
HAL Id: tel-03665788
https://theses.hal.science/tel-03665788v1

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Party Quantum Cryptography : from Folklore to
Real-World

Luka Music

To cite this version:
Luka Music. Multi-Party Quantum Cryptography : from Folklore to Real-World. Cryptography and
Security [cs.CR]. Sorbonne Université, 2021. English. �NNT : 2021SORUS412�. �tel-03665788�

https://theses.hal.science/tel-03665788v1
https://hal.archives-ouvertes.fr

Sorbonne Université - EDITE de Paris

Laboratoire d’Informatique de Sorbonne Université (LIP6) / Quantum Information

Multi-Party Quantum Cryptography:
From Folklore to Real-World

Par Luka Music

Thèse de Doctorat d’Informatique

Dirigée par Elham Kashefi et Céline Chevalier

Présentée et soutenue publiquement en Juillet 2021, devant un jury composé de :

• Kashefi Elham, Directrice de Recherche au
CNRS, Sorbonne Université, University of
Edinburgh, Directrice de thèse

• Chevalier Céline, Maître de Conférences HDR,
Université Panthéon Assas Paris 2, Directrice de
thèse

• Blazy Olivier, Maître de Conférences HDR,
Université de Limoges, Rapporteur

• Alagic Gorjan, Associate Research Scientist,

University of Maryland, Rapporteur
• Pointcheval David, Directeur de Recherche au

CNRS, ENS Paris
• Mitrokotsa Aikaterini, Professor HDR,

University of St. Gallen
• Pappa Anna, Group Leader, Technical University

Berlin
• Chailloux André, Chargé de Recherche au

CNRS, INRIA

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

The field of quantum cryptography builds upon decades of advances both in classical cryptography
and networks. However, contrary to its classical counterparts, it is still in its infancy applicability-
wise, even in the scenario where powerful quantum computers are readily available, and more

theoretical work is required before it can provide concrete benefits. The first goal is to formalise in
rigorous quantum security frameworks the properties of various techniques that have been transposed,
often without proper justification, from the classical world. Then, the recent developments in quantum
technologies suggest a mostly cloud-based future availability of quantum devices. Therefore, quantum
computation and communication cost of protocol participants must be lowered before being useful.
Finally, in most situations, additional steps need to be taken to tailor protocols to the specifications of
devices. This allows for optimisations both in terms of quantum memory and operation requirements.
This thesis contributes to these three aspects by:

1. giving the first general security definition of the Quantum Cut-and-Choose, a technique for proving
the correctness of a quantum message;

2. presenting a more realistic framework of security against superposition attacks, where classical
protocols run on inherently quantum devices;

3. constructing an efficient delegated multi-party quantum computation protocol, allowing clients to
delegate securely to a quantum server a private computation;

4. building a method for verifying the honesty of a quantum server performing computations on behalf
of a client with no operation or memory overhead compared to the unprotected computation.

La cryptographie quantique a bénéficié des nombreuses avancées de la cryptographie et théorie
des réseaux classiques. Cependant, elle n’en est qu’à ses balbutiement en ce qui concerne son
application en condition réelles et approfondir la théorie sous-jacente est un prérequis crucial à

l’exploitation de l’intégralité de ses possibilités. Pour cela, il faut tout d’abord formaliser rigoureusement
les propriétés de sécurité quantiques des techniques importées de la cryptographie classique, pour l’instant
souvent utilisées sans justification. Ensuite, les progrès récents des technologies quantiques tendent à
pointer vers un modèle d’accès type client-serveur avec un client faiblement quantique. Dans ce contexte,
les protocoles quantiques se doivent d’être les plus frugaux possibles en termes de ressources (mémoire
et opération). Enfin, implémenter des protocoles sur des architectures concrètes nécessite de les adapter
finement aux machines utilisées afin d’améliorer encore leur optimisation. Cette thèse contribue à ces
trois aspects en :

1. proposant une définition du Quantum Cut-and-Choose, technique qui permet de garantir la
préparation honnête d’un message quantique ;

2. présentant un cadre de sécurité plus réaliste contre les attaques par superposition, qui garantit la
sécurité de protocoles classiques exécutés sur une machine quantique ;

3. construisant un protocole efficace de délégation de calcul multipartite quantique, qui permet à des
clients de déléguer un calcul privé à un serveur ;

4. démontrant qu’il est possible de vérifier l’exactitude de calculs quantiques délégués sans aucun
impact en terme ressources côté client ou serveur.

i

Table of Contents

Page

1 Introduction 1

2 Preliminaries in Probability Theory and Quantum Information 13
2.1 Useful Inequalities from Probability Theory . 14

2.1.1 Binomial Distribution . 14
2.1.2 Hypergeometric Distribution . 14

2.2 Quantum Information Theory . 15
2.2.1 Quantum States . 16
2.2.2 Quantum Operations . 19
2.2.3 Useful Results from Quantum Information . 23

2.3 Measurement-Based Quantum Computing . 27
2.3.1 Graph State Bridge Operation . 29

3 Cryptographic Security Frameworks 31
3.1 Basic Cryptographic Primitives . 31

3.1.1 Common Primitives . 32
3.1.2 Classical Bit Commitment . 33

3.2 Model for Quantum Networked Machines . 35
3.3 “Ideal vs. Real” Frameworks of Security . 37

3.3.1 Stand-Alone Model of Security . 37
3.3.2 Abstract Cryptography Framework . 38
3.3.3 Ideal Functionalities and Resources . 40
3.3.4 Quantum One-Time Pad Security . 43

3.4 Local Criteria of Security for Delegated Quantum Computation 45
3.5 Core Cryptographic Protocols . 47

3.5.1 Hiding Delegated Quantum Computations in MBQC 47
3.5.2 Verifying MBQC Through Trap Insertion . 49
3.5.3 The Classical Yao Protocol . 52
3.5.4 Universal Thresholdiser . 54

4 Boosting Protocol Security with Quantum Cut-and-Choose 59
4.1 Motivation and Overview of Results . 59

4.1.1 Weaker Adversaries, Simpler Protocols . 59

iii

TABLE OF CONTENTS

4.1.2 Our Contribution . 60
4.2 Inverse-Polynomial Quantum Cut-and-Choose . 68

4.2.1 Formalising the Moving Parts of Quantum Cut-and-Choose 68
4.2.2 Constraints on the Sender and Receiver CP-maps 69
4.2.3 The Quantum Cut-and-Choose Ideal Functionality and Protocol 71
4.2.4 Security of the Quantum Cut-and-Choose Protocol 72
4.2.5 Analysis of Quantum Rewinding . 78

4.3 Exponentially-Secure Fraction Classical Cut-and-Choose 83
4.3.1 New Constraints, Ideal Resource and Protocol Presentation 83
4.3.2 Security of the Fraction Classical Cut-and-Choose Protocol 86
4.3.3 Discussion . 90

4.4 The Protocol Compiler . 92
4.4.1 New Semi-Malicious Adversaries . 92
4.4.2 Constraints on Abstract Protocols . 93
4.4.3 Presentation of the Compiler . 98
4.4.4 The Compiler: Main Results . 100

4.5 Application to Secure Two-Party Quantum Computation 106
4.5.1 The VBQC-Based 2PQC Protocol . 106
4.5.2 Security Results and Compiler Application . 110

4.6 Conclusion and Discussion . 118

5 Computational Security Model for Superposition Attacks 123
5.1 Motivation and Overview of Results . 123

5.1.1 Analysis of Existing Security Models . 123
5.1.2 Our Contribution . 125

5.2 New Security Model for Superposition Attacks . 127
5.3 The Modified Honest-but-Curious Yao Protocol . 131

5.3.1 Security and Superposition-Compatibility of Symmetric Encryption 131
5.3.2 Presentation of the Modified Yao Protocol . 135

5.4 Superposition Attack on Yao’s Protocol . 139
5.4.1 Quantum Embedding of the Classical Protocol 139
5.4.2 Generating the Correct and Unpolluted Superposition 140
5.4.3 Applying the State Generation Procedure to the Full Attack 144
5.4.4 The Full Attack is not Malicious . 147
5.4.5 Attack Optimisation and Application to Oblivious Transfer 148

5.5 Security Model Satisfiability . 150
5.5.1 Superposition-Resistance of the Classical One-Time Pad 150
5.5.2 Superposition-Resistant Yao Protocol . 151

5.6 Conclusion and Discussion . 153

6 Quantum Round-Optimal Delegated MPQC 155
6.1 Motivation and Overview of Results . 155

6.1.1 Delegation, Distribution and Composition . 155

iv

TABLE OF CONTENTS

6.1.2 Our Contribution . 156
6.2 High-Level Construction of a Delegated MPQC Protocol from VBQC 159

6.2.1 Deconstructing the VBQC Protocol . 160
6.2.2 Reconstructing a DMPQC Protocol with the DBQC Ideal Resource 161
6.2.3 Usage of the Classical SMPC Ideal Resource . 165

6.3 Double-Blind State Generation and Computation . 166
6.3.1 Double-Blind Rotated State Preparation . 166
6.3.2 Double-Blind BB84 State Preparation . 168
6.3.3 Double Blind Quantum Computation Protocol 173

6.4 Using DBQC to Bootstrap Verification . 178
6.4.1 VBQC Client-Encrypted State Preparation Using DBQC 178
6.4.2 Effect of Adversarial Deviation during DBQC on Prepared State 181
6.4.3 Compatibility of Good-Enough States and Proofs of Verifiability 190

6.5 Full Delegated MPQC Protocol and Security Analysis 192
6.6 Implementing the Classical SMPC Resource . 199

6.6.1 Useful Functions . 199
6.6.2 Constructing the Classical SMPC Functionalities 201

6.7 Performance Analysis and in-depth Comparison with Previous Work 203
6.8 Conclusion and Discussion . 205

7 Qubit and Operation Optimal Verifiable Quantum Computations 209
7.1 Motivation and Overview of Results . 209

7.1.1 Benchmarking and Verification in a Networked Setting 209
7.1.2 Our Contribution . 210

7.2 Building Protocols for SISQI, an Iterative Description 211
7.2.1 The Basic MBQC Protocol . 212
7.2.2 Upgrading to Full Blindness using UBQC . 214
7.2.3 Amplification of Robustness and Verifiability Through Repetition 216
7.2.4 Full Noise-Robust Verifiable Protocol . 218

7.3 Security Results and Noise Robustness . 221
7.3.1 Security Analysis . 221
7.3.2 Noise Robustness . 232

7.4 Conclusion and Discussion . 235

Bibliography 243

v

C
h
a
p
t
e
r 1

Introduction

The development of quantum computing and quantum communication builds upon decades of
analysis of their classical counterparts. The recent path taken by start-ups and large technological
corporations points toward quantum technologies being mostly cloud-accessible. While, as of now,

it is possible to access experimental machines through classical networks, several initiatives are working
on building quantum networks that would allow remote quantum access to quantum computers.

A wealth of questions arise in this setting from a security perspective, one of which being that clients
and servers, reflecting real-life situations, do not necessarily trust each other. Protecting the clients’
inputs and computations that are run on dishonest servers is therefore central, and even more so in the
quantum domain, as quantum computers are constructed precisely for the purpose of tackling sensitive
and/or high added-value computations. Several protocols providing privacy with or without output
correctness verifiability have been proposed and proven secure (see e.g. [41], and [52, 58] for a review).

In the context of classical networked machines, Secure Multi-Party Computation (SMPC) is another
vital functionality provided by modern cryptography, allowing several players to collaboratively compute
a joint function on private input data. The parties are required to exchange messages as no single
party possesses the full data required to perform the computation. However, they want to do so while
minimising their exposure since they do not trust each other and wish to maintain the privacy of their
input (to name some examples: millionaire’s problem, coin tossing, voting schemes, etc). The field
started with the seminal paper of Yao [135], where two parties want to compute a function of their
joint inputs and yet are “Honest-but-Curious” in the sense that they follow the protocol’s specifications
but wish to extract more information about the other player’s input than what is permitted by simply
obtaining the final result. This protocol was later made secure against Malicious Adversaries – which
also want to acquire more information but may deviate arbitrarily from the protocol – by employing
standard (classical) techniques for boosting the security of Honest-but-Curious protocols to the Malicious
adversarial setting (e.g. using the GMW compiler as in [61]). The field has since developed extensively
in various settings (see [29] and references therein).

1

CHAPTER 1. INTRODUCTION

The quantum analogue (Multi-Party Quantum Computation, or MPQC) involves the computation
of a transformation on classical or quantum inputs using a quantum computer and has attracted a lot of
attention as a potential key application for quantum networks [109] through its ability to preserve privacy
and integrity of the highly valuable computations quantum computers would enable. The case of multiple
parties was addressed in [14, 30] where an honest majority of players was required, while Two-Party
Quantum Computing (or 2PQC) is the focus of [44] for quantum Honest-but-Curious Adversaries and [45]
for quantum Malicious Adversaries.

In the early days of quantum computation, researchers believed that quantum capabilities could
lead to cryptographic breakthroughs by building various classical multi-party cryptographic primitives
in an unconditionally secure way (i.e. without relying on any assumptions beyond the rules of physics
and mathematics, thereby offering protection regardless of the computational power of the adversary)1.
In particular, based on the idea of conjugate coding of [132]2 where two different quantum bases are
used to encode information so that no one but the creator can perfectly recreate the original message,
first [15] and later [48] proposed schemes for unconditionally-secure Key Distribution3 requiring only
an authenticated classical channel and an insecure quantum channel. The BB84 scheme [15] is as of
now implemented on a variety of commercially-available systems. These results sparked hope that many
more cryptographic primitives could be uplifted to unconditional security by using quantum systems.

In fact, this has proven to be true for some primitives. In the case of coin flipping, where two parties
wish to sample unbiased randomness together, it is possible to construct unconditionally-secure strong
coin-flipping protocols with biases as low as ε = 1/4 (i.e. no party can skew the result either way with
probability higher than ε) as demonstrated by various protocols starting with the one presented in [6],
and it has been proven in [2]4 that there exist unconditionally-secure protocols for weak coin-flipping
(contrary to the strong variant above, each party here has a preferred outcome towards which it wants
to bias the coin) for any arbitrarily-low bias. Both of these are impossible in the classical setting, yet
such protocols have already been implemented on real quantum hardware [110].

A flurry of unconditionally-secure protocols for the more advanced bit-commitment functionality5

have been proposed around the same time, for example [19]. Unfortunately, a flaw was discovered which
allows an adversary to completely break this protocol. Patches and attacks were exchanged until a
series of no-go theorems were finally proven, first showing that unconditionally-secure bit commitment is
impossible [95, 100], and later that the same held for oblivious transfer6 as well [93]. In the end, [121]
showed that any non-trivial functionality7 for two-party computations necessarily leaks some information
to the adversarial party. Since then it is established that any protocol for non-trivial functionalities is
either only computationally secure (where the protocol is secure so long as the adversary is incapable of
solving a given hard problem, meaning that, given enough time and computational power, an adversary

1This is also called statistical security.
2Submitted to IEEE in 1970 but rejected.
3This functionality allows two player to sample a random common key in a way that prevents external eavesdroppers

from learning information about this shared secret.
4This is a simplification of a previous proof from [103], which has not been published.
5It allows one player to send an encrypted message to another such that the sender, if asked to show the clear-text,

cannot reveal anything but the original message.
6One party proposes two bits to another, who can choose and receive only one without gaining any knowledge about

the other. The sender does not learn which one has been chosen.
7These are functionalities for which there exists no trivial protocol in the Honest-but-Curious setting, the trivial

protocol being defined as follows: one party generates the output and sends it to the other party.

2

will be able to break the scheme) or requires the pre-existence of certain secure simple cryptographic
primitives.

This is a trajectory that is often followed by newly developing fields of research, where initial intuitions
built upon ground-breaking early results (Quantum Key Distribution in this case) turn out to be wrong
for subtle reasons that appear only through increasing levels of formalisation. In that period, methods
are often used without a proper framework for analysing the full breadth of consequences that ensue
from their application. That is not to say that such works are merit-less as they are precisely the reason
why further axiomatisations and formal models emerge, yielding precise definitions that are then much
more useful for building future techniques.

This formalisation endeavour has already been pursued extensively in the case of classical cryptography,
where initial game-based proofs have been shown to offer insufficient levels of security in the context of
networked machines executing a large number of processes and protocols in parallel. For example, a
message could be sent by a party in a given instance of a protocol and later reused by the receiving party
in another instance of the same protocol. This is not captured by some of the basic security definitions
and concrete protocol attacks have been devised by using this principle. This lead to the development
of heavier but more general security frameworks that seek to incorporate these previously overlooked
behaviours and loopholes due to the potentially arbitrary composition of protocols. Compared to the
time-line of classical cryptography, these formalisation efforts can be seen as rather recent (for instance
the framework of Universally Composable Security, or UC, was proposed only in 2001 by [25]) and more
results are being published to this day to augment the capabilities of these models.8

Concurrently, various efforts have been seeking to translate these formalisations to the quantum
case. The work of [126] defines the Quantum Universally Composable (Q-UC) framework of security,
the quantum equivalent of the above-mentioned UC, and proves two important and intuitive results.
The first one states that any protocol which is statistically-secure in UC is also statistically-secure in
Q-UC, i.e. quantum power does not help an adversary in the statistically-secure setting in UC. This is
intuitive in the sense that the computational power of unbounded classical and quantum adversaries is
the same (the set of computable functions does not change). Then [126] also proves that this holds as
well for computational security so long as the hardness assumption upon which the protocol is based
remains valid for quantum adversaries. This again seems intuitive. However care must be taken since
some properties of classical adversaries do not translate directly to the quantum case, for example
copying the internal state of the adversary is no longer allowed due to the so-called No-Cloning Theorem
of quantum mechanics. Therefore, while they may be intuitive, these results are far from trivial.

Building upon this line of work, [49, 42] answer the question of what more can be done by using
quantum resources compared to classical protocols in Q-UC, as the result above merely performed the
translation in one way. Together they categorise all classical functionalities hierarchically such that
those that are higher can be used as basis for a secure protocol that implement lower functionalities.
Compared to the classical case, this hierarchy is much simpler both in the computational and statistical
setting, meaning that quantum operations increase the power of some functionalities in the sense that
they can now construct more complex functionalities than they would be able to using only classical
communications and processing. This is an extension of an early result from [31] which shows that

8Most notably in order to circumvent various no-go theorems that preclude the existence of some functionalities or
invalidate the security of intuitive protocols without presenting attacks, both of which may be analysed as artefacts of the
model rather than issues regarding the objects themselves.

3

CHAPTER 1. INTRODUCTION

the bit commitment primitive can be used with a quantum channel to implement the classically much
stronger oblivious transfer primitive,9 which is impossible using only classical communication channels.

These results essentially mean that the proofs of security which are valid in UC also produce a
quantum-secure protocol and furthermore that quantum capabilities boost some functionalities to levels
that are unattainable classically. Therefore the problematic behaviours that could arise from replacing
a classical adversary with a quantum one in fact do not happen in the context of composably-secure
frameworks and proofs. This does not however translate directly to all constructions and all security
frameworks, as other problems emerge in stand-alone security framework which allows more leeway
in the methods used in security proofs. One technique that does not work as in the classical case is
the ability to rewind the adversary: if the adversary is classical, it can be seen as a machine whose
state can be saved at some point of the protocol and then made to perform the protocol on multiple
execution branches by running it multiple times starting from this state snapshot. Transposing this
to the quantum case (with a quantum state) is not possible due to the above-mentioned no-cloning
result. One may wonder if this is an issue concerning protocols (i.e. does the inability to use this proof
technique in the quantum case result in a concrete quantum attack on protocols that use it in their
classical security proof?) or whether the quantum security framework simply needs to be expanded
(i.e. is there an equivalent quantum technique that can be used for the same purpose and substitute
rewinding in quantum proofs?). The work of [7] suggests that attacks may be possible since there exists
an oracle relative to which some classically-secure protocols that use rewinding are broken.10 On the
other hand, the results from [127, 129, 128] show that imposing additional constraints on the protocol
allows for recovering some previous classical security results. More recently, the Fiat-Shamir construction
[51], a classical technique used to transform zero-knowledge proofs of knowledge into signatures in the
random oracle model, proven secure against classical adversaries in [113], has been lifted to quantum
security in [92, 38].

Many other purely quantum protocols cannot rely on classical proof techniques for their security
and must reinvent both the definitions and the tools used to prove them. To cite but a few, Quantum
Noisy-Storage assumptions can be used to model a quantum adversary with limited or faulty quantum
memory (which is not an absurd assumption by today’s standard of quantum hardware), in which case
unconditional security is possible for all primitives [131]11; Quantum Physical Uncloneable Functions
forbid the existence of two copies of the same quantum object [125, 108], thus providing strong
authentication guarantees [39]; Relativistic Cryptography combines special relativity and quantum
mechanics to provide unconditionally-secure bit commitment (it has been proven that this cannot be
composably secure unfortunately so the security of protocols in this framework must be proven from
scratch every time); finally Device-Independent Quantum Cryptography provides security guarantees
even in the case where the devices used to perform protocols are not trusted (supplied by the adversary
for example).

But in order for these new quantum cryptographic ambitions to materialise, novel definitions and

9This primitive is classically universal in the sense that it can be used to implement any other with a polynomial
number of calls [79].

10The “oracle” simply provides the adversary information in the form of a state that does not help it in the classical
case but allows it to break the protocol if it has quantum capabilities.

11Their protocols also do not require honest players to have any quantum memory, which is strictly better than the
classical case where they need a memory size equal to the square root of the adversary’s memory [46] (on top of the fact
that classical memory is cheap and so the bound must be taken to be relatively large for security to hold).

4

proof techniques need to be developed that both precisely capture the full breadth of their possibilities,
while at the same time eschewing the caveats and pitfalls of previous intuitive yet flawed arguments of
security. In this context, the goal of this thesis is twofold. The purpose of its first part, comprising the
first two results, is to forge ahead in this pursuit of precision by filling in some of the gaps previously left
open. The latter chapters and results then focus on effectively bringing to life secure quantum protocols
on already existing hardware, by lowering overheads in their implementations and tailoring them to the
specificities of experimental executions, a task which unfortunately still remains all too often a blind
spot in protocol design.

The Oxford Dictionary gives the following definition of folklore: “the traditions and stories of a
country or community”. The particular (and peculiar) community of cryptographers has a number of
such tales, most often in the form of informal insights, passed down orally from thesis adviser to PhD
student. These instruction (or lār in Old English) are most often accurate and useful in the construction
of secure protocols. However, when they fail it is often hard to point out where and why, precisely
due to the fact that their presentation does not come with formal statements regarding their security
capabilities. On the other hand, most proofs of security are formalised in what is referred to as the
“ideal/real world paradigm”, where the ideal world consists of perfectly secure protocols (with trusted
third parties doing the dirty work), the real world is that of protocols that are actually implementable
trustlessly, and the proof shows the equivalence of these two types of execution. We start by uplifting
a folklore technique called Cut-and-Choose, which is used to guarantee the correctness of a message
without divulging it, by giving its formalisation as an ideal functionality. This includes an extension to
the quantum case called Quantum Cut-and-Choose. Prior misapplications of this technique have lead
to concrete attacks and subsequent patches to multiple protocols, yet no formalisation of its security
properties has been given up to now.

Another problem that lacked proper treatment is that of attacks that occur when an adversary
gains quantum access to a classical primitive or protocol, in the sense that any previously classical
messages are replaced by quantum states. Previous analyses focused on the case of unconditionally secure
protocols and proved their insecurity by showing that any such protocol necessarily leaks information.
The reasoning went that if those perfect protocols were insecure, surely those relying on computational
assumptions were as well. We disprove this line of thought by building an ideal/real framework of
computational security against so-called superposition attacks and constructing secure protocols in this
setting. This is done by first dissecting a new superposition attack on the well-known classical Yao
protocol for secure two-party computations. This attack allows an adversary to obtain the XOR of two
legitimate outputs (while a secure protocol would only return one). Analysing the finer points where
the protocols fails yields the following interesting result: the output does not even need to be returned
by the honest player to the adversary for the attack to work and the attack vector turns out to be a
message that in the classical setting the adversary is supposed to already know.

After bringing these previously informal analyses to the more rigorous world of the ideal/real world
paradigm of security, the final two results aim to bring cryptographic protocols to the actual real world.
This goal was inspired by talks with various experimental groups, amongst which the ones lead by
the Quantum Internet Alliance which seeks to develop the quantum equivalent of the Open Systems
Interconnection model of classical networks, therefore allowing a full-stack integration between quantum
protocols and hardware. Achieving this requires first simplifying the steps of the protocols that need to

5

CHAPTER 1. INTRODUCTION

be later implemented and reducing the overhead of the operations performed by most of the participating
devices. We devise for this purpose a new protocol for the general Multi-Party Quantum Computation
functionality which improves on almost all known efficiency metrics and introduce novel functionalities
along the way that may be of independent interest for designing future protocols.

Finally, going even further towards an actual protocol implementation, we focus in the last section
on creating protocols for devices that will be available in the near future but may suffer from high levels
of noise, for the specific task of Verifiable Delegated Quantum Computations (or VDQC, where a client
wants to delegated a quantum computation to a powerful server but does not trust it regarding the data
privacy or output integrity). While many other protocols have been devised for this functionality, they
are unusable on inherently noisy devices since the noise will trigger the same defence mechanisms as
adversarial deviations by the Server, therefore signalling to the client that it must abort. The description
of our protocol is voluntarily low-level, taking into consideration communication steps which are absent
from previous papers, specifically for the purpose of helping with its future implementation since
ambiguity in a protocol’s specification can lead to over-optimisation later on, some of which may break
its security guarantees.12 In the process of proving the security of our protocol, thereby closing the
thematic circle started with our first results, we formalise for the first time the proof of security of a
commonly-used technique: if the output of a protocol is deterministic, it is possible, without breaking
the security of the protocol, to repeat computations and later perform classical errors-correction by
taking the majority output. In classical cryptography, this fact has been known for a long time and,
legitimately, used in various protocols to boost their acceptance probability. However, its application
to quantum protocols is not straight-forward since attacks that may be entangled across rounds of
execution need to be taken into account.13 This technique is mentioned in a few papers that deal with
VDQC but are rarely if ever formally justified. Our proof of security demonstrates that, rather than
being easily brushed off as a trivial extension of the classical case, this method requires precise handling
in order for it to be analysed in detail.

These result are now presented in more detail in the section below, along with an outline of the
thesis.

Thesis Results and Outline

This thesis consists of two introductory chapters and four research chapters.
Chapter 2 introduces the definitions and results that will form the mathematical basis of the rest of

the thesis. We first describe there elements of probability theory that help us analyse the success rates
of our protocols. Then we present notions of Quantum Information Theory and Measurement-Based
Quantum Computation (MBQC), which has been first described in [118] and will be the main quantum
computational framework used in this thesis.

Chapter 3 introduces cryptographic notions that are used in the thesis, starting with a description
of basic functionalities, among which Bit-Commitment. We then explain how parties participating in
protocols are modelled in frameworks of quantum cryptographic security and present the Quantum
Stand-Alone Model of security [66] and later the Abstract Cryptography framework [99], detailing

12For instance, optimising some operations in encryption schemes may lead to timing side-channel attacks.
13These attacks are more powerful than simple classical correlations between protocol rounds that may happen in

classical cryptography.

6

their various properties along the way. Various Ideal Functionalities which are compatible with both
frameworks are then formalised. Then we describe the security properties of a specific class of protocols
called Delegated Quantum Computation (DQC) Protocols. Finally, we present other cryptographic
primitives used in later chapters of the thesis: two important DQC Protocols derived from MBQC,
namely Universal Blind Quantum Computation (UBQC) [21] and Verifiable Blind Quantum Computation
(VBQC) [78], the classical Yao Protocol [135] and the Universal Thresholdiser [16].

Chapter 4: Quantum Cut-and-Choose. We start by looking at ways to define precisely the security
guarantees of a classical technique that has been informally used in numerous protocols, namely Cut-
and-Choose (CC). It is a standard method used to boost the security of a protocol secure against
Honest-but-Curious Adversaries to being secure against fully Malicious ones, by essentially enforcing
the Honest-but-Curious behaviour. Abstractly, the party sending a message to be secured via CC is
made to produce multiple versions of this message with independent randomness (the cutting part) and
later on the receiving party can choose a certain number of messages (usually all but one or half of the
prepared messages) for which the randomness used in their creation will be revealed (the choosing part).
The receiving party can then check that these opened messages have been prepared according to the
specifications of the protocol. If these checks pass, the receiver is assured with high probability that the
unopened messages have been similarly honestly generated and can therefore be used without risk in the
rest of the protocol.

We extend this technique to the quantum case, yielding the Quantum Cut-and-Choose (Q-CC),
and at the same time present the first known formalisation of it in the ideal/real world paradigm of
security (Stand-Alone Model of [66]). This forces us to precisely define the security notion that the
Q-CC protocol achieves in the form of an Ideal Functionality representing the best case scenario of
a cryptographic protocol where the parties send their inputs privately to a trusted third party which
then returns the outputs. Our Send Blind Correct State Functionality receives from the Sender a state,
classical message and proof of correctness, checks that they are correct and then transmits only the
state and message to the Receiver. We show that the Q-CC protocol is secure in the sense that it
emulates this functionality (meaning that an Adversary can learn nothing beyond what it gets in the
ideal scenario), but only if the state, message and proof satisfy a set of requirements. The application
and analysis of the Cut-and-Choose technique in protocols secure against quantum Adversaries is not
a straightforward transposition of the classical case, among other reasons due to the difficulty to use
“rewinding” in the quantum realm. The security proofs we present use novel adaptations of two quantum
rewinding techniques, namely Watrous’ oblivious quantum rewinding [130] and Unruh’s special quantum
rewinding [127, 129].

When restricted to purely classical messages, we describe another functionality, the Send Blind
Correct Fraction of Messages, whose aim is to multiple message with the guarantee that at least a given
fraction of those have been prepared correctly. An outer protocol relying on this functionality as a
subroutine has then to perform some form of error-correction to mitigate the effect of this malicious
fraction. The corresponding Fraction Classical Cut-and-Choose Protocol is proven secure in the fully
composable Abstract Cryptography framework of [99] under another set of assumption, thus providing
additional flexibility in how to implement CC. We further optimise the ratio of tested messages to
tailor it precisely to the desired maximal ratio of incorrect forwarded messages. This yields interesting

7

CHAPTER 1. INTRODUCTION

results when applied to the most common use-case for this technique: when a majority vote is used as
error-correction, therefore requiring that at least half of the message be correct, the optimal fraction of
tested message turns out to be 3/5, when all protocols up to now use the (more intuitive) value 1/2. All
such protocols benefit from switching to this new value at no additional cost.

Although the Quantum Cut-and-Choose functionality is useful on its own, we furthermore describe a
Compiler based on it which takes as input a protocol secure against a weak Semi-Malicious Adversary,
which is only allowed to cheat in a subset of messages of the protocol, and outputs a protocol secure
against fully Malicious Adversaries. The requirements for a protocol to be Cut-and-Choosable (ie. able
to undergo the transformation described in our Compiler) are also fully characterised, which opens the
possibility of applying the Q-CC technique to any quantum protocol that fulfils these criteria. The Q-CC
technique and Compiler are then applied to a protocol for securely performing a Two-Party Quantum
Computation with classical inputs and quantum outputs. The concept of secure delegated quantum
computing [21] is used as basis, and in particular the protocol for quantum garbled circuit computation
of [77] that has been only proven secure against weak quantum Honest-but-Curious Adversaries. The
compiled protocol achieves the same functionality as in previous works on secure Two-Party Quantum
Computing such as [45], however using the Quantum Cut-and-Choose technique on the protocol from [77]
leads to the following key improvements: (i) only two rounds of quantum communication are necessary
(one of which is offline); (ii) only one party needs to have involved quantum technological abilities; (iii)
only minimal extra cryptographic primitives are required, namely one Oblivious Transfer for each input
bit and quantum-safe commitments; (iv) these primitives can be efficiently instantiated using [112, 128]
respectively to obtain one-sided statistical security, thus retaining this same security property of [77].

Chapter 5: Computational Resistance to Superposition Attacks. Recent advances in quantum
technologies threaten the security of many widely-deployed cryptographic primitives if we assume that
the Adversary has classical access to the primitive but can locally perform quantum computations. This
scenario has led to the emergence of post-quantum cryptography. But the situation is even worse in the
fully quantum scenario, if we assume the Adversary further has quantum access to the primitive and
can query the oracle with quantum states in superposition. Such access can arise in the case where
the Adversary has direct access to the primitive that is being implemented (eg. symmetric encryption,
hash functions), or if a protocol is used as a sub-routine where the Adversary plays all roles (as in the
Fiat-Shamir transform based on Sigma Protocols) and can therefore implement them all quantumly.
In the future, various primitives might natively be implemented on quantum machines and networks,
either to benefit from speed-ups or because the rest of the protocol is inherently quantum. In this case,
more information could be leaked, leading to new non-trivial attacks, as presented in a series of work
initiated in [33, 17, 70]. A possible countermeasure against such superposition attacks is to forbid any
kind of quantum access to the oracle through measurements. However, the security would then rely on
the physical implementation of the measurement tool, which itself could be potentially exploited by a
quantum Adversary. Thus, providing security guarantees in the fully quantum model is crucial. We focus
here on the multi-party (interactive) setting.

It is of folkloric belief that the security of classical cryptographic protocols is automatically broken
if the Adversary is allowed to perform superposition queries and the honest players forced to perform
actions coherently on quantum states. Yet another widely held intuition is that disturbing the exchanged

8

messages via any measurement is enough to protect protocols from these attacks.
However, the reality is much more complex. Security models dealing with superposition attacks

only consider unconditional security. Conversely, security models considering computational security
assume that all supposedly classical messages are measured in the computational basis, which forbids by
construction the analysis of superposition attacks. To fill in the gap between those models, the seminal
work of [17] started to study the quantum computational security for classical primitives, but only in
the single-party setting. To the best of our knowledge, an equivalent model in the multi-party setting is
still missing.

In this chapter, we propose the first computational security model considering superposition attacks
for multi-party protocols. We show that our new security model is satisfiable by proving the security
of the well-known One-Time-Pad protocol and give an attack on a variant of the equally reputable
Yao Protocol for Secure Two-Party Computations. The post-mortem of this attack reveals the precise
points of failure, yielding highly counter-intuitive results: Adding extra classical communication, which
is harmless for classical security, can make the protocol become subject to superposition attacks. We use
this newly imparted knowledge to construct the first concrete protocol for Secure Two-Party Computation
that is resistant to superposition attacks. Our results show that there is no straightforward answer
to provide for either the vulnerabilities of classical protocols to superposition attacks or the adapted
countermeasures.

Chapter 6: Quantum Round-Optimal Protocol for Delegated Multi-Party Quantum Com-
putations versus Dishonest Majority. Contributing to the latest challenges in the field of MPQC,
alongside recent results from [40, 90, 5], we present a new efficient protocol achieving security even in
the case of a single honest Client in the fully composable Abstract Cryptography Framework [99]. The
security of our protocol is reduced, in an information-theoretically secure way, to that of a classical
composable SMPC used to coordinate the various parties. Our scheme thus provides a statistically secure
quantum upgrade of such classical schemes.

In addition, (i) the Clients can delegate their computation to a powerful fully fault-tolerant Server
and only need to perform single qubit operations to unlock the full potential of multi-party quantum
computation; (ii) the amount of quantum communication with the server is reduced to sending quantum
states at the beginning of the computation and receiving the output states at the end, which is optimal and
removes the need for interactive quantum communication; and (iii) it has a low constant multiplicative
qubit overhead compared to the single-Client delegated protocol it is built upon [78].

We bootstrap the MPQC construction using a new composable resource called Double Blind Quantum
Computation. It replaces the state preparation step of the single-client delegated protocol by a multi-
party state preparation in a way that allows us to then drive all required coordination tasks between
the parties by a Classical SMPC scheme. Crucially, we only use this resource to perform constant-depth
blind but not verifiable quantum computations. Beyond the obvious efficiency gains, this goes on to show
that, contrary to previous beliefs, verification of the full protocol can be achieved without requiring
verifiability of all components.

Similar to matryoshka dolls, the new Double Blind Quantum Computation Protocol implementing
this resource is based off of the Universal Blind Quantum Computation Protocol of [21], where the
qubit communication between Client and Server has been replaced by a collaborative Rotated State

9

CHAPTER 1. INTRODUCTION

Preparation Protocol which ensures that no malicious coalition has any information about the generated
state so long as the honest Client’s secret is not revealed. We further describe another such State
Preparation Protocol used for preparing collaboratively state from the BB84 set. Beyond their usefulness
in constructing the MPQC Protocol, these three sub-protocols are of independent interest and may find
uses in constructing other multi-party functionalities.

Chapter 7: Qubit and Operation Optimal Verifiable Quantum Computations. Going even
further towards concrete implementations of complex quantum protocols, we finally focus on tailoring
a specific cryptographic protocol to experimental constraints. Recent achievements have shown that
experimental quantum computers can outperform their classical counterparts. This motivated an ever
growing interest from companies starting to feel the limitations of classical computing. Yet, in light of
the ongoing stream of privacy scandals, the current commercial developments pointing toward the future
availability of quantum computing through remotely accessible servers poses peculiar challenges: Clients,
with limited quantum capabilities, will want their data and their algorithms to remain hidden from the
servers, while still being able to verify that their computations are being performed correctly.

Numerous theoretical protocols for delegating quantum computations in a secure (blind and verifiable)
way have been proposed over the years in an attempt to address the question. However, few have been
implemented on existing hardware as not only do all currently available techniques suffer from high
qubit overheads but also, and more importantly, from over-sensitivity: When running on noisy devices,
plain imperfections trigger the same detection mechanisms as malicious attacks, resulting in perpetually
aborted computations. Therefore, although malicious quantum computers are rendered harmless by
blind and verifiable protocols, their inherent noise severely limits their usability.

We address this problem by introducing an efficient, robust, blind, verifiable Measurement-Based
Quantum Computation scheme allowing a client with limited quantum capabilities to perform delegated
deterministic computations with classical inputs and outputs. We assume for this purpose the following
setup. The client, which has only the ability to rotate single qubits around the Z-axis with a restricted
set of angles and perform X-basis measurements, chooses an MBQC computation with deterministic
classical output to be delegated to a quantum server of known topology. The server’s device running this
computation is inherently noisy in the sense that it will fail to return the correct measurement outcomes
with some probability which is upper-bounded by a constant. Our protocol transforms the client’s
computation into a blind computation that can be run on the same devices with exponential success
probability and which offers exponential verification against a malicious server. This is done by leveraging
the deterministic nature of the computation and repeating the runs of computation with different hiding
parameters before taking a majority outcome, which results in a high acceptance probability on these
devices. Test runs are introduced at random among the computation runs to detect a deviating server.

We prove the security of the protocol again in the Abstract Cryptography Framework as the
emulation of the Verifiable Delegated Quantum Computation Resource, using the reduction to local
criteria from [41]. More precisely, we show that (i) a fully malicious server cannot learn any information
about the computation and inputs and can cheat at most with an exponentially small success probability;
(ii) it is robust in the sense that, in presence of sufficiently low non-malicious noise, the protocol will
succeed with a probability exponentially close to 1; (iii) the induced overhead is limited to a polynomial
number of repetitions of the initial computation interleaved with test runs of similar complexity,

10

i.e. requiring the same physical resources per run in terms of memory and gates, in particular the
required size of the quantum device remains exactly the same as in the initial MBQC computation; (iv)
the amount of tolerable noise, measured by the probability of failing a test run, can be as high as 25%
for some computations and will be generally bounded by 12.5% when the computation is implemented
using a planar graph resource state.

The key ingredients used in this work are both the realization that security can be provided without
using universal computation graphs and that, in our setting, we do need to use fault-tolerance for the
purpose of amplifying the acceptance nor security level exponentially close to 1. While our protocol is
most useful in the regime where fault-tolerance can be used to lower the noise level below our threshold
in point (iv) above, this work is presented in an iterative way so that it may be readily implemented as
a proof-of-concept on limited devices of a few qubits such as those currently being developed by the
Quantum Internet Alliance, which satisfy our noise constraints as well. The code is identical for all
execution sizes and can be directly reused when larger devices are created. This allows us to demonstrate
the feasibility of our protocol at a time when other realisations of the same functionality are unthinkable
due to their prohibitive memory overheads.

Publications

- The results forming the basis of this thesis may be found in the following works:

[106] “Dispelling Myths on Superposition Attacks: Formal Security Model and Attack Analyses”,
L. Music, C. Chevalier, E. Kashefi,
Proceedings of Provable and Practical Security (ProvSec 2020).

[73] “Delegating Multi-Party Quantum Computations vs. Dishonest Majority in Two Quantum Rounds”,
T. Kapourniotis, E. Kashefi, L. Music, H. Ollivier,
Arxiv Pre-Print

[87] “Verifying Quantum Computations on Noisy Devices with Minimal Overhead”,
E. Kashefi, D. Leichtle, L. Music, H. Ollivier,
Arxiv Pre-Print

[75] “The Quantum Cut-and-Choose Technique and Quantum Two-Party Computation”,
E. Kashefi, L. Music, P. Wallden,
Arxiv Pre-Print

- The following works are in preparation:

“Quantum Protocol Compiler: Boosting Security from Semi-Malicious to Malicious Adversaries”,
E. Kashefi, L. Music, D.Unruh, P. Wallden

“Fully-Composable Quantum Exponential Security Of Classical Cut-and-Choose”,
L. Music, C. Chevalier, E. Kashefi

“Verification of BQP and Sampling on Noisy Devices”,
D. Leichtle, L. Music, E. Kashefi, H. Ollivier

“Approaching Qubit Optimality in MPQC”,
T. Kapourniotis, E. Kashefi, L. Music, H. Ollivier

11

C
h
a
p
t
e
r 2

Preliminaries in Probability Theory and Quantum
Information

Elements of probability theory and quantum information are recalled here, along the quantum
computational framework that forms the basis of the protocols presented later. Basic general
notations which will be used in the rest of the thesis are first presented:

• for any positive integer n ∈ N∗, [n] := {1, . . . , n};
• for any integers n and k,

(
n
k

)
designates the number of k-combination of a set of size n;

• #X is the size of X (e.g. string length, set size, number of qubits in a quantum register);
• n! is the factorial of n ∈ N, which satisfies Sterling’s approximation n! ∼

√
2πn

(
n
e

)n;
• for any set S, ℘(S) is the set of subsets of S;
• ⊕ and � are respectively the bit-wise XOR and AND operations on bit-strings of the same length;
• ‖ represents string concatenation;
• wH(s) is the Hamming weight of string s;
• for any two binary strings a and b of length n, a · b =

∑
i∈[n] aibi (mod 2) designates the scalar

product of a and b in Zn2 .
• {0, 1}∗ is the set of all bit-strings;
• ∧ and ∨ represent respectively the logical AND and OR operations;
• x ∈R X means that the value x is sampled from set X uniformly at random;
• for distribution D, x ← D denotes that x was sampled according to distribution D (we abuse

notation and use ← more generally to indicate that a variable is initialised with the result of an
operation);

• if X ∼ D then the random variable X follows distribution D;
• for any well-defined event A, we denote Pr[A] its probability;
• for any random variable X, E(X) is its expected value;
• for a set V and O ⊆ V , Oc := V \O (this should depend on the set V in all generality but will be

13

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

clear from context);
• for a graph G, NG(v) are the neighbours of vertex v in graph G.

2.1 Useful Inequalities from Probability Theory

We assume familiarity with notions of probability theory, see [50] for more material. The following
definitions and lemmata regarding two probability distributions are useful to derive bounds on the
security of protocols.

2.1.1 Binomial Distribution

A random variable X follows the binomial distribution if for example it counts the number of successful
results of a trial with boolean results which is independently repeated m times such that each try is
successful with constant probability p, or equivalently, the number of marked items drawn after drawing
m items from a set with a fraction p of marked items with replacement.

Definition 2.1 (Binomial Distribution). Let m ∈ N∗ and p ∈ (0, 1). A random variable X is said
to follow the binomial distribution, denoted as X ∼ Bin(m, p), if for 0 ≤ k ≤ m its probability mass
function is described by:

(2.1) Pr [X = k] =
(
m

k

)
pk(1− p)m−k

We now give the result of the application of Hoeffding’s Inequality to the binomial distribution
defined above.

Lemma 2.1 (Hoeffding’s Inequality for the Binomial Distribution). Let X ∼ Bin(m, p) be a random
variable. For any 0 ≤ k ≤ E[X] = mp it then holds that:

(2.2) Pr [X ≤ k] ≤ exp
(
−2(mp− k)2

m

)
Similarly, for any k ≥ mp it holds that:

(2.3) Pr [X ≥ k] ≤ exp
(
−2(mp− k)2

m

)
2.1.2 Hypergeometric Distribution

A random variable X following the hypergeometric distribution describes the number of drawn marked
items when drawing m items from a set of size n containing d marked items without replacement.

Definition 2.2 (Hypergeometric Distribution). Let n, d,m ∈ N with 0 ≤ m, d ≤ n. A random variable
X is said to follow the hypergeometric distribution, denoted as X ∼ Hyp(n, d,m), if for 0 ≤ k ≤ m its
probability mass function is described by:

(2.4) Pr [X = k] =
(
d
k

)(
n−d
m−k

)(
n
m

)
14

2.2. QUANTUM INFORMATION THEORY

We now give a few tail bounds and accompanying corollaries associated with the hypergeometric
distribution defined above.

Lemma 2.2 (Tail Bound for the Hypergeometric Distribution). Let X ∼ Hyp(n, d,m) be a random
variable and 0 < ε < d/n. It then holds that:

(2.5) Pr
[
X ≤

(
d

n
− ε
)
m

]
≤ exp

(
−2ε2m

)
Corollary 2.1. Let X ∼ Hyp(n, d,m) be a random variable and 0 < λ < E[X] = md/n. It then holds
that:

(2.6) Pr [X ≤ λ] ≤ exp
(
−2m

(
d

n
− λ

m

)2
)

Lemma 2.3 (Serfling’s Bound for the Hypergeometric Distribution [62, 123]). Let X ∼ Hyp(n, d,m)
be a random variable and λ > 0. It then holds that:

(2.7) Pr
[√

m

(
X

m
− n

d

)
≥ λ

]
≤ exp

(
− 2λ2

1− m−1
n

)
Corollary 2.2. Let X ∼ Hyp(n, d,m) be a random variable and λ > md/n. It then holds that:

(2.8) Pr [X ≥ λ] ≤ exp
(
−2m

(
λ

m
− d

n

)2
)

Note the symmetry of Corollary 2.1 and Corollary 2.2.

2.2 Quantum Information Theory

We give here a brief overview of the definitions and results from Quantum Information Theory that are
useful in this thesis. We refer the reader to [107] for more details.

This theory describes the behaviour of information when it is encoded in the properties of particles
and systems governed by the laws of quantum mechanics. The most basic system described by quantum
mechanics is one with two possible “basic” states, for example the excited and non-excited states of the
hydrogen’s electron, or the horizontal and vertical polarisations of a photon. While a system is either
in one state or the other in the classical case (although this can be chosen according to a probabilistic
distribution), it can be in both state at the same time according to the laws of quantum mechanics. The
object is then said to be in superposition.

However, making the observation on a quantum system will break this superposition and make the
system collapse to one state or the other. Before any measurement however, the evolution of the system
behaves exactly as if both states were present at the same time, which yields counter-intuitive results
such as being able to perform the two-slit experiment with particles instead of waves. In this case, each
of the particles traverse both of the slits at the same time and are only measured when they arrive on
the screen on the other side. This phenomenon is called quantum interference and can be leveraged to
boost the speed of computations for instance when using quantum properties for information processing.

15

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

On the other hand, if we try to measure through which slit the particle has passed, we find that there
is only ever a single particle (the detectors either detect it on the left or right slit but never at both)
but then the interference pattern disappears from the screen since the first measurement has destroyed
the superposition and forced the particles to behaves as classical objects. It is another fundamental
property of quantum mechanics that there are measurements which are incompatible with one another:
performing one before the other will change the result. This gives rise to the uncertainty principle stating
that not all properties of an object that follows the laws of quantum mechanics can be measured at the
same time.

It is therefore not possible to replicate exactly an arbitrary quantum system by trying to determine its
characteristics via measurements. More interestingly still, this is impossible even when purely quantum
operations are allowed. This result takes the form of the no-cloning theorem, which has far-reaching
applications in cryptography for instance. One such use-case is Quantum Key Distribution, where bits
of a cryptographic key are encoded in the properties of a quantum system. Intuitively, if the recipient of
the key has been able to recover it correctly, then it is guaranteed that no one has a copy of it, regardless
of the computational power of the adversary. Even more interestingly, any action by an eavesdropper
that leads it to acquire some information about the key is equivalent to performing a measurement on
the system, which as describe above will disturb the state on the receiver’s end of the channel. This can
then even be used to detect any suspicious activity on the channel.

The interactions between multiple quantum systems bring even more intriguing powers to devices
that are capable of manipulating such objects, in the form of quantum entanglement. It is for example
possible to create pairs of particles in such a way that measuring both particles in a similar way produces
the same effect. This holds regardless of the distance separating the two particles and can produce
correlations in measurement outputs that are impossible to recreate classically (at least not without
communicating). Such entangled pairs can be used then to transfer the state of a given particle to
another particle in a process that is called quantum teleportation (note that this does not create a copy
of the first particle since a measurement is required and so the no-cloning principle is preserved).

We will now formalise mathematically the notion of a quantum state before moving on to the
operations and measurements applicable to such systems. Finally we will present a few results, some of
which have been sketched above, that will be useful in the rest of the thesis.

2.2.1 Quantum States

Pure Quantum States. Let H be a Hilbert space of dimension N and {|ψ〉i}i∈[N] be an orthonormal
basis of H.1 The normalised vectors of this space represent the possible states of a quantum system. We
therefore define pure quantum states in Hilbert space H as:

(2.9) |ψ〉 =
N∑
i=1

ci |ψi〉

where ci ∈ C are coefficients satisfying the relation
∑N
i=1 |ci|

2 = 1. If there are more than one non-null
values for ci, then the state is said to be in superposition. We write † for the Hermitian conjugate

1Finite dimensional Hilbert spaces will be sufficient for the purpose of this thesis as we study discrete variable systems
only.

16

2.2. QUANTUM INFORMATION THEORY

operation and for all pure states |ψ〉 we write 〈ψ| := |ψ〉†. These Hermitian conjugates are used to define
projections on quantum states and associated measurement (more precisely, projective measurements).
The values |ci|2 then correspond to the probability that the output of a measurement on state |ψ〉 along
the basis {|ψ〉i}i∈[N] produces the i

th output. The post-measurement state has in that case collapsed to
the ith basis state |ψi〉. This is called the Born rule and justifies the normalisation condition seen above.

Two-level Quantum Systems. The special case of a two-dimensional Hilbert space will be used often.
The pure state of a qubit, which is the quantum equivalent of a classical bit of information, has in general
the following form: |ψ〉 = α |0〉+ β |1〉, where {|0〉 , |1〉} are the orthogonal computational-basis vectors
of C2 and α, β ∈ C with |α|2 + |β|2 = 1. For n qubits, the joint system is given by C2n = C2 ⊗ . . .⊗ C2

for n subspaces, where ⊗ designates the tensor product of Hilbert spaces.2 We call computational basis
on C2n the family of classical bit-string states BC = {|x〉 | x ∈ {0, 1}n}. We will use the term quantum
register instead of Hilbert space with the same meaning as a classical memory register in a classical
computer (as a way to reference specific qubits or subsystems).

Mixed States. More generally, we can define for any pure state |ψ〉 the associated density matrix |ψ〉〈ψ|.
Then, given a collection of pure quantum states {|ψj〉} (not necessarily orthogonal) and probabilities
pj ≥ 0 with

∑
j pj = 1, the associated mixed quantum state ρ is the probabilistic mixture given by:

(2.10) ρ =
∑
j

pj |ψj〉〈ψj |

Such states arise for instance when an observer does not have in its possession all the sub-systems of the
Hilbert space. Each value pj represent the probability that the state is in fact in the pure state |ψj〉.
Let Tr be the linear trace operation (sum of diagonal matrix elements), then Tr(ρ) = 1 for any density
matrix. These matrices are also positive semi-definite. We denote D(X) the set of all possible quantum
states in quantum register X .

Shared Quantum Systems. Given a multi-partite state in Hilbert space H =
⊗n

k=1Hk (consisting
for example of multiple qubits held by a given number of parties), the state held by each party k can be
written using the partial trace operator. In the two-party scenario, let ρAB be a quantum state shared
between parties A and B, called joint state of A and B. Let TrB be the partial trace over B’s system,
defined for any ai and bi by:

(2.11) TrB (|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2|Tr (|b1〉〈b2|)

Then the state as seen by party A is represented using the reduced density operator ρA := TrB (ρAB).
Using the partial trace to describe parts of a larger system stems from the fact that it is the unique
operation that gives correct results for measurement on the partial system. It can easily be extended to

2If H1 and H2 are two Hilbert spaces of dimensions n1 and n2 respectively (finite dimensions are sufficient in our
case), H1 ⊗H2 is the Hilbert space of dimension n1n2 formed by |ψ1〉 ⊗ |ψ2〉 for |ψ1〉 ∈ H1 and |ψ2〉 ∈ H2. The linear
operators on H1 ⊗H2 are U1 ⊗ U2, for linear operators Ui on Hi, and act as U1 ⊗ U2 |ψ1〉 ⊗ |ψ2〉 = U1 |ψ1〉 ⊗ U2 |ψ2〉 and
extended through linearity. The inner product is given by 〈psi2| ⊗ 〈ψ1|φ1〉 ⊗ |φ2〉 = 〈ψ1|φ1〉 〈ψ2|φ2〉.

17

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

the multi-party case. If such a state over M systems can be written as a product state, it is then called
separable and is of the form:

(2.12) |ψ〉 =
M⊗
k=1
|ψk〉

It is easy to see that in this case the reduced density operator of each party k is equal to ρk (since
Tr[M\{k}](|ψ〉) = |ψk〉

∏
i6=k Tr(|ψi〉) = |ψk〉). States that cannot be written in this form are said to be

entangled and the partial trace over entangled pure systems yields mixed states (no one party has full
knowledge of its own system).

Basic Quantum States. The following two state are uniform superposition of the qubit computational
basis vectors: |+〉 = 1√

2 (|0〉+ |1〉) and |−〉 = 1√
2 (|0〉 − |1〉). For n qubits, we call the state represented

by the density matrix I/2n the perfectly or totally mixed state. This state is an uniform mixture
of all possible classical states and a party whose view of a quantum system is represented by this
state has no information about the system. The following state will be henceforth called EPR-pair, or
maximally-entangled Bell state:

(2.13)
∣∣ψ+〉 := 1√

2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B)

If both qubits are both measured in the same basis {|0〉〈0| , |1〉〈1|} or {|+〉〈+| , |−〉〈−|}, they will produce
the same result. Such correlations are impossible to achieve classically and occur regardless of the
positions of both players. However, applying the partial trace over one of the systems produces the
maximally mixed state on the other. Note that this state can be created by applying a CNOT gate to the
state |+〉 |0〉 with the first qubit as control and the second as target (see Section 2.2.2 for the definition
of CNOT).

Trace Distance and Fidelity. The trace distance and fidelity allow us to measure how close two
quantum states are. The trace norm distance between states ρ0 and ρ1 is given by:

(2.14) ∆Tr(ρ0, ρ1) := 1
2 Tr |ρ0 − ρ1|

In the equation above, |A| :=
√
A†A is the positive square root of A†A, i.e. the semi-definitive positive S

such that S2 = A†A. When ∆Tr(ρ0, ρ1) ≤ ε, which we will note ρ0
ε
≈ ρ1, then any process applied to ρ0

behaves the same as it would on ρ1 except with probability at most ε.
For sub-normalised states (which can for instance represent parts of a state in superposition), we

use the following definitions and properties of the sub-normalised fidelity F̃ and the trace distance ∆̃
from [41]:

(2.15)
∆̃Tr(ρ, σ) ≤

√
1− F̃ 2(ρ, σ)

F̃ (ρ, σ) = F (ρ, σ) +
√

(1− Tr ρ)(1− Trσ)

F 2(|φ〉 , σ) = 〈φ|σ|φ〉

18

2.2. QUANTUM INFORMATION THEORY

2.2.2 Quantum Operations

Now that properties of quantum states have been defined, we can focus on operations applied to such
states, starting with measurements on these states.

Unitary Evolution. In the absence of perturbations, the evolution of a quantum state can be described
in the form of a unitary U , which correspond to any linear operator on a Hilbert space A containing the
state that satisfies the relation UU† = IA, where I is the identity operator. We will write U(ρ) instead of
UρU† for applying unitary U to the mixed state ρ.

Projective Measurements. Let M be a Hermitian operator (meaning that M† = M), also called
quantum observable. Its real eigenvalues correspond to the possible outcomes of the measurement
performed by M . The post-measurement state is given by the eigenvector associated with the output
eigenvalue. We focus here on a specific type of measurements described by projection operators, called
projective measurement.

Let {Pm} be projectors satisfying the following conditions (where IA denotes the identity operator
on the Hilbert space A):

(2.16)

∀m,P 2
m = Pm

∀m,Pm ≥ 0∑
m

Pm = IA

It is simple to verify that Pm′Pm = δm′,mPm, where δm,m′ is Kronecker’s delta. The probability pm of
measuring outcome m given state |ψ〉 is given by (where 〈φ|ψ〉 is the inner-product of the Hilbert space,
defined states |u〉 and |v〉 from any orthonormal basis by 〈u|v〉 = δu,v):

(2.17) pm = 〈ψ|Pm|ψ〉

The corresponding post-measurement state is then:

(2.18) Pm |ψ〉√
pm

.

The measurement operators can be generalised, but projective measurements will be sufficient here as
any general measurement can be expressed as a unitary on the state and additional qubits initialised
each to the state |0〉 (called ancillary qubits) followed by a projective measurement.

General Quantum Operations. We can now define the transformations on quantum states in
between measurement (of which the unitaries mentioned above are a specific case). Let L(A) be the set
of linear mappings from Hilbert space A to itself. A super-operator E : L(A)→ L(B) is called quantum
operation if it is:

• Completely positive (a positive semi-definite operator upon which such a map is applied remains
positive semi-definite);

19

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

• Trace-non increasing (applying the map does not increase the trace of the state).

If it is trace-preserving then it is called a CPTP-map. An important result for decomposing quantum
operation is Kraus’ Theorem.

Theorem 2.1 (Kraus Decomposition). Any quantum operation E : L(A)→ L(B) on state ρ ∈ L(A) can
be decomposed into (non-unique) linear operators {Ki}i∈[mn] (called Kraus operators) with m = dim(A)
and n = dim(B), with

∑
iK
†
iKi ≤ I, as:

(2.19) E(ρ) =
∑
i

KiρK
†
i .

If furthermore
∑
iK
†
iKi = I, then E is trace-preserving.

Purification of Quantum States. For any quantum register Q and any state ρQ is it always possible
to define, given another sufficiently large quantum system R (it is sufficient for it to be of the same size
as Q), a pure state |φRQ〉 such that looking at the restriction of the system to register Q (by tracing
out subsystem R) gives ρQ. This technique is called purification, the register R is called the reference
register, and allows to represent any CPTP-map as a unitary on a larger system.

Diamond Distance between Quantum Operations. The diamond distance on CPTP maps
measures the maximal distinguishing probability between two quantum operations acting on the same
Hilbert space. This is most useful when bounding the distance between the outputs of two different
processes for arbitrary inputs. Let E and F be two CPTP maps on n qubits, then the diamond distance
is given by:

(2.20) ∆�(E ,F) := max
ρ

∆Tr(E ⊗ In(ρ),F ⊗ In(ρ))

In the equation above, the maximisation is done over all density matrices of dimension n2. We will often
drop the indices under ∆ as it will be clear from the context. We also overload the notation ε

≈, such
that ∆(E ,F) ≤ ε is noted E ε

≈ F .

2.2.2.1 Common Quantum Operations

We describe here a few common quantum operation, most notably unitaries that will be later combined
together to create more complex operations. By analogy with a classical boolean circuit, these composed
unitaries can be written as quantum circuits. The basic unitaries presented here will then correspond to
gates in these circuits, applied to states which form the circuit’s inputs and wires in the order given
by the circuit. Similarly to classical circuits where a bit can be used to control the application of an
operation – i.e. the operation is applied if the bit is set to 1 – some quantum wires may act as a control to
unitaries on other wires. This way of representing quantum operations is appropriately called the circuit
model. A CPTP-map on qubits can always be decomposed into unitaries followed by measurements in
the computational basis and there is therefore a correspondence between CPTP-maps and quantum
circuits if we allow arbitrary gates.

20

2.2. QUANTUM INFORMATION THEORY

We start by the Pauli matrices, which are given by the following equations:

(2.21) X :=
[

0 1
1 0

]
Y :=

[
0 −i
i 0

]
Z :=

[
1 0
0 −1

]

Note that Pauli X corresponds to the classical bit-flip operation. The controlled-NOT gate CNOT (with
the first qubit being the control) is defined through CNOT |b〉 |φ〉 = |0〉Xb |φ〉 for bit b and state |φ〉.
In the computational basis, this gate XORs the content of the first register to the second register:
CNOT |a〉 |b〉 = |a〉 |a⊕ b〉 for a, b ∈ {0, 1}. The controlled-Z gate CZ is similarly defined using Pauli
Z instead of X. The SWAP gate interchanges two quantum registers, i.e. for all states |ψ〉 and |φ〉 we
have that SWAP |ψ〉 |φ〉 = |φ〉 |ψ〉. We call Quantum One-Time Pad (or Q-OTP) the following operation
QOTPk(·) = ZkZXkX (·) for a random Quantum One-Time-Pad key k = (kZ , kX) of n bits each, where
XkX =

⊗n
i=1 XkX(i)

i and Xi applies X on qubit i (similarly with Z). It is the equivalent of the classical
One-Time-Pad in the sense that any state encrypted using this scheme is perfectly mixed to any adversary
that does not possess the key – i.e. the adversary can gain no information from the state. This is shown
in the following equality for an arbitrary qubit state ρ:

(2.22) Trk(|k〉 ⊗ QOTPk(ρ)) = I
2

The Hadamard gate is defined by H |0〉 = |+〉 and H |1〉 = |−〉. We define the logical Hadamard
gate HL by HL |0〉⊗L = |+L〉 = 1√

2

(
|0〉⊗L + |1〉⊗L

)
and HL |1〉⊗L = |−L〉 = 1√

2

(
|0〉⊗L − |1〉⊗L

)
. HL

acts as identity on the remaining basis states. The state |+L〉 is more commonly referred to as the
Greenberger–Horne–Zeilinger |GHZL〉 state, and |−L〉 = Z1 |GHZL〉, where Z1 applies a Z operation on
the first qubit. The logical Hadamard gate can be constructed by the same circuit as the one generating
a GHZ state if we are willing to relax the condition that it acts as identity on the other basis states (it
does not affect the results presented in this thesis to use one or the other, since we only apply this gate
). The GHZL generation procedure starts with an initial state is given by |0〉⊗L and applies a Hadamard
gate H on the first qubit and then L− 1 CNOT gates where the first qubit is the control and qubit (i+ 1)
is controlled by the ith CNOT gate. The result is the state |GHZL〉. If the initial state is |1〉 ⊗ |0〉⊗(L−1),
the resulting state is Z1 |GHZL〉 = |0〉⊗L−|1〉⊗L√

2 . If the initial state is |b〉⊗L, then by applying L− 1 CNOT
gates where the first qubit is the control and qubit (i+ 1) is controlled by ith CNOT gate, we recover the
state |b〉 ⊗ |0〉⊗(L−1). Putting this together yields the following circuit, which has the desired property
(for L = 3):

|b〉 • • H • •

|b〉 Zb1 |GHZ3〉

|b〉

Finally, let Θ := {kπ/4}k∈{0,1,...,7}. We define the rotation around the Z-axis associated to θ ∈ Θ as:

(2.23) Z(θ) :=
[

1 0
0 eiθ

]

21

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

Note that Z(0) = I and Z(π) = Z, while Z(π/2) and Z(π/4) are also called the phase gate P and the
T gate respectively. We then also define the following states |+θ〉 := Z(θ) |+〉 = 1√

2 (|0〉+ eiθ |1〉). We
call θ-basis measurement the measurement defined by the projectors {|+θ〉〈+θ| , |−θ〉〈−θ|}. Note that an
EPR-pair |ψ+〉 can be rewritten using states of the form |+θ〉 for any θ in the following way:

(2.24)
∣∣ψ+〉 = 1√

2
(|+θ〉A ⊗ |+−θ〉B + |−θ〉A ⊗ |−−θ〉B)

Importantly, if the state on one side is measured in the θ-basis, the state on the other side will collapse
in the basis associated with (−θ).

There exist finite sets of gates – called universal sets of gates – such that it is possible to efficiently
approximate any efficient CPTP-map with a circuit using only gates from this set. This can be shown
by first proving that it is possible to perfectly decompose any unitary into a sequence of single-qubit
gates and two-qubit gates, then that the two-qubit gates can be fixed to be CNOT gates only. Then it is
possible to show that the group generated by the single-qubit unitaries H, Z(π/2), Z(π/4) is dense in
the set of all single-qubit unitaries. Finally, we can use the following theorem from [81] which gives the
efficiency argument for any such dense group:

Theorem 2.2 (Solovay-Kitaev Approximation). Let SU(2) be the set of all single-qubit unitaries with
determinant equal to 1.3 Let G be a finite set of elements of SU(2) such that:

• It is possible to produce the inverses of elements of G by finitely iterating over elements of G.
• The group generated by iterating elements of G is dense in SU(2).

Consider some ε > 0. Then there is a constant c such that for any U ∈ SU(2), there is a sequence S of
gates from G of length O(logc(1/ε)) such that ∆(S − U) ≤ ε, where ∆ is the trace distance.

2.2.2.2 Simulating Classical Circuits

It is possible to represent any classical operation using a quantum implementation of the reversible
classical Toffoli gate computing the function T (a, b, c) = (a · b) ⊕ c where (⊕, ·) are defined in Z2.
This operation can be defined as a unitary on three qubits (any reversible classical gate is simply a
permutation of the computational basis states) and is universal for classical computations since it can
be used to implement the classical NAND gate. Any binary function f : {0, 1}n → {0, 1}m can therefore
be implemented as a unitary Uf .

There are in fact two ways to represent a classical function f : {0, 1}n → {0, 1}m as a unitary operation.
The most general way (called standard oracle of f) is defined on computational basis states |x〉 |y〉
(where x ∈ {0, 1}n and y ∈ {0, 1}m) by Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉, where ⊕ corresponds to the bit-wise
XOR operation. On the other hand, if n = m and f is a permutation over {0, 1}n, then it is possible to
represent f as a minimal oracle by Mf |x〉 = |f(x)〉. There is in general no simple implementation of this
minimal oracle since for a random permutation this requires to compute all possible outcomes in order
to define the matrix representation of the unitary. Therefore this representation usually considered to be
inefficient. This is further justified by the fact that this representation is in general more powerful than
the standard oracle representation of classical functions as quantum unitaries. In particular, given access

3All unitaries can be rewritten up to a (unimportant) global phase as elements of SU(2).

22

2.2. QUANTUM INFORMATION THEORY

to the minimal oracle representation of a function, it is possible to solve some problems exponentially
faster than using a standard oracle. Furthermore, constructing the minimal oracle using only calls to the
standard oracle and its inverse requires at least O(n) calls to these oracles. Conversely, it is possible
to construct the standard oracle with only one call to the minimal oracle and its inverse. See [74] for
more information. However, there exists specific classical functions for which an efficient minimal oracle
representation can be found (as shown later in this thesis, Section 5.3.1.2).

2.2.3 Useful Results from Quantum Information

We recall in this subsection a few principles and algorithms and operations that are useful in the rest of
the thesis.

2.2.3.1 The Deutsch-Jozsa Algorithm

We recall here the principle of the Deutsch-Jozsa (or DJ) algorithm. The point of this algorithm is to
solve the following promise problem: given a function f outputting a single bit, determine whether it is
constant (the output bit is the same for all inputs) or balanced (half of the inputs output 0 and the
other half output 1). The DJ algorithm solves this problem by using a single call to the standard oracle
implementing the function f (with probability 1). It works in the following way (for a single bit of input):

Algorithm 1 Deutsch-Jozsa for Single Input Bit
Input: Oracle call Uf for binary function f .
Algorithm:
1. Prepare two qubits in the |0〉 |1〉.
2. Apply a Hadamard gate to each of the two qubits.
3. Apply Uf with the second qubit receiving the output.
4. Apply a Hadamard gate to the first qubit.
5. Measure the first qubit in the computational basis and output the result.

This is represented as the following circuit:

|0〉 H
Uf

H

|1〉 H
A simple calculation gives that the state right before the application of the last Hadamard on the first
qubit is (with bi = f(i) for i ∈ {0, 1} in the case of DJ for one input qubit):

(2.25)

|φ〉 =Uf |+〉 |−〉

=Uf |0〉
|0〉 − |1〉√

2
+ Uf |1〉

|0〉 − |1〉√
2

= |0〉
|f(0)〉 −

∣∣∣f(0)
〉

√
2

+ |1〉
|f(1)〉 −

∣∣∣f(1)
〉

√
2

=(−1)b0 |0〉 |−〉+ (−1)b1 |1〉 |−〉

= 1√
2
(
|0〉+ (−1)b0⊕b1 |1〉

)
⊗ |−〉

23

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

where b̄ = 1⊕ b is the binary complement of bit b and the last equality holds up to a global phase. This
final state is equal to |+〉 |−〉 if b0 ⊕ b1 = 0 and |−〉 if b0 ⊕ b1 = 1. It is therefore simple to see that after
applying the Hadamard, the first qubit contains the classical value b0 ⊕ b1, which is then the output
value of the measurement. The same operations and calculations extend to the case with n input bits
(and one output), which works by first generating a uniform superposition over the inputs by applying
Hadamard gates to the n+ 1 bit of the state |0〉⊗n |1〉 and later applying Hadamard gates to the first n
qubits after the call to the standard oracle Uf .

2.2.3.2 Quantum State Teleportation

We describe here the teleportation of quantum states which allows two parties A and B with pre-shared
entanglement to send a qubit from on another by only sending two bits of classical information. A and B
each hold one qubit of an EPR-pair. Suppose that A, in addition to half of the EPR-pair, also possesses
a qubit in state |φ〉 (not necessarily known to A) and wishes to send it to B. This can be done without
quantum communication by applying the following procedure (with 1, 2 and 3 being the respective
indices of the input qubit, A’s half-EPR-pair and B’s half-EPR-pair):

Protocol 1 Quantum Teleportation
Inputs: A has as input a quantum state |φ〉. A and B have a pre-shared EPR-pair.
Protocol:
1. A applies a CNOT gate with qubit 1 as control and 2 as target.
2. A applies a Hadamard gate on qubit 1.
3. A measures both of its registers in the computational basis, let (b1, b2) be the outcomes. It sends

these bits to B.
4. B applies Zb1Xb2 to qubit 3.

If |φ〉 = α |0〉 + β |1〉, a simple calculation gives that before A measures its qubits, the joint state
of the system is (with the convention that CNOT12 applies this gate with qubit 1 as control and 2 as
target and H1 applies a Hadamard on the first qubit):

(2.26)

|Ψ〉 =H1CNOT12 |φ〉
∣∣ψ+〉

= 1√
2

H1CNOT12(α |0〉+ β |1〉)(|00〉+ |11〉)

= 1√
2

H1(α |000〉+ α |011〉+ β |110〉+ β |101〉)

Finally, by applying the Hadamard gate on the first qubit and regrouping the appropriate terms, we get
that the state is equal to:

(2.27)
1
2

[
|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)
]

This can be rewritten as 1
2
∑
b1,b2
|b1b2〉Zb1Xb2 |φ〉. Then, if the measurement outcome of A is (b1, b2),

the state in the quantum register of B is Xb2Zb1 |φ〉. Applying the correction Zb1Xb2 undoes the Quantum

24

2.2. QUANTUM INFORMATION THEORY

One-Time-Pad and allows B to recover the state |φ〉. Note that this means that before receiving the
outcome bits from A, the state of B is perfectly mixed since it is equivalent to having received a Quantum
One-Time-Padded state.

2.2.3.3 No-Cloning of Arbitrary Quantum States

The following theorem from [111] states that there exists no process that takes as input a quantum state
and produces a perfect copy of it.

Theorem 2.3 (No-Cloning of Arbitrary States). There is no unitary operator U on Hilbert space H⊗H
such that for all normalised states |φ〉 and |s〉 in H we have:

(2.28) U |φ〉 |e〉 = eiα(φ,e) |φ〉 |φ〉

for some real number α depending on φ and e.

Proof. Assume that there exist such a unitary U and let |ψ〉 and |φ〉 be two pure states. Then:

(2.29)
U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉

U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉

The inner product of these two state yields 〈s| 〈φ|U†U |ψ〉 |s〉 = 〈φ|ψ〉 for the left-hand side and 〈φ|ψ〉2

for the right hand side. This is possible if and only if 〈φ|ψ〉 ∈ {0, 1}, meaning that the states are either
equal or orthogonal.

