quarkonia (crucial for charmonia phenomenology at high-energy colliders).

To do so, we extended the pioneering work of Blaizot & Escobedo in order to ob-
tain well-defined quantum master equations, describing the dynamics of a single
heavy quarkonium in the Quark-Gluon Plasma. Those equations take into account
transitions between color states (allowing to treat dissociation and recombination,
transitions between bound states and genuine dissipative effects from the medium.
The equations were resolved in one dimension to reduce the heavy computational
cost of such resolution, incorporating a novel potential tailored for quarkonium
studies in one-dimension. We considered two different medium configurations 1) a
QGP medium with fixed temperature during the entire evolution and 2) a cooling
QGP medium, evolving according to a Björken profile. Starting from different initial
states for the cc̄ state, we first analyzed the evolution over time of the density matrix
of the system and studied the performed a Wigner transform on it to see if the
system can be treated semi-classically. In order to study the transition between
bound states and the possible formation of a quarkonium state from a cc̄ pair, we
performed the instantaneous projection of the singlet density matrix on the vacuum
eigenstates.

The resolution of the equations with different configurations showed that:

— Color degrees of freedom can not be neglected.
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— The early stage of the evolution is characterized by a re-equilibration the
populations of charmonium states, followed by a decay phase.

— For all initial conditions in a medium with fixed temperature, the system fol-
lows the same evolution at later times, indicating that it reaches a steady state
(which is however not described by the Maxwell-Boltzmann distribution).

— The ground state can be repopulated as the medium cools down, which is
not observed when the medium has a fixed temperature, proving the need of
a realistic background.

— The system almost fully thermalizes, at a speed depending on the tempera-
ture of the medium.

— A small part of the system is still under the effect of the real potential V, even
at late times and high temperatures.

— A fully semi-classical treatment may not be possible, and a genuine quantum
treatment of the real potential may be required.

The work presented in this thesis naturally open several perspectives. The applica-
tion of this work to the bottomonium system is straightforward and will be done.
The resolution of the equations in three-dimensions, mandatory to provide reliable
predictions, is a challenge that will require innovative numerical strategies as it
requires humongous computational power. The treatment of the medium is often
simplistic, and a more realistic description of the plasma is required. The use of
event generators (such as EPOS) might be a good starting point at the numerical
level, but assumptions at the theoretical level (medium in thermal equilibrium for
example) should be relaxed. As temperature decreases, the assumptions for the
quantum brownian regime are less and less justified, which calls for work on how
to handle the transition between this regime and the quantum optical limit regime.
Finally, the analysis of the use of semi-classical approximations will allow to de-
termine if a semi-classical treatment of quarkonia dynamics is justified or not and
in which regime. This is a truly important question as the treatment of multiple
charmonia is crucial for phenomenology and the run 3 of the LHC is on the horizon.
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Appendix A

Derivation of QCD terms

We first describe the global procedure to derive terms in the QED-like case,
before showing how one can retrieve the QCD terms from the QED-like ones.

A.1 Derivation procedure

We take the example of the L1 terms. Those terms were given by:

L1D = − i
2

∫
xx′

V
(
x − x′

)
[nxnx′ ,D], (A.1)

with:

〈
r1r2

∣∣nx
∣∣r′1r′2

〉
= δ

(
r1 − r′1

)
δ
(
r2 − r′2

)
[δ(x − r1)− δ(x − r2)]. (A.2)

We compute:

〈
r1r2

∣∣L1D
∣∣r′1r′2

〉
= − i

2

∫
xx′

V
(
x − x′

)( 〈
r1r2

∣∣nxnx′D
∣∣r′1r′2

〉
−
〈
r1r2

∣∣Dnxnx′
∣∣r′1r′2

〉)
.

(A.3)

We will only demonstrate how to compute the first term, as the second one follows
the same procedure and can be easily derived from the first one. We start by intro-
ducing completion relations:
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∫
xx′

V
(
x − x′

) 〈
r1r2

∣∣nxnx′D
∣∣r′1r′2

〉
.

=
∫

xx′
aa′
bb′

V
(
x − x′

) 〈
r1r2

∣∣nx
∣∣aa′

〉 〈
aa′
∣∣nx′
∣∣bb′〉 〈bb′∣∣D∣∣r′1r′2

〉
. (A.4)

Using equation (A.2), we get:

∫
xx′
aa′
bb′

V
(
x − x′

) 〈
r1r2

∣∣nx
∣∣aa′

〉 〈
aa′
∣∣nx′
∣∣bb′〉 〈bb′∣∣D∣∣r′1r′2

〉
.

