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INTRODUCTION




Figure 1. (A) Sir Robert Koch (December 11, 1843 — May 27, 1910), a German physician-scientist,
well known for his pioneer studies in bacteriology, specifically in tuberculosis. (B) Sir Alexander
Ogston (April 19, 1844- February 1, 1929), a Scottish surgeon, famous for his discover of major
cause of wound infection. (C) Sir Anton Julius Friedrich Rosenbach, (December 16, 1842 —
December 6, 1923), a German physician and microbiologist, credited for differentiating
Staphylococcus aureus and Staphylococcus epidermidis.

Figure 2. (A) Micrographs of scanning electron and transmission electron microscopy of S. aureus.
characterized by grape-like clusters, intact membrane, and plentiful cytoplasmic contents. (B) S.

aureus grows in blood agar (Z. Zhang et al. 2013).



|. Discovery and characterization of Staphylococcus aureus

The history of bacteriology attributes constantly the name Staphylococcus aureus to
Anton J. Rosenbach, a German surgeon of Gottingen (Figure 1). However, it was Robert
Koch, a German physician-scientist (reviewed in Blevins and Bronze 2010), who first
discovered Staphylococcus aureus as the major cause of suppuration in 1878. Not too
long after, in 1880, Alexander Ogston, a Scottish surgeon, extended the studies of these
micrococci in acute abscesses and found Streptococcus as the other cause of wound
infection (Ogston 1881). In 1882, Ogston named the clustered micrococci
“staphylococci”, from Greek staphy! for “bunch of grapes”. Two years later, Anton J.
Rosenbach successfully isolated two strains of staphylococci and named them based on
the form and the color of their colonies: Staphylococcus aureus, aurum from Latin for
“golden” and Staphylococcus albus, albus from Latin for “white” (later known as
epidermidis) (Newsom 2008). This color was later shown to be due to the synthesis of an
orange-yellow pigment, staphyloxanthin (STX), which is involved in resistance to oxidative
stress, protection against lysis by host neutrophils and in animal model pathogenesis

(Clauditz et al. 2006).

Staphylococcus aureus is a bacterium with a high infectious power, of the genus
Staphylococcus and of the family of Staphylococcaceae. For more taxonomic precision,
the genus Staphylococcus belongs to the reign of the Prokaryotes, to the division of
Firmicutes, class of Bacilli, order of Bacillales. To date, there are 49 species and 27 sub

species classified in the genus Staphylococcus.

S. aureus is characterized to be a non-motile, non-spore-forming Gram-positive coccus,
which grows into round, golden-yellow and smooth colonies with a diameter of 0.8 - 1
um, in blood agar (Merghni et al. 2017) (Figure 2). This bacterium has a relatively porous
outer cell wall composed of peptidoglycans, teichoic acids, and lipoteichoic acids
(Vatansever et al. 2013), which is favorable for antibiotics treatments, compared to

Gram-negative bacteria (Segalla et al. 2002).






As for growth environment characterization, S. aureus is halophilic (well growth in
medium containing high salt concentration, approximate 5 — 7% of NaCl), mesophilic
(optimal growth temperature around 37°C) and neutrophil (pH ~ 7). However, these
bacteria are capable to adapt to different growth conditions, such as temperature ranges

from 15 to 45 °C or pH ranging from 4 to 10 (Valero et al. 2009).

S. aureus is a facultative anaerobic bacterium with the ability to reduce nitrate to nitrite
and to ferment mannitol (in contrast to S. epidermidis). The bacterium has the capacity
of producing catalase, which decomposes hydrogen peroxide to water and oxygen. It also
produces coagulase that converts fibrinogen to fibrin. This process induces human
plasma coagulation, inhibits the phagocytosis, in contrast to S. epidermidis and S.
saprophyticus (Cheng et al. 2010), and not only help distinguish S. aureus from other
coagulase-negative bacteria but an essential criterion to look for potential pathogen
strains. Moreover, the majority of S. aureus strains are urease-positive (decomposes urea
to ammonia); this enzyme is essential for environmental adaptation of certain bacterial
pathogens by increasing pH under acid stress and nitrogen limitation (Cotter and Hill

2003; Zhou et al. 2019).
ll. Genome of Staphylococcus aureus

The first S. aureus genomes to be completed were those of N315 and Mu50 in 2001
(Kuroda et al. 2001). Within the past two decade, genomes sequences of approximately

500 Staphylococcus strains have been completed and annotated (Gill 2009).

The genomes are presented in circular chromosomes of approximately 2.8 million base
pairs with low GC composition (32%) and encode approximately 2700 coding sequences
(CDSs). Most of CDSs in the S. aureus genome have a function assigned to them, based
on significant homology with genes in other species (Lindsay and Holden 2006). To
encompass the gene repertoire of a species, the concept of pan-genome has been
defined as the sum of the core genome and the accessory genome (Tettelin et al. 2008).
The pan-genome of S. aureus gathers approximately 7,500 genes of which approximately

1,500 belong to the core genome.
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Figure 3. Horizontal gene transfer between bacteria

(A) Transformation occurs when naked DNA is released on lysis of an organism and is taken up by
another organism. (B) In transduction, genes are transferred from one bacterium to another by
means of bacteriophages and can be integrated into the chromosome of the recipient cell. (C)
Conjugation occurs by direct contact between two bacteria: plasmids form a mating bridge across
the bacteria and DNA is exchanged (Furuya and Lowy 2006).



A. The core genome represents approximatively 75% of the chromosome and is highly
conservative in all strains sequenced. Thus, this brings together all the genes conserved
within a species encoding the basic functions for the growth of the bacteria such as the
metabolism of the bacteria, the protein synthesis, and the replication of nucleic acids

(Bossi and Figueroa-bossi 2016; Lindsay and Holden 2004).
B. Mobile genetic elements (MGEs)

The rest of the genome is variable, composed of so-called accessory genes that bacteria
acquire by horizontal transfer of MGEs, with a G+C content different from core genome,
because they are obtained from different isolates of S. aureus or other low G+C bacteria
(Lawrence and Ochman 1997). These genes are usually acquired from other cells or the
surrounding environment in three ways: the transformation, the conjugation, and the

transduction (Figure 3). Transformation was the first type of horizontal transfer

discovered, by which free DNA in the environment is taken up by a competent bacterium.

The conjugation is the transfer of genetic material through direct contact between the

so-called donor bacteria and a receptor bacterium (Malachowa and Deleo 2010).
However, these two types of transfer remain a minority in S. aureus. The third type of

transfer is_the transduction, which is probably the most used horizontal transfer by S.

aureus. It is carried out through bacteriophages (Lindsay 2014).

MGEs account for approximately 10-20% of a S. aureus chromosome, including plasmids,
transposons, bacteriophages, staphylococcal pathogenicity islands, and staphylococcal
cassette chromosomes. They notably have a role in virulence, in resistance to antibiotics,
in the pathogenicity and the adaptability in different environmental conditions of S.

aureus (reviewed in (Lindsay and Holden 2004).

1. Plasmids

Discovered since 1960s, they are classified in three classes based on their sizes and the
ability to conjugate (Richard P. Novick et al. 1989; Paulsen et al. 1996). Plasmids from
class | have a size ranging between 1 and 5 kb with high copies number (15-20 copies per

cell) and are classified in four subgroups based on the replication origin. They usually
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encode for single antibiotic resistance gene such as pT181, a 4.4 kb plasmid encoding for
tetracycline resistance gene (Richard P. Novick et al. 1989). Class Il plasmids are up to 40
kb and carry multiple resistance genes in combination with resistance to penicillin and
heavy metals, aminoglycosides and/or fusidic acid. Class Il plasmids are large (40-60 kb),
not only multiresistant but also conjugative, due to tra gene which allows conjugative
transfer between bacterial isolates (Thomas and Archer 1989). In addition, some
virulence genes also are reported to be carried on plasmids such as exfoliate toxin B (etb)
for scalded skin syndrome in pRWO0O01 plasmid (Alibayov et al. 2014; Jackson and landolo
1986).

2. Staphylococcal cassette chromosome

Staphylococcal cassette chromosome (SSC) are 3-60 kb genomic cassette that usually are
inserted into the orfX gene (T. Ito, Katayama, and Hiramatsu 1999). SCC are transferred
less than other MGEs because they are more stable than other. The most well studied
SSC is SCCmec that carry methicillin resistance gene (T. Ito, Katayama, and Hiramatsu
1999; Katayama et al. 2003). To date, eight types of SCCmec have been identified (A-E or
I-V) based on the organization of mec gene and associated genes within SCCmec complex
(Gill 2009; Teruyo Ito et al. 2001; Katayama et al. 2003; Malachowa and Deleo 2010).
Another non-mec SCC contains fitness and/or survival determinants such as far for fusidic
acid resistance (Holden et al. 2004) or kanamycin and erythromycin (Hiramatsu et al.
2002), etc. No SSC elements encoding for virulence genes has been found and studied

until now.

3. ACME and COMER

The arginine catabolic mobile element (ACME) and the copper and mercury resistance
(COMER), both have been identified first in USA300 S. aureus and in ATCC12228 S.
epidermidis strains (Diep et al. 2006; Planet, Larussa, and Dana 2013) (Figure 4). They are
identified as an element associated to the end of SCCmec element (Almebairik et al. 2020;
Diep et al. 2006). Moreover, they are suggested to enhance the fitness of S. aureus

(Almebairik et al. 2020; Diep et al. 2006; Zapotoczna et al. 2018), and to promote survival
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on skin which facilitates persistence, spread, and causes skin infection (Foster and

Geoghegan 2014).

4. Transposons

Transposons (Tns) are short mobile genetic elements that can be integrated into another
mobile element such as plasmids or chromosomes or through bacteriophage-based
transposition to move between bacterial strains and can transfer genes involved in

contingency functions.

Transposons are divided into two main groups: retrotransposons often found in
eukaryotes and DNA transposons found in both eukaryotes and prokaryotes. The
bacterial transposons belong to the DNA transposons (DNA Tns) and the Tn family
(Babakhani and Oloomi 2018). In addition, DNA Tns are also divided into four main
groups: Insertion sequence (IS), composite Tns, non-composite Tns (Tn3 family) and
transposable phage Mu (Babakhani and Oloomi 2018). IS are transposons that encode for
only the transposase. However, they can also act as a simple transposon, which
represents a transposase followed by a resistance gene; or as a composite transposon,
when two IS copies flank an unrelated piece of DNA (normally resistance gene) and allow

the transfer of DNA to another location.

Transposons are typically 3-60 kb of size, carry resistance determinants and usually reside
in the chromosome, in plasmids or within SCCmec elements (like 1IS431) (Malachowa and
Deleo 2010). Those MGEs represent presumably a particularly important selective
advantage for the bacteria. Resistance to penicillin, erythromycin, tetracycline
aminoglycoside and vancomycin have been found on transposons, such as Tn551, which
is one of the first transposon found in S. aureus encoding for erythromycin resistance
gene (S. A. Khan and Novick 1980) or Tn554 for erythromycin and streptomycin resistance
(Murphy, Huwyler, and de Freire Bastos 1985). Recent reports characterized a novel
transposon carrying several resistance determinants, Tn6349, which is a 48 kb composite

transposon inserted into a ®N315-like prophage (D’Andrea et al. 2019).

12
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chromosome in grey (from Fogg et al. 2014).
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5. Bacteriophages

In S. aureus, phages are approximately 45 kb and are integrated commonly into the
chromosome (called prophage) as another piece of DNA. These lysogenic phages are
mostly quiescent and are replicated as part of bacterial chromosome and passed down
to daughter cells during cell division. However, under certain stress conditions, they
excise or replicate the phage genome and produce phage progeny, which leads to the
host cell lysis (landolo et al. 2002; Kwan et al. 2005; Vybiral et al. 2003). Among all phages,
temperate phages are the most numerous groups of the Siphoviridae family and belong
to Cluster B phages, based on shared genes content (H. Oliveira et al. 2019). However, S.
aureus Siphoviridae classification is a matter of discussion (reviewed in (Ingmer, Gerlach,
and Wolz 2019)), some represent generalized transducing phages (011, ®52A...) (Fillol-
Salom et al. 2019), whereas others associate with Staphylococcal pathogenicity islands

(SaPls) (®Sal, ®Sa2, ®Sa3, ®Sa4, OCOL, etc.) (reviewed in (Gill 2009)).

Most S. aureus strains, like MW2, MSSA476, MRSA252, NCTC8325 or USA300, carry one
to four prophages (Baba et al. 2002; Diep et al. 2006; Holden et al. 2004, landolo et al.
2002). The phage genome is circularized and can integrate into the bacterial host
attachment site (attB) via the phage attachment site (attP). The integration reaction
produces prophage flanked by the new attachment sites, attL and attR, which correspond
to hybrid sites containing half of agttP and half of attB. Excision of the prophage occurs
between attl and attR to regenerate attP on the excised phage genome and attB on the
host chromosome (Figure 5). Both integration and excision require integrase, the enzyme
that mediates the site-specific DNA recombination (Carroll et al. 1995; Chia Yen Lee and
landolo 1986). Since each phage carry a different integrase gene (int) that specifies its
insertion site in the S. aureus chromosome, the phage immune event inside the bacteria,
when two phages of the same family cannot be inserted in the same bacterial cell, is
commonly observed (Fogg et al. 2014). Recent studies found that some chromosomal
integration site could be heterogeneous, which means that several phages of different

strains could share the same attR and attL sites sequences, but some of them also possess
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replication (Richard P. Novick 2019).
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a unigue integration-site sequence, such as the case of $Sa2 in CA-MRSA strains (Coombs

et al. 2020).

Many S. aureus bacteriophages contain virulence genes such as sak (staphylokinase A)
(Collen 1998; Jin et al., 2004), chp (chemotaxis inhibitory protein) (Haas et al., 2004) or
lukSF-PV (Panton-Valentine leucocidin) (Kaneko et al. 2009). Small RNAs also have been
discovered in staphylococcal phages, such as SprD, a sSRNA located in ®315 that enhances
the virulence of S. aureus (Chabelskaya, Gaillot, and Felden 2010a; Pichon and Felden
2005); or SprX1 found in @12 bacteriophage in S. aureus (Bohn et al. 2010; Eyraud et al.
2014). Furthermore, staphylococcal phage phil2 (or ®12) is also known as bacteriophage
Sa2 (or ®Sa2) and was originally isolated from NCTC8325 S. aureus strain beside ®11 and
®13 (Ye, Buranen, and Lee 1990). ®12 is demonstrated to be integrated in a specific
unknown gene named SAOUHC 01583 through its attB site, whereas ¢11 was describe
by landolo et al., 2002, with an attB site within the intergenic region of NCTC8325 S.
aureus chromosome (landolo et al. 2002; Xia and Wolz 2014). However, there are hardly
characterization studies of ®12 comparing to the other two phages (®11 and ©13)
(landolo et al. 2002; Xia and Wolz 2014).

6. Staphylococcal pathogenicity islands

The staphylococcal pathogenicity islands (SaPls) are highly mobile 15 kb genomic islands.
Since they do not possess the structural genes for phage head, tail, tape measure etc.,
they encode an integrase gene, which allow themselves to be incorporated into
temperate bacteriophage (also called “helper phage”) such like ®11, ®12 and 80a
lysogens, for excision, replication, packaging and mobilizing among S. aureus strains

(Lindsay et al. 1998; Ram et al. 2012).

In the sequenced S. aureus genomes, ten SaPls have been identified: seven found in
human S. aureus isolates (SaPl 1-5) and three from bovine isolates (SaPlbov1-3) (reviewed
in (Gill 2009). SaPls form a coherent family with highly conserved core genes including
two open reading frames encoding transcriptional regulatory proteins and a region

encoding integrase, Rep protein, and terminase (Figure 6). In addition, SaPls integrate
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Figure 7. Timeline of antibiotics discovery and clinic applications. The antibiotics are colored per
their source: green = actinomycetes, blue = other bacteria, purple = fungi and orange = synthetic.
At the bottom of the timeline are key dates relating to antibiotic discovery and antimicrobial
resistance, including the first reports of drug resistant strains methicillin-resistant S. aureus
(MRSA), vancomycin-resistant enterococci (VRE), vancomycin-resistant S. aqureus (VRSA) and
plasmid-borne colistin resistance in Enterobacteriaceae (Hutchings, Truman, and Wilkinson
2019).
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into the S. aureus chromosome through the chromosomal attachment site (att). There
are five known att sites to date and they are specific for SaPls and no other mobile genetic

elements (Lindsay et al. 1998; Richard P. Novick, Christie, and Penadés 2010).

SaPls encode a number of virulence determinants, which explain their important role in
the pathogenesis and evolution of the bacteria. Several superantigens, toxic shock
syndrome toxin (tsst-1) and enterotoxins are often found encoded in SaPIs (Lindsay and
Holden 2004); for example, SaPl1, the first SaPl found in S. aureus COL strain, encodes for
enterotoxin B, Q, K (seb, seq, sek) and putative B-lactamase protein (ear) (Gill et al. 2005).
Moreover, recent studies discovered the presence of small regulatory RNAs (sSRNAs) in
SaPls. SprC, a sSRNA, was first found in SaPIn3 (Pichon and Felden 2005) in N315 S. aureus
strain and was shown to reduce the virulence of the bacteria and its colonization in host
cells (Le Pabic et al. 2015). Another case of SRNA is SprX1, which is encoded in SaPl within
®12(Bohn et al. 2010; Pichon and Felden 2005), is implicated in both antibiotic resistance
(Eyraud et al. 2014) and the virulence of S. aureus (Buchad and Nair 2021; Kathirvel,
Buchad, and Nair 2016).

lll. Multiple antibiotics resistance of Staphylococcus aureus

A. The discovery and use of antibiotics to prevent and/or treat diseases and infections
go way back from approximately 1000 years ago (Harrison et al. 2015). However, not until
the 20™ century that antibiotics have drastically changed the medicine field with
salvarsan as the first antibiotic deployed in 1910 (reviewed in (Hutchings, Truman, and
Wilkinson 2019; Kathrin I. Mohr 2016)), followed by the golden age of antibiotics with the
discovery of Penicillin by Alexander Fleming (Alexander Fleming 1929). Subsequently new
antibiotics have been discovered rapidly as well as the production of synthetic substances
within numerous laboratories of pharmaceutical companies. The insertion of antibiotics
into clinical uses was possibly the greatest medical breakthrough of the 20™ century
(Figure 7). To date, the term “antibiotic” was defined as a chemical substance of natural
or synthetic origin that inhibits or kills pathogenic bacteria (Waksman 1947). To inactivate

virulent microorganisms, these substances operate on different levels:

18



Sauoulpi|ozexQ

ueAellIQ
oueneq|eq
upueAe[aL

uluejdosia)

sapnndadooA|n

swidoylswiy
-oylsweyns

auizelpey|ns

a|ozexoylawey|ns woydans

SOpIS00A|3

SaplWeuoy|ns Uiy

UOIIBOLISSE|D SO130IgIIUY *g 2JnSi4

auljpAoenaljoy

aulpAsouly

aulphoeis|n

aulpAdopay

uloexo|jews| aulpAsswA]

uioexo|j0 aulppAdAxoq

upexo|joudid aulpAdoppawaq
uioexo|JoN auipAdes=1AxQ
aulpAcenauolyy

p1oe 21xipI[eN

sauojouinp sauljpAoesia] sapl|oJoB Al

Axowy

idwy

Sweloeqouoln

sunodsojeyds)

—

swele|-elag

19



() Inhibition of cell wall synthesis, (Il) Breakdown of cell membrane structure or function,
(1) Inhibition of the structure and function of nucleic acids, (IV) Inhibition of protein

synthesis, (V) Blockage of key metabolic pathways (reviewed in (Begum et al. 2021)).

B. Regarding of the classification, based on different criteria such as the chemical

structure, the origin, the range of activity, the effects of their activities, antibiotics are

divided into eight major groups (reviewed in (Begum et al. 2021); Figure 8; Julie thesis):

e Beta-lactams, with four subgroups (Penicillins, Cephalosporins, Monobactams
and Carbapenems), target the synthesis of proteins needed for bacteria cell wall
(Ebimieowei Etebu; Ibemologi Arikekpar 2016).

e Macrolides aim at protein synthesis and the bacterial ribosome (Ebimieowei
Etebu; Ibemologi Arikekpar 2016).

e Tetracyclines also target ribosome and disrupt the protein synthesis (Fuoco 2012).

e Quinolones interfere with DNA replication and transcription (Domagala 2018).

e Aminoglycopeptides inhibit the protein synthesis by binding to one of the sub-

units of Ribosome (Ebimieowei Etebu; Ibemologi Arikekpar 2016).
e Sulfonamides target the bacterial metabolic (reviewed in (Kathrin I. Mohr, 2016)).
e Glycopeptides hinder the bacterial cell wall peptidoglycan synthesis of Gram-
positive bacteria (reviewed in (Kathrin I. Mohr, 2016)).

e Oxazolidinones are synthetic substances that inhibit bacterial protein synthesis

(Pandit, Singla, and Shrivastava 2012).

C. Antibiotic resistance in S. aureus

Although antibiotics made many medical procedures possible, the misuse of these
substances has resulted in a situation where multidrug-resistant pathogens have become
a severe menace to human health worldwide. Antibiotic resistance is now, one of the
three most crucial community health threats of the 215 century, according to The World
Health Organization (Woolhouse et al. 2016). Most pathogens are developing multi-
antibiotics resistance, including Staphylococcus aureus, such as the case of Methicillin

Resistant Staphylococcus aureus (MRSA) (Enright et al. 2002; Kourtis et al. 2019). N315 is
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a methicillin-resistant S aureus (MRSA) strain isolated in 1982, and Mu50 is an MRSA
strain with vancomycin resistance isolated in 1997. Statistical data demonstrated that
MRSA was reported in more than 25% of cases in hospital in Europe, 34% of isolates S.
aureus from patients in the United States, and 47% in China (Wang et al. 2014). Another
example of multidrug resistance Staph is Vancomycin Resistant Staphylococcus aureus

(VRSA) (Appelbaum 2006; Gardete and Tomasz 2014) discovered in 2002.

S. aureus is able to gain the capacity of resistance to multiple antibiotics through the
horizontal transfer of MGEs, which may carry antibiotic-resistance genes (ARGs) (Felden
and Cattoira 2018; Haaber, Penadés, and Ingmer 2017; Partridge et al. 2018). For
instance, the genome of MRSA strains has been demonstrated to carry SSCmec mobile
genetic elements containing the mecA gene that confer resistance to methicillin and all

other B-lactam antibiotics (Katayama et al. 2003).

Although the rise in bacterial diseases that are resistant to almost all known antibiotics is
worrying, recent research have led to the discovery of many new molecules with

remarkable biological activities (Rutledge and Challis 2015).
IV. Virulence of Staphylococcus aureus

A. A commensal bacterium

An estimated 20% to 30% of the human population are long-term carriers S. aureus which
can be found as part of the normal skin flora, in the nostrils, and as a normal inhabitant
of the lower reproductive tract of women. According to different studies in late 1990s,
three types of carriage individuals were observed between diverse human populations
(Kluytmans, Van Belkum, and Verbrugh 1997; VandenBergh et al. 1999; WILLIAMS 1963).
They are either non-carriers (approximately 20% of the population), persistent-carriers
(20-25%) or intermittent carriers (55-60%), which have a transient Staph and strains vary

frequently.
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Figure 9. Overview of staphylococcal diseases
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B. An opportunistic pathogen

Nevertheless, Staphylococcus aureus is an opportunistic pathogenic bacterium in humans
and animals. The clinical infections of S. aureus are classified into community and

nosocomial categories based on origin of infection.

e Community-acquired infections are defined as infections manifesting and
diagnosed within 48 hours of admission in patients, without any previous
encounter with healthcare such as pimples, boils, sties.

e Hospital-acquired infections, also known as a nosocomial infection, are
diseases obtained in a hospital or other health care facility such as bacteremia

or pneumonia...

For decades, S. gureus has been predominately a nosocomial pathogen and is a leading
cause of mortality and morbidity in hospitals. It is the second most frequently isolated
species during nosocomial infection in France after Escherichia coli (Colomb-Cotinat et al.
2016), and the second cause of Food-borne diseases (FBD) behind Salmonella sp (Le Loir,
Baron, and Gautier 2003). However, the community S. aureus infections are in rise. S.
aureus is only second to S. epidermidis in causing primary bacteremia in hospital patients
(Otto 2009). The important clinical S. aureus infections cover a wide range of illnesses,
from minor skin infections (pimples, abscesses), to life-threatening diseases such as
pneumonia, meningitis, osteomyelitis, endocarditis, toxic shock syndrome (Archer 1998;

Tong et al. 2015) (Figure 9).
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Figure 10. Cell wall-anchored proteins (CWA). (A) CWA proteins are divided into four groups
(MSCRAMM s, NEAT motif family, Three-helical bundle family and G5-2 repeat family). (B) CWA
proteins contribute to Staphylococcus aureus virulence at different levels. Iron-regulated surface
determinant (Isd) binds haemoglobin and extracts and transports haem across the cell wall and
membrane into the cytoplasm, where iron is released. Protein A acts as a superantigen for B
lymphocytes and disrupts adaptive immune responses. Through binding to and activating tumor
necrosis factor receptor 1 (TNFR1) on host epithelial cells, protein A also triggers the synthesis of
cytokines (IL-6) and causes disruptive inflammation, which contributes to pathogenesis (from
Foster et al. 2014).
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C. Virulence factors

The process of S. aureus infections involves several stages: colonization, local infection,
systemic dissemination and/or sepsis, metastatic infections and finally, toxinosis
(Bronner, Monteil, and Prévost 2004; Foster and Geoghegan 2014; Gnanamani,
Hariharan, and Paul-Satyaseela 2017). Hence, during the bacterial journey from the initial
point of entry to its eventual last stop, S. aureus encounters different conditions changing
in the host cells. To colonize and/or invade these different environments, S. aureus
employs a wide range virulence factors that mediate attachment of the bacterium to the
substrate, evasion of the host immune shield, tissue invasion, causing sepsis and elicit
toxin-mediated syndromes. Although these factors can be classified based on their
localizations in bacterial cell or their mechanisms, here, we organized based on their
origins: cell surface factors and secreted factors (as proposed in (Chavakis, Preissner, and
Herrmann 2007; Costa et al. 2013; Foster 2019b). All the proteins with their specific

ligands and putative functions are described succinctly in Table 1.

1. At low density of bacteria, Staphylococcus aureus favors the colonization within the

host cell tissues by employing various cell surface factors, which are involved in tissue

adhesion and immune evasion. These surface proteins include Cell wall-anchored
proteins (CWA), Secreted expanded repertoire adhesive molecules (SERAMs), capsular

polysaccharides, cell wall components, and Staphyloxanthin.

1.1. CWA proteins

CWA are classified into four basic groups, based on the structural-functional motifs
(Barie, Narayan, and Sawyer 2018; Foster et al. 2014): Microbial surface components
recognizing adhesive matrix molecules (MSCRAMMSs), NEAT motif family, G5-E repeat
proteins and three-helical bundle repeats (Spa) (Figure 10). Among all CWA proteins,
MSCRAMMs represent the largest member of surface proteins. They consist of
Fibronectin-binding proteins (FNBPA and FnBPB) (Jonsson et al. 1991; Josse, Laurent, and
Diot 2017), Clumping factors (CIfA and CIfB) (Josefsson et al. 1998), Collagen-binding
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adhesin (Cna) (Switalski et al. 1993), Serin-aspartic acid rich proteins (Sdr protein)
(Josefsson et al. 1998, 2001) and Elastin-binding protein (EbpS) (Ghasemian et al. 2015).

They are composed of signals typical of proteins anchored to the wall: N-terminal with a
signal peptide (S) which is implicated in the transport of the cytoplasmic proteins to the
cell wall; and C-terminal containing a LPXTG domain required for attaching on the cell
wall (Joh et al. 1999). In addition, the shared mechanism of MSCRAMM s for ligand binding
is called “Dock, Lock and Latch” or DLL (reviewed in (Foster 2019a)). The ligand of interest
binds to the “opened” form of MSCRAMM and leads to a structural changing of
MSCRAMM to a “closed” form to capture the ligand. They primarily target ECM such as
fibronectin, fibrinogen, collagenous tissues, and other surface proteins of the host cells,
resulting in their implication in adhesion and invasion of host cells, immune evasion as
well as biofilm formation. Another well-studied surface protein is protein A (Spa), a
protein comprising three-helical bundle repeats, which target the constant domain of
Immunoglobulin IgG and is involved in protecting staphylococcus from phagocytosis (Deis

et al. 2015).

1.2. SERAMs

SERAMs comprise Extracellular adherence protein (Eap) (Cheng et al. 2009; Rhem et al.
2000), von Willebrand factor binding protein (vWbp) (Nilsson et al. 2004), Coagulase
(Coa) (Kang et al. 2013; Sharp et al. 2012), ECM binding protein (Emp) (Josefsson et al.
2001), Extracellular fibrinogen binding protein (Efb) (Shannon and Flock 2004), and
Second immunoglobulin-binding protein (Sbi) (Wilke and Wardenburg 2010). They are
structurally unrelated, unlike MSCRAMMSs; however, they possess similar
immunomodulatory functions. SERAMs mostly target fibrinogen, fibronectin and
vibronectin and consequently contribute to host cell invasion and host colonization.
Furthermore, they also target platelets and complements, which explain their importance
in preventing the activation of complements and the phagocytosis during bacterial

infection (reviewed in (Chavakis, Preissner, and Herrmann 2007)).
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Table 2_Secreted factors (Chavakis, Preissner, and Herrmann 2007; D. Oliveira, Borges, and

Simoes 2018; Tam and Torres 2019)

SECRETED FACTORS

Extracellular enzymes (Exoenzymes)
Catalase (CatA)

Glycerol ester hydrolase (lip, geh,
beh)

Coagulases (Coa and vWbp)

Enolase (Eno)

Alkykhydroxide reductase (AhpC)
Thioredoxin and thioredoxin
reductase

Ligand and binding mechanism

Inactivate free hydrogen peroxide
Inactivate fatty acids, degrade
triacylglycerols, releases bactericidal lipids

Bind to prothrombin and fibrinogen

Catalyzes phosphorglycerate to
phosphorenol pyruvate, binds to Laminin
Residual catalse activity

Inactivates ROS

Fatty-acid-modifying enzyme (FAME) Esterifies fatty acids

O-acetyltransferase (OatA)
Ptdins-phospholipase C (Plc)

Staphylokinase (Sak)

Autolysin (Alt)

Nucleases (Nuc)
Hyaluronidase
Serine proteases

_ Serine-like proteases (SplA-F)

_ SspA (V8 protease)
_ Exfoliative toxins (ETA, ETB, ETC,
ETD)

Cystein proteases

_ Staphopain A (ScpA and ScpB)
_ Staphopain B ( SspB)

Metalloprotease: aureolysin (Aur)

Cytolytic (pore-forming) toxins
Cytolysins

_ Hla {Hemolysin alpha)

_ Hlb {Sphingomyelinase C)
Bicomponent toxins (Leukotoxins)

_ Hly (HIgA, HIgC/ HglB)

_ LukAB/ GH

_ LukED

_ PVL (LukS-PV, LukF-PV)

Phenol-soluble modulins (Hld, PSMa
1-4, PSmpB, PSMmec)
Superantigens (SAgs)

T cell superantigens

_ Staphylococcal enterotoxins
(SEA,B, C, D, E, G and Q)

_ Toxic shock syndrome 1 (TSST-1)

_ SE-IH to SE- Y (selh to sely)
_ Other superantigen-like protein
(SSL-5; SSL-7; SSL-11)

B cell superantigens (Spa)

O-acetylate peptidoglycan

Specific lipase activity

Plasminogen activator

Hydrolyze peptidoglycan

Cleave nucleic acids

Degrade hyaluronic acid

Bind totTransmembrane proteins?

Cleaves fibrinogen-binding proteins

Bind to desmosomal cadherins

Degrades elastin, colagen, fibrinogen,
fibronectin

Degrades antimicrobial peptide, cleave
CD11band CD31

Catalyze and activate Serine proteases
Cleaving complement C3

Bind to the transmembrane protein
ADAM10, Pore-forming in epithelial,
endothelial and T cells, monocytes and
macrophages

Inhibits IL-8 expression

Erythocytes and leukocytes

Binds to the chemokine receptor CCR5

PUTATIVE FUNCTIONS

Survival persistence and nasal colonization
Impair phagocytic killing by granulocytes

Biofilm formation , induce staphylococcal agglutination,
protection against immune response; Endocarditis, Abscess
formation

Unknown
Required for survival, persistence and colonization
Bacterial survival, resistance to killing

Inactivate bactericidal fatty acids, enhances bacterial
survival

Lysozyme resistance

Release cell surface proteins, bacterial survival in human
blood and neutrophils

Inactivate antimicrobial peptides, cleave complement
factors, antiphagocytic effect

Biofilm formation, primitive adhesion, secretion of toxins
and immunologically active wall components

Degradation of host tissue components, biofilm formation,
bacterial escapes from neutrohils

Involved in bacterial dissemination and biofilm formation

Induces TH2 response and production of IgE

Inactivate neutrophil activity, reduce bacterial adhesion
Staphylococcal scalded skin syndrome [SS5S): Ritter's
disease, toxic epidermal necrosis, bullous impetigo

Block neutrophil activation and chemotaxis, biofilm
formation

Block neutrophil activation and chemotaxis, biofilm
formation

Inactivate antimicrobial peptides

Reduction of opsonin recognition

Cellular lysis, cytokine secretion, inflammatory response;
Arthritis, osteomyelitis, pneumonia acquired under
mechanic ventilation, septic shock

Cytotoxic towards human keratinocytes,
polymorphonuclear leukocytes, monocytes and T
lymphocytes

Lysis of erythrocytes and leukocytes; bloodstream infection
Lysis of monocytes, dendritic cells, neutrophils and
leukocytes; Enhancing S. aureus survival

Lysis of rabbit leukocytes, human neutrophils and mouse
phagocytes

Toll-ike receptors (TLR2 and TLR4), (PVL) C5alysis of macrophages and neutrophils during severe

receptor on human neutrophils

Formyl peptide receptor (FPR)

Bind to MCH Il achain

Bind to MCHIl a-chain, TCR and
dodecapeptide

Bind to TCR
Binds to neutrophil receptor PSGL-1
(cf Table 1)

inflammations

Lysis on neutrophils and macrophages; Biofilmformation;
Necrotizing pneumonia

Activate T cells and antibodies presenting cells; Food
poisoning, Toxic shock syndrome (TSS), septic shock (SEA),
staphylococcal purpura fulminans (SEB, SEC)

Activation T cells and antibody presenting cells; TSS,

neonatal toxic shock syndrome-like, staphylococcal purpura

fulminans

Unknown

Blocking stimulation extravasation of neutrophils ; Food
poisoning, TSS
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1.3. Other anti-inflammatory peptides

Other anti-inflammatory peptides than SERAMs consist of chemotaxis inhibitory protein
of S. aureus (CHIPS) (Chavakis et al. 2002; Clarke et al. 2009; Foster 2005), Staphylococcal
complement inhibitor (SCIN) (Rooijakkers et al. 2005; Silverman and Goodyear 2006) or
Formyl peptide receptor-like 1 inhibitory protein (FLIPr) (Sinha et al. 1999; Stemerding et
al. 2013). They are implicated in immune evasion by blocking chemotaxis and obstructing
complements activation (reviewed in (Foster et al. 2014)) through binding to
complements and chemoattractant receptors. Another non-proteinaceous factor is

Staphyloxanthin (STX), a carotenoid pigment that contributes to the golden color of S.

aureus. The loss of STX has been demonstrated to make S. aureus susceptible to killing by

ROS produced by neutrophils (G. Y. Liu et al. 2005; Song et al. 2009).

1.4. Capsular polysaccharides (CPs)

CPs are produced by the majority of clinical isolates and serotypes 1, 5 and 8 are the most
well studied to date (Rausch et al. 2019). The high encapsulated serotype 1 (CP1) impedes
opsonophagocytic killing of staph by preventing the binding between C3b complement
with receptor on phagocytic cells. The serotypes 5 and 8 (CP5 and CP8) also protect S.
aureus from phagocytic uptake and killing by human polymorphonuclear leukocytes, by
masking the complement deposition C3b (Cunnion, Zhang, and Frank 2003). Overall, their
main function is to restraint phagocytosis by neutrophils, but they also involve in bacterial
colonization and promote abscesses (Rausch et al. 2019) and they are the most important

virulence factors under evaluation as vaccine antigens.