�

This theorem can be generalised to include CPTP-maps and mixed states via the technique of
purification to transform the mixed state into a pure state and by using ancillary qubits to turn the
CPTP-map into a unitary.

2.2.3.4 No-Communication through Local Operations

Quantum Information is a no-signalling theory, meaning that waves and in particular information carriers
cannot travel faster than the speed of light and instant communication is impossible. It follows that no
player can learn anything from a local operation performed by another player on a shared entangled
state. With EA being a CPTP-map on a register held by A, and shared state ρAB between players A
and B, this can be expressed as:

(2.30) TrA(ρAB) = TrA ((IB ⊗ EA)(ρAB))

2.2.3.5 State and Channel Pauli Twirl

A Pauli twirl occurs when a random Pauli operator is applied to a state or a channel. The result from
the point of view of someone who does not know which Pauli has been used is a state or channel that is

25

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

averaged over all possible Pauli operators. The two following Pauli Twirling Lemmata then allow us to
greatly simplify the analysis of the result of this averaging during our security proofs (for example for
analysing the view of the Adversary after its attack on an encrypted state).

We start with the state Pauli twirl. This result is effectively a generalisation of Eq. 2.22 for the
Q-OTP. An n-fold tensor of Pauli operators is defined as P =

⊗n
j=1 σj where each σj is a single qubit

Pauli operator {X,Y,Z} or the identity I. Equivalently, since Y = iXZ, we can write P as XaZb for
values a, b ∈ {0, 1}n, where Xa =

⊗n
i=1 Xaj and similarly for Zb. Let Pn = {XcZd}c,d∈{0,1}n be the set of

all n-fold tensor products of Pauli operators and the identity.

Lemma 2.4 (State Pauli Twirling). Let ρ be a density matrix representing an n-qubit mixed state.
Then, with I/2n being the perfectly mixed state over n qubits:

(2.31) 1
22n

∑
P∈Pn

PρP † = I
2n

Proof. We decompose ρ =
∑
k,j∈{0,1}n αkj |k〉〈j| into its basis components. We use the · operator here

as a the scalar product of two binary vectors, i.e. x · y =
∑
i∈[n] xiyi for x, y ∈ {0, 1}n. Then for each

element |k〉〈j| we have:

(2.32)

1
22n

∑
P∈Pn

P |k〉〈j|P † = 1
22n

∑
c,d∈{0,1}n

XcZd |k〉〈j|ZdXc

= 1
22n

∑
c,d∈{0,1}n

(−1)d·(k⊕j) |k ⊕ c〉〈j ⊕ c|

The second equality comes from the fact that applying an X operation is equivalent to a classical bit flip
and Z adds a phase of−1 if the qubit is in the state |1〉. Then we use the fact that

∑
d∈{0,1}n(−1)d·(k⊕j) = 0

if k 6= j and it is equal to 1 if k = j. Therefore, continuing from the previous result, we get:

(2.33) 1
2n

∑
c∈{0,1}n

|j ⊕ c〉〈j ⊕ c| = I
2n

Then, for the general state ρ:

(2.34) 1
22n

∑
k,j∈{0,1}n

αkj
∑
P∈Pn

P |k〉〈j|P † =
∑

j∈{0,1}n
αjj

I
2n = Tr(ρ) I

2n = I
2n

�

We will then require the following Pauli Twirling Lemma from [34] for some of the proofs in this
thesis.

Lemma 2.5 (Channel Pauli Twirling). Let ρ be a density matrix representing an n-qubit state and Q,Q′

two n qubit Paulis from Pn. Then, if Q 6= Q′, we have:

(2.35)
∑
P∈Pn

P †QPρP †Q′†P = 0

26

2.3. MEASUREMENT-BASED QUANTUM COMPUTING

Proof. We use the fact that Q = XaZb, Q′ = Xa′Zb′ for some value of a, b, a′, b′ ∈ {0, 1}n. The same
sum rewrite as in the previous proof gives us:

(2.36)
∑
P∈Pn

P †QPρP †Q′†P =
∑

c,d∈{0,1}n
ZdXcXaZbXcZdρZdXcZb

′
Xa
′
XcZd

We then use the fact that X2 = Z2 = I along with the commutation relation XZ = −ZX, which in case of
controlled operations by bit strings yields XxZz = (−1)x·zXZ with the same convention for the · scalar
product as in the previous proof:

(2.37) . . . =
∑

c,d∈{0,1}n
(−1)c·(b⊕b

′)+d·(a⊕a′)XaZbρZb
′
Xa
′

= XaZbρZb
′
Xa
′∑
c∈{0,1}n

(−1)c·(b⊕b
′)
∑

d∈{0,1}n
(−1)d·(a⊕a

′)

Finally, since Q 6= Q′, either a 6= a′ or b 6= b′, meaning that either
∑
c∈{0,1}n(−1)c·(b⊕b′) = 0 or∑

d∈{0,1}n(−1)d·(a⊕a′) = 0, concluding the proof.
�

2.3 Measurement-Based Quantum Computing

This section provides a brief overview of various useful notions linked to another model of quantum com-
putation, namely Measurement-Based Quantum Computing (MBQC). Based on the gate-teleportation
principle, it was shown in [118] that it can implement universal quantum computing and therefore
that the MBQC model has the same power as the circuit model presented above. The correspondence
between one and the other is described with the tools of measurement calculus [36]. MBQC works
by choosing an appropriate entangled state and then by measuring single qubits and, depending on
the outcomes, applying correction operators to the rest. It is therefore a natural setup for considering
delegated computations, i.e. when a Client with limited quantum capabilities only has to provide its
quantum inputs and instruct a more powerful Server to perform a computation on its behalf, while the
Server takes on the responsibility of creating the large entangled state.

The basic MBQC Protocol for classical inputs and outputs can be summarized as follows. Any
computation chosen by the Client is first translated into a graph G = (V,E), where two vertices sets I
and O define input and output vertices, and a list of angles {φ(v)}v∈Oc . While the discussions below
hold for angles in [0, 2π), if we settle for approximate universality it is sufficient to restrict ourselves to
the set of angles Θ = {kπ/4}k∈{0,1,...,7} (see [21]). The set {G, I,O, {φ(v)}v∈Oc} is called a measurement
pattern. To run a computation, the Client instructs the Server to prepare the graph state |G〉: for
each vertex in V , the Server creates a qubit in the state |+〉 and performs a CZ gate for each pair of
qubits forming an edge in G. The Client then asks the Server to measure each qubit of Oc along the
basis

{∣∣+φ′(v)
〉〈

+φ′(v)
∣∣ , ∣∣−φ′(v)

〉〈
−φ′(v)

∣∣} for updated angle φ′(v) in the order defined by the flow of the
computation defined below. The Server then returns the measurement result s(v). After measuring all
qubits in Oc according to these angles, the Server returns all output qubits v ∈ O to the Client on which
the Client performs the final Pauli correction ZsZ(v)XsX(v). We now define how these corrections are
calculated.

27

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

Since the computation is performed in MBQC by measuring parts of a large entangled state and
these measurements are probabilistic, we must guarantee that the result of the computation is the same
for each possible branch of measurement results, i.e. if we take the standard measurement outcome to be
0 for all non-output qubits, it is possible to correct the effect of obtaining the measurement outcome 1
on any such qubit. To find how to correct the measurement outcome, we use the fact that any graph
state |G〉 with input space I is an eigen-state of the following set of operators (called stabilisers) for all
non-input vertices v ∈ Ic:

(2.38) Kv := Xv
⊗

w∈NG(v)

Zw

We then have Kv |G〉 = |G〉, meaning that applying any operator Kv does not modify the graph state.
If the measurement outcome is 1 for a given vertex v ∈ Oc, then this is equivalent to having first
applied Zv before the measurement and then obtaining the measurement outcome 0. For the effect of
this measurement outcome to be correctable, it must be possible to apply a subset of the graph-state
stabilisers in such a way that the combined effect on the state both compensates this Zv operation and
applies Pauli operations on qubits that have not yet been measured. This is possible if the graph has an
associated flow of computation.

The flow consists of a function f : Oc → Ic from measured qubits to non-input qubits and a partial
order (�) over the vertices of the graph. They must furthermore satisfy the following conditions.

Definition 2.3 (Flow of Computation, Taken from [35]). A graph G = (V,E, I,O) is said to have a
flow if there exists a map f : Oc → Ic and a partial order (�) over V such that for all v ∈ Oc:

1. (v, f(v)) ∈ E;
2. v � f(v);
3. for all neighbours ṽ ∈ NG(v), f(v) � ṽ.

The existence of such a flow in a graph used for computations in MBQC patterns then guarantees
that the computation can be performed deterministically by performing measurements on qubits in
the order given by � [35], meaning that the unitary applied is independent from the results of the
measurements on the non-output qubits. It is a sufficient but non-necessary condition [22] but all graphs
used in this thesis will satisfy it. In an MBQC computation, each qubit v is said to be X-dependent
on X(v) = f−1(v) and Z-dependent on all qubits ṽ such that v ∈ NG(ṽ) (this set is called Z(v)). We
also define the past of qubit v, which includes all the qubits upon which qubit v is dependent.

Definition 2.4 (Past of qubit v and Influence-past of qubit v). We define the past of qubit v as
Past(v) = Z(v) ∪X(v) to be the set of qubits ṽ that have X or Z dependency on v. We define the set
of influence-pasts of qubit v as {c(v)} = {0, 1}#Past(v), where each c(v) corresponds to the string of
measurement outcomes sṽ ∈ {0, 1} for all qubits ṽ ∈ Past(v).

The sets X(v) and Z(v) contain the vertices whose measurement outcomes may imply a Pauli
correction on vertex v. However it is possible to refrain from applying actual Pauli operations on the
vertex v and instead modify the measurement angle with which this vertex is measured. This can be done
using the fact that X |+θ〉 = |+−θ〉 and Z |+θ〉 = |+θ+π〉 and leads to the definition of the flow-updated

28

2.3. MEASUREMENT-BASED QUANTUM COMPUTING

measurement angle φ′(v). Given the sets X(v) and Z(v), the computation angle for qubit v needs to be
adjusted as such: let sX(v) =

⊕
ṽ∈DX(v)

s(ṽ) and sZ(v) =
⊕

ṽ∈DZ(v)

s(ṽ), where s(v) corresponds to the outcome of

the measurement on qubit v and DX(v) and DZ(v) are subsets of X(v) and Z(v) respectively (these
qubits in DX(v) and DZ(v) have all already been measured as they belong to the past neighbours and
past neighbours of past neighbours, see the flow construction in [35]). Then the corrected angle (the one
that is actually measured) is (details can be found in [68]):

(2.39) φ′(v) = (−1)s
X(v)φ(v) + sZ(v)π

Figure 2.1 presents diagrams (taken from [21]) showing how to translate a universal set of gates to the
MBQC model using the brickwork graphs.

(a) Implementation of identity gate. (b) Implementation of Hadamard gate.

(c) Implementation of Z(π/4) gate. (d) Implementation of CNOT gate.

Figure 2.1: Translation of identity, H, π/4 and CNOT gates. Each vertex represents a qubit in the
state |+〉, each edge corresponds to a CZ operation between connected vertices and each value is the
default measurement angle (before teleportation corrections are taken into account). Taken from [21].

2.3.1 Graph State Bridge Operation

We now describe the basic process of bridge operations on graph states, introduced in [68], which will be
used in our MPQC Protocol later. The input to this operation is of the following form CZ1,2CZ2,3(ρ⊗
|+〉 ⊗ σ), where ρ and σ are arbitrary qubit mixed states, the qubits are respectively indexed 1, 2 and 3,
and the operation CZv,w applies a CZ operation to qubits v and w. The purpose of the bridge operation
is to delete the middle qubit 2 along with its corresponding edges and join qubits 1 and 3 by a new edge.
The description of this operation is given by the following Protocol 2.

Protocol 2 Bridge Operation on Three-Qubit Line Graph
Measure qubit 2 in the basis {

∣∣+π/2
〉
,
∣∣−π/2〉} and record measurement result b ∈ {0, 1}.

Apply operations Z(−π/2)1 and Z(−π/2)3, where 1 and 3 are the remaining qubits.
Apply operations Zb1 and Zb3.

Lemma 2.6 shows that performing the bridge operation on the three qubit line graph is equivalent to
constructing a line graph with only qubits 1 and 3.

29

CHAPTER 2. PRELIMINARIES IN PROBABILITY THEORY AND QUANTUM INFORMATION

Lemma 2.6 (Correctness of Bridge Operation). The output of Protocol 2 after tracing out the second
subsystem is CZ1,3(ρ⊗ σ) where the qubits are respectively numbered 1 and 3.

Proof. It is sufficient to prove the lemma in the case where ρ is a pure state of the form α |0〉+ β |1〉
with |α|2 + |β|2 = 1. Similarly, because the following holds for any pure state σ, the lemma holds for any
σ. The original line graph state is given by:

(2.40) 1√
2

(α |0〉 (|0〉σ + |1〉Zσ) + β |1〉 (|0〉σ − |1〉Zσ)

If result of the measurement on the middle qubit is b = 0, then the remaining state is (tracing out the
system containing the second qubit):

(2.41) 1√
2

(α |0〉σ − iα |0〉Zσ + β |1〉σ + iβ |1〉Zσ)

which becomes, after the Z(−π/2)1 and Z(−π/2)3 operations:

(2.42) α |0〉 1− i√
2
σ + β |1〉 1− i√

2
Zσ

which corresponds to the state CZ1,3(ρ⊗ σ) up to a global phase 1−i√
2 . If the result of the measurement

on the middle qubit is b = 1, the remaining state is:

(2.43) 1√
2

(α |0〉σ + iα |0〉Zσ + β |1〉σ − iβ |1〉Zσ)

which becomes, after the Z(−π/2)1 and Z(−π/2)3 operations:

(2.44) α |0〉 1 + i√
2
Zσ − β |1〉 1 + i√

2
σ

which, after the Z1 and Z3 operations becomes:

(2.45) α |0〉 1 + i√
2
σ + β |1〉 1 + i√

2
Zσ

which corresponds to the state CZ1,3(ρ⊗ σ) up to global phase 1+i√
2 .

�

Note that, because the operations applied in Protocol 2 commute with diagonal operations, all
qubits v can be pre-rotated using operations Z(θ(v)) for arbitrary angles θ(v). This means that it can
also be used in the secure protocols extended from MBQC found in Sections 3.5.1 and 3.5.2.

30

C
h
a
p
t
e
r 3

Cryptographic Security Frameworks

Definitions and results from classical and quantum cryptography are described in this chapter.
They are then used in the rest of the thesis and each subsequent chapter recalls the exact applicable
framework of security.

We start by introducing some basic cryptographic notations (the quantum states corresponding to
the special messages are orthogonal among themselves and to any computational basis states):

• the messages Abort and Ok signal respectively that a party aborted or completed the protocol
correctly;

• Ack is sent by a party as acknowledgement that it has completed a step in the protocol;
• End is sent by a party terminating a specific task;
• Corrupted is sent if a party notices malicious behaviour from a specific player;
• the dummy input λ is used by players that do not have a proper honest input to a given protocol

to signal that they are ready to begin;
• the security parameter η is passed implicitly as 1η to all parties, Adversaries and Distinguishers;
• a function f is polynomial in η, written f(η) = poly(η), if there exists a constant c such that
f(η) = O(ηc).

• a function ε is negligible in η if, for every polynomial p, for η sufficiently large it holds that
ε(η) < 1/p(η);

• a function µ(η) is overwhelming if there exists a negligible ε(η) such that µ(η) = 1− ε(η);

3.1 Basic Cryptographic Primitives

We start by describing the basic building blocks that will be used in the rest of this thesis for protocol
construction. We start by an informal presentation of various primitives (the formal presentations of
which are given later in simulation-based frameworks in Section 3.3.3) and later focus on Bit Commitment,

31

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

for which we use the stand-alone security criteria (as opposed to its definition as an Ideal Functionality
as in fully composable frameworks of security).

3.1.1 Common Primitives

Communication Channels. In the course of this thesis, we use common resources such as the
Authenticated Classical Channel, the Confidential Classical Channel, the Secure Classical Channel,
the Insecure Quantum Channel and the Confidential Quantum Channel. The difference between the
classical channels is that the first one guarantees that a message originating from a party has not been
modified but anyone can read the contents, while the second one provides the opposite functionality,
meaning that no one apart from the Sender and Receiver can read the message but it may be modified
at will without the honest parties noticing. The third one combines the best of both worlds by enforcing
both the secrecy and non-malleability of the message. The Private Quantum Channel is the quantum
equivalent of the Confidential Classical Channel: the message is hidden but can be tampered with.

Common Reference String. The Common Reference String is a common trusted setup assumption,
providing two players with the same starting information produced using a known efficient algorithm.
This is preferred over having one player produce this string and send it to the other in cases where
this player may benefit from either producing an incorrect string, or if the process of producing this
information necessarily gives the player generating it too much information as a by-product.1

Key-Distribution The purpose of key-distribution is to sample uniformly at random a binary key
and sends the same to two parties, while an Eavesdropper can only recover the length of the key. This
can be extended to multiple players and the Eavesdropper’s leakage might be different for some protocols
(for example, an upper-bound on the key size). Other distributions for the key may also be considered
but this is sufficient in our case.

Coin-Tossing. The Two-Party Coin-Tossing (Resource 8) has no input and distributes to both parties
an output sampled from a specified distribution which must be efficiently samplable.2 We suppose that
P1 receives the output first and decides then whether to continue or not.

1-out-of-2 Oblivious Transfer. A 1-out-of-2 Oblivious Transfer is a two-party functionality in which
one party inputs two strings (x0, x1) and the other (P2) inputs a bit b ∈ {0, 1}. At the end of the protocol
P2 recovers xb. On one hand P1 should not know which of the strings P2 has chosen while P2 has no
information about the string x1−b that it did not choose.

Classical Secure Multi-Party Computation. It allows N Clients to provide their private inputs
and perform a collectively defined computation C on them with the guarantee that the computation is
performed properly. We assume that it keeps an internal state between calls. Since it is impossible to

1For example the string might be a public key for an encryption scheme that both players need in order to perform the
protocol, but the security of the protocol rests on the fact that neither player knows the corresponding secret key.

2A distribution is said to be efficiently samplable if a sample from the distribution can be produced on an empty input
by a PPT machine.

32

3.1. BASIC CRYPTOGRAPHIC PRIMITIVES

guarantee fairness in output distribution with a dishonest majority, some participants may receive their
output before others (and choose to abort, preventing the rest of the participants from obtaining theirs).

Blind Delegated Quantum Computation. The primitive allows a single Client to run a quantum
computation on a Server so that the Server doesn’t learn anything of the computation and input besides
some predefined leakage lρ. The Server can however make the Client accept an incorrect computation.

The next primitives correspond to those that our protocols will strive to construct.

Verifiable Blind Delegated Quantum Computation. This is a strengthening of the primitive
above in the sense that it allows a single Client to run a quantum computation on a Server so that the
Server doesn’t learn anything besides the leakage lρ but also cannot corrupt the computation.

Classical Input Two-Party Quantum Computation. This functionality implements Two-Party
Quantum Computation for unitary U with classical inputs and quantum outputs. It takes as input two
strings (one from each party), creates the associated quantum states and applies unitary U to the states
and a predetermined number of ancillae, after which it sends the output registers to each player. We
suppose here that player P1 recovers the output first.

Multi-Party Quantum Computation. Its purpose is to allow N Clients to perform a collectively
defined computation U over their private quantum inputs with the guarantee that their computation is
either executed properly or it is aborted altogether. Without loss of generality, we suppose that each
Client has a single qubit of input. We suppose that the primitive may leak a value lρ about the parties’
intended computation and input to an Eavesdropper. As above, it is impossible to guarantee fairness of
output distribution in the case of a dishonest majority and therefore the malicious parties can always
choose to receive their output before the honest players.

3.1.2 Classical Bit Commitment

Bit Commitment consists of two phases, Commit and Reveal, such that after the Commit phase the
Receiver has no information about the value that has been committed (hiding), while during the Reveal
phase the Sender cannot reveal a value different from the one used previously to create the commitment
(binding).

More formally, let (Com,Verif) be a pair of classical polynomial-time algorithms. Com (a probabilistic
algorithm) takes as input the committed message m ∈ M (from a given message space M), and
outputs (c, u), where c corresponds to the commitment and u to the opening information. Verif is
deterministic and takes as input (m, c, u) and outputs a bit b ∈ {0, 1} (with b = 1 indicating that the
commitment has been correctly verified).

As a first requirement, the commitment scheme is said to have perfect completeness if all commitments
generated by Com are verified as valid by Verif:

Definition 3.1 (Perfect Completeness). The commitment scheme (Com,Verif) is perfectly complete if
for all m ∈M and (c, u)← Com(m), we have Verif(c,m, u) = 1.

33

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

To guarantee the Sender’s security, the commitment by itself should not reveal any information
about the message being committed, which is captured by the following definition (for the computational
version, the Adversary is quantified over all QPT Adversaries, with auxiliary input given by a QPT
Environment):

Definition 3.2 (Statistically Hiding Commitment). The commitment scheme is said to be statistically
hiding if for all Adversaries A and all polynomial l, there exists a εH negligible in η such that for all
message pairs (m0,m1) with #mi ≤ l(η), for all auxiliary input of the Adversary ρA, |P0 − P1| ≤ εH(η)
with Pi = Pr[b = 1 | (c, u)← Com(mi), b← A(ρA, c)]. We say that a commitment scheme is perfectly
hiding if εH = 0.

Conversely, to protect the Receiver, we require as well that the Bit Commitment primitive is collapse-
binding [129]. Essentially, it captures the fact that, if a commitment has been sent, a computationally-
bounded Adversary is not able to distinguish whether a quantum register containing the corresponding
committed message has been measured in the computational basis of not (meaning that the state of
this register was close to one which had already been measured). We start by defining this property for
general relations R on sets X and Y. This definition is adapted from [38].

Definition 3.3 (Collapsing Relation). Let X and Y be two sets and R ⊂ X ×Y a relation on those
sets. Let X and Y be two quantum registers and let M(·) denote a measurement of a quantum register in
the computational basis. Consider the following games:

Game1 : (X ,Y)← A; x←M(X); y ←M(Y); b← B(X ,Y)
Game2 : (X ,Y)← A; x←M(X); b← B(X ,Y)

A QPT Adversary (A,B) is called valid if it only outputs values that satisfy the relation:

(3.1) Pr[R(x, y) = 1 | (x, y)←M(XY)] = 1

R is said to be y-collapsing given x if there exists a εc negligible in η such that, for all valid QPT
Adversaries (A,B):

(3.2) |Pr[b = 1 | Game1]− Pr[b = 1 | Game2]| ≤ εc(η)

We then apply this notion to commitments, yielding the following definition:

Definition 3.4 (Collapse-Binding Commitment). Let (Com,Verif) be a commitment scheme with
message, commitment and opening sets (M,C,U). The commitment scheme is said to be collapse-binding
if the relation Verif is m-collapsing given c, where m is a message and c a commitment.

The explicit version of the definition is given as well:

Definition 3.5 (Collapse-Binding Commitment, Explicit). Let (Com,Verif) be a commitment scheme
and let (S,M,U) be quantum registers. Let M(·) denote a measurement of a quantum register in the
computational basis. Consider the following games:

Game1 : (S,M,U , c)← A; m←M(M); b← B(S,M,U , c)
Game2 : (S,M,U , c)← A; b← B(S,M,U , c)

34

3.2. MODEL FOR QUANTUM NETWORKED MACHINES

A QPT Adversary (A,B) is called valid if it only outputs commitments passing verification:

(3.3) Pr[Verif(c,m, u) = 1 | m←M(M), u←M(U)] = 1

A commitment scheme (Com,Verif) is said to be collapse-binding if there exists a µ negligible in η such
that, for all valid Adversaries (A,B):

(3.4) |Pr[b = 1 | Game1]− Pr[b = 1 | Game2]| ≤ µ(η)

This definition means that, if the commitment has been measured and the quantum registers contain
only messages and opening informations that are valid, no computationally-bounded Adversary can
distinguish whether the message register has been measured or not. It is a quantum variant of classical
computationally-binding commitments.3 The fact that a bounded Adversary should not notice that
the register containing the message has been measured implies that the Adversary cannot open the
commitment to two different values with more than negligible probability.4

3.2 Model for Quantum Networked Machines

We present here the definitions and notations that will be common to all security models in this thesis
unless otherwise specified.

Efficient classical algorithms are defined as probabilistic polynomial-time, or PPT, Turing machines
(i.e. able to solve problems from the complexity class BPP). They are able to perform any computations
provided that their running time is upper-bounded by a fixed polynomial in the input length. Thay may
furthermore use a polynomial number of uniformly random coin-flips. On the other hand, all efficient
quantum parties are considered to be Quantum Polynomial Time, or QPT, machines (the quantum
equivalent of PPT), which are also called polynomial-time quantum Turing machines and recognise
languages in the BQP class of complexity [27, 107]. They can perform any polynomial-sized family of
quantum circuits and interact quantumly with other participants (by sending quantum states which
may or may not be in superposition).

The formal definition of complexity class BQP (and by extension of efficient quantum machines)
is given in Definition 3.6 [27]. This is defined in terms of languages efficiently accepted by quantum
machines, or equivalently the class of decision problems efficiently solvable by quantum computers. It
is by extension used to describe any efficient quantum computation, regardless of whether it solves a
problem in the complexity-theoretic sense.

3A commitment scheme is classical computationally-binding if any computationally-limited Adversary is capable of
opening the commitment to two different values of its choice at most with negligible probability. Theorem 22 from [129]
shows that this property is insufficient for guaranteeing the security of protocols in the quantum setting. The idea is that
it is possible to construct a state |ψ〉 and two efficient unitaries U0 and U1 such that applying U0 to |ψ〉 and measuring it
in the computational basis yields one valid opening for a commitment, while doing this with U1 would yield a different
opening (both chosen by the Adversary). Having such a state would allow an Adversary with auxiliary input |ψ〉 to cheat
in protocols that use commitments. However it does not allow it to produce two valid openings at the same time since it
has only one copy of |ψ〉, which cannot be reused after producing one opening, and therefore it cannot break the classical
binding property.

4Otherwise it could simply produce these messages, store them in superposition in the quantum register and easily test
whether the register has been measured on the positions where the two messages differ. This is not proven in [129] but a
formalised version would follow directly from the proof of Lemma 25 in that paper.

35

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

Definition 3.6 (Languages in BQP). We say that a language L is in BQP if and only if there exists a
polynomial-time uniform family of quantum circuits 5 {Qn | n ∈ N} such that:

• Qn takes n qubits as input and outputs a single classical bit.
• For all x ∈ L, P

[
b = 1 | b← Q#x(x)

]
≥ 2/3.

• For all x /∈ L, P
[
b = 0 | b← Q#x(x)

]
≥ 2/3.

The parties participating in a given protocol consist of a number of players, which are supposed to
be efficient (quantum or classical), an Adversary which may control any fixed number of parties chosen
at the beginning of the protocol (we call such adversaries static), and an Environment which represents
intuitively “anything that happens outside of the protocol’s execution”. We often abuse notation and
consider a corrupted party and the Adversary as one entity. The Adversary and the Environment will
always have quantum capabilities but can be either quantum computationally-bounded (leading to
computational security) or unbounded (yielding unconditional or statistical security). The Adversary
can furthermore be either Quantum Honest-but-Curious (also called specious [44]), where it can always
produce if asked an honest state that is coherent with the transcript, or fully Malicious, a setting where
the actions of the Adversary are only constrained by its own computational power.

Each party has access to quantum registers (Ci,Qi,Wi) which correspond respectively to a classical
communication register, a quantum communication register and an internal work (or state) register.
Ci and Qi are initialised to

∣∣0#Ci+#Qi
〉
while the work register is initialised with the party’s input.

The Adversary has access to an additional register WA, an internal work (or state) register that is
initialised with the Adversary’s input. At each step of the protocol where party Pi is activated, first its
classical and quantum communication registers Ci and Qi are initialised with the classical and quantum
communications that it receives at this round, then a unitary transformation that depends on the
protocol round is applied to all three registers, and finally Ci is measured in the computational basis and
the outcome is recorded. Note that an alternative acceptable formulation is to have a family of possible
unitaries indexed by the classical messages, or equivalently unitaries controlled by the classical messages.

The Environment Z produces (and initialises the corresponding registers):

• An input state ρi for each party i (honest or corrupted). These inputs may be quantum or classical
depending on the functionality.

• An input state ρA for the Adversary.
• An additional register WZ , which it keeps to itself and is used to store information about the

inputs.
• This joint input is denoted ρin ∈ D(

⊗
iWi ⊗WA ⊗WZ).

Alternatively, in the case of two parties (but this is easily generalisable to a larger number of
participants), an n-round protocol between players A and B with internal registers collectively denoted X
and Y respectively, along with communication register C, can be seen as a succession of CPTP-
maps E1 ◦ F1 ◦ . . . ◦ En ◦ Fn where Ei : L(A⊗ C)→ L(A⊗ C) and Fi : L(B ⊗ C)→ L(B ⊗ C) applied to
some initial state ρin (without loss of generality, the communication register is initialised to |0〉⊗#C).

5There exists a polynomial-time deterministic Turing machine taking as input 1n for n ∈ N and outputting a classical
description of Qn.

36

3.3. “IDEAL VS. REAL” FRAMEWORKS OF SECURITY

3.3 “Ideal vs. Real” Frameworks of Security

3.3.1 Stand-Alone Model of Security

The two security frameworks used in this thesis follow the ideal/real simulation paradigm, with the first
one being based on the Stand-Alone Model of [66, 127]. A protocol is considered as secure if it is a good
approximation of an ideal version called Ideal Functionality.

From the real-world Adversary A controlling a corrupted party, the proof of security constructs an
ideal-world Adversary (also called Simulator) S that attacks the ideal execution of the functionality
that the protocol emulates, represented by a trusted third party. This Simulator runs the Adversary A
internally by applying at each step of the protocol a black-box unitary transformation to its three
quantum registers that depends on the classical message that the Adversary receives in this step (this
unitary corresponds to the quantum circuit of the Adversary or its inverse). After each such activation,
the Simulator measures the classical message register of the Adversary in the computational basis. The
Simulator also has single-query access to an oracle which implements the Ideal Functionality (meaning
that it can send inputs and recover outputs corresponding to the corrupted player but no more).

At the end of the execution, the Environment receives a state from the Adversary along with
the outputs of all honest parties and performs computations on them and its additional register WZ ,
outputting a single bit. The Simulator must behave so that the Environment Z, based solely on the
inputs and outputs of the participants and the Adversary, is not able to detect that it is not in fact
interacting directly with real world parties instead (this guess is represented by the output bit of the
Environment). The standard definition of computational security is therefore satisfied if the simulated
and real states are indistinguishable for the Environment Z. We present the definition of security in the
two-party case.

Definition 3.7 (Computational Security against Malicious Adversaries). A protocol Π ε(η)-securely em-
ulates Ideal Functionality F against computationally-bounded A if there exists a QPT Simulator SA such
that for all QPT Malicious Adversaries A controlling the corrupted party A∗ and all QPT Environments
Z:

(3.5)
∣∣∣Pr [1← Z(ρout(SA,A(ρA), ρin))]− Pr [1← Z(ρout(B,A(ρA), ρin))]

∣∣∣ ≤ ε(η)

where ρin is the joint input state of parties A and B, the auxiliary input state of the Adversary and
Environment, ρout(SA,A(ρA), ρin) corresponds to the final state of the Adversary when interacting with
Simulator SA along with the output of honest party B in the ideal execution with Ideal Functionality F
and ρout(B,A(ρA), ρin) corresponds to the final state of the Adversary when interacting with honest
party B in the real protocol Π along with the output of the honest party B. The probability is taken over
all executions of protocol Π and all possible input states produced by a QPT-limited Environment.

The main advantage of using the framework of [66] is that it allows for a sequential composability
property analogous to that of classical stand-alone models, which other quantum stand-lone models lack.
This is captured by Theorem 3.4 from [66], recalled below. For further details on these definitions and
properties, see [44, 66].

Theorem 3.1 (Sequential Composition Theorem). Let Π be a two-party protocol that calls another
protocol Γ as a subroutine, with the restriction that, at any point, only one subroutine call to Γ be in

37

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

progress and no other process is active during the call. Let Γ′ be a protocol that securely emulates Γ (in
the sense of definition 3.7). The composed protocol, denoted ΠΓ/Γ′ , is defined to be the protocol in which
each invocation of Γ is replaced by an invocation of Γ′. Then ΠΓ/Γ′ securely emulates Π.

Comments on the Model. Statistical security is defined similarly by quantifying over all quantum
Adversaries and Environments (instead of QPT). Note that if the trace distance between output states
(and auxiliary states) is bounded by ε, then the condition in Definition 3.7 is also verified for all
Environments, which implies statistical security. We often use this characterisation instead. This can be
formally expressed as:

(3.6) ∆(ρout(SA,A(ρA), ρin), ρout(B,A(ρA), ρin)) ≤ ε(η)

If ε(η) ∼ C/ηk for some fixed exponent k and constant C, we say that the protocol is inverse-
polynomially-secure against Malicious Adversaries, whereas if ε(η) is negligible in η we say that it is
fully-secure against Malicious Adversaries. The main difference is that in the inverse-polynomial case
the probability that Malicious Adversaries cheat successfully may be low but not negligible.

Stronger and more elegant definitions (Covert Adversaries) that might be adaptable to the quantum
inverse-polynomial case can be found in [11] (in the classical case). This models real world situations
where getting caught might have dire consequences for the parties, e.g. financial repercussions. By
associating the appropriate cost to being caught, even if the probability of getting caught is close to 1
but not exponentially so, the deterrence might be still high enough to make cheating unappealing. For
reasons specific to our constructions (namely the fact that measurement is irreversible and disturbs
quantum states) they are not directly applicable here.

Any party may choose to abort by sending Abort at any moment, whether in the real protocol or
ideal setting, which then forwards it to the other party and halts. Actions not explicitly described in an
Ideal Functionality or Resource or sending invalid inputs results in them sending Abort to both players
and then halting as well.

3.3.2 Abstract Cryptography Framework

Abstract Cryptography is a framework for defining and proving the security of cryptographic protocols,
first introduced in [99, 98]. Its main advantage is that any system that follows the structure defined by
the framework is inherently composable, in the sense that if two protocols are secure separately, the
framework guarantees at an abstract level that their sequential or parallel composition is also secure.
We refer the reader to [41] for a more in-depth presentation.

In this framework, the purpose of a secure protocol π is, given a number of available resources R, to
construct a new resource – written as πR. This new resource can be itself reused in a future protocol.
The actions of all honest players in a given protocol are represented as a sequence of efficient CPTP
maps acting on their internal and communication registers. We use this framework in this thesis in the
multi-party setting. An N -party quantum protocol is therefore described by π = (π1, . . . , πN) where πi is
the aforementioned sequence of efficient CPTP maps executed by party i (called the converter of party i).
In the two-party setting these sets of CPTP maps correspond to the maps Ei and Fi. A resource R
is described as a sequence of CPTP maps with an internal state. It has input and output interfaces

38

3.3. “IDEAL VS. REAL” FRAMEWORKS OF SECURITY

describing which party may exchange states with it. An interface is said to be filtered if it is only
accessible by a dishonest player. It works by having the party sending it a given state at one of its input
interfaces, applying the specified CPTP map after all input interfaces have been initialised and then
outputting the resulting state at its output interfaces in a specified order. Classical resources are modelled
by considering that the input state is measured upon reception and the output is a computational
basis state. These resources are the equivalent in this framework of the Ideal Functionalities of the
Stand-Alone Model discussed above and we will use the two terms interchangeably. Useful resources/ideal
functionalities are presented in the next section.

In order to define the security of a protocol, we need to give a pseudo-metric on the space of resources.
We consider for that purpose a special type of converters called distinguishers which have as many input
interfaces as the resources and which output a single bit. The distinguisher’s aim is to discriminate
between an execution with a resource R1 and another resource R2, each having the same number of
input and output interfaces. It prepares the input, interacts with the resource according to its own
possibly adaptive strategy, and decides whether it was interacting with one or the other. Two resources
are said to be indistinguishable if no distinguisher can make this guess with good probability.

Definition 3.8 (Statistical Indistinguishability of Resources). Let ε(η) be a function of security pa-
rameter η and R1 and R2 be two resources with same input and output interfaces. The resources are
ε-statistically-indistinguishable if, for all distinguishers D, we have:

(3.7)
∣∣∣Pr[b = 1 | b← DR1]− Pr[b = 1 | b← DR2]

∣∣∣ ≤ ε
We then write R1 ≈stat,ε

R2.

The construction of a given resource S by the application of protocol π to resource R is captured
by the fact that these resources are indistinguishable. More specifically, this captures the correctness
of the protocol. The security is captured by the fact that the resources remain indistinguishable if we
allow some parties to deviate in the sense that they are no longer forced to use the converters defined in
the protocol but can use any other CPTP maps instead. This is done by removing the converters for
those parties in Equation 3.7 while keeping only πH =

∏
i∈H πi where H is the set of honest parties.

The security is formalised as follows in Definition 3.9.

Definition 3.9 (Construction of Resources). Let ε(η) be a function of security parameter η. We say
that an N-party protocol π ε-statistically-constructs resource S from resource R against adversarial
patterns P ⊆ ℘([N]) if:

1. It is correct: πR ≈
stat,ε
S

2. It is secure for all subsets of corrupted parties in the pattern M ∈ P: there exists a simulator
(converter) σM such that πMcR ≈

stat,ε
SσM

We can now present the following General Composition Theorem (Theorem 1 from [99]).

Theorem 3.2 (General Composability of Resources). Let R, S and T be resources, α, β and id protocols
(where protocol id does not modify the resource it is applied to). Let ◦ and | denote respectively the
sequential and parallel composition of protocols and resources. Then the following implications hold:

39

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

• The protocols are sequentially composable: if αR ≈
stat,εα

S and βS ≈
stat,εβ

T then (β ◦ α)R ≈
stat,εα+εβ

T

• The protocols are context-insensitive: if αR ≈
stat,εα

S then (α | id)(R | T) ≈
stat,εα

(S | T)

Combining the two properties presented above yields concurrent composability (the distinguishing
advantage cumulates additively as well).

The computational versions of these definitions and theorem are obtained by quantifying over QPT
parties. Composing a statistically-secure protocol with a computationally-secure protocol is possible
provided that the simulator for the statistically-secure one runs in expected polynomial-time. The
resulting protocol is of course only computationally-secure.

3.3.3 Ideal Functionalities and Resources

In this section, we present the ideal functionalities that appear throughout the thesis and which have
been previously defined in the literature. These correspond to the primitives presented informally in
Section 3.1.1. New resources and ideal functionalities introduced in this thesis for the first time are
presented in their specific chapters. The term resource or ideal functionality is employed according to
the framework of security that they are used in later.

We suppose that the following rules apply to all primitives formalised below. Honest parties send
their prescribed input to the Ideal Functionality, corrupted parties send any input given to them by
the Adversary, computed (efficiently in the computational setting) from the prescribed input and the
Adversary’s internal state. All resources allow malicious players to force a unanimous abort of honest
players by simply not sending their inputs (there is no guaranteed output delivery). However, no
functionality allows malicious parties to selectively choose which honest party will abort or receive their
outputs: either all honest parties terminate successfully or none do. The exact value of the leakage lρ,
alluded to by some functionalities, is a publicly known function of inputs and computation which is
specified by each protocol. In this thesis, this leakage is simply an upper-bound on the size of the
quantum circuit implementing the unitary and length of the Parties’ input.

3.3.3.1 Building Blocks

We start by presenting simple Ideal Functionalities and Resources (1 to 11) that are later used as building
blocks for constructing larger and more complex ones.

Resource 1 Authenticated Classical Channel
Inputs: The Sender inputs a message m. The Receiver has no input. The Eavesdropper inputs two
bits (e, c) ∈ {0, 1}2. This last interface is filtered and set to (0, 0) in the honest case.
Computation by the Resource: If e = 1, it sends m to the Eavesdropper. If it receives c = 1 from
the Eavesdropper, it sends Abort to the Receiver. Otherwise it sends m to the Receiver.

3.3.3.2 Target Resources

These are the functionalities that our protocols will construct (12 to 14).
Resource 14 is identical to the one from [40] apart from the explicit introduction of an Eavesdropper,

i.e. a party with no input and no output. This allows for an easier account and analysis of the information

40

3.3. “IDEAL VS. REAL” FRAMEWORKS OF SECURITY

Ideal Functionality 2 Confidential Classical Channel
Inputs: The Sender inputs a message m. The Receiver has no input. The Eavesdropper has an
auxiliary input m̂.
Computation by the Functionality: It sends the bit-length #m of message m to the Eavesdropper.
If it has not received anything from the Eavesdropper, it sends m to the Receiver. Otherwise if it has
received message m̂ from the Eavesdropper over #m bits, it then sends it to the Receiver.

Resource 3 Secure Classical Channel
Inputs: The Sender inputs a message m. The Receiver has no input. The Eavesdropper inputs two
bits (e, c) ∈ {0, 1}2.This last interface is filtered and set to (0, 0) in the honest case.
Computation by the Resource: If e = 1, it sends #m to the Eavesdropper. If it receives c = 1
from the Eavesdropper, it sends Abort to the Receiver. Otherwise it sends m to the Receiver.

Resource 4 Insecure Quantum Channel
Inputs: The Sender inputs a quantum state ρ. The Receiver has no input. The Eavesdropper inputs
a bit c ∈ {0, 1} and quantum state ρ̃. This last interface is filtered and c is set to 0 in the honest case.
Computation by the Resource: If c = 1, it sends ρ to the Eavesdropper. In that case it waits for
a state ρ̃ and forwards it to the Receiver. Otherwise it sends ρ to the Receiver.

Resource 5 Confidential Quantum Channel
Inputs: The Sender inputs a quantum state ρ. The Receiver has no input. The Eavesdropper inputs
a bit c ∈ {0, 1} and quantum state ρ̃. This last interface is filtered and c is set to 0 in the honest case.
Computation by the Resource: If c = 1, it sends #ρ to the Eavesdropper. In that case it waits
for a state ρ̃ and forwards it to the Receiver. Otherwise it sends ρ to the Receiver.

Resource 6 Common Reference String

• Public Information: The BPP algorithm Setup that is used to produce the reference string.
• Inputs: Both players input the dummy input λ.
• Computation by the Resource: The Resource generates C ← Setup and sends it to both

players.

Ideal Functionality 7 Key Distribution
Inputs: Parties P1 and P2 have as input the size n of the key. The Eavesdropper has no input.
Computation by the trusted party: It samples uniformly at random k ∈R {0, 1}n and sends k
to P1 and P2. It sends n to the Eavesdropper.

Resource 8 Two-Party Coin-Tossing
Public Information: Distribution D from which the value is sampled. Party j ∈ {1, 2} receives the
output first.
Inputs: Parties P1 and P2 each have as input a bit ai. P1 has an additional input c. These interfaces
are filtered and the bits set to 0 in the honest case.
Computation by the Resource:

• If the resource receives at least one ai = 1 on either interface, it outputs Abort to both interfaces.
• Otherwise:

1. The resource samples S ← D and sends it to P1.
2. If it receives c = 1 from P1, it outputs Abort to P2. Otherwise it sends S to P2.

41

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

Ideal Functionality 9 1-out-of-2 String Oblivious Transfer
Inputs: P1 has as input (x0, x1) ∈ {0, 1}2n for known n and P2 has as input b ∈ {0, 1}.
Computation by the Functionality: The Ideal Functionality sends xb to P2.

Resource 10 Classical Secure Multi-Party Computation
Inputs: The N parties each input a value xj and a common classical computation C. They each have
a filtered input bit oj (set to 0 in the honest case) indicating whether they receive their inputs in
advance.
Computation by the Resource: The Resource computes y = C(x1, . . . , xN). It first sends y to all
parties j such that oj = 1. Then it sends y to all other parties.

Resource 11 Blind Delegated Quantum Computation, Taken from [41]
Inputs:

• The Client inputs a quantum state ρC and the classical description of a unitary U .
• The Server chooses whether or not to deviate. This interface is filtered by two control bits (e, c)

(set to 0 by default for honest behaviour). If deviating it also inputs a state ρS and CPTP map E .
Computation by the Resource:

• If e = 1, the Resource sends the leakage lρ to the Server’s interface and awaits further input from
the Server; if it receives c = 1 and (ρS , E), the Resource outputs E(ρCS) at the Client’s output
interface, where ρCS is a joint state between Client and Server (these may be entangled).

• Otherwise it outputs U(ρC) at the Client’s output interface.

Resource 12 Verifiable Blind Delegated Quantum Computation, Taken from [41]
Inputs:

• The Client inputs a quantum state ρC and the classical description of a unitary U .
• The Server chooses whether or not to deviate. This interface is filtered by two control bits (e, c)

(set to 0 by default for honest behaviour).
Computation by the Resource:

• If e = 1, the Resource sends the leakage lρ to the Server’s interface and awaits further input
from the Server; if it receives c = 1, the Resource outputs |Abort〉〈Abort| at the Client’s output
interface.

• Otherwise it outputs U(ρC) at the Client’s output interface.

Ideal Functionality 13 Classical Input Two-Party Quantum Computation
Inputs:

• P1 and P2 have classical inputs x ∈ {0, 1}n and y ∈ {0, 1}n respectively.
• They have agreed on a common description of unitary U applied on inputs of length n along

with k ancillae, as well as the position of output qubits for each player (as registers O1 and O2).
Computation by the Functionality: The Ideal Functionality initialises its internal registers
(X ,Y,W) to (|x〉 , |y〉 , |0〉⊗k) and applies U to these registers. It sends output register O1 to P1 first
and then O2 to P2.

42

3.3. “IDEAL VS. REAL” FRAMEWORKS OF SECURITY

Resource 14 Secure Multi-Party Quantum Computation
Inputs:

• N players send each a quantum register Xj which contains their respective part of a collectively
possessed ρinp, and the classical description of a joint unitary U they wish to apply to ρinp. They
can each input two bits oj and cj as a filtered interface.

• The Eavesdropper can input two bits e and c as a filtered interface, both set to 0 in the honest
case.

Computation by the Resource:
• If e = 1, the Resource sends the leakage lρ to the Eavesdropper’s interface.
• If c = 1 or there exists j such that cj = 1, the Resource sends Abort to all players.
• Otherwise it computes U(ρinp). If there exists j ∈ [N] such that oj = 1, it sends qubit j to the

interface of player j. It then sends the output qubits to all other players in a similar fashion.

the Server might obtain when the computation is delegated since, despite being active in the protocol,
the Server has no legitimate input nor output.

3.3.4 Quantum One-Time Pad Security

We present here the Quantum One-Time Pad Protocol based on the Quantum One-Time Pad encryption,
which aims to construct a Confidential Quantum Channel (Ideal Resource 5) from an Insecure Quantum
Channel (Ideal Resource 4) and a Secure Classical Channel (Ideal Resource 3). We usually abstract the
channels in later protocols but write them down explicitly for this simple setting.

Protocol 3 Quantum One-Time Pad
Inputs: The Sender has as input a quantum register containing n qubits. The Receiver and the
Eavesdropper have no input.
Protocol:
1. The Sender samples uniformly at random a key k = (kZ , kX) ∈R {0, 1}2n with #kZ = #kX = n

and applies ZkZXkX to its quantum register (where the operation ZkiZXkiX is applied to qubit i
for single-qubit Paulis ZkiZ and XkiX controlled by the key bits kiZ and kiX respectively).

2. It sends the quantum register to the Eavesdropper through an Insecure Quantum Channel Ideal
Resource and it sends (kX , kZ) to the Receiver through a Secure Classical Channel.

3. The Eavesdropper transmits the received quantum state to the Receiver through another Insecure
Quantum Channel Ideal Resource.

4. The Receiver applies XkXZkZ to the received quantum register and keeps the resulting state as
its output.

The following statement captures the security of Protocol 3.

Theorem 3.3 (Security of Quantum One-Time Pad). Protocol 3 perfectly constructs Ideal Resource 5
(statistical security with distinguishing advantage 0).

Proof. The correctness of the protocol trivially stems from the properties of the Pauli operations
(namely σ2 = I for any Pauli σ). The only security that needs to be proven is against a malicious
Eavesdropper.

The Eavesdropper receives in the real protocol a quantum state from one Insecure Quantum Channel
and sends one quantum state of the same size to another. In all generality, it applies in between these

43

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

transmissions an arbitrary CPTP map on the received state and its internal state. In the ideal world,
the Simulator receives the size of the state from the Confidential Quantum Channel Ideal Resource and
must replicate the view of the Adversary and honest players by: sending a state to the Eavesdropper,
receive another state in return and send a state to the Confidential Quantum Channel Ideal Resource.

We start by representing the real protocol as a quantum circuit for fixed keys (kZ , kX) and a single
qubit, where E is a general CPTP map and ρA is the Adversary’s internal state:

ρ XkX ZkZ
E

ZkZ XkX ρ̃

ρA

In the circuit above, the first two operations are performed by the Sender, E is applied by the Eavesdropper
and the final two Paulis correspond to the Receiver’s decryption. Note that it is possible, although
slightly convoluted, for the Sender to perform the encryption via a quantum teleportation: it creates
first an EPR-pair, applies a CNOT with its input as control and one qubit of the EPR-pair as the target
followed by a Hadamard on its input and measures these two qubits in the computational basis. The
Sender defines the measurement results to be (kZ , kX), in which case, as explained in Section 2.2.3.2, the
state of the unmeasured qubit of the EPR-pair is ZkZXkX (ρ) for input state ρ. This perfectly equivalent
to the initial protocol and the resulting circuit is represented as follows:

ρ • H kZ

|0〉 kX

|+〉 •
E

ZkZ XkX ρ̃

ρA

In the circuit above, the first CNOT creates the EPR-pair, the second CNOT and H along with the
measurement in the computational basis perform the teleportation. We then remark that it is equivalent
from the point of view of all parties if the measurements are postponed until after the Receiver has
received the state from the Eavesdropper (otherwise this would violate the No-Communication result from
Section 2.2.3.4). The Sender can simply send the third qubit to the Eavesdropper, wait for confirmation
that the Receiver has obtained the state, measure its remaining qubits and transfer the result via the
Secure Classical Channel:

ρ • H kZ

|0〉 kX

|+〉 •
E

ZkZ XkX ρ̃

ρA

Finally we can isolate from the circuit above the operations of the Simulator – dotted box – and the
Ideal Resource – dashed box – for a single qubit (if multiple qubits are sent these operations are applied
for all qubits in parallel). The Simulator prepares an EPR-pair and sends half to the Eavesdropper.
After receiving the reply of the Eavesdropper, it sends the other half of the EPR-pair and the third
qubit to the Ideal Resource. In the mean-time, the Sender sends its input qubit to the Ideal Resource.

44

3.4. LOCAL CRITERIA OF SECURITY FOR DELEGATED QUANTUM COMPUTATION

The Resource applies the CNOT and H and measures the first two qubits in the computational basis,
obtaining (kZ , kX). It applies XkXZkZ to the third qubit and sends this qubit to the Receiver as its
output.

The indistinguishability comes from the fact that the input/output relation is preserved via the
transformations above and the fact that the Eavesdropper cannot distinguish between half an EPR-pair
and a qubit encrypted via a Quantum One-Time Pad since both are perfectly mixed states from its
point of view (Equation 2.22).

�

This proof is important as its principle is the basis for the proof of security of more complicated
protocols presented later in the thesis. In particular, using EPR-pairs will be again crucial to transferring
the deviation of a party from a state that is independent of the secret parameters and messages to
another which may depend on it.

3.4 Local Criteria of Security for Delegated Quantum Computation

We present here a few definitions and results for the security of Delegated Quantum Computing (DQC),
a functionality where a Client with limited quantum capabilities (or non in some cases) wishes to delegate
a quantum computation to a powerful but distrustful quantum Server. The Client wants its computation
and input to remain hidden from the Server but at the same time be able to verify that the Server has
performed the computation as instructed.

The following security criteria are said to be local since they only depend on the protocol and do not
consider an outside Environment. They include local-correctness (if the Server is honest, the protocol
terminates by outputting the correct outcome), local-blindness (which essentially says that the state
of the Server at the end of the protocol is close to a state where the Server has applied an operation
to its own internal state), and input-independent local-verifiability (the Client can verify with its own
internal state that the computation was carried out correctly and leaking the information of whether
the Client has aborted or not does not give more information to the Server about the Client’s input or
computation).

We start by defining the correctness of a protocol:

Definition 3.10 (εcor -local-correctness). Let PAB be the protocol as defined above (with the honest
CPTP maps for players A and B). We say that such a protocol implementing U is εcor -locally-correct if
for all input states ρ we have:

(3.8) ∆(TrB ◦PAB(ρ),U(ρ)) ≤ εcor

Next we define local-blindness, which captures the fact that the state at the end of the protocol is
indistinguishable for the Adversary from one which it could have generated on its own without having
access to the honest player’s state.

45

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

Definition 3.11 (εbl-local-blindness). We say that a protocol PAB as defined above is εbl-locally-blind
if there exists a CPTP map F ′ : L(B)→ L(B) such that, for all input states ρ ∈ L(A⊗ B), we have:

(3.9) ∆(TrA ◦PAB(ρ),F ′ ◦ TrA(ρ)) ≤ εbl

On the other hand, local-verifiability is satisfied if any deviation by the Adversary which leads to a
wrong output will cause the honest party to abort with overwhelming probability.

Definition 3.12 (εver -local-verifiability). Let ρin be the input state of A in the protocol implementing
unitary U . For all CPTP maps

{
F̃j
}
(corresponding to the deviation of player B∗), let ρ̃out

({
F̃j
}
, ρin

)
be the output of honest party A in the protocol. For a given pok ∈ [0, 1], the ideal output is defined as:

(3.10) ρideal(ρin) := pokU(ρin) + (1− pok) |Abort〉〈Abort|

The protocol is εver -locally-verifiable for A if:

(3.11) ∆
(
ρ̃out

({
F̃j
}
, ρin

)
, ρideal(ρin)

)
≤ εver

In the case where the corrupted party has an input and output to the computation, it can always
modify its input and perform computations on its final state, meaning that the definition should account
for those possibilities with a modified ideal state. Let Din and Dout be respectively deviation CPTP-maps
acting on the input and output systems of Malicious B∗ an some auxiliary register. Now the input ρin,aux

is a joint input potentially entangled with the auxiliary state of B∗ and for a given pok ∈ [0, 1], the ideal
output is defined as:

(3.12) ρideal(ρin) := pok(IA ⊗Dout) · U · (IA ⊗Din) · (ρin,aux) + (1− pok) |Abort〉〈Abort|

Furthermore, we say that the verification procedure is independent of the inputs of player A if
player B could have deduced from its own internal registers whether the protocol will lead to an abort for
player A or not. This takes care of the fact that some protocols might fail to specify in their description
the fact that a dishonest player will know at the end that the protocol has been aborted by the honest
player and omit it later in their stand-alone security analysis (this does not lead to a decrease in security
in the stand-alone case, as it may be that player B simply does not know at the end whether its attacks
succeeded or not). This is captured by the following definition:

Definition 3.13 (εind-independent verification). Let PAB be the protocol as defined above and let
QAB̄ : L(A ⊗ B̄) → L(A ⊗ B̄) be a CPTP map which, conditioned on A containing the state |Abort〉,
switches the state in B̄ from |Ok〉 to |Abort〉 (and does nothing in the other cases). The register in B̄
starts in state |Ok〉. We say that such a protocol’s verification procedure is εind-independent from player
A’s input if there exists CPTP maps F ′i : L(C ⊗ B ⊗ B̄)→ L(C ⊗ B ⊗ B̄) such that:

(3.13) ∆(TrA ◦QAB̄ ◦ PAB(ρ),TrA ◦P ′ABB̄(ρ)) ≤ εind

46

3.5. CORE CRYPTOGRAPHIC PROTOCOLS

where (with Ei being the CPTP map of honest player A for round i):

(3.14) P ′
ABB̄

:= E1 ◦ F ′1 ◦ . . . ◦ En ◦ F ′n

Finally, it is proven in [41] that the security of a Verifiable Blind Delegated Quantum Computation
Protocol can be reduced to these local-criteria usually used in stand-alone proofs. We now state the
Local-Reduction Theorem from [41]:

Theorem 3.4 (Security Reduction to Local Criteria). If a protocol implementing a unitary transforma-
tion is εcor -locally-correct, εbl-locally-blind and εver -locally-verifiable with εind-independent verification
for all inputs ψACAQ , where register AC is classical while AQ is quantum, then it constructs Sverif

blind
within ε = max

{
δ22N , εcor

}
, where N := #AQ is the number of qubits contained in the Client’s quantum

input register and:

(3.15) δ := 4
√

2εver + 2εbl + 2εind

Essentially, while a simple sequentially-composable verifiable blind computation protocol is εbl-locally-
blind and εver -locally-verifiable, the price to pay for composability is ε = max

{
δN2, εcor

}
, along with

the additional independence property. On one hand, it means that, if a protocol has been shown to have
these properties separately, its security bound will be higher in a non-composable setting (compared to
using this reduction). On the other hand, it may be more efficient to create a protocol which directly
satisfies the security properties of the AC Framework (as the reduction in the case of quantum inputs is
not tight).

3.5 Core Cryptographic Protocols

This Section presents more complex protocols that will be used as stepping stones for our later
constructions, namely Delegated Quantum Computations (both Blind and Verifiable variants), Yao’s
classical (and classic) Protocol from [135] and Universal Thresholdiser, whose purpose it to emulate a
Classical SMPC.

3.5.1 Hiding Delegated Quantum Computations in MBQC

An MBQC computation between Client and Server as described in Section 2.3 can be totally hidden
from the Server by using the following observation: if, instead of the Server preparing each qubit in the
graph in the state |+〉, the Client sends

∣∣+θ(v)
〉
with θ(v) ∈R Θ, then measuring the qubits in a similarly

rotated basis, obtained by adding θ(v) to the measurement angle, has the same result as the initial
computation. If the Client keeps the angle θ(v) hidden from the Server, the Server is completely blind
on what computation is being performed. The angle θ(v) acts as a One-Time Pad for the measurement
angle φ′(v). Nevertheless, because the Server could always measure the received qubits, it would still
learn 1 bit of information about the angle θ(v), which can take the 8 values from set Θ and so consists
of 3 bits. To prevent this, another parameter r(v) is added for each qubit. The parameter r(v) serves as
a One-Time-Pad for the measurement outcome: if b(v) is now the outcome returned by the Server, then
we have s(v) = b(v)⊕ r(v) with s(v) defined as above.

47

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

If v ∈ I is a quantum input, it is protected by a Quantum One-Time Pad operation Z(θ(v))Xa(v)

for a(v) ∈R {0, 1} applied by the Client before being sent to the Server.6 The measurement angles are
further adapted to account for a(v): ŝX(v) = a(v)⊕ sX(v) and ŝZ(v) = a(f−1(v))⊕ sZ(v) (where f is
the flow of the computation, and a has been extended so that a(v) = 0 for v ∈ Ic and a(f−1(v)) = 0 for
vertices v /∈ range(f)).

The resulting measurement angle sent to the Server with all parameters taken into account is then
(for φ′(v) defined using the new ŝX(v) and ŝZ(v)):

(3.16) δ(v) = φ′(v) + θ(v) + r(v)π

In short, the Client sends randomly rotated qubits that appear maximally mixed to the Server and
that become the resource state once entangled. It then guides the computation with a set of classical
instructions that are adapted to the effectively prepared resource state but still look perfectly random to
the Server. It is the combination of these two parts (quantum state preparation and classical instructions)
that leads to the desired blind computation. This idea was first formalized in the Universal Blind
Quantum Computation (UBQC) Protocol in [21].

For completeness we give the protocol for UBQC (Protocol 4) from [21]. We assume that a standard
labelling and measurement ordering of the vertices of the graph is known to both the Client and the
Server. Its security properties are given in the next section.

Protocol 4 Universal Blind Quantum Computation - Taken from [21]
Public Information: Description of a graph G = (V,E, I,O) with input vertices I and output
vertices O and an ordering over vertices.
Inputs: The Client inputs a quantum state ρinp and the classical description of a unitary U as a
flow (f,�) on G and default measurement angles {φ(v)}v∈Oc . The Server has no input.
Protocol:
1. For each input qubit v ∈ I, the Client samples a Q-OTP key θ(v) ∈R Θ and a(v) ∈R {0, 1}

and encrypts qubit v using Z(θ(v))Xa(v). The Client prepares each qubit v ∈ Ic in state
∣∣+θ(v)

〉
,

with random θ(v) ∈R Θ. It then sends these qubits to the Server and initialises a string s to 0
representing the measurement outcomes on G.

2. The Server receives the qubits one-by-one and applies the entangling operations CZ that corre-
spond to the edges of the graph G (if two two vertices are joined by an edge in the graph, a CZ
operation is applied to the qubits corresponding to these vertices).

3. For each qubit v ∈ Oc, following the partial order of the flow:
a) The Client generates r(v) ∈R {0, 1}, calculates δ(v) according to Equation 3.16 and sends it

to the Server.
b) The Server measures in the {

∣∣+δ(v)
〉
,
∣∣−δ(v)

〉
} basis and returns to the Client outcome b(v).

c) The Client sets the value of s(v) in s to b(v) + r(v).
4. The Server returns all qubits that correspond to vertices i ∈ O to the Client on which the Client

performs final Pauli correction: ZŝZ(v)XŝX(v). It sets these qubits as its output.

We recall here the following security statement of the UBQC Protocol from [21].
6The initial presentation of this idea [21] applies the Q-OTP in the reversed order Xa(v)Z(θ(v)), which is a typo since

the operations would need to be commuted so that Z(θ(v)) can be cancelled by the θ(v) contained in the δ(v). Without
this correction, the commutation of Xa(v) and Z(θ(v)) would turn θ(v) into (−1)a(v)θ(v), which would not cancel out with
the one from the measurement.

48

3.5. CORE CRYPTOGRAPHIC PROTOCOLS

Theorem 3.5 (Local-Security of UBQC, Taken from [21]). The UBQC Protocol 4 is perfectly locally-
correct (Definition 3.10 for εcor = 0) and perfectly locally-blind (Definition 3.11 for εbl = 0).

They prove furthermore in [41] that the UBQC Protocol 4 is perfectly composably-secure.

Theorem 3.6 (Composable Security of UBQC, Taken from [41]). The UBQC Protocol 4 perfectly
constructs (Definition 3.9 for statistical security with ε = 0) the Blind Delegated Quantum Computation
Ideal Resource 11 from Insecure Quantum Channels (Ideal Resource 4) and Authenticated Classical
Channels (Ideal Resource 1).

3.5.2 Verifying MBQC Through Trap Insertion

In UBQC, the Server is not forced to follow the instructions and the Client can not verify if the
computation is done correctly, but a modified version of the protocol allows for such verification. The
central idea is to include trap qubits at positions unknown to the Server [53]. These qubits should have
deterministic outcome if measured in the correct basis, remain undetectable by the Server, and not affect
the computation.

To do this, the Client can send dummy qubits, meaning qubits randomly initialized in states {|0〉 , |1〉}
instead of the usual |+θ〉. This has the effect of breaking the graph at this vertex, removing it from G

along with any attached edges. Sending such dummies for all neighbours of a vertex isolates it from the
rest of the graph, creating a trap. If measured in the same basis as the one used for their preparation,
these traps yield deterministic outcomes while being undetectable by the Server. The latter is due to the
fact that dummies appear as maximally mixed qubits from the Server’s perspective and are thus no
different than regular randomly chosen |+θ〉 states.

This idea was introduced in [53] and later optimised by different protocols, such as [72, 78]. The
structure of the protocol from [78] makes it more adapted for 2PQC: the construction is local and
therefore the Server knows which qubits corresponds to its input; which is why we use it here as the
basis of our protocol. We became aware recently of a new protocol [134] achieving the same properties
as [78] with better overhead and believe it could be combined with the same techniques as the ones
presented in this thesis.

We describe here the trap insertion technique of [78], which relies on the Dotted-Triple Graph
construction. This construction amounts to enlarging the initial graph so that it is possible to randomly
choose one of the sub-graphs corresponding to the to-be-performed computation, isolate it from the rest
of the graph using dummy qubits in the |0〉 or |1〉 state, and place trap qubits on remaining positions.
We start by giving the definition of a Dotted-Triple Graph of base-graph used in the UBQC computation
without traps.

Definition 3.14 (Dotted-Triple Graph, Taken from [78]). Let G = (V,E) be a graph with vertex set V
and edge set E, the corresponding Dotted Triple-Graph DT (G) is constructed in the following way:

1. For each vertex v ∈ V , we define a set of three new vertices P (v) = {p1(v), p3(v), p3(v)}, called
primary vertices.

2. For each edge (v, w) ∈ E of the base-graph that connects vertices v and w in G, we introduce a set
of nine edges E(v,w) so that all three vertices in the set P (v) are connected to all vertices in the set
P (w).

49

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

3. We replace every edge in the resulting graph with a new vertex connected to the two vertices
originally joined by that edge. These new vertices are called added vertices.

The edge or vertex of the initial graph G that each vertex v of DT (G) originates from is called its
base-location.

By inserting dummy qubits among the added qubits we can break any DTG in three copies of
the same base-graph: one is used for the computation while the other two are traps. Furthermore for
each vertex base-location the choice of where to break the graph is independent from other vertex
base-locations and can be made in advance by the Client. The Server remains totally ignorant of this
choice. This choice is called trap-colouring (Definition 3.15, see Figure 3.1 for an example of such a
colouring).

Definition 3.15 (Trap-Colouring, Adapted from [78]). We define trap-colouring to be an assignment
of one colour (green, white or red) to each of the vertices of the Dotted Triple-Graph that is consistent
with the following conditions:

1. In each primary set P (v) there is exactly one vertex coloured of each colour.
2. The colouring of added vertices is fixed by the choice above in the following way: green primary

vertices are joined by a green added vertex, red primary vertices are joined by a white added vertex
and the other added vertices are red.

(a) Trap-colouring chosen by the Client.
Green: computation qubits; White: trap
qubits; Red: dummy qubits.

(b) After entangling, the breaking operation
defined by the dummy qubits will reduce the
graph in (a) to the computation graph and
for each vertex a corresponding trap qubits.

Figure 3.1: Dotted-triple-graph for one-dimensional base graph of four qubits. Circles: primary vertices
(base-location : vertex of the base-graph); Squares: added vertices (base-location : edge of the base-graph).
Adapted from [78].

By setting φ(v) = 0 for added qubits v, the flow, Past of qubit v and Influence-past of qubit v
can all be extended to the Dotted-Triple-Graph construction, with the result that each qubit depends
only on a constant number of previous measurements (see [78]). The protocol then implements the
original MBQC computation on the sub-graph of DT (G) that is used for computation (represented with

50

3.5. CORE CRYPTOGRAPHIC PROTOCOLS

green vertices), while the Server learns nothing about the input/output nor computation. Moreover,
the random placement of the traps guarantees that a deviating Server will be detected with non-zero
probability by the Client from the corruption of trap measurement outcomes. Exponential amplification
of this probability can be achieved by incorporating fault-tolerant techniques as described in [53].

Given the Dotted-Triple-Graph corresponding to the base-graph G, the Verifiable Blind Quantum
Computation (VBQC) Protocol can be summarised as follows:

1. The Client chooses the trap-colouring of the Dotted-Triple Graph, keys for its inputs and secret
parameters for the rest of the qubits in the DTG.

2. It encrypts its inputs as in UBQC, prepares the resource single qubit states corresponding to the
description chosen above and sends them along with its inputs to the Server (in order). These
states are (with D the set of dummy qubits in DT (G)):

• For all v ∈ D: |d(v)〉, with d(v) ∈R {0, 1}.
• For all v /∈ D:

∏
ṽ∈NG(v)∩D Zd(ṽ)

∣∣+θ(v)
〉
, with θ(ṽ) ∈R Θ.

3. The Server entangles them according to the publicly known structure of the graph (one CZ per
edge in DT (G)).

4. The Client adaptively instructs the Server to measure all non-output qubits as in UBQC, and the
Server returns the measurement outcomes. The measurement angle of dummies is chosen uniformly
at random.

5. The Server returns to the Client all qubits that correspond to vertices at output base-locations to
the Client. The Client measures the output trap qubits t with angle δ(t) = θ(t) + r(t)π.

6. The Client checks that the traps have been measured correctly (if b(t) = r(t)) and aborts if any
failed. It computes encryption keys corresponding to Quantum One-Time-Pad of the output as in
UBQC.

7. It decrypts the Quantum One-Time Pad and accepts the final quantum states as its output.

In the Dotted-Triple Graph used in the VBQC Protocol, the past of each qubit is not explicitly
known to the Server because it does not know the positions of the traps and dummies. We therefore
define:

Definition 3.16 (Extended Past and Influence-Past). We define the Extended-Past EPast(v) of qubit v
to be the set of all qubits that for some trap-colouring are in the past of v. We define the Extended-
Influence-Past of qubit v via a similar extension.

This new set is also finite and bounded by a constant because only qubits in neighbouring base-
locations and their own neighbours can influence the δ of qubit v.

For completeness we give the Verifiable Blind Quatum Computation Protocol with Dotted-Triple
Graph from [78]. As previously, we assume that a standard labelling and measurement ordering of the
vertices of the dotted triple-graph DT (G) is known to both the Client and the Server.

The VBQC Protocol inherits directly the correctness and blindness of the UBQC Protocol. We also
restate here the local-verifiability of the VBQC Protocol as Theorem 3.7.

Theorem 3.7 (Local-Verifiability of VBQC, Taken from [78]). Assume that the MBQC computation
is encoded using a fault-tolerant encoding that corrects or detects δ errors when the computation is

51

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

Protocol 5 VBQC using DT (G) (with Fault-Tolerant Encoding) - Taken from [78]
Public Information: Description of a graph G = (V,E, I,O) with input vertices I and output
vertices O and an ordering over vertices, and corresponding dotted graph D(G), obtained from G by
replacing every edge with a new vertex connected to the two vertices originally joined by that edge.
Inputs: The Client inputs a quantum state ρinp and the classical description of a unitary U as
a flow (f,�) on DT (G) and default measurement angles {φ(v)}v∈Oc which, when applied to the
dotted graph state |D(G)〉, perform the desired computation from inputs in I to outputs in O in a
fault-tolerant way that can detect or correct up to δ errors. The Server has no input.
Protocol:
1. The Client chooses a trap-colouring for the dotted triple-graphDT (G) according to Definition 3.15.

Let D be the set of positions of dummy qubits and for all v /∈ D, D(v) := NG(v)∩D. It samples
uniformly random θ(v) ∈R Θ and r(v) ∈R {0, 1} for each computation and trap qubit, uniformly
random a(v) ∈R {0, 1} for each input qubit and uniformly random d(v) ∈R {0, 1} for each dummy
qubit. It initialises a string s to 0 representing the measurement outcomes on G.

2. The Client encrypts its input qubits
⊗

v∈I Z(θ(v))Xa(v)ρinp and prepares dummy qubits in
state |d(v)〉 and the remaining qubits in state

⊗
w∈D(w) Zd(w)

∣∣+θ(v)
〉
. It sends to the Server all

the qubits in the order of the labelling of the graph.
3. The Server receives the qubits one-by-one and applies the entangling operations CZ that corre-

spond to the edges of the graph DT (G).
4. For each qubit v ∈ Oc, following the partial order of the flow:

a) The Client generates r(v) ∈R {0, 1}, calculates δ(v) according to Equation 3.16, using the
value φ′(v) = 0 for trap and dummy qubits, and sends it to the Server.

b) The Server measures in the {
∣∣+δ(v)

〉
,
∣∣−δ(v)

〉
} basis and returns to the Client outcome b(v).

c) The Client sets the value of s(v) in s to b(v) + r(v).
5. The Server returns all qubits that correspond to output base-locations to the Client.
6. The Client measures the output trap qubits t with angle δ(t) = θ(t) + r(t)π to obtain b(t). If

there is a trap qubit t (including ones measured previously by the Server) such that b(t) 6= r(t),
it outputs Abort and sends it to the Server.

7. Otherwise, the Client applies final Pauli correction ZŝZ(v)XŝX(v) to the output layer green
(computation) qubits. It sets these qubits as its output and sends Ok to the Server.

performed on the base graph G of maximum degree c. The VBQC Protocol 5 is εV -locally-verifiable for
the Client (Definition 3.12), where εV =

(8
9
)d for d =

⌈
δ

2(2c+1)

⌉
.

Note that, compared to the version presented in [78], we explicitly require the Client to inform the
Server if it outputs Abort. This is required so that it may satisfy the independent verification property
from Definition 3.13, which will allow us later in Chapter 6 to give a new formulation for the security of
this protocol by proving its security in the Abstract Cryptography Framework.

3.5.3 The Classical Yao Protocol

Yao’s Protocol, the pioneer of Secure Two-Party Computation, allows two Parties, the Garbler and the
Evaluator, to compute a joint function on their two classical inputs. The Garbler starts by preparing an
encrypted version of the function and then the Evaluator decrypts it using keys that correspond to the
two players’ inputs, the resulting decrypted value being the final output.