=
∫

xx′
V
(
x − x′

)
[δ(x − r1)− δ(x − r2)]

[
δ
(
x′ − r1

)
− δ
(
x′ − r2

)] 〈
r1r2

∣∣D∣∣r′1r′2
〉

. (A.5)

Using the parity of V, we finally obtain:

∫
xx′

V
(
x − x′

) 〈
r1r2

∣∣nxnx′D
∣∣r′1r′2

〉
= 2[V(0)− V(r1 − r2)]

〈
r1r2

∣∣D∣∣r′1r′2
〉

. (A.6)

The second term of the right-hand side of equation (A.3) is obtained by doing the
change of variables (r1, r2) ↔ (r′1, r′2) in equation (A.6), which gives us:

〈
r1r2

∣∣L1D
∣∣r′1r′2

〉
=
[
V(r1 − r2)− V

(
r′1 − r′2

)] 〈
r1r2

∣∣D∣∣r′1r′2
〉

. (A.7)

The procedure is the same at every level, with the eventual need of performing
integrations by parts.

There are 4 types of terms that we can encounter:
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FIGURE A.1 – Diagrams representing the different types of terms we
can encounter in the equations. [2]

The first and second diagrams correspond to interactions that do not mix the
prime and non-prime variables. They are the La contributions. The second diagram
correspond to self-interactions, described by terms of the form W(r1 − r1) (and simi-
lar notations), they are the LQQ,a terms. The first diagram correspond to interactions
between the quark and antiquark, described by terms of the form W(r1 − r2) (and
similar notations), they are the LQQ̄,a terms.

The last two diagrams correspond to interactions mixing prime and non-prime vari-
ables, they correspond to the Lb contributions. Again, we can see interactions be-
tween a quark and "prime" quark (last diagram) and between a antiquark and "prime"
quark (third diagram). Those correspond respectively to the LQQ,b and LQQ̄,b terms
and are described respectively by terms of the form W(r1 − r′1) and W(r1 − r′2) (and
similar notations).

A.2 QCD color factors and QCD equations

We now describe how to derive the terms in the QCD case. We focus on the
terms at the L2 level only, but the procedure is the same at all levels. If we consider
only a density matrix invariant under color transformations, we have:

D = D0 1⊗ 1+D8 ta ⊗ t̄a, (A.8)

with ta the generators of SU(3). We can represent this in a diagrammatic form:



172 Appendix A. Derivation of QCD terms

D�
-

�
-

= D0 �
-

+ D8 �
-
�
-qq . (A.9)

We use another basis in the equations and it is possible to perform a change of basis
using the following identity:

�
-
�
-qq =

1
2

?6−
1

2Nc
�
-

. (A.10)

Using those relations and the following relations from Appendix D of [2]:

Ds = D0 + CFD8 ; Do = D0 −
1

2Nc
D8, (A.11)

we get:

D�
-

�
-

=
1
2
(Ds −Do) ?6+Do �

-
.

=
1

Nc
Ds ?6+ 2Do �

-
�

-q q (A.12)

At the L2 level, there are two types of terms: terms of the form nnD and terms of
the form nDn. We can represent the n operators in the following way:

na = �
-
�
-q

− �
-
�
-q . (A.13)

Using the diagrams, we can easily compute the color factors in front of each terms.
To compute terms of the form nan′aD, we will use the following identity:

-q q� �
= CF - , (A.14)

which gives us:

nan′a = CF �
-

QQ − �
-
�
-qq QQ̄, (A.15)



A.2. QCD color factors and QCD equations 173

with QQ and QQ̄ denoting the type of interaction. We recall that terms of the form
nan′aD correspond to La terms, therefore QQ = LQQ,a and QQ̄ = −LQQ̄,a. Using
the relation (A.10), we can derive the following one:

- qq q� � = − 1
2Nc

- q , (A.16)

which allows us to compute:

�
-
�
-qq × ?6= CF ?6 ; �

-
�
-qq × �

-
�
-q q = − 1

2Nc
�

-
�
-q q . (A.17)

Using equations (A.12),(A.15) and (A.17), we finally obtain:

nan′aD = CF

[
1

Nc
Ds ?6+ 2Do �

-
�
-qq
]
LQQ,a

+

[
CF

1
2Nc

Ds ?6−
1

2Nc
2Do �

-
�

-q q ]LQQ̄,a. (A.18)

We then get the following contributions:

Lss = CF

(
LQQ,a + LQQ̄,a

)
Loo = CFLQQ,a −

1
2Nc

LQQ̄,a. (A.19)