1.5. Cell wall components and wall components factors

Cell wall components include peptidoglycan, lipoteichoic acid (LTA), wall teichoic acid,

etc., and are targets of Cationic antimicrobial molecules (CAMs), which disrupt bacterial
membrane and plays a key role in innate immunity. Toll-like receptors 2 (TLR2) is a
recognition receptor that recognizes Gram-positive cell wall molecules such as LTA or
peptidoglycan and its activation results in the release of antimicrobial peptides (Sieling

and Modlin 2002), which leads to the induction of innate immune response. It has been
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Figure 11. Overview of S. aureus toxins and exoenzymes. Superantigens are proteins that cause T
and B cell expansions, resulting in clonal deletion and massive cytokine production. Cytotoxins
(Hla and leukocidins), cause cytokine production, hemolysis, and leukocyte cell death through
targeting specific cell surface receptors. PSMs mediate cytolysis by inserting into the lipid bilayer
of cell membranes. Enzymes (HIb and the Ets), cause cytotoxicity on mammalian cells, resulting
in cell death, inflammation, and tissue barrier disruptions. Other enzymes, (various proteases and
nucleases), mediate host protein degradation, preventing important host immune system and
defense molecules. Lipases and FAME work synergistically to degrade lipids in the environment

for nutrients. Cofactors (Coa, vWbp, and Sak), bind and activate host zymogens in the coagulation
system for clot formation. Altogether, these toxins and enzymes provide critical nutrients (i.e.,
iron and carbon) that are important for the growth and survival of the bacteria. They also target
different levels of host immune defense, thus contributing to the virulence of S. aureus during
infections (from Tam and Torres 2019).

33



shown recently that modification of teichoic acids and phospholipids with D-alanine and
L-lysine in S. aureus reduces binding to CAMs, therefor enhances the virulence of the

bacteria (Weidenmaier et al. 2004). Moreover, wall components-modifying factors

comprise DIt operon (dItABCD) (Peschel et al. 1999) and multiple peptide resistance
factor F (MprF) (Weidenmaier, Kristian, and Peschel 2005), have been demonstrated to
be implicated in the modification of bacterial cell wall phospholipids (reviewed in
(Chavakis, Preissner, and Herrmann 2007)). Their conservation in many Gram-positive
pathogens besides S. aureus suggests that this pathway represents a common

mechanism to achieve protection against CAMs.

2. At high density of Staph, the bacteria expresses a wide range of secreted factors such

as extracellular enzymes, cytolytic toxins and superantigens. They play active roles in
disarming host immunity by disrupting host cells and tissues and interfering with the host
immune system to release nutrients and facilitate bacterial dissemination (Table 2 and

Figure 11).

2.1. Extracellular enzymes or exoenzymes

Exoenzymes include catalase, hydrolases, staphylokinase (Sak), nucleases, and
hyaluronidase, proteases (serine, cysteine (e.g. Staphopain) and metalloprotease
(Aureolysin). Nearly all S. aureus strains secrete several extracellular enzymes whose
functions are thought to be the disruption of host tissues and/or inactivation of host
antimicrobial mechanisms, to acquire nutrients for bacterial growth and facilitate
bacterial dissemination. For instance, proteases, consisting of serine- and cysteine-
proteases (Singh and Phukan 2019; Tam and Torres 2019), are mainly involved in the
maturation and activation of exoproteins of S. aureus (Rzychon et al. 2003) but also allow
the degradation of immunoglobulins and plasma proteins (L. Shaw et al. 2004,
Sieprawska-Lupa et al. 2004). Other enzymes such as Coagulase, Aureolysin or
Staphylokinase have also been demonstrated to contribute to immune evasion of S.
aureus, with a dual function since they allow the penetration of the bacteria through the

skin (Kwiecinski et al. 2016).
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Figure 12. Overview of pore formation of several cytolytic toxins. (A) The a toxin is secreted as a
monomer. By binding to the host ADAM-10 receptor, the monomers form a heptameric pre-pore.
Then the pre-pore stems expand to form a pore piercing the membrane of the target cell. (B)
Leukocidins are also secreted in the form of monomers. The S-subunit recognizes the target cell
by binding to cellular receptors. These receptors are generally G protein-coupled receptors
(GPCR). (C) LukAB, in the other hand, is secreted in the form of dimers and the S-subunit binds to
the CD11b integrin. Upon binding to the receptor, the S-subunit dimerizes with the F-subunit,
then this dimer oligomerizes with three other dimers to form an octameric pre-pore. Eventually,
similar to the a toxin, the stems of this pre-pore expand to form a pore. (D) PSMs bind to the
membrane in a nonspecific manner, leading to its disintegration, and then, PSMs aggregate to
form a transient pore (Adapted from Tam and Torres 2019; D. Oliveira, Borges, and Simdes 2018).
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2.2. Cytolytic toxins or pore-forming toxins (PFTs)

S. aureus secretes a large number of cytolytic toxins that, although structurally diverse
and with different target specificity, share a similar function on host cells (Figure 12). They
are divided into two groups, based on the mechanism of regulation: receptor dependent

PFTs and receptor independent PFTs.

Among receptor dependent PFTs, the toxins targeting red blood cells are hemolysins

while those targeting white blood cells are leukotoxins. They include hemolysins o, B and
y and several leucocidins including Panton-Valentine leukocidin (PVL) and leukotoxin E/D
(LUKE/D) (Otto 2014). The best-known PFT is a-hemolysin, produced by 80-90% of S.
aureus strains and encoded by the hla gene. These toxins form B-barrel pores in the
cytoplasmic membranes of target cells and cause leakage of the cell’s content (when at
low doses) and cell lysis (at high doses) (Foster 2005; Langzhou Song," Michael R.
Hobaugh," Christopher Shustak, Stephen Cheley, Hagan Bayley 1996). The secretion of
these toxins allows the bacteria to lyse a large number of host cell types such as
erythrocytes, monocytes, macrophages, platelets, leukocytes, endothelial and epithelial
cells by forming pores in the plasma membrane of target cells (Bayer et al. 1997; Bhakdil

1991; Finck-Barbancon et al. 1993; Jayasinghe and Bayley 2005; Lin and Peterson 2010).

Receptor-independent PFTs include in particular the family of Phenol-Soluble Modulins

(PSMs) and delta-hemolysins (HId). HId is encoded by hemolysin 6 gene, which is located
in the coding sequence of RNAIII, a major riboregulator of virulence of S. aureus (Janzon
and Arvidson 1990; D. Oliveira, Borges, and Sim&es 2018; Tam and Torres 2019). As for
PSMs, they represent a family of small protein toxins that are soluble in phenol. These
are surface-active, amphipathic, and alpha-helical peptides, which are classified in
different groups based on their length (Andreas Peschel; Michael Otto 2016; Donvito et
al. 1997; Mehlin, Headley, and Klebanoff 1999; Watson et al. 1988): (I) PSMs type a and
Hid, and (ll) PSMs type B. Through their physicochemical properties, they have been
shown to be essential for the structuring of biofilms formed by S. aureus, as well as for
the detachment step allowing the dissemination of bacteria (Periasamy et al. 2012). All

PSMas have been shown to actively participate in the escape of S. aureus from the
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Table 3_ Virulence regulators (Adapted from Jenul and Horswill, 2018)

TYPE REGULATION SYSTEM TARGETS REGULATION FUCTIONS REFERENCES
Activation of several exoenzymes and L. - . i
Agr (accessory gene exotoxing Y Transition from colonisation to PESEN‘:F Eh"llggi'“;;’i;rj'””l"i |
ani Ichae! 0, enul etal.
regulator)/ RNAII . . infection Intrecellular survival . ots
g V Repression of surface proteins 2018;TanL.etal. 2018
SaeRS (staphylococcal  Induction of exotoxins and adhesins Biofilm formation; Adhesion; Immune  GiraudoAT.etal. 1954; Haaz AF.
A . etal. 2015; LiuQ. etal. 2016; Jenul
accessory elementlocus) production evasion et al 2010
Regulation under low oxygen . . . .
SrrAB (staphylococcal gua Y OXYE . Aerobie: Hydroxide resistance Yarwood LM. etal. 2001; Haag AF.
respiratory regulator] Induction of plc and ica expression Anaerobie: Biofilm formation et al. 2015; Jenul et al. 2015;
Repression of agr, tsst-1 and spa ’ Pragmanetal. 2020
ArlRS{autonsis—related AUtOIY_SiS and cell surface TCS AUtOIY_SiS o FournierB. etal. 2000; Fournier B.
locus) Induction of mgrA expression Bacterial growth and division et al. 2001; Haag AF. etal 2015;
Repression of agr Bacterial adhesion Jenuletal. 2019
Two components . .
systemn Regulation of autolysis _
Y LytRS Induction of irgA and irgB expression Biofilm formation a’:;":f;{;'gﬂgg etal.2008;
Reduction of penicillin resistance
Regulation (direct or via SaeRS) of Induction of autolysis and biofilm
N N . . . Howden B.P.et al. 2011 ; Delaune A
WalKR .severalof wrl..llence genes (toxins, formatlFJn,regulatlon of some virulent t al. 2012 HaagAF.tal. 2015
immune evasion) determinants
VraRS (vancomycin- Activation of pbn2 Regulation of cell-wall biosynthesis )
resistance associated yation or pop ) pathway; Reduction of susceptibility to Xtredastal- 2005vin S etal. 2005;
(penicillin-binding protein 2) I Pletiainen etal. 2008
sensor/regulator) antibiotics
Regulator of CAMP resistance
GraSR (Glycopeptide  Regulation of mprF, dit and vraFG Stress response and cell wall Falordetal 2011
Resistance Associated) operons metabolism signal transduction ’
pathways
YvcFB Potential regulation of ssa4 Cellular permeability regulation Martin et al. 1993; Dubrac and
y (staphylococcal secretory antigen) Resistance to macrolides Msadek, 2004
. . ClpX induces hla and sspA expression ClpX, ClpP required for virulence Freesetal 2004
Caseinolytic protease . . c b o . Micheletal. 2006
ClpP regulates several surface proteins, ClpCinvolved in biofilm formation, . .
(ClpX, ClpP, ClpC) ) . ) Becker et al. 2001; Chatterjee etal.
exoproteins and TCS (alrRS, mgrA, sigB)  stress resistance 2005
SvrA (staphylococcal Regulation of agr expression
R phy Upregulation of hla, hib, hid, spa Regulation of hemolysins production  Garvisetal. 2002
virulence regulator) .
expression
MsrR (methionine . . ) . i  Rossi
.{ Repression of sarA expression unknown, required for virulence? Moskovitzetal. 2002; Rossiet al.
sulfoxide reductase) 2003
CViA, CviB (conserved CvfA: represses spa, upr.egulates RNAIII . . , Keito etal. 2005, Matsumatoctal.
virulence factors) and hemolysins expression unknown, required for virulence? 2007; Makito Nagataet al. 2008
CviB: represses spa, upregulates RNAII Matsumotoet al. 2010
Global
ipti . Repression of spa expression in the Regulation of virulence determinants
transcriptional  copa (catabolite control P pa exp gula b or virk Seidl et al. 2006; Seidlet al. 2008;
factors rotein A) presence of glucose and antibiotic resistance Ueda et ol 2014 .
p Activation of agr P3 Biofilm formation
. Regulation of geh, sec, plc, hla, hib, agr : .
Aconitase B g p g unknown, required for virulence? Somervilleetal. 2002b

Msa (modulator of SarA)

HtrA (high temperature
requirement)

CodY

Fur (Ferric uptake
regulator)

P3 expression

Repression of aur, sspA expression
Upregulation of fnpA, sarA expression

Regulation of secreted factors
(hemolysins)

Repression of agr P1, hla, ica operon

Regulate iron uptake genes (fhuC, fhuD2,
5irABC); Upregulates katA transcription

unknown, required for virulence?

Regulation in stress response and
bacterial dissemination

Amino acid biosynthesis, transport of
macromolecules, and virulence

Iron uptake, virulence, catalase-
mediated oxidative stress resistance

Sambanthamoorthy et al. 2006

Rigoulayetal. 2005

Majerczyketal. 2010

Horsburghet al. 2001
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immune system by promoting its exit from the phagolysosome (Grosz et al. 2014;
Munzenmayer et al. 2016). Furthermore, PSMal-4, encoded by the psma locus
(especially PSMa4), are strongly cytolytic. Recent studies have shown their contribution
in the lysis of neutrophils after phagocytosis of particularly virulent strains of S. aureus
such as isolates of community origin and resistant to methicillin (D. Oliveira, Borges, and
Simdes 2018; Surewaard et al. 2013); whereas hemolysin & has moderate cytolytic
activity and the PSMPB peptides are non-cytolytic (Andreas Peschel; Michael Otto 2016;
Otto 2014). In addition, some hospital-acquired methicillin-resistant staphylococci (HA-
MRSA) express PSM-mec, which is encoded by psm-mec in the SSCmec cassette, and also

encodes PSMa (Kaito et al. 2013; Tam and Torres 2019).

2.3. Superantigens (SAgs) and superantigens-like proteins

Superantigens are a group of potent secreted immune-stimulatory proteins capable of
inducing a variety of human toxic shock associated diseases. Staphylococcal
superantigens are the only toxins that can cause disease by their very presence. They
comprise T cell superantigens and B cell superantigens, which are able to trigger T cell
and B cell activation and proliferation, respectively. T cell superantigens include such as
staphylococcal enterotoxins (SEs), toxic shock syndrome toxin-1 (TSST-1) and exfoliating
toxins (Alouf and Alouf 2003; Baker and Acharya 2004; Kreiswirth et al. 1983) and many
other “superantigen-like” named SSI (SE-I H to SE-1'Y; or SSL-5 and SSL-7); and B cell
superantigens such as Spa. Among them, the best-known Sag TSST-1 is responsible for
95% of cases of toxic shock associated with menstruation (mTSS) and 50% of TSS cases
caused by nonmenstrual infective foci (nmTSS) (Bohach et al. 1990; Kreiswirth et al. 1983;
Sharma et al. 2018), and also involved in the apoptosis of host cells induced by S. aureus
(Hofer et al. 1996). By creating a non-specific interaction between T cell receptors and
complex receptors major class Il histocompatibility (MHC 1), TSST-1 enables immune
response through T cell and this activation causes the production and massive release of
pro-inflammatory cytokines responsible for the onset of toxic shock (D. Oliveira, Borges,
and Simd&es 2018). Another case of SAgs are exfoliating toxins, which belong to Serine-

protease family and are responsible for a wide spectrum of symptoms,
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REGULATION SYSTEM

SarA (staphylococcal
accessory regulator)

Table 3_ Virulence regulators (followed)

TARGETS REGULATION
Induction of exoproteins; Repression of spa,
sarR, sarV, sigB; Activation of agr P2;
Repression of SprC

Repression of agr activity; Act as

FUCTIONS

Cytoplasmic regulation; Internalisation

in human macrophages

REFERENCES

Cheung AL etal 1992;
Cheung AL et al. 2008; Le
Pabicetal. 2015; Jlenul C.
etal. 2019
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sarS and spa expression Jenul C.et al. 2019
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ranging from localized lesions to scalded skin syndrome (SSS) (Bukowski, Wladyka, and

Dubin 2010; Ladhani 2003; Lee et al. 1987; Tam and Torres 2019).
D. Virulence regulators

Through different illustrations above, we can see that S. aureus possesses a large arsenal
of cell wall and extracellular components involved in the virulence of the bacterium. The
diverse range of these virulence factors implies that the pathogenicity of S. qureus is a
complex process requiring an organized expression of these factors during different
stages of infection (i.e. colonization, immune evasion, growth and cell division, bacterial
dissemination). Indeed, S. aureus firstly upregulates the expression of genes coding for
surface proteins involved in adhesion and defense against the host immune system; and
only late in infection it starts to upregulate the production of toxins that facilitate tissue
propagation. To control the production of the virulence determinants during infection, S.
aureus employs several regulatory systems that respond to bacterial cell density (quorum
sensing) and environmental signals (e.g. pH, osmolarity, and nutrient availability,
temperature, and oxygen tension). These regulatory systems can be divided into five
broad categories: two-component signal transduction systems, global transcriptional
regulators, the SarA protein family, the sigma factors and the most recent group is
regulatory RNAs (sRNAs). Here, we only describe several major regulator systems;
however, all regulatory systems with their putative functions are listed concisely in Table

3.

1. Two-component signal transduction systems (TCS)

About sixteen TCS have been identified in S. aureus (reviewed in (Jenul and Horswill
2019)). Extracellular signal receptors are a major source of information on external
environmental conditions and allow S. aureus to adapt to changing environmental
conditions. As the name suggests, TCS works with a “sensor” molecule from the external
environment and a “response” element which, when is activated, allows the bacteria to
control the expression of specific RNA and/or proteins in order to respond accordingly to

exposure to environmental stresses. For instance, one of the classic TCS is the

40



A - _srrA I\>_ srrB
s y

transcripts { 5’5 xp >
0 500 1000 1500 2000  2500.2691
L 1 | L | L 1 L |

base pairs

tsst

=

k2 3 rnalll/ hid

agrA agrC agrD agrB

Figure 13. Two component system SrrA/ SrrB. (A) Genomic organization of srrA and srrB genes (J.
M. Yarwood, McCormick, and Schlievert 2001). (B) Mode of action of SrrA/ SrrB. SrrB is found in
the membrane while SrrA is in the cytoplasm. Upon signalling, SrrB is auto-phosphorylated and
transfers a phosphate to SrrA. SrrA~P binds the spa, srr, tst and agr promoters. The green arrows
indicate the positive regulation of SrrA, and the red one for repressive regulation (Adapted from

Pragman and Schlievert 2004).
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staphylococcal respiratory response AB (SrrAB) (Haag 2015; Tiwari et al. 2020; J. M.
Yarwood, McCormick, and Schlievert 2001). srrA encodes a 28-kDa, 241-amino-acid
response regulator, and srrB a 66-kDa, 583-amino-acid histidine kinase. The response
regulator, SrrA, localizes in the cytoplasmic and SrrB, the transmembrane histidine kinase,
localizes on the membrane. SrrAB seems to respond to oxygen levels. Once SrrB has
received the signal, it is auto phosphorylated and associated with SrrA, allowing the
phosphorylation of SrrA. This modification in SrrA alters the DNA-binding activity of this
response regulator to the promoter regions of the agr, spa and tst loci and consequently
alters the transcription of these genes (Pragman and Schlievert 2004) (Figure 13).
However, among all TCS studied, two major illustrations are the accessory gene regulator

system (agr) and the staphylococcal accessory element system (sae).

First, the agr system has been extensively studied since its discovery several decades ago
by (Mallonee, Glatz, and Pattee 1982). This system is also called the quorum sensing
system, due to its implication in the regulation of different virulence genes, according to
the bacterial density during the infection (Richard P. Novick 2003). The agr locus occurs
as two divergent transcription units (G. Y. C. Cheung et al. 2011; Peng et al. 1988). The
first produces an RNA molecule called ARNII, which encodes four proteins, AgrA, B, C and
D. The other a transcript is a sSRNAs called RNAIIl containing the hemolysin-delta gene
(hid) (Morfeldt et al. 1995; R. P. Novick et al. 1993) (Figure 14A). The agrD transcript
encodes a peptide precursor of the extracellular quorum signal of Agr, called auto-
inducing peptide (AIP) (Lyon et al. 2002). The agrB gene product is a transmembrane
endopeptidase responsible for exporting of the AIP (L. Zhang, Lin, and Ji 2004). The agrC
and agrA genes encode a two-component signal transduction system with AgrC as
histidine kinase sensor and AgrA as its associated response regulator (R. P. Novick et al.
1995; Queck et al. 2008). When extracellular concentration of AIP passes the threshold,
AIP binds to AgrC and leads to its own auto-phosphorylation, following by the
phosphorylation of AgrA (R. P. Novick et al. 1995; Queck et al. 2008; Roux et al. 2014). It
can up-regulate the expressions of several exoproteins (e.g., a-, B-, y-hemolysin, and
leukotoxins), lipases, phenol-soluble modulins, and toxic shock syndrome toxins (TSST),

and represses the transcription of some cell wall-associated proteins (e.g., protein A,
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Figure 14. Two component systems. (A) The Agr system. The pro-AIP peptide is processed and
secreted by AgrB, binds to an extracellular loop in the receptor-HPK (AgrC), activating
autophosphorylation (or dephosphorylation), followed by phosphorylation or dephosphorylation
of the response regulator, AgrA, which activates the two agr promoters, P2 and P3, leading to the
production of RNA Il (Jenul and Horswill 2018). (B) Organization of the sae operon. (C) The
proposed mode of action of the Sae system. Upon exposure to signal(s), SaeS auto-

phosphorylates and then transfers the phosphoryl group to SaeR. The phosphorylated SaeR binds
to its binding sequence and activates transcription from target promoters including the saeP1
promoter. From saeP1, SaeP and SaeQ are produced and bind to SaeS in the membrane. As a
lipoprotein, SaeP is expected to interact with the extracellular linker peptide of SaeS. On the other
hand, SaeQ s thought to interact with the cytoplasmic domain of SaeS (Q. Liu, Yeo, and Bae 2016).
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coagulase, and fibronectin binding protein) (Bronner, Monteil, and Prévost 2004; Le and
Otto 2015). Through the genes it regulates, the quorum sensing Agr system is causally
linked to the pathogenesis of S. aureus in skin and tissue infections, via the expression of
toxins, but also in endocarditis, pneumonia, and osteomyelitis via its involvement in the
biofilm life cycle (Boles and Horswill 2008; D. Oliveira, Borges, and Sim&es 2018; Vuong
et al. 2004). As for the regulation of agr locus expression, some members of the SarA
transcription factor family can regulate agr, including SarA and MgrA (positively) as well
as other regulators like CodY (negatively). The other two-component systems also
influence agr expression including SaeRS and SrrAB (reviewed in (Jeremy M Yarwood and

Schlievert 2003)).

Next, the sae system is a two-component system with four elements: SaeP, SaeG, SaeR
and SaeS. However, only SaeR and SaeS are identified as the response regulator and
histidine kinase sensor (A. T. Giraudo et al. 1994; Rogasch et al. 2006) (Figure 14B and C).
Besides its implication in biofilm formation (Haag 2015; Jenul and Horswill 2019; Q. Liu,
Yeo, and Bae 2016), the system also regulate a wide range of virulence factors involved
in bacterial adhesion, toxicity, and immune evasion. For instance, Sae system activates
the expression of several hemolysins (hla, hlb, hld) and coagulase (Ana T. Giraudo,
Cheung, and Nagel 1997; Goerke et al. 2005), and represses some exoenzymes (plc, SspA,

aur) (Rogasch et al. 2006).

From then, many more TCSs have been discovered: ArIRS system potentially involved in
cell division and adhesion (Fournier, Klier, and Rapoport 2001), LytRS and WalKS systems

in biofilm formation (Dubrac et al. 2007; Sharma-Kuinkel et al. 2009) etc. (Table 2).

2. Global transcriptional regulators

The mechanism by which the expression if virulence factors are regulates by S. aureus are
complex and are not completely elucidated. The regulation of S. aureus pathogenicity is
achieved by different pathways, by the quorum-sensing accessory gene regulator, agr
system, or by the family of winged helix DNA-binding proteins of SarA family, or the

nutritionally controlled regulators. These latter global regulators act a sensor of the
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Figure 15. Model of CodY regulation. An important intracellular concentration of BCAAs and GTP
activates CodY activity. Genes shown in boldface are direct targets of CodY-mediated regulation.
Other genes regulated by CodY indirectly through its effect on the agr locus (Adapted from
Boisset et al. 2007; Camargo and Gilmore 2008; Majerczyk et al. 2010).
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Figure 16. Model of CcpA regulation. Catabolite control protein a (CcpA) binding to its cognate
cis-acting cre site mediates additional tst repression and restrains the production of TSST-1. At
high concentration of glucose, CcpA also regulates another sRNA, Rsal, and its mRNA targets
(Adapted from Diego O. Andrey et al. 2015; C. Caballero, 2018).
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nutritional status of the bacterium, and contribute to the decision by S. aureus of “when

and in what amounts” to express toxins, adhesins involved in biofilm formation, etc.

CodY was first discovered in B. subtilis and L. lactis as a regulator to metabolic genes
involved in nitrogen and nucleotide metabolism (Molle et al. 2003; Sonenshein 2005),
before being emerging as a highly conserved regulatory protein of virulence in S. aureus
(Pohl et al. 2009) (Figure 15) According to genome-wide analysis in (Majerczyk et al.
2010), CodY regulates virulence genes through three different mechanisms: (1) agr
expression-dependent regulation such as cap, spa, fnbA and coa; (Il) direct regulation by
CodyY, (Ill) hla and capsule synthesis (like ica operon) (Majerczyk et al. 2010). One of the
most well-known target of CodY is agrBCDA operon (Roux et al. 2014). At the exponential
phase of bacterial growth, when the intracellular concentrations of branched-chain
amino acids (BCAAs) and GTP are important, CodY binds to P2 and P3 promoters and

represses the transcription of agr operon and rnalll (Roux et al. 2014).

Another global regulator is CcpA encoding for catabolite control protein A that belongs
to global regulatory of the carbon catabolite repression (CCR), which is involved in carbon
utilization and metabolization of the preferred carbon source (i.e. glucose). In the early
1990s, CcpA was first studied in B. subtilis for its specific binding to DNA sequence, cre
(for catabolite-responsive element) (Henkin 1996), and later was demonstrated on S.
xylosus (Jankovic and Brickner 2002). However, little was known for this repressor in S.
aureus until the 2000s. CcpA was demonstrated to involve in the virulence determinants
regulation such as RNAIll, hla and spa (Seidl et al. 2006, 2008, 2008, 2009; Ueda et al.
2011) and recently was showed to regulate an sSRNA implicated in the bacterial response
to glucose consumption, Rsal (D. Bronesky et al. 2018). In addition, CcpA also represents
an auxiliary factors reported to reduce methicillin resistance in S. aureus strain COL (De
Lencastre et al. 1999) and is required for promoted colony spreading in S. aureus (Ueda

et al. 2011) (Figure 16).

Yet another global regulator, Fur (Ferric uptake regulator), is one of the four distinct
families of metallo-regulatory proteins, beside DtxR (diphtheria toxin repressor), MerR,

and ArsR (Fuangthong and Helmann 2003; Troxell and Hassan 2013). Firstly purified from
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Figure 18. The SarA protein family. Inter-regulation of transcription factors of the Sar family.
Arrows represent activation and barred lines interrupted arrows for repression (Adapted from
Junecko J et al. 2012 and Bronner S et al. 2004).
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E. coliin 1988, Fur was demonstrated to function as a dimer in the presence of iron, one
of the essential elements required for the growth and the metabolism of prokaryotes
(Carpenter, Whitmire, and Merrell 2009; Chandrangsu, Rensing, and Helmann 2017;
Hantke 2001). Fur utilizes Fe2+ as a cofactor and not only represses expression of iron
acquisition genes in the presence of iron (Horsburgh, Ingham, and Foster 2001), but also
SRNA in E.coli (Massé and Gottesman 2002) (Figure 17). In many bacteria, a paradigm
being RyhB in E. coli, an iron-sparing SRNA, negatively regulating many mRNAs encoding
dispensable iron-related proteins (Chareyre and Mandin 2018) with functional homologs
in many bacteria (Oglesby-Sherrouse and Murphy 2013). In S. aureus, however, no such
iron responsive sRNA was identified until now. Furthermore, since iron and heme-iron
overloads are toxic for the bacteria, most of them have developed additional regulatory
mechanisms that fine-tune the acquisition and metabolism of iron and heme-iron in the
absence of Fur repression (Laakso et al. 2016), as well as mechanisms to export iron

excess, such as the Heme Responsible Transporter (HrtAB) (Stauff et al. 2008).

3. The SarA protein family

|Il

The SarA protein family has the particular structure of a three-dimensional “winged-
helix”, composed of 3 a-helices and 3 B-sheets, allowing the protein to bind to nucleic
acids (Ambrose L. Cheung et al. 2008). SarA was the first transcriptional factor discovered
by (A. L. Cheung and Projan 1994). The sarA gene is under the control of three different
promotors (P1, P2 and P3), resulting in the transcription of three transcripts but the
constitutive production of a single protein (Ambrose L. Cheung et al. 2008; Jenul and
Horswill 2019). SarA has been shown to regulate the expression of multiple virulence
factors. For instance, SarA upregulates tst, hla, hlb and hld transcription and
downregulates the transcription of sak and spa (Ambrose L. Cheung et al. 2008; Ziebandt
et al. 2001). In addition to SarA, there are 11 other transcriptional factors, identified as
homologues of SarA, such as Rot, MgrA/Rat, SarS, SarR, SarZ, SarT, SarU, SarV, SarX, SarY
and TcaR (reviewed in (Jenul and Horswill 2019)) and their regulatory networks intersect

(Figure 18). For instance, MgrA plays a role in the activation of sarZ, sarX and sarS

expression, apart from controlling the expression of several virulence factors like hla, coa,
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spa (Jenul and Horswill 2019; Luong, Newell, and Lee 2003). Another example is one of
the most well-known transcriptional factors of SarA-like family, Rot (Repressor of toxins),
which favors the expression of SarS. Rot also upregulates the expression of several
surface proteins (Spa) and inhibits the expression of some secreted factors (ETB, Hla,
several proteases and toxins, which is the opposite of the Agr system (Jenul and Horswill

2019; Said-Salim et al. 2003).

4. Sigma factors

Sigma factors comprise major sigmaA (cA) and three alternative sigma factors: sigmaB
(oB), sigmaH (oH) and sigmas (oS) (Gruber and Gross 2003; Mittenhuber 2002; Morikawa
et al. 2003; L. N. Shaw et al. 2008; Tao, Wu, and Sun 2010; Wu, De Lencastre, and Tomasz
1996). They are involved in the imitation of transcription by binding to the core RNA
polymerase to form the holoenzyme that binds to specific promoters and allow the
bacteria to adapt quickly to stress and express specific virulence factors when required
during infection. The primary sigma factor, oA, is responsible for the expression of
housekeeping genes essential for growth. The alternative sigma factor H (oH) has been
shown to modulate the transcription of phage integrase (int), to stabilize the lysogens in
the host cell (Tao, Wu, and Sun 2010);while oS activation enhances the severity of
infection, the immune response, and the survival of S. aureus in mouse infection model
(Miller et al. 2012; L. N. Shaw et al. 2008). However, among alternative sigma factors, the
most well-studied, 0B, has been demonstrated to controls a large panel of genes involved
in cellular functions (e.g. stress response). At least 30 virulence genes implicated in
biofilm formation, cellular internalization, antibiotics resistance, etc. (Bischoff et al. 2004;
Jenul and Horswill 2019), were regulated by oB through recognizing and binding to a
consensus sequence (GTTTAA-12-15-GGGTAT) located in the promoter region of its

target genes (Homerova et al. 2004).

5. Regulatory RNAs

In addition to proteins that regulate virulence factors, there are RNAs that are involved

in the regulation of virulence factors and in the rapid adaptation of bacteria to different
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Table 4 _sRNAs involved in S. aureus virulence

sRNAs

RNAIII

Ssrd2

SprD

ArtR

RsaA

SprC

SprX

PSM-mec

Tegd9

Tegdl

RsaC

Rsal

RsaE

TARGETS REGULATION
Repression of spa, coaq, rot, ssaA, ech, lytM, sbi
Ita$ exression
Activation of hla, map and mgrA expression

a main effector of Rsp-hla regulation

Repression of sbi mRNA translation

Upregulation of hla mRNA
Repression of sarT mRNA

Repression of mgrA, hydrolases and
immunomodulatory molecule (FIR) expression

Repression of at/ mRNA (autolysin)
Upregulation of c/fB and h/d expression

Repression of ech expression
Upregulation of walR expression

Repression of agrA expression

Repression of spa and saeRS
Upregulation of hla and sspA

Enhances PSMa production

Repression of sodA mRNA and response to
oxydative stress

Repression of icaR

Repression of glcl/ mRNA

Downregulation of oppB and opp-3A, and sucC
mRNAs

FUCTIONS

Highly involved in S. aureus virulence

Involved in hemolysis and immune
evasion

Involved inimmune evasion
Involved in virulence and degradation
of sarT

Regulation of virulence, infection and
biofilm formation

Reduction of phagocytosis and
dissemination of §. aureus

Involved invirulence and cell wall
metabolism

Contribution to staphylococcal

pathogenesis and physiology, strain-
dependent

Involved in penicillin-mediated lysis
and in virulence

Enhances S. gureus virulence

Involved in biofilm formation and
pathogenicity of 5. qureus

Involved in biofilm formation

Involved in metabolism

Involved in metabolism
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environmental conditions (Table 4). In Staphylococcus, RNAIIl is the most well-known
riboregulator of various virulence genes. It is the effector of the agr system that
coordinates expression of S. aureus genes based on bacterial density. Although RNAIII
remains the most well-known, there are more sRNAs recently studied in the bacterium.

Regulatory sRNAs of S. aureus will be described in more details in the next chapter.

V. Bacterial small regulatory RNAs

A. The discovery of small regulatory RNAs

To date, there are three main types of “classic” RNAs: messenger RNAs (mRNA), transfer
RNAs (tRNA) and ribosomal RNAs (rRNA). The mRNAs are translated into proteins, while
the tRNAs and the rRNAs have roles during the translation of the mRNA. tRNAs and rRNAs
are non-coding RNAs, meaning that they do not have the information necessary for the
synthesis of a protein. However, another type of non-coding RNA has been identified,
namely regulatory RNAs (sRNAs). They allow the bacteria to regulate the expression of

different factors involved in the adaptation to environmental changes.

In prokaryotes, 6S RNA was among the first regulatory RNAs identified in 1967 from E.
coli (Hindley 1967) and rapidly sequenced (Bronwlee 1971). However, it took about thirty
years to identify its function in sequestering the sigma70 subunit of RNA polymerase
(Karen Montzka Wassarman and Storz 2000). Not long after, another sRNA, RNAI, was
identified and demonstrated to regulate the replication of the ColE1 plasmid of E. coli
(Stougaard, Molin, and Nordstrom 1981; Tomizawa et al. 1981) and of the plasmid pT181
in S. aureus (Richard P. Novick et al. 1989; Pluta and Espinosa 2018) (See Chapter V/
Section C/ 1.).

In the early 2000s, few regulatory RNAs had been identified in part due to available
techniques like computational approaches, which allowed the identification of RNAs
using different parameters to define sRNAs (Bronsard et al. 2017; Livny et al. 2008;
Mraheil et al. 2010; Pichon and Felden 2005). From then on, more bioinformatics

predictions as well as the explosion of high throughput techniques (RNA-seq, DNA micro-
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arrays, clonage shotgun) have allowed the identification of many RNAs (Altuvia 2004;
Hittenhofer and Vogel 2006; Kazantsev and Pace 2006; Moore and Sauer 2007). Indeed,
advances in high-throughput sequencing analysis have revealed the existence of
hundreds of potential regulatory RNAs, although only a fraction of which have been
validated in vivo. However, the lack of a consensual and fully annotated S. aureus genome
added to the problem of sRNAs nomenclature. To overcome this matter, Sassi et al. 2015
provided a Staphylococcus Regulatory RNA Database (SRD) that gathers a list of SRNAs
identified and validated experimentally throughout the years. Not long after, Bouloc and
his team performed in silico analysis to identify sSRNAs likely to act in trans and to elucidate
redundancies in the literature due to the use of different nomenclatures and concluded
about 50 bona fide sRNAs in HGOO3 strain, a NCTC825 derivative strain commonly used
for S. aureus genetic regulation studies (W. Liu et al. 2018). More recently, Carroll’s group
created an updated S. aureus genome annotation report, including annotations for 303
known sRNAs in USA300, associating with publicly available RNA-Seq data sets in order
to recover lost information on sRNA expression, stability, and potential to encode

peptides (Sorensen et al. 2020).

