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Titre : Modélisation d’ordre réduit et simulation d’écoulements diphasiques dispersés turbulents :
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du couplage fort
Mots clés : Ecoulements à phase disperse, intermittence, ségrégation, couplage bi-directionnel, modèles
stochastiques, modèles cinématiques

Résumé :
La capacité de modéliser et simuler les écou-

lements turbulents à phase dispersée est un en-
jeu crucial pour de nombreuses applications indus-
trielles et environnementales, telles que les mo-
teurs à combustion interne, le transport de pol-
luants ou la formation de nuages. Cependant, si
la résolution de l’ensemble des échelles de la tur-
bulence par DNS (Direct Numerical Simulation)
est possible sur des configurations académiques
simples, elle devient inenvisageable pour des ap-
plications réalistes. Il faut alors recourir aux ROS
(Reduced-Order Simulations), qui, en filtrant ou
moyennant les équations, permettent de ne prendre
en compte que les grandes échelles de l’écoule-
ment. Bien que de récentes avancées aient permis
d’améliorer la qualité des modèles de turbulence,
ils ne rendent pas compte fidèlement de l’interac-
tion avec la phase dispersée, du fait des couplages
non résolus aux petites échelles.
Afin de lever ce verrou, l’objectif de cette thèse
est d’identifier les phénomènes physiques négligés
par les ROS dans la dynamique des particules, et
d’en proposer une caractérisation complète. A par-
tir de ces analyses physiques, nous avons déve-
loppé des modèles cohérents mathématiquement,
qui couplés aux ROS, permettent de retrouver les
statistiques obtenues par DNS pour une efficacité
de calcul équivalente voire supérieure.
La première lacune identifiée dans les ROS est la
perte du phénomène d’intermittence, correspon-
dant à de fortes fluctuations du champ de dissi-
pation de l’écoulement turbulent. Une caractérisa-
tion mathématique de l’intermittence a été propo-
sée pour un écoulement monophasique. Les mo-
dèles stochastiques visant à reproduire l’intermit-
tence reposent sur les chaos Gaussiens multiplica-
tifs, dont plusieurs modèles existent dans la litté-
rature. Nous avons proposé une méthode mathé-
matique originale permettant de construire de tels
processus de manière générique comme somme in-

finie de processus d’Ornstein-Uhlenbeck. Ce for-
malisme permet non seulement d’unifier l’écriture
des processus existants, mais surtout d’en dévelop-
per un nouveau plus générique et plus efficace en
temps de calcul.

De plus, un écoulement turbulent peut engen-
drer une hétérogénéité dans la distribution spatiale
des particules appelée ségrégation. En ne résolvant
pas les petites échelles avec lesquelles les particules
interagissent, les ROS représentent mal ce phéno-
mène. Pour retrouver ces propriétés, nous avons
proposé un nouveau modèle cinématique à base
d’ondelettes à divergence nulle. En comparant ce
modèle à des simulations DNS et aux modèles ci-
nématiques de la littérature, nous avons pu mon-
trer qu’il permet de retrouver les principales statis-
tiques des deux phases et de s’adapter à différents
écoulements.

Enfin, les transferts d’énergie entre phases et
entre les échelles résolues et non-résolues ne sont
pas correctement reproduits dans les ROS ac-
tuelles. Préalable essentiel à la conception d’un
nouveau modèle palliant ces défauts, nous avons
mené un important travail d’analyse de ces rétro-
couplages à partir de simulations DNS et en uni-
fiant les résultats de la littérature. Nous avons ainsi
pu identifier les échelles et mécanismes privilégiés
de ces transferts d’énergie, ainsi que les paramètres
prépondérants permettant de caractériser ces phé-
nomènes, comme la densité moyenne de particules.
L’ensemble de ces travaux permet d’apporter un
nouvel éclairage sur les interactions entre des par-
ticules et la turbulence. Cette thèse a ainsi permis
de mener des analyses approfondies et de propo-
ser des modèles originaux pour enrichir les ROS,
ouvrant la voie à des simulations capturant fidè-
lement le rétro-couplage. Elle offre également de
nombreuses perspectives pour la construction d’un
modèle fluide couplé cohérent pour la simulation
d’écoulements diphasiques turbulents.
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Abstract : The ability to model, simulate, and
predict turbulent disperse two-phase flows is cru-
cial for various industrial and environmental is-
sues, such as internal combustion engines, pollu-
tant transports or clouds formation. However, if
the resolution of all scales of turbulence by DNS
(Direct Numerical Simulation) is possible in aca-
demic configurations, it becomes unrealistic for
industrial applications. The use of Reduced-Order
Simulation (ROS) allows, by filtering or averaging
the equations, to take into account only the large
scales of the flow and to make the simulation of
real systems accessible. Although recent advances
have made these models predictive for single-phase
flows, they do not accurately account for the inter-
action with the disperse phase due to small-scale
unresolved couplings.

In order to overcome this problem, the ob-
jective of this thesis is to identify the physical
phenomena neglected by ROS for the dynamics of
particles and to propose a complete characteriza-
tion of them. Based on these physical analyses, we
develop mathematically consistent models, which,
when coupled to the ROS, recover the statistics
obtained by DNS while maintaining or even im-
proving the computational efficiency.

The first shortcoming identified in ROS is the
loss of the intermittency phenomenon, correspon-
ding to violent fluctuations of the dissipation field
of the turbulent flow. A mathematical characte-
rization of intermittency has been proposed for a
single-phase flow. Stochastic models aiming at re-
producing the intermittency are based on multi-
plicative Gaussian chaos, of which several models
exist in the literature. We have proposed an original
mathematical method to construct such processes
in a generic way as an infinite sum of Ornstein-
Uhlenbeck processes. This formalism allows not

only to unify the writing of the existing processes
but also to develop a new one, more versatile and
more efficient in computation time.

In addition, a turbulent flow can generate a
heterogeneous spatial distribution of inertial par-
ticles, namely the preferential concentration. The
ROS poorly captures these dynamics by not solving
the small scales with which the particles interact.
To recover the properties of the unresolved scales,
we have proposed a new kinematic model based on
divergence-free wavelets. By comparing this model
with DNS and kinematic models from the litera-
ture, we have shown that it can recover the main
statistics of the two phases and can be adapted to
different flows.

Finally, the energy transfers between phases
and between resolved and unresolved scales are
not correctly reproduced in the current ROS. As
an essential prerequisite to designing a new model
to overcome these shortcomings, we have carried
out an important work of analysis of these reverse
couplings from DNS and unified the literature re-
sults. We were thus able to identify the scales and
mechanisms of these energy transfers, as well as
the main parameters that characterize these phe-
nomena, such as the number density of particles. A
measure of heterogeneity has also been developed
in order to identify the characteristic regimes of
flows with low particle loadings, which have been
little studied until now.

These works provide new insights into the in-
teractions between particles and turbulent flows.
This thesis has thus allowed us to carry out in-
depth analyses and to propose original models to
enrich the ROS, paving the way for accurate two-
way coupled simulations. It also opens perspectives
for the construction of a coherent coupled fluid
model for turbulent particle-laden flows.
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que je remercie pour sa bienveillance, nos discussions et sa patience pour la relecture de plusieurs
chapitres de mon manuscrit. Merci également à Ludovic Goudenège, et Alexandre Richard pour
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Merci en particulier à Jean, Victorien, Valentin, Luc, Ulysse, Guilhem, Karl, Corentin, Pierre,
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Abstract

The ability to model, simulate, and predict turbulent disperse two-phase flows is crucial for various indus-
trial and environmental issues, such as internal combustion engines, pollutant transports or clouds formation.
However, if the resolution of all scales of turbulence by DNS (Direct Numerical Simulation) is possible in
academic configurations, it becomes unrealistic for industrial applications. The use of Reduced-Order Sim-
ulation (ROS) allows, by filtering or averaging the equations, to take into account only the large scales of
the flow and to make the simulation of real systems accessible. Although recent advances have made these
models predictive for single-phase flows, they do not accurately account for the interaction with the disperse
phase due to small-scale unresolved couplings.

In order to overcome this problem, the objective of this thesis is to identify the physical phenomena ne-
glected by ROS for the dynamics of particles and to propose a complete characterization of them. Based on
these physical analyses, we develop mathematically consistent models, which, when coupled to the ROS,
recover the statistics obtained by DNS while maintaining or even improving the computational efficiency.

The first shortcoming identified in ROS is the loss of the intermittency phenomenon, corresponding to vio-
lent fluctuations of the dissipation field of the turbulent flow. A mathematical characterization of intermit-
tency has been proposed for a single-phase flow. Stochastic models aiming at reproducing the intermittency
are based on multiplicative Gaussian chaos, of which several models exist in the literature. We have pro-
posed an original mathematical method to construct such processes in a generic way as an infinite sum of
Ornstein-Uhlenbeck processes. This formalism allows not only to unify the writing of the existing processes
but also to develop a new one, more versatile and more efficient in computation time.
In addition, a turbulent flow can generate a heterogeneous spatial distribution of inertial particles, namely
the preferential concentration. The ROS poorly captures these dynamics by not solving the small scales
with which the particles interact. To recover the properties of the unresolved scales, we have proposed a
new kinematic model based on divergence-free wavelets. By comparing this model with DNS and kinematic
models from the literature, we have shown that it can recover the main statistics of the two phases and can
be adapted to different flows.
Finally, the energy transfers between phases and between resolved and unresolved scales are not correctly
reproduced in the current ROS. As an essential prerequisite to designing a new model to overcome these
shortcomings, we have carried out an important work of analysis of these reverse couplings from DNS
and unified the literature results. We were thus able to identify the scales and mechanisms of these energy
transfers, as well as the main parameters that characterize these phenomena, such as the number density of
particles. A measure of heterogeneity has also been developed in order to identify the characteristic regimes
of flows with low particle loadings, which have been little studied until now.

These works provide new insights into the interactions between particles and turbulent flows. This thesis has
thus allowed us to carry out in-depth analyses and to propose original models to enrich the ROS, paving the
way for accurate two-way coupled simulations. It also opens perspectives for the construction of a coherent
coupled fluid model for turbulent particle-laden flows.
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Résumé

La capacité de modéliser et simuler les écoulements turbulents à phase dispersée est un enjeu crucial pour
de nombreuses applications industrielles et environnementales, telles que les moteurs à combustion interne,
le transport de polluants ou la formation de nuages. Cependant, si la résolution de l’ensemble des échelles
de la turbulence par DNS (Direct Numerical Simulation) est possible sur des configurations académiques
simples, elle devient inenvisageable pour des applications réalistes. Il faut alors recourir aux ROS (Reduced-
Order Simulations), qui, en filtrant ou moyennant les équations, permettent de ne prendre en compte que
les grandes échelles de l’écoulement. Bien que de récentes avancées aient permis d’améliorer la qualité des
modèles de turbulence, ils ne rendent pas compte fidèlement de l’interaction avec la phase dispersée, du fait
des couplages non résolus aux petites échelles.
Afin de lever ce verrou, l’objectif de cette thèse est d’identifier les phénomènes physiques négligés par
les ROS dans la dynamique des particules, et d’en proposer une caractérisation complète. A partir de ces
analyses physiques, nous avons développé des modèles cohérents mathématiquement, qui couplés aux ROS,
permettent de retrouver les statistiques obtenues par DNS pour une efficacité de calcul équivalente voire
supérieure.
La première lacune identifiée dans les ROS est la perte du phénomène d’intermittence, correspondant à de
fortes fluctuations du champ de dissipation de l’écoulement turbulent. Une caractérisation mathématique
de l’intermittence a été proposée pour un écoulement monophasique. Les modèles stochastiques visant à
reproduire l’intermittence reposent sur les chaos Gaussiens multiplicatifs, dont plusieurs modèles existent
dans la littérature. Nous avons proposé une méthode mathématique originale permettant de construire de tels
processus de manière générique comme somme infinie de processus d’Ornstein-Uhlenbeck. Ce formalisme
permet non seulement d’unifier l’écriture des processus existants, mais surtout d’en développer un nouveau
plus générique et plus efficace en temps de calcul.
De plus, un écoulement turbulent peut engendrer une hétérogénéité dans la distribution spatiale des partic-
ules appelée ségrégation. En ne résolvant pas les petites échelles avec lesquelles les particules interagissent,
les ROS représentent mal ce phénomène. Pour retrouver ces propriétés, nous avons proposé un nouveau
modèle cinématique à base d’ondelettes à divergence nulle. En comparant ce modèle à des simulations
DNS et aux modèles cinématiques de la littérature, nous avons pu montrer qu’il permet de retrouver les
principales statistiques des deux phases et de s’adapter à différents écoulements.
Enfin, les transferts d’énergie entre phases et entre les échelles résolues et non-résolues ne sont pas correcte-
ment reproduits dans les ROS actuelles. Préalable essentiel à la conception d’un nouveau modèle palliant
ces défauts, nous avons mené un important travail d’analyse de ces rétrocouplages à partir de simulations
DNS et en unifiant les résultats de la littérature. Nous avons ainsi pu identifier les échelles et mécanismes
privilégiés de ces transferts d’énergie, ainsi que les paramètres prépondérants permettant de caractériser ces
phénomènes, comme la densité moyenne de particules.
L’ensemble de ces travaux permet d’apporter un nouvel éclairage sur les interactions entre des particules et
la turbulence. Cette thèse a ainsi permis de mener des analyses approfondies et de proposer des modèles
originaux pour enrichir les ROS, ouvrant la voie à des simulations capturant fidèlement le rétro-couplage.
Elle offre également de nombreuses perspectives pour la construction d’un modèle fluide couplé cohérent
pour la simulation d’écoulements diphasiques turbulents.
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f ext External force per unit mass applied on the fluid

g Cutting function (e.g. Heaviside function)

g Gravitational force per unit mass

k Local fluid turbulent kinetic energy

kϵ Regularized kernel (or κϵ).

ksgs Sub-grid scale energy

jmin Minimum level in wavelet-based KS

jmax Maximum level in wavelet-based KS

ℓ Typical length scale

ℓj Typical length scale associated to level j (wavelet-based KS)

ℓS Smagorinsky length scale
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mp Mass of particle

n(x, t) Particle number density field

n0 Dimensionless particle number density

nη Dimensionless particle number density

p(x, t) Fluid pressure field

t⋆η Smallest time scale for fluctuating velocity

tχ@p Smallest time scale for dissipation along particle trajectory

u(x, t) Fluid velocity field

u@p(t) Undisturbed fluid velocity at particle position

up(t,x)Average particle velocity

uη Kolmogorov velocity scale

vp(t) Lagrangian particle velocity

Upper-case Greek characters :
∆ Filter width or cut-off length (LES)

∆τu Lagrangian velocity increment

∆x Spatial discretization step

∆t Time discretization step

∆(x) Projection kernel function

Ψp Spectral two-way coupling (fluid–particle drag interaction) energy rate

Ω Set of possible outcomes

Lower-case Greek characters :
α Volume fraction

αi Random variable in cascade models

δθp Kinetic energy of the random uncorrelated-motion

ε Local fluid energy dissipation rate

ε⋆ Dissipation of fluctuating scale (ROS)

ε⋆@p Dissipation of fluctuating scale (ROS) along particle trajectory
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εsgs Sub-grid scale dissipation rate (LES)

εℓ Dissipation averaged over a ball of size ℓ

ετ Dissipation averaged along a particle path during a time τ

φ Scaling function (MRA)

φ Pseudo-dissipation

φτ Locally-averaged pseudo-dissipation

ϕ Mass loading

ψ Wavelet function (MRA)

ψp Two-way interaction energy rate

η Kolmogorov length scale

κ Wavenumber

κ0 First resolved wavenumber

κmax Maximum resolved wavenumber

κc Cut-off wavenumber

λ Mean free path

λ Constant scale ratio

λ Factor of eddy turnover velocity

λf Taylor’s microscopic length scale

λI Intermittency parameter

µ Shear viscosity coefficient

µt Turbulent eddy (dynamic) viscosity

ν Fluid dynamic viscosity

νt Turbulent eddy (kinematic) viscosity

ρ Fluid density

ρp Particle density

ρp(t,x) Particle density field

τ Characteristic time scale
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τsgs Sub-grid time scale

τij Viscous stress tensor

τRij Residual viscous stress tensor (RANS)

τ rij Sub-grid-scale stress tensor (LES)

τη Kolmogorov time scale

τp Particle relaxation time

σ2
u Variance of fluid velocity

σ⋆ Variance of fluctuating velocity (ROS)

σsgs Sub-grid velocity (LES)

ω Frequency

ω Realization

ωj Eddy turnover frequency (wavelet-based KS)

χ Logarithm of the normalized (pseudo-)dissipation rate

χ@ Logarithm of the normalized (pseudo-)dissipation along particle trajectory

ξ(p) Intermittency exponent

Notation:
s ∧ t = min(s, t), minimum between s and t

s ∨ t = max(s, t), maximum between s and t

E [•] Expectancy of a random variable •

µ• Mean of the process •

σ2
• Variance of the process •

⟨•⟩ Reynolds average (ensemble average)

• Filtered quantity

U Reduced quantify (Reynolds average or filtered)

u′ Residual (fluctuating) part

d• Differential of •

∂• Partial derivative with respect to •

∇x Notation for (∂x, ∂y, ∂z)
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∇v Notation for (∂vx , ∂vy , ∂vz)

ℜ{} Real part

.∗ Complex conjugate

.̂ Fourier transform

× Cross product

⊗ Outer product

⊗s Symmetric tensor outer product

Abbreviations :
ADM Approximate Deconvolution Method

DNS Direct Numerical Simulation

DPS Discrete Particle Simulation

EMEF Extended Mesoscopic Eulerian Formalism

FBM Fractional Brownian Motion

GMC Gaussian Multiplicative Chaos

HIT Homogeneous Isotropic Turbulence

K41 Kolmogorov 1941 theory

K62 Kolmogorov and Obukhov 1962 theory

KS Kinematic Simulation

LES Large Eddy Simulation

MEF Mesoscopic Eulerian Formalism

MCE Mean Correlated Energy

MRA Multiresolution Analysis

MTE Mean Total Energy

NDF Number Density Function

ODE Ordinary Differential Equation

PDF Probability Density Function
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PPC Particle Preferential Concentration

PTC Particle Trajectory Crossing

RANS Reynolds Averaged Navier-Stokes

ROS Reduced-Order Simulation

RPP Random Poisson Process

RUM Random Uncorrelated Motion

SDE Stochastic Differential Equation

SFS Sub-Filter Scale

WBE Williams-Boltzmann equation



Introduction (français)

1 Contexte

1.1 Écoulements diphasiques dispersés turbulents dans les applications in-
dustrielles et environnementales

Les écoulements diphasiques dispersés turbulents sont au cœur de nombreux phénomènes naturels
tels que les nuages, dans lesquels la condensation des gouttelettes est contrôlée par la turbulence, la
formation des planètes et des disques protoplanétaires par l’agrégation de particules de poussière
(voir Fig. 1(a)), ou encore la sédimentation des océans. Ils sont également impliqués dans un
grand nombre de considérations environnementales, notamment le transport de particules dans
l’atmosphère. Ces particules peuvent avoir des origines et des propriétés diverses, par exemple les
fumées d’incendie, les cendres volcaniques (voir Fig. 1(b)) ou divers polluants (particules fines,
suie, ...).

Ils constituent également un élément clé dans de nombreuses applications industrielles. En partic-
ulier, l’efficacité de beaucoup de processus de production et de conversion d’énergie est régie par
la dynamique des écoulements multiphasiques. L’exemple le plus emblématique est la combustion
de carburant dans les moteurs thermiques, pour lesquels des efforts de recherche importants sont
réalisés en vue d’améliorer leur efficacité énergétique et ainsi de réduire les émissions polluantes
associés. Ainsi, le spray de carburant résultant de l’atomisation constitue un élément essentiel
du fonctionnement des moteurs, puisque ces gouttelettes, en s’évaporant, produisent le mélange
carburant/oxydant qui alimente la combustion. Une compréhension détaillée de ces phénomènes
complexes combinée à des modèles efficaces est donc essentielle pour aider à concevoir les fu-
tures générations de moteurs thermiques, offrant une combustion plus efficace et des moyens de
transport plus propres.
La diversité et l’importance des domaines où interviennent les écoulements diphasiques dispersés
font de leur modélisation un sujet de grand intérêt pour les communautés scientifiques et indus-
trielles. Bien qu’il s’agisse d’un domaine d’étude intensif depuis des décennies, de nombreuses
questions scientifiques doivent encore être abordées pour compléter notre compréhension de ces
phénomènes. La complexité du problème étudié provient d’abord de la nature de la phase por-
teuse, qui est le plus souvent turbulente, ce qui permet un meilleur mélange entre les deux phases.
La turbulence, par nature instationnaire et multi-échelle, est déjà un défi dans les écoulements
monophasiques, et le couplage avec la phase dispersée introduit des difficultés supplémentaires
pour comprendre et modéliser efficacement ces phénomènes.

1
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(a) (b)

Figure 1. (a) Gaz et poussière interstellaires dans la nébuleuse de l’Aigle, d’une longueur d’environ
4 années-lumière, à quelques 7 000 années-lumière de la Terre. NASA, ESA. (b) Photographie de

l’éruption du Mont St. Helens, le 18 mai 1980

1.2 Expériences et simulations

L’ambition de la recherche sur les écoulements diphasiques dispersés est de prédire avec précision
l’évolution et le comportement de tels écoulements dans une configuration donnée, par exemple
une chambre de combustion dans un moteur thermique. Les études expérimentales et les essais sur
banc sont longtemps restés la principale approche pour évaluer, analyser, comprendre et concevoir
des systèmes impliquant des écoulements diphasiques. S’ils sont toujours considérés comme une
référence, ils présentent néanmoins plusieurs inconvénients. En effet, contrairement aux simula-
tions numériques, les études expérimentales ne permettent pas d’avoir une connaissance complète
du système étudié (certaines mesures peuvent être intrusives ou très difficiles à réaliser), et cer-
taines configurations ou conditions environnementales peuvent être difficilement reproductibles.
De façon générale, les ressources et le temps que requièrent les expériences réelles limitent la
quantité de données qui peut être générée pour comprendre ou concevoir un système.
Les simulations numériques sont un complément idéal aux études expérimentales : à partir de
modèles, c’est-à-dire d’un ensemble d’équations dont les solutions reproduisent le plus fidèlement
possible la réalité, il est possible de faire des prédictions sur un système avec un coût et une
précision raisonnables. Développés à partir de bases théoriques et mathématiques, les modèles per-
mettent ainsi de reproduire des expériences, de tester différentes configurations, et même d’explorer
des mécanismes physiques difficiles à observer expérimentalement. Dans la plupart des cas, la
résolution des équations du modèle nécessite une simulation numérique. Une comparaison entre
une expérience et une simulation de turbulence homogène est donnée dans la Fig. 2.
Grâce aux développements récents de modèles fiables et d’architectures de calcul massif, les sim-
ulations numériques d’écoulements turbulents diphasiques dispersés sont rapidement devenues un
sujet d’intérêt pour les communautés académiques et industrielles.
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(a) (b)

Figure 2. Turbulence homogène derrière une grille. (a) Photographie tirée de Van Dyke, Album of
Fluid Motion n°153 ; (b) Simulation tirée de Vassilicos and Laizet (2010).

2 Simulation numérique d’écoulements diphasiques turbulents
à phase dispersée

La modélisation de tels écoulements doit relever un double défi : la description de la turbulence (la
phase porteuse) et la description de la phase dispersée. Dans les deux cas, il s’agit de problèmes
multi-échelles qui nécessitent des modèles d’ordre réduit : pour un système d’injection de carbu-
rant liquide, le diamètre de la particule est typiquement de 0, 1 − 10 µm alors que les dimensions
de la chambre de combustion sont d’environ 10 cm. Le niveau de description définit les détails du
champ d’écoulement qui est résolu dans les deux phases.

L’utilisation de modèles d’ordre réduit présente un double intérêt. Le premier découle de la haute
dimensionnalité du problème, restreignant le recours à la simulation haute fidélité à un nombre
limité de particules ou à une turbulence peu développée. Les simulations d’ordre réduit (ROS)
permettent de diminuer le temps de calcul, mais cette réduction a un coût : la perte d’information
aux plus petites échelles ne peut être compensée que par un effort de modélisation supplémentaire.
La deuxième motivation est liée à la nature chaotique de ces écoulements complexes. Un change-
ment minime dans les conditions initiales de l’une des deux phases peut conduire à des perturba-
tions considérables à long terme. La résolution d’un écoulement donné peut donc être remise en
question puisque la connaissance de l’écoulement initial des positions et vitesses des particules ne
sera jamais parfaite, la modélisation introduit des hypothèses simplificatrices et la simulation peut
générer des erreurs numériques. Il est donc inutile de chercher à obtenir une description détaillée
des deux phases mais il est plus pertinent d’en faire une description statistique.

Nous présenterons tout d’abord les stratégies de réduction en ordre concernant la phase turbulente
porteuse seule, puis celles liées à la description de la phase dispersée. Enfin, nous aborderons les
questions liées au couplage de ces deux phases.
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Figure 3. Simulations numériques d’un jet turbulent pour différents modèles (Agence italienne pour
les technologies des énergies nouvelles 2006).

2.1 Simulation numérique de la turbulence
Les écoulements turbulents monophasiques sont des problèmes hautement multi-échelles. Le
rapport entre les échelles de production et de dissipation d’énergie est donné par le nombre de
Reynolds, qui caractérise la turbulence. Cette séparation d’échelle est à l’origine du coût numérique
puisque la résolution des plus petites échelles sur de grands domaines peut alors exploser pour de
grands nombres de Reynolds. Il existe différentes stratégies de résolution, qui sont illustrées pour
le cas d’un jet turbulent dans la Fig. 3.

Simulation numérique directe
La description la plus précise de la turbulence est donnée par la résolution de l’ensemble de
l’écoulement, en utilisant la simulation numérique directe (Direct Numerical Simulation : DNS).
L’image DNS de la Fig. 3 est en effet très détaillée, elle résout les échelles les plus fines de
l’écoulement. Cependant, le coût de ces méthodes est inaccessible dans un cadre industriel :
le nombre de Reynolds typique dans une chambre de combustion est d’environ 105 − 106. Par
conséquent, les DNS sont limitées à de petits domaines et reposent sur des architectures de calcul
massivement parallèles.

Simulation d’ordre réduit
Afin de permettre une résolution du problème, bien que cela implique une perte d’information
sur les petites échelles, des modèles d’ordre réduit sont proposés. Les simulations d’ordre réduit
(Reduced-Order Simulation : ROS) permettent de réaliser des simulations prédictives et efficaces
en temps de calcul sur des configurations industrielles. Cependant, elles ne peuvent capturer
que les dynamiques à grande échelle, qui sont entièrement résolues, et ignorent les plus petites
échelles, qui nécessitent une modélisation pour être prises en compte. Deux stratégies principales
sont couramment utilisées pour construire de tels modèles. Une opération de moyennage peut être
appliquée aux équations de Navier-Stokes pour obtenir les équations moyennes des écoulements
de fluides appelées équations de Reynolds Averaged Navier-Stokes (RANS). Cette approche est
la plus économique et la plus répandue dans les applications industrielles actuelles. Cependant,
il peut être nécessaire pour certaines applications de résoudre une partie des échelles turbulentes
plutôt que de les modéliser. Les simulations aux grandes échelles (Large Eddy Simulation : LES)
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Figure 4. Différents niveaux de description de la phase dispersée : microscopique (à gauche),
mésoscopique (au centre) et macroscopique (à droite).

consistent à filtrer les équations de Navier-Stokes, pour ne résoudre que les grandes échelles de la
turbulence. La figure 3 montre que la méthode RANS fournit une image moyenne et symétrique
du jet, très diffuse. D’autre part, la simulation LES est un intermédiaire, elle reproduit les grandes
échelles instationnaires du jet mais les plus petites sont filtrées.

Bien que les modèles d’ordre réduit fournissent un niveau raisonnable de prédiction de l’écoulement
purement gazeux, leur fidélité doit être évaluée pour les configurations diphasiques dans lesquelles
la phase dispersée interagit avec les structures turbulentes.

2.2 Simulation numérique de la phase dispersée
Différentes approches existent dans la littérature pour décrire la phase dispersée, et une atten-
tion particulière doit être portée au choix de la modélisation afin de reproduire les comportements
physiques à un coût minimal pour les applications industrielles. Dans cette section, nous con-
sidérons des simulations non réduites de la turbulence : la phase porteuse est supposée entièrement
résolue pour nous concentrer sur la modélisation des particules.

2.2.1 Approches lagrangiennes déterministes

Pour les gouttelettes liquides, la résolution exacte de l’ensemble de la phase dispersée nécessiterait
la connaissance de l’écoulement à l’intérieur de chaque gouttelette et en tout point de l’interface
avec la phase porteuse. Une telle simulation correspond donc à une simulation numérique directe
pour chaque particule (Boniou 2021). Sous certaines hypothèses, ou pour des particules solides,
le problème est simplifié en imposant des conditions aux limites à la surface de chaque particule
(Xu and Subramaniam 2010), la particule peut par exemple être assimilée à une sphère. Ce niveau
”microscopique” est illustré dans la Fig. 4, dans l’encadré supérieur gauche, où le terme ”micro-
scopique” fait référence au cadre de la théorie cinétique des gaz (Ferziger, Kaper, and Kaper 1972).

Dans la plupart des applications industrielles, on fait l’hypothèse d’une particule ponctuelle la-
grangienne : il s’agit de la Simulation de Particules Discrètes (Discrete Particule Simulation :
DPS) (Riley and Patterson Jr 1974). Les particules sont suivies individuellement, et leur inter-
action avec la phase porteuse est modélisée par des forces telles que la loi de traı̂née de Stokes
appliquée au centre de masse de la particule. Dans une telle modélisation, le volume occupé par la
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phase dispersée est négligeable par rapport à celui occupé par la phase porteuse.

La simulation lagrangienne est relativement intuitive et simple à mettre en œuvre numériquement
(résolution d’une équation différentielle ordinaire pour chaque particule), bien qu’elle nécessite
une attention particulière dans les calculs parallèles puisqu’ils exigent l’utilisation d’un équilibrage
de la charge de calcul (Marta 2009). C’est pourquoi elle est la méthode la plus répandue dans la
littérature pour étudier le comportement des particules inertielles (Squires and Eaton 1991; El-
ghobashi and Truesdell 1992) et dans les applications de combustion (par exemple Mesquita, Vié,
Zimmer, and Ducruix (2021)).

La précision de ces méthodes dépend directement de la modélisation de ces forces mais aussi de
l’évaluation de la vitesse du fluide non perturbé à la position de la particule (Horwitz and Mani
2016; Ireland and Desjardins 2017; Poustis, Senoner, Zuzio, and Villedieu 2019). De plus, une
seule réalisation de la phase dispersée est obtenue dans chaque simulation. Il est alors nécessaire
d’effectuer plusieurs simulations lagrangiennes pour obtenir des variables statistiques globales, ce
qui devient excessivement coûteux. On peut alors s’appuyer sur une description cinétique (ou
mésoscopique) de la phase dispersée, dans l’esprit de l’équation de Boltzmann obtenue dans la
limite Boltzmann-Grad de l’équation de Liouville.

2.2.2 Méthodes basées sur la cinétique

Les approches mésoscopiques fournissent des statistiques de la phase dispersée en dérivant la
fonction de densité de nombre (Number Density Function : NDF) de la phase dispersée. Cette
fonction donne la probabilité de trouver une particule dans un état donné de l’espace des phases
(qui est composé d’un ensemble de variables internes telles que la vitesse, la taille des partic-
ules, la température, etc.) L’évolution de la NDF est régie par l’équation de Williams-Boltzmann
(Williams-Boltzmann Equation : WBE). La figure 4 montre une réalisation de l’approche mésoscopique,
avec une densité initiale de particules uniforme, obtenue avec le suivi lagrangien.

Deux stratégies de résolution de la WBE peuvent être considérées : la première consiste à intégrer
l’équation dans l’espace des phases afin de réduire la dimensionnalité du problème et donc de
transporter les moments : ceci est décrit plus en détail dans la section suivante. La seconde stratégie
est basée sur des méthodes lagrangiennes :

• La méthode de simulation Monte-Carlo directe (Bird 1994) approxime la NDF par un échantillon
de particules statistiques discrètes représentant une particule. Il faut donc un grand nom-
bre de particules numériques, chacune d’entre elles étant censée représenter une fraction
de la particule physique. Ces particules sont suivies selon le même système d’équations
différentielles ordinaires que dans la DPS et la méthode présente donc les mêmes inconvénients
de convergence statistique lente.

• La méthode des “parcels” stochastiques consiste au contraire à représenter un groupe de
particules aux propriétés identiques par une seule particule numérique, appelée parcelle
(O’Rourke 1981). En diminuant le nombre de particules à suivre, cette méthode réduit
évidemment le coût de calcul, mais celui-ci reste proportionnel au nombre de particules
réelles.

Les deux méthodes lagrangiennes stochastiques présentées ci-dessus rencontrent des difficultés
dans un contexte de couplage inverse : en effet, les particules ne sont pas représentées individu-
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ellement et l’effet local qu’elles peuvent avoir sur l’écoulement turbulent ne peut être reproduit
fidèlement.

2.2.3 Méthodes des moments eulériens

En intégrant la WBE dans l’espace des phases par rapport à un ensemble de polynômes de degré
limité, nous obtenons des quantités, appelées moments, qui peuvent être liées à des quantités
macroscopiques telles que la concentration de particules ou le champ de vitesse des particules,
comme représenté dans l’encart en bas à droite de la Fig. 4. Dans cette approche, les particules
ne sont pas décrites individuellement, mais par des champs eulériens qui satisfont des équations
différentielles partielles.

Cette méthode est intrinsèquement statistiquement convergente, et le temps de calcul ne dépend
pas du nombre de particules. Le cadre eulérien simplifie le couplage avec la phase porteuse puisque
les termes d’échange sont alors écrits dans le même formalisme. De plus, cette méthode peut être
efficacement implémentée en calcul parallèle puisqu’elle est similaire aux outils habituels de dy-
namique des fluides numérique.

En revanche, une attention particulière doit être portée à la modélisation de la dispersion en vitesse
ou en taille des particules, et les champs résultants dépendent des termes de fermeture considérés.
De plus, des méthodes numériques adéquates doivent être développées car cette approche peut
conduire à des champs hypercompressifs (De Chaisemartin 2009) et à des singularités.

2.3 Quelques éléments clés de la physique des écoulements à phase dispersée
et leur modélisation

Parmi les éléments critiques impliqués dans la modélisation des écoulements diphasiques dis-
persés, la reproduction de la dynamique des particules est au coeur de cette thèse, et en particulier
les statistiques intermittentes, la concentration préférentielle des particules, et le couplage inverse
:

• Une simulation lagrangienne peut reproduire fidèlement la dynamique typique d’un écoulement
diphasique, et en particulier ses événements rares. La figure 5 montre la simulation d’un
brûleur à pulvérisation avec évaporation de gouttelettes. Le passage d’une gouttelette à
travers la flamme peut considérablement modifier son front et apporte une perturbation lo-
cale qui ne peut pas être capturée par des simulations eulériennes basées sur des moyennes
globales. De tels événements extrêmes peuvent être générés par l’intermittence de la phase
turbulente, dont les fluctuations de vitesse peuvent varier brutalement et fortement.

• La concentration préférentielle des particules correspond à une accumulation de particules
dans certaines régions de l’écoulement, causée par l’interaction des particules avec les tour-
billons turbulents. Ceci est illustré dans la Fig. 6, où la position des particules est représentée
pour différents nombres de Stokes, ce dernier caractérisant l’inertie des particules. En fonc-
tion de ce paramètre adimensionné, la phase dispersée peut être plus ou moins hétérogène.
De telles inhomogénéités de concentration jouent un rôle fondamental dans la dynamique de
ces systèmes ; par exemple l’accumulation de particules chauffées dans un fluide entraı̂ne
un chauffage local plus intense ; et pour les applications de combustion, la ségrégation peut
générer des points chauds et des déformations du front de flamme. Ce phénomène est bien
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Figure 5. Dégagement de chaleur instantané, avec superposition de gouttelettes pour deux simulations
lagrangiennes différentes d’un brûleur à pulvérisation

.

reproduit dans les simulations déterministes lagrangiennes, tandis qu’une résolution très fine
est nécessaire pour observer le niveau correct de ségrégation avec les méthodes eulériennes.
(Sabat 2016).

• L’influence de la phase dispersée sur la phase porteuse doit également être considérée, en
particulier lorsque le chargement massique est important (Elghobashi 1991). Par exem-
ple, des structures turbulentes auto-entretenues ont été observées dans une large gamme de
biofluides tels que dans les environnements bactériens ou les eaux de surface océaniques,
en raison de petits organismes actifs (bactéries, plancton) générant un mouvement chao-
tique à petite échelle (Dunkel, Heidenreich, Drescher, Wensink, Bär, and Goldstein 2013;
Abraham 1998). Ce phénomène est connu sous le nom de couplage inverse et des termes
sources supplémentaires de masse, de quantité de mouvement et d’énergie doivent alors être
pris en compte dans la résolution de la phase turbulente. Pour les approches lagrangien-
nes, les termes d’échange entre le fluide et la phase dispersée doivent être traités avec une
attention particulière, car l’information doit être transférée entre les particules ponctuelles
et le maillage eulérien du fluide. De nombreux travaux récents sur le sujet proposent des
stratégies de régularisation pour éviter ce problème numérique (Capecelatro and Desjardins
2013; Zamansky, Coletti, Massot, and Mani 2014; Poustis, Senoner, Zuzio, and Villedieu
2019). L’implémentation numérique du couplage inverse est plus simple pour les simula-
tions eulériennes puisque les deux phases partagent le même cadre. Cependant, elles ne
considèrent qu’un couplage inverse global, à l’échelle de la maille résolue. L’impact de
particules isolées n’est pas bien reproduit, alors que ces événements extrêmes peuvent être
critiques, comme dans l’exemple d’une gouttelette de carburant évaporée. Dans ce cas, la
nécessité d’un couplage inverse local est préférentiellement traitée par une approche lagrang-
ienne : (Doisneau 2013).

En pratique, pour la plupart des configurations industrielles, une approche lagrangienne point-
particule est utilisée car elle permet une modélisation fidèle d’une phase polydispersée et utilise
des schémas numériques simples qui n’introduisent pas de diffusion numérique, contrairement
aux méthodes eulériennes. Néanmoins, certaines méthodes de moments ont été développées ces
dernières années (Kaufmann et al. 2008; Laurent et al. 2012; Masi et al. 2014; Sabat 2016;
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Figure 6. Distribution spatiale des particules à l’intérieur d’une couche mince pour huit nombres de
Stokes différents. (a) St = 0,05, (b) 0,1, (c) 0,2, (d) 0,5, (e) 1, (f) 2, (g) 5 et (h) 10. Simulation tirée de

Yoshimoto and Goto (2007).

Sabat et al. 2019) dans le but de reproduire le plus fidèlement possible la dynamique de la phase
dispersée. Par exemple, dans les réacteurs à lit fluidisé, les approches de modélisation Euler-
Euler sont privilégiées en raison du nombre élevé de particules impliquées (Neau, Pigou, Fede,
Ansart, Baudry, Mérigoux, Laviéville, Fournier, Renon, and Simonin 2020). Cependant, elles ont
rarement été appliquées aux configurations industrielles pour les applications de combustion, et les
simulations lagrangiennes restent les simulations de référence. Pourtant, les avantages des simu-
lations lagrangiennes doivent être nuancés car ils ne s’appliquent qu’aux phases dispersées. Afin
de décrire un spray d’injection complet, les méthodes lagrangiennes, lorsqu’elles sont utilisées,
doivent être couplées à un modèle eulérien pour les écoulements à phases séparées : (Drui 2017;
Cordesse 2020; Di Battista 2021; Loison 2024).

En plus de ces questions physiques, nous devons également rappeler que dans un contexte indus-
triel, il est inenvisageable de résoudre toutes les échelles de la phase turbulente, et des simula-
tions d’ordre réduit sont donc utilisées. Il est alors essentiel de modéliser l’effet des échelles non
résolues de la sous-maille sur la dynamique des particules. De plus, avec le couplage inverse, il
est également nécessaire d’intégrer la rétroaction des particules sur ces mêmes échelles de sous-
maille. Dans ce qui suit, nous énonçons les défis de modélisation des approches point-particule
avec une turbulence d’ordre réduit comme une première étape vers la réduction dimensionnelle de
la phase dispersée, qui peut éventuellement conduire à des méthodes Euler-Euler réduites.

3 Défis liés à la modélisation point-particule dans une simula-
tion de turbulence d’ordre réduit

La dynamique de la phase dispersée est intrinsèquement liée à l’interaction entre les particules
et la turbulence à l’échelle de la particule. Cependant, les opérations de réduction (moyenne ou
filtre) empêchent les particules d’interagir avec les structures fluides non résolues. Dans certaines
applications, les échelles non résolues de la vitesse du fluide ont un effet significatif sur le mou-
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PDF of one component acceleration in LES

Figure: Bubbles’ acceleration normalised by Hesienberg-Yaglom scaling a⌘, the
flatness of acceleration pdf resolved by LES is 4.45, which is close to Gaussian
distribution 3. while the pdf of the acceleration of bubbles is suppose to be be
highly intermittent with non-Gaussian pdf.

ZHANG zhentong (imft) DNS May 11, 2017 8 / 19

Figure 7. Fonction de densité de probabilité (Probability Density Function : PDF) de l’accélération des
particules fluides dans un écoulement turbulent résolu avec un maillage DNS de 10243 (ligne bleue) et

un maillage LES de 643 (ligne rouge), avec Reλ = 200. Figure tirée de Zhang (2019).

vement des particules. Dans ce cas, deux modèles de sous-filtre doivent être considérés, l’un pour
les équations régissant le fluide, l’autre pour les équations du mouvement des particules.
Les principaux défis consistent à reproduire les statistiques correctes de la phase dispersée (telles
que l’énergie cinétique des particules ou l’intermittence), la concentration préférentielle des par-
ticules, et à modéliser correctement les termes de couplage inverse.

3.1 Statistiques intermittentes
Les statistiques de la phase dispersée telles que la vitesse, l’accélération et la dispersion des par-
ticules sont modifiées par la réduction de la phase porteuse, en particulier lorsqu’une partie im-
portante de l’énergie cinétique de la turbulence est supprimée par la réduction (Fede and Simonin
2006). Des efforts de modélisation ont été fournis pour reproduire le comportement non-gaussien
de l’accélération des particules observé dans les expériences et la simulation numérique directe
(Bini and Jones 2007).

Plus précisément, la première lacune identifiée dans les simulations d’ordre réduit est la perte du
phénomène d’intermittence, inhérent à la nature turbulente du fluide, correspondant à de violentes
fluctuations du champ de dissipation de l’écoulement. Un exemple de ce phénomène est observé
dans la Fig. 7 avec les statistiques non-gaussiennes de l’accélération du fluide dans un champ
turbulent résolu par DNS. Avec une approche d’ordre réduit, les queues de distribution sont beau-
coup plus faibles, et les événements extrêmes liés à une forte accélération des particules ne se
produisent plus. Pourtant, si l’accélération (et donc les forces sous-jacentes qui s’appliquent sur
les particules) manque de reproduire les événements extrêmes, alors les phénomènes de dispersion,
par exemple, ne peuvent être simulés, même si les valeurs moyennes sont correctes. D’un point
de vue plus général, cette méthode est également importante pour les accumulations de particules,
l’évaporation, la combustion et tous les phénomènes se déroulant à petite échelle.
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De nombreuses études sur l’analyse des données d’intermittence dans la turbulence révèlent la na-
ture multifractale de la dissipation, et des modèles ont été développés pour tenter de la reproduire
(Pope and Chen 1990; Borgas 1993; Frisch 1995; Sreenivasan and Antonia 1997). Cependant,
tous les modèles à statistiques non gaussiennes ne sont pas nécessairement intermittents et une
caractérisation rigoureuse doit être établie. Le chaos gaussien multiplicatif (Gaussian Multiplica-
tive Chaos : GMC) (Kahane 1985; Robert and Vargas 2010) fournit un cadre approprié pour les
processus stochastiques intermittents, car il correspond à un modèle de cascade continue pour la
dissipation conforme à la théorie de Kolmogorov (1962). Quelques modèles basés sur le GMC
ont été développés (Chevillard 2017; Schmitt and Marsan 2001; Pereira, Moriconi, and Chevillard
2018) mais leur analyse mathématique et leur implémentation numérique ne sont pas simples.

3.2 Ségrégation
La perte d’information due à la simulation d’ordre réduit de la phase porteuse a un impact sur la
dynamique des particules puisqu’elle modifie les petites échelles et donc l’interaction des partic-
ules inertielles avec celles-ci.

Fede and Simonin (2006) ont constaté que les taux d’accumulation et de collision des particules
sont considérablement influencés lorsque le temps de relaxation des particules est inférieur aux
échelles de temps caractéristiques de la simulation d’ordre réduit. Pozorski and Apte (2009) ont
également étudié l’effet des champs filtrés sur la ségrégation des particules et ont observé des
changements significatifs dans la structure de la phase dispersée. Si les modèles stochastiques
diffusifs ne sont pas capables de reproduire des structures cohérentes de sous-maille, une autre
stratégie est alors possible. Les modèles structurels visent à reconstruire les échelles de sous-maille
de l’écoulement. Parmi eux, on trouve les modèles de déconvolution approximative, l’interpolation
fractale ou les simulations cinématiques. Cependant, ces approches ne réussissent pas entièrement
à retrouver les schémas de concentration préférentielle d’une DNS (Cernick, Tullis, and Lightstone
2015) (voir Sec. 2.3).

3.3 Couplage inverse
Les transferts d’énergie entre les deux phases aux échelles résolues et non résolues doivent être cor-
rectement reproduits dans les ROS. Ceci nécessite une compréhension des échelles d’interaction
entre les deux phases, ainsi que des mécanismes de couplage, ce qui n’est pas encore complètement
établi dans la littérature, même avec des études DNS (Squires and Eaton 1990; Elghobashi 1994;
Squires and Eaton 1994; Boivin et al. 1998; Ferrante and Elghobashi 2003; Abdelsamie and Lee
2012).

A notre connaissance, peu de recherches ont été menées sur le couplage inverse dans les simu-
lations d’ordre réduit avec l’approche point-particule. Boivin, Simonin, and Squires (2000) ont
réalisé des LES d’écoulements gaz-solide dans une turbulence homogène isotrope forcée avec
un couplage inverse. Tant que le temps de relaxation des particules reste supérieur à l’échelle de
temps caractéristique de la turbulence à l’échelle de la sous-maille, certains modèles LES (modèles
mixtes) sont capables de capturer le flux d’énergie local entre les mouvements résolus et non
résolus. Cependant, les applications avec des particules à faible inertie sont fréquentes et plus
délicates en raison de la concentration préférentielle des particules, et nécessitent également des
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efforts de modélisation dans un contexte de couplage inverse.

Comme première étape vers des modèles à couplage inverse, le formalisme mésoscopique eulérien
étendu introduit par Mercier (2020) étudie les conséquences du couplage inverse sur la description
statistique des écoulements turbulents chargés de particules, et il a été identifié que des statistiques
conditionnées à grande échelle doivent être utilisées dans ce contexte. Même si ce travail a clarifié
certaines conditions pour permettre une description statistique avec LES, un modèle entièrement
cohérent reste à construire.

4 La contribution de la thèse
L’objectif de cette thèse est d’identifier et de caractériser les phénomènes physiques négligés par
les modèles d’ordre réduit qui peuvent altérer la dynamique des particules et de proposer des
modèles de sous-maille de particules appropriés.
Les nouveaux éléments que nous apportons à ces questions sont obtenus par l’analyse des DNS,
qui nous permettent de comprendre les mécanismes impliqués dans l’intermittence, la ségrégation
et le transfert de quantité de mouvement. A partir de ces analyses physiques, nous sommes
en mesure de développer des modèles mathématiquement cohérents, qui couplés avec les ROS,
permettent d’obtenir des statistiques de type DNS tout en gardant la même efficacité de calcul,
voire en l’améliorant. Le cas test réalisé est une turbulence homogène isotrope 3D qui est un cas
académique canonique.

Dans cette thèse, les contributions sont de trois types :

• Nous établissons une caractérisation de l’intermittence pour les écoulements monophasiques,
cohérente à la fois avec les théories de la turbulence et les définitions mathématiques. Nous
proposons une méthode originale pour construire de tels processus de manière générique
et élégante, basée sur une somme infinie de processus Ornstein-Uhlenbeck. Ce formalisme
permet non seulement d’unifier l’écriture des différents processus existants, mais aussi d’en
développer un nouveau, plus versatile et plus efficace en temps de calcul grâce à la simplicité
de simulation des processus Ornstein-Uhlenbeck.

• Nous proposons une nouvelle stratégie, dans l’esprit de la modélisation cinématique de la
turbulence, pour laquelle nous mettons en évidence les limites des modèles actuels. Des
champs de vitesse aléatoires, corrélés spatialement et temporellement, sont générés à l’aide
d’ondelettes à divergence nulle. Le modèle cinématique basé sur les ondelettes est d’abord
validé en 2D et 3D en utilisant les statistiques de la turbulence. Ensuite, les statistiques de la
phase dispersée sont étudiées et nous nous concentrons sur la concentration préférentielle des
particules. Les résultats sont comparés aux simulations DNS et aux simulations cinématiques
classiques de la littérature.

• Nous nous intéressons à l’impact des particules sur un écoulement turbulent (couplage in-
verse), à partir de simulations numériques directes, afin de mieux comprendre et caractériser
ces interactions. Nous mettons en évidence l’importance de la densité moyenne du nom-
bre de particules à travers une analyse dimensionnelle. Nous étudions différents outils pour
mesurer l’hétérogénéité de la phase dispersée et donnons de nouvelles perspectives sur ce
phénomène. La méthodologie mise en œuvre a également l’avantage de constituer un outil
de comparaison des études de la littérature, et permet d’unifier leurs résultats. Les résultats
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nous permettent d’étendre le modèle cinématique à des cadres de couplage inverse avec
différents niveaux de couplage.

Cette thèse fournit de nouvelles perspectives sur les interactions entre les particules et les écoulements
turbulents. En effectuant des analyses approfondies, nous proposons des modèles originaux pour
enrichir les ROS, ouvrant ainsi la voie à des simulations couplées bidirectionnelles précises.

Publications et conférences
Ces contributions ont été publiées dans quatre articles et actes de conférences, ainsi que dans deux
articles en préparation :

• Impact of particle field heterogeneity on the dynamics of turbulent two-way coupled partic-
ulate flows (Letournel, Laurent, Massot, and Vié 2019), 10th International Conference on
Multiphase Flow, ICMF 2019.

• Modulation of homogeneous and isotropic turbulence by sub-Kolmogorov particles: Impact
of particle field heterogeneity (Letournel, Laurent, Massot, and Vié 2020), International
Journal of Multiphase Flow.

• Reproducing segregation and particle dynamics in Large Eddy Simulation of particle-laden
flows (Letournel, Laurent, Massot, and Vié 2021), International Conference on Liquid At-
omization and Spray Systems (ICLASS).

• Revisiting the framework for intermittency in Lagrangian stochastic models for turbulent
flows: a way to an original and versatile numerical approach (Letournel, Goudenège, Za-
mansky, Vié, and Massot 2021), Physical Review E.

• A new mathematical framework for the construction of stochastic processes with the ability
to reproduce intermittency in turbulent flows (Goudenège, Letournel, and Richard 2022), in
preparation.

• Wavelet-based kinematic simulation of particle-laden turbulent flows (Letournel, Massot,
and Vié 2022), in preparation.

En outre, les résultats de ce travail ont été présentés dans plusieurs conférences et séminaires
internationaux, dont l’orateur est souligné dans ce qui suit :

• On the accurate prediction of preferential concentration in Large Eddy Simulation of particle-
laden flow (Letournel, Laurent, Massot, Vié), French conference INCA (Advanced Combus-
tion Initiative), April 7-8 2021.

• Reproducing segregation and particle dynamics in Large Eddy Simulation of particle-laden
flows (Letournel, Laurent, Massot, Vié), invited to BICTAM-CISM Symposium on Dispersed
Multiphase Flows : from Measuring to Modeling, March 2-5 2021.

• Intermittency in Lagrangian stochastic models for turbulent flows : genuine characteriza-
tion and design of a versatile numerical approach (Letournel, Goudenège, Zamansky, Vié,
Massot), 14th World Congress on Computational Mechanics, ECCOMAS Congress, January
11-15 2021.

5 Plan du manuscrit
• La partie I traite des écoulements turbulents, des aspects physiques à la modélisation et à

la simulation. En particulier, le Chap. 1 introduit les notions fondamentales à l’étude de
la turbulence à travers les outils statistiques, les quantités caractéristiques et les principales
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théories liées à la turbulence. Le chapitre 2 présente les différents modèles de turbulence,
et les techniques de simulation numérique associées. Les modèles haute-fidélité et d’ordre
réduit sont présentés et discutés. Le cadre numérique de cette thèse est également introduit.

• Part II est consacrée plus spécifiquement à l’étude de l’intermittence dans les écoulements
turbulents. Le chapitre 3 propose une classification des modèles stochastiques existants pour
les particules fluides selon le niveau de modélisation, le type d’équation stochastique et
l’adéquation de chaque modèle avec les théories classiques de la turbulence. Des propriétés
spécifiques à l’intermittence du champ de dissipation sont mises en évidence et permettent
d’établir une liste d’exigences pour l’évaluation des modèles existants ou le développement
de nouveaux modèles. Le chapitre 4 fournit un cadre mathématique nouveau et original
pour les processus stochastiques intermittents s’appuyant sur le chaos gaussien multipli-
catif. Sur la base de ce cadre mathématique, nous introduisons au Chap. 5 un nouveau
modèle stochastique qui permet de reproduire les statistiques de dissipation. Par rapport aux
modèles existants, son implémentation numérique est simple et efficace et sa versatilité le
rend particulièrement intéressant dans le cadre des LES.

• Part III traite des écoulements diphasiques dispersés sans couplage inverse. Le chapitre 6
présente la physique d’une phase dispersée sous un ensemble d’hypothèses permettant la
formulation d’un modèle lagrangien simplifié. Un formalisme eulérien est introduit pour
étudier le comportement collectif des particules (par exemple la ségrégation). Le chapitre 7
passe en revue les principaux modèles et simulations de la phase dispersée associés aux
stratégies de réduction de la dimensionnalité. Dans le contexte de la turbulence sous-résolue,
la nécessité de développer des modèles de particules se fait sentir et les stratégies existantes
sont discutées.

• La partie IV de cette thèse se concentre sur les stratégies de modélisation des particules à
l’échelle non-résolue. Le chapitre 8 passe en revue les modèles stochastiques existants pour
les particules, et un nouveau modèle intermittent adapté aux particules inertielles est proposé.
Le chapitre 9 introduit une autre stratégie, la simulation cinématique, classiquement basée
sur une représentation de Fourier d’un écoulement synthétique. Nous proposons un nouveau
type de simulation cinématique, basé sur des ondelettes à divergence nulle, qui préserve les
avantages de la simulation cinématique classique, à savoir une représentation analytique,
une structure spatiale cohérente, et la reproduction d’un spectre d’énergie donné, tout en
apportant des améliorations : évolution temporelle du champ et localité de l’information.
La simulation cinématique à base d’ondelettes est validée pour la dynamique des phases
dispersées, et notamment pour la concentration préférentielle des particules dans le Chap.
10. Les améliorations et perspectives futures concernant l’intermittence et le coût numérique
de la simulation sont discutées au Chap. 11.

• Enfin, la partie V ouvre la voie à la simulation couplée inverse. Le chapitre 12 présente les
principaux défis liés au traitement du couplage inverse dans les approches Euler-Lagrange,
et le chapitre 13 donne une étude complète de l’influence des paramètres adimensionné sur
le transfert d’énergie entre les deux phases. Le chapitre 14 donne quelques indications pour
adapter les modèles développés dans cette thèse au couplage inverse ou pour développer de
nouvelles stratégies basées sur des modèles unifiés.
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6 Context

6.1 Turbulent disperse two-phase flows in environmental and industrial con-
texts

Turbulent disperse two-phase flows are at the heart of various natural phenomena such as clouds,
in which droplets condensation is controlled by turbulence, the formation of planets and protoplan-
etary disks by the aggregation of dust particles (see Fig. 8(a)), or ocean sedimentation. They are
involved in a large number of environmental considerations, in particular through the transport of
particles in the atmosphere. Such particles can have different origins and properties, for example
fire smoke, volcanic ashes (see Fig. 8(b)) or various pollutants (fine particles, soot,...).

They are also a key element in many industrial applications. In particular, the efficiency of a lot
of energy production or conversion processes is governed by the dynamics of multiphase flows.
The most iconic example is the fuel combustion in thermal engines for which significant research
efforts are being made to improve their energy efficiency in order to reduce the pollutant emis-
sions associated with this activity. The evolution of the fuel spray resulting from the atomization
constitutes a typical example of disperse phase flows and an essential element of the operation
of the engines, since these droplets, by evaporating, produce the fuel/oxidant mixture which will
supply the combustion. A detailed understanding of these complex phenomena combined with
cost-efficient models is thus essential to help design the future generations of thermal engines,

(a) (b)

Figure 8. (a) Interstellar gas and dust in the Eagle Nebula of about 4 light-year in length, at some 7,000
light years from Earth. NASA, ESA. (b) Photograph of the eruption of Mount St. Helens, May 18 1980

15
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(a) (b)

Figure 9. Homogeneous turbulence behind a grid. (a) Photograph from Van Dyke, Album of Fluid
Motion n°153 ; (b) Simulation from Vassilicos and Laizet (2010).

providing more efficient combustion and cleaner means of transportation.

The diversity and importance of the areas where disperse two-phase flows are involved make their
modeling a topic of great interest for both the scientific and industrial communities. Despite being
an intensive field of study for decades, many scientific questions still need to be addressed to
complete our understanding of these phenomena. The complexity of the problem studied first
arises from the nature of the carrier flows, which are mostly turbulent, as this improves the mixing
between the two phases in energetic systems. Turbulence, by nature unsteady and multi-scale,
is already a challenge in single-phase flows, and the coupling with the disperse phase introduces
additional difficulties to understand and efficiently model these phenomena.

6.2 Experiments and simulations
The ambition of disperse two-phase flow research is to accurately predict the evolution and behav-
ior of such flows in a given configuration, e.g., a combustion chamber in a thermal engine. Exper-
imental studies and bench testing have long remained the main approach to assessing, analyzing,
understanding, and designing systems involving two-phase flows. If they are still considered as a
reference, they also have some severe limitations. Indeed, unlike numerical simulations, experi-
mental studies do not provide the full knowledge of the system under study (some measures can
be intrusive or very challenging to perform). Some configurations or environmental conditions
can also be hard to reproduce, and experiments are generally time and resource-consuming, thus
limiting the amount of data that can be generated to understand or design a system.

Numerical simulations are an ideal complement to experimental studies: from models, i.e. a set of
equations, whose solutions reproduce as faithfully as possible the reality, predictions can be made
on a system with reasonable cost and accuracy. Developed from theoretical and mathematical
bases, models thus allow to reproduce experiments, test different configurations, and even explore
physical mechanisms that are difficult to observe experimentally. In most cases, the resolution of
the model equations requires numerical simulation. A comparison of experiment and simulation
of homogeneous turbulence is given in Fig. 9. Thanks to the development of both reliable models
and massive computing architectures, the interest in numerical simulations of disperse two-phase



INTRODUCTION 17

turbulent flows has been growing rapidly for academic and industrial purposes.

7 Numerical simulation of turbulent disperse two-phase flows
The modeling of such flows must tackle a twofold challenge: the description of the turbulence (the
carrier phase) and the description of the disperse phase. In both cases, these are multi-scale prob-
lems that require reduced-order models: for liquid fuel injection system, the diameter of particle
is typically 0.1− 10 µm whereas the dimensions of the combustion chamber is about 10 cm. The
level of description defines the details of the flow field that is resolved in both phases.

We can see two motivations for the use of reduced-order models. The first one arises from the high
dimensionality of the problem, limiting the use of high fidelity simulations to a limited number
of particles or poorly developed turbulence. The reduced-order simulations (ROS) help improving
computing time. This reduction comes at a cost: the loss of information at the smallest scales can
only be compensated by an additional modeling effort. The second motivation is related to the
chaotic nature of such complex flows. An insignificant change in the initial conditions of one of
the two phases can lead to considerable long-term perturbations. The resolution of a given flow
can therefore be questioned since the knowledge of the initial flow or the positions and velocities
of the particles will never be perfect, not to mention the modifications introduced by the different
models and assumptions. It is thus pointless to obtain a detailed description of the two phases but
more relevant to describe them with a statistical approach.

We present the reduction strategies first regarding the turbulent carrier phase alone, then those
related to the description of the disperse phase. Finally, we specify the reasons underlying the
choice in this thesis for the coupling of the two phases.

7.1 Numerical simulation of turbulence
Single-phase turbulent flows are highly multi-scales problems. The range between the scales of en-
ergy production and dissipation is given by the Reynolds number, which characterizes turbulence.
This separation of scale drives the numerical cost since the resolution of the smallest scales on
large domains can then explode for large Reynolds numbers. Different resolution strategies exist,
as illustrated in the case of a turbulent jet in Fig. 10.

Direct numerical simulation
The most accurate description of turbulence is given by the resolution of the entire flow, using di-
rect numerical simulation (DNS). The DNS snapshot in Fig. 10 is indeed very detailed, it resolves
the finest scales of the flow. However, the cost of these methods is unreachable in an industrial
framework: typical Reynolds number in a combustion chamber is about 105 − 106. Hence, DNS
are limited to small domains and rely on massively parallel computing architectures.

Reduced-order simulation
In order to still enable a resolution of the problem, although it implies losing information on the
details of the flow, reduced-order models are derived. Reduced-order simulations (ROS) allow for
predictive and CPU-efficient simulations on industrial configurations. However, they can only cap-
ture large-scale dynamics, which are fully resolved, and discard the smallest scales, which require



18 INTRODUCTION

Figure 10. Computational fluid dynamics modeling of a turbulent jet using different approaches (Italian
Agency For New Energy Technologies 2006).

modeling to be accounted for. Two main strategies are commonly used for deriving such models.
An averaging operation can be applied to the Navier-Stokes equations to obtain the mean equa-
tions of fluid flows called Reynolds Averaged Navier-Stokes (RANS) equations. This is the most
economical and widespread approach in industrial applications today. However, it may be required
for some applications to solve part of the turbulent scales rather than model them. The large eddy
simulations (LES) consists in filtering the Navier-Stokes equations, to solve only the large scales
of the turbulence. Figure 10 shows that RANS method provides an averaged, symmetrical image
of the jet, highly diffuse. On the other hand, the LES simulation is an intermediary, it reproduces
the large unsteady scales of the jet but the smallest ones are filtered.

Although reduced-order models provide a reasonable level of prediction of the purely gaseous flow,
their fidelity must be assessed for multiphase configurations in which the disperse phase interacts
with the turbulent structures.

7.2 Numerical simulation of the disperse phase

Different approaches exist in the literature to describe the disperse phase, and particular attention
must be paid to the choice of modeling in order to reproduce the correct physics at minimal cost
for industrial applications. In this section, to give a global picture, we consider non-reduced simu-
lations of turbulence: we assume the carrier phase is fully resolved to focus on particle modeling.

7.2.1 Deterministic Lagrangian approaches

For liquid droplets, the exact resolution of the whole disperse phase would require the solution
of the flow inside each droplet and at any point of the interface with the carrier phase. Such a
simulation therefore corresponds to a direct numerical simulation for each particle (Boniou 2021).
Under some assumptions, or for solid particles, the problem is simplified by imposing boundary
conditions on the surface of each particle (Xu and Subramaniam 2010), for instance the particle
is assimilated to a sphere. This “microscopic” level is illustrated in Fig. 11, in the top left figure,
where microscopic relates to the framework of kinetic theory of gases (Ferziger, Kaper, and Kaper
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Figure 11. Different levels of description of the disperse phase from microscopic (left), mesoscopic
(center) to macroscopic (right).

1972).

In most industrial applications, a Lagrangian point-particle assumption is considered: this is the
Discrete Particle Simulation (DPS) (Riley and Patterson Jr 1974). The particles are tracked indi-
vidually, and their interaction with the carrier phase is modeled through forces such as the Stokes
drag law applied at the center of mass of the particle. In such modeling, the volume occupied by
the disperse phase is negligible compared to the one occupied by the carrier phase.

Lagrangian simulation is relatively intuitive and straightforward to implement numerically (solv-
ing an ordinary differential equation for each particle), although it requires special attention in
parallel computations since they demand the use of a computational load balancing (Marta 2009).
That is why it is the most widespread method in the literature to study the behavior of inertial par-
ticles (Squires and Eaton 1991; Elghobashi and Truesdell 1992) and in combustion applications
(for instance Mesquita, Vié, Zimmer, and Ducruix (2021)).

The accuracy of these methods depends directly on the modeling of these forces but also on the
evaluation of the undisturbed fluid velocity at the position of the particle (Horwitz and Mani 2016;
Ireland and Desjardins 2017; Poustis, Senoner, Zuzio, and Villedieu 2019). Moreover, only one
realization of the disperse phase is obtained in each simulation. It is then necessary to perform
several Lagrangian simulations to obtain global statistical variables, which becomes excessively
expensive. One can instead rely on a kinetic (or mesoscopic) description of the disperse phase,
in the spirit of the Boltzmann equation obtained in the Boltzmann-Grad limit of the Liouville
equation.

7.2.2 Kinetic-based methods

Mesoscopic approaches provide statistics of the disperse phase by deriving the number density
function (NDF) of the disperse phase. This function gives the probability of finding a particle in
a given state of the phase space (which is composed of a set of internal variables such as velocity,
particle size, temperature etc.). The evolution of the NDF is governed by the Williams-Boltzmann
equation (WBE). Figure 11 shows one realization of the mesoscopic approach, with an initial uni-
form particle density, obtained with Lagrangian tracking.
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Two strategies for solving this WBE can be considered: the first consists in integrating the WBE in
the phase space in order to reduce the dimensionality of the problem and thus transport moments:
this is further described in next section. The second strategy is based on Lagrangian methods:

• The direct Monte-Carlo simulation method (Bird 1994) approximates the NDF by a sample
of discrete statistical particles representing a particle. Therefore, a large number of numeri-
cal particles is needed, each of them supposed to represent a fraction of the physical particle.
Those particles are tracked following the same system of ordinary differential equations
(ODE) than in DPS and the method thus has the same drawbacks of slow statistical conver-
gence.

• The stochastic parcel method consists on the contrary in representing a group of particles
with identical properties by a single numerical particle, called parcel (O’Rourke 1981). By
decreasing the number of particles to follow, this method obviously reduces the computa-
tional cost, but it remains proportional to the number of real particles.

Both stochastic Lagrangian methods presented above face difficulties in a two-way coupling con-
text: indeed, the particles are not represented individually and the local effect they may have on
the turbulent flow cannot be faithfully reproduced.

7.2.3 Eulerian moment methods

By integrating the WBE in the phase space against a set of polynomials of limited degree, we
obtain quantities, called moments, which can be related to macroscopic quantities such as the con-
centration of particles or the particle velocity field, as given by the bottom right snapshot in Fig. 11.
In this approach particles are not described individually, but through Eulerian fields which satisfy
partial differential equations.

This method is intrinsically statistically convergent, and the computation time does not depend on
the number of particles. The Eulerian framework simplifies the coupling with the carrier phase
since the exchange terms are then written in the same formalism. Furthermore, this method can
be efficiently implemented in parallel computation since it is similar to usual computational fluid
dynamics tools.

On the other hand, particular attention must be paid to the modeling of dispersion in velocity or
size of the particles, and the resulting fields depend on the closure terms considered. Moreover, ad-
equate numerical methods must be developed because this approach can lead to hypercompressive
fields (De Chaisemartin 2009) and singularities.

7.3 Some key physics of disperse phase flows and their modeling
Among the critical elements involved in the modeling of disperse two-phase flows, the reproduc-
tion of particle dynamics will be the focus of this thesis, and in particular intermittent statistics,
the preferential concentration of particles, and the two-way coupling:

• A Lagrangian simulation can faithfully reproduce the typical dynamics of a two-phase flow,
and in particular its rare events. Figure 12 shows the simulation of a spray burner with evap-
oration of droplets. The passage of a droplet through the flame can considerably modify
its front and brings a local perturbation which cannot be considered in the case of Eulerian
simulations based on global averages. Such extreme events can be generated by the inter-
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Figure 12. Instantaneous heat release, with over-imposition of droplets for two different Lagrangian
simulations of a spray burner (Paulhiac 2015).

mittency of the turbulent phase, whose velocity fluctuations can vary brutally and strongly.

• The preferential concentration of particles corresponds to an accumulation of particles in
certain regions of the flow, caused by particles interaction with turbulent eddies. This is
illustrated in Fig. 13, where snapshots of particles are given for different particle Stokes
numbers, which characterizes particle inertia. Depending on this dimensionless parameter,
the disperse phase can be highly heterogeneous. Such concentration inhomogeneities are
essential for the dynamics of the system, for example particle clustering of heating particles
in a dilute suspension which results in more intense local heating (Zamansky, Coletti, Mas-
sot, and Mani 2016); and for combustion applications, segregation can generate hot spots
and deformations of the flame front. This phenomenon is well reproduced in deterministic
Lagrangian simulations, whereas a high resolution is required to observe the correct level of
segregation with Eulerian methods (Sabat 2016).

• The influence of the disperse phase on the carrier phase must also be considered, in par-
ticular when the mass loading is important (Elghobashi 1991). For example, self-sustained
turbulent structures have been observed in a wide range of living fluids such as bacterial
environments or oceanic surface waters, due to small active organisms (bacteria, plankton)
generating small-scale chaotic motion (Dunkel, Heidenreich, Drescher, Wensink, Bär, and
Goldstein 2013; Abraham 1998). This is known as two-way coupling and additional source
terms of mass, momentum and energy must then be taken into account in the resolution of
the turbulent phase. For Lagrangian approaches, the exchange terms between the fluid and
the disperse phase must be treated carefully, as information must be transferred between the
singular point particles and the Eulerian mesh of the fluid. Many recent works on the subject
propose regularization strategies to avoid numerical problems (Capecelatro and Desjardins
2013; Zamansky, Coletti, Massot, and Mani 2014; Poustis, Senoner, Zuzio, and Villedieu
2019). The numerical implementation of two-way coupling is more straightforward for Eu-
lerian simulations since the two phases share the same framework. However, they only
consider a global reverse coupling, at the scale of the resolved mesh. The impact of iso-
lated particles is not well reproduced, while these extreme events can be critical, such as
the evaporated fuel from a droplet. In that case, the need for a local two-way coupling is
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Figure 13. Spatial distribution of particles inside a thin layer for eight different Stokes numbers. (a)
St = 0.05, (b) 0.1, (c) 0.2, (d) 0.5, (e) 1, (f) 2, (g) 5 and (h) 10. Simulation from Yoshimoto and Goto

(2007).

preferentially addressed with a Lagrangian approach (Doisneau 2013).

In practice, for most industrial configurations, a Lagrangian point-particle approach is used since
it allows faithful modeling of a polydisperse phase and uses simple numerical schemes that do not
introduce numerical diffusion, as opposed to Eulerian methods. Nonetheless, some methods of
moments have been developed in recent years (Kaufmann et al. 2008; Laurent et al. 2012; Masi
et al. 2014; Sabat 2016; Sabat et al. 2019) with the aim of reproducing the dynamics of the dis-
perse phase as faithfully as possible. For instance, in fluidized-bed reactors, Euler-Euler modeling
approaches are preferred due to the high number of particles involved (Neau, Pigou, Fede, Ansart,
Baudry, Mérigoux, Laviéville, Fournier, Renon, and Simonin 2020). However, they have rarely
been applied to industrial configurations for combustion applications, and Lagrangian simulations
are still the reference simulations. Still, the Lagrangian benefits have to be nuanced since it is
only applicable to disperse phases. In order to describe a complete spray injection, Lagrangian
methods, when they are used, have to be coupled with an Eulerian model for separated phase flows
(Drui 2017; Cordesse 2020; Di Battista 2021; Loison 2024).