We now proceed with the naDn′a terms, corresponding to the Lb contributions. We
have:

naDn′a =

(
�

-
�
-q

− �
-
�
-q
)(

1
Nc

Ds ?6+ 2Do �
-
�
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�
-
�
-q

− �
-
�
-q
)

. (A.20)

We start by computing the terms involving Ds and only consider the QQ and QQ̄
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contributions as the Q̄Q̄ and Q̄Q are the same. Those contributions are:

1
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Nc
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− 1
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-
�
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?6 �
-
�
-q QQ̄ = − 1

Nc
Ds �

-
�
-q q QQ̄. (A.21)

As for the La contribution, we have QQ = LQQ,b and QQ̄ = −LQQ̄,b. If we regroup
both terms from equation (A.21), we see that we obtain a transition from the singlet
part of D to the octet part. Therefore we have the following operator:

Los =
1

2Nc

(
LQQ,b + LQQ̄,b

)
. (A.22)

Now let us proceed with the computation of the terms involving Do. They involve
a double interaction that can be simplified using identity (A.10):
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Again using identity (A.10), we can simplify the right-hand sides of equation (A.23):
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�
-
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-q q )QQ̄. (A.24)

We observe a transition from the octet part of D to the singlet part with also an
octet-octet transition. This gives us the following operators:
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Lso = CF

(
LQQ,b + LQQ̄,b

)
Loo =

N2
c − 2
2Nc

LQQ,b −
1

Nc
LQQ̄,b. (A.25)

Regrouping the contributions of equations (A.19), (A.22) and (A.25), we finally ob-
tain the operators of the QCD equations:

Lss = CF

(
LQQ,a + LQQ̄,a

)
Lso = CF

(
LQQ,b + LQQ̄,b

)
Los =

1
2Nc

(
LQQ,b + LQQ̄,b

)
Loo = CFLQQ,a −

1
2Nc

LQQ̄,a +
N2

c − 2
2Nc

LQQ,b −
1

Nc
LQQ̄,b. (A.26)
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Appendix B

Résumé en français

Dans l’état actuel de nos connaissances, il est prédit que dans des conditions
extrêmes de températures et/ou de densité, comme celles présentes au début de
l’Univers, la matière nucléaire atteint un nouvel état, composé de quarks et gluons
déconfinés (alors qu’ils sont confinés dans la matière hadronique usuelle), appelé
Plasma de Quarks et de Gluons (PQG). Ces quarante dernières années, théoriciens
et expérimentateurs ont étudiés intensivement l’existence et les propriétés de ce
nouvel état de la matière nucléaire. La seule manière de produire sur Terre un PQG
est de collisionner des ions lourds at des vitesses ultra-relativistes dans des accéléra-
teurs comme le Relativistic Heavy Ion Collider (RHIC) ou le Large Hadron Collider
(LHC). Une observable de choix pour l’étude du Plasma de Quarks et de Gluons
est la suppression des quarkonia, qui correspond à une production plus faible de
quarkonia (qui sont des particules composites composées d’un quark lourd et de
son antiquark) en collisions d’ions lourds par rapport aux collisions proton-proton.
Ce phénomène, prédit en 1986 par Matsui & Satz [1], a été étudié auprès des colli-
sionneurs, où les expériences ont révélé que cette suppression était un processus très
complex, nécessitant une compréhension théorique robuste. Ces dernières années,
un effort significatif a été réalisé vers la description dynamique des quarkonia dans
le PQG, à l’aide du formalisme des systèmes quantiques ouverts. Dans ce dernier,
il est possible de décrire en temps-réel un système quantique (un quarkonium par
exemple) en interaction avec un bain thermique (un PQG par exemple) en étudiant
l’opérateur densité réduit du système. Cette thèse présente une approche basée sur
les systèmes quantiques ouverts, visant à décrire la dynamique d’un quarkonium
dans le Plasma de Quarks et de Gluons.

Le premier chapitre, intitulé "Modèle Standard et Plasma de Quarks et de Glu-
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ons", décrit le cadre global dans lequel s’inscrit cette thèse. Il commence par présen-
ter brièvement le Modèle Standard de la physique des particules avant de s’in-
téresser plus particulièrement à la théorie de la Chromodynamique Quantique (QCD),
qui est la théorie décrivant l’interaction forte. Cette partie introduit les concepts de
constante de couplage (ainsi que de son "running"), de confinement et de liberté
asymptotique. La QCD sur réseau (Lattice QCD ou LQCD) est également briève-
ment présentée. La première partie de ce chapitre est complétée par une intro-
duction à la physique des quarkonia, ces derniers étant le sujet d’étude principal
de cette thèse. La production de quarkonia, qui implique des aspects perturbatifs
et non-perturbatifs de la QCD, est ensuite discutée, à travers la présentation de
trois modèles permettant de décrire la production de paires quark-antiquark et leur
hadronisation en quarkonia.