The Original Yao Protocol secure against Honest-but-Curious classical Adversaries has first been
described by Yao in the oral presentation for [135], but a rigorous formal proof was only presented

52

3.5. CORE CRYPTOGRAPHIC PROTOCOLS

in [89]. It has been proven secure against quantum Adversaries with no superposition access to the
honest player in [24] (for a quantum version of IND-CPA that only allows random oracle queries to be
in superposition).

We give here only a brief description of the construction and defer to later sections the presentation
of the full protocol along with associated correctness and security properties. It uses as primitives a
symmetric encryption scheme and 1-out-of-2 Oblivious Transfer.

A symmetric encryption scheme consists of two classical efficiently computable deterministic functions
Enc : K×A×M→ K×A×C and Dec : K×A×C→ K×A×M (where K is the set of valid keys, A the set
of auxiliary inputs, M the set of plaintext messages and C the set of ciphertexts, which is supposed equal
to M). We suppose that for all (k, aux,m) ∈ K× A×M, we have that Deck(aux,Enck(aux,m)) = m.

We focus on the case where the Garbler’s output to Yao’s Protocol is a single bit (and the Evaluator
has no output). Suppose that the Garbler and Evaluator have agreed on the binary function to be
evaluated f : {0, 1}nX × {0, 1}nY −→ {0, 1}, with the Garbler’s input being x ∈ {0, 1}nX and the
Evaluator’s input being y ∈ {0, 1}nY .

The protocol works as follows. The Garbler samples keys
{
kG,i0 , kG,i1

}
i∈[nX]

and
{
kE,i0 , kE,i1

}
i∈[nY]

for the Garbler’s and Evaluator’s input respectively. To each bit of input correspond two keys, one
(lower-indexed with 0) if the player chooses the value 0 for this bit-input and the other if it chooses
the value 1. They invoke nY instances of a 1-out-of-2 String OT Ideal Functionality, the Evaluator’s
input (as Receiver of the OT) to these is yi for i ∈ [nY], while the Garbler inputs (as Sender) the keys
(kE,i0 , kE,i1) corresponding to input i of the Evaluator. The Evaluator therefore recovers kE,iyi at the end
of each activation of the OT. The Garbler then sends the keys

{
kG,ixi

}
i∈[nX] corresponding to its own

input along with the garbled circuit GC f which is constructed as follows.
For a gate computing a two-bit function g, with inputs wires labelled a and b and output wire z,

the Garbler first chooses keys (ka0 , ka1 , kb0, kb1) ∈ K4 for the input wires and kz ∈ {0, 1} for the output.7

Let auxa and auxb be two auxiliary values for the encryption scheme. It then iterates over all possible
values ã, b̃ ∈ {0, 1} to compute the garbled table values Ekz

ã,b̃
defined as (with padding length p = nM − 1,

where nM is the bit-length of the messages of the encryption scheme8):

(3.17) Ek
z

ã,b̃
:= Enckaã

(
auxa,Enckb

b̃
(auxb, g(ã, b̃)⊕ kz ‖ 0p)

)
The ordered list thus obtained is called the initial garbled table. The Garbler then chooses a random
permutation π ∈ S4 and applies it to this list, yielding the final garbled table GT (a,b,z)

g . For gates with
fan-in l, the only difference is that the number of keys used will be 2l (two for each input bit) and the
number of values in the garbled table will be 2l, the rest may be computed in a similar way (by iterating
over all possible values of the function’s inputs). The keys are always used in a fixed order which is
known to both players at time of execution (we suppose for example that, during encryption, all the
keys of the Evaluator are applied first, followed by the keys of the Garbler).

Finally, after receiving the keys (through the OT protocols for its own, and via direct communication
for the Garbler’s) and garbled table, the Evaluator uses them to decrypt sequentially each entry of the

7The value kz is used to One-Time-Pad the outputs, preserving security for the Garbler after decryption as only one
value from the garbled table can be decrypted correctly.

8The padding enforces the verifiable and elusive range property required in the original Yao Protocol [135, 89].

53

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

table and considers it a success if the last p bits are equal to 0. It then returns the decrypted value to
the Garbler.

3.5.4 Universal Thresholdiser

A Universal Thresholdiser (or UT) can be seen as a combination of Fully-Homomorphic Encryption
(FHE), which allows for computations to be performed on encrypted inputs, and a Secret Sharing
Scheme, which is used to distribute a secret to multiple parties and later reconstruct it if enough players
divulge their received shares. It enables a certain number of parties to encrypt separately values using a
joint encryption key, share these values with the other parties, who can all perform a pre-determined
computation and broadcast the output (corresponding to its share of the final secret). If a sufficient
number of parties perform these operations, then each parties having received these computed shares can
decrypt the result of the computation. The definitions of this functionality are mostly taken from [16],
but they must be adapted in some places to fit the use that will be made of the UT later in the thesis.
Most notably, we adapt the security definition to fit the AC framework described in Section 3.3.2
and require it to be secure against malicious quantum Adversaries. We also correct their definition of
robustness of a UT scheme. Modifications straying from the original presentation of [16] are clearly
marked. Consequently, this means that it is not clear whether the instantiation of this scheme by [16]
fulfils the updated definitions. This does not affect the results presented in our work since we only
suppose the existence of a quantum-secure Classical SMPC, a Universal Thresholdiser being only one of
the possible ways to achieve this functionality. The reason why we opt for this construction rather than
another is that a UT based on FHE allows the reuse of intermediate computations, which in turn allows
us to fine-grain the description of the functions that we need to implement using this tool. The final
goal is to showcase the simplicity of those functions compared to other protocols to seek to construct
the same MPQC functionality as we do in Chapter 6.

We use the definition of a Universal Thresholdiser from [16]. We consider only Threshold Access
Structures, essentially meaning that any group of parties of size larger or equal to a certain threshold
can gain access to the decrypted values (for more detail see Section 4 of [16]). Even more specifically, we
will only require the case where t = N , meaning that all parties must collaborate to decrypt values.

Definition 3.17 (Universal Thresholdiser). A Universal Thresholdiser (or UT) is a tuple of efficient
classical protocols (Setup,Eval,Verif,Combine) defined as follows:

• Setup(1η, 1N , 1t, 1d,pub, x) →
(

pp, {ski}i∈[N]

)
: It is a multi-party protocol that takes as input

a security parameter η, the number of parties N , a threshold t, a bound on the binary circuit
depth d and an input x and outputs public parameters pp (it contains a public key pk and
encryptions cp and cx of some public parameters and the input x respectively), along with private
parameters for each party ski (including a signature key). We suppose that this step can be
decomposed into two parts: first the secret parameters are created and shared using a protocol
S̃etup(1η, 1N , 1t, 1d) →

(
pk, cp, {ski}i∈[N]

)
, then all parties encrypt their inputs and the public

parameters separately under the public key pk and share them publicly, thereby creating cp and cx.
• Eval(pp, C, ski) → yi: It is an algorithm (performed by each player), taking as input the public

parameters, the description of a binary circuit C and the secret parameter of party i and outputting

54

3.5. CORE CRYPTOGRAPHIC PROTOCOLS

a partial evaluation yi (it is called partial since it is impossible to find the correct evaluation without
the other partial values).

• Verif(pp, C, yi)→ 0/1: The verification algorithm takes as input a partial evaluation and a binary
circuit (along with the public parameters) and outputs 1 if the partial evaluation is coherent with
the circuit description (and 0 otherwise).

• Combine(pp, {yi}i∈S)→ y: For a subset S ⊆ [N], if #S ≥ t, the combining protocol outputs the
final evaluation y (as plain-text).

Resource 15 corresponds to the first step of the setup protocol of the Universal Thresholdiser defined
above (it has the same number of interfaces N as there are Clients). It chooses the public and secret keys
and then only encrypts under public-key pk the known (clear-text) public parameters pub (otherwise
each Client would have to encrypt it separately and later test that it has been done correctly by the
other Clients). We suppose that this resource is available to the Clients.

Resource 15 Secure UT Key Setup
Public Information: Number of parties N , threshold t, upper bound on the total depth d of the
classical circuit, security parameter η, public parameters pub.
Inputs: All N parties input the dummy input λ.
Computation by the Resource: It runs the protocol S̃etup(1η, 1N , 1t, 1d) →

(
pk, {ski}i∈[N]

)
internally to get the secret parameters. It then encrypts the public parameters pub under the public
key pk, obtaining cypher-text cp, and sends (pk, cp, ski) to party Pi.

The protocol Setup(1η, 1N , 1t, 1d,pub, x) then consists of first calling the Ideal Resource above and
then having each Client encrypt its own private inputs and sharing the encrypted values with the other
Clients, yielding the global public parameters pp (containing the public key, the encrypted publicly
known values and encrypted private values).

We can now define the properties satisfied by a Universal Thresholdiser. It is said to be compact
if the size of the partial evaluations does not blow up, regardless of the classical circuit that is being
computed (for bounded-depth circuits).

Definition 3.18 (UT Compactness). A UT scheme for N parties is said to be compact if there
exists a polynomial p such that for all η, depth-bounds d, bounded-depth binary circuits C, inputs x,(

pp, {ski}i∈[N]

)
← Setup(1η, 1N , 1t, 1d,pub, x) and yi ← Eval(pp, C, ski), we have #yi ≤ p(N, η, d).

The Universal Thresholdiser is said to be correct if the probability that honestly generated partial
evaluations do not recombine correctly is negligible and the partial evaluations always pass verification
(this combines two definition from [16] into one).

Definition 3.19 (UT Correctness). A UT scheme for N parties is said to be evaluation-correct if
there exists a negligible function εUT,cor(η) such that for all η, depth-bounds d, bounded-depth binary
circuits C, inputs x, sets of parties S ⊆ [N] with #S ≥ t,

(
pp, {ski}i∈[N]

)
← Setup(1η, 1N , 1t, 1d,pub, x)

and yi ← Eval(pp, C, ski), we have:

(3.18) Pr
[
Combine

(
pp, {yi}i∈S

)
= C(x)

]
= 1− εUT,cor(η)

55

CHAPTER 3. CRYPTOGRAPHIC SECURITY FRAMEWORKS

It is further said to be verification-correct if for all i ∈ [N]:

(3.19) Pr
[
Verif(pp, C, yi) = 1

]
= 1

It is said to be robust if no prover can convince the verification algorithm to accept an incorrectly
generated partial evaluation with non-negligible probability. Here we consider QPT Adversaries instead
of PPT Adversaries in [16]. We believe that the scheme presented in [16] is secure against quantum
adversaries as well since it is based on the Learning-With-Error assumption (or LWE). However the paper
lacks a formal proof against QPT Adversaries and proofs of security against quantum adversaries are
notoriously more difficult than in the classical setting, especially when using zero-knowledge constructions,
as demonstrated in [7]. 9

Definition 3.20 (UT Robustness). A UT scheme for N parties is said to be robust if there exists a
negligible function εUT,ver(η) such that for all η, depth-bounds d and all QPT Adversaries A, we have:

(3.20) Pr
[
b = 1 | b← ExpA,Rob(1η, 1d)

]
= εUT,ver(η)

where ExpA,Rob is the following experiment:

1. The Adversary takes as input (1η, 1d) and sends a threshold t, parameters pub and an input x to
the Challenger.

2. The Challenger runs
(

pp, {ski}i∈[N]

)
← Setup(1η, 1N , 1t, 1d,pub, x) and sends

(
pp, {ski}i∈[N]

)
to the Adversary.

3. The Adversary outputs (i, ŷi, C) with C being the description of a classical circuit and i ∈ [N].
4. The Challenger outputs 1 if Verif(pp, C, ŷi) = 1 and for all possible values yi ← Eval(pp, C, ski),

we have that yi 6= ŷi.

The whole scheme is said to be secure if (i) no coalition of malicious parties of size lower than t can
learn anything about the input or output and (ii) if given the partial evaluations of honest parties, they
cannot learn anything from the input apart from what can be inferred from the output. This is defined
in a simulation-based way in [16] and we update it to quantum security by changing PPT machines
into QPT machines and redefining it in the Abstract Cryptography setting. We start by defining the
following Threshold SMPC Protocol 6 using the Secure UT Key Setup Resource 15.

For the UT to be considered secure, Protocol 6 should emulate the Secure Classical Multi-Party
Computation Resource 10 for any coalition of less than t malicious parties. This definition of security
implies the one from [16] but the converse is not true (since quantum adversaries are not taken into
account). 10

9There is also an imprecision in the robustness game as defined in [16], as it implies that the Eval algorithm is
deterministic, while their construction is not (in particular the evaluation samples a smudging error value at random). We
fix this by making the Challenger more powerful (it can compute all values of the evaluation function for a given binary
circuit and input), but this does not impact the security of the scheme in any way. Fixing the game in a different way
(giving the Adversary access to an oracle for example) would be much more troublesome (especially in the quantum case).

10In Definition 7.5 from [16], algorithm
(

pp, {ski}i∈[t−1], st
)
← S1(1η , 1d, t,pub) impersonates the setup procedure

without knowing the input of honest players, while algorithm S2(pp, C, C(x), S, st), with S ⊆ [N] uses the state st to

56

3.5. CORE CRYPTOGRAPHIC PROTOCOLS

Protocol 6 Threshold SMPC Protocol
Public Information: The description of a classical joint circuit C, threshold t, parameters pub.
Inputs: The N Parties each input a value xi.
Outputs: Each party receives the result C(pub, x1, . . . , xN) or Abort.
Protocol: Computation by Party i:
1. Party i sends the dummy input λ to the Secure UT Key Setup Resource 15 and receives the

initialisation values (pk, cp, ski).
2. It generates an encryption of xi using the public key pk and broadcasts these encryptions to all

other Parties.
3. It receives corresponding encryptions from the other Parties, uses Eval to apply the classical

circuit C, generating a partial evaluation yi and broadcasting these partial evaluations to all
Parties.

4. It receives partial evaluations from other Parties ŷj (for j 6= i), applies the verification algo-
rithm Verif on all of them and outputs Abort if less than t verifications succeed. Otherwise it
uses the algorithm Combine on the evaluations that passed verification to recover the output y.

Definition 3.21 (Universal Thresholdiser Security). A UT scheme for N parties is said to be secure
if there exists a negligible function εUT (η) such that for all η, depth-bounds d, bounded-depth classical
circuits C and thresholds t, Protocol 6 εUT (η)-computationally-constructs the Threshold Verifiable Multi-
Party Classical Computation Resource 10 from the Secure UT Key Setup Resource 15 against all QPT
Adversaries A controlling a coalition of c < t corrupted Parties.

Finally, we suppose that partial evaluations can be reused in later evaluations as long as the total
depth of the classical circuit does not exceed d (this is usually the case with FHE-based schemes but is
not explicitly allowed in the definition of the Universal Thresholdiser).

create “fake” partial evaluations that both pass verification and output the correct result of the computation for the chosen
classical circuit (it knows only the circuit and the output of the circuit). These algorithms are classical in [16] but may
need to be quantum against QPT Adversaries as there is no guarantee that a classical Simulator exists in general against a
quantum Adversary, even for classical protocols.

57

C
h
a
p
t
e
r 4

Quantum Protocol Compiler:
Boosting Security from Semi-Malicious
to Malicious Adversaries

4.1 Motivation and Overview of Results

4.1.1 Weaker Adversaries, Simpler Protocols

Numerous types of different adversaries can be defined in the context of secure protocols. These
not only differ by the computational power at their disposal, but also in the ways in which they
may choose to deviate from the specifications given by the protocol’s description. By definition,

Malicious Adversaries can cause more damage the Honest-but-Curious ones since they can perform
unauthorised computation. As a general principle and for any given task, it is harder to design protocols
the resist against parties that deviate more since they are by definition less constrained by the protocol’s
rules that bind honest players. This reasoning is also applicable when considering the adversary’s
computational power, explaining intuitively why there are comparatively fewer information-theoretically
secure protocols. Impossibility results demonstrate the validity of this idea, as even quantum powers are
not sufficient to provide unconditionally-secure Bit Commitment for instance [95, 100, 93].

It is possible to look at this issue the other way around, by first building a simple protocol that is
secure against weak adversaries and finding later ways to force these adversaries to behave honestly,
therefore reducing the problem to simpler Honest-but-Curious behaviour analysis. Tools for achieving
such security boosting include for example the universal GMW Compiler from [61]. In the classical
case it forces the sender of a message to prove that this message has been generated honestly, meaning
that there exist secret parameters which are consistent with this message and the previous transcript
being generated by an honest player. This is done by reducing the validity of the statement “the parties
are acting honestly” to a valid solution of a hard instance of an NP-Complete problem (constraint

59

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

satisfiability) and requires each party to use generic Zero Knowledge Proofs to prove that this statement
is satisfied at each step of the protocol (additionally the proof should reveal nothing apart from the fact
that it is correct). Unfortunately this comes at the cost of efficiency and, while it does run in polynomial
time, it is mostly considered a theoretical result with no hope of being implemented in this generic form.

Another technique which has shown good results with regard to efficiency is Cut-And-Choose. It
is used to convince a player in a protocol that a given message has been produced according to its
correct specification (in that sense its purpose is similar to the GMW Compiler above). In order for
the player receiving the message (Receiver) to verify the honesty of the prepared message, the player
sending the message (Sender) creates multiple independently generated copies of the message. The
Receiver then chooses which ones (the check sets) they will check for consistency and request additional
information from the Sender in the form of a corresponding “proof of honesty” for these state-message
pairs. If the checks pass and additional precautions are taken, the Receiver is confident that with high
probability the remaining states (the evaluation sets) were also constructed correctly and can be used
for the computation. The Sender’s security is preserved if the CC procedure does not reveal more
information about the sent message apart from the fact that it is correct. This technique has been part
of cryptographic “folklore” for a long time, but has never been properly formalised by itself, even in the
classical case. We extend this technique to the quantum case, yielding the Quantum Cut-and-Choose
(Q-CC), by performing it on (|ψsk〉 ,msk) where |ψsk〉 is a quantum state and msk represents additional
classical information, both depending on some secret sk. The proof of honesty associated to such messages
and states will be denoted proof sk.

Our work in the quantum setting focuses on the case where there are s sets generated in total, s− 1
check sets and 1 evaluation set, thus yielding inverse-polynomial security. In the classical setting, the
probability of cheating and not getting caught can be made negligible by using s/2 check sets and s/2
evaluation sets. We extend this framework by considering a more general protocol where a fraction κ of
sets are checked, with the guarantee that at most a fraction α of the unchecked sets are corrupted. If
using more than 1 evaluation set, the analysis in the quantum case is made even more complex due
to coherent (entangled) attacks across repeated copies and we leave open the question regarding the
possibility of achieving security in this setting.

4.1.2 Our Contribution

We give now a brief overview of the results in this chapter. The links between the sections regarding the
Quantum Cut-and-Choose are given in Figure 4.1. Section 4.3 is mostly stand-alone and its structure is
given in Figure 4.2. The numbering for definitions, functionalities, protocols, theorems both refer to that
diagram and the main text.

Section 4.2: Inverse-Polynomial Quantum Cut-and-Choose. The Cut-and-Choose technique
is mainly used to prove that a message has been generated as promised, when revealing some of the
secret parameters used to generate it would compromise the security of the overall protocol in which
this message is used. This is the first time that the Cut-and-Choose technique is formalised by itself
instead of serving as a subroutine for a larger protocol. This is crucial as using it as it was done up
to now has led to attacks [88, 80]. We therefore define the purpose of the Quantum Cut-and-Choose
Protocol as the emulation of an Ideal Functionality called Send Blind Correct State for a Sender and a

60

4.1. MOTIVATION AND OVERVIEW OF RESULTS

Receiver, which guarantees that the Receiver receives a quantum state and a classical message satisfying
certain properties (a Malicious Sender can however choose which state it is, as long as said properties
are satisfied). It does not however reveal to the Receiver more information that would allow it to verify
the sent state and message by itself. This is formalised as Ideal Functionality 16. Of note is that the
quantum case that we present is a strict generalisation of the classical case, which can be seen by either
constraining the set of states to computational basis states or even remove the state altogether.

However, this Ideal Functionality cannot be applied to all states and classical messages. First of
all, there should exist a proof that allows the person receiving a state and message to verify that it
has in fact been generated correctly. Given this proof, the Receiver should be able to extract from the
message a classical description of the state, which allows it to measure it and test its correctness (see
the Extractability Definition 4.2). On the other hand, the fact that the proof of correctness has been
given for multiple states and classical messages should not give any information about any subsequently
generated state and message, not even whether it was generated using the same secret parameters (as
captured by the Key-Indistinguishability Definition 4.5). Finally, the Cut-and-Choose procedure is never
useful in itself but as a subroutine in a global protocol. This protocol may require that some parts of the
proof of the message be revealed. We model these as leaks and define the maximal tolerated leakage
of the proof (which may be composed of multiple parts) as the maximum amount of information that
can be leaked about the proof without breaking the definitions above. These leaks should on the other
hand be verifiable by a Receiver in the sense that it can test whether or not an information is a leak of
the proof for a given message (Leak-Verifiable Definition 4.3). The states and messages verifying these
properties are called Cut-and-Choosable (or CC-able, Definition 4.1).

This allows us to formalise the Quantum Cut-and-Choose Protocol 7 where the Sender produces
s independently generated copies of the message and state, the Receiver chooses one of them and asks
for the proofs of the other ones in order to test them. If the Sender sends the proofs and the tests pass,
the Receiver is convinced that the remaining copy would have also passed the test if it had been given
the proof. This is captured by the following informal Theorem 4.1:

Theorem 4.1 (Security of the Quantum Cut-and-Choose Protocol, Informal). If the states and messages
are CC-able, the Q-CC Protocol 7 1/

√
s+ ε-securely emulates the Send Blind State Ideal Functionality 16

in the Stand-Alone Framework of [66] against a Malicious Sender, for a negligible ε. The security bound
is negligible for an adversarial Receiver (and directly linked to the key-indistinguishability of the states).

A key technical obstruction when using classical techniques for boosting the security of quantum
protocols is that in general it is not possible to use the rewinding method during the simulation for
proving security against quantum Adversaries. Some classically-secure protocols using this technique
have been proven insecure in the quantum case in [7], which shows attacks relative to a specific oracle.
There are a few known cases where rewinding can be used on such Adversaries, in particular Watrous’
oblivious rewinding [130] and Unruh’s special rewinding [127, 129]. We adapt and use both methods in
different places in order to construct the Simulators proving the security of our protocol. This is one of
the few protocols in which quantum rewinding is explicitly used and therefore provides a good example
of how and when these techniques should be applied. The proof of Theorem 4.1 informally works as
follows:

61

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Proof of Theorem 4.1 (Sketch) The Theorem is proven by considering the two malicious cases
separately.

Simulator against Malicious Receiver. It receives from the Ideal Functionality the message and state
that it needs to make the Receiver accept as valid (however it does not know the proof for this state). It
generates on its own s− 1 states, messages and proofs and sends all states and messages to the Receiver,
applying a permutation to hide the position of the ideal state. The Receiver chooses one of the states
and requests the proof for the remaining ones. If it has chosen the ideal state, then the Simulator can
go through and send the proofs for the other states (the ones that it has generated). The Receiver can
check these states and due to the key-indistinguishability cannot deduce that the remaining (ideal)
state has not been generated in a similar manner (using the same key). However, if the Receiver has
not chosen the ideal state, the Simulator cannot continue its simulation and is forced to rewind the
Adversary, choose a different permutation and repeat until the ideal state has been chosen. This is
made possible by using the oblivious rewinding technique of [130] as the probability of succeeding in the
simulation is constant and independent of the internal state of the Adversary (the simulation succeeds if
the Adversary picks the ideal state as unchecked, which happens with probability 1/s).

Simulator against Malicious Sender. The Simulator against a Malicious Sender receives all the states
and messages from the Adversary. Its task is to send a message and a proof to the Ideal Functionality.
These elements should correspond to the state and message and state chosen as unchecked. It therefore
faces a seemingly impossible task: the Adversary will not send the proof for the unchecked state and
message, but the Simulator needs to forward precisely this proof to the Ideal Functionality. This is
solved by making use of the special rewinding technique of [127, 129]. The Simulator runs the Adversary
and picks one state and message as unchecked, receives the corresponding proofs. It then rewinds the
Adversary and chooses a different state and message as unchecked, again receiving the proofs. It now has
all the proofs and can send the correct one to the Ideal Functionality. Since, in the Stand-Alone Model of
security, each classical interaction is modelled as a measurement, in general this procedure is not possible
because the first classical interaction will have disturbed the state of the Adversary: being able to repeat
this with no restrictions is equivalent to cloning the Adversary’s internal state, which is impossible in
the quantum case. This forces us to put an additional constraint on the CC-able states and messages:
measuring the quantum register containing the message should be equivalent to having measured both
the message and the proof (a stronger version would be to require each correct proof to be uniquely
determined by the corresponding message). This is captured by the Collapsing Proofs Definition 4.4 and
implies that the internal state of the Adversary is minimally disturbed by revealing the proofs, allowing
the Simulator to rewind it.1 We also give in Section 4.2.5.2 a new characterisation of the distance
between the ideal and real states (ie. with and without rewinding), while previous works [127, 129] are
only concerned with linking the probability that a player succeeds twice in a game to the probability
that it succeeds once.

�

Section 4.3: Exponentially-Secure Fraction Classical Cut-and-Choose. In this section, which
is mostly independent of the rest of this chapter, we show a formalisation of the Classical Cut-and-Choose

1Notice that the previous rewinding technique of [130] does not work as it does not allow the Simulator to keep
information between rewinds beyond the fact that it has succeeded or failed the simulation, hence the name oblivious
rewinding.

62

4.1. MOTIVATION AND OVERVIEW OF RESULTS

technique where a fraction of the sets are checked and the rest are transmitted. The ideal scenario in
this setting guarantees that at most a fixed fraction of the forwarded sets have been corrupted. As
above, the Receiver does not receive proofs that the received messages are correct and does not know
even which ones would pass a test. This version of Cut-and-Choose is useful in the case where an outer
protocol is capable of naturally recovering from a fraction of incorrect results by using some form of
classical error-correction. The most often used technique is to perform a majority vote over the remaining
messages, in which case the corrupted fraction can be as high as 1/2 without impacting the final result.

In order to demonstrate an alternative to the proofs of security of CC presented in the previous
section, we define the ideal scenario as the Send Blind Correct Fraction of Messages Ideal Resource 18
in the fully composable Abstract Cryptography framework of [99]. The number of transmitted messages
and the maximal fraction of incorrect ones are both hard-coded inside this Resource in the sense that it
expects a given number of message from the Sender’s interface if malicious, and correct proofs for a given
fraction of these messages. Rewinding is forbidden in such composable frameworks and we therefore must
adapt the conditions for applying the Fraction Classical Cut-and-Choose Protocol so that simulation
remains possible. In addition to the Key-Indistinguishability property which is still required, we use
a setup assumption which gives the Simulator access to a trapdoor with which to open any message
(Trapdoor Extractability, Definition 4.10). The setups used by the protocol and the simulation must then
be indistinguishable, a property captured by the Indistinguishable Dual-Mode Setup Definition 4.9. The
classical Sender and Receiver algorithms that satisfy these three properties are then called F-CC-able
(Definition 4.8). Note that we do not deal with leaks here for simplicity’s sake.

Given these definitions and after the trusted setup has been executed, the Fraction Classical Cut-and-
Choose 8 has the Sender produce s messages, the Receiver chooses a subset to check and receives the
proofs, aborting if any message fails the test. In order for the protocol to be simulatable in polynomial-
time, choosing the subset of checked sets is done via a call to a Coin-Tossing Resource. The trusted setup
is modelled by a Common Random String Resource (CRS). The security is captured by the following
informal Theorem 4.2:

Theorem 4.2 (Security of the Fraction Classical Cut-and-Choose, Informal). If the messages are
F-CC-able, the FC-CC Protocol 8 ε-securely constructs the Send Blind Correct Fraction of Messages
Resource 16 in the Abstract Cryptography of [99] against Malicious Receiver and Sender, for a negligible
security bound ε.

Proof of Theorem 4.2 (Sketch) Simulator against Malicious Receiver. It receives from the Ideal
Resource f messages that it needs to make the Receiver accept, without the corresponding proofs. It
generates on its own k = s− f messages and proofs and sends all states and messages to the Receiver
after mixing them together. It impersonates the Coin-Tossing Resource and sends to the Receiver the
check subset corresponding to the simulator-generated ones, along with the associated proofs. These
messages pass the test and the Distinguisher is fooled by the Key-Indistinguishability property.

Simulator against Malicious Sender. The Simulator must send f messages to the Ideal Resource,
along with proofs for at least h of them. It impersonates the CRS Resource performing the trusted setup
and generates a trapdoor for itself. The Simulator then receives s messages from the Adversary. It sends
a random check subset to the Sender via the Coin-Tossing Resource and receives proofs in return. If all
the checks pass, it uses the trapdoor on the remaining messages to extract their proofs. If less than h

63

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

proofs are valid, the simulation fails as the Adversary has successfully attacked the protocol. Otherwise
the Simulator forwards these to the Ideal Resource.

�

Beyond this formalisation, we derive for each maximal fraction of corrupted sets the optimal fraction
of tests that need to be performed to minimise the security bound of our protocol. Rather counter-
intuitively, for the case mentioned above where a majority vote is applied in the end, this gives an
optimal fraction of tested sets of 3/5, as opposed to the usually used 1/2. All protocols relying on this
technique can automatically benefit from improved bounds by simply switching to this new value. Finally
we prove that improving the error-correcting procedure of the outer protocol also improves the security
bound, implying a lower number of sets generated during the FC-CC Protocol for a fixed security level.

Section 4.4: Protocol Compiler. While the Stand-Alone Security Framework of [66] ensures that
any protocol that is proven secure can also be sequentially composed with any other, we also give a
Protocol Compiler which uses the Quantum Cut-and-Choose technique to boost the security of protocols
satisfying certain constraints. This is again completely orthogonal to existing approaches as they study
the applicability of this procedure on a case-by-case basis. The Compiler is required here since we are
effectively combining different executions of a protocol, each execution will be linked to a set that will
be used in the Q-CC Protocol. The sequential composability property of the Stand-Alone Framework
only guarantees that using Q-CC as a sub-protocol in a larger protocol preserves security, not that it
can be used to merge executions of other protocols to amplify the security.

We start by introducing a new type of Adversary called Semi-Malicious since they may deviate in all
steps of the protocol apart from a certain number of classical message which they generate in a manner
which is indistinguishable from an honest player. Proving security against these Adversaries is much
easier than against fully Malicious ones. Our Compiler takes care of automatically upgrading the security
of these protocols by enforcing the honest generation of these messages even against a fully Malicious
Adversary. This can be used for example to secure future messages in the protocol which rely on the
state generated through the Quantum Cut-and-Choose procedure. These may be instructions regarding
how the state should be used later on in a computation, whether it is the description of measurement or
unitaries to be applied which may depend on future interactions, or classical post-processing of quantum
computations. It allows the protocol to thwart malicious strategies in which the Adversary is forced to
produce a correct state by the Quantum Cut-and-Choose procedure but can then adaptively cheat in by
giving false instructions (in which case certifying the correctness of the state is rendered meaningless).

The Compiler essentially works by making the Sender pre-compute all possible values of the message
to be secured (those for which the Semi-Malicious Adversary is honest) and commit to these pre-computed
messages. These commitments can then be tested by the Receiver (the opening value serves as the proof).
The protocol is then run s times until the Q-CC step, then the Q-CC procedure takes place and the final
steps of the protocol are only run on the unchecked instance. There is of course a trade-off between the
complexity of pre-computing a large number of messages and the power of the Semi-Malicious Adversary.
We prove that the Compiler preserves all correctness (Lemma 4.6), verifiability (Lemma 4.7) and security
properties (Lemmata 4.9 and 4.8) of the original protocol and effectively boosts the security of the
protocol from Semi-Malicious Senders to fully Malicious ones (Lemma 4.10).

64

4.1. MOTIVATION AND OVERVIEW OF RESULTS

Naturally, not all protocols can undergo this transformation and we give a set of conditions for it to
be applicable. The non-trivial nature of these restrictions, even in the case of 1-out-of-s Q-CC (which is
usually considered the “simple” one), shows that this technique is still widely understudied with regard
to its general applicability.

Section 4.5: Compiler Application to Secure Two-Party Computation. We then showcase
the capabilities of the aforementioned Q-CC technique and more specifically the Compiler by boosting
the security of a protocol for Two-Party Quantum Computation with classical inputs and quantum
outputs based on the VBQC Protocol of [78] and the QYao Protocol of [77].

We prove that this protocol is computationally-secure against a Semi-Malicious Client (Lemma
4.11). The Server on the other hand can already be fully Malicious and computationally unbounded
(Lemma 4.14). Since it also fulfils all requirements for the application of the Compiler (Theorem
4.7), the compiled protocol is therefore also unconditionally secure against a Malicious Server and
computationally-secure against a Malicious Client (with an inverse-polynomial security bound due to
the use of Q-CC). The proof of security against Semi-Malicious Adversaries is particularly simple (close
to the Honest-but-Curious setting), which goes to demonstrate the power of our Compiler.

Our protocol crucially differs from [44, 45] in a number of points (other than using the Quantum
Cut-and-Choose technique): (i) there is only two rounds of quantum communication,2 one of which may
be done offline (i.e. before choosing the inputs to the computation); (ii) only one party (called the Server)
needs involved quantum technological abilities, while the other (called Client) only needs to prepare
single qubits offline and decode Quantum One-Time Pads in the case of quantum outputs; (iii) minimal
classical cryptographic primitives are required, namely 1-out-of-2 String Oblivious Transfers for input
bits and quantum-safe Bit Commitments (compared to a full classical Secure Two-Party Computation
primitive); (iv) these primitives can be readily instantiated to preserve the statistical security of the
Client given by the protocol of [78].

Related Works. The field of classical Secure Two (and Multi) Party Computation started with Yao’s
paper [135], which was proven secure against Malicious Adversaries in [61] using generic Zero-Knowledge
Proofs and in [88] with the Cut-and-Choose technique. Covert Adversaries were introduced in [11] where
again the Cut-and-Choose technique was used to achieve an even more efficient protocol. Yao’s Protocol
has been used for a number of other functionalities, such as constructing non-interactive verifiable
computing [55].

In the early days of quantum computation, researchers believed that quantum properties could lead
to a breakthrough and achieve, with unconditional security, several (classical) multi-party cryptographic
primitives. However a series of no-go theorems, first proving that Bit Commitment is impossible [95, 100],
then Oblivious Transfer [93]. In the end, [121] showed that any non-trivial ideally-realised functionality
leaks some information to Adversaries. Since then, it is established that any such protocol is either
only computationally secure or requires the existence of certain (quantum secure) simple cryptographic
primitives. In the fully composable setting, the question of completeness and feasibility of functionalities
using quantum protocols, both in the computational and statistical case, has been closed by [126, 49, 42].

2Only one in the case of classical outputs.

65

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Send Blind Correct
State Functionality

Compiler

Strong 2PQC
Protocol

CP Maps

Q-CC
Protocol

Abstract
Protocol

Weak 2PQC
Protocol

Oblivious
Transfer

Bit
Commitment

VBQC

• Key-indistinguishable
• Extractable
• Proof-collapsing
• Leak-Verifiable

Secure against malicious:
• Sender !(1/ %)
• Receiver (negligible)

Secure against:
• Semi-Malicious P1

• Malicious P2

• Pre-Computable
• CC-Compatible Sim
• CC-Specious Sim

• Perfect Hiding
• Collapsing

Secure against malicious:
• Computational Client
• Unbounded Server

• Blind to Server
• Verifiable for Client

• Boosted Security
against P1

• Preserves Other
Properties

Secure against malicious:
• Comp Sender !(1/ %)
• Uncond Receiver (negl)

D1

P6

F15T3

P8

D11

D13

T5

P10

C1+2

T6+7

Section 4

Section 5

Section 2

Figure 4.1: Links between Sections 4.2, 4.4 and 4.5 for the Quantum Cut-and-Choose. Protocols (P),
Ideal Functionalities (F) and the Compiler (C) are represented in blue, Definitions (D) are coloured
orange and properties of protocols given by Theorems (T) are in green. Only new concepts are numbered.

66

4.1. MOTIVATION AND OVERVIEW OF RESULTS

Send Blind Correct
Fraction Resource

Algorithms

FC-CC
Protocol

• Key-indistinguishable
• Trapdoor Extractable
• Proof-collapsing

Secure against malicious:
• Sender (negligible)
• Receiver (negligible)

D8

F17T4

Section 3

Coin-Tossing
Resource

CRS
Resource

P7

Figure 4.2: Structure of Section 4.3 for the Fraction Classical Cut-and-Choose. The same notations are
used as in the previous figure.

Closely related is the question of what assumptions are required if one wants to perform a secure
quantum computation involving multiple parties. The case of 2PQC was considered in [44] for Quantum
Honest-but-Curious and in [45] for Malicious Adversaries. Both of these required a fully-general classical
Secure Two-Party Computation primitive to construct the protocol. The case of multiple parties was
addressed in [14, 30] where an honest majority is required. More recently, [40] extends [45] to multiple
parties while tolerating a dishonest majority.

The 2PQC Protocol of Section 4.5 uses as basis the Measurement-Based Quantum Computation
model (MBQC) [118], and more precisely the Universal Blind Quantum Computation Protocol [21] and
its verifiable variant [53, 78]. Based on these protocols, [77] gives a 2PQC Protocol against weak Specious
Adversaries, while Secure Multi-Party Computation is addressed in [76], again in a restricted setting
(non-collusion restriction between a subset of the parties). However, blind and verifiable protocols exist
also in the teleportation model [20] or measurement-only model [67] and the question of the existence of
2PQC or MPQC protocols in those frameworks could be similarly explored.

Regarding the problem of proving a player’s honesty (or at least mitigating the effects of dishonest
behaviour), in Appendix D of [45] they present a technique which appears similar to Q-CC at first
glance: to certify the correctness of the magic states

∣∣+π/4
〉
used during the protocol, one party sends

many to the other which tests a constant fraction of them and, if the checks pass, uses magic states
distillation on the remaining ones to produce a state exponentially close to a magic state. The main
difference is that the receiver knows which state it is supposed to receive whereas in our scheme the
remaining state can be unknown. It is unclear whether a similar quantum post-processing would work
with unknown states (even if restricted to a known subset of states).

A tightly-connected yet opposite issue is to prove knowledge about a quantum state to a party which
possesses only a single copy of this state. This has been studied in [1] where they show that such a task
is impossible without leaking information to the party in possession of the state. They prove the security

67

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

of a relativistic protocol that works for qudits3 of large dimension, secure against a limited Sender and a
unrestricted Receiver. We show here that a similar task is achievable if the Sender is allowed to make
multiple independently generated versions of states that all satisfy a given property.

Remark on Notations. The Semi-Malicious Adversary that is defined later in this work is not
related to other definitions of Semi-Malicious Adversaries. Other works starting with [10] consider
an Adversary to be Semi-Malicious if they behave as an honest participant but may sample their
randomness from different, potentially adversarially chosen, distribution. Our work however defines
Semi-Malicious Adversaries as being able to deviate arbitrarily but only for a subset of the steps of the
protocol. Furthermore, the Cut-and-Choose Protocol that we discuss here is not to be confused with
the Cut-and-Choose primitive that appears in [49, 42]. There, one player inputs a bit x and the other
chooses using a bit c whether to receive the bit x or pass (receiving nothing in that case), while the first
player gets the choice bit c.

4.2 Inverse-Polynomial Quantum Cut-and-Choose

We start by defining formally the various objects and algorithms that are required for performing a
Q-CC Protocol, then define properties that restrict the behaviour of these elements so as to guarantee
the correctness and security of the Protocol. The Q-CC Protocol and the Send-Blind-Correct-State Ideal
Functionality that it emulates are presented next, followed finally by the proof of inverse-polynomial
security against Malicious Sender and full security against Malicious Receiver. The security notion used
in this chapter is the Stand-Alone Model of [66] described in Section 3.3.1 and more specifically its
two-party setting. These two parties are noted S/P1 (Sender/Client) and R/P2 (Receiver/Server).

4.2.1 Formalising the Moving Parts of Quantum Cut-and-Choose

Let C ∈ {0, 1}∗ be a public string, with #C = poly(η) (C may for example describe the outer protocol or
computation4 that both players would like to perform later on the state, or any other public information
shared by both players), Dsk(η,C) a publicly known secret key distribution and I the classical input
space. The distinction between the secret key and the input is that the first is only used in the Q-CC
Protocol while the second one may be reused in the outer protocol as well (see Definition 4.5 below).

Let SC and RC be QPT-machines (or equivalently, efficient CP-maps) corresponding to respectively
the state generation (or Sender) and verification (or Receiver) algorithms, whose inputs and outputs
are defined as follows. Upon input sk sampled from Dsk(η,C) and inp ∈ I, SC (sk, inp) produces a
set (X ,msk, proof sk, infosk), where X is a quantum register containing a state |ψsk〉 and the rest are
classical messages. As mentioned previously, (infosk contains any additional information produced
during the state generation process which is not needed for verifying the state and message). On input
(X ,m, proof) of correct size (otherwise the output is always 0), RC (X ,m, proof) produces b ∈ {0, 1}. By
convention, the value for correctly prepared states is b = 1.

An outer protocol may rely on parts of the proof for future computations. In order to consider the
most general application, the Receiver should therefore be authorised to ask adaptively for leaks of parts

3A qudit is a generalisation of a qubit where the state can be in superposition over d basis state, instead of |0〉 and |1〉
for a qubit.

4We call any protocol using Quantum Cut-and-Choose as a subroutine an outer protocol.

68

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

of the proof. This explicit treatment of leaks allows us to finely characterise which parts of the proof
can be revealed without breaking the Sender’s security in the Q-CC Protocol. Let N = #proof sk be
the number of formal messages contained in (an honestly generated) proof sk and let LC ⊂ ℘(N) be the
tolerated leakage set (where ℘(N) is the power set of [N]). The Receiver is allowed to ask for leak ∈ LC ,
at which point the Sender chooses an element l ∈ leak and sends back proof sk,l, which is the lth formal
message contained in proof sk. This choice is dependent (in the honest case) on the outer protocol that
uses Q-CC as a subroutine and is modelled as a polynomial-time classical deterministic algorithm LC

which, given leak, sk, inp, m, proof and info, returns the aforementioned index l (which may also be
equal to ⊥ in case of an invalid leak request). Essentially, if there is no leak ∈ LC and l, l′ ∈ leak such
that proof sk,l and proof sk,l′ are leaked in the same execution, then the protocol is guaranteed to remains
secure. This leakage model is fully general as more complex behaviour can be defined by incorporating
it in the leakage choice function LC .

Intuition about States, Messages and Proofs. The presentation is purposefully kept very general
so as to encompass a wide variety of situations. As an example, in the context of a state and message in
the outer protocol, the state may be used in a later round for computations with the message containing
instructions, encrypted or not, specifying which operations should be applied to it. Intuitively the proof
reveals a lot of information about the state since it allows the Receiver to verify that it is correct (and it
may be impossible to do so without it, since otherwise the Q-CC Protocol is not needed if the Receiver
can test this in another way), but the Sender may not want to give this information to the Receiver
since revealing it may compromise its security once this state is used later.

If msk contains in fact committed instructions, the Sender can use them to drive the computation
by opening the corresponding opening information in proof sk based on the transcript that it receives
from the Receiver (this is one example of permitted leakage). This allows for interactivity based on the
state and the message in a larger protocol as opposed to other approaches which do not require this
interaction (see for example [88] in the case of Yao’s Protocol).

4.2.2 Constraints on the Sender and Receiver CP-maps

The various elements presented above must satisfy four properties presented below in order to be
admissible in the Quantum Cut-and-Choose protocol. The first two are required for the protocol to be
correct, while the last two deal with the security against Malicious players. The CP-maps are then called
Cut-and-Choosable (or CC-able).

Definition 4.1 (Cut-and-Choosable CP-maps). We say that CP-maps SC and RC are Cut-and-
Choosable if, for all sk ← Dsk(η,C) and inp ∈ I, the sets produced are:

• Extractable (Definition 4.2);
• Leak-verifiable (Definition 4.3);
• Proof-collapsing (Definition 4.4);
• Key-indistinguishable (Definition 4.5, either computational or statistical).

First of all, it must be possible to extract efficiently the classical description of the state from the
message and proof. The extraction algorithm EC verifies deterministically the message using the proof

69

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

and, if the check passes (i.e. the output of this algorithm is not ⊥), outputs the classical description of
the state that was contained in (m, proof). For correctness to hold, if the state and message are honestly
generated then this must correspond to the classical description of the corresponding honestly generated
state.

Definition 4.2 (Extractability). The sets produced by the Sender CP-map are said to be extractable if
there exists a deterministic algorithm EC that, upon inputs (m, proof), outputs ψ ∈ {0, 1}∗ ∪ {⊥} such
that EC (msk, proof sk) = ψsk for honestly generated (X ,msk, proof sk), i.e. with X containing the state
|ψsk〉.

We suppose without loss of generality that all classical checks are performed by this extraction
algorithm (it outputs ⊥ if these checks fail, regardless of whether a classical description of a state can
be extracted). This then allows us to fix the behaviour of RC , given (X ,m, proof), as follows:

• It uses EC and obtains ψ. If ψ = ⊥ then RC outputs b = 0 and stops.
• RC applies a projective measurement defined by {IX − |ψ〉〈ψ| , |ψ〉〈ψ|} on register X and returns

the output of the measurement (the first outcome being associated to bit-value 0 and the second
to 1).

A consequence of Definition 4.2 is that for all quantum polynomial-time Senders S∗C (sk, inp,Zaux)
generating (ρ∗,m∗, proof ∗), we have Pr[RC (ρ∗,m∗, proof ∗) = 1] = 1− ε if and only if there exists a state
classically described by ψ such that Pr [RC (|ψ〉 ,m∗, proof ∗) = 1] = 1 and ρ∗ is at least ε-close to |ψ〉.
Such pairs (m∗, proof ∗) are called classically-accepting since they pass the deterministic checks from
EC . This in turn implies that for all sets (X ,msk, proof sk) honestly generated via SC , we always have
RC (X ,msk, proof sk) = 1.

The next definition enforces that the Receiver is capable of verifying on its own that any leak that
it receives from the Sender actually corresponds to the message and state that they have obtained
previously for a given index. If it is not satisfied, then the leakage is useless since a Malicious Sender
could send anything instead of the requested leak.

Definition 4.3 (Verifiable Leakage). The sets produced by the Sender CP-map are said to have verifiable
leakage if there exists a deterministic, polynomial-time classical deterministic algorithm VC which, upon
input (m, p, i), for all i ∈ [N] such that there exists leak ∈ LC with i ∈ leak, returns 1 if and only if
there exists proof such that (m, proof) is classically-accepting and proof i = p.

In order for the proof of security against Malicious Sender to go through, the proof for all correctly
generated messages and states must be close to unique. This is defined in the quantum case through a
property called collapsing, as formalised in the next definition using the concept of collapsing relations
(Definition 3.3). Essentially, it captures the fact that a computationally-bounded Adversary is not able
to distinguish whether a quantum register containing the proof for a known message has been measured
in the computational basis of not (meaning that the state of this register was close to one which had
already been measured).

Definition 4.4 (Collapsing Proofs). Let EC be the extractor algorithm as defined above, and M,P be
the sets from which the honest messages and proofs are respectively drawn. The relation R is the subset

70

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

of classically-accepting messages and proofs, defined by (m, proof) ∈ R⇔ EC (m, proof) 6= ⊥. Then the
CP-map SC is said to have εc-collapsing proofs if relation R is εc proof -collapsing given m.

Finally, no Distinguisher should not be able to determine whether a given state |ψ〉 and message m
were generated using the same secret key as other messages and states. This should hold even when it has
access to the proofs for those other messages and states, some limited leakage about the proof associated
with (|ψ〉 ,m) and the additional information info. We define this formally in the statistically-secure
regime in Definition 4.5, the computational variant is obtained by restricting the Distinguisher to being
a QPT machine.

Definition 4.5 (Statistical Key-Indistinguishability). We say that the CP-maps are statistically key-
indistinguishable if, for any Distinguisher D∗C , the wining advantage of the Distinguisher εk(η) in the
following game is negligible in η:

1. The Distinguisher chooses inp0 ∈ I and sends it to the Challenger.
2. The Challenger samples sk0 ← Dsk(η,C) and sk1 ← Dsk(η,C), along with inp1 ∈R I chosen

uniformly at random.
3. The Challenger samples a bit b ∈R {0, 1} uniformly at random and produce honestly two sets:

(X 0,m0
skb
, proof 0

skb
, info0

skb
) using (skb, inpb) and (X 1,m1

sk1
, proof 1

sk1
, info1

sk1
) using (sk1, inp1).

4. The Challenger sends (info0
skb
,X 0,m0

skb
) and (X 1,m1

sk1
, proof 1

sk1
) to the Distinguisher.

5. The Distinguisher sends {leaki}i to the Challenger (with leaki ∈ LC and leaki 6= leakj for
all i 6= j). For all i, let li := LC (leaki, skb, inpb,m

1
skb
, proof 1

skb
, info1

skb
). If li 6= ⊥, the Challenger

sends proof 0
skb,li

to the Distinguisher.
6. The Distinguisher outputs a bit b′ and wins if b′ = b

Comments on Key-Indistinguishability There are protocols which do not satisfy the property
of key-indistinguishability and yet may nevertheless be used in the Q-CC Protocol, but for which the
security and composability must to be proven independently (typically if a secret key is used in the
creation of all messages and states but is also reused later without being revealed, such as the signing
key of a signature scheme).

When combined with collapsing-proofs, Definition 4.5 automatically imposes that two activations of
the CP-map SC (sk, inp) do not produce the same state-message pair, up to negligible probability.5

If using a trusted setup such as a Common Reference String for C , key-indistinguishability can be
defined using a trapdoor to generate the second set in the case b = 1. The presentation above is chosen
so as to keep the presentation in the Plain Model with no setup assumptions.

Note as well that we do not impose on the messages to not contain any information about the state,
only that giving additional opened messages does not procure more information to the Distinguisher.

4.2.3 The Quantum Cut-and-Choose Ideal Functionality and Protocol

The Send-Blind-Correct-State fsend Ideal Functionality is presented in Ideal Functionality 16. It certifies
to the Receiver that a quantum register X and a message m were prepared and sent correctly without

5 There are no guarantees about the adversarial advantage in this game if the Adversary has access to the full proof
for the first set, which, due to collapsing, would be the case if the same first message is produced twice.

71

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

revealing the proof (for example, the classical description of the state) that would allow it to check it on
its own.

Ideal Functionality 16 Send Blind Correct State
Inputs: The honest Sender sends inp ∈ I and the Receiver sends a dummy input λ to the Ideal
Functionality. A corrupted Sender may send any (m, proof) of its choice.
Computation by the Functionality:

• If the Ideal Functionality receives inp ∈ I from the Sender:
1. It samples sk ← Dsk(η,C) and runs SC (sk, inp), obtaining (X ,msk, proof sk, infosk).
2. It sends (X ,msk) to the Receiver and (msk, infosk) to the Sender.

• If the Ideal Functionality receives (m, proof) from the Sender:
1. The Ideal Functionality computes ψ = EC (m, proof). If ψ = ⊥ (i.e. if the set (m, proof) is

not classically accepting), it sends Corrupted to the Sender and Receiver.
2. Otherwise it initialises a quantum register X with |ψ〉 and sends (X ,m) to the Receiver.

• If it has not sent Abort or Corrupted and LC 6= ∅ then it initialises leak to the empty sequence
(representing the set of leak requests).

Each leakage request is treated as separate Ideal Functionality call which inherits an internal state
from the previous one (using sequential composability). It allows the Receiver to ask (potentially
adaptively) for additional information (parts of the proof) about the state and message if some leakage
is allowed.

Ideal Functionality 17 Proof Leakage
Inputs: The Receiver sends leak request req ∈ LC .
Leakage by the Functionality:

• If req ∈ LC with req /∈ leak, it sends req to the Sender (otherwise it sends Abort).
• If the Sender is honest it sends a dummy input and the Ideal Functionality computes the

value l := LC (req, sk, inp,msk, proof sk, infosk). It updates leak to leak∪{req} and sends (proof l, l)
to the Sender and the Receiver. If l = ⊥, it sends ⊥ to both parties.

• If the Sender is Malicious, it sends l ∈ req to the Ideal Functionality, who sends (proof l, l) to the
Receiver. The Sender can also choose to send Corrupted, which is then forwarded to the Receiver.

Note that the Ideal Functionality does not return the full proof sk to the honest Sender as doing so
would prevent the construction of a Simulator later on (as it would give too much information to the
Distinguisher and break Definition 4.5). This is also the reason for treating the leaks as part of the Ideal
Functionality: if it were to give proof sk to the honest Sender then there would be no point for it to
handle the leaks thanks to the verifiable leak property of CC-able maps (Definition 4.3).

Protocol 7 corresponds to the Q-CC Protocol realising Ideal Functionalities 16 and 17. Its correctness
follows directly from the Extractability property of CC-able CP-maps (Definition 4.2). We study the
security of the protocol in the next Section.

4.2.4 Security of the Quantum Cut-and-Choose Protocol

Theorem 4.3 states the security properties of Protocol 7. We first prove the security against a Malicious
Receiver with negligible bounds and then the security against a Malicious Sender with an inverse-

72

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

Protocol 7 Quantum Cut-and-Choose
Inputs: The Sender has input inp ∈ I. The Receiver has no input.
Protocol:
1. The Sender samples sk ← Dsk(η,C).
2. The Sender then runs s times SC (sk, inp) and obtains

{
X i,mi

sk, proof isk, infoisk
}
i∈[s].

3. The Sender sends all s labelled quantum registers
{
X i
}
i∈[s] and messages

{
mi
sk

}
i∈[s] to the

Receiver.
4. The Receiver chooses uniformly at random an index α ∈R [s] and sends it to the Sender.
5. The Sender sends proof isk for all i 6= α to the Receiver.
6. The Receiver checks that all received triplets (X i,mi

sk, proof isk) are of the correct format,
otherwise it outputs Abort. It then computes bi = RC (X i,mi

sk, proof isk) for all i 6= α.
7. If there exists i 6= α such that bi = 0, the Receiver sets its output to Corrupted and sends it to

the Sender.
8. If LC 6= ∅, the Sender initialises leak, representing a (for now empty) set of leak requests.

Leaks:
1. The Receiver sends leak request req ∈ LC with req /∈ leak to the Sender.
2. The Sender computes l := LC (req, sk, inp,msk, proof sk, infosk). It updates leak ← leak ∪ {req}

and sends (proof l, l) to the Receiver. If l = ⊥, it sends ⊥ to the Receiver.
3. The Receiver computes bRl := VC (mα, proof l, l) and outputs Corrupted if bRl = 0.

Outputs: If neither party has set their output to Corrupted or Abort, the Sender’s output is the
set
(
mα
sk, infoαsk,

(
proof αleaki

)
i
, leak

)
while the Receiver’s output is

(
Xα,mα

sk,
(
proof αleaki

)
i
, leak

)
.

polynomial bound. Technical details regarding the quantum rewinding techniques used in these proofs
are deferred to the next subsection.

Theorem 4.3. Let SC and RC be CC-able CP-maps (Definition 4.1) with negligible key-distinguishing
advantage εk (Definition 4.5) and negligible the collapsing-proof advantage εc (Definition 4.4). The Quan-
tum Cut-and-Choose Protocol 7 realises Send-Blind-Correct-State and Proof Leakage Ideal Functionalities
O(sεk)-securely against a Malicious Receiver (computational or statistical depending on the variant
of key-indistinguishability) and 1/

√
s + O(sεc)-securely against a computationally-bounded Malicious

Sender.

Proof of Security against Malicious Receiver The Simulator against an adversarial Receiver has
single-query access to an oracle Ofsend which implements the Send-Blind-Correct-State fsend Ideal
Functionality and works as described in Simulator 1 below. If the Adversary sends Abort at any step, it
is forwarded to the Ideal Functionality. After stopping, the Simulator outputs whatever the Adversary’s
output is.

We start by using the key-indistinguishability of CC-able CP-maps (Definition 4.5) to transform the
interaction during simulation using a series of hybrid arguments into one where all the sets are generated
using the same key chosen by the Ideal Functionality. The distinguishing advantage between this new
simulation and the previous one is (s− 1)εk.

We can now analyse the effect of rewinding on the Adversary’s state in this transformed interaction.
It should be noted that no information is kept between rewinds as it is only used to ensure that the
Adversary is forced to pick the set given to the Simulator by the Ideal Functionality as the evaluation
set (as opposed to a checked set). The success probability of the step in the simulation that requires

73

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Simulator 1 Q-CC Malicious Receiver

1. The Simulator calls the Ideal Functionality with dummy input λ. It receives as a result (X ,msk)
(with X being a quantum register containing |ψsk〉), generated by the Ideal Functionality using
the honest Sender CP-map SC for a secret key sk chosen by the Ideal Functionality and input inp
chosen by the honest Sender.

2. The Simulator sets (X 1,m1) := (X ,msk).
3. The Simulator samples a secret key sk′ ←− Dsk(n,C) and inp′ uniformly at random from I. It

then runs SC s− 1 times to get
{
X i,mi

sk′ , proof isk′
}
i∈{2,...,s}.

4. It chooses a random permutation π over [s] and applies it to the classical communication registers
of the Adversary and to

{
X i
}
i∈[s]. Let α = π(1). The registers

{
X i
}
i∈[s] are then treated as

internal registers of the Adversary (it has received the state). After that it applies the next unitary
corresponding to the activation of the Adversary R∗{

mi
ski

}
i∈[s]

as in any other round.

5. It measures the classical communication register C of the Adversary using a projective measurement
defined by {|α〉〈α| , IC − |α〉〈α|}.

6. If the result of the previous measurement is 1 (the Adversary has not chosen α as the index of the
unchecked state-message set) it rewinds the simulation to before step 4 (it applies the inverse of the
Adversary’s activation unitary and the inverse of the permutation), picks a different permutation
and repeats the previous steps.

7. Otherwise (if the Adversary has chosen set α) the Simulator sends proof isk′ for i 6= α to the
Adversary. These correspond to correctly prepared sets and thus all checks pass.

8. During the second part of the execution, it transmits whatever leak the Adversary requests to the
Ideal Functionality and relays any message from the Ideal Functionality back to the Adversary,
until it either receives Corrupted from the Ideal Functionality or End from the Adversary, at which
point it returns whatever the Adversary outputs and stops.

rewinding, as proven in Lemma 4.2, is p = 1/s, which is constant and independent from the internal
state of the Adversary. The oblivious quantum rewind technique from [130] is therefore applicable for
this step of simulation. After the rewinding procedure (once once the Adversary has chosen set α), we
have that 〈φ0(ψ)|ρ(ψ)|φ0(ψ)〉 ≥ 1− εrew where |ψ〉 is the state of the Adversary before this step, |φ0(ψ)〉
corresponds to the state after a successful simulation happening in one try while ρ(ψ) is the state at the
end of the rewinding process.

The expected number of rewinds is O
(

log(1/εrew)
p(1−p)

)
, which here gives O

(
s2

s−1 log(1/εrew)
)
for p = 1/s.

Here εrew should be negligible in η, so log(1/εrew) = O(η) is sufficient and O(ηs) rewinds are required.
More details may be found in Section 4.2.5.1.

Combining the distinguishing advantage due to key-indistinguishability and the one due to rewinding,
we get that the total distinguishing advantage of the Environment is at most (s− 1)εk + εrew. Setting
the rewinding cost to εrew = O(sεk) yields the desired result.

�

Proof of Security against Malicious Sender Recall that the Adversary has quantum registers for
its internal state and classical and quantum messages and that measurements are performed in the
computational basis for obtaining classical values. Without loss of generality, we separate the classical
messages and denoteMi the registers containing the CC-able messages and Pi the registers containing
the proofs (thenM :=

⊗
iMi and similarly for P). The Simulator against an adversarial Sender with

single-query oracle access to the Send-Blind Correct State Ideal Functionality is defined in Simulator 2.

74

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

If the Adversary sends Abort at any step, it is forwarded to the Ideal Functionality. After stopping, the
Simulator outputs whatever the Adversary’s output is.

Simulator 2 Q-CC Malicious Sender

1. It runs the first step of the Adversary S∗ and receives quantum registers
{
X i
}
i∈[s] and mes-

sages
{
mi
}
i∈[s] by measuring allMi.

2. It chooses an index α ∈R [s] at random. Then:
a) It runs the second step of the purified Adversary S∗α. By measuring the registers Pi for i 6= α,

it receives the values proof i for i 6= α.
b) It checks whether the sets i 6= α are correct using the Receiver’s checking algorithm RC , each

outputting bi. If there exists i such that bi = 0, it sets a flag corr to ⊥.
3. It rewinds the simulation by running the inverse of the second step of the Adversary (S∗α)†.
4. It then repeats the process described in the second step with a second index α′ ∈R [s] \ α:

a) It runs S∗α′ and receives proof ′i for i 6= α′ by measuring Pi for i 6= α′.
b) If there exists an index i /∈ {α, α′} such that proof i 6= proof ′i, the Simulator aborts.
c) It checks whether the set α is correct using the RC . If not, it sets corr to ⊥.

5. If corr = ⊥, it sends Corrupted to the Ideal Functionality and the Adversary and stops. Otherwise,
it sends to the Ideal Functionality (mα′ , proof α

′
) (it knows the proof for set α′ by measuring Pα′

after running S∗α.
6. For each leak-request (until it receives End from the Ideal Functionality, at which point it forwards

it to the Adversary and stops):
a) It forwards to the Adversary the request req received from the Ideal Functionality.
b) It receives from the Adversary (p̃, l), checks that p̃ = proof α

′

l and if so it sends l to the Ideal
Functionality. Otherwise it sends Corrupted to the Ideal Functionality and the Adversary and
stops.

Reduction of the Sigma-Protocol. The protocol has three rounds of communication: commitment
(sending the messages and states), challenge (choosing the random α) and response (sending the
corresponding proofs). Protocols of this form are called sigma-protocols. We analyse it in two stages,
similar to those applied in [129]. In the first part of the analysis, we use the collapsing proof property to
simplify the operations performed by the Simulator in a way that is computationally equivalent to any
Distinguisher. The second step applies the result from Section 4.2.5.2 to this simplified Simulator to
show that the operations performed up to and including step 4 are indistinguishable from the Q-CC
Protocol.

Recall that WA is the Adversary’s internal register and we assume that the Adversary has already
sent the states and messages. Therefore its operations act as identity on registers X i and the registersMi

can only classically control other operations after being measured. The Simulator can be written formally

75

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

as follows, with α and α′ chosen as above:

(4.1)

∀i,mi ←M(Mi);

S∗α(WAMP); ∀i 6= α, proof i ←M(Pi), ψi ← EC (mi, proof i), Mψi(X i); (S∗α)†(WAMP);

S∗α′(WAMP); ∀i 6= α′, proof ′i ←M(Pi), ψα ← EC (mα, proof ′α), Mψα(Xα);

okS ← (∀i /∈ {α, α′}, proof i = proof ′i) ∧ (∀i, bi 6= 0)

The simulation succeeds if okS is true. We operate the following transformations on the operations
above:6

1. We start by asserting that ∀i /∈ {α, α′}, proof i = proof ′i is true conditioned on the fact that ∀i, bi 6=
0. An Adversary that is able to provide two valid proofs for a given message would break the
proof-collapsing property (since such an Adversary can also prepare the quantum register containing
the proof with a superposition of these two proofs and trivially distinguish if it was measured or
not). The probability of this event is therefore bounded by (s− 2)εc and the acceptance condition
can be simplified to only test ∀i, bi 6= 0 at the same distinguishing cost.

2. After the measurement of the registers X i, we add a measurement MR on registers (X i,Mi,Pi)
defined by {RC , I−RC } where RC is a projector onto the subspace of correctly prepared states
{|ψ〉〈ψ| ⊗ |mp〉〈mp| | EC (m, p) = ψ 6= ⊥}. This does not affect the state since these registers have
already been measured right before this new measurement and are already either in or orthogonal
to the subspace above.

3. Seeing as the proof has been measured at this stage, the effect and result of measuring the
registers X i using Mψi or measuring (X i,Mi,Pi) using MR are perfectly identical. It is therefore
possible to remove the measurement Mψi and redefine bi as the output of measurement MR

on (X i,Mi,Pi). We write MR,α to indicate that the same operation is applied on all registers
i 6= alpha. This operation outputs a single bit ok =

∧
i 6=α b

i equal to 1 if and only if all checks pass.
4. Notice now that the value of ψi is no longer used, meaning that we can remove the call to the

algorithm EC .
5. Similarly to [129], MR and M(Pi) commute so we can reverse the order in which these operations

are performed: first check that the register Pi contains classically-accepting proofs and that the
states are correct and only then measure it in the computational basis. At this point, the operations
presented above are computationally-indistinguishable from:

(4.2)

∀i,mi ←M(Mi);

S∗α(WAMP); ok ←MR,α(XMP); ∀i 6= α, proof i ←M(Pi); (S∗α)†(WAMP);

S∗α′(WAMP); ok′ ←MR,α′(XMP); ∀i 6= α′, proof ′i ←M(Pi);

okS ← ok ∧ ok′

6Although similar to the ones presented in [129] in the proof of Theorem 43, our approach here is more general since
we need to show that the states are indistinguishable. In [129] they are only concerned not to alter the winning probability
of the Adversary and so some simplification do not apply in our case.

76

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

5. We can now use the collapsing-proof property to remove the measurement on registers Pi, incurring
a loss of 2(s−1)εc in the process. This is true for both measurements since the verification mapsMR,α

and MR,α′ , if they succeed, are equivalent to restricting to valid Adversaries. Furthermore, the
actions preceding both verifications by these maps can be incorporated in an Adversary’s behaviour
trying to distinguish whether the state has been measured. These therefore do not give more power
to the Distinguisher since it could have applied these operations itself in the distinguishing process.

6. At the end, we can add an operation (S∗α′)†(WAMP) since this can always be undone by a
Distinguisher later. We then get:

(4.3)

∀i,mi ←M(Mi);

S∗α(WAMP); ok ←MR,α(XMP); (S∗α)†(WAMP);

S∗α′(WAMP); ok′ ←MR,α′(XMP); (S∗α′)†(WAMP);

okS ← ok ∧ ok′

We define the projector Pα := (S∗α)†RC
αS∗α and the associated projective measurement MP,α =

{Pα, I− Pα}, the final operation can be written as:

(4.4) ∀i,mi ←M(Mi); ok ←MP,α(WAXMP); ok′ ←MP,α(WAXMP); okS ← ok ∧ ok′

We then apply the result of Lemma 4.3 which shows that, under the conditions of special soundness
(Definition 4.6, two transcripts are sufficient for the simulation) and computationally-unique responses
(Definition 4.7, equivalent here to proof-collapsing), the distance between the real protocol and the
simulation after the rewinding step is bounded by 1/

√
s, evading issues naive rewinding faces due to

no-cloning. In [127, 129] they only study the link between the probability that one measurement is
successful and the probability that two consecutive measurements are successful. In comparison, we
extend this result to show that if the second measurement is successful, then the resulting state is close
to the one obtained after only one measurement.

Leak Simulation. Finally, we argue that the behaviour of the Simulator during the leaks is indis-
tinguishable from the real case where the received leaks are verified using algorithm VC since at this
stage the Simulator has already measured the proof for index α′ without aborting. This means that
this proof is classically-accepting and therefore, if p̃ 6= proof α

′

l with p̃ valid for algorithm VC , then the
Sender would have found a collision for the message-proof relation. This would then also break the
proof-collapsing requirement of CC-able maps, which can happen with probability at most εc.

Total Distinguishing Advantage. By combining the reductions, rewinding and leaks, after tracing
out all but system α, the state at the end of the simulation is therefore 1/

√
s + O(sεc)-close to the

state at the end of the real protocol (where only s− 1 states are checked and the remaining one is not
measured).

�

77

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Remark that the failure probability against an adversarial Sender goes from 1/s classically to 1/
√
s+ε

in the quantum case. In the context of Σ-Protocols, [26] closes this gap that was left open in [127]. But
since they are mainly concerned with relating the success probability of the Adversary in two different
games this is not directly applicable here: in the same way that we extend here the result of [127] to the
distance between quantum states, the result of [26] – which is a direct improvement of [127] – would have
to be similarly adapted. We leave the possibility of transposing their techniques as an open question.

These proofs provide examples where proving security against a quantum Adversary is not a
straightforward translation of classical proofs, even for a fully classical functionality. It is not sufficient
to use cryptographic primitives resistant against quantum computers (e.g. based on LWE), but proof
techniques (and security parameters) must also be adapted. The part of the protocol that needs rewinding
may even be entirely classical if the state is classical and thus the same proof (and extra cost in the
case of the security against Malicious Sender) is necessary even for a fully classical CC protocol against
quantum Adversaries (for a single evaluation set such as in [11]).

4.2.5 Analysis of Quantum Rewinding

Both proofs presented in the previous section use a technique called rewinding. Classically the Sim-
ulator runs the Adversary internally and rewinds it by having black box access to the next message
function mi+1 = NM(aux,m1, . . . ,mi) where aux is the Adversary’s input and (m1, . . . ,mi) are previous
messages. It can then rewind the Adversary by saving all messages and sending them again, possibly
changing the last one, to obtain different the results for different branches of the Adversary’s program.
This is impossible in general in the quantum setting due to no-cloning (quantum messages cannot be
reused multiple times, nor the Adversary’s state copied to be run again). However, two techniques given
in [130] and [127] achieve a similar result, albeit with different additional constraints, and are applicable
to the Simulators for the Q-CC Protocol.

4.2.5.1 Watrous’ Oblivious Quantum Rewinding

We start by describing the setting required for using the oblivious quantum rewinding technique. Let Q
be a unitary representing an attempt at simulating for some cheating Adversary whose internal state is
in a pure state |ψ〉. Q is first applied to |ψ〉

∣∣0k〉 and then the first qubit of the resulting state is measured
in the computational basis to test whether the simulation succeeded or not. Let p(ψ) ∈ (0, 1) be the
probability that this measurement outcome is 0, which corresponds to a successful simulation (result 1
indicates failure and requires a rewind). There are unique unit vectors |φ0(ψ)〉 and |φ1(ψ)〉 such that:

(4.5) Q |ψ〉
∣∣0k〉 =

√
p(ψ) |0〉 |φ0(ψ)〉+

√
1− p(ψ) |1〉 |φ1(ψ)〉

Lemma 8 from [130] (restated here for completeness as Lemma 4.1) gives the conditions under which
it is possible to construct a CP-map that uses Q as a subroutine and outputs a state arbitrarily close
to |φ0(ψ)〉 for any initial state |ψ〉. It states that this is achievable without noticeably disturbing the
Adversary’s state if p(ψ) is non-negligible and independent of ψ.

Lemma 4.1 (Quantum Rewinding Lemma, Exact Case, Taken from [130]). Let Q be a (m, k)-quantum
circuit and assume that p = p(ψ) as defined above is constant over all choices of the input |ψ〉 and

78

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

non-negligible. Then for every εrew > 0 there is a general quantum circuit R such that for every input
|ψ〉, the output ρ(ψ) of circuit R satisfies 〈φ0(ψ)|ρ(ψ)|φ0(ψ)〉 ≥ 1− εrew, with:

(4.6) #R = O
(

log(1/εrew)#Q
p(1− p)

)
Rewinding therefore results in a state εrew-close to that of a successful simulation for any exponentially

small εrew using O
(

log(1/εrew)
p(1−p)

)
many rewinds, which is polynomial. Further details may be found in [130],

proof of Lemma 8.
In the Q-CC Protocol, this rewinding technique is used when proving security against an adversarial

Receiver. The associated simulation works as follows: the Simulator receives from the Ideal Function-
ality a state and message and sets them to index 1. It samples a secret key sk′ and produces the
sets

{
X i,mi

sk′ , proof isk′
}
i∈{2,...,s} using the honest Sender CP-map SC . It applies a permutation on the

indices (let α̂ = π(1)) and sends the sets to the Adversary. The adversarial Receiver chooses an index α
and the Simulator is supposed to reveal all the proofs for all executions i 6= α. If α̂ = α all is good
as the Simulator can reveal the honestly prepared proofs, which will pass the tests and the Adversary
has no choice but to accept the set α̂. Otherwise the Simulator has to rewind and choose a different
permutation. We apply the rewinding technique to a modified version where all state are generated using
the same key (this modification is achieved using a hybrid argument and the key-indistinguishability
property). The following Lemma 4.2 shows that the oblivious rewinding technique is applicable in this
scenario.

Lemma 4.2 (Rewindable Receiver Simulation). The success probability of the step in Simulator 1 which
requires rewinding is equal to 1/s independently of the internal state of the Adversary.