On top of these physical issues, we also must recall that in an industrial context, it is impracticable
to solve all the scales of the turbulent phase, and reduced-order simulations are therefore used.
It is then essential to model the effect of the unresolved scales on particle dynamics. Moreover,
with two-way coupling, it is also necessary to integrate the feedback of the particles on these
same scales. In the following, we state the modeling challenges of point-particle approaches with
reduced-order turbulence as a first step towards the dimensional reduction of the disperse phase,
which may eventually lead to reduced Euler-Euler methods.
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Figure: Bubbles’ acceleration normalised by Hesienberg-Yaglom scaling a⌘, the
flatness of acceleration pdf resolved by LES is 4.45, which is close to Gaussian
distribution 3. while the pdf of the acceleration of bubbles is suppose to be be
highly intermittent with non-Gaussian pdf.
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Figure 14. Probability density function (PDF) of fluid particle acceleration in a turbulent flow resolved
with DNS mesh 10243 (blue line) and LES mesh 643 (red line), with Reλ = 200. Figure from Zhang

(2019).

8 Modeling challenges for point-particle with reduced-order
turbulence simulation

The dynamics of the disperse phase is intrinsically bound to the interplay between the particles
and the turbulence at the particle scale. However, averaging or filtering operations prevent parti-
cles from interacting with unresolved fluid structures. In some applications the unresolved scales
of the fluid velocity have a significant effect on the particle motion. In this case, two sub-filter
scale models must be considered, one for the equations governing the fluid, and another for the
particle motion equations.

The main challenges are to retrieve the correct statistics of the disperse phase (such as particle
kinetic energy or intermittency), particle preferential concentration, and to correctly model the
two-way coupling terms.

8.1 Intermittent statistics

Statistics of the disperse phase such as velocity, acceleration, and dispersion of the particles are
altered by the filtering of the carrier phase, in particular when a significant part of the kinetic en-
ergy of the turbulence is removed by the filter (Fede and Simonin 2006). Modeling efforts have
been done to reproduce the far-from-Gaussian behavior of the particle acceleration observed in
experiments and direct numerical simulation (Bini and Jones 2007).

More precisely, the first shortcoming identified in reduced-order simulations is the loss of the in-
termittency phenomenon, inherent to the turbulent nature of the fluid, corresponding to violent
fluctuations of the flow dissipation field. An example of this phenomenon is observed in Fig. 14
with the highly non-Gaussian statistics of fluid acceleration in a DNS-resolved turbulent field.
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With a reduced-order approach, the distribution tails are much lower, and extreme events related to
high particle acceleration no longer occur. Yet, if the acceleration (and thus the underlying forces
that apply on particles) misses the extreme events, then the dispersion phenomena, for example,
cannot be reproduced, even if the average values are correct. On a broader view, it is also impor-
tant for particles clusters, evaporation, combustion, and all phenomena taking place at small scales.

Numerous studies on data analysis of intermittency in turbulence reveal the multifractal nature
of the dissipation, and models were developed in attempt to reproduce it (Pope and Chen 1990;
Borgas 1993; Frisch 1995; Sreenivasan and Antonia 1997). However, not all models with non-
Gaussian statistics are necessarily intermittent and a rigorous characterization must be established.
The Gaussian multiplicative chaos (GMC) (Kahane 1985; Robert and Vargas 2010) provides an
appropriate framework for intermittent stochastic processes, since it corresponds to a continuous
cascade model for the dissipation consistent with the theory of Kolmogorov (1962). Few models
based on the GMC were developed (Chevillard 2017; Schmitt and Marsan 2001; Pereira, Mori-
coni, and Chevillard 2018) but their mathematical analysis and numerical implementation are not
straightforward.

8.2 Segregation
The loss of information due to the reduced-order simulation of the carrier phase has an impact on
the dynamics of the particles since it modifies the small scales and hence the interaction of inertial
particles with them.

Fede and Simonin (2006) found that particle accumulation and collision rates are significantly in-
fluenced when the particle relaxation time is smaller than characteristic time scales of the reduced-
order simulation. Pozorski and Apte (2009) also studied the effect of filtered fields on particle seg-
regation and observed significant changes in the disperse phase structure. If diffusive stochastic
models are not able to reproduce coherent unresolved structures, another strategy is then possi-
ble. Structural models aim at reconstructing the unresolved scales of the flow. Among them are
the approximate deconvolution models (ADM), the fractal interpolation or kinematic simulations
(Murray, Lightstone, and Tullis 2016a). However, these approaches are not entirely successful in
retrieving the preferential concentration patterns of a DNS (Cernick, Tullis, and Lightstone 2015),
which is a primary concern in most applications (see Sec. 7.3).

8.3 Two-way coupling
Energy transfers between the two phases at resolved and unresolved scales must be correctly re-
produced in ROS. This requires an understanding of the interaction scales between the two phases,
as well as the coupling mechanisms, which is not yet fully established in the literature, even with
DNS studies (Squires and Eaton 1990; Elghobashi 1994; Squires and Eaton 1994; Boivin et al.
1998; Ferrante and Elghobashi 2003; Abdelsamie and Lee 2012).

To our knowledge, little research has been conducted on the two-way coupling in reduced-order
simulations with point-particle approach. Boivin, Simonin, and Squires (2000) performed LES
of gas-solid flows in forced homogeneous isotropic turbulence with two-way coupling. As long
as particle relaxation time remains larger than the characteristic time scale of the sub-grid scale
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turbulence, some LES models (mixed-models) are able to capture the local energy flux between
resolved and unresolved motions. However, applications with lower inertia particles are frequent
and more challenging due to particle preferential concentration, and also require modeling efforts
in two-way coupling context.

As a first step towards two-way coupled models, the extended mesoscopic Eulerian formalism
(EMEF) introduced by Mercier (2020) investigates the consequence of two-way coupling on the
statistical description of turbulent particle-laden flows, and it has been identified that large-scale
conditioned statistics must be used in this context. Even if this work clarified some conditions to
enable a statistical description with LES, a fully-consistent model is still to be built.

9 The thesis contribution
The objective of this thesis is to identify and characterize the physical phenomena neglected by the
reduced-order models that can alter the dynamic of particles and to propose appropriate particle
sub-filter scale (SFS) models.
The new elements we bring to these questions are obtained by analysis of DNS, which allow us
to understand the mechanisms involved in intermittency, segregation, and transfer of momentum.
From these physical analyses, we are able to develop mathematically consistent models, which
coupled with the ROS, allow to obtain DNS-like statistics while keeping the same computational
efficiency, or even improving it. The conducted test case is a 3D homogeneous isotropic turbulence
(HIT) which is a canonical academic case.

In this thesis, the contributions are of three types:

• A characterization of intermittency for single-phase flows is established, consistent with
both turbulence theories and mathematical definitions. We propose an original method to
construct such processes in a generic and elegant way based on an infinite sum of Ornstein-
Uhlenbeck processes. This formalism allows not only to unify the writing of the different
existing processes, but also to develop a new one, more versatile and more efficient in com-
putation time thanks to the simplicity of simulation of Ornstein-Uhlenbeck processes.

• We propose a new strategy, in the spirit of kinematic modeling of turbulence, for which
we highlight the limits of the current models. Random velocity fields, spatially and tempo-
rally correlated, are generated using divergence-free wavelets. The wavelet-based KS is first
validated in 2D and 3D using turbulence statistics. Then, the disperse phase statistics are
investigated and we focus on particle preferential concentration. Results are compared with
DNS and Fourier-based kinematic simulations.

• We are interested in the impact of particles on a turbulent flow (two-way coupling), from di-
rect numerical simulations, in order to better understand and characterize these interactions.
We highlight the importance of the average particle number density through a dimensional
analysis. We investigate different tools for measuring the disperse phase heterogeneity and
give new insights on this phenomenon. The methodology implemented also has the ad-
vantage of constituting a tool for comparison of the studies of the literature, and allows to
unify their results. The results allow us to extend the kinematic model to two-way coupling
frameworks with different levels of couplings.
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This thesis provides new insights into the interactions between particles and turbulent flows. By
carrying out in-depth analyses, we propose original models to enrich the ROS, paving the way for
accurate two-way coupled simulations.

Publications and conferences
These contributions were published in four papers and conferences proceedings along with two
articles in preparation:

• Impact of particle field heterogeneity on the dynamics of turbulent two-way coupled partic-
ulate flows (Letournel, Laurent, Massot, and Vié 2019), 10th International Conference on
Multiphase Flow, ICMF 2019.

• Modulation of homogeneous and isotropic turbulence by sub-Kolmogorov particles: Impact
of particle field heterogeneity (Letournel, Laurent, Massot, and Vié 2020), International
Journal of Multiphase Flow.

• Reproducing segregation and particle dynamics in Large Eddy Simulation of particle-laden
flows (Letournel, Laurent, Massot, and Vié 2021), International Conference on Liquid At-
omization and Spray Systems (ICLASS).

• Revisiting the framework for intermittency in Lagrangian stochastic models for turbulent
flows: a way to an original and versatile numerical approach (Letournel, Goudenège, Za-
mansky, Vié, and Massot 2021), Physical Review E.

• A new mathematical framework for the construction of stochastic processes with the ability
to reproduce intermittency in turbulent flows (Goudenège, Letournel, and Richard 2022), in
preparation.

• Wavelet-based kinematic simulation of particle-laden turbulent flows (Letournel, Massot,
and Vié 2022), in preparation.

In addition, the results of this work were presented in several international conferences and semi-
nars, where the presenter is underlined in the following:

• On the accurate prediction of preferential concentration in Large Eddy Simulation of particle-
laden flow (Letournel, Laurent, Massot, Vié), French conference INCA (Advanced Combus-
tion Initiative), April 7-8 2021.

• Reproducing segregation and particle dynamics in Large Eddy Simulation of particle-laden
flows (Letournel, Laurent, Massot, Vié), invited to BICTAM-CISM Symposium on Dispersed
Multiphase Flows : from Measuring to Modeling, March 2-5 2021.

• Intermittency in Lagrangian stochastic models for turbulent flows : genuine characteriza-
tion and design of a versatile numerical approach (Letournel, Goudenège, Zamansky, Vié,
Massot), 14th World Congress on Computational Mechanics, ECCOMAS Congress, January
11-15 2021.

10 Outline of the manuscript
• Part I deals with turbulent flows, from physical aspects to modeling and simulation. In partic-

ular, Chap. 1 introduces the fundamental notions to the study of turbulence through statistical
tools, characteristic quantities and the main theories related to turbulence. Chapter 2 presents
the different turbulent models, and the associated numerical simulation techniques. The high
fidelity and reduced-order models are presented and discussed. The numerical framework of



INTRODUCTION 27

this thesis is also introduced.

• Part II is devoted more specifically to the study of intermittency in turbulent flows. Chapter 3
proposes a classification of the existing stochastic models for fluid particles according to the
level of modeling, the type of stochastic equation and the adequation of each model with
classic turbulent theories. Properties specific to the intermittency of the dissipation field
are highlighted and are used to establish a list of requirements for the evaluation of existing
models or the development of new ones. Chapter 4 provides a new and original mathematical
framework for intermittent stochastic processes relying on the Gaussian multiplicative chaos.
Based on this mathematical framework, we introduce in Chap. 5 a new stochastic model
which allows to reproduce the statistics of dissipation. Compared to existing models, its
numerical implementation is simple and efficient and its versatility makes it particularly
interesting in the LES framework.

• Part III deals with one-way coupled disperse two-phase flows. Chapter 6 presents the physics
of a disperse phase under a set of assumptions allowing the formulation of a simplified
Lagrangian model. An Eulerian formalism is introduced to study the collective behavior
of particles (for example segregation). Chapter 7 reviews the main models and simulations
of the disperse phase associated with dimensionality reduction strategies. In the context of
under-resolved turbulence (ROS), the need to develop particle models arises and existing
strategies are discussed.

• Part IV of this thesis is focuses on strategies for particle sub-filter scale modeling. Chap. 8
reviews existing stochastic models for particles, and a new intermittent model adapted to
inertial particles is proposed. Chapter 9 introduces another strategy, the kinematic simula-
tion, classically based on a Fourier representation of a synthetic flow. We propose a new
type of kinematic simulation, based on divergence-free wavelets, which preserves the ad-
vantages of the classical kinematic simulation, i.e. an analytical representation, a coherent
spatial structure, and the reproduction of a given energy spectrum, while bringing improve-
ments: temporal evolution of the field and locality of the information. Wavelet-based KS is
validated for the disperse phase dynamics, and especially for particle preferential concentra-
tion in Chap. 10. Future improvements and perspectives regarding the intermittency and the
numerical cost of the wavelet-based KS are discussed in Chap. 11.

• Finally, Part V paves the way to two-way coupled simulation. Chapter 12 introduces the
main challenges for handling two-way coupling in Euler-Lagrange approaches, and Chap. 13.
gives a comprehensive study of the influence of the dimensionless parameters on the energy
transfer between the two phases. Chapter 14 gives some guidelines for adapting the models
developed in this thesis to the two-way framework or for developing new strategies based on
unified models.
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Turbulent flows
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This part deals with turbulent flows, their main characteristics and their modeling. In particular,
Chap. 1 presents the issues and difficulties related to the description of turbulence, which by its
chaotic nature requires a statistical treatment. The notions of ensemble averages are defined and
simplified under the assumption of homogeneous isotropic turbulence (HIT). One and two-point
statistics of the velocity field are derived and provide information on the flow’s characteristic
lengths, times, and velocities. The main theories governing the universality of turbulence are
exposed, in particular the Richardson cascade principle, the K41 and K62 theories of Kolmogorov
and Obukhov, and the Yaglom cascade model, which introduce the concept of intermittency in
turbulence. Chapter 2 deals with the modeling and simulation of turbulent flows. While direct
numerical simulation (DNS) gives the most accurate representation, its numerical cost does not
allow its use in industrial or physical configurations with high Reynolds numbers. Reduced-order
models such as RANS or LES are introduced, and we detail their equations and some of the most
commonly used closures. An accurate understanding of the loss of information associated with
ROS computations is fundamental to assess their efficiency and try improving them.
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Chapter 1

Physics and theories of turbulent flows

Many physical phenomena are turbulent: the agitated current in a river, a waterfall, the flow behind
a car or an airplane, the motion of the wind, the smoke of a fire, the plume of a rocket engine...
The main visible characteristics of such flows are instability, irregularity, randomness and seem-
ingly chaotic character, the presence of vortices of different shapes and sizes. Indeed, dealing with
structures of various sizes (ranging from the characteristic length of the geometry of the system
to the smallest scales) represents one of the great difficulties for the numerical simulation of such
flows. On the other hand, the highly chaotic behavior of turbulence makes it practically hopeless
to attempt to reproduce a given realization of such flows as observed in an experiment. Turbulence
is only reproducible through its statistics.

This chapter aims at giving the reader some tools to understand turbulent flows, and their main
characteristics. Many quantities are introduced, as well as methods and notations, which will be
essential to the reading of this thesis.

In this chapter, we first establish in Sec. 1.1 the equations governing the evolution of the fluid.
We present the properties of a turbulent flow and the associated metrics. We give the mathematical
keys to understand such flows from a statistical point of view. In Sec. 1.2, the characteristic quanti-
ties of interest for the statistical study are introduced, as well as the associated characteristic scales.
Eventually, in Sec. 1.3, we introduce a fundamental and intrinsic property of turbulence: the inter-
mittency. The original theories of Kolmogorov and Obukhov are presented, and their implications
on the introduced metrics and statistics are established.

1.1 Fluid dynamic equations

1.1.1 From molecules to continuous medium
The resolution of a flow from a microscopic point of view consists in studying all the molecules
of the fluid interacting with each other. However, such level of description is both complex and
computationally expensive, and the fluid is generally treated as continuous media.
Indeed, the time and length scales of molecular motion are extremely small compared to the reso-
lution scales of flows. For example, the mean free path of ambient air is λ ∼ 7× 10−8m. It is the
average distance traveled between two successive collisions with other moving particles of air. On
the other hand, the smallest length scales of interest present in the flows are rather of the order of
magnitude ℓ ∼ 0.1mm. There are thus more than three orders of magnitude of separation.

33



34 CHAPTER 1 - PHYSICS AND THEORIES OF TURBULENT FLOWS

The separation of the scales is quantified by the Knudsen number, Kn := λ/ℓ. For Kn < 0.01, a
continuous approach can be considered whereas for Kn > 10, the system is in free molecular flow.
In the ambient air for example, the Knudsen number is less than 10−3 and we will consider that
this assumption is also largely verified for the flows described in this thesis.

Two strategies can be considered for the derivation of continuous Eulerian equations. In continuum
mechanics, they can be obtained by mass, momentum and energy balances on a control volume
(Pope 2000). For very small Knudsen numbers on the other hand, thanks to the scale separation,
it is possible to define a volume of typical size ℓ3⋆ such that λ ≪ ℓ⋆ ≪ ℓ. Thus, the macroscopic
quantity defined at point x and time t is the average of all the microscopic quantities of the fluid
particles present in such volume. The kinetic and statistic theories, considering a distribution
function and in the limit of Kn ≪ 1 also yields a mixed hyperbolic-parabolic system (Bardos,
Golse, and Levermore 1993; Lions and Masmoudi 2001).

1.1.2 Navier-Stokes equations
For low values of Mach number, the incompressible Navier-Stokes equations are a system of non-
linear second order partial differential equations, with independent variables: position (x) and
time (t). They provide the evolution of the fluid velocity u at a point x in time t. The equations
can be derived from the basic principles of continuity of mass and momentum, applied to a finite
arbitrary volume and assuming constant density:

∂ui
∂xi

= 0,

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= ρfext,i −
∂p

∂xi
+
∂τij
∂xj

,
(1.1)

where we use the Einstein notation. The first equation is the conservation of mass and the second
one is the conservation of momentum. The fluid density is given by ρ. We define the pressure p,
the external force per unit mass applied on the fluid f ext and the viscous stress tensor τij , given as:

τij := 2µSij, (1.2)

where µ is the dynamic viscosity and Sij is the deformation-rate tensor defined by:

Sij :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.3)

The local kinetic energy and dissipation rate are respectively defined by:

k :=
1

2
uiui, (1.4)

ε := 2νSijSij, (1.5)

where ν = µ/ρ is the fluid kinematic viscosity.
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Figure 1.1. A sketch from Reynolds (1883) illustrating the Reynolds number influence on the flow.
A fluid is flowing in a tube, and ink is injected at the entrance to visualize the flow. In the top figure,
the regime is laminar, the fluid is flowing straightforward. In the bottom figure, the regime becomes

turbulent after a certain distance in the tube. The ink reveals eddies, vortices in the flow.

No analytical solution of the Navier-Stokes equations is known today, except in very simplified
configurations. This is because of the non-linearity of the partial differential equations, and the
mathematical existence and uniqueness of solutions of the Navier-Stokes equations is not yet
proven (Temam 2001). Nevertheless, numerical simulations are the only mean to get understand-
ing of realistic fluid systems.

Depending on the terms present in the equation, different regimes for the behavior of the flow are
identified, among which a particularly unstable one, called turbulence. This regime is defined for
a criterion related to the Reynolds number.

1.1.3 The Reynolds number
We consider that to a typical length scale ℓ is associated a characteristic time scale τℓ and velocity
uℓ, related by uℓ = ℓ/τℓ. In Eq.(1.1), we can identify two particular terms:

• a force of inertia:
ρu2ℓ
ℓ

;

• a viscous dissipation force:
µuℓ
ℓ2

;
as well as two characteristic times, obtained by dimensional argument:

• a dynamic time: ℓ/uℓ;
• a dissipation time: ℓ2/ν.

The ratio of these two forces, which is also the ratio of these two times, gives the local Reynolds
number:

Reℓ =
ℓuℓ
ν
. (1.6)

Based on the largest scales in the flow, ReL can be defined as ReL :=
Lσu
ν

, where σu represents
the characteristic velocity of large scales. The influence of the Reynolds number is illustrated on
the sketch of Fig. 1.1.
When ReL is small, dissipation blocks all development of the flow. If there is a permanent forcing,
a stable flow is established (laminar at the limit), which will not interest us in the following. Such
laminar flow is represented in the top figure of Fig. 1.1.
When ReL is large, the forces of inertia prevail over the forces of dissipation. The motion is
unstable, erratic and difficult to characterize in terms of shapes or patterns. Under an external
forcing, the turbulence is maintained and one can observe the typical eddies in the bottom Fig. 1.1.
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Figure 1.2. A schematic diagram of the energy cascade at very high Reynolds number.

1.1.4 Richardson’s energy cascade and energy spectrum
This mechanism, proposed in the 1920s, describes the way energy is produced, distributed and
then dissipated in turbulent flow. Richardson postulates that:

• energy is injected at a large scale L;
• the energy transfers from scale to smaller scale (the vortices give birth to smaller vortices by

stretching and folding);
• it is dissipated when the “dissipation time” is of the order of “dynamic time”, which defines

the Kolmogorov scale.

There are thus three ranges of scales in the flow, as represented in Fig. 1.2:
• the large scales L, TL and σu which are sensitive to external phenomena (boundary condi-

tions, forcing, etc...);
• the very small scales, where viscosity dominates. Those are called the Kolmogorov scales:

the length scale η, the time scale τη and the velocity uη. At the smallest scales, inertia and
viscous effects are in balance Reη = uηη/ν = 1;

• the intermediate scales, dominated by dynamics, and where most of the turbulence develops.
Richardson assumes that for the intermediate scales ℓ, the dissipation rate of energy is conserved.
By dimensional analysis, it is defined as εℓ = Eℓ/τℓ, whereEℓ = u2ℓ is the kinetic energy associated
to these scales. Therefore we have conservation of the energy dissipation rate from the largest (L
and TL) to the smallest scales (η and τη):

εℓ ∼
u2ℓ
τℓ

∼ u3ℓ
ℓ

∼ C. (1.7)

The inertial zone extends between the length scales η and L (respectively the time scales τη and
TL). Reynolds numbers are a measure of scale separation because by applying this conservation

of energy to
σ3
u

L
∼
u3η
η

and
σ2
u

TL
∼
u2η
τη

, we easily obtain:

L

η
∼ Re

3/4
L ,

TL
τη

∼ Re
1/2
L . (1.8)

Therefore, the Reynolds number is directly related to the scale separation (in time and space).

Also note that Richardson’s picture of turbulence relies on the assumption that εℓ has small fluc-
tuations and can be considered as a constant. This vision of turbulence will be further developed
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(a) (b)

Figure 1.3. (a) A scheme of the energy spectrum at very high Reynolds number ; (b) Energy spectra in
log-log scale for different Reynolds numbers ReL. The dashed lines represent a −5/3-slope.

by Kolmogorov (1941b). However, if fluctuations are strong, this universal picture of turbulence
must be revised (Kolmogorov 1962) and in that case, intermittency must be taken into account (see
Sec. 1.3.1).

The energy spectrum provides insight into the distribution of turbulent kinetic energy among the
eddies of different sizes. We define the Eulerian energy spectrum E(κ) as the kinetic energy per
unit mass and unit wavenumber κ of a velocity field. Let us consider a series of discrete scales
such as

ℓn = ℓ02
−n, n = 0, 1, 2...

and the associated wavenumbers κn = ℓ−1
n . The kinetic energy per unit mass in scales ℓn is defined

as:

En =

∫ κn−1

κn

E(κ) dκ ∼ E(κn)∆κn, (1.9)

where ∆κn = κn+1 − κn = 2κn − κn = κn. Therefore, we have: En ∼ E(κn)κn. We have seen
that εn can be considered constant throughout the inertial range: εn ∼ C. This yields:

un ∼ (Cℓn)
1/3, En ∼ (Cℓn)

2/3. (1.10)

Finally, En ∼ E(κn)κn, and we obtain the well-known behavior of the energy spectrum in the
inertial range: E(κ) ∼ κ−5/3.

Figure 1.3(a) shows the Richardson cascade model, with a logarithmic spectral representation of
the turbulent energy. At large scales, i.e. at small wavenumbers, is the injection zone. At small
scales, the energy dissipation takes place and produces the collapse of the energy of the fluid. In
between is established the inertial zone, which is characterized by the average dissipation rate.

In practice, the energy spectrum is obtained with a Fourier transform of the velocity. We consider
the cube of length L in physical space. The smallest wavenumber is κ0 = 2π/L and the wavenum-
ber vector is defined by : κ = κ0n, for n ∈ Z3.
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The Fourier decomposition of the flow gives:

u(x, t) =
∑
κ

eiκxû(κ, t), (1.11)

where û(κ, t) are the Fourier coefficients. The energy spectrum tensor is defined as:

E(κ, t) =
1

2
|ûi(κ, t)|2. (1.12)

Its spectral density gives the energy spectrum:

E(κ, t) =
∑

κ≤|κ|≤κ+1

E(κ, t). (1.13)

Figure 1.3(b) shows the energy spectrum for different Reynolds numbers computed from three-
dimensional numerical simulations performed with Fieldz, a code introduced in Zamansky, Co-
letti, Massot, and Mani (2016) and detailed in Sec. 2.4. The inertial zone is only visible at high
Reynolds numbers, when there is clear scale separation.

1.1.5 Lagrangian framework for fluid particles
Until now, only an Eulerian description of the fluid motion has been introduced. However, it is
sometimes useful to define the Lagrangian description of the flow, which consists of following the
motion of “fluid particles” (or tracers). The fluid particle is defined in Monin and Yaglom (1975)
by a volume of fluid having linear dimensions which are very large compared to the average dis-
tance between molecules. Therefore, the framework of continuum medium mechanics still applies,
but the dimensions of the fluid particles are so small that the velocity and pressure inside its volume
are considered as constant.

In this framework, the evolution equation of a fluid particle is the following:

Du

Dt
= −∇p+ ν∇2u, (1.14)

where
Du

Dt
:=

∂u

∂t
+ (u · ∇)u is the particle acceleration, transported and advected by the flow u.

We will see in the following that such framework defines complementary statistics to those of the
Eulerian fields and also allows us to model the behavior of fluid particles by stochastic processes
(see Chap. 3), considering the random nature of turbulence.

1.1.6 The random nature of turbulence
Fig. 1.4(a) represents a turbulent field, obtained from a numerical simulation which data are avail-
able in Lanotte et al. (2011) and about which details are given in Sec. 2.4. By following fluid
particles in this kind of flow, we obtain the type of temporal evolution for the velocity, acceleration
or dissipation plotted in Figs 1.4(b), 1.4(c) and 1.4(d). They seem random, and reflect the chaotic
behavior of the flow.
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(a)

(b) (c) (d)

Figure 1.4. Snapshot of the velocity field obtained by numerical simulation (a) ; Evolution of a velocity
component (b), an acceleration component (c) and the dissipation (d) of a fluid particles in turbulence.

Dataset from Lanotte et al. (2011).
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In turbulent flow, the velocity field u(x, t) is random, although the Navier-Stokes equations are
deterministic in nature. Indeed, in any turbulent flow, there are inevitably perturbations related to
the accuracy of the initial conditions, the boundary conditions or the fluid properties, and the tur-
bulent flow is extremely sensitive to these perturbations. The initial conditions being imprecisely
known, they cannot univocally determine the evolution of a turbulent flow. The chaotic nature of
turbulence has long been investigated (Benzi, Paladin, Parisi, and Vulpiani 1984; Ottino 1990).

Thus, it is hopeless to try to find an expression for the time-dependence of the macroscopic fields
of a single individual flow, the remaining possibility being a statistical description of turbulence.
This means that a probability measure can be associated with the turbulent flow, as introduced by
Drew and Passman (2006) and presented in next section.

1.1.6.1 Probability space for turbulent flows

This section presents how to build a probability measure associated to turbulence. Let us start by
defining a probability space.

Definition 1.1.1 A probability space is a tuple (Ω, E ,P) of three elements:
• the set of possible outcomes Ω,
• the set of events, which is a σ-algebra:

– ∅ ∈ E and Ω ∈ E
– E is closed under complements, ∀e ∈ E , (∩ e) ∈ E ,
– and E is closed under countable unions

∀ (ei)i∈N ∈ EN,

(
N⋃
i=1

ei

)
∈ E

• and P, the probability measure on E :
– P[∅] = 0 and P[Ω] = 1
– For any (ei)i∈N ∈ EN, such that for any i, j ∈ N with i ̸= j one has ei ∩ ej = ∅,

P

[
N⋃
i=1

ei

]
=

N∑
i=1

P [ei]

Definition 1.1.2 A random variable Y is a measurable function from a set of possible outcomes Ω
to a measurable space.

Definition 1.1.3 When it exists, the expectation of a random variable Y is given by:

E [Y ] :=

∫
Ω

Y (ω)dP[ω]. (1.15)

The variance is defined as:

Var[Y ] := E
[
(Y − E [Y ])2

]
. (1.16)

For a deterministic system of equations such as the Navier-Stokes equations, there are several ways
to introduce a probability space and we give two examples:
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• The initial conditions:
Let us call Af the set of turbulent fluid fields. We consider that initial conditions are a
measurable function which depends on the outcome of a random phenomenon:

u0 :Ω → Af

ω 7→ u0(ω;x)

Therefore, the initial conditions of the fluid u0 define a random field. Applying Navier-
Stokes to this random variable propagates the distribution of initial conditions through time.

• The external forcing:
In stationary turbulence, an external force f ext(x, t) must maintain the stationarity of the
flow in the Navier-Stokes equation. Let us call Bf the set of possible forces f ext(x, t) and
we consider that this forcing is a measurable function which depends on ω, a random event:

f ext :Ω → Bf

ω 7→ f ext(ω;x, t)

Each outcome is therefore a random external force f ext(ω;x, t) introduced in the Navier-
Stokes equation.

Other possible sources of randomness can be introduced following the same approach, for instance
those related to uncertainties on boundary conditions.

By introducing such probabilistic framework in the Navier-Stokes equations, we define a solution
of the equation which is itself random: u(ω;x, t). It is thus possible to apply to it the operators
of expectation and variance. However, in practice, we cannot compute E [u(ω;x, t)] analytically
and we rather estimate the statistics by ensemble means, i.e. by performing a large number of
simulations and randomly drawing the corresponding random variables.

We now define the ensemble mean ⟨.⟩, as an estimator of E [.] with respect to the corresponding
statistical ensemble (for example those associated with the choice of the initial conditions or the
external forcing).

⟨ϕ⟩ (x, t) ≈ E [ϕ(ω;x, t)]

σ2
ϕ(x, t) ≈ Var[ϕ(ω;x, t)].

(1.17)

1.1.6.2 Ergodicity

Computing ensemble means is unrealistic since it consists in repeating experiments or numeri-
cal simulation a large number of times. For experiments on geophysical flows, it is not possible
because we cannot ask the nature to repeat a weather pattern. For numerical simulations, the com-
putational cost is rapidly too high.

A strategy to avoid repeating those experiments consists in taking advantage of the ergodicity of
the flow: an ergodic process is a stochastic process for which the statistics can be approximated by
studying a single sufficiently long realization. The underlying assumption is therefore to consider
that a trajectory occupies a region of the phase space which corresponds to all possible sets of
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the initial phases and which, in the course of time, covers practically all the points in the region.
Therefore, the turbulent motion which arises in this case is “ergodic” and in time, the fluid will
pass through states as close as desired to any possible state of motion (Monin and Yaglom 1975).

Under certain assumptions, we can estimate the ensemble means through time and/or spatial
means. The advantage of ergodicity is that we can explore the same events within a single simula-
tion as the one obtained by averaging over a large number of simulations. There are different types
of ergodicity, depending on the properties of the studied turbulence:

• Homogeneity: Turbulence is homogeneous if all the mean quantities are invariant under
any spatial translation. Then the ergodicity hypothesis allows an ensemble average to be
calculated as a spatial average for a single flow realization ω0

⟨ϕ⟩ (t) ≈ 1

|V|

∫
V
ϕ(ω0;x, t) dx, (1.18)

where V is the domain of fluid simulated and |V| its volume.
• Isotropy: Turbulence is isotropic if all the mean quantities are invariant under any arbitrary

rotation of coordinates: ⟨ux⟩ = ⟨uy⟩ = ⟨uz⟩.
• Stationarity: Turbulence is stationary if all mean quantities are invariant under a translation

in time.

⟨ϕ⟩ (x) ≈ 1

T

∫
[0,T ]

ϕ(ω0;x, t) dt. (1.19)

In the following, we will study homogeneous isotropic turbulence (HIT) and unless otherwise
stated, stationary turbulence. The ergodicity allows us to have access to mean flow quantities
defined by:

⟨ϕ⟩ = 1

|V|
1

3

1

T

∫
[0,T ]

∫
V
(ϕx(ω0;x, t) + ϕy(ω0;x, t) + ϕz(ω0;x, t)) dx dt. (1.20)

One can note the dependency of ⟨ϕ⟩ with x and t because the flow is homogeneous, and stationary
and we drop the component indice because the flow is isotropic.
In the case of non stationary flow, we will keep the dependency on time ⟨ϕ⟩ (t) and compute the
averaging on the spatial dimension only. We will make use of the ergodicity assumption to define
statistical properties of turbulence.

1.2 Statistical description of turbulence
Since turbulence is random in nature, a perfect knowledge of a flow would be given by the statistics
in N points and N times of the velocity field: ⟨u(x1, t1)u(x2, t2)...u(xN , tN)⟩. In practice, it is
not possible to predict the behavior of all of these statistics, and studies are generally limited
to the statistics at one or two points (or times) (Pope 2000). One or two-point statistics gather
important information on space and time characteristics, therefore they represent the main focus
for the modeling of turbulent flows.

1.2.1 One-point, one-time statistics
Homogeneous isotropic turbulence is qualified by a small number of global metrics. The charac-
teristic velocity σu can be defined in HIT from the variance of the velocity field: σ2

u =
〈
u2
〉
. It is
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related to the global fluid turbulent kinetic energy which can be defined by averaging Eq. (1.4):

⟨k⟩ = 1

2
⟨uiui⟩ =

3

2
σ2
u. (1.21)

And so is defined the global energy dissipation rate ⟨ε⟩ = ⟨ε(x, t)⟩ = 2ν ⟨SijSij⟩.

In a periodic domain and in the absence of an external forcing, turbulence is decaying and the
time evolution equation of turbulent kinetic energy is obtained by multiplying fluid momentum
equation by ui and ensemble averaging. We note here that the flow is not stationary, therefore the
ensemble mean can only be calculated with a volume average using spatial ergodicity, and the time
dependencies of the global variables must appear:

d ⟨k⟩ (t)
dt

= −⟨ε⟩ (t). (1.22)

For stationary flows with forcing, the time derivatives are null and ⟨k⟩ and ⟨ε⟩ are characteristics
constants of the flow.

1.2.2 One-point, two-time statistics
One-point correlations are used to determine the time scale (life time) of large eddies. They can be
calculated in an Eulerian or in a Lagrangian frame.

Eulerian measure

Eulerian one-point correlations are defined as:

Ru
E(τ) :=

1

3
⟨ui(x, t)ui(x, t+ τ)⟩ , (1.23)

and the time scale related to the Eulerian correlation is defined as:

TE :=
1

Ru
E(0)

∫ ∞

0

Ru
E(τ) dτ. (1.24)

TE is the time scale during which the fluctuating velocity decorrelates from itself. A practical
calculation of Eulerian one-point correlations involves the evolution of the fluid velocity at a large
number of arbitrarily distributed points in the flow domain and using the spatial averages. The
fluid velocities are stored at the spatial grid points therefore, a practical way of calculating the
correlations is the consideration of the velocities at grid points. Using the stationarity in forced
turbulence, the correlations can further be improved by using time averages for the correlations
calculated for a certain number of realizations separated by a decorrelation time interval.

Lagrangian measure

Lagrangian one-point correlations can be computed along fluid particles trajectories and are de-
fined similarly:

Ru
L(τ) :=

1

3
⟨ui(xf (t), t)ui(xf (t+ τ), t+ τ)⟩ . (1.25)
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The Lagrangian integral time scale is defined accordingly:

TL :=
1

Ru
L(0)

∫ ∞

0

Ru
L(τ) dτ, (1.26)

which is the time scale during which the large eddy complete their rotation.

1.2.3 Two-point, one-time statistics
In a stationary turbulence, the Eulerian two-point velocity correlation function is defined by:

Ru
E,ij(r) := ⟨ui(x)uj(x+ r)⟩. (1.27)

We have the following properties:
• Ru

E,ij(r) = 0 if r → ∞: the velocities are uncorrelated at infinity.
• Ru

E,ii(rei) = σ2
u when r → 0

• Ru
E,ij(r) = 0 for i ̸= j

Since Ru
E,ij is homogeneous to a square velocity and tends towards σ2

u for r = 0, it can be written
as the product of this value by a dimensionless function that describes the variation as a function
of r:

• Ru
E,ij(rek) = σ2

uf(r) for i = j = k

• Ru
E,ij(rek) = σ2

ug(r) for i = j, and k ̸= i
where

f(r) =
1

3

⟨ui(x)ui(x+ rei⟩)
σ2
u

,

g(r) =
1

3

⟨ui(x)ui(x+ rej⟩)
σ2
u

, i ̸= j.
(1.28)

These two correlations allow the definition of two space scales, namely: longitudinal and transver-
sal large scales. They can be calculated by:

Lf :=

∫ ∞

0

f(r) dr

Lg :=

∫ ∞

0

g(r) dr.
(1.29)

Using the incompressibility condition, Von Karman and Howarth (1938) give a relation connecting
these two correlations. It is written:

g(r) =
1

2r
(r2f(r))′ = f(r) +

1

2
rf ′(r). (1.30)

Thus, in isotropic turbulence the two-point correlation Ru
E,ij(r) is completely determined by the

longitudinal autocorrelation function f(r). Another length scale, λf , can be defined from f , char-
acterizing its behavior near 0. We can find a development according to r of the function f(r) in
the form:

f(r) = 1 + rf ′(0) +
r2

2
f ′′(0) +O(r2)

= 1− r2

λ2f
+O(r2),

(1.31)
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Figure 1.5. A sketch of the longitudinal velocity autocorrelation function showing the definition of the
Taylor microscale, λf . Sketch from Pope (2000).

where f ′(0) = 0 because f is an even function. This expression can be used as a definition of

Taylor’s microscopic length scale λf :=

[
−1

2
f ′′(0)

]−1/2

, which is therefore the typical scale in

the inertial cascade. A Reynolds number associated to this characteristic scale can be introduced,

it is the Taylor-scale Reynolds number: Reλ =
σuλf
ν

. The scheme in Fig. 1.5 illustrates what this
characteristic length represents. If the correlation function f is assimilated to a parabola centered
at 0, then this parabola cuts the abcissa axis at λf . This is therefore the typical correlation length of
the longitudinal velocity. Pope (2000) shows that the Reynolds number based on Taylor microscale
λf is directly proportional to the ratio of the time scales : Reλ ∼ TL/τη.

1.2.4 Characteristic scales of turbulence
Now that we have introduced these length and time scales, we can specify the intervals and the
parameters introduced in Sec. 1.1.4.

• The large scales are thus characterized by the length scale L, the time scale TL and the
velocity σu. The conservation of the dissipation rate gives: L ∼ σ3

u/⟨ε⟩ and TL ∼ σ2
u/⟨ε⟩.

• The smallest scales of the flow, η, τη and uη are already related by the equilibrium of the
viscous and inertial forces Reη = 1 and moreover, the conservation of the dissipation rate

gives:
u2η
τη

∼
u3η
η

∼ ⟨ε⟩. Thus, the three parameters of Kolmogorov are:

η :=
(
ν3/ ⟨ε⟩

)1/4
, uη := (⟨ε⟩ ν)1/4 , τη := (ν/ ⟨ε⟩)1/2 . (1.32)

1.2.5 Structure functions
Experimental studies show that the velocity u and its components have a quasi-Gaussian distribu-
tion. This is expected: when we consider the whole fluid, there are a large number of events that
are independent of each other. The velocity at each point therefore contributes independently and
the law of large numbers predicts this Gaussian behavior.
That is not the case for velocity increments. The Lagrangian velocity increment is defined by:

∆τu(t) := u(t+ τ)− u(t), (1.33)
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Figure 1.6. PDF of the velocity increments for different values of τ . The PDF is normalized for unit
variance and compared with the Gaussian distribution in black dashed line. Dataset from Lanotte et al.

(2011).

where u refers to any component of u. The pth-order moment of ∆τu(t) is, by definition, the
pth-order Lagrangian velocity structure function:

DL
p (τ) := ⟨[∆τu]

p⟩ , (1.34)

where we have dropped the time dependency because of the stationarity of the flow.

Figure 1.6 shows the distribution of Lagrangian velocity increments for different values of incre-
ments τ . For time increments of the order of magnitude of τη, and very small compared to TL, the
probability density function (PDF) of the velocity increments exhibits very large tails, far from the
Gaussian distribution. Correlation effects are strong and extend quite far across the domain. For
larger time increments, velocities are uncorrelated and the distribution is closer to the Gaussian
one, as expected.

The structure functions are used to study the non-Gaussianity of the velocity increments, often by
comparing the standardized moments:

Hn(τ) :=
DL

n (τ)

DL
2 (τ)

n/2
. (1.35)

The non-Gaussian behavior of small scales is confirmed in Fig. 1.7(a) by the evolution of the
flatness H4 of the velocity increments which gradually decreases to 3 for the larger scales.
In the following section, the well-known Kolmogorov theory is presented, in particular from the
perspective of characterizing these Lagrangian structure functions.

1.3 The quest for turbulence universality
In an attempt to unify statistical properties of turbulent flows, several fundamental theories were
developed concerning the universal behavior of statistics introduced in the previous section. In this
section, we outline the main ones:



1.3 - THE QUEST FOR TURBULENCE UNIVERSALITY 47

(a) (b)

Figure 1.7. (a) Evolution of the flatness of the velocity increments H4 versus the time shift for Reλ =
70 to 9000 from orange to black and (b) evolution of the flatness of the acceleration with the Reynolds

number and comparison with the linear law. Figure from Zamansky (2021).

• Kolmogorov (1941b), hereafter referred as K41, formalized this universality of turbulence
with a self-similar description of velocity fluctuations in the inertial range (see Sec.1.3.1.1);

• Kolmogorov (1962), hereafter referred as K62, developed a vision based on local and scale-
dependent variables which are more relevant to describe velocity fluctuations (see Sec.1.3.1.2);

• the model of Yaglom (1966), presenting the turbulence as a cascade involving embedded
vortices of decreasing size (see Sec. 1.3.2).

The consequences of these theories in terms of acceleration statistics are specified in Sec.1.3.3.
These properties will be retained as a fundamental basis for the stochastic models that will be
developed in Part I I.

1.3.1 Origins and properties of the intermittency
Although originally developed in an Eulerian framework for the corresponding structure func-
tions, we present below the fundamental assumptions of Kolmogorov’s turbulence theories in a
Lagrangian framework, the equivalence having been previously established by Monin and Yaglom
(1975), Borgas (1993) and others.

1.3.1.1 K 41: the global- similarity hypotheses

Kolmogorov (1941b) first formalized the vision of Richardson cascade by introducing the similar-
ity hypothesis. He stated that for high Reynolds numbers ReL, turbulence is universal and velocity
fluctuations statistics are expected to be independent of the large scales. His theory is based on
two hypotheses:

• The first hypothesis of similarity
For τ ≪ TL, velocity increments statistics are independent on the forcing mechanism. The
structure functions only depend on the mean dissipation and the viscosity ν. Because DL

2 (τ)
is homogeneous to a squared velocity, it can be written in the form:

DL
2 (τ) = u2ηβ0, (1.36)
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Figure 1.8. Temporal evolution of the dissipation ε along three particle trajectories. Dataset from
Lanotte, Calzavarini, Toschi, Bec, Biferale, and Cencini (2011).

where we recall that uη = (ν ⟨ε⟩)1/4 and β0 = β0(τ/τη) is a universal function. An expan-
sion around 0 gives:

u(t+ τ)− u(t) = τ
du

dt
+O(τ). (1.37)

Therefore, by dimensional analysis, β0(x) = a0x
2 for x≪ 1 i.e. τ ≪ τη and we have in the

dissipative range:

DL
2 (τ) = a0 ⟨ε⟩3/2 ν−1/2τ 2, (1.38)

where a0 is assumed universal.

• The second hypothesis of similarity
For τη ≪ τ ≪ TL, velocity increments statistics are also independent on the viscosity:

DL
2 (τ) = ν1/2 ⟨ε⟩1/2 β0 = τη ⟨ε⟩ β0. (1.39)

Therefore, in the inertial range, β0(x) = C0x for x ≫ 1: there is a complete similarity (the
exact definition is given in Sec. 3.1.7.1). C0 is the universal Kolmogorov constant. The K41
theory in the inertial range leads to:

DL
2 (τ) = C0 ⟨ε⟩ τ. (1.40)

However, it was pointed out by Landau and Lifshitz (1987) that this theory is flawed at small scales
by the intermittent fluctuations of the energy dissipation, in contradiction with the homogeneity
assumed in K41.

1.3.1.2 K62: the refined similarity hypotheses

Landau, Lifshitz, and Holbrow (1963), Monin and Yaglom (1975), Yeung and Pope (1989) found
that “constants” of the K41 model C0 and a0 were not universal but Reynolds-dependent. Further-
more the scaling of Lagrangian velocity structure functions cannot be extended to higher order
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moments of the velocity increments because the instantaneous dissipation intermittently reaches
very high values and so the global average of ε is not the relevant scale. This is illustrated in
Fig. 1.8 where the dissipation along fluid particle paths ε is plotted and exhibits brief and sud-
den high fluctuations. The long-range correlation of the dissipation indicates that the large scales
of the flow influence the local dissipation rate thus raising the question of the universality of the
flow. These remarks, raised by Landau and Lifshitz (1944), led Kolmogorov (1962) to the refined
similarity hypothesis with the consideration of a locally-averaged dissipation:

ετ (t) :=
1

τ

∫ t+τ

t

ε(s)ds, (1.41)

where, the upperscript τ represents the time scale of the locally-averaged variable. Local velocity,
scales and Reynolds numbers can be introduced: uτ = (εττ)1/2, ℓτ = τvτ = εττ 3/2 and Reτ =
uτℓτ
ν

.

• The first refined similarity hypothesis
The first local similarity hypothesis states that the Lagrangian velocity structure functions
conditioned by local dissipation should be independent on the large forcing scales for τ ≪
TL:

⟨(∆τu)
p|ετ ⟩ = upτβp, (1.42)

where βp = βp(Reτ ) hence depends on the viscosity ν.

• The second refined similarity hypothesis
Moreover, in the inertial range, the behavior of the velocity increments does not depend on
the viscosity and therefore βp = Cp, a constant. We obtain:

⟨(∆τu)
p|ετ ⟩ = Cp(ε

ττ)p/2. (1.43)

The unconditional statistics of the velocity increments therefore depend on the statistics of
the locally-averaged dissipation:

⟨[∆τu]
p⟩ = Cpτ

p/2
〈
(ετ )p/2

〉
. (1.44)

• The third refined similarity hypothesis
Such velocity structure functions have been studied and characterized in Mordant et al.
(2004), Xu et al. (2006), Biferale et al. (2008), Arnèodo et al. (2008). In K62, it was
also suggested a log-normal distribution for ετ , with a logarithm scaling for the variance of
log ετ :

σ2
log ετ ∼ log

TL
τ
. (1.45)

This prediction is in reasonable agreement with experimental data (Mordant, Delour, Léveque,
Arnéodo, and Pinton 2002) and is reproduced in the “Cascade model” of Yaglom (1966),
presented in Sec. 1.3.2. This model is at the basis of all the existing cascade models.

Since the publication of the refined similarity hypotheses, many studies have been devoted to data
analysis, most of them focusing on energy dissipation. Consistently with these hypotheses, it
was observed that the dissipation has a log-normal distribution and presents long-range power-law
correlation (Yeung and Pope 1989; Pope and Chen 1990; Yeung, Pope, Lamorgese, and Donzis
2006; Dubrulle 2019).
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1.3.1.3 Eulerian framework for intermittency

It should be pointed out that the similarity hypotheses have above been derived within a Lagrangian
framework but were originally presented in an Eulerian context, considering local spatial averages
of the dissipation. Indeed, in the literature, it is more common (Benzi, Ciliberto, Tripiccione,
Baudet, Massaioli, and Succi 1993) to exhibit intermittency on the Eulerian velocity increments,
defined by:

∆ℓu(x, t) := u(x+ ℓ, t)− u(x, t). (1.46)

And the Eulerian velocity structure functions:

DE
p (ℓ) := ⟨[∆ℓu(x, t)]

p⟩ . (1.47)

The K41 similarity hypothesis in the Eulerian framework can be written as:

∀η ≪ ℓ≪ L, DE
p (ℓ) ∝ ⟨ε⟩p/3 ℓp/3. (1.48)

And the K62 similarity hypothesis becomes:

∀η ≪ ℓ≪ L, DE
p (ℓ) ∝

〈
εp/3
〉
ℓp/3 ∝ ℓξ(p), (1.49)

where ξ(p), the intermittency exponent is ξ(p) = p/3 in K41 and deviates from the linear behavior
in the refined theory K62.

The K41 hypothesis is only verified for the first moments of the Eulerian velocity structure func-
tions:

• for p = 2, the hypothesis explains the −5/3 slope of the energy spectrum, as demonstrated
in Sec. 1.1.4;

• for p = 3, the scaling is rigorously demonstrated from the Navier-Stokes equations and
results in the 4/5 scaling. An exact relation between DE

2 and DE
3 was obtained by Kol-

mogorov (1941a), starting with equations for homogeneous isotropic turbulence DE
3 =

−4

5
⟨ε⟩ ℓ + 6ν

∂DE
2

∂ℓ
. In the inertial range, the viscous term can be neglected and reduces

to the 4/5 law: DE
3 (ℓ) = −4

5
⟨ε⟩ ℓ;

• for larger p, Benzi, Ciliberto, Tripiccione, Baudet, Massaioli, and Succi (1993) showed that
scaling properties of the velocity increments can be extended up to the dissipative range
under the form DE

p ∝
(
DE

3 )
)ξ(p)/ξ(3)

, where ξ(p) substantially deviates from the linear K41
law.

Many models have been proposed to explain the intermittency in ξ(p). The most famous are the
log-normal model (the distribution of the energy dissipation is log-normal) (Kolmogorov 1962; Ya-
glom 1966), and the multifractal model (the energy dissipation has a multifractal measure) (Frisch
1985). In the following section, we present the cascade model of Yaglom (1966), a multiplicative
cascade which formalism has been adopted by all later models.

1.3.2 The cascade model of Yaglom
In the Eulerian framework, discrete cascade models and later continuous random fields were de-
veloped. Yaglom (1966) proposed a model of multiplicative cascade where eddies can be seen as
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an ensemble of cells. The largest scale is represented by a unique cell of size L and is then divided
into smallest cells of size ℓ1 = L/λ where λ is the constant scale ratio of the cascade model. This
process is repeated until the smallest scales are reached, with the subdivision ℓN = η = L/λN .
The energy is transferred from one cell generation to the next with a positive ratio given by a ran-
dom variable αi with ⟨αi⟩ = 1 that are independent and identically distributed. We can define for
each cell of size ℓn the energy dissipation rate through it:

εℓn = α1α2...αn ⟨ε⟩ . (1.50)

Following the independence of the random variables αi, it is straightforward to calculate the mo-
ments of any coarse-grained dissipation εℓn:

⟨(εℓn)p⟩ = ⟨ε⟩p
n∏

i=1

⟨(αi)
p⟩

= ⟨ε⟩p ⟨αp
i ⟩

n

= ⟨ε⟩p
(
ℓn
L

)K(p)

,

(1.51)

where we used n = lnλ(L/ℓn) and K(p) = − lnλ ⟨αp⟩. Finally, the exponents K(p) and ξ(p) are
related to each other according to the refined similarity hypothesis of Eq. (1.49):

DE
p (ℓ) ∝

〈
εp/3
〉
ℓp/3 = ⟨ε⟩p/3

(
ℓ

L

)K(p/3)

ℓp/3 = ℓξ(p). (1.52)

And therefore ξ(p) = K(p/3) + p/3.

Depending on the distribution of the αi, different forms of ξ(p) are found (Frisch et al. 1978; Benzi
et al. 1984; Meneveau and Sreenivasan 1987)). Consistent with K62, ε = εη = α1α2...αN ⟨ε⟩ is
log-normal according to the central limit theorem, assuming it applies.

Yaglom (1966) assumed a log-normal distribution for α. We retrieve a quadratic form for K(p) =
λI
2
(p2 − p), where we denote λI = K(2) the so-called intermittency parameter. The structure

function exponent is

ξ(p) =
p

3
− λI

18
(p2 − 3p). (1.53)

Other discrete models were also formulated later and the reader is referred to the exhaustive review
of Seuront, Yamazaki, and Schmitt (2005).

1.3.3 Acceleration statistics
The statistics of Lagrangian velocities and accelerations of fluid particles in turbulence have been
the focus of several experimental works (Voth et al. 1998; La Porta et al. 2001; Mordant et al.
2001; Mordant et al. 2004) and numerical studies (Yeung 1997; Vedula and Yeung 1999; Biferale
et al. 2005; Yeung et al. 2006; Yeung et al. 2007). Numerous works in these fields attempt to de-
velop a stochastic model capable of reproducing these statistics, and in particular their intermittent
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nature.

The fluid particle acceleration a(t) in a turbulent flow can be defined as:

a(t) := lim
τ→0

∆τu(t)

τ
. (1.54)

Therefore we expect the acceleration properties to inherit from previous properties of the velocity
increments.

Acceleration variance consistent with K41

According to Eq. (1.38), valid in the dissipation range, we have
〈
(∆τu)

2
〉
= a0 ⟨ε⟩3/2 ν−1/2τ 2.

With the definition of acceleration, we obtain:〈
a2
〉
= a0 ⟨ε⟩3/2 ν−1/2 = a0a

2
η. (1.55)

It has been observed that a0 has a strong Reynolds-number dependence: The agreement with DNS
a0 = 0.13Re0.64λ found by Sawford (1991) was later improved in Sawford, Yeung, Borgas, Vedula,
La Porta, Crawford, and Bodenschatz (2003) as a0 = 5/(1 + 110/Reλ). We investigate if this
Reynolds-number dependence can be explained by K62.

Conditional acceleration consistent with K62

According to K62, acceleration is conditionned by the local dissipation value:〈
a2|ε

〉
= a0ε

3/2ν−1/2, (1.56)

where a0 is a universal constant. This yields:〈
a2
〉
= a0

〈
ε3/2
〉
ν−1/2. (1.57)

Acceleration variance consistent with K62

To match the two acceleration predictions of the theories Eq. (1.55) and (1.57), we are looking
for a relation between

〈
ε3/2
〉

and ⟨ε⟩3/2. This is provided by the third hypothesis of K62 or by
the model of Yaglom (1966), which both assume log ε ∼ N (µlog ε, σ

2
log ε) and based on Eq. (1.45),

σ2
log ε = a + b log Reλ. Therefore, one can easily derive the moments of ε (calculations will be

detailed in Sec. 3.4.3) and obtain:〈
ε3/2
〉
= ⟨ε⟩3/2 exp

(
3

8
a

)
Re

b 3
8

λ . (1.58)

Matching Eq. (1.55) and (1.57), we find a correction term for the pseudo-universal constant of
K41:

a0 = a0

〈
ε3/2
〉

⟨ε⟩3/2
= a0 exp

(
3

8
a

)
Re

b 3
8

λ . (1.59)

This dependency of a0 with the Reynolds number was reported in Pope and Chen (1990), Sawford
(1991).
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Figure 1.9. Variance of the acceleration of a fluid particle conditioned by the local value of the dissi-
pation rate. The black dashed line represents a 3/2 slope. Dataset from (Lanotte, Calzavarini, Toschi,

Bec, Biferale, and Cencini 2011).

Scaling of acceleration variance with local dissipation

Figure 1.9 shows the normalized conditional acceleration as a function of the local dissipation. It
is expected to scale as a power law of 3/2 since:

⟨a2|ε⟩
a2η

∼ ε3/2

⟨ε⟩3/2
. (1.60)

For large values of ε fluctuations, we notice that the conditional variance follows a power law in
ε3/2 for ε ≫ ⟨ε⟩. For small fluctuations, we find that the value of the conditional acceleration
seems to tend toward an asymptotic value, which depends on the Reynolds number (Zamansky
2021).

Conclusion
In this chapter, we have introduced turbulent flows, in particular their random nature and con-
sequently the need for a statistical description. One and two-point statistics have been derived
and lead to the definition of characteristic times and scales of turbulence. The extreme scales
(Kolmogorov and integral scales) define an interval on which turbulence can be universally char-
acterized.

We have introduced the founding theories of turbulence, and have in particular exposed the notion
of intermittency. The main theories and models are recalled in Table 1.1 and we distinguish the
behavior in the inertial range and in the dissipative range.

All the turbulent models discussed and developed throughout this thesis will be validated according
to the main metrics, properties and theories discussed in this chapter. In the next chapter, we
introduce the main turbulence models and simulations used in literature.



Theory Inertial range Dissipative range

Cascade of
Richardson

⟨ε⟩ ∼ u2ℓ
τℓ

∼ u3ℓ
ℓ

∼ C Reη =
uηη

ν
= 1

Energy
Spectrum E(κ) ∼ κ−5/3

K41

⟨[∆τu]
p⟩ = C0 ⟨ε⟩p/2 τ p/2

⟨[∆ℓu]
p⟩ ∼ ⟨ε⟩p/3 ℓp/3

verified for first moments only

〈
[∆τu]

2
〉
= a0ν

−1/2 ⟨ε⟩ τ 2

→
〈
a2
〉
= a0a

2
η

but a0 Reynolds dependent

K62

⟨[∆τu]
p|ετ ⟩ = Cp(ετ )p/2τ p/2

⟨[∆τu]
p⟩ ∼

〈
(ετ )p/2

〉
τ p/2 ∼ τ ξ(p)

with ετ log-normal

〈
a2|ε

〉
= a0ε

3/2ν−1/2

→ a0 = f(a0,Reλ)

Yaglom
Cascade

εℓn = α1...αn ⟨ε⟩ where αi iid

→ ε log-normal

Table 1.1. Summary of the main theories in turbulence.
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Chapter 2

Modeling and simulation of turbulent flows

Navier-Stokes equations governing the fluid motion take into account properly all the interactions
in the motion of the fluid. However, no analytical solution exists for the general Navier-Stokes
equations, except for some specific cases such as inviscid flows. Therefore, their resolution re-
quires numerical methods and high performance computing.

In this chapter, we present the main approaches to turbulence simulation, from the most accurate
and expensive (DNS) to reduced-order models, such as RANS or LES. We discuss the advantages
and drawbacks of each, in terms of fidelity, modeling needs and computational costs. We also
introduce the numerical framework of this thesis, the homogeneous isotropic turbulence (HIT),
while the presentation of the different computational codes and database used in this thesis is
provided in Sec. 2.4.

2.1 Direct numerical simulation
The direct numerical simulation (DNS) consists in solving all the scales of the flow. Each simu-
lation corresponds to a single realization of the flow. This is the simplest approach since it does
not require an additional physical model but only a numerical method strategy for solving the
Navier-Stokes equation. It is also the most accurate and detailed approach in level of description.
However, the computational cost of a simulation is largely determined by the resolution require-
ments (Pope 2000), i.e. spatial and temporal discretizations.

Regarding the spatial discretization:
• The grid spacing ∆x must be small enough to resolve the dissipative scales: ∆x ⪅ η.

More precisely, Yeung and Pope (1989) have shown that κmaxη ≥ 1.5 is the criterion for
good resolution of the smallest scales but this threshold actually depends on the numerical
scheme.

• The domain of simulation must be large enough to represent the energy-containing motions
of size L, hence the number of points Nx in a given direction of the mesh must verify
Nx∆x > L.

The two previous conditions imply N3
x ≥ Re

9/4
L , and the dependence of the number of mesh points

on the Reynolds number thus becomes explicit.

For the temporal discretization, the time step ∆t used to advance the solution is also limited by
considerations of numerical accuracy.

57
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Figure 2.1. CPU time of different computers to compute homogeneous isotropic turbulence according
to Reynolds numbers. Times deemed acceptables for research (200 hours), applications (15 minutes)

and repetitive computations (1 minute) are indicated as a reference. Figure from Mercier (2020).

• Due to the intrinsically multi-scale nature of the problem, the fast scales are usually unre-
solved by implicit strategies. An explicit time integration scheme must respect the Courant-
Friedrichs-Lewy (CFL) condition, which imposes a criterion for the time discretization step:
C = σu∆t/∆x < 1;

• The total simulation time interval must be larger than the Lagrangian integral time scale
TL ∼ L/σu, hence Nt∆t > TL.

Again, combining those two conditions, we get that the total number of time step Nt is propor-
tional to L/Cη and using the relation of Eq. (1.8), Nt ∼ Re

3/4
L /C and consequently, the number of

time steps grows also as a power law of the Reynolds number.

To give an example of a typical academic simulation, Fig. 2.1 gives the CPU time required to
compute homogeneous isotropic turbulence (HIT) for increasing Reynolds numbers on different
computers. Even with the best computers, the range of turbulence simulations is very limited.

To give an example of industrial order of magnitude, if we want to solve the external flow at the
end of the fuselage of an Airbus A380 of length L = 80 m, flying at Mach speed M = 0.85, under
pressure P = 2.5 104 Pa and temperature T = 220 K, the Reynolds number of such flow is Re =
5.7 108. The number of points necessary to solve the problem is therefore 5 1019. Many industrial
applications are therefore not possible with such an approach, which can only be accessible for
flows with low or moderate Reynolds numbers. For this reason, its usage is limited to the academic
field and is mainly considered as a numerical experiment tool.

2.2 Dimensionality reduction strategies for turbulence
In realistic configurations, the multi-scale character of the flows does not allow to simulate all
the scales of the problem, and the DNS is therefore too expensive. Reduced-order methods have
therefore been developed in order to reduce computational costs. The idea of this section is to
introduce the classical strategies of reduced-order turbulence representations. An example of such
reduced-order simulation (ROS) is given in Fig. 2.2(b) and can be compared to a DNS resolution
in Fig. 2.2(a).
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(a) DNS (b) LES

Figure 2.2. Snapshot of velocity field from a DNS (a) and LES (b) simulations performed with Fieldz
code and corresponding to Reλ = 140.

Figure 2.3. Scheme of the energy spectrum resolved or modeled depending on the turbulence simula-
tion (DNS, LES, RANS).

We have seen in Chap. 1 that the fluid is described by its velocity and pressure field, which are
discretized on a very large number of points due to scale separation: ReL ∼ (TL/τη)

2. This gives
the problem its high dimensionality and its very high numerical cost.

Therefore, the objective of the reduction strategies is to reduce the number of degrees of freedom
and hence assume a more regular solution. This operation is performed using ensemble averaging
or filtering operators. In the rest of the manuscript, we will generally refer to a reduced-order fluid
description to encompass the various possible reduction techniques indifferently.
In the following, we present two classical reduction strategies: the Reynolds Averaged Navier-
Stokes (RANS) and the Large Eddy Simulation (LES). Figure 2.3 is a scheme of typical turbulent
energy spectrum and it shows the resolved and modeled scales for the three strategies introduced
in the chapter: DNS, which resolved all scales, RANS, which models all scales of turbulence, and
LES, which resolved only large scales of the flow while modeling the smallest ones.
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2.2.1 Reynolds averaged Navier-Stokes
Reynolds decomposition

The use of the Reynolds decomposition is justified when dealing with a phenomenon whose spec-
trum can be separated into two clearly distinct parts:

• a band of low frequencies or quasi-permanent regime, with an average contribution that is if
not constant, at least varies little over time;

• a band of transient regimes of high frequency and zero average contribution.
The Reynolds decomposition of the velocity field gives:

u(x, t) = ⟨u(x, t)⟩+ u′(x, t), (2.1)

where the notation ⟨u(x, t)⟩ here is the ensemble or time average, and u′(x, t) designates the
fluctuating part. The same holds for other scalar quantities such as pressure:

p(x, t) = ⟨p(x, t)⟩+ p′(x, t). (2.2)

The RANS equations are obtained by substituting expressions of this form for the flow variables
into the instantaneous continuity and momentum equations taking a time (or ensemble) average.
For incompressible flows, we can average the Navier-Stokes equation Eq. (1.1) and we obtain:

∂ ⟨ui⟩
∂xi

= 0,

∂ ⟨ui⟩
∂t

+
∂ ⟨uj⟩ ⟨ui⟩

∂xj
= ⟨fext,i⟩ −

1

ρ

∂ ⟨p⟩
∂xi

+ ν
∂2 ⟨ui⟩
∂xj∂xj

+
1

ρ

∂τRij
∂xj

.
(2.3)

The last term introduces the Reynolds stress tensor, very similar to the viscous stress tensor τij
defined in Eq. (1.2):

τRij := −ρ
〈
u′iu

′
j

〉
. (2.4)

It represents the effects of turbulence and it must be modeled in order to close Eq. 2.3.

RANS closures

The Boussinesq hypothesis is the most common method to relate the turbulence stresses to the
mean flow:

τRij +
1

3
τRkkδij = 2µt ⟨Sij⟩ ,

τRij = 2µt ⟨Sij⟩ −
2

3
⟨k⟩ δij.

(2.5)

Note that a new proportionality constant µt > 0, the turbulence eddy viscosity, has been intro-
duced. Models of this type are known as eddy viscosity models.

The Boussinesq hypothesis is used in many models: the Spalart-Allmaras model, the k − ε model
and the k − ω model. It has the advantage of being computationally affordable since it only re-
quires the additional calculation of this turbulent viscosity. In the case of the Spalart-Allmaras
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model, only one additional equation is required, and for the other models, two additional transport
equations are solved. Then, µt is obtained as a function of these two transported variables. In
strongly anisotropic cases however, other types of models will be preferred because of the isotropy
of the µt term. In this case, each term in the Reynolds tensor must be solved separately.

Stochastic Lagrangian classically used in PDF methods can also lead to Reynolds-stress models
(Haworth and Pope 1986). In particular, Pope (1994) has shown that to every stochastic Lagrangian
model there is a unique corresponding second-moment closure. Stochastic models are discussed
in Chap. 3.

2.2.2 Large Eddy Simulation
In LES, large scales are solved directly, while small scales must be modeled (see Fig. 2.3). The LES
is thus a compromise between the DNS and the RANS simulation in terms of resolved scales. LES
is attractive since mass, momentum, and energy are mainly transported by large eddies. These ed-
dies strongly depend on the type of problem: geometry, boundary conditions, etc. On the contrary,
the small scales are less dependent on the geometry: we have already established the universality
of these scales, which allows us to develop consistent models. The resolution of large scales nat-
urally allows coarser meshes and larger time steps than for DNS, but still more refined than for
RANS simulations.

Filtering operation

The principal idea for LES is to reduce the computational cost by ignoring the smallest length
scales, which are the most computationally expensive to resolve, via low-pass filtering of the
Navier–Stokes equations. Such a low-pass filtering, which can be viewed as a time- and/or spatial-
averaging, effectively removes small-scale information from the numerical solution. This informa-
tion is not irrelevant, however, and its effect on the flow field must be modeled, a task which is an
active area of research for problems in which small-scales can play an important role. The filtered
field, denoted with a bar, is defined as:

ϕ(x, t) =

∫ ∞

−∞

∫ ∞

−∞
ϕ(r, t′)G(x− r, t− t′) dt′ dr, (2.6)

where G is a convolution kernel: ϕ = ϕ ∗ G. The filter kernel G uses cutoff length and time
scales, denoted ∆ and τc, respectively. Scales smaller than these are eliminated from ϕ. Using this
definition, any field ϕ may be decomposed into a filtered and sub-filtered (denoted with a prime)
contribution, as:

ϕ = ϕ+ ϕ′. (2.7)

The filtering operation removes scales associated with high frequencies, and the operation can
accordingly be interpreted in Fourier space. For a scalar field ϕ(x, t), its Fourier transform is
ϕ̂(k, ω), where k and ω are the spatial wavenumber and temporal frequency. ϕ̂ can be filtered by
the corresponding Fourier transform of the filter kernel, denoted Ĝ(k, ω).

ϕ̂(k, ω) = ϕ̂(k, ω)Ĝ(k, ω). (2.8)
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Filter Physical space Spectral space

Box filter G(x− r) =


1

∆
, if | x− r |≤ ∆

2

0, otherwise
Ĝ(k) =

sin (1/2k∆)

1/2k∆

Gaussian filter G(x− r) =

(
6

π∆2

) 1
2

exp

(
−6(x− r)2

∆2

)
Ĝ(k) = exp

(
−k2∆2

24

)
Sharp filter G(x− r) =

sin(π(x− r)/∆)

π(x− r)
Ĝ(k) = H (kc − |k|) , kc =

π

∆

Table 2.1. Some classic LES filters and their Fourier spectral representation.

The filter width ∆ has an associated cutoff wavenumber κc and a temporal filter width τc associ-
ated to a frequency cutoff ωc.

There are three filters ordinarily used for spatial filtering in LES. The definition of G(x) and Ĝ(k)
are given in Tab. 2.1. Figure 2.4(a) is a velocity field of HIT produced by a DNS performed
with the code Fieldz. Figure 2.4(b) is the same velocity field filtered using a Gaussian filter. The
large scales are still clearly identifiable in the second snapshot, but all the small scales have been
removed, and the obtained velocity field is smoother. Their turbulent energy spectra are compared
in Fig. 2.4(c) and shows the effect of the filtering operation: energy of the large scales is well
preserved whereas small scales are filtered out and their energy is considerably reduced.

The filtered Navier-Stokes equations are obtained:

∂ui
∂xi

= 0

∂ui
∂t

+
∂uiuj
∂xj

= fext,i −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+
1

ρ

∂τ rij
∂xj

,
(2.9)

where the sub-grid scale stress tensor is defined as:

τ rij = −ρ (uiuj − ui uj) . (2.10)

LES closures

Sub-grid scale (SGS) models consist in modeling the unclosed term τ rij . This term must account
for the interactions among all scales, including filtered and unfiltered scales. Two categories of
closures exist, and the reader is referred to Sagaut (2006) for an exhaustive review of classical
closure techniques.

• Functional models: knowing that the regularized version of the resolved field dissipates less
energy than the real flow, the sub-grid scales can be assimilated to an additional diffusion
process. Although these models perfectly reproduce the effect of the tensor, they are not
derived directly from the exact term, and it is difficult to guarantee their use for a wide range
of flow configurations.

• Structural models: they do not attempt to recover the unresolved information but rather to
reproduce the structure of the sub-grid tensor (Bardina, Ferziger, and Reynolds 1980). We
find, among others, the approximate deconvolution, the fractal interpolation, the kinematic
simulation...
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(a) DNS (b) Gaussian-filtered DNS

(c) Energy spectrum

Figure 2.4. Snapshots of velocity field obtained by DNS performed with Fieldz at Reλ = 140 (a) ;
corresponding filtered velocity field with Gaussian filter (b) ; and associated energy spectra (c).
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The functional approach is the most widely used in industrial applications and the most common
sub-grid models are based on an eddy viscosity approach, where the effects of sub-grid turbulence
are treated by analogy with molecular diffusion, using the Boussinesq hypothesis. The sub-grid
scale stress tensor is modeled with:

τ rij −
1

3
τ rkkδij = 2µtSij, (2.11)

where µt is the sub-grid scale turbulent viscosity. Sij is the strain rate tensor for the resolved
scales. Similarly to the RANS models, there are different LES models depending on how the tur-
bulent viscosity term is modeled or transported.

The simplest model has been proposed by Smagorinsky (1963), in which the eddy viscosity is
modeled by:

νt = ρµt = ℓ2S|S|, (2.12)

where ℓS is the mixing-length for sub-grid scales and |S| =
√

2Sij Sij . The characteristic sub-
grid length scale is defined as ℓS = CS∆, where CS is the Smagorinsky constant and ∆ the cut-off
length of the LES.

Several studies attempt to derive the value of CS , but it was found to be not universal. Nonetheless,
a value of around 0.1 gives the best results for a wide range of flows. Other models are developed
in which the Smagorinsky constant CS is dynamically computed (Germano, Piomelli, Moin, and
Cabot 1991; Lilly 1992).

For sufficiently large Reynolds numbers, the LES cut-off scale is assumed to be in the inertial
range, and thus the smallest resolved scales ℓS can actually capture the energy rate transferred by
the cascade. There is a local equilibrium between the transferred energy through the grid-filter
scale ∆ and the dissipation of kinetic energy at small sub-grid scales (i.e. up to η). Thus, from the
similarity equation Eq. (1.7), we can define the rate of the energy dissipation from these scales:

εsgs = 2νtSij Sij = νt|S|2. (2.13)

Consistently, the characteristic sub-grid time scale is defined as:

τsgs = |S|−1. (2.14)

And the characteristic sub-grid velocity is σsgs =
√
2/3ksgs where

ksgs ∝ ∆2|S|2. (2.15)

Such eddy viscosity model is completely dissipative and fails to predict any energy transfer from
the small scales towards larger ones (backscatter of energy, which can happen in the presence of
particles or near walls).