La seconde partie du chapitre est consacrée à la présentation du Plasma de
Quarks et de Gluons, à travers tout d’abord l’étude du diagramme de phase de
la matière nucléaire et des différentes transitions de phase entre matière hadronique
et le PQG. Les collisions d’ions lourds, permettant de récréer cet état de la matière
nucléaire, sont ensuite abordées. Les différentes étapes de ces collisions, de la col-
lision entre les ions à proprement parler jusqu’aux hadrons finaux sont ensuite
décrites en détail. Enfin, une dernière section présente les principales sondes du
PQG, c’est-à-dire les principales observables expérimentales utilisées pour l’étude
du PQG. Ces sondes, séparées en deux catégories: les sondes dites "molles" et les
sondes dites "dures", sont le flot anisotropique, les photons et leptons thermiques,
l’augmentation de la production d’étrangeté ou encore le phénomène dit de "jet
quenching". Une dernière observable très importante, la suppression des quarkonia,
est décrite dans le chapitre suivant.

Le second chapitre, intitulé "Phénoménologie de la suppression des quarkonia",
donne tout d’abord une définition de la suppression des quarkonia, définie comme
une réduction du nombre de quarkonia produits en collisions noyau-noyau par
rapport à une collision proton-proton (une fois normalisé par le nombre de collisions
proton-proton).

Dans un premier temps, les différents méchanismes influant sur la production
de quarkonia sont présentés, en commençant par les effets nucléaires dits froids, qui
sont des effets arrivant avant la production de la paire quark-antiquark. Les effets
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dûs au milieu en lui-même sont ensuite développés. La présence de nombreuses
charges de couleurs au sein du plasma entraîne un écrantage de l’interaction entre
un quark un antiquark, qui peut conduire à la dissociation d’un quarkonium et
donc à une production finale réduite. De plus, la présence de nombreux quarks
légers et gluons peut entraîner des collisions entre un quarkonium et ces dernières,
collisions pouvant également amener à la dissociation d’un état lié quarkonium. Ces
effets sont généralement décrits par un potentiel complexe de partie réelle notée V
et de partie imaginaire notée W, dépendant de la distance entre les deux quarks et
de la température. Enfin, lorsque l’énergie dans le centre de masse de la collision
initiale est grande (comme aux énergies du LHC), le nombre de quarks charm et
anticharm produits est plus grand qu’à plus basse énergie, car les sections efficaces
de production sont plus élevées. Le grand nombre de quarks et antiquarks charmés
présents dans le milieu peut amener à un phénomène dit de recombinaison, où un
quark charm et un antiquark charm se recombinent pour former un nouvel état lié
charmonium. Ce phénomène contrebalance donc le phénomène de suppression.
A noter que la recombinaison existe également pour les quarks bottom, mais est
beaucoup plus faible.

Dans un second temps, un panorama des résultats expérimentaux du RHIC et
du LHC sur la suppression des charmonia et bottomonia est présenté. Aux éner-
gies du RHIC et du LHC, la suppression des bottomonia est plus forte pour les
collisions les plus centrales et plus forte pour le Υ(2S) que pour le Υ(1S). Aucune
dépendance n’est clairement observée par rapport à la rapidité ou l’impulsion trans-
verse. Les données du RHIC sur la suppression des charmonia montrent quant à
elles une suppression accrue pour les collisions les plus centrales ainsi qu’à rapidité
avant. Aux énergies du LHC, des données de CMS ont montré n’ont pas montré de
dépendance significative par rapport à la rapidité des collisions et une plus grande
suppression pour les collisions les plus centrales. Des mesures de l’expérience AL-
ICE ont également révélé une augmentation de la production de J/Ψ à très basse
impulsion transverse (0-2 GeV), indiquant que la recombinaison est importante à
basse impulsion transverse. Une plus grande suppression du Ψ(2S) par rapport au
J/Ψ a également été observée par CMS.