Proof. After the adversarial Receiver sends the evaluation index α, before verifying if the simulation
has succeeded or not, the state of the system is in product form (i.e. the random choices of α, α̂, are
depicted as an equal superposition, but are totally uncorrelated):

(4.7) |Φf 〉 :=
(

s∑
α=1

cα |φ(ψ, α)〉 |α〉
)(

s∑
α̂=1

1√
s
|α̂〉

)

where
∑
α |cα|

2 = 1 are coefficients, |φ(ψ, α)〉 is the (normalised) state at the end of the protocol given
initial state ψ and choice of graph α, while the last part (|α̂〉) corresponds to the random choice of set
made by the Simulator. The projection to the subspace that does not need rewinding (where α = α̂) is
given by P0 :=

∑s
α′=1 I⊗ |α′〉〈α′| ⊗ |α′〉〈α′|. We have:

(4.8) |Φf 〉 = P0 |Φf 〉+ (I− P0) |Φf 〉

We now need to bring it in the form of Eq.(4.5). We first define the (normalised) states:

(4.9)

|φ0(ψ)〉 =
s∑

α=1
cα |φ(ψ, α)〉 |α〉 |α〉

|φ1(ψ)〉 =
s∑

α=1

∑
α̂ 6=α

cα√
s− 1

|φ(ψ, α)〉 |α〉 |α̂〉

79

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Then we have:

(4.10) |Φf 〉 =
√

1
s
|φ0(ψ)〉+

√
1− 1

s
|φ1(ψ)〉

Now, following the unitary action that led to |Φf 〉, the measurement {P0, I− P0} is performed and the
outcome is stored in the value of an extra qubit (the first one):

(4.11) |Φf 〉 =
√

1
s
|0〉 |φ0(ψ)〉+

√
1− 1

s
|1〉 |φ1(ψ)〉

This is exactly in the form of Eq. (4.5) where p(ψ) = 1/s is constant (independent of ψ).
�

4.2.5.2 Extending Unruh’s Quantum Rewinding

Watrous’ lemma only ensures that the simulation is successful, but no information is kept between two
rewinds (hence oblivious rewinding). The Simulator against the Malicious Sender in the Cut-and-Choose
protocol needs two transcripts in order to recover the proofs corresponding to the evaluation index
(which are secret in a normal execution), so another type of rewinding is necessary. We describe here the
rewinding result of [127, 129] and give a new characterisation in terms of trace distance between two
states (instead of the original presentation focusing on the winning probability of an Adversary in a
security game).

Let Π be a protocol between a Prover, with input (x,w), and a Verifier, with input x and producing
an output bit, exchanging three messages (called sigma-protocol): commitment com by the Prover,
challenge ch sampled (efficiently) uniformly at random by the Verifier from the set Cx (membership
in Cx has to be easy to decide), and response resp by the Prover. The Verifier decides whether to
accept or reject (outputting 1 or 0 respectively) using a deterministic polynomial-time computation on
(x, com, ch, resp) (if the output is 1 it is called an accepting conversation for x).

We suppose that such protocols satisfy the following two properties. Special soundness (Definition 4.6)
means that given two correct communication transcripts with different challenges, an extractor is able
to compute a witness (in the security proof the Simulator recovers the values of all proofs given two
transcripts). Quantum Computationally Unique Response (Definition 4.7) is obtained by applying
collapsing relations (Definition 3.3) to the verification procedure of the sigma-protocol (seen as a relation
between commitment, challenge and response). Here, the Distinguisher cannot detect whether the
response register has been measured if the commitment and challenge registers have been measured.

Definition 4.6 (Special Soundness). Such a protocol satisfies special soundness if there exists a
deterministic polynomial-time algorithm K0 (the special extractor) such that for any two accepting con-
versations (com, ch, resp) and (com, ch′, resp′) for x with ch 6= ch′, w := K0(x, com, ch, resp, ch′, resp′).

Definition 4.7 (Quantum Computationally Unique Response [38]7). Let Σ be a sigma-protocol as
defined above, with VerifΣ being the verification procedure performed by the Verifier, and Mcom, Mch

and Mresp be the sets from which the commitment, challenge and response are drawn. Then Σ is said to
7Equivalent to Definition 8 from [92].

80

4.2. INVERSE-POLYNOMIAL QUANTUM CUT-AND-CHOOSE

have quantum computationally unique responses if relation VerifΣ is εΣc resp-collapsing given (com, ch)
for all true statements x (meaning that there exists a witness w such that a Prover using (x,w) in the
sigma-protocol makes the Verifier accept).

We can now describe the Canonical Extractor which, using any Adversarial Prover that passes the
verification test once, is able to extract a witness w by running it twice and using the special soundness
property. Recall that each activation of the Adversary is a separate unitary operation and getting a
message is modelled as a measurement in the computational basis.

Canonical Extractor [127]. The extractor runs the first step of the Adversary to recover com,
chooses two values ch, ch′ ∈ Cx, runs the second step with ch to get resp, applies the inverse of the
second step (this is the rewinding) and reruns the second step with ch′ to get resp′ before applying K0.
Each response is uniquely determined for a computationally-bounded Distinguisher after being collapsed
by the commitment and the challenge. Therefore, if the measured response of the Adversary is correct
then they must have sent a state close to the real response, hence the measurement does not disturb too
much the internal state of the Adversary.

In the Q-CC Protocol, com corresponds to step 3 (Sender sends the states and messages), ch is
step 4 (Receiver chooses and sends the evaluation index α) and resp is step 5 (revealing the proofs
for indices i 6= α). Given challenge α, let Pα – analogous to the P ∗ch in [127] – denote the projector
corresponding to applying the adversary’s unitary activation S∗α, followed by projecting all the sets
other than α in the correct subspace, and then applying (S∗α)†. Let P be the projector on the “correct”
subspace that answer all s tests, i.e. PPα := P for all α. Let p1 = 1

s

∑
α Tr(Pαρ) and p2 = Tr(Pρ).

Consider the following two CPTP maps:

(4.12)
Φ1(ρ) = 1

s

s∑
α=1

PαρPα + (1− p1) |Abort〉〈Abort|

Φ2(ρ) = PρP + (1− p2) |Abort〉〈Abort|

The real protocol corresponds to the Sender and Receiver acting on some shared state ρ by applying
the CPTP map Φ1(·), i.e. measuring if the sets sent are classically-accepting by choosing randomly one
set to be left unmeasured. In the ideal world, the Simulator applies Φ2(·) to ρ, i.e. it verifies that all sets
are correct. The following Lemma 4.3 shows that the aforementioned CP-maps are close, which implies
the protocol’s security.

Lemma 4.3 (Post-Rewind State). Let |ψ〉 be a purification of shared state ρ (with purification registerW)
and let {Pα}α∈[s] and P be as defined above, then:

(4.13) ∆
(

(P ⊗ IW) |ψ〉〈ψ| (P ⊗ IW), 1
s

∑
α

(Pα ⊗ IW) |ψ〉〈ψ| (Pα ⊗ IW)
)
≤
√

1
s

Proof. Let σ1 = 1
s

∑
α(Pα ⊗ IW) |ψ〉〈ψ| (Pα ⊗ IW) and σ2 = (P ⊗ IW) |ψ〉〈ψ| (P ⊗ IW), and recall that

p1 = 1
s

∑
α Tr(Pαρ) and p2 = Tr(Pρ) = 〈ψ|P |ψ〉. We will use in this proof the distance and fidelity

notions for sub-normalised states presented in Section 2.2.1, in particular Equation 2.15.

81

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

The Q-CC Protocol satisfies the Special Soundness and Quantum Computationally Unique Response
properties defined above. Special soundness means that any two tests, when both successful, allow
the Simulator to recover a “witness” (in this case the proof for the non tested state-message pair).
This leads to PαPα′ = P for all α 6= α′. On the other hand, the proof-collapsing property of CC-able
CP-maps implies that there is (almost) a unique classical response to each challenge (this is guaranteed
by Definition 4.4 of CC-able CP-maps). In terms of operators, it is equivalent to saying that two
projections Pα and Pα′ acting on the same subsystem, are either identity or themselves which essentially
means that they commute, i.e. PαPα′ = Pα′Pα. We further define P cα through the relation Pα = P + P cα.
From special soundness, we have that:

(4.14) P cαP
c
α′ = (Pα − P)(Pα′ − P) = PαPα′ − PαP − PPα′ + P = δα,α′P

c
α

Since P cα, P cα′ and P are orthogonal and the sum of the traces (probabilities) of the P cα-terms cannot
exceed 1− p2, we then have that:

(4.15)

p1 = Trσ1 = Tr
(

1
s

∑
α

(Pα ⊗ IW) |ψ〉〈ψ| (Pα ⊗ IW)
)

=1
s

∑
α

〈ψ|(P + P cα)⊗ IW |ψ〉

=p2 + 1
s

∑
α

〈ψ|P cα ⊗ IW |ψ〉 ≤ p2 + 1
s

(1− p2)

It is straightforward to see that:

(4.16) F

(
(P ⊗ IW) |ψ〉〈ψ| (P ⊗ IW), 1

s

∑
α

(Pα ⊗ IW) |ψ〉〈ψ| (Pα ⊗ IW)
)

= p2

We then obtain for the sub-normalised fidelity:

(4.17) F̃ (σ1, σ2) ≥ p2 +

√
(1− p2)

(
1− p2 −

1
s

(1− p2)
)
≥ p2 + (1− p2)

(
1− 1

2s

)
≥ 1− 1

2s

It follows that:

(4.18) ∆̃(σ1, σ2) ≤

√
1−

(
1− 1

2s

)2
≤
√

1
s

We have Φ1(ρ) = σ1 + (1 − p1) |Abort〉〈Abort| and Φ2(ρ) = σ2 + (1 − p2) |Abort〉〈Abort| and using the
above expressions we get:

(4.19) ∆(Φ1(ρ),Φ2(ρ)) ≤
√

1
s

This result is independent of |ψ〉 (and p2) and thus completes the proof.
�

82

4.3. EXPONENTIALLY-SECURE FRACTION CLASSICAL CUT-AND-CHOOSE

We have Φ1(·)
1/
√
s
≈ Φ2(·) where Φ1(·) corresponds to the real protocol’s operation (project in one of Pα

subspace, randomly chosen from the s possible challenges), while Φ2(·) is the CP-map corresponding to
the projection in the P subspace (which is applied in the simulation by making a measurement {P, I−P}).
The simulated view is therefore 1/

√
s-close to the real protocol.

4.3 Exponentially-Secure Fraction Classical Cut-and-Choose

We will in this section (in contrast with the rest of this Chapter) define formally and prove the security
of the exponentially-secure Fraction Classical Cut-and-Choose (FC-CC). We will therefore have s sets
in total, k check sets and s− k evaluation sets. The purpose of the protocol is then to guarantee that
a certain fraction of the messages transmitted to the Client has been prepared correctly. As such we
define t ≤ s− k to be the lowest number of sets that need to be corrupted by an Adversary to succeed
in breaking an outer protocol that relies on this version of Classical CC. We suppose that the Adversary
is flagged as cheating as soon as one invalid classical message has been detected in the check phase. The
security in this section will be proven in the Abstract Cryptography framework detailed in Section 3.3.2.
Note that, although the honest players are purely classical and the channels they interact with as well,
we impose no such restriction on adversaries which may therefore use quantum machines however they
wish.

We first define the Send-Blind-Correct-Fraction-of-Messages Ideal Functionality and associated
properties are first defined, followed by the Cut-and-Choose protocol and finally the proofs of security
against malicious Receiver and malicious Sender. For each value of t, we derive the optimal number of
check sets that should be used to secure the CC protocol. Interestingly, in the case where t = (s− k)/2
and the Adversary needs to corrupt at least half of the evaluation sets to succeed (as in the case where a
majority vote is used later), we find that the optimal number of tests is 3s/5 instead of the most often
used s/2.

4.3.1 New Constraints, Ideal Resource and Protocol Presentation

All previous definitions of the moving pieces of CC remain the same as in the previous Section, with the
only difference being that the machines CSC and CRC are now PPT instead of QPT and do not produce
quantum states but deal only with messages and proofs, i.e. CSC (sk, inp) produces (msk, proof sk, infosk)
and CRC (m, proof) produces b ∈ {0, 1}. We do not deal with leaks explicitly in this setting to avoid
overloading the description of the functionality and protocol (more problems may arise from dealing
with leaks across multiple sets). The acceptable algorithms are then those that satisfy the following
Definition 4.8.

Definition 4.8 (Fraction Cut-and-Choosable Algorithms). We say that the algorithms CSC and CRC

are Fraction Cut-and-Choosable (of F-CC-able) if, for all sk ← Dsk(η,C) and inp ∈ I:

• It has an Indistinguishable Dual-Mode setup (Definition 4.9);
• The sets are Trapdoor Extractable (Definition 4.10);
• The sets are Key-indistinguishable (Definition 4.5, either computational or statistical) even with

the full proof for all sets.

83

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

We first suppose that there exists two probabilistic polynomial-time algorithms Setup and S̃etup
for producing the public string C , the outputs of which are indistinguishable for any computationally-
bounded distinguisher. However, S̃etup also produces an additional information called trapdoor. This is
captured in Definition 4.9. We will assume that both players have access to a Common Reference String
Ideal Resource 6 that produces the string C , created using the algorithm Setup.

Definition 4.9 (Indistinguishable Dual-Mode Setup). We say that the scheme has a dual-mode setup
if there exists a negligible function εsetup(η) and two algorithms Setup and S̃etup that take as input
the security parameter η and CC parameter s and output respectively C and (C ,T) such that for any
auxiliary state ρaux and efficient quantum Distinguisher D we have:

(4.20)
∣∣∣Pr
[
b = 0 | b← D

(
ρaux ,OSetup(·))]− Pr

[
b = 0 | b← D

(
ρaux ,OS̃etup(·))]∣∣∣ ≤ εsetup(n)

In the equation above, the Distinguisher only has classical access to an oracle that either implements
either Setup or S̃etup, the latter of which does not output the trapdoor.

Then, given the trapdoor T, it must be possible to extract efficiently the proof from any honestly
generated message using an efficient deterministic extraction algorithm TEC . Note that alternative
ways of extracting the proof from the message may be employed, for example by using an extractable
commitment scheme to commit to the proof with the commitment being stored in the message. We use
the definition below for convenience in order to keep the presentation of the protocol self-contained.

Definition 4.10 (Trapdoor Extractability). The sets produced by Sender algorithm are said to be
trapdoor extractable if there exists an efficient deterministic algorithm TEC that, upon inputs (m,T),
outputs proof ∈ {0, 1}∗ ∪ {⊥} such that TEC (msk,T) = proof sk for honestly generated (msk, proof sk).
Furthermore, if TEC (m,T) 6= ⊥ then CRC (m,TEC (m,T)) = 1 and conversely if TEC (m,T) = ⊥ there
is no p such that RC (m, p) = 1.

The Send Blind Correct Fraction of Messages fsend−frac Ideal Resource which the exponential
Classical Cut-and-Choose Protocol will be emulating is presented in Ideal Resource 18. The intuition for
this Resource is that it allows the Receiver to be certain that a certain fraction of received messages
were prepared and sent correctly (as opposed to a single message in the previous Section). Note that the
Resource does not reveal which messages it has in fact checked as valid. We denote f the number of
messages forwarded by the Resource to the Receiver and α the maximum tolerated fraction of defective
messages among the transmitted messages.

The following Protocol 8 constructs Ideal Functionality 16 up to a negligible ε. Compared to the
protocol presented in the previous Section, the Receiver will here test k = s− f = κs sets out of the s
sets which are sent by the Sender for constant κ ∈ (0, 1). The optimal value of this parameter will be
determined later in the security proof. This protocol uses a Two-Party Coin-Tossing Resource 8 and
Common Random String Resource 6. The coin-toss samples uniformly at random a subset of [s] of size k
corresponding to the check sets.

84

4.3. EXPONENTIALLY-SECURE FRACTION CLASSICAL CUT-AND-CHOOSE

Resource 18 Send Blind Correct Fraction of Messages
Public Information: Number of forwarded messages f , maximum fraction of invalid sets α.
Inputs: The honest Sender sends inp ∈ I while a corrupted Sender may send any{
{mi}i∈[f], H ⊆ [f], {proof j}

}
j∈H of its choice for #H > (1 − α)f (this is filtered by a bit c set

to 0 in the honest case). The Sender and Receiver have a filtered bit interface, oS and oR respectively,
indicating whether they abort or not, set to 0 if honest.
Computation by the Resource:

• If either oS or oR are set to 1, the Ideal Functionality outputs Abort to both parties.
• If the Ideal Functionality receives inp ∈ I from the Sender:

1. It samples sk ← Dsk(η,C) and runs f times CSC (sk, inp), obtaining the
sets

{
mi
sk, proof isk, infoisk

}
i∈[f].

2. It sends {mi
sk}i∈[f] to the Receiver and {mi

sk, proof isk, infoisk}i∈[f] to the Sender.
• If the Ideal Functionality receives

{
{mi}i∈[f], H ⊆ [f], {proof i}i∈H

}
from the Sender:

1. The trusted party computes bi = CRC (mi, proof i) for all j ∈ H. If there is an index i such
that bi = 0, it sends Corrupted to the Sender and Receiver.

2. Otherwise it sends {mi}i∈[f] to the Receiver.

Protocol 8 Fraction Classical Cut-and-Choose
Inputs: The Sender has input inp ∈ I. The Receiver has no input.
Protocol:
1. The Sender and Receiver perform a call to the Common Random String Resource 6 implementing

the Setup algorithm, receiving the string C .
2. The Sender samples sk ← Dsk(η,C).
3. The Sender then runs s times CSC (sk, inp) and obtains

{
mi
sk, proof isk, infoisk

}
i∈[s].

4. The Sender sends all s labelled messages
{
mi
sk

}
i∈[s] to the Receiver.

5. The Sender and Receiver perform a call to the Two-Party Coin-Tossing Resource 8, receiving the
set C ⊂ [s] of size k corresponding to the indices of the check sets.

6. The Sender sends
{

proof isk
}
i∈C to the Receiver.

7. The Receiver checks that all received sets
{
mi
sk, proof isk

}
i∈C are of the correct format, otherwise

it outputs Abort. It then computes bi = CRC (mi
sk, proof isk) for all i ∈ C.

8. If there exists i ∈ C such that bi = 0, the Receiver sets its output to Corrupted and sends it to
the Sender.

Outputs: If neither party has set their output to Corrupted or Abort, the Sender’s output are the sets
{mi

sk, proof isk, infoisk}i∈Cc while the Receiver’s output is {mi}i∈Cc , with Cc = [s] \ C.

85

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

4.3.2 Security of the Fraction Classical Cut-and-Choose Protocol

While the protocol’s correctness is guaranteed by the Trapdoor Extractability (Definition 4.10) of
F-CC-able algorithms, we prove in this subsection the security of the protocol above by showing
that it constructs the Send-Blind-Correct-Fraction-of-Messages Resource with negligible distinguishing
advantage for both parties.

Theorem 4.4. Let CSC and CRC be F-CC-able algorithms (Definition 4.8) with εk and εsetup re-
spectively the negligible key-distinguishing advantage (Definition 4.5) and the distinguishing advantage
of the dual-mode setup (Definition 4.9). For s linear in the security parameter, the Fraction Clas-
sical Cut-and-Choose Protocol 8 constructs the Send Blind Correct Fraction of Messages Resource
O(sεk)-securely against a Malicious Receiver (computational or statistical depending on the variant of
key-indistinguishability) and εS + εsetup-securely against a computationally-bounded Malicious Sender,
for negligible εS.

Being in the (rCT , rCRS)-hybrid model, the simulator will replace these resources, interfacing with
the Adversary in their stead (of course this needs to be done in a way that is indistinguishable from
what the Resources would have sent).

Security against malicious Receiver The Simulator SimR∗ , which has single-query access to the
Send Blind Correct Fraction of Messages Resource, is described in the following Simulator 3.

Simulator 3 FC-CC Malicious Receiver

1. The Simulator uses algorithm Setup(η, s) to produce C . It sends C to the Adversary on its interface
that is linked to rCRS in the real protocol.

2. The Simulator calls the Send Blind Correct Fraction of Messages Resource. It receives as a result
messages {mi}i∈[f], honestly generated by the Resource using the honest Sender algorithm CSC

for a secret key sk chosen by the Resource and input inp chosen by the honest Sender.
3. The Simulator chooses uniformly at random a set C ⊂ [s] of size k corresponding to the indices of

the check sets.
4. The Simulator samples a secret key sk′ ←− Dsk(n,C) and inp′ uniformly at random from I. It

then runs k times the algorithm CSC to get
{
mi
sk′ , proof isk′

}
i∈C .

5. It sends {m̃i}i∈[s] to the Adversary, such that m̃i = mi
sk′ for i ∈ C and m̃i = mi for i /∈ C (the

ones received from the Resource, in order).
6. It sends C to the Adversary on its interface that is linked to rCT in the real protocol.
7. The Simulator sends proof isk′ for i ∈ C to the Adversary and stops. These correspond to correctly

prepared sets and thus all checks pass.

The set C is chosen from the exact same distribution as the Coin-Tossing Resource and as such
this step is perfectly indistinguishable. Using the Key-Indistinguishability of F-CC-able algorithms
(Definition 4.5) via a series of k = κs hybrid arguments to transform the interaction during simulation
into one where all the sets are generated using the same key chosen by the Ideal Functionality, we incur
a distinguishing cost of κsεk.

�

Security against malicious Sender The Simulator SimS∗ , which has single-query access to the Send
Blind Correct Fraction of Messages Resource, is described in Simulator 4

86

4.3. EXPONENTIALLY-SECURE FRACTION CLASSICAL CUT-AND-CHOOSE

Simulator 4 FC-CC Malicious Sender

1. The Simulator uses algorithm S̃etup(η, s) to produce (C ,T). It sends C to the Adversary on its
interface that is linked to rCRS in the real protocol.

2. The Simulator receives messages
{
mi
}
i∈[s] from the Adversary.

3. It samples uniformly at random a set C ⊂ [s] of size k corresponding to the indices of the check
sets and sends it to the Adversary on its interface that is linked to rCT in the real protocol.

4. It receives in return proof i for i ∈ C. If any set is inconsistent with what an honest Receiver is
supposed to receive, the Simulator sends Abort to the Resource and Adversary and stops.

5. Otherwise, it computes bi = CRC (mi, proof i) for i ∈ C. If there exist i ∈ C such that bi = 0 it
sends incorrectly generated messages and proofs of its choosing to the Resource (which outputs
Corrupted to the other party). It transmits Corrupted to the Adversary and stops.

6. If all checks pass, it produces pi := TEC (mi,T) for all i /∈ C using the trapdoor T. If there are
too many failed extractions, i.e. #

{
i | pi = ⊥

}
≥ α(s− k), the Simulator outputs Fail and stops.

7. Otherwise, it sets H =
{
i | pi 6= ⊥

}
and sends

{
{mi}i∈[s−k], H ⊆ [f], {pi}i∈H

}
to the Send Blind

Correct Fraction of Messages Resource and stops.

We denote Pr[Fail] = εS the probability that the Simulator outputs Fail in the simulation above.
Lemma 4.4 below shows that this probability is negligible in the security parameter η so long as s is linear
in η. Conditioned on the Simulator not failing, the only distinguishing opportunity for any Environment
lies in the difference between S̃etup(η, s) and Setup(η, s). Its advantage is then at most εsetup, leading to a
combined advantage of εS +εsetup. Note that the functionality guarantees that a fraction of the remaining
sets have been prepared correctly, i.e. there exists an associated correct proof for the messages sent. It
does not certify that the Adversary actually has access to these proofs, which is why the Simulator can
send the proofs it has extracted without knowing whether the Adversary has the same ones.8

�

Suppose that the Adversary needs to attack at least t messages to corrupt the overall computation.
We will calculate in the following lemma the optimal number of checks that the honest Receiver needs
to perform (that minimises the probability of successful cheating). As stated previously, there are s
messages in total and k of them are checked by the Receiver.

Lemma 4.4 (Optimal Number of Checks). Suppose that the number k of tests and number t of messages
that need to be corrupted for successfully cheating both scale linearly with the total number s of rounds and
let κ := k

s and α := t
s−k be the corresponding fractions. Let β := α

1−α and γ := (1−α) 1
α . Then the optimal

fraction of tests is given by κ∗α := 1−γ
1+βγ and the optimal cheating probability satisfies εS = O((1 + βγ)−s).

Proof. The optimal attack of the Adversary is to corrupt exactly t messages out of s, since this is
the minimal amount that is required for cheating successfully and corrupting more only increases the
probability of getting caught. The probability that the attack succeed (which is also the probability that

8In stand-alone models this step of the Simulator uses rewinding to make sure that the Adversary has these proofs
because it is it’s only way of recovering them, but it is not necessary here.

87

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

the Simulator fails in the proof against malicious Sender by outputting Fail) is therefore upper-bounded
as follows:

(4.21) Pr[Fail] ≤
(
s−t
k

)(
s
k

) = (s− t)!
k! (s− t− k)! ·

k! (s− k)!
s! = (s− t)! (s− k)!

(s− t− k)! s!

Using Stirling’s formula we get that:

(4.22) (s− t)! (s− k)!
(s− t− k)! s! ∼

√
(s− t)(s− k)
(s− t− k)s

(s− t)s−t(s− k)s−k
(s− t− k)s−t−kss e

−s+t−s+k+s−t−k+s

We now use the fact that k and t are linear in s and can therefore be written as k = κs and t = τs,
simplifying by s to get:

(4.23)
√

(1− τ)(1− κ)
1− τ − κ

(
(1− τ)1−τ (1− κ)1−κ

(1− τ − κ)1−τ−κ

)s
Alternatively, since the corrupted messages are a fraction of the non-tested messages, we have τ = α(1−κ),
which allows us to simplify the quantity above though the following steps (without loss of generality we
assume α ∈ (0, 1)):

(4.24)

=
√

1− α+ ακ

1− α

(
(1− α+ ακ)1−α+ακ(1− κ)1−κ

[(1− α)(1− κ)](1−α)(1−κ)

)s
=
√

1 + α

1− ακ
((

1 + α

1− ακ
)1−α+ακ

(1− κ)α(1−κ)(1− α)κ
)s

=
√

1 + α

1− ακ
((

1 + α

1− ακ
)1−α

(1− κ)α
(

(1− α) 1
α

1 + α
1−ακ

1− κ

)ακ)s
=
√

1 + α

1− ακ
((

1 + α

1− ακ
) 1−α

α (1− κ)
(

(1− α) 1
α

1 + α
1−ακ

1− κ

)κ)αs
Considering α as a fixed parameter given in advance of the protocol,9 we wish to minimise the following
function of κ, i.e. find the optimal number of tests that the honest Receiver needs to perform:

(4.25) fα(κ) :=
(

1 + α

1− ακ
) 1−α

α (1− κ)
(

(1− α) 1
α

1 + α
1−ακ

1− κ

)κ
We rewrite this using the parameters β := α

1−α and γ := (1− α) 1
α :

(4.26) fα(κ) := (1 + βκ)
1
β (1− κ)

(
γ

1 + βκ

1− κ

)κ
9This is essentially the maximum amount of errors that the protocol which uses as a subroutine can correct across the

received sets before being itself corrupted.

88

4.3. EXPONENTIALLY-SECURE FRACTION CLASSICAL CUT-AND-CHOOSE

Let A(κ) := (1 + βκ)
1
β , B(κ) := (1− κ) and C(κ) :=

(
γ 1+βκ

1−κ

)κ
, such that fα(κ) = A(κ) ·B(κ) · C(κ).

Taking the derivative with respect to κ gives:

(4.27)

dA(κ)
dκ = A(κ)

1 + βκ

dC(κ)
dκ = C(κ) ·

[
ln
(
γ

1 + βκ

1− κ

)
+ (β + 1)κ

(1 + βκ)(1− κ)

]
Then:

(4.28)

dfα(κ)
dκ = ABC(κ)

1 + βκ
−AC(κ) +ABC(κ)

[
ln
(
γ

1 + βκ

1− κ

)
+ (β + 1)κ

(1 + βκ)(1− κ)

]
= AC(κ)

(
1− κ

1 + βκ
− 1 + (β + 1)κ

1 + βκ

)
+ABC(κ) ln

(
γ

1 + βκ

1− κ

)
= ABC(κ) ln

(
γ

1 + βκ

1− κ

)
= fα(κ) ln

(
γ

1 + βκ

1− κ

)
Since fα(κ) > 0 for κ ∈ (0, 1), we have:

(4.29) dfα(κ)
dκ > 0⇔ γ

1 + βκ

1− κ > 1⇔ κ >
1− γ

1 + βγ

The optimal value is therefore κ∗α = 1−γ
1+βγ . Then, replacing κ∗α yields (with γ 1+βκ∗α

1−κ∗α
= 1):

(4.30)

fα(κ∗α)α = (1 + βκ∗α)1−α(1− κ∗α)α

=
(

1 + β
1− γ

1 + βγ

)1−α(
1− 1− γ

1 + βγ

)α
= (1− α)(1 + β)

1 + βγ

= 1
1 + βγ

Recall that the cheating probability Pr[Fail] = O(fα(κ)αs). For a fixed value of α and κ∗αs checks, this
gives directly Pr[Fail] = O((1 + βγ)−s). This concludes the proof.

�

If the Adversary needs to corrupt at least α = 1/2 of the forwarded sets,10 we can plug this into our
formulae above and get that β = 1, γ = 1/4 and therefore κ∗α = 3/5. This is highly counter-intuitive and
all works up to now always use half of the sets as tests, i.e. κ = 1/2. This shows once again that the
folkloric approach is not always optimal. All previous works that fit into this framework automatically
obtain a better bound simply by switching to this new value of κ∗α.

We can also analyse what happens for other values of α (for example by not using a majority vote
but some other error-correcting technique). The value that governs the failure probability is βγ, which
we wish to maximise. We can therefore analyse the influence of α on this value.

10For example in the case where the outer protocol uses a majority vote to error-correct possible deviation in the sets.
This is used in [88] to secure Yao’s Protocol against malicious Garblers.

89

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Corollary 4.1 (Influence of Error-Correcting Procedure). Finding a better error-correcting procedure
yields a lower maximum cheating probability.

Proof. The bound on the cheating probability is given by (1 + βγ)−s. Minimising this for a fixed
value of s requires us to maximise βγ. We therefore now consider β(α) = α

1−α and γ(α) = (1− α) 1
α as

functions of α. Let g(α) := β(α) · γ(α). Taking the derivative with regard to α, we have:

(4.31)

dβ(α)
dα = 1

(1− α)2

dγ(α)
dα = γ(α)

(− ln(1− α)
α2 − 1

α(1− α)

)
Then:

(4.32)

dg(α)
dα = γ(α)

(1− α)2 + β(α)γ(α)
(− ln(1− α)

α2 − 1
α(1− α)

)
= γ(α)

(1
(1− α)2 −

ln(1− α)
α(1− α) −

1
(1− α)2

)
= −γ(α) ln(1− α)

α(1− α)

Since γ(α) > 0, ln(1− α) < 0 and α(1− α) > 0 then g′(α) > 0 so g is strictly increasing.
�

This means that forcing the Adversary to corrupt proportionally more circuits by looking for ways to
perform error-correction that go beyond the majority vote on the output would automatically improve
any scheme that relies on exponentially-secure classical CC.

4.3.3 Discussion

In is important to keep in mind when using FC-CC as a subroutine in another protocol that it only
guarantees that a fraction of evaluation sets have been correctly generated. Any decision that is not based
on this fact after the sets have been transmitted may easily lead to an attack that scales polynomially
with the number of checks. While it might seem obvious after the security properties of FC-CC have
been formalised, we list here the additional a few of the attacks found previously that are based on a
misuse of this functionality. Details on these issues can be found in [88, 80] in the case of the Classical
Yao Protocol. There, the Evaluator decrypts s/2 garbled circuits and return the majority outcome at
the end.

If multiple circuits are evaluated, the first problem is that of input consistency. It would seem that
if only one final result is ever sent back there shouldn’t be a problem if there are different inputs.
To illustrate the importance of this concern, consider the function outputting the scalar product of
the inputs in Fn2 . If there are n evaluation circuits and the adversarial Garbler sends as inputs the n
strings (10 . . . 0), (010 . . . 0), . . . , (0 . . . 01) then the majority output will reveal the majority bit of the
Evaluator’s input. On the other hand, if the Evaluator is capable of doing so it can learn all of the
Garbler’s input.

90

4.3. EXPONENTIALLY-SECURE FRACTION CLASSICAL CUT-AND-CHOOSE

Then, another issue has been pointed out in [80]. Consider the following process: the Adversary
constructs s− 1 correct circuits and one malicious circuit which returns the correct result if the first
input bit of the Evaluator is 0 and outputs the binary complement of the correct output if it is 1. If the
Evaluator’s first input is 1 then this circuit will never be the majority circuit if it is evaluated. When
the Evaluator’s input is 0 then there is a 2/s probability that it is returned as the majority circuit if
there are s/2 evaluation circuits. The probability of not having checked this circuit is 1/2. So there is in
total a 1/s probability that this circuit will appear as the majority circuit if the Evaluator’s first input
is 0. If this circuit appears, the Garbler knows that this is the case, therefore breaking the protocol’s
security. The takeaway message is that no message should reveal the index of the majority circuit.

Finally, another problem that appears is caused by the fact that the Evaluator, if it is given a wrong
input key through the OT, will be forced to abort because it will be unable to decrypt the circuit (in
Yao’s Protocol an incorrect decryption can be detected by the Evaluator). The Selective OT Attack
works this way: for the Evaluator’s first input, the Garbler sends the correct key for the value 0 and a
wrong key for the value 1. Then, depending on whether the Evaluator aborts or not, the Garbler learns
its first input bit. Furthermore, the Evaluator has no idea that any information leaked. This attack is
thwarted classically by modifying the circuit and introducing O(m) new gates (m is the length of the
inputs).

Coin-Tossing for Simulation. The coin tossing resource might appear to be superfluous as it would
seem as though the Receiver should be able to choose on their own the check sets without any impact
on the security of the protocol. In fact we do not expect the same protocol without the coin-tossing
protocol to be subject to any attack, but the Simulator for malicious Receiver has to be able to force the
Adversary to choose a specific subset. While this could be done via the oblivious rewinding technique
in the previous section, it is not applicable here since the probability of succeeding in the simulation
must not be negligible for this technique to work. Here the probability that the simulator and Adversary
choose the same subset is precisely negligible. This is the only reason why a coin-tossing protocol is
required.11

On a related note, the reason why the security proofs above are much simpler than in the previous
section is that we do not use rewinding since it is incompatible with composable frameworks such as
AC. However, we do require two new primitives and a much stronger extractability requirement than
previously. In particular, this imposes that the proof for any given correct message is not only unique
but also that there is a procedure to efficiently extract it using the trapdoor.

Constant Factor of Failure Probability. In order to get a more precise bound and find the factor
hidden by the order notation, we can bound the factorials in the proof of Lemma 4.4 using the following
inequality from [119] (or using more terms in Stirling’s approximation):

(4.33)
√

2πn
(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n

11Note that the proof against malicious Sender will only require that this subset be random and the Simulator does
not need to influence it whatsoever. In the stand-alone setting, this means that the coin-tossing protocol could be only
simulatable for one side and random for the other. Such protocols are much easier to create, using only commitment
schemes, compared to those which are simulatable for both parties. However, in a fully composable scenario such as the
AC framework, all protocols must be simulatable for all parties.

91

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

It can easily be checked from equation 4.24 that this factor decreases and approaches the following
constant as s increases:

(4.34)
√

1 + βκ∗α =

√
1 + β

1 + βγ

4.4 The Protocol Compiler

We now present a Compiler which boosts the security of a protocol between parties P1 (acting as the
Sender) and P2 (as the Receiver) from a very weak adversarial model called Semi-Malicious to the
inverse-polynomially Malicious setting for P1, while preserving all of its other security guarantees. The
goal of the Compiler is not only to guarantee the fact that P1 has sent a correctly prepared state and
message but also that future interactions depending on these are also correct.

High-Level Overview of the Compiler. We suppose that the protocol to be compiled (called an
Abstract Protocol) can be decomposed in three steps: a first interaction, followed by one party sending a
CC-able state |ψ〉 and message m and finally a second interaction. The goal is to remove the opportunity
for an adversarial P1 to dishonestly prepare and send messages in this later interaction (let m′ be such a
message) by leveraging the same Q-CC procedure as the one that is used to secure the CC-able state
and message. However, at the time when the Q-CC is performed, these messages may either not be know
to P1 because they depend on a message that is sent by P2 in a later round, or they may depend on a
secret parameter of P1. In both cases however, if the set from which these messages or parameters are
chosen is known to P1, it can pre-compute the value of the message m′ to be secured by iterating over
all possible values of the messages that m′ depends on (if this is efficient) and send to P2 a commitment
to these pre-computed values (this commitment does not reveal information until opened). During
the Q-CC procedure, P2 can check that these have been pre-computed correctly using the opening
information of the commitments (which are appended to the proof). For the unchecked set, a subset of
these messages can be revealed selectively through leaks in the second interaction. The construction of
these sets must however follow certain rules for them to preserve the security of both players. Given
these pre-computed sets, the Compiler works by making the parties run the first protocol multiple times,
then performing a Q-CC procedure which includes these pre-computed sets and continuing the execution
on the unchecked instance, replacing any message sent by the Sender from the secured set by the opening
of the corresponding commitment.

We first introduce a new weak Adversary called Semi-Malicious (as mentioned in the Introduction,
these Adversaries are not related to other definitions of Semi-Malicious parties). Proving the security of a
protocol against this adversarial model is simpler than for Malicious Adversaries while our Compiler will
make sure that such a protocol may be strengthened into one which resists arbitrary Malicious parties.

4.4.1 New Semi-Malicious Adversaries

The Semi-Malicious Adversary may deviate in any way it wants except when preparing and sending a
specific subset of the messages of the protocol, for which it must act as an honest player would.

92

4.4. THE PROTOCOL COMPILER

Definition 4.11 (Semi-Malicious Adversary). Let Π be a two-party protocol andMSM a publicly known
subset of the classical messages sent by party Pi, in order of appearance. We say that an Adversary Ã
controlling party Pi is MSM -Semi-Malicious (or MSM -SM) if Pi prepares and sends honestly all
messages inMSM during the execution of the protocol. It can be arbitrarily Malicious in all the other
steps of the protocol.

The honest preparation for a subset of messages in a protocol is defined in the following sense. It
means that, given the messages previously sent in the protocol, the message is prepared using the correct
function applied to these anterior messages using, if required, randomness sampled in the correct set (we
do not enforce the correctness of the distribution used in this sampling). Furthermore, if two messages
depend on the same randomness or secret parameters, then the same values for these are used in the
generation of both messages.

Definition 4.12 (Computational Security against Semi-Malicious Adversary). We say that a two party
protocol Π ε(n)-securely emulates Ideal Functionality F againstMSM -SM Adversaries if it is ε(n)-secure
according to Definition 3.7 when quantifying over all quantum polynomial-timeMSM -SM Adversaries.

The adversarial model defined here may be very weak depending on the subsetMSM that is chosen
and is not to be considered in any real-world protocol. On the other hand the security proofs against
these Adversaries are much simpler, as shown in Section 4.5. The Compiler presented below transforms
any protocol secure against these weak Adversaries into one secure against Malicious Adversaries by
enforcing the honest behaviour of the Adversary on messages in the setMSM .

4.4.2 Constraints on Abstract Protocols

The Compiler (Transformations 1 and 2) is applicable to protocols following the structure of the Abstract
Protocol 9 (or AP), emulating some Ideal Functionality F , where SC is a CC-able CP-map (together
with the associated RC).

A more general protocol would allow for some messages in Π1 to depend on the message and proof
of the CC-able set (i.e. the set is generated during Π1 but sent at the end). In some cases it may be
possible to rewrite Π1 and the CC-able CP-maps SC and RC to sample these messages otherwise and
adapt the state, message and proof so that they are coherent (by including these dependent messages in
input inp for instance). It would then be possible to recover the AP structure presented above, however
we do not consider such an anachronistic state generation technique here (we do allow it for Simulators
on the other hand, as described below).

For the transformation to be applicable to an AP, there needs to be further restrictions on its
structure and we call CC-able Protocol (Definition 4.13) an AP that satisfies the three criteria given
below. The first one is required for the correctness of the Compiler to hold, while the other two imply
its security properties.

Definition 4.13 (Cut-and-Choosable Protocol). We say that a secure AP (i.e. following the structure
of Protocol 9) between parties P1 and P2 with the set MSM and round rCC defined as above is a
Cut-and-Choosable Protocol if:

• It is pre-computable for setMSM at round rCC (Definition 4.15) for honest P1 and SimP∗2
(the

Simulator against Malicious P ∗2);

93

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Protocol 9 Abstract Protocol
Public Information: Public string C̃ , Semi-Malicious secure setMSM .
Inputs: P1 and P2 have inputs x ∈ {0, 1}n ∪ {λ} and y ∈ {0, 1}n ∪ {λ} respectively.
Protocol:
1. P1 and P2 perform an interaction Π1[x, y], yielding internal states

(
ρ1

1, ρ
1
2
)
and classical infor-

mation (aux1
1, aux1

2) for P1 and P2. The public string C̃ may also be modified by appending
additional public knowledge during this interaction, resulting in public string C . Furthermore, at
the end of Π1, P1 is in possession of inp ∈ I, whether it is included in its input x or generated
during the execution and therefore contained in aux1

1.
2. P1 samples sk ←− Dsk(η,C) and applies SC , obtaining (X ,msk, proof sk, infosk). It sends the

set (X ,msk) to P2. Let rCC be the round at which this step is performed.
3. P1 and P2 perform an interaction Π2[(x, ρ1

1, aux1,msk, infosk
)
,
(
y, ρ1

2, aux2, |ψsk〉 ,msk

)]
, yielding

internal states (ρ2
1, ρ

2
2), classical information (aux2

1, aux2
2) and outputs (out1, out2) for P1 and P2.

We suppose that all messages M ∈MSM are sent by P1 after round rCC . During this interaction,
P1 may be required to sends parts of proof sk to P2. The rounds at which this happens and the
parts of the proof that are sent are specified by Π2 in the following way: to each leak ∈ LC

we associate rleak , corresponding to the round at which leak may be requested (this is part of
the leak-test algorithm LC). Note that two or more elements of LC may share the same round,
meaning that both leaks may be queried simultaneously. We treat them nevertheless as two
distinct calls.

• The Simulators for both players are CC-Compatible (Definition 4.16);
• The Simulator for Malicious P ∗2 is CC-Specious (Definition 4.17).

Recall that the principle of the Compiler to force P1 to send honestly messages from setMSM by
pre-computing all possible values for those messages that it is susceptible to send to P2 during the
execution of the protocol. For the sake of correctness, P1 must be able to do so efficiently (in deterministic
polynomial-time).

We start by formally defining dependent messages, i.e. one message is dependent on another if the
value of the second message is required for computing that of the first one. Unless specified, in the
following we consider formal messages and not the values of messages sent in an actual execution.

Definition 4.14 (Classically Dependent Messages). Fix a round rd in the execution of a given two-party
protocol Π. Let m be a classical message sent during the execution of protocol Π. We say that classical
message m′ sent by party P1 at round r′ > rd in protocol Π depends on message m (and write m→ m′)12

if the value of the message m is needed to compute the value of message m′ in a given honest execution
of the protocol, i.e. there exist formal classical messages (m1, . . . ,mj) and a classical deterministic
function g such that it is specified in the protocol that m′ = g(m,m1, . . . ,mj) is sent by P1 in round r′.
We further distinguish the following types of dependencies (these implicitly depend on the round rd that
is being considered):

• Type 0: The value of formal message m is known to both parties at round rd of the protocol (and
thus also r′).13

12In any correct protocol, the dependencies of messages may be visualised as a Directed Acyclic Graph.
13This can be either a constant defined by the protocol or any message sent before round rd.

94

4.4. THE PROTOCOL COMPILER

• Type 1: The value of m is not known yet to P1 at round rd of the protocol but will be sent by
another party14 in a future intermediate round r with r′ > r > rd.

• Type 2: The value of m is known to P1 but not P2 at round r′ of the protocol.15

• Type 3: The value of m is sent by P1 to P2 at an intermediate round r with r′ > r > rd.

We then also define Ti, the sets of messages of type i. This is well-defined since the type of each message
is dependent only on the protocol, the party considered and the round rd (i.e. it does not vary across
message dependencies).16

Let rd be a round of AP Π and τΠ be the transcript up to round rd of the execution of Π for which
the messages are being pre-computed. Let m̂ be a message in Π, we define the ordered set Sm̂(τΠ, π)
recursively in the following way for round rd (where π is a permutation on the set):

• All sets that are computed are kept in memory until every message from MSM has been pre-
computed. If the set for message m̂ has already been computed then it is reused, along with its
associated permutation. This guarantees consistency across messages that are revealed (if two
messages both depend on the same message, then the Receiver is able to check that the position
of revealed messages is coherent, meaning that the underlying value of this common dependent
message is the same).

• If m̂ is of type 0, let m̂(τΠ) be its value in this specific execution of the protocol. Then π = Id1

(identity permutation on a single element) and Sm̂(τΠ, π) = {m̂(τΠ)} as there is only one possible
value and it is already known to both players.

• If m̂ is of type 1 (it will be sent at a round after rd by a party other than P1), let m̂(τΠ) be the
ordered set of all possible values of m̂ given the values τΠ, then π = Idm̂ and Sm̂(τΠ, π) = m̂(τΠ).
This allows the Receiver to check that, once it does send m̂, that the messages revealed that
depend on m̂ have been computed using the correct value of m̂ (based on its position in the set).

• If m̂ is of type 2 or 3 with its value being chosen by P1 from a finite set m̂(τΠ) (regardless of the
distribution used):

– If revealing the value of m̂ in an execution of the protocol at round rd breaks the security of a
concurrent execution (by giving a non-negligible distinguishing advantage to the Environment
if used as side-information), then P1 chooses a random permutation π over m̂(τΠ) and
computes Sm̂(τΠ, π) = π(m̂(τΠ)).

– On the other hand, if revealing the value of message m̂ does not decrease the security of any
concurrent execution by more than a negligible amount εm̂, P1 chooses a value m̂(τΠ) ∈ m̂(τΠ)
(according to whichever distribution it prefers if Malicious). Then π = Id1 and Sm̂(τΠ, π) =
{m̂(τΠ)}. Note that by definition, the message msk generated by the state generation CP-map
is of this type.

• If m̂ is of type 3 and computed by applying classical deterministic polynomial-time function g
on messages (m1, . . . ,mk), then first the sets Sml(τΠ, πm) for all l ∈ [k] are computed. 17 Then,

14Either P2 or a trusted third party in a hybrid execution.
15This case represents secret parameters of P1 for example.
16Note that the type is known to both players.
17Or equivalently, messages that are anterior to others according to a topological ordering of the Directed Acyclic Graph

defined by message dependencies are pre-computed first.

95

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

iterating in a predefined order (lexicographic for example, but known to both players) over all
previously computed sets Sml(τΠ, πl), the following ordered set is constructed (the permutation
πm̂ being defined implicitly by the previously chosen πl):

(4.35) Sm̂(τΠ, πm̂) = {g(m̃1, . . . , m̃k) | ∀l ∈ [k], m̃l ∈ Sml(τΠ, πl)}

Let MSM be the set of messages m̂ for which the set Sm̂(τΠ, πm̂) has to be constructed during
the pre-computation of messages inMSM . The decrease in security εm̂ is modelled as the maximum
difference in distinguishing advantage for any Distinguisher when its auxiliary input contains the value
of the message m̂ for a previous execution of the protocol and when it doesn’t, taken over all possible
executions. LetMfix

SM ⊆MSM be the set of messages fixed during pre-computation of messages from set
MSM . We call εpre−c :=

∑
m̂∈Mfix

SM
εm̂ the upper-bound on the total decrease in security for the leakage

of the messages inMfix
SM for any possible execution (i.e. the negligible advantage of the Adversary in

attacking an execution of a protocol given a pre-computed set of another execution is εpre−c).
Note that the same value for message M may appear multiple times in these sets if it appears in

multiple branches of the protocol execution, e.g. : ifM = f(m, r) for some function f and messages (m, r),
and for the chosen value m̃ of formal message m there exists value r1 and r2 permissible by the protocol
such that M1 = f(m̃, r1) = M2 = f(m̃, r2), that value of message M will appear twice in the set
SM (τΠ, πM).

We can then define the following set (where π is a permutation defined implicitly by the ones chosen
for the pre-computed set of each message inMSM):

(4.36)

ΞPiMSM
(τΠ, π) :=

{
πm̂ | m̂ ∈MSM ∩ T2 \Mfix

SM

}
∪{

m̂(τΠ) | m̂ ∈Mfix
SM

}
∪

{Sm̂(τΠ, πm̂) | m̂ ∈MSM ∩ T3}

It corresponds to the set of all parameters associated toMSM that result from a choice of player P1.
An equivalent set would be obtained by first imposing that the set MSM is closed under the pre-
computation procedure, i.e.MSM =MSM .

A protocol must then satisfy the following property (for P1) in order to be correctly compilable. To
preserve the security against adversarial P2, the corresponding Simulator (that acts as P1) must also
satisfy it.18 Note that this requirement imposes that not only the messages inMSM must be classical,
but the messages they depend on must be as well.

Definition 4.15 (Pre-computable Protocol). Let (ρ1
1, aux1) be the internal state of the honest Sender

after execution of sub-protocol Π1. We say that AP Π is pre-computable for P1 for setMSM at round rCC

if there exists an efficient CP-map PreC aux1 such that PreC aux1 (ρ1
1) =

(
ρ̃1

1,ΞP1
MSM

(τΠ1 , π)
)
and the

composed protocol Π1 ◦ PreC aux1 ◦Π2 is as correct as Π.19

18 This is a stronger requirement than necessary since this Simulator may have a better strategy by faking part of the
pre-computation and forcing the Adversary to pick the correct branch.

19i.e. The pre-computation does not decrease correctness. This can be easily be relaxed to tolerate a negligible decrease
in correctness stemming from the pre-computation.

96

4.4. THE PROTOCOL COMPILER

Now that correctness has been dealt with, the next two conditions are required for the Compiler to
preserve the security of P1 and boosts that of P2. In order to prove that these properties are satisfied,
the Simulators for the compiled protocol must be able to reuse the ones for the non-compiled version.

A first necessary condition for this to be possible is that the input of the Adversary in the compiled
protocol must be well-defined when the Simulator performs the call to the Ideal Functionality. Otherwise
the Simulator for the compiled protocol would not know on which of the s executions of protocol Π1 to
call the single-query oracle. This is formalised below in Definition 4.16.

Definition 4.16 (CC-Compatible Simulations). Let Π be an AP securely emulating an Ideal Function-
ality F . The simulators constructed while proving its security are said to be CC-compatible if either of
the two following conditions are satisfied (each Simulator may satisfy a different condition):

• The Simulator performs the call to the single-query oracle implementing Ideal Functionality F
during the execution of sub-protocol Π2.

• There exists an extension to protocol Π1 called Ext−Π1 in which the probability εcc−fail that the
input of the Adversary in one of the s executions of protocol Ext−Π1 is different from that used in
another is negligible.

There are multiple options for satisfying the second condition. One can extend the protocol using
Zero-Knowledge Proofs that there exists an input consistent across all executions. Another way would
be to specify that the Adversary must use identical messages for all s executions. Both of these have
drawbacks: the Zero-Knowledge Proofs add an overhead on the complexity of the protocol20, while
forcing a player to use the same message for all executions could lead to a decrease in security. See the
proofs of security of the protocol presented in Section 4.5 for more concrete examples for how to satisfy
these conditions.

One last condition must be imposed on the Simulator against Malicious P2. It not only needs to be
able to pre-compute its messages for the evaluation set, but must also be able to create check sets that,
once opened, pass verification and concord with the Simulator’s sent messages. These checks sets can be
“faked” by the Simulator using the CP-map defined in Definition 4.17 below.21

Definition 4.17 (CC-Specious Simulation). Let Π be an AP secure against Malicious P ∗2 and SimP∗2

the associated Simulator. Let τ(Π1,SimP∗2
) be the transcript between the Adversary and the Simulator

during the execution of protocol Π1 and ρSimP∗2
the internal state of the Simulator at the end of the

execution of protocol Π1. The simulation is said to be CC-specious if there exists a negligible εSS(η)
along with a CP-map S∗C

(
τ(Π1,SimP∗2

), ρSimP∗2

)
producing (X ,m∗, proof ∗) with X being a quantum

register containing state |ψ∗〉, such that, for all Environments Z with auxiliary input register WZ and
Adversary A controlling corrupted party P ∗2 :

(4.37)
∣∣∣Pr
[
1← Z

(
v(SimP∗2

,A(ρA), ρin),WZ
)]
− Pr [1← Z(v(P1,A(ρA), ρin),WZ)]

∣∣∣ ≤ εSS(η)

20It would also prove hard to use non-generic ZKPs for this purpose, which would then be equivalent to the GMW
Compiler. This in turn, although still polynomial, is known for being highly inefficient. If going that route, one might as
well use this Compiler for securing the setMSM as well.

21Here however, there are not shortcuts such as the one described in Footnote 18 above since these will be checked and
must pass the test.

97

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

In the formula above, the terms v are similarly defined as in Definition 3.7, with the difference that it
takes into account only protocol Π1 along with the revelation of the state, message and proof (in the
honest case using the CP-map SC while the Simulator uses S∗C). The Environment and Adversary are
restricted to being QPT machines in the computational case.

Comments on CC-Specious Simulators Note that this is not linked directly to the definition for
Specious Adversaries (as may be found in [44] for instance). It is however similar since it captures the
fact that the Simulator is able to produce, if asked, a state, message and proof which verifies correctly
and is coherent (and indistinguishable from honest) with the transcript sent previously.

This constraint is necessary if there exists a message m sent during protocol Π1 that is related to the
state, message and proof generated by the Sender CP-map SC . This message will necessarily be included
in the input inp for the Sender’s CP-map.22 In the non-compiled protocol, the Simulator never needs to
reveal how it generates the state and so it may do so without there being a valid proof associated to it.

We remark that if the key-indistinguishability property (Definition 4.5) is defined using a trap-door
as mentioned in Footnote 5, then the CC-specious Simulation property (Definition 4.17) can be merged
with it.

Both properties are also not equivalent to the protocol being sequentially or concurrently self-
composable as it is required here that even revealing extra information, to which the Adversary does
not have access in a regular execution, does not break a concurrent execution. It is however a weaker
requirement than Quantum Universal-Composability [126] and therefore the Compiler is also applicable
to protocols which are Q-UC. Unfortunately, since we use quantum rewinding in the proof, the compiled
protocol is not Q-UC.

The Q-CC Protocol may be adapted to fit the Q-UC requirements if a trusted setup with trapdoor
is added akin to what is done for commitment schemes, by strengthening the trapdoor to not only
allow the simulator to generate fake check sets in Definitions 4.5 but also extract the proof from the
message (by updating slightly Definition 4.2). By additionally using a Q-UC commitment scheme when
constructing the pre-computed sets above, the full construction can be made Q-UC secure.

4.4.3 Presentation of the Compiler

We can now define our Compiler which transforms a protocol secure against Semi-Malicious Adversaries
into one secure against Malicious Adversaries.

It will require P1 to commit to messages using Bit Commitment (Com,Verif) before sending them
to P2. This primitive must be be perfectly correct (all commitments honestly generated with Com are
verified by Verif as correct given the opening information), perfectly hiding (no unbounded Adversary
with access to the commitment can infer information about the message used to generate it) and
collapsing (given a valid commitment and associated message quantum register, no computationally-
bounded Adversary can tell whether this register has been measured or not). The formal definitions for
these properties can be found in Section 3.1.2.

The Compiler consists of two consecutive steps, the first one modifying the CC-able CP-maps and
related information (Transformation 1) while the second one changes the outer protocol accordingly

22Otherwise this property is trivially verified with εSS = 0 since the Simulator can then use the same CP-map as the
honest player.

98

4.4. THE PROTOCOL COMPILER

(Transformation 2). It takes as input a CC-able Protocol (Definition 4.13) and outputs a protocol that is
inverse-polynomially secure against quantum polynomial-time Malicious P1 while keeping all its other
properties intact.

Multiple instances of the protocol Π will be run until the Q-CC round rCC (in parallel if protocol Π1

is self-composable in parallel, or sequentially otherwise). A commitment scheme is used to commit to
sets of pre-computed messages in the order specified above, with the opening information being stored
in the proof of a CC-able message. After the two players are done with performing the Q-CC Protocol,
only the remaining unchecked version of the protocol will continue its execution, the others having only
served for tests. If a given message is in the secured set MSM , instead of sending the message, the
Sender must send the opening information for the corresponding commitment (as part of a leak).

Transformation 1 The Compiler: Step 1 - Modifying the CP-maps
Modifying C : Each party appends τ iΠ1 to C , corresponding to all message exchanged (in order) during
the execution of protocol Π1 for each execution i ∈ [s]. Let C ′ be the resulting string.
Modifying SC :
1. S′C ′ now takes as input an additional value i representing the execution index of the protocol.
2. S′C ′ applies SC (sk, inpi) and obtains (X ,msk, proof sk, infosk).
3. Using τ iΠ1 , S′C ′ computes the set ΞP1

MSM
(τ iΠ1 , πi) for execution i and appends it to msk (this

includes the permutation and the fixed messages as well). Let m̃sk be the resulting message.
4. Using Com, S′C ′ commits to each separate message of m̃sk apart from the original msk, we

denote msk,COM the resulting committed message.
5. It appends to proof sk the opening information to all the commitments constructed in the previous

step, let proof sk,OP be the resulting message.
6. At the end msk,COM contains only commitments and msk, while proof sk,OP only contains opening

information and proof sk.
Modifying RC (if any step fails, it outputs 0):
1. R′C ′ now takes as input an additional value i representing the execution index of the protocol.
2. Using the opening information in proof OP and Verif, R′C ′ checks all commitments in mCOM .
3. Using τ iΠ1 , it checks that the set ΞP1

MSM
(τ iΠ1 , πi) is correctly constructed with regard to permuta-

tion πi (note that, given the fixed choices for messages inMfix
SM , P2 is able to produce the rest

of this set on its own as it only correspond to all the possible values for the messages sent by the
other player given the transcript of previous messages).

4. It parses the first part of mCOM and proof OP as m and proof respectively and returns the output
of RC (X ,m, proof).

Modifying LC : Let leakM be the set of indices in proof sk,OP corresponding to the opening information
of all pre-computed values for message M ∈MSM ∩T3. Then L′C = LC ∪{leakM |M ∈MSM ∩ T3}.
The leak-selection function LC is updated to select one value of message M per such additional set at
round rM if the honest Sender should have sent that value of message M at this round and these
round values are added to the sequence of values rleak (which define when a leak can be requested).
LC returns ⊥ otherwise on these elements.

Note that neither the Cut-and-Choose procedure nor the Compiler requires more quantum power
than the initial protocol (and so can be implemented at no extra cost) apart from storing all the states
between reception and verification. With an additional assumption of 1-out-of-s Oblivious Transfer23,
this can be reduced to storing only at most 2 states instead of s by making the Receiver choose before

23This functionality works by having the Receiver input an index α and the Sender input for each index the proofs for
all other sets. This would be executed before the states are sent.

99

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Transformation 2 The Compiler: Step 2 - Modifying the Protocol
The CC-able Protocol is modified as such:
1. P1 and P2 run s times the protocol Π1 (or Ext−Π1 if using the second condition for CC-compatible

simulators in Definition 4.16). This can be done concurrently if the protocol is self-composable in
parallel.

2. They participate in a Q-CC Protocol with CC-able CP-maps S′C ′ and R′C ′ . P1 samples
sk ←− Dsk(η,C). It then applies s times the CP-map S′C ′(sk, inpi) and obtains the
sets

{
X i,mi

sk,COM , proof isk,OP , infoisk
}
i∈[s]

. P1 sends the states and messages, P2 chooses an
evaluation index α, P1 sends the proofs, P2 checks the proofs using R′C ′ , accepting or rejecting
the remaining state and message depending on the outcome of the tests.

3. They then continue with the execution of protocol Π2 on the αth instance. During this execution,
both parties continue to append any messages exchanged to C ′. When the protocol specifies that
a given message M ∈MSM ∩ T3 should be sent, P2 request a leak from P1 for the correct value
of M (by sending the set of indices corresponding to the pre-computed set for message M), who
replies with the corresponding opening information if the leak is accepted. P2 then checks the
opening of the commitment in mα

sk,COM by using Verif. P2 also checks that the position of the
opened message is consistent with previous messages (if two messages are dependent on the same
message, their position with regard to this message should be the same since the permutation
used in computing it has been reused). The other leaks are treated as in the original protocol.

receiving the states which executions will be tested and acquiring the corresponding proofs in advance,
allowing it to test them as soon as they are sent.

The next subsection presents the properties of the Compiler and their proofs, namely that it preserves
the security properties of the CC-able Protocol while boosting its security from Semi-Malicious to fully
Malicious.

4.4.4 The Compiler: Main Results

Since the Q-CC procedure is applied to CP-maps S′C ′ and R′C ′ , we must also prove that these maps are
indeed CC-able.

Lemma 4.5 (Transformed CC-able CP-maps). Let SC and RC be CC-able CP-maps with key-indis-
tinguishability advantage εk and proof-collapsing advantage εc. Let (Com,Verif) be a perfectly-hiding
and εCom

c -collapsing commitment scheme. Let εpre−c be the decrease in security against Malicious P ∗2
stemming from revealing one pre-computed set. 24 Then S′C ′ and R′C ′ obtained after applying Transfor-
mation 1 CC-able CP-maps with key-indistinguishability advantage ε′k = εk + εpre−c and proof-collapsing
advantage ε′c = εc + εCom

c (Mfix + XΠ) where Mfix is the size of set Mfix
SM and XΠ is the size of the

sets ΞP1
MSM

(τ iΠ1 , πi).

Proof. Given that SC and RC are CP-maps, then S′C ′ and R′C ′ are trivially also CP-maps. It is
straight-forward to show that they are extractable by re-using the extractor employed by RC after the
commitments have been opened. The new extractor outputs ⊥ if a commitment has not been opened
correctly or if the checks performed on the set ΞP1

MSM
(τ iΠ1 , πi) fail.

24Due to the fixed messages inMfix
SM .

100

4.4. THE PROTOCOL COMPILER

The proofs are furthermore collapsing, a simple hybrid argument (similar to the one used in [129] to
prove the composability of the collapsing property of commitment schemes, Lemma 16) shows that the
advantage of the Adversary is εc + εCom

c (Mfix +XΠ), the first factor coming from the collapsing-proof
property of the non-compiled CP-maps and the remaining two from the collapsing property of the
commitment scheme. Note that here, although the proof contains both messages and opening information,
we restrict ourselves to measuring the registers containing messages.

The leakage is also verifiable: if the leak asks for a part of the non-compiled proof sk, P2 can simply
use the previous leak verification function VC . Otherwise, the leak corresponds to a message that has
been pre-computed by P1. In that case, the leak verification algorithm verifies that the commitment is
valid using Verif and that the position in the message msk,COM is coherent with the message requested
(the sets SM (τ iΠ1 , πiM) are ordered in the leaks according to the round number in which the messages
should be requested and each set has a known size).

The sets ΞP1
MSM

(τ iΠ1 , πi) generated by each call to S′C ′ do not leak any information (they can be
constructed by P2 on its own), apart from the messages from the setMfix

SM which have been fixed by P1.
These may each give at most an advantage of εpre−c to the Adversary (this is not necessarily linked to
key-indistinguishability, but can be considered as such in the worst case). The combined deterioration in
security is therefore εk + εpre−c, which remains negligible.

�

We now state the main theorem regarding the properties of the Compiler presented above.

Theorem 4.5 (Compiler Properties). Let Π be a CC-able Protocol (Definition 4.13) that is εcor -
correct, εV -verifiable for P1, ε1-secure against quantum polynomial-time MSM -SM adversarial P ∗1
(Definition 4.12) and ε2-secure against Malicious P ∗2 (Definition 3.7, statistical or computational).

Let ε′c and ε′k be respectively the proof-collapsing advantage and key-distinguishing advantage of
compiled CC-able CP-maps S′C ′ and R′C ′ and suppose that the commitment scheme (Com,Verif) used in
Transformation 1 is perfectly complete, perfectly-hiding and collapsing. Let εcc−fail an upper-bound on
the failure probability of the input-constraint procedure if using the second condition for CC-Compatible
Simulators25 and εSS the Specious-Simulation distinguishing advantage.

Then the compiled protocol T (Π, s) resulting from the application of Transformations 1 and 2 on Π
across s executions is:

1. εcor -correct;
2. εV -verifiable for P1;
3. sε1 + εcc−fail-secure against SM P ∗1 ;
4. s(ε2 + εSS + ε′k) + εcc−fail-secure against Malicious P ∗2
5. O(1/

√
s+ s(ε1 + ε′c) + εcc−fail)-secure against Malicious P ∗1 .

Theorem 4.5 is proven as a series of lemmata below. First of all, it is quite easy to see that the
transformation preserves correctness.

Lemma 4.6 (Compiler Correctness). If the initial CC-able Protocol is εcor -correct then so is the
transformed version.

25When Π1 is replaced with an extension Ext −Π1 that allows for checking that a player has used the same input in
multiple executions of the protocol.

101

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Proof. Suppose that both participants are honest. The transformed protocol is exactly the same as an
execution of the original protocol on instance α with additional steps. Since P1 is honest, it prepares all
states, messages and proofs correctly. In protocol Π1 it sends the correct values for all executions and
effectively the parties perform s executions of Π1 in parallel. After receiving the states and messages and
checking the proofs (all of which pass as they have been honestly prepared), the players go on to execute
protocol Π2 on instance α, discarding the rest, with the sole difference being that P1 uses openings of
pre-computed messages instead our the actual values of messages for the leaks. The bit-commitment
scheme is perfectly complete and so the commitment verification always succeeds on honestly generated
commitments. The execution of Π2 thus concludes as in the original protocol and the correctness of the
compiled version follows (with the same bound). �

The Compiler also preserves the verifiability of the original protocol for P1. Note that the same result
could be obtained for P2, but if the original protocol is also verifiable for P2 then the Compiler is useless
as its purpose is precisely to provide a verification procedure for the initial protocol (albeit only for a
subset of the protocol’s steps).

Lemma 4.7 (Preservation of Verifiability). If the initial protocol was εV -verifiable for P1, then the
compiled protocol is also εV -verifiable for P1.

Proof (Sketch) In this proof we consider that the Sender is honest while the Receiver is Malicious. For
a protocol to be εV -verifiable for honest P1, a fully Malicious P ∗2 should not be able to force an incorrect
output on P1 without getting caught with probability higher than εV . One instance of protocol Π is
εV -verifiable for P1 and the compiled protocol, in the case of an honest P1, reduces to a single execution
of Π with additional steps (as shown in the proof of correctness above). The commitments that P2

receives after protocol Π1 do not reveal any additional information as they are perfectly hiding. The
deviation of the P2 is therefore independent of these commitments. Thus the compiled protocol is also
εV -verifiable for P1.

�

The security guarantees for both players are also preserved, as expressed by the following two
lemmata.

Lemma 4.8 (Preservation of Security against SM P ∗1). Let Π be a CC-able Protocol that is ε1-secure
againstMSM -Semi-Malicious P ∗1 and let εcc−fail an upper-bound on the failure of the input-constraint
procedure if using the second condition for CC-Compatible Simulators. Then the compiled protocol T (Π, s)
is sε1 + εcc−fail-secure againstMSM -SM P ∗1 .

Proof. Let SimP∗1
be a Simulator against SM adversarial P ∗1 in the initial protocol Π. We reuse

this Simulator for the initial protocol to construct a Simulator SimT,SM
P∗1

for SM adversarial P ∗1 in
protocol T (Π, s) as described in Simulator 5 below.

Notice that, apart from the Simulator checking the proofs (which pass the test necessarily), the
protocol is exactly the same as Π in terms of what an SM-adversarial P1 is able to achieve, up to the fact
that now it can attack s executions of the first protocol (this changes when dealing with fully Malicious
Adversaries of course). �

102

4.4. THE PROTOCOL COMPILER

Simulator 5 Post-Compile Semi-Malicious P ∗1

1. In the first step of the compiled protocol, the Simulator SimT,SM
P∗1

runs one copy of SimP∗1
for

each of the s instances of protocol Π1. This is done sequentially or concurrently depending on the
security of the protocol Π.

2. The simulator fails with probability εcc−fail if the Adversary is able to use a different input in one
of the executions (if the call to the Ideal Functionality is performed during Ext −Π1).

3. Otherwise, it chooses and index α, receives the proofs for i 6= α and checks them using R′C ′ (all
of these checks pass since we are dealing with an SM-Adversary that prepares these messages
honestly).

4. It proceeds the same way as SimP∗1
for Π2 on execution α until the end of the protocol, at which

point it returns whatever SimP∗1
returns and stops.

Lemma 4.9 (Preservation of Security against P ∗2). Let Π be an CC-able Protocol that is ε2-secure
against Malicious P ∗2 for negligible ε2. Suppose that the commitment scheme used in Transformation 1 is
perfectly hiding, that the compiled CC-able maps are ε′k-key-indistinguishable and let εcc−fail be an upper-
bound on the failure of the input-constraint procedure if using the second condition for CC-Compatible
Simulators and εSS the Specious-Simulation distinguishing advantage. Then the compiled protocol T (Π, s)
is s(ε2 + εSS + ε′k) + εcc−fail-secure against Malicious P ∗2 .

Proof. Note that is it not possible to use the same strategy as the proof for an adversarial Receiver
in the Q-CC Protocol. There, the simulator had to force the Receiver to choose the state sent by the
Ideal Resource as the final state and did so by permuting the states and messages until the Receiver
picked the correct one (by using the oblivious rewinding technique). Here the state produced by the
Simulator may depend on the index of the execution and so this strategy no longer works (i.e. it cannot
produce one evaluation state and s− 1 correct check states and then permute them). However, we can
use the fact that it can now control the way that all of these states are produced (while previously it
could only control s− 1 on them). This can be seen as a generalisation of the proof of security of the
Q-CC Protocol against Malicious Receiver.

The initial protocol is ε2-secure against a Malicious P ∗2 , meaning that there exists a Simulator SimP∗2

for Malicious Receiver P ∗2 in protocol Π such that the views of the (quantum polynomial-time or
unbounded depending on the type of security) Distinguisher in the ideal and real world are ε2-close.

Since the Simulator against Malicious P ∗2 is both pre-computable and CC-Specious as per the
requirements of a CC-able Protocol, there are efficient CPTP maps that correspond to generating the
pre-computed sets for the Simulator’s messages in MSM (let PreC ∗ be such a map) and the “fake”
CC-able sets that pass verification and are coherent with the previous transcript of the Simulator (this
map is S∗C). Let Upre−c and Uspe−s be purifications of these CPTP maps. Note that the CC-Specious
property only applies to the initial CC-able sets, not the compiled ones. However, the interaction
with the Simulator is indistinguishable from that with an honest party P1 for adversarial P ∗2 and the
pre-computed sets are only dependent on the honestly generated CC-able sets and previous transcript.
Therefore the CP-map S∗C can be extended at no cost to also produce pre-computed messages that pass
the tests of the compiled Receiver CP-maps R′C ′ .

103

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Given a Simulator SimP∗2
for Malicious P ∗2 in protocol Π, the Simulator SimT

P∗2
for adversarial P ∗2 in

compiled protocol T (Π, s) functions as described in Simulator 6 below.

Simulator 6 Post-Compile Malicious P ∗2

1. In the first step of the compiled protocol, the Simulator SimT
P∗2

runs copies of SimP∗2
for all s

instances of the protocol. These are performed in sequence (or in parallel if protocol Π1 is
concurrently self-composable). If the protocol has been extended to force P ∗2 to use the same input
in all s executions (because the Simulator for the non-compiled protocol performs the call to the
Ideal Functionality during protocol Π1), the Simulator SimT

P∗2
uses the input extracted by the first

execution of Simulator SimP∗2
to call the Ideal Functionality F and sends back the same reply

to all Simulators SimP∗2
when they request the call to the Ideal Functionality. This strategy fails

with probability at most εcc−fail .
2. Let

{∣∣ψiS〉}i∈[s] the purified state of each uncompiled Simulator SimP∗2
for P ∗2 in the s execution

before applying the map generating the CC-able state and message. The Simulator SimT
P∗2

chooses
an index α̂ ∈R [s] uniformly at random and applies unitary Upre−c to the state |ψαS〉 and unitary
Uspe−s to every other one.26 Let

{
X iS ,mi

S,COM , proof iS,OP

}
i∈[s]

be the resulting sets (s − 1 of
these are negligibly close to indistinguishable from sets generated honestly and therefore pass the
verification procedure while the remaining one is used for the rest of the simulation).

3. It sends the sets
{
X iS ,mi

S,COM

}
i∈[s]

to the Adversary.

4. It receives an index α from the Adversary and if α = α̂, its sends
{

proof iS,OP
}
i6=α to the Adversary.

The Adversary checks these sets and all checks pass. Otherwise it uses Watrous’ Oblivious
Rewinding, chooses another index α̂ and repeats until it succeeds. The analysis for this step
and the necessary rewinds is the same as in the proof of security of the Q-CC Protocol against
Malicious Receiver from Section 4.2.4 and Appendix 4.2.5.1. These steps can be further unitarised
by generating a uniform superposition over α̂ and applying the unitaries generating the sets in a
way that is controlled by this superposition.