LES is therefore more accurate than RANS simulations, and allows to adapt the cost of the sim-
ulation according to the chosen cut-off length scale (taking ∆ = η, we can retrieve the DNS
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equations). Moreover, the unsteady effects are captured. On the other hand, the simulation is more
expensive than for RANS, and often requires significant CPU resources.

In turbulence, near-wall flows are significantly affected in a non-trivial way: no-slip boundary con-
ditions modify the mean flow properties such as velocity. Viscosity reduces velocity fluctuations
very close to the wall, while shear gradients introduced near the wall induce energy production in
regions far from the wall. Near-wall modeling is a challenge for numerical simulation because the
characteristic scales of energy production are very small, and the classical scale separation must
be revised. Thus, specific models such as Wall Modeled LES must be developed to perform high
fidelity wall-bounded simulations. Another solution in this case is the Detached Eddy Simulation
approach, in which the unsteady RANS models are employed in the boundary layer, while the LES
treatment is applied to the separated regions.

2.2.3 A general framework for reduced-order simulations (ROS)

At first sight, the concepts of Reynolds averaging and spatial filtering seem incompatible, as
they yield to different additional terms in the momentum equations (Reynolds stress and sub-
grid stress). However, one can note the similarity of their equations: once a turbulence model is
introduced into the momentum equations, they no longer contain any information regarding their
derivation.
Furthermore, note that the most popular models in both RANS and LES are eddy viscosity models
that are used to replace the Reynolds or sub-grid stress tensor. After the introduction of turbu-
lent/eddy viscosity, the RANS and LES momentum equations are formally identical. The only
difference lies in the size of the eddy-viscosity provided by the corresponding turbulence model.
In this perspective, DNS corresponds to a LES with 100% of the energy of the flow in the reduced
flow field, whereas RANS corresponds to a LES with 0% of the energy of the flow in the reduced
flow field.

In the rest of the manuscript, we will therefore refer more generally to reduced-order simulation
(ROS), which encompasses both RANS and LES simulations, and the term “sub-filter” can also be
applied to the RANS model, in the sense that it models all scales of turbulence. In the framework
of ROS, the instantaneous fluid velocity is decomposed as:

u(x, t) = U(x, t) + u′(x, t), (2.16)

where U is numerically solved, and u′ requires modeling.

2.3 Homogeneous isotropic turbulence

Homogeneous isotropic turbulence, already introduced in Chap. 1, is an idealized case of turbu-
lence widely studied in the literature (Orszag and Patterson Jr 1972; She, Jackson, and Orszag
1990; George 1992; Wang and Maxey 1993). All the studies carried out in this thesis are based
on HIT simulations, either stationary or unsteady, performed in a periodic cubic domain of size L.
The simulation of a HIT requires few inputs, including initial data or forcing in the stationary case,
that we detail below.
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2.3.1 Initialization
In addition to the intrinsic properties of the fluid, such as the viscosity ν, initial information on
large scales must also be given. This is usually introduced with the root-mean-square of the tur-
bulence velocity fluctuations, σu, or the turbulence kinetic energy ⟨k⟩. The energy dissipation rate
is also specified, ⟨ε⟩. Thus, the largest scales (integral scale) L ∼ σ3

u/⟨ε⟩ and the smallest scales
(Kolmogorov scale) η = (ν3/ ⟨ε⟩)1/4 are determined.

2.3.2 Model spectrum
The solution of the Navier-Stokes equations requires initial conditions in the whole domain. Most
of the time, in HIT, this will be set with a randomly drawn energy spectrum.
Several models are available to represent the turbulent spectra, all consistent with the Richardson
cascade. At high Reynolds, the characteristic slope of the inertial zone in κ−5/3 must be found.
Very simple models, not taking into account the small effects of intermittency on the spectrum can
be used for kinematic simulations for example (such models will be used in Part. IV) (Fung, Hunt,
Malik, and Perkins 1992):

E(κ) =

 αk ⟨ε⟩3/2 κ−5/3, for κc < κ < κη

0 otherwise.
(2.17)

In most cases, more realistic energy spectra are used to initialize or force HIT. This is the case for
the model of Overholt and Pope (1998):

E(κ) = C ⟨ϵ⟩2/3 κ−5/3fL(κL)fη(κη), (2.18)

with :

fL(κL) =

(
κL

[(κL)2 + cL]1/2

)5/3+P0

, (2.19)

fη(κη) = exp
(
− β[((κη)4 + c4η)

1/4 − cη]
)
. (2.20)

Functions fL and fη characterize the turbulence regions of production and dissipation of energy.
For specified values of ⟨k⟩, ⟨ε⟩, and ν, the model spectrum is determined by Eqs. (2.18), (2.19)
and (2.20) with C = 1.5 and β = 5.2. The constants cL and cη are determined by the require-
ments that E(κ) and 2νκ2E(κ) integrate to ⟨k⟩ and ⟨ε⟩, respectively : ⟨k⟩ =

∫∞
0
E(κ) dκ and

⟨ε⟩ =
∫∞
0

2νE(κ)κ2 dκ.

One can confirm the influence of cL and cη coefficients in Figs. 2.5(a) and 2.5(b) respectively
for low and high wavenumbers. In particular, cL controls the most energetic scales, defining the
maximum of the spectrum whereas cη controls the smallest wavenumbers. The sensitivity to P0

coefficients, defined above is plotted in Fig.2.5(c). P0 controls the slope of the energy spectrum
for low wavenumbers.
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(a) (b)

(c) (d)

Figure 2.5. Energy spectra obtained with the model of Overholt and Pope (1998) with different param-
eters cL (a), cη (b), P0 (c), κ0 (d).



68 CHAPTER 2 - MODELING AND SIMULATION OF TURBULENT FLOWS

For low Reynolds numbers, isotropic velocity field can also be generated with the Passot-Pouquet
spectrum (Passot and Pouquet 1987), which is written as:

E(κ) =
16σ2

u√
π/2

κ4

κ50
exp

(
−2κ2

κ20

)
, (2.21)

where κ0 is the wavenumber at which the maximum of E(κ) occurs and the sensitivity of the
model to this parameter is plotted in Fig. 2.5(d).

2.3.3 Turbulence forcing

The isotropic homogeneous turbulence is not stationary, and energy must be added at large scales,
in order to simulate energy production and to balance the viscous dissipation. This can be achieved
through various forcing methods:

• spectral forcing schemes, developed by Eswaran and Pope (1988) and also used in Février
(2000), which requires the inverse fast fourier transform (FFT);

• linerar forcing schemes (Lundgren 2003; Rosales and Meneveau 2005; Toutant 2006), whose
ability to reproduce isotropic homogeneous turbulence has been shown to be less efficient
than for spectral models by Zeren (2010).

Focusing on the spectral stochastic forcing, the large scales of the flow are forced to maintain a cer-
tain energy level. The scale separation and high Reynolds number universality principles described
in the previous chapter ensure that the small-scales quantities do not depend on the dynamics of
the large scales, and thus on the type of forcing.

The spectral stochastic forcing allows to maintain the stationarity of the flow by acting only on the
large scales. Eswaran and Pope (1988) have proposed the following stochastic model, based on a
Langevin equation (see Chap. 3 for more details):

dbm = − 1

TF
bm dt+

√
2σ2

F

TF
dW t, (2.22)

where m = 1, 2 is the real and imaginary part of the 3-component coefficient b. TF and σF are
respectively the forcing time scale and amplitude of the forcing. This equation is solved for large
wavenumbers only and Eswaran and Pope (1988) proposed to perform a projection to ensure the
divergence-free property of the fluid:

aFi = bi − κi
κjbj
κ2

. (2.23)

Coefficients aFi are finally added to the Navier-Stokes equations in spectral space:

∂ui
∂t

(κ, t) = ai(κ, t) + aFi (κ, t), (2.24)

where ai(κ, t) is the convection, diffusion and pressure gradient. The coefficients are then con-
verted to the physical space using inverse Fourier transform and we obtain the forcing term f ext.
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Nx ReL Reλ η ∆x ⟨ε⟩ ν τη

t0 256 21.13 15.9 0.018 0.019 0.0089 0.047 0.335

tf 256 13.47 12.7 0.037 0.019 0.00052 0.047 1.38

Table 2.2. Properties of the fluid at initial and final time.

2.4 Numerical framework
In this thesis, we are interested in the study of homogeneous isotropic turbulence (HIT) and we
have used several simulation tools:

• Asphodele is a DNS solver coupled with a Lagrangian solver for the disperse phase. We
have used it in our study of the impact of particles on the carrier phase in the two-way
coupling context.

• Fieldz is a DNS and LES solver developed by Rémi Zamansky. It was used in this work to
evaluate the impact of reduced-order models (LES) on the disperse phase.

• Lanotte, Calzavarini, Toschi, Bec, Biferale, and Cencini (2011) provided a database of a sta-
tionary HIT, resolved by DNS. The time and spatial steps provide high resolution of velocity
dynamics at small scales, and we have relied on this dataset especially to study intermittent
statistics.

All of these codes were parallelized and Fieldz and Asphodele were run using HPC resources from:
• the mesocentre computing center of CentraleSupélec and Ecole Normale Supérieure Paris-

Saclay supported by CNRS and Region Ile-de-France (http://mesocentre. centralesupelec.fr/);
• CINES under the allocation A00 62B0 6172 made by GENCI (Grand Equipement National

de Calcul Intensif).

2.4.1 Asphodele code: DNS of decaying HIT
Asphodele is a code developed by Reveillon and Demoulin (2007) at CORIA laboratory, devoted
to the simulation of spray combustion. Direct numerical simulation is performed to solve the
unsteady three-dimensional Navier-Stokes and continuity equations with Asphodele using a low
Mach formulation of the Navier-Stokes equations (Guichard, Réveillon, and Hauguel 2004). The
time resolution is provided by a third order explicit Runge Kutta scheme and spatial evolution is
done with a finite difference scheme, the derivatives being computed with a Pade 6th order scheme
(Lele 1992).

The domain is a cubic periodic box of size L = 5 meshed withN3
x cubic cells,Nx ∈ {128, 256, 512}.

The initial turbulence field is generated using an isotropic random mode generation and inverse
Fourier transform. The initial condition for the carrier phase is set using a Pope spectrum, de-
scribed in Sec. 2.3.2. The initial parameters of the spectrum are C = 1.5 , β = 5.2 and p0 = 4,
cL = 0.019, cη = 0.051.

The turbulence characteristics of the decaying HIT are given in Table 2.2 for initial time t0, and
final time tf of simulation. Adequate resolution of statistics is verified with the parameter κmaxη =
2.9 ≥ 1 (Yeung and Pope 1989). We verify the convergence of the spectra for different grid sizes
in Fig. 2.6. Spectra overlapped in their definition domain, which ensures that the smallest scales
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Figure 2.6. Comparison of the normalized energy spectrum for different size of meshgrids. The inset
displays a zoom around the largest scales.

are always appropriately resolved.
All the values of the variables presented in this work are dimensionless and the normalizing
Reynolds number is Re = urefLref/ν = 103. The reference velocity uref and length Lref based
on the macroscopic characteristics of the computational domain allow to define a reference time
scale for the carrier phase: tref = Lref/uref. We provide dimensional quantities for illustration pur-
poses, based on an estimated velocity of uref = 1m/s and Lref = 1m.

Asphodele features a Lagrangian DPS approach for the disperse phase. At initial time, particles
are uniformly distributed throughout the domain with the same initial velocity as the carrier phase
and periodic boundary conditions are considered.

The solver uses a second-order trilinear algorithm to compute the carrier phase quantities at particle
location and projection of Lagrangian quantities on Eulerian fields are performed using a PSI-Cell
method (Crowe, Sharma, and Stock 1977). We also developed a Gaussian projection method to
compare the influence of projection kernels for two-way coupling contexts.

Also note that Asphodele has been successfully coupled to MUSES3D, a code developed by De
Chaisemartin (2009) and the EM2C Math team for the evaluation of Eulerian spray models and
methods. MUSES3D was used in the context of this thesis to compare Euler-Euler and Euler-
Lagrange strategies in a one-way coupling context in App. A.

2.4.2 Fieldz code: DNS and LES of stationary HIT
The Fieldz code, introduced in Zamansky, Coletti, Massot, and Mani (2016), is considered to trans-
port particles in a stationary incompressible HIT.

This numerical code solves the Navier-Stokes equations in a three-dimensional box with periodic
boundary conditions and by applying the divergence-free constraint. Thanks to the periodicity, the
different fields can be represented in Fourier space which allows a simplicity and an efficiency of
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Figure 2.7. Snapshot of velocity field from a simulation performed with Fieldz code and corresponding
to Reλ = 150.

Nx Reλ η ∆x ⟨ε⟩ ν τη

DNS 1024 235 0.0057 0.006 0.5 0.0008 0.04

DNS 512 150 0.011 0.012 0.5 0.002 0.06

DNS 256 100 0.022 0.024 0.5 0.005 0.1

LES 64 140 0.011 0.098 0.5 0.002 0.06

Table 2.3. Turbulence characteristics of Fieldz

the calculations of the spatial derivatives. The non-linear terms, on the other hand, are computed
in physical space, which requires multiple Fourier transforms and inverse transforms at each time
step.

A pseudo-spectral approach is used, based on the P3DFFT library, the time integration is done by
the second order Adams-Bashford method and the forcing of the flow is ensured with the model of
Chen, Doolen, Kraichnan, and She (1992), by forcing only the smallest wavenumbers to maintain
the stationarity of the flow.

The flow is either simulated through DNS or with LES, using the standard Smagorinsky model for
which the constant is set to CS = 0.19. The turbulence characteristics of the stationary HIT are
given in Table 2.3. One can note that statistics obtained with a Nx = 64 grid point in LES need
to be simulated with a Nx = 512 grid points in DNS. Figure 2.7 shows a snapshot of the velocity
field obtained with Fieldz with a DNS meshing 5123.

Lagrangian tracking is used to obtain the evolution of the particle position and velocity. The carrier
phase properties at particle location is estimated from cubic spline interpolation (Yeung and Pope
1988). A Gaussian shape regularization is used to project Lagrangian quantities. All simulations
are initiated with particles randomly distributed in space.
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Nx Reλ η ∆x ⟨ε⟩ ν τη ∆t

2048 400 3× 10−3 3× 10−3 0.9 3.5× 10−4 2× 10−2 1.2× 10−4

Table 2.4. (Lanotte et al. 2011)

Being constrained by the numerical cost of DNS, Fieldz and Asphodele have been used in this
thesis for low Reynolds number studies, preferring to repeat simulations for parametric studies
rather than to perform a high Reynolds number simulation. In order to study such turbulence, we
used the dataset described in the following.

2.4.3 DNS dataset of Lanotte et al. (2011): stationary HIT
The dataset of Lanotte, Calzavarini, Toschi, Bec, Biferale, and Cencini (2011) is mentioned through-
out this thesis as a reference DNS with fluid particles (tracers) and inertial particles. The Navier-
Stokes equations are solved on a cubic grid with periodic conditions. The turbulence is homoge-
nous, isotropic and is forced stationary with a spectral forcing described in Chen, Doolen, Kraich-
nan, and She (1992). Consistent with Sec. 2.3.1, the viscosity is set to ensure ∆x ≈ η. A pseudo-
spectral algorithm with second-order Adams–Bashforth time-stepping is used. The high spatial
Eulerian resolution ensures a smooth differentiable velocity field. The turbulence characteristics
of the stationary HIT are given in Table 2.4.

Particle dynamics is updated with a time step from 10 to 1000 times smaller than the Stokes
time, providing an accurate resolution of the particle trajectories. Carrier phase velocity at the
particle position is determined with a tri-linear interpolation. The Stokes numbers available are:
St ∈ {0; 0.16; 0.6; 1; 2; 3; 5; 10; 20; 30; 40; 50; 70}. The trajectory length is 4720∆t and the total
number of particles is 203776.

2.4.4 Main numerical tools and challenges
In this section, we review the different numerical challenges met throughout our work. We briefly
present the different codes and post-processing tools that we have implemented, the computational
cost involved in terms of memory (RAM) and CPU time.

Regarding the DNS performed with the Fieldz and Asphodele codes, here are some of the numer-
ical challenges related to the nature of our studies:

• In order to observe intermittent statistics in the inertial zone, the scale separation must be suf-
ficiently large, and therefore simulations with large Reynolds numbers must be conducted.
To give some orders of magnitude, a DNS running 10TL with Fieldz in 5123 lasts 22h (40h
for a simulation with inertial particles), and a 10243 simulation takes 11 days running on 512
processors.

• Each of these simulations must be performed for fluid particles and inertial particles with
different Stokes numbers. In particular, the two-way study, a parametric study consisting
in varying the three dimensionless parameters, Stokes number, mass loading, number of
particles, has required more than 350 different simulations (Chap. 13).
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• Lagrangian tracking requires high memory storage. Some of these simulations, with high
density in number of particles, required extensive memory access (3000 GB) during the
calculation. The storage of some simulation data for post-processing was also essential, and
in total, more than 6 To of data were stored during the thesis.

A few developments carried out within these codes can be mentionned: filtering of velocity field
in Asphodele and Fieldz to produce a priori LES; implementation of a Gaussian projection of La-
grangian quantities onto Eulerian fields in Asphodele; implementation of some stochastic models
in Fieldz LES.

The post-processing tools developed during this thesis are numerous but did not raise any ma-
jor difficulties. In particular, we can mention the statistical analysis tools allowing to obtain the
autocorrelation functions, the standardized moments, the conditioned PDF. Different segregation
measures have also been implemented: box counting, the Voronoi measure and the interparticle
distance.

Finally, most of the numerical efforts of this thesis were focused on the development of new nu-
merical codes implemented in Matlab. Among them:

• Stochastic schemes have been implemented in Matlab, with Euler–Maruyama method. If
the Ornstein-Uhlenbeck are very simple to implement, other stochastic processes such as
fractional Brownian motion are more challenging (Chevillard 2017).

• The implementation of the Fourier-based kinematic simulation, whose modes are constrained
by the periodicity condition.

• The implementation of the 2D and 3D wavelet kinematic simulation, for which numerical
details and pseudo codes are available in the thesis of Deriaz and Perrier (2006).

Conclusion
In this chapter, we have presented the main numerical strategies to solve turbulent flows along with
the test case of homogeneous isotropic turbulence considered throughout this thesis.
High fidelity methods like DNS have been introduced and criteria on the time and spatial steps
have been derived. We have shown how the high-dimensionality of turbulent flows makes their
computation over-expensive.

Reduction techniques are therefore required to make reachable the computation of high-Reynolds-
number flows. Averaging or filtering the Navier-Stokes equations yields the classical reduced-order
models RANS and LES respectively. However, in both cases, the obtained equations require clo-
sures of the non-linear Reynolds-stress tensor. Many models have been developed to reproduce the
effect of sub-filter scales on the resolved flow.

ROS are well suited for applications dealing with turbulent or reactive flows dominated by large
scales. However, the modeling capabilities are more questionable for flows where these processes
occur at smaller scales, which is the case, for example, for chemical reactions in turbulent combus-
tion. Therefore, we are interested in the next section in stochastic models to reproduce the small
scales statistics, particularly the intermittency, of a fluid particle in a turbulent flow.





Part II

Reproducing intermittency in turbulent
flows
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Intermittency refers to the extreme variability of a signal that can suddenly and briefly have a high
intensity. In turbulence, intermittency is related to energy transfer between scales and it is mea-
sured on velocity fluctuations or dissipation statistics. Reproducing the intermittency of turbulence
is a major challenge for the modeling of disperse phase flows, since it leads to the occurrence of
extreme events. In combustion chambers for example, an isolated particle strongly accelerated by
the intermittent turbulent field can locally deform the structure of the flame front. This part aims
to introduce a stochastic framework to reproduce the intermittency statistics of a fluid particle in
a turbulent flow. Chapter 3 proposes a set of definitions and mathematical tools for this purpose
and reviews the stochastic models in the literature by assessing their compatibility with turbulence
theories and thus with intermittency. In particular, acceleration and velocity models conditioned
on local dissipation are studied, and the intermittent properties of dissipation are highlighted.
Chapter 4 introduces a rigorous mathematical framework for constructing such a process based
on the Gaussian multiplicative chaos (GMC). We propose an original and elegant formalism to
derive families of regularized and then stationarized fractional Brownian motions (FBM) used in
the GMC. Chapter 5 establishes the link between the regularization scales introduced in the math-
ematical formalism and the physical scales of turbulence. A new stochastic model is proposed,
reproducing accurate intermittency and combining versatility and computational efficiency.
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Chapter 3

Intermittency in stochastic models for
turbulence

The stochastic nature of turbulence and the statistical behaviors of velocity fluctuations have been
widely investigated, for example by Minier, Chibbaro, and Pope (2014) in order to understand and
then reproduce its properties on reduced-order turbulence models. Indeed, we have seen in Chap. 2
that reduced-order models only solve the large scales of the turbulent flow and therefore can give
insight into mean velocity fields, their variance (turbulent kinetic energy) or their dissipation at
best at the resolved scale. Also, the higher order moments of velocity fluctuations are not system-
atically recovered, especially the intermittency phenomena.

Deriving stochastic models on fluid particles can have two purposes:
• use stochastic mathematical tools in order to reproduce particular statistics such as high order

moments of velocity fluctuations. Thus, Minier and Peirano (2001) shows that by deriving
the probability distribution function of stochastic Lagrangian models, it allows to establish
particular closures for the ROS models;

• establish relevant stochastic models for fluid particles, in order to adapt them to inertial
particles in Chap. 8.

The present chapter first aims at verifying the adequacy of existing models to Kolmogorov theories
of turbulence, introduced in Chap. 1. We propose a classification of models relying on both the
level of the model (velocity, acceleration, acceleration derivative, etc.) and the type of associated
stochastic model (Gaussian, conditioned Gaussian, non-Gaussian). By unifying the notations be-
tween the models presented in this chapter, we emphasize the compatibility of the models with
K41 or K62, regardless of the type of reduced-order model (indifferently RANS or LES).

In a second step, we properly identify and characterize the intermittent properties of the turbu-
lence. Intermittency refers, in common parlance, to a property of a strongly fluctuating signal,
with sudden and brief high activity. When applied to turbulence, the notion of intermittency is
often misused to refer to any statistic that is clearly non-Gaussian. Actually it comes from the
large fluctuations in the energy transfer between eddies of different scales. Although the non-
Gaussianity is a direct consequence, it is not a sufficient characterization, and it should be appro-
priately defined in this context. We therefore propose a framework with consistent heuristics for
assessing intermittency of turbulence statistics.

The chapter is organized as follows: in Sec. 3.1, we introduce the fundamental tools for stochastic

79
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calculus which will be used throughout this thesis. Classical processes such as Ornstein-Uhlenbeck
processes are studied, and we also focus on less common processes with interesting properties for
our modeling, such as fractional Brownian motion (FBM). In Sec. 3.2, a classification of stochas-
tic models is proposed according to the order of differentiability of the velocity. The closure
of these processes is ensured by the stationarity on the one hand, and the consistency with the
K41 theory on the other. Yet, these processes do not have intermittent statistics. In Sec. 3.3, the
same classification is revisited, this time confronting the models with the K62 theory. The use of
dissipation-conditioned statistics hence requires the development of appropriate stochastic models
for dissipation. These are the subject of Sec. 3.4.

3.1 Introduction to stochastic processes
This section is mainly inspired from the course on stochastic processes given by Sarah Lemler at
Ecole CentraleSupélec.

In the following, T is a set of indices representing time. Classically, we consider T = R,R+, [a, b].
We will then note (Xt)t∈T the random process indexed by the t in T . In the following, we consider
the probability space (Ω,F ,P).

3.1.1 Definition of stochastic process
Let (E, d) be a metric space and E its Borellian set.

Definition 3.1.1 We call a stochastic process, any family of random variables (Xt)t∈T defined on
a same probability space (Ω,F ,P) and having values in (E, E).
Definition 3.1.2 Let (Xt)t≥0 be a process defined on (Ω,F ,P) and having values in E. We say
that (Xt)t≥0 is continuous (or with continuous paths) if for any ω ∈ Ω, t 7→ Xt(ω) is continuous.

3.1.2 Definition of Gaussian process
Definition 3.1.3 (Gaussian random variable) A random variable X : Ω → R is Gaussian if and
only if its probability density function is:

fµ,σ2(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
∀x ∈ R, (3.1)

with E(X) = µ and Var(X) = E
[
(X − µ)2

]
= σ2.

Definition 3.1.4 (Gaussian vector) Let X1, . . . , Xn be random variables of (Ω,F ,P) in (E, E).
We say that X = (X1, . . . , Xn) is a Gaussian vector if any linear combination of its components
follows a Gaussian distribution, i.e. if for any (α1, . . . , αn) ∈ Rn, α1X1 + · · · + αnXn follows a
Gaussian distribution.

A Gaussian vector X = (X1, . . . , Xn) is entirely determined by its mean

µ = E(X) = (E (X1) , . . . ,E (Xn))

and its covariance matrix

Σ = Cov(X) = (Cov (Xi, Xj))1≤i,j≤n
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.

Definition 3.1.5 (Gaussian process) A process (Xt)t∈T is Gaussian if for any (t1, . . . , tn) ∈ T n,
(Xt1 , . . . , Xtn) is a Gaussian vector.
We define its mean (function) µ by µ(t) := E (Xt) and its covariance (function) Σ by Σ(s, t) :=
E [(Xs − µ(s)) (Xt − µ(t))] = E (XsXt)− µ(s)µ(t).

Remark 3.1.6 The distribution of a Gaussian process is characterized by its mean function and
its covariance function.

3.1.3 Wiener process
Brownian motion is associated to the description of trajectories that evolve in such a disordered
way that it seems complicated to predict their evolution, even in a very short time interval. It plays
a central role in the theory of stochastic processes. In many theoretical or applied problems, Brow-
nian motion or its associated diffusion processes provide simple models for which calculations of
statistics are generally explicit.

Brownian motion was introduced in 1827 by the Scottish botanist Robert Brown to describe the
motion of fine organic particles suspended in a gas or fluid. In 1905, Albert Einstein built a prob-
abilistic model to describe the motion of a particle that diffuses: he found that the law of the
position at time t of the particle knowing that the initial state is x admits a density that verifies
the heat equation and is therefore Gaussian. In 1923, Norbert Wiener rigorously constructed the
random Brownian motion with continuous trajectories. Paul Lévy then discovered, with other
mathematicians, many properties of Brownian motion and introduced a first form of stochastic
differential equations (SDE), the study of which was later systematized by Kiyoshi Itô.

Definition 3.1.7 (Brownian motion) We call Brownian motion any Gaussian processW = (Wt)t≥0

with zero mean function and covariance function Σ(s, t) = min(s, t), ∀t, s ≥ 0.
If the process is moreover continuous, it is called standard Brownian motion. Three realizations of
such process are plotted in Fig. 3.1.

Proposition 3.1.8 Let (Wt)t≥0 be a Brownian motion. Then:
• The increments of (Wt)t≥0 are independent, i.e. for all 0 ≤ t0 < · · · < tn, the variables(

Wtk+1
−Wtk

)
0≤k≤n

are independent.
• The increments of (Wt)t≥0 are stationary, i.e. for all u > 0, the variables (Wu+t −Wt)t≥0

have the same distribution, namely N (0, u).

3.1.4 Itô calculus
The Itô integral is one of the fundamental tools of stochastic calculus. It generalizes the Stieltjes
integral in a stochastic way. Let us introduce a Wiener process (or Brownian motion) W : [0, T ]×
Ω → R, and X : [0, T ]×Ω → R a stochastic process adapted to the natural filtration associated to
Wt, then the Itô integral

Yt =

∫ t

0

Xs dWs (3.2)
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Figure 3.1. Example of three Wiener processes simulated with the following numerical scheme:
Wt+∆t =Wt +

√
∆tξ, where ξ ∼ N (0, 1).

is defined by the root mean square limit of

k−1∑
i=0

Xti (Wti+1 −Wti) , (3.3)

when the step of the partition 0 = t0 < t1 < · · · < tk = T of [0, T ] tends to 0.

An Itô process is defined to be an adapted stochastic process that can be expressed as the sum of
an integral with respect to Brownian motion and an integral with respect to time,

Xt = X0 +

∫ t

0

σs dWs +

∫ t

0

µs ds. (3.4)

An important result for the study of Itô processes is Itô’s lemma.
Theorem 3.1.9 (Itô Lemma) For any f ∈ C2(R) andXt an Itô process as described above, f(X)
is itself an Itô process satisfying

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt)σ

2
t dt. (3.5)

3.1.5 Ornstein-Uhlenbeck process
Definition 3.1.10 (Ornstein-Uhlenbeck process) The Ornstein-Uhlenbeck process is a stochas-
tic process described by the stochastic differential equation: dYt = θ(µ− Yt) dt+ ΣdWt

Y0 = y,
(3.6)

where θ, µ and Σ are deterministic parameters.
We are looking for solutions Yt to this stochastic equation. Let us apply Itô’s lemma to the function
f(Yt, t) = Yte

θt to obtain:

df (Yt, t) = θYte
θt dt+ eθt dYt = eθtθµ dt+ Σeθt dWt. (3.7)
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Figure 3.2. Example of Ornstein-Uhlenbeck processes.

Integrating from 0 to t, we obtain

Yte
θt = Y0 +

∫ t

0

eθsθµ ds+

∫ t

0

Σeθs dWs

Yt = Y0e
−θt + µ

(
1− e−θt

)
+

∫ t

0

Σeθ(s−t) dWs.

(3.8)

Thus, the first moment is given (assuming Y0 is a constant) by:

E [Yt] = Y0e
−θt + µ

(
1− e−θt

)
. (3.9)

In stationary regime (i.e. t→ ∞), we have: E[Yt] = µ.

We can use the Itô isometry to calculate the covariance:

cov (Ys, Yt) = E [(Ys − E [Ys]) (Yt − E [Yt])]

= E
[∫ s

0

Σeθ(u−s) dWu

∫ t

0

Σeθ(v−t) dWv

]
= Σ2e−θ(s+t)E

[∫ s

0

eθu dWu

∫ t

0

eθv dWv

]
=

Σ2

2θ
e−θ(s+t)

(
e2θ(min(t,s)) − 1

)
.

(3.10)

In stationary regime, the autocorrelation function becomes:

cov (Yt, Yt+τ ) = σ2e−θτ , (3.11)

Figure. 3.2 shows examples of Ornstein-Uhlenbeck processes with different parameters: it is clear
that the processes tend towards the mean value µ. Moreover, the characteristic time scale to reach
the stationary regime is given by θ−1, and the variance σ determines the roughness of the process.
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Figure 3.3. Three examples of FBM for different values of H .

3.1.6 Fractional Brownian motion

The fractional Brownian motion (FBM) is a generalization of Brownian motion (Mandelbrot and
Van Ness 1968). The field of applications of FBM is wide. Indeed, it is used for example to recre-
ate certain natural landscapes, in particular mountains, but also in hydrology, telecommunications,
economy, physics. Unlike those of classical Brownian motion, the increments of such processes
are not independent.

Definition 3.1.11 (Fractional Brownian motion) The FBM is a continuous-time Gaussian pro-
cess WH

t on [0, T ], that starts at zero, has expectation zero for all t in [0, T ], and has the following
covariance function:

E
[
WH

t W
H
s

]
=

1

2
(|t|2H + |t− s|2H − |s|2H), (3.12)

where H is a real number in (0, 1), called the Hurst index or Hurst parameter.

The Hurst exponent describes the roughness of the resultant motion, with a higher value leading
to a smoother motion. Three examples of FBM are plotted in Fig. 3.3, with different values of H .
The value of H determines what kind of process the FBM is:

• if H = 1/2, the process is a Brownian motion (or Wiener process); it has no memory, its
increments are uncorrelated. We denote W 1/2

t = Wt;
• if H > 1/2, the increments of the process are positively correlated. The process is not

Markovian but it has long-term memory, because its increments are correlated. The evolution
of the series tends to follow trends. If the series has increased previously, there is a strong
probability that it will continue to do so. Persistent series have a long-term memory, i.e.
there is a long-term correlation between current and future events. Each observation carries
the memory of the events that preceded it.

• if H < 1/2 then the increments of the process are negatively correlated. The process is not
Markovian and has also memory. In this case the successive increases tend to be negatively
correlated. An increase in the variable tends to be followed by a decrease, and vice versa.
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Mandelbrot and Van Ness (1968) have introduced the following expression of FBM:

WH
t =

∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dWs +

∫ t

0

[
(t− s)H−1/2

]
dWs. (3.13)

Without the first integral, the increments of this process are not stationary. McCauley, Gunaratne,
and Bassler (2007) have clarified the characterization of long-time correlation, by attributing it not
to the scaling property, but rather to the stationarity of the increments of the process.

3.1.7 Some properties of stochastic processes
3.1.7.1 Self-similar process

The self-similarity of a fractal object refers to the fact that the object can be decomposed into sub-
units, and then into sub-subunits, which have the same statistical properties as the overall object.
Whatever the scale of observation, identical characteristics are therefore observed.

Definition 3.1.12 (Self-similarity) A stochastic process Xt is said to scale with Hurst exponent α
if

Xat ∼ aαXt. (3.14)

The best evidence for scaling is to examine the scaling of its density function but in practice, one
can look for scaling of the moments:

E [Xn
t ] = E [Xn

1 ] t
nα = cnt

nα. (3.15)

Note that self-similar processes are necessarily strongly nonstationary by looking at their moments
in Eq. (3.15). However, they might have stationary increments.

Example 3.1.13 The fractional Brownian motion is self-similar with Hurst exponent H , since in
terms of probability distributions, WH

at ∼ |a|HWH
t .

3.1.7.2 Kolmogorov continuity theorem

The Kolmogorov continuity theorem (Chentsov 1956) guarantees the continuity of a stochastic
process (or, more precisely, that it has a “continuous version”), under certain constraints on the
moments of its increments:
Theorem 3.1.14 (Kolmogorov continuity) Suppose that

(
Ω,F ,P, (Xt)t≥0

)
is a stochastic pro-

cess with state space Rd. If there are α, β, c > 0 such that

E (|Xt −Xs|α) ≤ c|t− s|1+β, s, t ∈ R+, (3.16)

then the stochastic process admits a continuous modification X̃ such that:
• X̃ is sample-continuous;
• ∀t, P(Xt = X̃t) = 1;

• The paths of X̃ are locally γ-Hölder-continuous for every 0 < γ <
β

α
.
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Example 3.1.15 The FBM is continuous since its incrementsWt−Ws are Gaussian variables with
zero mean and with variance:

E [(Wt −Ws)
2] = E [W 2

t ] + E [W 2
s ]− 2E [WtWs]

= |t|2H + |s|2H −
(
|t|2H + |s|2H − |t− s|2H

)
= |t− s|2H .

(3.17)

Moments of the increments scale like a Gaussian variable with standard deviation |t− s|H :

E [|Wt −Ws|p] = E [|N |p] |t− s|pH , (3.18)

where N ∼ N (0, 1). The Kolmogorov theorem ensures that the FBM has a continuous modifica-
tion which, with probability one, is locally γ-Hölder continuous for all γ < H − 1/p < H .

The mathematical tools introduced in this section provide us with basic stochastic models that
could be used to reproduce statistics of fluid particle trajectories.
In the following section, we introduce Gaussian stochastic processes that mimics the behavior of
fluid particles in stationary HIT. Variance and characteristic time scales can be retrieved according
to turbulence theories introduced in Chap. 1.

3.2 Stochastic models for turbulent flows consistent with K41
In a Lagrangian framework, according to the Navier-Stokes equations, in an infinitesimal time
interval dt, the velocity of a fluid particle can be predicted by:


dxf,i = uf,i dt

duf,i =

(
−1

ρ

∂p

∂xi
+ ν

∂2uj
∂xj∂xj

)
dt = ai dt.

(3.19)

As introduced in Chap. 2, in a framework of reduced description of turbulence, the instantaneous
fluid velocity is decomposed as: u(x, t) = U(x, t)+u′(x, t), where U is numerically solved, but
u′ requires modeling. With this approach, the trajectory of a Lagrangian fluid element is written
by Haworth and Pope (1986) as:

duf,i =

(
−1

ρ

∂P

∂xi
+ ν

∂2Uj

∂xj∂xj

)
dt+

(
−1

ρ

∂p′

∂xi
+ ν

∂2u′j
∂xj∂xj

)
dt (3.20)

The first parenthesis is known because the resolved fields P and U are given. However, we need to
model the second member, which corresponds to the fluctuating part filtered by the reduced model.

Stochastic models appear to be a powerful tool to model this random part, which we will hence-
forth note du′i or a′i dt, depending on the level of modeling chosen. In this section, we present
first-order models (modeling velocity fluctuations), second order models (modeling acceleration
fluctuations), and higher-order models, and we derive closures of these models consistently with
K41 hypotheses.
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3.2.1 First-order model
An elementary model consists in writing a stochastic Langevin equation on the velocity fluctua-
tions du′:

du′ = Au′ dt+ BdWt. (3.21)

The tensors A and B can be simplified as Aδij and Bδij because of the isotropy of the flow field.
In such cases, we will drop the index i in the notation of the components and consider the general
following form:

du′ = Au′ dt+B dWt, (3.22)

where the reader can recognize an Ornstein-Uhlenbeck process with zero mean as described in
Sec. 3.1.5. To identify A and B with physical terms, we use two arguments: the stationarity of the
flow and the Kolmogorov similarity hypotheses.

Stationarity

First, let us notice that by dimensional analysis, it is necessary for A to have the dimension of
inverse time:

A = −1/T ⋆
L, (3.23)

where T ⋆
L is a characteristic time of the fluctuating unresolved scales1.

We have seen in Sec. 3.1.5 that for such Ornstein-Uhlenbeck processes to be stationary, B is
necessarily in the form:

B =

√
2σ2

⋆

T ⋆
L

, (3.24)

where σ⋆ =
√

E [u′2] represents the characteristic velocity scale of the non-resolved flow scales
that must be modeled.

Kolmogorov similarity hypothesis

According to Sec. 3.1.5, the autocorrelation function of this Ornstein-Uhlenbeck process in sta-
tionary regime is:

Ru′

L (τ) = E [u′(t)u′(t+ τ)] = σ2
⋆ exp(−τ/T ⋆

L), (3.25)

and it is related to the Lagrangian velocity structure function defined in Eq. (1.34)

DL
2 (τ) = E

[
(u′(t)− u′(t+ τ))

2
]
= 2

(
σ2
⋆ −Ru′

L (τ)
)
= 2σ2

⋆ (1− exp(−τ/T ⋆
L)) . (3.26)

For small time increments τ compared to T ⋆
L, we can write a first order expansion of exp(−τ/T ⋆

L)
and we obtain:

DL
2 (τ) ≈ 2σ2

⋆τ/T
⋆
L. (3.27)

1The exponent ⋆ refers to a parameter of the unresolved scales, which depends on the reduction applied to the fluid.
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Figure 3.4. Lagrangian autocorrelation of the velocity, compared to an exponential decay. Dataset from
Lanotte et al. (2011)

In the inertial range, the Kolmogorov theories predict the behavior of DL
2 (τ) = C0ε⋆τ , where ε⋆

is either the global or the locally-averaged dissipation. This gives a relation between the three
parameters:

DL
2 (τ) = 2σ2

⋆τ/T
⋆
L = C0ε⋆τ. (3.28)

We have an expression for T ⋆
L and B:

T ⋆
L =

2σ2
⋆

C0ε⋆
, B =

√
C0ε⋆. (3.29)

Closures for σ⋆ and ε⋆ will be discussed in Sec. 3.2.2 and depends on the type of ROS.

This first order model has been widely used in literature for RANS or LES applications (Haworth
and Pope 1986; Shotorban and Mashayek 2006; Pope and Chen 1990). Yet, first-order models
have some limitations, and their validity may become questionable regarding some aspects:

• In particular, they model a non-differentiable velocity process whereas actual fluid particle
acceleration cannot be infinite. This deviation from the actual behavior of the velocity au-
tocorrelation is shown in Fig. 3.4, in the inset of the figure, which displays a zoom at the
origin.

• Also, the simulated process has Gaussian increments, while experiments and DNS show that
the time increments are strongly non-Gaussian (as seen in Sec. 1.3).

• According to K41, inertial range scaling only applies for time increments τ such that τη ≪
τ ≪ TL, while the scaling produced by the Langevin model of Eq. (3.22) is verified for
any time increments2. This shows that the Langevin equation provides a physically realistic
model of fluid particle behavior only for times τη ≪ t ≪ TL and these models neglect high
time-frequency behavior. However, at low Reynolds numbers, the separation of time scales
τη ≪ TL is not verified anymore and the need to introduce a second time scale has been
addressed with second order models, derived in Sec. 3.2.3.

2However, it is necessary to simulate the process by ensuring that the time step is smaller than the characteristic
time ∆t≪ TL
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Before introducing other models, we give some hints on the closure of the parameters we have
introduced: σ⋆, T ⋆

L and ε⋆, considering the statistics of the resolved fields obtained from reduced-
order simulations of turbulence.

3.2.2 Closures of the parameters
We have introduced three parameters to describe the fluctuating scales: σ⋆, T ⋆

L and ε⋆. Consistent
with Kolmogorov scaling, we have obtained a relation between them in Eq. (3.29): T ⋆

L = 2σ2
⋆/C0ε⋆.

Depending on the type of reduced-order simulation, one can propose models for σ⋆ and ε⋆.

For stationary HIT, RANS simulation immediately yields U = ⟨u⟩ = 0 and the stochastic model
on u′ should be able to reproduce on its own the entire turbulent field. Let us assume for example
that the total turbulent kinetic energy ⟨k⟩ and the energy dissipation rate ⟨ε⟩ are given . They can
be taken as the input of the model: σ⋆ = σu =

√
2/3 ⟨k⟩ and ε⋆ = ⟨ε⟩.

The stochastic equation for u is an Ornstein-Uhlenbeck process:

du′ = − 1

TL
u′ dt+

√
C0 ⟨ε⟩ dW t, (3.30)

where TL is the Lagrangian integral time scale of the flow.

For RANS simulation of inhomogeneous flows, we obtain the generalized Langevin model (Ha-
worth and Pope 1986):

du′ =

(
−1

ρ
∇P + ν∇2U

)
dt− 1

TL
(u′ −U) dt+

√
C0 ⟨ε⟩ dW t. (3.31)

In LES simulations, σ⋆ and ε⋆ can be estimated at the sub-grid scale by σsgs and εsgs, depending
on the LES model. For model of Smagorinsky, we have σsgs ∝ |S|2 and εsgs ∝ |S|3 (see Sec. 2.2.2).

More advanced and realistic closures have been introduced in the works of Shotorban and Mashayek
(2006), Fede, Simonin, Villedieu, and Squires (2006), Knorps and Pozorski (2015) to take into ac-
count inhomogeneous, wall-bounded flows, and the reader is referred to the review of Marchioli
(2017) for further details.

3.2.3 Second-order model
In order to overcome the limitations of the velocity model discussed above, we can write the
velocity as the derivative of an acceleration process. In that case, the fluctuating part in Eq. (3.20)
is not modeled using du′ but rather with a′ dt. This is for example the case of the second-order
model suggested by Sawford (1991):

dZ = AZ dt+B dWt, (3.32)

where Z = [u′,a′]T is the vector of stochastic process for velocity and acceleration. The drift
matrix and diffusion vector can be written as:

A =

 0 1

α1 α2

 B =

 0

b

 . (3.33)
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Let us denote β1 and β2 the eigenvalues of A, such that α1 = −β1β2 and α2 = (β1 + β2). One can

also derive: α1 = −σ
2
a′

σ2
⋆

and α2 =
−b2

2σ2
a′

.

We follow the same approach as in the previous section: first, the stationarity condition gives a
relation between the coefficient b, the coefficients of A, and the variance of the sub-filter velocity
σ2
⋆ = E

[
u′2
]
. Secondly, we determine the time scales β1 and β2 from the physical parameters,

consistent with the first and second hypotheses of Kolmogorov’s theories.

Stationarity and reformulation of the process in terms of imbricated Ornstein-Uhlenbeck

Proposition 3.2.1 Sawford’s second-order model can be formulated with imbricated Ornstein-
Uhlenbeck in the form: du′ = β1u

′ dt+ f dt

df = β2f dt+ b dWt

(3.34)

Proof 3.2.2 We introduce f the process defined by f = a′ − β1u
′ such that

du′ = (β1u
′ + f) dt. (3.35)

By differentiating f , we have:

df = da′ − β1a
′ dt = α1u

′ dt+ α2a
′ dt+ b dWt − β1a

′ dt. (3.36)

After identification with the eigenvalues, we obtain:

df = β2(a
′ − β1u

′) dt+ b dWt = β2f dt+ b dWt. (3.37)

We recognize an Ornstein-Uhlenbeck equation for the process f , with zero mean. Therefore, to

ensure the stationarity of the process, we have b =
√

−2σ2
fβ2.

We must now determine σ2
f = E

[
f 2
]
. By multiplying du′ by u′ and averaging, we obtain a relation

between ⟨fu′⟩ and σ2
⋆:

1

2

dE [u′2]

dt
= β1E

[
u′2
]
+ E [fu′] . (3.38)

By stationarity, it follows that E [fu′] is constant. We then multiply Eq. (3.35) by f and Eq. (3.36)
by u′ and sum both expressions:

f du′ = β1u
′f dt+ f 2 dt

u df = β2u
′f dt+ bu′ dWt

d(fu′) = (β1 + β2)fu
′ dt+ f 2 dt+ bu′ dWt.

(3.39)

We take the ensemble average and we replace the constant E [fu′] by its value obtained in Eq. (3.38):

〈
f 2
〉
= β1(β1 + β2)E

[
u′2
]
. (3.40)

Finally, we obtain: b =
√

2α1α2σ2
⋆ . ■
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Kolmogorov similarity hypothesis

Sawford (1991) derives the expression of the velocity autocorrelation for the second-order model:

Ru′

L (τ) = σ2
⋆

β2 exp(β1τ)− β1 exp(β2τ)

β2 − β1
, (3.41)

and we recall that: D2(τ) = 2σ2
⋆

(
1−Ru′

L (τ)/σ
2
⋆

)
.

The second time scale enables the identification with the two different regimes defined in K41 and
K62, assuming separation of scales β2 ≪ β1:

• In the inertial range, DL
2 (τ) = C0ε⋆τ . An asymptotic development for −β−1

1 ≪ τ ≪ −β−1
2

gives the following identification

β1τ = −C0ε⋆
τ

2σ2
⋆

. (3.42)

• In the dissipation range, K41 first hypotheses give: DL
2 (τ) = a0ε

3/2
⋆ ν−1/2τ 2. An asymptotic

development for τ ≪ −β−1
1 ,−β−1

2 gives the following identification

β1β2
τ 2

2
= a0ε

3/2
⋆ ν−1/2 τ

2

2σ2
⋆

. (3.43)

Finally:

β1 = −C0ε⋆
2σ2

⋆

= − 1

T ⋆
L

, β2 = −2a0
C0

(ε⋆
ν

)1/2
= − 1

t⋆η
(3.44)

We retrieve the Lagrangian integral time scale T ⋆
L, characteristic of the fluctuating scales, and sim-

ilar to the one obtained with the first-order model. The second time scale t⋆η involves either the
Kolmogorov time scale τη or a local one τ sgsη , depending on whether the model is applied to RANS
or LES. It characterizes the velocities in the dissipation range, i.e., the correlation time for very
small increments. Hence, it can be viewed as the characteristic time scale of the acceleration.

Note that the model for ε⋆ is given at a coarse scale in ROS: either at the global one (RANS) or
sub-grid one (LES). It is therefore not possible to apply the first hypothesis of K62 since the local
dissipation is not known, and for such increments, we have τ ≪ τη ≪ τ∆.

A very close formulation was proposed more recently by Innocenti, Mordant, Stelzenmuller, and
Chibbaro (2020) for RANS framework: du′ = β1u

′ dt+ a′ dt

da′ = β2a
′ dt+ b dWt.

(3.45)

One can notice that the acceleration plays here the same role as f in the model of Sawford (1991).
By stationarity, we have seen that b =

√
−2β1β2(β1 + β2)σ2

u. Knowing that β1 = −1/TL and in
accordance with the K41 theory, they fixed β2 = −1/τη.

This second-order model tackles some of the limitations of the Langevin velocity model. By in-
troducing this second characteristic time of acceleration, the stochastic model is in agreement with
the theory of K41 in the dissipation range and the velocity of the fluid particle is now differentiable.
On the other hand, its acceleration is not and models of higher orders have hence been developed.
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3.2.4 Higher-order models
Viggiano, Friedrich, Volk, Bourgoin, Cal, and Chevillard (2020) consider similarly n additional
layers instead of a single one. All time scales associated with order higher than 1 are equal to τη.



du′ = − 1

T ⋆
L

u′ dt+ f1 dt

df1 = − 1

τη
f1 dt+ f2 dt

...

dfn−1 = − 1

τη
fn−1 dt+ b dWt.

(3.46)

For n → ∞ the process is therefore infinitely differentiable at a given Reynolds number. By
simulating differentiable accelerations, third-order or higher-order models produce Lagrangian ac-
celeration autocorrelation functions that are analytic at the origin, in accordance with experiment
(Voth, Satyanarayan, and Bodenschatz 1998).

However, this process remains Gaussian. Sawford and Innocenti models also both assume a Gaus-
sian Lagrangian acceleration PDF and thus do not account for the intermittency of acceleration
observed in experiments. Non-Gaussian features of Lagrangian turbulence must be reproduced
and in the following, we extend the construction of these processes to include intermittent nature
of the fluctuations. Velocities and accelerations statistics must be conditioned by the local value of
dissipation, as introduced in the K62 theory.

3.3 Stochastic models for turbulent flows consistent with K62
The models seen in the previous section have been established consistent with the Kolmogorov
theory of 1941. However, the Gaussianity of the velocity or acceleration PDF is in contradiction
with experiments and K62 theory (see Chap. 1) and do not reproduce the intermittent character of
turbulence.

In this section, we review some existing models that improve first and second-order models al-
ready introduced in previous section by conditioning the velocity or the acceleration to the local
dissipation. However, in ROS, the local dissipation is not fully resolved and must be modeled. The
most common dissipation model is the one introduced by Pope and Chen (1990).

3.3.1 Local dissipation modeled by an Ornstein-Uhlenbeck process
Pope and Chen (1990) originally suggested to model the dissipation process ε⋆ by a log-normally
correlated process by mean of Ornstein-Uhlenbeck process . The stochastic equation they proposed
for χt = ln (ε⋆/E [ε⋆]) is the following:

dχt = −
(
χt +

1

2
σ2
χ

)
dt

Tχ
+

(
2
σ2
χ

Tχ

)1/2

dWt, (3.47)



3.3 - STOCHASTIC MODELS FOR TURBULENT FLOWS CONSISTENT WITH K62 93

where Wt is a Wiener process, Tχ is the Lagrangian integral time scale of χ, extracted from DNS
and found to be close to the Lagrangian integral time scale of the velocity TL. The parameter σ2

χ is
Reynolds number dependent and is also chosen accordingly to DNS data.
This process was widely used in the literature for modeling the dissipation in conditional models:
Pope and Chen (1990), Reynolds (2003a), Lamorgese, Pope, Yeung, and Sawford (2007).

3.3.2 Conditional Gaussian velocity
First order models can be immediately extended and made compatible with the K62 framework
since the velocity increments are now conditioned on the local and not on the global dissipation:

du′ = − 1

T ⋆
L

u′ dt+
√

C0E [ε⋆] expχt dWt,

dχt = −
(
χt +

1

2
σ2
χ

)
dt

Tχ
+

(
2
σ2
χ

Tχ

)1/2

dWt,

(3.48)

We verify that this refined Langevin model (Pope and Chen 1990) is compatible with K62 theory
because for small time intervals τ , the diffusion term dominates in the expression and gives:

E
[
(∆τu)

2|ε⋆
]
= C0ε⋆τ. (3.49)

3.3.3 Conditional Gaussian acceleration
Similarly, Reynolds (2003a), Reynolds (2003b) extended the second-order model of Sawford
(1991) by incorporating a dependence on local dissipation. A Gaussian acceleration model, but
conditioned on dissipation, produces a non-Gaussian distribution of acceleration statistics. They
define a′ = σa′|εã. The system of Sawford (1991) is equivalent to:

du′ = a′ dt = σa′|εã dt
da′

σa′|ε
=

α1

σa′|ε
u′ dt+ α2

a′

σa′|ε
dt+

b

σa′|ε
dWt.

(3.50)

Using dã =
da′

σa′|ε
− 1

σa′|ε

dσa′|ε
dt

ã dt we obtain the new system, on Z = [u′, ã, χ]:



du′ = σa′|εã dt

dã = −
(
(T ⋆

L)
−1 + (t⋆η)

−1 − 1

σa′|ε

dσa′|ε
dt

)
ã dt− (T ⋆

L)
−1(t⋆η)

−1u′ dt

+
1

σa′|ε

√
2σ2

⋆

(
(T ⋆

L)
−1 + (t⋆η)

−1
)
(T ⋆

L)
−1(t⋆η)

−1 dWt

dχ = − 1

Tχ
χ dt+

√
2σ2

χ

Tχ
dW ′

t ,

(3.51)

where the last equation on χ = ln(ε⋆/E [ε⋆]) is taken from the model of Pope and Chen (1990).
The conditional acceleration variance is prescribed by K62 first hypothesis: σ2

a′|ε = a0ε
3/2
⋆ ν−1/2.
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Both time scales are defined in terms of the modeled instantaneous dissipation rate ε⋆. The velocity
time scale is T ⋆

L = 2σ2
⋆/C0ε⋆ and the acceleration time scale can be obtained consistently with

K62 first hypothesis: t⋆η = C0/2a0 (ν/ε⋆)1/2. The proposed model reproduces almost a Tsallis
distribution for Lagrangian accelerations and approaches DNS and experimental data (Beck 2001a;
Beck 2001b; Beck 2003). Several models for the dissipation were proposed in Reynolds (2003a)
and Reynolds (2003b) and will be developed in Sec. 3.4.

3.3.4 Conditional Non-Gaussian acceleration
Lamorgese, Pope, Yeung, and Sawford (2007) considered conditionally cubic-Gaussian accelera-
tion statistics. Their model captures the effects of small-scale intermittency on acceleration and
the conditional dependence of acceleration on pseudo-dissipation du′ = a′ dt = σa′|εC [(1− p)a+ pa3] dt,

da = θ dt+ b dWt,
(3.52)

where θ and b are drift and diffusion coefficients specified below. All of the other coefficients are
p = 0.1, C =

√
2/3 and σa′|ε is not given by K62 but rather with the following expression, first

presented by Yeung, Pope, Lamorgese, and Donzis (2006):

σ2
a′|ε
a2η

=
1.2

Re0.2λI

(
ε⋆

E [ε⋆]

)0.15

+ ln

(
ReλI

20

)(
ε⋆

E [ε⋆]

)1.25

, (3.53)

and the process of Pope and Chen (1990) drives the stochastic trajectory of ε⋆.

Another original model for sub-filter acceleration was proposed by Sabel’nikov, Chtab-Desportes,
and Gorokhovski (2011), for which two distinct stochastic processes drive the norm and direction
of the acceleration vector. The LES-SSAM model leads to the following stochastic Navier-Stokes
equation, where the total acceleration âi of a surrogate field ûi is modeled by:

âi =
dûi
dt

=
∂ûi
∂t

+ ûk
∂ûi
∂xk

= −1

ρ

∂P̂

∂xi
+

∂

∂xk

[
(ν + νt)

(
∂ûi
∂xk

+
∂ûk
∂xi

)]
+ a′i (3.54)

relying on a Smagorinsky SGS assumption for the turbulent viscosity νt. The pressure P̂ maintains
the incompressibility of the process and a′i is represented by two independent stochastic processes,
one for its norm a∗(t) and another for its direction e∗i (t):〈

(a∗)2|ε
〉
= a0ε

3/2ν−1/2, (3.55)

so that the norm of the acceleration is in accordance with the K62 theory. The dissipation is
modeled with Eq. (3.47), and applying the Itô transformation, one can obtain:

da∗

a∗
=

(
ln
a∗

aη
− 3

16
σ2
χ

)
T−1
χ dt+

3

4

√
2σ2

χT
−1
χ dWt. (3.56)

A stochastic model for the vector of the acceleration direction is proposed, with a Brownian ran-
dom walk on the surface of a unit radius sphere, which expression is not given here. This model
produces non-Gaussian acceleration statistics, thanks to the modeling of local dissipation. By in-
troducing two distinct characteristic times, one for the fast decorrelation of the acceleration com-
ponents, the other for the longer term memory of its norm, it is also consistent with theories and
experiments (Monin and Yaglom 1975; Xu, Ouellette, Vincenzi, and Bodenschatz 2007).



3.4 - INTERMITTENT STOCHASTIC MODELS 95

3.3.5 Velocity-conditioned acceleration
One can also introduce a vectorial stochastic model for the dynamics of a fluid particle in turbulent
flows, looking for a stochastic process of the form:

da′i =Mi dt+Dij dWj. (3.57)

Both closure terms Mi and Dij necessarily involves the acceleration a′ and the velocity u′ to main-
tain a stationary solution. All the models presented so far have also involved the dissipation ε⋆.
On the other hand, some models are based on velocity-conditioned acceleration, such as that of
Biferale, Boffetta, Celani, Devenish, Lanotte, and Toschi (2004) which predicts

〈
a2|u

〉
∼ |u|4.6.

Indeed, this is also consistent with Kolmogorov’s hypotheses, since ε ∼ σ3
u/L ∼ ⟨k⟩3/2 /L, where

L is the characteristic size of the largest structures.

Zamansky (2021) developed a model for conditional acceleration involving not only dissipation,
but also kinetic energy:

〈
a2|ε, k

〉
= f(k, ε) = A−1a2η

(
ε

⟨ε⟩

)3/2

exp

(
α
k

⟨k⟩

)
. (3.58)

Writing Itô’s formula on the process, we get a formula for the increments of a2:

da2 =
∂f

∂k
dk +

∂f

∂ε
dε+

1

2

∂2f

∂k2
dk2 +

1

2

∂2f

∂ε2
dε2 +

∂2f

∂ε∂k
dε dk, (3.59)

where we note that dk = ui dui = uiai dt = P dt, where P is the mechanical power per unit mass
exchanged by the fluid particle. Stochastic models for dε are developed in Sec. 3.4. With various
assumptions, he derived a shape for the vector model of the acceleration dai and thus noting that
a2 = aiai it is possible to obtain the closures through Eq. (3.59).

3.3.6 Conclusion on models compliant with K62
By conditioning the parameters of the Gaussian or non-Gaussian models to the local dissipation, it
is possible to produce non-Gaussian statistics, sometimes close to the distributions observed in the
experiments.

However, this is not sufficient to reproduce the intermittent character of the statistics: the dissi-
pation model must also be itself intermittent. Hence it is necessary to highlight some existing
properties for intermittent dissipation, that we will ascertain on the famous model of Pope and
Chen (1990) as well as other models.

3.4 Intermittent stochastic models
This section is focused on stochastic models of dissipation along the trajectory of fluid particles
and in particular on the intermittency of their statistics. In Sec. 3.4.1, we first introduce the pseudo-
dissipation, which Pope and Chen (1990) have shown that it is more suitable to assess K62 theories.
In Sec. 3.4.2, in agreement with experiments, DNS results and K62 theory, we propose a list of
properties that the statistics of the modeled dissipation must verify. Section 3.4.3 introduces a
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Figure 3.5. Probability density function of the normalized variable lnφ compared to the Gaussian
distribution (dashed black line). The y-axis is on a logarithmic scale. Dataset from (Lanotte et al.

2011).

general formalism to establish a stochastic model of pseudo-dissipation. In Sec. 3.4.4.1, we verify
whether the dissipation model of Pope and Chen (1990) verifies the list of criteria. Section 3.4.4.2
introduces another class of models, compatible with the cascade model of Yaglom (1966).

3.4.1 Modeling the pseudo-dissipation
According to the third refined similarity hypothesis of K62, the dissipation ε is log-normal. Actu-
ally, the PDF of the pseudo-dissipation φ is in better agreement with the log-normal distribution
than the classical dissipation, as shown in Pope and Chen (1990). It is defined as:

φ := ν
∂ui
∂xj

∂ui
∂xj

. (3.60)

As noted in Pope and Chen (1990), for homogeneous flows we have ⟨φ⟩ = ⟨ε⟩. The Lagrangian
variable is related to the Eulerian field by: φ(t) = φ(xf (t), t), where xf (t) denotes the position of
a fluid particle at time t.

Figure 3.5 compares the PDF of lnφ obtained from the data of Lanotte, Calzavarini, Toschi, Bec,
Biferale, and Cencini (2011) with a normal distribution and we find good agreement. As suggested
in K62 and measured in DNS by Yeung, Pope, and Sawford (2006), we have σ2

lnφ = A+B lnRe.

The locally-averaged dissipation (also called coarse-grained dissipation) can be defined similarly
to ετ in Eq. (1.41) by:

φτ (t) =
1

τ

∫ t+τ

t

φ(s) ds. (3.61)

3.4.2 Multifractal properties of the pseudo-dissipation
Numerous studies on data analysis of intermittency in turbulence reveal the multifractal nature of
the pseudo-dissipation. The seminal work of Frisch (1995) to characterize intermittency based
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on Kolmogorov theories was followed among others by Chevillard, Robert, and Vargas (2009),
Chevillard, Robert, and Vargas (2011), Chevillard (2017), Schmitt and Marsan (2001), Schmitt
(2003), Pereira, Moriconi, and Chevillard (2018). Combining all the properties of intermittency
mentioned in their work, we propose the following criteria for the pseudo-dissipation to exhibit
intermittency.

Properties of the intermittent pseudo-dissipation:

(i) Kolmogorov 1941 scaling: E [φ] = ντ−2
η

(ii) Kolmogorov 1962: φ is log-normal with σ2
lnφ ∼ ln

TL
τη

(iii) Multiscaling of the one-point statistics: E [φp] ∼
(
TL
τη

)ξ(p)

, where ξ(p) is a non-

linear function.
(iv) Power-law scaling for the coarse-grained dissipation, in the inertial range:

for τη ≪ τ ≪ TL, E [(φτ )p] ∼
(
TL
τ

)ξ(p)

Remark that if the lognormal distribution is a good approximation of the PDF distribution, the
numerical data shown in Fig. 3.5 suggest deviations. Assumption (ii) is therefore a reasonable
working approximation for modeling but it is not foolproof.
The last two points (iii) and (iv) are precisely the main characteristics of multifractal systems,
which were considered for the modeling of the dissipation.

Multifractal random fields are of primary interest for modeling intermittent fields since they pos-
sess high variability on a wide range of time or space scales, associated with intermittent fluctua-
tions and long-range power-law correlations (Borgas 1993; Frisch 1995; Sreenivasan and Antonia
1997). Self-similar and complex structures observed in DNS and experimental studies are well
reproduced by multifractal random fields, as opposed to monofractal ones.

3.4.3 General formalism for the pseudo-dissipation

In order to compare stochastic models for pseudo-dissipation φt, we introduce a general formalism
that simplifies the verification of the properties given in Sec. 3.4.2. In the following, models are in
the form:

φt = E [φ] exp(χt), (3.62)

where E [φ] = ν/τ 2η to fulfill Kolmogorov scaling (i). The stationary process χt is Gaussian
of variance σ2

χ and its mean µχ = −σ2
χ/2 is determined with the constraint that E [exp(χt)] =

1. We can parametrize this process by a zero-average Gaussian process Xt and an intermittency
coefficient λI :

χt =
√
λIXt −

λI
2
E
[
X2

t

]
. (3.63)
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Without loss of generality, we can therefore rewrite the process φt as a function of Xt:

φt = ⟨φ⟩ exp
(√

λIXt −
λI
2
E
[
X2

t

])
. (3.64)

The challenge is to determine the process Xt so that φt can satisfy the multifractal properties de-
fined in Sec. 3.4.2. We therefore derive below the expressions for the variance, the moments of
the pseudo-dissipation and the locally-averaged pseudo-dissipation as functions of the covariance
function of Xt.

Variance:

σ2
lnφ = σ2

χ = λIσ
2
X . (3.65)

Moments of the pseudo-dissipation:
χt is a Gaussian variable, with moments generating function equal to:

E [exp(pχ)] = exp

(
pµχ +

1

2
p2σ2

χ

)
. (3.66)

Using µχ = −σ2
χ/2, this simplifies to:

E [φp] = E [φ]p exp

(
λI
p(p− 1)

2
σ2
X

)
. (3.67)

Moments of the coarse-grained dissipation:

(φτ )p =
1

τ p

∫
[t,t+τ ]p

p∏
i=1

φ(si) dsi,

=
E [φ]p

τ p

∫
[t,t+τ ]p

exp

(
p∑

i=1

√
λIXsi − p

λI
2
σ2
X

)
p∏

i=1

dsi.

(3.68)

The process appearing in the exponential is a zero-average Gaussian process. Applying to it the
identity of Eq. (3.66), we have:

E [(φτ )p] =
E [φ]p

τ p
exp

(
−pλI

2
σ2
X

)∫
[t,t+τ ]p

exp
(1
2

p∑
i,j=1

λIE
[
XsiXsj

] ) p∏
i=1

dsi (3.69)

=
E [φ]p

τ p
exp

(
−pλI

2
σ2
X

)∫
[t,t+τ ]p

exp
(∑

i<j

λIE
[
XsiXsj

]
+ p

λI
2
σ2
X

) p∏
i=1

dsi

(3.70)

= E [φ]p
∫
[0,1]p

exp
(
λI
∑
i<j

E
[
XτsiXτsj

] ) p∏
i=1

dsi. (3.71)

The expressions obtained in Eq. (3.65), (3.67) and (3.71) only depend on the parameter λI and the
covariance function of Xt. Those calculations will be useful to assess properties of Sec. 3.4.2 on
models of literature. Let us start with the model of Pope and Chen (1990), already introduced in
previous section.
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3.4.4 A review of existing dissipation processes
3.4.4.1 An Ornstein-Uhlenbeck process

Starting from Eq. (3.47), the corresponding normalized stochastic process XOU
t for the model of

Pope and Chen (1990) is:

dXOU
t = −XOU

t

dt

Tχ
+

(
2
σ2
X

Tχ

)1/2

dWt. (3.72)

The autocorrelation of this process is well-know: following Eq. (3.11) it has an exponential decay
in the form E [XtXt+τ ] = σ2

X exp (−t/Tχ).

Let us examine if this model yields the expected multifractal properties for intermittent dissipation
defined in Sec. 3.4.2. The three parameters of the models are Tχ, σ2

χ and the intermittency coeffi-
cient λI .

• The first requirement (i) is fulfilled by taking E [φ] = ντ−2
η .

• The second one (ii) provides a general form for σ2
χ = λI ln(TL/τη). Such dependency

in the Reynolds number was already prescribed in Pope and Chen (1990), who noted that
σ2
χ = 0.29 lnReλ − 0.36 was a good fit to their DNS data.

• Starting from Eq. (3.67), we have:

E [φp] = E [φ]p exp

(
p(p− 1)

σ2
χ

2

)
= E [φ]p

(
TL
τη

)λI
2

p(p−1)

, (3.73)

which ensures point (iii).
• However, the scaling of the two-points statistics (iv) cannot be obtained with an exponential

decay of the autocorrelation function. According to Eq. (3.71), we have:

E [(φτ )p] = E [φ]p
∫
[0,1]p

exp
(
λI
∑
i<j

E
[
XτsiXτsj

] ) p∏
i=1

dsi

= E [φ]p
∫
[0,1]p

exp

(
σ2
χ

∑
i<j

exp

(
−τ(sj − si)

Tχ

)) p∏
i=1

dsi.

(3.74)

Such moments are diverging with the Reynolds number, which is not consistent with the fact
that velocity increments are independent on Reynolds number in the inertial range.

We will see in the following section that, on the other hand, a pseudo-dissipation model given
by a multiplicative cascade allows one to obtain (iii) moments E [φp] that scale as a power of the
Reynolds number, and (iv) bounded moments of φτ when Re → ∞. Let us introduce cascade
models with their genesis, the model of Yaglom (1966).

3.4.4.2 Log-correlated processes

The multiplicative cascade model of Yaglom (1966), presented in Sec. 1.3.2 pictures turbulence as
an ensemble of discrete length scales, in which the energy transfers from a “mother” to a “daugh-
ter” eddy in a recursive and multiplicative manner. In this way, large fluctuations recursively
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generate correlations over long distances.

Two main criticisms of these models are made by Mandelbrot (1999). The first concerns the ab-
sence of spatio-temporal structure in these Eulerian representations of the dissipation fields which
lacks causality, a necessary ingredient. Equivalent Lagrangian models were then proposed, fol-
lowing the formalism of Lagrangian intermittency developed by Borgas (1993). The model of
Biferale, Boffetta, Celani, Crisanti, and Vulpiani (1998) is defined via a multiplicative process of
independent stationary random processes with given correlation times. Properties (iii) and (iv) can
here again only be verified for a finite number of scales depending on the constant scale ratio of
the model λI .

This brings us to the second critic raised by Mandelbrot (1999) who suggested to consider con-
tinuous cascade models such as Gaussian multiplicative chaos (GMC) (Kahane 1985; Robert and
Vargas 2010) for which no arbitrary scale is chosen. Stochastic integrals can be interpreted as an
infinite sum, with continuous values of scales. Taking the exponential of stochastic integrals gives
a “continuous product” instead of the discrete one defined in Eq. (1.50). Several models (Schmitt
and Marsan 2001; Muzy and Bacry 2002; Chevillard 2017; Pereira, Moriconi, and Chevillard
2018) are based on this formalism which allows to combine the continuous vision of a cascade and
a causal structure of the process. GMC rely on a log-correlated process Xt that requires special
attention for its derivation. In the following, we do not attempt to construct this process (this will
be detailed in Chap. 4) but rather focus on its properties in the inertial range and we verify that its
statistics are indeed intermittent.

Let us introduce Xt, a zero-average Gaussian process with the following variance and covariance
scalings:

E
[
X2

t

]
∼ ln

TL
τη
, (3.75)

E [XtXs] ∼ ln
TL
t− s

, for τη < t− s < TL (3.76)

The mathematical construction of such process will be the focus of the next chapter. In this chap-
ter, we only give the scaling of the covariance function for increments in the inertial zone since this
is the range of interest for establishing the intermittency properties of Sec. 3.4.2. In the following,
we verify that the requirements are fulfilled with such process.

Following Eq. (3.65), it is immediate that requirement (ii) is satisfied. Also, replacing the variance
σ2
X ∼ ln(TL/τη) in Eq. (3.67) readily ensures requirement (iii):

E [φp] ∼ E [φ]p exp

(
λI
2
p(p− 1) ln

TL
τη

)
∼
(
TL
τη

)ξ(p)

, (3.77)

with the non-linear scaling power law ξ(p) =
λI
2
p(p− 1).

As opposed to the Ornstein-Uhlenbeck model of Sec. 3.4.4.1, the multifractal property of the
coarse-grained dissipation (iv) is ensured by the log-correlated autocorrelation of Xt in the inertial
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Figure 3.6. Autocorrelation of XT
t (red line) compared with expected logarithmic behavior (black

dotted line). The x-axis is on a logarithmic scale.

range.

E [(φτ )p] = E [φ]p
∫
[0,1]p

exp

(
λI
∑
i<j

E
[
XτsiXτsj

]) p∏
i=1

dsi

E [(φτ )p]

E [φ]p
=

∫
[0,1]p

exp
(
λI
∑
i<j

ln
TL

τ(sj − si)

) p∏
k=1

dsk

=

∫
[0,1]p

exp
(
λI
p(p− 1)

2
ln
TL
τ

− λI
∑
i<j

ln(sj − si)
) p∏

k=1

dsk

=

(
TL
τ

)ξ(p) ∫
[0,1]p

∏
i<j

1

(sj − si)λI

p∏
k=1

dsk.