B. Classification and Mode of action

The discovery and progressive characterization of bacterial sSRNAs have revealed various
regulatory mechanisms. They can act on different targets: nucleic acids (RNA and DNA)
or proteins. According to their mechanism of action, they have been separated into
several classes: riboswitches, RNAs regulating proteins, DNAs or RNAs by base-pairings.
They can also act at different stages: during DNA replication or repair or gene expression,
or at different levels of expression of the target: the transcriptional level, the translational

level and/or the stability of the target RNA.

1. Riboswitches

Riboswitches are bacterial-specific, structured noncoding RNA commonly used by
bacteria to detect a wide range of metabolites, amino acids, ions and even temperature

changing (thermosensors) to regulate genes expression. The majority of the known
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Figure 19. Riboswitches predicted mechanisms.
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(A) Transcription termination, (B) Translation initiation, and (C) Splicing control (in eukaryotes)
are the most common mechanisms. (D) Transcription interference or possibly antisense action,
(E) Dual transcription and translation control, and (F) Ligand-dependent self-cleaving ribozyme

action are more rare mechanisms observed or predicted in some bacterial species (from Breaker,
2012).
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riboswitches reside in the 5’or 3" UTR of the mRNAs targets and are identified as cis-acting
RNAs where they control transcription or translation of the targets. They are consisted of
two domains: a detection domain (aptamer) which binds to a ligand molecule causing a
modification of the conformation of an adjacent expression platform; and a regulatory
domain (expression platform) that converts ligand binding into a change in gene

expression by adopting an alternative RNA structure (Tucker and Breaker 2005).

So far, there are five established or predicted mechanisms of riboswitch-mediated gene
regulation in prokaryotes (reviewed in (Breaker 2012)) (Figure 19). The most common
mechanism is the modulation of transcription termination; ligand binding to the aptamer
leads to secondary structural modification of mRNA and forms a competitive secondary
structure or anti-terminator, which obstructs the transcription and release a nascent
RNA; for example, the bacterial response to intracellular Mg?* in Salmonella enterica. In
low Mg?* concentration condition, the sensor PhoQ activates the response PhoP by
phosphorylation; PhoP~P then binds to the promoter of mtgA gene and promotes the
transcription of this gene, which encodes for protein involved in internalization of Mg?*.
In high concentration of Mg?*, Mg?* fixes to the 5" UTR of mtgA and blocks the
transcription. Another well-known mechanism is the modulation of translation initiation;
ligand binding to the riboswitch aptameric provokes in conformation changing and allows
the recruitment of the ribosome to the RBS of target mRNA and initiates the translation.
For instance, in lactic acid bacteria, S-adenosylmethionine (SAM) has been demonstrated
to bind the Svk box within the 5" UTR of metK gene and cause a rearrangement of the
RNA structure resulting in sequestration of SD and preventing the translation of MetK

(SAM synthetase)(Fuchs, Grundy, and Henkin 2006).

In addition, several other interesting mechanisms for riboswitch-mediated gene
regulation are ribozymes, which possess a double function: they regulates gene
expression in response to a metabolite and catalyze their own cleavage (Winkler and
Breaker 2005), and thermosensors that modulate gene translation dependently on the
temperature such as the case of prfA gene in L. monocytogenes (Johansson et al. 2002).

At low temperature (under 30°C), the 5" UTR of prfA forms a secondary structure that
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masks the SD resulting in preventing translation, whereas at high temperature, this
secondary structure enables the RBS and allows translation initiation (Johansson et al.
2002). Interestingly, in the same bacterial model, two other riboswitches (SreA and SreB)
have been demonstrated to act as noncoding RNAs and to regulate in trans the
expression of prfA in L. monocytogenes in response to the presence or the absence of S-
adenosylmethionine (SAM) (Loh et al. 2009). Riboswitches of the SAM, SreA and SreB
family have been shown to control the expression of the PrfA protein by binding to the 5’
UTR of the prfA mRNA (Loh et al. 2009). This binding inhibits the translation of prfA mRNA

which encodes a virulence regulator of Listeria monocytogenes.

To date, there are approximatively 40 different classes of riboswitches discovered,
validated, and modeled with their respective ligands (Mccown et al. 2017). Among them,
some of the riboswitches, such as AdoBcl (Adenosyl cobalamin) or SAM or FMN (Flavin
mononucleotide) riboswitches, occur the widest number of pathogens like C. difficile, L.
monocytogenes, S. pneumonia, S. aureus, E. faecalis and many more (reviewed in
(Bédard, Hien, and Lafontaine 2020)); therefore, they could be excellent potential targets

for antibacterial drug treatments (reviewed in (Panchal and Brenk 2021)).

2. sRNAs interacting with proteins

More than a decade of intensive study of small, noncoding RNAs (sRNAs) in bacteria has
identified hundreds of sRNAs. A growing and divergent group of sRNAs interact with and
modify proteins. By mimicking the structures of RNA or DNA targets, these RNAs bind
proteins to inhibit their activity. This is the least well-known class because only a small

number of sSRNAs have been identified as modulating the activity of proteins.

6S RNA, first discovered in E. coli in 1967 by Hindley, is found in most bacteria and its
expression/ accumulation is species-specific; some species have multiple 65 RNAs such
as B. subtilis with two copies whereas E. coli only has one copy (Trotochaud and
Wassarman 2005). This RNA is a global regulator that downregulates transcription of
multiple genes due to its interaction with the primary holoenzyme form of RNA

polymerase (RNAP). Indeed, 6S has a highly conserved structure mimicking the
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targets to be transcript (from Nameki, Someya and Kawai, 2013) (Ranganathan, Zhao, and Simon
2013).
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conformation of a DNA during transcription initiation, which allows 6S to interact with
the sigma 70 subunit of RNAP (Cavanagh and Wassarman 2014; Trotochaud and
Wassarman 2005) (Figure 20). Moreover, it is suggested that 6S RNA alters the
competition between different sigma factors by binding to sigma 70, which might lead to
an increase in activity for sigma S-dependent transcription in vivo (reviewed in (Cavanagh
and Wassarman 2014)). Albeit E. coli 6S RNA is important for modulating stress and
optimizing survival during nutrient limitation; however, its functions are also species-
specific, just like its expression. For instance, 6S RNA has been demonstrated to be
associated with bacterial extracellular vesicles (Evs) in S. aureus (Joshi et al. 2021).
Furthermore, it has been proven in vitro and in vivo, a synthesis of a short transcript of
14 to 20 nucleotides (RNAP) encoded from 6S RNA by RNA polymerase, although no
information on the specific function of this transcript is known (Svensson and Sharma

2016; Karen M. Wassarman and Saecker 2006).

CsrB and CrsB RNAs belong to the carbon storage regulator (Csr) system in E. coli and the

homologous repressor of secondary metabolites (Rsm), found in other bacteria. CrsB and
CrsC are identified as regulatory RNAs that modulate the activity of CsrA (or RsmA in other
bacteria), an RNA-binding protein (RDP). This RBP is a pleiotropic regulator of carbon
metabolisms and regulates gene expression post-transcriptionally at stationary growth
phase. CsrA interacts with GGA sequence motif in the 5° UTR of its mRNA targets and
affects ribosome binding and/or mRNA stability (M. Y. Liu et al. 1997; Weilbacher et al.
2003) (Figure 21). As for CsrB and CrsC, their structure contain multiple GGA motifs; when
they are sufficiently expressed, they could isolate and antagonize CsrA protein. They have
been demonstrated to regulate different metabolic pathways, biofilm formation, motility,
virulence circuitry of pathogens, quorum sensing and stress response systems (Cavanagh
and Wassarman 2014; Trotochaud and Wassarman 2005; Ul Hag, Miiller, and Brantl
2020).

3. sRNAs interacting with DNAs

CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR

Associated Proteins) is part of a new type of prokaryotic regulatory RNAs involved in
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(Hille et al. 2018).
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adaptative bacterial immunity. CRISPR loci represent a repeating family of DNAs found in
45 % of bacterial genomes and in 85 % of archaeal genomes and is categorized by cas
gene into 6 types among which, type |, Il and V target DNAs (McGinn and Marraffini 2018).
CRISPR loci are composed of a leader RNA, "direct repeat" and spacers. The leader
sequence is located at 5’ end of each CRISPR, directly adjacent to the first direct repeat,
and is often rich in A+T residues. These repeated sequences are sometimes partially
palindromic, which allows them to form very stable secondary structures (Kunin, Sorek,
and Hugenholtz 2007) and are separated by portions of variable DNA sequence called
"spacers". The spacers correspond to captured viral or plasmid segments that are
acquired from foreign DNA od plasmids or viruses during adaptation or immunization.
Their number can reach several hundred units but most loci contain less than 50 (Horvath
et al. 2009).

CRISPR/Cas mechanism is based on the acquisition of foreign genes through the
recognition and specific degradation of foreign genetic elements (Makarova et al. 2006)
(Figure 22). CRISPR systems work in association with genes encoding Cas proteins, which
are adjacent to each CRISPR loci (Jansen et al. 2002). The cas genes code for a large family
of proteins heterogeneous which contain functional domains typical of nucleases,
helicases, and polynucleotide binding proteins (Haft et al. 2005). When phage invades a
bacterium, phage nucleic acids proliferate in the cell and new phage particles are
produced, leading to the death of the majority of susceptible bacteria. This immune
function is executed in a three-stage process: (I) Adaptation, (II) Processing and ()
Interference. First, a small number of bacteria acquire spacers derived from these
invading foreign nucleic acids giving them immunity (Adaptation). This immunity is linked
to the recognition and degradation by the CRIPSR-Cas system of foreign nucleic acids.
Then, the CRISPR locus is transcribed into a single pre-crRNA (CRISPR RNA) which will be
matured to produce a collection of small crRNA (CrRNA Biogenesis) (Processing). Each
crRNA, in association with Cas proteins forms the CRISPR-Cas system. Small crRNAs
recognize and interact by sequence complementarity with phage nucleic acids causing
their degradation (Interference) (reviewed in (Faure et al. 2019; Samson, Magadan, and

Moineau 2015)).
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Figure 23. Mechanism of altered transcription initiation by nanoRNAs. NanoRNAs (2-5 nts) can
either be degraded by Orn ribonuclease or used by RNA polymerase to initiate transcription.
Compared to transcription from NTP (i.e., de novo), initiation by nanoRNAs could potentially alter
the expression of target genes by modifying the levels of transcripts, by altering the sequence of
the 5 'end of the transcripts, or by modifying the phosphorylation state of the 5 'end of the

transcripts (from Nickels and Dove 2011).
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NanoRNAs are identified as another class of regulatory RNAs. The frequent transcription
and rapid degradation of mRNAs are needed for bacteria to adapt to a wide range of
nutritional and environmental changes. mMRNA decay is initiated by a series of endo-/
exoribonucleases and leaves behind 2- to 5- nts long oligoribonucleotides called
“nanoRNAs”. They could also be produced from products of RNA cleavage during
transcription elongation by RNAP backtracking or products of abortive transcription
initiation (reviewed in (Nickels and Dove 2011)) (Figure 23). They have been
demonstrated to prime transcription initiation in bacteria by being incorporated directly
into a target transcript. In addition, it is believed that nanoRNAs act as activators or
repressors of the transcription of target genes depending on the state of phosphorylation
of their 3 'end. Addition of nucleotides to the 5 ' end of RNAs transcribed by nanoRNAs
could alter the secondary structure and thus modulate translation and / or stability of
transcripts. The degradation and therefore the regulation of these nanoRNAs is effected
by a 3'- 5' exonuclease, oligoribonuclease (Orn). In the absence of Orn, nanoRNAs can be
used as an RNA polymerase primer to initiate RNA transcription that might be harmful
for cell with unknown mechanism. Goldman et al. has shown that in E. coli, when Orn is
inactivated, the amount of nanoRNAs increases significantly, followed by the loss of
viability of the bacteria (Nickels and Dove 2011). Since the use of nanoRNAs to initiate
transcription could have an overall influence on gene expression, they can therefore be
considered as regulators of gene expression by modulating the initiation of gene

transcription and / or transcript stability (Liao, Liu, and Guo 2018; Nickels and Dove 2011).

4. sRNAs interacting with RNAs

The vast majority of SRNAs interact with RNAs, they can be classified into two categories:
SRNAs encoding in cis, which is located on the opposite strand of the gene encoding their
target mRNAs, and sRNAs encoding in trans that is located in a different chromosomal

region than the gene for their target mRNA (Waters and Storz 2009).
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2007).
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4.1. Cis-encoded sRNAs

Cis-encoded sRNAs are expressed from the same loci as mMRNA targets on the opposite
strand of DNA. This results in perfect and usually extended complementarity between
sRNAs and their target mRNAs. They can inhibit the expression of their targets by several
mechanisms: transcriptional interference, early termination of transcription, alteration
of stability or modulation of the translation of the target mRNA (Georg and Hess 2011)
(reviewed in (Stork et al. 2007)).

The first type of cis-encoded sRNAs are RNAs antisense (asRNAs). They are generally

found on plasmids or other mobile genetic elements, such as transposons or
bacteriophages, but also on the chromosome (Gerhart, Wagner, and Simons 1994,
Svensson and Sharma 2016; Thomason and Storz 2010; Waters et al. 2009; Westermann
2018). Thus, they control the maintenance and the stability of the mobile genetic
elements by acting, for example, on the inhibition of the maturation of the primers. For
instance, RNAI in E. coli, a 108 nucleotide RNA which is encoded on the opposite strand
of the gene encoding RNAII, has been demonstrated to inhibit primer formation and
consequently prevent RNA-DNA hybrid for plasmid ColE1l (Stougaard, Molin, and
Nordstrom 1981; Tomizawa et al. 1981) (Figure 24). RNAI is also involved on the
transcriptional reduction of rep mRNA (Brantl 2007; Svensson and Sharma 2016;
Westermann 2018) (See Chapter V/ Section C/1.). Another sRNA discovered in bacteria
that acts as asRNA and is involved in plasmid and transposon copy-number control is RNA-
OUT in the case of IS10. Translation of the transposase mMRNA (RNA-IN) is inhibited by the
cis-encoded asRNA, RNA-OUT via base pairing between the 5' end of RNA-IN and the
terminal loop domain of RNA-OUT (Simons and Kleckner 1983).

The next category of cis-encoded sRNAs is the toxin-antitoxin system (TAS). They are two-

gene elements composed of a gene encoded for a stable protein toxin (less than 60 amino
acids), whose expression leads to growth cessation or cell death, and a corresponding
antitoxin that neutralizes the toxicity during bacterial growth. TAS are classified into six
groups based on the nature of the antitoxin and mode of action since all toxins are

proteins. For instance, antitoxins that are non-coding RNAs belong to type | and type llI
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independently transcribed from their own promoters. Their antitoxins are unstable cis-encoded
antisense sRNAs that interact with toxin-encoding mRNAs by pairing, therefore preventing toxin
mRNA translation and/or inducing its degradation (from Camille Riffaud, Pinel-Marie, and Felden
2020).
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systems, and antitoxins in other types are low-molecular-weight proteins (reviewed in
(Camille Riffaud, Pinel-Marie, and Felden 2020)). Here, we only show TAS type | where
antitoxin is a cis-encoded RNA acting in trans (Figure 25). Binding between RNA antitoxin
to the toxin gene inhibits its translation and causes the degradation of toxin gene
(Svensson and Sharma 2016). For example, in E. coli, ibs gene encodes for a peptide
whose overexpression provokes cell membrane disruption and Sib RNA antitoxin can
repress this toxicity through base pairing in ibs mRNA ORF (Fozo et al. 2008; Fozo, Hemm,
and Storz 2008). The function of these chromosome-encoded TA systems remains
unclear; however, they might mediate stress metabolism adaptation, persistent cell
formation, or antibiotic resistance (Svensson and Sharma 2016; Westermann 2018).
Indeed, type | TA systems have been demonstrated to involve in the bacterial pathogens
like TisB/IstR-A in E. coli (Edelmann et al. 2021; Vogel, Jorg; Argaman, Liron; Wagner, E.
Gerhart H; Altuvia 2004) or SprAl/ SprAl-as in S. aureus (Beaume et al. 2010; Sayed,
Jousselin, and Felden 2012).

Recently, according to transcriptomic studies of Listeria spp., a new class of asRNAs has
been categorized, called excludons. They are made up of long antisense RNAs (lasRNAs)
that overlap multiple coding phases. LasRNA transcription is initiated from a promoter
located on the complementary strand of an mRNA, generating asRNA that overlaps the
entire coding phase of the opposite strand. However, transcription does not end at the
end of this overlap but extends to the neighboring gene encoded on the same strand.
LasRNAs inhibit the expression of one group of genes while activating the expression of a

second group of genes with related physiological functions (Sesto et al. 2013).

4.2. Trans-encoded sRNAs

This is another class of sRNAs acting by base pairing, which, unlike asRNAs, are not
encoded at a same genetic locus at their target mRNAs and share only limited
complementarity with their target and on many occasions, requires the assistance of a
chaperone protein Hfg to facilitate sSRNA-mRNA interaction. The interaction between
sRNAs and its target mRNA regulates gene expression through various mechanisms: this

may be due to a change in translation, mRNA stability and/or transcription efficiency.
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Figure 26. RyhB sRNA acts as trans-encoded sRNA in E. coli. (A) RyhB sRNA, with the help of Hfg
chaperone protein, binds to sodB mRNA and prevents the translation of this mRNA target by the
recruitment two RNAses (Troxell and Hassan 2013). (B) RyhB sRNA also activates the translation
of shiA mRNA by enhancing the Ribosome binding to the RBS of the mRNA (from Prévost et al.
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Trans-encoded sRNAs regulate its target expression through three major mechanisms:
repression of translation followed by degradation by RNases or activation of translation,

or repression of transcription.

The best represented class corresponds to the sRNAs inhibiting translation of mRNA
targets. They are able to bind to the translation initiation site of the mRNA and prevent
the fixation of Ribosome; therefore leads to inhibition of translation, whether or not
coupled with the degradation of the target mRNA. This is the case in E. coli with RyhB
sRNAs which, with the help of the Hfg chaperone, represses translation of sodB mRNA
that encodes for superoxide dismutase, by recruiting two RNAs by RNase E and RNase llI
(Massé, Escorcia, and Gottesman 2003; Morita, Mochizuki, and Aiba 2006) (Figure 26A).
However, there are some cases where this interaction leads to translation activation by
a conformational change in the secondary structure of the mRNA target resulting in
ribosome recruitment. For instance, in E. coli, the same RyhB sRNA also activates the
translation of shiA mRNA expressing a permease of shikimate, an aromatic compound
which participates in the synthesis of siderophores (Prévost et al. 2007) (Figure 26B). The
RyhB sRNA illustrates a situation where an sRNA can regulate several targets and in
different ways. In addition, some mRNAs expression could also be regulated by multiple
SRNAs; for example, in enterica bacteria, gImS encoding for glutamine-fructose-6-
phosphate (GIcN6P) is regulated by two homologous sRNAs, GImY and GImZ. In depletion
of GIcN6P, the two sRNAs bind to g/mS mRNA and induce the translation to replenish

GIcN6P (M. A. Khan et al. 2016).

It has been shown recently that, the interaction between a sRNAs and its target can also
repress the transcription of the target mRNA. For example, in Salmonella, the formation
of a duplex between ChiX sRNAs and chiPQ mRNA results in inhibition transcription (Bossi
et al. 2012). sRNA allows exposure of rut sites normally hidden by the ribosome. These
sites are used to bind the termination factor Rho which will lead to the detachment of
the complex of transcription and induce the formation of a truncated mRNA (Bossi et al.
2012). Conversely, sRNAs can also suppress the Rho-dependent transcription terminator

(Sedlyarova et al. 2016). This type of regulation of SRNAs at the transcriptional level
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remains little described and does not represent the most common sRNA regulations on

their targets.

4.3. Other sRNAs regulation mechanisms

RNAs have been proved to possess multiple functions. They could act as a SRNAs and also

possessing an open reading frame (ORF) coding for a peptide. These are sRNAs that
interact with mRNAs and either express a protein or interact with proteins to regulate
their activity such as RNAIIl and PSM-mec in S. aureus in virulence regulation (Delphine
Bronesky et al. 2016; Qin et al. 2016), SR1 in B. subtilis in arginine catabolism activation
(Heidrich et al. 2006; Licht, Preis, and Brantl 2005) and SgrS in E. coli in glucose/mannose
transporter and virulence (Wadler and Vanderpool 2007). It has been shown that there
are currently 10 sRNAs encode short proteins, of which five have an associated function
(reviewed in (Gimpel and Brantl 2017)). Another case of sSRNA with multiple functions is
transfer-messenger RNA (tmRNA or SsrA) that displays both tRNA and mRNA assets.
TmRNA controls trans-translation, which is a process of rescuing the ribosomes stalled
during translation of defective mRNAs, such as those lacking in-frame termination codons
in all bacteria (Dulebohn et al. 2007), but also acts as an asRNA to regulate ctrMN operon

in S. aureus (Y. Liu et al. 2010).

Recent discoveries suggested the existence of new sRNAs acting as RNAs sponges in gene
expression regulation. The term “sponge” RNA came from eukaryotic regulatory RNA
studies demonstrating that engineered RNA can compete with mRNA for miRNA
interaction (Ebert, Neilson, and Sharp 2007). However, more and more RNA sponge cases
have been recently studied in prokaryotes. In Salmonella enterica, mRNA-derived SroC
sRNA acts as a sponge to sequester and trigger degradation of GevB (Miyakoshi, Chao,
and Vogel 2015) or the 3' external transcribed spacers (3’ ETS) of tRNA gene can also act
as sRNA sponge to absorb transcriptional noise from repressed RNAs (Lalaouna et al.
2015). In addition, the most recent case of RNA sponge in Gram-positive bacteria has
been identified and validated in (Durand et al. 2021). RoxS is an sRNA implicated in
oxidative stress response of B. subtilis and its expression and activity has been

demonstrated to be affected by RoxA acting as a sponge for RoxS (Durand et al. 2021).

72



Hfq-RNaseE

-dependent RNaselll-dependent
RNaseE 3< RNaselll 3(
o) (;,.j/
SNA
> 5
3!
Hfq-RNaseE l RNaselll
(degradosome?)
A_ -+1 3

So— _

— — — . Degradation pa—
— — T 5
——— — {@

Figure 27. RNase E- and RNase lll-dependent mRNA degradation mediated by ncRNAs
(from Repoila and Darfeuille, 2009)

73



5. Proteins helpers of RNAs

Many proteins are associated with sSRNAs and perform a multitude of functions such as
the modification of the secondary structure of their RNA targets, the maturation of the
sRNA, the promotion of the SRNA-mRNA interaction, and the degradation of the duplex
formed. To date, new RNA-binding proteins were discovered such as the sequester
CsrA/Rsm, the FinO/ProQ family and the CspD/E family, besides RNases and protein
chaperone Hfqg (reviewed in (Quendera et al. 2020; Romeo, Vakulskas, and Babitzke

2013)). Hfg (Host factor QB) is widely identified as a global regulator and key element in

SRNA-based regulation networks with ~30 % of sRNAs relying on this protein to carry out
their functions in E. coli (Vogel and Luisi 2011). In Salmonella, Hfq associates with almost
half of the co-immunoprecipitated sRNAs (Sittka et al. 2008). Beside involving in protein-
protein interactions (Caillet et al. 2019) and in RNA degradation (reviewed in (Quendera
et al. 2020)), Hfq is also implicated in remodeling SRNA secondary structure. For instance,
through binding to MicA sRNA, Hfg is demonstrated to change this sSRNA secondary
structure, to alter its stability and to allow exposure of the ompA binding site for pairing
that leads to translational repression (Henderson et al. 2013). Although Hfq is well
documented in other bacterial species to play an important role in gene expression
regulation but whose role in S. aureus is unclear. Recent studies suggested that Hfg might
play a role in the oxidative stress response in S. aureus, decreasing the bacteria’s ability
to survive in macrophages (Bouloc and Repoila 2016; W. Liu et al. 2020). However, Hfq is
not as an important regulator of gene expression as it is the case in Gram-negative

bacteria, nor globally influences RNA stability.

Ribonucleases (RNases) are also classified as RBPS and play an important role in

regulating the expression of target genes by sRNAs. For a very large number of sRNAs in
bacteria, the interaction between sRNA and its mRNA prevents the binding of ribosomes
and promotes the degradation of the mRNA by an RNase recruited during the formation
of the duplex leading to an irreversible inhibition of translation of the target gene. RNases
can recognize the single-stranded or double-stranded structures of RNAs (Figure 27). For

instance, RNase E has been shown to act as a single-strand-specific endonuclease to
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initiate AmgR sRNA-mgt operon target degradation in Salmonella (reviewed in (Ul Haq,
Miiller, and Brantl 2020)); or RNase Il as the double-stranded ribonuclease in Rat SRNA-
3’ UTR of txpA mRNA in B. subtilis (Durand, Gilet, and Condon 2012). Moreover, certain
RNases are also involved in the degradation and processing of RNAs within a multi-protein
complex called a degradosome whose composition differ between Gram-positive or
negative bacteria. For instance, most of the genomes of Gram-positive bacteria produce
two orthologous ribonucleases, RNase J1 and RNase J2. These enzymes are part of the
degradosome complex of Gram-positive bacteria consisting of a PNPase, an enolase, a
DEAD box helicase (CshA), a phosphofructokinase and RNase Y. In E. coli the
degradosome is made up of four enzymes: RNaseE, exonuclease 3'-5" PNPase, RhIB
helicase and an enolase (reviewed in (Carpousis 2007; Ul Hag, Mdller, and Brantl 2020)).
These RNases play an important role in post-transcriptional regulations and are,

moreover, involved in the regulation of virulence factors.

Another case is ProQ of the FinO family that is commonly found in Proteobacteria

(Olejniczak and Storz 2017). The majority of ProQ studies are performed in E. coli,
Salmonella enterica and Legionella pneumonia (reviewd in Quendera et al. 2020).
However, ProQ binding specificity is different from Hfqg, based on RIL-seq performed by
(Melamed et al. 2020), ProQ shows affinity for encoding sequences while Hfq is enriched
in both sSRNAs and mRNAs complex formation. One of the well-known example for ProQ
role is the RaiZ sRNA — hupA mRNA (Smirnov et al. 2017). This complex formation ProQ/
RaiZ/ hupA is demonstrated to prevent the translation of the mRNA by masking the

binding site of the 30S ribosome subunit (Smirnov et al., 2017) (Figure 28).

In addition, Cold-shock proteins (CSPs) constitute the largest nonribosomal RBP family in

Gram-negative bacteria, including E. coli and S. enterica. Out of the nine and six CSP
paralogs present in E. coli and S. enterica, CspA is an RNA chaperone that accumulates
during growth at low temperatures and modulates both the transcription and translation
of target genes required for bacterial survival in these conditions (Bae et al. 2000;
Giuliodori et al. 2010; Jiang, Hou, and Inouye 1997). Intriguingly, other family members,

such as CspC and CspE, are not induced in response to cold shock but are highly expressed
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Figure 29. Overview of Spr sRNAs genomic localization. Schematic view of the genome of S. aureus
N315 with three pathogenicity islands (SaPl1-SaPI3, in black rectangles), a staphylococcal
cassette chromosome (SCC), a bacteriophage (ON315), and the location of the detected sRNA

genes (from Pichon and Felden 2005).
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at higher temperatures and suggested to be implicated in stress response and virulence

of Salmonella pathogenicity (Michaux and Giard 2016).
C. Regulatory sRNAs in S. aureus

Since early 2000s, more sRNAs have been discovered in various S. aureus strains from
computational analysis to experimental approaches like microarrays, clonage shotgun,
and more recently via high-throughput RNA sequencing (RNA seq) (See Chapter V/
Section A). They are defined in general as stable molecules between 50 and 500 nts in
size and their annotation depends on the approached technics and/or the localization of
studied sRNAs. For example, sSRNAs, whose the genes are located in pathogenicity islands
of S. aureus, are called Spr (Small pathogenicity island RNA) (Pichon and Felden 2005)
(Figure 29). Other are named RsaO sRNAs (for RNA of S. aureus Orsay) (Bohn et al. 2010;
Marchais et al. 2009); or Rsa sRNAs (Staphylococcus aureus RNA) (Geissmann, Marzi, and
Romby 2009). Regulatory RNAs discovered by experimental method from Geneva are
named Teg sRNAs (Transcript from Experimental method from Geneva) (Beaume et al.
2010, 2011) and some other small groups of sSRNAs that are still understudied such as the
SSR (small stable RNAs) (Anderson et al. 2006; Retallack and Friedman 1995). Moreover,
there is situation where an sRNA studied in one work was named differently in another
publish, for instance, RsaOW is named Tegl7 (Bohn et al. 2010; Guillet, Hallier, and
Felden 2013) or SprX alias RsaOR and Tegl5 (W. Liu et al. 2018). With an overflow of
regulatory RNAs identified during this last decade, our lab designed a platform, called
“Staphylococcal Regulatory RNA Database” with an objective to compile all published
regulatory RNAs and to simplify the identification by naming them Staphylococci
regulatory RNA (srn) (Sassi et al. 2015). However, many more sRNAs have been identified
and it becomes a challenge to carry on the update. Indeed, Madér and his collaborators
recently provided a global analysis of transcriptional regulation and non-coding RNAs in
S. aureus (Mader et al. 2016) and Bouloc’s group provided a new reassessment of
approximately 50 bona fide sRNAs in S. aureus by in silico analysis (W. Liu et al. 2018).
Here, the sRNAs will be presented based on their original discovered name and their

shared physiological function in S. aureus.

78



repC mRNA T

pT181 Prepl_b I 50 repC 1

RNAI (transcription termination)

Figure 30. RNAI mechanisms in control the replication of pT181. The promoter Prep directs
synthesis of the RepC initiator (green ellipse), which initiates replication by binding to its cognate
dso. Replication of the plasmid pT181 is controlled by RNAI (red) that is complementary to the 5’
UTR of the repC mRNA (from Pluta and Espinosa 2018).
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Figure 31. RNAIII activity and temporal expression of S. aureus virulence factors during growth.
At low cell density (during the exponential phase), the agr system is not induced: the level of
expression of RNAIIl is low and the mRNAs allowing tissue colonization (sa1000, spa, sa2353 and
rot) are expressed. At high cell density (during the stationary phase), the agr system self-induces
via quorum-sensing (QS). The expression of RNAIll allows the inhibition of translation of the
above-mentioned target RNAs and the activation of the expression of hla. In addition, the coding
phase of RNAIIl is translated to produce hemolysin delta. Induction of the agr system by QS
enables the coordinated response of the entire S. aureus population. This response allows the
destruction of host tissue and promotes colonization by the bacteria (Adapted from Repoila and
Darfeuille, 2009).
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1. RNAI

RNAI was first studied in E. coli in the early 1980s for its contribution in the control of
plasmid ColE1 replication (Stougaard, Molin, and Nordstrom 1981; Tomizawa et al. 1981)
(See Chapter V/ Section B/3/3.1.). RNAI was later identified in S. aureus as a first cis-
encoded sRNA that controls the rolling-circle replication (RCR) of plasmid pT181 by
transcriptional attenuation (Richard P. Novick et al. 1989). The replication of small
multiple copy plasmids carrying antibiotic resistance genes in Gram-positive bacteria
generally occurs by RCR mechanism. And the most distinct trait of RCR is its initiation step
by a replication initiator protein (Rep) encoded by the plasmid. For instance, pT181, a
tetracycline resistant plasmid of S. aureus, regulates its own replication by expressing
RNAI that blocks the expression of RepC. This regulation involves pairings between
complementary loops in the mRNA leader (repC) and the asRNA (RNAI), which results in
the formation of an anti-terminator at the 5' to the repC initiation codon that blocks the
access of the Ribosome. By masking the RBS, RNAI leads to a premature termination of
transcription of repC (Guillet, Hallier, and Felden 2013; Richard P. Novick et al. 1989;

reviewed in Pluta and Espinosa 2018) (Figure 30).

2. RNAIII: A Paradigm

Discovered almost three decades ago, RNAIll is a 514 nucleotide RNA, that acts as the
effector of the Agr "quorum sensing" system (R. P. Novick et al. 1993). RNAIll accumulates
during growth and peaks in the post-exponential phase of growth (R. P. Novick et al.
1993). It allows the temporal regulation of the expression of virulence factors, that is to
say, it controls the switch between colonization and bacterial infection of the host (Figure
31). RNAIll is a bifunctional RNA, encoding a PSM called §-hemolysin (hl/d gene) (Janzon
and Arvidson 1990) and acts as a trans-acting sSRNA on multiple target mRNAs (Morfeldt
et al. 1995) (Figure 32). This sRNA possesses an extraordinarily complex structure with 14
stem-loops (Benito et al. 2000), and three of them contribute highly to the regulation
several virulence factors. Indeed, stem-loops 7, 13 and 14 with a consensus motif rich in
cytosines, facilitate interactions with the guanine-rich RBS of its target mRNAs (Boisset et

al. 2007). RNAIII, binding with its target mRNA, will block Ribosome to be recruited to the
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Figure 32. Regulatory activity of RNAIIl. RNAIll is directly involved in the regulation of 12 mRNAs
by either activating or inhibitory mechanisms (from Matthias Gimpel and Sabine Brantl, 2016).
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ribosome binding site (RBS) on the mRNA, thereby prevent translation initiation and, in
some cases, facilitating the degradation of mRNA by RNase Il (Chevalier et al. 2010;
Romilly et al. 2012). In fact, the formation of a duplex between RNAIIl and the target
mRNAs by loop-loop interactions creates a binding site for RNase Ill, which will lead to
specific cleavage in the regions of the interaction (Romilly et al. 2012). These targets are
particularly involved in S. aureus virulence such as the surface protein A (Spa), coagulase
(Coa), fibrinogen binding protein (SA1000), homologs of the staphylococcal secretory
antigen SsaA (SA2353 and SA2093), immunoglobulin binding protein (Shi), lipoteichoic
acid synthase (LtaS) and cell wall autolysin (LytM) (Amdahl et al. 2017; Boisset et al. 2007,
Delphine Bronesky et al. 2016; Chabelskaya, Gaillot, and Felden 2010a; Geisinger et al.
2006; Huntzinger et al. 2005; Rnas et al. 2018). In addition, RNAIIl inhibits initiation of
translation of rot mRNA, encoding the repressor of toxins Rot (Mcnamara et al. 2000;
Oscarsson, Tegmark-Wisell, and Arvidson 2006), which blocks the transcription of many
exoproteins and toxins (Said-Salim et al. 2003). Therefore, by inhibiting Rot production,
RNAIlIl indirectly activates transcription of many exotoxins and indirectly inhibits synthesis

of protein A at the transcriptional level.

In addition to targets downregulation, RNAIIl is also capable of activating expression of
few targets: alpha hemolysin (Hla), the extracellular adhesion protein (Map) and the
transcriptional regulator MgrA. The interaction of RNAIIl with the 5'UTR region of hla and
map mMRNAs releases the SD sequence thus promoting ribosome recruitment and
translation initiation (Delphine Bronesky et al. 2016; Y. Liu et al. 2011; Raina et al. 2018).
Moreover, by inducing Hla production, RNAIIIl favors cell lysis, which is part of S. aureus
infection process (Bramley et al. 1989; Dinges, Orwin, and Schlievert 2000; Gray and
Kehoe 1984). More recently, the 3 'and 5' ends of RNAIIl have both been shown to
interact with the 5 'UTR of mgrA RNA, thus preventing mRNA from degradation by an
unknown ribonuclease (Delphine Bronesky et al. 2016; Gupta, Luong, and Lee 2015; Raina

et al. 2018).

Altogether, due to RNAIIl regulatory action on multiple targets directly or indirectly via

Rot and MgrA, two other global regulators of gene expression, shows the importance in
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the pathogenicity of S. aureus. Furthermore, it also shows that RNAIIl is implicated in the
switch between expression of various surface proteins and synthesis of secreted toxins,

which displays the level of complexity in the regulation of virulence genes.