5. During execution of protocol Π2 on instance α, it runs the copy of SimP∗2
that corresponds to

that instance, sending whatever the Simulator would send. It handles the leaks also by sending
opening information as in the honest protocol (it then also sends whatever Simulator SimP∗2

would
have sent for the message that were pre-computed). At the end it halts, outputting what SimP∗2
outputs.

The differences with the initial protocol are that protocol Π1 is run s times, incurring a cost of sε2,
then there are s− 1 “fake” sets generated using the CP-map S∗C , at a cost of sεSS , and the Adversary
may break the key-indistinguishability of the compiled CP-maps, which happens with probability sε′k
(the value of which is given in Lemma 4.5). This can be formalised easily using hybrid arguments and
first replacing the fake sets with honest executions up to the opening by using the Specious Simulator
Definition 4.17 (at a cost of εSS + ε2 per replaced execution), then upper-bounding the probability that
the Adversary is able to distinguish that the honest executions have been performed differently than
the simulated one, which can happen either by violating the key-indistinguishability (at a cost sε′k)
or distinguishing the last simulated execution from a real one (a cost of ε2). The compiled protocol is
therefore ε′2-secure against an adversarial Receiver, with ε′2 = s(ε2 + sεSS + ε′k) + εcc−fail .

�

As further clarification for the different strategy of the Simulator compared to that of Malicious

104

4.4. THE PROTOCOL COMPILER

Receiver in the Q-CC Protocol, we remark that, in Q-CC, the only guarantee is that the state received
is correct and there is no link to an execution of a protocol. The Q-CC Protocol as described above is
meant to be used as a subroutine in a single protocol while here the Compiler strives to combine the
executions of multiple instances of a protocol.

However, in some case it is possible to reuse the Q-CC security statement directly, as is the case in
the next lemma which shows that the Compiler boosts the security from the Semi-Malicious case to the
fully Malicious one.

Lemma 4.10 (Security Boosting against Malicious P ∗1). Let Π be a CC-able Protocol that is ε1-secure
against a MSM -Semi-Malicious P ∗1 with ε′c-collapsing proofs. Then the compiled protocol T (Π, s) is
O(1/

√
s+ s(ε1 + ε′c) + εcc−fail)-secure against Malicious P ∗1 .

Proof. This proof is carried out using a hybrid version of the compiled protocol. Using the sequential
composability result from Theorem 3.1 (Theorem 3.4 from [66]), the compiled protocol is transformed into
one in which both parties have access the Send-Blind-Correct-State fsend Ideal Functionality, resulting
in Protocol 10. Note that doing so automatically adds a cost in security of O(1/

√
s+ sε′c) for P ∗1 ,27

where ε′c is the proof-collapsing adversarial advantage from Definition 4.4 for the compiled maps. Note
that the problem encountered during the proof of Lemma 4.9 (the impossibility of directly combining
multiple executions using the Q-CC procedure and directly reusing the strategy of the Simulator against
Malicious Receiver in the Q-CC Protocol) does not occur here since the behaviour of the Simulator
against Malicious Sender in the Q-CC Protocol only cares about extracting the proof for the chosen set.
This can be done so long as the sets satisfy certain conditions, namely that they are CC-able, which
is the case here. How they are created (whether using the honest CP-map or any other mean, in this
case an execution of a previous protocol) is of no importance since they stem from a malicious party
anyway (as opposed to the proof against malicious Receiver where one set is received from the Ideal
Functionality).

Protocol 10 Compiled Hybrid Protocol

1. P1 and P2 run the protocol Π1 s times.
2. P2 chooses an index α ∈R [s] and sends it to P2. It then sends dummy input λ to the Ideal

Functionality.
3. If honest, P1 sends inpα it to the Ideal Functionality. Otherwise, it may send any (m, proof) of its

choice.
4. If the Ideal Functionality does not send Abort or Corrupted to both parties (in case of a incorrect

message and proof), it sends (m, info) to P1 and (X ,m) to P2, where X is a quantum register.
5. P1 and P2 then continue with the execution of protocol Π2 on the αth instance, with the leaks

being handled by calls to the Ideal Functionality.

The initial protocol is ε1-secure against SM P ∗1 , meaning that there exists a Simulator SimP∗1
for

Semi-Malicious P ∗1 in protocol Π such that the views of the polynomial Distinguisher in the ideal and
real world are ε1-close. A Simulator SimT

P∗1
for Malicious P ∗1 in the Compiled Hybrid Protocol 10 works

as described in Simulator 7 below.

27This is why it can not be used in the proof of Lemma 4.8, as the security bound is no longer negligible.

105

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Simulator 7 Post-Compile Malicious P ∗1

1. Note that none of the messages inMSM appear in protocol Π1 and so the SM-Adversary is actually
a fully Malicious Adversary in this part of the execution. The Simulator SimT

P∗1
may therefore run

a copy of SimP∗1
for all s sequential instances of the protocol against Malicious P ∗1 . If the protocol

has been extended such that the Ideal Functionality may be called by the Simulator during the
execution of protocol Π1 (the second option of Definition 4.16), the Simulator SimT

P∗1
uses the

same strategy as SimT
P∗2

in the previous proof against Malicious P ∗2 : it calls the Ideal Functionality
the very first time it is required (as soon as the first instance of Simulator SimP∗1

asks for it) and
reuses the result with the other instances. This strategy fails with probability as most εcc−fail .

2. The Simulator SimT
P∗1

then chooses an index α and sends it to P ∗2 . Because it impersonates the Ideal
Functionality fsend in the hybrid execution, recovers the pair (mα, proof α) sent by the Adversary.
It may then run the same steps as the Ideal Functionality by using the extractor E′C ′ , which
extracts the classical description ψ of the state and performs all the other classical checks on the
pre-computed messages. If ψ = ⊥, the Simulator halts and outputs whatever the Adversary does.
Otherwise it prepares a quantum register X with state |ψ〉.

3. Since all the checks passed it is guaranteed that all pre-computed messages have been prepared
honestly, which means that the Malicious Adversary in fact acts as an SM-Adversary in protocol Π2

and therefore the Simulator SimT
P∗1

may run the Simulator SimP∗1
for instance α during the

execution of protocol Π2, forwarding the leaks as the Ideal Functionality would. At the end of the
protocol, it returns whatever SimP∗1

does and halts.

Since s executions of the protocol have been run before the CC round, the resulting security is sε1.
The same-input constraint fails with probability εcc−fail . Replacing the Q-CC Protocol by the ideal fsend

functionality adds another 1/
√
s+O(sε′c) cost. Combining these costs concludes the proof.

�

To show the power of this Compiler when properly used and the related problems that need to
be considered, the next section presents how to apply it to a weakly-secure Two-Party Quantum
Computation Protocol based on Measurement-Based Quantum Computing and its derivatives.

4.5 Application to Secure Two-Party Quantum Computation

The Measurement-Based Quantum Computing (MBQC) model is presented first, along with two of
its variants: Universal Blind Quantum Computing (UBQC) and Verifiable Blind Quantum Computing
(VBQC). Then VBQC is used in a simple but weakly-secure Two-Party Quantum Computation (2PQC)
Protocol. Finally the Compiler is applied to this protocol by showing that it satisfies all of the prerequisites,
thus automatically boosting its security.

4.5.1 The VBQC-Based 2PQC Protocol

We recall here an abstract description of the VBQC Protocol for a fixed computation C , the full
description can be found in Section 3.5.2 as Protocol 5. The Client sends a state |ψ〉 to the Server,
then it sends measurement angles, and receives measurement results in return (these results in turn
influence the next measurement angles). Let r be the auxiliary randomness used by the Client in the

106

4.5. APPLICATION TO SECURE TWO-PARTY QUANTUM COMPUTATION

computation of the measurement angles (this is a string corresponding to all parameters r(v), each
associated to one vertex v) and let b be the string of all measurement outcomes given back by the
Server. The Client then verifies that the measurements have been performed correctly by means of a
deterministic verification function Check(·). Given ψ the classical description of the state, r and b, it
deterministically produces a bit ok ∈ {0, 1} indicating whether the computation is accepted or rejected,
along with keys for decrypting the output (which is encrypted by the teleportation corrections during
the VBQC computation, the keys depending on r and b).

We now give more details on the structure of the state used for computation C . It can be partitioned
into N layers (with N being governed by C). Let Il be the set of indices of the qubits in the lth layer.
Let iC and iS be respectively the size of the binary inputs of the Client and the Server respectively. The
first layer I1 corresponds to these inputs and can be further partitioned into IA

⋃
i∈[iC] Ii,C

⋃
j∈[iS] Ij,S

where IC :=
⋃
i∈[iC] Ii,C (respectively IS :=

⋃
j∈[iS] Ij,S) represents the space of the Client’s input

positions (respectively the Server’s input positions), and IA are positions for ancilla qubits. We suppose
that the final (output) layer can be similarly partitioned into IN = OC ∪OS ∪OA, where the positions
in OC (respectively OS) correspond to the Client’s (respectively Server’s) output locations. Note that in
each layer, some of the qubits are used for the computation and others are used as traps (and one trap
qubit is associated to each computation qubit).

The angle-update function is given by δ(v) = Ang− Updt(C , ψ, r,b, v) for v ∈ Ic1 ∪ IA (non-input
qubits and input ancilla qubits) and for inputs δ(v) = Ang− Updt(C , ψ, r,b, v) + xiπ for computation
qubits q ∈ Ii,C where x = x1|| · · · ||xiC is the Client’s binary input (and similarly for Server’s input y
and positions in Ij,S). This function is public, known to both players.

Protocol 11 presents an abstract version of the VBQC-based 2PQC Protocol that it is fully secure
against a Semi-Malicious Sender and a Malicious Receiver, in a hybrid model relying on a trusted third
party to compute the OT Ideal Functionality 9.28

Instantiating the Bit-Commitment and OT Protocols. The Bit-Commitment scheme and an
OT Protocol emulating the OT Ideal Functionality used in this protocol need to fulfil rather strict
requirements. The Bit-Commitment needs to be perfectly hiding and collapsing. This may be achieved by
using the Unbounded Halevi-Micali Bit-Commitment scheme, using the Merkle-Damgard hash function
as a primitive (proven secure in [128]). On the other hand, the OT Protocol should be fully simulatable,
statistically secure against the Receiver (Server) and computationally secure against a QPT Sender
(Client). The protocol from [112] satisfies these constraints when instantiated with the LWE-based
dual-mode encryption and using the messy mode of this encryption scheme, the Common Reference
String crs being chosen of size iS (the size of the Server’s input). In this mode and for the chosen
encryption scheme, crs can be chosen uniformly at random by using a coin-tossing protocol (therefore
no trusted setup is needed).

4.5.1.1 Alternative to Oblivious Transfer in VBQC-Based 2PQC Protocol

It is possible to replace the calls to the OT in the 2PQC Protocol above (for the measurement angles
corresponding to the inputs of the Server) by another Ideal Functionality implementing a function that

28Recall that this functionality allows one player to receive one of two values from the other player, without gaining any
knowledge about the one it did not choose. The player sending the values does not know which value has been chosen.

107

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Protocol 11 Abstract VBQC-Based 2PQC
Inputs: Client has input x ∈ {0, 1}iC and Server has input y ∈ {0, 1}iS .
Protocol:
1. The Client chooses uniformly at random the classical description ψ of a VBQC resource-state

suitable for computation C and the associated randomness r (which only depend on the size of
the computation C , i.e. the number of qubits in the base-computation)

2. The Client computes angles δ(v) for all v ∈ IS and both values of yj using the angle-update
function.

3. For all j ∈ [iS], the players perform one call to the 1-out-of-2 Oblivious Transfer Ideal Functionality:
the Client inputs (δ0

j , δ
1
j) and the Server inputs yj and receives δyjj , which is the set of measurement

angles corresponding to its input for all qubits in set Ij,S .
4. The Client commits to r and ψ using a perfectly hiding and collapse-binding commitment Com

and sends the commitments along with a quantum register containing |ψ〉 to the Server.29

5. The Server performs an entangling operation CZC (which depends only on the structure of the
computation graph, each edge corresponding to a CZ operation between the linked qubits).

6. For each non-output layer l ∈ [N − 1]:
a) For all qubits v ∈ Il, the Client sends angle δ(v) computed using function Ang− Updt (apart

for v ∈ IS if l = 1, the Server has already received those through the OTs).
b) The Server performs a measurement described by projectors

{∣∣+δ(v)
〉〈

+δ(v)
∣∣ , ∣∣−δ(v)

〉〈
−δ(v)

∣∣}
on each qubit v ∈ Il and sends the measurement results bl ∈ {0, 1}#Il to the Sender. These
measurement results are appended to string b (which is initially the empty string).

7. Upon reaching the last layer N , the Client and the Server perform the following key-release
protocol:
a) The Client sends the indices vt to the Server, corresponding to the positions of all traps

among the output qubits of the Server, along with measurement angles for these qubits and
all the qubits in OA (the output ancilla qubits).

b) The Server measures the trap qubits among its output and all ancilla output qubits and
sends the measurement results along with the qubits at the Client’s output locations OC ,
let ÕC be the corresponding quantum register.

c) The Client measures the traps among its output qubits in the basis they are supposed to
be in and appends the result to b together with the measurement results received from the
Server.

d) The Client then computes (ok, kC , kS) = Check(ψ, r,b), if ok = 1 the Client sends kS to the
Server along with vc, which contains the indices of computation qubits among the Server’s
output OS (let OS be the corresponding quantum register). Otherwise it aborts, outputting
Abort and sending it to the Server.

e) The Client finally decrypts the register OC (which corresponds to the sub-register of ÕC
that only contains computation qubits) using the key kC and sets it as its output.

f) The Server at the end uses the key kS supplied by the Client to decrypt register OS , which
corresponds to its output.

29We anticipate on the next Section and remark that, although these commitments are not opened during the execution
of the protocol, they guarantee the proof-collapsing property of CC-able sets.

108

4.5. APPLICATION TO SECURE TWO-PARTY QUANTUM COMPUTATION

is more tailor-made to this specific application. If the measurement angles are transmitted via OT,
the bit-length of the transferred messages is 9 for each input bit of the Server. This can be simplified
by leveraging the specific structure of these messages. We use first the fact that each measurement
angle δ ∈ Θ can be written as δ = δ2

π
4 + δ1

π
2 + δ0π (for δi ∈ {0, 1}). Since we are only considering

classical inputs, let δ0 and δ1 be the measurement angles corresponding to a given bit of input of the
Server for input values 0 and 1 respectively, for the same qubit in the base-location associated to this
input bit. Then δ1 = δ0 for trap and dummy qubits but δ1 = δ0 + π for the computation qubit position,
and in that case δ1

2 = δ0
2 , δ1

1 = δ0
1 and δ1

0 = δ0
0 ⊕ 1. This means that the two most significant bits can be

transmitted by the Client without relying on an Ideal Functionality or secure protocol (since these do
not change, regardless of the qubit’s nature). On the other hand, it cannot directly transmit the value δ0

0

and have the Server update it using its input because it must only be updated for the computation qubit
of each position (and not the trap and dummy qubits).

We can now define the function applied by the new Ideal Functionality that replaces OT. For
each input bit of the Server, the Client has as input three bits (δ0

0,0, δ
0
0,1, δ

0
0,2) corresponding to the

least significant bits for the measurement angles of the qubits in the base-location associated to the
Server’s input (for the input bit value 0), along with an index c = (c1, c0) corresponding to the
position of the computation qubit in this base-location ((c1, c0) ∈ {0, 1}2 is the bit representation of
c = 2c1 + c0). On the other hand, the Server has as input its bit-input for this base-location b. We
want to impose that the output δ0,c = δ0

0,c ⊕ b while the rest is untouched (δ0,c′ = δ0
0,c′ for c′ 6= c),

and that c ∈ {0, 1, 2} (since there are only three qubits in this base-position). We therefore define the
following function Blind− Updtδ : {0, 1}6 → {0, 1}4 that takes as input (x0, x1, x2, c0, c1, b) and outputs
(d0, d1, d2,Ok) defined by:

(4.38) Blind− Updtδ(x0, x1, x2, c0, c1, b) =

d0 = x0 ⊕ b · (c0 ⊕ 1) · (c1 ⊕ 1)

d1 = x1 ⊕ b · (c0 ⊕ 1) · c1
d2 = x2 ⊕ b · c0 · (c1 ⊕ 1)

Ok = c0 · c1

This simply updates the input value of xc for the computation position c if the bit b is set to 1. It also
allows the recipient to check that the value of c does not overflow via the value Ok. Since we impose
that Ok = c0 · c1 = 0 (the Server is instructed to reject otherwise), we can simplify the expression above
to the form from Equation 4.39. The corresponding circuit is given in Figure 4.3.

(4.39) Blind− Updtδ(x0, x1, x2, c0, c1, b) =

d0 = x0 ⊕ b · (c0 ⊕ c1 ⊕ 1)

d1 = x1 ⊕ b · c1
d2 = x2 ⊕ b · c0
Ok = c0 · c1

The implementation of this function costs therefore 3 AND operations and 5 XOR gates. Conversely,
the bit-OT function is defined as OT (m0,m1, b) = b ·m1 + (1⊕ b) ·m0 = b · (m0 ⊕m1)⊕m0. With the
convention that M = m0 ⊕m1 it can be rewritten as OT (m0,M, b) = b ·M ⊕m0. This has to be done

109

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

!"

#$

#%

&%

&$

&'
('

($

(%

)

*%

*$

Figure 4.3: Circuit Representation of Alternative Ideal Functionality for Oblivious Input Transmission
in QYao

three times as there are three bits to be transmitted and results in a cost of 3 AND gates and 3 XOR
gates. Both functions are therefore equivalent in terms of implementation complexity (the higher XOR
cost is usually not as important when implementing these functions securely). The added benefit of the
new Ideal Functionality is that the values that are transmitted are coherent across different values of
the input bit: if using OT, the relation δ1 = δ0 + π for computation qubits is not enforced and so can
potentially give more power to an adversarial Sender/Client.

4.5.2 Security Results and Compiler Application

We start by giving the security guarantees of our 2PQC Protocol 11 and then show that it satisfies the
constraints of a CC-able Protocol, therefore proving that our Compiler can be applied to it.

4.5.2.1 Security and Verifiability.

We state here the main result regarding the security of Protocol 11.

Theorem 4.6 (Protocol 11 Emulates the 2PQC Ideal Functionality). Let MSM = {ψ, δ,vt,vc, kS}.
Suppose that the VBQC Protocol is perfectly correct, perfectly blind for the Server and εV -verifiable for the
Client, that the Bit-Commitment scheme is perfectly-hiding and the OT Protocol is εOT,S-computationally
secure against Malicious Sender and εOT,R-statistically secure against Malicious Receiver. Then the
2PQC Protocol 11 is perfectly correct, iSεOT,S-computationally-secure against MSM -Semi-Malicious
Client and εV + iSεOT,R-statistically-secure against unbounded Malicious Server.

The correctness of Protocol 11 directly follows from that of the VBQC Protocol used in its construction.
The only difference in an honest execution is that, instead of the Client sending all measurement angles,
some initial angles are chosen by the Server through the OTs. This does not change the correctness.

110

4.5. APPLICATION TO SECURE TWO-PARTY QUANTUM COMPUTATION

Also, at the end the Server keeps a subset of the output qubits, which also has no impact on correctness.
Therefore it is perfectly correct.

We now prove the security of the base 2PQC Protocol 11 against a Semi-Malicious Client (Lemma 4.11)
and a fully Malicious Server (Lemma 4.14). Recall that the hybrid model with OT Ideal Functionality fOT

allows the Simulators to impersonate this Ideal Functionality during simulation, i.e. the Simulator receives
all inputs that the Adversary sends to the Ideal Functionality and provides the corresponding outputs.

This assumption is used only in order to make the proof clearer and easier, in a real protocol this
Ideal Functionality can then be instantiated with an OT Protocol as described in the last paragraph
of the previous subsection (using the Sequential Composability of the Stand-Alone Model). This OT
Protocol is fully secure against a computationally-bounded Malicious Client, and the security of the
resulting 2PQC Protocol is therefore also computational.

The setMSM of messages that the SM-Adversary must prepare honestly consists of all measurement
angles δ, the key kS and the position of traps and computation qubits vt and vc among the output
qubits of the Server. The security againstMSM -SM Client is stated in the following Lemma 4.11.

Lemma 4.11 (Security against Semi-Malicious Client). Suppose that the OT Protocol is εOT,S-compu-
tationally secure against Malicious Sender, then the 2PQC Protocol 11 is iSεOT,S-computationally-secure
againstMSM -Semi-Malicious Client.

Proof. We suppose that the Simulator SimC∗ has single-query access to an oracle Of2PQC which
implements the 2PQC Ideal Functionality (described in Ideal Functionality 13 of Section 3.3.3). The
proof is performed in the hybrid fOT -model, giving the control of this functionality to the Simulator.
Replacing each execution of the OT Protocol by fOT incurs a cost of εOT,S , for a total of iSεOT,S .

Since the Adversary is Semi-Malicious, the protocol is perfectly equivalent to one where, instead of
the Client sending commitments and a state to the Server, it sends instead the commitments (message)
and opening information (proof) to an Ideal Functionality fsend . The proof is then very straightforward,
the Simulator simply recovers (ψ, r) from the Adversary’s message to the fsend Ideal Functionality
(which it impersonates) and uses it to recover the Adversary’s input x̃ (by knowing the randomness that
was used to generate the angles based on x̃). It sends it to the 2PQC functionality and recovers the
Adversary’s output register OC , which it can encrypt as ÕC (using the correct keys deduced from its
knowledge of (ψ, r)) to send back to the Adversary at the end. The rest of the protocol is simulated by
using a random input ŷ. The Simulator works as described in Simulator 8 below.

The ideal and real executions in the hybrid model are perfectly indistinguishable for the Environment,
therefore the total distinguishing advantage in a non-hybrid execution is iSεOT,S .

�

While the proof above is almost trivial, it only shows that our Compiler can uplift even protocols
which are secure against very weak Adversaries to the full Malicious setting.

We now prove the security against a Malicious Server. To this end, we prove in Lemma 4.12 that the
2PQC Protocol inherits the εV -local-verifiability for the Client from the VBQC Protocol of [78] directly
(stated as Theorem 3.7 in Section 3.5.2).

Lemma 4.12 (Verifiability of 2PQC Protocol). If the VBQC Protocol is εV -verifiable for the Client,
then Protocol 11 is εV -verifiable for the Client.

111

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Simulator 8 2PQC Malicious Client

1. The Simulator impersonates the OT Ideal Functionality and receives (δ0
j , δ

1
j) for all j ∈ [iS].

2. It impersonates the fsend Ideal Functionality and receives from the Adversary the commitments and
opening information, using it to recover (ψ, r). These are honestly prepared as per the definition
of anMSM -SM Adversary withMSM = {ψ, r, δ,vt,vc, kS}.

3. When the Adversary sends the input measurement angles for its inputs at layer l = 1 (these are
also honestly prepared), by knowing the angle-update function Ang− Updt, classical description ψ
and randomness r, the Simulator can reconstruct the Adversary’s bit-input x̂: for the angle that the
Client sends for its input bit xi that corresponds to a computation qubit, the Simulator calculates
this angle for both values of xi using the deterministic angle-update function (its knows the other
secret parameters) and checks which angle in received (these can always be distinguished since
they differ by a value of π).

4. It sends the value x̂ to the 2PQC Ideal Functionality and recovers the Adversary’s output state in
quantum register OC .

5. The Simulator prepares the state |ψ〉. It uses a value ỹ chosen uniformly at random and performs
the rest of the protocol as though that was the Server’s input: it measures the qubits in the correct
basis for each value sent by the Adversary and returns the corresponding value. All the traps are
measured correctly and the Adversary does not abort at the end based on this information. The
measurement angles that the Adversary sends are always honest. As the state is also honestly
prepared, the Adversary gains no information from these steps and the ideal and real world are
perfectly indistinguishable.

6. For the last layer, it measures the positions corresponding to traps among the Server’s output
qubits.

7. Using ψ, r,b and the function Check, it produces a Quantum One-Time-Pad key kC and uses it
to encrypt OC . It swaps the computation qubits corresponding to the Client’s output in the last
layer of the graph with the qubits in OC and sends the resulting register ÕC (output and traps)
to the Adversary.

8. The Adversary performs the checks on the trap qubits (which pass necessarily), decrypts its output
and sends back kS . At this point the Simulator stops and outputs whatever the Adversary outputs.

Proof. In this proof we consider that the Client is honest while the Server is Malicious. During the first
steps of the protocol, the Server only participates in the maliciously secure OT at the end of which it
receives its input measurement angles, based on its choice of input y. This step is statistically-secure
against Malicious Server and so it is equivalent from its point of view to receiving simply the angles
corresponding to its input (it would these angles in the VBQC scheme anyway).

The Server then receives the qubits of all the graphs along with (perfectly hiding) commitments.
Deviating at this point on the qubits is equivalent to deviating later. The evaluation part of the protocol
follows exactly the same pattern as the VBQC protocol in [78].

We now analyse the key-release step. The Client receives its output qubits and can measure the
traps similarly to the VBQC Protocol. For the traps among the Server’s output, any deviation on these
qubits after the Client has revealed the position of the traps is equivalent to a deviation on the Server’s
output, which is by definition allowed even in the ideal case (see ρideal in Definition 3.12). The Client
then verifies that all the traps were measured correctly using the Check function.

From this analysis it follows that the exact same verification properties from the protocol in [78] hold
for this protocol, namely that our protocol is εV -verifiable for the Client, which completes the proof.

�

112

4.5. APPLICATION TO SECURE TWO-PARTY QUANTUM COMPUTATION

The proof of security against Malicious Server further requires the use of the following Lemma 4.13. It
shows that, by possessing a quantum register OS containing the output state of the Server, it is possible
to produce a state ρSim along with a corresponding Quantum One-Time-Pad key kS and sequence of
measurement angles δ(v), such that the Server receives its correct output after decrypting its output
register OS with key kS at the end of the execution with measurement angles δ(v). This is furthermore
indistinguishable from the point of view of the Server from an honest execution, and the state and
randomness may be chosen adaptively after setting the value for the measurement angles for the first
layer of qubits.

Lemma 4.13 (Deterministic-Output VBQC State). Let oS be the size of the Server’s output. Given a
state ρS on oS qubits, it is possible to efficiently construct a state ρSim, measurement angles {δ(v)}v∈Oc
for non-output qubits and key kS such that, at the end of a VBQC evaluation using these measurement
angles, the Server’s output state is ρS. This interaction is furthermore indistinguishable to the Server
from an honest execution of the VBQC computation and is verifiable for the Client.

Proof. We must construct a “fake” graph state whose purpose is to output, for the Server’s output
qubits in the 2PQC Protocol, a state that is fixed at the creation of this fake graph state (i.e. it has a
deterministic output that is known from the start). It must be indistinguishable to the Server from an
honestly prepared VBQC state for computation C (if the secret parameters are not revealed). Suppose
that the Client possesses a quantum register OS containing the state that it wants to impose as the
output of the Server. The graph producing this output after evaluation is constructed as such:

• The Client chooses all parameters of the Dotted Triple-Graph as it would in the normal construction
for computation C , apart from the qubits corresponding to the base-locations for the Server’s
output and the edges linking these positions to the rest of the graph.

• The green vertices of all edges of linking to the Server’s output are replaced with red vertices,
effectively breaking the output from the rest of the graph. More formally, for each edge base-
location e linking to a base-location corresponding to the Server’s output, let vec be the index of the
corresponding computation (green) qubit in the VBQC graph. The Client chooses a bit bvec ∈R {0, 1}
uniformly at random and sets the state of this qubit as

∣∣bvec〉. These positions are added to the list
of dummy qubits D.

• The Client needs to encrypt the Server’s output. For the Server’s output base-locations, it chooses
a Quantum One-Time-Pad key uniformly at random (sX , sZ) ∈R {0, 1}2#OS and applies the
corresponding Pauli operations on quantum register OS , resulting in state XsXZsZ (ρS). The qubits
of register OS are inserted as the computation qubits (green) of these base-locations.

• The decryption keys need to be updated to account for the dummies. Recall that Dv := NG(v) ∩
D is the set of dummy (red) qubits linked to qubit v in the VBQC graph. For d ∈ Dv, let
bd ∈ {0, 1} be the value of the dummy. The decryption keys are updated as follows. Let sZ,v
be the bit corresponding to the Q-OTP Z-encryption for qubit v ∈ OS , the updated key is
s′Z,v = sZ,v

⊕
d∈Dv bd. The key sX remains unchanged and kS = (sX , s′Z). These keys are identical

for all computation paths (independent of the values of previous measurements).
• All other parameters are defined as in the normal VBQC construction.

Since the dummies isolate the output of the Server from the rest of the graph, the Server obtains
the state ρ′S = XsXZs′Z (ρS) in the last layer whatever the previous measurement outcomes are. Thus

113

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

applying the updated decryption keys allows it to recover ρS . The indistinguishability follows directly
from the Server’s blindness in the VBQC protocol: since the random parameters are not revealed at
any point and only one key is revealed (even though they are identical for all computational branches),
the Server cannot get any information from the computation angles that it received. Furthermore, the
number and distribution of traps are identical to the ones in the VBQC protocol so the verifiability is
preserved for the Client.

�

The security against Malicious Server can then be stated as follows.

Lemma 4.14 (Security against Malicious Server). Suppose that the VBQC Protocol is perfectly blind
for the Server and εV -verifiable for the Client, that the Bit-Commitment scheme is perfectly-hiding and
the OT Protocol is εOT,R-statistically-secure against Malicious Receiver, then the 2PQC Protocol 11 is
εV + iSεOT,R-statistically-secure against Malicious Server.

Proof. The Simulator SimS∗ has single-query access to an oracle Of2PQC which implements the 2PQC
Ideal Functionality.

The initial step is to replace each execution of the OT Protocol by the OT Ideal Functionality
(incurring a εOT,R degradation in security for each replacement). The Simulator first recovers the
Adversary’ input ŷ by impersonating this OT Ideal Functionality and calls the 2PQC Ideal Functionality
to recover the Adversary’s output quantum register OS . Lemma 4.13 then gives an efficient construction
of a state which is indistinguishable to the Server from an honest VBQC state such that it always gives
a fixed output if evaluated correctly. The Simulator builds such a state and sends it to the Adversary.
Because of the verifiability of the VBQC protocol, any wrong evaluation by the Adversary is detected
by the Simulator with high probability, causing it to abort (the probability of aborting on this fake
state is the same as in any VBQC honest execution). Therefore if the end of the protocol is reached, the
Adversary receives the keys for its output and decrypts it to receive OS . This is formalised in Simulator 9
below.

This Simulator and proof is the same as the one presented against a Malicious Server in [77]: apart
from a slightly different construction for the fake graph, which does not use a deterministic-outcome
graph as is the case here but EPR pairs, and different input-injection method. It nevertheless rests on
the same principle: the input of the Client is never used and all parameters may be chosen at random.
Therefore our protocol inherits the same security analysis and bound.

�

4.5.2.2 Protocol 11 is CC-able.

The following Theorem shows that the previously presented 2PQC Protocol follows the structure of an
Abstract Protocol 9 by defining Π1, Π2, Dsk, input space I, SC , RC , |ψsk〉, msk, proof sk, LC andMSM .
It also satisfies all conditions for the application of the Compiler (Transformations 1 and 2), allowing for
its direct application.

Theorem 4.7 (Conditions for CC-able Protocol). Protocol 11 is a CC-able Protocol:

• It is an Abstract Protocol 9 with CC-able CP-maps.

114

4.5. APPLICATION TO SECURE TWO-PARTY QUANTUM COMPUTATION

Simulator 9 2PQC Malicious Client

1. The Simulator invokes the Adversary and receives from it what it would have sent to the trusted
party computing the OTs: ŷ = (ŷ1, . . . , ŷiS), which is the actual input that the Malicious Adversary
intended to use. It replies with a random δ

ŷj
j for each call. As mentioned above, the fake state ρSim

may be chosen later such that these values are correct with regard to that state.
2. It calls the 2PQC Ideal Functionality and receives the Server’s output register OS .
3. It create the fake state ρSim and all the associated parameters r such that they are coherent with

the values δŷjj sent previously.
4. It sends the fake state to the Adversary, along with commitments to fake messages. The ideal and

real situations are again indistinguishable as shown in Lemma 4.13 (intuitively this comes from
the blindness property of the VBQC scheme, as here we are simply encoding a computation which
always returns the same value contained in OS).

5. At each round it sends random values δ(v) and stores the Adversary’s replies b(v) (from the
construction in the proof of Lemma 4.13 it can be seen that all these values may be chosen at
random, apart from the traps which must match the value chosen for state ρSim).

6. They perform the same key-swap as in the real execution. It calculates (ok, kC ,KS) =
Check(ψSim, r,b) (where ψSim is the classical description of the state ρSim up to the Server’s output
register), if ok = 1 the Simulator sends kS and the output quantum register to the Adversary, after
which it stops and outputs whatever the Adversary outputs.

• It is pre-computable for set {ψ, r, δ,vt,vc, kS} at round rCC (Definition 4.15) for honest Client
and the Simulator against Malicious Server;

• The Simulators for both players are CC-Compatible (Definition 4.16);
• The Simulator for Malicious Server is CC-Specious (Definition 4.17).

There is no decrease in security against Malicious Server stemming from revealing one pre-computed and
therefore εpre−c = 0. The Simulator for Malicious Server uses the input-constraint condition of Definition
4.16, but the failure probability is εcc−fail = 0. The Specious-Simulation distinguishing advantage is
εSS = 0.

Proof. We show the various criteria of a CC-able Protocol in order.
Structure of 2PQC Protocol. The following elements make Protocol 11 an AP:

• The public string C corresponds to the description of the computation performed by the two
parties (expressed as a UBQC graph and uncorrected computation angles, also called measurement
pattern), along with the Server’s input angles (δ0

j , δ
1
j) for j ∈ [iS] sent through the OTs.

• Protocol Π1 corresponds to the OT Protocols for the Server’s input measurement angles (steps 2
and 3 of Protocol 11).

• Step 4 corresponds to round rCC .
• Protocol Π2 corresponds to the N − 1 rounds of evaluation (entanglement and measurements on

state |ψ〉), the key-exchange protocol, the computation of Check(ψ, r,b) by the Client and the
final output decryption by the Server (steps 5, 6 and 7).

• Dsk returns the empty string (there is no need for a secret key).
• The input space I is the set of all possible inputs for the Client {0, 1}iC . It is not used in the state

generation here but is important during pre-computations later.

115

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

• |ψsk〉 is a VBQC resource state |ψ〉 constructed as described in Section 3.5.2 and VBQC Protocol 5.
• The message msk contains commitments to ψ and the measurement-hiding parameters r ∈R
{0, 1}#ψ chosen uniformly at random, where #ψ corresponds to the (fixed) number of qubits in a
VBQC state for computation C .

• proof sk contains openings for the commitments to the classical description ψ and r.
• SC produces |ψ〉 by sampling at random a valid classical description of a VBQC state ψ and

producing |ψ〉 (single qubits, to be entangled later by the Server), then produces msk and proof sk
by sampling r at random and committing to ψ and r using Com.

• RC first calls EC which receives the openings of commitments, checks that ψ is the description of
a valid VBQC state for computation C , checks that the values (δ0

j , δ
1
j) for j ∈ [iS] are consistent

with the choice of ψ and r (and correspond to inputs 0 and 1 respectively) and if all checks pass
outputs ψ (otherwise it outputs ⊥). RC then measures each qubit separately according to the
basis specified in the classical description ψ and returns 1 if all measurements succeed (and 0 in
any other case).

• There are no valid leaks, meaning that in a given execution neither ψ nor r should leak to the
Adversary.

We can now prove that the defined CP-maps are CC-able:

• An honest Client SC samples a VBQC state, which is efficient as it simply needs to sample #ψ
rotation angles θ(v) ∈R Θ uniformly at random and produce the corresponding states. Sampling
the random value r is also efficient. For all such honestly generated (|ψsk〉 ,msk, proof sk), the
extractor is close to trivial as the classical description of the state is directly included in the proof
(along with an opening to a commitment). It only needs to perform a deterministic check on values
ψ and (δ0

j , δ
1
j). Then RC (|ψsk〉 ,msk, proof sk) = 1 always as it simply measures all qubits in the

correct basis if the checks by EC pass. This is once again efficiently done.
• Due to the collapsing property of the commitment scheme, the proof is collapsing given the message

(commitments), hence satisfying Definition 4.4, with the same εc = εCom
c as the commitment scheme

(msk consists of a single commitment since there is no need to open the individual messages
separately as there are no leaks).

• The leakage set is empty so the leaks are trivially verifiable.
• Due to the composable nature of UBQC, as proven in [41] in the Abstract Cryptography framework

of [99],30 leaking all parameters of a given state (before it is used in an execution) does not
compromise the blindness of another execution and so the sets are perfectly key-indistinguishable,
i.e. with advantage εk = 0.31

The CP-maps verify all the conditions of Definition 4.1 and the structure of the protocol is the same
as Protocol 9. The protocol also satisfies all additional conditions for it to undergo the compiling process,
as shown below.

30This framework is equivalent for two players to the Quantum Universal Composability framework of [126].
31Although the property is still called key-indistinguishability, if the key is empty then it is sufficient to prove that

revealing the proof of one set does not reveal any information about another one.

116

4.5. APPLICATION TO SECURE TWO-PARTY QUANTUM COMPUTATION

Pre-Computability. We start by noting the type of each message. The computation angles and the
values sent through the OTs are of type 0, the values of measurement results and the input of the Server
are of type 1, the classical description of the state, the values of r and the Client’s input are of type 2
and finally the measurement angles sent by the Client, the positions of different qubits among the output
of the Server and the keys of the Server’s output are of type 3. Note that the only messages that are of
type 2 that cannot be fixed (compared to the randomness r) are the input bits of the Client. Therefore
the angles associated to the Client’s input positions are permuted differently for each execution. The
Client needs to pre-compute values (δ, kS) since the values of (vt,vc) are fixed by the state ψ.

The existence of a flow in all the graphs used for computations in MBQC patterns guarantees that
the number of dependencies for each qubit does not blow up. The past of qubits Past(v) allows us to
calculate upper bounds on the number of dependencies for various computation graphs. More precisely,
for the universal brickwork state [21] used here, each qubit has a single X-dependent qubit and at most
two Z-dependent qubits, and so the cardinality #Past(v) is at most 3 for all v. To each influence-past c(v)
corresponds a unique value of δ(v) (the corrected measurement angle for this influence-past), therefore,
given θ(v) (part of ψ) and r(v), the angle that the Client sends to the Server for qubit v is uniquely
determined by the result of at most 3 previous measurements, each having value 0 or 1. This results in 8
possible values of δ(v) in total. Furthermore, the VBQC construction’s overhead is linear in the number
of qubits in the initial UBQC graph (namely 3#V + 9#E where #V is the number of vertices and #E
is the number of edges, with #E < 3#V for brickwork states). After applying the VBQC construction
on top of a brickwork graph, the number of dependencies for the measurement angles increases but
remains constant for each qubit. This is captured by the constant size of the Extended-Past of vertices
in the Dotted-Triple Graph (Definition 3.16). Pre-computing the values of δ(v) is then equivalent in
terms of computation for the Client to performing at most a constant number of executions of the
VBQC Protocol, which is efficient. The keys needed for decryption of the Q-OTP encrypted output of
the Server are similarly dependent only on at most 3 outcomes for each qubit and so are also efficiently
pre-computable.

These calculations only use classical values and so have no impact on the correctness of the protocol
(the Client does not perform a destructive action on its internal state). This makes the protocol pre-
computable for the Sender. The same procedure can be applied by the Simulator for the Server, both
satisfying Definition 4.15.

CC-Compatible Simulations. The Simulator for the Client makes the call to the 2PQC Ideal
Functionality during sub-protocol Π2 so it is automatically CC-compatible. However, the call to the
Ideal Functionality in the simulation against Malicious Server is made in the part of the protocol which
is considered as Π1. We must therefore constrain the Server to use the same input in all s executions of
protocol Π1 which consists of the call to the OT Ideal Functionality. In the compiled protocol this can
be done by simply extending the OT32 from two strings of length #δbj to two strings of length s#δbj
(each δ(v) consists of three bits and there are 3 such values in each δbj , for a total of #δbj = 9 bits). That
way the Server receives the angles for all states at the same time for each input, which ensures perfect
input-consistency across executions.33 This satisfies Definition 4.16.

32An actual OT implementation replacing the Ideal Functionality must remain secure after such an increase in capacity.
33The fake state construction presented in [77] using EPR pairs would allow for performing the call later however.

117

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

Server’s CC-Specious Simulation. We need to prove that not only the Server’s Simulator produces
states that pass the checks, but that they are also consistent with the previous transcript. It is simple to
see that the Simulator’s state are indistinguishable from honestly generated sets since they correspond
exactly to correct state for the VBQC computation. However, as mentioned in the proof of security
against Malicious Server, the Simulator starts by sending randomly chosen input angles for the Server
when it impersonates the OT Ideal Functionality. It needs to do that since it hasn’t yet generated the
state at this point (the state depends on the reply from the 2PQC Ideal Functionality which is called
after the OTs). Nevertheless, the Simulator can choose the state after it sends the values for δbj in the
OTs by simply choosing the values of θ so that they are coherent with the angles sent to the Server
(they correspond to the angles that make the angle-update function Ang− Updt output δbj , and can be
computed efficiently). The states generated in this way are indistinguishable from honestly-produced
ones. Therefore Definition 4.17 is satisfied.

�

Theorem 4.7 allows us to apply Transformations 1 and 2 to the 2PQC Protocl 11. Using Theorem 4.5,
the compiled protocol therefore inherits all the security guarantees given by the lemmata above,
namely: correctness, verifiability for the Client (combined with Lemma 4.12), full security against a
computationally-bounded Semi-Malicious Client (Lemma 4.11), full security against unbounded Malicious
Server (Lemma 4.14). Its security is also boosted and it is thus inverse-polynomially secure against a
computationally-bounded Malicious Client. For completeness, we give a description of the compiled
protocol in Protocol 12.

4.6 Conclusion and Discussion

We formalised in this chapter two variants of the often-used Cut-and-Choose technique. The classical case
for s− 1 check sets can easily be derived from the quantum presentation by removing the requirements
regarding the quantum state and only considering classical messages. Further improving our security
bound in the 1-out-of-s scenario beyond the square root factor using techniques based on [26], or
conversely finding an attack that saturates this inherently quantum bound, is left as an open question.

Regarding the properties required for the CP-maps to undergo the Q-CC procedure, they are shown
to be sufficient but we do not claim that they are necessary and in fact are considering improvements in
that regard, hopefully achieving simpler requirements. In that regard, the formalisation of the Fraction
Classical Cut-and-Choose Protocol shows an interesting alternative, both in the security framework
and requirements for applying the (classical) CC. Our presentation introduces new parameters which
various protocols might benefit from, namely the fraction of tests and the maximal fraction of tolerated
corruption among the sets transmitted to the Receiver. Then, instead of relying on concentration bounds
as most previous result do when analysing this setting, we derive precise and rather tight bounds that
are close to being saturated by the optimal attacks. Optimising over the fraction of test runs allows
us to tailor this parameter to the tolerated incorrect fraction of a overall protocol and yields, rather
counter-intuitively, that the optimal fraction of tests is 3/5 in the case where a majority of honest sets is
necessary. Finally, we validate the following intuitive reasoning: using a better error-correcting procedure
in the overall protocol such that it can tolerate a larger fraction of incorrect sets will automatically lead

118

4.6. CONCLUSION AND DISCUSSION

Protocol 12 QYao Cut-and-Choose Protocol
Input: The Client has input x ∈ {0, 1}iC and the Server has input y ∈ {0, 1}iS . They have fixed a
graph G, flow and measurement angles {φ(v)}v∈V such that the corresponding measurement pattern
implements unitary U on graph G.
The protocol:
1. The Client samples s independent copies of the Dotted-Triple Graph computing unitary U (here

it just chooses the random parameters for all graphs, it only prepares the actual qubits according
to this description later).

2. The Client constructs commitments to all θi, ri, positions of the computation qubits, dummies
and traps among the Server’s output qubits for all graphs i ∈ [s].

3. For all graphs i ∈ [s], the Client precomputes and commits to the values of δi for all possible
values of ci(v) ∈ E − Past(v) (for non-input vertices), both possible values of δi for input vertices,
in permuted order for its own input and in correct order for the Server’s input, and all values of
the Quantum One-Time-Pad keys for each of the Server’s output qubits (also according to flow).

4. The Client and Server participate in iS instances of a 1-out-of-2 OT Protocol, where in each one
the Client’s inputs are the sets

({
δ0,i
j

}
i∈[s]

,
{
δ1,i
j

}
i∈[s]

)
and the Server’s input is bit yi. After

this steps completion, the Server has in its possession the measurement angles corresponding to
all their inputs (for the same binary value across all graphs).

5. The Client and the Server perform the Q-CC Protocol:
a) The Client sends the qubits for all graphs and the commitments.
b) The Server chooses the evaluation graph index α.
c) The Client opens the commitments from 2 and 3 for any graph whose index is not α.
d) The Server performs checks and outputs Abort and halts if any of the checks fail (the checks

are the following : the δs are correctly constructed and are compatible with the choice
of φ, r and θ; the traps and dummies are in the correct place; the decryption keys are
correct according to the chosen flow; the values they received for their input via the OTs
are consistent with the input bit chosen; they verify that all states are correct by measuring
them in the appropriate basis).

6. Then the Client opens the values from commitments to the δs in 3 corresponding to their
actual binary input for graph α. The Server entangles the qubits according to the Dotted-Triple
Graph and evaluates this graph by asking the Client to open the values to δα in 3 for cα(v)
corresponding to the measurements values they obtained on each qubit. If any of the traps are
measured incorrectly the Client privately raises a flag and aborts at the end of the evaluation
phase.

7. At the end of the computation they perform the same key-release step as in Protocol 11, but the
Client opens the commitments to the positions of the qubits and the values of the Server’s keys.

119

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

to a better security bound in the FC-CC procedure, thereby decreasing the total number of sets that
need to be generated to attain a given security level.

Next, the presented Compiler shows how to use the Q-CC procedure beyond relying solely on the
Sequential Composability Theorem 3.1 from Section 3.3.1. Similarly to the Q-CC procedure, we introduce
novel properties that allow a protocol to be compiled in order to boost its security. These properties are
not proven to be necessary and simplifications may also be possible. Extensions to more varied protocols
can be considered as well: for now the parties are constrained by the structure of the AP in the way
that they can produce and use the CC-able sets.

Finally, we present a 2PQC Protocol based on the Verifiable Blind Quantum Computation Protocol
of [78] and its extension to the two-party case from [77], but for classical inputs and quantum outputs.
Instead of relying on Oblivious Transfers, the protocol of [77] leverages a different strategy for inserting
inputs in the VBQC graph which allows quantum inputs for the Client and the Server. It is possible
to extend our protocol to quantum inputs for the Client by allowing it to teleport its input via an
EPR-pair to the correct position for the unchecked graph. This would however require a modification
to the Q-CC procedure to allow for quantum proofs, since this new state can only be checked by the
Server if it possesses also the half-EPR pair that the Client keeps for its teleportation. This type of
mixed-state testing has been investigated in [43], but not in a simulation-based security framework. This
modification is already not straight-forward since the proofs must be collapsible for our simulator to
function. The problem is altogether different for inserting the Server’s input since it must not discover
the nature of the qubits amongst its input (computation, dummy or trap). A new blind input-insertion
technique would have to be designed while at the same time making sure that the verifiability property
of the VBQC protocol is not impacted.

Future Work

New Attack on Classical Yao Protocol by [88]. While developing the framework for FC-CC
and in particular after formalising the security requirements (namely the fact that all future decisions
should be made based on the secure fraction of evaluation sets), we found an attack that extends
the Selective OT Attack described in Section 4.3.3 to a more general Input-Selective Abort Attack.
The counter-measure proposed by [88] against the Selective OT Attack is insufficient against this new
variant and their protocol is therefore vulnerable to this attack. More precisely, their case analysis for
aborts is incomplete. Based on our formalisation of FC-CC, we aim to construct a protocol that is
secure against the Input-Selective Abort Attack and prove that Yao’s Classical Protocol using FC-CC
is composably post-quantum secure under standard assumptions of post-quantum secure symmetric
encryption, 1-out-of-2 Oblivious Transfer and Two-Party Coin-Tossing.

Quantum FC-CC and Exponentially-Secure QYao. Another important development that is
missing from our results is the extension of the Fraction Cut-and-Choose to the quantum setting. While
the protocol and ideal scenario would be fairly similar to the classical setting, problems may arise
from entangled attacks across the multiple forwarded states when the outer protocol uses them in later
computations. In light of the numerous issues faced by protocols using the FC-CC, defining properly the
conditions for applying a compiler to an interactive protocol as in the inverse-polynomial case would

120

4.6. CONCLUSION AND DISCUSSION

also be a challenge. We give an attack against our QYao protocol using its inherent interactivity which
shows concretely why this technique is not applicable in our setting.

In the maliciously-secure classical Yao protocol, the probability of cheating and not getting caught
made exponentially small by using the FC-CC technique with s/2 check sets and the same number of
evaluation sets and revealing only the majority output of the evaluation sets. In our case, a Malicious
Client, for one graph and a single trap qubit in the Server’s input base-locations, can send through
the OTs correctly prepared values of δ if the Server’s input is 0 and adds π if the Server’s input is 1
(meaning that the measurement outcome is flipped for this trap). If the results of all measurements
are given back as is currently the case, Client can recover the Server’s input if the corrupt graph is
evaluated. This attack succeeds with probability number of evaluation graphs

s and so we cannot hope for a
better security bound than an inverse polynomial with this version of the protocol.

Classically, evaluating an incorrect circuit has minimal influence when using s/2 evaluation circuits
since only the majority output is returned (although many precautions need to be taken in this case as
well). Here guaranteeing that the majority of evaluation circuits is correct would not be enough as the
evaluation of a circuit gives extra information for the sake of verifiability. Tricks can be put in place to
certify that the traps of a majority of graphs have been computed correctly and that a classical output
(most likely deterministic or close to) can be extracted from this majority. This would however require
either generic Zero-Knowledge Proofs or a complex Classical Secure Two-Party Computation primitive,
something that adds automatically significant overhead to the computation and is not in line with the
initial goal of our result.

This would however only solve the question for classical inputs and outputs. Allowing arbitrary
quantum inputs is not possible using this strategy since it would mean running multiple instances of
the protocol on a single copy of this input. This can be solved by imposing that these quantum have
an efficient classical description which is known to the player (for example defined as |psi〉 = U |0〉 for
efficiently computable U). The player would then generate copies of this input at will for the multiple
executions. On the other hand, implementing quantum outputs would require a procedure akin to the
final majority vote. Although a method has been presented recently at QIP2021 for quantum majority
voting [23] (paper not yet available), it is based on the promise that all input states to the algorithm are
either an unknown state |φ〉 or orthogonal to |φ〉. This would not necessarily be the case here as there is
not guarantee that the deviation of the Client would produce states orthogonal to the correct output.
For

∣∣+π/4
〉
states, the Magic State Distillation Procedure is able to produce a magic state of high fidelity

from numerous imperfect copies of it. The same principles would need to be generalised to arbitrary
states for this technique to work. Finally, a solution could be to perform the multiple executions of the
protocol over an input state which has been encoded using a quantum error correcting code and apply
the decoding procedure at the end, but this would result in a substantial blow-up in the resource used
to implement the protocol.

Covert Adversaries in Quantum Protocols. In the classical setting, a notion called Covert
Adversaries has been defined in [11]. It models situations where the Adversary might have a non-
negligible chance of cheating in a more elegant way than inverse-polynomial security. If the Simulator
has detected a cheating attempt, it sends a signal to the Ideal Functionality who in turn flips a coin with
the same bias as the Adversary’s probability of cheating in the real world. If the coin-toss is a success, it

121

CHAPTER 4. BOOSTING PROTOCOL SECURITY WITH QUANTUM CUT-AND-CHOOSE

forwards the input of the honest party to the Simulator, who can then continue the protocol with the
honest player’s input. In addition to the problems inherent to this definition,34 the detection process
in the quantum case actually perturbs the checked states and so the Simulator cannot continue the
simulation using the honest player’s input. If it measures the graph state and finds out it was incorrect,
it is supposed to evaluate this graph with the proper input, however, at that point there is not way to
reconstruct what the pre-measurement state was. There is no way to undo a quantum measurement and
make the Simulator evaluate it correctly as is done in the classical case.

34For some protocols, the Simulator may need this honest input before it detects the cheating attempt in case of a
successful coin-toss. This imposes a restriction on the class of protocols whose security can be modelled in this framework: at
the moment of detection, the simulator must be able to resume an honest execution of the protocol that is consistent both
with the (arbitrary) received input and its previous transcript. This is somewhat similar to the CC-Specious Simulation
property from Definition 4.17.

122

C
h
a
p
t
e
r 5

Dispelling Myths on Superposition Attacks:
Formal Security Model and Attack Analyses

5.1 Motivation and Overview of Results

5.1.1 Analysis of Existing Security Models

Modelling the security of classical protocols in a quantum world (especially multi-party
protocols) is tricky, since various arbitrages need to be made concerning the (quantum or
classical) access to channels and primitives.

A first possibility is to consider classical protocols embedded as quantum protocols, thus allowing
the existence of superposition attacks. However, in such a setting, previous results only consider perfect
security, meaning that the messages received by each player do not contain more information than its
input and output. The seminal papers starting this line of work are those proving the impossibility of
bit commitment [94, 100]. The perfect security of the protocol implies that no additional information is
stored in the auxiliary quantum registers of both parties at the end of the protocol and can therefore be
traced out, so that an Adversary can easily produce a superposition of inputs and outputs.

This is for example the approach of [33], and [122], where the perfect correctness requirement is
in fact a perfect (unconditional) security requirement (the protocol implements the functionality and
only the functionality). In [33], they consider an even more powerful adversarial scenario where not
only the honest player’s actions are described as unitaries (their inputs are also in superposition) but
the Adversary can corrupt parties in superposition (the corruption is modelled as an oracle call whose
input is a subset of parties and which outputs the view of the corresponding parties). Both papers
show that protocols are insecure in such a setting: In [33], they show that in the case of a multi-party
protocol implementing a general functionality (capable of computing any function), no Simulator can
perfectly replicate the superposition of views of the parties returned by the corruption oracle by using
only an oracle call to an Ideal Functionality. In the case of a deterministic functionality, they give a

123

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

necessary and sufficient condition for such a Simulator to exist, but which cannot be efficiently verified
and is not constructive. In [122], they prove that any non-trivial Ideal Functionalities that accept
superposition queries (or, equivalently, perfectly-secure protocols emulating them) must leak information
to the Adversary beyond what the classical functionality does (meaning that the Adversary can do
better than simply measure in the computational basis the state that it receives from the superposition
oracle). In both cases, they heavily rely on the assumption of unconditional security to prove strong
impossibility results and their proof techniques cannot be applied to the computational setting.

The second possibility to model the security of classical protocols in a quantum world is to define
security models with purely classical messages, in the sense that all supposedly classical messages are
measured in the computational basis upon reception. This is the path taken by the Stand-Alone Model
of [66] or the Quantum UC Model of [126], which is equivalent in the two-party case to the AC Framework
presented in Section 3.3.2. Some (computationally) secure protocols exist in this setting, as shown by a
series of articles in the literature (e.g. [91]). However, these models forbid by construction the analysis
of superposition attacks, precisely since all classical communications are modelled as measurements.

The Missing Link. The results of [122, 33] in the unconditional security setting are not directly
applicable to a Computationally-Bounded Adversary. The premiss to their analyses is that since the perfect
execution of non-trivial functionalities is insecure, any real protocol implementing these functionalities is
also insecure against Adversaries with quantum access (even more since they are simply computationally
secure). However it turns out that, precisely because the protocol is only computationally-secure, the
working registers of the parties cannot be devoid of information as is the case in the perfectly-secure
setting (the messages contain exactly the same information as the secret inputs of the parties, but it is
hidden to computationally-bounded Adversaries) and the techniques used for proving the insecurity of
protocols in the perfect scenario no longer work.

This issue has been partially solved for single-party protocols with oracle queries in the line of work
from [17], but never extended fully to the multi-party setting. The difficulty arises by the interactive
property of such protocols. Indeed, in a real protocol, more care needs to be taken in considering all the
registers that both parties deal with during the execution (auxiliary qubits that can be entangled due
to the interactive nature of the protocols). Furthermore, care must also be taken in how the various
classical operations are modelled quantumly, as choosing standard or minimal oracle representations
may influence the applicability of some attacks [74]. The naive implementation of superposition attacks,
applied to a real-world protocol, often leads to a joint state of the form

∑
x,m1,m2

|x〉 |m1〉 |m2〉 |f(x, y)〉
for a given value y of the honest player’s input, and with the second register (containing the set of
messages m1 sent by the Adversary) being in the hands of the honest player (m2 is the set of messages
sent by the honest player and f(x, y) is the result for input x). This global state does not allow the
known attacks (such as [70]) to go through as the message registers cannot simply be discarded. This
shows that the simple analysis of basic ideal primitives in the superposition attack setting is not sufficient
to conclude on the security of the overall computationally-secure protocol and motivates the search for a
framework for proving security of protocols against such attacks.

On the Importance of Superposition Attack Analysis. The reader might wonder why it may be
important to consider an attack which can be mitigated by simply measuring the incoming supposedly

124

5.1. MOTIVATION AND OVERVIEW OF RESULTS

classical messages or simply not implement classical primitives on quantum hardware. This second point
is already moot since there has been recent active research regarding the improvement of implementations
of cryptographic primitives on quantum computers, such as [136] which reduces by 30% the number of
required qubits for implementing AES encryption and decryption (which is precisely the scheme considered
in this work, see Section 5.3.1.2). Also, while the fact that a full computational basis measurement
nullifies any superposition attack is correct, this means that an additional security assumption is needed,
namely that the quantum device is trusted when required to perform the measurement. This is a
common assumption and an Adversary with inside access to the laboratory can potentially perform
more devastating attacks. We argue however that this adds a requirement for securing yet another
system against outside access in a world where even air-gapped machines have been shown to be
breachable if the stakes are high enough (e.g. Stuxnet attack). If the quantum device is connected to
a quantum external channel, even protocols that were proven unconditionally-secure (Quantum Key
Distribution) have shown vulnerabilities to side channel attacks such as detector blinding, an example of
the techniques called quantum hacking (see [56] and related works). On the other hand, proving resistance
to superposition attacks automatically removes these possibilities without further resource expenditure
and it can therefore be seen as closely related to the questions arising in the field of Device-Independent
Quantum Cryptography (where no trust is placed in the devices performing the protocol).

5.1.2 Our Contribution

The main purpose of our work is thus to bridge a gap between the following two settings:

• Superposition attacks are allowed and can be analysed, but either in a perfectly-secure setting [33,
122] (both works preclude the existence of secure protocols by being too restrictive) or only for
single-party primitives with oracle access [17].

• Computational security of multi-party protocols is defined in [126, 66] but superposition attacks
are explicitly forbidden as classical messages are measured.

To our knowledge, our result is the first attempt to formalise a security notion capturing security
of two-party protocols against superposition attacks with computationally-bounded Adversaries as a
simulation-based definition. We consider a more realistic scenario where a computational Adversary
corrupts a fixed set of players at the beginning of the protocol and the input of the honest players
are fixed classical values. We suppose that the ideal world trusted third party always measures its
queries (it acts similarly to a classical participant), while the honest player always performs actions in
superposition unless specifically instructed by the quantum embedding of the protocol (the Adversary
and the Simulator can do whatever they want). Security is then defined by considering that an attack is
successful if an Adversary is able to distinguish between the real and ideal executions with non-vanishing
probability. The reason for adding a measurement to the functionality is to enforce that the (supposedly
classical) protocol behaves indeed as a classical functionality. This is further motivated by the results of
previous papers proving that functionalities with quantum behaviour are inherently broken.

Case Studies. We show that our proposed security model is satisfiable by proving the superposition-
resistance of the classical One-Time-Pad protocol for implementing a Confidential Channel. Conversely,
we also present an attack on a slight variant of the Honest-but-Curious version of the classical Yao’s

125

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

protocol [135] for Secure Two-Party Computation. On the other hand, it is secure against Adversaries
that have a quantum computer internally but send classical messages, therefore showing a separation.
The variant is presented to demonstrate unusual and counter-intuitive reasons for which protocols may
be insecure against superposition attacks.

Proof Technique. During the superposition attack, the Adversary essentially makes the honest player
implement the oracle call in Deutsch-Jozsa’s (DJ) algorithm [37] through its actions on a superposition
provided by the Adversary. The binary function for which this oracle query is performed is linked to two
possible outputs of the protocol. The Adversary can then apply the rest of the DJ algorithm to decide
the nature of the function,1 which allows it to extract the XOR of the two outputs. Similarly to the DJ
algorithm where the state containing the output of the oracle remains in the |−〉 state during the rest of
the algorithm (it is not acted upon by the gates applied after the oracle call), the Adversary’s actions
during the rest of the attack do not affect the output register. Interestingly, this means that the attack
can thus also be performed on the same protocol but where the Adversary has no output.

Superposition-Secure Two-Party Computation. Counter-intuitively, it is therefore not the output
that makes the attack possible, but in this case the attack vector is a message consisting of information
that, classically, the Adversary should already have, along with a partial measurement on the part of
the honest player (which is even stranger considering that it is usually thought that the easiest way to
prevent superposition attack is to measure the state). This shows that adding extra communication,
even an exchange of classical information which seems meaningless for classical security, can make the
protocol become subject to superposition attacks. Removing the point of failure by never sending back
this information to the Adversary (as is the case in the original Yao Protocol) makes the protocol very
similar in structure to the One-Time-Pad Protocol, where one party sends everything to the other, who
then simply applies local operations. The proof for the One-Time-Pad works by showing that there is a
violation of the no-signalling condition of quantum mechanics if the Adversary is able to distinguish
between ideal and real scenarios. In fact, if it were able to gain any information, it would be solely
from the local operations performed by the honest player, which would imply that information has been
transferred faster than the speed of light. This technique can only be reused if the honest party in Yao’s
protocol does not give away the result of the measurement on its state (by hiding the fact that it either
succeeded in completing the protocol or aborted if it is unable to do so correctly). We show that Yao’s
Protocol is secure against superposition attacks if the (honest) Evaluator recovers the output and does
not divulge whether or not it has aborted.

Contribution Summary and Outline.

• Section 5.2 gives a new security model for superposition attacks;
• Section 5.3 describes a variant of Yao’s Protocol and proves its security against adversaries

exchanging classical messages;
• Section 5.4.2 demonstrates a superposition attack against this modified Yao’s Protocol. This attack

is then applied in Section 5.4.5 to an Oblivious Transfer protocol with slightly improved attack
success probability;

1Recall that the DJ algorithm decides whether a binary function is balanced or constant

126

5.2. NEW SECURITY MODEL FOR SUPERPOSITION ATTACKS

• Section 5.5 proves the superposition-resistance of two protocols. First we show that the Classical
One-Time-Pad Protocol remains secure in our framework. We then leverage the knowledge acquired
through our attack in the previous Section to build a secure version of Yao’s Protocol.

5.2 New Security Model for Superposition Attacks

We start by presenting a new model for security against superposition attacks. All protocols in this
chapter will again be two-party protocols (between parties P1 and P2). P1 will be considered as the
Adversary (written P ∗1 when corrupted), while P2 is honest. Although we consider purely classical
protocol, in order to be able to execute superposition attacks, both parties will have access to multiple
quantum registers, respectively denoted collectively X and Y. All communications are considered as
quantum unless specified.

The principle of superposition attacks is to consider that a player, otherwise honestly behaving,
performs all of its operations on quantum states rather than on classical states. In fact, any classical
operation defined as a binary circuit with bit-strings as inputs can be transformed into a unitary
operation that has the same effect on each bit-string (now considered a basis state in the computational
basis) as the original operation by using Toffoli gates (as explained in Section 2.2.2.2). Although any
quantum computation can be turned into a unitary operation (using a large enough ancillary quantum
register to purify it, as seen in Section 2.2.2), it may be that the honest player may have to take a
decision based on the value of its internal computations. This is more naturally defined as a measurement,
and therefore such operations will be allowed but only when required by the protocol (in particular,
when the protocol branches out depending on the result of some computation being correct). The rest of
the protocol (in the honest case) will be modelled as unitary operations on the quantum registers of the
players.

General Protocol Model. We assume that the input of the honest player is classical, meaning it is a
pure state in the computational basis, unentangled from the rest of the input state (which corresponds to
the Adversary’s input). This is in stark contrast with other papers considering superposition attacks [122,
33] where the inputs of the players are always a uniform superposition over all possible inputs. We also
consider that the corrupted party is chosen and fixed from the beginning of the protocol. We will often
abuse notation and consider the corrupted party and the Adversary as one entity.

The security of protocols will be defined using the real/ideal simulation paradigm, adapted from the
Stand-Alone Model of [66]. The parties involved are: an Environment Z, the parties participating in
the protocol, a Real-World Adversary A and an Ideal-World Adversary also called Simulator S that
runs A internally and interacts with an Ideal Functionality (that the protocol strives to emulates). An
execution of the protocol (in the real or ideal case) works as follows:

1. The Environment Z produces the input y of P2, the auxiliary input state ρA of the Adversary
(containing an input for corrupted party P ∗1 , possibly in superposition).

2. The Adversary interacts with either the honest player performing the protocol or a Simulator with
single-query access to an Ideal Functionality.

127

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

3. Based on its internal state, it outputs a bit corresponding to its guess about whether the execution
was real or ideal. If secure, no Adversary should be able to distinguish with high probability the
two scenarios.

4. The Adversary sends a state to the Environment Z.
5. The Environment Z takes as input this final state and outputs a bit corresponding to its guess of

whether the execution was real or ideal.

Network Model. To capture both the security against Adversaries with and without superposition
(so that we may compare both types of security for a given protocol), we parametrise the security
Definition 5.1 below with a network model N. The quantum network Q is modelled by having both players
interact not only with their internal quantum registers but also with a shared quantum communication
register Q. These actions are defined as unitaries. On the other hand, the classical network C is modelled
as both players having access to a shared classical tape C which is read the beginning of each activation
of a player and a quantum register initialised using the computational basis vector corresponding to the
message contained within (or equivalently, the shared quantum register Q from the quantum network
is measured in the computational basis). The outgoing messages are written to the tape at the end of
each player’s activation. The case where the network is classical is called classical-style security (as it
is simply a weaker variant of Stand-Alone Security in the usual sense of [66]), while a protocol that
remains secure when the network is quantum is said to be superposition-resistant. This allows us to
demonstrate a separation between Adversaries with and without superposition access. Furthermore,
since the classical network can be seen as a restricted quantum channel (any measurement can only
destroy information, therefore the Adversary is strictly less powerful), security with superposition access
automatically implies classical-style security.

Ideal Functionality Behaviour and Formal Security Definition. This section differs crucially
from previous models of security. The Classical Two-Party Computation Ideal Functionality implementing
a binary function f , formally defined as Ideal Functionality 19, takes as input a quantum state from
each party, measures it in the computational basis, applies the function f to the classical measurement
results and returns the classical inputs to each party while one of them also receives the output. 2

While it can seem highly counter-intuitive to consider an ideal scenario where a measurement is
performed (since it is not present in the real scenario), this measurement by the Ideal Functionality is
necessary in order to have a meaningful definition of security. It is only if the protocol with superposition
access behaves similarly to a classical protocol that it can be considered as resistant to superposition
attacks. It is therefore precisely because we wish to capture the security against superposition attack,
that we define the Ideal Functionality as purely classical (hence the measurement). If the Ideal Adversary
(a Simulator interacting classically with the Ideal Functionality) and the Real Adversary (which can
interact in superposition with the honest player) are indistinguishable to the Environment, only then is
the protocol superposition-secure.

2In the classical case, it is argued in [89] that it suffices without loss of generality to describe the ideal functionality
for functions where only one party receives an output, in this case P1, via the following transformation: any function
inputs (x, y) and two outputs (w, z) to two parties can be transformed into a function taking as input ((x, p, a, b), y) and
outputting to a single party (w,α := z ⊕ p, β := a� α⊕ b), where ⊕ and � are the addition and multiplication operations
in a well-chosen finite field (p serves as a perfect One-Time-Pad of the output z and β serves as a perfect One-Time
Message Authentication Code of α). As shown in Section 5.5.2 this is not so clear in our model.

128

5.2. NEW SECURITY MODEL FOR SUPERPOSITION ATTACKS

Ideal Functionality 19 Two-Party Secure Function Evaluation
Public information: Binary function f : {0, 1}nX×{0, 1}nY −→ {0, 1}nZ to be computed (where nX ,
respectively nY , is the size of the input of P1, respectively P2, and nZ is the size of the output).
Inputs: P1 has classical input x ∈ {0, 1}nX and P2 has classical input y ∈ {0, 1}nY .
Computation by the Functionality:
1. If the trusted party receives an input which is inconsistent with the required format (different

input size) or Abort, it sends Abort to both parties. Otherwise, let ρ̃in be the input state it
received from P1 and P2.

2. The trusted party measures the parts of ρ̃in in registers X and Y in the computational basis,
let (x̃, ỹ) be the outcomes of the measurement.

3. The trusted party computes z̃ = f(x̃, ỹ) and sends (x̃, z̃) to P1 and ỹ to P2.

Furthermore, as argued briefly above, Ideal Functionalities which do not measure the inputs of
both parties when they receive them as they always allow superposition attacks, which then extract
more information than the classical case (as proven in [122]). A superposition attack against a protocol
implementing such a functionality is therefore not considered an attack since it is by definition a tolerated
behaviour in the ideal scenario.

We can now give our security Definition 5.1. A protocol between parties P1 and P2 is said to
securely compute two-party functions of a given set F against corrupted party P ∗1 if, for all functions f :
{0, 1}nX × {0, 1}nY −→ {0, 1}nZ with f ∈ F, no Environment Z can distinguish between the real and
ideal executions with high probability.

Definition 5.1 (Computational Security in Network Class N). Let ε(η) = o(1) be a function of the
security parameter η. Let f ∈ F be the function to be computed by protocol Π between parties P1 and P2.
We say that a protocol Π ε(η)-securely emulates Ideal Functionality F computing functions from set F
against adversarial P ∗1 in network N (with N ∈ {C,Q}) if for all quantum polynomial-time Adversaries A
controlling the corrupted party P ∗1 and Environments Z producing y and ρA, there exists a Simulator SP∗1
such that, in network N:

(5.1)
∣∣∣P[b = 0 | b← Z

(
vA(SP∗1 , ρA)

)]
− P

[
b = 0 | b← Z

(
vA(P2(y), ρA)

)]∣∣∣ ≤ ε(η)

In the equation above, the variable vA(SP∗1 , ρA) corresponds to the final state (or view) of the Adversary
in the ideal execution when interacting with Simulator SP∗1 with Ideal Functionality F and vA(P2(y), ρA)
corresponds to the final state of the Adversary when interacting with honest party P2 in the real protocol
Π. The probability is taken over all executions of protocol Π.

In the case where one party does not receive an output, it is possible to reduce the security property
to input-indistinguishability, defined below in Definition 5.2.

Definition 5.2 (Input-Indistinguishability in Network Class N). Let Π be protocol between parties P1

and P2 with input space {0, 1}nY for P2. We say that the execution of Π is ε-input-indistinguishable
for P ∗1 in network N if there exists an ε(η) = o(1) such that, for all computationally-bounded quantum
Distinguishers D and any two inputs y1, y2 ∈ {0, 1}nY :

(5.2)
∣∣∣P[b = 0 | b← D

(
vA(P2(y1), ρA)

)]
− P

[
b = 0 | b← D

(
vA(P2(y2), ρA)

)]∣∣∣ ≤ ε(η)

129

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

In the equation above, the variable vA(P2(yi), ρA) corresponds to the final state of the Adversary when
interacting with honest party P2 (with input yi) in the real protocol Π. The probability is taken over all
executions of protocol Π.

We can now state Lemma 5.1, showing the equivalence of our security notions in the case where the
attacker has no output.

Lemma 5.1 (Input-Indistinguishability to Security). Let f ∈ F be the function to be computed by
protocol Π between parties P1 and P2, where F is the set of functions taking as input (x, y) ∈ {0, 1}nY ×
{0, 1}nX and outputting z ∈ {0, 1}nZ to P2 (and no output to P1). If the protocol is input-indistinguishable
for adversarial P ∗1 in network N (Definition 5.2) then it is secure against adversarial P ∗1 in network N

(Definition 5.1) with identical bounds.