(3.78)

Taking the limit Re → ∞, the moments of φ diverge in Eq. (3.77) because φ is correlated over the
large energy containing scales, whereas at a given scale τ , moments of φτ converge in Eq. (3.78),
fulfilling the statistical properties of intermittency. It becomes independent of the Reynolds number
and behaves as power law at small scales.

3.4.4.3 Comparison of models with DNS

We illustrate this logarithmic behavior of the autocorrelation on DNS of Lanotte et al. (2011).
Their simulations were run at τη = 0.02. The Lagrangian integral time scale is found to be TL =
0.64 which gives, according to Zhang, Legendre, and Zamansky (2019), Reλ = (TL/τη)/0.08 =
400. For each fluid particle, the process χt is obtained by taking the logarithm of the pseudo-
dissipation along the particle trajectory. XT

t is retrieved with the normalization of Eq. (3.63) and
we plot in Fig. 3.6 its autocorrelation. One can easily verify by comparison with the logarithmic
behavior in dashed line that the autocorrelation follows a logarithmic behavior in the inertial range,
i.e. between the τη and TL of the simulation.
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Figure 3.7. Comparison of autocorrelation of processes of (a) Pope XOU
t , (b) Schmitt XS

t and (c)
Pereira XP

t with logarithmic behavior. Processes are rescaled for comparable variance of ln(TL/τη).

Figure 3.7 compares the autocorrelation of several dissipation models for Xt, with the logarithmic
prediction in the inertial range [τη, TL] = [10−3, 100] that was observed in Sec. 3.4.4.3. We have
already seen that the model of Pope and Chen (1990) has an exponential autocorrelation. It is
plotted in blue in Fig. 3.7 and as expected, the exponential decay does not reproduce a long-range
correlation. Two other log-correlated processes, based on the GMC, XP

t (Pereira, Moriconi, and
Chevillard 2018) and XS

t (Schmitt 2003) display long-range power-law correlation, as opposed to
the Ornstein-Uhlenbeck process of Pope XOU

t (Pope and Chen 1990).

A characterization of the intermittency has been proposed in Sec. 3.4.2 and we ensured that the
proposed criteria are verified by a log-correlated process Xt. The remaining question to be ad-
dressed concerns the construction of such processes. In the literature, it is derived from multi-
fractal processes such as fractional Brownian motions (FBM) which are well-known for their long
range correlation properties. Schmitt (2003), Pereira, Moriconi, and Chevillard (2018) developed
models for Xt based on FBM and these processes are discussed in detail in the next chapter.

3.4.5 Extension to the LES framework
Dissipation models introduced so far are adapted to RANS formulation, and are based on the
Lagrangian integral time scales TL and Tχ. In the LES framework, more information is available
about the resolved field, in particular, we have models on εsgs or equivalently φsgs. We can define

χ = ln(φ/E [φ]) = ln(φ/φsgs)︸ ︷︷ ︸
χ′

+ ln(φsgs/E [φ])︸ ︷︷ ︸
χ

dχ = dχ′ +
dφsgs

φsgs

,

(3.79)

where dχ′ corresponds to the stochastic equation for the pseudo-dissipation discussed above and
dφsgs is the increment of the resolved pseudo-dissipation seen by the fluid particle.

In that case, parameters for the model of χ′ involve T ⋆
L instead of TL. In Gorokhovski and Zaman-

sky (2018), T ⋆
L = τsgs and σ2

X should be Reynolds dependent as follows: σ2
X ∼ ln

τsgs
τη

=
1

2
lnRe∆
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Modeling K41 K62

Velocity u′ Generalized Langevin
model

Conditional Gaussian GLM

Acceleration a′ Second-order model

Conditional Gaussian acceleration

Conditional Non-Gaussian accelera-
tion

Velocity and dissipation-conditioned
acceleration

Normalized logarithm
of dissipation X

SGS information
Ornstein-Uhlenbeck

Log-correlated process

Table 3.1. Hierarchy of stochastic models for turbulent flows. The two columns K41 and K62 classify
models according to their ability to reproduce intermittency.

.

Conclusion
In this chapter, we first introduced mathematical tools to define stochastic processes and their prop-
erties. In particular, we have presented the stochastic Langevin equation, which is commonly used
in many stochastic models of fluid particle velocity.

We have reviewed a number of stochastic models and examined their ability to reproduce the
fundamental theories of turbulence, namely K41 and K62. In particular, we have introduced a
classification, according to the level of their modeling (velocity, acceleration, dissipation). This is
summarized in Table 3.1.
Finally, in order to reproduce the intermittent statistics of turbulence, we have established a list

of properties for the pseudo-dissipation. The Gaussian multiplicative chaos formalism is intro-
duced and the derivation of the process Xt must be carefully considered. The construction of such
processes requires a precise mathematical framework, which will be developed in the next chapter.





Chapter 4

A new mathematical framework for the
Gaussian multiplicative chaos

In Chap. 3, we have established a set of properties that a dissipation model must satisfy to exhibit
the intermittent statistics identified in turbulence by K62. The aim of this chapter is to show how
to construct such processes in a generic and elegant manner.

In particular, we have introduced a general formalism for the pseudo-dissipation φ, that can be
related to the Gaussian multiplicative chaos (GMC) (Kahane 1985). The construction of the GMC
is based on a singular process, denoted Xt in the previous chapter, and for which a logarithmic
covariance function is expected. The singularity of its covariance requires the introduction of
a regularization on the process Xτ

t , itself derived from regularized fractional Brownian motion
(FBM).

In this chapter, we propose an original framework for the construction of regularized FBM. This
general formalism allows to easily derive associated stationary processes Xτ

t and we show that
it encompasses existing processes of literature, as well as a new one further detailed in Chap. 5.
Furthermore, our result proves our process to be very efficient to simplify the usually complex
technical computations of variance and autocorrelation. For this reason, we can characterize suffi-
cient conditions to obtain a large family of processes satisfying properties fixed by practitioners.

The chapter is organized as follows: Sec. 4.1 introduces the general framework for deriving inter-
mittent stochastic processes. We define the “approximated” GMC relying on an “approximately”
log-correlated process Xτ

t . Such process can be obtained from regularized FBM. We give several
examples of such FBM and we introduce their Laplace representation. Based on this represen-
tation, Sec. 4.2 proposes a general framework for FBM and Sec. 4.3 extends it to stationnary
processes Xτ

t . Finally, we show in Sec. 4.4 the convergence of such regularized processes towards
the universal GMC.

4.1 Construction of a stochastic process with intermittent statis-
tics

We have seen in Chap. 3 that intermittent models are based on velocities or accelerations con-
ditioned on local dissipation φt, a driving process that should exhibit a singular behavior. The
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classical approach is to construct a Gaussian multiplicative chaos (GMC).

4.1.1 Gaussian multiplicative chaos
This section reviews the Gaussian multiplicative chaos (GMC) formalism, introduced by Kahane
(1985). According to the definition given by Rhodes and Vargas (2014), Shamov (2016):
Definition 4.1.1 (Gaussian multiplicative chaos) Let (T , µ) be a finite measure space, and let
X = (X(ω, t)ω∈Ω,t∈T ) be a Gaussian field parametrized by t ∈ T and defined on probability
space (Ω,P). A standard Gaussian multiplicative chaos is a random measure that can be formally
written:

Mλ(dt) := exp

(
λIXt −

λ2I
2
E
[
X2

t

])
µ(dt), (4.1)

where X possesses a covariance kernel of the form:

E [X(t)X(s)] = ln+
1

|t− s|
+ g(t, s), (4.2)

with ln+(u) = max(lnu, 0) and g a continuous function.

The covariance kernel thus possesses a singularity and a standard approach consists in regularizing
X by applying a cut-off, based on a small parameter τ such that, in the limit of τ → 0, φt is a
GMC in a well-posed abstract framework. Let us define φτ

t , an approximated GMC, written as:

φτ
t := ⟨φ⟩ exp

(
λIX

τ
t − λ2I

2
E
[
(Xτ

t )
2
])

, (4.3)

where ⟨φ⟩ and λI are given values, and Xτ
t is a well-defined stochastic process which must ap-

proximate a Gaussian log-correlated process.

Let us now introduce an example of construction of such process.

4.1.2 A fractional Ornstein-Uhlenbeck process Xτ based on W τ

It is natural to expect that the process Xτ
t is causal, and thus it will follow a stochastic differential

equation with initial condition Xτ
t0

at time t0 such that

dXτ
t = bτ (t,X

τ
t ) dt+ στ (t,X

τ
t ) dW

τ
t . (4.4)

The drift bτ , the volatility στ and the driving process W τ could be chosen to become singular at
the limit τ → 0, but also to ensure stationarity of the process Xτ

t . However the more natural and
simple choice for the drift and the volatility will be to set

bτ (t, x) := − x

T
, στ (t, x) := 1, for all x ∈ R, (4.5)

where T is a parameter. We obtain the stochastic differential equation:

dXτ
t = −X

τ

T
dt+ dW τ

t , (4.6)
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whose unique solution with initial data Xτ
t0

at time t0 is given by

Xτ
t = e−

t−t0
T Xt0 +

∫ t

t0

e−
t−s
T dW τ

s . (4.7)

To obtain a stationary solution, it is tempting to let t0 → −∞, but justifying the convergence
requires heavy covariance computations and will depend on the choice of W τ . Let us now discuss
this choice.

4.1.3 Regularized fractional Brownian motion
A fruitful approach is to consider W τ as a regularized fractional Brownian motion of Hurst 0.
Appropriate formalism for fractional Brownian motion (hereafter denoted FBM) was proposed by
Mandelbrot and Van Ness (1968). They defined the FBM of exponent H as a moving average of
dWt, in which past increments of Wt, a Brownian motion, are weighted by the kernel (t− s)H−1/2.
The parameter H ∈ (0, 1) is called the Hurst parameter and defines the roughness of the path.
Standard Brownian motion corresponds toH = 1/2 and is notedW 1/2

t = Wt. A classic expression
for the Holmgren-Riemann-Liouville fractional Brownian motion is the following one:

W̃H
t =

1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2 dWs, (4.8)

where Γ is the gamma function. The particular case of Hurst parameter H = 0 has a logarithmic
autocorrelation (Chevillard 2017) but it is not well-defined because of the singularity of its auto-
correlation in time t = 0.

Mandelbrot and Van Ness (1968) proposed a different regularization of this FBM, for τ > 0:

W̃ τ
t =

1√
π

∫ t

0

(t− s+ τ)−1/2 dWs. (4.9)

Note that the factor 1/
√
π is for normalization purposes and equals Γ(1/2), the gamma function

being frequently used in this context.

The increments of this regularized fractional Brownian motion satisfy:

dW̃ τ
t = − 1

2
√
π

∫ t

0

(t− s+ τ)−3/2 dWs dt+
τ−1/2

√
π

dWt. (4.10)

and are not stationary. However, according to McCauley, Gunaratne, and Bassler (2007), stationary
increments are needed to ensure the stationarity of theXτ process defined in Eq. (4.6). Let us rather
consider the following stationary increments:

dW τ
t := − 1

2
√
π

∫ t

−∞
(t− s+ τ)−3/2 dWs dt+

τ−1/2

√
π

dWt,

:= βτ
t dt+

τ−1/2

√
π

dWt,

(4.11)
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with the well-defined process βτ driven by Brownian motion W with kernel (· + τ)−3/2. This
definition of dW τ

t describes the increments of the regularized (with parameter τ > 0) fractional
Brownian motion of Hurst parameter 0:

W τ
t :=

1√
π

(∫ 0

−∞

(
(t− s+ τ)−1/2 − (−s+ τ)−1/2

)
dWs +

∫ t

0

(t− s+ τ)−1/2 dWs

)
. (4.12)

Similarly, we now retrieve the regularized FBM WH
t with stationary increments by:

WH
t :=

1

Γ(H + 1/2)

{∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dWs +

∫ t

0

(t− s)H−1/2 dWs,

}
. (4.13)

which is the Mandelbrot-Van Ness integral representation already introduced in Sec. 3.1.6 and de-
fined for all t ∈ R.

We will see later that these two processes are good candidates for the construction of Xτ
t , for

instance through Eq. (4.6), especially because of their singular behavior in τ = 0 (or H = 0). The
expressions (4.11) and (4.13) are based on moving averages of Gaussian increments weighted by
a kernel carrying the whole singularity. This corresponds actually to the way these processes are
implemented in the literature (Chevillard 2017). However, this vision of the FBM lacks readability,
and we will see that with such definition, the numerical simulation can be costly in memory (see
Chap. 5). This is the reason why we consider another approach of FBM.

4.1.4 Representation in the Laplace domain
We will now describe a generic representation of these two processes in a unified framework in
order to simplify the calculations, to enlighten the dependency in the parameter τ , and to introduce
new processes that are regularized FBM of Hurst parameter 0.

4.1.4.1 Laplace representation of W τ

Let us consider first the process W τ defined in Eq. (4.12) and for this purpose, remark that the

Laplace transform of
1√
x

is given by:

L
{

1√
x

}
(s) =

∫
R+

1√
x
e−sx dx =

√
πs−1/2, (4.14)

thus,

πW τ
t =

∫ 0

−∞

∫
R+

1√
x

(
e−(t−s+τ)x − e−(−s+τ)x

)
dx dWs

+

∫ t

0

∫
R+

1√
x
e−(t−s+τ)x dx dWs.

Using the stochastic Fubini theorem (Revuz and Yor 2013), we can write for all τ > 0:

W τ
t =

∫
R+

1

π
√
x
e−τx

{∫ t

−∞
e−x(t−s) dWs −

∫ 0

−∞
esx dWs

}
dx,

=

∫
R+

1

π
√
x
e−τx (Y x

t − Y x
0 ) dx, (4.15)
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Figure 4.1. 5 correlated Ornstein-Uhlenbeck processes, driven by the same Wiener increments:
Y x
t+∆t = Y x

t −xY x
t ∆t+

√
∆tξ, with xi ∼ N (0, 1). Plots are shifted up for a better visualization and the

color shades are darker with increasing characteristic times x−1 ∈ [τη = 0.02; 0.048; 0.11; 0.27;TL =
0.64]. Times are normalized by τη and TL in the x-axis to help visualize the characteristic times of the

upper trajectory (TL) and lower one (τη).

where (Y x
t )x∈R is a family of stationary Ornstein-Uhlenbeck processes constructed on the same

Brownian motion W and with the parameter x being their speed of return to the mean, such that
for all x ∈ R,

dY x
t = −xY x

t dt+ dWt. (4.16)

Let us insist on the fact that all the Ornstein-Uhlenbeck processes appearing in the integrand are
driven by the same Wiener increments dWt and are thus correlated to each other. Figure 4.1 shows
5 correlated processes Y x

t with time scales ranging from τη = 0.02 to TL = 0.64. The process
W τ is therefore a linear combination of standard Ornstein-Uhlenbeck processes, weighted by the

kernel kτ =
e−τx

π
√
x

.

Using this expression in Laplace domain, it is very simple to derive the increments of the FBM.
Starting from Eq. (4.15), we differentiate the process Y x

t and we obtain:

dW τ
t =

∫
R+

dY x
t kτ (x) dx,

=

∫
R+

(−xY x
t dt+ dWt)kτ (x) dx,

=

∫
R+

−xkτ (x)
∫ t

−∞
e−(t−s)x dWs dx dt+

∫ ∞

0

kτ (x) dx dWt.

Using the Laplace transform L
{
x1/2

}
(s) =

√
π/2s−3/2 for the first integral and L

{
x−1/2

}
(s) =
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√
πs−1/2 for the second integral, this yields:

dW τ
t =

∫ t

0

−1

2
√
π
(t− s+ τ)−3/2 dWs dt+ τ−1/2 dWt,

= βτ
t dt+

1√
πτ

dWt,

where βτ
t :=

−1

2
√
π

∫ t

−∞
(t − s + τ)−3/2 dWs, which gives us Eq. (4.11) as defined by Chevillard

(2017).

4.1.4.2 Laplace representation of WH

We can consider the Laplace transformation of x−H−1/2:

L
{

1

xH+1/2

}
(s) =

∫
R+

1

xH+1/2
e−sx dx = Γ(1/2−H)sH−1/2, (4.17)

for H ∈ [0, 1/2). Then, let us introduce the process WH defined in Eq. (4.13). Applying similar
transformation to WH than in Sec. 4.1.4.1, we obtain:

Γ(H + 1/2) Γ(1/2−H)WH
t =

∫ 0

−∞

∫
R+

1

xH+1/2

(
e−(t−s)x − esx

)
dx dWs

+

∫ t

0

∫
R+

1

xH+1/2
e−(t−s)x dx dWs, (4.18)

and using the stochastic Fubini theorem (which can only be applied for H > 0), it comes

Γ(H + 1/2) Γ(1/2−H)WH
t =

∫
R+

1

xH+1/2
(Y x

t − Y x
0 ) dx.

Now by the Euler reflection formula: Γ(1− z)Γ(z) =
π

sin(πz)
, we obtain:

WH
t =

∫
R+

sin(π(H + 1/2))

πxH+1/2
(Y x

t − Y x
0 ) dx,

=

∫
R+

cos(πH)

πxH+1/2
(Y x

t − Y x
0 ) dx.

(4.19)

The process WH
t is therefore a linear combination of correlated standard Ornstein-Uhlenbeck pro-

cesses, weighted by the kernel kH =
cos(πH)

πxH+1/2
.

Be careful that, despite the fact that the formula Eq. (4.14) is valid for τ = 0, the stochastic Fubini
theorem does not apply for τ = 0, thus it is not possible to write:

W 0
t

!
=

∫ +∞

0

1

π
√
x
(Y x

t − Y x
0 ) dx. (4.20)
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The scheme appearing from the representation of Eq. (4.15) and Eq. (4.19) is that fractional Brow-
nian motion of Hurst parameter 0 can be approximated by processes of the form:{∫

R+

κϵ(x) (Y
x
t − Y x

0 ) dx

}
t≥0

, (4.21)

for some kernels {κϵ(x), x ∈ R+}ϵ>0. The regularization parameter ϵ corresponds to τ in Sec. 4.1.4.1
and H in Sec. 4.1.4.2. We will develop this idea in the next sections and extend it to the associ-
ated Ornstein-Uhlenbeck processes. The challenge will then be to identify the limit processes
(whenever they exist) as ϵ→ 0.

4.2 A new framework for FBM
Based on the similarities of the representations in the Laplace domain of the two previous FBM, we
propose in Sec. 4.2.1 to generalize their writing following Eq. (4.21). We will therefore formally
introduce on the one hand the Ornstein-Uhlenbeck process Y x

t , and on the other hand the Laplace
transform. We show in Sec. 4.2.2 under which assumption the kernel κϵ gives a FBM, and thus we
obtain a generator set of FBM.

4.2.1 A generic representation encompassing existing FBM
Let us introduce the following transforms:

∀x > 0, Φt,x(Z) =

∫ t

−∞
e−x(t−r) dZr, (4.22)

where Z is a Gaussian process and the integral is in the sense of Wiener. These are stationary
Ornstein-Uhlenbeck processes with x as the speed of return to the mean.

We also introduce a generalized Laplace transform with kernel k : R∗
+ → R. For any stochastic

process (Φt,x)t≥0,x>0 which is almost surely k(x) dx integrable,

L(Φ, k)(t) =
∫ +∞

0

k(x) Φt,x dx. (4.23)

We then notice that the FBM introduced in Sec. 1 can be written in the general form:

Wt := L (Φt,· − Φ0,·, κ) =

∫
R+

(Φt,x − Φ0,x) κ(x) dx. (4.24)

Table 4.1 gives the FBM and their increments written with the previous formalism. We detail
below the processes involved in the Laplace transform.
Let us note that the process Y x

t = Φt,x(W ) is a stationary Ornstein-Uhlenbeck process with:

Φt,x(W ) = Y x
t


dY x

t = −xY x
t dt+ dWt

Y x
t =

∫ t

−∞
e−(t−s)x dWs

(4.25)
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Zx
t Kernel κ(x) FBM

Φt,x(W )− Φ0,x(W )
e−τx

π
√
x

L(Zx
t , k) = W τ

t = Eq. (4.12)

dΦt,x(W ) = −xΦt,x(W ) + dWt
e−τx

π
√
x

L(Zx
t , k) = dW τ

t = Eq. (4.11)

Φt,x(W )− Φ0,x(W )
cos(πH)

πxH+1/2
L(Zx

t , k) = WH
t = Eq. (4.13)

Table 4.1. Laplace representation of fractional Brownian motions

We can also explicit the process Zx
t = Y x

t − Y x
0 :

Φt,x(W )−Φ0,x(W ) = Zx
t :



dZx
t = −x(Zx

t + Y x
0 ) dt+ dWt

Zx
0 = 0

Zx
t = Y x

t − Y x
0

=

∫ t

−∞
e−(t−s)x dWs −

∫ 0

−∞
esx dWs

=

∫ t

0

e−(t−s)x dWs + (e−tx − 1)

∫ 0

−∞
esx dWs

=

∫ t

0

e−(t−s)x dWs + (e−tx − 1)Y x
0

(4.26)

4.2.2 Computation of covariance of W
Such formalism can simplify calculations of covariance. Consider a stationary process ψt,x with:

E [ψt,xψs,y] := K(t− s;x, y), (4.27)

then the process Wt defined with kernel κ such that:

Wt := L (ψt,· − ψ0,·, κ) =

∫
R+

(ψt,x − ψ0,x) κ(x) dx, (4.28)

satisfies:

E [WtWs] =

∫
R+

∫
R+

(K(t− s;x, y)−K(s; y, x)−K(t;x, y) +K(0;x, y))κ(x)κ(y) dy dx,

(4.29)

provided that the above quantity is integrable.

From now on we will consider only the stationary process ψt,x ≡ Y x
t = Φt,x(W ). We have, for

any t ≥ 0:

K(t;x, y) := E [Y x
0 Y

y
t ] =

∫ 0

−∞
exue−y(t−u) du =

e−ty

x+ y
. (4.30)
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Assumption 4.2.1 For a mapping κ : R → R, define the following quadratic form of |κ|:

Q(y) := |κ(y)|
∫ 1

0

θ−1
∣∣∣κ(y1− θ

θ

) ∣∣∣ dθ.
We assume that for all t > 0,∫

R+

(1 ∧ ty)Q(y) dy <∞.

Proposition 4.2.2 Assume κ satisfies Assumption 4.2.1. Then the following quantity:

Wt :=

∫
R+

(Y x
t − Y x

0 ) κ(x) dx, t ∈ R, (4.31)

is a well-defined process in L2(Ω). Moreover, it is increment stationary, Gaussian and its covari-
ance satisfies for any s < t,

E [WtWs] =

∫
R+

∫
R+

(
e−(t−s)y − e−sx − e−ty + 1

) κ(x)κ(y)
x+ y

dy dx. (4.32)

Proof 4.2.3 We start by proving that for any t, the mapping (x, y) 7→
(
2− e−tx − e−ty

) κ(x)κ(y)
x+ y

is integrable on R2
+. For t = 0 this is obvious, so fix t > 0. We have∫

R+

∫
R+

(
2− e−tx − e−ty

) |κ(x)κ(y)|
x+ y

dy dx = 2

∫
R+

(
1− e−ty

)
|κ(y)|

∫
R+

|κ(x)|
x+ y

dx dy.

By the change of variables x = y
1− θ

θ
, we get∫

R+

∫
R+

(
2− e−tx − e−ty

) |κ(x)κ(y)|
x+ y

dy dx = 2

∫
R+

(
1− e−ty

)
Q(y) dy.

Hence the inequality 1− e−x ≤ 1 ∧ x, x ≥ 0, yields∫
R+

∫
R+

(
2− e−tx − e−ty

) |κ(x)κ(y)|
x+ y

dy dx ≤ 2

∫
R+

(1 ∧ ty) Q(y) dy,

which is finite by assumption. Hence using that for any x ̸= −y,

E [(Y x
t − Y x

0 ) (Y
y
t − Y y

0 )] =
1

x+ y

(
2− e−tx − e−ty

)
,

we deduce from the integrability of (x, y) 7→
(
2− e−tx − e−ty

) κ(x)κ(y)
x+ y

and Fubini’s theorem

that Wt ∈ L2(Ω). One then easily deduces that the process W is increment stationary and Gaus-
sian, and that its covariance is given by Eq. (4.32). ■

Example 4.2.4 The two kernels presented in Sec. 4.1.4, namely kτ (x) =
e−τx

√
x

and kH(x) =

cos(πH)

xH+1/2
, satisfy assumption 4.2.1.

Proposition 4.2.2 thus allows not only to unify the expression of existing FBM but also to derive
new ones, under the assumption 4.2.1 for the kernel in the Laplace representation. Now that a
general framework for FBM has been introduced, let us study the stationary processes that follow
from it.
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4.3 A new framework for approximated GMC
The objective being to construct an approximately log-correlated stationary Xτ

t process, different
models in the literature have been developed in order to stationarize the FBM W . In this section, we
propose a non-exhaustive review of these processes and most importantly, we show how the general
framework encompasses those processes in Sec. 4.3.1. Then, a stationary Ornstein-Uhlenbeck
process is derived in Sec. 4.3.2 driven by the general fractional Gaussian noise dWt.

4.3.1 Generic representation of Xτ

A temporal moving average

In their work, Schmitt and Marsan (2001), Schmitt (2003) developed the following stochastic
process, inspired from the kernel of W τ

t and made stationary with the use of a temporal moving
window:

Xτ,S
t :=

∫ t

t+τ−T

(t− s+ τ)−1/2 dWs. (4.33)

They showed its multi-fractal properties (scaling laws of the random process, of the coarse-grained
process, logarithmic correlation of the logarithm of the process etc.).

Let us rewrite this process using the same procedure as in Sec. 4.1.4:

Xτ,S
t =

∫ t

t+τ−T

∫
R+

e−(t−s+τ)x

√
πx

dx dWs,

=

∫
R+

(∫ t

t+τη−T

e−(t−s)x dWs

)
e−τx

√
πx

dx,

=

∫
R+

(
Φt,x(W )− e(T−τ)xΦt+τ−T,x(W )

)
kτ (x) dx. (4.34)

To ensure finiteness of the variance, the Ornstein-Uhlenbeck processes must have a finite memory.
In this case, the integral is truncated and the regularization consists in replacing the Ornstein-
Uhlenbeck Y x

t − Y x
0 of Eq. (4.15), by Y x

t − e(T−τ)xY x
t+τ−T .

A stochastic differential equation

Pereira, Moriconi, and Chevillard (2018) chose to defineXτ,P
t as the stationary solution of Eq. (4.6),

more precisely:

dXτ,P
t = − 1

T
Xτ,P

t dt+
√
π dW τ

t . (4.35)

Replacing the expression of increments of W τ
t = L(Φt,·(W )−Φ0,·(W ), kτ ) derived in Eq. (4.11),

we obtain a well-defined SDE with a stochastic drift:

dXτ,P
t = − 1

T
Xτ,P

t dt+ βτ
t dt+

τ−1/2

√
π

dWt, (4.36)
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and its solution is fully described by the formula:

Xτ,P
t = e−

t−t0
T Xt0 +

∫ t

t0

e−
t−s
T dW τ

s , (4.37)

= e−
t−t0
T Xt0 +

∫ t

t0

e−
t−s
T βτ

s ds+
τ−1/2

√
π

∫ t

t0

e−
t−s
T dWs. (4.38)

The stationary solution is therefore straightforward and corresponds to the one given by Pereira,
Moriconi, and Chevillard (2018):

Xτ,P
t =

∫ t

−∞
e−

t−s
T βτ

s ds+ τ−1/2

∫ t

−∞
e−

t−s
T dWs. (4.39)

Now, to obtain the expression of Xτ,P
t with the Laplace formalism, we start from Eq. (4.37) and

replace the increment dW τ
t by its Laplace formulation:

Xτ,P
t = e−

t−t0
T Xτ

t0
+

∫ t

t0

e−
t−s
T dW τ

s ,

= e−
t−t0
T Xτ

t0
+

∫ +∞

0

(∫ t

t0

e−
t−s
T dΦs,x(W )

)
kτ (x) dx.

Since the integrand is not random, we can write using an integration-by-parts:∫ t

t0

e−
t−s
T dΦs,x(W ) =

[
e−

t−s
T Φs,x(W )

]t
t0
− 1

T

∫ t

t0

e−
t−s
T Φs,x(W ) ds,

= Φt,x(W )− e−
t−t0
T Φt0,x(W )− 1

T

∫ t

t0

e−
t−s
T Φs,x(W ) ds.

The stationary version of these processes, which we only consider from now on, reads:

Xτ,P
t =

∫
R+

(
Φt,x(W )− 1

T

∫ t

−∞
e−

t−s
T Φs,x(W ) ds

)
kτ (x) dx. (4.40)

Observe that the process {Φt,x(W )− 1

T

∫ t

−∞
e−

t−s
T Φs,x(W ) ds}t≥0 is a stationary Ornstein-Uhlenbeck

process driven by Φ·,x(W ), hence with our notations, we get:

Xτ,P
t =

∫
R+

Φt, 1
T
(Φ·,x(W )) kτ (x) dx. (4.41)

An Ornstein-Uhlenbeck process

Note that the model of Pope and Chen (1990), that consists of a single Ornstein-Uhlenbeck process
for Xτ , can also be trivially written under this formalism using a dirac as the kernel function in the
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Laplace transform:

dXOU
t = − 1

Tχ
XOU

t dt+

√
2σ2

χ

Tχ
dWt,

XOU
t =

∫ t

−∞

√
2σ2

χ

Tχ
e−(t−s)/Tχ dWs,

=

∫
R+

ωχδ(t− T−1
χ )Φt,x(W ) dx. (4.42)

An original model

Finally, we mention another model developed throughout this thesis, that we will further detail
in Chap. 5. Its particularity lies in the stationary condition directly enforced via the shape of the
kernel.

Xτ,∞
t =

∫
R+

Φt,x(W ) kτ,T (x) dx, (4.43)

where kτ,T applies roughly a cut-off below τ and above T , and behaves as
1√
x

as τ → 0. For

example, kτ,T = kτ − kT .

Remark 4.3.1 Xτ,∞
t can be written as a SDE with stochastic drift:

dXτ,∞
t =

∫
R+

dY x
t (kτ − kT ) dx,

=
(
βτ
t − βT

t

)
dt+

(
1√
πτ

− 1√
πT

)
dWt,

or as a trivial SDE with fractional Gaussian noise:

dXτ,∞
t = dW τ

t − dW T
t . (4.44)

Using this formalism, we can retrieve the processes which are proposed in the literature and sum-
marized in Table 4.2. We notice that either the process Zx

t or the kernel k must involve not only
the regularization parameter τ , but also a characteristic time T or Tχ which allows to stationarize
the process Xτ

t . In the following, we propose to study more particularly the solution Xτ
t given by

the stationary solution of an Ornstein-Uhlenbeck driven by any FBM W in the form of Eq. (4.24).
In that case, it will be noted X .

4.3.2 General stationary Ornstein-Uhlenbeck processes
We want to construct the stationary solution X of Eq. (4.6) and characterize its covariance. The
uniqueness for this equation is straightforward, so we focus on the construction and integral repre-
sentation of a stationary solution.

Remark that the process Xτ,P
t defined in Eq. 4.39 corresponds to the specific case κ(x) =

e−τx

√
πx

.
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Zx
t Kernel k(x) Xτ

t = L(Zx
t , k)

Φt,x(W )− e(T−τ)xΦt+τ−T,x(W )

=

∫ t

t+τ−T

e−(t−s)x dWs

e−τx

√
πx

(Schmitt and Marsan 2001), Eq. (4.34)

Xτ,S
t =

∫ t

t+τ−T

(t− s+ τ)−1/2 dWs

Φt,1/T (Y
x
· )

=

∫ t

−∞
e−(t−s)/T dY x

s

e−τx

√
πx

(Pereira et al. 2018), Eq. (4.41)

Xτ,P
t =

∫ t

−∞
e−(t−s)/T dW τ

s

Φt,x(W ) ωχδ(x− T−1)
(Pope and Chen 1990), Eq. (4.42)

XOU
t = ωχ

∫ t

0

e−(t−s)/T dWs

Φt,x(W )
e−τx − e−Tx

√
πx

(Letournel et al. 2021), Eq. (4.43)

Xτ,∞
t =

∫ t

−∞
(t− s+ τ)−1/2

−(t− s+ T )−1/2 dWs

Table 4.2. Laplace representation of stochastic processes Xτ
t .

Theorem 4.3.2 Under Assumption 4.2.1, there exists a unique stationary solution X to Eq. (4.6).
It is a Gaussian process with covariance:

C(t) :=
∫
R+

∫
R+

(
e−

t
T − Ty e−yt

) Ty

(1 + Ty)(1− Ty)

κ(x)κ(y)

x+ y
dx dy. (4.45)

The proof of this theorem will be organised as follows:
• In Subsection 4.3.2.1, we introduce a candidate stationary process X̃ which is a linear com-

bination of Ornstein-Uhlenbeck processes. We study the candidate covariance C associated
to X̃ and prove that it is well defined under Assumption 4.2.1 on κ;

• In Subsection 4.3.2.2, we establish that X̃ is solution to the SDE (4.6), which concludes the
proof.

4.3.2.1 Covariance of the general stationary Ornstein-Uhlenbeck processes

We do not work immediately on the process X . Instead we introduce:

X̃t :=

∫
R+

(
Y x
t − 1

T

∫ t

−∞
e−

t−s
T Y x

s ds

)
κ(x) dx, (4.46)

and prove in the next proposition that it is in L2(Ω).
Proposition 4.3.3 Assume κ satisfies Assumption 4.2.1. Then (X̃t)t∈R is a well defined process
such that for any t ∈ R, X̃t ∈ L2(Ω). Moreover it is a stationary Gaussian process with covariance
(4.45).
Proof 4.3.4 We prove first that for any t ∈ R+, X̃tX̃0 ∈ L1(Ω). For any t ∈ R+ and x ∈ R+,
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Y x
t − 1

T

∫ t

−∞
e−

t−s
T Y x

s ds ∈ L2(Ω). Hence in view of Eq. (4.30), we have:

E
[(
Y x
t − 1

T

∫ t

−∞
e−

t−s
T Y x

s ds

)(
Y y
0 − 1

T

∫ 0

−∞
e

s
T Y y

s ds

)]
=

1

x+ y

(
e−tx − 1

T

∫ 0

−∞
e

s
T
−(t−s)x ds− 1

T

∫ 0

−∞
e−

t−s
T

+sy ds− 1

T

∫ t

0

e−
t−s
T

−sx ds

+
e−

t
T

T 2

{∫ t

−∞

∫ s2∧0

−∞
e

s1+s2
T

−x(s2−s1) ds1 ds2 +

∫ 0

−∞

∫ 0

s2

e
s1+s2

T
−y(s1−s2) ds1 ds2

})
=

1

x+ y

(
e−tx − e−tx

1 + Tx
− e−

t
T

1 + Ty
+

e−
t
T − e−tx

1− Tx

+

{
e−

t
T

2(1 + Tx)
+

e−
t
T

2(1 + Ty)
+

e−tx − e−
t
T

(1 + Tx)(1− Tx)

})
=

1

x+ y

(
e−tx Tx

1 + Tx
+ (e−

t
T − e−tx)

Tx

(1− Tx)(1 + Tx)
+ e−

t
T

(
1

2(1 + Tx)
− 1

2(1 + Ty)

))
.

We will now prove that each term in the above sum can be integrated against κ(x)κ(y) dx dy. For
the first term, we have:∫

R+

∫
R+

e−tx Tx

1 + Tx

|κ(x)κ(y)|
x+ y

dx dy =

∫
R+

e−tx Tx

1 + Tx
Q(x) dx,

performing the same change of variables as in the proof of Proposition 4.2.2. Hence bounding the

exponential by 1 and
Tx

1 + Tx
by 1 ∧ (Tx), we get:∫

R+

∫
R+

e−tx Tx

1 + Tx

|κ(x)κ(y)|
x+ y

dx dy ≤
∫
R+

(1 ∧ Tx)Q(x) dx,

which is finite, by Assumption 4.2.1. For the second term, we use the fact that 1−e−x ≤ x, ∀x ∈ R
to deduce that

∣∣∣∣e−tx − e−t/T

1− Tx

∣∣∣∣ ≤


4 if x /∈ (
1

2T
,
3

2T
),

e−
t
T
t

T
if x ∈ (

1

2T
,
3

2T
) \ { 1

T
}.

(4.47)

Hence by the same argument as the first term, the second term is also integrable. For the last term,

observe that if y > x, then
|y − x|T

(1 + Tx)(1 + Ty)
≤ 1 ∧ Ty. Thus we have:

∫
R+

∫
R+

e−
t
T

|y − x|T
2(1 + Tx)(1 + Ty)

|κ(x)κ(y)|
x+ y

dx dy

= e−
t
T

∫
R+

∫
R+

1y>x
|y − x|T

(1 + Tx)(1 + Ty)

|κ(x)κ(y)|
x+ y

dx dy,

≤ e−
t
T

∫
R+

(1 ∧ Ty)Q(y) dy,
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which is again finite by assumption. Hence we have proven that X̃tX̃0 ∈ L1(Ω). By Fubini’s
theorem, we also deduce that

E
[
X̃tX̃0

]
=

∫
R+

∫
R+

(
e−tx Tx

1 + Tx
+ (e−tx − e−

t
T )

Tx

(1− Tx)(1 + Tx)

+e−
t
T

(
1

2(1 + Tx)
− 1

2(1 + Ty)

))
κ(x)κ(y)

x+ y
dx dy.

Now by symmetry, the last part of the equation with factor e−
t
T vanishes and the first and second

part can be simplified to obtain that E
[
X̃tX̃0

]
= C(t). Finally, the properties of the family of

Ornstein-Uhlenbeck processes (Y x)x∈R+ and the previous integrability properties ensure that X̃ is
Gaussian and stationary. ■

This concludes the first step of the proof the candidate process X̃ is well-defined, stationary, Gaus-
sian with covariance given by Eq. (4.45).

4.3.2.2 The general stationary OU process as a solution to a SDE

Our goal here is to prove that X̃ solves Eq. (4.6):
Proposition 4.3.5 Assume κ satisfies assumption 4.2.1 and X̃ is given by Eq. (4.46):

X̃t :=

∫
R+

(
Y x
t − 1

T

∫ t

−∞
e−

t−s
T Y x

s ds

)
κ(x) dx.

Then X̃ satisfies Eq. (4.6):

dX̃t = −X̃t

T
dt+ dWt.

Proof 4.3.6 Consider the process Zx given by

Zx
t = Y x

t − 1

T

∫ t

−∞
e−

t−s
T Y x

s ds.

This process is the unique stationary solution to the equation:

dZx
t = − 1

T
Zx

t dt+ dY x
t .

Hence we can also write:

Zx
t = Zx

0 − 1

T

∫ t

0

Zx
s ds+ Y x

t − Y x
0 ,

= Y x
t − 1

T

∫ 0

−∞
e

s
T Y x

s ds− 1

T

∫ t

0

Zx
s ds.

Hence from the previous equation and Eq. (4.46), we get the following decomposition of X̃ :

X̃t =

∫
R+

(
{Y x

t − Y x
0 }+ {Y x

0 − 1

T

∫ 0

−∞
e

s
T Y x

s ds} − 1

T

∫ t

0

Zx
s ds

)
κ(x) dx,

= Wt + X̃0 −
1

T

∫
R+

∫ t

0

(
Y x
s − 1

T

∫ s

−∞
e−

s−r
T Y x

r dr

)
ds κ(x) dx.
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Now by Fubini’s theorem we have

X̃t = X̃0 +Wt −
1

T

∫ t

0

X̃s ds.

Thus X̃ satisfies Eq. (4.6), and this concludes the proof of Theorem 4.3.2. ■

We have thus constructed a family of FBM processes, and their associated Ornstein-Uhlenbeck
processes. We must now ensure that their limit covariance for τ → 0 satisfies Eq. (4.2) and that
they are thus eligible to define a GMC.

4.4 Convergence to the Gaussian multiplicative chaos

4.4.1 The limit covariance
To ensure that the limit covariance C0 for τ → 0 in Theorem (4.3.2) is well-defined and has a
logarithmic behavior, we formulate an additional assumption on the limit kernel κ0:
Assumption 4.4.1 For a nonnegative mapping κ0 : R → R+, define the following quadratic form
of κ0:

Q0(y) := κ0(y)

∫ 1

0

θ−1 κ0

(
y
1− θ

θ

)
dθ.

We assume that

(a)
∫
R+

(
y ∧ 1

y

)
Q0(y) dy <∞;

(b)
∫ +∞

1

Q0(y) dy = +∞ and there exists α0 > 0 such that, for

wA := T exp

(
− 1

α0

∫ A

1

Q0(y) dy

)
, (4.48)

the following quantities are bounded in A ≥ 1:∫ A

1

(
1− e−ywA

)
Q0(y) dy and

∫ ∞

A

e−ywAQ0(y) dy.

Proposition 4.4.2 Assume κ0 satisfies Assumption 4.4.1. Then the covariance C0 defined by Eq. (4.45)
with kernel κ0 is well-defined for any t ̸= 0 and we have:

C0(t) = α0 ln+

(
T

|t|

)
+R0(t), (4.49)

where R0 is a locally bounded function given by:

R0(t) =


∫
R+

(
Ty
(
e−

|t|
T − Tye−y|t|)

(1 + Ty)(1− Ty)
− 1[1,A|t|](y)

)
Q0(y) dy, if |t| ≤ T

C0(t), if |t| > T

withAt := inf{A ≥ 1 :

∫ A

1

Q0(y) dy = α0 ln(T/t)} defined for t ∈ (0, T ] (see Eq. (4.51) below).
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Proof 4.4.3 First step. In the first part of this proof, we check that under Assumption 4.4.1(a),
C0(t) is well defined for t ̸= 0.
Without loss of generality, assume that t > 0. In view of Eq. (4.45), we study the integrability of
the following mapping on R2

+:

(x, y) 7→
(
e−

t
T − Ty e−yt

) Ty

(1 + Ty)(1− Ty)

κ0(x)κ0(y)

x+ y
.

By the change of variables x = y
1− θ

θ
, this is equivalent to the integrability of:

Φ : y 7→
∣∣∣e− t

T − Ty e−yt
∣∣∣ Ty

(1 + Ty)|1− Ty|
Q0(y),

for y ∈ R+. For A > 1 ∨ 2

T
, we decompose the domain of integration into the following subdo-

mains: D1 = [0, 1], D2 = (1, A] and D3 = (A,+∞).

Since
e−

t
T − Ty e−yt

1− Ty
= e−

t
T + Ty

e−
t
T − e−ty

1− Ty
, we have similarly to Eq. (4.47) that:

∣∣∣∣∣e−
t
T − Ty e−yt

1− Ty

∣∣∣∣∣ ≤


1 + Ty

|1− Ty|
≤ C if y /∈ ( 1

2T
, 3
2T
)

e−
t
T (1 + ty) ≤ e−

t
T

(
1 +

3t

2T

)
if y ∈ ( 1

2T
, 3
2T
) \ { 1

T
}

. (4.50)

Hence there exists a constant C > 0 (that may depend on t, A and T ) such that for any y ∈ [0, A],
we have:

|Φ(y)| ≤ C yQ0(y).

It follows that:∫
D1∪D2

|Φ(y)| dy ≤ C

∫
[0,A]

yQ0(y) dy <∞.

Finally on D3, since A >
2

T
, we have

Ty

|Ty − 1|
≤ 2 for any y > A. Since t ̸= 0, we also have that

there exists a constant C > 0 (that may depend on t, A and T ) such that for y ∈ (A,+∞),∣∣∣e− t
T − Ty e−yt

∣∣∣ ≤ C.

Using the two previous inequalities, we get:∫
D3

|Φ(y)| dy ≤ C

∫ +∞

A

1

y
Q0(y) dy <∞.

Second step. We will now prove that for a suitable choice of parameter A depending on t, the
integral on D2 diverges logarithmically, while the integrals on D1 and D3 remain bounded.
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By Assumption 4.4.1(b), we have that for any t ∈ (0, T ], there exists At > 1 such that∫ At

1

Q0(y) dy = α0 ln

(
T

t

)
. (4.51)

Then ∫ At

1

∫
R+

(
e−

t
T − Ty e−yt

) Ty

(1 + Ty)(1− Ty)

κ0(x)κ0(y)

x+ y
dx dy,

=

∫ At

1

Q0(y) dy +

∫ At

1

((
e−

t
T − Ty e−yt

) Ty

(1 + Ty)(1− Ty)
− 1

)
Q0(y) dy,

=: α0 ln

(
T

t

)
+R2(t).

For R2, we have

R2(t) =

∫ At

1

(
(e−

t
T − e−yt)Ty

1− T 2y2
+
Tye−yt

1 + Ty
− 1

)
Q0(y) dy,

=

∫ At

1

(e−
t
T − e−yt)Ty

1− T 2y2
Q0(y) dy +

∫ At

1

Ty(e−yt − 1)− 1

1 + Ty
Q0(y) dy. (4.52)

For the first integral in Eq. (4.52), we will use Eq. (4.47) when y ∈ (
1

2T
,
3

2T
), and the bound

|(e
− t

T − e−yt)Ty

Ty − 1
| ≤ 3 when y ≥ 3

2T
. We get:

∣∣∣∣ ∫ At

1

(e−
t
T − e−yt)Ty

1− T 2y2
Q0(y) dy

∣∣∣∣ ≤ C

∫ At

1

1

1 + Ty
Q0(y) dy

≤ C

∫ ∞

1

1

y
Q0(y) dy,

which is finite by assumption. For the second integral in Eq. (4.52), we have by inverting Eq. (4.51)
that for wA defined in Eq. (4.48), wAt = t. Hence it comes:∣∣∣∣ ∫ At

1

Ty(e−yt − 1)− 1

1 + Ty
Q0(y) dy

∣∣∣∣ ≤ C

∫ At

1

(1− e−yt)Q0(y) dy + C

∫ At

1

1

y
Q0(y) dy,

≤ C

∫ At

1

(1− e−ywAt )Q0(y) dy + C

∫ ∞

1

1

y
Q0(y) dy.

By Assumption 4.4.1(a) and (b), both terms are finite and bounded uniformly in t ∈ (0, T ]. Ex-
tending R2 to R2(0) = 0 and by symmetry on [−T, 0], we have proven that R2 is a bounded
function on [−T, T ]. On R \ [−T, T ], we extend R2 by:

R2(t) =

∫ At

1

(
e−

|t|
T − Ty e−y|t|

) Ty

(1 + Ty)(1− Ty)
Q0(y) dy, t ∈ R \ [−T, T ].

Hence R2 is a bounded function on R.
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It remains to prove the boundedness of the integrals on D1 and D3. Define now for any t ∈ R:

R1(t) :=

∫ 1

0

(
e−

|t|
T − Ty e−y|t|

) Ty

(1 + Ty)(1− Ty)
Q0(y) dy

R3(t) :=

∫ ∞

At

(
e−

|t|
T − Ty e−y|t|

) Ty

(1 + Ty)(1− Ty)
Q0(y) dy.

Using again Eq. (4.50), we get that R1 is bounded on R. Without loss of generality, let t > 0. For

R3, we bound (for At large enough)
Ty

(1 + Ty)(1− Ty)
by

C

y
to get:

|R3(t)| ≤ C

∫ ∞

At

∣∣∣e− t
T − Ty e−yt

∣∣∣ 1
y
Q0(y) dy,

≤ C

∫ ∞

At

1

y
Q0(y) dy + C

∫ ∞

At

e−ytQ0(y) dy,

≤ C

∫ ∞

1

1

y
Q0(y) dy + C

∫ ∞

At

e−ywAt Q0(y) dy,

using again the definition of wA in Eq. (4.48). By Assumption 4.4.1, the above terms are finite and
bounded uniformly in t ∈ (0, T ], and by symmetry on [−T, T ] \ {0} as well. The boundedness on
R \ [−T, T ] can be treated more simply with Assumption 4.4.1(a) and we omit the details.
Finally the function R0 is given by te following sum:

R0 := R1 +R2 +R3.

■

4.4.2 Convergence to the log-correlated process
We consider the positive definite kernel K introduced in Eq. (4.2):

∀t, s ∈ T , K(t, s) = ln+
1

|t− s|
+ g(t, s), (4.53)

where g is a bounded function. Let X be a random centered Gaussian distribution with covariance
given by Eq. (4.2). According to the definition of Rhodes and Vargas (2014), a smooth approxi-
mation of K is defined by:
Definition 4.4.4 (Smooth Gaussian approximation) We say that a sequence of centered Gaus-
sian fields (Xϵ)ϵ>0 is a smooth Gaussian approximation of K if:

• ∀t, s ∈ T , E [Xϵ
tX

ϵ
s] converges to K(t, s) as ϵ goes to 0 ;

• ∀τ > 0, there exists some constant C > 0 and α > 0 such that ∀ϵ > 0:

|t− s| ≤ τ,⇒ E
[
(Xϵ

t −Xϵ
s)

2] ≤ X|t− s|αϵ−α (4.54)

Proposition 4.4.5 Let (κϵ)ϵ>0 be a family of kernels such that κϵ satisfies Assumption 4.2.1 for all
ϵ > 0 and κ0 a kernel which satisfies Assumption 4.4.1. Assume further that κϵ converges pointwise
to κ0. Then (X ϵ)ϵ>0 is a smooth Gaussian approximation. Moreover, it converges weakly in law to
a log-correlated process X 0, in the sense that

∀φ, ψ ∈ S(R), E [⟨X ϵ, φ⟩ ⟨X ϵ, ψ⟩] −→ E
[
⟨X 0, φ⟩ ⟨X 0, ψ⟩

]
=

∫
R

∫
R
C0(t−s)φ(s)ψ(t) ds dt
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Proof of this proposition is still an ongoing work, that will be published in Goudenège, Letournel,
and Richard (2022). Therefore, we have derived assumptions on the kernel κϵ to ensure that any
associated family of processes X ϵ, defined from a SDE driven by Wϵ converges toward the singular
process in the GMC.

Conclusion
In this chapter, we have developed a general mathematical framework for the construction of an
intermittent stochastic process, based on a Gaussian multiplicative chaos approach. We have pro-
posed an original approach to generate log-correlated processes which converge towards the GMC.
These processes are based on regularized fractional Brownian motion W .

In particular, we have proposed an original formalism to generate families of FBM, based on a
Laplace transform and consisting of an infinite sum of standard Ornstein-Uhlenbeck processes
weighted by a regularized kernel κϵ. This formalism encompasses existing processes of literature,
and opens the way to new ones along with new approaches for numerical implementations of such
processes that will be detailed in Chap. 5.

In particular, we have focused in this chapter on X , a regularized stationary process following
a SDE and we have shown its existence, uniqueness and convergence towards the GMC. The
stochastic process defined in the next chapter uses a different regularization, but leads to the same
unique GMC.
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Chapter 5

An original and versatile numerical
approach for intermittent stochastic
processes

In Chap. 4, we have established a mathematical framework to build a sequence of regularized
processes converging to the universal Gaussian multiplicative chaos. Inspired by the approxima-
tion of fractional Brownian motion by an infinite weighted sum of correlated Ornstein-Uhlenbeck
processes, we develop a new stochastic model: Xt =

∫∞
0
Y x
t k(x) dx, where Y x

t is an Ornstein-
Uhlenbeck process with speed of mean reversion x and k is a kernel. A regularization of k(x)
is proposed to ensure stationarity, finite variance and logarithmic autocorrelation. To simulate
the process, we eventually design a new approach relying on a limited number of modes for ap-
proximating the integral through a quadrature XN

t =
∑

i ωiY
xi
t , using a conventional quadrature

method. This method can retrieve the expected behavior with only one mode per decade, making
this strategy versatile and computationally attractive for simulating such processes, while remain-
ing within the proposed framework for a proper description of intermittency.

In Sec. 5.1, the steps to build a new processXt, inspired by the formalism developed in the previous
chapter, are detailed. The covariance computations allow to verify the successful convergence
of this regularized process to the GMC. Section 5.2 gives an original and efficient method to
implement the process in a discrete way. Other numerical aspects are discussed and a comparison
with existing models is made.

5.1 Infinite sum of correlated Ornstein-Uhlenbeck processes
We have shown that the FBM can be expressed as an infinite sum of correlated Ornstein-Uhlenbeck
processes, weighted by a kernel function k (see Sec. 4.2.1). This formulation has the advantage
that no convolution product appears, and therefore the simulation of such a process does not re-
quire long-term memory. Inspired from this formalism, we propose a new process for Xt.

The regularization scales τ and T that we introduced in Chap. 4 for the sake of existence and
convergence of processes can be identified with the characteristic scales of turbulence introduced
in Chap. 1, according to the following argument:

• The Kolmogorov scale τη, below which dissipation prevails over transport phenomena, cor-
responds to τ , the regularization scale of the FBM. Turbulence theories predict that fluctu-

127



128 CHAPTER 5 - AN ORIGINAL AND VERSATILE NUMERICAL APPROACH FOR
INTERMITTENT STOCHASTIC PROCESSES

ations of variables on scales smaller than τη are negligible, and the fields or processes are
regular under this scale.

• The Lagrangian integral scale TL, the correlation scale of the velocities of the fluid particles,
beyond which the particles “lose” the memory of their history, corresponds to T , which was
introduced for the stationarity of the processes Xt and therefore φt.

It becomes clear that the GMC, corresponding to the limit process φ0
t provides a model of turbu-

lence at infinite Reynolds number. For a finite inertial zone, Re1/2L ∼ TL/τη < ∞, the dissipation
can rather be modeled by the approximated GMC φ

τη
t . Therefore, in the following, we omit the τ

regularization superscript by considering that all introduced Xt are in fact Xτη
t , regularized to the

τη time scale.

5.1.1 A new stochastic process with appropriate regularizations
As shown in Sec. 3.4.4.3, FBM have been successfully used to reproduce multi-fractal properties
and we therefore use Laplace representation derived in Chap. 4 to suggest the following stochastic
model for Xt:

Xt =

∫ ∞

0

Y x
t k(x) dx, (5.1)

where Y x
t is an Ornstein-Uhlenbeck process of parameter x and k(x) has to be determined. We now

give the constraints on such model to ensure the stationarity, the finite variance and the logarithmic
autocorrelation of Xt.

1. Stationarity
A sufficient condition of stationarity for Xt is to impose stationarity for all the Ornstein-
Uhlenbeck processes Y x

t :

Y x
t =

∫ t

−∞
e−x(t−s) dWs. (5.2)

2. Logarithmic autocorrelation
The autocorrelation of this process is:

E [XtXt+τ ] =

∫ ∞

0

∫ ∞

0

E [Y x
t Y

y
t+τ ] k(x)k(y) dx dy. (5.3)

Let us first derive the covariance functions of two correlated Ornstein-Uhlenbeck processes.

We recall that Y x
t =

∫ t

−∞
e−(t−x)x dWs. For any x, y ∈ [0,+∞[ and t > 0 and τ > 0, we

have:

E [Y x
t Y

y
t+τ ] = E

[∫ t

−∞
e−x(t−s) dWs

∫ t+τ

−∞
e−y(t+τ−s) dWs

]
,

= e−(x+y)te−yτ

∫ t

−∞
e(x+y)s ds,

=
e−yτ

x+ y
.

(5.4)
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This gives us:

E [XtXt+τ ] =

∫ ∞

0

∫ ∞

0

e−τy

x+ y
k(x)k(y) dx dy. (5.5)

We have seen that a FBM of Hurst H = 0 has a logarithmic autocorrelation, at least approx-
imately i.e., apart from the singularity. Based on the inverse Laplace transformation of the
kernelK(t) ∼ t−1/2, we propose k(x) ∼ x−1/2. However, this kernel possesses a singularity
at 0 and we need to introduce regularizations to ensure a finite variance.

3. Finite variance
Xt is zero-averaged and its autocorrelation function only depends on the delay τ because of
stationarity. The variance of the process can be expressed as:∫ ∞

0

∫ ∞

0

k(x)k(y)

x+ y
dx dy <∞. (5.6)

To satisfy and combine these three requirements, we propose to regularize the kernel k in the
following way. Here we give physical and qualitative arguments to introduce the regularizations,
while the next section is devoted to the mathematical demonstration:

• One can see on the autocorrelation of Eq. (5.5) that any contribution of the function k(y)
for y ≫ 1/τ will vanish because of the term e−τy. Therefore, we introduce τη and we can
assume k(x) ∼ x−1/2 only for x ≪ τ−1

η , which is now compliant with the integrability on
R+. From a physical point of view, this regularization can be thought as a viscous cut-off.

• A second regularization step is needed to ensure a finite variance of the process Xt, which
corresponds to the need to introduce a large scale. More precisely, the second require-
ment (iii) in Sec. 3.4.2 specifies E

[
X2

t

]
∼ ln(TL/τη). It implies the integrability of (x, y) →

k(x)k(y)

x+ y
on (R+)2 and the logarithmic behavior in the inertial range is ensured by the re-

quirement of k(x) ∼ x−1/2 for T−1
L ≪ x≪ τ−1

η .

In light of these regularizations, we propose a new model for the processX∞
t . Note that we use the

superscript “∞” because it highlights the use of an infinite sum of Ornstein-Uhlenbeck processes.

X∞
t =

∫ ∞

0

Y x
t

1√
πx

(
gTL

(x)− gτη(x)
)
dx, (5.7)

where g is such that the integral defined by the autocorrelation in Eq. (5.6) converges. A sufficient
condition would be:

gα(x) →

 0 if x≪ 1/α

1 if x≫ 1/α.
(5.8)

Examples of possible regularizations of the kernel k(x) ∼ x−1/2 are shown in Fig. 5.1: Cutting
functions are gα(x) = 1− e−αx or gα(x) = H(x− 1/α) where H is the heaviside function.

5.1.2 Autocorrelation function of X∞
t

Proposition 5.1.1 X∞
t , defined by

X∞
t =

∫ ∞

0

Y x
t

1√
πx

(
gTL

(x)− gτη(x)
)
dx, (5.9)
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Figure 5.1. Possible regularizations of the kernel k(x) in a log-log scale.

is a smooth Gaussian approximation (see Def. 4.4.4), with E
[
X∞

t X
∞
t+τ

]
∼ ln

TL
τ

.

Proof 5.1.2 We calculate the autocorrelation of the process, that we denote A = E
[
X∞

t X
∞
t+τ

]
.

We can consider, without loss of generality: e−τy = 1− gτ (y).

A =
1

π

∫ ∞

0

∫ ∞

0

e−τy

(x+ y)
√
xy

(
gTL

(x)− gτη(x)
)(
gTL

(y)− gτη(y)
)
dx dy

=
1

π

∫ ∞

0

∫ ∞

0

1

(x+ y)
√
xy

(
gTL

(x)− gτη(x)
)(
gTL

(y)− gτ (y)
)
dx dy

=
4

π

∫ π/2

0

∫ ∞

r=0

(
gTL

(r2)− gτ (r
2)
)(
gTL/ tan2 θ(r

2)− gτη/ tan2 θ(r
2)
)

r
dr dθ

(5.10)

by using the transformation (x, y) = (r2 cos2 θ, r2 sin2 θ), the Jacobian of which is 4r3 cos(θ) sin(θ).
We introduce the function

fτη ,TL
: (r, θ) 7→

(
gTL

(r)− gτ (r)
)(
gTL/ tan2 θ(r)− gτη/ tan2 θ(r)

)
. (5.11)

Because gτ is a cut-off function for values higher than τ−1, the function gτ2 − gτ1 can be seen
as a band-pass function for values between τ−1

2 and τ−1
1 . The product of the band-pass functions

fτη ,TL
(r2, θ) is also a band-pass function, whose passing-band depends on the values of θ.

The interval of integration of θ can be divided in 5 parts:

[0; π/2] =

[
0; tan−1

(√
τη/TL

)]
∪
[
tan−1

(√
τη/TL

)
; tan−1

(√
τη/τ

)]
∪
[
tan−1

(√
τη/τ

)
; π/4

]
∪
[
π/4; tan−1

(√
TL/τ

)]
∪
[
tan−1

(√
TL/τ

)
; π/2

]
=: I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5.
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(a) θ ∈ I2 (b) θ ∈ I3 (c) θ ∈ I4

Figure 5.2. The yellow line represents the functions f(r2, θ) for three examples of θ, each of them
being included in the intervals I2 (a) ; I3 (b) ; I4 (c). The dotted blue line is

(
gTL

(r2)− gτ (r
2)
)
, the

dashed red line is
(
gTL/ tan2 θ(r

2)− gτη/ tan2 θ(r
2)
)

.

The integral A can accordingly be split in 5 parts:

π

4
A =

∫
I1

∫ ∞

r=0

f(r2)

r
dr dθ +

∫
I2

∫ ∞

r=0

f(r2)

r
dr dθ

+

∫
I3

∫ ∞

r=0

f(r2)

r
dr dθ +

∫
I4

∫ ∞

r=0

f(r2)

r
dr dθ

+

∫
I5

∫ ∞

r=0

f(r2)

r
dr dθ.

(5.12)

The first and last integral are equal to zero because the band-pass functions do not have any super-
position when θ ∈ I1 or θ ∈ I5.

To help the reader visualize the products of the regularized g-functions, we show in Fig. 5.2 the
schemes for the resulting product of the g-functions, i.e. f for different values of θ. We can see
from Fig. 5.2 that the function fτη ,TL

(r2, θ) for θ in I2, I3 and I4 can be simplified to:

fτη ,TL
(r2, θ)II2(θ) = gTL

(r2)− gτη/ tan2 θ(r
2),

fτη ,TL
(r2, θ)II3(θ) = gTL

(r2)− gτ (r
2),

fτη ,TL
(r2, θ)II4(θ) = gTL/ tan2 θ(r

2)− gτ (r
2),

(5.13)

where II is the characteristic function of the interval I . We use the property of the regularizing
functions gα, for 0 < τ1 ≤ τ2, we have:

∫ ∞

0

gτ2(r
2)− gτ1(r

2)

r
dr ≈

∫ √
τ−1
1

√
τ−1
2

1

r
dr =

1

2
ln
τ2
τ1
. (5.14)
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π

4
A =

∫
I2

1

2
ln

(
TL tan

2 θ

τη

)
dθ +

∫
I3

1

2
ln

(
TL
τ

)
dθ +

∫
I4

1

2
ln

(
TL

τ tan2 θ

)
dθ,

=
1

2
ln
TL
τη

(
tan−1

√
τη
τ

− tan−1

√
τη
TL

)
+

∫ tan−1
√

τη/τ

tan−1
√

τη/TL

ln(tan θ) dθ

+
1

2
ln
TL
τ

(
π

4
− tan−1

√
τη
τ

)
+

1

2
ln
TL
τ

(
tan−1

√
TL
τ

− π

4

)
−
∫ tan−1

√
TL/τ

π/4

ln(tan θ) dθ,

and in the inertial range, using TL/τ → ∞ and τ/τη → ∞:

A = ln
TL
τ

(5.15)

− 2

π
ln
TL
τ

[√
τη
τ

+

√
τ

TL
+O

((τη
τ

)1/2)
+O

((
τ

TL

)3/2
)]

+
2

π
ln
TL
τη

[√
τη
τ

−
√
τη
TL

+O
((τη

τ

)1/2)
+O

((
τη
TL

)1/2
)]

+

∫ tan−1
√

τη/τ

tan−1
√

τη/TL

ln(tan θ) dθ −
∫ tan−1

√
TL/τ

π/4

ln(tan θ) dθ.

The second and third lines are bounded functions and tend towards 0 in the limit of TL/τ → ∞

and τ/τη → ∞. The last line tends towards the constant
4

π

∫ π/4

0

ln(tan θ) dθ.

The variance can be deduced from this calculation:

E
[
(X∞

t )2
]
=

1

π

∫ ∞

0

∫ ∞

0

1

(x+ y)
√
xy

(
gTL

(x)− gτη(x)
) (
gTL

(y)− gτη(y)
)
dx dy. (5.16)

We remark that this expression is similar to the one obtained in Eq.(5.10) where τ is replaced by
τη. Therefore, we obtain:

E
[
(X∞

t )2
]

∼
TL/τη→∞

ln

(
TL
τη

)
+

8

π

∫ π/4

0

ln(tan θ) dθ. (5.17)

■
We have shown that E

[
(X∞

t )2
]
∼ ln(TL/τη) and E

[
X∞

t X
∞
t+τ

]
∼ ln(TL/τ).

The following section presents the choices of regularization made for the other processes for which
spectral representation has been introduced in Sec. 4.3.1.

5.1.3 A framework encompassing existing processes
In this section, we show that previous stochastic processes can be obtained from Eq. (5.1) with
appropriate regularizations.
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The process W τ
t is obtained by replacing the stationary process of Ornstein-Uhlenbeck Y x

t by

Y x
t −Y x

0 . Well defined thanks to its regularizing kernel kτ =
e−τ.

π
√
.
, it is however not stationary. We

have verified in Sec. 4.2.2 that its covariance function is of logarithmic form, but it is not bounded.

In the spectral representation, we have seen that the process developed by Schmitt and Marsan
(2001) can be written, following Eq. (4.34):

∫
R+

(∫ t

t+τη−TL

e−(t−s)x dWs

)
kτη(x) dx.

Here, the regularization resulting in the stationarity of the process is carried by the process∫ t

t+τη−TL

e−(t−s)x dWs which replaces Y x
t in Eq. (5.1).

According to Eq. (4.41), the process introduced by Pereira, Moriconi, and Chevillard (2018) can
be written as ∫

R+

(∫ t

−∞
e−(t−s)/TL dY x

s

)
kτη(x) dx.

Therefore, the regularization for stationarity consists in replacing the Ornstein-Uhlenbeck Y x
t of

Eq. (5.1), by
∫ t

−∞
e−(t−s)/TL dY x

s . For both processes, the kernel kτη =
e−τη .

√
π.

produces a log-

correlated covariance function.

As for the single Ornstein-Uhlenbeck process of Pope and Chen (1990), it can be written as in
Eq. (4.42): ∫ ∞

0

Y x
t δ(x− T−1

χ ) dx.

Though it is stationary, this kernel representation does not exhibit a behavior in x−1/2, and we
already know that the single Ornstein-Uhlenbeck process is not log-correlated.

Table 5.1 summarizes the different regularizations for all these processes. It shows that the general
formalism of Eq. (5.1) is a framework that encompasses existing processes depending on the three
criteria for the regularization.

If the general formalism proposed in Eq. (5.1) gives the possibility to represent and simulate these
processes using Ornstein-Uhlenbeck processes, one can see that their simulation is not equivalent.
Processes of Schmitt (2003) and Pereira, Moriconi, and Chevillard (2018) require to keep in mem-
ory the history of the process since at each time t, the set of realizations ofWs and Y x

s respectively,
for s in the intervals [t+ τη − TL, t] and ]−∞, t] respectively should be involved in the computa-
tion (it is actually truncated for the numerical simulation). It is not the case for the one we propose
in Eq. (5.7) and we develop in the following section a numerical approach to implement such a
process with no long-term memory.
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Process Definition Spectral representation

W
τη
t Eq. (4.12)

∫ ∞

0

(Y x
t − Y x

0 )
e−τηx

π
√
x
dx

XS
t

∫ t

t+τη−TL

(t− s+ τη)
−1/2 dWs

∫ ∞

0

(∫ t

t+τη−TL

e−(t−s)x dWs

)
e−τηx

√
πx

dx

XP
t

√
π

∫ t

−∞
e−(t−s)/TL dW τη

s

∫ ∞

0

(∫ t

−∞
e−(t−s)/TL dY x

s

)
e−τηx

√
πx

dx

XOU
t

∫ t

−∞
ωe−(t−s)/Tχ dWs

∫ ∞

0

Y x
t ωδ(x− T−1

χ ) dx

X∞
t

∫ t

−∞
(t− s+ τη)

−1/2

− (t− s+ TL)
−1/2 dWs

∫ ∞

0

Y x
t

(
gTL

(x)− gτη(x)
)

√
πx

dx

Table 5.1. Regularizations applied on the spectral representation of different processes. The logarithmic
behavior of the autocorrelation of the process comes from the kernel behavior x−1/2 in brown, its

stationarity comes from the blue term and the red terms ensures the finite variance.

5.2 Finite sum of correlated Ornstein-Uhlenbeck processes

5.2.1 Quadrature
Following the idea of Harms (2020), with an appropriate quadrature, the integral can be replaced
by a system of finite number of Ornstein-Uhlenbeck processes. We call X∞

t the process defined
with the infinite sum and XN

t the one obtained with N points of quadrature:

X∞
t ≡

∫ ∞

0

Y x
t

1√
πx

(
gTL

(x)− gτη(x)
)
dx ≈ XN

t ≡
N∑
i=1

ωiY
xi
t . (5.18)

Because of the regularizing functions gTL
− gτη , it is useless to compute quadrature points far

outside the inertial range [T−1
L ; τ−1

η ]. In the following, for simplicity, we consider an Heaviside
functions for g. Considering the logarithmic shape of the kernel, we propose a geometric partition
of this domain, along with a middle-Riemann sum for the weights:

for i = 1, ..., N


xi =

1

TL

(
TL
τη

) i−1/2
N

ωi =
1

√
πxi

∆xi

, where ∆xi =
1

TL

(
TL
τη

) i
N

− 1

TL

(
TL
τη

) i−1
N

.

(5.19)

Figure 5.3 shows the kernel approximation with N = 10 points of quadrature. The kernel x−1/2 is
approached by step functions all along the inertial range. The weights can be normalized to match
the variance of the analytic process E

[
(X∞

t )2
]
. The normalizing factor R is given by:

R =
σX∞

t

σXN
t

=
√

E [(X∞
t )2]

(∑
i,j

ωiωj

xi + xj

)−1/2

. (5.20)
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Figure 5.3. The kernel behavior k(x) ∼ x−1/2 in dashed line is regularized with Heaviside cutting
functions in dark blue and compared to its quadrature representation in light yellow. The x and y scales

are logarithmic.

Figure 5.4. Comparison of the autocorrelations of the analytical process (dotted black line) and the
discrete one for a finite number of modes. The inertial range covers 5 decades. The x-axis is on a

logarithmic scale and the dashed line represents the expected logarithmic behavior.
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Figure 5.4 shows the autocorrelation of the process X∞
t compared with the discrete one XN

t . As
demonstrated in Sec. 5.1.2, it is clear that the infinite sum has a logarithmic autocorrelation, it
follows indeed the dashed line all along the inertial range. A one-point quadrature corresponding
to a single Ornstein-Uhlenbeck process is plotted in the lightest yellow in the figure. As discussed
above, this specific process corresponds to X1

t = XOU
t and does not have a logarithmic autocor-

relation all along the inertial range. With two points of quadrature, the autocorrelation displays
two bumps, around the two time scales of the Ornstein-Uhlenbeck processes. The autocorrelation
range has been extended but it is not yet clear that it follows a logarithmic behavior. With more
quadrature points (darker lines), the autocorrelation of XN

t is getting closer to the analytical one.

This convergence of the autocorrelation can be explicit introducing the relative difference between
the analytical autocorrelation ρ∞(τ) and the one obtained from the quadrature ρN(τ):

ρ∞(τ) ≡
∫ τ−1

η

T−1
L

∫ τ−1
η

T−1
L

f(τ, x, y) dx dy

ρN(τ) ≡
N∑
i=1

N∑
j=1

f(τ, xi, xj)∆xi∆xj,

(5.21)

where f(τ, x, y) =
e−τy

(x+ y)
√
xy

. The numerical convergence is verified in Fig. 5.5 with the error

defined as:

Error =

√∫ TL

τη

(
ρ∞(τ)− ρN(τ)

ρ∞(τ)

)2

dτ . (5.22)

As observed in Fig. 5.5, the order of convergence is 2. The value of the error is shifted when
increasing the inertial range. With one Ornstein-Uhlenbeck per decade, the relative error is below
10%. We can therefore postulate that an acceptable number of processes would be one or two per
decade. Figure 5.6 illustrates this choice, with different inertial ranges. The number of points for
the discrete process is chosen accordingly and we verify the logarithmic behavior of such processes
all along the inertial range. For instance, with an inertial range covering 20 decades (upper yellow
line in Fig. 5.6), that corresponds to Reλ ∼ 1011, only 20 Ornstein-Uhlenbeck processes are needed
to approach a logarithmic behavior of the autocorrelation all along the inertial range.

5.2.2 Discussion
A new log-correlated process X∞

t and its discrete version with N Ornstein-Uhlenbeck processes
XN

t have been presented. In this section, we will discuss their physical interpretation and their
advantage over existing processes.