Pour terminer ce chapitre, une revue des principaux modèles théoriques utlisés
pour décrire la suppression des quarkonia est faite. Le modèle de la suppression
séquentielle, introduit par Matsui & Satz en 1986 [1], suppose que pour chaque état
quarkonium, il existe une température de dissociation. Si au début de la phase de
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PQG, la température du milieu est plus grande que la température de dissociation
d’un état donné Td

Φ, ce dernier est supposé dissocié pour toujours alors que si la tem-
pérature est plus faible, l’état est supposé survivre. Les modèles de recombinaison
statistique [108–114] supposent au contraire que toutes les paires quark-antiquark
sont dissociées au début de la phase de QGP et qu’aucune corrélation n’existe entre
le quark et l’antiquark d’une paire. Les quarks évoluent librement ensuite et ne
s’hadronisent qu’à la fin de la phase de PQG de manière statistique. Les modèles
de transport [127, 129–132] ont une vision plus dynamique de la dissociation et
de la recombinaison. Ils décrivent généralement la distribution de quarkonia dans
le milieu à partir d’équations de Boltzmann ou de Langevin relativistes. Enfin, le
modèle des co-voyageurs [96–100] décrit la suppression des quarkonia causée par
les interactions inélastique des quarkonia avec les hadrons "co-voyageurs" (avec une
rapidité similaire à celle des quarkonia) ainsi que la recombinaison induite par le
même méchanisme. Ces modèles sont de manière générale en bon accord avec les
données expérimentales mais leurs hypothèses sont souvent discutables. Une autre
voie théorique est de s’intéresser à la dynamique en temps réel des quarkonia dans
le PQG, qui est un problème pouvant être traité dans le cadre du formalisme des
systèmes quantique ouverts.

Le troisième chapitre, intitulé "Systèmes Quantiques Ouverts", présente ce for-
malisme ainsi qu’une revue des approches utilisant ce formalisme pour décrire la
dynamique des quarkonia dans le plasma. Il commence par introduire le concept
d’opérateur densité, qui décrit l’état d’un système (dans le cas qui nous intéresse,
une paire quark-antiquark en interaction avec le PQG) et d’équation maîtresse quan-
tique, qui décrit l’évolution d’un opérateur densité à travers le temps. Il est possible
d’accéder à la dynamique de la paire (c’est la paire qui nous intéresse et non le
système global) à travers l’opérateur densité réduit de la paire. L’équation maîtresse
la plus générale décrivant la dynamique de cet opérateur densité réduit, appelée
équation de Lindblad, est ensuite décrite en détail. Cette équation est très intéres-
sante car elle préserve trois propriétés de l’opérateur densité réduit que sont sa pos-
itivité, son hermiticité ainsi que son unitarité. Une dérivation générale de l’équation
de Lindblad est ensuite présentée. Cette dérivation fait appel à plusieurs approx-
imations et exploite deux hiérarchies différentes entre les différentes échelles du
temps du système global que sont le temps de corrélation de l’environnement τE,
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le temps intrinsèque du sous-système (la paire) τS et enfin le temps de relaxation
du sous-système τR. Suivant la hiérarchie utilisée dans la dérivation, deux limites
peuvent être atteintes: la limite du mouvement brownien quantique dans le cas où
τR � τE et τS � τE et la limite optique quantique dans le cas où τR � τE et τR � τS.

Total system: Von-Neumann equation

Subsystem: Non-unitary evolution

Lindblad equation
(quantum optical limit)

Lindblad equation
(quantum Brownian motion)

Born-Markov approx.
(Weak coupling)

τR � τE
τR � τS

τR � τE
τS � τE

Trace on environment

FIGURE B.1 – Principales étapes et hypothèses de la dérivation d’une
équation de Lindblad

La deuxième partie de ce chapitre est consacrée à une revue des approches
basées sur le formalisme des systèmes quantiques ouverts. Après avoir couvert les
premières approches phénoménologiques [138, 139, 141, 142], les approches dérivées
des premiers principes de la QCD sont abordées. Chacune de ces approches [2,
144, 156, 157, 163, 168] se basent sur une équation maîtresse quantique, dérivée
dans l’une ou l’autre des limites précedemment citées, et utilisent des stratégies
différentes pour résoudre ces équations. L’une d’entre elles, celle développée par
Blaizot & Escobedo [2], est particulièrement intéressante car elle permet de traiter si-
multanément plusieurs paires quark-antiquark dans le PQG à l’aide d’une approche
semi-classique, ce qui est encore un des problèmes majeurs du domaine. Cette
question est cruciale car le traitement de nombreuses paires est indispensable pour
pouvoir modéliser convenablement la recombinaison des charmonia. L’approche de
Blaizot & Escobedo est résumée et ses hypothèses et limitations sont discutées. No-
tamment, les équations maîtresses dérivées dans leur approche ne conservent pas la
positivité de l’opérateur densité décrivant la paire quark-antiquark. De plus la va-
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lidité de leur approche semi-classique n’a pas été vérifiée directement en résolvant
les équations directement et en comparant les résultats. L’approche développée
dans cette thèse vise à combler ces lacunes en étendant les équations déjà existantes
afin de préserver la positivité tout en résolvant directement ces équations, chose qui
n’a jamais été faite et n’est pas triviale, afin 1) d’étudier la dynamique d’une paire
quark-antiquark dans le PQG et 2) tester la validité d’une approche semi-classique.