Proof. If we suppose that the protocol is input-indistinguishable for Adversaries in network N, then
no computationally-bounded quantum Distinguisher (represented as a an efficient quantum machine
acting on the state returned by the Adversary) can distinguish between an execution with inputs y1

and y2. The Simulator against an Adversary in network N then simply runs the protocol honestly with a
random input ỹ (it does not need to call the Ideal Functionality as the adversarial player has no output).
Therefore:

(5.3)
∣∣∣P[b = 0 | b← D

(
vA(P2(y), ρA)

)]
− P

[
b = 0 | b← D

(
vA(SP∗1 (ỹ), ρA)

)]∣∣∣ ≤ ε(η)

Since this is the case for any efficient distinguisher, it also means that the probability that the Environment
outputs a given bit as the guess for the real or ideal execution is the same up to ε in both cases. Therefore
the protocol is secure.

�

Adversarial Classes. Quantifying Definition 5.1 and 5.2 over a subset of Adversaries in each class
yields flavours such as Honest-but-Curious or Malicious. The behaviour of an Honest-but-Curious
Adversary in a classical network C is the same as a classical Honest-but-Curious Adversary during the
protocol but it may use its quantum capabilities in the post-processing phase of its attack. We define an
extension of these Adversaries in Definition 5.3: they are almost Honest-but-Curious in that there is
an Honest-but-Curious Adversary whose Simulator also satisfies the security definition for the initial
Adversary. This is required as the adversarial behaviour of our attack presented later is not strictly
Honest-but-Curious when translated to classical messages, but it does follow this new definition.

Definition 5.3 (Extended Classical Honest-but-Curious Adversaries). Let Π be a protocol that is secure
according to Definition 5.1 against Honest-but-Curious Adversaries in a classical network C. We say
that an Adversary A is Extended Honest-but-Curious if there exists an Honest-but-Curious Adversary A′

such that the associated Simulator S ′ satisfies Definition 5.1 for A if we allow it to output Abort when
the honest party would abort as well.

130

5.3. THE MODIFIED HONEST-BUT-CURIOUS YAO PROTOCOL

Comments on the Security Model. In our security model, both the Adversary and Simulator can
have superpositions of states as input. However, if the Simulator chooses to send a state to the Ideal
Functionality, it knows that this third party will perform a measurement on it in the computational
basis. Note that in any security proof, the Simulator may choose not to perform the call to the Ideal
Functionality. This is because the security definition does not force the Simulator to reproduce faithfully
the output of the honest Client, as the distinguishing done by the Environment takes only the Adversary’s
output into account. This also means that sequential composability explicitly does not hold with such
a definition, even with the most basic functionalities (whereas the Stand-Alone Framework of [66]
guarantees it). An interesting research direction would be to find a composable framework for proving
security against superposition attacks and we leave this as an open question. The subtlety of our attack
vector presented below tends to suggest a negative answer.

5.3 The Modified Honest-but-Curious Yao Protocol

In order to demonstrate the capabilities of our new model in the case of more complex two-party
scenarios, we will analyse the security of Yao’s Protocol in classical and quantum networks.

We start by presenting definitions for symmetric encryption schemes in Section 5.3.1.1. Then in
Section 5.3.2 we give a description of a slight variant of the original Yao Protocol, resulting in the
Modified Yao Protocol. We show that the modifications do not make the protocol less secure in classical
networks, but will make superposition attacks possible as presented in Section 5.4.

5.3.1 Security and Superposition-Compatibility of Symmetric Encryption

5.3.1.1 Definitions For Symmetric Encryption Schemes

We give here the definitions of the properties required from the symmetric encryption scheme to guarantee
the correctness and classical-style security of Protocol 13 (given on page 136). Recall that such a scheme
is defined as two classical efficiently computable deterministic functions (Enc,Dec) over K, A, M and C

(respectively the key, auxiliary input, plaintext and ciphertext spaces). For simplicity we will suppose
that the key-generation algorithm simply samples the key uniformly at random from the set of valid
keys.

The symmetric encryption scheme uesd here must satisfy slightly different properties compared to
the original protocol of [135] or [89]. The purpose of these modifications is to make it possible to later
represent the action of the honest player (the decryption of garbled values) using a Minimal Oracle
Representation (see section 2.2.2.2) when embedded as a quantum protocol. We give sufficient conditions
implying this definition (as shown in Lemma 5.2) and a concrete instantiation of a symmetric encryption
scheme that satisfies them.

Definition 5.4 (Minimal Oracle for Symmetric Encryption). Let (Enc,Dec) be an encryption scheme
defined as above, we say that it has a Minimal Oracle Representation if there exists efficiently computable
unitaries MEnc and MDec, called minimal oracles, such that for all k ∈ K, aux ∈ A and m ∈ M,
MEnc |k〉 |aux〉 |m〉 = |eK(k)〉 |eA(aux)〉 |Enck(aux,m)〉 (in which case M†Enc = MDec), where eK and eA
are efficiently invertible permutations of the key and auxiliary value.

131

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

We now give sufficient conditions on the symmetric encryption scheme so that it may be efficiently
represented as a minimal oracle. The first of those is that the encryption and decryption functions are
perfect inverses of each other.

Definition 5.5 (Encryption Correctness). An encryption scheme (Enc,Dec) as defined above is said to
be correct if, for all keys k ∈ K and auxiliary input aux ∈ A, Deck(aux, ·) ◦ Enck(aux, ·) = IdM where ◦
is the composition of functions and IdM is the identity function over set M.

It is also necessary that the plaintexts and ciphertexts belong to the same set.

Definition 5.6 (Format-Preserving Encryption). An encryption scheme (Enc,Dec) defined as above is
said to be format-preserving if M = C.

The encryption scheme is called in-place if no additional memory is required for performing encryptions
and decryptions.

Definition 5.7 (In-Place Permutations). A permutation σ over set X is said to be in-place if it can be
computed efficiently using exactly the memory registers storing x using reversible operations.

Finally, the encryption scheme is called non-mixing if the registers containing the key and auxiliary
value are not modified in a way that depends on anything other than themselves. In another sense, the
only mixing that is allowed is when modifying the message register during the encryption and decryption
process.

Definition 5.8 (Non-Mixing Encryption Scheme). Let (k′, aux′, c) = Enck(aux,m) be the contents of the
three memory registers at the end of the in-place encryption algorithm under key k (transformed into k′

by the end of the encryption), where m is the message encrypted into ciphertext c, aux is the auxiliary
value and aux′ is the content of the auxiliary register at the end of the encryption. The encryption
scheme is said to be non-mixing if there exists two in-place permutations eK : K→ K and eA : A→ A

such that k′ = eK(k) and aux′ = eA(aux) (and similarly for the decryption algorithm with functions dK
and dA).

The function corresponding to the key may represent the key-expansion phase which is often present
in symmetric encryption schemes (in which case eK and dK are injective functions from K to a larger
space, but the same results apply), while the one linked to the auxiliary value may be the updating of
an initialisation value used in a block cipher mode of operation.

These four previous definitions ensure that the encryption and decryption algorithms can be repre-
sented as unitaries when acting on quantum systems without the use of ancillae (which is usual way of
transforming a classical function into a quantum operation).

Lemma 5.2 (Sufficient Conditions for Minimal Oracle Representation). Let (Enc,Dec) be a correct,
format-preserving, in-place and non-mixing encryption scheme defined as above (satisfying Definitions 5.5
through 5.8). Then is has a Minimal Oracle Representation according to Definition 5.4. Furthermore for
all superpositions |φ〉 =

∑
m∈M αm |m〉 (where

∣∣φ̃〉 is the same superposition over encrypted values):

(5.4) MEnc |k〉 |aux〉 |φ〉 = |eK(k)〉 |eA(aux)〉
∣∣φ̃〉

132

5.3. THE MODIFIED HONEST-BUT-CURIOUS YAO PROTOCOL

Proof. The encryption scheme is correct and format preserving, which implies that, for every key k ∈ K

and any value aux ∈ A, the functions Enck and Deck are permutations of M. In the case of a non-mixing
encryption scheme, the functions eK and eA are also invertible and so the overall scheme is a permutation
over K × A ×M. Any such classical permutations can be represented as minimal oracles: given a
permutation σ over a set X it is always possible, although costly, to compute σ(x) for all x ∈ X and
define the minimal oracle Mσ by its matrix elements (Mσ[x][σ(x)] = 1 and 0 everywhere else).

The efficiency of the scheme lies in the fact that all these permutations are in-place, meaning that
they can each be computed without using additional memory and using only reversible operations even
in the classical case. The classical reversible operations can easily be implemented using unitaries (mainly
gates X, CNOT and Toffoli) and so the classical efficiency directly translates to the quantum case.

Finally, since the functions eK and eA do not depend on the message being encrypted (or decrypted
in the case of dK and dA), they remain unentangled from the message register if they were in a basis
state prior to the application of the minimal oracle.

�

The Minimal Oracle requirement above forces us to define the symmetric encryption scheme as secure
if it is a quantum-secure pseudo-random permutation. In the following, the key-space, auxiliary-space
and message-space are fixed to K = {0, 1}nK , A = {0, 1}nA and M = {0, 1}nM for some nK(η), nA(η)
and nM (η) > nK(η) (mainly for simplicity of presentation, the ideas transpose to other sets). We define
the quantum security of such a symmetric encryption scheme by imposing that sampling the key and
giving a black-box access to an encryption quantum oracle is indistinguishable for a quantum Adversary
from giving it superposition access to a random permutation. This is simply a quantum game-based
version of the definition for pseudo-random permutations [60]. For a discussion on this choice of security
definitions, see Section 5.4.3.

Definition 5.9 (Real-or-Permutation Security of Symmetric Encryption). Let (Enc,Dec) be a symmetric
encryption scheme with Minimal Oracle Representation. Let SnM be the set of permutations over {0, 1}nM .
Consider the following game Γ between a Challenger and the Adversary:

1. The Challenger chooses uniformly at random a bit b ∈ {0, 1} and:

• If b = 0, it samples a key k ∈ {0, 1}nK uniformly at random, and sets the oracle O by defining
it over the computational basis states |aux〉 |m〉 for m ∈ {0, 1}nM and aux ∈ {0, 1}nA as
O |aux〉 |m〉 = UEnc |k〉 |aux〉 |m〉 = |k〉 |eA(aux)〉 |Enck(aux,m)〉 (the oracle first applies the
minimal encryption oracle MEnc and then the inverse of dK to the register containing the key).

• If b = 1, it samples a permutation over {0, 1}nM uniformly at random σ ∈ SnM and sets the
oracle O as O |aux〉 |m〉 = Uσ,eA |aux〉 |m〉 = |eA(aux)〉 |σ(m)〉.

2. For i ≤ q with q = poly(η), the Adversary sends a state ρi of its choice (composed of nM qubits) to
the Challenger. The Challenger responds by sampling an auxiliary value at random auxi ∈ {0, 1}nA ,
applying the oracle to the state |auxi〉 ⊗ ρi and sending the result back to the Adversary along with
the modified auxiliary value (notice that the oracle has no effect on the key if there is one and so it
remains unentangled from the Adversary’s system).

3. The Adversary outputs a bit b̃ and stops.

133

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

A symmetric encryption scheme is said to be secure against quantum Adversaries if there exists ε(η)
negligible in η such that, for any Adversary A with superposition access and initial auxiliary state ρaux :

(5.5) AdvΓ(A) :=
∣∣∣∣12 − P

[
b = b̃ | b̃← A(ρaux ,Γ)

]∣∣∣∣ ≤ ε(η)

5.3.1.2 Instantiating the Symmetric Encryption Scheme.

We now show that there exists a concrete encryption scheme satisfying the definitions presented above.
In a sense, the perfect (but inefficient) symmetric encryption is given by associating each key k ∈ [nM !]
to a different permutation from SnM in a canonical way (sampling the key is then equivalent to sampling
the permutation). The encryption scheme that is used in the protocol may even be considered to be
exactly this perfect encryption scheme since the superposition attack does not use the specifics of the
underlying encryption scheme, or even supposes a negligible advantage in breaking the encryption scheme
(it simply requires it to have a Minimal Oracle Representation).

Note however that a large number of symmetric encryption schemes can be made to fit these
conditions. For example, the most widely used block-cipher AES [32] operates by performing during
a certain number of rounds N the following process (the message consists of one block of 128 bits,
presented a four-by-four square matrix with 8 bits in each cell):

1. It applies a round key (different for each round) by XORing it into the message-block.
2. It applies to each cell a fixed permutation S : Z8 ← Z8 over 8 bits.
3. Each row i is shifted cyclically by i places to the left (the indices start at 0).
4. Each column is multiplied by a fixed invertible matrix.

This is clearly a permutation of the message block which is also in-place and non-mixing if implemented
without optimisations (note that there is no auxiliary value apart from the invertible matrix and the key
remains unchanged during the rounds). The security of AES is well studied classically and cryptanalysis
has been performed recently in the quantum setting in [18].

The only place where the AES cipher is not in-place is during the key-derivation phase, during which
the round keys are generated. The simple way to fix this is to make the register containing the original
key large enough to contain the expanded key as well and initialise the additional qubits in the |0〉 state.
The operation producing the larger key from the initial key then corresponds to the functions eK and dK
from Definition 5.8 (as mentioned in the remark below the definition, these can then be injective only
without changing the result).

If the message to be encrypted is longer than a block, it can easily be extended by using the
CBC operation mode, which is secure under the assumption that the underlying block-cipher is a
quantum-secure pseudo-random permutation (based on the security analysis of [8]). In this mode, the
Initialisation Value (or IV) is a uniformly random string of the same size as the blocks upon which
the block-cipher operates (it corresponds to the auxiliary value discussed previously). The encryption
of the CBC mode operates by applying the function ci = Enck(mi ⊕ ci−1) for all i, where mi is the
message block of index i and ci is the corresponding ciphertext (with the convention that c0 = IV), and
Enc is the encryption algorithm of the underlying block-cipher. Conversely the decryption is given by

134

5.3. THE MODIFIED HONEST-BUT-CURIOUS YAO PROTOCOL

mi = ci−1 ⊕ Deck(ci) with the same conventions. This is also clearly in-place and non-mixing (the IV
and key are never modified so eA = dA = IdA and eK = dK = IdK) as well as secure.

However, as mentioned above, the CBC mode of operation is only secure with superposition access
under the assumption that the underlying block-cipher is also secure against Adversaries with superposi-
tion access. The cryptanalysis in this setting is much more recent and complex (some schemes previously
considered as secure have been broken, such as the 3-round Feistel cipher in [85] and the Even-Mansour
cipher in [86], although both were patched in [3] based on the Hidden Shift Problem). On the other
hand, the CTR mode of operation on the other hand has been proven quantum-secure in [8] even if
the underlying block-cipher is only secure against quantum Adversaries with classical access (a more
studied setting, although recent attacks by [18] have been found for AES). This mode also satisfies all
the requirements stated in the definitions above with only a slight modification. The IV in this mode
is also initialised to a uniformly random value of the same size the blocks to be encrypted. The IV
is encrypted with the key and XORed to the first block, then the IV in incremented and the same
process is repeated for the subsequent blocks. This means that the IV needs to be copied (it can be done
quantumly using a CNOT gate but it is then no longer in-place). In order to be in-place and non-mixing,
the following procedure may be applied instead for each block (with IV being the register containing the
IV and Bi the register containing block at position i, with ← being used for the assignment operator
and Inc corresponding to the incrementation operator):

1. IV ← Enck(IV)
2. Bi ← Bi ⊕ IV
3. IV ← Deck(IV)
4. IV ← Inc(IV)

The overall result is that the value contained in the IV has only been updates by incrementing it as
many times as there are blocks nb to be encrypted and therefore the function eA = dA = Inc◦nb only
acts on the auxiliary value IV .

Note that these methods work for messages whose length is a multiple of the block-size, but can be
further extended by using a correctly chosen padding.

5.3.2 Presentation of the Modified Yao Protocol

The protocol will be presented in a hybrid model where both players have access to a trusted third party
implementing a 1-out-of-2 String Oblivious Transfer (Ideal Functionality 9). The Garbler plays the role
of the Sender of the OT while the Evaluator is the Receiver. The attack presented further below does
not rely on an insecurity from the OT (the classical correctness of the Oblivious Transfer is sufficient),
which will therefore be supposed to be perfectly implemented and, as all Ideal Functionalities in this
model, without superposition access.

Differences with the Original Yao Protocol. There are four main differences between our Modified
Yao Protocol 13 and the well-known protocol from [135] recalled in Section 3.5.3. The first two are
trivially just as secure in the classical case (as they give no more power to either player): the Garbler
sends one copy of its keys to the Evaluator for each entry in the garbled table and instructs it to use a
“fresh” copy for each decryption; and the Evaluator returns to the Garbler the copy of the Garbler’s keys

135

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

that were used in the successful decryption. Notice also that there is only one garbled table for the whole
function instead of a series of garbled tables corresponding to gates in the function’s decomposition. As
explained above, this means that the size of the garbled table is 2l for inputs of size l (equivalently, this
modified protocol can only be used for logarithmically-sized inputs). This is less efficient but no less
secure than the original design in the classical case (and quantum case without superposition access),
as a player breaking the scheme for this configuration would only have more power if it has access to
intermediate keys as well. The last difference is the use of a weaker security assumption for the symmetric
encryption function (indistinguishability from a random permutation instead of the quantum equivalents
to IND-CPA security developed in [17, 54, 105]). This lower security requirement is imposed in order to
model the honest player’s actions using the minimal oracle representation. This property influences the
security against an adversarial Evaluator, but Theorem 5.2 shows that this assumption is sufficient for
security in our scenario. The reasons for these modifications, related to our attack, are developed in
Section 5.4.3.

The full protocol for a single bit of output is described formally in Protocol 13.

Protocol 13 Modified Yao Protocol for One Output Bit
Public Information: The function f to be evaluated, the encryption scheme (Enc,Dec) and the size
of the padding p.
Inputs: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY respectively, with
nX + nY = O(log(η)).
Protocol:
1. The Garbler chooses uniformly at random the values

{
kG,i0 , kG,i1

}
i∈[nX]

,
{
kE,j0 , kE,j1

}
j∈[nY]

from K

and kz ∈ {0, 1}. It uses those values to compute the garbled table GT (X,Y,Z)
f , with X being the

set of wires for the Garbler’s input, Y the set of wires for the evaluators input, and Z the output
wire.

2. The Garbler and Evaluator perform nY interactions with the trusted third party performing the
OT Ideal Functionality. In interaction j:

• The Garbler’s inputs are the keys (kE,j0 , kE,j1), the Evaluator’s input is yj .
• The Evaluator’s output is the key kE,jyj .

3. The Garbler sends the garbled table GT (X,Y,Z)
f and 2nX+nY copies of the keys corresponding to

its input
{
kG,ixi

}
i∈[nX]. It also sends the auxiliary values {auxk}k∈[nX+nY] that were used for the

encryption of the garbled values.
4. For each entry in the garbled table:

a) The Evaluator uses the next “fresh” copy of the keys supplied by the Garbler along with the
keys that it received from the OT Ideal Functionality to decrypt the entry in the garbled
table.

b) It checks that the last p bits of the decrypted value are all equal to 0. If so it returns
the register containing the output value and the ones containing the Garbler’s keys to the
Garbler.

c) Otherwise it discards this “used” copy of the keys and repeats the process with the next
entry in the garbled table. If this was the last entry it outputs Abort and halts.

5. If the Evaluator did no output Abort, the Garbler applies the One-Time-Pad defined by the key
associated with wire z to decrypt the output: if kz = 1, it flips the corresponding output bit,
otherwise it does nothing. It then sets the bit in the output register as its output.

The correctness and security in classical networks of this Modified Yao Protocol are captured by

136

5.3. THE MODIFIED HONEST-BUT-CURIOUS YAO PROTOCOL

Theorems 5.1 and 5.2, showing that the modifications above have no impact in this setting (against
both quantum and classical Adversaries).

Theorem 5.1 (Correctness of the Modified Yao Protocol). Let (Enc,Dec) be a symmetric encryption
scheme with a Minimal Oracle Representation (Definition 5.4). Protocol 13 is correct with probability
exponentially close to 1 in η for p = η.

Proof. We suppose here that both players are honest. Note that the protocol will only fail if one
decryption which should have been incorrectly decrypted is instead decrypted as valid. The parameter p
must be chosen such that the probability of failure is negligible (in the security parameter in this
instance). If at least one of the keys used in decrypting an entry in the garbled table does not correspond
to the key used in encrypting it, the encryption and decryption procedure is equivalent to applying
a random permutation on r ‖ 0p for uniformly random r (up to negligible probability in η that the
encryption scheme is distinguishable from a random permutation). The probability that the resulting
element also has p bits equal to 0 at the end is therefore 2−p.

For p = poly(η), we show that the failure probability corresponding to one such event happening
across any possible “wrong” decryption is negligible in η. In fact, there are 2nX+nY +1 ciphertexts
(counting both possibilities for kz) and 2nX+nY possible input key combinations, all but one being
wrong for each ciphertext. This results in 2nX+nY +1(2nX+nY − 1) ≈ 22nX+2nY +1 random values being
potentially generated through incorrect decryption. The probability that none of these random values
has the string 0p as suffix (let Good be the associated event) is given by:

(5.6) P[Good] ≈
(
1− 2−p

)22nX+2nY +1

≈ 1− 2−p · 22nX+2nY +1

The first approximation comes from the aforementioned negligible probability that the encryption scheme
is not a random permutation while the second stems from p � nX + nY . This probability should be
negligibly close to 1 in η, in which case setting p = η is sufficient since nX + nY = O(log(η)).

�

Theorem 5.2 (Classical-Style Security of the Modified Yao Protocol). Consider a hybrid execution
where the Oblivious Transfer is handled by a classical trusted third party. Let (Enc,Dec) be a symmetric
encryption scheme that is εSym-real-or-permutation-secure (Definition 5.9). In classical network C,
Protocol 13 is perfectly-secure against adversarial Garbler (the Adversary’s advantage is 0) and (2nX+nY −
1)εSym-secure against adversarial Evaluator according to Definition 5.1.

Proof. In both cases (adversarial Garbler and Evaluator) we will construct a Simulator that runs
the Adversary against the real protocol internally and show that the Environment’s advantage in
distinguishing the real and ideal executions is negligible. Recall that all exchanged messages are classical.

Security against adversarial Garbler. The Simulator works as follows:

1. During each OT, it performs the same interaction as an honest player would, but with a random
value for the input ỹi of each OT.

137

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

2. The Adversary’s machine then necessarily sends the Garbler’s keys and the circuit in the computa-
tional basis.

3. This automatically fixes the value of the Adversary’s input x̂ (the Adversary being Honest-but-
Curious, it has generated the keys correctly and sent the keys corresponding to its input). The
Simulator can therefore measure the register containing the input of the Garbler to recover x̂.

4. The Simulator then sends x̂ to the Ideal Functionality computing the function f and gets f(x̂, ŷ)
(for the actual value of the honest player’s input ŷ).

5. The Simulator can compute the value f(x̂, ỹ) and decrypt the garbled table values to recover the
encrypted output f(x̂, ỹ)⊕ kz using the keys that were giving to it through the OTs (for its “fake”
input ỹ). It uses both values to recover kz.

6. The Simulator then computes f(x̂, ŷ)⊕ kz and sends this value to the Adversary.

The only distinguishing advantage of the Environment between the real protocol and this ideal
execution stems from the Adversary’s potential difference in behaviours during the execution of the OTs.
These executions are ideal in the hybrid model and so the advantage of the Environment is 0.

Security against adversarial Evaluator. The messages sent to the adversarial Evaluator consist
of nY instances of OTs, 2nX+nY garbled table entries and the keys corresponding to the input of the
honest player. The Simulator performs all these steps similarly to an honest Garbler but sends the
keys corresponding to a randomly chosen input x̃. We can show through a series of games that this
does not give any information to a computationally-bounded Evaluator (we show that the protocol is
input-indistinguishable according to Definition 5.2, which as stated Lemma 5.1 is equivalent since the
Adversary has no output):

• Game 0: The Simulator performs Protocol 13 with the Adversary, with random input x̃.
• Game 1: In the execution of the OTs the Simulator replaces the values of the keys that are

not chosen by the Adversary with random values (that were not used to compute any of the
encryptions). The advantage in the real-world for the Adversary compared to this situation is 0
since the execution of the OTs is perfectly-secure in the hybrid model.

• Game 2: The encryptions that use those (now random) keys can be replaced by random values,
with a security cost of εSym per replaced encryption (as the encryption can be considered to be
random permutations without having access to the key). It is a double encryption, so for some
values the Adversary may posses either the inner or the outer key. This means that it could invert
one of the encryptions, but since it does not have the other this is meaningless.

• Game 3: Finally, the key kz only appears in one encryption as a One-Time-Pad of the output
of the computation (the others are now independent from it). It can therefore be replaced by
an encryption of a random value, meaning that it is as well a random value (this is perfectly
equivalent).

Finally, at the end of Game 3, only the keys received through the OT remain and they are random
values chosen independently from one another and from any input. The Environment has no advantage
in this scenario, meaning that the overall advantage is at most (2nX+nY − 1)εSym.

�

138

5.4. SUPERPOSITION ATTACK ON YAO’S PROTOCOL

The proof above shows that proving the security of some protocols does not require the Simulator
to call the Ideal Functionality, in particular if the adversarial party does not have an output in the
protocol. This is contrary to the usual simulation-based proofs, where the Simulator must extract the
input of the Adversary to send it to the Ideal Functionality (for the sake of composition). However, the
exact same proofs of security work in the Stand-Alone Framework of [66] if the Simulator does send the
input value of the Adversary to the Ideal Functionality (any Adversary against a classical protocol in
the Stand-Alone Framework only sends classical messages as well).

5.4 Superposition Attack on Yao’s Protocol

In Section 5.4.1 we first describe how the actions performed during the protocol are transcribed into
quantum operations. The superposition attack on the Modified Yao Protocol (Protocol 13) is then
presented in two steps: Section 5.4.2 first describes the actions of the Adversary during the execution
of the protocol, while Section 5.4.3 presents the Full Attack. This attack is proven to be Extended
Honest-but-Curious in Section 5.4.4, therefore the same Adversary in a classical network does not break
the classical-style security expressed in Theorem 5.2 (this proves the separation between the quantum
and classical settings). The attack is further optimised in Section 5.4.5 using the free-XOR technique,
and applied to an Oblivious Transfer protocol (computed by an instance of Yao’s Protocol).

Note that this attack does not simply distinguish between the ideal and real executions, but allows
the Adversary to extract one bit of information from the honest player’s input. It is therefore a concrete
attack on the Modified Yao Protocol 13 (as opposed to a weaker statement about not being able to
perform an indistinguishable simulation in our model).

5.4.1 Quantum Embedding of the Classical Protocol

The inputs of each party are stored in one register each, as |x〉 and |y〉 respectively. For each key k that
is created as part of the protocol, a different quantum register is initialised with the state |k〉 (there are
therefore nY registers for the Evaluator’s keys and nX2nX+nY for the Garbler’s keys due to the copies
being generated). Similarly, for each value Ei of the garbled tables, a quantum register is initialised with
the value |Ei〉 (there are 2nX+nY such registers). The auxiliary values are also all stored in separate
quantum registers. All of these values are encoded in the computational basis.

The OT trusted party works as described in the Ideal Functionality 9. The inputs and outputs
are considered to be pure quantum states in the computational basis (no superposition attack is
allowed to go through the OT). Sending messages in the other parts of the protocol is modelled as
taking place over perfect quantum channels (no noise is present on the channel and superpositions
are allowed to pass undisturbed). A decryption of ciphertext c using a key k and auxiliary value
aux is modelled using the Minimal Oracle Representation from Definition 5.4 as MDec |k〉 |aux〉 |c〉 =
|dK(k)〉 |dA(aux)〉 |Deck(aux, c)〉 on the states of the computational basis.

Checking whether the final p bits are equal to 0 corresponds to performing a measurementMC on
the corresponding register P in the basis {|0p〉〈0p| , 1P − |0p〉〈0p|}. If the measurement fails, the Evaluator
applies the inverses of dK and dA to the registers containing respectively its keys and the auxiliary
values so that they may be reused in the next decryption. Finally, the correction applied at the end
which depends on the choice of key for wire Z is modelled as classically controlled Pauli operators Xkz

139

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

(this corresponds to the quantum application of a classical One-Time-Pad and the value kz can be seen
as internal classical values of the Garbler for simplicity).

For simplicity, let kEy := kE,1y1
‖ . . . ‖ kE,nYynY

for y ∈ {0, 1}nY (similarly for x ∈ {0, 1}nX). Also, let
Ẽnc be the sequential encryption by all keys corresponding to strings x and y, using the set of auxiliary
values ãux := aux1 ‖ . . . ‖ auxnX+nY . Then Ek

z

x,y = ẼnckGx ,kEy (ãux, f(x, y) ⊕ c ‖ 0p). Finally, d̃K is the
function applying dK to each key, and similarly for d̃A.

5.4.2 Generating the Correct and Unpolluted Superposition

We start by presenting the action of the adversarial Garbler during the execution of Protocol 13 (its later
actions are described in Section 5.4.3). Its aim is to generate a state containing a superposition of its
inputs and the corresponding outputs for a fixed value of the Evaluator’s input, without it being polluted
by additional ancillary registers. This State Generation Procedure on the Modified Yao Protocol 13
(Attack 1) can be summarised as follows:

1. The Adversary’s choice of keys, garbled table generation (but for both values of kz) and actions in
the OT are performed honestly.

2. Instead of sending one set of keys as its input, it sends a superposition of keys for two different
non-trivial values of the Garbler’s input (x̂0, x̂1) (they do not uniquely determine the output).

3. For each value in the garbled table, it instead sends a uniform superposition over all calculated
values (with a phase of −1 for states representing garbled values where kz = 1).

4. It then waits for the Evaluator to perform the decryption procedure and, if the Evaluator succeeded
in decrypting one of the garbled values and returns the output and register containing the Garbler’s
keys, the Adversary performs a clean-up procedure which translates each key for bit-input 0
(respectively 1) into a logical encoding of 0 (respectively 1). This procedure depends only on its
own choice of keys.

We can now analyse the states of both parties and the success probability of this procedure in
Theorem 5.3.

Theorem 5.3 (State Generation Analysis). The state contained in the Garbler’s attack registers at the
end of a successful Superposition Generation Procedure (Attack 1) is negligibly close to

(5.8) 1
2
∑
x,kz

(−1)k
z ∣∣xL〉 |f(x, ŷ)⊕ kz〉

where xL is a logical encoding of x and x ∈ {x̂0, x̂1}. Its success probability is lower bounded by 1− e−1

for all values of nX and nY .

We prove the two parts of Theorem 5.3 separately, first analysing the result of a successful execution
and later computing the success probability of the procedure.

140

5.4. SUPERPOSITION ATTACK ON YAO’S PROTOCOL

Attack 1 Superposition Generation Procedure on the Modified Yao Protocol
Inputs:

• The (adversarial) Garbler has as input the quantum state φinp,G = |x̂0〉⊗|x̂1〉, with values x̂0, x̂1 ∈
{0, 1}nX received from Environment Z describing classically the superposition of inputs that it
should use.

• The (honest) Evaluator has as input ŷ ∈ {0, 1}nY , received from Environment Z.
The Attack:
1. The Garbler chooses uniformly at random the values

{
kG,i0 , kG,i1

}
i∈[nX]

and
{
kE,i0 , kE,i1

}
i∈[nY]

and computes the initial garbled tables GT (X,Y,Z),0
f =

{
E0
x,y

}
x,y

and GT (X,Y,Z),1
f =

{
E1
x,y

}
x,y

(where the index 0 corresponds to kz = 0 and similarly for 1, or equivalently that the value
encrypted is f(x, y) in the first case and f(x, y)⊕ 1 in the second). This computation is the same
as in the honest protocol (but done for both values of kz). Note that there is no need to permute
the values as they will be sent in superposition anyway.

2. The Garbler and Evaluator perform nY interactions with the trusted third party performing
the OT Ideal Functionality. At the end of all interactions, the Evaluator has a quantum register
initialised in the state

⊗
i∈[nY]

∣∣∣kE,iŷi

〉
=
∣∣kEŷ 〉.

3. The Garbler sends the auxiliary values as it would in the original protocol. The corresponding
state is |ãux〉 =

⊗
i∈[nX+nY] |auxi〉. For each key kGx that it would send to the Evaluator, the

Garbler instead sends a uniform superposition 1√
2

(∣∣∣kG
x̂0

〉
+
∣∣∣kG
x̂1

〉)
. For each entry in the garbled

table that it would send, it instead sends the following superposition over all garbled values:

(5.7) |GT 〉 = 1√
2nX+nY +1

∑
x,y,kz

(−1)k
z
∣∣∣Ekzx,y〉

4. For each entry in the garbled table, the Evaluator proceeds as it would in the protocol, decrypting
the ciphertexts sequentially, performing a projective measurement on register P defined by
projectors {|0p〉〈0p| , 1P − |0p〉〈0p|} and returning the corresponding output and the register
containing the Garbler’s keys if successful.

5. If the Evaluator is successful and returns a state after one of its measurements, the Garbler
applies the following clean-up procedure:
a) For each register containing one of its keys, it applied the inverse of dK .
b) For each index i such that x̂0

i 6= x̂1
i, if there is an index j such that kG,i,j0 6= kG,i,j1

and kG,i,j0 = 1, it applies an X Pauli operation on the qubit containing this bit of the key.
c) The first register then contains a superposition of logical encodings of the inputs x̂0

L′

and x̂1
L′ . The register containing the output is unchanged.

6. The Garbler then sets these registers (called attack registers) as its output, along with a register
containing |x̂0〉 ⊗ |x̂1〉 ⊗ |L′〉, with L′ being a list of integers corresponding to the size of a given
logical repetition encoding of the inputs (see the proof of Theorem 5.3).

Proof of State Generation Correctness (Theorem 5.3, part 1) The state in the registers of the
Evaluator (with input ŷ ∈ {0, 1}nY) before it starts the decryption process is (up to appropriate
normalisation):

(5.9) |ŷ〉 ⊗
∣∣kEŷ 〉⊗ 1√

2
(∣∣∣kG

x̂0

〉
+
∣∣∣kG
x̂1

〉)
⊗ |ãux〉 ⊗

∑
x,y

∣∣E0
x,y

〉
−
∣∣E1

x,y

〉
141

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

In fact there are 2nX+nY registers containing the superposition of keys and the same number
containing the superposition of encryptions, but it suffices to consider the result on one such register
(the protocol has been specifically tailored so that repetitions can be handled separately, as seen in the
next part of the proof). For x 6= x′ or y 6= y′ (inclusively), let gx′,y′,kzx,y = D̃eckGx ,kEy (ãux, Ekzx′,y′) (this is
the decryption of Ekzx′,y′ using the keys for x and y, leading to a wrong decryption as at least one key
does not match and generating the garbage value gx′,y′,kzx,y). The state after applying the decryption
procedure is then (for x ∈ {x̂0, x̂1}):

(5.10) |C〉 ⊗
(∑
x,kz

(−1)k
z
∣∣∣d̃K(kGx)〉 |f(x, ŷ)⊕ kz〉 |0〉⊗p +

∑
kz,x,x′,y′

(x,y)6=(x′,ŷ)

(−1)k
z
∣∣∣d̃K(kGx)〉 ∣∣∣gx′,y′,kzx,ŷ

〉)

Here the registers containing the Garbler’s keys have been rearranged and |C〉 = |ŷ〉 ⊗
∣∣∣d̃K(kEŷ)〉⊗∣∣∣d̃A(ãux)

〉
corresponds to the classical values unentangled from the rest of the state. With overwhelming

probability in η (based on the analysis from Theorem 5.1), there are no values (r, kz, x, x′, y′) such that
the incorrectly decrypted values verify gx

′,y′,kz

x,ŷ = r ‖ 0p and so the states

(5.11)
∑
x,kz

(−1)k
z
∣∣∣d̃K(kGx)

〉
|f(x, ŷ)⊕ kz〉 |0〉⊗p

and

(5.12)
∑

kz,x,x′,y′

(x,y)6=(x′,ŷ)

(−1)k
z
∣∣∣d̃K(kGx)

〉 ∣∣∣gx′,y′,kzx,ŷ

〉

are orthogonal. If the measurementMC succeeds (i.e. the outcome is |0p〉〈0p|), the projected state is
(also up to appropriate normalisation):

(5.13) |C〉 ⊗
∑
x,kz

(−1)k
z
∣∣∣d̃K(kGx)

〉
|f(x, ŷ)⊕ kz〉 |0〉⊗p

Note that the keys of the Evaluator and the auxiliary values are unentangled from the rest of the state
during the whole process thanks to the properties satisfied by the symmetric encryption scheme. The
state in the Garbler’s registers after receiving the output and its keys is then simply:

(5.14)
∑
x,kz

(−1)k
z
∣∣∣d̃K(kGx)

〉
|f(x, ŷ)⊕ kz〉

After applying the first step of clean-up procedure at the end (applying the inverse of dK for each key),
the Garbler is left with the state:

(5.15)
∑
x,kz

(−1)c
∣∣kGx 〉 |f(x, ŷ)⊕ kz〉

142

5.4. SUPERPOSITION ATTACK ON YAO’S PROTOCOL

To demonstrate the effect of the rest of the clean-up procedure, we will apply it to an example with
keys k0 = 01110 and k1 = 11100 (for an Adversary’s input consisting of a single bit). The corresponding
(non-normalised) superposition is then |k0〉 |f(0, ŷ)〉+ |k1〉 |f(1, ŷ)〉 = |01110〉 |f(0, ŷ)〉+ |11100〉 |f(1, ŷ)〉
(the terms with kz = 1 behave similarly). If the bits of key are the same, we can factor out the
corresponding qubits (in this case, the second, third and fifth qubits are unentangled from the rest).
This ends up producing the state |110〉 ⊗ (|01〉 |f(0, ŷ)〉+ |10〉 |f(1, ŷ)〉). The unentangled qubits may
be discarded and then the qubits i for which ki0 6= ki1 and ki0 = 1 are flipped using X (meaning the
fourth initial qubit in this case, or the second one after discarding the unentangled qubits). The result
is |00〉 |f(0, ŷ)〉+ |11〉 |f(1, ŷ)〉. This procedure does not depend on the choice of ŷ (and is the same for
kz = 1), only on the keys that were generated by the Adversary.

In the general case, the final clean-up transforms each key associated with a bit-value of 0 into a
logical 0 (i.e. 0L′i for a random but known value L′i), and similarly with the corresponding key associated
to the bit-value 1 (changed into 1L′i with the same L′i). The final result is therefore (where xL′ is a
logical encoding of x where some bits may be repeated a variable but known number of times):

(5.16) 1
2
∑
x,kz

(−1)k
z
∣∣∣xL′〉 |f(x, ŷ)⊕ kz〉

This is exactly the state that was expected, therefore concluding the proof.
�

Proof of Success Probability of State Generation (Theorem 5.3, part 2) If a given measure-
ment fails, based on the analysis in the previous proof, the state in the Evaluator’s registers corresponding
to this decryption is negligibly close to:

(5.17) |ŷ〉 ⊗
∣∣d̃K(kEŷ)

〉
⊗
∣∣d̃A(ãux)

〉
⊗
∑

kz,x,x′,y′

(x,y)6=(x′,ŷ)

(−1)k
z
∣∣∣d̃K(kGx)

〉 ∣∣∣gx′,y′,kzx,ŷ

〉

By applying the inverse of the dK and dA operations on each of the registers containing its keys and the
auxiliary values, the Evaluator recovers the state:

(5.18) |ŷ〉 ⊗
∣∣kEŷ 〉⊗ |ãux〉 ⊗

∑
kz,x,x′,y′

(x,y)6=(x′,ŷ)

(−1)k
z
∣∣∣d̃K(kGx)

〉 ∣∣∣gx′,y′,kzx,ŷ

〉

Unless it is the last remaining copy of the superposition of Garbler’s keys and garbled values (in
which case the attack has failed), the Evaluator can simply proceed and repeat the decryption process
using its keys and the auxiliary values on the next copy (the failed decryption state is unentangled
from the rest and can be ignored in the remaining steps). This essentially means that the Evaluator has
2nX+nY independent attempts to obtain measurement result 0p.

Since the states that are being considered are normalised and in a uniform superposition, the
probability of success of each measurement attempt is simply given by the number of states correctly
decrypted out of the total number of states.

143

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

There are 2nX+nY +1 encrypted values in the garbled table and 2 key pairs (one key for wires in Y and
2 keys for wires in X). There are therefore 2nX+nY +2 decrypted values (taking into account decryptions
performed with the incorrect keys and counting duplicates). For each key pair, there are exactly two
ciphertexts which will decrypt correctly (one for each value of kz), meaning that 4 decrypted values
out of 2nX+nY +2 have their last p bits equal to 0. The probability of the measurementMC succeeding
is therefore 1

2nX+nY . The probability that no measurement succeeds in 2nX+nY independent attempts
(noted as event Fail) is given by:

(5.19) P[Fail] =
(

1− 1
2nX+nY

)2nX+nY

The function p(x) = (1− 1
x)x is strictly increasing and upper-bounded by e−1, meaning that the success

probability is P[Succ] = 1− P[Fail] ≥ 1− e−1

�

Generalisation to Separable Superpositions. For binary function f : {0, 1}nX×{0, 1}nY → {0, 1}
and ŷ, let U ŷf be the unitary defined through its action of computational basis states by U ŷf |x〉 |kz〉 =
|x〉 |f(x, y)⊕ kz〉. The above procedure allows the Adversary to generate U ŷf |ψ〉 |φ〉 for any states |ψ〉
(over nX qubits) and |φ〉 (over one qubit) whose classical descriptions ψ and φ are efficient (notice that
the state |ψ〉 |φ〉 must be separable). The description of state ψ is used to generate the superposition of
keys (if an input appears in the superposition ψ, then the key corresponding to it should appear in the
superposition of keys with the same amplitude) while φ is used when generating the superposition over
garbled table entries, i.e. if |φ〉 = α |0〉+ β |1〉, the corresponding superposition over garbled values is:

(5.20) |GTα,β〉 =
∑
x,y

α
∣∣E0

x,y

〉
+ β

∣∣E1
x,y

〉
The same results and bounds are applicable (with similar corresponding proofs).

5.4.3 Applying the State Generation Procedure to the Full Attack

We can now analyse the actions of the Adversary after the protocol has terminated. The Full Attack 2
breaking the security of the Modified Yao Protocol 13 can be summarised as follows:

1. The Environment provides the Adversary with the values of the Garbler’s input (x̂0, x̂1). The
input of the honest Evaluator is ŷ.

2. The Adversary performs the State Generation Procedure with these inputs.
3. If it has terminated successfully, the Adversary performs an additional clean-up procedure (which

only depends on the values of (x̂0, x̂1)) to change the logical encoding of x̂b into an encoding of b.
The resulting state is (omitting this logical encoding, with bi := f(x̂i, ŷ) and up to a global phase):

(5.21) 1√
2
(
|0〉+ (−1)b0⊕b1 |1〉

)
⊗ |−〉

144

5.4. SUPERPOSITION ATTACK ON YAO’S PROTOCOL

4. The Adversary recover the XOR of the output values for the two inputs by applying a Hadamard
gate to its first register and measuring it in the computational basis.3

Attack 2 Full Superposition Attack on the Modified Yao Protocol
The Attack:
1. The Environment Z generates values (x̂0, x̂1, ŷ) and sends |x̂0〉 ⊗ |x̂1〉 to the Adversary. The

values (x̂0, x̂1) are non-trivial in the sense that they do not uniquely determine the value of the
output.

2. The Adversary applies the Superposition Generation Procedure described in Attack 1, using a
superposition of keys for x̂0 and x̂1. If the Evaluator was not successful, the Adversary samples
and outputs a bit b (equal to 0 with probability pGuess, which corresponds to the optimal guessing
probability and whose value is defined in the proof of Theorem 5.4) and halts.

3. Otherwise, the Adversary applies the following clean-up procedure on the output state of the
Superposition Generation Procedure, similar to the one described in Attack 1 (recall that the
first register then contains a logical encoding of the inputs x̂0

L′ and x̂1
L′ , obtained after the first

clean-up procedure described in Attack 1):
a) If there is an index j such that x̂0

j 6= x̂1
j and x̂0

j = 1, it applies a Pauli X operation on the
qubits corresponding to the logical encoding of bit j (each bit is encoded with a repetition
code of varying length given by the list L′).

b) The qubits corresponding to a value j such that x̂0
j = x̂1

j are unentangled from the rest of
the state and so can be discarded.

4. The result of the previous step is that the first register now contains a superposition of a logical
encoding 0L and 1L (for another logical encoding L). The Adversary then applies a logical
Hadamard gate HL on this register.

5. The Adversary measures the first qubit in the computational basis and outputs the result s to Z.
6. The Environment guesses that the execution is real if s = f(x̂0, ŷ)⊕ f(x̂1, ŷ).

This Full Attack 2 breaks the security of the Modified Yao Protocol 13 (Theorem 5.4) by guessing
the XOR of the outputs for two different inputs of the Garbler and the same input for the Evaluator. If
the ideal and real executions were indistinguishable according to Definition 5.1, such a feat would be
impossible for the Adversary since the Simulator can at most access one value of the output through the
Ideal Functionality.

Theorem 5.4 (Vulnerability to Superposition Attacks of the Modified Yao Protocol). For any non-
trivial two-party function f : {0, 1}nX × {0, 1}nY → {0, 1}, let (x̂0, x̂1) be a pair of non-trivial values in
{0, 1}nX . For all inputs ŷ of honest Evaluator in Protocol 13, let PEf (ŷ) = f(x̂0, ŷ)⊕ f(x̂1, ŷ). Then there
exists a real-world Adversary A in quantum network Q against Protocol 13 implementing f such that for
any Simulator S, the advantage of the Adversary over the Simulator in guessing the value of PEf (ŷ) is
lower-bounded by 1

2 (1− e−1).

Proof. Let (x̂0, x̂1) be a pair of values in {0, 1}nX such that there exists (ŷ0, ŷ1) with f(x̂0, ŷ0) = f(x̂1, ŷ0)
and f(x̂0, ŷ1) 6= f(x̂1, ŷ1) (at least one such pair of inputs exists, otherwise the function is trivial). The
Environment Z initialises the input of the Adversary with values a pair of such values x̂0 and x̂1.
Let ŷ ∈ {0, 1}nY be the value of the honest player’s input chosen (uniformly at random) by the
Environment Z. The goal of the attack is to obtain the value of PEf (ŷ) = f(x̂0, ŷ)⊕ f(x̂1, ŷ).

3This corresponds to the final steps of the DJ algorithm after the application of the oracle, see Section 2.2.3.1.

145

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

The Adversary will try to generate the superposition state during the protocol using Attack 1,
succeeding with probability pGen . If the state has been generated correctly, Adversary will apply the final
steps of Deutsch’s algorithm and recover the value of the XOR with probability equal to 1 (see below). If
the state generation fails, Adversary resorts to guessing the value of the value of PEf (ŷ), winning with a
probability pGuess. On the other hand, the Simulator is only able toss a coin to guess the value of PEf (ŷ)
(the only information that it possesses is either f(x̂0, ŷ) or f(x̂1, ŷ), given by the Ideal Functionality),
winning with probability pGuess.

The overall advantage of the Adversary is therefore pGen · (1 − pGuess) (if the State Generation
Procedure does not succeed, the probabilities of winning of the Adversary and the Simulator are the
same). It has been shown via Theorem 5.3 that the probability of generating the state is lower-bounded
by 1− e−1, the rest of the proof will focus on describing the last steps of the Attack 2 and calculating
the other values defined above.

We first analyse the behaviour of the state during the Adversary’s calculation in Attack 2 if there
was no Abort. The state in the register of the Adversary registers at the end of a successful Superposition
Generation Procedure via Attack 1 is (the logical encoding L′ being known to the Adversary):

(5.22) 1
2

(∣∣∣x̂0
L′
〉
|f(x̂0, ŷ)〉 −

∣∣∣x̂0
L′
〉
|f(x̂0, ŷ)⊕ 1〉+

∣∣∣x̂1
L′
〉
|f(x̂1, ŷ)〉 −

∣∣∣x̂1
L′
〉
|f(x̂1, ŷ)⊕ 1〉

)
The Adversary applies the clean-up procedure on the registers containing x̂iL

′
and obtains (for a different

value L for the logical encoding):

(5.23) 1
2
(
|0〉⊗L |f(x̂0, ŷ)〉 − |0〉⊗L |f(x̂0, ŷ)⊕ 1〉+ |1〉⊗L |f(x̂1, ŷ)〉 − |1〉⊗L |f(x̂1, ŷ)⊕ 1〉

)
This is exactly the state of Deutsch’s algorithm after applying the (standard) oracle unitary implementing
U
f
x̂0,x̂1
ŷ

, where f x̂0,x̂1
ŷ (b) = f(x̂b, ŷ) (by standard we mean of the form Uf |x〉 |b〉 = |x〉 |b⊕ f(x)〉, in

comparison to the Minimal Oracle Representation). The rest of the attack and analysis follows the same
pattern as Deutsch’s algorithm. For simplicity’s sake, let bi := f(x̂i, ŷ), then the state is:

(5.24) 1√
2

(−1)b0
(
|0〉⊗L + (−1)b0⊕b1 |1〉⊗L

)
⊗ |−〉

The Adversary then applies the logical Hadamard gate, the resulting state is (up to a global phase):

(5.25) |b0 ⊕ b1〉⊗L ⊗ |−〉

The Adversary can measure the first qubit in the computational basis and distinguish perfectly both
situations, therefore obtaining f(x̂0, ŷ)⊕ f(x̂1, ŷ) = b0 ⊕ b1.

On the other hand, in the ideal scenario, to compute the probability pGuess of guessing the correct
answer, we consider the mixed (i.e. probabilistic) strategies in a two-player game between the Environment
Z and the Simulator where both players choose a bit simultaneously, the Simulator wins if they are the
same and the Environment wins if they are different. This represents the most adversarial Environment

146

5.4. SUPERPOSITION ATTACK ON YAO’S PROTOCOL

for the Simulator. The goal is to find a Pareto equilibrium in this game. 4 The Environment chooses
bit-value 0 with probability p, while the Simulator chooses the bit-value 0 with probability q. The
probability of winning for the Simulator is then pGuess = pq+(1−p)(1−q) = 1−q−p(1−2q). We see that
if q 6= 1/2 there is a pure (i.e. deterministic) strategy for the Environment such that pGuess < 1/2 (if the
Simulator chooses its bit in a way that is biased towards one bit-value, the Environment always chooses
the other), while if q = 1/2 then pGuess = 1/2. The same analysis can be applies to the Environment
and therefore p = 1/2 as well.

In the end, we have pGuess = 1/2 and therefore the advantage of the Adversary is Adv = pGen(1−
pGuess) ≥ 1

2 (1− e−1), which concludes the proof.
�

As a remark, the inverse of the circuit preparing the GHZ state can be applied as the final step of the
attack instead of the logical Hadamard HL, yielding the same result (the state is then |b0 ⊕ b1〉⊗ |0〉⊗L−1

and measuring the first qubit in the computational basis still gives the correct value). The presentation
above was chosen to closely reflect the description of Deutsch’s algorithm.

Justifying the Differences in the Protocol Variant. We can now more easily explain the choices
straying from the Original Yao Protocol mentioned in Section 5.3.2. The first remark is that the fact that
the Garbler sends multiple copies of its keys is what allows the success probability to be constant and
independent from the size of the inputs (see Theorem 5.3). Otherwise it would decrease exponentially
with the number of entries in the garbles table, which might not be too bad if it is a small constant
(the minimum being 4 for the naive implementation). On the other hand, returning the Garbler’s keys
to the Adversary is an essential part of the attack, as otherwise it would not be able to correct them
(the final operations described in the full attack are all performed on these registers). If they stay in
the hands of the Evaluator, it is unclear how the Adversary would perform the attack (as the state is
then similar to the entangled one described in the introduction as something that we seek to avoid).
Similarly, the fact that we do not use an IND-CPA secure symmetric encryption scheme is linked to the
fact that it adds an additional register containing the randomness used to encrypt (for quantum notions
of IND-CPA developed in [17] and [105]), and which is then entangled with the rest of the state (this
register can not be given back to the Adversary as it would break the security, even in the classical case,
by revealing the index of the correctly decrypted garbled entry). On the other hand, in [54] they show
that the notion of quantum IND-CPA they define is impossible for quasi-length-preserving encryption
scheme (which is equivalent to format-preserving from Definition 5.6). Finally, if we were to follow the
same principle as in the original protocol and decompose the binary function into separate gates, then
the intermediate keys would similarly add another register which is entangled with the rest of the state.
This is why we require that the garbled table represents the whole function.

5.4.4 The Full Attack is not Malicious

Note that the Original Yao Protocol is secure against Honest-but-Curious Adversaries. The equivalent
in terms of superposition attacks is to send exactly the same messages but computed over an arbitrary
superposition of the randomness used by the Adversary (be it the inputs of other random values). That

4These equilibria are modelled as strategies for both players such that none can gain more by deviating unilaterally.

147

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

is to say that, if the honest party would have measured the state sent by the Adversary, it would recover
perfectly honest classical messages. On the other hand, the Adversary described in Attack 2 is not
strictly Honest-but-Curious.

However, the following lemma captures the fact that the previously described Adversary does not
break the Honest-but-Curious security of the Modified Yao Protocol if it does not have superposition
access (a fully-malicious one can trivially break it), thereby demonstrating the separation between
Adversaries with and without superposition access.

Lemma 5.3 (Adversarial Behaviour Analysis). In a classical network C, the Adversary described in
Attack 2 is an Extended Honest-but-Curious Adversary (Definition 5.3).

Proof. Attack 2 is not strictly Honest-but-Curious since a player that measures honestly and tries to
decrypt after can also fail with probability e−1 if it never gets the correct ciphertext in the table after
measuring. When restricted to classical networks, this Adversary works as follows:

1. It generates all values for the garbled table (for both values of kz).
2. For each garbled table entry that it is supposed to send, it instead chooses uniformly at random

one of the generated values (with replacement) and a key for either x̂0 or x̂1 and sends them (it
does not store in memory which values have been sent).

3. It then waits to see if the honest player has been able to decrypt one of the values or not.
4. If it has, then it receives (as classical messages) the key that was used to decrypt (either for x̂0

or x̂1) and the decrypted value.

This Adversary is precisely an Extended Honest-but-Curious Adversary according to Definition 5.3 as
the Simulator presented in the security proof of Theorem 5.2 works as well for this Adversary, with the
difference that with a probability of e−1 it cannot recover the value of kz if it is unable to decrypt (but
then this is also the case when interacting with an honest party) and so must abort. Since the Adversary
does not store which values have been sent it does not know whether this value has been decrypted from
the keys from the honest player or the Simulator (using a random input). On the other hand this action
by the Simulator is necessary to simulate the probability that none of the keys decrypt correctly the
garbled values (this happens with the same probability in the simulated and real executions).

�

The core reason why the Honest-but-Curious Simulator works is that the Adversary’s internal register
is never entangled with the states that are sent to the honest party: much more efficient attacks exist in
that case, for example the Adversary can recover the full input of the Evaluator if it keeps a register
containing the index of the garbled table value, which collapses along with the output register when
it is measured by the honest player while checking the padding, therefore revealing the input of the
Evaluator. However this Adversary is not simulatable when placed in a classical network (and therefore
this attack does not show a separation between the two scenarii as it would be similar to subjecting the
protocol to a Malicious classical Adversary, that can trivially recover the honest player’s input).

5.4.5 Attack Optimisation and Application to Oblivious Transfer

The attack described in Section 5.4 will now be applied to a simple function, namely the 1-out-of-2
bit-OT, in order to demonstrate a potential improvement. In this case, the Garbler has a bit b as input,

148

5.4. SUPERPOSITION ATTACK ON YAO’S PROTOCOL

the Evaluator has two bits (x0, x1) and the output for the Garbler is xb. This can be represented by the
function OT (b, x0, x1) = bx1 ⊕ (1⊕ b)x0. This can be factored as OT (b, x0, x1) = b(x0 ⊕ x1)⊕ x0. By
changing variables and defining X := x0 ⊕ x1, it can be rewritten further into OT (b, x0, X) = bX ⊕ x0.

Based on this simplified formula, instead of computing the garbled table for the full function, the
Garbler will only garble the AND gate between b and X. In order to compute the XOR gate at the end,
the Free-XOR technique will be used. Recall first that the key-space is fixed to K = {0, 1}nK . Instead of
choosing both keys for each wire uniformly at random, this technique works by choosing uniformly at
random a value K ∈ {0, 1}nK and setting kw1 := kw0 ⊕K for all wires w which are linked to the XOR
gate (either as input or output wires). The value kw0 is sampled uniformly at random for the input wires.
For the output wire, if a and b are the labels of the input wires, the value is set to kw0 = ka0 ⊕ kb0. In this
way, instead of going through the process of encrypting and then decrypting a garbled table, given a key
for each input of a XOR gate, the Evaluator can directly compute the output key in one string-XOR
operation (as an example, if the keys recovered as inputs for the input wires are ka0 and kb1, then the
output key is computed as ka0 ⊕ kb1 = ka0 ⊕ kb0 ⊕K = kw0 ⊕K = kw1 , which is the correct output key
value for inputs a = 0 and b = 1). The security of Yao’s protocol using the Free-XOR technique derives
from the fact that only one value for the keys is known to the evaluator at any time, so the value K is
completely hidden (if the encryption scheme is secure). This has been first formalised in [83].

After having decrypted the garbled table for the AND gate, the Evaluator simply performs the XOR
gate using the Free-XOR technique. Without loss of generality the XOR of the keys is performed into
the register containing the key corresponding to the output of the AND gate. In the quantum case, this
is done using a CNOT gate, where the control qubit is the register containing the keys for x0 and the
controlled qubit is the register containing the output of the decryption of the garbled AND gate (the
key for x0 is not in superposition as it belongs to the Evaluator and so the register containing it remains
unentangled from the rest on the state).

The initial input to the garbled table is 3 bits long in the decomposed protocol, while the input to
the AND gate is only 2 bits long, lowering the number of pre-computations to generate the garbled
table and improving slightly the attack’s success probability (it is a decreasing function of the number
of possible inputs).

The probability of successfully generating the attack superposition 1
2
(
|0〉⊗L |x0〉 − |0〉⊗L |x0 ⊕ 1〉+

|1〉⊗L |x1〉−|1〉⊗L |x1 ⊕ 1〉
)
by using this new technique is 1−

(
3
4

)4
= 175

256 (by not using the approximation
at the end of the proof of part 2 of Theorem 5.3 for success probability). As described in Theorem 5.4,
such a superposition can been used to extract the XOR of the two values, an attack which is impossible
in the classical setting or even in the quantum setting without superposition access. The advantage of
the Adversary in finding the XOR (over a Simulator which guesses the value) by using this attack is 175

512 .
This is far from negligible and therefore the security property of the OT is broken.

Of course this is a toy example as it uses two string-OTs to generate one bit-OT. But the bit-OT
that has been generated has a reversed Sender and Receiver compared to the string-OTs that were used.
In the classical case, it can be noted that similar constructions have been proposed previously to create
an OT which was simulatable for one party based on an OT that is simulatable for the other (and this
construction is close to round-optimal).

149

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

5.5 Security Model Satisfiability

Having dissected an attack on a protocol, we now give feasibility results in our model. As a cryptographic
“Hello World”, we first prove in Section 5.5.1 that the classical One-Time-Pad remains secure even
against superposition attacks. Section 5.5.2 then analyses post-mortem the superposition attack on Yao’s
Protocol to build a Superposition-Resistant Yao Protocol.

5.5.1 Superposition-Resistance of the Classical One-Time Pad

The Classical OTP (Protocol 14) uses a Key Distribution (Ideal Functionality 7, see [114]) for two
parties to emulates a Confidential Channel (Ideal Functionality 2), which assures that only the length
of the message is leaked to the Eavesdropper but does not guarantee that it was not tampered with
(see also [41] and [28]). The security of the Classical OTP Protocol against Adversaries in classical
networks C is proven in [41].

Protocol 14 Classical OTP Protocol
Inputs: The Sender has a message m ∈ {0, 1}n. The Receiver has as input the size of the message.
The Eavesdropper has an auxiliary input ρaux.
Protocol:
1. The Sender and Receiver call the Key Distribution Ideal Functionality on input n and receive a

key k of size n.
2. The Sender computes y = m⊕ k (where ⊕ corresponds to a bit-wise XOR) and sends it to the

Eavesdropper.
3. The Eavesdropper sends a message ŷ to the Receiver.
4. The Receiver compute m̂ = ŷ ⊕ k

We will now prove the security of the protocol against malicious Receiver in quantum network Q

(with superposition access), as captured by the following Lemma 5.4.

Lemma 5.4 (Security of One-Time-Pad against Adversaries with Superposition Access). Protocol 14
is superposition-resistant against a malicious Eavesdropper with advantage ε = 0 (i.e. it satisfies
Definition 5.1 in quantum network Q).

Proof. We start by defining the quantum equivalent of all operations in Protocol 14. The initial message
is represented as a quantum register containing |m〉. The call to the Key Distribution Ideal Functionality
yields a quantum register for both parties containing a state |k〉 in the computational basis. The bit-wise
XOR is applied using CNOT gates where the key corresponds to the control. The definition of the CNOT
gate implies that if the control is in a computational basis state, it remains unentangled from the rest
of the state after application of the gate. The state is then sent to the Eavesdropper. It can perform
any CPTP map on the state |y〉 ⊗ ρaux ⊗ |0⊗n〉 and send the last register to the Receiver. The Receiver
applies the XOR using CNOT gates with its key as control.

The Eavesdropper has no output in this protocol. As stated in Lemma 5.1, it would be sufficient
to show that two executions with different inputs are indistinguishable. However we will now describe
the Simulator for clarity. It receives the size of the message n from the Confidential Channel Ideal
Functionality. It chooses uniformly at random a value ỹ ∈ {0, 1}n and sends |ỹ〉 to the Eavesdropper. It

150

5.5. SECURITY MODEL SATISFIABILITY

receives in return a state ρ on n qubits and sends it to the Confidential Channel Ideal Functionality
(which then measures the state in the computational basis).

Before the message sent by the Adversary, the protocol is equivalent to its classical execution, so the
Environment has no additional advantage compared to the classical execution (which is perfectly secure).
The only advantage possibly obtained by the Adversary compared to a fully classical one comes from
the state that it sent to the Receiver (repsectively Simulator) and the application by the Receiver of an
operation dependent on its secret key (respectively a measurement in the computational basis by the
Ideal Functionality). It is a well known fact (No-Communication Theorem of quantum information) that
the Environment obtaining any bit of information with probability higher than 0 via this method (using
only local operation on the Receiver’s side or by the Ideal Functionality) would violate the no-signalling
principle [59, 47], therefore the distinguishing advantage of the Environment between the real and ideal
executions is 0, thereby concluding the proof.

�

5.5.2 Superposition-Resistant Yao Protocol

We can now analyse the crucial points where the security breaks down and propose counter-measures.
We notice that all actions of the Adversary only act on the registers that contain its own keys (recall
that the Evaluator sends back the Garbler’s keys after a successful decryption) and have no effect on the
output register, which stays in the |−〉 state the whole time. It is thus unentangled from the rest of the
state and the attack on the protocol can therefore also be performed if the Garbler has no output. As
the security in this case still holds for Adversaries in classical network C via input-indistinguishability, it
means that this security property does not carry over from the classical to the quantum network case
either.

Therefore, as counter-intuitive as it may seem, the precise point that makes the attack possible
is a seemingly innocuous message consisting of information that the Adversary should (classically)
already have, along with a partial measurement on the part of the honest player (which is even stranger
considering that it is usually thought that the easiest way to prevent superposition attack is to measure
the state).

Not sending back this register to the Adversary (as in the Original Yao Protocol) makes the protocol
structurally similar to the One-Time-Pad Protocol 14: one party sends everything to the other, who
then simply applies local operations. The proof for the One-Time-Pad works by showing that there is
a violation of the no-signalling condition if the Environment is able to guess whether it is in the real
or ideal situation. This technique can be reused if the Evaluator does not give away the result of the
measurement on its state (by hiding the success or failure of the garbled table decryption5).

We give here a sketch of the formal Superposition-Secure Yao Protocol 15, along with a proof of
its security against an adversarial Garbler with superposition access. It uses Yao’s original efficient
construction for the garbled table, where the function is decomposed into elementary gates (of constant
fan-in) and can therefore be applied to any binary function with inputs that are of polynomial size in
the security parameter (see [89] for the construction).

5This contradicts the footnote in Section 5.2 before Ideal Functionality 19 since the proof works if there is no future
communication between the two players.

151

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

Protocol 15 Superposition-Secure Yao Protocol (Sketch)
Inputs: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY respectively, with
nX + nY = poly(η).
Public Information: The function f to be evaluated, the encryption scheme (Enc,Dec) and the size
of the padding p.
Protocol:
1. The Garbler creates the keys and garbled table as in the original Yao’s Protocol (with no kz and

using the function’s decomposition into AND and OR gates).
2. The Garbler and the Evaluator participate in the OT ideal executions, at the end of which the

Evaluator receives its evaluation keys for its input of choice.
3. The Garbler sends the evaluation keys for its inputs and stops.
4. The Evaluator decrypts each entry in the garbled table sequentially. It stops if the padding is 0p,

the first bit is then set as its output.
5. Otherwise (if none of the values were decrypted correctly), it sets as its output Abort. This is not

communicated to the Garbler.

Theorem 5.5 shows that Protocol 15 is secure both in quantum and classical networks.6

Theorem 5.5 (Security of Superposition-Resistant Yao Protocol in Quantum Network Q). In quantum
network Q, the Superposition-Resistant Yao Protocol 15 is perfectly-secure against an adversarial Garbler
according to Definition 5.1 in an OT-hybrid execution.

Proof (Sketch) The Garbler cannot break the security of the OT ideal execution, which furthermore
is classical. The rest of the protocol can be summarised by the Garbler sending one quantum state and
then the Evaluator performing a local operation on it and stopping. This is exactly the same scenario as
in the One-Time Pad protocol and the same analysis applies in this case.

The Simulator uses a random input during the ideal executions of the OT (which it controls and is
classical). It then receives a state ρ corresponding to the Garbler’s keys and garbled table. The only
advantage possibly obtained by the Adversary compared to one in a classical network comes from this
state and the application by the Evaluator of the decryption procedure using its secret keys and those
of the Garbler (compared to no operations by the Simulator). The No-Communication Theorem of
quantum information implies that the Environment obtaining any bit of information with probability
higher than 0 via this method (using only a local operation on the Evaluator’s side) would violate the
no-signalling principle [59, 47], therefore the distinguishing advantage is 0.

�

The proof above does not translate into a proof for an actual instance of the protocol since security
in our model does not hold under sequential composability, but it gives a hint as to which steps are
crucial for securing it. Another path for obtaining security could be to replace the encryption scheme
with one for which there is no efficient Minimal Oracle Representation. We leave this case as an open
question.

6As noted in Section 5.2, superposition-resistance implies classical-style security.

152

5.6. CONCLUSION AND DISCUSSION

5.6 Conclusion and Discussion

Our security model and the attack analysis performed in our work lie completely outside of the existing
models of security against superposition attacks. They either consider the computational security of
basic primitives or, for more complex protocols with multiple interactions between distrustful parties, the
protocols are all considered to be statistically-secure (and are therefore essentially extensions of [100]).
This leads to many simplifications which have no equivalent in the computational setting. We develop
a novel security framework, based on the simple premise that to be secure from superposition attacks
means emulating a purely classical functionality. We show that, given slight modifications that preserves
classical security, it is possible to show superposition attacks on computationally-secure protocols. The
intuition gained from the attack allows us to build a computationally superposition-resistant protocol
for Two-Party Secure Function Evaluation, a task never achieved before.

Our results demonstrate once again the counter-intuitive nature of quantum effects, regarding not only
the vulnerability of real-world protocols to superposition attacks (most would require heavy modifications
for known attacks to work), but also attack vectors and the optimal ways to counter them (as partial
measurements can even lead to attacks).

Future Work

An interesting research direction would be to analyse what functionalities (if any) can be implemented
using the “insecure” ideal functionalities with allowed superposition access described in [122]. Since
these functionalities necessarily leak information, they can no longer be universal: if they were, then it
would be possible to construct non-leaky functionalities with protocols only making calls to these leaky
functionalities. However, some limited functionalities may also be useful, as exemplified by the biased
coin toss.

The security model presented in this chapter does not support any kind of composability, as can
be shown with rather simple counter-examples. While it would be ideal to have a simulation-based
fully-composable framework for security against superposition attacks, we leave this question open for
now.

While we prove that Yao’s protocol is secure in our model if the Evaluator does not reveal the
outcome of the protocol, it would also be interesting to analyse the consequence of removing the minimal
oracle assumption from the symmetric encryption scheme and instead use a traditional IND-CPA
symmetric encryption with the original Yao garbled table construction (therefore adding an additional
entangled quantum register). The Yao protocol has recently been studied in [24] and found secure against
Adversaries that do not have superposition access to the honest party, under the assumption that the
encryption scheme is pq-IND-CPA (the quantum Adversary does not make queries to the encryption
oracle in superposition but has access to a Quantum Random Oracle).

Finally, our result shows that partial measurements by honest players are not sufficient to prevent
superposition attacks. It would be interesting to find the minimum requirements for the security of
protocols with superposition access and measurements by honest parties so that they are as secure
as classical protocols. This field of study has been somewhat initiated by the work of [129] with the
collapsing property (measuring one message makes the other message collapse to a classical value if it

153

CHAPTER 5. COMPUTATIONAL SECURITY MODEL FOR SUPERPOSITION ATTACKS

passes some form of verification), but the question of whether there is a minimal amount of information
that should be measured to be superposition-secure remains open.

154

C
h
a
p
t
e
r 6

Quantum Round-Optimal Protocol for
Delegated Multi-Party Quantum Computations
versus Dishonest Majority

6.1 Motivation and Overview of Results

6.1.1 Delegation, Distribution and Composition

Most quantum computers are being designed to be accessible through cloud services. Out of
convenience and efficiency for end users, it is expected to be the main way for relatively powerless
clients to access highly powerful quantum servers: the existence of several schemes for delegating

quantum computations from a single client to a single server supports the idea [118, 4, 36]. Such schemes
can be made even more appealing and adapted to reality by requiring secure delegation. This means
that the client could require confidentiality of the algorithm and data sent to the server together with
integrity of the computation itself. Various protocols have been developed to provide solutions for diverse
settings and security levels [21, 53, 72, 78, 58, 52]. For instance, the client could be completely classical
or have single gate capabilities and a quantum channel; the security could be information theoretical or
only computational, etc.

Regarding Multi-Party Quantum Computation, several lines of research have been followed during
the past two decades. The very first protocol was developed in [30]. Along with the introduction of
the concept itself, they provided a concrete protocol for performing such computations in the quantum
circuit model. It guarantees the security of the computation as long as the fraction of malicious parties
does not exceed 1/6. This work has been later extended in [14], lowering the minimum number of honest
players required for security to a strict majority.

Another direction was studied in parallel regarding the possible composability of such protocols, as
earlier results did not satisfy this property. Bit commitment was shown to be complete in the Quantum

155

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Universal Composability framework of [126], meaning that it is sufficient for constructing quantum
or Classical SMPC if parties have access to quantum channels and operations. This result was later
extended in [49, 42], which give a full analysis of feasibility and completeness of cryptographic primitives
in a composable setting.

More recently, building on these three branches of study, new concrete protocols have been proposed
to decrease the restrictions on adversaries and provide composable security. First, [76] described a
protocol that is composable, can tolerate a dishonest majority and allows the clients to delegate the
quantum computation to a powerful server. Its security is an information-theoretic upgrade of a Classical
SMPC primitive used for constructing the protocol. It is however limited by the absence of verifiability of
outputs and the impossibility to tolerate client-server collusion. Reference [69] provides a generic recipe
to turn any composable two-party delegated blind and verifiable quantum computation protocol into a
multi-party delegated version. It can cope with a dishonest server only, requires a complete quantum
and classical communication graph and is limited in terms of implementable computations as each
client chooses only local computations and cannot coordinate with others. In the circuit model with
teleportation for magic states, a composably-secure protocol has been introduced recently in [40]. It is an
extension of [45] that is able to cope with a dishonest majority, but which relies on a complete graph for
quantum communication architecture that imposes a large number of quantum communication rounds
together with powerful quantum participants. A stand-alone secure protocol is proposed in [90] as an
extension on previous results of [14] based on error-correcting codes. Its aim is to lower the amount of
quantum memory of participants but suffers from the same drawback as [40]: powerful quantum parties
and complete quantum and classical communication graph.

With the exception of [76], which provides only blindness in absence of clients-server collusions, these
proposed solutions have mostly eschewed the interesting situation of delegated multi-party quantum
computations to focus rather on a symmetrical setting where each party has an equally highly powerful
quantum computer. This left open the question of the existence of efficient delegated MPQC protocols
in a fully adversarial scenario.

6.1.2 Our Contribution

Our protocol closes this gap by demonstrating an efficient delegated MPQC construction for clients with
limited quantum capabilities, secure against a malicious collusion between any number of clients and the
server, thus recovering all the previous advantages of protocols in the symmetric setting and improving
vastly the quantum communication overhead. As in the symmetrical case [40], it lifts a secure Classical
Secure Multi-Party Computation to the quantum realm in an information-theoretical way, meaning that
the protocol offers the same security level as the Classical SMPC used in its construction. The security
is proven in the fully-composable Abstract Cryptography Framework [99] (presented in Section 3.3.2),
hence the security guarantees of the protocol hold not only for standalone uses but also in situations
where it is employed many times, sequentially or in parallel, with or without being included as a part of
a broader secure task.