5.2.2.1 Physical interpretation

XN
t can be seen as an extension of Pope’s process (Pope and Chen 1990). We recall that the latter

corresponds to N = 1 with quadrature points taken as:

x1 =
1

Tχ
, ω1 =

√
2σ2

χ

µℓTχ
. (5.23)
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Figure 5.5. Error in log-log scale between the L2-norm of the discrete process XN
t and the analytical

process X∞
t . The dashed line represents a slope of −2.

Figure 5.6. Autocorrelation of Xt for different inertial ranges in log-log scale, compared with loga-
rithmic behavior in dashed lines. The number of points chosen in the quadrature N corresponds to the

number of decades covered by the inertial range [τη, TL].
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Pope and Chen (1990) observed that Tχ scales with the Lagrangian integral time scale TL and σχ
scales with logarithm of Reynolds number. By comparison with our proposition of quadrature,
we would suggest to use: Tχ =

√
TLτη, and σχ is indeed scaling as σχ ∼ ln(TL/τη) to ensure

requirement (iii) of Sec. 3.4.2.
For Reynolds number Reλ ∼ TL/(0.08τη) ⪅ 125, we have seen that a single Ornstein-Uhlenbeck
is enough to cover the entire inertial range and the exponential decay mimics the logarithmic be-
havior in such small interval. However, for larger Reynolds number, it is necessary to extend
the long-range of the autocorrelation by adding other Ornstein-Uhlenbeck processes, evenly dis-
tributed all along the inertial range. A perfect logarithmic scaling is retrieved with an infinity of
Ornstein-Uhlenbeck processes.

This new process also makes a very simple link between “continuous” processes with no time
scale (or here, an infinity), corresponding to X∞

t and “discrete” cascade models XN
t , where arbi-

trary time scales are chosen to each represent a turbulent structure. A turbulent cascade is often
represented as a product of independent processes defined at each scale, each one presenting a
characteristic time scale. The approximation of X∞

t by XN
t exactly consists in selecting repre-

sentative time scales, and the coherence of the whole cascade is ensured by the fact that every
Ornstein-Uhlenbeck process is correlated to each other because driven by the exact same Gaussian
Noise.

5.2.2.2 Implementation

Unlike the models of (Schmitt 2003; Pereira, Moriconi, and Chevillard 2018), the process has no
’self-memory’. It is the combination of several Ornstein-Uhlenbeck processes, with adapted char-
acteristic time scales that can mimic this long-range correlation. The closer are the characteristic
times of the Ornstein-Uhlenbeck processes, the better is the logarithmic approximation (quadrature
with a large number of points) but we show that one time scale per decade is already enough to
retrieve the approximate long-range behavior. This should considerably reduce the computational
cost of the simulation of such process. Simulating Ornstein-Uhlenbeck processes is very common,
rapid and does not require to keep a memory of the whole history of the path, as opposed to the
convolution form used in Schmitt (2003), Pereira, Moriconi, and Chevillard (2018).

5.2.2.3 A causal multi-fractal process for pseudo-dissipation

An analytical stochastic equation can be derived for the pseudo-dissipation, which is the variable
of interest used in Lagrangian stochastic models. First, we can retrieve an analogous formulation
for the incremenents of X∞

t , introducing the β function already used in Pereira, Moriconi, and
Chevillard (2018).

dX∞
t =

∫ ∞

0

dY x
t

e−xτη − e−xTL

√
πx

dx,

=

∫ ∞

0

(−xY x
t dt+ dWt)

e−xτη − e−xTL

√
πx

dx,

=
−1

2

∫ t

−∞

(
(t− s+ τη)

−3/2 − (t− s+ TL)
−3/2

)
dWs dt+

(
1

√
τη

− 1√
TL

)
dWt,

=
(
β
τη
t − βTL

t

)
dt+

(
1

√
τη

− 1√
TL

)
dWt.
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(5.24)

We recall that the Lagrangian multiplicative chaos, which is causal and stationary, is readily ob-

tained while exponentiating the Gaussian process X∞
t : φ = ⟨φ⟩ exp

(√
µℓX∞

t − µℓσ2
X

2

)
. Appli-

cation of Ito’s lemma gives the Lagrangian stochastic dynamics of the pseudo-dissipation, namely:

dφ

φ
=
[√

µℓ
(
β
τη
t − βTL

t

)
+
µℓ

2

(
1

√
τη

− 1√
TL

)2 ]
dt,

+
√
µℓ

(
1

√
τη

− 1√
TL

)
dWt.

(5.25)

Of course, the implementation of this stochastic equation preferentially uses the expression of β
in the Laplace domain and we recall that the same Wiener process is used in the N Ornstein-
Uhlenbeck processes Y xi

t but also in dWt in Eq. (5.25). Numerically, we replace the β-function by
its quadrature:

β
τη
t − βTL

t =

∫ ∞

0

−xY x
t

gTL
(x)− gτη(x)√

πx
dx,

≈
N∑
i=1

−xiωiY
xi
t .

(5.26)

Numerical implementation is straightforward and leads to a limited memory load compared to
the classical approach of discretization of the β function, for example as proposed by Zamansky
(2021).

Conclusion
Intermittency in turbulence can be characterized by multi-fractal properties of the dissipation. A
Gaussian multiplicative chaos formalism allows us to model such dissipation process, but relies on
the introduction of a zero-average Gaussian and log-correlated process, Xt. In the literature, such
processes were defined based on a regularized FBM ; they lack physical interpretation and can be
computationally expensive in simulations.

In this contribution, we have introduced another way of building such processes, with a general
form Eq. (5.1) that requires regularizations. We have shown that specific regularizations yield ex-
isting processes, and we propose a new one, which has the benefits of relying on an infinite combi-
nation of Ornstein-Uhlenbeck processes. Characteristic time scales of those Ornstein-Uhlenbeck
are covering the inertial range, between Kolmogorov time scale and the Lagrangian integral time
scale. Each of them represents a specific turbulence structure, collectively representing a continu-
ous cascade model where no arbitrary time scale is needed.

A discrete version of this process is proposed, based on a selection of few specific modes, corre-
sponding to representative characteristic time scales. The quadrature of the infinite sum is therefore
a finite sum of Ornstein-Uhlenbeck processes, logarithmically distributed in the inertial range. This
corresponds to a discrete cascade model.
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Beside its simplicity of simulation, this model is also very adaptive, and could lead to other promis-
ing applications: dissipation along trajectory of inertial particles is not logarithmic anymore but
the model can actually fit any autocorrelation function. The extension of this model to the case of
inertial particles will be addressed in Sec. 8.4.2 in Chap. 8. Thanks to the versatility of the process,
application to LES can also be considered, with different regularizing functions, where the cut-off
could be based on the sub-grid time scale for instance.
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Part III

One-way coupled turbulent disperse
two-phase flows
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Part III introduces the physical phenomena and the issues involved in modeling a disperse phase
transported by a turbulent carrier phase in a one-way coupling context. Chapter 6 presents the
equations governing the motion of the particles in the flow and highlights the main physical phe-
nomena occurring as a result of the collective behavior of the particles: the particles preferential
concentration trajectory crossing. If the equations of the disperse phase are naturally derived in a
Lagrangian framework, these phenomena are based on Eulerian dynamics, which must be intro-
duced. This Eulerian formalism also reduces the dimensionality of the problem in Chap. 7 while
proposing a statistical approach for the disperse phase. Finally, we present in this same chapter
the strategies for coupling the disperse phase with reduced-order turbulence modeling. We show
that in the absence of a particle sub-filter model, the statistics of the disperse phase are altered,
and we expose the two strategies for particle models: stochastic and structural models.
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Chapter 6

Transport of particles by turbulence

In this chapter, we are interested in the transport of particles by a turbulent flow, the velocity of
which is known, in a one-way coupling context. The equations governing the motion of a spherical
particle in interaction with the turbulent carrier phase are established according to classical New-
tonian mechanics. The expression of the different forces applied to the particle is simplified under
a set of assumptions that reduces the difficulty of the problem while encompassing a wide range of
natural and industrial applications. In particular, we only consider one-way coupling by neglecting
the effect of particles on turbulence. Two-way coupling will be studied and characterized in Part V
of this thesis. The final model only takes into account the drag force with point-particle assumption.

In order to study the collective behavior of the particles and to characterize the physics of the dis-
perse phase, we introduce an Eulerian vision. This framework highlights particular behaviors such
as the particle preferential concentration (PPC) or the particle trajectory crossing (PTC). The first
corresponds to the accumulation of particles in specific regions of the flow; the second describes
the occurrence of very close particles with very different velocities. The Stokes number, the ratio
of the characteristic time of the particle to that of the fluid, controls the regimes in which these
singularities appear. These play a key role in various processes, in particular the collision between
particles (Sundaram and Collins 1997). In some cases, which will be detailed in Part V, the PPC
plays a key role in the modulation of turbulence.

Section 6.1 of this chapter focuses on establishing the equation of the particle in a flow in the La-
grangian framework. Section 6.2 introduces the Eulerian macroscopic fields, and consequently the
main associated statistics that characterize disperse two-phase flows and their behaviors, namely
the PPC and the PTC.

6.1 A particle in a flow

We study a single particle motion in a turbulent flow. The particle is considered spherical with
diameter dp and density ρp. Its position is defined in space by coordinates xp of the particle
center, and it has a velocity vp. For a spherical and isolated particle (i.e. not influenced by its
neighbors), one can derive simple and classical models for the forces that are applied to it and
studies have been conducted experimentally and numerically to validate them (Tenneti, Garg, and
Subramaniam 2011).
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6.1.1 Forces acting on a particle
The external forces applying to a particle are obtained by integration of the Navier-Stokes equa-
tions around the surface of this sphere. These forces can be separated into two categories: station-
ary forces, resulting from a well established condition around the particle, and unsteady forces,
related to the history of the particle.

• The stationary drag force FD is the force acting on the sphere, in the absence of accel-
eration of the sphere relative to the flow, in a uniform pressure environment. This force is
expressed using a drag coefficient CD:

FD =
1

2
ρCDA∥u− vp∥ (u− vp) , (6.1)

where u is the undisturbed flow velocity, vp is the particle velocity, A =
πd2p
4

the particle
projected area and ρ the density of the carrier phase. The difficulty lies in the determination
of the drag coefficient CD which varies strongly with the intensity of the flow. The latter

is characterized by the particle Reynolds number Rep =
dp∥u− vp∥

ν
, which compares the

inertial forces to the viscous forces in the particle referential. In the following, we will
consider flows with low Reynolds number Rep ≤ 1 for which we can estimate: CD =
24/Rep. This simplifies the drag force expression as follows:

FD = 3πµdp (u− vp) . (6.2)

• A local pressure gradient at particle location generates a force in the direction of this gradi-
ent. In the particular case of a hydrostatic pressure gradient (linked to gravity for example),
the associated pressure force is the Archimedean force:

F P = −∇PVp = −ρgVp, (6.3)

where g is the gravity and Vp =
π

6
d3p the volume of the particle.

• Unsteady forces due to the history of the particles: the added mass or the Basset force,
respectively

F AM =
π

12
ρd3p

d

dt
(u− vp) , (6.4)

and

FB =
3

2
d2p
√
πρµ

∫ t

t0

1√
t− τ

d

dτ
(u− vp) dτ. (6.5)

• Other forces acting on particle such as the gravity, etc...

Taking into account these forces results in the famous Basset-Boussinesq-Oseen (BBO) equation:

mp
dvp

dt
=
π

6
ρpd

3
p

dvp

dt
= FD + F P + F AM + FB +

∑
k

F k. (6.6)
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6.1.2 The Stokes drag for point-particle tracking
Throughout this work, we consider simplifying assumptions to minimize the number of parameters
describing the disperse phase. The assumptions on the disperse phase are the following:

• We consider spherical particles of fixed size.
• We do not solve energy or mass transfers: no phase changes is taken into account here (no

evaporation).
• We neglect gravity: g = 0.
• The density ratio between the particles and the fluid is large (ρp ≫ ρ) and the Reynolds

number of the particle is smaller than one (Rep ≤ 1), therefore, all the remaining forces in
the original Basset-Boussinesq-Oseen equation Eq. (6.6) are assumed negligible compared
to the drag force.

• The volume fraction α is small enough to consider particle-particle collisions as negligible
(dilute regime: α < 10−3).

• Particles diameter is smaller than the Kolmogorov length scale (dp ≪ η), thus particle-
resolved DNS is not necessary (Fröhlich, Schneiders, Meinke, and Schröder 2018), and a
point-particle approximation is adopted.

• In this chapter and throughout Part III and IV, we consider that the particles do not modify
the carrier phase (one-way coupling regime). The associated assumptions are detailed in
Part V.

The drag force obeys Stokes’ law, the equation of motion is linear in the velocity difference be-
tween fluid and particle. The drag force of Eq. (6.2) can be simplified. This results in the La-
grangian equations for the particles:

dxp(t)

dt
= vp(t)

dvp(t)

dt
= F p(t) =

u@p(t)− vp(t)

τp
,

(6.7)

where xp(t) and vp(t) stand for particle position and velocity at time t, and u@p(t) = u(xp(t), t)
is the undisturbed fluid velocity evaluated at the particle position. The particle relaxation time τp

is defined as τp =
ρpd

2
p

18µ
where µ is the dynamic viscosity of the fluid.

This characteristic time of the particles can be related to that of the fluid, using the Stokes number.
In a turbulent flow, we have however established the existence of different characteristic times for
the fluid, in Chap. 1, in particular τη, the Kolmogorov time, TL, the Lagrangian integral time scale.
These define respectively Stη := τp/τη and StL = τp/TL. These Stokes numbers play a major role
in the collective behavior of the disperse phase, which can be studied using an Eulerian framework.

6.2 Eulerian description of the disperse phase
We have so far introduced the disperse phase according to a Lagrangian vision, i.e. by following
each particle in the flow moving in space and time. When the number of particles is important,
it may be relevant to consider an Eulerian description of the disperse phase, i.e. describing the
properties of the disperse phase at any point in space and time.
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Note that these frameworks are related to each other, and that similar to the carrier phase, if one of
them is more adapted to the derivation of the equations governing the behavior of the phase, the
other one can be introduced a posteriori in order to study some macroscopic quantities of interest.

A given realization R of the disperse phase can be described by a number density function (NDF),
representing Np interchangeable particles:

fR(t,x,v) =

Np∑
k=1

δ(x− xp,k(t))δ(v − vp,k(t)). (6.8)

The time evolution of this NDF is governed by Eq. (6.7) and with the knowledge of its initial
distribution fR(0,x,v). Because it is unrealistic to have an accurate knowledge of all the initial
conditions of the particles except in academic and canonical configurations, they are considered
random: fR(0,x,v) = f 0

R(ω;x,v). With the same formalism as in Sec. 1.1.6.1, it is then possible
to define mesoscopic Eulerian quantities at time t from the expectations of the NDF by integrating
over the associated probability space: E [fR(ω; t,x,v)] = f(t,x,v). Practically speaking, this
expectation is estimated with empirical means, for example with NR realizations:

f(t,x,v) ≈ 1

NR

∑
R

fR(ω; t,x,v). (6.9)

The Eulerian fields can be obtained by ensemble averaging over several realizations of the particle
phase, for a given realization of the turbulent phase (Février, Simonin, and Squires 2005). How-
ever, in practice, the number of realizations is finite and for numerical purposes, this local average
must have a certain thickness. The Eulerian quantities will therefore be obtained by a projection
method based on a volume filtering of the Lagrangian quantities, as shown in Fig. 6.1(a) and 6.1(b).
There are several projection kernels ∆: for example the “box” projection, which consists in aver-
aging the properties of the particles present in a cell of the Eulerian mesh, the volume or Gaussian
projections, which weight the information according to the distance to the computational node.
The box projection is implemented in Asphodele, and we have implemented the Gaussian one
(see Sec. 2.4). In his thesis, Moreau (2006) compares those methods of projection and classifies
them depending on their characteristic length. This length must be smaller than the spatial scale
of variation of the quantities, but also large enough to have enough particles to perform the average.

From the knowledge of f , or its estimation through ensemble averages, macroscopic quantities can
then be obtained. We define the particle number density:

n(x, t) =

∫
R
f(t,x,v) dv, (6.10)

but it is rather estimated from Lagrangian simulations with:

n(x, t) =
1

NR

∑
R

Np∑
k=1

∆(x− xp,k(t)), (6.11)

Similarly, the mean particle velocity is calculated using:

n(x, t)up(x, t) =
1

NR

∑
R

Np∑
k=1

vp,k(t)∆(x− xp,k(t)), (6.12)
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(a) Lagrangian snapshot (b) Eulerian field

Figure 6.1. (a) Snapshot of particles in a HIT and (b) corresponding particle number density field
obtained by projection on a mesh. DNS performed with Asphodele.

In one-way coupling and dilute regime, inter-particle influences (directly through collisions or
through a modification of the fluid field by the presence of the particles) are neglected. Under
these conditions, simulating a realization with a large number of particles is equivalent to simulat-
ing a large number of single-particle realizations.

Eulerian fields provide insights on physical phenomena related to the collective behavior of parti-
cles. Unlike the carrier phase, which is a continuous medium, the disperse phase presents singular-
ities such as its spatial heterogeneity or local velocity dispersion (Simonin, Février, and Laviéville
2002). These singularities result from the transport of particles by turbulent eddies and are pre-
sented in the following subsections.

6.2.1 Particle preferential concentration
6.2.1.1 Evidence of particle preferential concentration

Figure 6.1(a) is a snapshot of particles in a HIT obtained by DNS. Particles were initially injected
with uniform distribution in the domain, and with an initial velocity equal to the one of the fluid.
After some time evolving with the flow according to the Stokes drag law, they are preferentially
concentrated in specific regions and do not fill the domain uniformly anymore.

We illustrate the disperse phase heterogeneity on a Taylor Green periodic vortex flow, a steady
solution of the inviscid incompressible Euler equations. Such two-dimensional flow is described
by an analytic expression and its velocity field is shown in Fig. 6.2(a): ux(x, y) = sin(2πx) cos(2πy)

uy(x, y) = − cos(2πx) sin(2πy).
(6.13)

Such a configuration is representative of the vortex structure of turbulent flows and help visualize
the behavior of the particles according to the Stokes number St = τp/τc, where τc = 1/8π is the
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(a) Velocity field

(b) St = 0.5 (c) St = 1

(d) St = 5 (e) St = 10

Figure 6.2. Taylor Green velocity field (a) ; and particles at time tf = 30τc with different Stokes
numbers (b-e). Particles are colored according to their final velocity.
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characteristic time of the flow. In order to observe the evolution of the particles, we randomly
distribute 10000 particles in the square space [0; 1]× [0; 1] and compute their evolution according
to Eq.(6.7). We observe that:

• Low-inertia particles (St ≪ 1) have a behavior very close to tracers (fluid particles). Since
they are injected with uniform distribution at initial time, fluid particles tend to fill the space
uniformly, producing no spatial heterogeneity thanks to divergence-free of the carrier phase.

• For small Stokes numbers (St ≲ 1), the trajectories of inertial and fluid particles are drifting
apart. The particles are ejected from the vortices because of their inertia but do not acquire
enough energy to pass through the regions of low vorticity or high strain rate. They therefore
accumulate there, at the periphery of the vortex zones. We then see the phenomenon of
preferential concentration of particles, also referred as segregation (Eaton and Fessler 1994).
Large regions without particles appear in the centers of vortices for small Stokes numbers in
Fig. 6.2(b) and the particle preferential concentration reaches its highest point for St ≈ 1, as
observed in Fig. 6.2(c).

• With increasing Stokes number (St ≳ 1), the particles are less and less influenced by the
carrier phase. Their inertia allows them to cross high strain rate or low vorticity regions
and they can thus cross vortices with a ballistic trajectory. The preferential concentration
decreases.

• For very high-inertia particles (St ≫ 1), particles fill again the space uniformly after a
sufficient long time.

More specifically, particles sample preferentially the periphery of strong vortical regions and seg-
regate into straining regions as a result of their interaction with the vortical coherent structures.

In turbulent flows, preferential concentration of particles is a major aspect that can strongly lead the
physics (Capecelatro and Desjardins 2015). Particle accumulation is not only a concern for flow
dynamics but also for the numerical computation of the disperse phase. For example, the impact
of PPC in a two-way context will be investigated in Chap. 13. The increase of the collision rate in
overpopulated regions or the large vacuum zones and strong gradients in Eulerian representations
can be challenging.

6.2.1.2 Measure of particle preferential concentration

In the literature, several methods have been proposed to measure preferential concentration, and
an exhaustive review is proposed by Monchaux, Bourgoin, and Cartellier (2012), Hogan and Cuzzi
(2001).

The parameter
〈
n(x, t)2

〉
/ ⟨n(x, t)⟩2 is a measure that quantifies the preferential concentration

(Kaufmann, Simonin, and Poinsot 2004). It has often been used to study Eulerian fields, for
instance by Vié, Pouransari, Zamansky, and Mani (2016). The measure is close to unity for a uni-
formly distributed particle system. Applied to the Taylor Green vortices, we obtain in Fig. 6.3(a)
the evolution of the segregation as a function of the Stokes number and we observe the character-
istic peak around Stokes number St ≈ 1.
Another common measure is the two-point spatial distribution function. For a statistically homo-
geneous system of particles, Reade and Collins (2000) introduced the radial distribution function
of the interparticle distance, ⟨n(x, t)n(x+ r, t)⟩ / ⟨n(x, t)⟩2. Moreover, this measure can provide
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(a) (b)

Figure 6.3. Measures of particle preferential concentration in two-dimensional Taylor Green vortices:
(a) Radial distribution function at origin for different Stokes numbers ; (b) Radial distribution function

plotted for different Stokes numbers.

a clear estimation of the characteristic length scale of preferential concentration. Note that the
first measure is in fact the evaluation of the radial distribution function at the origin. Figure 6.3(b)
plots the radial distribution function for different Stokes numbers. Unlike the others, the curve for
St = 1 has higher value at origin and a rapid decay is then observed. It is possible to determine
the slope at the origin, and to evaluate in this case a characteristic distance of the order of r = 0.1.

Both measures depend quantitatively on the mesh chosen for the representation of the number
density field. Indeed, in practice the measurement of the radial distribution function is discrete
and the resolution step can mask the characteristic scales of the PPC. On the other hand, these
measurements can depend on the number of particles simulated, especially when the disperse
phase is not statistically converged (average number of particles per box too low). Other measures
will be introduced and discussed in Chap. 13 to overcome these biases.

6.2.2 Particle velocity dispersion
6.2.2.1 Evidence of particle trajectory crossing

Particle velocity dispersion is characterized by a multi-valued Eulerian field of particle velocity
(Desjardins, Fox, and Villedieu 2008; Ijzermans, Meneguz, and Reeks 2010; Massot 2007; Kah
2011). Since the particles have no volume occupancy and we have neglected inter-particle colli-
sions, particles can be at the same location in the flow. At a given point or neighborhood in space,
particles can have different velocities due to their inertia, as illustrated in Fig. 6.4. Let’s examine
further the behavior of the disperse phase carried by the Taylor Green vortices, this time in terms
of velocity dispersion.

• Low-inertia particles (St ≲ 1) have a behavior very close to tracers (fluid particles). Thus,
very close particles will not have any velocity dispersion since they have the same history in
the flow.
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Figure 6.4. (Left) Velocity quiver plot of particles suspended in a two-dimensional random flow with
St = 10. (Right) particle density showing significantly enhanced particle-number density in the vicin-
ity of the multi-valued field. Black corresponds to high density, white to low density. Figure from

Gustavsson, Meneguz, Reeks, and Mehlig (2012).

• With increasing Stokes number (St ≳ 1), the particles are less and less influenced by the
dynamics of the carrier phase. The velocities of the particles and the tracers are decorrelated
and their trajectories separate rapidly. In particular, particles that are initially far apart (com-
ing from different vortices) can then cross each other, with a very different velocity. This
is called particle trajectory crossing (PTC): at a point in space, it is possible to observe a
dispersion in velocity of the disperse phase. In some regions of the space of Fig. 6.2(d), one
can see a superposition of particles at very different velocities. This phenomenon is all the
more visible at very high Stokes, on Fig. 6.2(e)

Taylor Green vortices are a very particular case of flow, but illustrative because they have a unique
and steady scale. However, we have seen in Chap. 1 that turbulence is actually composed of a very
broad range of scales. The appropriate Stokes number to qualify the PTC regime is based on large
scales (Février, Simonin, and Squires 2005). Indeed, the phenomenon becomes significant when
StL = τp/TL > 1, i.e. the relaxation time of the particles is large compared to the correlation time
of particles. In fact, this criterion can even be based on the Lagrangian integral time experienced
by the particles, T u@p

L , characterizing the correlation time of the fluid velocity along the trajectory
of the inertial particles (Fede and Simonin 2006).
In the literature, these phenomena are also referred to as multivelocity (Massot 2007) or multi-
valued (Liu, Osher, and Tsai 2006) solutions. PTC considerably complicates the task of Eulerian
models since it is necessary to be able to characterize this dispersion in velocity.

6.2.2.2 Measure of particle velocity dispersion

A characterization of relative velocities of inertial particles was proposed by Février, Simonin, and
Squires (2005). They decomposed particle velocities into two contributions: a spatially correlated
velocity field up(x, t), and a random, spatially and temporally uncorrelated contribution, com-
monly referred to as “random uncorrelated motion” (RUM) δvp(t), a Lagrangian quantity such
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Figure 6.5. Influence of particle inertia (symbols) on the Eulerian longitudinal spatial autocorrelation
R

up

E,ii/σ
2
vp function in stationary HIT. Stokes numbers StL are 0.05 for ◦, 0.3 for +, 1.47 for □, 3.4 for

△ and 4.8 for ∗. Figure from Février, Simonin, and Squires (2005).

that:

vp(t) = up(xp(t), t) + δvp(t). (6.14)

Figure 6.5 shows that the Eulerian correlation of Lagrangian velocitiesRup

E,ii = ⟨up(x+ rei)up(x)⟩
varies for the different Stokes numbers considered. For small Stokes numbers, this correlation is
close to an exponential form (similar to the longitudinal Eulerian correlations of the fluid). For
heavier particles, very close particles have very different velocities: the velocity field of the parti-
cles is not continuous. This effect increases with the inertia (the Stokes number) of the particles.

The decomposition of the velocity into two components in Eq. (6.14) also gives two components
to the kinetic energy of the particle:

• the mean correlated energy (MCE), given by
〈
n(x)u2

p(x)
〉
/ ⟨n(x)⟩;

• the mean internal energy (MIE), given by ⟨n(x)δθp(x)⟩ / ⟨n(x)⟩;
where δθp(x) is the kinetic energy of the RUM, defined as the Eulerian projection of ⟨δvp,i(t)δvp,i(t)⟩.
The mean total energy (MTE) corresponds to the sum of both terms. The evolution of these two
correlated and uncorrelated kinetic energies is given in Fig. 6.6. For low Stokes number, the energy
is mainly in correlated form. When the inertia of the particles increases, the energy of the particles
mainly comes from the uncorrelated motion. The points overlap whatever the Reynolds number of
the simulation and this highlights the role of StL on the PTC.

Note that the meaning given to the RUM tensor is not the same depending on whether the ⟨.⟩
represents an ensemble average or a volume average. Indeed, in the first case, the measure gives
a statistical variance between several realizations while in the second, it gives a local particle
agitation, which can generate collisions between particles of the same simulation.
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Figure 6.6. Evolution of particle correlated and uncorrelated energy fractions with particle inertia
(several turbulent Reynolds numbers are represented with symbols) in stationary HIT. Figure from

Février, Simonin, and Squires (2005).

Conclusion
This chapter introduces the main characteristics of a disperse phase flow, and in particular specifies
the assumptions that lead to a Lagrangian point-particle modeling. From Lagrangian simulations,
Eulerian macroscopic fields can be derived and different methods are presented. This framework
gives insights on the dynamics of the disperse phase and more specifically to particle collective
behavior through two-point statistics.

For small and intermediate Stokes numbers, particle preferential concentration yields heteroge-
neous spatial distribution of particles and can generate overpopulated and depletion zones. This
quantity is of paramount importance in the combustion domain since it can strongly affect the
evolution of the mean vapor mixture fraction. On the other hand, for large Stokes numbers, we
observe large velocity differences between nearby particles, which could also enhance collision
rate of particles. As a consequence, particle velocity fields become multi-valued, which requires
specific numerical methods for the disperse phase, which are the subject of next chapter.

On the other hand, the phenomena described in this chapter were evidenced with a perfect knowl-
edge of the turbulent carrier phase. However, DNS are not affordable for industrial configurations
and Chap. 7 is therefore interested in the effects of under-resolved turbulence (by ROS) on the
dynamics identified in this chapter.





Chapter 7

Modeling and simulation of the disperse
phase

In this chapter, we review existing models of disperse two-phase flows. We introduce different
levels of description of the disperse phase and review their benefits and drawbacks in terms of
numerical cost, prediction compared to a given experiment, and self-contained statistical informa-
tion. Two-way coupling will only be discussed in Part V of this thesis and for the moment, we
focus on one-way coupled models.

Due to the highly multiscale nature of disperse phase flows, modeling strategies must be designed
to achieve their simulation in industrial configurations. Dimensionality reduction can be applied
to both phases:

• The numerical cost of Lagrangian approaches as presented in the previous chapter becomes
unaffordable in the presence of a large number of particles. We briefly present the dif-
ferent steps to derive Eulerian models (microscopic, mesoscopic and then macroscopic).
Euler-Euler representations solve the carrier phase and inertial particles on a common Eu-
lerian grid, greatly reducing the computational cost, as individual particles do not need to
be tracked. On the other hand, the Eulerian treatment of the disperse phase can raise other
issues (PPC, PTC as seen in Chap. 6), and special attention must be paid to closures of
macroscopic equations and numerical schemes.

• We have already investigated in Chap. 2 the reduced-order simulations for the turbulent
phase. For two-phase flows, such a reduced description has implications on the particle
equations, and additional models should be developed in order to overcome the lack of in-
formation resulting from the reduction of the carrier phase.

Section 7.1 first presents mesoscopic and macroscopic approaches for the disperse phase, assuming
the carrier phase is fully resolved (DNS). Section 7.2 deals with the treatment of the disperse
phase when the turbulence is under-resolved (ROS). Here we detail how the lack of small-scale
information can affect the dynamics and statistics of the disperse phase, and we present two classes
of models that address this issue: stochastic and structural models. We discuss the advantages and
drawbacks of each of these approaches, without going into the details as these models will be
further detailed in Chap. 8 and 9 respectively.
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7.1 Dimensionality reduction for the disperse phase

7.1.1 Microscopic approaches
For liquid droplets, the best description of multiphase flows is given by a full direct numerical sim-
ulation of both phases, for which the dynamics of interface is modeled, as well as the exchanges
between the two phases. For solid particles, the shape of the interface of particles is assumed to
be simple and known in order to be described with a finite number of parameters, specific to each
particle. This is the particle-resolved DNS, for which the boundary is not resolved but imposed:
the particle is assimilated to a sphere of diameter dp, and it is located in space by its center of mass.
The interaction with the carrier phase is then resolved precisely for the fluid around the particle.
A recent review article on such methods can be found in Tenneti and Subramaniam (2014). These
two methods are very rich in information but computationally expensive and their use is restricted
to a limited number of tracked particles.

A first dimensionality reduction can be derived by considering point-particles, under the set of
assumptions proposed in Chap. 6. The discrete particle simulation (DPS) was first introduced by
Riley and Patterson Jr (1974) and later extended to evaporating droplets and combustion (Reveillon
and Vervisch 2005). Since this method focuses on tracking every particle, the approach is clearly
deterministic and can also be referred as point-particle DNS (Pai and Subramaniam 2012).

The cost of such simulations remains too high in the presence of a large number of particles, since
it is based on the resolution of the Np deterministic ODEs of Eq. (6.7). Moreover, we have seen
that the chaotic character of the system implies a resolution of the flow in terms of statistics. It
is then common to adopt a mesoscopic point of view, which allows a statistical description of the
disperse phase in particular by computing a number density function (NDF), as done in kinetic
theory of gases.

7.1.2 Mesoscopic approaches
Already introduced in Sec. 6.2, the NDF f gives the probability of having particles at a given
point in space and time and at a given state (temperature, size, velocity...). This NDF satisfies
a population balance equation, the Williams-Bolzmann equation (WBE) (Williams 1958), which
describes its evolution in phase space. In the particular case considered here of monodisperse
particles undergoing only a Stokes drag force, the WBE is derived in App. A:

∂f

∂t
+ v · ∇xf +∇v ·

(
u(x, t)− v

τp
f

)
= 0, (7.1)

where x is the the physical space variable, and v the total velocity vector for the particle in the
phase space. The work of Février, Simonin, and Squires (2005) establishes in particular the Meso-
scopic Eulerian Formalism (MEF), for which a particular NDF is thus conditioned to a given fluid
realization. As opposed to the DPS approach, which gives a single realization of the disperse
phase, the NDF contains statistical information about all the possible realizations of the disperse
phase in a given carrier phase. With notations introduced in the previous chapter, fR = fDPS and
f = fMEF .

In order to solve the WBE, we have 3 choices:
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• Direct resolution, after discretization in the phase space. By considering only the phase
space in velocity, we have nevertheless 6 dimensions to solve in 3D, which is not practica-
ble from a computational cost point of view. This technique is limited to low-dimensional
problems (at best 2D).

• Lagrangian sampling: The NDF is approximated by sampling using the Lagrangian parti-
cle tracking techniques described in Sec. 6.1.2. Two classes of methods exist: the direct
simulation Monte-Carlo method (Bird 1994), which consists in tracking fictive particles
to represent the distribution. This provides statistical information if enough particles are
tracked to achieve statistical convergence. The second one, the stochastic parcel method
(O’Rourke 1981), consists on the contrary in representing a group of particles by a compu-
tational particle, of equivalent weight. In both cases, these Lagrangian simulations remain
proportional to the number of the tracked parcels and do not take advantage of the Eulerian
formulation of the problem.

• Method of moments: By integrating the WBE in the phase space, we reduce the dimen-
sionality of the problem until we obtain a problem in the physical space only. The resulting
equations, after closure, can be solved by classical finite volume methods. This is further
developed in the next section, as it represents a higher level of reduction.

7.1.3 Macroscopic approaches
Derived from the mesoscopic formulation, this level of resolution gives access to the macroscopic
variables of the system. The number density, particle density, particle velocity fields are defined
using the integration of the NDF over their respective phase space:

n(t,x) :=

∫
R3

f(t,x,v) dv,

ρp(t,x) :=

∫
R3

mpf dv,

ρp(t,x)up(t,x) :=

∫
R3

mpvf dv,

(7.2)

with mp the mass of a single particle. The notation ⟨.⟩v is used to denote the integration over
the velocity phase space. Higher order moments are expressed in App. A along with a general
formalism for the derivation of Eulerian moments equations. The set of obtained equations always
involves a moment of higher order which requires an additional model for closure. If the closure
is exact, the moments equations formulation is equivalent to the WBE.

Unlike Lagrangian methods, the Eulerian fields obtained are naturally statistically converged. The
Eulerian framework being similar to that of the continuous carrier phase, the two-way coupling
terms can be easily derived. Compared to Lagrangian methods with a large number of particles,
their numerical simulation is less expensive, but special attention must be paid to the numerical
methods because of singular behaviors exposed in the previous chapter (PPC, PTC or polydisper-
sion in size). Since the local concentration of particles is modeled as a “fluid”, the segregation can
be interpreted as a hypercompressibility feature of this “fluid”, and PTC results in multi-valued
fields (De Chaisemartin 2009).

Balachandar and Eaton (2010) classified the different approaches to the disperse phase based on
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Figure 7.1. Segregation as a function of the Stokes number for Lagrangian result and Anisotropic
Gaussian results on 1283 and 5123 meshes with projection on the same 643 mesh. Figure from Sabat,

Vié, Larat, and Massot (2019)

the Stokes number. A robust Eulerian-Eulerian formulation is possible in the limit of a dilute dis-
tribution of small particles: it is the Eulerian Equilibrium approach (Maxey 1987; Druzhinin 1995;
Ferry and Balachandar 2001). The Eulerian approach is mostly suitable for low inertial particles
St < 1, for which the modeling of the PTC is not an outstanding issue. Recently works aim at
extending their applicability to intermediate Stokes numbers (Sabat 2016; Chalons, Fox, Laurent,
Massot, and Vié 2017; Fox, Laurent, and Vié 2018).

Several closures are reviewed in App. A and some of them are compared on a two-dimensional
HIT test case, especially in terms of their ability to reproduce particle preferential concentration
and particle trajectory crossing. The reader is referred to Kaufmann, Moreau, Simonin, and Helie
(2008), Laurent, Vié, Chalons, Fox, and Massot (2012), Masi, Simonin, Riber, Sierra, and Gicquel
(2014), Sabat (2016), Sabat, Vié, Larat, and Massot (2019). In particular, Fig. 7.1 shows the segre-
gation levels obtained by a method of moments, the anisotropic Gaussian method (Vié, Doisneau,
and Massot 2015), for different resolutions. Segregation is here defined as the normalized variance
of the particle density field, as introduced in Sec. 6.2.1.2. The Lagrangian PPC, considered as a ref-
erence and obtained with a 1283 DNS mesh, can only be approximated by very fine meshes, more
than four times finer, because of the hypercompressibilty of the Eulerian model that leads to strong
numerical constraints, degenerating the order of convergence close to one in accumulation regions.

7.2 Particles dynamics in under-resolved turbulence
In Chap. 2, we have discussed the limitations of using very high fidelity methods such as DNS
for the carrier phase resolution, which is computationally too expensive for industrial applications.
We have therefore introduced reduced-order models, resolving the large scales of the flow, and
modeling the small ones.

While reduced-order approaches are justified in practical applications dominated by large-scale
mixing, their validation is more challenging when the process of interest occurs at smallest scales
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(molecular mixing, chemical reaction in turbulent combustion, droplet break up in spray atom-
ization, momentum transfer in near-wall flows). In disperse two-phase flows, the dynamics is
intricately linked to the interplay occurring between the two phases. However, the reduction mod-
ifies this interaction, preventing the particles from interacting with the structures thus filtered. The
use of reduced-order models for flows with disperse phase requires new models in order to correct
the dynamics of particles, biased by the partial knowledge of the carrier phase.

In this section, we are therefore first interested in the impact of under-resolved turbulence on the
disperse phase. Then, looking for a way to recover the DNS statistics, we present two categories of
particle sub-filter scale models: the stochastic and the structural models. We also suggest another
approach, based on retrieving not DNS statistics but filtered DNS statistics.

7.2.1 Impact of under-resolved turbulence on particles dynamics
We have seen that the particles Eq. (6.7) involves the velocity of the surrounding fluid at the particle
position: u(xp(t), t). In ROS, only the large scales are resolved and the only available information
is U , the resolved velocity field of the carrier phase. In some studies (Uijttewaal and Oliemans
1996; Wang and Squires 1996; Yeh and Lei 1991) it was assumed that the unresolved fluctuations
u′ could be neglected in regard to the inertial particle velocity, since the drag force can be consid-
ered as a low-pass filter which thus reject small-scales fluctuations of the fluid. Only recent studies
have pointed out the need to take into account these fluctuations and quantified their influence on
the dynamics of particles such as particle kinetic energy and/or particle preferential concentration
(Marchioli, Salvetti, and Soldati 2008b; Minier 2015; Kuerten 2016).

According to Balachandar (2009), Urzay, Bassenne, Park, and Moin (2014), two types of sub-filter
effects are observed: the effect of sub-filter turbulence on the particles, and in some two-way cou-
pling configurations, the effect of the energy delivered by the particles to the fluid at the sub-filter
scale. In this chapter, we will deal first with the one-way case and save discussions on the two-way
effects for the Part V of this manuscript, which are analyzed in Chap. 13 and modeled in Chap. 14.

In order to identify the shortcomings of the reduced simulations from the point of view of the
disperse phase, we compare these effects between a DNS and a priori ROS. In the following, we
will establish according to which criteria and how the dynamics of the disperse phase can be altered
in the absence of a compensatory particle model.

7.2.1.1 Simulation set-up: Euler-Lagrange disperse flows

Consistent with the general working assumptions in this thesis, we consider a mono-disperse phase
such that the point-particle approximation is verified and we track the particles with a Lagrangian
approach, following the DPS method. DNS and LES point-particle modeling challenges have been
reviewed in Subramaniam (2013), Kuerten (2016).

In order to investigate the influence of a reduced-order fluid resolution, we compare the effect of
turbulence on the particles between a DNS, and a priori reduced-order simulation, i.e. a ROS ob-
tained by filtering the DNS velocity fields. The set-up case is a forced HIT, at Reλ = 150, resolved
with DNS performed by Fieldz (see Sec. 2.4). We give as an example in Fig. 7.2(a) a velocity field
obtained with DNS, and its associated filtered velocity field in Fig. 7.2(b). Small scales have been
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(a) (b)

(c)

Figure 7.2. Snapshot of the velocity field of (a) DNS ; (b) a priori ROS i.e. filtered DNS (with Gaussian
filter). (c) is the energy spectra of the two fields. DNS at Reλ = 150 performed with Fieldz.
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(a) (b)

Figure 7.3. Comparison between DNS and a priori ROS fields obtained with Fieldz of (a) particle
turbulent kinetic energy PDF ; (b) Flatness of velocity increments. The inset is the same plot with

x-axis in log-scale.

filtered out by the Gaussian filtering, which is quantified in the energy spectrum of Fig. 7.2(c). The
cut-off wavenumber of the filter is around κ ≈ 10.

Thus, we reproduce the effects of a reduced simulation while knowing the exact velocity fields and
we can estimate and quantify the information loss, especially with different levels of reduction of
the fluid.

7.2.1.2 Intermittency

There is a general agreement on the limited effects of sub-filter fluid turbulence on particle dis-
persion, particle Lagrangian time scale, particle velocity fluctuations (Fede and Simonin 2006;
Armenio, Piomelli, and Fiorotto 1999), those statistics being mainly driven by large scales (hence
resolved) of the fluid. However, filtering the velocity field obviously reduces the amount of en-
ergy in the system. This loss is estimated and modeled in the sub-filter terms of the ROS but it
is naturally missing in the resolved velocity fields and is therefore not transmitted to the particles.
This results in lower values of the turbulent kinetic energy seen by the particles, as can be seen in
Fig. 7.3(a). The distribution of kinetic energies k@p in DNS extends to larger values than the one
in ROS.

As a consequence, fluid and inertial particles responding to the reduced fluid do not experience
such extreme accelerations than with DNS. We have seen in Chap. 3 how such behaviors are
characteristics of intermittency. Figure 7.3(b) compares the flatness of velocity increments in a
DNS, and in the associated a priori ROS. As explained in Chap. 1, this flatness is a good indicator
of the intermittency, and we expect far-from-Gaussian statistics (i.e. H4(τ) ̸= 3). The particle
velocity fluctuations are very clearly intermittent for DNS, which reaches a flatness of 13 for
the acceleration. On the other hand, these levels of intermittency are not reached in the ROS,
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Figure 7.4. Segregation measure for particles in DNS and filtered DNS (a priori ROS) as a function of
Stokes numbers.

for which the flatness of small velocity increments τ is much lower than that of the DNS. These
correspond indeed to the unresolved scales, filtered in the ROS approach and which is thus not able
to reproduce strong velocity fluctuations at these scales. It is then necessary to develop appropriate
models to reconstruct these statistics at small scales.

7.2.1.3 Segregation

The velocity field seen by the particles being filtered, the scales of the smallest vortices do not
correspond to the Kolmogorov lengths but rather to the cut-off lengths of the chosen filter ∆. Thus,
the relevant Stokes number for these simulations corresponds to the ratio of the particle relaxation
time to the characteristic sub-filter time: St = τp/τ∆ (Balachandar 2009; Urzay, Bassenne, Park,
and Moin 2014).
Comparing the PPC in DNS and ROS, we indeed observe in Fig. 7.4 a shift towards larger Stokes
numbers of the characteristic peak when the velocity field seen by the particles is filtered. By
plotting the segregation with respect to St∆, we find a maximum reached for a unitary St∆ as
expected. This Stokes number is intermediate between Stη and StL.

• When St∆ ≪ 1, particles are highly sensitive to unresolved turbulence while behaving as
tracers with respect to large resolved eddies. PPC is therefore under-predicted in ROS.

• For St∆ ≈ 1, sub-filter turbulence results in a randomization of particle distribution mainly
driven by intermediate scales. PPC is overpredicted in ROS and a diffusion process for
particle modeling could help reducing the PPC in that case.

• When St∆ ≫ 1, particles are inertial with respect to sub-filter fluctuations and their inter-
action with resolved scales is sufficient to reproduce the level of segregation of DNS and no
additional modeling is required.

Note that Fede and Simonin (2006) have observed similar behaviors by considering a Stokes
number related to the Lagrangian integral time of the sub-filter velocity seen by the particle:
St⋆∆ = τp/T

u′
@p

L .

Following the classification taken from Marchioli (2017) in Fig. 7.5, we can summarize the need
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Figure 7.5. Classification of modeling approaches depending on the Stokes number St∆ and the grid
resolution. Figure reproduced from Marchioli (2017).

for an additional model on particles:
• For very large Stokes numbers, particles are not affected by the filtered scales and no addi-

tional model is needed;
• For intermediate Stokes numbers, preferential concentration might be approximately re-

trieved, however, particles do not experience the correct level of intermittency. “One-point”
particle models should be considered to retrieve intermittent statistics;

• Particles with inertia lower than the sub-filter time scale obviously miss the interaction with
filtered structures, and PPC is therefore not well reproduced in such ROS. Given the impor-
tance of the two-point dynamic of the disperse phase for combustion application, a “two-
point” model is required.

7.2.2 Overview of existing particle sub-filter scale models

Today, the LES is widely used to understand and predict turbulent particle-laden flows. The most
classical way consists in combining a single-phase LES model to describe the gas phase, with an
additional sub-filter scale model for the particulate phase. The reader is referred to Kuerten (2016)
for an exhaustive review of particle SFS models. These models are actually suitable either for LES
or RANS or both (Marchioli 2017).

Models have been proposed in the literature, which can be classified into two categories:
• Stochastic models (Minier, Chibbaro, and Pope 2014; Bini and Jones 2008; Shotorban and

Mashayek 2006; Zamansky, Vinkovic, and Gorokhovski 2013), the objective of which is to
mimic the effect of sub-filter scale flow on particle paths using additional random process on
Lagrangian quantities.

• Structural models that aims at reconstructing the sub-filter scales of the flow. Among them
are the approximate deconvolution models (ADM), the fractal interpolation, or kinematic
simulations (Murray, Lightstone, and Tullis 2016a). The latter approach is based on the
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Figure 7.6. Snapshots of particle positions; St = 2. (a) DNS; (b) a priori LES with no SGS dispersion
model; (c) a priori LES with model and C = 0.05; (d) with C = 1. Figure from Pozorski and Apte

(2009).

Figure 7.7. Snapshots of particle positions; St = 0.7. (a) DNS; (b) a priori LES with with no SGS
dispersion model; (c) a priori LES with model and C = 0; (d) with C = 0.05. Figure from Pozorski

and Apte (2009).

reconstruction of the field from an Eulerian point of view.

7.2.2.1 Stochastic models

Historically, Lagrangian approaches were first developed with the use of random walks for particle
trajectories. In the context of RANS models for turbulence, we have already seen some of these
Lagrangian models applied to fluid particles in Chap. 3 and they can be adapted to the case of in-
ertial particles, which will be the focus of Chap. 8. From this arises the general formalism for PDF
which has been developed among others by Reeks (1992), Pozorski and Minier (1999), Minier and
Peirano (2001).

Pozorski and Apte (2009) have investigated the use of stochastic Langevin models. They con-
cluded that they could produce the right amount of particle kinetic energy and any one-point statis-
tics by construction. Indeed, parameters of stochastic models can tune the expectations, variances,
covariances of the modeled processes. We will see how the intermittency can be faithfully repro-
duced in such models and we will discuss these choices in Chap. 8.

However, all stochastic models rely somehow on uncorrelated Gaussian noises and therefore as-
sume a Markovian nature of velocity histories. They cannot enforce any spatial correlations, as a
consequence, very close particles can see very different noises. Pozorski and Apte (2009) inves-
tigated the influence of the stochastic model of Pozorski and Minier (1999), driven by the factor
C involved in the sub-filter characteristic time τsgs = C∆/σsgs. They noticed in Fig. 7.6 that for
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large-inertia particles, the diffusion introduced by the stochastic models can replace the random-
izing effect of small scales and thus roughly recover the preferential concentration levels of the
particles in DNS. However, for small-inertial particles, those models cannot recreate the small-
scale patterns solely based on coarse sub-filter information. This is shown in Fig. 7.7, were no
fitting of C allows to recover the small-scale particle concentration. To conclude, they suggested
that two-points statistics (Eaton, Squires, and Eaton 1991) can only be found in structural mod-
els to ensure particle-fluid and particle-particle velocity correlations. This motivates the need for
a structural approach to use more information about how real turbulence is known to behave, in
particular its spatial and temporal organization.

7.2.2.2 Structural models

Structural models consist in reconstructing a velocity field similar to the fully resolved field for the
particles to evolve in. As opposed to stochastic models, this implies reconstructing information in
the whole space, and not only for each particle. This method has the advantage of preserving the
spatial correlation, so that neighboring particles can experience a similar fluid velocity.

Approximate deconvolution method (ADM) seeks to recover the original field precisely, by revers-
ing the effects of the reduction operator on the fluid field. Compared to ROS without a particle SFS
model, it has been shown that ADM improves the particle results. However, since the reduction
operator is not injective, it is not possible to rigorously invert it and the information lost when
projecting the filtered or averaged field onto the coarse grid cannot thus be recovered. In fact, it is
found that only the scales close to the cutoff scale can be reconstructed by the ADM method and
therefore the sub-filter kinetic energy is only partially retrieved (Shotorban and Mashayek 2005).
Cernick, Tullis, and Lightstone (2015) compared simulations with different stochastic models,
ADM, and no particle SFS model. They observe that although it is possible to partially recover
the preferential concentration in the absence of a model, this is clearly improved with a struc-
tural model such as the ADM. However, it does not reach the segregation observed in DNS due
to the limitations of the ADM model, which can only reconstruct scales close to the cut-off scale.
Stochastic models, on the other hand fails to predict any particle clustering due to the random
components applied to particles.

Fractal interpolation consists in reconstructing the velocity field on a finer mesh by interpolating
the filtered field, interpolation which depends on the fractal dimension of the signal which should
either be known or assumed a priori. More details on this technique can be found in Scotti and
Meneveau (1999). Marchioli, Salvetti, and Soldati (2008a) considered models based on fractal
interpolation and concluded that this technique is not systematically able to recover the amount
of SGS turbulent kinetic energy for the fluid velocity field and hence does not recover the particle
segregation.

Kinematic simulation (KS) is a computationally attractive method to reconstruct the small-scales
field. By imposing a turbulent kinetic energy spectrum, a random velocity field is generated by
means of orthogonal and random Fourier modes (Kraichnan 1970; Murray, Lightstone, and Tullis
2016a; Ijzermans, Meneguz, and Reeks 2010). We detail this method in Chap. 9 and discuss its
advantages and drawbacks.
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7.2.3 Capturing reduced-order statistics of the disperse phase

In general, the scope of modeling strategies for ROS of particle-laden flows is to capture particles
dynamics. Such dynamics require a correct description of the particle localization (preferential
concentration) as well as particle acceleration. Following the conclusions of Pozorski and Apte
(2009), we would expect that stochastic models are not an acceptable choice because they lack a
correct prediction of preferential accumulation. This conclusion is based on a specific strategy for
validation: the authors validate ROS against the DNS statistics. However, this choice is open to
discussion since one can also decide to validate the ROS on the filtered DNS statistics. These two
options differ by the objective of the model in sight: describing the PDF or the filtered PDF.

We perform a DNS of particle-laden turbulent flows, and we show the particle number density field
in Fig. 7.8(a). The same field is filtered and presented in Fig. 7.8(b). Such particle number density
fields are the two possible references to validate a particle SFS model. The PPC of the filtered
density field is lower and can be compared to that produced by the ROS in Fig. 7.8(c). Quantita-
tively, the PPC as a function of Stokes number (Fig. 7.8(e)) of ROS is of the order of magnitude
of the filtered DNS field, with a shift towards higher Stokes numbers. This is consistent with the
loss of smallest structures in ROS, and the PPC peak is obtained at St∆. Nonetheless, we can now
have excessive PPC prediction in ROS. Adding a stochastic process (in Fig. 7.8(d)) could reduce
the segregation and eventually recover the missing physics.

Other techniques can be used to obtain filtered statistics, in particular to obtain filtered Eulerian
moments. The main distinction concerns the stage at which the reduction operation is applied:

• by filtering the WBE, an additional term appears that represents the diffusion transport
caused by the interaction of particles with small-scale sub-filter turbulent eddies (Pandya
and Mashayek 2002; Sabat 2016; Zaichik, Simonin, and Alipchenkov 2009). Adopting a
similar type of closure problem than in Reeks (1992), they derive the corresponding set of
moments;

• by filtering the moment equations obtained from the MEF: particle number density, mo-
mentum and internal energy. The resulting moment equations exhibit a similar structure to
that of gaseous compressible flows and Moreau, Simonin, and Bédat (2010) used similar
approximations as closures.

Conclusion

In this chapter, we have first examined the reduction strategies for the disperse phase, considering
a fully resolved carrier phase.

However, we have previously established that it is not possible to completely resolve the turbulence
when the Reynolds number becomes too large, which is the case in most industrial applications. It
is then necessary to consider new models for the disperse phase, aiming at reproducing the effect
of unresolved scales of the flow on the particles.

Two categories of particulate SFS models are available in the literature: stochastic models, which
by means of Brownian motions allow to recover the one-point statistics of the disperse phase and
we detail this approach in the next chapter. However, these diffusive models do not allow to repro-
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(a) DNS field (b) filtered DNS field

(c) ROS field (d) ROS and stochastic model

(e) PPC

Figure 7.8. Particle number density field for (a) DNS ; (b) filtered field of DNS ; (c) ROS with no
particle SFS mode ; (d) ROS with stochastic modeling ; and (e) PPC.
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DPS Mesoscopic La-
grangian

Mesoscopic Eu-
lerian

Eulerian Mo-
ments

DNS DNS / DPS Lagrangian meth-
ods (DMCS, SP)

WBE → MEF NDF-shape or al-
gebraic closures

ROS Structural models Stochastic mod-
els

(Modified) WBE
and EMEF

Reduced-order
Eulerian mo-
ments

Table 7.1. One-way coupling between reduced descriptions of turbulence and disperse phase.

duce the dispersion of the particles and to retrieve the preferential concentration levels obtained
in DNS. On the other hand, structural models focus on reconstructing the sub-filter velocity field
while keeping only a limited number of parameters to not increase the dimensionality.

In order to complete the overview of the possible couplings between the reduced descriptions of
each phase, which we give in Table. 7.1, we have also mentioned coupling strategies between ROS
and Eulerian equations of the disperse phase but they are not studied further in our work.

We have not addressed in this chapter the modeling aspects related to two-way coupling, these will
be treated in the last part and the dedicated Chap. 14: new models must also be considered not
only for the particles, but also for the sub-filtered flow since the particles can have an impact on
the resolved and unresolved scales.
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Part IV

Reproducing segregation and intermittency
in turbulent disperse two-phase flows
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Part IV aims at developing particle sub-filter models in the context of under-redolved turbulence.
The objective is to overcome the biases introduced by the reduced-order simulation of the tur-
bulence, and to reproduce the unresolved velocity fluctuations of the inertial particles, still in a
one-way context. Chapter 8 first introduces stochastic models on inertial particles, and different
choices of the literature are discussed: particle velocity, fluid velocity seen by the particles, dissi-
pation seen by the particles. Then, dissipation along the inertial particles trajectory is considered
using the intermittent stochastic model introduced in Chap. 5 in the framework of fluid particles
and thus adapted in this chapter to inertial particles. Chapter 9 introduces particle sub-filter mod-
eling from another perspective to reproduce two-point statistics of the disperse phase, namely the
preferential concentration. Kinematic simulation (KS) based on Fourier series is classically used
in the literature to address this problem. We propose another paradigm of kinematic simulation
based on wavelets with particular properties. Like the Fourier-based KS, we build a synthetic
divergence-free turbulent field capable of reproducing the energy spectra and other specific fea-
tures of turbulence. After validating such a model from a strictly turbulent point of view, we study
in Chap. 10 the behavior of a disperse phase transported by such a dynamic synthetic field. We
verify that collective behaviors such as segregation and random uncorrelated motion are correctly
reproduced. Finally, Chap. 11 gives some perspectives for such a kinematic model, by studying, in
particular, its intermittency and by verifying its suitability for LES applications.
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Chapter 8

Two-phase flow stochastic models

In the previous chapter, we have demonstrated the need to introduce a particle SFS model when
turbulence is resolved relying on reduced-order simulations. Stochastic methods allow to add in-
formation directly to the particle trajectory to mimic the effect of the filtered scales on the particles.
Several choices are then to be considered: which kind of stochastic equation to use? What type
of random noise? At what level should we introduce the randomness? On the position, velocity,
acceleration, dissipation of the particle?

Several reviews of stochastic models are proposed in (Balachandar and Eaton 2010; Kuerten 2016;
Marchioli 2017), and the objective of this chapter is not to propose an exhaustive list but rather to
discuss the main ones and identify their shortcomings based on the tools already introduced in the
study of fluid particles (Chap. 3). Then we introduce a new model, consistent with the intermittent
one developed in Chap. 5.

As in Chap. 3, we propose a classification of the models according to the level of modeling and
study in each case their compatibility with the K41 or K62 theories:

• We present in Sec. 8.1 the main requirements and statistics to validate a stochastic model for
inertial particles;

• Section 8.2 introduces the stochastic models dealing with the particle velocity;
• In Sec. 8.3, we review stochastic acceleration models (or equivalently models based on the

fluid velocity seen by the particle) and we highlight the differences with fluid particles mod-
els;

• Intermittency can be accurately modeled by considering conditional acceleration with a
stochastic model for dissipation. We discuss the limits of existing models in Sec. 8.4 and
we propose a new intermittent model for inertial particle, as an extension of the fluid one
introduced in Chap. 5 .

8.1 Criteria for the assessment of stochastic models
Minier, Chibbaro, and Pope (2014) have proposed a list of criteria for the formulation of La-
grangian stochastic models for disperse two-phase turbulent flows when modeling the fluid seen
by inertial particles:

• Expression of drift and diffusion terms must be explicit so that the model is predictive;
• The inertial particles model should revert to an acceptable stochastic model in the particle

tracer limit;
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• For homogeneously distributed particles, the fluid seen is such that the predicted mean ki-
netic energy of the fluid seen by particles respects the same statistical evolution as the mean
fluid kinetic energy;

• The model should be consistent with the equilibrium Eulerian approach formulated in the
limit of small particle Stokes numbers (Balachandar and Eaton 2010).

This list of formal criteria is a basis for the construction of stochastic models. In order to compare
the different models and by reviewing the literature on the subject, we propose a list of quantities
of interest to be assessed and compared in order to validate the stochastic particle models. This list
is not exhaustive, it includes the main metrics of interest compared in the different studies:

• Particle velocity (kinetic energy, autocorrelation, PDF) (Fede and Simonin 2006; Shotorban
and Mashayek 2006; Pozorski and Apte 2009; Berrouk et al. 2007)

• Particle acceleration (PDF, variance, flatness, autocorrelation) (Gorokhovski and Zamansky
2018; Bini and Jones 2007)

• Mean square displacement of particles or particle dispersion (Shotorban and Mashayek
2006; Berrouk et al. 2007)

• Particle preferential concentration (Fede and Simonin 2006; Pozorski and Apte 2009; Berrouk
et al. 2007)

• Lagrangian velocity increments (PDF) (Bini and Jones 2007)
• Power exchange with the fluid (PDF) (Gorokhovski and Zamansky 2018)

Following the general notations of Sec. 2.2.3, in a framework of reduced description of turbulence,
we decompose the instantaneous fluid velocity as: u(x, t) = U(x, t) + u′(x, t), where U is nu-
merically solved, but u′ requires modeling. The objective is to correct the particle velocity vp

altered by the reduced representation of the fluid velocity, with stochastic model in agreement with
the list of criteria of Minier, Chibbaro, and Pope (2014). Models will be assessed according to
DNS disperse phase statistics, in particular the ones listed above.

In the following, we present the different modeling strategies (velocity, acceleration, dissipation
models) by giving examples of literature models. We have generalized and standardized the nota-
tions of the models we review in this chapter to include any type of closure (RANS or LES) but
we will mention each time, which closures are chosen by the authors of these models.

8.2 Stochastic models for particle velocity
Since trajectory divergence between particles in reduced-order models and in DNS is mainly due
to inaccurate estimation of the forces acting on the particles, a first class of stochastic models in-
troduces the stochastic noise directly on the particle velocity equation, justifying this additional
term as a model representing the missing fluctuating force.

Fukagata, Zahrai, and Bark (2004) proposed to account for sub-grid turbulence effects on particle
by adding a Brownian force in the particle velocity equation, following the model:

dvp

dt
=

U@p − vp

τp
+ F ′

p, with F ′
p =

σS
∆t

ξ, (8.1)

and σS is the increment in standard deviation of particle velocity due to velocity fluctuations during
the simulation time step ∆t and ξi ∼ N (0, 1) is a standardized Gaussian variable. The parameter
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σS is rescaled according to the kinetic theory for particle motion in isotropic turbulence (Reeks
1991): σ2

S = σ2
⋆@pλ, where λ is a parameter depending on the particle relaxation time τp and on

the sub-grid integral time scale T ⋆@p
L . The parameters σ⋆@p and T ⋆@p

L are analogous to σ⋆ and T ⋆
L

but sampled along the trajectories of inertial particles.

According to Cernick, Tullis, and Lightstone (2015), this model correctly reproduces DNS statis-
tics (particle and fluid seen turbulent kinetic energy) for particles with intermediate Stokes numbers
but overpredicts the energy for smaller and larger Stokes numbers. The model also underpredicts
the particle Lagrangian integral timescale, leading to a large range of dispersion results.

The model of Bini and Jones (2008) also provides a Langevin equation for the particle velocity,
with the drift term still corresponding to the “large scales” acceleration, and the diffusion term
fitted based on the sub-grid scale kinetic energy k⋆@p = 3/2σ2

⋆@p:

dvp =
U@p − vp

τp
dt+

√
C0
k⋆@p

τt
dWt. (8.2)

They introduced a time scale τt and studied several forms:

τt =
τ 2αp

(∆/
√
k⋆@p)2α−1

, τt =
∆1/3

|vp|
, τt =

∆1/3√
k⋆@p

(8.3)

They stated that it is necessary to have a non-linearity in the diffusion term (involving the particle
velocity vp) to introduce the far-from-Gaussian behavior of particle acceleration statistics.

Two main criticisms can be raised regarding those models:
• Both introduced in a LES framework, parameters were taken identical to the sub-grid pa-

rameters of the Smagorinsky model: σ⋆@p = σ⋆ = σsgs and T ⋆@p
L = T ⋆

L = 2σ2
sgs/C0εsgs.

However, these parameters are supposed to represent characteristics along the trajectories
of inertial particles, and therefore, we expect them to capture different velocity fluctuations
along their trajectory than fluid particles, due to their inertia.

• Such Brownian-like models can hardly converge to fluid particle models in the limit of
τp → 0, since they do not model the velocity of the fluid seen by the particles but directly
the velocity of the inertial particles. The next section therefore focuses on modeling fluid
velocity seen by inertial particles.

8.3 Stochastic models for particle acceleration
Let us first note that stochastic models for particle acceleration are equivalent to stochastic models
on fluid velocity seen by particles, which is denoted u@p(t) = u(xp(t), t). We have:

dvp =
u@p − vp

τp
dt =

U@p − vp

τp
dt+

u′
@p

τp
dt (8.4)

Therefore particle acceleration can be decomposed into two parts:

Ap :=
U@p − vp

τp
, and

a′
p :=

u′
@p

τp
,

(8.5)
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and the increment of the fluctuating part is given by da′
p = du′

@p/τp. Let us decompose the fluid
velocity along inertial particle trajectory and examine models for the increments.

8.3.1 Velocity along inertial particle trajectory
Let us express the velocity increment along a solid particle trajectory, considering a first order
development of the particle position xp at time t + dt, as performed in Simonin, Deutsch, and
Minier (1993), Simonin, Deutsch, and Boivin (1995), Zeren (2010):

u@p(t+ dt) = u(xp(t+ dt), t+ dt) = u(xp(t) + vp(t) dt, t+ dt). (8.6)

They express the increments, and they introduce and reorganize terms:

du@p = u(xp + vp dt, t+ dt)− u(xp, t)

= u(xp + u@p dt, t+ dt)− u(xp, t)

+u(xp + vp dt, t+ dt)− u(xp + u@p dt, t+ dt)

= U(xp + u@p dt, t+ dt)−U(xp, t) (1)

+u′(xp + u@p dt, t+ dt)− u′(xp, t) (1)′

+U(xp + vp dt, t+ dt)−U(xp + u@p dt, t+ dt) (2)

+u′(xp + vp dt, t+ dt)− u′(xp + u@p dt, t+ dt). (3)

(8.7)

• (1) + (1)’ is the Lagrangian increment along fluid trajectory. We have an explicit expression
for (1):

(1) =
(−1

ρ
∇P + ν∇2U

)
dt

• (2) is the Eulerian increment of mean fluid velocity.

(2) = (vp − u@p) · ∇U dt+O(dt)

• (3) is the Eulerian increment of fluctuating fluid velocity. It can be modeled along with the
fluctuating part (1)’ following the generalized Langevin model for fluid tracers:

(1)′ + (3) = u′(xp + vp dt, t+ dt)− u′(xp, t) = du′
@p ∼ Gfpu

′
@p dt+ Bfp dW t

where Gfp and Bfp must be determined.

du@p =

(
−1

ρ
∇P + ν∇2U

)
dt+ (vp − u@p) · ∇U dt+Gfpu

′
@p dt+ Bfp dW t. (8.8)

In the limit of particle tracers vp → u@p, we should retrieve the stochastic equation Eq. (3.31).
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In order to write a stochastic equation on the fluctuating velocity seen by an inertial particle, they
identify u′

@p = u@p −U and its increments verify:

du′
@p = du@p − dU

= du@p − (U(xp + vp dt, t+ dt)−U(xp, t+ dt) +U(xp, t+ dt)−U(xp, t))

= du@p − vp∇U dt− ∂tU(xp, t) dt.

(8.9)

Knowing that

∂tU(xp, t) = −U · ∇U − 1

ρ
∇P + ν∇2U +

1

ρ
∇τ r, (8.10)

where τ r is the sub-grid stress tensor. They finally obtain the stochastic equation for the fluctuating
velocity seen by particle:

du′
@p =

(
−1

ρ
∇τ r − u′

@p∇U

)
dt+Gfpu

′
@p dt+ Bfp dW t. (8.11)

Several models are proposed in the literature, corresponding to closures for Gfp and Bfp. Those
are directly consistent with the formulation of the stochastic equation of fluid velocity seen by
particles, as required by Minier, Chibbaro, and Pope (2014) in Sec. 8.1. In the following, closures
of such models are discussed.

8.3.2 Stochastic models for the velocity seen
Following the approach established in Chap. 3, one can obtain a similar expression with adapted
parameters:

du@p =

(
−1

ρ
∇P + ν∇2U − 1

T ⋆@p
L

(u@p − U@p)

)
dt+

√
C0ε⋆@p dWt. (8.12)

This naturally ensures to retrieve the well known generalized Langevin model in the limit of fluid
particles. Such models were derived for isotropic turbulence in LES context by Shotorban and
Mashayek (2006), Fede, Simonin, Villedieu, and Squires (2006) and in RANS framework by Po-
zorski and Minier (1998), Minier and Peirano (2001).

However, the above-mentioned models still considered similar parameters than for fluid particles,
not tacking into account the inertial effect of particles:

• For RANS models, ε⋆@p = ⟨ε⟩ and T ⋆@p
L = 2σ2

u/C0 ⟨ε⟩;
• For LES models, ε⋆@p = εsgs and T ⋆@p

L = 2σ2
sgs/C0εsgs

Berrouk, Laurence, Riley, and Stock (2007) were the first to propose a model taking into account
the difference in trajectory between fluid and inertial particles. The Lagrangian integral time scale
along particle trajectory T ⋆@p

L is modeled with a correlation developed by Wang and Stock (1993)
that takes into account particle inertia:

T ⋆@p
L =

T ⋆
L

β

[
1− (1− β) (1 + St⋆E)

−0.4(1+0.01St⋆E)
]
, (8.13)
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where β = T ⋆
L/T

⋆
E is the ratio of the Lagrangian and Eulerian sub-grid time scales (definitions

given in Chap. 1 can be extended to sub-grid velocity). For this model, β is a parameter and we
define St⋆E = τp/T

⋆
E . The diffusion term is accordingly modified to maintain a stationary flow by

introducing the constant C⋆
0 = C0T ⋆

L/T
⋆@p
L . Finally, we have:

du@p =

(
−1

ρ
∇P + ν∇2U − 1

T ⋆@p
L

(u@p − U)

)
dt+

√
C⋆
0ε⋆ dWt. (8.14)

Similarly, Pozorski and Apte (2009) derived a stochastic formulation for the fluctuating velocity
(see Eq. (8.11)):

du′
@p =

(
−1

ρ
∇τ r − u′

@p∇U

)
dt− 1

T ⋆@p
L

u′
@p dt+

√
2σ2

⋆@p

T ⋆@p
L

dW t, (8.15)

with σ⋆@p = σsgs, and T ⋆@p
L being a function of T ⋆

L = C∆/σsgs and β, and also taking into account
crossing-trajectory effect with Csanady’s factors.

However, Eq. (8.13) was obtained for the large turbulent scales only and β is actually a function
of the Reynolds number. The model is highly sensitive to that parameter. Eq. (8.13) retrieves the
correct asymptotic behavior for very small particle inertial T ⋆@p

L → T ⋆
L and for very high parti-

cle inertia T ⋆@p
L → T ⋆

E . Cernick, Tullis, and Lightstone (2015) compared stochastic models of
Fukagata et al. (2004), Shotorban and Mashayek (2006) and Berrouk et al. (2007) and although
satisfying results were obtained for low Stokes numbers, these models have a strong sensitivity to
the Stokes number and to the filter size.

Let us also recall that Langevin’s fluid velocity models do not reproduce small-scale fluctuations
since only the Lagrangian integral time scale is introduced in the model, and no dissipative scale:
that certainly explains the strong dependence on the filter size. Moreover, as it stands, only the sub-
grid dissipation is introduced in the diffusion term, which does not reproduce the intermittency of
the statistics, as explained in Chap. 3. An acceleration model conditioned on dissipation can be
developed to tackle these two limitations.

8.3.3 Stochastic model for the acceleration
An other model for the fluctuating part of the acceleration was proposed by Gorokhovski and
Zamansky (2018), Zhang, Legendre, and Zamansky (2019), as an extension of the fluid model
of Sabel’nikov, Chtab-Desportes, and Gorokhovski (2011). This original model consists in two
separate stochastic models for the norm and the direction of the vector: a′

p = a∗e∗, where

a∗ = a
1/2
0 ε

3/4
⋆@pν

−1/4f(St,Re∆) and we define Re∆ = (T ⋆
L/τη)

2.

There are two main differences with previous approaches:
• Following the proposition of Sabel’nikov, Chtab-Desportes, and Gorokhovski (2011), the

orientation e is not given by an isotropic Wiener process but a more complex stochastic
process with a shorter correlation time than the norm.

• Dissipation along particle trajectory is reconstructed instead of considering the local sub-grid
scale dissipation. We have seen in Chap. 3 the importance of modeling the dissipation along
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the particle trajectory with appropriate stochastic models that allow to recover intermittent
statistics. Using a specific stochastic process for ε⋆@p, it is therefore possible to retrieve
stochastic properties and especially intermittency: in the following, we seek to derive such
intermittent stochastic models.

By ensuring multifractal properties (see Sec. 3.4.2) of the modeled dissipation ε⋆@p, all the models
presented in Sec. 8.3.3 could readily be adapted to retrieve intermittent statistics.