3. sRNAs implicated in S. aureus Metabolism

Many sRNAs have been demonstrated to be engaged in the metabolism of S. qureus,
however, Rsal and RsaE are the most studied so far. First, Rsal (alias RsaOG) (Geissmann
et al. 2009) is involved in a signaling pathway responding to glucose uptake. Indeed,
several direct targets of Rsal were found through MAPS approaches. Some are sRNAs,
and most are mRNAs involved in glycolysis and pentose phosphate pathway (negatively
regulated) and in fermentation processes (positively regulated) (D. Bronesky et al. 2018).
It has been shown that Rsal regulates its mRNA targets by binding to the SD sequence
and masking the RBS and consequently inhibits the translation. For instance, Rsal as a
CcpA-repressed small non-coding RNA that is inhibited by high glucose concentrations.
When glucose is consumed, Rsal represses translation initiation of mRNAs encoding a
permease of glucose uptake (glcU_2) and the FN3K enzyme (fn3K) that protects proteins
against damage caused by high glucose concentrations. This multifunctional RNA

provides a signature for a metabolic switch when glucose is scarce and growth is arrested.

The second sRNA is RsaE, a sRNA conserved in S. aureus and B. subtilis, that controls
enzymes involved in amino acid and peptide transport, cofactor synthesis, lipid
metabolism, carbohydrate metabolism, the TCA cycle (Bohn et al. 2010; Geissmann et al.
2009) and in arginine degradation pathway (Rochat et al. 2018). Hence, it was suggested
that RsaE repressed several enzymes of the central metabolism under non-favorable
conditions and it would contribute to readjust the cellular NAD+/NADH balance under
stress conditions (Bohn et al. 2010; Durand et al. 2017). In addition, RsaE is showed to
interact with the RBS of opp3A mRNA, encoding an ABC transporter component, to
prevent formation of the ribosomal initiation complex and to restrain its translation.
Albeit RsaE functions is suggested to ensure a coordinate downregulation of the central

metabolism when carbon sources become insufficient (Delphine Bronesky et al. 2019)
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4. sRNAs implicated in Persistence

SprF/SprG belong to the last two regulatory RNAs of the Spr “family”, here also
representing a type | toxin antitoxin system (TAS) discovered in 2014 (Pinel-Marie, Brielle,
and Felden 2014). sprG1 encodes two toxic peptides, whose translation is repressed by
the antitoxin SprF1. Recently, two novel type | toxin-antitoxin systems (TAS) were found
to be located in the core genome and expressed in S. aureus, named sprG2/SprF2 and
sprG3/SprF3. Identically to sprGi/ SprFl, sprG2 and sprG3 encode toxins and are
neutralized respectively by their antitoxin SprF2 and SprF3. In the absence of antitoxins,
toxins are translated and will accumulate in the membrane, causing the death of bacteria
(Pinel-Marie, Brielle, and Felden 2014). Moreover, toxins are also secreted into the
extracellular environment to act against other bacteria as well as against human
erythrocytes. Altogether, it has been suggested that these systems and an involvement
of the sprG/SprF TAS in S. aureus adaptation to antibiotic stress or in the escape of the
immune system and may have a role in the entry into persistence of bacteria (C. Riffaud

et al. 2019).

5. sRNAs implicated in Antibiotic resistance

SprX was initially identified by Bohn and the collaborators in 2010 under the name of
RsaOR (Bohn et al. 2010). It is a SRNA with a variable copy number depending on the
strain since it is found in a single copy in the N315 strain, two copies in the HGOO1 strain
and three copies in the Newman strain. The first data on this sRNAs showed an
implication in antibiotic resistance (Eyraud et al. 2014). To better understand the
mechanism by which SprX modulates antibiotic resistance, a proteomics study was
performed to identify the SpoVG protein as a target of SprX. SpoVG is a protein involved
in capsule formation and resistance to methicillin and glycopeptides (Schulthess et al.
2009). Thus, by inhibiting the spoVG translation of the yabJ-spoVG operon via binding at
the spoV/G translation initiation site, SprX inhibits the expression of SpoVG and thus
decreases resistance to glycopeptides (Eyraud et al. 2014). In addition, SprX has been

demonstrated to be involved in the virulence of S. aureus by regulating toxins and
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autolysin, which will be described in the next section (Buchad and Nair 2021; Kathirvel,

Buchad, and Nair 2016).

6. sRNAs implicated in Virulence

In S. aureus, many sRNAs have been identified in the last decade and many scientific
reports have shown a plethora of sSRNAs is implicated in the virulence of the bacteria. Like
mentioned before, sRNAs identified in S. aureus are called by different annotations
depending on the original discovery. Here, they will be divided into four main groups
based on their original discovered annotations: Rsa “family”, Spr “family”, Teg “family”

and other sRNAs.

6.1. Rsa sRNAs “family”

The study of RsaA made it possible to identify a known target, namely mgrA mRNA,
encoding for a transcriptional factor. RsaA represses the translation of MgrA, involved in
biofilm formation and capsule synthesis (Romilly et al. 2014). In addition, RsaA also
represses other targets, in particular four mRNAs belonging to the family of enzymes SsaA
as well as FlipR (Tomasini et al. 2017a), which interferes in opsonization via complements
pathway. Moreover, RsaA has been shown in animal models to suppress staphylococcal
virulence. These data show us a rare anti-virulent effect in bacteria and which, as
suggested for RsaA (Romilly et al. 2014), could promote commensal behavior of the

bacteria in order to avoid the immune system of the host.

Beside the contribution in the metabolism of S. aureus previously mentioned, through
masking the RBS at the 3’ UTR of the target, Rsal also represses the expression of icaR
MRNA, the repressor of the icdaADBC operon, which encodes for proteins involved in the
synthesis of the main exopolysaccharide constituting biofilms (Delphine Bronesky et al.
2019). Hence, Rsal would contribute to PIA-PNAG synthesis by at least reducing the IcaR
repressor protein levels. In addition, the authors also identified other Rsa sRNAs (RsaD,
RsaE and RsaG) enriched in complexes purified through their interaction with Rsal

(Delphine Bronesky et al. 2019).
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RsaE is not only involved in the metabolism described earlier, but also is implicated in the
synthesis of PIA in the biofilm through its negative regulation of IcaR, causing the
depletion of the icaADBC operon (Schoenfelder et al. 2019). Moreover, a homologous of
Rsak sRNA in Bacillus subtilis, RoxS, that has shown that RsaE expression is induced by the
presence of in response to reactive oxygen species (nitric oxide (NQ)) through SrrAB
system. Thus, S. aureus RsaE may also intervene in the survival of cells against host

immune reactions (Durand et al. 2015, 2017).

Recently, through MAPS approach, sodA mRNA was identified as one of the targets of
RsaC. This gene encodes for a superoxide dismutase implicated in oxidative stress
response (Lalaouna et al. 2019). Through binding to the RBS of sodA mRNA, RsaC inhibits
the translation of sodA mRNA. In addition, RsaC also binds to sarA mRNA in vitro and
therefore inhibits its translation by binding at the level of the SD sequence. SarA being a
transcriptional repressor of SodM, this would accentuate the effects of RsaC on the
activation of the expression of the latter (Lalaouna et al. 2019). All these data show the
role of RsaC, interconnecting manganese bioavailability and ROS detoxification and

suggesting a role in the resistance to oxidative burst of immune cells via SodM.

6.2. Spr sRNAs “family”

SprD is a SRNA encoded in SaPl of S. aureus and is involved in the virulence of the bacteria
since it could be demonstrated that the expression of SprD allowed an efficient infection
in a mouse model (Chabelskaya, Gaillot, and Felden 2010). Indeed, unlike the parental
strain N315 which caused renal abscesses and death in mice, the deletion mutant
resulted in an absence of mortality in mice (Chabelskaya, Gaillot, and Felden 2010).
According to proteomic study by of extracellular proteins between the parental strain
and the deletion mutant, the protein Shi, a protein involved in immune evasion
mechanisms, was identified as a target of SprD. Subsequently, SprD inhibits translation of
sbi mRNA in vitro by binding to its RBS. However, this inhibition of Sbi alone does not
explain the effect of SprD on the virulence of S. aureus. This is why studies were continued
and in 2014 showed that Sbi was also repressed by RNAIIl (Chabelskaya, Bordeau, and
Felden 2014).

90



5 Moo |
sprA/ SprAas SprC SprD RNAIII ©) SprX

(1)

(2) (3) (4) (6) (8)
(7) (5)
;I-t S-[)I ecb hla  spoVG  cifB walR
atlA
/ isaA
Internalization Immune evasion Virulence  Biofilm formation Adhesion Autolytic activity

Figure 33. An overview of Spr sRNAs involved in S. aureus pathogenicity. All SRNAs are framed in
black. The red line represents the repression regulation, and the green arrow indicates the
positive regulation. (1) Germain-Amiot et al. 2019; (2) Hirschhausen et al. 2010, Le Pabic et al.
2015; (3) Chabelskaya et al. 2010; (4) Chabelskaya et al. 2014, (5) Kathirvel et al. 2016; (6) Ivain

et al. 2017; (7) Eyraud et al. 2014; (8) Buchad and Nair 2021.
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Thus, these two regulatory RNAs appear to act synergistically to regulate Sbi expression

efficiently and is the first example of its kind (Figure 33).

SprC was studied for its targets through a comparative proteomic study (Le Pabic et al.
2015). Thus, it has been demonstrated that SprC is involved in virulence and bacterial
propagation in an animal model of sepsis. In addition, a role in the internalization of
bacteria by host immune cells has also been shown. The overexpression of SprC reduces
the internalization of S. aureus by THP1 monocytes, as well as by THP1 differentiated into
associated with a decrease in bacterial resistance to oxidative stress (Le Pabic et al. 2015).
SprC and also interferes the internalization via epithelial cells by negatively regulates the
production of autolysin (at/) by direct inhibition (Hirschhausen et al. 2010; Le Pabic et al.
2015) (Figure 33).

Although SprX (alias RsaOG) has been demonstrated to be involved in glycopeptides
resistance, in 2014, a second study, this time on one copy of the Newman strain (Sprx1),
identified several other targets of SprX (Kathirvel, Buchad, and Nair 2016). The
overexpression of SprX1 induced an increase in the expression of several virulence factors
such as hemolysin & (HId) and clumping factor CIfB, which involve in the adhesion of
bacteria and in the formation of biofilms as well as in virulence in mouse models, thus
showing the importance of this sSRNAs in the pathogenesis of S. aureus. In addition, in
2017, a study using an innovative double plasmid reporter system identified another SprX
target, the extracellular complement-binding protein Ecb (lvain et al. 2017). It is a
secreted protein allowing the protection of bacteria against the host immune system by
binding to CFH. Thus, by inhibiting the translation of ecb by binding to RBS, SprX decreases
the expression of Ecb and therefore the protection of bacteria against the immune
system (lvain et al. 2017). Another new study of SprX contribution to S. aureus
pathogenicity has been released by Buchad and Nair 2021. The authors have
demonstrated that, through binding to the 5’ region of walR mRNA, SprX enhances the
transcription of this mRNA and consequently modulates positively the expression of
several autolysins such as AtlA, IsaA and LytM (Buchad and Nair 2021), since WalR is

known as a positive regulator of autolysin (Figure 33).
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The study of SprA revealed that it is in fact a TAS type I. It is composed of an unstable
SprAlas antitoxin localized on the opposite strand of the toxin PepAl (encoded by SprA1l),
which has hemolytic and antibacterial activities (Pichon and Felden 2005; Sayed,
Jousselin, and Felden 2012). In addition, a second copy of this system has been identified,
the SprA2/SprA2as system, with a similar mechanism of action and predominantly
cytolytic activity (Germain-Amiot et al. 2019). Moreover, comparing to PepAl, PepA2
showed a greater toxic effect on human erythrocytes suggesting an effect of this system

in the virulence of S. aureus (Germain-Amiot et al. 2019) (Figure 33).

6.3. Teg sSRNA “family”

Recent transcriptome-sequencing (RNA-Seq) analysis indicated that one of the sRNA,
Teg49, resides within the sarA P3 and P1 promoter region in SH100 S. aureus strain
(Manna et al. 2018) and is showed to be involved in virulence regulation in sarA-
dependent or sarA-independent manner. In fact, through RNA-seq analysis, Teg49 seems
to affect the expression of a wide range of genes possessing different functions such as
metabolism-related transcripts, cell wall-related genes production, cellular processes,
and virulence factors. To further validate RNA-seq data, quantitative RT-PCR was
performed and showed that Teg49 downregulates two regulatory genes, saeR and /ytS
among other targets, and upregulates some known virulence factors like lukF and splA
(Manna et al. 2018). In addition, a mouse skin abscess model of infection revealed a
modest but significant reduction in the bacterial load in the infected skin tissue, hence
demonstrating that Teg49 plays a perceptible role in virulence gene regulation in S.

aureus, although the exact mechanism has yet to be elucidated.

Another interesting Teg sRNA recently studied is called Teg41 (alias RsaX05/srn_1080)
(Beaume et al. 2010; Geissmann, Marzi, and Romby 2009; Subramanian, Bhasuran, and
Natarajan 2019). In 2019, Teg41 was remarked to be located immediately downstream
of the aPSM transcript (Zapf et al. 2019), suggesting that Teg41l might affect aPSMs
production. Indeed, their study showed that overexpression of Teg41 leads to an increase
of aPSM production and consequently, an increase in hemolytic activity of S. aureus.

sRNA-mediated, positive gene regulation frequently occurs at the level of transcript
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stability, proposing that binding of Teg41 to the aPSM transcript stabilizes the transcript
and facilitates the translation of the aPSM peptides. In conclusion, Teg4l activity

definitely play a favorable role in the virulence of S. aureus (Zapf et al. 2019).

6.4. Other sRNAs

Other sRNAs have been identified in S. aureus, by different approaches at the end of the
2000s. This was made possible by the democratization of bioinformatic tools and by high-
throughput RNA sequencing technologies. For instance, ArtR (Xue et al. 2014)
upregulating hla expression indirectly through the degradation of sarT; or SbrA-C as oB-
dependent transcripts with unknown yet functions (Nielsen et al. 2011). Another sRNAs
is identified during a study aiming to analyze by microarray the modifications of the
transcriptome in response to different stresses (hot shock, cold stringent condition, and
SOS responses) (Morrison et al. 2012), called Ssr42. Ssr42 is expressed during the
stationary phase of growth and controls a multitude of virulence factors such as Hla. It is
involved in the lysis of host erythrocytes, resistance to lysis by leukocytes and especially

in the virulence of staphylococcus in animal models (Morrison et al. 2012).

In addition, interestingly, a new sRNAs was found in 2016, PSM-mec (Qin et al. 2016)
(Figure 34). Among all known PSMs encoded from core genome, PSM-mec, is an
exception, whose gene is found in specific sub-types of SCCmec methicillin resistance
mobile genetic elements present in methicillin-resistant Staphylococcus aureus. While
PSM-mec peptide possesses a pro-inflammatory activity (inducing calcium flux and
chemotaxis) and a cytolytic activity on erythrocytes and neutrophils, the psm-mec RNA
exerts it gene regulatory activity through its interaction with the agrA transcript resulting
in an overall repression of agrA activity (Kaito et al. 2013; Qin et al. 2016). However, these
effects are highly strain-dependent, which is possibly due to differences in PSM-mec
peptide vs. psm-mec RNA-controlled effects. Albeit the psm-mec locus influences
cytolytic capacity, methicillin resistance, biofilm formation, cell spreading, and the
expression of other virulence factors, such as other PSMs, which results in a significant

impact on immune evasion and diseases.
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Recently, we have identified within phage ®12 a gene encoding for a new sRNA that is
expressed in proximity of SprX2 sRNA and called it SprY. Its localization in a region of the
genome containing many virulence factors suggests that this sSRNA could be involved in
the virulence of S. aureus. The objective of my thesis is to characterize SprY expression
profile, to identify its targets, its mechanisms of action and the physiological roles of SprY

in HGOO3 S. aureus strain.

1. Firstly, we studied SprY expression profile. For this experiment, we verified SprY
expression different S. aureus strains such as N315, HG0OO3, USA300 and Newman.
However, for my thesis project, we mostly focused on SprY expression in HG003 wild-
type strain (WT) and strains deleted for sprX2 or sprY (HG0OO3 AsprX2 or HGOO3 AsprY). In
addition, since sSRNAs are known to allow bacterial adaptation to environmental changes,

we also studied SprY expression in response to different stresses.

2. Secondly, since SprY (alias S629 in Madér et al. 2016), is considered bona fide sSRNA (W.
Liu et al. 2018) and sRNAs are demonstrated to be implicated in expression regulation of
targeted genes, we were looking for potential direct targets of SprY. To obtain this
objective, we studied SprY targets using two different approaches: one is in silico
predictions via CopraRNA, and the other approach is a high-speed method “MS2”, based
on the purification of the complexes sRNAs with its target RNA in vivo. Molecular biology
methods and structural prediction will be used for the study of the mechanism of action

of SprY sRNA.

3. Next, we studied the involvement of SprY in the virulence and the hemolytic activity of
S. aureus. Thus, SprY function was evaluated in mouse model staphylococcal infections
by the method already used to show the importance of SprD in (Chabelskaya, Gaillot, and
Felden 2010).
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Figure 35. Genomic localization of sprX and sprY in HGOO3 strain. Schematic representations of
the organization of the genetic loci of sprX and sprY. The coding phases, the sprX and sprY genes
and the nucleotides (nts). Hp stands for hypothetical protein.
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Figure 36. Analysis of sprY1, sprY and sprY3/ srn_9342 genes. (A, C) Alignment of the sprY
sequence of with spr¥Y1 sequence (A) and with sprY3/ srn_9342 sequence (C), from 5" to 3'.
Identical nucleotides between the three copies are marked with a star. The sequence of the
conservative 3’ end of sprY gene sequences is underlined. The sequences underlined correspond
to sequences of primers using in Northern blots assays to detect separately the expression of 3
copies of spry gene in HGOO3 strain. (B, D) Total RNA extraction of HGO03 was performed and
used for Northern Blot assay. Analysis of sprY1 expression (B) and of sprY and sprY3/srn_9342 (D)
expressions in HGOO3 strain. Northern Blot was carried out using total RNA extraction of HG003
S. aureus strain at exponential phase (E) and at stationary phase (S).
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|. Characterization of SprY

A. Localization of sprY gene in HGOO3 S. aureus strain

During studies of SRNA SprX2 and neighboring sequences, we identified by serendipity
another sRNA that we called SprY. Located on phage ®12 between sprX2 gene and the
SAOUHSC 01515 gene encoding for putative peptidoglycan hydrolase, spry gene was also
identified as a transcript of an sSRNA by Madér and his collaborators that they designated
S629 (Mader et al. 2016) (Figure 35). Not long after, Bouloc’s lab performed a study in
which this sRNA was validated as a bona fide sRNA: likely a trans-acting sRNA, not
expressed from the opposite strand of a coding gene (W Liu et al. 2018). We determined
the transcription start of sprY gene and the size of SprY sRNA of about 125 nucleotides
(Le Huyen et al. 2021). We also showed a predicted secondary structure of SprY consisting
of three stem loops and the last one being a Rho-independent transcriptional terminal
site (Figure 3S in Le Huyen et al. 2021). Furthermore, during our work on sprY gene, we
noticed two similar sequences to sprY located in two other phages (011 and ®13) of S.
aureus HGO03 strain. We named sprY1 the first sequence, located on phage ®13 between
sprX1 gene and the sak gene (Figure 35), with 55.47% sequence identity to sprY according
to sequence alignment analysis (Figure 36A). However, spr¥Y1 expression was not
detected in HG0OO3 strain by Northern Blot (Figure 36B). The second sequence with 73.4
% of identity with sprY gene, sprY3, corresponds to srn_9342 in Newman strain (Bronsard
et al. 2017). sprY3/ srn_9342 gene is located on phage ®11 between SAOUHSC 02018
and SAOUHSC 02019 genes encoding respectively for a hypothetical protein and an
autolysin (Figure 35 and Figure 36C). In addition, Northern Blot showed the expression of
two transcripts of SprY3 with different sizes depending on the growing phase, which is
consistent with the study of Bronsard et al. 2018 (Figure 36D). In general, the three
sequences seem to share a highly conserved 3’ end that corresponds to a terminal
transcription sequence (TTS) (Figure 36) and the rest of the sequences vary greatly from
one sequence to another one. My thesis project focused only on characterizing the sprY

gene and studying its biological contribution to S. aureus pathogenicity.
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Figure 37. Analysis of sprY expression in different S. aureus strains (A) (Le Huyen et al. 2021) and
clinical isolates (B). Total RNA extraction was performed at exponential phase (E) and at stationary
phase (S). Northern Blot was carried out using labelled DNA probes for SprY. As loading controls,
the blots were also probed for tmRNA.
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Figure 38. Expression of sprX2 and sprY in RN4220 S. aureus strain. (A) Schematic organization of
the genetic loci of sprX2 and sprY in HGOO3 strain. Different plasmids constructions were made
to overexpress sprX2 and/ or sprY in RN4220 strain and are numerated from 1 to 4 ((1): pICS3-
sprY, sprX2; (2): pICS3-sprx2p1; (3): plCS3-sprX2p4 and (4): pICS3-sprY). (B) and (C) Northern Blot
analysis of SprX2 and SprY expressions in RN4220 containing different plasmids. Another
transcript located in the downstream of sprX2 gene was detected by Madér et al., 2016 and
named S627. newcopy?2 black arrow indicates primers used in Northern Blot to detect the
expression of sprX2 and primer SprX2C for sprY expression.
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B. Analysis of sprY expression

We showed previously that sprY is encoded on phage ®12 (or Sa2) that is conserved in
several S. aureus strains other than NCTC8325 such as Newman (Herron-Olson et al.
2007) and USA300 (Diep et al. 2006) among others. However, not all Sa2 phages encode
the sprY gene like in the case of USA300 strain; according to genomic alignment analysis
by Basic Local Alignment Search Tool (BLAST) and to the conservation analysis of SRNAs
in the Firmicutes phylum in (W. Liu et al. 2018). To verify this observation, we performed
Northern Blot assay using total RNA extraction of different S. aureus strains (HG0O03,
USA300 and Newman) at exponential phase and stationary phase of bacterial growth. In
addition, total RNA extraction of N315 strain was used as control negative since it does
not contain bacteriophage Sa2 (Diep et al. 2006). As expected, we only observed SprY
expression in HGO03 and Newman, and not in USA300 and N315 strains (Figure 37A). As
for the contribution of SprY in staphylococcal infection, we tested of sprY expression in
different clinical isolates. Our preliminary data showed the presence of SprY in septic
shock and sepsis but none in colonization isolates (Figure 37B), which led us to wonder if
in some infectious conditions, these features could confer advantages and might affect
bacterial pathogenesis. Next, to analyze the promoter sequence of sprY and to test if sprY
and sprX2 are expressed independently, we constructed different vectors including sprX2
gene with different portions of sprY gene (Figure 38A). The S. aureus RN4220 strain that
lacks sprY and sprX2 genes was transformed with these vectors and then the expression
of sprY and sprX2 was analyzed. RN4220 strain harboring the empty vector pICS3 was
used as a negative control. Our Northern Blot results showed similar SprX2 sRNA
expression levels from three first plasmids constructions (1-3) (Figure 38B). In addition,
sprY expression was observed when the whole sequence of sprYis included in the plasmid
designs whether the sprX2 sequence was included or not (Figure 38C) and an
approximative estimation of 35 nts upstream of sprY is sufficient to express sprY. Thus,
this analysis allowed us to estimate the promoter of the sprY gene and to show that the
two sRNAs express independently from plasmids in RN4220 strain. Next, we verified if
the endogenous expression of sprY and sprX2 is also independent in HGOO03 strain, which

contains sprX2 and sprY genes.
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Figure 39. SprY interacts with saouhsc_03046 mRNA. (A) Interaction between SprY and
saouhsc_03046 was predicted by IntaRNA software (Busch et al, 2008). The nucleotides
underlined and in red correspond to the mutations in the sprY and sprYmB sequences. (B)
Schematic presentation of SprY predicted secondary structure and the region of SprY that
interacts with saouhsc_03046 mRNA (shown in red line). (C) Complex formation between SprY
and saouhsc_03046 mRNA was analyzed by native gel retardation assays of purified labelled SprY
(SprY* and SprYmB*) with increasing concentrations of saouhsc_03046 mRNA (0.1, 0.5 and 2 nM
for SprY*; 2.5 and 5 uM for SprYmB*). Complex formation between SprY and RNAIlI (2.5 and 5
uM) is used as positive control for shift assay. (D) Toeprint assay of saouhsc_03046 mRNA. SprY
specifically prevents ribosome loading on the saouhsc_03046 translational initiation site. Here we
show toeprint assays on saouhsc_03046 mRNA in the presence of increasing concentrations of
SprY (3, 15 and 75 nM). ‘+" indicates the presence of purified 70S ribosomes. An arrow indicates
the location of the experimentally determined toeprint. U, A, G and C refer to the saouhsc_03046
mMRNA sequencing ladders. Two potentials translational initiation are framed in yellow and red.
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For that, we tested their expressions in HG003 deleted for sprX2 or sprY (HGO03 Asprx2
or HGOO3 AsprY) as well as in HGO03 overexpressing sprX2 or sprY under the control of
its own promoter (HG003 pICS3-sprX2 and HGOO3 plCS3-sprY) (Le Huyen et al. 2021). Our
results showed that the absence of one sRNA or the overproduction of one does not
affect the expression of the other sRNA (Figure 2C in Le Huyen et al. 2021). Taken
together, regardless of the proximity of sprX2 and sprY genes, their expressions are

independent of each other.
Il. Identification of SprY direct targets by different approaches

A. In silico prediction: SAOUHSC_03046 mRNA

In general, most sSRNAs with known functions act by base pairing to mRNA targets. To
identify SprY potential direct targets, we performed predictions in silico using TargetRNA2
(Kery et al. 2014) and CopraRNA (Tjaden 2008; Wright et al. 2014). Since SAOUHSC 03046
MRNA came up as the only common result from both predictions analysis (Annex 1 and
Annex 2), we decided to study the impact of SprY on its expression. In addition, the
analysis with IntaRNA (Busch, Richter, and Backofen 2008; Mann, Wright, and Backofen
2017) confirmed a potential base pairing between SAOUHSC 03046 mRNA and SprY
involving the 2™ hairpin of SprY (49™ to 95" nucleotide) and the 5’UTR and 36 nts of
SAOUHSC 03046 mRNA (Figure 39A and B). Then, we verified the interaction between
SprY and SAOQUHSC 03046 mRNA by EMSA using synthetic RNAs. A complex between
SprY and SAOUHSC 03046 mRNA was observed (Figure 39C). The predicted zone was
tested furtherly by using SprYmaB, an SprY allele bearing point mutations corresponding
to the predicted SAOUHSC 03046 binding sequence (Figure 39A). Expectedly, SprYmB
lost the ability to bind to the mRNA target, implying that the predicted zone of SprY is
required for the interaction (Figure 39C). Altogether, our results confirmed the

interaction between SprY and SAOUHSC 03046 mRNA in vitro.

Furthermore, the fact that SprY binds to the 5" UTR of SAOUHSC 03046 mRNA including
the ribosome binding site (RBS), suggests the obstruction of its translation initiation. To
test this hypothesis, we performed a toeprint assays. First, a ternary initiation complex

made of purified 70S ribosomes, initiator tRNAfMet, and SAOUHSC 03046 mRNA was
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Figure 40. saouhsc_03046 expression regulated by SprY in HG003 S. aureus strain. (A) Analysis of
saouhsc_03046 transcript level in HGO03 (WT) strain containing empty plasmid (pICS3) or
overexpressing sprY or sprYmB (plCS3-sprY; plCS3-sprYmB) by gPCR, using RNA extraction of
those strains at early exponential growth phase. The mRNA expression level of saouhsc_03046 in
gPCR is normalized with the control gene (gyrB) and is calculated with 2-AACt relative
quantification. (B) Northern Blot analysis of sprY and sprYmB expressions in HG0O3 strain
containing plCS3 or plCS3-sprY or plCS3-sprYmB using labelled DNA recognizing sprY and sprYmaB.
(C) S. aureus HGOO3 carrying the pCN33-PtufA-03046-gfp fusion plasmid co-transformed with
plCS3 or plCS3-sprY or plCS3-sprYmB plasmids were grown on BHI agar plates. They were
supplemented with chloramphenicol (10 pug/ml) and erythromycin (10 ug/ml). The images were
obtained by scanning fluorescence on plates (right panel) and in visible light (left panel).

(D) The translational initiation level of saouhsc 03046 under SprY regulation were studied by
using gfp gene reporter. S. aureus strain (WT) containing the pCN33-PtufA-03046-gfp fusion
plasmids co—transformed with plCS3, pICS3-sprY or pICS3-sprYmB. The fluorescent intensity (D)
and growth of these strains at OD600 (E) were measured every 10 minutes over 20 hours in a
Biotek microplate reader.

All statistical analyses were performed using Student’s t test. The error bars correspond to the
average values from three independent experiments. Statistical significance is indicated by bars
and asterisks as follows: *, P< 0.05; **, P< 0.01; ***, P< 0.005.
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formed. A toeprint was then detected ~15 nts downstream from the AUG initiation codon
of the SAOUHSC 03046 mRNA, indicating that the ribosome fixation blocked the
elongation of reverse transcription (Figure 39D). SprY significantly reduced the toeprint
in a concentration-dependent manner, indicating that SprY inhibits binding of the

Ribosome onto the SAOUHSC 03046 mRNA in vitro (Figure 39D).

Next, we wanted to test if SprY affects SAOUHSC 03046 expression at mRNA and/or
translational level in vivo since SprY binds to the mRNA and masks the RBS of the mRNA.
We first studied SAOUHSC 03046 mRNA expression level by qPCR, using HGOO03 strain
harboring empty vector plCS3 or overexpressing sprY or sprYmB (plCS3-sprY or plCS3-
sprYmB). The expression of sprY and sprYmB in these strains was verified by Northern Blot
(Figure 40B). Surprisingly, SprY overexpression did not affect SAOUHSC 03046 mRNA
level, whereas the overexpression of SprYmB showed a subtle increase of
SAOUHSC 03046 transcript at exponential phase and a significant increase in the target
mMRNA level at stationary phase (Figure 40A). We then hypothesized that SprY could affect
SAOUHSC 03046 at translational level rather than its mRNA quantity. For this, we
constructed a SAOUHSC 03046-gfp translational gene fusion under the control of the
constitutive PtufA promoter in pCN33 vector resulting in pCN33-PtufA-3046-gfp. HGO03
containing empty plCS3 or plCS3-sprY or plCS3-sprYmB were co-transformed with pCN33-
PtufA-3046-gfp in HGOO3 strain. Bacterial growth of all strains used for this experiment
was essentially equivalent (Figure 40E). Overproduction of SprY significantly reduced
SAOUHSC 03046 translation (Figure 40C and D). Moreover, the overexpression of
SprYmB increased the fluorescence intensity in strain containing construction pCN33-
PtufA-3046-gfp (Figure 40C and D), which correlated with the increment at mRNA level.
Taken together, our results showed that SprY downregulates the post-transcriptional
level of SAOUHSC 03046 but also could affects its mRNA level by an unknow mechanism

not through binding to its mMRNA but maybe the presence of an intermediate factor.

To further understand the physiological role of this regulation in S. aureus, we noticed
that SAOUHCS 03046 encodes for a protein of XRE family proteins (Xenope response
element) (lbarra et al. 2013) by genomic comparison. It also showed that

SAOUHCS_03046 gene in HGOO3 strain represents a homologue of 100% identity of
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Figure 41. Predicted regulation of spa gene by SAOUHSC_03046 protein. Sequence alighement
between saouhsc 03046 (in HGOO3 strain) with sausa300_2460 (in USA300 strain) (A) and
sausa300_1797 (B) using Clustal Omega (Madeira F et al., 2019). The stars indicate the similarities
between the two sequences.
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Figure 42. spa mRNA expression regulated by SAOUHSC_03046 in HGOO03 S. aureus strain. Analysis
of spa transcript level in HGO03 (WT) strain and strain deleted for SAOUHSC 03046 (HGOO03
A3046) containing empty plasmid (pICS3) or overexpressing sprY (plCS3-sprY) by gPCR, using RNA
extraction of those strains at early exponential phase (2h) and stationary phase (6h). The mRNA
expression level of spa in gPCR is normalized with the control gene (gyrB) and is calculated with
2-AACt relative quantification.
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SAUSA300_2460 and ~55% identity of SAUSA300_1797 (xdrA gene) in USA300 strain
(Figure 41). Since XdrA is showed to activate spa translation in USA300 strain (McCallum
et al. 2010), we suggested that SAOUHSC 03046 protein could also affect spa gene
expression in HGOO3 strain. Our preliminary results showed an increase of in spa mRNA
level in HGOO03 deleted for SAOUHSC 03046 (HGO0O3 A3046) compared to WT strain
(Figure 42). The overproduction of SprY also increased spa mRNA levels, which correlates
with the fact that SprY overexpression reduced SAOUHSC 03046 expression at
translational level (described in Figure 41). However, SprY overexpression showed similar
impact on spa mRNA level in the presence or absence of SAOUHSC 03046, which
suggests that other regulatory factors besides SAOUHSC 03046 may be involved may be

involved in the regulation of SprY on spa mRNA.
B. Identification of SprY targets by MAPS

In addition to in silico approaches to identify SprY targets, we also performed in vivo
analysis through a MS2-RNA affinity purification coupled with RNA sequencing (MAPS)
(Carrier, Lalaouna, and Massé 2016; Lalaouna and Massé 2015; Tomasini et al. 2017a).
MS2 tagged version of SprY was expressed under the control of an inducible promoter in
HGOO3 strain and RNAs in complex with MS2-SprY were eluted and analyzed by RNAseq.
According to bioinformatic analysis of RNAs enriched in complex with SprY-MS2
compared with MS2 alone, we identified three potential targets for SprY: (1) romG1
mMRNA, with an enrichment of 11.11-fold; (2) saouhsc_1342a mRNA, which was enriched
by 7.59-fold; and (3) RNAIII, with 7.4-fold of enrichment (Le Huyen et al. 2021). However,
no base pairing with a significant energy was predicted between SprY and romG1 mRNA
by in silico analysis. Hence, we focus on testing SprY impact on the expression regulation

of the two other RNAs.