Le quatrième chapitre, intitulé "Extension des équations de Blaizot & Escobedo
et restoration de la positivité", présente le coeur des développements théoriques
effectués durant cette thèse. Tout d’abord, une nouvelle dérivation des équations de
Blaizot & Escobedo est présentée, basée sur une procédure proposée dans une an-
nexe de leur article. Cette nouvelle dérivation introduit des termes d’ordre supérieur,
supposés négligeables dans l’article original, doivent conduire à la conservation de
la positivité de l’opérateur densité réduit. La dérivation des termes est d’abord
réalisée dans un cas où les degrés de liberté de couleur sont ignorés puis l’extension
au cas où ces degrés de libertés sont pris en compte est donnée. Les détails de cette
extension sont donnés dans l’annexe A. Les équations obtenues sont de la forme:

dDs

dt
= LssDs + LsoDo

dDo

dt
= LosDs + LooDo,

où Ds et Do sont respectivement les opérateurs densités dans l’état de couleur sin-
gulet et octet et les opérateurs Lss,Lso,Los et Loo représentent les transitions entre les
différents états de couleur.

Avant de justifier la conservation de l’unitarité et de la positivité, une simplifi-
cation est faite, qui consiste à effectuer la trace sur les degrés de liberté du centre de
masse. Cette simplification est justifiée par le fait que la paire quark-antiquark est
lourde et n’interagit que faiblement avec le milieu, le mouvement de son centre
de masse varie donc peu. Cette simplification conduit à l’apparition de termes
dépendant de l’impulsion totale de la paire, chose qui n’était pas présente dans les
équations originales et qui vient des termes d’ordre supérieur.

La conservation de l’unitarité est ensuite explicitement prouvée, avec cepen-
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dant une particularité. Dans le cas des équations de Blaizot & Escobedo, cette
conservation était locale. Dans le cas des équations présentées dans cette thèse,
cette conservation, bien qu’exacte, n’est plus complètement locale, ce qui a des
conséquences sur la conservation de l’unitarité lorsque les équations sont résolues
numériquement.

La conservation de la positivité est ensuite prouvée, d’abord dans le cas où les
degrés de liberté de couleur sont négligés, puis dans le cas où ils sont pris en compte.
Le rôle des termes d’ordre supérieur, introduits au début du chapitre, dans la con-
servation de la positivité est clairement mis en lumière. Il est également remarqué
qu’il est possible de satisfaire cette propriété à partir d’un ensemble minimal de
termes, à partir duquel on peut obtenir les termes manquants en redéfinissant la
partie imaginaire W du potentiel complexe.

Cette observation est particulièrement intéressante et utile, car les équations
obtenues au début du chapitres font intervenir des dérivées d’ordre 3 et 4 de cette
partie imaginaire W. Ces dérivées sont en réalité divergentes, ce qui pose un prob-
lème majeur. Une stratégie est alors proposée, qui est dans un premier temps d’
absorber ces termes problématiques en redéfinissant la partie imaginaire du poten-
tiel, ce qui amène à ne garder que l’ensemble minimal de termes garantissant la
conservation de la positivité. Plusieurs prescriptions sont possibles pour cette redéf-
inition, mais une en particulier permet d’éliminer complètement les divergences:

W̃(r) ≡ −
∫

d3q
ρ(q)(

1 + h̄2‖q‖2

8MT

)2

(
eiq·r − 1

)
.

où r est la distance entre le quark et l’antiquark de la paire, M la masse du quark
considéré, T la température du milieu et ρ est la densité spectrale de la partie imag-
inaire du potentiel. Liberées de toute divergence et satisfaisant les propriétés d’une
équation de Lindblad, ces équations peuvent maintenant être résolues numérique-
ment.

Le cinquième chapitre, intitulé "Implémentation numérique", commence par
présenter les équations maîtresses dans le cas unidimensionnel, qui seront ensuite
résolues numériquement. Le choix d’une résolution en une dimension permet de
réduire le coût de calcul tout en permettant d’explorer la dynamique d’une paire
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quark-antiquark et d’étudier la validité d’un traitement semi-classique.
Un nouveau potentiel est ensuite présenté, développé spécifiquement pour une

étude unidimensionnelle. Ce potentiel est basé sur un potentiel en trois dimensions
[80], lui-même basé sur des résultats de QCD sur réseau. Le potentiel présenté
vise à reproduire les largeurs de désintégrations des états propres charmonium
et bottomonium ainsi que leurs masses, qui dépendent de la température. Deux
paramétrisations des parties réelle et imaginaire du potentiel sont développées, cha-
cune correspondant à un système (charmonia ou bottomonia). Ce potentiel est
présenté en figure B.2 dans le cas des bottomonia.