8.4 Dissipation along inertial particle trajectory
We propose to apply the same decomposition as in Sec. 8.3.1 on the variable χ = χ + χ′ =
ln(φ⋆/ ⟨φ⟩) + ln(φ/φ⋆).

dχ@p = χ(xp + vp dt, t+ dt)− χ(xp, t)

= χ(xp + u@p dt, t+ dt)− χ(xp, t) (1)

+χ′(xp + u@p dt, t+ dt)− χ′(xp, t) (1)′

+χ(xp + vp dt, t+ dt)− χ(xp + u@p dt, t+ dt) (2)

+χ′(xp + vp dt, t+ dt)− χ′(xp + u@p dt, t+ dt) (3)

• (1) is the Lagrangian increment of the filtered dissipation along fluid trajectory. It is given
by the simulation:

(1) = dχ =
dφ⋆

φ⋆

.

• (2) is the Eulerian increment of the filtered dissipation:

(2) = (vp − u@p) · ∇χ dt+O(dt).

• (3) is the Eulerian increment of fluctuating dissipation. It can be modeled along with (1)’
with a new stochastic process.

In Chap. 3 we have derived stochastic models for dχ′ along fluid particles and we want to extent
this modeling to inertial particles: (1)′ + (3) = dχ′

@p.

8.4.1 An Ornstein-Uhlenbeck process for the dissipation seen by particles
Inspired by the model of Pope and Chen (1990) for the fluid dissipation, Gorokhovski and Zaman-
sky (2018) have extended the Ornstein-Uhlenbeck process for inertial particles by adapting the
parameters in the model:

dχ′
@p = −

χ′
@p

T@p
χ

dt+

√
2σ2

χ@p

T@p
χ

dWt. (8.16)

They chose to retain the same characteristic time as for fluid particles, i.e. T@p
χ = T ⋆

L. The vari-
ance of the process is set to σ2

χ@p = ln (T ⋆
L/(τη + τp)) /2. One can verify that for fluid particles,
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(a) (b)

Figure 8.1. Characteristic time scale (a) and variance (b) for dissipation along particles’ trajectory.
Insets show the same plots with a log-scale for the x-axis. Dataset of Lanotte et al. (2011).

we retrieve σ2
χ = ln(T ⋆

L/τη)/2 and therefore σ2
χ ∼ lnReL for RANS and σ2

χ ∼ lnRe∆ in LES, as
expected in Sec. 3.4.5.

Applying Itô formula, they obtain the final stochastic equation for the local dissipation ε⋆@p:

dε
3/4
⋆@p

ε
3/4
⋆@p

=
dε

3/4
⋆

ε
3/4
⋆

−

(
ln
ε
3/4
⋆@p

ε
3/4
⋆

− 3

16
σ2
χ@p

)
dt

T@p
χ

+

√
9

8

σ2
χ@p

T@p
χ

dWt, (8.17)

where ε⋆ is either replaced by ⟨ε⟩ or εsgs, depending on the ROS context.

Several remarks can be raised regarding this model:

• First, the choice T@p
χ = T ⋆

L can be questioned. We measure this characteristic time in a DNS
by defining

Tχ@p :=
1

σ2
χ@p

∫ ∞

0

Rχ@p
L (τ) dτ, where Rχ@p

L (τ) := ⟨χ@p(t)χ@p(t+ τ)⟩ . (8.18)

Its evolution with the Stokes numbers is reported in Fig. 8.1(a). Although the limit value
of Tχ@p for St → 0 is of the order of magnitude of TL = 0.64, an important decrease
is observed for small and intermediate Stokes numbers. This characteristic time collapses
for high Stokes numbers because inertial particles pass through high velocity vortices with
widely different dissipations and the decorrelation is therefore faster than for fluid particles.

• On the other hand, Fig. 8.1(b) shows that the variance of the dissipation along the inertial
particle trajectories varies with the Stokes number, first decreasing for very low St and then
increasing, rather than the monotonic decrease predicted in the model of Gorokhovski and
Zamansky (2018). This is due to the sampling of the fluid dissipation by the particles. This
sampling is uniform for tracers and for particles with a very high Stokes number, since these
are the two extreme cases for which no PPC occurs. Indeed, in Fig. 8.1(b), we can see that
for St ≫ 1, the value of σχ@p reaches the same value as for St = 0. For lower Stokes on
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Figure 8.2. Autocorrelation of the dissipation along inertial particles χ@p. Increasing Stokes number
from dark to light colors. St ∈ {0, 0.16, 0.6, 1, 2, 3, 4, 10, 20, 30, 40, 50, 70}. Dataset of Lanotte et al.

(2011).

the other hand, the particles concentrate in areas of low vorticity, and the sampling of the
dissipation field is therefore reduced with a bias, since fewer areas of high dissipation are
sampled by the particles. Thus, the variance decreases for these particles.

• Finally, we also showed in Sec. 3.4.4.1 that the model of Pope and Chen (1990), although
producing non-Gaussian statistics, does not yield intermittent statistics in the strict mathe-
matical sense (as defined in Chap. 4): the coarse-grained dissipation exhibits no multifractal
properties.

These observations have motivated the development of a new model for the dissipation seen by
inertial particles, naturally derived from the one developed in Sec. 3.2 for fluid particles.

8.4.2 A multifractal process for the dissipation seen by particles
In the same way that we extended Pope’s model (Pope and Chen 1990) for fluid particles in Chap. 3
using a linear combination of Ornstein-Uhlenbeck processes, we propose here a multifractal model
adapted to the dissipation seen by inertial particles. We recall that the idea of such a process is to
reproduce by means of Ornstein Uhlenbeck processes the infinity of characteristic scales of vor-
tices between the largest scale, and the smallest scales (respectively TL and τη, in the case of fluid
particles).

Figure 8.2 shows the autocorrelation function of the process χ@p for different Stokes numbers. A
rapid reading of this graph allows to identify two remarkable times for each plot: an initial time for
which the autocorrelation remains very strong and approximately equal to 1, and the final time for
which the autocorrelation reaches null values. The maximum correlation time, TL is unchanged
whatever the relaxation time of the particles. On the other hand, the smallest characteristic time,
referred to as tχ@p, decreases with the Stokes number. It is approximately τη for fluid particles,
but clearly decreases for inertial particles, since the latter do not maintain the correlation over such
a “long” time. We have seen in Chap. 5 how, for a high Reynolds number, a sum of correlated
Ornstein-Uhlenbeck processes could better reproduce the process χ for fluid particles. It is quite
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(a) (b)

Figure 8.3. Autocorrelation of χ@p for different Stokes number with associated models in dotted
lines (a). Corresponding minimum characteristic time scales are plotted in (b) and compared with an

empirical model in dotted line. The dataset is from Lanotte et al. (2011)

clear that the same holds for the processes following inertial particles, and is even more relevant
as the correlation range is extended in Fig. 8.2.

We propose the following model, already established in Sec. 5.2.1, and for which we replace τη by
tχ@p:

X@p
t ≡

∫ ∞

0

Y x
t

1√
πx

(
gTL

(x)− gtχ@p
(x)
)
dx ≈

N∑
i=1

ωiY
xi
t . (8.19)

The geometric quadrature with N points gives:

for i = 1, ..., N


xi =

1

TL

(
TL
tχ@p

) i−1/2
N

ω̃i =
1

√
xi
∆xi,

, where ∆xi =
1

TL

(
TL
tχ@p

) i
N

− 1

TL

(
TL
tχ@p

) i−1
N

.

(8.20)

The weights are normalized to match a unit variance. The normalizing factor R is given by:

R =

(∑
i,j

ωiωj

xi + xj

)−1/2

, (8.21)

and the final weights are ωi = Rω̃i.

The best fit for the autocorrelations in Fig. 8.3(a) are obtained for the characteristic times tχ@p

reported in Fig. 8.3(b). A large number of quadrature points N were used to optimize the conver-
gence towards the analytic process. The optimal time scales are obtained by minimizing the least
square error between the autocorrelation of the model and the one of the data.
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The characteristic time scales are reported in Fig. 8.3(b), and an interpolation is performed to obtain
the dashed line with a power law scaling tχ@p = 2τηSt

−0.6. This scaling holds for intermediate
and large Stokes numbers, but it is not consistent for very small Stokes numbers and for tracers.
Therefore, we suggest

tχ@p = min(2τη, 2τηSt
−0.6). (8.22)

More accurate models could certainly be proposed, in particular to better predict the behavior of
particles for 0 ≤ St ≤ 1, but the number of such Stokes numbers in the database of Lanotte
et al. (2011) is not sufficient to propose a model on this range. However, the proposed model of
Eq. (8.22) is consistent with the tracer limit: as seen in Chap. 5, the smallest scale introduced in
the fluid particle model is of the order of magnitude of τη, and the inertial particle model predicts
tχ@p → 2τη.

Let us also note that the dependence on the Reynolds number is naturally integrated since we
recall that Re ∼ TL/τη and that these two time scales are precisely the two parameters of the
model. For large Reynolds and large Stokes numbers, the use of several processes becomes all the
more relevant compared to a single process as proposed by Pope and Chen (1990) since in this
case, the logarithmic autocorrelation range can extend on several decades.

Conclusion
This chapter presents the main stochastic modeling strategies for inertial particles in reduced-order
turbulence simulations, and reviews some common processes of the literature. A similar classifi-
cation to that proposed in Chap. 3 has been established and we summarize the main conclusions:

• A Brownian force added to particle velocity equation cannot retrieve the fluid particle limit
behavior. A model on the velocity or the acceleration of the fluid seen by inertial particles is
preferred.

• Parameters of the model T ⋆@p
L and σ⋆@p should be adapted to take into account particle iner-

tia, and existing models fail to predict particles statistics with intermediate Stokes numbers.
• Models consistent with K62 require the modeling of the local dissipation sampled along

inertial particles trajectory: ε⋆@p. Stochastic processes inspired from the model of Pope and
Chen (1990) are actually not thoroughly intermittent.

Therefore, we propose to extend the formalism developed in Chap. 5 in order to propose a multi-
fractal model for the dissipation seen by inertial particles. The empirical law for the model param-
eter should be further investigated, especially with different Reynolds numbers.

Obtaining stochastic equations for the particles is a key element in the derivation of associated
kinetic equations (Reeks 1991): they allow not only to model and simulate the probability density
functions of the variables of interest, but also provide a Monte Carlo evaluation of the PDF (Minier
and Peirano 2001).

However, let us insist on the fact that all these models, by nature diffusive, cannot reproduce the
statistics in two points of the disperse phase, namely the segregation of the particles. This is the
reason why we consider in the next chapters another strategy of particle models, based on structural
methods.





Chapter 9

Wavelet-based kinematic simulation

Following the conclusions of Chap. 7, establishing the necessity to use structural models to obtain
DNS statistics of particles while using ROS, we propose in this chapter a discussion on the kine-
matic simulation (KS) as classically used in the literature and we identify the potential flaws of
such an approach. In order to tackle them, we then suggest a new strategy, which makes use of
divergence-free wavelets random fields with enforced temporal evolution.

Wavelets, with compact support, are a powerful tool that, similar to sinusoidal functions, allow to
decompose any function in a Hilbert space. In addition, they are spatially localized, which is a
necessary condition in a two-way coupling context since the coupling between particles and fluid
can occur at local scales.

We show that the wavelet-based KS can reproduce the characteristic time and length scales of tur-
bulence and, thanks to a temporal evolution scheme of the synthetic field, Lagrangian statistics.

In this chapter, we are only interested in the dynamics and statistics of the carrier phase velocity
field, and the behavior of the particles in it (our final goal) will be treated in the next chapter.
After having pointed out the advantages and drawbacks of Fourier-based kinematic simulation in
Sec 9.1, we introduce wavelets in Sec. 9.2, and more specifically divergence-free wavelets, since
we intend to preserve the incompressibility of the flow. In Sec. 9.3, we develop the construction of
the new kinematic field, based on a wavelet representation. Sec. 9.4 validates the new KS against
3D DNS data.

9.1 Fourier-based kinematic simulation
The kinematic simulation (KS), introduced by Kraichnan (1970), Fung, Hunt, Malik, and Perkins
(1992), was widely studied in the literature as a model for stationary HIT, for example in Ijzer-
mans, Meneguz, and Reeks (2010), Gustavsson, Meneguz, Reeks, and Mehlig (2012), Murray,
Lightstone, and Tullis (2016a), Murray, Lightstone, and Tullis (2016b), Mercier (2020): it consists
of a superposition of sinus and cosinus functions, such as Fourier series synthesis:

u(x, t) =
Nκ∑
n=1

an cos(κn · x+ ωnt) + bn sin(κn · x+ ωnt) (9.1)

where Nκ is the number of modes, κn and ωn are the wavenumber vector and frequency of the nth
mode, and an and bn are the mode amplitudes. Spatial and weight coefficients an, bn and κn are
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Figure 9.1. Autocorrelation of the velocity of fluid particles along their trajectory on a KS of fluid for
different values of eddy turnover times.

chosen to match a given energy spectrum and to create a divergence-free flow. The wavenumber
vectors κn = κnen are chosen according to a geometric sequence for κn, ranging in the inertial
range and en is a unit vector in a random direction (i.e. a vector uniformly distributed over the unit
sphere). The amplitudes an and bn are chosen to have random directions perpendicular to en such
that: an = An×κn and bn = Bn×κn where An and Bn are random vectors with independent,
normally distributed components, each with zero mean and variance given by:

σ2
n = E(κn)∆κn, (9.2)

in order to reproduce an energy spectrum prescribed by a model. Temporal coefficients ωn are
meant to represent the eddy turnover time associated to each wavelength.

In our opinion, there are some limitations to the use of such a KS, especially in the context where
it is used to mimic the turbulent carrier phase seen by some inertial particles:

• Figure 9.1 shows the autocorrelation of fluid particle velocity for different values of λ, where
ωn ∝ λ. The oscillating behavior observed for λ ̸= 0 is highly unrealistic, we have already
seen in Chap. 3 that the autocorrelation function of the particle velocity can be modeled by
a decreasing exponential function. This oscillating behavior was also reported by Murray,
Lightstone, and Tullis (2016b) who prescribed using λ = 0.

• However, a frozen fluid is not an appropriate turbulence model: without sweeping, the nature
of particle clustering is fundamentally changed. In the absence of collisions, particles with
Stη < 1 will therefore accumulate indefinitely around the equilibrium points of the flow.
The lack of temporality could also explain the difficulty in mapping Eulerian and Lagrangian
scales, a problem raised in the conclusion of Murray, Lightstone, and Tullis (2016a).

• Enforcing a periodic condition on such a synthetic field considerably reduces the realizable
phases space for the κn. The simulation method chosen here consists in considering only
κn wavevectors with integer coordinates. The number of degrees of freedom for the random
sampling of the small κn is very limited in this case, and the obtained energy spectra are
discrete and very noisy.
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Figure 9.2. Autocorrelation of the velocity of fluid particles along their trajectory on a Fourier-based
KS of fluid. Figure from Mercier (2020).

• The Eulerian spectrum of the synthetic fluid is sparse by construction, which is not the case
for real turbulence

• In his thesis, Mercier (2020) used KS to investigate reduction of fluid description, since KS
allow to master the probability space associated to the set of turbulent fluids, which is not
possible with solutions of the Navier-Stokes equations. KS provides satisfying agreement
with turbulence statistics for his study (Thomson and Devenish 2005), but he pointed out the
divergence of the velocity autocorrelation of tracersRvp

L (τ)/σ2
vp = ⟨vp(t)vp(t+τ)⟩/⟨vp(t)2⟩,

reported in Fig. 9.2. Normally, fluid particle velocities should be completely uncorrelated
after a very long time, and the autocorrelation should tend towards 0.

We assume that the oscillating and divergent behavior of the Lagrangian statistics could be at-
tributed to the non-compactness of the cosinus and sinus modes. Therefore, we are exploring a
different approach for kinematic simulation, and we present a new framework with the following
specifications:

(i) The synthetic fluid is spatially correlated with compact modes ;
(ii) It is a divergence-free flow, to recover the correct fluid particle behavior ;

(iii) It can reproduce any energy spectrum ;
(iv) The temporal correlation can be fitted to map Eulerian scales with Lagrangian ones ;
(v) Particles one and two-point DNS-like statistics can be recovered ;

(vi) The flow must be compatible with LES framework and computationally affordable (of the
order of magnitude of the LES computational cost).

In App. B, we propose a first approach to kinematic simulation, based on the superposition of
Gaussian fields, whose numerical modes are compact. Although the classic Lagrangian and Eule-
rian statistics of fluid and inertial particles can be recovered, the use of such a tool requires a large
memory. In the following, we explore the use of wavelets to define a new kinematic simulation
framework and next section introduces the main tools for wavelets.
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9.2 Multiresolution Analysis
Multiresolution analysis (MRA) wavelets are approximation spaces generated by function bases.
In the literature, the wavelet decomposition was first used for the analysis of turbulent flows (Farge
1992; Meneveau 1991) then later for the resolution of the 2D Navier-Stokes equations (Farge,
Kevlahan, Perrier, and Goirand 1996), based on Galerkin approaches. However, the incompress-
ibility of the flow is not guaranteed and recent works propose an extension to 3D equations in
which the resolution of the Poisson equation is necessary to ensure the divergence-free of the flow
(Kevlahan and Vasilyev 2005).

Another strategy relying on divergence-free wavelets, first introduced by Lemarié-Rieusset (1992),
have been used for the analysis of 2D/3D turbulent flows (Albukrek, Urban, Rempfer, and Lumley
2002; Deriaz and Perrier 2006). With a compact support, they can take into account boundary
conditions, contrary to classical approaches only applicable for periodic flows (Urban 2002).

After having recalled some definitions and properties essential to the understanding of the wavelets
transform, we focus on its implementation. The reader is referred to the book of Kahane and
Lemarié-Rieusset (1995) for a detailed description of wavelets. We first consider the case of one-
dimensional real functions. Then we extend the construction to multi-dimensional spaces. Finally,
we introduce the divergence-free wavelets.

9.2.1 Introduction to wavelets
Definition 9.2.1 A Riesz basis {bn, n ∈ N} of a real Hilbert space E is a set of elements of E
verifying:

∀f ∈ E, ∃ (cn)n∈N ∈ EN such that lim
n→+∞

∥∥∥∥∥f −
n∑

k=0

ckbk

∥∥∥∥∥ = 0 (9.3)

and

∃A,B ∈ R∗
+ such that A

+∞∑
n=0

|cn|2 ≤ ∥f∥2 ≤ B

+∞∑
n=0

|cn|2. (9.4)

First, we consider the space of one-dimensional square-integrable functions L2(R). MRA is de-
fined as a sequence of embedded sub-spaces that goes from the finest (small scale or high resolu-
tion) to the coarsest (large scale or low resolution) and such that if a function belongs to one of
these spaces Vj , the function zoomed by a factor of 2 belongs to the next space. More precisely,
we have:
Definition 9.2.2 A sequence of closed sub-spaces (Vj)j∈Z of L2(R) is a MRA if ∀j ∈ Z,

• Vj ⊂ Vj−1

•
⋂
j∈Z

Vj = {0} and
⋃
j∈Z

Vj = L2(R)

• Dilatation: f ∈ Vj ⇔ f(2·) ∈ Vj−1

• Translation: f ∈ Vj ⇒ ∀k ∈ Z, f (.− k) ∈ Vj
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Remark 9.2.3 The invariance by dilatation and translation implies that there exists a function
φ ∈ V0, called scaling function, such that the family {φ(·−k)}k∈Z is a Riesz basis. Therefore, each
space Vj is generated by the family of functions {φj,k; k ∈ Z} with φj,k(x) = 2j/2φ

(
2jx− k

)
,

where the parameter j defines the level of detail.

It follows that any function fJ ∈ VJ can be decomposed into the basis of functions:

fJ(x) = 2J/2
∑
k∈Z

cJ,kφ(2
Jx− k). (9.5)

Let us define the basis of the supplementary spaces Wj:

Vj+1 = Vj ⊕Wj, (9.6)

where the sum Vj ⊕Wj is direct. Let us introduce a function ψ, called mother wavelet such that
the family of functions {ψ(.− k); k ∈ Z} generates a space W0. Here again, the successive spaces
Wj can be generated by the families of functions ψj,k = 2j/2ψ

(
2j · −k

)
, the so-called daughter

wavelets. Iterating this decomposition of Vj provides the MRA (Vj) and the associated wavelet
spaces Wℓ:

Vj = V0

j−1⊕
ℓ=0

Wℓ, (9.7)

which allows to write when j tends to infinity, the wavelet decomposition of the whole space
L2(R):

L2(R) = V0

+∞⊕
ℓ=0

Wℓ. (9.8)

Thus, it follows that any function f ∈ L2(R) can be decomposed into the basis of functions
{φk, ψj,k; j ≥ 0, k ∈ Z}, with φk = φ(· − k) and ψj,k = 2j/2ψ

(
2j · −k

)
:

f =
∑
k∈Z

ckφk +
∑
j≥0

∑
k∈Z

dj,kψj,k. (9.9)

An example of a MRA basis, the Haar family, is given in Fig. 9.3 where we plot the scaling and
wavelet functions. An other example of wavelet, the spline function of degree 1, is given in Fig. 9.4
to illustrate the dilatation and translation. In dotted lines, four possible translations of the wavelet
at level j = 2 are plotted, for a periodic function in [0, 1]. At level j = 3, the support of the
wavelet (in dashed lines) is twice as small and its amplitude is twice as large to preserve its norm.
The same goes for the higher levels and we notice that the information is more and more localized
in space, and the generated field is less regular.

9.2.2 Multi-dimensional wavelets
One can extend the notion of multiresolution analysis to spaces of any dimension. The simplest
way is to perform tensor products between wavelets and scale functions of the same level (isotropic
wavelets). In the following, we consider the case of two-dimensional spaces which can be directly
generalized to higher dimensions.
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(a) Scaling function φ (b) Wavelet function ψ

Figure 9.3. Scaling function (a) and wavelet function (b) for the Haar family.

Figure 9.4. Example of translated and dilated wavelets of level 2 (dotted lines), 3 (dashed lines), 4 (full
line).
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9.2.2.1 Decomposition of a scalar field

We consider two MRA of L2(R): (V 0
j ) and (V 1

j ) respectively associated to the scale and wavelets
couple-functions (φ0, ψ0) and (φ1, ψ1). The MRA space tensor product V 0

J ⊗ V 1
J is generated by

the scale functions
{
φ0j,k1(x)φ1j,k2(y); (k1, k2) ∈ Z2

}
, where φ0j,k1(x) = 2j/2φ0

(
2jx− k1

)
and

the same goes for φ1j,k2 . The first coordinate is decomposed in the MRA (V 0
j ), and the second one

into (V 1
j ). Then any function fJ of V 0

J ⊗ V 1
J can be written as:

fJ(x, y) =
∑

k1,k2∈Z
cJ,k1,k22

Jφ0

(
2Jx− k1

)
φ1

(
2Jy − k2

)
. (9.10)

Iterating the decomposition of VJ+1 using the supplementary spaces, we have:

V 0
J+1 ⊗ V 1

J+1 = (V 0
J ⊕W 0

J )⊗ (V 1
J ⊕W 1

J )

= (V 0
J ⊗ V 1

J )⊕ (W 0
J ⊗ V 1

J )⊕ (V 0
J ⊗W 1

J )⊕ (W 0
J ⊗W 1

J )

= (V 0
0 ⊗ V 1

0 )

⊕ (W 0
0 ⊗ V 1

0 )⊕ (V 0
0 ⊗W 1

0 )⊕ (W 0
0 ⊗W 1

0 )

⊕...

⊕ (W 0
J ⊗ V 1

J )⊕ (V 0
J ⊗W 1

J )⊕ (W 0
J ⊗W 1

J ) ,

(9.11)

which leads to the following decomposition of fJ , introducing the daughter wavelets ψ1j,k and
ψ0,j,k:

fJ(x, y) =
∑

(k1,k2)∈Z2

ck1,k2φ0 (x− k1)φ1 (y − k2)

+
J−1∑
j=0

(∑
k1,k2

d
(1,0)
j,k1,k2

ψ0j,k1(x)φ1j,k2(y) +
∑
k1,k2

d
(0,1)
j,k1,k2

φ0j,k1(x)ψ1j,k2(y)

+
∑
k1,k2

d
(1,1)
j,k1,k2

ψ0j,k1(x)ψ1j,k2(y)

) (9.12)

This decomposition involves three types of wavelets:
• one along the x direction: ψ(1,0)(x, y) = ψ0(x)φ1(y). Coefficients in the decomposition as-

sociated to such terms are called horizontal detail coefficients, because the wavelet function
is applied in the horizontal direction;

• one along the y direction: ψ(0,1)(x, y) = φ0(x)ψ1(y), respectively with vertical detail coeffi-
cients;

• one along both directions at once: ψ(1,1)(x, y) = ψ0(x)ψ1(y), associated to diagonal coeffi-
cients;

and one scaling function: φ(0,0)(x, y) = φ0(x)φ1(y).

Let us consider the decomposition of an image of size
(
2J × 2J

)
, given in Fig. 9.5(a). The first de-

composition generates image fields of size
(
2J−1 × 2J−1

)
, whose horizontal, vertical and diagonal

coefficients are represented in the upper right, lower left and lower right quarters of Fig. 9.5(b).
The second level decomposition is given in the same way in the upper left quarter, with the same
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(a) Original image (b) Decomposition on three levels

Figure 9.5. An original image from Matlab library (a) is decomposed on three levels (b). Coefficients of
the decomposition are displayed in the following order: upper-left are successive level of decomposition
and extreme upper left are the approximation coefficients. Upper-right are the horizontal detail (HD)
coefficients, bottom left are the vertical detail (VD) coefficients and bottom right corresponds to the

diagonal detail (DD) coefficients.

pattern. These fields are naturally of size
(
2J−2 × 2J−2

)
. As the decomposition stops at level 3,

it remains the so-called approximation coefficients of level 3: cJ−3,k1,k2 . They are given by the
partial decomposition:

fJ(x, y) =
∑

(k1,k2)∈Z2

cJ−3,k1,k2φ0,J−3,k1 (x)φ1,J−3,k2 (y)

+
J−1∑

j=J−3

(∑
k1,k2

d
(1,0)
j,k1,k2

ψ0j,k1(x)φ1j,k2(y) +
∑
k1,k2

d
(0,1)
j,k1,k2

φ0j,k1(x)ψ1j,k2(y)

+
∑
k1,k2

d
(1,1)
j,k1,k2

ψ0j,k1(x)ψ1j,k2(y)

) (9.13)

The interest of this wavelet basis lies in the fact that their support is proportional to 2−j in each
direction, and thus preserves a spatial and frequency localization, level by level, in all directions at
once. This is why this decomposition is called isotropic.

9.2.2.2 Decomposition of a vector field

To decompose a vector field u ∈ L2(R)2, we assume that we have two MRA (V 0
j ) and (V 1

j ). We
then decompose the two-dimensional function into the MRA tensor (V 1

j ⊗ V 0
j )× (V 0

j ⊗ V 1
j ): the

first component of the field, ux, is decomposed in the (V 1
j ⊗ V 0

j ) basis, and the second one, uy, in
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the (V 0
j ⊗ V 1

j ) basis.

In the case of 2D isotropic wavelets, the two-dimensional scaling functions Φ1,Φ2 and canonical
wavelets Ψε

1,Ψ
ε
2 are given by:

Φ1(x, y) =

 φ1(x)φ0(y)

0

 Φ2(x, y) =

 0

φ0(x)φ1(y)


Ψ

(1,0)
1 (x, y) =

 ψ1(x)φ0(y)

0

 Ψ
(1,0)
2 (x, y) =

 0

ψ0(x)φ1(y)


Ψ

(0,1)
1 (x, y) =

 φ1(x)ψ0(y)

0

 Ψ
(0,1)
2 (x, y) =

 0

φ0(x)ψ1(y)


Ψ

(1,1)
1 (x, y) =

 ψ1(x)ψ0(y)

0

 Ψ
(1,1)
2 (x, y) =

 0

ψ0(x)ψ1(y)



(9.14)

The functions
{
Ψε

ij,k (x, y) = 2jΨε
i

(
2jx− k1, 2

jy − k2
)}

with j ∈ Z,k = (k1, k2) ∈ Z2, ε ∈
{(0, 1), (1, 0), (1, 1)}, i = 1, 2, form a Riesz basis of

(
L2
(
R2
))2. Any vectorial function u =

(ux, uy) ∈
(
L2
(
R2
))2 can be decomposed in this basis:

ux =
∑
j∈Z

∑
k∈Z2

(
d
(1,0)
1,j,kΨ

(1,0)
1,j,k + d

(0,1)
1,j,kΨ

(0,1)
1,j,k + d

(1,1)
1,j,kΨ

(1,1)
1,j,k

)
,

uy =
∑
j∈Z

∑
k∈Z2

(
d
(1,0)
2,j,kΨ

(1,0)
2,j,k + d

(0,1)
2,j,kΨ

(0,1)
2,j,k + d

(1,1)
2,j,kΨ

(1,1)
2,j,k

)
.

(9.15)

One can note that the terms in ux represent the wavelet decomposition in the MRA
(
V 1
j ⊗ V 0

j

)
,

while the terms in uy correspond to the decomposition in the MRA
(
V 0
j ⊗ V 1

j

)
.

9.2.3 Divergence-free wavelets
Divergence-free wavelets were introduced by Lemarié-Rieusset (1992) in order to provide bases
suitable to represent the incompressible Navier-Stokes solution, in two and three dimensions. In
that case, Lemarié-Rieusset (1994) has shown that compactly supported wavelets, used for non-
periodic problems, can only be supported by biorthogonal wavelet bases. This means that the sum
Vj ⊕Wj is direct, but not orthogonal, and the choice of Wj is not unique. For the definition and
properties of biorthogonal MRA and associated wavelets, the reader is referred to Kahane (1985).

9.2.3.1 Definition

The construction of divergence-free wavelets relies on the existence of two MRA related by differ-
entiation and integration.
Proposition 9.2.4 Let (V 1

j ) be a multiresolution analysis associated to the scaling function φ1,
such that φ1 ∈ C1+ϵ for any ϵ > 0 and a wavelet ψ1. Then there exists a MRA (V 0

j ) associated to
a scaling function φ0 and a wavelet function ψ0 verifying:

φ′
1(x) = φ0(x)− φ0(x− 1), ψ′

1(x) = 4ψ0(x) (9.16)
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(a) (b)

Figure 9.6. Scaling functions and wavelets for splines of degree 1 (a) and degree 2 (b.

The proof of this property and the construction of such ARMs is given in Deriaz (2006) and we
are only interested in the following particular case:
Example 9.2.5 Biorthogonal splines functions, used in Kahane and Lemarié-Rieusset (1995), pro-
vide a simple framework for such MRAs. Their scaling functions are B-splines, which are defined
piecewise by polynomials and the associated wavelets can be obtained by linear and translated
combination of B-splines. For example, B-splines of degree 1 and 2, φ0 and φ1, associated to
wavelets ψ0 and ψ1 are represented in Fig. 9.6 and verify property 9.2.4.

Definition 9.2.6 Let two MRAs (V 0
j ) and (V 1

j ), verifying Prop. 9.2.4. We define the following
two-dimensional scaling function:

Φdiv(x, y) =

 φ1(x)φ
′
1(y)

−φ′
1(x)φ1(y)

 =

 φ1(x)[φ0(y)− φ0(y − 1)]

−[φ0(x)− φ0(x− 1)]φ1(y)

 , (9.17)

along with the divergence-free vector wavelets, given by:

Ψ
(1,0)
div (x, y) = −1

4

 ψ1(x)φ
′
1(y)

−ψ′
1(x)φ1(y)

 = −1

4

 ψ1(x)[φ0(y)− φ0(y − 1)]

−4ψ0(x)φ1(y)


Ψ

(0,1)
div (x, y) =

1

4

 φ1(x)ψ
′
1(y)

−φ′
1(x)ψ1(y)

 =
1

4

 4φ1(x)ψ0(y)

−[φ0(x)− φ0(x− 1)]ψ1(y)


Ψ

(1,1)
div (x, y) =

1

4

 ψ1(x)ψ
′
1(y)

−ψ′
1(x)ψ1(y)

 =
1

4

 4ψ1(x)ψ0(y)

−4ψ0(x)ψ1(y)


(9.18)

These define isotropic divergence-free wavelets in R2.

Taking the example 9.2.5 of spline functions, Fig. 9.7(a) shows the two-dimensional isotropic
scale function. The resulting field looks like a symmetric vortex. Figures 9.7(b) and 9.7(c) shows
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(a) Φdiv (b) Ψ
(1,0)
div

(c) Ψ
(0,1)
div (d) Ψ

(1,1)
div

(e) Taylor Green vortices

Figure 9.7. (a-d) Scaling functions and divergence-free 2D wavelets for the MRA spline functions and
(d) Taylor Green vortices.
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the Ψ
(1,0)
div and Ψ

(0,1)
div functions respectively. We observe two opposite vortices, stretched in the

preferential direction. Finally, Fig. 9.7(d) shows the last wavelet function, Ψ(1,1)
div , and we observe

four vortices. The resulting field looks like Taylor Green vortices of Fig. 9.7(e), but with compact
support: the field is fading on the edges.

9.2.3.2 Change of basis

Divergence-free wavelets can be expressed in terms of linear combinations of canonical wavelets
Ψε

i . More precisely, for each ε ∈ {(0, 1), (1, 0), (1, 1)}, the divergence-free wavelet Ψε
div is defined

above and an additional function Ψε
n can be introduced such that:

vect
{
Ψε

1,j,k,Ψ
ε
2,j,k|k ∈ Z2

}
= vect

{
Ψε

divj,k|k ∈ Z2
}
⊕ vect

{
Ψε

nj,k|k ∈ Z2
}
, (9.19)

where the sum is direct but not orthogonal: the wavelet Ψε
n is not divergence-free and many options

for change-of-basis exist. For example, following Deriaz and Perrier (2006), we can have: Ψ
(1,0)
1

Ψ
(1,0)
2

−→

 Ψ
(1,0)
div = Ψ

(1,0)
2 − 1

4

[
Ψ

(1,0)
1 −Ψ

(1,0)
1 (x, y − 1)

]
Ψ

(1,0)
n = Ψ

(1,0)
1 Ψ

(0,1)
1

Ψ
(0,1)
2

−→

 Ψ
(0,1)
div = Ψ

(0,1)
1 − 1

4

[
Ψ

(0,1)
2 −Ψ

(0,1)
2 (x− 1, y)

]
Ψ

(0,1)
n = Ψ

(0,1)
2 Ψ

(1,1)
1

Ψ
(1,1)
2

−→

 Ψ
(1,1)
div = Ψ

(1,1)
1 −Ψ

(1,1)
2

Ψ
(1,1)
n = Ψ

(1,1)
1 +Ψ

(1,1)
2

(9.20)

We can then rewrite the decomposition of u in such basis:

u =
∑
j∈Z

∑
k∈Z2

(
d
(1,0)
divj,kΨ

(1,0)
divj,k + d

(0,1)
divj,kΨ

(0,1)
divj,k + d

(1,1)
divj,kΨ

(1,1)
divj,k

)
+
∑
j∈Z

∑
k∈Z2

(
d
(1,0)
nj,k Ψ

(1,0)
nj,k + d

(0,1)
nj,k Ψ

(0,1)
nj,k + d

(1,1)
nj,k Ψ

(1,1)
nj,k

) (9.21)

where the new coefficients dεdivj,k and dεnj,k are expressed directly as a function of the canonical
coefficients :

(ddiv )


d
(1,0)
div j,k = d

(1,0)
2,j,k

d
(0,1)
div j,k = d

(0,1)
1,j,k

d
(1,1)
div j,k = 1

2
d
(1,1)
1,j,k − 1

2
d
(1,1)
2,j,k

(dn)


d
(1,0)
nj,k = d

(1,0)
1,j,k +

1
4
d
(1,0)
2,j,k − 1

4
d
(1,0)
2,j,k1,k2−1

d
(0,1)
nj,k = d

(0,1)
2,j,k +

1
4
d
(0,1)
1,j,k − 1

4
d
(0,1)
1,j,k1−1,k2

d
(1,1)
nj,k = 1

2
d
(1,1)
1,j,k +

1
2
d
(1,1)
2,j,k

(9.22)

By construction, the incompressibility condition divu = 0 is equivalent to dεnj,k = 0, ∀j,k, ε.
The decomposition in the divergence-free wavelet basis has been successfully used for the analysis
of turbulent fields by Deriaz and Perrier (2006), and in our case we are rather interested in the
generation of divergence-free synthetic fields.



9.3 - A NEW KINEMATIC SIMULATION BASED ON WAVELETS 203

9.2.3.3 Extension to the 3D case

In three dimension, the decomposition of (L(R3))3) is given by:

(V 1
j ⊗ V 0

j ⊗ V 0
j )× (V 0

j ⊗ V 1
j ⊗ V 0

j )× (V 0
j ⊗ V 0

j ⊗ V 1
j ). (9.23)

There are 21 canonical wavelets, with the following type:

ε ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)},

which can lead to 14 generating divergence-free wavelets Ψε
div, and 7 supplementary wavelets Ψε

n.
The construction of these wavelets is not detailed here and the reader is referred to the appendices
of the thesis of Deriaz (2006) for their implementation.

Now that we have introduced this multi-dimensional divergence-free wavelet basis, let us investi-
gate how to apply it to propose a new structural turbulence model.

9.3 A new kinematic simulation based on wavelets

9.3.1 Construction of a new synthetic velocity field
We have already discussed the drawbacks of the Fourier-based kinematic simulation, which re-
lies on a Fourier decomposition in Eq. (9.1) and involves sinus and cosinus functions, which are
non-compact functions. Instead of sine functions, we want to use a wavelet decomposition, to take
advantage of the compactness of the modes and the locality of the information. In the following,
we investigate this change of formalism and we show how the parameters of the model can be
adjusted to retrieve DNS statistics.

We aim to generate a Nd-dimensional velocity field in a box of length L. We suggest the following
form for the velocity field, replacing the Fourier decomposition with a multiresolution analysis:

u =

jmax∑
j=jmin

∑
k

∑
ε

dεdivj,kΨ
ε
divj,k . (9.24)

Compared to the general decomposition derived in Eq. (9.21), all coefficients dεn,j,k are set to 0 to
ensure divergence-free, the sum is truncated between jmin and jmax in order to define finite scale
sizes, and k does not run over all natural integers of dimension Nd: it is limited in spatial dimen-
sion to the box of length L.

The divergence-free wavelet Ψε
divj,k, of size ℓj = L/2j and of type ε is located at position ℓk, with

k ∈ [[1 ; 2j]]Nd . It is weighted by a random coefficient dεdivj,k whose distribution will be presented
in the following. By superposing different wavelet functions of different sizes and at different
positions, one can obtain as an example the typical flow represented in Fig. 9.8.

Note that for a periodic flow, we impose a periodic condition on the wavelets:

∀ε,∀k,∀j,∀i ∈ {1, ..., Nd}, Ψε
divj,k(x+ Lei) = Ψε

divj,k(x). (9.25)
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Figure 9.8. 2D velocity field generated with random coefficients dεdiv in Eq. (9.24).

(a) ℓj = 2−3 (b) ℓj = 2−5 (c) Energy Spectrum

Figure 9.9. Snapshots of a velocity component for 2D flows generated with a single level j = 3 (a) and
j = 5 (b). (c) is the energy spectra of u generated with single levels j.

This amounts to imposing periodicity on the basis wavelets and scaling functions :

ψi(x+ L) = ψi(x), and φi(x+ L) = φi(x), with i = 0, 1 (9.26)

Conversely, for particular geometries with boundary conditions, such as in Urban (1994), it may
be useful to define specific wavelets which ensure zero velocity conditions at the boundary for the
function and for its derivatives. The reader is referred to Deriaz (2006) for the construction of such
wavelets.

The model described by Eq. (9.24) ensures the spatial correlation of the flow, and as opposed to
the Fourier-based KS, the velocity field has compact modes, inherited from wavelets properties.
Moreover, the use of divergence-free wavelets naturally ensures the divergence free nature of the
sum. Those properties satisfy points (i) and (ii) of the requirements of Sec. 9.1.
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Figure 9.10. Reference variances computed for single-level wavelet fields. The blue curve is for the
2D field, while the red one represents the 3D reference values. The dashed and dotted lines represent

their respective analytical law given in Eq. (9.28).

9.3.1.1 Energy spectrum and characteristic length scales

Each level of detail j is associated with vortices of size ℓj = L/2j , where L is the dimension of
the box, each vortex of level j having thus a specific contribution to the global energy spectrum.
This is illustrated in Fig. 9.9(a) and 9.9(b), where two examples of synthetic fluids reconstructed
with a single level j are given. Their corresponding energy spectra are plotted in Fig. 9.9(c) and
the maximum of the energy is found for a wavenumber of the order of magnitude κj = 2π/ℓj .

The energy associated with level j thus depends directly on the values of dεdivj,k. Their distribution
must have zero mean, because we want to model a HIT, whose mean velocity is zero. On the other
hand, we can control the variance of the distribution: the higher it is, the higher the associated
energy level is. Therefore, we propose a Gaussian distribution of coefficients, with variance de-
pending on the associated level: dεdivj,k ∼ N (0, σ2

j ). The objective is to find a model for σj to
reproduce a given energy spectrum.

We recall that in the Fourier-based KS, the amplitudes of the vectors an and bn are chosen such
that the appropriate energy density at each particular scale is enforced:

|a2
n| = |b2n| = 2E(κn)∆κn, where ∆κn =


κn+1 − κn

2
, if n = 1,

κn+1 − κn−1

2
, if 2 ≤ n ≤ N − 1,

κn − κn−1

2
, if n = N.

(9.27)

For the wavelet-based KS, we want to enforce the discrete level of energy at level j, but unlike the
case of Fourier modes, we do not know analytically the energy level of each mode. We therefore
calculate the energy of each level for a normalized distribution of coefficients dεdivj,k ∼ N (0, 1).
Figure 9.10 shows the measured variance of single-level wavelet fields (i.e. jmin = jmax). An
empirical law can be obtained for two and three-dimensional flows:
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σ2
j,ref = 0.24

(
ℓj
ℓjmax

)−2

, in 2D

σ2
j,ref = 0.54

(
ℓj
ℓjmax

)−3.1

, in 3D.
(9.28)

Note that these laws are only valid for the spline wavelet we have chosen, and that they will have
to be recalculated for a different choice of MRA.

In the wavelet-based KS, the energy of each level j is controlled by adapting the variance of
the Gaussian law for the coefficient of this level: dεdivj,k ∼ N (0, σ2

j ). We therefore propose the
following scaling law for σj :

σ2
j = E(κj)∆κj/σ

2
j,ref. (9.29)

Energy spectrum models can be reproduced, for example following

E(κ) = σ2
uκ

2/3
0 κ−5/3, ∀κ ∈ [κmin;κmax] (9.30)

which is commonly used in the literature (Murray, Lightstone, and Tullis 2016b). Figure 9.11(a)
compares the model with energy spectra obtained with wavelet and Fourier-based KS. The energy
spectrum obtained with wavelet fields reproduces well the prescribed model, except for the largest
and smallest values of the wavenumbers. Indeed, the degrees of freedom of the wavelet model
do not allow to control independently each wavenumber, but rather the bench of wavenumbers
involved in the representation of a given wavelet. The smallest and biggest wavelets (first and last
level) therefore the first and last wavelets will thus give the trends of the energy spectrum at the
smallest and largest wavenumbers.

Compared to the Fourier one, the wavelet spectrum is considerably smoother. In this comparison
lies the intrinsic difference between the Fourier and the wavelet approaches: the first one is very
resolved in frequency but does not give local information, while the second gives a less detailed
spectral resolution but a better information in space. Each of the wavelengths appearing in the
Fourier representation contributes to the spectrum at the associated discrete energy. In contrast,
each wavelet already covers a continuous set of wavelengths (Fig. 9.9(c)) and superimposed, these
spectra populate the spectrum continuously. The effect is all the more statistically converged by
the presence of these wavelets everywhere in the domain, since they are distributed in space.

The range of the spectrum model (and thus of the scales to represent) determines the parameters
jmin and jmax. Indeed, the levels of each wavelet j are related to their maximum wavenumber by
the following expression:

j = log2

(
L
2π
κj

)
(9.31)

and the knowledge of κmin and κmax thus sets the parameters jmin and jmax. For the spectrum model
given in Eq. (9.30), these wavenumbers are linked respectively to the integral scales L = 2π/κmin

and Kolmogorov scales η ∼ 2π/κmax. One can verify in Fig. 9.11(b) the change of the inertial
range when changing the extreme levels.



9.3 - A NEW KINEMATIC SIMULATION BASED ON WAVELETS 207

(a) (b)

Figure 9.11. Energy spectrum for linear model (a) ; and different inertial ranges obtained by changing
jmin and jmax (b). The black lines represent the characteristic slope −5/3.

Figure 9.12 represents one velocity component of the synthetic flow described by Eq. (9.24), with
different values of ℓmax. The lower ℓmax, the more details are present in the simulation, revealing
the presence of small and very located vortices.

9.3.1.2 Characteristic time scales

We can verify the scaling of the time scales with the parameters of the model. In Fig. 9.13, we
study the dependency of the Kolmogorov time scale with the two parameters, ℓmin and ℓmax, which
are respectively the smallest and the largest length scales in the flow. We obtain scaling in power
laws:

τη =
√
ν/ ⟨ε⟩ ∼ σ−1

u ℓ0.4minℓ
0.6
max, (9.32)

which are close to the theoretical ones, predicted by the Kolmogorov phenomenology in Sec. 1.2.4:

τη ∼ σ−1
u L1/3η2/3. (9.33)

We recall that the largest time scale in the flow is the autocorrelation time of the fluid particle
velocities, i.e. the Lagrangian integral time scale defined in Sec.1.2.4 by:

TL =
1

σ2
u

∫ +∞

0

Ru
L(τ) dτ (9.34)

Since TL ∼ σ−1
u L, it is also expected to scale with the largest scales in the flow. Figure 9.14 shows

the autocorrelation function of the velocity, for different values of ℓmin and ℓmax. The overlap of
dashed and full lines confirms the independence of the autocorrelation, hence TL, with the small
scales. On the other hand, there is a clear impact of the parameter jmin on the characteristic time
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(a) ℓmax = 2−3 (b) ℓmax = 2−5

(c) ℓmax = 2−7

Figure 9.12. Snapshot of a 2D velocity field obtained for different values of jmax ∈ {3, 5, 7} and fixed
jmin = 0 in a cubic box of size L = 1.
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(a) Scaling of τη with L (b) Scaling of τη with η

Figure 9.13. Kolmogorov time scale τη measured for different values of L ∼ ℓmin and compared with
a scaling law of power 0.4 (a) and different values of η ∼ ℓmax, compared with a scaling law of power

0.6.

Figure 9.14. Autocorrelation of the fluid particle velocity for different values of jmin (in the legend),
and jmax (full line: jmax = 5, dashed line: jmax = 6).
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(a) Energy spectrum (b) Autocorrelation

Figure 9.15. Comparison of the energy spectra (a) and Lagrangian velocity autocorrelation (b) between
the Passot-Pouquet turbulence and the wavelet model.

of autocorrelation TL.

We have thus shown that for a velocity field generated with Eq. (9.24), it is possible to adjust the
characteristic lengths and times of the model and to reproduce the universal behavior of the inertial
range. Before introducing a temporal evolution on this velocity field, let us validate this surrogate
as a frozen turbulence.

9.3.1.3 Validation with 2D frozen turbulence

We first validate the model by comparing the statistics observed in a two-dimensional frozen HIT
generated from the exponential spectral model introduced in Sec 2.3.2. The velocity field is pro-
duced on a 2562 grid and we enforce a variance σu = 1.

The wavelet-based KS is parametrized to reproduce the energy spectrum and the coefficients are
then fixed at jmin = jmax = 3. Figure 9.15(a) compares the two spectra, the one generated by the
spectral model and the one obtained with the wavelets. We notice peaks for large wavenumbers on
the wavelet spectrum. Indeed, as soon as the field is projected on a mesh such that Nx > 2jmax+1,
we can see these residual energies appearing at small scales. Their energy is however negligible
compared to the energy of the smallest scales at κmax and there is actually no interest in using such
a detailed resolution.

The Kolmogorov time scale of the spectral model is τη = 0.023, that of the wavelet model
τη = 0.021. Figure 9.15(b) compares the autocorrelation functions of the fluid particle veloci-
ties in the two simulations and finds good agreement. This confirms that the wavelet field is able to
reproduce not only Eulerian statistics such as the energy spectra, the TKE, the global dissipation,
but also Lagrangian statistics such as the velocity autocorrelation of fluid particles.

The comparison with a frozen DNS turbulence field being satisfying, we are now interested in
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reproducing the dynamics of the flow. Let us introduce the time evolution of this velocity field,
which is also a matter of improvement in the Fourier-based KS.

9.3.2 Evolution of the wavelet field

First, we propose to write a time evolution law directly on the coefficients. The constraints on
the evolution model are such that the stationarity of the flow must be preserved, as well as the
energy spectrum. Thus, at any time, the distribution of the coefficients must remain a Gaussian of
variance σj . We propose a stochastic Langevin model for each coefficient, which guarantees the
two properties mentioned above, and introduces an additional control parameter: the eddy turnover
time of that level TE,j:

d(dεdivj,k1,k2) = − 1

TE,j

dεdivj,k1,k2 dt+

√
2σ2

j

TE,j

dWt. (9.35)

The random variables are Gaussian, and driven by Ornstein-Uhlenbeck processes. They are sta-
tionary by construction (see Sec. 3.1.5), with variance σj and time scales TE,j . We introduce the
eddy turnover frequency ωj = T−1

E,j for which some models are already proposed in the litera-
ture, in the framework of Fourier-based KS. The most common expression for the eddy turnover
frequency is the following (Fung et al. 1992; Malik 1996):

ωj = λ
√
κ3jE(κj), (9.36)

which becomes ωj = λσuκ
1/3
0 κ

2/3
j considering the energy spectrum model of Eq. (9.30). More

recently, Osborne, Vassilicos, and Haigh (2005) suggested another form to improve the scalings of
Eulerian one-point two-time velocity structure functions:

ωj = λσuκj. (9.37)

In both models, the parameter λ controls the overall eddy turnover time. For very small values of
λ, all the eddies turnover times are very large and turbulence is almost frozen. In the following,
we will choose model of Eq. (9.36) but further investigations could be performed to examine the
impact of this choice on the overall statistics.

Figure 9.16 shows the velocity autocorrelation for different values of λ. We remark that for very
small values of λ (up to a frozen turbulence), the velocity can be negatively correlated and a brief
oscillating behavior can occur before reaching the total decorrelation. For larger values of λ, the
decrease of the autocorrelation function is monotonic and more rapid, and the Lagrangian integral
time scale TL is hence reduced. This is expected because the dynamic introduced in the temporal
equation decorrelates fluid particles velocities faster.

We notice, with an analysis similar to the one done in the previous chapter for Fig. 8.2, that the
parameter λ essentially impacts the first characteristic time of decorrelation, the one related to
small scales. Further studies should consider other models of ωj , with a weaker increase in κj to
avoid the rapid forcing of the small scales eddy turnover time.
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Figure 9.16. Lagrangian velocity autocorrelation, for jmin = 1 (hot colors) and jmin = 3 (cold colors),
with fixed jmax = 6. From dark to light shades, increasing values of λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}.

9.4 Validation with DNS

We also validate the wavelet-based KS by verifying its ability to reproduce some statistics of a 3D
flow obtained by DNS. The reference fields are simulated on a 1283 and 2563 mesh, using the DNS
Fieldz code.

First, we adapt the variance σj , following Eq. (9.29) in order to reproduce the reference energy
spectrum as closely as possible. These are given in Fig. 9.17(a) and 9.17(b) and we manage to
reproduce a very large part of the spectral scales, except the smallest scales, at the limit of the
resolution, for which the wavelet field does not reproduce the decrease of the energy content of the
DNS field.

Snapshots of velocity fields obtained in DNS (Figs. 9.18(a) and 9.18(b)), with the wavelet-based
KS (respectively Figs. 9.18(c) and 9.18(d)) and with a Fourier-based KS (Figs. 9.18(e) and 9.18(f))
for the two meshes can be compared, and we observe structures of similar size and intensity be-
tween the DNS and wavelet-based KS. The patterns appearing in the Fourier-based KS are very
stretched, and this anisotropy probably comes from discrete forcing at certain wavenumbers to im-
pose periodicity. Isotropic wavelets (Deriaz and Perrier 2006) allows on the contrary to avoid the
existence of elongated structures, which do not appear visibly in the DNS reference for HIT. Note
however that the use of anisotropic wavelets could be appropriate for flows with more singular
geometry or physics, for which a stretch or shear is resolved, and a preferential direction can be
better represented using these wavelets.

Although the wavelet field seems visually more similar to the reference one, it is necessary to es-
tablish proper metrics to assess it objectively. We have for example introduced the characteristic
quantities of turbulent systems in Chap. 1, which we can then compare. The Kolmogorov time
τη is respectively 0.17 for the DNS, 0.16 with the wavelet field and 0.14 with the Fourier one.
Figure 9.19 compares the autocorrelation functions of DNS, wavelet and Fourier-based KS for a
frozen and a dynamic flow. Both methods retrieve the exponential behavior of the DNS autocorre-
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(a) Nx = 128 (b) Nx = 256

Figure 9.17. Comparison of energy spectra between DNS, wavelet and Fourier-based KS forNx = 128
(a), and Nx = 256 (b).

lation for λ = 0. We thus conclude that ensuring the faithful reproduction of the energy spectrum,
i.e. the spatial scales, is sufficient to reproduce also the small and large temporal character scales
(namely τη and TL).

However, λ = 0 yields a field with unphysical steadiness and in the next chapter, we will fit its
value according to the expected particle preferential concentration. For λ = 0.5, the autocorre-
lation function of the wavelet-based KS decreases faster, thus reducing the Lagrangian integral
time scale of the simulation, as observed in Sec. 9.3.2, whereas the Fourier-based KS produces
oscillations. This spurious behavior of Fourier-based KS motivates the further investigation of the
wavelet model.
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(a) DNS with Nx = 128 (b) DNS with Nx = 256

(c) Wavelet field, Nx = 128 (d) Wavelet field, Nx = 256

(e) Fourier field, Nx = 128 (f) Fourier field, Nx = 256

Figure 9.18. Comparison of velocity snapshots for Nx = 128 (on the left), and Nx = 256 (on the
right). (a) and (b) correspond to DNS; (c) and (d) to wavelet-based KS; (e) and (f) to Fourier-based KS.
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Figure 9.19. Autocorrelation function of fluid particle velocity for DNS and both kinematic models, in
a frozen fluid and with λ = 0.5.

Conclusion
In conclusion, we have designed a new framework for kinematic simulation, based on divergence-
free wavelets. We have proposed an analytic expression for the synthetic flow, with a stochastic
Langevin equation for the temporal evolution of the coefficients. We have shown that parameters
of the model can be adjusted to retrieve all the important DNS features. Parameters are summa-
rized in Tab. 9.1.

This formalism has the same advantages as a Fourier-based kinematic simulation, namely its an-
alytic formulation and numerical simplicity, its similarity with the Kolmogorov picture of tur-
bulence. But as opposed to the sinus and cosinus functions used in the Fourier decomposition,
wavelets have a compact support and seem more adapted to represent other characteristics of real
turbulent flows.

Many additional studies could be conducted to validate such a surrogate by measuring fluid par-
ticle dispersion, velocity increment statistics (intermittency measure), dissipation, enstrophy, Q
criterion etc. The objective of our work is not necessarily to develop the most realistic turbulence
model, but rather to use it as a sub-filter model for the particles. In the next chapter, we are there-
fore interested in kinematic modeling in an attempt to recover the statistics of the disperse phase,
and in particular the segregation.



Parameter Description and control Model

jmin
Lowest level of wavelets
(largest length scales)

Integral length scale L = L/2jmin

jmax
Higher level of wavelets
(smallest length scales)

Kolmogorov length scale η = L/2jmax

σj

Variance of velocity at scale
ℓj , depends on the mode of
energy spectrum

σj = E(κj)∆κj/σ
2
j,ref.

dεdivj,k Details coefficients dεdivj,k ∼ N (0, σ2
j )

TE,j =
1/ωj

Eddy turnover time scales ωj = λ
√
κ3jE(κj) or ωj = λσuκj

λ Factor of turnover velocity Fit to retrieve Lagrangian autocorrelation

Evolution
Temporal evolution of the de-
tailed coefficients d(dεdivj) = − 1

TE,j

dεdivj dt+

√
2σ2

j

TE,j

dWt

Table 9.1. Summary of the wavelet-based KS model parameters
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Chapter 10

Particles dynamics in wavelet-based
kinematic simulation

This chapter studies the statistics of the disperse phase carried by a wavelet-based kinematic field.
In particular, we aim at evaluating the particle preferential concentration (PPC) and trajectory
crossing (PTC), which are key elements to model in view of a two-way context. We remind the
reader that the two-way coupling will be the subject of Part. V.

We highlight the influence of the Reynolds number on particle dynamics in wavelet-based kine-
matic simulations. In particular, the extent of the inertial zone produces PPC and PTC on a broader
range of scales. We then study the effect of the KS dynamics, using the time evolution scheme for
the coefficients introduced in Chap. 9. We observe that wavelet-based KS can reproduce results of
DNS by adjusting the control parameter of the model, λ.

In Sec. 10.1, we investigate the influence of the Reynolds number on the disperse phase statistics
in frozen turbulence, and Sec. 10.2 validates them quantitatively in a two-dimensional frozen flow.
Section 10.3 investigates the effect of λ, the parameter controlling the turnover time of vortices.
Validation against DNS and comparison with Fourier-based KS of particles statistics in HIT with
3D stationary turbulence are performed in Sec. 10.4.

10.1 Influence of the Reynolds number
We have seen in Chap. 6 that the preferential concentration of particles occurs when the relaxation
time of the particles is close to the Kolmogorov time: Stη ≈ 1. Actually, for an isolated vortex
of size ℓj , its proper characteristic time τj can be introduced and the relevant Stokes number to
characterize its interaction with particles is Stj = τp/τj (as this was done for Taylor Green vortices
in Sec. 6.2.1).

In turbulence, we recall that the Reynolds number is related to the separation of scales ReλsimTL/τη,
and the turbulence theories (Chap. 1) describe a cascade of vortices of different sizes and time
scales, ranging from the Kolmogorov time scale τη to the Lagrangian integral time scale TL. By
associating a Stokes number to each scale, we have StL ≤ Stj ≤ Stη. We already know from
Chap. 6 that Stη mainly characterizes PPC while StL controls PTC. Let us detail those phenomena
for increasing particle relaxation times:
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(a) Stη = 0.3 (b) Stη = 1

(c) Stη = 2 (d) Stη = 5

(e) Stη = 10 (f) Stη = 30

Figure 10.1. Particle number density fields obtained with wavelet-based KS with λ = 0, jmin = 1,
jmax = 5 at tf = 6. Eulerian fields are obtained with box projection on a 27 grid.



10.1 - INFLUENCE OF THE REYNOLDS NUMBER 221

• For St = 0, particles trace the fluid: if the divergence-free condition is well reproduced in
the simulation, particles should fill the space with the same distribution that the one initially
drawn.

• For Stη < 1, all the particles tend to align their velocity with the flow, and are ejected from
the center of vortices, as observed in Fig. 10.1(a).

• For Stη = 1, the segregation of particles is maximal in the Kolmogorov vortices, but for
bigger vortices, we have Stj < 1. Figure 10.1(b) shows strong heterogeneity of the disperse
phase with accumulation of particles around small vortices. This results in characteristic
small scales patterns in the number density field.

• For Stj = 1, particles mostly interact with vortices of size ℓj: they are ejected from the larger
vortices, hence increasing PPC, but they cross the smaller one, producing PTC. Depending
on the balance between those two phenomena, we can observe large scale patterns of PPC but
random uncorrelated motion at small scales. Figures 10.1(c) and 10.1(d) show the particle
number density fields for those intermediate Stokes numbers. Particle segregates around
larger vortices, resulting in bigger patterns in the density field.

• For StL > 1, all Stokes numbers are now larger than one, and all particles will pass through
vortices of any size without being greatly affected. The PTC occurs for all particles anywhere
in the flow. This is illustrated in Figs. 10.1(e) and 10.1(f) in which particles tend to sample
the space uniformly again.

Thus, the larger the Reynolds number, the more PPC and PTC phenomena are involved in a wide
range of scales, resulting in different type of patterns in the heterogeneity of the disperse phase.
Kinematic simulations can produce velocity fields with large inertial ranges at a very low cost and
thus we can observe a PPC and PTC specific to each scale (or Stokes number).

10.1.1 Particle preferential concentration
Figure 10.2 shows the evolution of particle preferential concentration with Stokes number Stη for
different inertial ranges, adapted with parameters jmin and jmax. The segregation is measured with
a box counting method, defined in Sec. 6.2.1.2, with resolutionNx = 26. The time of measurement
is adapted to each simulation, based on the Lagrangian integral time scale. We observe a shift of
the PPC curve towards larger Stokes numbers when extending the inertial range. In particular, for
TL/τη ≥ 3.75, the maximum of PPC is not reached for Stη = 1 anymore but rather for another
Stj = 1. This enhancement of PPC at larger Stokes numbers can be attributed to the interaction of
these large-inertial particles with larger scales introduced with the increase of jmax − jmin.

10.1.2 Random uncorrelated motion
In Chap. 6 we have introduced a measure of the random uncorrelated motion based on the mean
correlated and uncorrelated energies. The ratio of the mean correlated energy (MCE) with the mean
total energy (MTE) is plotted for different configurations in Fig. 10.3. As explained in Sec. 6.2.2,
we expect this measure to tend towards 1 for particles with very low inertia and to decrease as the
Stokes number rises.

Note that the ratio is not always exactly 1 for fluid particles and this discrepancy is related to the
chosen projection kernel. If it is too large compared to the smallest vortices, several particles in one
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Figure 10.2. PPC as a function of Stokes number Stη for different values of jmin and jmax. Inertial
ranges are enlarged (from dark to light colors). Corresponding Reynolds numbers can be estimated:
Reλ = {31, 40, 47, 62}. The parameter λ is set to 0 (frozen turbulence). Particle number density fields

are measured on a grid of size 26 at time tf = 10TL.

Figure 10.3. Evolution of mean correlated energies (MCE) with the Stokes number for different inertial
ranges. The parameter λ is set to 0 (frozen turbulence). Eulerian particle velocity fields are projected
on a grid of size 26. MCE as a function of Stokes number StL for different values of jmin and jmax.
Inertial ranges are enlarged (from dark to light colors). The parameter λ is set to 0 (frozen turbulence).

MCE fields are measured on a grid of size 26 when staionnary regime is reached.
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(a) Temporal evolution (b) Final segregation

Figure 10.4. (a) Comparison of the temporal evolution of segregation between the Passot-Pouquet
turbulence (full lines) and the wavelet model (dotted line). (b) Final segregation at tf ≈ 10TL.

“box” can have velocity dispersion, hence producing “uncorrelated energy”. Apart from this phe-
nomenon, which is indeed noticeable for the configurations with the smallest vortices, we observe
a good scaling of all curves when plotted as a function of Stokes numbers StL. This is consistent
with observations of the literature (Février, Simonin, and Squires 2005), showing no dependency
on the Reynolds number (see Fig. 6.5).

In Sec. 10.1, we have investigated the influence of the Reynolds number on the disperse phase
statistics in a frozen wavelet-based KS, and we show how the interaction between the particles
and the vortex structures control the dynamics of the disperse phase. A quantitative comparison is
performed using a two-dimensional flow obtained with DNS.

10.2 Validation with 2D frozen turbulence
In frozen turbulence, the characteristic times of vortices are relatively simple to estimate and are
related to characteristic length scales. This is already established for the Lagrangian integral time
scale, for which TL ∼ σ−1

u L , and for the Kolmogorov time scale: τη ∼ σ−1
u L1/3η2/3. Thus, we

can argue similarly with intermediate time scales, and we suppose that a vortex of size ℓj has a
characteristic time related to L and ℓj: τj ∼ σ−1

u L1/3ℓ
2/3
j .

We consider again the case of 2D frozen turbulence described in previous chapter, in Sec. 9.3.1.3.
Inertial particles are initially injected at equilibrium with the carrier phase velocity. The temporal
evolution of the segregation is shown in Fig. 10.4(a) and we find very comparable trends for the
two simulations, for the whole duration of the simulation.

We give in Fig. 10.4(b) the PPC as a function of the Stokes number, at a given time in the simula-
tion such that tf ≈ 10TL. The maximum of PPC is reached for a Stokes number close to 1. This is
consistent with conclusions of Sec. 10.1 since there is no separation of scales in the Passot-Pouquet
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spectrum. The final segregation, in Fig. 10.4(b) shows that the wavelet model is also qualitatively
satisfying for recovering the segregation in frozen turbulence. We observe that for fluid particles,
the divergence-free condition is better reproduced with the wavelet-based KS than with the Passot-
Pouquet spectrum. This could be due to interpolation schemes: we use spline interpolation with
the wavelet-based KS, which is naturally the most adapted since wavelets are based on spline func-
tions of degree 0 and 1. For small-inertia particles, the wavelet-based KS overestimates a bit the
segregation. We presume it might be caused by the spurious peaks of large wavenumbers observed
in the energy spectrum in Fig. 9.15(a).

Still, this comparison validates the behavior of particles in the synthetic wavelet field before intro-
ducing the additional complexity related to the modeling of its dynamics.

10.3 Influence of λ
In dynamic turbulence, vortices are created, transformed, deformed and die, and their character-
istic time is therefore much more difficult to estimate. However, we know that it is necessarily
reduced compared to that in frozen turbulence. The particles in a vortex do not necessarily have
the time to reach their maximum segregation, the vortex having changed in the meantime.

Figure 10.5(a) compares the time evolution of PPC in a frozen (λ = 0) and in a dynamic wavelet-
based KS (λ = 0.5). We observe that the disperse phase reaches a stationary regime for PPC
when λ ̸= 0. We expect the stationary regime to be reached for t > max(TE,j), the maximum
eddy turnover time of wavelet-based KS. On the other hand, with λ = 0, PPC keeps increasing for
particles such that StL < 1.

Figure 10.5(b) shows the segregation for different values of λ, measured at time 30TL. We can
clearly see that λ controls the intensity of PPC. As expected, the dynamics introduced by the eddy
turnover time slows down the segregation of particles.

In Fig. 10.6(a), we compare the temporal evolution with a logarithmic scale of the MCE for a frozen
and a dynamic wavelet-based KS. Both simulations reach stationary statistics, and we notice that
large-inertia particles reach their stationary MCE later than small ones. The stationary statistics
obtained with λ ̸= 0 are more noisy, due to the stochastic Langevin equation for coefficients.
Figure 10.6(b) shows the influence of the parameter λ on the mean correlated energies of the
disperse phase. It seems that the particle trajectory crossing is not strongly affected by the sweeping
phenomena induced by λ. It will not possible to adapt this parameter in order to control the
prediction for this statistics.
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(a) λ = 0 (b) λ = 0.2

Figure 10.5. (a) Temporal evolution of PPC for λ = 0 (full lines) and λ = 0.5 (dotted lines), with
logarithmic temporal scale. (b) Influence of λ on the PPC as a function of the Stokes number Stη. PPC

is measured at time 30TL, with a grid resolution of 26.

(a) Temporal evolution (b) Stokes number dependency

Figure 10.6. (a) Comparison of the temporal evolution of the MCE for λ = 0 (full lines) and λ = 0.1
(dotted lines), plotted for different Stokes numbers with logarithmic temporal scale. (b) Stationary
MCE as a function of the Stokes number, plotted for different values λ. jmin = 1 and jmax = 5.

Eulerian particle velocity fields are projected on a grid of size 26.
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10.4 Validation with DNS of 3D HIT and comparison with Fourier-
based KS

We now seek to validate the 3D wavelet-based KS with time evolution, which ensures stationarity
of the disperse phase statistics. We consider the DNS case described in the previous chapter, in
Sec. 9.4, on the 1283 mesh. Energy spectra, snapshots of the velocity field and autocorrelation of
fluid particles have already been compared with Fourier-based KS and wavelet-based KS and the
latter shows better agreement with the DNS of HIT.

We plot in Fig. 10.7 the segregation according to the inertia of the particles and compare the results
obtained in DNS, with stationary wavelet and Fourier-based KS. The best agreement is obtained
with the wavelet-based KS, for λ ≈ 0.5, which not only predicts the correct peak of segregation,
but also correctly reproduces the preferential concentration for all Stη > 1. The PPC is under-
predicted for small Stokes numbers, and this might be related to the rapid decorrelation of small
scales observed in Chap. 9. The eddy turnover of small scales is probably too high and this exces-
sively reduces the segregation at those specific scales.
We can see that in this case, there is no scale separation because the peak is reached at Stη = 1.
Indeed, the Reynolds number of this DNS is Reλ = 50. However, the segregation obtained with
Fourier-based KS is shifted towards larger values of Stokes numbers. This shift was already ob-
served in Murray, Lightstone, and Tullis (2016a). This shows that small scales are probably not
well reproduced.

Figure 10.8 shows the evolution of the mean correlated energy with the Stokes number for the three
simulations (DNS, wavelets, Fourier). Overall, we observe a satisfactory agreement with DNS for
both wavelets and Fourier. A small shift of the curve towards larger Stokes numbers is present,
and is more significant in the case of the Fourier-based KS, consistent with the shift in the PPC.

The collective behavior of the particles, measured through particle segregation and trajectory cross-
ing, seems to be better predicted qualitatively and quantitatively by wavelet-based KS than with
Fourier-based KS. In addition, recall that in the dynamic case, the field obtained with a Fourier-
based KS produces nonphysical oscillating Lagrangian statistics (see Chap. 9).

Conclusion

This chapter has demonstrated that the wavelet-based kinematic model can recover the main prop-
erties of the disperse phase in a turbulent flow. High Reynolds number simulations show that the
PPC and PTC phenomena can affect a wide range of scales, which indicates that the particles in-
teract with all scales of the turbulent surrogate model. The parameter λ, characterizing the eddy
turnover velocity, can be fitted to retrieve the accurate PPC of a reference DNS.

The wavelet model has been validated on a two-dimensional frozen turbulence, and displays a sim-
ilar temporal evolution compared to the one in the DNS field. The wavelet-based KS can recover
qualitatively and quantitatively the PPC of a 3D stationary HIT, while the Fourier-based KS shifts
the segregation towards higher Stokes numbers. The eddy turnover time of small scales might be
mispredicted by the proposed model for ωj and further investigations could be made to improve
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Figure 10.7. Evolution of particle preferential concentration with Stokes number obtained with DNS,
wavelet and Fourier-based KS for different values of λ.

Figure 10.8. Measure of the normalized mean correlated energy for DNS, Fourier-based and wavelet-
based KS (λ = 0.5). Eulerian particle velocity fields are projected on a grid of size 24.
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their modeling.

The wavelet-based kinematic model can thus reproduce the segregation of particles in a HIT, and
the proposed temporal evolution scheme for the coefficients ensures stationary statistics and control
of the sweeping level. Many perspectives remain to be explored for the use of such a particle SFS
model in the framework of a ROS. Improvements, in particular concerning the temporal evolution
model, can be considered. These are discussed in the next chapter in view of reproducing the
intermittent statistics of the velocity field or reducing the dimensionality of the model.
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Chapter 11

Perspectives for wavelet-based kinematic
simulation

This thesis aims at developing a particle SFS model for reduced-order simulations of turbulence
in a two-way coupling context; the key point is to reproduce in particular segregation and inter-
mittency. The wavelet-based KS is validated as a DNS surrogate for respectively basic turbulent
statistics in Chap. 9 and particles statistics in Chap. 10. We still need to verify the higher-order
statistics (i.e., intermittency) and discuss the applicability of such a model in reduced-order simu-
lations constrained by computational cost (in time and memory). The two-way aspects are left to
Chap. 14.

In Sec. 11.1, we show that although naturally intermittent, the wavelet-based kinematic model
should be adapted in order to reproduce the level of intermittency obtained in DNS. Section 11.2
focuses on the adaptation of wavelet-based KS into ROS framework. In particular, similar to
Fourier framework, compression is well suited for wavelet fields (Farge and Schneider 2005) and
can be used to reduce the dimensionality of the synthetic fluid significantly.