1. SprY affects SAOUHSC 1342a mRNA expression at translational level

IntaRNA prediction showed the binding between SprY and 20 nts around the translational
start site of SAOUHSC 1342a mRNA (Figure 43A and B). We therefore confirmed SprY

interactions with SAOUHSC 1342a mRNA in vitro. A complex formation between SprY
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Figure 43. SprY interacts with saouhsc 1342a mRNA. (A) Interaction between SprY and
saouhsc_1342a was predicted by IntaRNA software (Busch et al, 2008). The nucleotides
underlined and in red correspond to the mutations in the sprY and sprYmB sequences. (B)
Schematic presentation of SprY predicted secondary structure and the region of SprY that
interacts with saouhsc_1342a mRNA (shown in red line). (C) Complex formation between SprY
and saouhsc_1342a mRNA was analyzed by native gel retardation assays of 0.025 pmoles of
purified labelled SprY (SprY*) (left panel) and 0,025 pmoles of SprYmB* (right panel) with
increasing concentrations of saouhsc_03046 mRNA (0.05, 0.25 and 0.5 uM for SprY; 0.25 and 0.5
uM for SprYmB ). Complex formation between SprY or SprYmB with RNAIII (0.5 uM) is carried out
as a positive control for the assay.
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and SAOUHSC_1342a mRNA was observed with an increasing concentration of the mRNA
(Figure 43C). We also challenged the interaction region by SprYmB (described previously
in Figure 39A). As we expected, SprYmB lost its ability to bind SAOUHSC 1342a mRNA,
which confirmed the predicted interaction zone of SprY (Figure 43C). Next, we tested the
effect of SprY and SprYmB overexpression on SAOUHSC 1342a at post-translational level.
For this, we co-transduced RN4220 S. aureus strain with pCN33-PtufA-1342a-gfp and
pICS3 or plCS3-sprY or plCS3-sprYmB. SprY overproduction significantly reduced
SAOUHSC_1342a-GFP expression, whereas the overexpression of SprYmB resulted in a
similar fluorescence intensity as WT strains harboring empty plasmid (Figure 44A). In
addition, bacterial growth of all strains used for this experiment was essentially
comparable (Figure 44B). Taken together, we hypothesize that through binding to the 5’
end of SAOUHSC 1342a mRNA, SprY might prevent the recruitment of the Ribosome to
the RBS on the mRNA, and therefore downregulates the translation of SAOUHSC 1342a.
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Figure 44. saouhsc_1342a expression-regulated by SprY in RN4220 S. aureus strain. (A) The
translational initiation level of saouhsc_1342a under SprY regulation were studied using S. aureus
RN4220 carrying the pCN33-PtufA-1342a-gfp fusion plasmid co-transformed with different
plasmids (pICS3 or plICS3-sprY or plCS3-sprYmB). The fluorescent intensity (A) and the growth of
these strains at OD600 (B) were measured every 10 minutes over 20 hours in a Biotek microplate
reader. All statistical analyses were performed using Student’s t test. The error bars correspond
to the average values from three independent experiments. Statistical significance is indicated by
bars and asterisks as follows: *, P< 0.05; **, P< 0.01; ***, P< 0.005.
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2. “A small regulatory RNA alters Staphylococcus aureus virulence by titrating

RNAIII activity” (Published article)

The second identified target for SprY is RNAIIl, one of the major regulators of S. aureus
virulence. IntaRNA prediction showed a potential base pairing between SprY and the 13t
stem-loop of RNAIIl. We then verified this predicted interaction between SprY and RNAIII
in vitro by performing EMSA using synthetic RNAs. We also challenged the sequence
specificity of the interaction by introducing point compensatory mutations to create SprY
and RNAIIl alleles (SprYmA and RNAIIIMA) unable to bind the wild type sRNAs.
Furthermore, the stem-loop 13 of RNAIIl has been demonstrated to control the
expression of several virulence factors such as hla, rot, coa, lytM, spa, SA1000, SA2353,
SA2009, etc. (Boisset et al. 2007; Chevalier et al. 2010; Chunhua et al. 2012; Geisinger et
al. 2006; Huntzinger et al. 2005; Morfeldt et al. 1995). We suggested that through this
interaction with RNAIIl, SprY might affect RNAIIl regulation of its targets. To verify this
hypothesis, we studied the expression of two RNAIIl targets: ecb and rot mRNAs. To study
the mRNA level of these targets, we performed gPCR using total RNA extraction from
HGOO3 S. aureus strains overexpressing SprY. We also tested ecb and rot translational
expression by double plasmid system as described in Ivain et al. 2017. This experiment
consists in designing a mRNA-gfp translational gene fusion under the control of a
constitutive promoter PtufA in pCN33 vector resulting in pCN33-PtufA-ecb/rot-gfp. We
then transduced these plasmids in HGOO03 harboring plCS3, pICS3-sprY and plCS3-sprYymA
which is sprY mutated in the interaction zone with RNAIIl. The overexpression of SprY
impacts significantly the fluorescence of Ecb-GFP and Rot-GFP, while SprYmA did not
affect the fluorescence intensity. Since SprYmA does not bind RNAIIl, these results
implied that the interaction between SprY and RNAIIl is needed for the regulation of ecb
and rot by SprY. Taken together, our data disclose an sRNA acting as a sponge for RNAII
and showed that SprY also impacts on the hemolytic activity and involving in the virulence
of S. aureus. These results are presented in the article accepted for publication in NAR (Le

Huyen et al. 2021).
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ABSTRACT

Staphylococeus aursus iz an opportunistic human
and animal pathogen with an arsenal of virulence
factors that are tightly regulated during bacterial in-
fection. The latter is achieved through a sophisti-
cated network of regulatory proteins and regulatory
RMAs. Here, we describe the involvement of a novel
prophage-carried small regulatory 5. aureus RNA,
SprY, in the contrel of virulence genes. An MS2-
affinity purification assay reveals that SprY forms
a complex in wive with RNAI, a major regulator of
5. aureus virulence genes. SprY binds to the 13th
stem-loop of RNAIIL a key functional region involved
in the repression of multiple mRMNA targets. mRNAs
encoding the repressor of toxins Rot and the exira-
callular complement binding protein Ecb are among
the targets whose expression is increased by Spry
binding to RMAII. Moreover, SprY decreases 5. au-
reus hemolytic activity and virulence. Our results in-
dicate that SprY titrates RMAI activity by targating
a specific stem loop. Thus, we demonstrate that a
prophage-encoded sRMNA reduces the pathogenicity
of 5. aureus through RNA sponge activity.

INTRODUCTION

Staphylececous aureus 15 an opportunistic human and an-
imal pathogen that can cawse a wile range of illnesses,
from food polsoning and superficial abscesses to more life-
threatening diseases such as pneumonia, osteomyehing, bac-
teremia, endocarditis and toxic shock syndrome (1,2). The
infection process requires the controlled expression of vir-
ulence factors allowing bactena to escape the host de-
fense system, adapt to changing emvironmental conditions,
and attack and destroy host cells. This process involves a
wide range of wall-associated proteins and extrace!lular fac-

tors that are expressed dunng the different stages of in-
fection. Global regulatory elements including transcription
factors, sigma factors, two-component systems and regula-
tory RNAs assure the coordinated expression of these vir-
ulence factors

Among the regulatory RMAs, small ENAs (sRNAs) are
mostly non-coding, relatively short (30-350 nucleotides),
and located within core genomes or mobile genetic ale-
ments. They are wsually conditonally expressed, 1e. de-
pending upon specific stress and growth phase sR NAS con-
trol expression of their target genes by painng with RNAs
or forming complexss with proteins; in this way they usu-
ally modulate the stability and translation of mRMNAs, and
modify the activity of proteins (3). Owver the past decade,
hundreds of putative sSRMNAs discovered In &, gurens were
compiled in the 5 aurens RNA Database SRD (4). How-
ever, 4 recent analysis proposes that among them, only 50
are ‘bona fide’ sSENAs (3). Staphylococons aureus sSRNAs
were demonstrated to contnbute to regulation of dozens
of funchions sRNAs contnbute to regulation of bactenal
metabolism, such as RsaE (6-8), or to antibiotic resis-
tance, such as SprX (9). Several sRMA% were shown to
be involved in the virulence of 5 gwrews such as Sprid,
which regulates expression of the iImmune evasion protein
Sbi (10},

RMNAII 1% a paradigm for sRENA regulation of virulence
(11,12). Besides encoding the PSM &-hemolysin (known as
Hld}, EMNAILI also positively regulates expression of hla, en-
coding the a-hemolysin (13), which leads to cell hvsis (14
16}, and intervencs in the expression swiich between sur-
face proteins and secreted toxins. Through direct binding
to mENA targets, EMAIL prevenis the translation of ma-
jor surface proteins, such as protein A (17), Sbi (109 and Eck
(18], whech play key roles in adhesion and immune evasion.
In addition, RNAIIL inhibits translation of rof mRENA, en-
coding the repressor of toxins Rot (19-21), which blocks the
transeription of exoproteing and toxins (22). By mhibiting
Rot, RNAII indirectly activates transcription of exotoxing
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and mndirectly inhibits synthesis of proten A at the tran-
seniptional level.

In this study, we report that SprY, an sRNA expressed
from prophage 12, i3 invelved in the regulation of 5 au-
reus virulence. By antisense pairing with RNAILL SprY pre-
vents RNAILL from regulating its targets and consequently
decreases 5 gwreus hemolybc activity and virulence in a
munne sepsis infection model. Together, our data reveal an
sBMA acting as a sponge for RNAIL and further elucidate
the regulation network controlling 8. awrens virulence.

MATERIALS AND METHODS

All bactenal straing and plasmeds wsed i this work are
listed in Supplementary Table 51, The DH5-a Excherichia
colf strain was grown at 37°C i Luria-Bertani (LB} broth
or LB agar plate supplementesd with 30 pg/ml ampi-
cillin if necessary. The 8 awens EN4230 strains was
used to prepare phage-containing vectors expressing sENA
or tanget-gfp fusions In this study, 8 owrens HGOO3
strain was used to co-trunsform the target-gfp fusions
with the sRMNA expressing plasmid. Cultures of these co-
transformed 8. awrews strains were grown at 37°C either in
brain heart mfusion broth (BHI, Oxoid) or on BHI agar
plates. When necessary, media were supplemented with 10
pe/ml of chloramphemicol and/or ervthromycin, HGOO3
Arnalll tapdid (SaPhB61E) and HGOOY AsprYotagll2
{5aPhBYE0) were constructed using pMA DA rmalf T tagOid
and plMypr ¥2ootagl 12, respectively, as deseribed (23).

FPlasmids constructions

Supplementary Table 52 hists all the primers used. To con-
struct the sB NA-expressing vectors, we used plCS3 (24). To
construct the plCS3-spr ¥, spr ¥ with 1% endogenous pro-
mioter was amplified by PCR wath primers 13-14 and cloned
in plCS3 vector digested by Pstl and Marl. To introduce
mutations n spr Y, primers 15-16 wers used.

To construct the pCN33-PagfA-ror-gfp vector, which ex-
presses rof under control of the Pmfd promoter, we am-
plified 373 nucleotides rof with primers set 18-19. HGOOS
strains carrying each of the target-gfp fusions and the sRNA
plazmids were grown on BH agar plates supplemented with
10 pg/ml chloramphenicol and erythromyem. The Auores-
cence measurements of the co-transduced HGOO3 strains
were performed as previously described (24).

PCR products corresponding to the sequence of ms2 tag,
or ms? fused with spr ¥ were cloned into pRMC?2? digested
by Kpnl / Sacl (sce Supplementary Table 52 for primers
containing MS2 tag sequence). All cloning expenments
were performed with Gibson Assembly Master Mix (MNew
England Biolabs). The resctions were then transformed into
E. coli DH5-a by heat shock at 42°C. The plasmids were
purified from overmight cultures in LB broth supplemented
with Ampecillin 100 pg/ml, extracted { Miniprep Extraction
Kit, Chagen) and Sanger sequenced by using Biglwve Termi-
nator v1.1 Cycle sequencing Kit, wsing a 3130 = 1 capillary
clectrophoresis genetic analyzer (Appled Biosystemns). The
purified plasmids were used for the transformation in 5
anrens BEN4220 strain by electroporation shock. The o380
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phages prepared from EMN4220 were then used to trans-
duee plasmids i HGOO2 strains. pMA DA rmallltagOid
1% a pMAD derrvative contuining the PCR-amplified
rnalil upstream, tag004 and realll downstream sequences
cloned by Gibson assembly (using primers ENALLL UpF,
EMNAILIL UpR, RNAIILI DwE RNAILL DwR for roalif
adjacent sequences) as descnibed . plMspr¥2:taglll is
a pIMAY dervative contaming the PCR-amphified spr ¥
upstream, taghid and spr¥ downstream sequences cloned
by (bson assembly {using primers plMAY-Up-SprY 2-
F, plMAY-Up-SprY2-R, pIMAY-Down-Spr¥Y2-F and
pIMAY-Down-SprY2-KE for sprl adjacent sequences) as
described (23).

Proteins extraction and Western blots

Staphviococous aureus strains were grown until exponential
phase (0D = 0.8) or stationary phase (ODwo = 10.1) in
BHI at 37C, with agitation at 160 rpm, and the cells wers
then pelleted for 10min at44C (3000 = g). The total proteins
extractions were prepared according to (23). Rot expression
was visualwed by anti-Rot antibodies {Benson, 2012, 1B)
and anti-rabbit 1gG secondary antibodies (Jackson). Wesi-
ern blots were revealed vsing the Amersham ECL Plus de-
tection Kit. Signals were visualized wsing LAS 4000 (GE
Healthcare).

In vitro transcription, RNA labeling and Gel-shift assays

All RNA% were transcribed from PCR-generated DNA us-
ing MEGAscript T7 kit (Ambion). The template for tran-
seription was amplifisd vsing HGOO3 genomic DMNA and
forward primers containing T7 promoter sequences (Sup-
plementary Table 51). ENAs were labeled at 5-end us-
ing [y -HF‘] ATP {Amersham Biostiences) and T4 polyvnu-
cleotide kinase (Invitrogen). Labeled and unlabeled RNAS
were purified on a 5% acrylamide urea gel, eluted m Elu-
tion buffer (20 mM Trs-HCI pH 7.5, 250 mM NaCl, 1
mM EDTA, 1% SDS) at 37°C, eluted, ethano! precipitated,
quantified by Qubit (Thermo Fisher Scientific) and stored
at -8l C,

Gel-shift assays were performed as described o (26).
EMNAs were denaturated in 30 mM Tns/HEFPES pH 7-
7.5, 50 mM Na(Cl for 2 min at 80°C, followed by refolding
for 10 min at 25°C after adding MgClz at final concentra-
tion of 3 mM. The binding reactions were performed in 50
mM Trns-HCI (pH 7.5), 50 mM MNaCl, 5 mM MgCls for
20 min at 25°C. About 0,025 pmoles of labeled SprY or
SprY mutants were incubated with vanouws concentrations
of RMAILL The samples were supplemented with 10946 ghec-
erol and were loaded on a native 4% polyacrvlamide gel con-
tatming 3% glycerol. The gels were dried and visualized by
Typhoon FLA 9500 scanner (GE Healthcare).

EMA extractions, northern bots, RNA half-life determina-
tion and qPPCR assay

The cells were collected at exponential and at stationary
phases of growth, pelleted for 10 min at 44C (4500 = g)
and resuspended in RMA lysis buffer (0.5% SDS, 20 mM
acetate of sodium, 1 mM EDTA, pH 5.5). Total RNA
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was extracted as previously described (7). The MNorthern
blot assavs were carned out as previously described (9).
The membranes were hybridized with specific 2P-labeled
probes (Supplementary Table 52) in ExpressHyb solution
{Clontech) and were washed according manufacture rec-
ommendations. The membranes were then exposed and
scanned with Typhoon FLA 9500 scanner {GE Healthcare).
The mmages quantifications were realized with ImageCuant
Tool 7.0

For sRMNA half-life determination, nfampicin was ussd
a& the most common treatment to stop the transcription
(27). Srtaphvlococcus aurens HGOOR strain and its derivatives
were cultured overnight, diluted to 1,/100, grown for 5 h at
37°C, and incubated with 20 mg/ml rifampicin. About & ml
of each stramn was collected before and at 2, 5, 10, 20, 30, 40,
60 and 90 min after adding rfampicin. These samples were
centrifuged, the pellets were frozen in liquid mitrogen then
stored at -80°C. Total RMA was extracted. For the quantita-
tive real-time PCR (gRT-PCR), total RNA extraction sam-
ples were treated with DMNasel Amphification grade Kit (In-
vitrogen ). cDMAs preparations and gRT-PCR expermments
were performed as previously described (24). The gyr 8 gene
was used for normalization. As for absolute guantification
bv gPCH., instead of using gyr B, we prepared a calibration
range with rﬁfmtmc PCE products at concentrations of
m'"f 86/ 4 107 2 ponies /ul. Identification of TSS of spr ¥
was performed as performed as desenibed (28). For this re-
verse transcription (RT) was done on 5 pg of total RNA of
HGO03 stramn with labeled primer 2.

Preparation of the M52-affinity colomn

To prepare the 6His-MBP-MS2 protein, we used the
pHMMN plasmid (29) containing the 6His tag at the N-
terminal and the MS2 tag at the C-terminal. The induction
of protein production and bacterial hvsis was performed as
described by (30). The 6His tag allows a first purification on
nickel resim, using an AKTA (GE healthcare). After being
washed with water, the pumps and the column were equili-
brated with lysis buffer (30 mM NaH2PO4, 300 mM Nad(l,
0.5% Tween 20, 10 mM Imidazole 10% glycerol). The bac-
terial lysate was added into the column and variouos frac-
tions were recoversd using the elution buffer (lysis buffer +
250 mM of imidazole). The fractions of interest were passed
through a desalting column o remowve traces of the elo-
tion buffer. A second purification was carmed out using an
amylose column washed and then equilibrated with buffer
2{20 mM Trs-HCL 0.2 mM NaCl, 0.5 mM EDTA). The
fractions of interest were passed through the column and
then eluted using a second elution buffer (buffer 2 + 10 mM
maliose buffer). The fractions were also passed through a
desalting column to remove all traces of maltose. For the
preparation of the MS2-affinity colummn, 100 pl of amy-
lose resin (MEB # EB0215) was added in a Bio-spin dis-
posable chromatography colummn { Biorad # 732-6008). The
column was then washed throe times with 1 ml of buffer
A (20 mM Tns-HCl pH 8, 150 mM KCL 1 mM MgCls,
1 mM DTT, | mM PSMF). A solution of 100 pmoles
of 6His-MBP-MS2 protein was added to the column and
was incubated for 5 min, and washed twice with 1 ml of
buffer A.

Purification of bacterial lvsates, RNA sequencing and Bioin-
formatic analysis

Staphylococcus qurens strams were grown unitl] exponential
phase (0D, = 0.8) or stationary phase (0D = 10.1)
in 50 ml of BHI (Oxoid). Then expressions of ms2-spr}¥
and m=? were induced with 1 pM of anhydrotetracycline
for 10 min. The bactena were placed i 1ce for 10 min and
centrifuged for 5 min at 4000 = g. The pellets were then
washed with | ml of buffer A, centrifuged for | min at 16
00 = g and stored at -80°C. Frozen pellets were thawed
on ke and resuspended n 2 ml of buffer A. Mechancal k-
515 with Fastprep (Fastprep, MP Biomedicals) in the pres-
ence of 250 pl of glass beads was carmed out for 3 = 30
5 at 6500 = g. The samples were centnifuged for 10 min
at 4°C at 16 000 = g. The bactenal lysates obtained were
passed through an affinity column. Columns were washed
5 times with 1 ml of buffer A and then eluted with 1 ml of
buffer A + 15 mM maltose In order to carry out checks, we
extracted the RMAs at different points in the experiment.
We obtained four RNA extracts corresponding to the total
KMAs taken before passage through the amylose column
(input), RMNA passed through a column (Flow-Through),
RMA recoversd after the last washing of the column (W)
(Supplementary data). The RNAs from the fractions eluted
from the columns are exiracied with chloroform phenol
as previously descnbed (10) For M52 and MS2-SprY, the
northern blots were carmied out using 5 pg of RNA accord-
ing to the protocol as previously described (9). The primers
used are hsted in Supplementary Table 52, A bo-analyzer
(2100-Agilent bio-analyzer) was used to quantify and verify
the purity of the samples before being sequenced (following
the manufacturer’s instructions [Agilent]). RNA sequenc-
ing was carried out as previously deseribed (313 The cDNA
libraries were prepared with the NEBNext({®) Ultra™ 11 Di-
rectional RNA Library Prep Kit for [llumina(i), and then
seqguenced as paired-end reads (2 x 73 bp) using an [llumina
MiSeq platform and the MiSeq reagent kit version 3. The
reads were mapped against the genomic sequence of 8. an-
rens HGOO03 strain (Genbank accession no, CPODO253) and
then counted wsing the CLC Genomics Workbench sofi-
ware vE. 1 (Quagen). Statistical analyas was performed using
the DESeq? R package (32). Raw and processed data gener-
ated 1 this study have been submitted to the Gene Expres-
sion Omnibus (GEO) repository at the National Center for
Biotechnology Information (NCBI) and are available under
accession no. GRE1HGL05,

Hemuolysis assays

Staphylococcnus gurens strains grown overnight were diluted
to O = 0.1 in BHIL. The supernatants were taken at 2 h
of bacterial growth, filtered with 0.45-pm filter and stored
at -20*C. For blood sample preparation, 1 ml of human or
mouse blood was centrifuged for 10 min at 4000 = gat 25°C,
followed by multiple washes with PBS 1X {gsp | ml) to elim-
inate the plasma and lysed red blood cells and re-suspended
in 10 ml of PBS 1 =. The prepared blood sample and the su-
pernatants (diluted in 1/ 10) were added at a ratio 50:50 in 96
pointy wells plates to a inal volume of 150 pl per well. Afier
an in¢ubation of 1 h at 37°C, the plate was centnfuged for
10 min at 4000 = gat 25*C and 100 pl of the supernatants
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were collected into a new 96 flat well plates and read at OD
M nm. The mix of blood sample with PBS | x orwith (. 1%
Triton were used respectively as negative and positive con-
trols of hemolytic activity.

Animal infection model

HGO03, HGOAAspr ¥ and complemented strams were
usad to study the virulence level In 3 murine intravenous
sepsis model. All experimental protocols were approved by
the Adaptive Therapeutics Animal Care and Use Commit-
tee (APAFISHE21 2320151002 14568502v4). For the sepsis
model, we nsed female Swiss mice (Janvier Labs), 68 weeks
old and weighing ~30 g, Groups of five female mice were
imoculated 1w, with 200 pl of bactenal suspensions contain-
ing 2 = 10* 8 gurens cells in 0.9% MaCl. The survival of the
mice was momtorsd for 12 days, and the statistical sygmifi-
cunee of differences betwesn groups was evaloated by com-
paring Kaplan—Meier survival curves with the Mantel-Cox
test. A P-value of 0005 was considered sigmficant.

RESULTS
SprY. a novel sRNA expressed from 5. anvens srna closter

A small staphylococcal RNA expressed from prophage
@l2 (33) in NCTCR323 dervatives was imitially described
as a putative SUTR of a small open reading frame
SAOUHSC_Aof435 of 60 amino acids, and called 5629
(34). However, based on in-depth analysis of the HGOO3
stramn genome, we designated 5629 as a bong fide sENA
(5). Because the gene 5629 is adjacent to the sprX? sRNA
rene (7,9), we renamed this sSENA SpryY (Figure 1A and
Supplementary Figure S1_A). Spr 15 an acromvm coined for
small pathogenicity island sEMNA (35). The SpryY 5-end
determined by reverse transcription (RT) {Suppkementary
Figure 81_B) corresponds to nucleotide position 1464380
of the NCTCEIXS genome sequence (Supplementary Fig-
ure 51 _A). Detection of SprY by northern blot (Figure 1B)
and in zilice Wdentification of a Rhoandependent transcnp-
tional terminator upstream of SAOUHSC_A0S455 (using
ARNold; (36)) indicate that SpryY 15 a bona fide sSENA of
about 125 nucleotides. 1115 found n several 8 gurens 150-
lates with 95% sequence 1dentity but 15 not present in other
.braph_n lococcaceas (5). SprY 15 present -:unh' In straing con-
taining the 1;:1'?' prophage; accordingly, 1t was detected b}'
northern blot m Newman and HGO02 strains but not in
USA3M and N315 (Figure 1B).

SprY amounts are highest in pre-stationary phase and
slowly decrease during stationary phase (Figure 2A). Spry
half-hife 15 23.3 2 145 min in pre-stationary phase (Figure
2B}, implying that SprY  stable RNA, compared to most
mBMNAs with half-life of 24 min (37,38). Since spr¥ and
sprX2 are adjacent sSENA genes, we considered that their
cxpression could be mter-dependent. For this purpose, we
analyzed the amounts of both, SprY and SprX2 sRNAs
in HGOOR (39 and its denvatives deleted for either spr¥
{Aapr ¥) or spr X2 (AsprX2) Despite thear proximity, dele-
tion of one sRNA gene did not affect the expression of
the other (Figure 2C). In addition, overexpression of spe X2
(plCS3-5pr X2} or spr Y (plC83-5pr ¥ did not affect the ex-
pression level of the other sEMNA (Figure 2C) We concluded
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that spr ¥ and spr X2 are expressed independently from each
other. Despite the close proocamity of these genes, their ex-
pression patterns are different, since SprX? accumulates
during exponential phase while SprY accumulates in pre-
stationary phase (Supplementary Figure 82, (9)).

The SprY structure predicted by ENAfold (40,41) and
LocaRNA softeares (42-44) revealed three stem loops, the
last one being a Rho-independent fransenptional termi-
nator (Supplementary Figure 83). The activity of several
staphylococeal sEMNAs mmvolves single-stranded C-rich re-
zions (8,.45). However, this feature 15 not present i Spr,
suggesting that it may not target G-rich regions associated
with Shine-Dalgamo sequences but other sequences.

SprY interacts directly with RMNAILL, a major regulator of
virulence factors of 5. anrens

Most sENAs act by basc-painng to RMNA targets To
dentify potential direct targets of SprY, we performed in
vive MSZ-RMA affinity purification coupled with RMNA
anqwmtmb {MAPS) (46). For this purpose, an MS2 td,g_gcd
version of SprY was expressed under the control of an in-
duable promoter in HGOO3 (Supplementary Figure 544
and B). After 2 and & h of growth, each followed by 5 min of
induction, RMNAS in complex with MS2-SprY were isolated
by M52 affimity chromatography, eluted, and identified by
REMAseg. RMNAILLL rpm G mEMNA and SAGUHSC_142a
mEMA were enriched 7.24- 11.11- and 7.5%fold, respec-
tively, with MS2-SprY compared to M52 alone (Supple-
mentary Figure 54_C and Supplementary Table 833 Ths
gignificant ennchment sugrests that these three RNAs are
SprY targets. However, no base-pairing with a significant
energy between SprY oand rpmG! mENA was predicied
by in sifico analyss sugpesting that rpmG ) mBENA enrich-
ment with MS2 tagged SprY could be due to an indirect
interaction. In contrast, IntaRMNA softeare (47 48) mdi-
cated potential base-pairings of SprY with the ¥ UTR of
SAQUHSC 342 (Supplementary Figure S84_1) and with
REMAILIL iFigure 3A), supporiing the MAPS resolts. As
EMAILIL 15 the major virulence regulator and effector of
quoTum sensing in & aurens, we focus our study on the in-
teraction between SprY and EMNAILL

IntaBR NA analvais indicates potential base-pairing be-
tween EMALLL and SprY involving the 15t hairpin of SpryY
(4th to 46th nucleotide) and the 13rd hairpin of ENAILL
{Figure 3A and B). The predicted interaction betwesn Spry
and EMNALL was tested in vitre by EMSA using synthetic
BENAs A complex between SprY and ENAILLD was ob-
served (Figure 3C). Its specificity was challenged by Spry
allels branng point mutations in the st hairpin (SprymaA),
which corresponds to the predicted RNAII binding se-
quence (Figure 3A). Expectedly, SprymA lost the abihity
to bind RNAILLL (Figure 2C), implying that the 1st SprY
hairpin 1% required for panng. To bring further evidence to
support the predicted pairing, an RMNAIL dervative with
compensatory mutations (RNAIIImA) restoring the pair-
ing with Spr¥mA (Supplementary Figure S5_C) was syn-
thesized and tested by EMSA. A gel retardation was ob-
served between SprymaA and RNAIIImA but not betwesn
SprymA and RNAILL (Figure 3C) In addibon, BRNAILLL
mutated in the 13th loop, which corresponds to a part of the
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Figure 2. SprY expression in HG003 strain. Expression of sprY was determined by northern blot analysis using ksbeled DNA probes for SprY. As loading
controly, the blots were also probed for tmRNA. (A) SprY expression profile during & 24 h growth of Stapkylococcus qurens HG003 strzin (WT) The
growth curve of WT stntin is presented by line, with the quantification of SprY expression level relative to the amount of tmRNA from the same RNA
extraction in black chart (a.u., arbitrary units). (B) Stability of SprY. HG003 {WT) was grown until § h (1 = 0) and the R NA extraction was performed at 2,
5, 10, 20, 40, 60 and 50 min after adding Rifampicin. The quantification of SprY stability, in semi-log plot, was performed by ImageQuant Tools 7.0. The
data represent the mean of three different experiments 2 tandand error. The maximum vilue of rae/If expression at time 0 is normalized to 100% and the
time at which the SRNA resches 5094 of its original level is indicated with red dotted line. (C) The expression of sprX2 and sprY at 6 h of bacterial growth
of HGO003 wild-type strain (WT), strains deleted for sprX2 or spr Y (AsprX2; AsprY) and HGO0O3 overexpressing sprX2 or spr ¥ (pICS3-5pr X2, plCS3-spr 1)
by northern blots, wsing labelod DNA probes for SprY and SprX2. As loading control, the blots were also probing for tmRNA.

predicted SprY binding region, noticeably lost the capacity
to bind SprY (Supplementary Figure S5_A and B). Alto-
gether, our in viveo (MAPS), in silico and in vitro (EMSA)
experiments revealed an interaction between the Ist SprY
hairpin and the 13th RNAIII loop.

In many cases, base-pairing with sSRNAs affects RNA
target stability. We therefore tested if binding of SprY would
affect the :mbility of RNAIIL The stability of RNAIII was
compared in HGOO3 harboring the plasmids plCS3-sprY,
plCS3-spr YmA and the control vector plCS3 (Figure 3D).
No significant difference was observed in RNAIII stability,
whether SprY or SprYmA were overexpressed (Figure 3E).
This result prompted us to further analyze the role of SprY
toward RNAIIL

SprY affects expression of RNAIII targets

RNAIIL is the effector of quorum sensing and a major reg-
ulator of a plethora of virulence factors. Interestingly, the
13th RNAIII stem-loop 1 involved in the repression of sev-
eral among its numerous mRNA targets. By binding to the
5’ leader region of ret mRNA (for repressor of toxins),
RNAIIL, via the 13th stem-loop, negatively regulates the ex-
pression of this target at the translational level (49) and in
consequence obstructs the expression of toxins (20.21). An-
other well-studied target of the 13th RNAIII stem-loop is
ech (for extracellular complement binding protein) (19,24),
which 1s involved in blocking bacterial recognition by the
host immune system {18).
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Bonderromi comparison test.

We therefore questioned if the SprY binding to the 13th
EMNAIL stem-loop could affect the activity of ENAILI
against specific targets. Surpnsingly, spr} overexpression
showed no significant impact on rof mERNA levels (Figure
4A). We hypothesized that SprY could affect rer transla-
tional mitiation rather than ret mEMNA guantity. We con-
structed a rof-gfp translational gene fusion under the con-
trol of the constitutive Py promoter in pCN33 resulting
in pCMAN-Pygg-rot-gfip. HGO03 and HGO3 Arnalll con-
taining empty plCS3 or plCS3-5pr ¥ were transformed with
PCNI3-Prga-rof-gfp In addition, a strain overexpressing
rralll under constitutive promotor amid (plCS3-Pasei-
rrallT) was used as a control. As expected, SprY overpro-
duction sigmificantly mereased rof translation only n the
presence of RNAIIL (Figure 4B). Furthermore, the overex-
pression of SprymA had no effect over the fluorescence of
Bot-GFP fusion {Figure 4B), which implies that the regula-
tion of rof expression by SprY involved the interaction be-
tween SprY 15t hairpin and RNAILLL In addition, deletion
of spr ¥ resulted in a small but significant decrease in luores-
cence intensity of the Bot-GFP fusion, while strains overex-
pressing spr ¥ showed increased Auorescence (Supplemen-
tary Figure 56). We also confirmed the effect of SprY on
endogenous rof expression inan raalfl dependent manner

by Western blot {(Figure 4C). Overexpression of SprY in-
creases Kot level in the HGOO3 wild-tvpe strain but not in
the absence of RNAILL

The effect of SprY was also tested on the expression of
ech, another target regulated by the 13th RMNAILL stem-
loop. Overexpression of SprY induced an increase in ech
mBNA levels (Figure 40). As in the case for ror, Spry
overproduction sigmficantly inereased ech translation only
in the presence of RNAIL (Figure 4E). Moreover, like for
rof regulation, the overexpression of spr¥md had no ef-
fect on the fluorescence of Ech-GFP (Figure 4E). which
implics that the regulation of ech expression by SpryY re-
quires the interaction betwesn SprY and RNAILL In ad-
dition, as in the case for rof, the absence of spr¥ resulted
in decreased fluorescence of the Ech-GFP fusion (Supple-
mentary Figure 56). Bacterial growth of all strains used
for this experiment was essentially eqguivalent (Supplemen-
tary Figure ST). As with Rot, we observed a significant
decrease in fAluorescence intensity of Ecb-GFP in the ab-
sence of SprY, and an increase of fluorestence of strains
overexpressing spr¥ (Figure 4). Taken together, our re-
sults indicate that SprY affects the expression of RNAILL
targets likely by titrating the regulation mediated by its
13th loop.
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Abundance of KMNAL and SprY depends on growth condi-
tions

As the regulatory activity of RNAII controlled by SpryY
15 based on RNAILSprY direct binding, the endogenous
ratic of cach partner likely controls the biological func-
tions of this interaction. In rich mediom, both SpryY and
BEMNAI accumulate during growth and diminish in late sta-
tionary phase (Figure 3A). The expression profiles in differ-
ent media were similar for both sBEMNAs (Figure 5B), cven

when bactenal growth rates were different (Supplementary
Figure S8_A). Quantitizs of SprY and RNAILL were de-
termined in different media in exponential (2 h) and sta-
tionary (& h) phases by RTqPCR (Supplementary Figure
S8_B). Compared to RMAILL the SprY copy number was
2-fold lagher in BHI and RPMI, and 4-fold higher in TSB
at 2 h of growth; however, it was significantly lower than
REMAILL in NZM at 2 h (0. 1-fold) (Figure 5C). The RNAILIL
copy number 1% far greater than that of SprY in all media
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fments

at & h (RMAILL SprY ratios are 5, 3, 1000, and 5 1n BHI,
TSB, NZM and BPMI, respectively). These results suggest
that EMNAII regulation by Spry will hkely be controlled by
growth conditions.

SprY limits hemolytic activity and decreases virulence of 5.
anreny in a mouse infection model

We showed above that SprY regulates the virulence factor
Ecb as well as Rot through its effect on RNAILLL More-
over, Rot 15 known to repress toxing production (20). Since
staphylococcal toxing are involved in hemolysis, the effect
of SprY on & gwrews hemolytic actrvity was tested on
mouse and human blood samples with HGOO3, HOGOO03
AsprY, HGOOY Arnalll strains harbonng either plCS3
or plCS3-spr Y overexpressing spr) (Figure 6A and B).
The accumulation of SprY led to a sigmificant decreass in

Nucleic Acids Research, 2021, Vol 49 No. 13 10651

the & aurens hemobvbic activity i all stramns except for
HGM3 Arpalll, indicating that BNAILLL 15 required for
Spr¥-mediated hemolysis.