T=T0

T=0.180

T=0.200

T=0.250

T=0.350

T=0.450

T=0.600

T=0.750
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FIGURE B.2 – Gauche: Partie réelle du potentiel à une dimension pour
les bottomonia. Droite: Partie imaginaire du potentiel à une dimension

pour les bottomonia.

La méthode numérique utilisée est ensuite présentée en détail. Une méthode
implicite, la méthode de Crank-Nicolson, a été retenue car le problème n’était pas
traitable à l’aide de méthodes explicites comme la méthode de Runge-Kutta par
exemple. Le test de la conservation de l’unitarité de l’opérateur densité est ensuite
présenté. Une déviation est trouvée, qui est la conséquence de la conservation non
locale de l’unitarité, comme montré dans le quatrième chapitre. Afin de déter-
miner les paramètres numériques (la taille de la grille sur laquelle le problème est
discrétisé, le pas spatial et le pas temporel), le critère retenu est de minimiser la
déviation obtenue. Les paramètres ainsi retenus sont une grille bi-dimensionnelle
de taille 20 fm × 20 fm, avec un pas spatial de 0.04 fm et un pas temporel de 0.1
fm/c.

Pour terminer ce chapitre, la conservation de la positivité est prouvée en vérifi-
ant que toutes les valeurs propres de l’opérateur densité restent positives ou nulles
à la fin de l’évolution (fixée à 20 fm/c). Une rapide analyse de la stabilité de la
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méthode numérique est ensuite présentée, montrant une stabilité jusqu’à 50 fm/c
a minima (pour comparaison la limite de temps qui est utilisée dans le sixième
chapitre est 20 fm/c).

Enfin, dans le sixième et dernier chapitre, intitulé "Dynamique des quarkonia
dans le Plasma de Quarks et de Gluons", les équations maîtresses quantiques présen-
tées au début du chapitre cinq sont résolues et appliquées au cas du système char-
monium. Deux scénarios pour le milieu sont considérés: d’abord un PQG dont la
température est constante dans le temps puis un PQG se refroidissant progressive-
ment.

Une comparaison entre le cas où les degrés de liberté de couleur sont pris en
compte et le cas où ils ne le sont pas est présentée. En s’intéressant à l’évolution des
poids de chacun des trois premiers états propres du potentiel au cours du temps,
l’importance des degrés de liberté de couleur apparaît nettement. La figure B.3
montre que sans les degrés de liberté de couleur, les poids sont clairement sures-
timés.

Le chapitre se poursuit avec l’analayse de l’évolution de l’opérateur densité
singulet Ds au cours du temps, présenté en figure B.4. On observe clairement la
délocalisation de l’état initial, un état singulet type 1S (au sens de la notation spec-
troscopique), le long de la diagonale s = s′, où s est la distance relative entre le
quark et l’antiquark et s′ la variable conjuguée. Deux composantes sont observables
à 20 fm/c: un reliquat de l’état initial au centre ainsi qu’une composante compatible
avec un comportement semi-classique aux bords de cette diagonale.
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FIGURE B.3 – Evolution au cours du temps des poids des trois premiers
états propres du vide pour T = 300 MeV dans le cas sans (lignes pleines)

et avec degrés de liberté de couleur (lignes pointillées)
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temps. De haut en bas et de gauche à droite: 0.1, 1, 5, 10, 15 et 20 fm/c
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Afin d’analyser la nature de cette dernière composante, la transformée de Wigner
f (r, p) de l’opérateur densité est calculée pour différentes valeurs de r = s+s′

2 à dif-
férents temps. Pour chacune des distributions obtenues, l’impulsion carrée moyenne√
〈p2〉(r) est représentée sur la figure B.5.
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FIGURE B.5 – Evolution de l’impulsion carrée moyenne
√
〈p2〉 au cours

du temps pour différentes valeurs de s+s′
2 .

La valeur de l’impulsion carrée moyenne converge vers une valeur spécifique
à grand temps pour la majorité des valeurs de s+s′

2 ,ce qui semble indiquer que le
système a atteint la thermalisation. Cependant, pour les très petites valeurs de s+s′

2

(entre 0 et 1 fm), cette valeur n’est pas atteinte. Cela peut indiquer que le potentiel
V liant le quark et l’antiquark de la paire joue toujours un rôle.