Based on the single-client construction of [78], the clients in our protocol only need to be able to
manipulate single qubits and perform two rounds of quantum communication with the server (reduced
to a single round if the outputs are classical), which is in fact optimal. It inherits also the delegated

156

6.1. MOTIVATION AND OVERVIEW OF RESULTS

nature of this protocol, meaning that only a single party needs to perform elaborate quantum operations
while the others need only to be able to do single qubit operations and state generation.

High-Level Protocol Construction. To achieve these results, several new techniques need to be
introduced. We apply a deconstruction-reconstruction approach to the Delegated MPQC problem, in
synergy with the top-down methodology of AC, to identify smaller key functionalities that needed to be
replaced to successfully turn the VBQC Protocol of [78] into a multi-party one that could be driven by
a Classical SMPC. The VBQC (and UBQC) Protocol can be decomposed into the following steps: (i)
VBQC client-encrypted state preparation, (ii) graph-state entanglement, (iii) rotated measurement of
non-outputs (iv) output recovery and decryption. The proposed solution is then obtained by replacing
some of these steps of the deconstructed VBQC Protocol in order to cope with multiple clients. More
precisely, step (i) is modified so that the VBQC client-encrypted state used in the VBQC protocol is now
obtained as the result of a collaborative computation delegated to the server. This has led us to define
and construct a new quantum resource, called Double Blind Quantum Computation (DBQC). It allows
a fully classical trusted party – an Orchestrator – to drive a quantum computation (the description of
which is known only to this Orchestrator) between several clients that provide inputs and a server. This
is used to prepare the VBQC client-encrypted state collaboratively. For steps (ii-iv) to be completed, all
single-client classical driving of the server’s action need now to be replaced by a collaborative driving.
Since all these collaborative actions are purely classical, they can therefore be implemented using a
Classical SMPC. At the end, the clients decrypt their output if there was no abort.

As is apparent, the heart of the construction is the new DBQC Resource. It guarantees that, even
when all but one client collude with the server, the data of the honest client and the computation
remains hidden from the coalition. Since the VBQC client-encrypted state depends on these parameters,
no coalition of malicious players can learn its description. This step does not require verifiability but
only blindness, it is therefore possible to construct it from the simpler UBQC Protocol [21].

There again, we transform the step (i) of this UBQC Protocol into a multi-party version, which in
the single-client version consists of the creation of states |+〉 rotated by a random angle θ(v) around
the Z axis. For this we develop and use a collaborative single-qubit state preparation sub-protocol. For
each vertex of the graph, each Client sends one randomly rotated |+〉 state and the Server performs
successive gate-teleportations using these qubits. The effect of this procedure is to apply a collective
encryption that depends on the rotation angles of all the Clients’ states. The Clients send their rotation
angles to the classical honest Orchestrator, who then knows the encryption and can effectively drive the
rest of the UBQC Protocol. At the end it does not reveal the keys which would allow either the Clients
or the Server to decrypt. This results in the computation and inputs of honest clients being blind to any
coalition of malicious players.

To obtain the full protocol, the Orchestrator is replaced by a Classical SMPC which also chooses the
unitary implemented by the DBQC Protocol so that it prepares the required VBQC client-encrypted
state. The SMPC then drives the DBQC Protocol by computing the appropriate measurement angles.
In a similar way, it drives the subsequent VBQC computation and checks that all trap measurements
are correct, then telling the Clients whether they should accept the computation or abort. Note that the
computation applied by the DBQC Protocol is constant-depth, independent of the size of the unitary
computed later in the VBQC Protocol, thus making the preparation of the VBQC client-encrypted

157

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

states very efficient compared to the single-client version. This highly modular approach to protocol
design makes improving the efficiency of our protocol simpler since any improvement in one of the
sub-components immediately translates into an improvement on the global protocol so long as the
conditions for composability are met.

Our protocol achieves a simultaneous optimization of the number of communication rounds, the
Client-side memory size, and the operation complexity in a way that goes beyond the usual MPQC
trade-off. More precisely, symmetric protocols such as [40] can be modified using gate teleportations into
asymmetric versions where one Client plays the role of the Server. This allows to modify the topology
of the network required to run the protocol as well as the number of rounds. Yet, in doing so, the
complexity of the operations that need to be performed by the clients remains the same. They still
need to have local fault-tolerant computation capabilities, whereas our scheme reduces this to single
qubit gates. In addition, the overhead of our protocol with respect to the amount of qubits that need
to be sent by each client compared to the single-client version is only a constant multiplicative factor
of 9. Hence, our protocol is well adapted to the currently foreseen development of quantum computing
services accessible through a quantum internet.

The second implication is an affirmative answer to the possibility of using the MBQC model to
delegate MPQC in the dishonest majority setting. In fact, the inability to cope with client-server
collusions in [76] outlined the essential role played by verification: it secures the key release in MBQC
computations which could otherwise be vulnerable as the key depends on possibly corrupted qubits
measured in the previous rounds. However, direct approaches trying to uplift the trap-based technique
for verifying a delegated MBQC computation to the multi-client case based on letting each client
trappify sub-graphs of the computation graph were not successful. This is due to the necessity to ensure
that there always exists a computation path that performs the desired computation which in turn
requires collaboration between the clients. Avoiding leaks about the location of the traps during these
collaboration steps was a long-standing open question that we solve using DBQC to prepare non-verified
states that would nonetheless be sufficient to verify the subsequent computation.

Sketch of Proof Techniques. The full protocol is the result of sequential composition of DBQC
with VBQC and the Classical SMPC. The DBQC Protocol is proven secure in the AC framework, which
involves showing that the protocol implementation cannot be distinguished from an ideal secure-by-design
resource. This is done by exhibiting a Simulator that can be attached to the Ideal Resource for DBQC
in order to make it indistinguishable from the real-world protocol in a statistically-secure sense. The
technique used is similar to that of [41]: the Simulator sends half-EPR pairs to the Server. Any possible
deviations from the protocol on these qubits can then be transferred via teleportations to the qubits of
the Ideal Resource. Since these operations could have been performed by the malicious players on their
own (the Simulator does not know the computation being performed), this also proves the blindness of
the DBQC Protocol.

We prove that the VBQC Protocol is secure in the AC framework so long as the initial state has
been prepared as a VBQC client-encrypted state. As DBQC provides blindness but not verifiability
(and therefore not all components of the full protocol are verifiable), if we wish to compose these two
protocols using the AC framework, we therefore need to show that the output state of the DBQC
Protocol can be rewritten as such a state. This leads to defining the set of “good-enough” states, that

158

6.2. HIGH-LEVEL CONSTRUCTION OF A DELEGATED MPQC PROTOCOL FROM VBQC

are correct VBQC client-encrypted state up to a deviation by the malicious parties that is independent
on the inputs and parameters of the honest parties, and show that the DBQC Protocol produces exactly
these states. The deviations that happen during the DBQC Protocol need to be commuted to the end
of the protocol (an honest DBQC Protocol produces a non-deviated VBQC client-encrypted state).
However, because this deviation models the action of the possibly dishonest coalition, it must remain
independent of the secret parameters of the honest players. We prove that this additional condition is
indeed satisfied for the DBQC Protocol, implying that, irrespective of the action of a dishonest coalition,
the adversarial deviation during the non-verifiable DBQC Protocol can be commuted and pushed into
the VBQC Protocol.

It is then possible to apply the security of the VBQC Protocol as defined in the AC framework and
replace its execution with an Ideal Resource which either outputs the correct state at the end or aborts.
The protocol obtained after these substitutions simply takes as input the input qubits of each Client and
either successfully produces the correct output of the computation or aborts, which is trivially secure.
The security of DBQC and VBQC being information theoretic, the proposed Delegated MPQC Protocol
is an information-theoretic upgrade of the Classical SMPC.

Chapter Outline. An iterative construction of the protocol and high-level presentation of it is given
in Section 6.2. Section 6.3 then details the construction of two double-blind state preparation protocols.
Then we present the DBQC Protocol and prove its blindness. Section 6.4 proves that the DBQC Protocol
can be used to bootstrap verifiability of the whole protocol. While we use these double-blind protocols
to implement a multi-party VBQC client-encrypted state preparation, they are in fact more general
and we believe they will find other applications in the future. Finally, the full protocol is presented
in Section 6.5 along with its security statement and proof. As proof of the simplicity of our classical
resource, Section 6.6 proposes a concrete construction for the Classical SPMC scheme that is used to
implement the whole protocol.

Related Works. Table 6.1 below gives a comparison of our protocol with the peer-to-peer protocols
of [40] and [90] and with the more recent semi-delegated protocol of [5]. Section 6.7 gives a more in-depth
analysis, showing that our protocol closes gaps left as open questions in previous results. In the table,
N is the number of parties, d the depth of the computation (MBQC for this work, circuit for [90] and
{T,CNOT}-depth for [40]), g the number of gates in the computed circuit, t the number of Z(π/4)
gates, c the number of CNOT gates, Cdist the code distance used in [90] and η a statistical security
parameter. Q stands for quantum and C for classical. Note that we list below the optimal parameters
for the protocol’s execution. In particular the network topology of [40] and [90] can be star-shaped as
well with one player acting as a router (they only provided unanimous abort anyway), but this would
degrade their performance in terms of quantum communication rounds. In that sense the Complete
Graph is more natural for these protocols.

6.2 High-Level Construction of a Delegated MPQC Protocol from VBQC

The main purpose of this chapter is to build a Protocol constructing a Multi-Party Quantum Computation
Resource in a way that is composably secure, that can be delegated by relatively powerless Clients to a

159

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Metric [40] [90] [5] This work
Type Stat. upgrade of CSMPC Statistical Comp. (FHE + CSMPC) Stat. upgrade of CSMPC
Abort Unanimous Unanimous Identifiable Unanimous

Composability Composable Stand-Alone Stand-Alone Composable
Max Malicious Players N − 1

⌊
Cdist−1

2
⌋

N − 1 N − 1
Protocol Nature Symmetric Symmetric Semi-Delegated Delegated
Network Topology Q and C: Complete Q and C: Complete Q and C: Complete Q: Star / C: Complete

Q Operations F.T. Q. Comp FT Q Comp FT Q Comp Cl.: Single Qubit
Serv.: FT Q Comp

Classical SMPC Clifford Computation,
Operations in Z2, CT

CT Clifford Computation,
FHE verification Operations in Z8, Z2, CT

Rounds (C or CSMPC) O(g + η(N + t)) d+ 2 O(1) d+ 5

Rounds (Q) Par.: O(Nd)
Seq.: O(N(N + t+ c))

Par.: 3 (2 if C output)
Seq.: O

(
η2(N + t)

) Par.: O
(
N4) Par.: 2 (1 if C output)

Seq.: O(ηNd)

Size of Q Memory Par.: O
(
η2(N + t))

)
Seq.: O

(
η2N

) Par.: O
(
η2N(N + t)

)
Seq.: O

(
N2) Par.: O

(
tN9η2) Cl.: 3 (0 if C I&O)

Serv. (par.): O
(
ηN2d

)
Serv. (seq.): O(ηNd)

Table 6.1: Comparison with [40, 90, 5]. Q stands for quantum and C for classical. Cl. and Serv. stand
for Client and Server respectively. Stat. means statistical, FT stands for Fault-Tolerant and CT for
Coin-Toss. Seq. and Par. refer to whether the protocol is optimised for low qubit memory, therefore
performing all quantum communications sequentially, or trying to parallelise the communication rounds
at the expense of manipulating a larger number of qubits.

.

powerful quantum Server, that tolerates Client-Server collusion and requires only a single honest Client
to run securely. We tackle this by first deconstructing and analysing the single-client VBQC Protocol
of [78]. We determine the steps which need to be updated to transform it into a multi-client setting,
together with the conditions that these replacement steps need to satisfy. Having defined these, we
construct a Delegated Multi-Party Quantum Computation Protocol (DMPQC) by making use of the
elegant composability property of the AC framework. We show later in Section 6.3 how to instantiate
these new multi-party subroutines. The formal presentation of the DMPQC Protocol and associated
security guarantees can be found in Section 6.5.

As we will manipulate quantum states ρ involving many qubits at different locations and from
different origins, it will be convenient to label the reduced state at given location indexed by v and
being provided by Client j as ρj(v). By extension, index j might be replaced by a set of clients indices
(typically H for honest clients and M for malicious ones). We will apply the same notation for classical
variables denoting secret parameters at position v and for Client j, such as θj(v) and rj(v). When a
state or classical variable depends collectively on all Clients, the subscript j will usually be dropped.

We assume that an Authenticated Classical Channel is available between any two parties, a Secure
Classical Channel is available between all Clients and the Orchestrator, and an Insecure Quantum
Channel is available between all Clients and the Server.

6.2.1 Deconstructing the VBQC Protocol

The protocol for Multi-Party Quantum Computation will rely on the VBQC construction. The single-
client VBQC protocol of [78] can be decomposed in the following parts: choosing secret parameters (graph
colouring, encryption keys); preparing the VBQC client-encrypted state (comprising encrypted quantum
inputs, dummies and encrypted |+〉 states sent by the Client to the Server during the initialization step
of Protocol 5); sending single qubits; applying entangling operations and classically-driven measurement;
receiving quantum outputs; aborting or decrypting. Transforming this protocol into a multi-party one

160

6.2. HIGH-LEVEL CONSTRUCTION OF A DELEGATED MPQC PROTOCOL FROM VBQC

requires modifying each of these individual steps so that they can be performed collectively by several
clients without compromising the blindness, even in the situation where some Clients and the Server
collude.

First, we remark that the protocol is perfectly equivalent to one where a Trusted Third Party receives
from the Client the classical parameters (chosen at random within their allowed range) that are used
when preparing the corresponding states and encrypted inputs to the Server. Second, the knowledge
of these classical parameters and of the unitary U to apply is indeed sufficient for the Trusted Third
Party to drive the VBQC computation and also verify that the traps have been measured correctly,
outputting either the keys to the Client in case of success or instructing it to abort if any trap failed. In
this modified setup, the only operations that the Client would still need to perform are encrypting its
inputs and preparing dummies and encrypted |+〉 states to generate the VBQC client-encrypted state,
sending the encryption key to the Trusted Third Party, sending the state to the Server and, if there
is no abort, recovering the output state from the Server, the keys from the Trusted Third Party and
decrypting to get the final state. This change is pictured in Figure 6.1.

!"#$

Server Client
!%&'

Client ((*)

,(*)

(a) Simple VBQC Outline.

!"#$!%&'

((*)
,(*)

Trusted Third Party

Key/AbortKey

ClientClient Server

(b) VBQC with Trusted Third Party.

Figure 6.1: Replacing the classical steps of the Client in the VBQC Protocol with a Trusted Third Party.
The Client (C), Server (S) and Trusted Third Party are represented in blue, orange and green respectively.
Their classical communications are represented in the same colour while quantum communications are
in purple. The state ρDTG is a VBQC client-encrypted state with the blue Key being the classical
description of this state while ρenc is the state returned by the Server to the Client at the end of the
computation associated with the measurement angles δ and results b, encrypted with the green Q-OTP
Key. The Client decrypts this state if if has not received Abort from the Trusted Third Party.

6.2.2 Reconstructing a DMPQC Protocol with the DBQC Ideal Resource

Using the remarks above, we conclude that the VBQC Protocol can be driven by a Trusted Third Party
independent of the Client – or equivalently by a Classical SMPC in the context of multiple Clients –
provided that the Server receives a state that corresponds to the VBQC client-encrypted state. In that
case, the verifiability of the VBQC protocol by itself guarantees that the probability a party cheated
without the honest parties noticing is negligible. When following this path, two steps need attention: we
need to (i) find a way to collaboratively prepare the VBQC client-encrypted state; and (ii) specify the
procedure performed by each Client after receiving the quantum output from the Server.

We start with the easier case of outputs. Indeed, the only point that needs to be specifically addressed
is the verification of the trap qubits placed in the output layer before receiving the keys and decrypting.
These traps need to be measured and pass the test. But in doing so, the Server should not learn which

161

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

of the output layer qubits of the honest Clients are computational ones. The solution is to first send
the qubits of the output layer to the Clients – each Client receiving the qubits corresponding to the
base-locations of its own output –, then having the Classical SMPC reveal to each Client where the traps
are among its qubits, and have them measured. The Classical SMPC then verifies that all the traps
are correct which guarantees with overwhelming probability that the Server has sent to each (honest)
Client their intended quantum states of the output layer, and in particular their quantum output. Hence,
under the condition that this verification passes, the Classical SMPC can safely send the decryption keys
for each Client individually as the malicious coalition cannot access the quantum states of the honest
Clients. The Clients can then decrypt their outputs.

Regarding the inputs, if the Clients had access to a VBQC Client-Encrypted State Preparation Ideal
Resource that would securely provide the Server with the single-client VBQC client-encrypted state
and provide the Classical SMPC with the secret parameters of this state, this would solve the problem
entirely. The Classical SMPC would just have to instruct the Server according to the VBQC protocol.
Unfortunately, such Ideal Resource would be hard to construct as it would require to find a protocol
that is already performing some form of MPQC – albeit a simple one. The problem arises from the fact
that each Client should in that case be able to verify that the output state of the protocol implementing
this State Preparation Ideal Resource is indeed a correctly generated VBQC client-encrypted state (due
to the fact that an MPQC Resource is usually defined so that it either produces the correct output or
aborts).

One way around this issue is to ask the resource to produce a correct VBQC client-encrypted state
up to a deviation chosen by the Server (independent on any of the secret parameters), while maintaining
the blindness about the state prepared, ie. the position, type and encryption of each qubit. For this
purpose we introduce a new Resource called Double-Blind Quantum Computation (DBQC). This would
be sufficient for our purpose as the deviation on the VBQC client-encrypted state could then be treated
as a deviation by the malicious parties during the execution of the VBQC Protocol.

Double Blind Quantum Computation Ideal Resource. Resource 20 allows N Clients to submit
their part of a collectively possessed input quantum state ρinp and an Orchestrator to input a classical
description of a unitary transformation U to apply to ρinp. A coalition of malicious parties may induce
a deviation from the unitary specified by the Orchestrator by way of a CPTP map E , applied to the
input state and adversarially-chosen ancillary quantum state instead of the legitimate transformation.
In both cases, the Server receives from the Resource the output quantum state which is encrypted by a
Q-OTP while the Orchestrator gets the corresponding randomly chosen key k, which guarantees the
blindness of the scheme.

While this resource does not prevent tampering, (i.e. a coalition could get an output different than the
expected QOTPk ◦ U(ρC1,...,CN)), it is blind since no choice of E will let the coalition discover inputs or
outputs beyond the permitted leakage, as it always gets an encrypted copy of it without the description
key k. The permitted leakage represents everything a coalition can learn aside from the input states of
the malicious Clients. In our protocol, the permitted leakage will be the computation graph G used to
implement U . When G is a universal graph for MBQC, this amounts to leaking its size, or equivalently
an upper-bound on the number of gates used to implement the computation chosen by the Orchestrator
in the circuit model.

162

6.2. HIGH-LEVEL CONSTRUCTION OF A DELEGATED MPQC PROTOCOL FROM VBQC

Resource 20 Double-Blind Quantum Computation
Inputs:

• Each Honest Client j ∈ [N] has a quantum register Xj which contains their respective part of a
collectively possessed state ρinp.

• The Orchestrator inputs the classical description of a unitary U .
• The Server has no honest input.
• All Clients and the Server have filtered interfaces controlled by {cj}j∈[N]∪{S} (set to 0 in the

honest case). When a coalition cheats, they collectively send quantum state ρM and the classical
description of a CPTP map E .

Computation by the Resource:
1. It samples uniformly at random a Q-OTP key k = (kX , kZ) of the size of the output state.
2. If all cj = 0, the state QOTPk ◦ U(ρinp) is produced at the Server’s interface.
3. If there are parties j with cj = 1, the Ideal Resource first sends them the leakage lρ. Then, the

malicious parties send their additional inputs to the Resource. The state QOTPk ◦ E(ρH,M,U) is
produced at the Server’s interface where ρH,M,U includes the inputs of the honest Clients (H),
the malicious parties (M), and the Orchestrator’s description of U .

4. The Q-OTP key k = (kX , kZ) is output at the Orchestrator’s interface.

The production of a correct VBQC client-encrypted state up to a deviation can be then accomplished
by using this new DBQC Ideal Resource. The input of the Clients to this Ideal Resource are as follows.
One Client will be assigned to each base-location of the Dotted-Triple Graph used in the VBQC Protocol
(how this choice is performed is described later) and supply rotated |+θ〉 states for these positions (three
for primary locations and nine for added locations). Naturally, the input base-locations are assigned to
the Client who is supposed to provide the associated input in the VBQC computation. For these, the
Client chooses one position at random to send its encrypted input qubit, and for the other two sends
rotated |+θ〉 states. It communicates the position of its input to the Classical SMPC, which then chooses
a colouring of the Dotted-Triple Graph that satisfies these positioning requirements. The Classical SMPC
(acting as the Orchestrator) can choose a Clifford unitary U which turns some of the |+θ〉 states into
dummies and applies identity on the others, keeping them for the traps and computations. All this can
be done using a unitary U made of SWAP, H and I gates. Section 6.3 gives an explicit DBQC Protocol for
implementing the DBQC Ideal Resource and it will be proved in Section 6.4 that, by carefully choosing
the measurement pattern of DBQC, the output state can be forced to be any VBQC client-encrypted
state up to a deviation by the Server that does not depend on the secret parameters of the state. This
DBQC Protocol will consist of two phases: a state preparation step – during which each Client sends
both the qubits that will become part of the VBQC Dotted-Triple Graph and auxiliary qubits that
are only used during the DBQC Protocol – and a computation step corresponding to an execution of
UBQC on the collaboratively-generated state resulting from this state-preparation. The MPQC Protocol
resulting from these modifications is represented Figure 6.2.

We need to make a final modification to the VBQC Protocol which is motivated by our security
analysis from Section 6.4.2. We assume that the MBQC base graph used to perform the joint unitary has
degree 1 for all input qubits.1 Then, after the entanglement operation on the DTG has been performed
by the Server, it starts by applying an encrypted bridge operation (instructed by the Classical SMPC)

1The universal brickwork state satisfies this property, meaning that our assumption does not restrict the computations
that can be performed using our scheme.

163

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

!′#$%

S

C1
!&'(,1

)(+) -(+) Kj/Ab

CN

!&'(,N

CN

IR: State
Preparation ℇ, !0

ℇ(!1',0)

!′#$%

!#$%

!1'2,3

Classical SMPC

C1
!1'2,4

Key

Figure 6.2: Replacing the classical steps of the single Client in VBQC with a Classical SMPC and the
VBQC client-encrypted state preparation with a possibly-deviated multi-party state preparation with
the participation of Clients Ci. The state ρ′DTG corresponds either to the honestly prepared VBQC
client-encrypted state if there was no deviation, or a deviated state E(ρin,S) where ρin,S corresponds to
a state containing the honest Client’s input and VBQC state qubits and an auxiliary state supplied by
the malicious coalition. At the end, each Client Ci receives its part of the encrypted output state and its
associated Q-OTP key Ki (unless there was an abort Ab).

on the added vertices corresponding to the inputs’ only edge.

To summarise, the Delegated MPQC Protocol consists of the following steps:

1. The Clients send qubits for the state preparation. These include qubits that will be part of the
DTG and qubits for realising the DBQC Protocol, all are either their encrypted input qubits or
rotated qubits |+θ〉. The inputs are placed by each Client uniformly at random among the qubits
of their associated base-location. The corresponding secret parameters are sent to the Classical
SMPC.

2. The Server performs the rest of the DBQC Protocol with the Classical SMPC, which instructs it to
measure some qubits in a rotated basis that depends on the secret parameters above. The aim of
this DBQC Protocol is to transform some of the encrypted |+〉 states into dummies while keeping
the rest of the state as is. The Server returns the measurement results from the DBQC Protocol to
the Classical SMPC. At the end of this step, the Server is in possession of a VBQC client-encrypted
state whose parameters are known to the Classical SMPC (up to a final deviation).

3. The Classical SMPC instructs the Server to perform the VBQC Protocol performing the Clients’
computation on this prepared state, with the only difference being that the first step after entangling
the DTG graph state consists of encrypted bridge operations for computation qubits for input
edges (as described in Section 2.3.1). At the end, the Server returns to each Client all the qubits
in their assigned output base location.

4. The Clients and the Classical SMPC perform a key-release step, at the end of which they either
abort or receive the decryption keys for their output.

164

6.2. HIGH-LEVEL CONSTRUCTION OF A DELEGATED MPQC PROTOCOL FROM VBQC

6.2.3 Usage of the Classical SMPC Ideal Resource

We have seen above that the Classical SMPC allows the Clients to perform collaborative tasks in a secure
way. We detail below how it mediates the interactions between the Clients themselves and between the
Clients and the Server.

Initialisation SMPC. This first call to the SMPC prepares its own internal state (there is no output
at this stage): it receives from each Client a classical description of the secret parameters of all qubits
that it has sent to the Server along with the location of its input among them. Some of those qubits
correspond to the ones that will be used as inputs to produce the VBQC client-encrypted state upon
which the actual computation will take place, while others are used to perform the DBQC Protocol
which will either apply a Hadamard on qubits that are destined to become dummies or Identity to
the rest (so that the combined qubits form a Dotted-Triple Graph). The Classical SMPC chooses the
colouring of the Dotted-Triple Graph associated with the base graph (the one computing the unitary
chosen by the Clients). This colouring must be compatible with the positions of the Clients’ inputs (i.e.
the computation qubit in the input base-locations is determined by each Client’s choice). The Classical
SMPC then defines the unitary applied through the DBQC Protocol: the colouring deterministically
defines at which positions to apply the H and I operations.

Trusted Orchestrator SMPC. The second execution of the Classical SMPC is called during the
DBQC Protocol used to apply these operations. Protocol 18 requires an honest Orchestrator for it to
construct the DBQC Resource 20. Since there is no such party in the actual DMPQC Protocol below, the
aim of this call is to implement this trusted party. During its first call, the Classical SMPC has stored in
its internal state the transformation that should be applied (the location of the H and I gates required
to turn some qubits into dummies while leaving the others unaffected). It then transforms it into an
MBQC computation. It receives classical information from the Server during the state preparation phase
of the DBQC Protocol (corresponding to measurement results) and, knowing the state of the qubits
sent by the Clients for this state preparation, deduces the state of the qubits in the computation graph
at the end of this step. It can then instruct the Server with the measurement angles defined by the
DBQC Protocol as an honest Orchestrator would. Since the unitary that is being applied consists only of
Clifford operations, the SMPC can send all the measurement angles at once, the corrections will simply
translate into a different Q-OTP key on the final state. The Server returns the measurement outcomes
of all measured qubits to the Classical SMPC.

Classical Instructions SMPC. Finally, since it knows all the parameters of the Dotted-Triple Graph,
it can also drive the VBQC computation on the original input qubits by instructing the Server to measure
the qubits in a certain angle. For the last layer, it tells to each Client where its computation, trap and
dummy qubits are. It sends them the measurement angle for the traps and recovers the measurement
outcomes. It knows internally the correct value of the traps and so can verify that they have been all
correctly measured (the ones measured by the Server during the computation and the ones now measured
by the Clients). If the verification passes, it sends to each Client the keys for decrypting its output.

165

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

6.3 Double-Blind Resources for Collaborative State Generation and
Computation

We present in this section three quantum protocols that are double-blind in the sense that neither the
Clients nor the Server (nor any incomplete coalition) have any knowledge about a given property of the
state produced by their executions. The first two correspond to state preparation protocols whose aim
is to collaboratively prepare states from a given set without revealing which one has been effectively
produced. More precisely, the first protocol produces rotated states from the set {|+θ〉}θ∈Θ while the
second one produces BB84 state, i.e. from the set {|0〉 , |1〉 , |+〉 , |−〉}. We do not show the security
formally of these two protocols as they are intended to be used as sub-routines. We however presented
informally reasons why they reveal no information about the prepared states. The third protocol is the
Double-Blind Quantum Computation Protocol, which uses the Double-Blind Rotated State Preparation
Protocol on top of the UBQC Protocol to collaboratively perform a computation without revealing
which unitary has been applied. The security of this protocol is proven as the emulation of the DBQC
Resource 20.

6.3.1 Double-Blind Rotated State Preparation

As mentioned above, the DBQC Protocol will apply the UBQC Protocol on a state that has been
collaboratively encrypted. In order to satisfy the blindness condition against coalitions of the Server and
up to N − 1 Clients, the Double-Blind Rotated State Preparation (Protocol 16) must ensure that no
coalition of less than N Clients has enough information about the encryption keys of the qubits used in
the UBQC Protocol. This imposes that all the Clients contribute to the encryption, each sending at least
one qubit per non-output location of the UBQC computation graph G. This way, each qubit used in
the UBQC Protocol always contains random bits from at least one honest Client. In the Rotated State
Preparation Protocol, one Client provides an encrypted input and all others send rotated |+θ〉 states.
Upon receiving the qubits of each Client, the Server applies a series of CNOT’s between the received
qubits followed by a computational basis measurement of all but one qubit. By properly choosing the
control and targets of the CNOT’s this results in a single qubit whose encryption depends on the secret
parameters of all the Clients. This can then be used to perform the UBQC computation. The formal
version of the Double-Blind Rotated State Preparation is given in Protocol 16.

Protocol 16 Double-Blind Rotated State Preparation
Input: Client j has as input a quantum register containing a single qubit. The other parties have no
input.
Protocol:

• Client j chooses θj ∈R Θ uniformly at random, applies Z(θj) to its input and send it to the
Server. It keeps the value θj as output.

• Client j′ 6= j chooses θj′ ∈R Θ uniformly at random, prepares
∣∣∣+θj′

〉
and send it to the Server.

It keeps the value θj′ as output.
• For each j′ 6= j, the Server applies CNOTj,j′ between the qubits received from Clients j and j′,

with the first being the control and the second the target. It measures the target qubit (sent by
Client j′) in the computational basis with measurement outcome tj′ . It keeps as output the vector
t containing all the measurement outcomes and the register containing the qubit of Client j.

166

6.3. DOUBLE-BLIND STATE GENERATION AND COMPUTATION

This Double-Blind Rotated State Preparation is represented eight Clients in Figure 6.3.

<latexit sha1_base64="54leTjilqt1g6L35La/BA3ZMMDc=">AAADBXicjVLLSsNAFD2Nr1pfVcGNm2ARBaEkRdRl0Y3LCvYBbSlJOm1j0yQkE6HErv0Pt+pO3Pod/oGCH+GdMQW1SJ2QyZlz77mTM3dM37FDrmmvKWVmdm5+Ib2YWVpeWV3Lrm9UQi8KLFa2PMcLaqYRMsd2WZnb3GE1P2DGwHRY1eyfiXj1mgWh7bmXfOiz5sDounbHtgxOVCu71egzHh+04gbvMW604qu90WiUaWVzWl6TQ50EegJySEbJy36ggTY8WIgwAIMLTtiBgZCeOnRo8IlrIiYuIGTLOMMIGdJGlMUowyC2T3OXVvWEdWktaoZSbdEuDr0BKVXsksajvICw2E2V8UhWFuxftWNZU/zbkL5mUmtALEeP2Gm6ceb/dT7FhxQRvsMprjk6OJFubXLvS0acg5XsF8nzEx7Vb/45VfCJE7hN8YCwJZXjjqhSE8pTEl0wZPxNZgpWrK0kN8K78ENXQf/d+ElQKeT1o3zh4jBXPE0uRRrb2ME+df4YRZyjhDLVvsEd7vGg3CqPypPy/JWqpBLNJn4M5eUTBuyh7g==</latexit>���+✓j0

E

<latexit sha1_base64="OVZmD0L5rWk39BbyZQgPMKg5twc=">AAAC+nicjVLLSsNAFD2Nr1pfVZdugkVwVRIRdVl047KCfUBbJEmn7dA0iZOJUGq/w626E7f+jH+g4Ed4Z0xBLVInZHLm3Hvu5MwdN/J5LC3rNWPMzS8sLmWXcyura+sb+c2tahwmwmMVL/RDUXedmPk8YBXJpc/qkWDOwPVZze2fqXjthomYh8GlHEasNXC6Ae9wz5FEtZqS+202aopeOM5d5QtW0dLDnAZ2CgpIRznMf6CJNkJ4SDAAQwBJ2IeDmJ4GbFiIiGthRJwgxHWcYYwcaRPKYpThENunuUurRsoGtFY1Y632aBefXkFKE3ukCSlPEFa7mTqe6MqK/av2SNdU/zakr5vWGhAr0SN2lm6S+X9dRPEhRZTveIZriQ5OtFtO7iPNqHPw0v0SfX7Ko/nNv6QKEXEKtykuCHtaOemIqTWxPiXVBUfH33SmYtXaS3MTvCs/dBXs342fBtWDon1UPLg4LJRO00uRxQ52sU+dP0YJ5yijQrWvcYd7PBi3xqPxZDx/pRqZVLONH8N4+QQzu536</latexit>

⇢̃

(a) The Server receives the qubits and applies
CNOT gates (the central qubit is the control, the
rest are targets).

<latexit sha1_base64="YUSbNHmX3361fzZfQ5Gm6pt66xk=">AAADCHicjVLLSsNAFD2Nr1pfVVfiJliEuimpiLosunFZwapoRCZxaoJ5MTMRShH3/odbdSdu/Qv/QMGP8M4YwQeiEzI5c+49d3LmjpdFoVSO81SyBgaHhkfKo5Wx8YnJqer0zK5Mc+Hzjp9Gqdj3mORRmPCOClXE9zPBWexFfM8729TxvXMuZJgmO6qX8aOYnSZhN/SZIuq4OufGTAWy2z+4qLsq4Iot1V0RpEuV42rNaThm2D9BswA1FKOdVl/h4gQpfOSIwZFAEY7AIOk5RBMOMuKO0CdOEApNnOMCFdLmlMUpgxF7RvMprQ4LNqG1rimN2qddInoFKW0skialPEFY72abeG4qa/a32n1TU/9bj75eUSsmViEg9i/dR+b/dRnFexTRvuUfrhW6WDduQ3KfGUafg1/sl5vz0x7tT/4VVciI0/iE4oKwb5QfHbGNRppT0l1gJv5sMjWr136Rm+NF+6Gr0Pze+J9gd7nRXG0sb6/UWhvFpShjHguoU+fX0MIW2uhQ7Utc4wa31pV1Z91bD++pVqnQzOLLsB7fAL60ooI=</latexit>

Z(✓)(⇢)

<latexit sha1_base64="D/ftSqRvwbR/hgpS71jQrUnzo3A=">AAAC93icjVLLSsNAFD2Nr1pfVZdugkVwVRIRdVl047KCfWBbSpJOa2xeTCZCKP0Lt+pO3Po5/oGCH+GdMQW1SJ2QyZlz77mTM3fsyHNjYRivOW1ufmFxKb9cWFldW98obm7V4zDhDqs5oRfypm3FzHMDVhOu8Fgz4szybY817OGZjDduGY/dMLgUacQ6vjUI3L7rWIKoq/aQiZHo3owL3WLJKBtq6NPAzEAJ2aiGxQ+00UMIBwl8MAQQhD1YiOlpwYSBiLgORsRxQq6KM4xRIG1CWYwyLGKHNA9o1crYgNayZqzUDu3i0ctJqWOPNCHlccJyN13FE1VZsn/VHqma8t9S+tpZLZ9YgWtiZ+kmmf/XRRRPKSJ9xzNcC/Rxoty65D5SjDwHJ9svUecnPerf/AuqEBEncY/inLCjlJOO6EoTq1OSXbBU/E1lSlaunSw3wbv0Q1fB/N34aVA/KJtH5YOLw1LlNLsUeexgF/vU+WNUcI4qalQ7wB3u8aCl2qP2pD1/pWq5TLONH0N7+QSg/5ym</latexit>|tji

(b) The Server measures all qubits but the central
one in the computational basis and gets outcomes
tj′ ∈ {0, 1}.

Figure 6.3: Double-Blind Rotated State Preparation for eight Clients. Client j supplies the central
input qubit in state ρ̃ = Z(θj)(ρ), every other Client j′ sends

∣∣∣+θj′ (v)

〉
.

Lemma 6.1 (Result of Double-Blind Rotated State Preparation). After an honest execution of Proto-
col 16 with input state ρ, the state of the unmeasured qubit held by the Server is Z(θ)(ρ):

(6.1) θ = θj +
∑
j′ 6=j

(−1)tj′ θj′

Proof. It is sufficient to prove the lemma for a pure input state |φ〉 = α |0〉+ β |1〉. Let |+θ〉 with θ ∈ Θ
be a rotated quantum state. Then, we apply a CNOT gate with the input state as control and the rotated
state as target, followed by a measurement of the second qubit in the computational basis. Let t ∈ {0, 1}
be the measurement result. After tracing out the second qubit post-measurement, the system is in the
following state:

(6.2)
〈0|2 Xt2CNOT12 |φ〉 |+θ〉 = 〈0|2 Xt2

(
α |00〉+ αeiθ |01〉+ β |11〉+ βeiθ |10〉

)
= 〈0|2 (α |0〉+ βeiθ |1〉) |t〉+ eiθ 〈0|2 (α |0〉+ βe−iθ |1〉) |t⊕ 1〉

=Z(θ) |φ〉 〈0|t〉+ Z(−θ) |φ〉 〈0|t⊕ 1〉

Therefore, the result of this single step is Z((−1)tθ) |φ〉. Recall that Client j performs an encryption on
its input using operation Z(θj). Replacing the result above in the sequence of CNOT’s and measurements
performed by the Server where the control is the qubit sent by Client j and the target qubits are those
sent by the Clients j′ 6= j yields the desired result.

�

167

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Note that the state after this protocol has been executed could have been obtained by having each
Client send its inputs to a quantum-enabled Orchestrator and let it perform the state rotation by θ
along the Z axis. What is important here, is that the computed angles θ from equation 6.1 will appear
random to any party as long as at least a single unknown angle. This property will provide the security
of our DBQC Protocol against collusions of up to N − 1 Clients.

6.3.2 Double-Blind BB84 State Preparation

We present here a a novel way of preparing a state from the BB84 set collaboratively such that no
incomplete coalition of parties has any information about the final state. Note that while the rest of this
Chapter does not make use of this subroutine, future collaborative MBQC-based protocols may find it
useful due to the interesting properties of states from this set when inserted in vertices of graph states.
This would allow for performing blind bridge or break operations, potentially moulding the computation
graph without revealing how.

This double-blind protocol works as follows. Each of the N Clients is instructed by its input to
prepare either a state in {|0〉 , |1〉} or {|+〉 , |−〉} and send it to the Server. The Server prepares a qubit
in the state |+〉 and applies CZ to each pair of qubits. The result is presented in Figure 6.4 for 6 Clients.
The Server then measures each of the qubits sent by Clients in the {|+〉〈+| , |−〉〈−|} basis and keep its
own (unmeasured) qubit as output. The formal description of the collaborative Double-Blind BB84
State Preparation is given in Protocol 17.

(a) Entanglement of Client and Server qubits ac-
cording to a complete graph.

(b) Dummies are unentangled from the rest of the
state. All qubits but the green one are measured
in the {|+〉〈+| , |−〉〈−|} basis.

Figure 6.4: Example of possible entanglement configuration with N = 6 Clients. Red vertices are
dummies, white vertices are qubits in a state from {|+〉 , |−〉}, the green vertex is the Server’s qubit in
state |+〉.

We now describe the state of the unmeasured qubit at the end of the protocol in Lemma 6.2, proving
that if all player’s acted honestly this register contains a qubit in a state from {|+〉 , |−〉} in the case

168

6.3. DOUBLE-BLIND STATE GENERATION AND COMPUTATION

Protocol 17 Double-Blind BB84 State Preparation.
Inputs: Each Client j ∈ [N] has as input aj ∈ {0, 1}
The Protocol:
1. Each Client j samples a bit uniformly at random bj ∈R {0, 1}. It prepares and sends to the

Server a qubit in the state |ψj〉 = Haj |bj〉. It then sets bj as its output.
2. The Server prepares a qubit in the state |+〉.
3. The Server entangles the qubits by applying a CZ gate between each pair of qubits in its possession

(forming a complete graph state across all N + 1 qubits).
4. The Server measures all qubits sent by the Clients in the {|+〉〈+| , |−〉〈−|} basis. Let cj be the

result of the measurement on the qubit sent by Client j and c the corresponding string. It sets
the string c and the unmeasured qubit as its output.

where
⊕N

j=1 aj = 0, and from {|0〉 , |1〉} otherwise.

Lemma 6.2 (Result of Double-Blind BB84 State Preparation). Let D = {j ∈ [N] | aj = 0} be the set
of indices of qubits in the computational basis and R = Dc = [N] \ D the set of indices of qubits in
states {|+〉 , |−〉} sent by the Clients. Let n = #R, d =

∑
j∈D bj, ej = bj + cj + d and e =

∑
j∈R ej

with e the corresponding string. The unmeasured qubit (indexed O) at the end of an honest execution of
Protocol 17 is in the state |φn,d,e〉 = ZdHnZe+b

n
2 c |+〉.

Proof. Since we analyse correctness, we can suppose without loss of generality that the first n qubits
are in the state |+〉 or |−〉 (such that R = [n] and D = [N] \ [n]). The state the N qubits sent by the
Clients is |ψj〉 = Zbj |+〉 for j ∈ R and |ψj〉 = |bj〉 for j ∈ D. The state before the entangling operation
performed by the Server is therefore (where the lower index on unitaries indicating to which qubit they
are applied):

(6.3)
⊗
j∈R

Zbjj |+〉
⊗
j∈D
|bj〉 ⊗ |+〉 =

∏
j∈R

Zbjj
⊗
j∈R
|+〉

⊗
j∈D
|bj〉 ⊗ |+〉

The entangling operations between qubits from set D only add a global phase and can be disregarded.
Let R∗ = R∪{O} (the last one being the Server’s qubit). The entangling operation between qubits i ∈ D
and j ∈ R∗ is equivalent to applying Zbij . Since this is done on all qubits j ∈ R∗ for each qubit i ∈ D,

this applies
∏
i∈D

(∏
j∈R∗ Zj

)bi
=
(∏

j∈R∗ Zj
)∑

i∈D
bi

= ZdO
∏
j∈R Zdj . This operation commutes with

the other CZ gates and the resulting state on the Server’s side before it performs the measurements is
therefore:

(6.4)
∏

i,j∈R∗
i>j

CZij
∏
j∈R

Zdj
∏
j∈R

Zbjj
⊗
j∈R
|+〉

⊗
j∈D
|bj〉 ⊗ ZdO |+〉 =

∏
i,j∈R∗
i>j

CZij
∏
j∈R

Zbj+dj

⊗
j∈R
|+〉

⊗
j∈D
|bj〉 ⊗ ZdO |+〉

The qubits in the computational basis are unentangled from the rest of the state and so measuring them
has no influence on the output qubit at the end of the protocol. We can therefore trace them out, giving
us the following reduced state:

(6.5)
∏

i,j∈R∗
i>j

CZij
∏
j∈R

Zbj+dj ZdO |+〉
⊗n+1

169

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

For j ∈ R, let cj be the measurement result on the qubit j. The state of the measured qubits is
then

∏
j∈R Zcjj |+〉

⊗n. The probability of obtaining measurement result cj on qubit j is 1/2 independently
of the other measurements so the probability of obtaining a given string of measurement c is 1/2n.
Defining ej := cj + bj + d, e the list of all values of ej and e =

∑
j∈R

ej and using the formula for the

post-measurement state |ψm〉 = Pm|φ〉√
p(m)

for measurement result m, projector Pm and probability p(m),
the state of the unmeasured (output) qubit after projection is given by (with the measured qubits being
traced out):

(6.6)

|φn,d,e〉 :=2n2 〈+|⊗n
∏
j∈R

Zcjj
∏

i,j∈R∗
i>j

CZij
∏
j∈R

Zbj+dj ZdO |+〉
⊗n+1

=2n2 〈+|⊗n
∏

i,j∈R∗
i>j

CZij
∏
j∈R

Zejj ZdO |+〉
⊗n+1

We now use the fact that |+〉⊗n = 1
2
n
2

∑2n−1
x=0 |x〉 to rewrite this state as follows:

(6.7) |φn,d,e〉 = 2n2
2n+ 1

2

(2n−1∑
x̃=0
〈x̃|
)∏
i,j∈R∗
i>j

CZij
∏
j∈R

Zejj
(

ZdO
2n−1∑
x=0
|x〉 |0〉O + |x〉 |1〉O

)

Recall that e · x designates the scalar product of e and x in Zn2 , wH(x) is the Hamming weight of x
and

(
n
k

)
is the number of k-combination of a set of size n. We now use the following three identities to

simplify the equation above:2

(6.8)

∏
j∈R

Zejj |x〉 =(−1)e·x |x〉

∏
i,j∈R∗
i>j

CZij |x〉 |0〉 =(−1)(
wH(x)

2) |x〉 |0〉

∏
i,j∈R∗
i>j

CZij |x〉 |1〉 =(−1)(
wH(x)

2)+wH(x) |x〉 |1〉

We then get (simplifying the normalisation factor along the way):

(6.9) |φn,d,e〉 = 1
2n+1

2

2n−1∑
x̃=0

2n−1∑
x=0

(−1)e·x+(wH(x)
2) 〈x̃|ZdO

(
|x〉 |0〉O + (−1)wH(x) |x〉 |1〉O

)
Using 〈x̃|x〉 = δx̃,x where δ is the Kronecker delta (dropping the index on the last remaining Z as there
is no ambiguity any more):

(6.10) |φn,d,e〉 = Zd

2n+1
2

2n−1∑
x=0

(−1)e·x+(wH(x)
2)

(
|0〉+ (−1)wH(x) |1〉

)
2The first one stems from the fact that a −1 is applied if and only if ej = 1 and xj = 1, while the other two correspond

to the fact that a −1 is applied by CZ if both bits of x upon which the gate acts are equal to 1

170

6.3. DOUBLE-BLIND STATE GENERATION AND COMPUTATION

For n = 0 and e = ε (the empty word), |φ0,d,ε〉 = Zd |+〉 (there is only the Server’s qubit and all the
rest are dummies). If n > 0, we can write x = x′xn where x′ ∈ {0, 1}n−13 and xn ∈ {0, 1} is the least
significant bit of x (and similarly e = e′en):

(6.11)
|φn,d,e〉 = 1√

2
× Zd

2n2

2n−1−1∑
x′=0

(−1)e′·x′+(wH(x′)
2)

(
|0〉+ (−1)wH(x′) |1〉

)
+

(−1)e′·x′+en+(wH(x′)+1
2)

(
|0〉+ (−1)wH(x′)+1 |1〉

)
The term for xn = 0 (on the upper line of the equation above) is exactly 1√

2 |φn−1,d,e′〉. For the term
corresponding to xn = 1 (on the lower line) we use the fact that

(wH(x′)+1
2

)
=
(wH(x′)

2
)

+ wH(x′) and get:

(6.12) (−1)en(−1)e′·x′+wH(x′)+(wH(x′)
2)Z

(
|0〉+ (−1)wH(x′) |1〉

)
We then remark that wH(x′) (mod 2) =

⊕
j∈[n−1] xj = 1n−1 ·x′ where 1n−1 is the vector of length n− 1

containing 1 in every position. Therefore the expression above is equal to:

(6.13) (−1)enZ(−1)e′·x′+1n−1·x′+(wH(x′)
2)

(
|0〉+ (−1)wH(x′) |1〉

)
We denote e′ = e′ ⊕ 1n−1 the vector where every bit of e′ has been flipped. Since e′ · x′ + 1 · x′ =
(e′ ⊕ 1n−1) · x′ = e′ · x′,we get that the term for xn = 1 is equal to (−1)en√

2 Z |φn−1,d,e′〉. Recalling that
the term for xn = 0 was equal to |φn−1,d,e′〉, we get that:

(6.14) |φn,d,e〉 = 1√
2
(
|φn−1,d,e′〉+ (−1)enZ |φn−1,d,e′〉

)
Replacing e with ē:

(6.15) |φn,d,ē〉 = 1√
2
(
|φn−1,d,e′〉+ (−1)en+1Z |φn−1,d,e′〉

)
Therefore (where e′′ is equal to e′ with the least significant bit en−1 removed):

(6.16)
|φn−1,e′〉 = 1√

2
(
|φn−2,e′′〉+ (−1)en−1Z |φn−2,e′′〉

)
(−1)enZ

∣∣∣φn−1,e′

〉
= 1√

2
(
(−1)enZ |φn−2,e′′〉+ (−1)en+en−1+1 |φn−2,e′′〉

)
Reinjecting these identities into the one for |φn,d,e〉 we get:

(6.17) |φn,d,e〉 = 1
2
(
(1− (−1)en+en−1) |φn−2,d,e′′〉+ (−1)en(1 + (−1)en+en−1)Z |φn−2,d,e′′〉

)
3With the convention that {0, 1}0 = {ε} contains only the empty word.

171

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

This simplifies to:

(6.18) |φn,d,e〉 =

Z |φn−2,d,e′′〉 if en ⊕ en−1 = 0

|φn−2,d,e′′〉 if en ⊕ en−1 = 1

Recall that the result for n = 0 was |φ0,d,ε〉Zd |+〉. It is simple to see that for n = 1, |φ1,e1〉 ∈ {|0〉 , |1〉}
since entangling two |+〉 states using CZ and measuring one of them in the {|+〉〈+| , |−〉〈−|} basis yields
an MBQC computation which is equivalent to applying a Hadamard gate on the input qubit. We can
conclude by induction that if n is even then |φn,e〉 ∈ {|+〉 , |−〉} and if n is odd then |φn,e〉 ∈ {|0〉 , |1〉}
for all values of e.

Knowing this, it is possible to deduce from |φn,e〉 = 1√
2

(
|φn−1,e′〉+ (−1)enZ |φn−1,e′〉

)
that if n is

even we have |φn,e〉 =
∣∣φn,e〉 and if n is odd then |φn,e〉 = X

∣∣φn,e〉.4 This reduces the previous recurrence
relation to (for even and odd values of n respectively):

(6.19)
|φ2k,d,e〉 = Zen+en−1+1 |φ2k−2,d,e′′〉 = Z

k+
∑
j∈[2k]

ej

|φ0,d,ε〉 = Ze+d+k |+〉

|φ2k+1,d,e〉 = Xen+en−1+1 |φ2k−1,d,e′′〉 = X
k+

2k+1∑
j=2

ej

|φ1,d,e1〉 = X
k+
∑

j∈[2k+1]

ej

|φ1,d,0〉

It is easy to verify that |φ1,d,0〉 = |0〉 regardless of the value of d (via the same MBQC computation on
two qubits as above). Therefore:

(6.20) |φ2k+1,d,e〉 = Xe+k |0〉 = HZe+k |+〉

These formulae can be regrouped as follows, yielding the desired result:

(6.21) |φn,e〉 = ZdHnZe+b
n
2 c |+〉

�

We can now analyse the knowledge of a coalition of malicious Clients and Server. The Server receives
from any honest Client j a BB84 state that depends on two hidden parameters aj and bj . These
parameters are never revealed and so the state is the perfectly mixed state from the Server’s point of
view. Since this is the only communication from honest to malicious players, the protocol is automatically
perfectly blind with regard to these parameters.

We now look at the dependency of the final state on these hidden values in the case where only a
fixed Client j is honest. At the end of the procedure, the parity of n is classically One-Time-Padded
by the values aj and so the basis of the output state is not revealed. Furthermore, if n is even then
the final state is Ze+d+n

2 |+〉. Since bj is hidden, the parity of the parameter e + d + n
2 is classically

One-Time-Padded either by d =
∑
i∈D bi if the Client has sent a dummy or e =

∑
i∈R bi + ci otherwise.

4Otherwise there are value of en for which the state can be null in the recurrence relation.

172

6.3. DOUBLE-BLIND STATE GENERATION AND COMPUTATION

Similarly if n is odd, the state is given by Xe+d+b∗cn2 |0〉 and the same reasoning applies. This means
that the output state is completely mixed from the point of view of the malicious parties as long as the
values aj and bj of the honest Client remain secret.

Equivalently, the honest Client can send half of an EPR-pair to the Server and measure its own
half either in the basis {|0〉〈0| , |1〉〈1|} or {|+〉〈+| , |−〉〈−|} depending on its secret parameter aj .5 This
measurement can be postponed until the end of the protocol or even later without the Server being able
to distinguish this situation from the protocol’s execution.

6.3.3 Double Blind Quantum Computation Protocol

We now show how to construct the Double-Blind Quantum Computation Resource used as a black-box
in the construction of the DMPQC Protocol in the previous Section. The aim of the DBQC Protocol is
to allow a computation, known only to a classical third party called the Orchestrator, to be performed
by a Server on quantum inputs supplied by Clients in such a way that neither the Clients nor the Server
are able to gain any knowledge about the computation itself and the input states of honest Clients.

High-Level View of the Protocol. Similarly to the construction of the MPQC Ideal Resource, the
DBQC Ideal Resource will be assembled from the Double-Blind Rotated State Preparation (Protocol 16)
applied to specific states, followed by a regular single-client UBQC Protocol. Protocol 16 is first used
to produce a collaboratively encrypted qubit for each non-output vertex in the UBQC computation
graph G. The classical outputs are provided to the Orchestrator so that it knows the corresponding key.
This is followed by the Server performing entanglement operations given by the edges of G. Before the
computation step starts, the Clients privately send to the Orchestrator some random binary values rj(v)
for v ∈ Oc that will be combined into r(v) =

⊕
j rj(v) to OTP the measurement outcomes obtained

by the Server. The Orchestrator chooses the computation to be performed and, given values of θ(v)
and a(v) deduced from the state preparation step, it then instructs the Server to perform single qubit
measurements. At the end of the computation step, the Server has a Q-OTPed version of the quantum
output of the computation whose encryption key s is given by the values of ŝX(v) and ŝZ(v) for each
output qubit v ∈ O, which are defined in Section 2.3. The only difference with regular UBQC is that the
output is then left encrypted at the Server’s interface while the Orchestrator keeps the corresponding
decryption key k, which is equal to d.

Protocol 18 presents the formal description of the Double-Blind Quantum Computation for a given
unitary U to be implemented on a graph state defined by G and flow f .

We can now state the main result of this section:

Theorem 6.1 (Composability of Double-Blind Quantum Computing). Under the assumption that at
least one Client is honest and that the Orchestrator is honest, Protocol 18 εD-constructs the Double-Blind
Quantum Computing Ideal Resource 20 for εD = 0 (i.e. perfect security) from Insecure Quantum Channels
between each Clients and the Server, Authenticated Classical Channels between all parties and Secure
Classical Channels between each Client and the Orchestrator.

5The distribution over its sampled parameter bj , drawn uniformly at random in the protocol or via this measurement,
is the same.

173

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Protocol 18 Double Blind Quantum Computation
Inputs:

• Each Honest Client j ∈ [N] has a quantum register Xj which contains their respective part of a
collectively possessed state ρinp.

• The Orchestrator has as input the classical description of a unitary U in the form of a measurement
pattern (angles {φ(v)}v∈Oc and flow) on a graph (G, I,O).

• The Server has no input.
Protocol:
1. State Preparation: For the input of each Client j, the Clients and Server perform the Double-

Blind Rotated State Preparation Protocol 16, with Client j sampling a uniformly random bit
a(v) ∈R {0, 1}, applying Xa(v) to its input register Xj and using it as input. For non-input
measured qubits v ∈ Ic ∩ Oc of the graph G, without loss of generality, Client N supplies an
input qubit to the Double-Blind Rotated State Preparation Protocol in the state |+〉. For output
qubits, the Server prepares |+〉 states.

2. Key Reconstruction: The Clients send to the Orchestrator the secret parameters used in all
executions of the Double-Blind Rotated State Preparation Protocol, along with the values a(v) for
their input and a value rj(v) for all measured qubits of G. The Server sends to the Orchestrator
the measurement results of the executions. The Orchestrator deduces from Equation 6.1 the state
of all non-input qubits and encryption of inputs for use in the UBQC computation phase and
recombines the values hiding the measurement outcome as r(v′) =

⊕
j rj(v′) for v′ ∈ Oc.

3. Entanglement: The Server entangles the qubits obtained at the end of the State Preparation
according to the edges of the computation graph G with CZ gates.

4. Computation: For non-output vertices v ∈ Oc, as in UBQC, the Orchestrator computes the
measurement angle δ(v) = φ′(v) + θ(v) + r(v)π and sends this angle to the Server. The Server
measures location v along the {

∣∣+δ(v)
〉
,
∣∣−δ(v)

〉
} basis and returns the measured outcome b(v) to

the Orchestrator.
5. Termination: The Orchestrator sets as output k = (ŝX(v), ŝZ(v))v∈O. The Server sets the

qubits corresponding to vertices in O as its output. The Clients have no output.

Proof. The goal of the proof is to describe Simulators attached to the interfaces of Malicious parties
of the Ideal Resource so that the real-world implementation is indistinguishable from the ideal-world
version with the Simulator.

We start by showing that our Protocol is correct when all parties are honest. After the State
Preparation and Entanglement steps, the Server holds the same resource state as the one used in the
UBQC Protocol presented in Section 3.5.1. Then, the Computation step is identical to the single-client
UBQC Protocol with the Orchestrator playing the role of the Client, which implies correctness after the
measurements. The Termination step then correctly sets the random Q-OTP key k to the value given by
the single-client UBQC Protocol. Therefore, all quantum and classical data produced by the Protocol
are identical to the ones returned by the Ideal Resource 20, proving the correctness of Protocol 18.

The second case to examine is when the Server, the Orchestrator and at least one Client are honest.
This is a one-way protocol from the malicious Clients to the honest parties, which is always perfectly
blind as shown in Theorem 7.2 of [41].

Finally, the case with a malicious Server and possibly some malicious Clients can be dealt with in the
worst-case scenario, which corresponds to a single honest Client (eg. Client h) and Orchestrator, while
all other parties are malicious and colluding. The corresponding Simulator σ, connected to Malicious
Clients and Server on one side, and to the corresponding interfaces of the Ideal Resource on the other

174

6.3. DOUBLE-BLIND STATE GENERATION AND COMPUTATION

one, is presented in Simulator 10.
We denote with Ω a function from the set of input qubits I, to the set of Clients [N], that determines

which Client “owns” the input qubit at location i and is thus supposed to provide it. To mirror the
description of the protocol, the domain of Ω is extended to all the vertices in Oc, so that Ω is unchanged
on I and is constant and equal to N on Ic ∩Oc.6

Simulator 10 Malicious Client-Server Coalition
For each v ∈ Oc:
1. The Simulator creates an EPR-pair and sends half of it to the Server.
2. It receives the quantum states from the malicious Clients and forwards them to the Server

(i.e. N − 1 states for each v ∈ Oc).
3. It receives from each malicious Client j, the values for rj(v) and θj(v) for v ∈ Oc, and for v ∈ I

and j = Ω(v) it receives a(v).
4. It receives the vector t(v) from the Server.
5. It sends δ(v) chosen at random in Θ to the Server and receives b(v) ∈ {0, 1} in return.
6. It sends to the Ideal DBQC Resource (Resource 20) its remaining half-EPR-pair, along with the

values θj(v), rj(v), a(v), t(v), δ(v) and b(v).

To show that the Ideal Resource and this Simulator are indistinguishable from the real-world
Protocol 18, we need to prove that by observing the classical messages and quantum states exchanged,
no Distinguisher can tell apart the two situations. This is done as in [41] by reducing Protocol 18 to one
which is equivalent from the point of view of a Distinguisher, and where it will be possible to identify
the Ideal Resource and the Simulator. Figure 6.5 depicts the protocol when focusing on a single qubit v
owned by an honest Client h.

Z(θj(v))

Z(θh(v))Xa(v)

O

0/1

Ch

Cj EG

Z(δ(v)) H

δ(v)=f(φ′(v), θ(v), r(v), a(v), t(v))

0/1

Figure 6.5: Schematic circuit for implementing DBQC with 2 Clients. Ch is honest and owns qubit
v whereas Cj provides a |+〉 state. EG is the entangling operation involving the other qubits used in
the computation. The Orchestrator computes the measurement angle δ(v) as a function of the target
computation and the previous measurements through φ′(v), of the secret parameters defined by the
Clients for qubit v, and of the public measurement outcomes t(v).

6The ownership of non-input qubits can be symmetrised across Clients - for example by choosing the owner of these
qubits at random - but here the last Client is always chosen as their owner for simplicity of presentation. This can be done
without loss of generality since these qubits are prepared the same way regardless of the computation or input: in any case,
one client’s qubit remains unmeasured for each location and it does not change anything in the protocol or proof to fix it
in advance for non-inputs.

175

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

We start by replacing the quantum operations performed by Client h in the Double-Blind Rotated
State Preparation (Protocol 16). For all non-output qubits, it instead prepares an EPR-pair and sends half
of it to the Server. For its non-input qubits it measure the other half in basis

∣∣±−θh(v)
〉
for θh(v) ∈R Θ.

For its input qubits, it first applies a CNOT between its input (as control) and the other half-EPR-pair
(as target) followed by a Z(θh(v)) gate and a Hadamard on the control qubit and then measures both in
the computational basis. The measurement results are set as values for rh(v) (control) and a(v) (target).
The rest of the protocol remains the same.

We now analyse its effect on the information accessible to the Distinguisher. Since Client h is
honest and never reveals θ, the qubits that it sends to the Server appear completely mixed from the
Distinguisher’s perspective. Replacing them by half EPR-pairs does not change this. Additionally, the
classical information sent in this reduction by Client h to the Orchestrator and later used in determining
the measurement angles follow the same probability distribution as in the original protocol while
remaining correct. Combining these two facts establishes the equivalence of the original protocol and
this first reduction from the Distinguisher’s perspective.

The second reduction further alters the modified protocol by (i) delaying in time the measurement
on the EPR-pairs for each v ∈ Oc, which does not modify the distribution of quantum nor classical
messages exchanged between the various parties; (ii) choosing the angles δ(v) at random and adapting
the angle θh(v) instead of the other way around, which keeps the angle-update equation of UBQC
satisfied and θh(v) uniformly distributed over Θ. This measurement-induced value of θh(v) is given by:

(6.22) θh(v) =

if Ω(v) = h : δ(v)− φ′(v)−

∑
j 6=h

(−1)tj(v)+a(v)θj(v)

if Ω(v) 6= h : (−1)th(v)+a(v) ×
(
δ(v)− φ′(v)− θΩ(v)(v)−

∑
j 6=Ω(v)
j 6=h

(−1)tj(v)+a(v)θj(v)
)

Here again, the equivalence between the two protocols is immediate: the UBQC equations are
still satisfied and no Distinguisher can detect that the measurements have been performed later. The
combined modifications are presented in Reduction 1.

Reduction 1 Replacing Q-OTP with Teleportation and Delayed Measurement
Client h:
1. For locations v ∈ Oc, it prepares an EPR-pair and sends half of it to the Server.
2. If i ∈ I and h = Ω(v):

a) It performs a CNOT between its input qubit (control) and the remaining half EPR-pair
(target) followed by a Hadamard on the control qubit.

b) It measures the target qubit in the computational basis and sends the obtained value to the
Orchestrator as a(v).

The Orchestrator:
1. It chooses a measurement angle δ(v) ∈R Θ and sends it to the Server. It receives in return the

measured outcome b(v).
2. It computes θh(v) according to Equation 6.22.
3. It asks Client h to measure the control (yet unmeasured) qubit in the basis defined by θh(v) and

receives in return the outcome of the measurement as rh(v).
The rest of the protocol is unchanged.

176

6.3. DOUBLE-BLIND STATE GENERATION AND COMPUTATION

It can be checked that the Simulator’s operations can be extracted from this modified protocol by
grouping the EPR-pair creation done on behalf of Client h with the operations consisting of sending
and receiving quantum or classical data to the Server and to the Ideal Resource. To conclude the proof,
we need to show that, using the data transmitted by the Simulator, the Ideal Resource is able to take
into account the deviation induced by the malicious parties and output the correct encryption key k for
the Orchestrator. This is done by isolating an explicit quantum circuit (Ideal Resource 21) from the
modified protocol, which then functions as a sub-system of the DBQC Ideal Resource 20. Figure 6.6
depicts the circuit after the reduction and extraction of the Simulator and the Ideal Resource.

0/1

0/1

0/1

Z(θj(v))

0/1

Cj EG

HZ(δ(v))

O

Ch

θh(v)=g(φ′(v),δ(v),r(v),a(v),t(v))

|+〉

|0〉

HZ(θh(v))

Figure 6.6: Schematic circuit for the reduced protocol where the Simulator (blue) and Ideal Resource
(red) have been singled out. From the point of view of Cj and the Server, the interaction with the
simulator is the same as for the concrete implementation of the protocol. More importantly, even if a
distinguisher provides all input states, comprising that of Ch and O, no difference will be appearent
between this setup and the concrete implementation.

Resource 21 Deviation Teleportation
The following steps correspond to the concrete implementation of step 3 of the computation by the
DBQC Ideal Resource 20:
1. The Ideal Resource performs a CNOT between the input qubits of Client h (control) and the

corresponding half-EPR-pairs (target) provided by the Simulator σ. It measures the target qubit
in the computational basis and gets a(v).

2. For qubits v ∈ Oc, it computes the angles θh(v) according to Equation 6.22. It performs the
corresponding measurements in the basis

∣∣+θh(v)
〉
in the order defined by the flow, getting the

values of rh(v) and updating the measurement angles for the next qubits.
3. For qubits v ∈ O it computes the corrections s = (ŝX(v), ŝZ(v)) and sends the key k = s to the

Orchestrator.

Note that there is no need for the Ideal Resource to transmit additional information to the Simulator
as its action leads exactly to QOTPk(E(ρh,[N]\h,U)) being prepared in the Server’s output register,
where the set [N] \ h corresponds to the malicious Clients, the subscript U denotes the Orchestrator’s
computation description, and E is the deviation chosen by the Server and the malicious Clients.

177

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

This concludes the proof as the Simulator together with the Ideal Resource are shown to stem from a
protocol equivalent to the real-world implementation, making both situations perfectly indistinguishable.

�

6.4 Using DBQC to Bootstrap Verification

In this section, we show how the DBQC Protocol can be used to prepare VBQC client-encrypted states.
Subsection 6.4.1 give one way of implementing the necessary transformations – i.e. applying H gates
on dummies while leaving the other qubits untouched – while subsection 6.4.2 gives constraints on
the DBQC computation so that, although it is not verified, any deviation occurring at that stage is
independent of the chosen VBQC client-encrypted state and thus will be handled by the VBQC protocol
itself. It also shows that our proposal satisfies these additional constrains.

6.4.1 VBQC Client-Encrypted State Preparation Using DBQC

6.4.1.1 Subtleties Regarding DBQC Input Qubit Encryptions

We start by emphasizing some fine points regarding how the DBQC Protocol implements the unitaries
used to transform the inputs of all Clients into the VBQC client-encrypted state.

The input states to the DBQC sent by the Clients are of two types: either they correspond to their
actual inputs to the DMPQC Protocol, in which case they are Q-OTPed with Z(θ)Xa, or they are
states of the form |+θ〉 for a random θ of their choice. The latter are destined to become the non-input
qubits of the VBQC client-encrypted state prepared by the DBQC Protocol: either dummies, traps or
computation qubits.

Hence, some qubits need to be turned into dummies, while the others must remain either |+θ〉 states
or encrypted inputs. While this is the goal of the application of DBQC, precautions need to be taken
regarding the proper implementation of the operations that are performed during this step. We begin by
noting that, since the DBQC Protocol requires an Q-OTP encryption of its inputs using operators of the
form Z(θ)Xa, it is possible to view a |+θ〉 state in two different ways: it is either a state |+〉 encrypted
with Z(θ)Xa or a state |+θ′〉 encrypted with Z(θ − (−1)aθ′)Xa, for an arbitrary choice of angle θ′ ∈R Θ
and bit a ∈R {0, 1}. It is thus possible for the Orchestrator to arbitrarily choose to re-encrypt the states
for free by picking a different rotation angle θ′.

Specifically, to prepare the dummies, we consider the |+θ〉 states as encrypted |+〉 states, upon which
the DBQC computation must have the effect of applying H to obtain a state in the computational basis.
For the computation and trap qubits on the other hand, we remark that using the angles as in the
original UBQC Protocol has the effect of striping away the Z(θ) encryption and replacing it with a
standard Q-OTP. This is useful for the dummies but must be avoided for other qubits as they have to
remain rotated to serve as computation and trap qubits. However, the Orchestrator can at will choose θ′

and consider the |+θ〉 state as an encrypted |+θ′〉 state. Then the result of the operations performed
through DBQC on all trap and non-input computation qubits with this encryption must be equivalent
to applying an I gate on these states |+θ′〉. Otherwise, if the usual definition is applied, the final states
would simply be in the |±〉 basis.7

7This is required here since the qubits of the last layer are prepared by the Server the state |+〉.

178

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

We remark that using the angles as in the original UBQC Protocol has the effect of striping away
the Z(θ) encryption and replacing it with a standard Q-OTP. This is useful for the dummies but must
be avoided for other qubits as they have to remain rotated. At the beginning of the DBQC Protocol, the
DMPQC inputs start off encrypted with operation Z(θ)Xa and they must be similarly encrypted at the
beginning of the VBQC execution. We can use the same trick as above for the computation and trap
qubits and consider them as encrypted with Z(θ − θ′)Xa⊕a′Z

(
(−1)a⊕a′θ′

)
Xa′ , for a random choice of

θ′ and a′. Then the parameters θ − θ′ and a⊕ a′ are used in the computation phase of DBQC, while
(−1)a⊕a′θ′ and a′ are used in the VBQC execution (these need to be further updated first to account
for the additional encryption generated through the DBQC Protocol execution).

6.4.1.2 H/I-Gadget

We show below how the Orchestrator can choose to apply the identity or a Hadamard gate blindly to
a quantum state using DBQC. We will construct a measurement pattern such that it is the same for
each qubit in the DTG (regardless of whether it is an input, computation, trap or dummy) up to the
first measurement angle. This is required so that no possible attack in the DBQC depends on secret
parameters defining the final VBQC client-encrypted state (see Section 6.4.2 for details).

To this end, we start with the following circuit, where ρ is the arbitrary quantum state that we wish
to modify, and |ψ〉 is used to control which operation is performed:

ρ Z

|ψ〉 Z(−π/2)HZ(−π/2) X • X • ±

Above, the first gate Z(−π/2)HZ(−π/2) is a rotated Hadamard gate. It maps the {|0〉 , |1〉} eigenvec-
tors of Z onto the

{∣∣+π/2
〉
,
∣∣−π/2〉} eigenvectors of Y and vice-versa. Following the sequence of gates

above, for |ψ〉 = α
∣∣+π/2

〉
+ β

∣∣−π/2〉, the state of the first and second qubits before the measurement is:

(6.23) αZ(ρ) |0〉 − iβX(ρ) |1〉

As a consequence, when |ψ〉 is
∣∣+π/2

〉
it applies Z to the first qubit, irrespectively of the measurement

outcome on the second. Similarly, when |ψ〉 =
∣∣−π/2〉, it applies X to the first qubit.

The same computation can be carried out for |ψ〉 = |+〉 = 1√
2

(∣∣+π/2
〉

+i
∣∣−π/2〉). There, a 0-outcome

corresponding to the projector onto
∣∣+π/2

〉
reduces the state of the first qubit to:

(6.24) 1√
2

(Z + X)(ρ) = H(ρ),

while the 1-outcome corresponding to the projector onto
∣∣−π/2〉 reduces the state of the first qubit to:

(6.25) 1√
2

(Z− X)(ρ) = ZXH(ρ).

Finally, when |ψ〉 = |−〉, the 0-outcome corresponds to applying ZXH to the first qubit state while the
1-outcome applies H.

Hence, by properly implementing Pauli corrections, the above circuit applies the identity or a H
depending on the state of the input for the second qubit. If we further simplify the circuit by commuting

179

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

the second X gate for the second qubit through the controlled-NOT gate and absorb the resulting X gate
on the first qubit into corrections, and the one on the second qubit into the measurement, we obtain the
following corrections

2nd qubit input Outcome Correction Effect
|+i〉 0 Y I
|+i〉 1 Y I
|−i〉 0 I I
|−i〉 1 I I
|+〉 0 X H
|+〉 1 Z H
|−〉 0 Z H
|−〉 1 X H

We can now turn this last version of the circuit into a measurement pattern by recalling that for
a graph with 2 connected vertices, when the first qubit in state ρ is measured along an angle θ, the
output qubit (if it is initially in the |+〉 state) is in the state Z(θ)H(ρ). Additionally, we use the identity
XZ(−π/2)HZ(−π/2) = Z(π/2)HZ(π/2). We then obtain the measurement pattern from Figure 6.7.

π/2 π/2

Arbitrary input ρ Output qubit

0 0 0 0

00

|±i〉 or |±〉 input

Figure 6.7: MBQC pattern for DBQC computation applying H or I to the arbitrary input qubit in state
ρ.