Since SprY restricted hemolysis in mouse blood, we con-
silered mice as a suitabls mode] to test the role of spr Y dur-
ing staphylococcal infection. A munne intra-venous sep-
i1 model was used with an inoculum of 2 = 107 bacte-
ria per mouse. The survival rate of mice infected with e-
ther HGOO3 or HGOO2 Aspr Y was not statistically differ-
ent {Figure 6C). We also tested the HGOO3 Aspr} contain-
ing either the plCS3 (contrel plasmid) or overexpressing
spr Y (plCE3-5pr ¥ The virulence of HGO03 Aspr ¥ overex-
pressmg spr ¥ was drastically reduced compared to control
the sirain (plCS3) (Figure 613). Taken together, our results
show that SprY reduces 8 awrews virulence likely by de-
creasing expression of virulence factors including RNAILL-
activated hemolysin,

DISCUSSION

We report the function of SprY alias 5629 (3), a re-
cently identified bona frde sRNA (5), expressed from HGOO3
prophage @12 (also known as bacteriophage Sa2 or gSal)
{33). Here, we identified SprY as an sRNA tuning the so-
phizticated EMNAILL regulation network. Co-purnthcation of
in vive RMAS assocted to SprY revealed that SprY binds
RMNALIL ENAILL 1% the key effector of the accessory gene
regulator (agr) system and the major nbonuclec staphy-
lococcal regulator of virulemce, which controls translation
and stability of several mRNA tarpets by antisense base-
painng invelving its varnous stem-loop stroctures (17,19)
{Figure TA and Supplementary Figure 59). We demon-
sirated that the 3 regon of SprY bnds to the 13th stem-
loop of RNAILIL RMNAII sequence painng with Spry is
also the binding site for targets such as rot, spa, coa, M,
ech, 542003 and 42353 mRMAs (Supplementary Figure
59). SprY binding doss not affect RNAIL stabiblity but al-
ters 1ts function. We propose that SprY stencally prevents
the formation of complexes between RMAILL and its targets,
therefore affecting their expression. Indeed, SprY overpro-
duction increases ror mRNA translation only when the in-
teraction betwesn SprY and RNALL takes place. Moreover,
SprY stimulates expression of the staphvlococcal extracel-
lular complement binding protemn, Ech (500 mn an RNAIIL-
dependent manner. In accordance with positive regulation
of ret, whose regulon includes genes encoding proteins with
hemolytic activity such as hila, pame and kgdCE (22,51,
SprY reduces the hemolytic activity of & awreny on human
and mouse blood dependently from RNAILL presence.
The interactions we uncoversd betwesn SprY and
EMNALI prompt us to hypothesize that SprY acts as an
REMNA sponge for RNAILL to prevent RNATN-dependent
regulations The competition between mBNA targets and
the mimicry of targeted RNA by other RMAs are essen-
tial mechangms to adjust the action of regulatory sSRNAS
{reviewed in (52)). RNAs with sponge-like activity were re-
cently described in different bactenal species such as E
coli, Bacillus subtiliv and Prewdomonas aeruginosa (33-535)
and reviewed in (52,56). These sponge-like RMNAs use dif-
ferent mechanisms to control SR NA regulators Their bind-
ing can induce the cleavage and/or destruction of SRNA, as
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Figure 6. Impact of SprY to hemolytc activity in Staphrlococcis ewres in different models of infection. (A and B) The supematants of different strains of
HGOO3 (W, Aspr¥, ArealiT) containing empty plasmid (pHCS3) or overespressing sprY (plCS3-5pr ¥) werne collected after & h of growth in BHI at 37°C
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Triton 0. 1% as MRS hemolysiz (O and ) Survival of mice miected with 5. areas wild-type strain (W), deleted strain for spr ¥ ( Aspr ¥ and complemented
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reported for chb-ChiX (37). In addition, since degradation
1% mot an obligate outcome of duplex formation, a sponge
REMA can act by titrating a regulatory sEMNA and by com-
peting with their true targets, as ocours between the tRINA
spacer sequence with BEybB or RyhB sRNAz (31). Untl
now, only few cases of base painngs between two sRMNAS
were identified in 5 awreus; however, no “sponge-hke’ func-
tion was shown for these interactions (58, 5%). Thereby, the
findings presented here wdentify a sEMNA with an original
sponge activity in pathogenic bactena.

To detectably adjust RNAITI function, SprY has to acco-
mulate in amounts likely comparable to those of RNAILLL
SprY and RMNAII expression vanes according to growth
conditions. The differences in sSRNA stoichiometry could
push the balance to different outcomes according to the
growth emvitonments In nich media, SprY abundance s
comparable to that of RNAIL during growth at low cell

density. However, in late exponential growth phase, the ra-
tic between SprY and EMNAILL reverses and amounts of
RNAIIL vastly dominate those of SprY. This result sup-
gests that SprY actively interferes with EMNAII function
at low cell density resulting in ablating RMNAII function
and consequently allowing the production of surface pro-
teing and inhibiting the production of extracellular tox-
ins (Figure 7B). Early growth phase presumably represents
the early stages of infection (reviewed in 60); therefore, the
action of SprY is likely to be important during the be-
ginming of infections, allowing 8. awrens to colonize var-
ious miches without causing severe conseguences for the
host.

Recently, another sRNA, SprX, was also shown to modu-
late the pathogenicity of & guwrens through binding RNATIL
In contrast to SprY, SprX binds the RMNAI 5 -end near
the hemolysin Ald coding sequence (58). Although the

126



mgrA

SA2353
SAZ093

B

sna
SATOech

Nucleie Acids Research, 2021, Vol 49 No. 13 10653

Low density of 5. aureus

=mr___ RNAII P l:-’—"w.
Rl

0
P3 e — 00 s

High density of 5. aureus
Epry
1

.,
RMAINI

N

—e g
oo

i

-

P3

:
il
:

By

Figmre T. Schematic view of RMNAT and Spry sctions. {(A) Schematic view of the secondary stnsctune of RMATIL(12) 2nd base-pairings interaction negions
with Spr¥ amd other mBNA targets o mBEMNA mierscts with BENATI &t 2nd and 3rd hairping (reefi! sequence is colored in red). RNAI encodes the
delta-hemolysin (Ald, in green). The interaction zone of RMAI and 3prY is indicated in red line and is overlapped with other ENATII mBMNA target listed
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mumber of copies than RMAIL and bind to all RMAT molecules produced. This interaction prevents RMAIL From bindimg to ref and ech mEMNA and
fuvors the transstion of Bot and Ech proteing At high cell density (bottom panel), RMAT is prodoced in higher level than SprY and suppresses the
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significance of this pairing 15 unclear, the authors proposed
that it might release the intramolecular base pairing be-
tween the RMNAILL 5 and 3 ends, changing the secondary
structure of RMNAILL and facilitating the ribosomal bind-
g for kld translation, resulting in an increase of Hld pro-
duction and conseguently a nse of hemolvsis Interestingly,
SprY 1% expressed in immediate proximity to sprX2 (alias
rialR), one of the two copies of sprX i HGOO2 (7), but the
cffect of SprY on hemolysis 13 opposite to SprX 2, SprY and
SprX2 also have opposite effects on the expression of ech
(24). Interestingly, the adjacent spr Y and sprX? genes show
inverse expression profiles during growth, which might ex-
plain the contributions of sRMNAs iIn controlhng FEMNALL
expression and function in different points of & gwrens
growth. Organization of genes in clusters 15 charactenistc
for genes expressing macromobketules with shared functions
In addition to protein gene clusters (61,62), sRNAs are also
comprised in such clusters For example, in 8. auwrews, an
unusual condensed cluster was recently shown to contain
severdl sSEMA penes (63). Despite the dscovenies of sEMNAs
m gene clusters, whether they possess similar or unrelated
biological roles remains unclear (64). Although additional
studies are needed to understand the collaboration between
SprY and SprX, the current data suggest a functional rela-
tionship between these two sENAS

Prophages are known to have important roles in the
pathogenicity of 8. awreus either by encoding toxins and

other accessory vinulence factors or by interrupting chro-
mosomal virulence genes such as for B-hemolysin (Afh) (re-
viewed im (65)). However, in some cases, phages not only
carry virulence genes but also affect their expression. In-
duction of prophage was shown to also stimulate expres-
sion of some virulence determinants (66). Moreover, the
presence of lysogenic phage deregulates expression of mul-
tiple genes (67). In this work, we report an example of
phage encoded sENA, acting through a novel mechanism
to block an RMAL regulatory domain. Althowgh 12
15 present in different S gurens strains such as HGOO3,
MWL, MS5A476 and MESA252, USAYW, and RF122;
however, the spr ¥ gene is found in ¢5a2 phage of MS5A4TE,
MESAZ52, HGO03 and Newman strains but not found nei-
ther in USA3MN nor in MW2 {(6E5-T1). It 15 possible, that
the acquisition of @12 phage carrying spr ¥ would fine tune
REMNALI function and give the selective advantage to certain
bactenal strains in some infection conditions. This sRMNA-
based regulation 15 one of the numerous pathways acquired
by & aureus to modulate RNAIL activity. In the absence
of ¢l2<ncoded spr¥ this bacterium possesses alternative
mechanisms to adjust expression and function of agr and its
effector molecule, RNAIILL sech as protein-based controls
like SarA or CopA (72-75), and RMNA regulators like PSM-
mee and SprX (58,76.77). Our work deciphers another layer
in the multifaceted regulation of virulence factors during
& awreus infection and also rakes a number of important
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evolutionary questions regarding regulatory Gontrol pro-
vided by the prophage.
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Table Supplementary 1. Strains and plasmids

Strains

Relevant characteristics

References

E. coli strain

DH5-a

F-®80d lacZAM15 D(lacZA-argF)U169 deoR recAl endAl hsdR17 (rK- mK-)
phoA supE44 |- thi-1 gyrA96 relAl

Invitrogen; (Sambrook
Jetal., 1989)

S. aureus srains

RN4220

Restriction-defective derivative of 8325-4

(Kreiswirth et al.,

1983)
HG003 rsbU restored strain 8325, lysogenic for phages ®11, ®12, and ®13 (Herbert et al., 2010)
Methicillin-resistant S. aureus (MRSA) strain, PVL; i.e. lukF-PV and lukS-PV, (F!‘ed C. Tenover_and
USA300 . X Richard V. Goering,
msr(A) erythromycin resistance, SCCmec type 1V 2009)
L Lo L (Duthie and Lorenz,
Newman NCTC 8178, isolate from a secondarily infected tubercular osteomyelitis in man 1952)
Meticillin-resistant S. aureus (MRSA) strain isolated in 1982 from the pharyngeal (Kuwahara-Arai et al.,
N315 -
smear of a Japanese patient 1996)
HGO03AsprY sprY deleted HG003 Le Lam et al., 2017
HGO003Arnalll rnalll deleted HG003 Le Lam et al., 2017
Plasmids
pRMC2 Shuttle vector, Cm" (cat194), with tetracycline inducible promoter (Corrlgaznogggj Foster,
pRMC2-ms2 pRMC2 with ms2 tag under control of an tetracycline inducible promoter This study
PRMC2-sprY-ms2 pRMC2 with sprY fused to ms2 tag under control of an tetracycline inducible This study

pICs3

pICS3-sprY

pICS3-sprYmA

pICS3-PamiA-rnalll

pCN33

pCN33-PtufA-ecb-
gfp

promoter

Shuttle vector, Cm" (cat194), pC194 replicon

pICS3 with sprY of HGO03 under control of its endogenous promoter

pICS3 with sprYmA of HG003 under control of its endogenous promoter

pICS3 with rnalll of HG003 under control of a consitutive promoter amiA

Low-copy-number shuttle vector, Em" (ermC), pT181 cop-wt repC

pCN33 with ecb of HG003 fused to gfp under control of PtufA promoter

pCN33-PtufA-rot-gfp  pCN33 with rot of HG003 fused to gfp under control of PtufA promoter

(lvain et al., 2017)

This study

This study

(lvain et al., 2017)

(Charpentier et al.,
2004)

(lvain et al., 2017)

This study
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Table Supplementary 2. Primers used in this study

No

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Name

T7 sprY for

T7 sprYrev

T7 sprYmA for

T7 rnalll for

T7 rnalll rev

T7 rnalll mL13 for

T7 rnalll mL13 rev

T7 rnalllmA for

T7 rnalllmA rev

plCS2-ms2 (Kpnl/ Sacl) for
plCS2-sprY-ms2 (Kpnl) for

pICS2-sprY-ms2 (EcoRlI) rev

pICS3

PamiA for

pICS3-Pstl-sprY for

plCS3-Narl-sprY rev

plCS3-Pstl-sprYmA for

plCS3-Narl-sprYmA rev

PtufA rev

pCN33-rot-gfp for

pCN33-rot-gfp rev

SprX2

SprY

ms2

RNAIII

tmRNA

SprY gPCR for

SprY gPCR rev

RNAIII gPCR for

RNAIII gPCR rev

Sequences

TAATACGACTCACTATAGGGTATAGGGAATCTTACAGTTAT

AAATAGGCAAGTACCGAAGTACC

TAATACGACTCACTATAGGGTATAGGTAATCTTAAGGTTATTAAATA
ACTTATT

TAATACGACTCACTATAGGGCCTAGATCACAGAGATGT
CAAAAGGCCGCGAGCTTGGGA
CATTATTTGATAAATAAAAAACTGTAAAACATTCCCTTA

TAAGGGAATG ACAG ATTTATCAAATAATG

TAAGATTGAAAAAATAACCTTAAAACATTACCTTAATAATAAGTATG
GTCGTG
AGGTTATTTTTTCAATCTTATTTTGGGCATGTATTTAATTATGAAAAAA
ATTT
AAATAAGCTTGATGGTACCCGTACACCATCAGGGTACGTTTTTCAGA
CACCATCAGGGTCTGGAGCTCGAATTCACTGGCCG
GTATAATTAAAATAAGCTTGATGGTACCTATAGGGAATCTTACAGTT
ATT
GTAAAACGACGGCCAGTGAATTCCGAAGGCTAGCTATAACATAAAA
AAATA
AAAGCTTGCATGCCTGCAGGGTACCGAATTCGGCGCCTGATGCGGTA
T

GAAAATTTGTTTGA AATGGATAATGTGATATAATGG

GTATAATTAAAATAAGCTTGATGGTACCTATAGGGAATCTTACAGTT
ATT

GACACCATCAGGGTCTGGAGCTCTATAGGGAATCTTACAGTTATT

AGGTAATCTTAAGGTTATTAAATAACTTATTGGATGCATGTATTTATT
CCTATACACTTT
AATACATGCATCCAATAAGTTATTTAATAACCTTAAGATTACCTATAA
TTAATGTAGCAA

TCTCTCATGATAGTTTCTCAC

GAGAAACTATCATGAGAGAAGATCTGTATATAAATTATAAAATTAAT
ATG
CCTTAGTCTTCTCTTTGCTTCTAGAGATATCTTCTCTAGACA GTAT
TCG

TACGGGAATGCTAAAGTCAT
CGAAGTACCTGCCAGTTACG
AACGTACCCTGATGGTGTACG
ATTATTAAGGGAATGTTTTA
ACACGCTTAATGAGCTCGGG
TGGATGGATGTTAATATTCCTATACAC
TACCGAAGTACCTGCCAGTTACG
GAATTTTGTTCACTGTGTCGATAATCCATTT

GAAGGAGTGATTTCAATGGCACAAGATAT

Utilization

EMSA

EMSA

EMSA

EMSA

EMSA

EMSA

EMSA

EMSA

EMSA

MAPS

MAPS

MAPS

Cloning

Cloning

Cloning

Cloning

Cloning

Cloning

Cloning

Cloning

Cloning

Northern Blot

Northern Blot

Northern Blot

Northern Blot

Northern Blot

RT-gPCR

RT-qPCR

RT-qPCR

RT-qPCR

References

This study
This study

This study

(Chabelskaya etal.,
2014)
(Chabelskayaetal.,
2014)

This study
This study
This study
This study
This study
This study
This study
(Ivain et al., 2017)
(Ivain et al., 2017)
This study
This study
This study
This study
This study
This study
This study
(Ivain et al., 2017)
This study
This study
(Ivain et al., 2017)
(Ivain et al., 2017)
This study
This study
This study

This study
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No

31

32

33

34

35

36

37

38

Name

ecb gPCR for

ecb gPCRrev

rot gPCR for

rot qPCR rev

gyrB gPCR for

gyrB gPCRrev

tmRNA gPCR for

tmRNA gPCR rev

Sequences

TGGGAAATCAA AAGCATAGC

TGTGCATGAGATTCACCGGC

TTGGGATTGTTGGGATGTTTGTT

TGTATTCGCTTTCAATCTCGCTG

GGTGGCGACTTTGATCTAGC

TAATATGCGCTCCATCCACA

CACTCTGCATCGCCTAACAG

TCAAACGGCAGTGTTTAGCA

Utilization

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

References

This study

This study

This study

This study

This study

This study

This study

This study

Table Supplementary 3. Whole list of RNAs co-purified with MS2-SprY (Raw data available
under accession no. GSE166499)

A

SAOUHSC_01514

(RsaOR) (S629)
S628 sprx2 sprY

1464039 1464207 1464380

SAQUHSC_01515

1463881 1464058 1464352 1464415

L B R (I B A |

Ny I

‘

I

Figure 1S. sprY and sprX2 localization in HG003 strain.
(A) Visualization of RNA seq data in the Artemis tool. The read alignment views in Artemis showing
RNA-Seq data for NCTC8325 S. aureus strain (W Liu et al.,, 2018). The framed pink reads
correspond to SprX2 transcripts. The framed reads on the right of SprX2 correspond to SprY
transcripts, also known as S629 (Mader et al., 2016). The framed reads on the left of Sprx2
suggest a presence of another potential SRNA, which already defined as bona fide RNA, called
S628 in W Liu et al., 2018. (B) The 5’ end of SprY was determined by Reverse transcription (RT).

The arrow indicates the 5’ end of the sprY gene determined experimentally. A, T, C and G refer to

the sRNA sequencing ladders.
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Figure 2S. sprY and sprX2 expression in HG003 strain. Northern Blot analysis of sprY and
sprX2 expression profiles in HG003 during growth, using labelled DNA probes specific for SprY
and SprX2. As loading controls, the blots were also probing for tmRNA.
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Figure 3S. SprY sequence and structure predicted.

(A) The sRNA sequence is shown with poly-U rich terminator tail (underlined). (B) Predicted
secondary structure of SprY mRNA from HGO003 strain is based on Mfold (Zuker et al., 2003;
Rouillard et al., 2003) and LocaRNA (Raden et al., 2018; Will, S. et al., 2012; Willl, S. et al., 2007).
The potential SprY 3’-end corresponds to the 3™ hairpin (H3) and represents a stem-loop of the

Rho-independent terminator family.
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GenelD Base mean | Fold Change (FC) | log2(FC) StdErr Wald-Stats | P-value P-adj
rpmG_1 45,05 11,11 3,47 0,78 4,46 8,2403E-06 | 0,0177
SAOUHSC 1342a 38,61 7,59 2,92 0,71 4,13 3,6136E-05 | 0,0283
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Figure 4S. Identification of potential direct targets for SprY by MS2-affinity purification.

(A) Experimental strategy to purify MS2-tagged RNA expressed in vivo. Green line denotes

aptamer tags, red line for SprY sRNA and blue lines for potential RNA targets. The complexe

formed between MS2-SprY and RNA target is retrieved by MS2 column. The complexes are

eluted under native conditions.

(B) MS2 and MS2-SprY expression in vivo. Total RNAs was prepared at 2h and 6h of growth in
BHI at 37°C. Northern Blot targeting MS2 and SprY was performed on RNAs purified from MS2
chromatography affinity: Induction (1), flow-through (FT), after Washing (W1-W6) and from Elution
(E). (C) MAPS data showing enriched potential targets for MS2-SprY compared to MS2.
(D) Interaction between SprY and mRNA of saouhsc_1342a was predicted by IntaRNA software
(Busch et al., 2008). The start codon of saouhsc_1342a is framed in red.
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Figure 5S. (A) Interaction between SprY and RNAIIl was predicted by IntaRNA software (Busch
et al., 2008). Different mutants of SprY and RNAIIl were constructed. The nucleotides underlined
and bolded in red correspond to the mutations in the sprY and rnalll sequences.

(B) Complex formations were analysed by native gel retardation assays of purified labelled SprY
(SprY™) with an increasing concentration of RNAIIl wild-type (left panel) and RNAIIl muted in 13rd
loop (right panel) (0.08, 0.4, 0.16, 0.32 uM).

(C) Interaction between SprYmA and RNAIIImA (compensatory mutation) was predicted by
IntaRNA software (Busch et al., 2008).
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Figure 6S. WT, AsprY strains with or without empty plasmid (pICS3) were growth in BHI liquid in

96 wells-plate and the graphs correspond to OD 600nm measurements from Biotek. The left panel

correspond to strains in double plasmid system with pCN33-rot-gfp (A) and the right panel with

pCN33-ech-gfp (B). All statistical analyses were performed using Student’s t test. The error bars

correspond to the average values from three independent experiments. Statistical significance is

indicated by bars and asterisks as follows: *, P< 0.05; **, P< 0.01.
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Growth curve for PtufA-rot-gfp
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WT pICS3-sprY
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Figure 7S. WT, AsprY and Arnalll strains containing empty plasmid (pICS3), or over-expression

of sprY or sprYmA (pICS3-sprY or pICS3-sprYmA) or rnalll (pICS3-PamiA-rnalll) were growth in

BHI liquid in 96 wells-plate and the graphs correspond to OD 600nm measurements from Biotek.

The left panel correspond to strains in double plasmid system with pCN33-rot-gfp (A) and the

right panel with pCN33-ecb-gfp (B).
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A B

0.5 2H 6H
copies/ugRNA|  SprY D RNAII D Spry D RNAII D

2'5 BHI 4,37€406  7,31E+05 | 2,1SE+406  3,50E+05 | 3,28E407 5496406 | 1,79E408  2,91E+07

S8 2,68€406  1,11E406 | 6,07E+05 = 4,186405 | 2,19E+07 = O,12E+06 | 9,74E407 = 6,71E+07

BHI NZM 1,76E406  7,23E404 | 2,01E407 = 3,36E+05 | 3,16E406  1,30E+05 | 1,16E+08  1,95E+06

TSB RPMI 3,33E406  5,02E405 | 1,17E+06  3,60E+05 | 1,67E+07  2,51E+06 | 7,76E407 = 2,45E+07

— NZM
-1.5- — RPMI

Figure 8S. (A) HG003 WT strain were growth in BHI, TSB, NZM and RPMI liquid in 96 wells-plate
and the graphs are presented in semi-log (OD 600) measurements from Biotek. (B) The
quantification absolute was carried out using RNA extraction was performed at 2h and 6h of
growth. The table represents the number of copies of SprY or RNAIIl per ug of RNA extraction

sample.
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Figure 9S. Schematic presentation of the interaction region between RNAIII stem-loop 13 and
mRNAs encoding for the transcriptional regulatory protein Rot and virulence factors : coa (Lebeau
et al. 1994), lytM (Ramadurai et al. 1999), spa (Huntzinger et al. 2005), SA1000, SA2093 and
SA2353 (Boisset et al., 2007) and mgrA mRNA (Gupta et al., 2015). The synthesis of Rot is
regulated at the translational level by RNAIII (Geisinger et al. 2006; this study). The AUG codons

are underlined and the interaction zone between RNAIIl and SprY is colored in red.
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Figure 45. Analysis of the expression levels of SprX2 and SprY sRNAs under stress conditions in the strain of

S. aureus.

(A) Analysis of the expression of sprX and sprY in strain HGOO1 S. aureus strain after 30 min and 2h30 of

culture in medium depleted (NZM), under conditions at low temperature (15°C) or at high temperature

(42°C), depleted iniron (Dipyridyl), oxidative stress (H202), in high salt concentration (NaCl), in acid medium

(HCl), in 10% of human serum or in anaerobic manner compared to the expression of sprX and spry at 37°C

in LB rich medium (Ctrl). (B) The quantification of SprX2 and SprY expressions at 30 min and at 2h30 after

exposing to temperature stress was performed by ImageQuant Tool 7.0 and is normalized to tmRNA.
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lll. Regulation network between SprY and Sprx2

A. Comparison of sprY and sprX2 expressions

As we mentioned before, spry gene is located in immediate proximity to sprx2 gene in
phage ®12 of HGOO3 strain (Figure 35). In addition, SprX, was also defined as a bona fide
sRNA (W. Liu et al. 2018) and studied for its contribution to virulence and antibiotics
resistance of bacteria (Bohn et al. 2010; Buchad and Nair 2021; Eyraud et al. 2014;
Kathirvel, Buchad, and Nair 2016). This observation insisted us to take an interest in
expression of these two genes. We demonstrated that sprX2 and sprY are expressed
independently regardless of their proximity in a cluster of sSRNAs (Figure 2C in Le Huyen
et al. 2021). Interestingly, sprY and sprX2 possess opposite expression profiles during
growth (Figure supplementary 2S in Le Huyen et al. 2021). SprY accumulates during
bacterial growth whereas SprX2 expresses early at exponential phase and decreases over

time.

Next, we wonder if sprX2 and sprY are also express differently in various stress conditions.
For this study, HGOO1 strain was cultivated until the exponential growth phase (3h) and
then it was subjected for 30 min and 2h30 to the following stresses: a poor environment
(NZM), thermal shocks (42°C and 15°C), ionic stress (0.5 mM dipyridyl, which corresponds
to iron depletion), 10 mM H202, 1M NaCl, pH 5.5 (addition of 5N HCI), anaerobic culture
and serum. The expression level of both sRNAs was detected by Northern Blot and was
quantified by ImageTools 7.0, compared to SprY level in LB at 37°C (Ctrl). Our data showed
a clear different expression profile of SprX2 and SprY in temperature stresses. Indeed, at
42°C, SprX2 decreased by 0.6-fold after 30 min and by 0.8-fold after 2h30, while SprY
levels increased 2.1-fold after 30 min and 1.3-fold after 2h30 of heat stress (Figure 45).
Moreover, at 15°C, while SprX2 expression level did not showed much fluctuation after
exposing to heat stress, SprY expression decreased after 2h30 of stress exposure (Figure
45). Altogether, these results showed that the expression levels of SprX and SprY2 do not

undergo the same variation according to stress.
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Figure 46. Analysis of predicted interaction of SprY with SprX2. (A) Interaction between SprY and
SprX2 was predicted by IntaRNA software (Busch et al., 2008). (B) Complex formation between
SprY and SprX2 was analyzed by native gel retardation assays of purified labelled 0,025 pmoles of
SprX2* with increasing concentrations of SprY (0.5, 2 and 5 uM). Complex formation between
SprX2 and RNAIII (5 nM) is used as positive control for shift assay.
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Figure 47. SpoVG expression under SprY and SprX2 regulation. (A) Complex formation between
sRNA and the target mRNA was analyzed by native gel retardation assays of purified labelled
0,025 pmoles of SprX2* or SprY* with increasing concentrations of spoVG mRNA (0.5, 2 and 5
uM). (B) HGOO3 harboring plCS3 or plCS3-sprX2 or plCS3-sprY were grown in BHI at 37°C and
total intracellular proteins extractions were carried out at 2h and 6h of growth. Western Blot

analysis of SpoVG protein expression was performed using polyclonal antibodies against SpoVG.
Coomassie stained gel was used as loading control.
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B. In silico prediction of interaction between SprY and SprX2

The opposite expression profile of sprX2 and sprY in certain conditions and close
localization leads to the hypothesis that SprX2 and SprY might interact with each other.
We therefore verified the potential interaction between these two sRNAs in silico by
IntaRNA (Busch, Richter, and Backofen 2008; Mann, Wright, and Backofen 2017). The
analysis indicates potential base-pairing between SprX2 and SprY involving the 5" of Sprx2
(from the 14™ to the 30™ nts) and the 2" hairpin of SprY (from the 34%" to the 50" nts)
(Figure 46A). However, we did not detect complex formation between SprX2 and SprY by

EMSA (Figure 46B).
C. Regulation mechanisms of SprY and Sprx2

Several targets of SprX has been identified and validated in the last decade (Eyraud et al.
2014; Ivain et al. 2017; Kathirvel, Buchad, and Nair 2016). Since sprY is located in
immediate proximity of sprX2 gene and is showed to possess an interesting profile of
expression comparing to sprX2, we wonder if SprY sRNA would affect the expression of

these targets of SprX2.

1. Impact of SprY and SprX2 on spoVG expression

In Eyraud et al. 2014, the authors have demonstrated that SprX sRNA interacts with the
RBS of yabJ-spoVG mRNA and inhibits the translation of the second downstream gene,
spoVG. First, to test the potential interaction of these two sRNAs with spoVG mRNA, we
carried out EMSA using synthetic RNAs. Complex formation between SprX2 sRNA and
spoVG mRNA was observed while no complex formation between the mRNA with SprY
was detected (Figure 47A). Next, we tested the impact of SprX2 and SprY on the
translational level of spoVG by Western blot assay. Our results showed that the
overexpression of SprX2 reduced the expression of SpoVG, which is correlated with the
results in Eyraud et al. 2014. On the contrary, overexpression of SprY increased the
protein expression (Figure 47B) regardless of the absence of interaction between SprY

and spoVG mRNA, which suggests that another intermediate factor may be involved.
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Figure 48. Expression of ecb under SprY and SprX2 regulation. S. aureus HG003 (WT) carrying the
pPCN33-PtufA-ecb-gfp fusion plasmid co-transformed with different plasmids (pICS3 or plCS3-
sprXx2 or plCS3-sprY or plCS3-PamiA-rnalll). The fluorescent intensity (A) and the growth of these
strains at OD600 (B) were measured every 10 minutes over 20 hours in a Biotek microplate
reader. All statistical analysis were performed using Student’s t test. The error bars correspond
to the average values from three independent experiments. Statistical significance is indicated by
bars and asterisks as follows: *, P< 0.05; **, P< 0.01; ***, P< 0.005.
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Figure 49. Hemolytic activity of S. aureus regulated by de SprX2 et SprY in human blood. The
supernatants of different strains of HGO03 (WT, AsprX2, AsprY) and HGO03 WT containing empty
plasmid (pICS3) or overexpressing sprX2 or sprY (pICS3-sprX2 or plCS3-sprY) were collected after
6 hours of growth in BHI at 37°C. Hemolysis was performed by incubating cell culture
supernatants with Human blood samples at a ratio 50:50 at 37°C for 1h. The hemolytic activity
was observed in a flat-bottom 96-well microtiter plate at OD 540nm. The blood samples prepared
in PBS1X represent as negative control and in Triton 0.1% as 100% hemolysis. All statistical
analysis from three independent experiments were performed using Student’s t test . Statistical
significance is indicated by bars and asterisks as follows: *, P< 0.05; **, P< 0.01; ***, P< 0.005.
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2. Impact of SprY and SprX2 on ech expression

According to Ivain et al. 2017, SprX2 has been demonstrated to downregulate ecb at
translational level. We showed that SprY affects ecb expression by impacting RNAIII
function (Le Huyen et al. 2021). Here, we tested the effect of both SprY and SprX2 on ech
expression in the same conditions and the same genetic background. HGOO3 harboring
pICS3 or plCS3-sprY were then co-transformed with pCN33-PtufA-ecb-gfp (lvain et al.
2017). A co-transduction of pCN33-PtufA-ecb-gfp with plCS3-PamiA-rnalll was used as
positive control of the regulation system. Bacterial growth of all strains used for this
experiment was essentially equivalent (Figure 48B). Overproduction of SprX2 and RNAIII
reduce the fluorescence of strain containing pCN33-PtufA-ecb-gfp, which represent a
decrease of ecb translational expression levels (Figure 48A) as described in Ivain et al.
2017 and Boisset et al. 2007. On the contrary, the overexpression of SprY leads to a
significant increase of the fluorescence intensity of Ecb-GFP, corresponding to the result

in Le Huyen et al. 2021.

3. SprX2 and SprY affect hemolytic activity of HGO03 strain

Furthermore, sprX2, one of the two copies of sprXin HG003 (alias rsaOR) is a homologue
of sprXin S. aureus N315 strain (Bohn et al. 2010) and it has been showed that SprX affect
hemolysis of S. aureus Newman strain (Kathirvel, Buchad, and Nair 2016). Hence, we
tested the effect of SprX2 and SprY on the hemolytic activity of the bacteria in human
blood. We used HG003, HG003 AsprX2, HG003 AsprY strains and HGO03 WT containing
either pICS3 or plCS3-sprX2 or plCS3-sprY. Although the absence of sprX2 did not affect
hemolysis compared to WT, sprY deletion led to an increase of hemolysis in human blood
(Figure 49). Moreover, overexpression of sprX2 (HG0O03 plCS3-sprX2) led to a considerable
increase the hemolytic activity of S. aureus, while overproduction of SprY reduced

significantly the hemolytic activity (Figure 38 and Figure 6 in Le Huyen et al. 2021).

Taken together, our data showed that SprY and SprX2 possess opposite effect on common
targets such as ecb and spoVG and affect differently the hemolysis induced by S. aureus.
These results suggest that the two sSRNAs might share a possible link in the regulation of

S. aureus virulence and potential in antibiotic resistance.
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Figure 50. Overview of genomic localization of sprY gene in NCTC8325 strain compared to /ukF/S-

PV gene in USA300 strain. The red frame indicates the corresponding zone of two genes (sprY

and lukF/S) and the black arrow shows sprY sequence in NCTC8325 strain.
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My thesis falls within an overall project of our laboratory that led to the discovery of
several regulatory RNAs expressed by S. aureus and whose functions, for a majority of
them, are unknown. My work consists in characterizing and identifying the function of a

new sRNA, SprY.

l. The conservation and the genomic localization of sprY gene in various S.

aureus strains

sprY gene was found in staphylococcal phage phil2 (or ®12), also known as
bacteriophage Sa2 (or ®Sa2) of S. aureus (reviewed in (Gill 2009)). As previously
mentioned in Results Chapter |, this phage was originally isolated from NCTC8325 S.
aureus strain where it resides as a prophage next to ®11 and ®13 (Ye, Buranen, and Lee
1990). Furthermore, ®12 (or ®Sa2), is conserved in several other S. aureus strains than
NCTC8325 (landolo et al. 2002; Pantlcek et al. 2004; Sass and Bierbaum 2007), such as
MW?2 (Baba et al. 2002), MSSA476, MRSA252 (Holden et al. 2004), USA300 (Diep et al.
2006), Newman and RF122 strain (Herron-Olson et al. 2007). We also remark that the
lukS-PV and [ukF-PV genes encoding a virulence factor, PVL, were found in N315 and
USA300 ®Sa2 phage instead of sprY gene (Figure 50). Furthermore, bacteriophages have
been demonstrated to encode different virulence factors and regulators such as genes
coding for exfoliative toxin A (eta) (Yamaguchi et al. 2001), the cell-wall anchored protein
SasX (Li et al. 2012), and the immune evasion cluster (IEC) composed of enterotoxin S
(sea), staphylokinase (sak), the chemotaxis inhibitory protein (chp), and the
staphylococcal complement inhibitor (scn) (Van Wamel et al. 2006) are the well-studied
phage-encoded virulence factors in S. aureus. In addition, few sRNAs involved in the
virulence regulation like SprD (Chabelskaya, Bordeau, and Felden 2014; Chabelskaya,
Gaillot, and Felden 2010a) or SprF1/ SprG1 (Pinel-Marie, Brielle, and Felden 2014) were
also found encoded in staphylococcal phages. Here, we have shown the presence of yet
another sRNA, SprY, phage encoded that affects the pathogenicity of S. aureus by
modulating the hemolytic activity of S. aureus. The differential expression of sprY in S.
aureus commonly used laboratory strains and clinical isolates that we showed suggests

that sprY could provide S. aureus with adaptative advantages in particular infection
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environments. Further experiments in a larger scale are needed to confirm this
hypothesis such as the assessment of the hemolytic activity of different S. aureus strains

in the absence or presence of sprY gene.
II. Verification of SAOUHSC_03046 expression regulated by SprY

The identification of all the potential targets of regulatory RNAs is crucial to unravel their
functional roles. One of many ways to look for SprY potentially direct targets is through
in silico predictions. By comparing results from predictions by TargetRNA2 (Kery et al.
2014) and CopraRNA (Tjaden 2008; Wright et al. 2014), we decided to study
SAOUHSC 03046 which is the only common gene coming out among the top 15 (Annex
1 and Annex 2). Our study showed the presence of base pairing between SprY and this
mRNA in vitro, and also confirmed regulation of its expression in vivo. SprY interacts with
the 5" UTR of SAOUHSC 03046 mRNA masking the RBS, and consequently blocking its
translation. SprY overexpression does not affect the mRNA level of SAOUHSC 03046 but
SprYmB, which does not bind the target, unexpectedly upregulates SAOUHSC 03046 at
MRNA level and at translational level. These results lead us to wonder if the regulation
mechanism of SprY on SAOUHSC 03046 involves other intermediate factors or maybe if
SprYmB overexpression competes with SprY endogenous expression in the HG003 strain
and biases the data. Future studies evaluating the expression of SAOUHSC 03046 in
RN4220, which is cured of phages ®11, ®12 and ®13 (Kreiswirth et al. 1983), might help

us determine the effect of SprYmB independently from endogenous SprY.