11.1 Intermittency in wavelet-based KS

11.1.1 Comparing intermittency in kinematic simulations
We measure the flatness of the velocity increments along the fluid particle trajectories for the DNS
and the kinematic models and compare the results in Fig. 11.1. We have displayed the character-
istic times τη and TL to identify the inertial zone on the abscissa. Consistent with the DNS results
of Chap. 1, the flatness of the DNS is very high for small increments and decreases down to the
Gaussian value 3, reached for increments such that τ ≫ TL. We can notice that none of the two
kinematic models, whatever the parameter λ, reaches the level of intermittency of DNS in the dis-
sipation zone.

The flatness of the wavelet-based KS initially decreases slightly in the dissipative zone, then sta-
bilizes at a constant value in the inertial zone before decreasing to 3, the Gaussian-like value. We
notice that the wavelet model is not very sensitive to the parameter λ. Only a small shift is ob-
served for models with λ ̸= 0, departing sooner from the plateau, consistent with the observation
made in Chap. 9 that the value of TL decreases slightly when λ ̸= 0.
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Figure 11.1. Flatness of the Lagrangian fluid velocity increments obtained with DNS, wavelet and
Fourier-based KS for different values of λ.

The Fourier model at λ = 0 follows the same decrease along the inertial range. We observe that the
two kinematic models have a quasi-identical flatness along the entire dissipative zone, and that it
is underestimated compared to the reference flatness of the DNS. Moreover, it should be noted that
the sampling time step of the DNS is not small enough to capture the behavior in the dissipative
range and therefore the flatness in this zone, but it is at least higher than 6.5. The flatness of the
Fourier model is much more surprising for λ ̸= 0: it is close to 3 for the acceleration (or small
increments). It rises to reach its maximum in the inertial zone and then decreases as expected for
large increments. The initial value of 3 is highly criticizable, it shows a Gaussian behavior of the
acceleration, revealing a new limitation of the dynamic Fourier model.

We seek to propose an adapted wavelet-based kinematic model by introducing a coherent cascade
of energy that enhances the intermittency of the acceleration statistics and reproduces the progres-
sive decay observed in the DNS along the inertial zone.

11.1.2 Towards an intermittent cascade of wavelets

The forcing scheme proposed in Sec. 9.3.2, based on a Langevin equation for each coefficient,
ensures the stationarity of all scales by enforcing a spectral model. It consists of superimposed
images of turbulence but the vortices do not interact with each other. However, we know that inter-
mittency comes from the transfer of energy between the different scales of the flow. In particular,
processing all scales in the same way probably leads to the typical plateau in the inertial zone
observed in Fig. 11.1 instead of a gradual decay. Therefore, another scheme of evolution for the
wavelet-based KS, capable of reproducing the energy transfer between scales, could be developed.

In order to propose such a model, we are interested in the Eulerian cascade models of intermittent
dissipation proposed in the literature and we compare their predictions with the statistics of a DNS.
Afterwards, we discuss a possible approach for implementing these models in the wavelet-based
kinematic simulation.
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11.1.3 An overview of discrete cascade models
The reader is referred to Chap. 1, Sec. 1.3.2 for an introduction on the discrete cascade model
formalism. We recall that in such approaches, the domain is subdivided into cells of size L/2j and
the dissipation at scale ℓj is given by:

εℓj = α1α2...αjE [ε] , (11.1)

where the random variable αi yield different models of intermittency. Indeed, we obtained a scaling
for the moments of coarse-grained dissipation as follows:

E
[
(εℓj)

p
]
= E [ε]p

(
ℓj
L

)K(p)

, (11.2)

where K(p) = − ln2 E [αp]. This exponent can be related with the structure function exponent
ξ(p) = K(p/3) + p/3. In the following, we present three models for α.

The log-normal model

Yaglom (1966) assumed a log-normal distribution for α. We have already explored this model

in a Lagrangian framework and we retrieve a quadratic form for K(p) =
λI
2
(p2 − p), where

λI = K(2) is the so-called intermittency parameter. The structure function exponent in this case

is ξ(p) =
p

3
− λI

18
(p2 − 3p)

The β-model

The initial assumption is to consider that only a fraction βn of the domain has energy. Assuming
that the smaller eddies, the less space they fill, we introduce ψ the probability for an eddy to
generate an “active” eddy. If the largest eddies are space filling, then after n iterations, only a
fraction of the space is occupied by active fluid. Introduced by Frisch, Sulem, and Nelkin (1978),
the random variable α can only take two values according to the following probabilities:

P (α = 0) = 1− ψ (11.3)
P (α = γ) = ψ, (11.4)

and conservation of mean dissipation implies γ = 1/ψ. We introduce the fractal dimension D also
called self-similarity dimension ψ = 2D−3. In the well-known cases where D = 1, 2 or 3, the
objects are therefore intervals, squares or cubes. This model leads to:

K(p) = λI(p− 1), ξ(p) =
p

3
− λI(

p

3
− 1), (11.5)

where λI = K(2) is still defined as the intermittency parameter and we note here that D = 3−λI ,
where λI is equivalent to a codimension.

The random β-model

Benzi, Paladin, Parisi, and Vulpiani (1984) suggested to improve the β-model by considering a
random factor ψ instead of a fixed one. The factor is independently selected at each step of the
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Figure 11.2. Normalized energy spectrum. Dotted line shows the −5/3 slope characteristic of the
inertial range.

cascade following a binomial distribution:

P (ψ =
1

2
) = 1− x

P (ψ = 1) = x (11.6)

This gives:

K(p) = log2(1− x+ x2p−1)

ξ(p) =
p

3
− log2(1− x+ x2p/3−1) (11.7)

A reasonable agreement was found for x = 0.125 for low order exponents.

Comparison of discrete models

The validation of these models can only be done by comparison with experimental or DNS results.
However, as mentioned in Chap. 2, simulations at high Reynolds number, for which a large inertial
zone can give sufficient statistics, are very expensive. It is therefore difficult to find results on high
order statistics of velocity increments in the literature.

We perform DNS to solve the unsteady three-dimensional Navier-Stokes and continuity equations
with Asphodele (see Sec. 2.4). Figure 11.2 shows the energy spectrum of the flow at a given time
and exhibits a clear inertial range for κ ∈ [5; 30], corresponding to length scales of [0.21; 1.26] and
grid spacing size r/∆x ∈ [10; 60]. Figure 11.3(a) shows the longitudinal velocity increments of
different orders p. We interpolate the curves in the inertial range with linear expressions in log-log
scale and obtain the exponents of the velocity increments ξ(p) in Fig. 11.3(b). The different mod-
els of literature are compared to the DNS measures and to K41 model where no intermittency is
modeled.
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(a) (b)

Figure 11.3. (a) Structure functions of order p ∈ [1; 10] (from dark to light colors) with linear fitting in
the inertial range (dashed black lines). (b) Scaling exponents of the structure functions. The dotted line

shows the K41 law: ξ(p) = p/3 and the solid red line is the DNS measure.

First of all, models predict approximately the same evolution for the first 6 moments, and the
behaviors diverge for moments of higher orders, for which unfortunately the measurement uncer-
tainty on the DNS results is also increased. However, and this is confirmed in the literature, the
log-normal model and the β-model are less satisfying than the random β-model (Anselmet, Gagne,
Hopfinger, and Antonia 1984). Let us now give some perspectives on the use of such models in
wavelet-based KS.

11.1.4 A perspective for intermittent KS

Such Eulerian model apply well to the case of discrete wavelets, since in both cases, the domain is
divided into sub-domains of size ℓj = L/2j . In the wavelet-based KS framework, each cell {j,k}
is associated to a velocity coefficient dεdiv,j,k. In the cascade model, each cell {j,k} is associated
to a local dissipation, and more precisely to a random variable αj,k, which represents the ratio
between the local dissipation of the cell εj,k and its mother cell’s dissipation εj−1,k′ .

In future works, one can design a law of evolution of the vortices of size j + 1 according to the
local vortices of size j which corresponds to an intermittent model. Thus, forcing the largest scales
would naturally dissipate and feed the smaller vortices. This could result for instance in an “inter-
level” conditional Gaussian distribution for the coefficients dεdiv,j,k, in the sense that the PDF of a
coefficient {j + 1,k} would depend on the value of its mother cell’s coefficient {j,k}.

The random β-model provides good agreement of the intermittency coefficient with DNS mea-
sures and is promising in terms of memory cost, since “dead” eddies correspond to zero wavelet
coefficients. Indeed, the dimensionality of the problem is one of the key aspects to handle if we
want to apply the KS in the framework of reduced-order and numerically affordable models.
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11.2 Towards reduced-order simulations

This section focuses on the implementation of the wavelet-based KS into ROS. Two of the main
issues for ROS are the computational and the memory cost. The generation of random coefficients
and their stochastic evolution according to an Ornstein-Uhlenbeck process is straightforward and
certainly avoids the complexity of the numerical solution of the Navier-Stokes equations. How-
ever, in its current form, it requires storing a large number of coefficients. The compression of the
wavelet fields is therefore studied in Sec. 11.2.1 and 11.2.2 and a time evolution scheme for the
coefficients is proposed in Sec. 11.2.3.

Finally, so far we have considered the kinematic simulation as a RANS model, i.e., in a way that
reproduces the whole turbulent flow. For LES applications, we intend to adapt the KS to a sub-grid
model consistent with the resolved scales in Sec. 11.2.4.

11.2.1 Compression of the wavelet field

We have to consider the memory space necessary to store all the coefficients. For a cubic periodic
box, the number of coefficients is as follows:

Nc =

jmax∑
j=jmin

(2j)Nd =
2Nd(jmax+1) − 2Ndjmin

2Nd − 1
∼ (2jmax)Nd (11.8)

where we note Nd the number of dimensions on the physical domain to consider.
However, if we aim at reproducing the smallest scales, up to the Kolmogorov scale for example,
we have to set ℓmax = L/2jmax ≤ η, which is therefore equivalent to the criterion for solving a
DNS, given in Sec. 2.1: L/Nx ≤ η. We would need at least (Nx)

Nd coefficients, which is the same
amount of information as for a DNS. Therefore, we are interested in dimensionality reduction.

One idea is to take advantage of wavelet compression. So far, for each level, the idea was to draw
random coefficients according to a normal law. This operation is not as computationally expensive
as the Navier-Stokes resolution can be, however it requires a lot of memory, since all coefficients
of each level must be stored. The idea with compression is to threshold coefficients below a certain
absolute value. This way, most coefficients are set to 0 and do not need to be kept in memory. In
that case, detailed coefficients can be drawn according to a truncated normal distribution.

11.2.2 Truncated normal distribution

We introduce the truncated normal distribution, derived from a normally distributed random vari-
able by bounding the random variable.

Suppose X has a normal distribution with mean µ and variance σ2. For a given interval −∞ ≤
a ≤ b ≤ +∞, we build the truncated normal distribution of Y that rejects all random values inside
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(a) (b)

Figure 11.4. (a) PDF of detailed coefficients dεdiv,7,k in black, following a normal distribution. The
yellow distribution corresponds to a compression ratio of 0.3 and the red one to 0.13 with the threshold
method. (b) Compression ratio as a function of the threshold normalized by σj . Corresponding values

of T = σj and T = 1.5σj are reported in yellow and red.

the interval [a, b] and sets them to 0:
P (Y ≤ a) = FX(a),

P (Y ≥ b) = 1− FX(b),

P (Y = 0) = FX(b)− FX(a),

(11.9)

where FX is the cumulative distribution function of the Gaussian distribution:

FX(x) =
1

2

[
1 + erf

(
x− µ

σ
√
2

)]
. (11.10)

In the following, we consider the symmetric truncated normal distribution of threshold T, with
rejection interval given by [−T ;T ] and noted NT .

The distribution of coefficients at level j = 7 is given for different thresholds in Fig. 11.4(a). The
dark distribution is the normal one, with a storage capacity of 100%: it follows a Gaussian distri-
bution. The yellow distribution of coefficients is thresholded at T = σj , and only retains 30% of
the total coefficients. The red distribution which is thresholded at 1.5σj requires to store only 13%
of the total number of coefficients: one can notice the peak in the histogram for the zero values:
87% of coefficients are null in that case.

Let us compare the velocity fields obtained after such compression. Figure 11.5(a) represents the
velocity field obtained with normal distribution of all coefficients for all levels and its memory stor-
age is therefore given by Eq. (11.8). Thresholding those distributions up to T = σj produces the
velocity field in Fig. 11.5(b), and we can see only few qualitative changes between the two snap-
chots. Considering their respective energy spectrum, no change can be reported from Fig. 11.5(d):
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(a) Original field (b) Compressed field (by 30%)

(c) Compressed field (by 13%) (d) Energy spectra

Figure 11.5. Snapshots of the velocity field with 100% (a), 30% (b) and 13% (c) of the wavelet
coefficients. Associated energy spectra (d).
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all scales are still well-reproduced with the appropriate level of energy. This is consistent with the
fact that at all wavenumbers, only insignificant energetic vortices have been removed. With higher
compression rate, if we retain only 13% of total coefficients, we observe more differences in the
field, although some typical vortices can still be identifiable. Regarding its energy spectrum, the
behavior is still well reproduced at all scales.

The compression significantly reduces the memory cost, as quantified in Fig. 11.4(b) where the
ratio of compression is plotted. It would be worth further investigating the impact of compression
on the velocity field with appropriate metrics. Of course, larger values of T reduce the storage,
but a trade-off must be found so that the number of non-zero coefficients remains statistically
significant (i.e. enough to obtain converged statistics).

11.2.3 Sinusoidal temporal evolution of coefficients
Such a compression of the coefficients is not compatible with the stochastic time evolution law.
Indeed, after that the initial field has been drawn with thresholds coefficients, what temporal evo-
lution should be applied to the zero coefficients? If we apply the Langevin equation Eq. (9.35) to
all coefficients, they immediately risk to become non zero and therefore we loose the compression
effect. Non-zero coefficients, on the other hand, can see their energy decrease and fall below the
threshold criterion. Ornstein-Uhlenbeck processes are stationary only if a normal distribution is
chosen as the initial distribution. Otherwise, it will progressively relax the distribution of the statis-
tics towards a normal distribution. However, we would like to keep a small number of coefficients
to be stored throughout the simulation. Another approach for the evolution must be considered.

This technique is inspired by the proper orthogonal decomposition, where the spatio-temporal field
is decomposed into a deterministic spatial function modulated by a temporal coefficient. Let us
consider two velocity fields, generated by truncated normal distributions of coefficients dε,1div,j,k and
dε,2div,j,k thus both having a reduced form and a low storage cost. We then define the coefficients of
the model as a linear combination of these two fields:

dεdiv,j,k = cos(2πωjt)d
ε,1
div,j,k + sin(2πωjt)d

ε,2
div,j,k. (11.11)

With this approach, we only have to store twice as many coefficients as for a single draw of the
truncated normal distribution.

To avoid a time periodicity of the field, it is necessary to regularly renew the two coefficients dε,1div,j,k

and dε,2div,j,k. We propose to draw new coefficients as follows:
• when 2ωjt ∈ N ( i.e. sin(2πωjt) = 0) we draw dε,2div,j,k ∼ NT (0, σ

2
j );

• when 2ωjt− 1/2 ∈ N (i.e. cos(2πωjt) = 0) we draw dε,1div,j,k ∼ NT (0, σ
2
j ).

This temporal evolution is illustrated for one coefficient dεdiv,j,k given as an example, in Fig. 11.6(a).
The dashed lines represent coefficients dε,1div,j,k and dε,2div,j,k, the evolution of which is incremental,
due to a new draw at each period. Periods of the two coefficients are shifted so that the coefficient
is changed when the sinus or cosinus becomes zero. The dotted lines display these fields with a
sinusoidal multiplicative factor and their sum gives the final coefficient in black line.
Figure 11.6(b) details the same construction but with a truncated normal law for dεdiv,j . In that case,
dε,1div,j or dε,2div,j are more often drawn as zero, and therefore dεdiv,j can also sometimes become null.
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(a) dεdiv,j ∼ N (0, σ2
j ) (b) dεdiv,j ∼ N0.5σj (0, σ

2
j )

Figure 11.6. Black line represents the temporal evolution of one coefficient following Eq. (11.11). We
show the evolution of the two coefficients used in its construction in dashed lines, and weighted by

cosinus and sinus function in dotted lines. Distributions are Gaussian (a), truncated Gaussian (b).

(a) (b)

Figure 11.7. (a) Temporal evolution of PPC and (b) PPC at tf = 10TL as a function of Stokes number.
Parameters of the model are jmin = 2, jmax = 6, λ = 0.1. The evolution of coefficients is following

Eq. (11.11).
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Figure 11.8. A LES-like energy spectrum completed with a synthetic flow, with κ0 = 1/2, κmin

corresponding to κc = 64 and κmax = 512.

Such temporal evolution scheme is implemented and PPC is analyzed. Even though more thor-
ough validations should be conducted (following the analyses of previous chapter), we can already
observe on the test case presented in Figs. 11.7(a) and 11.7(b) the same temporal trend and final
PPC as with the stochastic Langevin model.

11.2.4 A sub-grid velocity model for LES
Wavelet-based KS can be considered as a velocity sub-grid model for LES. This strategy has been
first developed by Flohr and Vassilicos (2000) for Fourier-based KS but can be adapted with the
use of wavelets. The sub-grid velocity field of the flow has its spectral model extended from κc, the
LES cut-off wavelength, to the Kolmogorov length κη. However, instead of prescribing a unique
law σj for the coefficients of the whole space, they take into account the local information of the
sub-grid to which they belong. The local variance is hence given by:

σ2
j = σ2

⋆κ
2/3
0 κ

−5/3
j ∆κj/σ

2
j,ref. (11.12)

We set ℓmin = ∆, or equivalently κmin = κc, so that the largest scale of the sub-grid field corre-
sponds to the smallest scale of resolution of the LES field, and κmax can also be locally adapted to
retrieve the correct sub-grid scale dissipation ε⋆. This ensures the continuity of the energy spec-
trum. An example of the energy spectrum reconstruction is shown in Fig. 9.9(c) and retrieves a
large inertial range, similar to a DNS-like energy spectrum.

Conclusion
This chapter gives some perspectives for improving the wavelet-based kinematic model. It is
found that the velocity field statistics do not reproduce the expected intermittency in a DNS, and
new patterns of evolution and relationship between coefficients of each level can be imagined, in
agreement with intermittent Eulerian models in the literature.



242 CHAPTER 11 - PERSPECTIVES FOR WAVELET-BASED KINEMATIC SIMULATION

Objective Coefficients distribution Temporal evolution

Retrieve disperse phase
statistics

Gaussian N (0, σ2
j ) Ornstein-Uhlenbeck process

Retrieve intermittency
Inter-level conditional Gaus-
sian

Inspired from cascade model

Reduce dimensionality
Truncated Gaussian
NT (0, σ

2
j )

Sinusoidal temporal evolu-
tion

Table 11.1. Summary of the main wavelet-based KS schemes

On the other hand, an essential step for this method to be computationally attractive is the dimen-
sionality reduction, and wavelet compression is investigated to reduce the storage of information.
The use of truncated normal distribution allows for a satisfying compression ratio and another
temporal evolution is proposed in this chapter, consistent with the dimensionality reduction. Their
use in the LES framework seems natural, since one can adapt parameters of the models to local
sub-grid information.

We summarize in Table 11.1 the different strategies introduced for wavelet-based KS in the three
last chapters:

• A Gaussian distribution with Ornstein-Uhlenbeck processes can retrieve accurate fluid and
disperse phase statistics (Chap. 9 and 10);

• Inter-level conditional Gaussian distributions could be derived following intermittent cas-
cade models;

• Truncated Gaussian distribution with adapted temporal evolution scheme allows for dimen-
sionality reduction.

Wavelet-based kinematic models offer promising perspectives for two-way coupling approaches,
which will be detailed in Chap. 14. Other perspectives can also be considered, such as more
complex geometries or near-wall flows, thanks to the spatial localization of wavelets.
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Part V

Towards two-way coupling in turbulent
disperse two-phase flows

245





Part V with two-way coupling between the disperse and the turbulent carrier phase in an Euler-
Lagrange framework. Chapters 12 and 13 are adapted from Letournel, Laurent, Massot, and Vié
(2020). In particular, Chap. 12 introduces the main issues of such a coupling: the numerical
challenges but also the insufficient knowledge on the mechanisms responsible for the attenuation
or the enhancement of the turbulence by the particles. A dimensional analysis allows to identify
a set of dimensionless parameters: the mass loading, the Stokes number, and the particle number
density. The influence of these parameters is established in turn in Chap. 13 within the framework
of an exhaustive DNS/DPS study. In particular, this study highlights a parameter never studied
before, the heterogeneity of the disperse phase, which strongly influences the scales at which the
energy transfer between the two phases occurs. We will introduce different metrics to evaluate
this spatial heterogeneity. Finally, based on these results, Chap. 14 proposes a review of coupling
strategies depending on the chosen approach for the two phases, and we develop an extension of
the kinematic wavelet model in the two-way coupling context, with three distinct coupling levels.
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Chapter 12

Modeling two-way coupling

We have so far highlighted that turbulence governs particles behavior. Conversely, when the mass
loading of the disperse phase is not negligible, the presence of particles can also influence the tur-
bulence (Squires and Eaton 1990; Boivin, Simonin, and Squires 1998). This chapter introduces
the two-way coupling framework and presents the challenges related to its numerical treatment,
and the understanding of the physical mechanisms governing the modulation of energy of the tur-
bulent carrier phase. We propose a review of existing studies on the subject, and then develop a
new framework for the study of two-way coupling based on three dimensionless numbers: mass
loading, Stokes number, and particle number density.

In Sec. 12.1, we discuss the different regimes of interaction between the disperse and the carrier
phase. Section 12.2 presents an overview of the literature, specifying the parameters already clearly
identified and those less certain that play a role in the modulation of turbulence Section. 12.3
presents the assumptions and governing equations of our study, as well as the numerical meth-
ods. Then, the target HIT configuration and the parameter set are presented in Sec. 12.4, with an
emphasis on the other parametric studies in the literature.

Fluid → Particles Fluid ↔ Particles Fluid ↔ Particles

Particles↔

↔

ONE-WAY TWO-WAY

Effect on particles on turbulence

Neglected Enhance 
dissipation

Enhance 
production

FOUR-WAY

St

α
10!" 10!#

Figure 12.1. Map of regimes of interaction between particles and turbulence adapted from Elghobashi
(1994)
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12.1 Impact of volume and mass fractions
In previous chapters, we were interested in the main characteristics of a disperse phase transported
by a turbulent flow. The interactions between the two phases can actually be much more complex,
when the inertial particles interact with each other or with the carrier phase. A classification of
these interactions is proposed by Elghobashi (1994) in Fig. 12.1 based on the volume fraction α of
the disperse phase. This classification can be refined also considering the mass loading ϕ:

• One-way coupling: For α < 10−3 and ϕ < 10−2, the regime is known as “one-way”: the
disperse phase is sufficiently diluted to neglect collisions between particles and the mass
loading is too small to modify the carrier phase. The motion of the particles is entirely
controlled by the continuous phase and many studies focus on the spatial dispersion of the
particles.

• Two-way coupling: For α < 10−3 and ϕ > 10−2, the regime is “two-way”: the disperse
phase can modify the carrier phase. Statistics and spectral structure of the turbulence can
be altered depending on the type of particles. Despite numerous studies (Squires and Eaton
1990; Elghobashi and Truesdell 1994; Ferrante and Elghobashi 2003), this type of regime
still lacks insight, regarding both parameters that control it and the dynamics of turbulence
modulation. Chapter 13 proposes a new insight on this regime, in particular as a function of
the dimensionless numbers introduced in Sec. 12.4.2.

• Four-way coupling: two-way coupling with extra interactions between the particles. The
volume fraction is no longer small enough to neglect collisions, which must be taken into
account. More specifically

– For 10−3 < α < 10−1, inter-particle collisions can induce significant new physical
phenomena: momentum transfer, heat transfer, modification of the preferential con-
centration of particles, coalescence, agglomeration. The collision mechanism is a very
complex phenomenon, governed by the relative velocity of the particles, which can be
induced by a shear of the carrier phase, a high Stokes number (PTC), or also particles
with different properties.

– For α > 10−1, we refer to dense (or granular) flows for which particle-particle interac-
tions govern most of the dynamics of the disperse phase.

In the following, we will study the two-way coupling framework that is relevant for instance for
combustion applications. We start by giving the reader an overview of the literature.

12.2 Overview of existing studies
In the literature, the interactions between a turbulent carrier phase and a particulate phase in the
point-particle limit have been extensively studied. In the one-way coupled context, for which the
particles do not affect the carrier phase, the importance of Stokes number based on Kolmogorov or
Lagrangian integral time scales have been demonstrated: the former characterizes the occurence
of preferential concentration (Eaton and Fessler 1994) while the latter is representative of the tran-
sition to particle-trajectory-crossing dominated flows (Février, Simonin, and Squires 2005).

In the case of two-way coupling, turbulence modulation by particles has been also investigated in
homogeneous isotropic turbulence (HIT), focusing on the effect of the Stokes number and mass



12.3 - MODELING AND NUMERICAL FRAMEWORKS 251

loading. On the one hand, studies on stationary HIT of Squires and Eaton (1990), Boivin et al.
(1998), Mallouppas et al. (2017) showed that the turbulent kinetic energy of the carrier phase is
reduced by particles. They concluded that inertial particles inject energy in the turbulent motion at
high wavenumbers with a corresponding increase in the dissipation, which was also described by
Squires and Eaton (1994) with respect to mass loading.
On the other hand, Elghobashi and Truesdell (1994), Druzhinin and Elghobashi (1999), Druzhinin
(2001), Ferrante and Elghobashi (2003), Abdelsamie and Lee (2012) worked with a decaying HIT
and found that particles with low Stokes number can slow the decay of fluid energy. Indeed, studies
on the fluid-particle interaction spectrum reveal a negative contribution at low wave numbers where
intensity is reduced when Stokes number increases, whereas the energy rate at large wavenumbers
remains positive. More generally, Ferrante and Elghobashi (2003) classified particles according to
their Stokes number and described the evolution of turbulent energy and dissipation of the flow,
and Sundaram and Collins (1999) showed that the shift in energy to high wavenumbers in the fluid
phase increases the viscous dissipation rate. The focus of all these studies was the influence of
the Stokes number and mass loading: the former parameter globally determines the dynamics of
particles in a given fluid and the latter plays a role in the inverse-coupling force that the particles
exert on the fluid. Table 12.1 summarizes some of the previous works, and the parameters studied.

A dimensional analysis leads to the identification of a third controlling parameter, the particle
number density. In fact, this parameter plays a key-role: for high number density, the proximity of
particles can lead to a continuous phase behavior, while for low number density, distant particles
can produce strong local effects on the surrounding fluid and the exact location of the particles may
have a great impact on the dynamics of the flow, depending on the realization. In the literature, this
parameter has been first studied in the objective of reaching statistical convergence for one-way
coupled simulations (Vié, Pouransari, Zamansky, and Mani 2016). Strutt, Tullis, and Lightstone
(2011) observed the lack of consensus regarding the number of particles that must be considered in
simulations. A common definition for statistical convergence is the point at which the particle dis-
persion statistics do not change significantly (i.e. become independent on the number of particles).
On the other hand, Sundaram and Collins (1999) studied a regime with very low particle number
density, for which each particle acts independently and observed that their collective effect on the
fluid scales linearly with the total number of particles.

In the following, we present the assumptions and governing equations of the two-phase flows, as
well as the numerical methods.

12.3 Modeling and numerical frameworks

12.3.1 Fluid and particles equations

We assume the set of assumptions described in Sec. 6.1.2 are verified, which allows us to write a
system of ordinary differential equations for each p particle like the one in Eq. (6.7).
In the framework of two-way coupling, we must also define the effect of the particles on the carrier
phase. This one is expressed through an additional force in the momentum equation of the fluid.
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Reference Forcing Mr/Mc Fixed Changed

(Squires and Eaton
1990)

YES 100 St, nη ϕ, α, ρp/ρ, dp/η

(Elghobashi and Trues-
dell 1994)

NO 100 α, St dp/η, ρp/ρ, nη ,
ϕ

α, dp/η, nη St, ρp/ρ, ϕ

St, ρp/ρ,
dp/η

α, ϕ, nη

(Squires and Eaton
1994)

YES 1 St, nη ϕ, α, ρp/ρ, dp/η

(Boivin, Simonin, and
Squires 1998)

YES > 1 α, ϕ, ρp/ρ St, dp/η, nη

St, nη ϕ, ρp/ρ, α, dp/η

(Druzhinin and El-
ghobashi 1999)

NO 1 St, ρp/ρ,
dp/η

ϕ, α, nη

(Sundaram and Collins
1999)

NO 1 α, ϕ, ρp/ρ St, dp/η, nη

St, dp/η,
ρp/ρ

α, ϕ, nη

(Druzhinin 2001) NO 1 α, ϕ, ρp/ρ St, dp/η, nη

(Ferrante and El-
ghobashi 2003)

NO 47 α, ϕ, ρp/ρ St, dp/η, nη

(Abdelsamie and Lee
2012)

YES /
NO

95 α, ϕ, ρp/ρ St, dp/η, nη

(Mallouppas, George,
and van Wachem 2017)

YES 1 α, dp/η, nη St, ρp/ρ, ϕ

St, ρp/ρ,
dp/η

ϕ, α, nη

Table 12.1. Previous studies of the modulation of turbulence by disperse phase. Forcing scheme for
stationary HIT and ratio of real particles per computational particle are specified for each study. Choices
of fixed parameters and studied parameters are displayed in the two last columns. In the table, St is the
Stokes number, α is the volume fraction, nη is the particle number density, ϕ is the mass fraction, ρp/ρ
is the ratio of particle and fluid densities and dp/η is the ratio of particle diameter and Kolmogorov

scale. Mr/Mc is the ratio of the number of real particles per computational particle.
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For an incompressible fluid, the equations of motion for the carrier fluid are:
∂ui
∂xi

= 0

∂ui
∂t

+
∂uiuj
∂xj

=
−1

ρ

∂P

∂xi
+ ν

∂2ui
∂xj∂xj

+
1

ρ
fi,

(12.1)

where f is the force exerted by particles on the fluid.

12.3.2 Coupling equations
A projection kernel ∆ is introduced to give a local average of the feedback force. This function
is positive, monotically decreasing and normalized such that its integral over the entire physical
space is unity. The source term f in Eq.(12.1) is then written as:

f(x, t) = −
∑
p

F
(p)
D ∆(x− xp(t)), (12.2)

where −F
(p)
D = −mpF p = mp

vp(t)− u@p(t)

τp
is the resultant force exerted by a particle p of mass

mp on the fluid derived in Sec. 6.1.2.
Other Eulerian spatial fields can therefore be defined as:

n(x, t) =
∑

p∆(x− xp(t))

n(x, t)ṽp(x, t) =
∑

p vp∆(x− xp(t))

n(x, t)ũ@p(x, t) =
∑

p u@p∆(x− xp(t)).

(12.3)

For monodisperse spherical particles, mp = ρpπd
3
p/6 and global volume fraction is defined as

α = n0πd
3
p/6, where n0 is the mean particle number density ⟨n(x, t)⟩ = n0. The mass loading of

the disperse phase is therefore defined as ϕ = αρp/ρ. To highlight the effect of these parameters,
the coupling term is expressed as:

1

ρ
f(x, t) = ϕ

n(x, t)

n0

ṽp(x, t)− ũ@p(x, t)

τp
. (12.4)

The mass fraction term is thus a factor in the expression, the fraction n(x, t)/n0 contains informa-
tion about the spatial distribution of particles and the last term is related to the Stokes number.

12.3.3 Numerical methods
We performed direct numerical simulation to solve the unsteady three-dimensional Navier-Stokes
and continuity equations with the Asphodele code using a low Mach formulation of the Navier-
Stokes equations and a Lagrangian formulation for the particles (see Sec. 2.4).
One of the key aspects of in Euler-Lagrange simulation is the coupling between the particle equa-
tions and the carrier phase. Two elements are required: an interpolation scheme to evaluate the
carrier phase properties at the particle locations, and a projection scheme to compute the feedback
of particles to the carrier phase or to compute particle Eulerian fields.
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For the interpolation step, the Asphodele solver uses a second-order trilinear algorithm to compute
the carrier phase quantities at particle location. Strutt, Tullis, and Lightstone (2011) discussed the
accuracy of interpolation schemes such as the fourth-order cubic spline, the fifth-order Lagrange or
the third-order Hermite polynomials interpolation and they concluded that the three schemes gave
similar mean square particle displacements, advising to use the least computationally expensive
Hermite polynomials interpolation. Moreover, a recent work has also shown that a lower-order
interpolation combined with uncorrected fluid velocity could lead to an improved drag estimation
(Horwitz and Mani 2016). Regarding these works, the choice of a second-order algorithm seems
to be a reasonable solution with respect to the up-to-date literature.

The choice of the projection kernel depends on the particles properties and the desired precision.
The PSI-Cell method of Crowe, Sharma, and Stock (1977) was originally implemented in As-
phodele code. The Lagrangian contributions are instantaneously allocated to neighboring nodes,
weighted by the distance to the nodes. This procedure is sometimes controversial because it leads
to significant error that depends on the ratio of particle diameter to the grid spacing. This approach
requires for the mesh size to be much larger than the particle diameter, as demonstrated by Capece-
latro et al. (2015), Horwitz and Mani (2016), Ireland and Desjardins (2017), Balachandar et al.
(2019). Various mollification kernels can be used to transfer particle data on the Eulerian mesh,
depending on the quantity of interest. Some of them are described by Capecelatro and Desjardins
(2013). Diffusion operation might also be necessary to deal with finer grids (Poustis, Senoner,
Zuzio, and Villedieu 2019). Maxey, Patel, Chang, and Wang (1997) proposed a “narrow enve-
lope function” in the form ∆(x) = (2πσ2)−3/2 exp(−x2/2σ2), which was used by other works
(Capecelatro and Desjardins 2013; Zamansky, Coletti, Massot, and Mani 2014). The length scale
σ is a parameter that can be adjusted to reflect the finite size of the particle. A Gaussian envelope
for the source term was also implemented in the code and a comparison of the influence of the
projection kernels is provided in App. C: the effect of the coupling kernel is limited to the smallest
scales and does not impact the qualitative results that are reported in this work.

Another concern discussed in literature is about recovering the undisturbed velocity of the fluid
at particle position. This was extensively studied by Gualtieri, Picano, Sardina, and Casciola
(2015), Horwitz and Mani (2016), Ireland and Desjardins (2017), Balachandar, Liu, and Lakhote
(2019), Zamansky (2019) who have developed models to estimate this quantity in two-way coupled
problems. Based on their results, given the ratio of particle diameter with grid spacing of our
simulations (dp ≪ ∆x), we do not require this level of modeling.

12.4 Target configuration and parameter sets

12.4.1 Homogeneous isotropic turbulence

Among the works mentioned in Sec. 12.2, we can distinguish studies with forced stationary turbu-
lence, for which statistics are therefore easier to carry out, from naturally decreasing turbulences,
as reported in the first column of Table 12.1. A comparison of these turbulences is proposed by
Abdelsamie and Lee (2012), who noted a number of difficulties in the attempt to study the impact
of particles on the energy spectrum when it is artificially forced. Many differences are observed,
including significant changes in the influence of small particles that do not allow energy to be rein-
troduced to the fluid in forced turbulence. And although Mallouppas, George, and van Wachem
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time ⟨k⟩ ⟨ε⟩ τk η τf Lf ReL Reλ

t0 0.015 0.0089 0.335 0.018 2.11 0.21 21.13 15.9

tinj = 3 0.054 0.0014 0.854 0.029 4.55 0.27 16.45 14.6

tf = 6 0.003 0.00052 1.38 0.037 6.95 0.31 13.47 12.7

Table 12.2. Turbulence properties of the HIT

Figure 12.2. Energy spectra at initial time, injection time and final time.

(2013) introduced a new forcing model, the same biases observed for small particles are found
in their results. We have therefore chosen a configuration of decaying turbulence, for which we
normalize the observed quantities by the total kinetic energy at each instant and thus retrieve more
stationary trends in the evolution of components of the energy decay rate.

The proposed test case is a decaying homogeneous isotropic turbulence loaded with particles. The
results presented in this work were obtained using the 2563 grid. The turbulent characteristics of
the decaying HIT are given in Table 12.2 for initial time, injection time and final time. It shows
the mean turbulent kinetic energy ⟨k⟩, the dissipation ⟨ε⟩ , the Kolmogorov time and length scales
(τk and η), the Eulerian eddy turn-over time τf , the longitudinal integral length scale Lf , and
the turbulent Reynolds number based on the integral length scales ReL = σuLf/ν, where σu =√
2/3 ⟨k⟩ is the fluid velocity fluctuations. The energy spectrum is plotted for the corresponding

times in Fig. 12.2.

To evaluate turbulence modulation by particles, statistical quantities and spectrum of energy are
studied. As presented in Sec. 1.1.6.2, the homogeneous isotropic field allows us to use the spatial
average instead of the ensemble averaging. It is numerically implemented as the discrete average
over all the cells in the domain.

⟨ϕ⟩ (t) = 1

|V|

∫
V
ϕ(x, t) dx, (12.5)

where V indicates that the integral is taken over the whole domain of fluid |V| = L3. The time
dependency is conserved because the turbulence is not stationary.
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The fluid energy equation is obtained by multiplying fluid momentum equation by uj and ensemble
averaging.

d ⟨k⟩
dt

= −⟨ε⟩ (t) + ⟨ψp⟩ (t), (12.6)

where ⟨ε⟩ (t) = 2ν⟨SijSij⟩ is the viscous dissipation rate of energy with Sij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
and ν is the dimensionless kinematic viscosity. ⟨ψp⟩ (t) represents the energy rate of change due
to the particles drag force:

⟨ψp⟩ (t) =
ϕ

τpn0

〈
n(x, t)ui(x, t)[ṽp,i(x, t)− ũ@p,i(x, t)]

〉
. (12.7)

It is also called the two-way interaction energy rate.

Performing the Fourier transform of the fluid momentum equation, we obtain the equation for the
energy spectrum E(κ):

∂E(κ, t)

∂t
= T (κ, t)−D(κ, t) + Ψp(κ, t), (12.8)

where the spectral dissipation rate is D(κ) = 2νκ2E(κ) and T (κ) is the spectral energy transfer
rate. The fluid-particle energy interaction term Ψp(κ) produced by particles is responsible for the
modulation in the turbulence energy spectrum. It is defined by:

Ψp(κ, t) = −
∑

κ≤|κ|≤κ+1

ℜ
{
û⋆i (κ, t)

f̂i(κ, t)

ρ

}
, (12.9)

where “ˆ” denotes Fourier transform, “⋆” the complex conjugate, and ℜ{} denotes the real part.

12.4.2 Key-parameters and dimensional analysis
The dynamics of the disperse phase depends on many phenomena and interactions. In this section,
we introduce the dimensionless numbers that allow to study different interaction regimes.
The dimensionless numbers of interest can be deduced from the Pi theorem from the characteristic
numbers of the problem.

• The disperse phase is completely defined with three parameters : particle diameter dp, par-
ticle density ρp and the mean particle number density n0. Those parameters are highlighted
in the diagram of Fig. 12.3(a).

• The carrier phase is more complex. Physical parameters are its density ρ and its viscosity µ,
but a number of scales and other characteristics are required to completely define turbulence.
Actually, the entire initial energy spectrum should be taken into consideration. As seen in
Chap. 1, the universality of turbulence in the inertial range allows us to only characterize the
largest scales and the smallest ones. σu characterizes the velocity of the fluctuations (related
to the kinetic energy) and the mean dissipation rate ⟨ε⟩ is also necessary to introduce the
Kolmogorov scales.
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(a) (b)

Figure 12.3. Controlling dimensional (a) and non-dimensional (b) parameters for particles in turbu-
lence.

According to the Pi-theorem, the problem with seven parameters expressed in three fundamental
units (mass, length, time) can thus be expressed with four dimensionless numbers. Three of them
combine the parameters of the two phases such as the dark ones in Fig. 12.3(b) and the last one
only characterizes the carrier phase: the Reynolds number ReL = σuL/ν.

Note that the relaxation time of the particles τp involves the dynamic viscosity of the carrier phase
µ, but is not a dimensionless number. Its ratio with the Kolmogorov time scale yields the Stokes
number St = τp/τη which quantifies the intensity of the inertia of the droplets. Other classical di-
mensionless numbers can be retrieved, like the volume fraction α = n0πd

3
p/6, or the mass loading

ϕ = αρp/ρ. We also propose to consider as a parameter of interest ratios of density ρp/ρ or of
length dp/η. Finally, we will also see in Chap. 13 the role of the density in number of particles
nη = n0η

3, which corresponds to the number of particles per Kolmogorov eddy. All those param-
eters are related to each other in Fig. 12.3(b).

These dimensionless numbers are fundamental to understand the mechanisms that govern the in-
teractions between the two phases. We detail in the next chapter the role of the Stokes number
in the preferential concentration of the particles and we examine the importance of each of these
parameters in the coupling terms between the two phases.

The reader can re-examine previous publications with this diagram in mind. Table 12.1 shows
the parameters that were fixed and changed between their different simulations. The parameters
in bold font were those identified by the authors as responsible for turbulence modulation. The
only consistent and exhaustive study of a given triplet was completed by Elghobashi and Truesdell
(1994) who successively observed the separate influence of τp, α and dp. However, the use of
computational particles to represent several real particles (Mr/Mc = 100) can mimic the charac-
teristics of an heterogeneous disperse phase, though aiming at representing a highly-concentrated
one (high “real” particle number density but low “computational” particle number density). As
already noticed by Boivin, Simonin, and Squires (1998), neither simulations of Squires and Eaton
(1990), Elghobashi and Truesdell (1994) nor their own calculations met the condition of nη ≫ 1,
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required for correspondence between computational and actual particles. Therefore, only “real”
particles (Mr/Mc = 1) are used in our study.

Attempts to assess the importance of some dimensionless parameters on turbulence modification
have been made. Gore and Crowe (1989) claimed that the ratio of particle diameter to a turbulent
length scale provides an estimate of whether the turbulent intensity of the carrier phase will be
increased or decreased. Kenning and Crowe (1997) introduced a criterion based on a hybrid length
scale defined with the dissipation length scale of the single-phase flow and average interparticle
spacing. Tanaka and Eaton (2008) introduced a new dimensionless parameter Pa, the particle mo-
mentum number, involving the Stokes number, the ratio of particle and fluid densities, the Reynolds
number, the ratio of particle diameter to a flow length scale. However, there is no general consen-
sus on a single parameter responsible or not for the modulation of turbulence and their respective
conclusions were sometimes contradictory: Tanaka and Eaton (2008) claimed that the Stokes num-
ber does not control turbulence modification whereas most of the other studies highlight its role.
It thus seems clear that a single parameter is not sufficient in order to characterize the physics of
such flows and we need to identify the ones to be considered.

We propose to describe the disperse phase by the orange triplet in Fig. 12.3(b). The choice of
these three parameters was made in view of the form of the interaction term. Indeed, in Eq. (12.7),
mass loading is a factor as well as the inverse of the relaxation time of the particles. We therefore
naturally wanted to be able to study the influence of each of these terms in modifying turbulence.
For the description of the system, we see in Fig. 12.3(b) that the third parameter can be the volume
fraction, the particle diameter or the particle number density. From a modeling point of view, we
have already seen that the number of particles plays a role in the description of the disperse phase
in single-phase flows (Vié, Pouransari, Zamansky, and Mani 2016). We will see through this work
that at fixed Stokes number and mass loading, particle distribution in space is essential to quantify
the impact on the carrier phase.
In some of previous works such as those of Druzhinin and Elghobashi (1999) or Druzhinin (2001),
particle field has been considered as perfectly homogeneous when St ≪ 1. This assumption
was justified by considering that in the case of microparticles the preferential concentration is
negligible. However, if particle number density is not large enough, the disperse phase cannot be
considered as homogeneous even though the distribution of particles is uniform in the domain. One
of the objectives of the present work is to give a criterion on particle number density to determine
the appropriate mean particle number density to consider the two-way exchanges as independent
of this parameter.

Conclusion
In this chapter, we have reported the Navier-Stokes equations, fluid turbulent kinetic energy and
turbulent energy spectrum equations with source term added by the exchange of momentum or
turbulent energy with the disperse phase.

According to all the studies presented, enhancement or attenuation of the turbulence do not have
a consensus on specific particle parameters and the modulation of the turbulent spectrum requires
further investigations to be fully understood.
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Dimensionless parameters for the two-way problem were introduced and related to each other,
and the lack of a complete study of the influence of each of them on modulation of turbulence
is noticed. In the next chapter, such an exhaustive study is carried out and sheds new light on
previous results in literature.





Chapter 13

Modulation of turbulence by particles

Following the identification of dimensionless parameters governing the interaction between the
carrier and the disperse phase in Chap. 12, we investigate the effect of the particle number density
along with the mass loading and the Stokes number. We will see that one of the main mechanisms
responsible for the exchange of energy at different scales is the particle preferential concentration,
and more specifically, we introduce the notion of heterogeneity of the disperse phase.

A definition of heterogeneity is detailed in Sec. 13.1 along with the way to measure it unequivocally
when preferential concentration occurs. Results of the extensive study are presented in Sec. 13.2,
in the following order: turbulence modulation by particles is measured through the analysis of
global energy transfers (Sec. 13.2.2). Then, deeper insight is given by an analysis in the spectral
domain (Sec. 13.2.3), permitting to identify specific regimes with respect to the number density of
the particulate phase. These regimes are further analyzed in Sec. 13.2.4, in particular with regard
to coupling mechanisms.

13.1 A measure of disperse phase spatial heterogeneity
In turbulent flows, preferential concentration of particles is a major aspect that can strongly con-
trol the physics (Capecelatro and Desjardins 2015). However, preferential concentration is not
the only source of phase heterogeneity. Actually, when particle concentration is not high enough,
the particulate phase cannot be seen as a continuum, and must therefore be considered as a set of
individual particles, and this can have an impact on the form of the coupling (Zamansky, Coletti,
Massot, and Mani 2016). This introduces an additional level of heterogeneity.

We thus define the heterogeneity of the disperse phase as the combination of the preferential con-
centration, consequence of the interactions between particles and turbulence, and the lack of con-
tinuum, consequence of the large particle interspace. In the following, we propose methods that
allow to separate both sources, and we also propose a way to identify isolated particles.

13.1.1 Box counting measure
We have seen in Chap. 6 that a classical tool to quantify preferential concentration is the PDF of
particle number density based on box counting, which depends on the box size, as demonstrated
by Monchaux, Bourgoin, and Cartellier (2012) and Hogan and Cuzzi (2001).

261
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(a) (b)

Figure 13.1. Evolution of the measure of segregation G with the normalized particle number density
n0 (a); nℓ (b). Different box sizes ℓ are tested. The Stokes number is St = 1.

Let us define B a set of Nb boxes partitioning the domain and N b
pb the number of particles in the

box b. We introduce Np the total number of particles in the domain. A possible index to quantify
the preferential concentration is the normalized variance of the discrete number density field:

g(Np, Nb) =

〈
N2

pb

〉
⟨Npb⟩2

=
Nb

N2
p

∑
b∈B

(N b
pb)

2. (13.1)

We provide a probabilistic analysis of the box counting measure in App. D: for one-way coupled
simulations, it is possible to detail the asymptotic behavior of the measure.

Let us rewrite this measure and rather consider:

G : (nℓ, ℓb) 7→ g

(
nℓ

L3

ℓ3
,
L3

ℓ3b

)
. (13.2)

Figure 13.1(a) not only confirms the dependency of the measure with the box size ℓ, but also high-
lights its dependency on particle number density n0. For a given box size, the measure appears to
converge when increasing the number of particles. For sufficiently high particle number densities,
the statistical sampling becomes redundant and saturated and increasing the number of particles
does not add any information in the measure. This is confirmed by plotting the measure against the
particle density in the chosen box size ℓ, in Fig. 13.1(b). Thus, it seems that for any box size, the
convergence of the measure is established for nℓ ≫ 1. The mathematical proof of the convergence
of the measure with the number of particles is shown in App. D, as well as its linear behavior for
small number of particles.

The choice of the box size remains a degree of freedom and we want to characterize the scaling
of the measure with this parameter. Ensuring nℓ = 10 (i.e. the measure can be considered as
independent on the particle number density), we plot in Fig. 13.2(a) the measure G as a function of
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(a) (b)

Figure 13.2. Segregation measure G as a function of the box size ℓ (a) ; and the normalized box size
ℓ/η (b).

the box size ℓ for different simulations. We observe two regimes in the obtained trends. For very
large boxes, the measure tends to 1 and is not representative. On the other hand, the segregation
increases with the logarithmic decrease of ℓ. Rescaling the measure as a function of ℓ/η, the curves
in Fig. 13.3(b) overlap.
We can see that the linear regime is established for ℓ ≤ η/2. Thus, choosing smaller ℓ will not
improve the accuracy. On the other hand, for ℓ larger than this critical value, the measure is not
converged.

The choice of ℓ must therefore result in a compromise between the cost of the simulation (limited
number of particles), and the sufficient sampling of the small scales η. This way, the segregation
metric G(nη = 10, ℓ = η/2) is independent of the number of particles, of the box size (chosen
according to η), and adapted to the characteristic fluid scale η. Figure 13.3(b) shows the scaling of
G for different simulations, and the characteristic peak obtained for unitary Stokes.

However, it is not always possible to simulate so many particles, and most of the simulations ob-
tained do not reach statistical convergence. In this case, another measure of the segregation must
be considered in order to get rid of the dependence on the size of the boxes.

13.1.2 Voronoı̈ measure
Another solution proposed in the literature is the use of Voronoı̈ diagrams based on the Lagrangian
point-particle cloud. The local particle concentration is the inverse of the volume of Voronoı̈ cells v
and unlike other segregation calculation methods such as box counting, they do not depend on the
size of the box arbitrarily chosen. A direct measure for the preferential concentration is the stan-
dard deviation of Voronoı̈ volume distributions: when clusters and vacuum regions are formed, the
tails of the distributions are enhanced and the standard deviation increases.



264 CHAPTER 13 - MODULATION OF TURBULENCE BY PARTICLES

(a) (b)

Figure 13.3. Segregation as a function of Stokes number for different Kolmogorov length scales with
(a) classic box counting measure ; (b) scaled box-counting measure

Figure 13.4(a) shows the distribution of the normalized Voronoı̈ volumes normalized by the aver-
age particle density1, introduced by Monchaux, Bourgoin, and Cartellier (2010). Three one-way
coupled simulations are compared with different Stokes numbers and particle number densities
at final time. Figure 13.4(a) also shows the distribution generated by a random Poisson process
(RPP), which corresponds to the perfectly homogeneous case. For all three cases, the standard
deviation is greater than for the RPP, and it is maximal for a Stokes number close to unity, when
the highest preferential concentration occurs.

In Fig. 13.4(b), we show the standard deviation of the Voronoı̈ volume distribution σ(log(vn0))
for three original simulations with different particle number densities: nη = 0.07, 0.33, 3.3, re-
spectively the full, dashed and dotted lines. Similar to the box counting method, this measure
also depends on the particle number density, and thus does not differentiate the source of het-
erogeneity between preferential concentration and the lack of continuum. Such bias has already
been studied by Monchaux (2012) who suggested to artificially sub-sample highly concentrated
simulations in post-processing. Particles are randomly chosen and removed from the original data
set. Sub-sampled simulations exhibit the same σ(log(vn0)) behavior for one-way simulations in
Fig. 13.4(b). This is expected because the carrier phase is identical for all three simulations (one-
way coupling) and the sub-sampling process before or after running the simulation leads to the
same particulate field. In order to compare preferential concentration of particles between simula-
tions with different number of particles, we apply the sub-sampling procedure to each simulation
up to a number of particles of reference Np = 105 (corresponding to nη = 0.02). Note that this
sub-sampling procedure was also used by Monchaux and Dejoan (2017).

To summarize, we compare the different measures of preferential concentration introduced above
in Fig. 13.5(a), for several Stokes numbers. The box counting method based on the smallest boxes
(lbox = ∆x) reveals a strong statistical bias that can mask the preferential concentration of particles

1We recall that the average particle density is independent of the spatial organization of particles.
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(a) (b)

Figure 13.4. (a) PDF of normalized Voronoı̈ volumes for different Stokes number and compared to the
random Poisson process (RPP) in black line ; (b) Evolution of the standard deviation of the PDF with
the number of particles in simulations, for successive sub-sampling in post-processing. Dotted lines

( ) : nη = 3.3, dashed lines ( ): nη = 0.33 and solid lines ( ): nη = 0.07.

for very low particle number densities: the Stokes number dependency is not evident for the dotted
curve in Fig. 13.5(a). This is corrected in the measure introduced by Monchaux, plotted in red in
Fig. 13.5(b). Even for very low particle number densities, the Voronoı̈ diagrams are well defined
and the shape of the correct dependency on Stokes number is captured. However, there is still the
statistical bias due to the mean particle number density. The black lines represents the unbiased
measure after sub-sampling. The scaling of those black curves is consistent with the fact that the
Stokes number rules the preferential concentration, and that the only difference between the red
curves is due to the additional sampling. Note that the value of the depleted measure still contains
the effect of particle number density because it depends on the reference nη chosen, but it is now
independent of the particle number density of the original simulation. This quantifies the tendency
for particles to gather in specific regions of the fluid.

13.1.3 Identification of isolated particles

Several works are interested in the identification of clusters with the Voronoı̈ tesselation. For ex-
ample, Monchaux, Bourgoin, and Cartellier (2010) suggested a methodology to identify clusters as
a connected set of low Voronoı̈ volumes. This was used for instance by Zamansky, Coletti, Massot,
and Mani (2016) and improved by Baker, Frankel, Mani, and Coletti (2017). However, we seek
here to identify isolated particles, which do not form a complementary set to clusters.

Voronoı̈ cells produce a partition of the domain and thus, even in a regime where all particles are
visibly part of a well-converged cluster as in the schematic example of Fig. 13.6(a), the cells of
particles located at the border of the high density area will include the vacuum domain separating
the other clusters. From the definition proposed by Monchaux, Bourgoin, and Cartellier (2010),
those specific particles are therefore not part of any clusters. However, we would like to include
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(a) (b)

Figure 13.5. Comparison of preferential concentration for one-way coupled simulations. Dotted lines
( ) : nη = 0.07, dashed lines ( ): nη = 0.33 and solid lines ( ): nη = 3.3. (a) Normalized
variance of the number density field with box counting method; (b) Standard deviation of normalized

Voronoı̈ PDF before (red lines) and after (black lines) sub-sampling in post-processing.

them in the cluster given that they are located in the high-density area. On the other hand, we
would like to identify if particles are completely isolated from a cluster, and Voronoı̈ volumes
fail to provide this information because a large cell volume does not necessarily mean that the
associated particle is in a void region. This is why we are considering a different distribution than
the Voronoı̈ volumes to avoid this eventuality.

Let us introduce the minimum interparticle distance δmin, defined for each particle as the dis-
tance between the particle and its closest neighbor. Thus, even for particles on the boundary of a
cluster, the minimum distance is small enough to consider that those particles belong to it, while
the Voronoı̈ criterion reflects the fact that they belong to a vacuum region. The distributions of
minimum interparticle distances are given in Fig. 13.6(b) for several particle number densities.
Naturally, an increase in the particle number density results in a shift of the distribution towards
lower values of interparticle distances.

13.1.4 Summary of proposed measures

We have introduced several measures of particle concentration. We have verified that the box
counting measure of segregation converges with the number of particles (see App. D), and that
particle preferential concentration can be compared between simulations with different number
densities using the method of sub-sampling and volume Voronoı̈ PDF. We will therefore use the
box counting method to estimate the convergence of exchanges between particles and fluids at a
given scale, and the volume Voronoı̈ PDF will be helpful to compare particle preferential concen-
tration in two-way coupled simulations in Chap. 13. The minimum interparticle distance gives
another characterization of the heterogeneity of the particulate phase, by allowing to identify iso-
lated particles with large interparticle distances.
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(a) (b)

Figure 13.6. (a) 2D Voronoı̈ cells (red polygons) associated to particles (red points) superimposed with
particle number density field (grey scale) ; (b) Probability density function of minimum interparticle

distance for simulation with St = 1 and η = 0.01.
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13.2 Modulation of turbulence by particles: an exhaustive study
An overview of the evolution of statistical quantities and spectra is presented in this section ac-
cording to the three parameters St, ϕ and nη. The results already observed in the literature for
the influence of Stokes number and mass loading are retrieved. Focus is on the role played by
the particle number density, and the importance of taking it into consideration for a heterogeneous
disperse phase.

13.2.1 Methodology
The carrier phase simulation is described in Sec. 12.4.1. Particles are injected at t = 1, with
particles’ location randomly sampled according to a uniform distribution law in the domain, and
the particle velocities are set equal to the ones of the carrier phase at the particle locations. Natural

turbulence is established at that time: the relation
d ⟨k⟩
dt

= −⟨ε⟩ (t) is satisfied.
The simulation is run under one-way coupling during approximately one eddy turn over time to
“thermalize” the particles. Then the two-way coupling is activated at tinj = 3. This delay for the
activation of the two-way coupling allows the influence of the particles to be studied once they have
been naturally segregated. This removes an inconvenient transitional regime observed otherwise,
already mentioned by Ferrante and Elghobashi (2003), especially visible for particles with large
Stokes number.

In the present work, we apply direct numerical simulations to investigate turbulence modulation
by inertial particles in decaying isotropic turbulence. Parameters of the disperse phase were suc-
cessively varied to provide data on modulation of turbulence features and energy spectra according
to Table 13.1. In order to cover the entire parameters space, the exhaustive study of the three se-
lected parameters is carried out according to the parameter values in the first line of Table 13.1. To
emphasize the role played by the particle number density parameter, another set of simulations is
performed, with a very large range of values for nη. To satisfy the assumptions of sub-Kolmogorov
particles and dilute regime, the mass fraction is set at a sufficiently low value ϕ = 0.001.

13.2.2 Two-way interaction energy rate
Despite the lack of consensus on a unique criterion for turbulence modulation by particles, the
Stokes number has often been identified as one of the key parameters. For instance, Elghobashi
(1994) provided a diagram showing the regimes of production or dissipation of turbulence by par-
ticles according to the Stokes number based on Kolmogorov time scale. Ferrante and Elghobashi

Figures St(tinj) ϕ nη

Fig. 13.7 to 13.13, 13.17 [0.3, 0.6, 1.2, 2.4, 4.8] [0.1, 0.2, 0.3] [0.07, 0.7, 7]

Fig. 13.18, 13.14 [0.6, 2.4] [0.1, 0.2, 0.3] [0.07, 0.17, 0.7, 1.7, 7, 17]

Fig. 13.15, 13.19, 13.20 0.6 0.001 8.4× 2j , j = −15, ..., 0

Table 13.1. Set of parameters for particles.
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Figure 13.7. Turbulent kinetic energy temporal evolution for ϕ = 0.3 and nη = 0.7 from injection time
tinj = 3 to final time tf = 6.

(2003) also identified a critical Stokes number (based on the Kolmogorov time scale at injection
time) for which particles do not change the total energy of the carrier phase (thereby named ”ghosts
particles”). Figure 13.7 shows similar results: the Stokes number does play a role in the modula-
tion of the kinetic energy of the fluid, with a tendency to slow down the rate of energy decrease for
low Stokes numbers, and to increase it for more inertial particles. The evolution equation of this
decay rate (Eq. 12.7) is related to the dissipation term −⟨ε⟩ (t), to which is added the energy rate
of change due to particle drag force ⟨ψp⟩ (t).

Figure 13.8 describes the evolution of the two components of the decay rate: the fluid-particle
coupling energy rate (Fig. 13.8(a)) and the dissipation rate (Fig. 13.8(b)) at a given time tf = 6
and as a function of the final Stokes number. Both are normalized by the total energy budget of
the carrier phase ⟨k⟩ (tf ) and plotted with the same amplitude of y-axis in order to compare their
relative magnitude.

The two-way interaction energy rate ⟨ψp⟩ depends on the velocity difference between the particle
and its surrounding fluid, whereas ⟨ε⟩ depends on the strain rate only involving fluid gradients.
Therefore, the only term accounting for the transfer of energy between the two phases is ⟨ψp⟩
as opposed to the modulation of ⟨ε⟩ which is the consequence of the propagation of the fluid
perturbation around each particle. The two energy rates have very similar behaviors, and this
correspondence is highlighted in Fig. 13.9 which groups the fluid dissipation values according to
those of the fluid-particle exchange term. We believe that this strong correlation is a consequence
of the fact that the dissipation rate is somehow a measure of the velocity gradients. As particle
source term implies a perturbation of the velocity field, any modification due to particles leads to
an immediate modification of the dissipation rate, in a strongly correlated manner. The reader can
refer to the work of Ferrante and Elghobashi (2003), who gave a comprehensive analysis of the
effect of particles on the dissipation ⟨ε⟩ by considering their impact on the vorticity field.
The comparison of Figs. 13.8(a) and 13.8(b) shows that the magnitude of the change in dissipation
((⟨ε⟩2-way − ⟨ε⟩1-way)/ ⟨k⟩) is always smaller than the normalized source term ⟨ψp⟩ / ⟨k⟩. There-
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(a) (b)

Figure 13.8. (a) Normalized fluid-particle exchange energy rate ; (b) Normalized dissipation rate versus
Stokes number at time tf = 6. Lines blue: ϕ = 0.1, red: ϕ = 0.2, yellow: ϕ = 0.3, : nη = 7 , :

nη = 0.7 , : nη = 0.07. The black dash-dotted line stands for the single-phase flow.

Figure 13.9. Normalized dissipation rate ⟨ε⟩ / ⟨k⟩ as a function of ⟨ψp⟩ / ⟨k⟩. at time tf = 6. Lines
blue: ϕ = 0.1, red: ϕ = 0.2, yellow: ϕ = 0.3, : nη = 7 , : nη = 0.7 , : nη = 0.07. .
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Figure 13.10. Fluid-particle coupling energy rate normalized by dissipation rate as a function of mass
loading at tf = 6. The arrow shows the decrease in Stokes number. The dashed line is the asymptotic

limit analytically predicted by the model in Eq. (13.3).

fore, we will mainly focus on the two-way interaction energy rate and consider the dissipation as
a consequence of this term.

We measure a change in the sign of ⟨ψp⟩ around Stokes number close to unity2 in Fig. 13.8(a).
In the case of St < 1, the fluid-particle coupling energy rate ⟨ψp⟩ is positive, because the fluid-
particle correlation along the particles paths ⟨ui(x, t)ṽp,i(x, t)⟩ is larger than the autocorrelation of
the fluid ⟨ui(x, t)ũ@p,i(x, t)⟩ (Ferrante and Elghobashi 2003). With the inverse coupling, particle
energy is given to the fluid resulting in an attenuation of the energy decay rate.

For Stokes numbers close to unity, particles are ejected from the large-vorticity cores but remain
in their periphery. Even though fluid-particle energy rate is close to zero, the concentration of
particles in those peripheric areas of vortices increases the dissipation.
Conversely, when the inertia of the particles increases, the fluid-particle coupling energy rate be-
comes negative due to a decorrelation between the velocities of the fluid and the particles. Inertial
particles escape from their initial vortices and ”cross” the trajectories of fluid points. Accordingly,
⟨ψp⟩ becomes negative and thus enhances the decay rate of turbulent kinetic energy.

In the scalar limit (for microparticles, i.e. St ≪ 1), the particle distribution is relatively uniform
and particles behave like fluid-tracers. They are not ejected from the vortex cores and they retain
their kinetic energy longer than the surrounding fluid. This is called ”dusty gas”, a phenomenon
already described by Saffman (1962) and quantified analytically by Druzhinin (2001). The zeroth-
order solution of the two-way coupling source term is in the form:

⟨ψp⟩ (t) =
ϕ

1 + ϕ
⟨ε⟩ (t) +O(St). (13.3)

This asymptotic behavior is retrieved in Fig. 13.10.

2The Stokes number calculated in our study is based on Kolmogorov scale at the measuring time τk =√
ν/ ⟨ε⟩ (tf ), and not the injection time as it is defined by Ferrante and Elghobashi (2003)
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(a) (b)

Figure 13.11. (a) Fluid-particle coupling energy rate normalized by mass loading for a fixed nη = 7 ;
(b) Two-way interaction energy rate normalized by total kinetic energy and mass loading at tf = 6 with

fixed St(tinj) = 0.6. Lines blue: ϕ = 0.1, red: ϕ = 0.2, yellow: ϕ = 0.3.

As expected, an increase in mass loading produces a more significant fluid-particle coupling term.
Figure 13.11(a) suggests that a normalization by ϕ yields a scaling independent of mass loading.
Thus, at high Stokes numbers, an increase in mass loading enhances the suppression of kinetic
energy. On the contrary, at low Stokes numbers, ⟨ψp⟩ remains positive, and its absolute value in-
creases, which slows down the natural decrease in the turbulent kinetic energy of the fluid. The
particles with low Stokes number follow the fluid particles and thus uniformly charge the vortices,
which therefore retain their vorticity longer. However this scaling is verified here for a very high
particle number density nη = 7 and we show in Fig. 13.11(b) that the behavior is not that simple
for heterogeneous particle phases.

Figure 13.11(b), which shows the evolution of the normalized fluid-particle energy rate as a func-
tion of the particle number density, confirms that an heterogeneous disperse phase enhances the
fluid-particle exchange term contribution. For a very high number of particles, the source term is
almost proportional to mass loading (the normalized plots are almost overlapping). However, for
lower number of particles, the normalized two-way interaction term is stronger for high mass load-
ings than for low ϕ. For one-way coupled simulations, at fixed St, the dynamics of the particles
is identical and thus the (hypothetical) two-way interaction term is strictly linear with the mass
loading. For two-way coupled flows, the velocity of the fluid is locally modified by particles, thus
changing the velocity correlations in the two-way interaction term. Even though the mass loading
is in factor in the expression of ⟨ψp⟩ (see Eq. 12.7), the non-linear dependency of velocity correla-
tions yields this non-overlapping of the curves. This figure precisely highlights the role played by
particle number density in momentum exchanges between particle and carrier phases.

The asymptotic behavior of the exchange term at very high particle number densities is reminiscent
of the dependency of the box counting method with particle number density. We show that the
source terms in Fig. 13.11(b) converge towards an asymptotic limit value. It is assumed that
convergence is based on the average volume of Voronoı̈ cells i.e. v(Np) = L3/Np. In order
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ϕ p ψp(Np,max) ψ∞
p

0.1 0.7219 0.0928 0.0931

0.2 1.1210 0.0923 0.0927

0.3 1.0050 0.0918 0.0926

Table 13.2. Estimation of the converged values using Richardson’s extrapolation.

to evaluate the level of convergence in terms of particle number density, we apply a Richardson’s
extrapolation considering the parameter to be varied is not the mesh size, but the number of particle.
We thus postulate

ψp(Np)− ψ∞
p = Cv(Np)

p

where ψp(Np) is the two-way interaction energy rate with Np particles in the domain, ψ∞
p is the

theoretical value of the quantity ψp at convergence, C is a constant, and p is an estimate of the
order of convergence. If we are in the asymptotic regime, these two constants, C, p are fixed and
we use the Richardson extrapolation to obtain the values of the constants as well as an estimate of
the two-way interaction value at convergence. With three values of ψp(Np) taken with a constant
ratio r = 10 between the v(Np), we estimate:

p = − 1

ln(r)
ln
( |ψp(r

2Np)− ψp(rNp)|
|ψp(rNp)− ψp(Np)|

)

C =
ψp(r

2Np)− ψp(rNp)

v(r2Np)p − v(rNp)p

Values at convergence are listed in Table 13.2. We observed that the estimated converged value is
very close to the value obtained with the maximum number of particles in our study.

13.2.3 Spectral space analysis of two-way coupling energy rate
The consequence on the coupling can be further examined by taking the evolution of the energy
and forcing spectra. As already observed by Ferrante and Elghobashi (2003), even if the change
in the total energy budget is not affected by the presence of small particles (in the case of ghost
particles), it does not necessarily imply that the distribution of this energy in the different scales is
uniformly zero.

In Fig. 13.12, the turbulence spectrum is plotted at time tf = 6 for cases without particles, and in
the two-way coupled cases for a fixed mass loading and Stokes number St(tinj), and six different
values of mean particle number densities nη. The presence of particles enhances the energy at
small scales while decreasing the energy at large scales, the overall turbulent kinetic energy be-
ing reduced because of the promoted turbulent dissipation. Furthermore, as the particle number
density is increased, the spectrum tends to a limit which corresponds to the highly-concentrated
regime, as already discussed in Sec. 13.2.2.

The fluid-particle interaction spectrum has been extensively studied in the literature (Ferrante and
Elghobashi 2003; Fröhlich, Schneiders, Meinke, and Schröder 2018; Mallouppas, George, and
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Figure 13.12. Normalized Energy spectrum E(κ)/ ⟨k⟩ at tf = 6 for ϕ = 0.3 and St(tinj) =
2.4. The arrows show the increase in the particle number density following this order: nη =
0.07, 0.17, 0.7, 1.7, 7, 17. The dash-dotted line stands for the single-phase flow spectrum. The inset

is a zoom on small wavenumbers.

(a) (b)

Figure 13.13. Normalized two-way interaction spectra Ψp(κ)/ ⟨k⟩ at tf = 6 for nη = 7. Influence of
the Stokes number based on final time (a) and of mass loading (b). Full lines ( ): ϕ = 0.3, dashed

lines ( ): ϕ = 0.1
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(a) (b)

Figure 13.14. Spectral fluid-particle interaction plotted for different particle number densities nη and
fixed ϕ = 0.3. (a) St(tinj) = 0.60 ; (b) St(tinj) = 2.4

van Wachem 2017; Abdelsamie and Lee 2012; Druzhinin 2001). In particular, Ferrante and El-
ghobashi (2003) compared Ψp(κ) for different Stokes number and found similar results. Figure
13.13(a) shows that for particles with small Stokes number (microparticles), Ψp(κ) is positive at
almost all wavenumbers and thus produces a positive contribution to the decay rate ∂E(κ)/∂t. On
the other hand, the term is negative at almost all wavenumbers for larger Stokes numbers. For
intermediate and large Stokes numbers, Ψp(κ) remains positive for large κ while a negative peak
appears in the spectrum for small κ.

Figure 13.13(b) shows the spectral fluid-particle interaction for two different Stokes numbers and
two different mass loading. As mentioned in Sec. 13.2.2, the scaling between spectra with same
Stokes number but different mass loading is close to the ratio of mass loading, but because of the
non-linearity, we do not expect such scaling for higher mass loading.

Previous results show that a low particle number density results in an increase in the fluid-particle
interaction energy rate ⟨ψp⟩ (t), especially when the mass loading is high. Let us study the spec-
trum of this exchange term to identify at what scales the interactions between particles and fluid
are located and how the distribution of mass loading can modify the fluid energy. We can see in
Figs. 13.13(a) and 13.13(b) that a heterogeneous disperse phase (nη = 0.07) systematically pro-
duces a larger Ψp(κ) at small scales than a highly-concentrated one (nη = 17). At large scales
however, a heterogenous disperse phase reduces the two-way interaction contribution compared to
higher particle number densities simulations.

We observe that the two-way interaction spectra are positive at the largest wavenumbers, even
for large Stokes numbers (Fig. 13.13(b)). The feedback force in the momentum equation always
results in a local alignment of fluid velocity around a particle with the particle velocity. The
intensity of the feedback modulates this tendency to alignment. It is more obvious for low Stokes
number, but it can also become important at high Stokes number and large mass loading.



276 CHAPTER 13 - MODULATION OF TURBULENCE BY PARTICLES

(a) (b)

Figure 13.15. Distribution of two-way interaction energy rate ψp at t = 6 superimposed with particles
parametrized by ϕ = 0.001 and St = 1. (a) nη = 0.12 ; (b) nη = 2

13.2.4 Particle field heterogeneity

For a physical intuition of the interpretation of the spectra in Sec. 13.2.3, the spatial distribution of
the corresponding fields before the Fourier transform can be examined. Figure 13.15 compares the
spatial distribution of the local two-way interaction energy rate ψp(x, t) = ui(x, t)fi(x, t)/ρ, with
superimposed particles in a part of the flow domain at time t = 6. Particles parameters were set to
the same Stokes number St = 1, and global mass loading ϕ = 0.001, but different particle number
densities. Figure 13.14(a) shows that each isolated particle produces a localized contribution to
the two-way interaction term, and therefore the two-way interaction field is more heterogeneous
than for the case with higher nη, accordingly to the corresponding particle concentration field. By
increasing the particle number density nη without changing the total mass ϕ nor the behavior of
each particle defined by St, see Fig. 13.14(b), each particle produces a smaller individual effect on
the fluid. On the other hand, the collective effect of segregated particles results in a smoother and
well-distributed two-way interaction field.