Cette analyse est reproduite pour un état initial plus réaliste, où cette fois-ci
un état octet (donc une paire non liée) type P est préparé. A nouveau l’évolution
de l’opérateur densité singulet Ds au cours du temps est analysée, ainsi que la
distribution de l’impulsion carrée moyenne au cours du temps et en fonction de s+s′

2 .
Les conclusions dans cette configuration sont les mêmes que pour la configuration
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précédente, indiquant que le système atteint un état asymptotique commun à toutes
les conditions initiales.
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FIGURE B.6 – Evolution au cours du temps des poids des trois premiers
états propres du vide pour un état initial singulet type 1S, pour une
température T = 200 (lignes pleines), 300 (lignes pointillées) et 400 MeV

(lignes discontinues)

L’évolution des poids des trois premiers états propres du vide est ensuite analysée,
pour un PQG à une température T = 200,300 et 400 MeV et un état initial singulet
type 1S. La figure B.6 présente cette évolution, caractérisée par une phase transitoire
entre 0 et 5 fm/c, correspondant à un équilibrage des différentes populations et une
phase de décroissance. Sous l’effet du milieu, les états excités sont peuplés avant de
décroître. Plus la température du milieu est grande, moins le poids de l’état type 1S
est grand à 20 fm/c, ce qui est attendu car les effets du milieu sont plus importants
à haute température. La comparaison avec un état initial octet type P montre à
nouveau que le même état asymptotique semble être atteint (voir figure B.7).



Appendix B. Résumé en français 189

0 5 10 15 20

Time (fm/c)

10−3

10−2

10−1

100
P

ro
b

ab
ili

ti
es

T = 300 MeV ptot = 0 GeV

1S-like

1P-like

2S-like

1S-like singlet

P-like octet

1S-like

1P-like

2S-like

1S-like singlet

P-like octet

FIGURE B.7 – Evolution au cours du temps des poids des trois premiers
états propres du vide pour une température T = 300 MeV pour un état
initial singulet type 1S (lignes pleines) et un état initial octet type P

(lignes pointillées).

Enfin, le cas d’un PQG se refroidissant au cours du temps est étudié. La figure
B.8 permet d’observer un comportement additionnel sur l’évolution des popula-
tions d’états. A grand temps, le poids de l’état type 1S augmente, ce qui est dû
au refroidissement progressif du milieu, qui permet une liaison plus facile de paires
charm-anticharm. Cet effet n’était pas présent dans le cas où la température du PQG
était fixe, illustrant la nécessité d’avoir une description réaliste du milieu. L’analyse
de l’opérateur densité et de sa distribution de Wigner est la même que dans le cas
à température fixe, avec une évolution cependant plus rapide, dûe à la température
initiale plus élevée.
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un état initial singulet type 1S

Le manuscrit se conclut avec un récapitulatif des travaux réalisés durant cette
thèse ainsi que des principaux résultats. L’analyse de la validité d’une approche
semi-classique, entammée durant cette thèse, devra être poursuivie, car une telle
approche permettrait d’accéder au traitement de multiples paires charm-anticharm.
Des perspectives sont également discutées, notamment, l’importance d’avoir un
formalisme permettant de traiter de nombreuses paires dans le milieu à l’aube du
run3 du LHC est soulignée, ainsi que la nécessité d’avoir une description réaliste du
milieu.
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fois dans le cas d’un PQG statique et
dans le cas d’un PQG se refroidissant. Les
populations d’états quarkonium sont étudiées
et la validité d’approximations semi-classiques
amenant à des équations de Langevin est
examinée.
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Abstract: Quantum chromodynamics (QCD)
predicts the existance of a state of matter
called the Quark-Gluon Plasma (QGP) at
extreme temperature and density, which can
be produced in heavy ion collisions. One of
the QGP observables is the so-called quarko-
nia (heavy quark-antiquark bound states)
suppression which is defined by a smaller
production of quarkonia states in presence of
QGP compared to the production in absence
of plasma. In recent years, a significant
theoretical effort has been made towards

a dynamical description of quarkonia inside
the Quark-Gluon Plasma , using the open
quantum systems formalism. This thesis in-
vestigates the dynamics of quarkonium states
by resolving a quantum master equation
based on the approach of Blaizot & Escobedo.
More precisely, this equation is resolved
numerically directly for the first-time in both a
static and a cooling QGP. The populations of
quarkonium states over time are studied and
the validity of semi-classical approximations
leading to Langevin equations is investigated.
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