To better understand the role of this regulation, we studied the nature of
SAOUHCS 03046 gene which encodes for a helix-turn-helix domain-containing protein
belonging to XRE family protein (Xenope response element) (Ibarra et al. 2013). With a
similarity in sequence with a known XRE protein (XdrA) in USA300 strain (McCallum et al.
2010), we suggested that SAOUHSC_03046 protein might also affect the expression of
the same target of XdrA, which is spa gene. Our preliminary results showed that the
absence of SAOUHSC 03046 provoked an increase of spa mRNA level compared to

HGOO03 WT. Although more experiments are needed to reach statistical significance, our
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results suggest SAOUHSC 03046 would downregulate the expression of spa mRNA.
Interestingly, SprY overexpression showed an increase in the levels of spa transcript
regardless of the expression of SAOUHSC 03046, suggesting that the effect of SprY on
spa is not only mediated by SAOUHSC 03046. Indeed, spa expression is regulated by
several factors such as agr/RNAIIl system and Rot (Gao and Stewart 2004; Huntzinger et
al. 2005; Said-Salim et al. 2003); both of their expressions were affected by SprY (Le
Huyen et al. 2021). The fact that SAOUHSC 03046 might also modulate spa gene

expression will present a new layer of regulation network of S. aureus virulence.

l1l. Identification of SprY direct targets by MAPS technique

MS2 affinity purification coupled with RNA sequencing (MAPS), developed by Lalaouna
and Massé, is a technique extensible used in the last couple of years. Initially used to
identified identify proteins partners for RNAs in several Gram-negative bacteria (Corcoran
et al. 2012; Said et al. 2009), MAPS was adapted to study RNA-RNA interaction (Carrier,
Lalaouna, and Massé 2016; Lalaouna et al. 2017; Silva et al. 2019). Recent modifications
have been made to adapt this technic in Gram-positive like S. aureus (Lalaouna et al.
2019; Tomasini et al. 2017), which unlocks more possibilities for identification of new
targets for several sSRNAs of S. aureus. In parallel, in our lab, we also performed MAPS to
study RNAs targets for several staphylococcal sRNAs using inducible plasmid pRMC2
instead of pCN51 plasmid in Tomasini et al. 2017 although the system remains the same

(lvain Lorraine thesis).

Here, in this work, we used MAPS approach to identify direct targets of SprY in normal
growth condition in S. aureus. The analysis comparing RNAseq data from eluates of the
ms2-sprY fusion and the control ms2 alone, we identified three potential interesting
targets for SprY: romG1, rnalll and SAOUHSC 1342a mRNAs (Le Huyen et al. 2021).
However, regardless of in silico predictions, SAOUHSC 03046 was not found through
MAPS analysis. SAOUHSC 03046 expression profile has been studied in Madér et al. 2016
and its amount has been showed to be fairly low in most of culture conditions beside in
CDM and RPMI media at exponential phase. The fact that our MAPS assay was done in LB
could explain the absence of SAOUHSC 03046 in our RNA-seq analysis.
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After testing the potential interaction in silico by IntaRNA and in vitro by EMSA, SprY was
only predicted to bind to RNAIIl (Le Huyen et al. 2021) and SAOUHSC 1342a mRNA.
romG1 mRNA enrichment by MAPS without direct interaction with SprY suggest that in
vivo the formation of the complex may involve other factors. In this work we were looking
for direct targets that form sRNA-sRNA or sRNA-mRNA complexes, for that reason romG1

was removed from the study.

RNAIIl is an sRNA, thus our MAPS study revealed an sRNA-sRNA interaction in vivo. We
then demonstrated that the binding of SprY on RNAIIl prevents the latter to regulate the
expression of his targets. Lalaouna and his collaborators studies using MAPS also helped
them to identify RNAs acting as a sponge for sRNAs in Gram-negative bacteria. Their
results showed that the 3’ external transcribed spacers sequences of polycistronic
transcripts (3" ETS), previously considered for a long time as “junk RNA”, binds to RyhB
and RybB sRNAs to reduce sRNAs excess and to prevent them from regulating their

mMRNAs targets (Lalaouna et al. 2015; Ziebuhr and Vogel 2015).

IV. SprY regulates SAOUHSC _1342a expression

SAOUHSC _1342a encodes for mechanosensitive channel of large conductance (Mscl),
which has been mostly studied in E. coli (Bootha and Blount 2012; Ou et al. 1998; Wray
et al. 2019, 2020) and more recently in S. aureus (Carniello et al. 2020). Mechanosensitive
channels (MS channels) function as an emergency release valves in response to
membrane tension upon low osmotic stress. For instance, when the osmotic
environment decreases, water flows in and threats bacterial cell integrity, MS channels
will release cytoplasmic pressure by letting rapid efflux of cytosolic molecules from the
cell (Bootha and Blount 2012; Haswell, Phillips, and Rees 2011). In bacteria, there are two
families of MS channels: MS of large conductance (MsclL) and MS of small conductance

(MscS). Contrary to MscS, MsclL are highly conserved between species, including
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pathogens. MscLs have been demonstrated to protect bacterium against osmotic forces
and to also participate in the transport and uptake of peptides and antibiotics in E. coli
(Maurer and Dougherty 2001; Ou et al. 1998; Wray et al. 2020). Only recent studies has
shown another role of MscL upon adhesion force in S. aureus (Carniello et al. 2020). MscL
in S. aureus were shown to not only be opened by fluctuations of membrane tension due
to osmotic force, but also by the adhesion force to surfaces. When the bacteria presents
strong adhesion forces through adhering to substratum surface, it provokes deformation
of staphylococcal cell wall and leads to opening of MscL (Carniello et al. 2020). However,
the expression regulation of these MscL remains unclear. Here, we demonstrated that
SprY potentially downregulates SAOUHSC 1342a translation, which could reveal partially
the expression regulation of Mscls in S. aureus. The impact of SprY on SAOUHSC 1342a
at translational level could be explained by the fact that through binding to the 5’ end of
SAOUHSC 1342a mRNA, SprY masks the RBS and prevents the Ribosome recruitment
onto the mRNA. As for perspectives, we intend to test the effect of SprY on some
phenotypes related to mechanosensitive channel gating in S. aureus by measuring the
ability of uptaking fluorescent calcein or the antibiotic (dihydrostreptomycin) described
in (Carniello et al. 2020). For example, the authors have demonstrated that at a high
adhesion force, RN4220 wild-type strain showed more fluorescence intensity that in
RN4220 deleted for mscL (RN4220 Amscl), which is correlated to the uptake of the
fluorescent calcein in the bacteria through these mechanosensitive channels; or RN4220
WT allows more import of the antibiotic resulting in more dead cells than in RN4220

Amscl (Carniello et al. 2020).

V. SprY acts as a sponge of RNAIIl and alters its activity in the regulation of S.

aureus virulence

Here, we have demonstrated that the 5" end of SprY binds directly the 13™ stem-loop of
RNAIII. Our study showed that SprY binding alters RNAIIl function without affecting RNAIII
stability and that SprY prevents the complex formation between RNAIIl and its targeted
mMRNAs. By antisense base-paring, RNAIIl controls the translation or/and the stability of

various mRNA targets. The 3’ region of RNAIIl is responsible for repression of multiple
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mMRNA targets (Boisset et al. 2007; Huntzinger et al. 2005; Lebeau et al. 1994; Ramadurai
etal. 1999), and the sequence corresponding to the interaction region with SprY overlaps
with sites for binding several mRNA targets, such as rot, spa, coa, lytM, ecb, SA2093 and
SA2353 (reviewed in (Delphine Bronesky et al. 2016)). We showed that SprY
overproduction enhances rot and ecb mRNAs translation only when the interaction
between SprY and RNAIII takes place (Le Huyen et al. 2021). Taken together, we present
here the case of a sRNA that acts as a sponge to fine-tune the sophisticated RNAIII

regulation network (Le Huyen et al. 2021).

Recently, reports have described novel RNA functions modulating the action of sRNAs;
some of them act as RNA decoys (Figueroa-Bossi et al. 2010; Overgaard et al. 2009) or as
RNA sponges (reviewed in (Figueroa-bossi and Bossi 2018; Miyakoshi, Chao, and Vogel
2015). They are identified to impact indirectly the expression of several genes without
affecting the stability nor inducing the cleavage of the RNA of interest. Moreover,
utilization of high-throughput technologies such as MAPS, CLIP-seq, etc. that were
developed for identification of direct targets for sSRNAs allow the discovery of RNA that
mimic mMRNA targets and bind to regulatory sRNA altering their function (reviewed in
(Denham 2020)). The term “sponge” RNA came from eukaryotic regulatory RNA studies
demonstrating the titration of regulatory RNA thus affecting its function. Later, it was
shown that the natural eukaryotic and prokaryotic coding and noncoding RNAs could
have sponge-like activity to mimic primarily targets of regulatory sRNA. The first sponge
RNA in prokaryotes has been identified in Salmonella enterica (Figueroa-Bossi et al.
2010). ChiX sRNA represses the synthesis of ChiP, however, the presence of another
mRNA transcript, chitosugars (chb), lead to the titration of ChiX through base pairing and
as consequence allows the production of ChiP. Subsequently the mechanism of RNA
sponge-like activity has been recently described in different bacteria suchlike E. coli, B.
subtilis, P. aeruginosa (reviewed in (Denham 2020)). Since the degradation is not a
necessitate aftermath of duplex formation, a sponge RNA can act by titrating a regulatory
sRNA and by competing with their true targets like tRNA precursor (Lalaouna et al. 2015).
Unlike chb-ChiX regulation, the interaction between 3’ETS tRNA spacer sequences with

RybB or RyhB sRNAs does not promote the degradation of the sSRNA but prevent the sRNA
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from regulating its targets. Until now, in S. aureus, only one case of RNA has been
suggested to be RNA sponge is Rsal (or RsaOG): the interaction between Rsal and RsaG
was hinted to block RsaG from regulating its own targets (D. Bronesky et al. 2018).
However, to our knowledges, the findings presented here are the first to identify a SRNA
with a sponge activity for RNAIIl in S. aureus. This observation suggests that SprY could
reduce the toxicity of S. aureus by preventing the function of RNAIIl and therefore, could

switch the bacteria to a phenotype less virulent.

VI. How sRNAs gene cluster contribute to S. aureus during bacterial growth

and infection?

During my thesis project, analysis of SprY and SprX2 expressions have shown some
interesting remarks on these two sRNAs. Despite the immediate proximity of sprY and
sprX2 genes in HGOO3 strain, the absence or overproduction of one sRNA does not affect
the expression of the other. Moreover, we showed that they possess an opposite
expression profiles: SprY accumulates overtime while it is the contrary for SprX2. Not only
that they express differently during bacterial growth, but they also respond oppositely
under temperature stress. SprX2 was shown to decrease under 42°C and to express more
at 15°C while SprY decreases at 15°C and expresses more at 42°C. Maybe the stress affect
the transcription and/or the degradation of sSRNA (F. Repoila and Gottesman 2001) and it
would be interesting to test the stability of SprY and SprX2 in different stresses to verify
this hypothesis. Furthermore, SprY affect the expression of spoVG in the opposite way
than SprX2. While SprX2 reduces the translation of spoVG by direct binding to the RBS of
the mRNA, SprY provokes an increase of SpoVG amount in an unknown mechanism that
does not implicate direct interaction between SprY and spoVG mRNA. By the same token,
SprY has an opposite effect than SprX onto the expression of ecb (lvain et al. 2017). SprX2
regulates ecb expression by direct binding (Ivain et al. 2017) whereas SprY regulates ecb
through affecting RNAIIl function (Le Huyen et al. 2021). Thus, two sRNAs located in the
same cluster and regulate oppositely a common target through different mechanisms.
Moreover, both sSRNAs SprX2 and SprY also contribute to the virulence of S. aureus but in

opposite way: SprX2 favorizes the hemolytic activity of S. aureus while SprY restrains it.
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In general, organization of genes in clusters is trait for genes expressing macromolecules
with similar functions (Vanderpool, Balasubramanian, and Lloyd 2011). In addition to
protein gene clusters (Jongerius et al. 2007; McCarthy and Lindsay 2013), sRNAs have
been demonstrated to be expressed from clusters such like the case of S. aureus in
(Bronsard et al. 2017). Although several sRNAs cluster genes have been discovered, their
functions are yet to be elucidated (Felden and Paillard 2017), whether they possess
shared biological functions or different roles in the bacterial survival or the virulence.
Interestingly, sprY and sprX2, located in a direct adjacency in a cluster and possess
opposite expression profiles during growth. We wonder if this reversed profile could
explain the contribution of sSRNAs to control the virulence of S. aureus at different points
of the bacterial growth. Furthermore, by developing analysis of RNAseq results, we also
noticed the potential presence of another potential SRNA gene in the downstream of sprX
gene, called sprZ. This latter gene has been studied in Madér et al. 2016 under the name
S627 (Figure 35 and Figure 38) and defined as a bona fide sRNA in (W Liu et al, 2018).
Although additional studies will be needed to characterize closely SprZ and to fully
understand the collaboration between SprY and SprX2, the current data suggests a
functional relationship between the two sRNAs and might proposes a new regulation

network with a new potential SRNA SprZ.

VII. Many new regulatory sRNAs have been discovered to be involved in the

virulence of S. aureus

Over the last decade, the biological functions and contributions of sSRNAs in S. aureus
virulence became clearer. Indeed, recent reports begin to shed some light into the
regulation mechanisms of some sRNAs. For instance, SprD has been demonstrated to be
involved in immune evasion (Chabelskaya et al. 2010), or RsaA in biofilm formation
(Romilly et al. 2014), and SprC in phagocytosis (Le Pabic et al. 2015). Moreover, SprY as
well as SprX2 were demonstrated to be implicated in the hemolytic activity of S. aureus
(Buchad and Nair 2021; Kathirvel, Buchad, and Nair 2016; Le Huyen et al. 2021). In
addition to two latter sSRNAs, other staphylococcal sSRNAs have been shown to be involved

in the regulation of hemolysin expression and hemolysis. Teg41 enhances hemolytic
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activity (Zapf et al. 2019). Teg41 locates immediately downstream of its own target,
aPSMs, and enhances the production of toxins through antisense pairings between the
3" end of Teg4l with aPSM transcript. The action of two other sRNA examples is
connected with agr function. PSM-mec is a bifunctional RNA encoded by the
staphylococcal cassette chromosome mec (SCC-mec). This cassette confers the
methicillin resistance to methicillin-resistant S. aureus (MRSA). PSM-mec RNA encodes a
cytolytic phenol-soluble modulin peptide (PSM alpha), but also represses the translation
of agrA mRNA by binding to its coding sequence of agrA (Kaito et al. 2013; Qin et al.
2016). The other sRNA, ArtR, was shown to regulate the expression of Hla via repressing
of its regulator: ArtR binds directly to 5' untranslated region of the sarT mRNA and
promotes its degradation (Xue et al. 2014). AgrA was shown to bind the promotor and
to repress the expression of SRNA, ArtR. In an overview, S. aureus has developed multiple
pathways to regulate its virulence by directly regulating the production of toxins or by
modulating the function of agr and its effector, RNAIIl. Thus, our work displays how
multifaceted the regulation of virulence factors is during S. aureus infection and uncover

another layer of sSRNA involved in the pathogenicity of S. aureus (Figure 51).
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Table 4_ Strains and plasmids

STRAINS
E. coli strain

DH5-a

S. aureus strains

RN4220

HGOO03

HGOO3AsprY

HGOO03Asprx2

HGO03A3046
Plasmids

pICS3
plCS3-spx2, Y
plCS3-spx2pl
plCS3-spx2pd
plCS3-spr¥mB
pCN33

pCN33-PtufA-
saouhsc_01342a-gfp

pCN33-PtufA-
saouhsc_03046-gfp

RELEVANT CHARACTERISTICS

F 080d lacZAM15 D(lacZA-argF)U169 deoR recAl endAl
hsdR17 (rK- mK-) phoA supE44 |- thi-1 gyrA96 relAl

Restriction-defective derivative of 8325-4

rsbU restored strain 8325, lysogenic for phages ®11, ®12, and
®13

sprY deleted HG003
sprX2 deleted HG0OO3

saouhsc_03046 deleted HGO03

Shuttle vector, Cm"(cat194), pC194 replicon

plCS3 with sprX2 and sprY of HGO03 under control of sprx2
endogenous promoter

plCS3 with sprX2 and 25 nts of 3' end of sprY of HGO03 under
control of sprX2 endogenous promoter

plCS3 with sprX2 of HGOO3 under control of its endogenous
promoter

plCS3 with sprYmB of HGO03 under control of its endogenous
promoter

Low-copy-number shuttle vector, Em" (ermC), pT181 cop-wt
repC

pCN33 with saouhsc_01342a of HG003 fused to gfp under

control of PtufA promoter

pCN33 with saouhsc_03046 of HGOO03 fused to gfp under
control of PtufA promoter
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|. Materials

A. Bacterial strains and growth condition

All bacterial strains and plasmids used in this work are listed in Table 4. Mutated strain
HGO003 for saouhsc_03046 (HGO03 A3046) was made as described in Monke et al. 2015,
using primers 14 to 17 in Table 5. All other mutant strains are provided by Dr. Bouloc
from Institute for Integrative Biology of the Cell (I2BC), University Paris-Saclay (Le Lam et
al. 2017).

Brain Heart Infusion (BHI, AES Chemunex), Luria Broth (LB, MO BIO), Tryptic Soy Broth
(TSB, Oxoid), Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, Thermo
Fischer Scientific) and NZM (Sigma) media were used and supplemented, if necessary,
with 100 pg/mL of ampicillin (amp) and 10 pg/mL chloramphenicol (cat) or erythromycin
(erm) unless otherwise specified. A pre-culture was inoculated with a colony isolated on
a BHI dish at 37°C. The next day, the cultivation was carried out by dilution to one
hundredth of this pre-culture in medium. Bacterial growth was cultivated at 37 ° C, with
constant agitation at 160 rpm and followed by measuring the optical density at 600 nm

(OD600).

1. DHS5-a E. coli competent cells preparation, transformation, and plasmids

purification

A culture of E. coli is cultivated in 400mL of SOB medium (86mM NaCl; 2.5mM KCl; 2%
tryptone; 0.5% yeast extracts) and incubated for 2 to 3 days at 18°C with vigorous shaking
(220 rpm) until the culture reaches an OD600 = 0.5. Once the OD600 is reached, the
culture is incubated for 10 minutes on ice then centrifuged for 10 minutes at 2500g, 4 °
C and the pellets are resuspended in 80mL of cold TB buffer (10mM PIPES; 15mM CaCl2;
250mM KCl; 55mM MnCI2; pH 6,7). After a new incubation on ice for 10 minutes and a
new centrifugation for 10 minutes at 2500g, 4°C, the pellets are gently resuspended in
20mL of cold TB before adding glycerol (7% final). After a final 10 minutes incubation on

ice, the cells are aliquoted to 1mL/ microtube and stored at -80°C.
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Table 5_ Primers

N°  NAME SEQUENCES UTILIZATION
1 T7sprYmBfor GAGACATTACTCTCTTTATTTAAAACACCGTAACTGGCAGGTACTTCG EMSA
2 T7sprYmBrev ATGTTAATATTCCTATACACTAAGAGACATTACTCTCTTTATTTAAAACA EMSA
3 T7sprx2for TAATACGACTCACTATAGGGTATAGGGAATCTTACAGTTAT EMSA
4 T7sprX2rev AAATAGGCAAGTACCGAAGTACC EMSA
5 T7saouhsc_03046for  TAATACGACTCACTATAGGGATAGTCTGATTGTAATGATTGTA EMSA
6  T7saouhsc_03046rev  GGTCCCTTTTACTAAATCATCT EMSA
7 T7saouhsc_01342afor  TAATACGACTCACTATAGGCATTTAAAAAAGAGAGGTTGAG EMSA
8  T7saouhsc_01342arev  ACTTTGGAATGTATAGAACAACC EMSA
9 pICS3-Pstl-sprX2,Yfor  TTAAAAGCTTGCATGCCTGCAGTATTTACTTAGAATAAAAATTTTGC Cloning

10 plCS3-Narl-sprX2,Yrev  AGAAAATACCGCATCAGGCGCCTAAAAAGCACCCCGTA Cloning

11 plCS3-Narl-sprX2plfor  TTAAAAGCTTGCATGCCTGCAGAGGTACTTCGGTACTTGCCTATTT Cloning

12 pICS3-Narl-sprX2p4for ~ TTAAAAGCTTGCATGCCTGCAGCCTATTTTTTTATGTTATAG Cloning

13 pCN33-PtufA-3046-gfp for GAGAAACTATCATGAGAGAAGATCTATAGTCTGATTGTAATGATTGT Cloning

14 pCN33-3046-gfp rev TCTCCTTTGCTTCTAGAGATATCACTCTGCCTAGATACATATAACT Cloning

15 focrNaa'Pt”fA'laﬂ'za'gfp GAGAAACTATCATGAGAGAAGATCTACATTTAAAAAAGAGAGGTT Cloning

16  pCN33-1342agfprev  TCTTCTCCTTTGCTTCTAGAGATATCCACAACAGCAATTGCTAAA Cloning

17 pIMAY-3046 5'for CGACTCACTATAGGGCGAATTGGAGCTCTTCTGTCTTGTATATTAACTGTA Cloning

18 pIMAY-3046 5'rev ATATGAGACGATACCACGATGATAGTCAATTAGTACAATCATTACA Cloning

19 pIMAY-3046 3'for TGTAATGATTGTACTAATTGACTATCATCGTGGTATCGTCTCATAT Cloning

20 pIMAY-3046 3'rev CCTCACTAAAGGGAACAAAAGCTGGGTACCAGAACATTGCTATGACCTTTCAA Cloning

21 saouhsc_03046 toeprint  CTTTTCAGCAAGATATTCTTGTG Toeprint

22 spagPCRfor GGATGAAACCATTGCGTTGTTC RT-qPCR

23 spagPCRrev AAACGAATCTCAAGCACCGAAA RT-qPCR

24 saouhsc_03046 qPCRfor AACGGTGGCAATCATTTTGGGAAT RT-qPCR

25  sahousc_03046 qPCRrev TCGATCGTAGTTGTCCATTTTATGCA RT-qPCR

26 saouhsc_01342aqPCRfor AGAAGAAGCCGAAGAAGAAGCA RT-qPCR

27  sahousc_01342aqPCRrev AGAACAACCTTAGCCCATCTCT RT-qPCR

28 agrAqPCRfor CGAAGACGATCCAAAACAAAGAG RT-qPCR

29 agrAqPCRrev GCTCAAGCACCTCATAAGGAT RT-qPCR

30 SprY1(S119) GGATTATCCACTTTTTCATCC Northern Blot

31 SprY3/srn_9342 AGTTCTAGTAAAATAATAGCAC Northern Blot
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All plasmids and primers used are listed in Table 4 and Table 5. Cloning experiments were
carried out at 50°C for 15 minutes, using Gibson Assembly Master Mix (New England
Biolabs). Then, 100uL of competent bacteria are placed in the presence of approximately
100 ng of plasmids for 15 minutes on ice before undergoing a thermal shock for 35
seconds at 42°C. After being put back on ice for 2 minutes, the bacteria are incubated for
1 hour in SOC (SOB medium + 20 mM Glucose) medium at 37 ° C. and then spread on LB
dishes supplemented with 50 pg/mL ampicillin. The plasmids were purified from
overnight cultures in LB broth supplemented with Ampicillin 10ug/mL and
minipreparations were performed using Miniprep Extraction Kit (Qiagen). The plasmid
sequence was verified by Sanger sequenced by using BigDye Terminator v3.1 Cycle
sequencing Kit, using a 3130x1 capillary electrophoresis genetic analyzer (Applied

Biosystems).

2. S. aureus RN4220 electro-competent cells preparation and transformation

A pre-culture of S. aureus RN4220 strain was inoculated in BHI at 37°C with agitation at
160 rpm. The next day, the bacterial culture was diluted to twentieth in 10 mL TSB (or
BHI) and cultivated for 5 hours in the same condition. Then, the culture was diluted again
in 100 mL TSB (or BHI) to OD600 final of 0.5 and incubated for another 30 minutes before
being placed on ice for 10 minutes. The bacteria are then centrifuged at 3500 rpm, 4°C
for 10 minutes. Then, the pellets were washed twice with sterile water (50mL then 5mL)
and then once with 2mL of iced 0.5M sucrose. After centrifugation, the washed pellets
were resuspended in 250 plL of 0.5M sucrose + 10% glycerol, were aliquoted and stocked

in -80°C.

For RN4220 transformation, 50 pL of competent bacteria were incubated with 100ng of
plasmids for 5 minutes at room temperature before electroporation at 2500V. 4 uL of
DMSO was added into the mix for cryopreservation. The bacteria were then incubated
for at least 1 hour in BHI medium at 37°C, and then spread on a BHI dish supplemented

with the appropriate antibiotic.
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3. Phage preparation and transduction

To prepare phage containing the plasmid of interest, a pre-culture of RN4420
transformed with the plasmid was cultivated overnight in TSB/ BHI with appropriated
antibiotic at 37°C with agitation. The next day, 200 uL of the pre-culture was diluted in
500 pL of TSB/ BHI with CaCl2 10mM and 100 pL of that dilution was mixed with 100 pL
of phage 80a and incubated for 5 hours at 28°C. Phages containing the plasmid of interest
were then collected through filter of 0.45 um. In parallel, 100uL of the dilution without
phage was also incubated at 28°C as a negative control. We used RN4220 strain to

prepare phage-containing vectors expressing sRNA or target-gfp fusion.

As for phage transduction, we used S. aureus HG0O3 strains to transduce sRNA expressing
vector and/ or to co-transform with the target-gfp fusion. For this, 100 pL of HG0OO3 pre-
culture with 10mM CaCl2 was incubated with 20 pL of phage 80a containing plasmid of
interest for 30 minutes at 37°C, before adding 900 uL of BHI + 10mM Sodium Citrate and
incubating for at least 1 hour at 37°C with agitation. The culture was then spreading on a

BHI box supplemented with the appropriate antibiotic.

B. Stress conditions

The stress conditions studied and samples are from Alex Eyraud’s thesis in 2014. 10 mL
of the pre-cultures of strain HGOO1 (WT) the day before are diluted to hundredth in 600
mL of LB medium in order to obtain an OD of 0.1 then incubated at 160 rpm at 37 ° C for
3 hours until the exponential phase (OD600 = 2). Then, 50 mL of culture are distributed
in Erlens to undergo the following stresses: a poor medium (NZM), thermal shocks (42°C
and 15°C), ionic stress (0.5 mM dipyridyl), which corresponds to iron depletion), without
agitation and anaerobic. The 50 mL of control culture and stress temperatures are directly
placed at 37°C, 15°C and 42°C respectively. For ionic stress and in poor medium, the 50
mL of culture are first centrifuged for 10 minutes at 4000 rpm and at room temperature,
washed with water and then respectively taken up in 50 mL of NZM medium and LB

medium supplemented with dipyridyl (0.5 mM). After 30 minutes, 2h30 and 4h, the total

174



175



RNAs are extracted as described in (Bohn et al. 2010; Chabelskaya, Gaillot, and Felden
2010).

C. Plasmids constructions

Table 5 lists all the primers used. To construct the sRNA-expressing vectors, we used
plCS3 (which is pRMC2 without the anhydrotetracycline inducible promoter) (described
in lvain et al., 2017).

As for double plasmids system, we used pCN33 to express SprY target fused with reporter
gen (gfp) under a constitutive promoter PtufA (pCN33-PtufA-3046-gfp and pCN33-PtufA-
1342a-gfp). HGOO3 strains carrying each of the target-gfp fusions and the sRNA plasmids
were grown on BHI agar plates supplemented with 10 ug/mL chloramphenicol and
erythromycin. The fluorescence measurements of the co-transduced HG0O03 strains was

performed as previously described (lvain et al., 2017).

Il. Methods

A. Proteins extractions, Western blots and Mass Spectrometry

S. aureus strains were grown until exponential phase (2 hours) or stationary phase (6
hours) in BHI at 37°C, with agitation at 160 rpm, and the cells were then pelleted for 10
min at 4°C (8000 g). The total proteins and extracellular proteins extractions were
prepared according to Chabelskaya et al., 2010. Proteins samples were boiled at 95°C for
5 minutes before loading in SDS-PAGE gel 12%, following by a staining by Coomassie blue
R-250. The proteins of interest were extracted from gel, trypsin digested, and the
peptides were identified by MALDI MS/MS and RP-HPLC/NanolLC/ESI-MS-MS. SpoVG
expression was visualized by anti-SpoVG polyclonal antibodies, and anti-rabbit IgG
secondary antibodies (Jackson). Western blots were revealed using the Amersham ECL

Plus detection Kit. Signals were visualized using LAS 4000 (GE Healthcare).
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B. Toeprint assay

All RNAs were transcribed from PCR-generated DNA using MEGAscript T7 kit (Ambion).
The template for transcription was amplified using HG0O03 genomic DNA and forward
primers containing T7 promoter sequences (Table 5). RNAs were labelled at 5'-end using

[y-32P] ATP (Amersham Biosciences) and T4 polynucleotide kinase (Invitrogen). Labelled

and unlabeled RNAs were purified on a 5% acrylamide urea gel, eluted in Elution buffer
(20mM Tris-HCl pH 7.5, 250mM NaCl, ImM EDTA, 1% SDS) at 37°C, eluted, ethanol
precipitated, quantified by Qubit (Thermo Fisher Scientific) and stored at -80°C.

For Toeprint assay, 5 pmoles of RNA target with 10 uL of DNA probes labelled were
denaturized in 50 mM Tris HCl pH 7.5, 60 M NH4CI, 1 mM DTT for 2 min at 80°C, followed
by refolding as described previously. The ribosomes were reactivated for 15 min at 37° C,
followed by a dilution of 1/100 in 20mM Tris HCl pH 7.5, 20 mM MgCI2, 60 mM NH4CI, 1
mM DTT and incubated for 15 min at 37°C. Various concentrations (0, 0.5, 1, or 2 pmoles)
of purified 70S ribosomes were added to each sample and incubated for 5 minutes at
37°C. The mixture was supplemented by 10mM MgCI2 (final concentration) and 10
pmoles of uncharged tRNAfMet, followed by another incubation for 15 min at 37°C. The
cDNA was synthesized with 4U of AMV RT (NEB) for 15 minutes at 37°C. Reactions were
stopped by the addition of 15 pL of loading buffer Il (Ambion) and heated for 10 min at
65°C. The cDNAs were loaded and separated onto 8% polyacrylamide/8M urea gels.

Sequencing ladders were generated with the same 5’-ended primer.
C. Statistical analysis

For the statistical analysis of the data, a check of the normality of the data as well as the
equality of variances was carried out. Then, according to the results of these two tests,
the parametric tests of Student (for paired or unpaired data) and of Welch or the
nonparametric test of Mann-Whitney were carried out, on at least three independent
experiments, to evaluate the significance. Data were expressed as mean * standard

deviations.
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RESU M E (in French)




I. Introduction de Staphylococcus aureus

Staphylococcus aureus est caractérisé comme une coque a Gram positif non mobile et
non sporulée, qui se développe en colonies rondes, jaune doré et lisses avec un diametre

de 0,8 a 1 um, dans de I'agar au sang (Merghni et al. 2017).

Les premiers génomes de S. aureus achevés étaient ceux de N315 et Mu50 en 2001

(Kuroda et al. 2001). Au cours des deux derniéres décennies, les séquences génomiques
d'environ 500 souches de Staphylococcus ont été complétées et annotées (Gill 2009). Les
génomes sont présentés dans des chromosomes circulaires d'environ 2,8 millions de
paires de bases avec une faible composition en GC (32 %) et codent pour environ 2 700
séquences codantes (CDS). La plupart des CDS du génome de S. aureus ont une fonction
qui leur est assignée, basée sur une homologie significative avec des génes d'autres
especes (Lindsay et Holden 2006). Le pangénome de S. aureus regroupe environ 7 500

génes dont environ 1 500 appartiennent au core génome (Tettelin et al. 2008).

Le core génome représente environ 75 % du chromosome et est trés conservateur dans
toutes les souches séquencées. Ainsi, celui-ci rassemble tous les génes conservés au sein
d'une espéce codant pour les fonctions de base de la croissance des bactéries telles que
le métabolisme des bactéries, la synthése des protéines et la réplication des acides

nucléiques (Bossi et Figueroa-Bossi 2016 ; Lindsay et Holden 2004).

Le reste du génome est variable, composé de génes dits accessoires (ou MGE pour
éléments génomiques mobiles) que les bactéries acquiérent par transfert horizontal,
avec un % de G+C différent du génome central (Lawrence et Ochman 1997). Les MGE
représentent environ 10 a 20 % d'un chromosome de S. aureus, y compris les plasmides,
les transposons, les bactériophages, les flots de pathogénicité des staphylocoques et les
chromosomes des cassettes staphylococciques. Ils jouent notamment un réle dans la
virulence, dans la résistance aux antibiotiques, dans la pathogénicité et I'adaptabilité
dans différentes conditions environnementales de S. aureus (revue dans (Lindsay et

Holden 2004).

S. aureus est une bactérie a Gram positif fréquemment trouvée dans la flore commensale
de la peau et des muqueuses de ’'Homme et de I'animal (Williams, 1963). 20 a 30 % de

la population humaine sont des porteurs a long terme de S. aureus qui peuvent étre
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trouvés dans le cadre de la flore cutanée normale, dans les narines. Selon différentes
études menées a la fin des années 1990, trois types d'individus de transport ont été
observés entre diverses populations (Kluytmans, Van Belkum et Verbrugh 1997 ;
VandenBergh et al. 1999 ; WILLIAMS 1963). Ce sont soit des non-porteurs (environ 20 %
de la population), des porteurs persistants (20-25 %) ou des porteurs intermittents (55-

60 %), qui ont une souche transitoire et dont les souches varient fréquemment.

Depuis des décennies, S. aureus a été classé comme un agent pathogéne et est une des
causes majeures des infections nosocomiales dans les hopitaux. C'est la deuxiéme espéece
la plus fréquemment isolée lors d'infections nosocomiales en France aprés Escherichia
coli (Colomb-Cotinat et al. 2016), et la deuxiéme cause de Maladies d'origine alimentaire
(TBD) derriére Salmonella sp (Le Loir, Baron et Gautier 2003). De plus, S. aureus fait partie

des agents pathogenes développant une résistance aux multi-antibiotiques, par

exemple, le cas de la résistance a la méticilline (SARM) (Enright et al. 2002; Kourtis et al.
2019) ou a la vancomycine (VRSA) (Appelbaum 2006; Gardete et Tomasz 2014) découvert
en 2002. Cette bactérie est capable d'acquérir la capacité de résistance a plusieurs
antibiotiques grace au transfert horizontal de MGE, qui peuvent porter des genes de
résistance aux antibiotiques (ARG) (Felden et Cattoir 2018; Haaber, Penadés et Ingmer
2017; Partridge et al. 2018). Bien que I'augmentation des maladies bactériennes étant
résistantes a presque tous les antibiotiques connus soit préoccupante, des recherches
récentes ont conduit a la découverte de nombreuses nouvelles molécules aux activités

biologiques remarquables (Rutledge et Challis 2015).

En plus, les infections communautaires a S. aureus sont en augmentation. S. aureus

n'arrive qu'apres S. epidermidis en ce qui concerne la bactériémie primaire chez les
patients hospitalisés (Otto 2009). Les infections cliniques importantes a S. aureus
couvrent un large éventail de maladies, des infections cutanées mineures (boutons,
abces), aux maladies potentiellement mortelles telles que la pneumonie, la méningite,
|'ostéomyélite, I'endocardite, le syndrome de choc toxique (Archer 1998; Tong et al.
2015) (Figure 2). Le processus des infections a S. aureus comporte plusieurs étapes :
colonisation, infection locale, dissémination systémique et/ou sepsis, infections
métastatiques et enfin, toxinose (Bronner, Monteil et Prévost 2004 ; Foster et
Geoghegan 2014 ; Gnanamani, Hariharan et Paul- Satyaseela 2017). Pour coloniser et/ou

envabhir ces différents environnements, cette bactérie utilise un large choix de facteurs
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de virulence qui interviennent dans I'attachement de la bactérie au substrat, I'évasion du
bouclier immunitaire de I'h6te, I'invasion tissulaire, provoquant une septicémie et des

syndromes toxiniques.