The probability distribution function of the corresponding spatial two-way interaction terms is
plotted in Fig. 13.16, and the reduction of the tails indicates a better distributed interaction term
for highly-concentrated disperse phase.

13.2.4.1 Preferential concentration

Figure 13.17 shows the standard deviation of the normalized Voronoı̈ volume distributions for
the different configurations. As explained in Sec. 13.1, the simulations were depleted in post-
processing to equalize to the same number of particles in order to be able to compare them without
statistical bias. The quasi-scaling of those curves is consistent with the fact that the Stokes number
based on up-to-date time governs the preferential concentration, revealing that the adaptation is
faster than the decrease in energy. Only simulations with low particle number density and low
Stokes number increase the preferential particle concentration effect. We can conclude that all the
two-way coupling effects that we analyze in our simulations are not a consequence of a modifica-
tion of the clustering.
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Figure 13.16. Distribution of the two-way interaction energy rate field ψp(x, t) for the heterogeneous
and highly-concentrated cases.

Figure 13.17. Comparison of preferential concentration for all simulations. Lines blue: ϕ = 0.1, red:
ϕ = 0.2, yellow: ϕ = 0.3, : nη = 7 , : nη = 0.7 , : nη = 0.07. The black dash-dotted line

stands for the single-phase flow.
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Figure 13.18. Probability density function of minimum interparticle distance for simulation with
St(tinj) = 0.6 and ϕ = 0.3 at tf = 6. In our simulations, with the PSI-Cell approach, 2δi = 2∆x =

0.04.

13.2.4.2 Collective and isolated regimes

A single particle will interact and exchange energy with the surrounding fluid up to a characteristic
length of δi, which is directly related to the size of the projection kernel3. The source term intro-
duced in the fluid momentum equation is limited to the kernel envelope δi and we will consider
that a particle is “isolated” if it is distant from others of more than 2δi (the interaction zones of
the two particles do not overlap). On the contrary, if two particles are closer than this length scale,
their corresponding source terms can overlap and these two particles form a “cluster”.

Let us consider the two limit regimes where particles are either all isolated to each other, or all part
of a cluster. Those two configurations correspond to the PDF of the minimal interparticle distance
being respectively on the right or on the left side of the 2δi = 2∆x boundary, see Fig. 13.18. These
limit behaviors are indeed observed in Fig. 13.14: green and light blue distributions of Fig. 13.18
are on the left of 2δi and produced in Fig. 13.14 almost identical spectra, because the particulate
phase is already converged and increasing particle number density do not change the interaction
spectrum anymore. However, for the other distributions, on the other side of the threshold, one can
see in Fig. 13.14 that the spectra are strongly dependent on particle number density, especially at
the smallest scales, the last ones to reach convergence.

Let us explained these limit behaviors. If particles are all isolated from each other, then the par-
ticles properties locally determine the amount of energy exchanged with the fluid and the global
budget is a statistical average of all the exchanges. Thus, if we modify the properties of this par-
ticle, for example by decreasing the particle number density of the simulation while ensuring that
we keep isolated particles, then the mass mp of the single particle is now larger and the amount of
energy transferred will be locally larger. In this regime, the two-way interaction spectrum is highly
sensitive to particle number density, especially at the smallest scales of the fluid, where particles
inject an energy almost proportional to their mass.

3Using a trilinear projection, we verify that δi = ∆x < η
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Figure 13.19. Normalized two-way interaction spectra Ψp(κ)/ ⟨k⟩ for 11 realizations of simulation
with nη = 8.4×2−14 (grey lines), the average spectrum ⟨Ψp⟩ (κ)/ ⟨k⟩ (black full line) and the standard

deviation (red full lines).

On the contrary, if every particle is part of a cluster, the force exerted by particles on the fluid can
be assimilated to a continuous force on the cluster domain. By increasing particle number density
but maintaining the mass loading, the total mass and therefore the energy contained in each cluster
is unchanged. Therefore, the two-way interaction spectrum is unchanged, this collective regime
leads to the two-way limit behavior observed for spectra.

This criterion is very restrictive, those two limit regimes are rarely reached and we propose in the
next section another approach to characterize the transition from the isolated to collective regime,
scale by scale.

13.2.4.3 Scale by scale convergence

The two-way interaction spectrum indicates for each wavenumber the amount of energy introduced
into the spectral equation. More precisely, each wave-number κl is associated to a physical size
l = 2π/κl. Thus, the term Ψp(κl) specifies the average energy provided by the exchange term in
boxes of size l contained in the domain.

Figure 13.19 shows several realizations (grey lines) of the interaction spectrum of a very heteroge-
neous disperse phase (nη = 8.4× 2−14 = 5.13× 10−4). The spectra are noisy at the largest scales
due to a lack of samples available for the corresponding box sizes. We define a reconstructed spec-

trum, in black line, as the mean spectrum of all the realizations ⟨Ψp⟩ (κ) =
1

NR

∑
R

Ψp(κ), where

Nr is the number of realizations of the simulation (same parameters of the disperse phase and the
gas phase but different initial particle distribution). The standard deviation is also plotted in red
lines in Fig. 13.19. The variability between the different realizations is reduced at the smallest
scales because one flow realization contains a sufficiently large sample of small eddies to ensure a
meaningful sampling.
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(a)

slope -1

(b)

Figure 13.20. (a) Normalized two-way interaction spectra averaged between several realizations
with increasing particle number densities. (b) Evolution with nη of the spectral values for different

wavenumbers (the arrow indicates increasing wavenumbers).

In the following, to only take into consideration the effect of a representative realization of a highly
heterogeneous disperse phase, we consider the average spectrum associated with several realiza-
tions (black spectrum). We thus obtain smoothed spectra in Fig. 13.20(a) even for very low particle
number densities.

In Fig. 13.20(b), we have plotted for several wavenumbers the evolution of the spectrum values at
those scales when nη increases.
For each graph in this figure, we observe two very distinct regimes: a first linear zone of slope
−1 for low nη, and a second zone for high nη, in which the spectrum values are converged and
are therefore no longer modified when the particle number density increases. Those regimes are
respectively the isolated (linear) and collective (converged) regime introduced before. This scale-
by-scale convergence can be correlated with the convergence of the segregation measure defined
with bin counting in Sec. 13.1.1, and is also a consequence of the statistical sampling related to
the scale in consideration: the large scales reach their asymptotic value for smaller nη than small
scales, because the number of particles per scale is larger.

Conclusion
An exhaustive study of the influence of the three parameters describing a monodispersed phase on
isotropic homogeneous turbulence has been carried out. Classical results from the literature have
been retrieved, in particular the global trends in energy and spectral statistics with the Stokes num-
ber and mass loading. The study of the two-way coupling term here normalized by fluid kinetic
energy and the use of a Stokes number based on instantaneous Kolmogorov scales have permitted
to clearly identify two regimes: a first regime for St < 1 in which particles reduce the decay of
turbulent energy, and a second regime for St > 1 in which particles enhance the decay.
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Additionally to the existing literature, the present study has emphasized the influence of the particle
number density on the coupling term. First, we ensured with a Voronoı̈ analysis that the structure
of turbulence is not strongly modified by the presence of particles: turbulence is sustained or dis-
sipated but particle preferential concentration remains directly correlated to the updated Stokes
number.

Numerical simulations have revealed that a highly heterogeneous particulate phase tends to in-
crease the energy transmitted to the fluid. In particular, a spectral analysis showed that isolated
particles inject energy at the finest scales while a continuous particulate phase no longer produces
energy at these scales but rather at smaller wavenumbers. Those two regimes are reflected in the
behavior of the energy spectra:

• At “small” scales, the spectrum is strongly dependent on particle number density and behave
almost linearly with this parameter: the energy injected by particles is almost proportional
to individual particle mass because particles are isolated regarding those specific scales.

• At “large” scales, the spectrum is no longer modified by the number of particles since the
sampling is significant enough, all these scales necessarily contain a large number of parti-
cles.

• The limits for “small” and “large” scales depend on the mean particle number density.
• If the distribution of minimal interparticle distance is on the left side of η, the spectrum is

completely converged: increasing particle number density does not modify the spectrum.
Furthermore, due to the high variability of the spectrum at large scales for low particle concen-
tration, we have highlighted the necessity to construct statistics over several flow-particles realiza-
tions.

This study therefore made it possible to determine precisely the conditions of partial or total con-
vergence of the spectrum as a function of the particle number density, and more precisely of the
distribution of interparticle distances.

As a conclusion, it must be noted that such regimes, whereas being intrinsically present in La-
grangian point-particle approaches, must be included and modeled when the carrier phase de-
scription is given by a reduced description such as Large Eddy Simulation. The use of adapted
Lagrangian stochastic models must be considered. For Eulerian approaches, even with a fully re-
solved carrier phase, accounting for heterogeneous regime requires new developments and closures
at the kinetic level.





Chapter 14

Towards two-way coupling

Throughout this thesis, we have been particularly interested in Lagrangian approaches for particle
SFS models with the aim of reproducing disperse phase statistics, in particular intermittency and
particle preferential concentration. The objective of this chapter is to present the issues and objec-
tives for extending these models to two-way coupling approaches.

The particle SFS models considered so far can be applied to one-way coupling, since the reduced-
order model of the turbulence does not require any modification due to the presence of particles.
Within a two-way coupling context, things are considerably more complicated. In Chap. 13, we
have studied the implications of the two-way coupling in terms of turbulence modulation, which
apparently affects all scales of the energy spectrum. Indeed, the presence of particles affects not
only the large scales of the turbulence (leading to an additional term in the filtered velocity equa-
tion), but also the small scales, which is then a matter of sub-filter modeling for the fluid itself.
The models will have to be adjusted accordingly.

Section 14.1 first reviews the consequence of accounting for two-way coupling when reductions
are applied on the disperse phase, using the example of a combustor simulation. Then, Section 14.2
will clarify the possible statistically-consistent formalisms. Finally, an extension of the wavelet-
based kinematic model to two-way coupling is proposed in Section 14.3.

14.1 Challenges with two-way coupled simulations
Apart from the discussions about the point-particle model itself, the two-way coupling does not
add any complexity to DPS-DNS, except from numerical issues due to stiff source terms and in-
terpolation and projection, and it stands as the reference simulation. The problem rises when we
switch to a mesoscopic statistical description of the disperse phase, which is necessarily based
on an ensemble-average in some sense to be clarified. In a one-way coupling framework, one can
consider the ensemble-average of his choice for the disperse phase, as it has no consequence on the
carrier phase, in the spirit of the Mesoscopic Eulerian Formalism of Février, Simonin, and Squires
(2005). However, with two-way coupling, any ensemble-average on the particle will propagate to
the carrier phase, as stated in Mercier (2020). Therefore, whatever the reduction technique applied
to the carrier phase, there is an additional ensemble-average that is applied to it, and the statisti-
cal description of the gas phase will depend on the chosen particle ensemble (initial conditions,
boundary conditions...). In the worst case scenario, this particle ensemble would permit, coupled
to the carrier phase, to cover the whole space of possible states for the system of interest. It will

283
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(a) (b)

Figure 14.1. Simulation of the BIMER combustor with (a) an Eulerian Moment Method (Cheneau,
Vié, and Ducruix 2019) and (b) a Lagrangian Particle Tracking (Cunha Caldeira Mesquita, Vié, and
Ducruix 2017) with Large Eddy Simulation. In (a), the represented field is the gas temperature with an
isoline of heat release rate to identify the flame. In (b), we represent the combustion regime with the
Takeno index, the fuel mass fraction, along with particle position in a slice, colored by their diameter.

therefore turn to a RANS formalism. Therefore, great care must be given to the interpretation
of the resolved quantities and to the closure of the models, as defining the statistical ensemble is
mandatory.

For instance, some simulations of two-way coupled combustion systems have been performed
using Eulerian moment methods (Eleonore Riber 2007; Sanjosé, Senoner, Jaegle, Cuenot, Moreau,
and Poinsot 2011; Cheneau, Vié, and Ducruix 2019; Lancien, Prieur, Durox, Candel, and Vicquelin
2018), see Fig. 14.1(a). The simulations were two-way coupled in mass, momentum and energy.
Even if the particle ensemble-average is expected to apply to the gas phase, no specific care has
been taken in this optics: the moment method has not been designed considering this aspect. So
what can we expect from this kind of simulations? This is discussed in the following1:

• Homogeneous limit: as shown in Chap. 12, when the density of particles becomes high
enough, each realization will lead to the same Eulerian fields, and thus the same coupling
with the carrier phase. Therefore, the ensemble-averaging will have no impact on the car-
rier phase statistics, as demonstrated in the previous chapter, and its resolution will remain
unaffected 2. However, in the case of aeronautical combustors, the Lagrangian simulations
exhibit several isolated droplets (see Fig. 14.1(b) as an example). This excludes a possible
homogeneous regime for most of the combustion chambers (in that case after the divergent
exit, far enough from the injector). So the “meaning” of the resolved quantities must be
related to the statistical ensemble of the particle, which is not the case in actual combustor
simulations.

• Single realization: another solution is to no longer perform an ensemble of realizations for
the particles. This way, the resulting formalism will become a one-shot simulation. In a
Lagrangian context, this turns out to be a DPS. In an Eulerian framework, this corresponds
to the resolution of the equation on the fine-grain NDF, for which no ensemble average is

1Here we take aside the related numerical issues
2It stays that if the gas phase resolution is based on ensemble-averaging such as in RANS, it will lead to an

ensemble-average on the particle that must be accounted for.
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applied, which could be performed using adapted moment methods. If we take aside the
question of the numerics, there is one specific aspect that must be adapted: the boundary
conditions. Actually, such Eulerian simulations make use of deported injection conditions,
for which the atomization process is embedded into a 0D model, which gives spatial profiles
of droplets in the disperse phase region. Existing injection models consider for instance a
Gaussian profile of liquid volume fraction. Such a continuous profile is not representative of
a one-shot simulation, as the droplet injection rate is not high enough to reach converged pro-
files. Furthermore, constructing a one-shot injection model would also require to model the
particle-turbulence correlations, which are here missing. Thus, even if we forget about the
adaptation of the closure models and the numerical issues, the injection condition prevents
from interpreting such simulations with respect to a single realization.

• Extended Mesoscopic Eulerian Formalism (EMEF): the last solution has been investi-
gated in Février, Simonin, and Squires (2005), and further explored by Mercier (2020): the
conditional average. As stated in Chap. 12, the two-way coupling can occur in certain condi-
tions at small length scale. If we consider that resolved scales in the ROS are larger than the
coupling scale, the coupling will be limited to unresolved scales and the additional model-
ing due to two-way coupling will be limited to sub-filter scales. Looking at the Large Eddy
Simulations of Fig. 14.1, this is this last interpretation that could hold, but under several
assumptions, as stated in Mercier (2020). This is discussed in the next section.

14.2 Statistically-consistent two-phase formalisms with two-way
coupling

If many efforts have been devoted to particle SFS modeling in one-way framework, there are few
studies conducted on two-way coupling with a reduced description of the turbulence. Among them,
Boivin, Simonin, and Squires (2000) have performed LES of gas-solid flows in forced HIT with
two-way coupling. They applied several sub-grid models in the fluid equations and several LES
resolutions in a priori and a posteriori tests. They were able to capture complex spectral behavior
of the source-sink fluid-particle energy exchange only for St∆ > 1. We had already noticed that in
this case, it is not necessary to add a particulate SFS model and the significant part of the energy
exchange with the fluid occurs at large scales, which are resolved. Note that this particular case
corresponds to a unique realization of the disperse phase, without reduction on particles, interact-
ing with a reduced description of the fluid.

If we introduce a reduction in the particle description, as mentioned in the previous section, it could
lead to a statistical average on the carrier phase, whatever reduction technique initially chosen for
the carrier phase. In the following subsection, we discuss the interaction between resolved and
unresolved scales, to highlight how reduction on small scales could affect the large scales, and we
will naturally go to the Extended Mesoscopic Eulerian Formalism introduced by Mercier (2020).

14.2.1 Interactions between unresolved and resolved scales in ROS
In ROS an operation (filtering or averaging) is performed to reduce the dimensionality of the origi-
nal set of equations. Applied to a unique carrier phase realization, we obtain a filtered field. At this
point, there is a first issue related to the invertibility of the filtering operation: for a given filtered
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field, is there a unique unfiltered field that leads to it?

Some filters are invertible, such as the Gaussian filter, for which the filtered field belongs to one
and only one unfiltered field. Please note that an invertible filter does not reduce the dimensionality
of the problem in terms of wave-numbers, as the energy is simply reduced at small wavelengths,
and not discarded.

But some are not, such as the box filter, which loses information that cannot be recover by de-
convoluting the filtered field. When projecting a solution on a mesh, information is lost for scales
smaller than the mesh size and this information cannot be recovered. For the fully-resolved fields,
we can choose a mesh fine enough to capture all details. But with ROS, we expect to use a mesh
with significantly less degrees of freedom than for the fully-resolved fields. Therefore we can pos-
tulate that ROS are in general based on a non-invertible filtering operation, either because of the
mesh or because of the filter itself.

From this statement, when computing the evolution of the filtered field in ROS, the question is to
know if the evolution of the filtered field is unique or not, as different sub-filter scales could lead
to different evolutions of the large scales. The options are the following:

• The evolution of the large scales is unique: this is only possible if we consider a unique field
for the unresolved scales, or if we consider that all possible sub-grid scales have the same
impact on the large scales.

• Otherwise, in the general case, the evolution of the large resolved scales must be described
statistically, as an ensemble-averaged over all sub-grid scale realizations.

14.2.2 Consequences of two-way coupling on the statistical description
This discussion was made considering a purely single-phase flow, and it should now be extended
to coupled two-phase flows. As mentioned before, the presence of particles can significantly affect
turbulence. Depending on the regime, this forcing can occur at large resolved scales or at small
unresolved scales. If we consider a unique evolution of the large scales, a unique sub-filter scale,
and a unique particle realization (one-shot simulation), the simulation is equivalent to a DPS, and
no specific issue arises. If on the other hand, we aim at a statistical description of the particles,
here are the new options:

• The forcing of particles is at small scales: we can consider statistics conditioned on a unique
large scale for all particle realizations and all possible sub-filter scales. This is possible if
the sub-filter scales have the same impact on the large scales. If not, the ensemble average
over the particle will eventually lead to a ensemble-averaged formalism, with no control on
the resolved statistics. This was proposed by the EMEF of Mercier (2020).

• The forcing of particles is at large scales: we cannot take all possible particle realizations,
as they will modify the large scales. In that case, we must consider the ensemble of particle
realizations that share the same impact on the large scales. Thus the statistics are conditioned
on both the large-scale and on a subset of particle realizations.

14.2.3 A classification of possible strategies
With regards to the previous discussion, we propose in Fig. 14.2 a classification of acceptable
modeling frameworks.
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First of all, if we consider a DPS for the particles, there are only two possible modeling frame-
works:

• The reference DNS-DPS framework which is the base model for all our derivation;
• The two-phase single shot ROS: if we couple a DPS with any ROS of the carrier phase, we

have no choice but to consider a one-shot ROS, for example with a time-space explicit recon-
struction of the sub-filter scale information. If any random variable is to be accounted for in
the ROS description, such as RANS, we must switch to probabilistic ensemble-averaged
methods (which can still be solved using stochastic Lagrangian models or Eulerian ap-
proaches).

Now, if we switch to an ensemble-averaged description for the particles, the landscape is more
complex, and the choice of the modeling framework will be a consequence of the physics to be
solved. Here are the options:

• The Fully-Resolved Point-Particle approach: in the homogeneous limit, for which all
realizations are equivalent with respect to the coupling, i.e. each realization will give the
same result. There is in this case no interest in performing any statistics and we have the full
statistical content in one realization.

• The two-phase RANS: in the general case, without any physical assumption or statistical
restriction, a statistically-consistent formalism is to a consider a RANS formalism, which
ensemble-averaged is the combination of the gas-phase ensemble average and the disperse
phase ensemble average, hence the name two-phase RANS. The required closures will be
far more complex than in the single-phase case because of phase interactions.

• The EMEF: this formalism considers statistics conditioned on restricted ensembles of the
carrier phase or the particle phase. There is however a strong requirement on the impact of
carrier phase sub-filter scales on the resolved scales. All small scales must have the same
impact on the large scales, so that an ensemble-average over the small scales does not result
in an ensemble-average on the large scales. There are also requirements on the particulate
phase physics, which leads to two approaches:

– Large-scale conditioning: the EMEF is based on conditioning statistics to a unique
large-scale realization. This is only possible if the particulate phase is homogeneous at
the large-scale, i.e. all realizations lead to the same large-scale coupling, or if, for an
heterogeneous regime, the coupling is active at small scales only, which is not true in
the general case.

– Large-scale and particle sub-ensemble conditioning: for an heterogeneous regime,
if the coupling is at large scales, we must condition the statistics with both a unique
large scale realization and a sub-ensemble of particle realization that shares the same
large scale coupling.

This proposed classification does not give a direct resolution of two-phase flows, but intends to
give an insight of what can be understood from a two-way coupled simulation and some coarse
guidelines to analyze the statistics of such flow, when the objective is to construct models. In the
next section, regarding the contributions of this thesis, we propose a modeling strategy making use
of kinematic simulations.
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Figure 14.2. Classification of possible modeling strategies with two-way coupling between the particle
and the carrier phase. This schematic describes the various paths to get a consistent modeling approach.
The reader should choose the options on top and bottom rows, and should follow one of the paths to get

to the appropriate formalism, depending on the acceptable physical hypotheses.

14.3 Extension of kinematic simulation for two-way coupled
flows

Recall that the wavelet-based kinematic model depends only on a limited number of inputs:
• The spectral model E(κ), itself constrained by the kinetic energy ⟨k⟩ and the dissipation ⟨ε⟩.
• The model of temporal evolution of the coefficients dεdiv,j,k
• The model for the eddy turnover time of each level ωj

In the following, we assume that the two-way coupling does not modify the temporal evolution of
coefficients nor the eddy turnover times. On the other hand, we expect from the study conducted
in the previous chapter that the energy spectrum of the fluid is modified by the presence of the
particles. We propose three strategies, associated with three levels of coupling:

• On global statistics: as observed in Chap. 13, the presence of particles modifies the total
dissipation of the fluid, and therefore the system reaches a new stationary state. The target
energy spectrum to be reproduced by the KS is hence adapted to produce the total dissipation.

• On the energy spectrum: in the previous chapter, we also observed the spectral distribution
of the energy associated with the coupling term with the particles, and thus the scale by scale
modifications on the energy spectrum of the fluid. The kinematic model then takes as input
a two-way energy spectrum perturbed by the presence of the particles.

• On the momentum: Unlike the previous two methods, this coupling respects the locality of
the particles, by introducing a modification of the fluid velocity precisely at the location of
the particle clusters. The two-way coupling term is projected on a wavelet basis and added
to the corresponding local wavelet coefficient.

These strategies are detailed in the following subsections.
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14.3.1 Global statistics
The target spectrum being fixed E(κ) = C ⟨ε⟩2/3 κ−5/3, there is a bijection between the spec-
trum and ⟨ε⟩. Let us assume that the dissipation rate of the fluid in the absence of a particle is
known, noted ⟨ε1⟩. The stationarity condition allows us to obtain the energy production term ⟨P1⟩
simulated by the kinematic model:

d ⟨k1⟩
dt

= ⟨P1⟩ − ⟨ε1⟩ = 0 (14.1)

In two-way, the particle dissipation source term subtracts from the fluid dissipation, as already
derived in Eq. (12.6):

d ⟨k2⟩
dt

= ⟨P2⟩ − ⟨ε2⟩+ ⟨ψp⟩ (14.2)

assuming that in this flow, the same type of external forcing has been applied as in the one-way
case, we have ⟨P2⟩ = ⟨P1⟩. By looking for the stationary solution of these statistics, we obtain an
equivalent dissipation ⟨P2⟩ = ⟨P1⟩−⟨ψp⟩. The new spectral model is then given by this dissipation
⟨ε2⟩. The term ⟨ψp⟩ is obtained (see Chap. 13) by:

⟨ψp⟩ (t) =
ϕ

τpn0

〈
n(x, t)ui(x, t)[ṽp,i(x, t)− ũ@p,i(x, t)]

〉
(14.3)

As for the DNS study performed in the previous chapter and in order to avoid modeling the tran-
sient regime, we run the one-way simulation with particles until we reach the steady state, before
computing ⟨ψp⟩.

14.3.2 Global spectrum
Assuming that the particles only modify specific scales of the energy spectrum, we propose here to
release the constraint of the original spectral model and to allow the forcing of certain wavelengths
by the particle coupling term. Here we are interested in the turbulent energy equation for each
wavelength. In one-way coupling, the kinematic model must reproduce the well known behavior:

∂E1

∂t
= P1(κ) + T1(κ)−D1(κ)

∂E1

∂t
= P1(κ) + T1(κ)− 2νκ2E1(κ) = 0

(14.4)

This stationarity condition gives us, in the one-way context: P1(κ) + T1(κ) = 2νκ2E1(κ).

For two-way coupled flows, this equation is modified and we add the two-way coupling term,
introduced in Eq. (12.8):

∂E2

∂t
= P2(κ) + T2(κ)− 2νκ2E2(κ) + Ψp(κ)

∂E2

∂t
= P1(κ) + T1(κ)− 2νκ2E2(κ) + Ψp(κ)

∂E2

∂t
= 2νκ2(E1(κ)− E2(κ)) + Ψp(κ) = 0

(14.5)
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where we assume that the same forcing P1(κ) is applied and that the energy transfer, mainly at-
tributed to the fact that large scales give up their energy to small ones, is also conserved: P1(κ) +
T1(κ) = P2(κ) + T2(κ).

This finally gives in steady state the following spectrum for two-way coupled flows:

E2(κ) = E1(κ) +
Ψp(κ)

2νκ2
(14.6)

The spectral term Ψp(κ) is obtained by taking the spectral Fourier transform of the interaction
term, following Eq. (12.9):

Ψp(κ, t) = −
∑

κ≤|κ|≤κ+1

ℜ
{
û⋆i (κ, t)

f̂i(κ, t)

ρ

}
(14.7)

where

1

ρ
f(x, t) = ϕ

n(x, t)

n0

ṽp(x, t)− ũ@p(x, t)

τp
(14.8)

In a RANS context, these “global” couplings do not correspond to a single-shot fluid realization
because the target spectrum does not retain the local information of the position of the particles.
Thus, the changes in the target spectrum can generate a modification of the fluid which is transmit-
ted to every point in the space.

In a LES context however, as seen in Sec. 11.2.4, the target spectrum can be adapted to the sub-grid
scale (given σsgs and εsgs), and the locality of the information is thus preserved, at best, at the re-
solved scales. In that case, such coupled KS can be applied in the framework of EMEF (large-scale
conditioning), by assuming that the disperse phase is large-scale homogeneous, i.e. all possible
realizations of the disperse phase produce the same effects on the carrier phase.

In order to keep the locality, it is rather necessary to directly modify the fluid field at the position
of the particles, which is allowed by the following local model.

14.3.3 Local two-way coupling
In this case, we do not model the energy brought to the fluid by the particles but directly the
momentum. The Navier-Stokes equation gives:

du1 =

(
fext − u1 · ∇u1 −

1

ρ
∇p+ ν∆u1

)
dt (14.9)

and the kinematic model prescribes the evolution model of each wavelet coefficient

ddεdiv,j,k,1 = −ωjd
ε
div,j,k,1 dt+

√
2σ2

jωj dWt (14.10)

Assuming thus that this evolution equation models the right hand side term of the Navier-Stokes
equation and that it is not strongly modified by the presence of particles, the Navier-Stokes equation
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to model in two-way framework becomes:

∂tu2 =

(
fext − u2 · ∇u2 −

1

ρ
∇p+ ν∆u2 +

1

ρ
f

)
dt

∂tu2 = ∂tu1 +
1

ρ
f

(14.11)

By projecting the coupling term onto the divergence-free wavelet basis:

1

ρ
f =

∑
j

∑
k

∑
ε

dεf,div,j,kΨ
ε
div,j,k (14.12)

We then obtain a modified evolution equation for each local coefficient:

ddεdiv,j,k,2 =
(
−ωjd

ε
div,j,k,2 + dεf,div,j,k(t)

)
dt+

√
2σ2

jωj dWt (14.13)

The local coefficient dεdiv,j,k,2 is now driven by an Ornstein-Uhlenbeck process with an additional
drift term coming from the particle momentum: particle fluid velocity will tend to align its velocity
on the particle one.

Such approach could result in a “two-phase ROS single-shot”, since one realization of the disperse
phase interacts with one particular velocity field, fully reconstructed (from large to smallest scales).

14.3.4 Next steps
We have proposed an extension to two-way coupling of our kinematic model based on wavelets,
which could also include intermittency effects if the energy cascade is explicitly handled. This
final local two-way coupling strategy has the advantage of making use of the whole richness of
wavelets. But several assumptions still have to be made in order to close the model, which must
be verified. Furthermore, all the developments have been made in HIT cases, and the next step
towards applications is to handle realistic geometry and we thus need to investigate how to impose
boundary conditions. A last comment would be to mention that this model contains a high level
of information compared to what is used in applications, and it will be necessary to ensure that the
model that makes use of droplet “output” (evaporated fuel for example) is taking into account all
the details that we have added to the disperse phase description.

Conclusion
This chapter outlines the issues at stake in the treatment of the two-way coupling and defines,
according to the resolution strategies for each phase, the appropriate framework to perform this
coupling.

The statistical treatment of the dispersed phase, through the coupling, necessarily introduces a
statistical approach of the carrier phase and it is then essential to establish conditioning strategies
according to the scales of the coupling.
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The under-resolved turbulence, which already requires the addition of particle SFS models in a
one-way context, must also be reconsidered in the two-way framework and we distinguish dif-
ferent strategies depending on the nature of the ROS and of the disperse phase (homogeneous,
heterogeneous...).

We are finally considering some ideas for future two-way models, based on the wavelet-based
kinematic models, and detail the approaches according to the level of coupling.
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Conclusion

This thesis has lifted several critical barriers for the design and use of reduced-order models as
predictive tools for applications involving turbulent disperse two-phase flows. Such flows are in-
volved in a wide panel of environmental and industrial applications, which motivates the need for
reachable numerical simulation.

The random and multi-scale nature of single-phase turbulent flows requires statistical tools and
reduced-order models. The extension of these methods to disperse two-phase flows raises many
challenges. This thesis brings some answers: the objective of a particle sub-filter scale model is
to recover accurately statistics and macroscopic trends, such as intermittency, segregation, or two-
way coupling between the particles and the carrier phase.

We have conducted exhaustive analyses, implemented various tools, and proposed new models to
address these challenges. Eventually, let us emphasize some key achievements of this work.

Main analyses
Before developing appropriate models, we have carried out several in-depth analyses to shed new
light on the mechanisms identified in such flows (intermittency, segregation, two-way coupling)
and the way they are addressed in the literature.

Framework for stochastic models
We have proposed a classification of stochastic models for fluid and inertial particles (Chap. 3
and 8). This review of the existing models identifies different components:

• level of modeling: the stochastic model can address the position, velocity, acceleration, dis-
sipation of the particles. This choice has consequences in particular regarding the order of
derivability of the processes obtained;

• compatibility with turbulence theories: the closure of the diffusion term of the Langevin
equations can be made compatible with the K41 theory (a global constant for the dissipation
must be introduced), or K62 (the local dissipation must be reconstructed);

• type of model used: the Langevin model is often used in the literature, but other choices can
be considered, for example by modeling separately the norm and the direction of the stochas-
tic process. Moreover, in order to reproduce intermittent statistics, multi-fractal stochastic
processes must be considered, such as fractional Brownian motions;

• sub-filter information: we have established general notations T ⋆
L, σ⋆, and ε⋆ which can be

adapted to any reduced-order model. RANS simulations result in identified constants TL, σu
and ⟨ε⟩, while LES provide modeling of sub-grid terms at the resolved scale.
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Identifying and adequately assessing these modeling choices allows us to benchmark the models
available in the literature and consider different combinations of choices for future models.

Framework for intermittency
Intermittent processes obtained from Gaussian multiplicative chaos have been studied under an
original perspective (Chap. 4).

• General framework: we have derived an original approach for the construction of such pro-
cesses that encompass existing processes and have also led us to propose a new one.

• Regularization: relying on an infinite sum of correlated Ornstein-Uhlenbeck processes, we
have introduced different regularization strategies for FBM to obtain a stationary log-correlated
process (Chap. 4 and 5).

• Mathematical definition and turbulence applications: we have established a link between the
mathematical definition of an intermittent process and its common use in turbulence. The
two visions are reconcilable for zero viscosity (or infinite Reynolds), and processes for tur-
bulence with high but finite Reynolds numbers can be modeled with regularizations of the
GMC. This regularization involves two characteristic times, the Kolmogorov time, which en-
ables the existence of the physical process, and the correlation time TL, which is necessary
to stationarize the process.

Such characterization and formalism set up the theoretical background for new stochastic models
reproducing intermittency.

Modulation of two-way coupling
The modulation of turbulence by sub-Kolmogorov particles has been thoroughly characterized in
the literature, showing either enhancement or reduction of kinetic energy at small or large scale
depending on the Stokes number and the mass loading. However, the impact of a third parameter,
the number density of particles, had not been independently investigated. In Chap. 13, we have
performed DNS of decaying HIT loaded with monodisperse sub-Kolmogorov particles, varying
the Stokes number, the mass loading, and the number density of particles independently. Several
achievements can be highlighted:

• Retrieving literature results: Like previous investigators, we have observed consistently crossover
and modulations of the fluid energy spectra with the change in Stokes number and mass load-
ing.

• Role of particle number density: Additionally, DNS results show an apparent influence of
particle number density, promoting the energy at small scales while reducing the energy at
large scales. For high particle number density, the turbulence statistics and spectra become
insensitive to the increase of this parameter, presenting a two-way asymptotic behavior. Our
investigation identifies the energy transfer mechanisms and highlights the differences be-
tween the influence of a highly concentrated disperse phase (high particle number density,
asymptotic behavior) and that of heterogeneous concentration fields (low particle number
density).

• Identification of isolated and collective regimes: In particular, a measure of this heterogene-
ity is proposed and discussed, enabling the identification of specific regimes in the evolution
of turbulence statistics and spectra.

We were thus able to identify the scales and mechanisms of these energy transfers, in order to bring
in new ingredients for the design of a model in the framework of ROS.
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New constructions

Based on these analyses, we have proposed original models, techniques, and tools to enrich the
ROS, paving the way for accurate two-way coupled simulations

A versatile Lagrangian stochastic intermittent process

Following the framework established for the construction of intermittent processes, we have pro-
posed in Chap. 5 a new stochastic model X∞

t , based on an infinite sum of correlated Ornstein-
Uhlenbeck processes. A regularization of k(x) is required to ensure stationarity, finite variance,
and logarithmic autocorrelation. A variety of regularizations are conceivable, and we have shown
that they lead to the aforementioned multifractal models. To simulate the process, we eventually
designed a new approach relying on a limited number of modes for approximating the integral us-
ing a conventional quadrature method. This method can retrieve the expected behavior with only
one mode per decade, making this strategy versatile and computationally attractive for simulating
such processes, while remaining within the proposed framework for a proper description of inter-
mittency.

This construction can also be adapted to inertial particles by adjusting the characteristic time pa-
rameters according to the relaxation time of the particles (Chap. 8).

Adapted measures of segregation

In order to quantify the preferential concentration of particles, we have compared and developed
suitable metrics and convergence criteria for these measurements (Chap. 13). The first one,G(n, ℓ)
is a box-counting measure which converges for nℓ ≫ 1 and is particularly appropriate when ℓ < η.
However, in most simulations, these criteria are not met and the simulations can be compared to
each other only after depopulation. The Voronoı̈ measure allows to overcome the drawbacks of
using fixed box size.
Finally, the measurement of the interparticle distance gives information on the heterogeneity of the
disperse phase. This has two distinct origins: the preferential concentration of particles and the
average density of particles.

Kinematic models

We have proposed two different models in the spirit of kinematic simulations (App. B and Chap. 9).
For both Gaussian and wavelets fields, the idea is to generate synthetic divergence-free fields with
a spatial correlation that can be adjusted to retrieve Eulerian and Lagrangian DNS statistics. Tem-
poral evolution of the flow is then proposed, with stochastic evolution of the parameters. By
controlling the model’s characteristic length and time scales, we can reproduce the flow statistics
and the particles segregation obtained by DNS with a better agreement than with Fourier-based
kinematic simulation. The wavelet-based KS is promising both for data compression purposes and
because it can be adapted to existing LES models, as wavelets allow to keep the locality of the
sub-grid information.
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Main perspectives
The perspectives can be twofold:

• Future works will consist in extending and improving the models developed in this thesis.
The difficulties can already be identified and are only a technical matter. Their achievement
should require comparative studies or more advanced analyses, similar to those conducted
in this thesis.

• Future challenges, however, require new model developments or to address broader ques-
tions.

Extension of this work

• Wavelet-based KS as a single-phase ROS
The question of the validity of the wavelet model itself as a single-phase LES model can
be raised. Many properties on the kinematic field remain to be observed, and analytical
quantities such as σ2

ref, the dissipation or the turbulent kinetic energy could be derived. Fur-
thermore, it would be interesting to conduct a comparative study with existing functional
and structural LES models (e.g., Smagorinsky) regarding fidelity and numerical cost. Per-
spectives of compression mentioned in Chap. 11 can be further extended for this purpose.

• An intermittent kinematic model
A logical extension of this work would be to introduce suitable stochastic processes within
the kinematic wavelet model to obtain an intermittent velocity field, in line with the sugges-
tion of Chap. 11. This requires redefining the properties of an Eulerian intermittent field by
considering the multifractal nature of the spatial locally averaged dissipation instead of the
temporal one. The idea is to identify some correlations between the random distributions of
the local coefficients of different levels to reproduce a given cascade model.

• Two-way coupling in Lagrangian framework
Based on the analysis of the coupling terms between the two phases carried out in this thesis,
it is now possible to recognize the configurations for which this coupling only affects the
small scales, or on the contrary, in which cases the source term introduced by the particles
also affects the large scales. An extension of models developed in this thesis to two-way
coupled flows could be performed in future works. The ideas for such models presented in
Chap. 14 could be developed, implemented, and compared to the results of the DNS studies.

Next challenges
• Modeling assumptions

Models of this thesis have been validated under strong and restrictive assumptions: the dis-
perse phase is handled in a point-particle approach, and the turbulent carrier phase is homo-
geneous and isotropic. The physical cases often push these approximations to the limit of
their validity. On the one hand, the complexity of the geometry and the turbulence’s nature
may require the use of specific models (near-wall models, inhomogeneous turbulence...).
On the other hand, the geometry of the particles can also be much more complex, ranging
from polydisperse sprays to separated phase flows, which are processed today with a differ-
ent approach. In atomization jets, flows include all these geometries, and the question of a
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unified model for the description of multiphase flows is a strong and open challenge for the
community (Cordesse 2020; Loison 2024).

• Objective of the modeling strategy
In general, the scope of modeling strategies for LES of particle-laden flows is to capture
particles dynamics. Such dynamics require an accurate description of particle localization
(preferential concentration) and particle acceleration. However, it is necessary to give mean-
ing to “accurate description”, and in particular to define the metric to compare and validate
the results. The notions of measures and ensemble-averages must therefore be clarified.
For example, following the conclusions of Pozorski and Apte (2009), we would expect that
stochastic models are not an acceptable choice because they lack a correct prediction of
preferential accumulation. This conclusion is based on a specific strategy for validation: the
authors validate LES models against the DNS statistics. However, this choice is open to
discussion since one can also validate the LES models on the filtered DNS statistics. These
two options differ by the objective of the model in sight: describing the PDF or the filtered
PDF.

• A statistical approach
The kinematic models give a plausible realization of the disperse phase flow. Indeed, be-
cause it models the unresolved velocity field, the result is comparable to an experiment or a
DNS and it does not contain all the possible statistics of the disperse phase. Mesoscopic ap-
proaches should be derived for this purpose. In particular, the EMEF developed by Mercier
(2020) is a first step in this direction since it precisely takes into account the reduction of
the carrier phase. In this context, appropriate kinetic equations could be derived from the
intermittent stochastic models developed in this thesis, as for such mesoscopic descriptions,
one needs the information on the fluctuations.





Appendix A

Eulerian moment methods

In this appendix, we first derive the mesoscopic formalism and obtain the William-Boltzmann
equation. Then, we propose a general formalism for moment methods at any order by introducing
in particular a tensor notation at order N . We then review the main closures of moment equations
in the literature and compare these different methods on a 2D HIT field.

A.1 Mesoscopic approach

Eulerian representation of a point-particle
The particles are considered as point-like and each particle k has a number of internal variables,
such as its velocity vp,k, its size Sp,k, its enthalpy hp,k etc. In this thesis, we consider a monodis-
perse phase and we do not attempt to solve the energy exchanges.
The Eulerian representation of a point-particle is hence given by the fine-grain distribution (Pope
and Ching 1992):

fp,k(t,x,v) = δ(x− xp,k(t))δ(v − vp,k(t)), (A.1)

where x is the the physical space variable, and v the total velocity vector for the particle in the
phase space. A key assumption in the description of f is the independence of the variables x,v
and t.

We can write the Liouville equation applied to this density function, since it is necessarily constant
along the trajectories in the phase space and in the following we neglect the collisions:

dfp,k
dt

=
∂fp,k
∂t

+
dxp,k

dt
· ∇xfp,k +

dvp,k

dt
· ∇vfp,k

0 =
∂fp,k
∂t

+∇x · (vfp,k) +∇v ·
(
u(x, t)− v

τp
fp,k

)
.

(A.2)

Eulerian representation of a disperse phase
For a given fluid-particle realization, the disperse phase can be described by a number density
function (NDF), representing Np particles:

fDPS = fDPS(t,xp,1,vp,1, ...,xp,Np ,vp,Np). (A.3)
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We consider that particles are interchangeable, which simplifies the writing of the NDF:

fDPS(t,x,v) =

Np∑
i=1

δ(x− xp,k(t))δ(v − vp,k(t)). (A.4)

In the absence of collision, the evolution equation of the NDF of the disperse phase is then written:

∂fDPS

∂t
+ v · ∇xfDPS +∇v ·

(
u(x, t)− v

τp
fDPS

)
= 0. (A.5)

Mesoscopic Eulerian framework
From a statistical point of view, we are interested in obtaining the NDF of a converged disperse
phase defined from an ensemble average. This one encompasses the set of realizations of the
carrier phase and of the continuous phase. Février, Simonin, and Squires (2005) introduce the no-
tation Hf,p to define a fluid-particle realization and set the framework for the Mesoscopic Eulerian
Formalism. Thus, the NDF we are looking for corresponds to:

f(t,x,v) = ⟨fDPS⟩ = lim
Nf,p→∞

1

Nf,p

Nf,p∑
k=1

fDPS(t,x,v|Hf,p). (A.6)

The limit for an infinite number of realizations of the Liouville equation (A.5) leads to the Williams-
Boltzmann equation (WBE), driving the dynamic of the NDF of Eq. (A.6):

∂f

∂t
+ v · ∇xf +∇v ·

(
u(x, t)− v

τp
f

)
= 0. (A.7)

We find the same form as for the Liouville equations, the difference lies in the interpretation and
the form given to the NDF.

A.2 Some notations and definitions
Let us denote, respectively with tensorial and index notations, where i1, i2..., iN can represent the
physical directions in d dimensions.

• ⊗0v = 1
• ⊗1v = v = vi1
• ⊗2v = v ⊗ v = vi1vi2
• ⊗3v = v ⊗ v ⊗ v = vi1vi2vi3
• ⊗Nv = v ⊗ ...v ⊗ v = vi1vi2vi3 ...viN

We introduce the general form for any velocity tensor set: V = mp[1,v,⊗2v,⊗3v, ...,⊗Nv]

We define the corresponding moments for velocity: M(N) =
〈
V (N)f

〉
v
.

By definition, the following standard values can be specified:

• Zeroth order moment:

M(0) = ⟨mpf⟩v = ρp(t,x) (A.8)

is the particle density field.



APPENDIX A - EULERIAN MOMENT METHODS 303

• First order moment:

M(1) = ⟨mpvf⟩v = ρp(t,x)up(t,x), (A.9)

where up(t,x) is the average particle velocity field.
We introduce the centered velocity in the phase space: c = v − up, which corresponds to
the deviatoric part of the particle velocity.

• Second order moment:

M(2) = ⟨mpv ⊗ vf⟩v = ρp (up ⊗ up +Σ) , (A.10)

where Σ(t,x) := ⟨c ⊗ cf⟩v and one can also introduce the velocity pressure P := ρpΣ =
⟨mpc⊗ cf⟩v.
Σ can be found under different names and notations in the literature: the covariant or veloc-
ity dispersion matrix, the RUM (random uncorrelated motion) tensor. It is defined as Rp,ij in
Vié, Masi, Simonin, and Massot (2012), δRp,ij in Masi and Simonin (2012), δσ̃p,ij in Février,
Simonin, and Squires (2005), σij in Vié, Doisneau, and Massot (2015)...

The total energy tensor is given by E :=
1

2
up ⊗up +

1

2ρp
P and therefore we have M(2) =

ρpup ⊗ up + P = 2ρpE.

• Third order moment:

M(3) =
〈
mp ⊗3 vf

〉
v
= ρp ⊗3 up + 3up ⊗s P +Q, (A.11)

where Q = ⟨mp ⊗3 cf⟩v is the third order heat flux tensor.
The total enthalpy tensor is defined as H := E +Σ. Therefore:

M(3) = ρpup ⊗s (up ⊗ up + 3Σ) +Q

= up ⊗s (2ρpE + 2P ) +Q

= 2ρpH ⊗s up +Q.

(A.12)
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Some rules for calculation with tensors:
• The symmetric tensor outer product is introduced and can be defined with the intro-

duction of the cyclic permutation operator σ(S)i1,i2,i3,...,iN = Si2,i3,...,iN ,i1:

a⊗s b =
1

2
[a⊗ b+ b⊗ a]

a1 ⊗s a2...⊗s aN =
1

N

N−1∑
k=0

σk(a1 ⊗ a2...⊗ aN ).
(A.13)

• The divergence of a high-order tensor is implicitly realized on its last ”direction”. We

already know that the divergence of a matrix A is given by: ∇x · (A) =
∂Aij

∂xj
. This

can be generalized:

[∇x · (T )]i1,i2,...iN−1
= ∇x · (Ti1,i2,...iN ) =

∂Ti1,i2,...iN
∂xiN

. (A.14)

• The gradient of a high-order tensor is implicitly realized on its last ”direction”:

[∇xT ]i1,i2,...iN+1
=
∂Ti1,i2,...iN
∂xiN+1

. (A.15)

• The scalar product with a vector is realized upon its last ”direction”:

[a · T ]i1,i2,...iN−1
= aiNTi1,i2,...iN . (A.16)

A.3 Moments equation

We multiply the WBE by V (N) and integrate over the moment space :

∂tf +∇x · (vf) +∇v · (F f) = 0〈
∂t(V (N)f)

〉
+
〈
V (N)∇x · (vf)

〉
v

+
〈
V (N)∇v · (F f)

〉
v

= 0

∂tM(N) +∇x ·
(
M(N+1)

)
+
〈
V (N)∇v · (F f)

〉
v

= 0.

(A.17)

A generalized integration by parts simplifies the last term:〈
V (N)∇v · (F f)

〉
v
= −

〈
F · ∇v

(
V (N)

)
f
〉
v
. (A.18)

The general moment equation can be written in the form:

∂tM(N) +∇x ·
(
M(N+1)

)
=
〈
F · ∇v

(
V (N)

)
f
〉
v
. (A.19)

Let us consider the Stokes’ drag force F =
u− v

τp
.
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We have:

v · ∇vV (N) = viN+1
· ∂(vi1vi2 ...viN )

∂viN+1

= N(vi1vi2 ...viN )

= NV (N)

u · ∇vV (N) = uiN+1
· ∂(vi1vi2 ...viN )

∂viN+1

= ui1vi2 ...viN + vi1ui2 ...viN + ...+ vi1vi2 ...uiN

= Nu⊗N−1
s v.

(A.20)

Corresponding moments are :
•
〈
v · ∇vV (N)

〉
v
= NM(N)

•
〈
u · ∇vV (N)

〉
v
= Nu⊗N−1

s M(N−1)

A.4 Closures
Whatever the order N of the moment equations, the expression Eq. (A.19) always involves the
moment of order N + 1 which is not resolved. It is then necessary to propose a model for this
additional term in order to obtain a closure of the set of equations.

The ACBMM (Algebraic Closure Based Moments Method) closes the RUM stress tensor Σ to be
able to solve only a limited set of moments (usually up to second order). The closure involves
an algebraic equilibrium assumption, inspired from the RANS turbulence modeling. The sim-
plest closure is the viscosity-like assumption, proposed by Simonin, Février, and Laviéville (2002)
(hereinafter referred to as VISCO model). Another model, the 2ϕ-EASM, more accurate, intro-
duced by Masi and Simonin (2012), uses another assumption, similar to the one used in turbulence
to close the Reynold stresses.

The KBMM (Kinetic-Based Moment Moment) is based on the choice of reconstruction of an un-
derlying kinetic distribution. A NDF shape is proposed with as many parameters as moments to
close. The choice of the NDF depends on the accuracy requirements and calculation capabilities.
This method is more expensive than the ACBMM method since it solves all the tensor components.
KBMM, on the other hand, for specific NDF reconstruction, can have a well-defined mathematical
structure and therefore allows numerical resolution through hyperbolic solvers.

A.4.1 Algebraic closures

To solve the system of equations of moments at first order, it is therefore necessary to find a model
for the tensor Σ introduced in Eq. (A.10).
Algebraic Closure-Based Moment Method (ACBMM) class of closing methods aims at expressing
the missing quantities through physical and mathematical assumptions.

Masi and Simonin (2012) chose to close the RUM stresses by physical assumptions on their evo-
lution. They divide the tensor into two components, a spherical and a deviatoric contributions:
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Σ = Σ⋆ +
2δθp
Nd

Id, (A.21)

where δθp is the RUM kinetic energy (RUE) and Nd the number of physical dimensions.
The RUE is solved by an additional transport equation and the deviatoric part of the RUM stresses
is closed with a physical assumption.

The deviatoric part can be closed with a viscosity-like assumption suggested by Simonin, Février,
and Laviéville (2002) and Kaufmann, Moreau, Simonin, and Helie (2008), referred to as the
VISCO model.

Σ⋆ = −2νPTCS
⋆, (A.22)

having νPTC = τpδθp/Nd and S⋆
ij = Sij − 1/NdSkkδij .

Another possible closure is the 2ϕ-EASM closure proposed by Masi and Simonin (2012). In both
closures models, the third-order correlations appearing into the RUE equation is neglected.

A.4.2 Assumed NDF shape
A.4.2.1 Monokinetic closure

For particles with very low inertia, there is no trajectory crossing and it is then possible to define
a single local particle velocity at any point in space. The local velocity dispersion being null, we
propose the following NDF model:

MKf(t,x,v) = n(t,x)δ(v − up(t,x)) . (A.23)

One can verify that the second order centered moment P =
〈
mp ⊗2 cf

〉
v

is null. This model is
also referred as the Pressureless Gas Dynamic (PGD) model.
The associated system of equations is:

∂tρp +∇x · (ρpup) = 0

∂tρpup +∇x · (ρpup ⊗ up) = ⟨Fmpf⟩v = ρp
u− up

τp
.

(A.24)

A.4.2.2 Anisotropic Gaussian closure

For larger inertia particles, PTC can occur and we must define a model for the velocity dispersion.
The anisotropic Guassian closure uses for the velocity distribution a multivariate Gaussian form:

AGf(t,x,v) = n(t,x)
det(Σ)−1/2

(2π)Nd/2
exp

(
−1

2
cTΣ−1c

)
, (A.25)

where Nd is the number of dimension considered. Moments of order 0 to 2 allow to compute the
parameters n(t,x), up and Σ which then allow to close the different terms. In particular, the third
order centered moment Q =

〈
mp ⊗3 cf

〉
is null.
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In order to deal with ρpE rather than M(2), equations of the second order are generally multiplied

by
1

2
. The AG system becomes:


∂tρp +∇x · (ρpup) = 0

∂tρpup +∇x · (ρpup ⊗ up + P )) = ρp
u− up
τp

∂tρpE +∇x · (ρpH ⊗s up) = ρp
u⊗s up − 2E

τp .

(A.26)

This system is strictly hyperbolic and fulfills an entropy inequality. The equations of the PGD are
the asymptotic limit of the AG when pressure tends towards 0.

A.4.2.3 Isotropic Gaussian closure

A simple form of the Gaussian models is obtained when isotropic pressure is considered. In this
case, the NDF is assumed to be an isotropic Gaussian distribution centered at up and with an
isotropic dispersion Σ = θI ⇒ P = ρpΣ = PI . This gives:

IGf(t,x,v) = n(t,x)
σ−1/2

(2π)d/2
exp

(
− 1

2σ
(c · c)

)
, (A.27)

with σ = det(Σ).

The total energy has no deviatoric part and can be expressed with E := tr(E) =
1

2
up · up +

Nd

2
θ.

The second order equation can be simplified in a scalar equation (the trace of the AG second order
equation) with H = E + θ. We retrieve the Euler equations with a drag source term:

∂tρp +∇x · (ρpup) = 0

∂tρpup +∇x · (ρpup ⊗ up + PI) = ρp
u− up
τp

∂tρpE +∇x · (ρpHu) = ρp
u · up − 2E

τp
.

(A.28)

A.4.2.4 Comparison of the methods on HIT

Figures A.1 depict the instantaneous particle number density for the five differents methods, the
Lagrangian one being the reference. Results show that all the models give close prediction to the
Lagrangian one for small Stokes number. This was expected given the absence of PTC, models
taking into account velocity anisotropism or not do not give significant different results in this case.

Similarly, for a Stokes close to 1, the density field patterns are correctly reproduced with Eulerian
models. On the other hand, the fields seem slightly more diffuse than for the Lagrangian simula-
tion, which suggests that a refinement of the mesh size could correct this.

For larger Stokes numbers, real differences appear in the density fields of the different models.
Because of the occurence of PTC, it becomes apparent that the isotropic model is not able to cap-
ture the velocity dispersion and therefore does not correctly reflect the motions and positions of the
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Figure A.1. Particle number density fields for HIT.
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particles. The Lagrangian structures have become more complex, and the filaments have expanded.

The two best models are the 2ϕ-EASM and anisotropic models, which manage to better capture
segregation.





Appendix B

Kinematic simulation with Gaussian fields

Following the conclusions establishing the necessity to use structural models to obtain DNS statis-
tics of particles, we suggest a new strategy which makes use of a random field with enforced
divergence-free condition and spatial and temporal correlations. We show that the model can re-
trieve some Lagrangian statistics and in particular, particle segregation.
Structural models have the advantage of being able to produce a spatial structure of the flow field.
Segregation is strongly related to the existence of small scale and large scale coherent structures,
which are not present in stochastic modeling. In the following, we propose to develop a synthetic
field as a basis for structural models. The objective is to construct a velocity field u(x, t) without
solving the Navier-Stokes equation but keeping all the turbulence statistics of interest such as the
Kolmogorov time or the integral time scales. To this aim, we will decompose the problem into two
sub-problems: space reconstruction and time evolution.

B.1 Construction of a new synthetic velocity field

We generate the velocity field using the following technique:
• We first generate three Gaussian random fields Ax, Ay, Az, over which we impose a spatial

correlation by applying a spatial filter (here chosen as Gaussian). The size of the filter σf
determines the length of correlation ℓc of the field. As opposed to the Fourier-based KS, the
correlation length is compact because it is directly generated with the Gaussian filter of finite
size. Therefore, it satisfies the constraint (i).

• We generate a three-dimensional divergence-free flow using vℓc(x) = ∇×A, which natu-
rally ensures (ii).

• By superposing velocity fields with varying filter sizes, we can control the turbulence spec-
trum according to point (iii). Figure B.1(a) shows that each sub-field vℓc produces an energy
spectrum with a maximum located at the correlation length of the field κmax ∼ ℓ−1

c . With an
adapted linear combination, it is possible to produce an energy spectrum with slope −5/3
in Fig. B.1(b). We normalize it so that its variance is 1. An example of the velocity and
vorticity fields obtained are presented in Fig. B.1(c) and Fig. B.1(d).

The obtained field v(x) =
Nm∑
n=1

αnvℓn(x) is therefore spatially-correlated (with compact modes),

divergence-free, and its energy spectrum is controlled with the number of modes (sub-fields) and
the range of correlation lengths: from the largest scale L = ℓ1, to the smallest η = ℓNm . This gives
a frozen flow and we add a temporal correlation in the following section.
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(a) Unique mode (b) Several modes

(c) Velocity component with 10 modes (d) Vorticity with 10 modes

Figure B.1. Spatially-correlated random field with zero divergence: (a) influence of the filtering length
ℓc for a unique field; (b) superposition of different random fields to control the turbulence spectrum; (c)

example of the generated velocity field and (d) vorticity field.
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(a) Lagrangian velocity autocorrelation (b) Influence of TE

Figure B.2. One-point Lagrangian statistics: (a) Lagrangian velocity autocorrelation fitted with an
exponential function (TE = 3 and τη = 0.7); (b) Lagrangian integral time scale as a function of TE for

different τη and number of modes: Nm = 1 (full lines), Nm = 3 (dashed lines).

B.2 Temporal evolution of the velocity field
Compared to Fourier-based KS, we do not have an analytic expression in which we can include
time evolution in a straightforward manner. To introduce a temporal correlation as required by
point (iv), we decided to use a stochastic equation in which we replace the usual Gaussian noise
dWt by the spatially correlated field v(x) introduced in the previous section. For each spatial point
x, we have the following Langevin equation for the velocity field, seen as a time process:

du(x) = − 1

TE
u(x) dt+

√
2σ2

u

TE
vt(x)

√
dt (B.1)

where we generate a new Gaussian field vt(x) at each time step and inject it as the random noise
in the equation. This has the formalism of a classic Langevin equation since for each point x, the
”noise” v(x) is Gaussian of variance 1. Moreover, increments are uncorrelated because we draw
a new field vt at each time step. Because vt(x) is spatially correlated, u(x, t) keeps this spatial
correlation and neighbored points will have a similar evolution.

TE is an Eulerian correlation time, and it controls the speed of change of the flow. When large,
temporal increments du(x, t) tend towards 0 and the flow becomes frozen. On the other hand, if
TE is small, the velocity field changes very fast, and the relaxation towards the perturbation vt(x)
is immediate.

The coefficient
√

2σ2
u/TE before the noise ensures the stationarity of the Langevin Equation (and

therefore of the flow statistics), with a given variance σ2
u. We recall that σu gives the intensity of

the forcing and is related to the turbulent kinetic energy ⟨k⟩ = 3/2σ2
u.

The Kolmogorov time scale is related to the fluid variance and the length scales in v(x): τη ∼
ℓc/σu, where ℓc is the mean correlation length of the flow.
We observe that this temporal evolution formalism introduces parameters to control Lagrangian
scales, such as TL, the Lagrangian integral time scale. As opposed to the diverging autocorrelation
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Table B.1. Parameters of the fluid model used as a carrier phase

Nm ℓc σ2
u τη TE TL

1 0.03 0.01 0.4 4 1

3 0.01 , 0.03, 0.1 0.01 0.4 4 2

(a) St = 0 (b) St = 2 (c) St = 10

Figure B.3. Particles in a slice of the 3D synthetic turbulence for different Stokes numbers at time
t = 6 for τη = 0.44 and one mode (Nm = 1 in Table B.1).

with Fourier-based KS in Fig. 9.2, the one obtained in Fig. B.2(a) converges towards 0 with an
exponential decrease.
Figure B.2(b) shows the dependency of TL with TE and it is clear, even with a single mode, that
increasing the Eulerian correlation time of the flow also raises the integral Lagrangian time to a
maximum, which is obtained for frozen turbulence. Moreover, keeping the same τη but extending
the inertial range with additional modes can also increase TL (dotted lines in Fig. B.2(b)).
An interesting perspective is to imagine having different temporal evolution for each sub-field vℓn
for which an adapted TE could be introduced. This is studied in Chap. 9.

Those additional parameters can be adapted and fitted to retrieve Lagrangian one-point statistics.
In the next section, results for two-point statistics are discussed, to complete the validation of point
(v).

B.3 Particle segregation in the Gaussian-based KS
Now we have a time and space varying field, and we can use it as a carrier phase for the dynamics
of particles. Table B.1 shows the model parameters chosen to simulate the synthetic fluid.

We investigate the effect of Stokes number on the segregation, even with a single mode. First, we
show that we retrieve the tracer limit for zero-inertia particles for which no segregation is expected.
In Fig. B.3(a), thanks to the divergence-free, the tracers are not preferentially concentrated and fill
the space homogeneously. Particles with Stokes number close to 1, in Fig. B.3(b), are preferentially
concentrated by the reconstructed scales of the synthetic flow, and the segregation increases with
time, as shown in Fig. B.4(a). Particles with high Stokes number (Fig. B.3(c)) are first ejected out
of vortices: the segregation rises at the beginning of the simulation, but their large inertia prevents
them from evolving with the small scales, and particle trajectory crossing occurs shortly after.
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(a) Segregation with one mode (b) segregation with 1 and 3 modes

Figure B.4. Temporal evolution of segregation (variance of the PND) of particles interacting with the
kinematic fluid of one mode (a) and segregation at time t = 6 for one and 3 modes (b).

The temporal trends of Fig. B.4(a) are similar to what is expected for particles in real turbulence
and allow us to conclude that our field is appropriate as a surrogate for Navier-Stokes simulation
to predict particle segregation in turbulence.
Figure B.4(b) shows that changing the number of modes in the synthetic fluid can also adjust the
intensity of the segregation quantitatively.

B.4 Compatibility with LES framework
The versatility of this method due to the choice of the characteristic lengths allows us to adapt
the generated field according to the LES characteristics easily. Indeed, the synthetic field can be
generated to complete only the small missing scales and thus reconstruct a complete DNS-like
spectrum. This is illustrated in Fig. B.5(a) where a LES spectrum is completed with a sub-grid
flow.

However, generating sub-grid scales everywhere requires the same memory space as a DNS. There-
fore, we investigate dimensionality reduction strategies. Instead of generating a field on the com-
plete refined mesh, only a part of this field is simulated on a limited area (Fig. B.5(c)), and then
replicated on the complete domain in a second step (Fig. B.5(d)). The combination of this repro-
duced field with the large scales of the LES produces the field in Fig. B.5(e) and reconstructs the
spectrum shown in Fig. B.5(a).

Conclusion
In this appendix, we have introduced a structural model well known in the literature, the kinematic
simulation based on a reconstruction of the velocity field with a Fourier series. However, the oscil-
latory behavior of the statistics suggests that the use of sinusoidal functions with infinite support
is not suitable for turbulence. Moreover, the models studied so far with particles have been able to
use at best a frozen velocity field.
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(a) Energy spectrum (b) LES

(c) SGS (d) Repeated SGS (e) LES + SGS

Figure B.5. Energy spectrum of LES and LES combined with the synthetic flow(a), snapshot of LES
velocity field (a), synthetic fluid with small scales (b), repeated patterns of the synthetic fluid (c) and

LES and synthetic fluid combined (d).
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(a) Synthetic field (b) Haar wavelets (c) Daubechies wavelets

Figure B.6. Snapshot of a synthetic field (a), and the same field is decomposed using Haar wavelets (b)
or Daubechies wavelets (c) with a compressing ratio of 1%.

We therefore considered a new approach for the development of a synthetic fluid field, based on
filtered random fields. The Gaussian filters have such characteristic lengths that the superposi-
tion of the filtered fields reconstructs the typical energy spectrum and also allows the control of
all scales of the turbulence. The zero divergence is obtained by taking the rotational of three of
these scalar fields. The temporal evolution is imposed on the mesh nodes, following a stochastic
Langevin equation, thus ensuring the stationarity of the flow and allowing the introduction of an
Eulerian time parameter.

We have shown that such a field can faithfully reproduce the dynamics of the particles, in particular
their preferential concentration. Although the computational cost of their simulation is very low,
the storage cost remains important. Reduction strategies are proposed to address this issue.

This synthetic fluid has also lead us to consider wavelet decomposition (Farge 1992) because unlike
Fourier series, wavelets maintain the compacity, and the locality of the information and compres-
sion could reduce the cost. Figure B.6 compares a wavelet decomposition using Haar wavelets or
Daubechies wavelets. The original field is not only decomposed on a wavelet basis, but also com-
pressed with a compression ratio of 1%: only 1% of the original information is used to reproduce
fields of Fig. B.6(b) and B.6(c).

Certainly, the choice of the wavelet mother is crucial to expect a fair representation of the initial
field: Daubechies wavelets seem to be a better choice for the decomposition because of their
regularity. The level of compression and the amount of information will also be critical. The use
of wavelets for a kinematic simulation is the subject of the Chap. 9.





Appendix C

Impact of the coupling kernel

The length scale δi is the characteristic size of the domain of influence of a particle on the sur-
rounding fluid. The numerical quantity associated is the size of the volume filtering kernel. Sev-
eral works are dedicated to the determination of the parameter δi for finite size particles (see for
instance Maxey and Patel (2001)), the objective being to ensure that the force distributions are
completely contained within the interior of the particle. Capecelatro and Desjardins (2013) recom-
mended δi ≈ 3dp but the minimal value for δi is the grid spacing to avoid singularities in the carrier
phase source term. The PSI-Cell approach implemented in Asphodele naturally yields δi = ∆x.
We also implemented another coupling kernel with a Gaussian envelope of size σ = ∆x/2

√
2 ln(2)

such that the full width at half height of the kernel δi is equal to the grid spacing. This way, the
effect of the particle is typically spread out over the 27 nearest cells. Results are compared with
the trilinear projection kernel.
Thus, in Fig. C.1, the comparison of the interaction spectra obtained is consistent with the previ-

ous wavenumber analysis: for simulations with a large number of particles, statistical convergence
is achieved at all scales and thus the kernel change has no impact on the interaction spectrum. On
the other hand, at low particle number density, the small scales are less energetic with the Gaus-
sian kernel which spreads the energy of the particles at these scales over a larger range of cells. It
should also be noted that large scales are then more energetic in this case, since the total interaction
energy must be preserved.
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Figure C.1. Normalized two-way interaction spectrum with PSI-Cell (solid lines) and Gaussian (dashed
lines) projections. Two different particle number densities are compared. The inset displays a zoom

around the smallest scales.
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Appendix D

Convergence of the box counting measure

Let us recall thatN b
pb is the random variable giving for each box b ∈ B the number of particles in the

box. We define the box counting measure of particle preferential concentration as the normalized
variance of the discrete particle number density field:

g(Np, Nb) =
1
Nb

∑
b∈B(N

b
pb)

2(
1
Nb

∑
b∈BN

b
pb

)2
=
Nb

N2
p

∑
b∈B

(N b
pb)

2

The dependency of the measure with the total number of particles and the number of boxes is
highlighted. One should also note that this measure is itself a random variable. In the following,
we explain the asymptotic behaviors of the measure with the number of particles in the domain.

For very low values of Np and samplings such that max
b∈B

N b
pb ≤ 1, it is possible to detail the seg-

regation. We have g(Np, Nb) =
Nb

N2
p

∑
b∈B

δb, where δb is 1 if a particle is in the box b, 0 otherwise.

This yields: g(Np, Nb) ∼
Np→0

NbN
−1
p , hence the linear behavior with slope −1 of Fig. 13.2(a), and

the shift between the different curves.

For very high values of Np, we can assume that random variables N b
pb are independent. It is known

that N b
pb follows a binomial distribution of parameters B(Np, pb), where pb is the probability for

a particle to be in the box b (pb is fixed and independent of Np for one-way coupled simulations).
The mean and variance of N b

pb are respectively Nppb and Nppb(1− pb)). The expected value of the
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measure g is:

E[g] =
(Nb

Np

)2 1

Nb

∑
b∈B

E[(N b
pb)

2]

=
(Nb

Np

)2 1

Nb

∑
b∈B

Nppb(1− pb) + (Nppb)
2

=
Nb

Np

∑
b∈B

pb(1− pb +Nppb)

E[g]
Np→∞−−−−→ Nb

∑
b∈B

p2b

The particular case of uniform distribution, characterized by pb = p for all k yields a convergence
towards 1.
We also verify that the variance of the measure tends to zeros when Np tends to infinity :

Var[g] = E[g2]− E[g]2

=
(Nb

Np

)4{
E[⟨(N b

pb)
2⟩2b ]− E[⟨(N b

pb)
2⟩b]2

}
The second term in the variance behaves like:(Nb

Np

)4
E[⟨(N b

pb)
2⟩b]2 = N2

b

(∑
b∈B

p2b

)2
+O(N−1

p )

= N2
b

∑
i∈B

∑
j∈B

p2i p
2
j +O(N−1

p )

The first term expands as:(Nb

Np

)4
E[⟨(N b

pb)
2⟩2b ] =

N2
b

N4
p

∑
i∈B

∑
j∈B

E[(N i
pb)

2(N j
pb)

2]

The random variables N b
pb are independent, thus:

for i ̸= j, E[(N i
pb)

2(N j
pb)

2] = E[(N i
pb)

2]E[(N j
pb)

2]

= N4
pp

2
i p

2
j +O(N3

p )

for i = j, E[(N i
pb)

2(N j
pb)

2] = E[(N i
pb)

4]

=
4∑

k=0

Np!

(Np − k)!
S(4, k)pki

= N4
pp

4
i +O(N3

p )

where S(n, k) are the Stirling numbers of the second kind. The first and second term therefore
simplify and we have Var[g] = O(N−1

p ). This explains the convergence of the measure for one-
way coupled simulations.
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Borgas, M. S. (1993). The multifractal Lagrangian nature of turbulence. Philosophical
Transactions of the Royal Society of London. Series A: Physical and Engineering
Sciences 342(1665), 379–411. (p. 11, 24, 47, 97, 100)

Capecelatro, J. and O. Desjardins (2013). An Euler-Lagrange strategy for simulating particle-
laden flows. Journal of Computational Physics 238, 1–31. (p. 8, 21, 254, 319)

Capecelatro, J. and O. Desjardins (2015). Mass Loading Effects on Turbulence Modulation
by Particle Clustering in Dilute and Moderately Dilute Channel Flows. Journal of Fluids
Engineering 137(11), 111102. (p. 153, 261)

Capecelatro, J., O. Desjardins, and R. O. Fox (2015). On fluid-particle dynamics in fully devel-
oped cluster-induced turbulence. Journal of Fluid Mechanics 780, 578–635. (p. 254)

Cernick, M. J., S. W. Tullis, and M. F. Lightstone (2015). Particle subgrid scale modelling in
large-eddy simulations of particle-laden turbulence. Journal of Turbulence 16(2), 101–135.
(p. 11, 24, 169, 181, 184)

Chalons, C., R. O. Fox, F. Laurent, M. Massot, and A. Vié (2017). Multivariate Gaussian ex-
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séparées et dispersées : développement d ’ une modélisation unifiée et de méthodes
numériques adaptées au calcul massivement parallèle. Ph. D. thesis, Université Paris-Saclay.
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spatiale entre vitesses de particules solides en turbulence homogene isotrope stationnaire.
Ph. D. thesis, Toulouse, INPT. (p. 68)

Février, P., O. Simonin, and K. D. Squires (2005). Partitioning of particle velocities in gas-
solid turbulent flows into a continuous field and a spatially uncorrelated random distribu-
tion: Theoretical formalism and numerical study. Journal of Fluid Mechanics 533, 1–46.
(p. 150, 155, 156, 157, 160, 223, 250, 283, 285, 302, 303)

Flohr, P. and J. C. Vassilicos (2000). A scalar subgrid model with flow structure for large-eddy
simulations of scalar variances. Journal of Fluid Mechanics 407, 315–349. (p. 241)
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Laurent, F., A. Vié, C. Chalons, R. O. Fox, and M. Massot (2012). A hierarchy of Eulerian
models for trajectory crossing in particle-laden turbulent flows over a wide range of Stokes
numbers. Proceedings of the Summer Program 2012 - Center for Turbulence Research, 193–
204. (p. 9, 22, 162)

Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of
computational physics 103(1), 16–42. (p. 69)
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