S. aureus posséde un large arsenal de facteurs de virulence, contenant de composants

pariétaux et extracellulaires impliqués dans la virulence de la bactérie (Chavakis,
Preissner et Herrmann 2007; Costa et al. 2013; Foster 2019). La diversité de ces facteurs
de virulence implique que la pathogénicité de S. aureus est un processus complexe,
nécessitant une expression organisée au cours des différentes étapes de l'infection (donc
la colonisation, |"évasion immunitaire, la croissance et division cellulaire, et la
dissémination bactérienne). En effet, S. aureus régule d'abord positivement I'expression
de genes codant pour des protéines de surface impliquées dans I'adhésion et la défense
contre le systéme immunitaire de I'h6te ; et ce n'est que tardivement dans l'infection
qu'il commence a réguler a la hausse la production de toxines qui facilitent la propagation
des tissus. Pour controler la production des déterminants de la virulence pendant
I'infection, S. aureus utilise plusieurs systemes de régulation qui répondent a la densité
cellulaire bactérienne (quorum sensing) et aux signaux environnementaux (par exemple,
le pH, l'osmolarité et la disponibilité des nutriments, la température et la tension
d'oxygene). Ces systemes de régulation peuvent étre divisés en cinq grandes catégories

les systemes de transduction du signal a deux composants, les régulateurs
transcriptionnels globaux, la famille de protéines SarA, les facteurs sigma et le groupe le

plus récent est celui des ARN régulateurs (régARN).

Il. Des ARN régulateurs chez S. aureus

A cejour, il existe trois principaux types d'ARN « classiques » : les ARN messagers (ARNm),
les ARN de transfert (ARNt) et les ARN ribosomiques (ARNr). Les ARNm sont traduits en
protéines, tandis que les ARNt et les ARNr ont des réles lors de la traduction de 'ARNm.
Les ARNt et les ARNr sont des ARN non codants, c'est-a-dire qu'ils ne disposent pas des
informations nécessaires a la synthése d'une protéine. Cependant, un autre type d'ARN
non codant a été identifié, a savoir les ARN régulateurs (régRNA). Ils permettent aux
bactéries de réguler I'expression de différents facteurs impliqués dans I'adaptation aux

changements environnementaux.
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En général, les ARN régulateurs sont définis comme des molécules stables entre 50 et

500 nts de taille et leur annotation dépend des techniques abordées et/ou de la
localisation des ARNs étudiés. Au début des années 2000, seulement quelques ARN
régulateurs avaient été identifiés en partie grace aux techniques disponibles telles que
les approches computationnelles, qui permettaient I'identification d'ARN en utilisant
différents parametres pour définir les ARNs (Bronsard et al. 2017 ; Livny et al. 2008 ;
Mraheil et al. 2010 ; Pichon et Felden 2005). Dés lors, de plus en plus de prédictions bio-
informatiques ainsi que I'explosion des techniques a haut débit (RNA-seq, DNA micro-
arrays, clonage shotgun) ont permis l'identification de nombreux ARN (Altuvia 2004 ;
Hattenhofer et Vogel 2006 ; Kazantsev et Pace 2006 ; Moore et Sauer 2007). Cependant,
I'absence d'un génome consensuel et entierement annoté de S. aureus a ajouté au
probléme de la nomenclature des ARNs. En effet, il existe des situations ot un ARN étudié
dans un travail a été nommé différemment dans une autre publication, par exemple,
RsaOW est nommé Teg17 (Bohn et al. 2010; Guillet, Hallier et Felden 2013) ou SprX alias
RsaOR et Tegl5 (W. Liu et al. 2018). Pour surmonter ce probléme, Sassi et al. 2015 a
fourni une base de données d'ARN régulatrices de staphylocoques (SRD) qui rassemble
une liste d'ARNs identifiés et validés expérimentalement au fil des années. Beaucoup plus
d'ARNs ont été identifiés et il devient difficile de poursuivre la mise a jour. En effet, Madér
et ses collaborateurs ont récemment fourni une analyse globale de la régulation
transcriptionnelle et des ARN non-codants chez S. aureus (Mader et al. 2016) et I'équipe
de Dr. Bouloc a fourni une nouvelle réévaluation d'environ 50 sSRNA authentiques chez S.
aureus par in silico. analyse (W. Liu et al. 2018). Plus récemment, I'équipe de Dr. Carroll
a créé un rapport de mis a jour de I'annotation du génome de S. aureus, comprenant des
annotations pour 303 ARNs connus dans USA300, s'associant a des ensembles de
données RNA-Seq accessibles au public afin de récupérer les informations perdues sur

I'expression, la stabilité et le potentiel de codage des peptides. (Sorensen et al. 2020).

La découverte et la caractérisation progressive des ARNs bactériens ont mis en évidence

divers mécanismes de régulation. Ils peuvent agir sur différentes cibles : les acides

nucléiques (ARN et ADN) ou les protéines. Selon leur mécanisme d'action, ils ont été
séparés en plusieurs classes : riboswitchs, ARN régulant les protéines, ADN ou ARN par
appariements de bases. lls peuvent également agir a différentes étapes : lors de la

réplication ou de la réparation de I'ADN ou de I'expression génique, ou a différents

230



niveaux d'expression de la cible: le niveau transcriptionnel, le niveau traductionnel et/ou

la stabilité de I'ARN cible.

Chez S. aureus, découvert il y a pres de trois décennies, I'ARNIIl est un ARN de 514
nucléotides, qui agit comme I'effecteur du systéme de "quorum sensing" Agr (R. P. Novick
et al. 1993). Le niveau d"'ARNIIl s'accumule pendant la croissance bactérienne (R.P.
Novick et al. 1993). Il permet la régulation temporelle de I'expression des facteurs de
virulence, c'est-a-dire qu'il controle le basculement entre colonisation et infection
bactérienne de I'h6te. L'ARNIII est un ARN bifonctionnel, codant pour une toxine de type
PSM (phénol soluble moduline) appelé - hémolysine (gene hid) (Janzon et Arvidson 1990)
et agit comme un régARN agissant en trans sur plusieurs ARNm cibles (Morfeldt et al.
1995). Possédant une structure complexe de 14 tiges-boucles (Benito et al. 2000) facilite
les interactions de ARNII avec le site de fixation de ribosome (RBS) riche en guanine de
ses ARNm cibles (Boisset et al. 2007). En effet, L'ARNIII, se liant a son ARNm cible, bloque
le recrutement du ribosome dans le site de liaison du ribosome (RBS) sur I'ARNm, et
empéche ainsi l'initiation de la traduction et, dans certains cas, facilitant la dégradation
de I'ARNm par la RNase lll (Chevalier et al. 2010 ; Romilly et al. 2012). Ces cibles sont
particulierement impliquées dans la virulence de S. aureus telles que la protéine de
surface A (Spa), la coagulase (Coa), la protéine de liaison au fibrinogene (SA1000), les
homologues de I'antigene sécrétoire staphylococcique SsaA (SA2353 et SA2093), la
protéine de liaison aux immunoglobulines (Sbi ), I'acide lipotéichoique synthase (LtaS) et
I'autolysine de la paroi cellulaire (LytM) (Amdahl et al. 2017; Boisset et al. 2007; Delphine
Bronesky et al. 2016; Chabelskaya, Gaillot et Felden 2010a; Geisinger et al. 2006;
Huntzinger et al. 2005, Rnas et al. 2018). De plus, ARNIII inhibe l'initiation de la traduction
de I'ARNm de rot codant pour le répresseur des toxines (Rot) (Mcnamara et al. 2000 ;
Oscarsson, Tegmark-Wisell et Arvidson 2006), qui bloque la transcription de nombreuses
exoprotéines et toxines (Said-Salim et al. 2003). Par conséquent, en inhibant la
production de pourriture, I'ARNIII active indirectement la transcription de nombreuses
exotoxines et inhibe indirectement la synthese de la protéine A au niveau

transcriptionnel.

A ce jour, il a été démontré que de nombreux ARNs sont découverts d’étre impliqués
dans le métabolisme de S. aureus comme Rsal (Geissmann et al. 2009 ; D. Bronesky et al.

2018), ou dans la résistance aux antibiotiques comme SprX (Eyraud et al. 2014), ou

231



encore dans la virulence comme, SprD (Chabelskaya et al. 2010,2014), SprX (Kathirvel et
al. 2016 ; Ivain et al. 2017, Buchad and Nair 2021) ou Teg41 (Zapf et al. 2019), etc.

lll. Objectif de ma thése

Récemment, nous avons identifié dans le phage ®12 un gene codant pour un nouvel ARN
régulateur exprimé a proximité de I'ARN SprX2 et |'avons appelé SprY. Sa localisation
dans une région du génome contenant de nombreux facteurs de virulence suggere que
ce régARN pourrait étre impliqué dans la virulence de S. aureus. L'objectif de ma theése
est de caractériser le profil d'expression de SprY, d'identifier ses cibles, ses mécanismes

d'action et les réles physiologiques de SprY dans la souche HG003 S. aureus.

1. Premiérement, nous avons étudié le profil d'expression de SprY dans la souche sauvage
HGO0O03 ainsi que des souches mutantes de HG0O03, dans des différentes conditions de

croissance bactérienne.

2. Deuxiemement, nous recherchions des potentielles cibles directes de SprY par deux
approches différentes : I'une est des prédictions in silico via CopraRNA, et l'autre
approche est une méthode a haut débit « MS2 », basée sur la purification des complexes

ARNs avec son ARN cible in vivo.

3. Ensuite, nous avons étudié l'implication de SprY dans la virulence et l'activité
hémolytique de S. aureus par la méthode déja utilisée pour montrer I'importance de SprD

dans (Chabelskaya, Gaillot et Felden 2010).

IV. Expression de SprY dans des conditions de croissance bactérienne

Lors des études sur I'ARN SprX2 et les séquences voisines, nous avons identifié un autre
ARN que nous avons appelé SprY. Situé sur le phage @12 entre le géne sprX2 et le géne
SAOUHSC 01515 codant pour le peptidoglycane hydrolase putative, le gene spry a
également été identifié comme un transcrit d'un ARN par Madér et ses collaborateurs,
désigné S629 (Mader et al. 2016). Peu de temps apreés, le laboratoire de Dr. Bouloc a
réalisé une étude dans laquelle cet ARN a été validé comme un véritable régARN (W Liu
et al. 2018). Nous avons déterminé le début de la transcription du géne sprY et la taille
de I'ARN SprY d'environ 125 nucléotides (Le Huyen et al. 2021). Nous avons également

montré une structure secondaire prédite de SprY composée de trois boucles de tige et la
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derniére étant un site terminal transcriptionnel indépendant de Rho (Le Huyen et al.

2021).

Le phage ®12 (ou Sa2) qui est conservé dans plusieurs souches de S. aureus autres que
NCTC8325 telles que Newman (Herron-Olson et al. 2007) et USA300 (Diep et al. 2006).
Cependant, tous les phages Sa2 ne codent pas pour le géne sprY comme dans le cas de
la souche USA300 ; selon I'analyse d'alignement génomique par Basic Local Alignment
Search Tool (BLAST) et a I'analyse de conservation des ARNs dans le phylum Firmicutes
(W. Liu et al. 2018). Pour vérifier cette observation, un test Northern Blot a été effectué
en utilisant I'extraction d'ARN total de différentes souches de S. aureus (HG003, USA300
et Newman) en phase exponentielle et en phase stationnaire de croissance bactérienne.
Comme prévu, nous n'avons observé que I'expression de SprY dans les souches HG003
et Newman, et non dans les souches USA300. Quant a la contribution de SprY dans
I'infection staphylococcique, nous avons testé I'expression de sprY dans différents isolats
cliniqgues. Nos données préliminaires ont montré la présence de SprY dans le choc
septique et la septicémie mais aucune dans les isolats de colonisation, ce qui nous a
amenés a nous demander si dans certaines conditions infectieuses, ces caractéristiques

pouvaient conférer des avantages et affecter la pathogenése bactérienne.

Ensuite, nous avons analysé le profil d’expression de SprY au cours de la croissance
bactérienne. Les quantités de SprY accumulent en phase pré-stationnaire et diminuent
lentement pendant la phase stationnaire et sa demi-vie est de 23,3 + 1,45 min en phase
pré-stationnaire. Ceci implique que SprY est un ARN stable, par rapport a la plupart des
ARNmM avec une demi-vie de 2 a 4 min (Massé, Escorcia et Gottesman 2003 ; Viegas et al.
2007). Etant donné que sprY et sprX2 sont des génes adjacents, nous avons considéré
que leur expression pouvait étre interdépendante. A cette fin, nous avons analysé les
quantités d'ARN SprY et SprX2 dans HGOO3 (Herbert et al. 2010) et ses dérivés supprimés
pour sprY (AsprY) ou sprX2 (AsprX2). Malgré leur proximité, la suppression d'un géne n'a
pas affecté I'expression de. De plus, la surexpression de sprX2 (plCS3-sprX2) ou de sprY
(pICS3-sprY) n'a pas affecté le niveau d'expression de I'autre ARN. Nous avons conclu que

sprY et sprX2 sont exprimés indépendamment I'un de I'autre.

Ensuite, pour analyser la séquence promotrice de sprY, nous avons construit différents

vecteurs comprenant le géne sprX2 avec différentes portions du gene sprY. La souche S.
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aureus RN4220 dépourvue des genes sprY et sprX2 a été transformée avec ces vecteurs
puis I'expression de sprY et sprX2 a été analysée. La souche RN4220 contenant le vecteur
vide plICS3 a été utilisée comme controle négatif. Nos résultats de Northern Blot ont
montré des niveaux d'expression d'ARNs SprX2 similaires a partir de trois premiéres
constructions de plasmides. De plus, I'expression de sprY a été observée lorsque la
séquence entiére de sprY est incluse dans les conceptions de plasmide, que la séquence
de sprX2 ait été incluse ou non et une estimation approximative de 35 nts en amont de
sprY est suffisante pour exprimer sprY. Ainsi, cette analyse nous a permis d'estimer le
promoteur du géne sprY et de montrer que les deux ARNs s'expriment indépendamment
des plasmides dans la souche RN4220. Nous avons également confirmé que I'expression
endogene de sprY et sprX2 est également indépendante dans la souche HG003, qui

contient les génes sprX2 et sprY.

V. Identification de cibles potentiels de SprY par différentes techniques

1. Prédictions in silico : SAOUHSC 03046 ARNm

En général, la plupart des ARNs avec des fonctions connues agissent par appariement de
bases a des cibles d'ARNm. Pour identifier les cibles directes potentielles de SprY, nous
avons effectué des prédictions in silico en utilisant TargetRNA2 (Kery et al. 2014) et
CopraRNA (Tjaden 2008; Wright et al. 2014). L'ARNm SAOUHSC 03046 étant apparu
comme le seul résultat commun des deux analyses de prédictions, nous avons décidé
d'étudier l'impact de SprY sur son expression. De plus, I'analyse avec IntaRNA (Busch,
Richter et Backofen 2008 ; Mann, Wright et Backofen 2017) a confirmé un appariement
de bases potentiel entre I'ARNm SAOUHSC 03046 et SprY impliquant le 2e tige-boucle
de SprY (49e a 95e nucléotide) et le 5' UTR et 36 nts d'ARNm SAOUHSC 03046.
L'interaction prédite entre SprY et SAOUHSC_03064 ARNm a été vérifiée in vitro par
EMSA en utilisant des ARN synthétiques. En plus, nous avons aussi confirmé I'interaction
en utilisant SprYmB, un alléle SprY portant des mutations ponctuelles correspondant a la
séquence de liaison SAOUHSC 03046 prédite. Comme prévu, SprYmB a perdu la capacité
de se lier a la cible d'ARNm, ce qui implique que la zone prédite de SprY est requise pour

I'interact.

De plus, le fait que SprY se lie a 'UTR 5' de I'ARNm SAOUHSC 03046 contenant RBS,

suggere I'obstruction de son initiation de la traduction. Pour tester cette hypotheése, nous
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avons effectué des tests d'empreintes digitales. Une empreinte a ensuite été détectée a
environ 15 nts en aval du codon d'initiation AUG de 'ARNm SAOUHSC 03046, indiquant
que la fixation du ribosome a bloqué I'élongation de la transcription inverse.
Effectivement, SprY a considérablement réduit la fixation de Ribosome, indiquant que

SprY inhibe la liaison du ribosome sur I'ARNm SAOUHSC 03046 in vitro.

Ensuite, nous avons voulu tester si SprY affecte I'expression de SAOUHSC 03046 au
niveau de I'ARNm et/ou de la traduction in vivo puisque SprY se lie a 'ARNm et masque
le RBS de I'ARNm. Tout d’abord, nous avons montré que la surexpression de SprY n'a pas
affecté le niveau d'ARNm de SAOUHSC 03046, alors que la surexpression de SprYmB a
montré une augmentation subtile du transcrit SAOUHSC_03046 en phase exponentielle
et une augmentation significative du niveau d'ARNm cible en phase stationnaire. Nous
avons ensuite émis I'hypothése que SprY pourrait affecter SAOUHSC 03046 au niveau
traductionnel plutét que sa quantité d'ARNm. Pour cela, nous avons construit une fusion
de génes traductionnels SAOUHSC 03046-gfp sous le contréle du promoteur constitutif
PtufA dans le vecteur pCN33 résultant en pCN33-PtufA-3046-gfp. HGOO3 contenant
plICS3 ou plCS3-sprY ou plCS3-sprYmB vides ont été co-transformés avec pCN33-PtufA-
3046-gfp dans la souche HG003. La surproduction de SprY a considérablement réduit la
traduction de SAOUHSC 03046. De plus, la surexpression de SprYmB a augmenté
I'intensité de fluorescence dans la souche contenant la construction pCN33-PtufA-3046-
gfp, qui était en corrélation avec l'augmentation au niveau de I'ARNm. Pris ensemble,
nos résultats ont montré que SprY régule négativement la traduction de
SAOUHSC 03046 mais pourrait également affecter son niveau d'ARNm par un
mécanisme inconnu non pas par liaison a son ARNm mais peut-étre par la présence d'un

facteur intermédiaire.

Pour mieux comprendre le role de cette régulation, nous avons étudié la nature du géne
SAOQOUHCS_03046 qui code pour une protéine contenant un domaine hélice-tour-hélice
appartenant a la protéine de la famille XRE (élément de réponse Xenope) (lbarra et al.
2013). Avec une similitude de séquence avec une protéine XRE connue (XdrA) dans la
souche USA300 (McCallum et al. 2010), nous avons suggéré que la protéine
SAOUHSC 03046 pourrait également affecter I'expression de la méme cible de XdrA, qui
est le gene spa. Nos résultats préliminaires ont montré que I'absence de

SAOUHSC 03046 provoquait une augmentation du niveau d'ARNm spa par rapport a
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HGO03 WT. Bien que davantage d'expériences soient nécessaires pour atteindre une
signification statistique, nos résultats suggérent que SAOUHSC 03046 conduirait a une
réduction d'expression de I'ARNm du spa. De plus, la surexpression de SprY induisait une
augmentation de niveaux de transcription de spa indépendamment de |'expression de
SAOUHSC 03046, suggérant que |'effet de SprY sur spa n'est pas seulement médié par
SAQOUHSC_03046. En effet, I'expression spa est régulée par plusieurs facteurs tels que le
systéme agr/RNAIIl et Rot (Gao et Stewart 2004 ; Huntzinger et al. 2005 ; Said-Salim et
al. 2003); dont I'expression était affectée par SprY (Le Huyen et al. 2021). Le fait que
SAOUHSC_03046 puisse également moduler I'expression du gene spa présentera une

nouvelle couche de réseau de régulation de la virulence de S. aureus.

2. In vivo par MAPS :

o Principe de technique de MAPS

La purification par affinité MS2 couplée au séquencage d'ARN (MAPS), développée par
Lalaouna et Massé, 2016, est une technique utilisée ces derniéres années. La technique
consiste a exprimer ’ARN d’intérét fusionné avec un tag ms2 permettant ensuite purifier
et analyser des ARN et protéines en complexe avec I’ARN d’intérét. Initialement utilisé
pour identifier des protéines partenaires d'identification pour les ARN dans plusieurs
bactéries Gram-négatives (Corcoran et al. 2012 ; Said et al. 2009), MAPS a été adapté
pour étudier l'interaction ARN-ARN (Carrier, Lalaouna et Massé 2016 ; Lalaouna et al.
2017 ; Silva et al. 2019). Des modifications récentes ont été apportées pour adapter cette
technique aux Gram-positifs comme S. aureus (Lalaouna et al. 2019 ; Tomasini et al.
2017), ce qui ouvre plus de possibilités d'identification de nouvelles cibles pour plusieurs
ARNs de S. aureus. En paralléle, dans notre laboratoire, nous avons également effectué
MAPS pour étudier les cibles ARN de plusieurs ARNs staphylococciques en utilisant le
plasmide inductible pRMC2 au lieu du plasmide pCN51 dans Tomasini et al. 2017 bien

que le systéme reste le méme (thése lvain Lorraine).

Dans ce travail, nous avons utilisé I'approche MAPS pour identifier des cibles directes de
SprY (Figure 3). Selon I'analyse bio-informatique des ARN enrichis en complexe avec SprY-
MS2 par rapport a MS2 seul, nous avons identifié trois cibles potentielles pour SprY : (1)
I'ARNm rpmG1, avec un enrichissement de 11,11 fois ; (2) I'ARNm de saouhsc_1342a, qui

a été enrichi de 7,59 fois ; et (3) RNAIII, avec un enrichissement de 7,4 fois (Le Huyen et
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al. 2021). Cependant, aucun appariement de bases avec une énergie significative n'a été
prédit entre I'ARNm de SprY et de romG1 par analyse in silico. Par conséquent, nous nous
concentrons sur le test de l'impact de SprY sur la régulation de I'expression des deux

autres ARN.

o SAOUHSC 1342a ARNm

La prédiction de IntaRNA a montré la liaison entre SprY et 20 nts autour du site
d’initiation de la traduction de I'ARNm SAOUHSC 1342a. Nous avons donc confirmé les
interactions de SprY avec I'ARNm de SAOUHSC 1342a in vitro par EMSA. Nous avons
également contesté la région d'interaction par SprYmB. Comme nous nous y attendions,
SprYmB a perdu sa capacité a se lier a 'ARNm de SAOUHSC 1342a. Ensuite, nous avons
testé l'effet de la surexpression de SprY et SprYmB sur SAOUHSC 1342a au niveau
traductionnel. Pour cela, nous avons co-transformé la souche RN4220 S. aureus avec
pPCN33-PtufA-1342a-gfp et plICS3 ou plICS3-sprY ou plCS3-sprYmB. La surproduction de
SprY a considérablement réduit I'expression de SAOUHSC_1342a-GFP, tandis que la
surexpression de SprYmB a entrainé une intensité de fluorescence similaire a celle des
souches WT abritant un plasmide vide. Nous émettons I'hypothese qu'en se liant a
I'extrémité 5' de I'ARNm de SAOUHSC_1342a, SprY pourrait empécher le recrutement du
ribosome au RBS sur I'ARNm, et donc réguler a la baisse la traduction de

SAOUHSC_1342a.

De plus, SAOUHSC 1342a code pour le canal mécanosensible de grande conductance
(MsclL), qui a été principalement étudié chez E. coli (Bootha et Blount 2012 ; Ou et al.
1998 ; Wray et al. 2019, 2020) et plus récemment chez S. aureus (Carniello et autres
2020). Les canaux mécanosensibles (canaux MS) fonctionnent comme des valves de
libération d'urgence en réponse a la tension de la membrane lors d'un faible stress
osmotique. Par exemple, lorsque I'environnement osmotique diminue, que I'eau pénetre
et menace l'intégrité des cellules bactériennes, les canaux MS liberent la pression
cytoplasmique en laissant s'échapper rapidement les molécules cytosoliques de la cellule
(Bootha et Blount 2012 ; Haswell, Phillips et Rees 2011). Chez les bactéries, il existe deux
familles de canaux MS : les MS de grande conductance (MsclL) et les MS de petite
conductance (MscS). Des études récentes ont montré un autre réle de MscL sur la force

d'adhésion chez S. aureus (Carniello et al. 2020). MscL chez S. aureus s'est avéré non
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seulement ouvert par les fluctuations de la tension membranaire dues a la force
osmotique, mais aussi par la force d'adhérence aux surfaces. Lorsque la bactérie présente
de fortes forces d'adhésion en adhérant a la surface du substrat, cela provoque une
déformation de la paroi cellulaire du staphylocoque et conduit a I'ouverture de MscL
(Carniello et al. 2020). Cependant, la régulation de l'expression de ces MscL reste
incertaine. Ici, nous avons démontré que SprY régule potentiellement a la baisse la
traduction de SAOUHSC 1342a, ce qui pourrait révéler partiellement la régulation de
I'expression de MscLs dans S. aureus. Nous avons l'intention de tester I'effet de SprY sur
certains phénotypes liés au contréle de canal mécanosensible chez S. aureus en
mesurant la capacité d'absorption de la calcéine fluorescente ou de l'antibiotique
(dihydrostreptomycine) décrit dans (Carniello et al. 2020). Par exemple, les auteurs ont
démontré qu'a une force d'adhésion élevée, la souche de type sauvage RN4220
présentait plus d'intensité de fluorescence que dans RN4220 supprimée pour mscL
(RN4220 Amscl), ce qui est corrélé a l'absorption de la calcéine fluorescente dans les

bactéries a travers ces canaux mécanosensibles.

o ARNIII (article accepté d’étre publié dans NAR)

La deuxieme cible identifiée pour SprY est I'ARNIII, I'un des principaux régulateurs de la
virulence de S. aureus. La prédiction par IntaRNA a montré un appariement de bases
potentiel entre SprY et la 13¢e tige-boucle de ARNIIIl. Nous avons ensuite vérifié cette
interaction prédite entre SprY et ARNIII in vitro en effectuant une EMSA a I'aide des ARN
synthétiques. Nous avons également analysé la spécificité de l'interaction en
introduisant des mutations compensatoires ponctuelles pour créer des alléles SprY et
ARNIII (SprYmA et ARNIIIMA) incapables de se lier aux ARNs de type sauvage. De plus, il
a été démontré que la tige-boucle 13 de ARNIII contréle I'expression de plusieurs facteurs
de virulence tels que hla, rot, coa, lytM, spa, SA1000, SA2353, SA209, etc. (Boisset et al.
2007; Chevalier et al 2010 ; Chunhua et al. 2012 ; Geisinger et al. 2006 ; Huntzinger et al.
2005 ; Morfeldt et al. 1995). Nous avons suggéré qu'a travers cette interaction avec
ARNIII, SprY pourrait affecter la régulation RNAIIl de ses cibles. Pour vérifier cette
hypothese, nous avons étudié I'expression de deux cibles d'ARNIII : les ARNm ecb et rot.
Pour étudier le niveau d'ARNm de ces cibles, nous avons effectué une qPCR en utilisant
I'extraction d'ARN total a partir de souches HG003 S. aureus surexprimant SprY. Nous

avons également testé I'expression traductionnelle de ecb et rot par un systeme a double
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plasmide comme décrit dans Ivain et al. 2017. Cette expérience consiste a concevoir une
fusion de gene traductionnel ARNm-gfp sous le controle d'un promoteur constitutif PtufA
dans le vecteur pCN33 résultant en pCN33-PtufA-ecb/rot-gfp. Nous avons ensuite
transduit ces plasmides dans HG003 hébergeant plCS3, plCS3-sprY et plCS3-sprYmA qui
est muté sprY dans la zone d'interaction avec ARNIII. La surexpression de SprY impacte
significativement la fluorescence de Ecb-GFP et Rot-GFP, tandis que SprYmA n'affecte
pas l'intensité de fluorescence. Etant donné que SprYmA ne se lie pas a I'ARNIII, ces
résultats impliquent que l'interaction entre SprY et RNAIIl est nécessaire pour la
régulation de I'ecb et de la pourriture par SprY. Nos données révélent un ARN agissant
comme une éponge pour I'ARNIII et ont montré que SprY a également un impact sur
I'activité hémolytique et impliqué dans la virulence de S. aureus. Ces résultats sont

présentés dans l'article accepté pour publication dans le NAR (Le Huyen et al. 2021).

VI. Possible lien entre sprX2 et sprY: deux genes de ARN régulateurs localisés dans le

méme cluster

Au cours de mon projet de these, I'analyse des expressions SprY et SprX2 a montré
guelques remarques intéressantes sur ces deux ARNs (Figure 4). Malgré la proximité
immédiate des génes sprY et sprX2 dans la souche HG0O3, |'absence ou la surproduction
d'un ARN n'affecte pas l'expression de l'autre. De plus, nous avons montré qu'ils
possédent des profils d'expression opposés : SprY s'accumule dans le temps alors que
c'est le contraire pour SprX2. Non seulement ils s'expriment différemment au cours de la
croissance bactérienne, mais ils réagissent également de maniére opposée sous un stress
thermique. Il a été montré que SprX2 diminuait sous 42°C et s'exprimait davantage a 15°C
tandis que SprY diminuait a 15°C et s'exprimait davantage a 42°C. Peut-étre que le stress
affecte la transcription et/ou la dégradation des ARNs. De plus, SprY affecte |'expression
de spoVG de maniére opposée a SprX2. Alors que SprX2 réduit la traduction de spoVG
par liaison directe au RBS de I'ARNm (Eyraud et al. 2014), SprY provoque une
augmentation de la quantité de SpoVG par un mécanisme inconnu qui n'implique pas
d'interaction directe entre SprY et I'ARNm de spoVG. De méme, SprY a un effet inverse
de SprX sur I'expression de ecb (lvain et al. 2017). SprX2 régule I'expression d'ecb par
liaison directe (lvain et al. 2017) tandis que SprY régule ecb en affectant la fonction de
I’ARNIII (Le Huyen et al. 2021). Ainsi, deux ARNs situés dans le méme cluster et régulent

a l'opposé une cible commune par des mécanismes différents. De plus, les deux ARNs
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SprX2 et SprY contribuent également a la virulence de S. aureus mais de maniére opposée
: SprX2 favorise l'activité hémolytique de S. aureus (Kathirvel et al. 2016) tandis que SprY

la restreint (Le Huyen et al. 2021).

Bien que plusieurs genes de clusters d'ARNs aient été découverts, leurs fonctions restent
a élucider (Felden et Paillard 2017), qu'ils possédent des fonctions biologiques partagées
ou des rdles différents dans la survie bactérienne ou la virulence. De fait intéressant, sprY
et sprX2, situés dans une contiguité directe dans un cluster et possedent des profils
d'expression opposés au cours de la croissance. Nous nous demandons si ce profil inversé
pourrait expliquer la contribution des ARNs au controle de la virulence de S. aureus a

différents points de la croissance bactérienne.

VII. Conclusion sur les fonctions biologiques de SprY dans la virulence de S. aureus

Au cours de la derniére décennie, les fonctions biologiques et les contributions des ARNs
dans la virulence de S. aureus sont devenues plus claires. En effet, des rapports récents
commencent a faire la lumiére sur les mécanismes de régulation de certains ARNs. Par
exemple, il a été démontré que SprD est impliqué dans [|'évasion immunitaire
(Chabelskaya et al. 2010, 2014), ou RsaA dans la formation de biofilm (Romilly et al.
2014), et SprC dans la phagocytose (Le Pabic et al. 2015). De plus, il a été démontré que
SprY ainsi que SprX2 sont impliqués dans I'activité hémolytique de S. aureus (Buchad et
Nair 2021 ; Kathirvel, Buchad et Nair 2016 ; Le Huyen et al. 2021). En plus de deux derniers
ARNSs, d'autres ARNSs staphylococciques se sont révélés impliqués dans la régulation de
|'expression de I'hémolysine et de I'hémolyse. Tegd1 améliore hémolytique activité (Zapf
et al. 2019). teg41 se localise immédiatement en aval de sa propre cible, les PSM, et
améliore la production de toxines grace a des appariements antisens entre |'extrémité 3'
de Teg4l avec le transcrit aPSM. L'action de deux autres exemples d'ARNs est liée a la
fonction du systeme agr. Le PSM-mec est un ARN bifonctionnel codé par le chromosome
de la cassette staphylococcique mec (SCC-mec). Cette cassette confére la résistance a la
méticilline a S. aureus résistant a la méticilline (SARM). L'ARN PSM-mec code pour un
peptide moduline cytolytique soluble dans le phénol (PSM alpha), mais réprime
également la traduction de I'ARNm agrA en se liant a sa séquence codante d'agrA (Kaito
et al. 2013; Qin et al. 2016). Il a été démontré qu’un autre ARN, ArtR, régule I'expression

de Hla via la répression de son régulateur : ArtR se lie directement a la région 5' non
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traduite de I'ARNm sarT et favorise sa dégradation (Xue et al. 2014). AgrA s'est avéré se
lier au promoteur et réprimer l'expression de I'ARN, ArtR. En résumé, S. aureus
développe de multiples voies pour réguler sa virulence en modulant directement la
production de toxines ou en controlant la fonction d'agr et de son effecteur, I'ARNIII.
Ainsi, notre travail montre a quel point la régulation des facteurs de virulence est
multiforme au cours de l'infection a S. aureus et découvre une autre couche d'ARNs

impliquée dans la pathogénicité de S. aureus.
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Résumé: Staphylococcus aureus est une
bactérie a Gram positif fréquemment trouvée
dans la flore commensale de la peau. Elle est
capable de <s’adapter aux changements
environnementaux grace a la reprogrammation
rapide de I'expression génique modulée par des
ARN régulateurs, parmi d’autres facteurs. Au
cours de ma thése, mes travaux ont porté sur un
nouvel ARN régulateur, appelé SprY (alias
S629), avec I'objectif de comprendre sa fonction
biologique. Dans un premier temps, nous avons
étudié le profil d'expression de I'ARN SprY au
cours de la croissance bactérienne et dans des
conditions de stress. Ensuite, nous avons
identifié plusieurs cibles directes pour SprY par
des prédictions in silico et in vivo par MAPS
(MS2-Affinity Purification Coupled With RNA
Sequencing Approach). Parmi toutes les cibles
identifiées, nous nous sommes intéressés au
géne SAOUHSC 03046 codant pour un

Characterization of novo regulatory RNAs implicated in the virulence of Staphylococcus aureus

régulateur transcriptionnel des protéines de la
famille XRE, SAOUHCS_1342a codant pour la
protéine des canaux mécanosensibles et
ARNIII, qui est le riborégulateur principal de la
virulence de S. aureus. Nous avons démontré
gque SprY interagit avec les ARNm de
SAOUHSC_03046 et SAOUHSC _1342a au
niveau de leur RBS (Ribosome Binding Site) et
empéche linitiation de la traduction de ces
cibles. La caractérisation de l'interaction entre
SprY et ARNIII a montré que SprY agit comme
une éponge pour ARNIII et modifie la régulation
de l'expression de plusieurs cibles de ce
riborégulateur. SprY réduit également l'activité
hémolytique de S. aureus pendant l'infection.
L’ensemble de ces résultats ont montré que
SprY joue le réle d’éponge pour ARNIII et sa
contribution dans la pathogénicité de S. aureus.

Keywords : Staphylococcus aureus, regulatory RNA, virulence, RNAIII, RNA sponge

Abstract : Staphylococcus aureus is a Gram-
positive coccus frequently found in the
commensal flora of the skin and possesses an
adaptive ability to environmental changes. This
bacteria’s capacity of fast gene expression
reprogramming is mediated by regulatory RNAs
among other factors. During my PhD program,
my work aims to characterize a new regulatory
RNA, called SprY (alias S629), and to
understand its cellular function. First, we studied
the expression profile of SprY sRNA during
bacteria growth and in stress conditions. Next,
we identified a few potential direct targets for
SprY by in silico predictions and in vivo by MAPS
(MS2-Affinity Purification Coupled With RNA
Sequencing Approach). Among all predicted
targets, we are drawn into SAOUHSC_03046
encoding for a potential

transcriptional regulator of the XRE family
proteins, SAOUHCS 1342a encoding for a
mechanosensitive channel and RNAIII, which is
the major riboregulator of S. aureus virulence.
In addition, SprY is shown to interact with mRNA
of SAOUHSC_03046 and SAOUHSC_1342a at
their RBS (Ribosome Binding Site) and to
prevent the translation initiation. The
characterization of interaction between SprY
and RNAIII showed that SprY acts as a sponge
for RNAIIl and alters expression regulation of
several RNAIIl targets. SprY also reduces the
hemolytic activity of S. aureus. Altogether, our
study showed that a regulatory RNA can act as
a sponge for another regulatory RNA and
contributes to the pathogenicity of S. aureus
during infection.