Instead of considering that the second input qubit is in one of the states
{∣∣+π/2

〉
,
∣∣−π/2〉 , |+〉 , |−〉},

we can fix it to be an encrypted |+〉 state. Replacing the first measurement angle of the bottom line
with angle −π/2 can then be seen as applying first a Z(π/2) rotation to |+〉, thus transforming it to∣∣+π/2

〉
, before measuring in the |±〉 basis. Hence, by properly choosing the measurement angle of the

first qubit of the bottom line, the Orchestrator can choose whether to apply H or I.
To summarise, for all positions in the DTG used in the DMPQC Protocol, the measurement

pattern in Figure 6.7 is applied by considering the following possible cases (using the considerations in
Section 6.4.1.1):

• If the output qubit in the measurement pattern is a dummy in the DTG, then the upper input
qubit is considered to be an encrypted |+〉 state and the measurement angle of the lower input
qubit is chosen by the Orchestrator to be 0.

• If the output qubit is a trap, computation or input, the upper input qubit is treated as either an
encrypted |+θ〉 state (trap or non-input computation) or an encrypted input state Z(θ)Xa(ρi) and
the measurement angle of the lower input qubit is −π/2.

Finally, anticipating on the result proven in the next Subsection, we remark that the graph used for
the computation is invariant with respect to a change of DTG colouring. Additionally, the measurement

180

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

angles are in {0, π/2, π,−π/2} which implies that, as a Clifford computation, all the measurements
during the DBQC Protocol can be performed non-adaptively and sent in a single round of communication.
The corrections are taken into account by updating the Q-OTP key encrypting the states after all
measurements have been carried out.

6.4.2 Effect of Adversarial Deviation during DBQC on Prepared State

Proving the security of our DMPQC Protocol requires the DBQC Protocol to produce a VBQC client-
encrypted state up to a CPTP deviation which is independent of the secret parameters of the state,
which consist of the encryption of the state and the colouring of the DTG. Plugging these deviated
states in the VBQC Protocol of [78] preserves its original security properties, as its proofs of verifiability
and blindness begin precisely with these “”good-enough” states. We show in this Section that applying
the DBQC Protocol using the MBQC pattern defined above yields precisely such a state (through
Theorem 6.2 and Lemma 6.3). We start by defining good-enough VBQC execution states in Definition
6.1.

Definition 6.1 (Good-Enough VBQC Execution States). We say that a quantum state is a good-enough
VBQC execution state if it is of the form E(ρV ⊗ ρaux), where E is a CPTP map depending only on
the public and dishonest party parameters, ρaux is an auxiliary adversarially-chosen state and ρV is the
state of quantum systems comprising:

1. Quantum inputs encrypted by operator Z(θ(v))Xa(v), for θ(v) ∈R Θ and a(v) ∈R {0, 1}.
2. Quantum computation and trap qubits

∣∣+θ(v)
〉
, for θ(v) ∈R Θ.

3. Quantum dummy states of the form |d(v)〉, for d(v) ∈R {0, 1}.
4. Traps, computation qubits (including inputs) and dummies are placed according to a verifiable

graph G, e.g. the Dotted-Triple Graph [78], which is defined as follows:

• The probability, taken over all possible auxiliary states, for the Server to guess that any qubit
in the graph is a trap is lower-bounded by a constant value pt.

• Trap vertices are linked only to dummy vertices.

5. Classical states of the form |δ(v)〉 represented as computational basis states on three qubits (as
multiples of π/4).

In the above, δ(v) = (−1)a(v)φ′(v) + θ(v) + r(v)π +
⊕

ṽ∈NG(v)∩D d(ṽ)π, for r(v) ∈R {0, 1}, φ′(v) the
flow-corrected angle on qubit v for a branch of computation corresponding to the Server’s measurement
outcomes b (in Θ for computation qubits and 0 for trap qubits) and D the set of dummy qubits in the
verifiable graph G and NG(v) the neighbours of qubit v in G.

This definition captures the idea of a state that, at the end of an execution of the VBQC Protocol
(i.e. for a branch of the computation fixed by the Server’s measurements), allows an honest party to
verify the correct application of this VBQC computation by checking the traps using secret parameters
a(v), θ(v) and r(v). While this definition is given here for the specific framework used in this work, it
could potentially be generalised to other verifiable protocols.

We prove that the state prepared by the DBQC Protocol 18 is indeed a good-enough VBQC execution
state. More generally, we give a framework for DBQC computations that lead to good-enough VBQC

181

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

execution states in Theorem 6.2 using Clifford computations. On the other hand we conjecture that
this cannot be extended to arbitrary quantum computations, because it would imply we can reduce any
verification protocol to a protocol where only the last layer is trappified (by doing the actual computation
in the preparation phase).

This result formalises the intuitive notion that the honest Client has provided enough randomness to
extract a good-enough VBQC execution state from the state prepared by the DBQC Protocol, despite
potential meddling from malicious parties.

Theorem 6.2 (Constraints for Good-Enough State Preparation through DBQC). The output of DBQC
Protocol 18 using an MBQC pattern defined by a fixed graph G = (V,E, I,O) with flow (f,�) and base
angles {φ(v)}v∈Oc is a good-enough VBQC execution state for the Clients’ desired computation if:

• For an honest input to the DBQC Protocol, the honest application of the measurement pattern
produces a correct VBQC client-encrypted state ρDTG along with measurements angles δ(v) that
correspond to the correct desired computation for any fixed computation branch.

• All measurement angles for the DBQC computation are Clifford, i.e. φ(v) ∈ {kπ/2}0≤k≤3.
• The graph G = (V,E, I,O), the flow (f,�) and all angles associated to vertices that have an
X-dependency according to the chosen flow are all invariant under a change of colouring of the
DTG.

Proof. We decompose the proof in two parts: first the Double-Blind Rotated State Preparation
Protocol 16, followed by the remaining computation steps of the DBQC Protocol. We unitarise the
protocol in order to commute the Adversary’s attack and show that the resulting equivalent attack does
not depend on the secret parameters. We prove that, irrespective of the adversarial scenarios, the DBQC
Protocol produces good-enough VBQC execution states spanning the full range of parameters.

Preparation Phase of DBQC. We consider each prepared qubit v separately and two Clients. The
goal of this step is to decorrelate the malicious and honest parameters and their corresponding states.
This is achieved by unitarising the state preparation step of the DBQC Protocol and the deviation of
the Adversary, which then allows us to “extract” various unitaries from the Adversary’s deviation for
each prepared qubit.

Crucially, these unitaries extracted from the attack depend only on public or leaked parameters and
therefore do not create a dependency of the attack on the secrets of the honest party. They will however
depend on the malicious or honest nature of the owner of the prepared qubit. This is allowed since the
deviation of the Adversary may anyway depend on this factor. Note that the conditions above also mean
that this extraction can be undone by the Adversary and therefore it does not change the set of possible
deviations (up to a relabelling). There are three cases to consider and the same unitary can be extracted
for all qubits of the protocol in each sub-case, meaning that the final attack does not depend on the
positioning of the different types of qubits (computation, trap or dummy). Generalisation for more than
two clients can be done by extracting the same operators for each client consecutively.

First, if the owner of the qubit is malicious and the prepared qubit is its input to the VBQC execution,
the Server receives the state ρ̃ from the dishonest owner Ω(v) of vertex v (encrypted with its own

182

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

parameters), and a state
∣∣+θj(v)

〉
from honest Client j 6= Ω(v). The Server also receives classical states

δ(v) and tj(v), where:

(6.26) δ(v) = (−1)a(v)φ(v) + θΩ(v)(v) + (−1)tj(v)θj(v) + rΩ(v)(v)π + rj(v)π

In this case, any deviation at this position can be translated to a modification of the malicious player’s
input, which is always allowed. However the commutation required to incorporate any effect of the
deviation into the input also depends on the value of (−1)tj(v)θj(v) from the honest player since it is
used to encrypt this input. This value is already public for these qubits since the values of φ(v), a(v),
θΩ(v)(v) and rΩ(v)(v) are known to the malicious Client, therefore (−1)tj(v)θj(v) is known up to a π
rotation and the Server can measure the honest Client’s qubit to recover rj(v).8

The next case deals with a dishonest owner of vertex v – that is not its input qubit to the VBQC
execution – sending the state |χ〉 and an honest Client j 6= Ω(v) providing

∣∣+θj(v)
〉
to the Server. The

Server also receives classical states δ(v) and tj(v), where:

(6.27) δ(v) = φ′(v) + θΩ(v)(v) + (−1)tj(v)θj(v) + rΩ(v)(v)π + rj(v)π

The DBQC Protocol instructs the Server to perform a CNOT between the qubits of the owner and the
honest party. Having unitarised the protocol and the attack of the Adversary, we can extract the unitary
in the dashed box in Figure 6.8 from the general attack operator that follows.∣∣+θj(v)

〉
• |χ〉

|χ〉 • • X
∣∣∣+(−1)tj(v)θj(v)

〉
|δ(v)〉 −θΩ(v)(v)− rΩ(v)(v)π |δ′(v)〉
|tj(v)〉 • |tj(v)〉

Figure 6.8: The honest Client controls the first line and the owner the second one. The operation acting
on the state |δ(v)〉 is the unitary associated with the classical (reversible) operation that adds the value
−θΩ(v)(v)− rΩ(v)(v)π to any angle in Θ. We have δ′(v) = φ′(v) + (−1)tj(v)θj(v) + rj(v)π. The operations
inside the dashed boxed are extracted from the attack operation.

In the last case, the owner of vertex v is honest, sending a qubit in state ρ with ρ = |+〉 for non-inputs,
and the other Client is dishonest. Again we have (with a(v) = 0 for non-inputs):

(6.28) δ(v) = (−1)a(v)φ′(v) + θΩ(v)(v) + (−1)tj(v)θj(v) + rΩ(v)(v)π + rj(v)π

As previously, we extract a unitary from the attack (see Figure 6.9).
The same considerations as above apply. In all cases, the final state has the form described in

properties 1, 2, 4 and 5 of a good-enough VBQC execution state (Definition 6.1). The proof generalises
8Although the malicious Client also know the value of φ(v) for all computation and trap qubits of the Dotted-Triple

Graph, the same reasoning does not apply since it does not know where the nature of the qubits in base-locations that are
not associated to its input.

183

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

|χ〉 |χ〉
Z(θΩ(v)(v))Xa(v)(ρ) • • Z(θΩ(v)(v))Xa(v)(ρ)

|δ(v)〉 −(−1)tj(v)θj(v)− rj(v)π |δ′(v)〉
|tj(v)〉 • |tj(v)〉

Figure 6.9: The malicious Client controls the first line and the honest owner the second one. The
operation on |δ(v)〉 is defined as above, but it is now controlled by the value for tj(v). We have
δ′(v) = (−1)a(v)φ′(v) + θΩ(v)(v) + rΩ(v)(v)π.

to more than two parties by noticing that we can always extract an attack that disentangles the qubit of
the owner from the qubits of the other dishonest parties and also undo their corresponding θ’s and r’s
from δ.

The result at the end of this step is a set of qubits in the Server’s register that contain: (i) the inputs
of all parties to the VBQC computation; (ii) all non-input qubits that will be part of the VBQC graph,
some of which must be turned into dummies; (iii) all additional qubits used in the DBQC computation;
(iv) for a given branch of VBQC and DBQC computations, the classical state corresponding to the
measurement angles sent as instructions to the Server. All states apart from the VBQC inputs of the
malicious Clients are encrypted solely with the honest player’s parameters, even in the case of a single
non-deviating Client.

We can furthermore extract from the Server’s deviation the unitary entangling operation for the
DBQC graph, after which we can consider the operations applied during the DBQC computation phase,
i.e. blindly transforming the states |+〉 into dummies.

Residual Deviation on a Single Gate Teleportation. We start by determining the residual
deviation when a single gate teleportation step is extracted from a general attack.

The corresponding circuit for a single gate teleportation is represented graphically on Figure 6.10a,
where the top qubit is the input and the bottom the output. We apply the entanglement operation
followed by Z(−φ′(v)− θ(v) + r(v)π) and H to the first qubit. This yields a unitarised version of the
DBQC computation step, where it is understood that any attack that could have been performed during
the preparation phase or during this step has been commuted to after the execution of the circuit and has
been reduced as a pure deviation. By simplifying and rearranging these operations we get Figure 6.10b.
Because the state after the CZ is stabilized by (X ⊗ Z)p(v) for any choice of p(v) ∈ {0, 1}, we get Figure
6.10c after commuting the stabilizer through the Z rotation and the Hadamard. Due to the commutation,
the rotation angle is modified and transformed to −(−1)p(v)φ′(v). We can then get rid of the gate Zp(v)

on the second qubit because it only contributes towards a global phase (Figure 6.10d).
Following [71], by taking the sum over r(v) and p(v), we can use the Pauli Twirling Lemma 2.5

from [34]. This allows to rewrite the residual deviation as a convex combination of Pauli operators on
the first qubit tensored with possibly different generic attacks on the output qubit. Because the first
qubit is measured in the computational basis, the deviation’s effect reduces to a convex combination
of no action on the measurement result b(v) tensored with a generic attack on the output qubit and a
classical bit flip on b(v) tensored with a possibly different generic attack on the output qubit.

Note that in the original verifiability proof [53], there is no need for these extra parameters p(v). It

184

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

is only required here because we want to assess the effect of a deviation on internal qubits of DBQC
instead of computing the probability of obtaining a correct measurement outcome for traps. This can
concludes that the most general attack on these qubits are bit flips of the measurement outcomes.

∣∣+θ(v)
〉
• Z(−φ′(v)− θ(v) + r(v)π) H∣∣+θ(w)

〉
•

(a) DBQC Computation Step.

|+〉 • Z(−φ′(v)) H Xr(v)∣∣+θ(w)
〉
•

(b) Simplification.

|+〉 • Z(−(−1)p(v)φ′(v)) H Xr(v) Zp(v)∣∣+θ(w)
〉
• Zp(v)

(c) Stabilisation by Xp(v) ⊗ Zp(v).

|+〉 • Z(−(−1)p(v)φ′(v)) H Xr(v) Zp(v)∣∣+θ(w)
〉
•

(d) Final Circuit.

Figure 6.10: Elementary step in DBQC computation phase.

Residual Deviation on the Whole DBQC Computation Phase. The above transformation can
be applied successively to the whole DBQC computation phase in order to describe the residual deviation
for a generic attack. In doing so, the deviation is reduced to a probabilistic combination of bit flips on
the classical measurement outcomes b(v), each tensored with (possibly different) arbitrary attacks on
the output qubits. In addition, it was shown in the previous section that the residual deviation from the
state preparation step was dependent only on public or leaked parameters. Because of the blindness of
the scheme, the attacks that can be performed for each gate teleportation are also only depending only
on public or leaked parameters. As a consequence, when the residual deviation is written as a convex
combination of bit flips for the classical measurement outcomes b(v), each remaining generic attack on
the output qubits depends only on public or leaked parameters.

Hence, if there is a dependency upon secret parameters, it can only come from the effect of the
classical bit flips.

Effect of the Classical Bit Flips. Finally, we have to consider how the classical bit flips for the
measurement outcomes will translate into an attack on the output qubits only. Their effects can be

185

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

analysed using the flow of computation. This can be done easily by recalling how the measurement angle
of a not-yet-measured qubit w depends on a previous outcome b(v). We have:

(6.29)

δ(w) = (−1)s
X(w)φ(w) + sZ(w)π + θ(w) + r(w)π, with

sX(w) =
⊕

v∈DX(w)

b(v)⊕ r(v)

sZ(j) =
⊕

v∈DZ(w)

b(v)⊕ r(v)

This means that whenever v ∈ DZ(w), the bit flip triggers a Z rotation on qubit w, while whenever v ∈
DX(w), a bit flip has the effect of flipping the sign of φ(w). Since φ(w) ∈ {0, π/2, π,−π/2}, this is
equivalent to a Pauli attack operator on the output of the DBQC computation phase (updating the
Pauli frame).

Independence of secret parameters. Without further constraints, the above residual deviation
could very well depend on secret parameters. To understand why, we take a step back and examine the
generic procedure to prepare good-enough VBQC execution states using DBQC. It amounts first to
collectively encoding quantum inputs and |+〉 states. Then, after choosing a colouring for the Dotted-
Triple-Graph, the Orchestrator chooses a graph and a measurement pattern on it that will implement a
unitary for turning some |+〉 states into dummies and placing all the qubits at their required location.

Because the sets DZ and DX above are specific to the chosen DBQC computation graph and its flow,
the attack can only be independent of the secret parameters under the condition that the graph used in
DBQC for all Dotted-Triple Graph qubits is the same and that the same flow of computation is chosen
on this graph (i.e. they are both invariant under permutation of the qubits of the Dotted-Triple Graph
in each base-location).9 By simply imposing this, we already get that the Z correction is independent of
any secret parameter since it will always add a π rotation to the measurement angle and so this will
affect similarly any qubit regardless of its type.

The X dependency induces additional restrictions. When v ∈ DX(w) the effect of the bit flip on b(v)
on the subsequently measured qubit w depends on the value of the angle φ(v). As a consequence, its
action might pick up a dependency on a secret parameter of the DBQC computation. We therefore need
to analyse it further since this remaining attack is a Pauli attack on the output qubits that cannot be
further reduced by twirling. For φ(w) ∈ {0, π} a sign flip has no effect, while there is an additional Z
operation when φ(w) ∈ {−π/2, π/2}. Hence, to get the independence upon the secret parameters (here
the value of φ(w)), it is necessary for the angles φ(w) for w such that DX(w) 6= ∅ to be independent on
the chosen graph colouring, meaning that the measurement angles of those qubits is invariant under
permutation of the qubits in each base-location of the Dotted-Triple Graph.10

Only qubits that are in the future of other qubits (in terms of flow) may get a malicious correction.
This is directly reflected in the invariance condition since only qubits that are in the image set of the

9Intuitively, if the graph or the measurement order induced by the flow is different, the Adversary can already distinguish
the qubits in each base-location, but the flow condition is new since it has been proven the an Adversary cannot distinguish
between the application of two different flows [97].

10This condition is sufficient but not necessary. Instead we can use the fact that the initial positions of the types of
qubits (input/computation and traps) is chosen at random in each base-location. Then a less stringent condition on the
DBQC computation angles would be to impose that they are either equal or random for each base-location. Summing over
this random choice would give an attack CPTP operator that is independent of the input/computational and trap qubits.

186

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

flow function can be affected. Therefore, for w such that DX(w) = ∅, there is no constraint on the
measurement angle as the impact of the bit flips only affects dependent qubits.11

This concludes our proof as it shows that the residual deviation on the output qubits – i.e. the
prepared good-enough VBQC execution states – is independent of the secret parameters defining the
underlying VBQC state.

�

Theorem 6.2 above only guarantees that the attack depends on public and adversarial parameters. The
public parameters consist of the graph and flow but may or may not include additional information about
the input to this computation or measurement angles. We now show that the computation described in
Section 6.4.1.2 both satisfies the constraints of this theorem and also does not leak additional information
about the honest player’s input which would allow the Adversary to attack it.

Lemma 6.3 (Secure Multi-Client VBQC State Preparation). Assume that the base graph chosen to
perform an MBQC computation through VBQC has degree 1 on all input vertices. Apply the DBQC
Protocol using the MBQC pattern from Figure 6.7 for each qubit of the final DTG as described in
Section 6.4.1.2 on an input state constructed as: (i) MBQC input states and |+〉 states for non-input
positions in the DTG and (ii) the position of the MBQC input of honest players is randomly chosen in
its associated input base-location. The final state then consists of E(ρV ⊗ ρaux), where ρV is a correctly-
prepared VBQC client-encrypted state, ρaux is an arbitrary auxiliary state prepared by the Adversary
and the deviation E is independent of ρV .

Proof. We first need to show that the operation applied through the DBQC Protocol satisfies the
conditions given by Theorem 6.2. The correctness of this scheme follows directly from the discussion
found in Section 6.4.1.2: it correctly produces computation qubits, traps and dummies in positions
defined by a Dotted-Triple Graph colouring, the angles of the graph are all Clifford, the full graph
is obtained by applying the same graph and flow on each qubit of the DTG. Therefore it does not
depend on their nature or secret parameters. Finally the measurement angles are all the same for each
of these applications apart from the lower input, which can be either 0 or −π/2 depending on the
nature of the final qubit. However, this qubit is not X-dependent on any other. Hence, we can apply
Theorem 6.2. After this step, we thus have a state of the form E(ρV ⊗ ρaux), with a deviation E that acts
on a correctly-prepared VBQC client-encrypted state ρV and which is guaranteed to not have picked-up
any additional dependency on the secret parameters as a consequence of the application of the DBQC
Protocol.

As a second step, we therefore need to assess the public or leaked information available to an
Adversary in the rest of the Protocol. We treat the sub-cases corresponding to non-input and input
base-locations separately.

For non-input base-locations, it is public knowledge that all qubits used as inputs to the DBQC
Protocol are rotated |+〉 states. The rotation angles of all qubits in the state remain secret as a result of
the blindness of the Protocol thanks to the collaborative encryption and the state provided by the honest

11Most commonly, all qubits apart from the input qubits have an X dependency, in which case the only angles that may
differ according to the nature of the qubits in each base-location are the ones associated to the input positions of the
DBQC graph

187

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Client.12 For the same reason, this is also the case for the measurement angle of the first lower input
qubit in the H/I-Gadget above. Hence, an attack cannot depend on the secrets of the honest clients, nor
on type – i.e. trap, computation, dummy – chosen by the Orchestrator for each qubit in a non-input
base-location.

For input base-locations, if the owner is an honest Client who chose the location of its inputs at
random, and because DBQC hides the type chosen by the Orchestrator for each non-input qubit in this
input base-location, the Adversary does not gain any information compared to a plain VBQC execution.
The Adversary’s only additional information comes from its knowledge of the position of inputs provided
by the malicious Clients. We now prove that any attack after the state has been prepared that uses this
information can be expressed as a modification of the malicious party’s input.13 To this end, we use the
fact that all attacks in VBQC can be reduced to classical attacks (flipping the measurement outcomes)
by using the twirling lemma14 and therefore analyse the effect of these only.

These classical attacks are probabilistic mixtures of bit strings that depend on the knowledge of the
Adversary. Although the malicious owner of the input qubit knows where this input qubit is placed in
its input base-location, it does not know the position of the computation qubits in the second layer of
primary base-locations and after that. This means that the state from the the second layer onward is
exactly the same from the point of view of the Adversary as one in a normal VBQC execution. Therefore,
any attack that does not affect the first layer (malicious) qubits and the added qubits in the connecting
edge is equivalent to one in the normal VBQC execution where the Adversary simply decide begin
attacking after these positions have already been measured. Hence, the only attacks stemming from this
information that are not already taken into account in the analysis of the VBQC Protocol are ones which
have a non-trivial effect on this input base location and/or the edge base-location directly connected to
it. We now analyse the effect that flipping a measurement outcome on these qubits has on the rest of
the state.

A classical attack on the malicious Client’s input base location that does not trigger a trap is, by
construction, equivalent to a modification of this player’s input (by applying Z before performing the
entangling and measurement). On the added qubits, the Adversary knows that the neighbours of the
computational input qubit cannot be traps since the computation primary qubits are linked to one
added computational qubit and two dummies. It can then flip the measurement outcomes of these qubits
while being sure to never triggering the trap in this base-location. Flipping the measurement outcome
of the dummies has no effect since it is perfectly random and does not influence the rest of the graph
through corrections. However, any classical attack on the computational (bridge) qubit translates to
a Pauli Z operations on the computational neighbours due to the bridge operation corrections. The Z
operation on the input computation qubit can be directly rewritten as a modification of this input since
it commutes with the CZ entangling operation. The other Z correction (on the computation qubit of the
second layer) is equivalent to having applied an X operation on the input qubit once before entangling
the state and then another time after applying the CZ. The first X operation can be integrated as an
input modification and the second one is similar to multiplying the measurement angle φ associated to
this input position by −1. Since this angle is known to the malicious Clients (they know the computation

12In a sense, it is precisely because this honest state contains sufficient randomness that we are able to rewrite the final
DBQC state in the form of ρV up to the subsequent deviation.

13This behaviour is always allowed as all Parties are free to choose their input arbitrarily.
14Note that the twirling lemma only requires blindness, which is provided by the collaborative encryption.

188

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

being performed), this is then equivalent to having pre-rotated the input around the Z-axis by −2φ first
and applying the correct measurement.

Combining these steps shows that, the knowledge of the location of the malicious Client’s inputs
can be incorporated into modifications of their inputs, hence showing that the final state E(ρV ⊗ ρaux)
is effectively a correctly prepared VBQC client-encrypted state up to an arbitrary deviation which is
independent of the secret parameters of the state and in particular of the corresponding colouring of the
DTG.

�

Using Lemma 6.3 allows us to reuse the security analyses of [78] for our composed protocol, therefore
proving the full security of the DMPQC Protocol 19. Furthermore, the general formulation of Theorem 6.2
gives conditions to satisfy for designing other, possibly more efficient, good-enough VBQC execution
states preparation protocols.

Colouring-Independence Condition of DBQC Angles is Necessary. We describe here how it is
possible to perform an attack on VBQC if the last condition of Theorem 6.2 regarding the measurement
angles is not satisfied (i.e. if some measurement angles with a non-trivial dependency set are not
independent of the DTG colouring). For this purpose we give a description of a Hadamard/Identity
gadget that does not fulfil this condition and show how to use it to break the verifiability of the VBQC
Protocol.

The Hadamard or Identity can be applied by using a line graph of five qubits, with the first one
being the input and the last on in the line being the output (which is the only one left unmeasured).
Than in order to apply the Identity, the chosen measurement angles on the first four qubits are all
equal to 0, while for Hadamard the first one is 0 and the other three are π/2. If the adversary flip the
measurement outcome of the next to last qubit, in both cases the final qubit is affected by an additional
Z operation (which the Adversary undoes since it may hit a trap). But only in the case of Hadamard
being applied, the final output qubit also gains an X correction. Since this operation is used to prepare
dummies, this means that the final value of the dummy is flipped compared to its intended value. In
short it is possible for an Adversary to apply an attack that always flips the value of a dummy qubit
while leaving computation and trap qubits unaffected.

It may seem at first that this attack does not harms the protocol since it does not affect either traps
or computations. However the effect of the attack on the dummies is propagated to adjacent qubits in
the Dotted-Triple Graph. Through the application of the CZ gate, an application of X on the dummy is
equivalent to applying Z on all qubits which are linked to this dummy in the graph. We now show how
to use this fact to perform an attack which may hit computation qubits but is never detected by traps.

Consider a line graph of two qubits and its transformation in a Dotted-Triple Graph. This graph
contains two primary locations with three qubits and one added location with nine qubits. It is useless
to use the attack above on a primary vertex since the primary dummy is always connected to one trap
but no computation qubits. We notice that if a even number of dummies that are linked to the same
qubit are attacked, then this qubit is not affected by the attack since the effect of the Z operations
cancel out. However if an odd number of dummies linked to a qubit are attacked, then this qubit will be
corrupted. The trick then relies on the difference in the number of dummies in the neighbourhood of
traps and computation qubits. Traps are only linked to dummies while a computation qubit will always

189

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

have at least one other computation qubit among its neighbours. It is possible, as show in Figure 6.11
below, to choose added qubits to attack so that each primary vertex is linked to exactly two attacked
middle qubits.

Figure 6.11: Example of attack layout where each top and bottom primary qubit is attached to exactly
two attacked added qubits. Qubits that have been chosen for the attack are circled in blue.

In that case, since the primary trap qubits are only linked to dummies, the attack does not trigger
either trap (if one of the middle qubits that is attacked is a trap, the effect of the attack on this trap
is the Identity as explained above). However, the attack may either affect two dummies linked to the
primary computation qubits, in which case there is no attack since the effects cancel out, or one added
dummy and the added computation qubit. Then, the effect on the added computation qubit is Identity
but the attacked dummies will apply a Z operation on primary computation qubits on both sides of the
link. If we assume fixed (but unknown) the attack positions, whether this attack succeeds in modifying
the computation depends only on the colouring that is used, while never triggering any trap. The
probability of success is equal to 2/3: the attack succeeds if the computational added qubit is chosen for
the attack, there are 6 possible choices of attack configuration and each added qubit is left untouched by
2 out of the 6 attack configurations. We give in Figure 6.12 two possible colourings, ones in which the
attack has no effect one the computation while the other corrupts it.

Essentially, allowing an attack to depend on the nature of the qubits, even without the Adversary
knowing the position of these qubits, introduces new attacks compared to those that are possible in the
plain VBQC Protocol. We have shown above that it is sufficient to break the verifiability property of
this composed protocol. We have shown in the proof of Theorem 6.2 above that using either fixed or
perfectly random angles is sufficient to make this attack independent of the nature of the qubits, but it is
unclear what its effect is if the randomisation is not perfect but skewed towards one angle or the other.

6.4.3 Compatibility of Good-Enough States and Proofs of Verifiability

The state after the DBQC Protocol is proven to be equivalent to an honestly prepared VBQC client-
encrypted state upon which the Server performs a deviation independent from the secret parameters
(Theorem 6.2). This state can therefore be directly used in the VBQC Protocol and all the security

190

6.4. USING DBQC TO BOOTSTRAP VERIFICATION

(a) Z attack on both primary computational qubits
due to odd number of attacked added dummies.

(b) No attack on either primary computational
qubit due to even number of attacked added dum-
mies.

Figure 6.12: Two colourings of the previous graph (computational qubits are green, traps are white and
dummies are red) for the same attacked qubits but a different effect on primary computational qubits.
Attacked qubits are circled in blue, which translates to an X effect on dummies (yellow-filled circle) and
no effect on added computational qubits (empty circle). The primary trap qubits are never affected by
the attack since they are always attached to an even number of attacked added dummies.

properties follow since this deviation could have been performed by the Server during the VBQC Protocol
as well (and such deviations are taken care of by the verifiability of the protocol).

For the sake of completeness, we show here formally that this good-enough VBQC execution state is
sufficient for the proof of verifiability of the VBQC Protocol to go through. We reuse the same notations
as in [78], recalled here for clarity, with the subscript denoting dependence on parameters and parenthesis
denoting qubit index, e.g. |ηνT (v)〉 is a state of qubit with index v that depends on parameters νT :

• ν are all random parameters, including the computational random parameters νC and the trap
random parameters νT . The hidden parameters include: all θ’s, r’s, a’s, d’s of the honest Client
and the positions of the traps T .

• cr and CνC ,b are the classical and quantum corrections on the outputs of the Server.
• |Ψν,b〉 is the state received by the Server from the Clients and the Orchestrator, including all

classical states and quantum states from each party. In particular it contains: The Q-OTPed input
qubits with parameters θ and a, all the |+θ〉 states generated from each Client (including the
owner for the non-input vertices) for each vertex.

∣∣Ψν,b
〉
also contains all δ’s sent by the Classical

SMPC for all phases of the protocol corresponding to the fixed branch b. Notice that the δ’s have
a dependence on T .

• P is the whole protocol unitary operator applying on |Ψν,b〉 (the DBQC Protocol 18 and the actual
VBQC computation on the latter state).

• Ω is any unitary that represents the deviation on the Server’s system, including its private register
containing initially the state ⊗S |0〉〈0|. All deviations at any time step of the protocol have been
gathered together. As proven in Section 6.4 for DBQC and since the VBQC Protocol unitary does
not depend on ν, there is no dependence of Ω on ν either.

The output state of the protocol, held by the Clients, is the same as Equation (C1) from [78] (with

191

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

our choice of P):

(6.30) TrS

(∑
b

|b+ cr〉〈b|CνC ,bΩP(⊗S |0〉〈0| ⊗ |Ψν,b〉〈Ψν,b|)P†Ω†C†νC ,b |b〉〈b+ cr|

)

An important point to be made here is that the projection operators 〈b| for the measurements of the
Server also include the measurements for the Double-Blind Rotated State Preparation (Protocol 16).
Therefore all the t’s sent during this step are included in the global b’s here. The t’s are not encrypted,
which means that cr = 0 for these bits. Following the same steps as in [78], we arrive at their Equation
(C7):

(6.31) pfail ≤
∑
k,b′,ν

p(ν) Tr
((⊗

v∈T
|ηνT (v)〉〈ηνT (v)| ⊗ |b′〉〈b′|

)(∑
i∈E

ak,iσi

)
P |Ψν,b′〉〈Ψν,b′ | P†

(∑
i∈E

a∗k,iσi

))

In the equation above: (i) |ηνT (v)〉 = |r(v)〉 for v ∈ Oc and |ηνT (v)〉 = |θ(v)〉 for v ∈ O (the traps in
non-output base-locations have already been measured, while the ones in output positions are measured
by Clients); (ii) string b′ is the substring of b that does not include the measured traps; (iii) E is the
subset of all multi-qubit Pauli operators σi that can corrupt the output of the computation (the attack
unitary Ω becomes a CPTP maps after tracing out the Server’s register, expressed in terms of Kraus
operators indexed by k, which are then each decomposed as linear combination of Pauli operators σi
with coefficients ak,i).

Before following the proof steps in [78] we need to reduce our state and our protocol to the state
and the protocol in [78]. Here we use the fact that, as state before, the DBQC Protocol prepares
a good-enough VBQC execution state. We can therefore apply the part of unitary protocol P that
corresponds to the DBQC Protocol and subsequent entanglement of the graph by the Server. This
reduces the state before the attack to the same (Dotted-Triple Graph) state as in the VBQC Protocol.
Any attack on the ancillary qubits used for this preparation is automatically transferred to the final
qubits by a simple re-indexing of the attack operators. Also, an attack on the bridge qubits of the first
layer is Pauli twirled using the random pre-rotations of the bridge qubit and remapped as an attack on
the input qubit. We then sum over the secret parameters (i.e. unknown to the adversarial coalition) for
the non-trap part of the state, including the non-trap δ’s. This gives us Equation (C8) from [78] and the
rest of their proof follows:

(6.32)

pfail ≤
∑

k,νT ,i,j

ak,ia
∗
k,jp(νT) Tr

((⊗
v∈T
|ηνT (v)〉〈ηνT (v)|

)
σi

(I
Tr(I)

⊗
v∈T
|ηνT (v)〉〈ηνT (v)|

⊗
v∈T
|δ(v)〉〈δ(v)|

)
σj

)

6.5 Full Delegated MPQC Protocol and Security Analysis

We now present the DMPQC Protocol 19 constructing Resource 14 in more detail. Without loss of
generality, we suppose that the computation accepts input qubits in the order defined by the ordering of
Clients and outputs qubits in that same order and that all Clients have the same input and output size
of one qubit. The protocol can easily be extended to Clients with multiple input and output qubits by

192

6.5. FULL DELEGATED MPQC PROTOCOL AND SECURITY ANALYSIS

applying to each input and output the exact same steps as for the single input and output used here. We
choose this presentation for simplicity’s sake only, thus avoiding the introduction of additional indices.
Furthermore, as mentioned in Section 6.2, we assume that the base graph chosen by the Clients for
performing the initial MBQC computation of the joint unitary has degree 1 on all input vertices of set I.

Before proving the security of our full protocol, we first prove the composable security of the VBQC
Protocol as captured by comparing it with the Verifiable Blind Delegated Quantum Computation
Resource 12 from [41] (Lemma 6.4). We use for this the Local-Criteria Reduction Theorem 3.4. This is
required since up to now only local criteria were used in defining its security.

Lemma 6.4 (Composable Security of VBQC). If the VBQC Protocol is εV verifiable, then it ε′V -
statistically-constructs the VDQC Resource 12 from Insecure Quantum Channels (Ideal Resource 4), for
ε′V = 22N+2+1/2√εV , where N is number of the Client’s input qubits.

Proof. We need to show that the VBQC Protocol satisfies the local criteria described in [41] to use
their reduction result, restated in this thesis as Theorem 3.4. We recall the four local criteria: correctness,
blindness, verifiability and input-independence of verification. The first three are proven in [78] (as stated
in Sections 3.5.1 and 3.5.2) and the last one is satisfied if the Adversary can deduce on its own whether
the verification has succeeded or not without this information affecting the blindness of the protocol.

We have modified the original protocol of [78] by making the Client announce at the end whether
it has accepted or rejected the outcome of the computation and show that it remains secure. In this
case, the input-independence is trivially satisfied but we must show that this has not compromised the
blindness (the verification is not affected). If the Client has not aborted due to the Server’s attack, then
it has only affected non-trap qubits. This is equivalent to an attack on the UBQC Protocol which is
perfectly blind, meaning that this attack does not reveal any information about the Client’s input. On
the other hand, if the Client aborts, then the Server’s attack has affected at least one trap qubit. This
gives at most one bit of information about the state of trap qubits, which is independent of the input or
the computation. This shows that the protocol with announced verification result remains blind, which
in turn concludes the proof.

�

Note that the size of the quantum input impacts the security bound through this reduction. This
could potentially be avoided by reproving directly the security of the VBQC Protocol in AC. However,
since εV can be made arbitrarily small (it is negligible in the security parameter independently of the
number of parties), the only influence is on the choice of this parameter which needs to be adapted to
take into account this degradation of security.

We now prove that Protocol 19 statistically-constructs the MPQC Resource 14 from the Classical
SMPC Ideal Resource, Authenticated Classical Channels between all parties and Insecure Quantum
Channels between each Client and the Server (Theorem 6.3). We prove correctness and then security
separately. This proof uses three other results. The first one is the security of the VBQC Protocol as
emulation of the Verifiable Delegated Quantum Computation Ideal Resource from Lemma 6.4 above.
The next one corresponds to the security of the DBQC Protocol, which is proven in Section 6.3. Finally

15See Protocol 19: if instead the output is classical, the Server simply measures all qubits, sends the results to the
Classical SMPC, that either aborts or sends the decrypted outputs to the Clients depending on the trap verification
procedure.

193

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Protocol 19 Delegated Multi-Party Quantum Computation
Public Information: Description of a graph G = (V,E, I,O) with input vertices I and output
vertices O and a partial ordering over vertices. This corresponds to leak lρ.
Inputs:

• The N Clients have collaboratively chosen the description of unitary U acting on M = #I qubits
as an MBQC measurement pattern over graph G (consisting of measurement angles {φ(v)}v∈Oc
for non-output qubits in the graph and a flow).

• Each honest Client j ∈ [N] has a quantum register Xj which contains their respective part of a
collectively possessed state ρinp.

• The Server has no input.
Outputs: Each Client receives either a state corresponding either to its part in the correct output
state U · ρ or Abort.
Protocol:
1. Each Client j chooses an index pj ∈R {1, 2, 3}, indicating in which position in its input base-

location it will send its input qubit. It sends this value to the Classical SMPC. For its input
base-location, it prepares two |+〉 states for positions {1, 2, 3}\pj . ClientN also prepares states |+〉
for non-input qubits of the Dotted-Triple Graph. The Classical SMPC chooses uniformly at
random a colouring of the Dotted-Triple Graph compatible with these input positions and deduces
from it the unitary applying Hadamard gates for dummy qubits.

2. The Clients and the Server perform the Double-Blind Quantum Computation Protocol 18 with
the Classical SMPC as the Orchestrator, which uses this transformation above as the DBQC
unitary.

3. The Server entangles using CZ gates the qubits obtained at the end of DBQC Protocol according
to the edges of the Dotted-Triple Graph DT (G).

4. The Classical SMPC instructs the Server to perform bridge operations on each qubit in the
base-locations of the edges linked to the input layer by measuring them according to the following
angles:

• Traps and dummies are measured as in the VBQC Protocol (random angle for dummies,
correct angle for traps up to a random π rotation).

• The computation qubit is used as a bridge and the angle δ sent to the Server uses the base
angle φ = π/2. Let b be the measurement result.

• The measurement angles of the primary computational qubits in the two base locations
linked to this edges are updated by adding (−1)1+bπ/2 to the associated θ.

5. The Classical SMPC instructs the Server to measure each remaining qubit v ∈ Oc with an-
gle δ(v) computed according to the VBQC Protocol. The Server measures the qubit v in the
basis

{∣∣+δ(v)
〉
,
∣∣−δ(v)

〉}
and returns the measurement result b(v) to the Classical SMPC.

6. Quantum Output Key-Release Procedure:15

a) The Server sends to each Client the three qubits from the Dotted-Triple-Graph that corre-
spond to their output base-locations.

b) Each Client receives from the Classical SMPC the position of the computation, trap and
dummy qubit and measurement angle δ(v) for the trap.

c) Each Client measures its output trap qubit in the basis
{∣∣+δ(v)

〉
,
∣∣−δ(v)

〉}
and sends the

result to the Classical SMPC.
d) The Classical SMPC verifies that all traps have been measured correctly using the same

verification procedure as in the VBQC protocol (it know all the measurement results, as well
as the secret parameters r(v) and the value of the neighbouring dummies of each trap). It
sends Abort to all Clients if it fails.

e) Otherwise, the Classical SMPC sends to each Clients the Q-OTP key for the output compu-
tation qubit.

f) Each Client undoes the Q-OTP on its output computation qubit and sets this quantum
register as its output.

194

6.5. FULL DELEGATED MPQC PROTOCOL AND SECURITY ANALYSIS

we will use the fact that, for the choice of unitary transformations implemented by the DBQC Protocol
to prepare the VBQC client-encrypted state, any deviation during its execution can be commuted to the
end in a way that does not depend on the secret parameters of the honest Clients (Theorem 6.2 and
Lemma 6.3, proven in Section 6.4).

Theorem 6.3 (Composable Security of the DMPQC Protocol). If the VBQC Protocol of [78] ε′V -
statistically-constructs the Verifiable Blind Delegated Quantum Computation Ideal Resource 12 and the
DBQC Protocol 18 εD-statistically-constructs the Double-Blind Quantum Computation Ideal Resource 20
from Insecure Quantum Channels, then the DMPQC Protocol 19 (ε′V + εD)-statistically-constructs the
Multi-Party Quantum Computation Ideal Resource 14 from Insecure Quantum Channels and a Classical
SMPC Ideal Resource.

Correctness We consider here that all the parties are honest and prove that the protocol is in that case
equal to the Ideal Resource (the correctness error is 0). The correctness of the DBQC Protocol and the
Classical SMPC that acts as the Orchestrator mean that the Server’s state after step 2 in the DMPQC
Protocol is a correct VBQC client-encrypted state. The instructions in the last steps of the DMPQC
Protocol correspond to an execution of the VBQC Protocol on this state, driven by the Classical SMPC
that performs the same steps as an honest VBQC Client. The outcome is therefore also correct per the
correctness of VBQC.

�

Security This proof will not construct explicit simulators for all parties since we will directly prove
through a series of hybrid reductions that the DMPQC Protocol is equivalent to the MPQC Ideal
Resource using previously proven results. This Resource acts as a black-box that takes as input the
Clients’ input states and outputs either an abort message or the correct output to all parties (with
malicious parties receiving the output first). In the Protocol on the other hand, the parties send additional
states to construct the graph state collaboratively and communicate classically, which therefore need
to be removed. The proof is driven by the goal of applying the security result for the VBQC Protocol
and we must therefore indistinguishably transform the state preparation and key release steps into ones
resembling those of the VBQC Protocol.

Using Results for DBQC to Simplify State Preparation. We must first transform the output
state of the DBQC Protocol into an honestly-generated VBQC client-encrypted state. To this effect, we
use the specific properties of our DBQC Protocol to rewrite the potentially deviated output state in a
way that separates the state preparation and the deviation.

We remark that we can at will choose to separate the Server (and Classical SMPC) into two entities
S1 and S2 (respectively T1 and T2), so long as we authorise them to share state (quantum for the Server,
classical for the SMPC). S1 act during the DBQC Protocol while S2 receives the output of the DBQC
Protocol and uses it in the latter steps of the DMPQC Protocol. The Classical SMPC T1 performs the
same actions as an honest Orchestrator during the DBQC Protocol, while T2 coordinates the VBQC
execution and key-release steps.

The Adversarial Clients and S1 may deviate during the DBQC Protocol. However Lemma 6.3 states
that, up to a relabelling of the Server’s deviation, there is then a one-to-one correspondence between
the state at the end of an execution of the DBQC Protocol followed by VBQC and that after a VBQC

195

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

execution on an honestly-generated VBQC state. It is therefore possible to rewrite the DBQC output
state QOTPk ◦ E(ρH,M,U) obtained by S2 at the end of the protocol16 together with the instructions δ(v)
given by the Classical SMPC T2 as E ′(ρV ⊗ ρaux). There ρV is a state obtained by the Server from an
honest Client during an execution of the single-client VBQC Protocol upon which the Server performs
an arbitrary deviation independent of the secret parameters that were used to generate this state. This
a purely formal rewriting procedure and therefore it is indistinguishable from the original protocol.

Using the composition property of the AC framework, the DBQC Protocol can be replaced by the
DBQC Ideal Resource 20. Since both are perfectly indistinguishable so long as the Orchestrator is honest
(and here it is instantiated with the Classical SMPC), the output state is the same as above. This yields
the hybrid presented in Reduction 2, the distinguishing advantage with the DMPQC Protocol is εD as
stated in Theorem 6.1.

Reduction 2 Replacing DBQC Protocol with Resource

1. The Clients and Classical SMPC perform the same initialisation procedure as in the protocol:
they place their input qubit at random in their input base-location and prepare |+〉 states for the
other qubits that they own. These are all encrypted and the position and encryptions are sent to
the Classical SMPC T1, who then chooses at random the unitary to be applied (according to its
random choice of Dotted Triple-Graph).

2. The Clients send their qubits to be transformed into a VBQC client-encrypted state to the DBQC
Resource, the Classical SMPC T1 sends the unitary as the Orchestrator and S1 can choose an
input state ρaux together with a malicious coalition of Clients and deviation E ′. S2 recovers the
output state E ′(ρV ⊗ ρaux) as defined in Resource 20, along with a state ρS from S1. The Classical
SMPC T2 recovers the key k and a classical message state from T1 containing the description of
the random parameters of the Dotted Triple-Graph.

3. S2 follows the instructions given by the Classical SMPC T2 according to the VBQC Protocol for
non-output qubits.

4. The Clients and S2 perform the Quantum Output Key-Release Procedure along with the Classical
SMPC T2.

Rearranging of Honest and Malicious Behaviour during VBQC State Generation. In all
generality we can then assume that the deviation occurs after DBQC has been performed: equivalently,
S2 receives an honestly prepared VBQC client-encrypted state ρV from the DBQC Ideal Resource, along
with the deviation E ′ and state ρaux from S1 and applies it to ρV . Note that in that context, no Clients
are malicious since all the malicious behaviour is contained in this deviation and auxiliary state (up to
deviations on their input state as explained in Lemma 6.3, which is always allowed).

The effect is that the Clients in this new hybrid only send correct states to the Resource to be
transformed into a VBQC client-encrypted state, along with their inputs (i.e. they no longer need to
send additional state to be used in the DBQC Protocol). Since these state are honestly prepared, it is
equivalent to having a trusted third party (modelled as a Resource), which we call the input Super-Client
which receives the inputs from the Clients, encrypts them and prepares the rest of the input state to the
DBQC Resource by itself.

16And therefore also the one sent by the Ideal Resource since the proof of security of DBQC show that the deviation
can be replicated by the Simulator in the ideal execution.

196

6.5. FULL DELEGATED MPQC PROTOCOL AND SECURITY ANALYSIS

Note that since the deviation on the malicious Client’s inputs has been incorporated as an (adver-
sarially known) modification of their inputs, the only remaining deviation happens after the Server S2

has received the output state from the DBQC Resource. Therefore the interface of the Server on the
DBQC Resource is now filtered. This results in the following hybrid in Reduction 3. The distinguishing
advantage compared to the previous hybrid is 0.

Reduction 3 Transferring Honest Operations to Super-Client

1. The Clients send their input qubits to the input Super-Client, which then encrypts them, positions
them and prepares additional |+〉 states. These parameters are sent to T1, who chooses the unitary
to be applied as previously.

2. The input Super Client sends its qubits to the DBQC Resource, the Classical SMPC sends the
unitary as the Orchestrator. S1 does not input a deviation in the DBQC Resource but sends E ′ and
state ρaux to S2, which furthermore receives the output of the DBQC Resource ρV , an honestly
generated VBQC client-encrypted state. The Classical SMPC T2 receives a classical message state
from T1, which contains the secret parameters of ρV .

3. S2 applies E ′ to ρV ⊗ ρaux and proceeds as above.

We notice that the operations performed by S1 consist only of internal operations, therefore it can
be dropped in favour of subsuming these steps into S2 (i.e. the choice of deviation E ′ and the state ρaux

can be made by S2 directly). Furthermore, we merge the DBQC Resource with the Classical SMPC T1

and the input Super Client since they are both trusted third parties (and therefore Resources) as well.17

The result is simply a new Resource which we call Collaborative VBQC State Preparation Resource,
that takes as input the input qubits of all Clients, prepares the VBQC client-encrypted state ρV and
sends it to the Server. There is one additional interface that outputs the description of the randomness
associated with this state, which is plugged into the Classical SMPC T2. This results in Reduction 4.

Reduction 4 Merging Input Resources and Adversaries

1. The Clients send their input qubits to the Collaborative VBQC State Preparation Resource, who
outputs ρV to Server S2 and the description of the secret parameters to the Classical SMPC T2.

2. The Classical SMPC T2 instructs the Server to measure the non-output qubits according to the
VBQC Protocol. At the end, S2 sends the qubits of the output layer to the appropriate Clients

3. The Classical SMPC T2 perform the key-release step as in the DMPQC Protocol.

Simplifying Output Recovery Procedure. At this point, up to the quantum key-release step, the
execution between the Server, the Collaborative VBQC State Preparation Resource and the Classical
SMPC T2 is exactly the same as an execution of the VBQC Protocol. We now focus on this final step,
which consists of the following: (i) each Client measures the trap in their output base-location according
to the instruction provided by the Classical SMPC and returns the outcome; (ii) the Classical SMPC T2

either sends Abort to the Clients and the Server or sends Q-OTP keys to the Clients; (iii) if there is no
abort, each Client decrypts its output.

17Since Resources are described as CPTP maps, if an interface from one Resource is linked to another Resource they
can be merged simply by composing the CPTP maps corresponding to these interfaces.

197

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

Any deviation by the malicious Clients after receiving the qubits from their output base-location
either lead to an abort (if they affect a trap) or correspond to a deviation on their outputs. Because, in
the ideal execution, the malicious Clients are allowed to deviate arbitrarily on their outputs, deviations
on output qubits for non-ideal executions do not correspond to attacks as they can be mapped to actions
performed after the protocol has concluded. In the absence of abort, all the trap measurement outcomes
are correct and we can conclude that the output state is correct up to allowed deviations on the output
qubits of malicious Clients. If the deviation affects traps however, the Classical SMPC aborts similarly
to an honest Client in the VBQC Protocol. This is then equivalent, up to a rewriting of the malicious
Clients’ deviations to include them as a deviation due to the Server S2 during the VBQC Protocol
execution, to having an output Super Client recovering the output layer from the Server, performing the
measurements on traps as instructed by the Classical SMPC T2 and, if there is no abort, decrypting the
output before sending to each individual Client its own output state. This results in Reduction 5.

Reduction 5 Recovering an Honest-Client VBQC Protocol

1. The Clients send their input qubits to the Collaborative VBQC State Preparation Resource, who
outputs ρV to the Server and the description of the secret parameters to the Classical SMPC T2.

2. The Classical SMPC T2 instructs the Server to measure the non-output qubits according to the
VBQC Protocol. At the end, the Server sends the output qubits to the output Super Client.

3. The Classical SMPC T2 instructs the output Super Client to measure the trap qubits. If a trap
has been incorrectly measured, T2 outputs Abort to the output Super Client, who forwards it to
the Server and the Clients.

4. Otherwise, T2 sends the decryption keys to the output Super Client, who then decrypts the output
and sends to each Client its output.

Application of VBQC Security Result. We again use the Resource fusion property to merge the
Collaborative VBQC State Preparation Resource, Classical SMPC T2 and the output Super-Client. This
new Collaborative VBQC Client Resource performs exactly the same steps as an honest VBQC Client
using the collaborative input state provided by the individual Clients, after which it distributes the
output states back to the individual Clients.

Finally, we use the result of Lemma 6.4 which shows the equivalence between the VBQC Protocol
with an honest Client and the Verifiable Delegated Quantum Computation Resource 12. In fact, the
Server only ever interacts in the hybrid above with honest parties (or equivalently, Resources). It is
therefore possible to replace the VBQC Protocol execution between the Collaborative VBQC Client
Resource and the Server with the VDQC Resource, at a cost of ε′V .

After this change, the Collaborative VBQC Client Resource is replaced by one which simply forwards
the inputs of the individual Clients to the VDQC Resource, and later recovers the output and distributes
it to the individual Clients (or aborts). These three Resources – input aggregation, VDQC and output
distribution – can then be further merged to exactly form the MPQC Ideal Resource 14. It is furthermore
statistically equivalent, up to a combined cost of εD + ε′V , to the initial DMPQC Protocol. This concludes
the proof.

�

198

6.6. IMPLEMENTING THE CLASSICAL SMPC RESOURCE

We finally note that, since the DBQC Protocol perfectly emulates the DBQC Ideal Resource, the
DMPQC Protocol ε′V -emulates the MPQC Ideal Resource.

6.6 Implementing the Classical SMPC Resource

We now describe an implementation of the Classical SMPC Resource 10 used by the parties in the
DMPQC Protocol 19 by levaraging the Universal Thresholdiser construction presented in Section 3.5.4.
This demonstrates the simplicity of the classical functions that are required during the execution of the
protocol. We first define the functions that are needed to implement the various step in the protocol
which require a Classical SMPC. Then, we briefly present how they are used in the protocol to implement
the various actions of this resource. The threshold of the UT is set to t = N , meaning that all players
must collaborate to decrypt the result of the computations. Recall that applying Eval only produces
a partial evaluation which cannot be decrypted unless Combine is called on t such partial evaluations.
To avoid repetitions, we often directly say which function is applied at each step without mentioning
necessarily Eval. However, the only decrypted values are the ones where Combine is explicitly called. We
further assume that Verif is called on the partial evaluations before any call to Combine, thus verifying
that all these values have been properly computed.

6.6.1 Useful Functions

We will be using the UT in the following way: the creation and sharing of secret parameters through the
Setup protocol uses the Secure UT Key Setup Resource 15, while the other function (Eval, Verif and
Combine) will be left to the participants of the protocol (as they are composed of local operation and
broadcasts). The functions that need to be evaluated are presented here in order of appearance in the
protocols presented in the next subsection. The total depth of the functions applied is independent of
the size of the computation and we suppose that it is upper-bounded by a constant d. Note that all
operations are either operation in Z8 or Z2.

1. XOR({strj}j∈[N]) → str takes as input N binary strings {strj}j∈[N] and outputs their bitwise
XOR.

2. Gen−DTG(G, listinp, rand) → (listDTG, listout) takes as input the description of a graph G =
(V,E, I,O), a list listinp indicating for each input the position of the computation qubits in its
base-location (where the actual input will be placed), and a random value rand. The list listDTG

specifies the nature of each qubit in the Dotted-Triple Graph in a known public order: if the vth

entry in the list is 0 (respectively 1), qubit v in the Dotted-Triple Graph is a rotated (respectively
dummy) qubit. The list listout specifies the nature (computation, trap or dummy) of the output
qubits. Note that the local nature of the DTG construction ensures that this function is independent
of the depth of the computation (i.e. it can be parallelised).

3. U−to−MBQC(U) → {α(v)}v∈Oc takes as input a valid description of a unitary (as a sequence
of gates) and outputs a sequence of MBQC measurement angles {α(v)}v∈Oc implementing the
unitary on a graph G = (V,E, I,O) and with flow (f,�) (the graph and flow are hard-coded in
the function and we suppose that this function is only called on unitaries that can be implemented
on it). This function is used on very specific unitaries and can therefore be heavily optimised:

199

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

it simply chooses between two possible sets of angles (for dummy insertion, one set computing
Hadamard and the other Identity), which only differ on one angle (0 for dummies and −π/2 for
the others). It can therefore be simplified to only updating this angle if it is required.

4. State−Init({θj(v)}j , statei, t) → θ takes as input values {θj(v)}j and measurement results t
and outputs the value θ(v) of the unmeasured qubit’s angle at the end of the State Preparation
Protocol. The optional value statei is used only in the case of the Quantum One-Time-Padded
input qubit of player i to the DBQC Protocol since is contains the value of the encryption angle of
the owner’s input.

5. Updt−Enc(state, enc, listDTG)→ (s̃tate, ẽnc) implements the discussion of Section 6.4.1.1, tak-
ing as input a list state containing secret parameters describing the state of qubits (or encryption
keys for inputs), a list of encryption keys and a list listDTG indicating the nature of each qubit in
the Dotted-Triple Graph. It outputs updated values for the state and keys as follows. For dummy
positions, the value of list enc is 0 and the function exchanges this value with the one at the
same position from state. For traps and non-input computation qubits, state contains a value θ
and enc contains values θ̃ and ã and, after application, state contains θ̃ and enc contains values
θ − (−1)ãθ̃ and ã. For inputs, state contains values θ and a and enc contains values θ̃ and ã and,
after application, state contains (−1)a⊕ãθ̃ and ã and enc contains values θ − θ′ and a⊕ ã.

6. AngUBQC (G, (f,�), v, φ(v), θ(v), r,b)→ δ(v) takes as input a UBQC graph G and its flow (f,�),
the index of a non-output qubit v in the graph G, the original measurement angle defined by the
computation φ(v), the secret parameters (θ(v), r) and previous measurement results b and outputs
the corrected measurement angle δ(v). The function AngVBQC performs the same computation
but taking listDTG as parameter as well (the position of the dummies and traps, we suppose that
for non-trap qubits in the output layer, this function always returns angle 0). The angle update
functions are the ones described in the Section 2.3.

7. Apply−H(s̃tate, listDTG)→ state takes as input a list of secret parameters describing the state of
qubits (or encryption keys for inputs) and a list listDTG indicating the nature of each qubit in the
Dotted-Triple Graph and outputs state in which, each qubit position q such that listDTG[q] = 1
(it is a dummy) contains (the classical description of) |0〉 and the rest is identical to s̃tate.

8. KeyUBQC (r,b, v, (f,�))→ kq takes as input the secret parameters r and measurement results b
and outputs the key kv for the Quantum One-Time-Pad on qubit v in the result of the UBQC
computation whose flow is given by (f,�). KeyVBQC (r,b, v, (f,�), listDTG)→ kv performs the
same but takes as input listDTG since the keys are only for computation qubits (here v corresponds
to an output base-location).

9. Apply−OTP(l̃ist,OTP)→ list takes as input a list of secret parameters for a VBQC scheme and
the key of a Quantum One-Time-Pad and outputs the updated secret parameters resulting from
the application of this One-Time-Pad to the qubits corresponding to these secret parameters.

10. Str−Extr(list, O) → ind takes as input a list list and indices O in this list and outputs the
sub-list list corresponding to those indices.

11. Ver(r,b, list, val)→ ok ∈ {0, 1} takes as input three lists and a value and outputs 0 if, for all i
such that listi = val, ri = bi (and 1 otherwise, indicating a failed verification).

200

6.6. IMPLEMENTING THE CLASSICAL SMPC RESOURCE

6.6.2 Constructing the Classical SMPC Functionalities

We can now present the way that the UT is used in the protocol to replace the Classical SMPC. It is
important to recall that the value of a cypher-text (and partial evaluation) remains hidden unless all
players decide to run the protocol Combine on published ciphertexts. As mentioned above, the partial
evaluations can be reused in other functions if the total depth of the circuit computing the composed
function does not exceed the total depth bound of the UT scheme defined during its setup protocol.
This is computationally indistinguishable from the case where there is a Classical SMPC Ideal Resource,
as per the UT’s security Definition 3.21, so long as there is at least one honest Client.

The Classical SMPC is used in three different steps of Protocol 19. First if generates the Dotted-Triple
Graph description and all associated parameters. Then it replaces the Trusted Orchestrator in the DBQC
protocol to ensure that the permutation applied to the qubits is remains hidden from the Clients and
the Server and therefore that the construction of the Dotted-Triple Graph is unknown as well. Later, it
is used to drive the computation on this VBQC graph and, at the end, verify that the traps have been
measured correctly and handing out the keys to all Clients if they have.

6.6.2.1 Initialisation UT

All of the parameters from the Dotted-Triple Graph and the associated VBQC computation should be
hidden from the Clients and the Server. This initialisation step does not output any value, it simply
prepares the values required for the two other roles of the SMPC (it prepares their internal state).

Each Client j knows in which registers they have inserted their inputs, expressed as inpj ∈ {1, 2, 3}
indicating its position in its input base-location in the future DTG. It also knows the Quantum One-
Time Pad values (one bit and one angle) that it has chosen to encrypt this input qubit, contained
in a list statej . This first step initialisation step, described in Protocol 20, ends after generating the
colouring of the Dotted-Triple Graph.

Protocol 20 UT Implementation of Secret Parameter Generation
Each Client j proceeds as follows:
1. It sends the dummy input λ to the Secure UT Key Setup Resource 15 with constant depth

bound d and receives (pk, cp, skj), where cp corresponds to an encryption under public key pk of
the structure of the MBQC computation (graph, flow and measurement angles) that the Clients
want to perform on their inputs.

2. It generates encryptions of each angle and bit that it chose to encrypt its input qubit (statej) and
the position of this input in its input base-location inpj , and encrypts a random value randDTG,j
(of the format required by the function Gen−DTG). It broadcasts these encryptions to all other
Clients.

3. It receives corresponding encryptions from the other Clients and uses Eval to apply the func-
tion XOR to generate a partial evaluation of randDTG (the XOR of the corresponding bit-strings
received from all Clients).

4. It uses Eval to apply Gen−DTG to the encrypted description of the graph, input list corresponding
to the concatenation of all encrypted values inpj supplied by clients, and randomness randDTG.
It recovers partial evaluations of listDTG and listout .

201

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

6.6.2.2 Trusted Orchestrator UT

The Orchestrator from Protocol 18 is required to be honest for it to construct the DBQC Resource 20
transforming a subset of qubits into dummies. In Protocol 19, there is no such party and a Classical
SMPC is used instead. We show here how to implement it using UT. We suppose that the Clients have
performed the steps in Protocol 20. Let UD be the dummy insertion unitary defined implicitly by the
list listDTG (if the vth entry in the list is 1, qubit v must be turned into a dummy using H, UD applies
the identity on the other qubits). The following Protocol 21 describes the classical actions of the players
during the DBQC Protocol 18.

Protocol 21 UT Implementation of DBQC Orchestrator
Each Client j proceeds as follows:
1. It uses Eval to apply U−to−MBQC to UD and get a partial evaluation of MBQC computation

angles {α(v)}v∈Oc
UD

on graph GUD = (VUD , EUD , IUD , OUD) applying UD to 3#V + 9#E qubits.
2. It shares to other Clients (via encryption and broadcast) the random values for θj(v) for measured

qubits v ∈ OcUD (apart from its own input qubit whose encryption was shared in the initialisation)
used in the State Preparation for the DBQC Protocol. For all qubits v ∈ OcUD it also shares
a bit rj(v). It samples 2(#V + #E) values θ̃j(v) and ãj(v) for all non-dummy qubits in the
future DTG and shares them. These last two parameters are used to implement the basis change
discussed in Section 6.4.1.1.

3. It receives from the Server an encryption of the measurement outcomes tj(v) from the State
Preparation phase of the DBQC Protocol.

4. To compute the common random angles θ(v), it runs the function State−Init on the encryptions
of θj(v), measurement outputs and input encryptions. It also runs XOR on all rj(v), θ̃j(v) and
ãj(v) to get r(v), θ̃(v) and ã(v). We denote enc the list comprising the values θ̃(v) and ã(v).

5. It partitions the values obtained as output to State−Init in two lists state and enc′, the
first one containing all values for qubits which later form part of the DTG and the other one
containing values for the auxiliary qubits used in DBQC. It then runs Updt−Enc on state, enc
and listDTG to get the updated state and encryptions (s̃tate, ẽnc).

6. During the computation phase of DBQC, to compute the updated measurement angles δ(v), it
runs the function AngUBQC on the angles α(v), ẽnc, enc′ and r(v).18 These partial evaluations
are sent to the Server, who can recombine them using Combine to recover δ(v). It receives from
the Server encrypted measurement results in return.

7. Each Client uses Eval to apply Apply−H on the list s̃tate, thus updating the cypher-text
containing the secret parameters of the states in the Dotted-Triple Graph according to the
transformation applied by the DBQC Protocol. It then uses KeyUBQC on the Server’s measurement
outcomes, r(v) and enc to recover the key to all the output qubits of the DBQC Protocol. Finally,
it applies Apply−OTP on the list containing the values of the DTG state and this new Quantum
One-Time-Pad key.

These operations have the effect of updating the secret values describing the state of the computation,
trap and dummy qubits in the Dotted-Triple Graph, along with the final encryption of the inputs. This
is all contained in the updated variable s̃tate. Choosing and sending all the secret parameters in this
step can be done at the same time as the previous ones in the Initialisation UT, thus reducing the
number of classical communication rounds. Here it is described sequentially simply for sake of coherence.

18This is done at the same time for all measured qubits since UD is described using only Clifford angles (from the set
{kπ/2}0≤k≤3) and therefore the flow can be chosen as the trivial flow with no immediate corrections. The corrections do
affect the final QOTP on the output state.

202

6.7. PERFORMANCE ANALYSIS AND IN-DEPTH COMPARISON WITH PREVIOUS WORK

6.6.2.3 Collaborative VBQC UT

This Classical SMPC reuses the state of the previously called SMPC, after the DBQC protocol has
been completed, and performs the VBQC version of the original MBQC computation that the Clients
actually wanted to apply on their inputs. We suppose that they have an encryption of the Dotted-Triple
Graph (s̃tate, listDTG) as described earlier in this section, and an encryption of the angles and flow of
the base MBQC computation which were generated through the Setup protocol at the very beginning.
The Classical SMPC performing the steps of the honest Client in the VBQC Protocol can then can be
implemented by having each Client j perform the following Protocol 22.

Protocol 22 UT Implementation of VBQC Computation and Key-Release
Computation phase of the VBQC Protocol: for each non-output qubit layer L in VBQC graph
DT (G), it computes the partial evaluation of the updated measurement angles by using Eval on
AngVBQC with angles φ(v) for the initial MBQC computation and s̃tate, listDTG. It sends the partial
evaluations of δ(v) for v ∈ L to the Server (who then runs the algorithm Combine). It receives in
return an encryption of the associated measurement results. This is repeated until the output layer is
reached and the Server returns to each Client its output base-location qubits.
Output trap testing:
1. It calculates the nature of qubits in the output of all Clients (including itself) by using N times

Str−Extr on the cypher-text listout , with the indices for each call j′ of this function corresponding
to the output qubits of Client j′. It sends each partial evaluation to the corresponding Client j′
(keeping to itself the partial evaluation for its own output).

2. For each qubit v in the output layer of Client j′, each Client j computes the partial evaluation
of the measurement angle using the Eval algorithm of the UT on a classical circuit computing
the function AngVBQC (recall that we suppose that for non-trap qubits in the output layer, this
function always returns angle 0). It sends each partial evaluation of δ(vj′) to the corresponding
Client j′.

3. It uses the algorithm Combine to recover the position of computation, trap and dummy qubits
amongst its own output, along with the measurement angle corresponding to the traps qubit.
After measuring the trap qubit in the basis

{∣∣+δ(vj)
〉〈

+δ(vj)
∣∣ , ∣∣−δ(vj)〉〈−δ(vj)∣∣}, it sends the

encryption of the resulting measurement outcome bO,j to all other Clients.
Verification of trap measurement results: it computes a partial evaluation of ok using Ver on
the measurement results, secret parameters for the value of the traps and positions of traps and sends
the partial evaluation of ok to all Clients. It uses Combine to recombine ok and outputs Abort if it is
equal to 1. If it did not receive Abort, it continues.
Output Key-Release: it calculates consecutively for each Client j′ the partial evaluation of the
OTP key for all qubits in this Client’s output layer using KeyVBQC on measurement results and secret
parameters of DTG before sending it to Client j′. It uses the algorithm Combine on the values received
from other Clients to recover the OTP keys for its own output.

6.7 Performance Analysis and in-depth Comparison with Previous Work

We now compare our result with [40, 90, 5]. Reference [40] also achieve an information-theoretic upgrade
of a Classical SMPC to the quantum domain, secure against an arbitrary number of corrupted parties.
On the other hand, the protocol from [5] is only computationally-secure since it relies on a Fully-
Homomorphic Encryption Scheme on top of the Classical SMPC, but it is also secure against arbitrary
corruptions. The protocol of [90] constructs an information-theoretically secure Quantum SMPC but

203

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

suffers from an artificial blow-up in the number of participants and exchanged qubits.19 The protocols
of [90, 5] are proven secure in the Stand-Alone Model, whereas ours and that of [40] are fully composable.
On top of blindness, all protocols provide verifiability with unanimous abort apart from that of [5] who
achieves the stronger notion of identifiable abort.20

One key advantage of our protocol over the others lies in its delegated nature, where only one
participant needs a full fault-tolerant quantum computer while the rest only perform very limited
quantum operations, compared with the symmetric setup in [40, 90] where all participant has requires
fault-tolerance. The protocol of [5] can be considered semi-delegated in the sense that the brunt of
the quantum computation is performed by a single player. However, all players must have the ability
to perform arbitrary Cliffords on large states and cannot do so without having at their disposal a
full fault-tolerant quantum computer. This is also reflected in the network topology: whereas the best
performance in [40, 90, 5] can only be reached by using a complete quantum and classical communication
graph, we only need a star graph for quantum communications.

Regarding classical primitives, [90] only requires secure coin-tossing and authenticated broadcast
channels (information-theoretically secure since they can rely on an honest majority). We only use our
Classical SMPC to perform coin-tossing, basic string operations (selection in array) and computations
in Z8 and Z2. The Classical SMPC is more complex in [40, 5] since it must be able to sample uniformly
at random and perform computations on the classical descriptions of arbitrary Cliffords.

We can now quantify more precisely the number of classical rounds of communication or calls to the
Classical SMPC resource, quantum rounds of communication, and size of quantum memory required
by each participant in the protocol. Let N be the number of parties, d the depth of the computation
(MBQC for our paper, circuit for [90] and {T,CNOT}-depth for [40]), t the number fo T gates, c the
number of CNOT gates and η a statistical security parameter.

The Protocol of [40] calls the Classical SMPC very often: a constant number of times for each input
qubit and gate in the circuit. But the most costly part is the generation of ancillary magic states (for
implementing T gates via gate-teleportation), which requires O(η(N + t)) invocations of the Classical
SMPC. Our protocol simply uses d+ 5 calls to this Resource, 2 of which are made for setting up the state
and 3 for the key-release step (2 for classical outputs). This is equivalent to the classical communication
requirements of [90], where they only need d+ 2 classical broadcasts per participant (one for setting up
the shared randomness and another for the state preparation, while the calls during the computation can
be parallelised). If all quantum communications are done in parallel in [90], it can be further parallelised
to only require a constant number of classical broadcast rounds. The protocol of [5] uses FHE (classical
and quantum) to perform the computation and consequently the number of calls to the Classicl SMPC is
only constant. We note that using another classical primitive called functional encryption, where a party
in possession of an evaluation key can recover the clear-text of a function of the encrypted values (and
only that), would allow to attain the same result for our construction by allowing the Server to compute

19It is based on error-correcting codes and the size of the code must correspond to the number of players N . The
maximum number of cheaters tolerated by the protocol is the number of correctable errors

⌊
Cdist−1

2

⌋
, which by the

quantum Singleton bound [117] is at most
⌊
N−1

4

⌋
. In their example, 7 players are required for implementing a two-party

computation since the code that is used is of size 7 and corrects 1 error. This leads to a situation where 5 participants that
don’t have inputs nor outputs must still exchange messages and none can be malicious if one of the players with inputs is.

20A protocol satisfies the unanimous abort property if all honest players abort at the same time, as compared with
selective aborts where the Adversary can choose which players will abort separately. On top of that, identifiable abort
means that all honest players agree on the malicious party responsible for the failure of the protocol.

204

6.8. CONCLUSION AND DISCUSSION

the next measurement angle as a function of the encrypted secrets and previous measurement results.
The protocol of [40] requires numerous rounds of quantum communication as they need to send

encoded states around for the verification of inputs and T and CNOT gates. After parallelisation the
total cost is O(Nd) quantum rounds. [5] aims to remove the circuit dependency in the number of rounds,
obtaining O

(
N4) quantum rounds in the worst case in the case where the protocol is parallelised.21 [90]

seeks to optimise the quantum memory requirement of players and therefore their communication is
done sequentially, yielding O

(
η2(N + t)

)
quantum rounds. Parallelisation lowers it to 3 (or 2 for classical

outputs), at a higher quantum memory cost for all parties. Our protocol is optimal as there are only 2
quantum rounds (1 for classical outputs): sending to the Server the inputs and all states required for the
collaborative state preparation phase and later recovering the output layer qubits from the Server

Finally, the number of qubits required by [40] during the computation phase is O(η(N + t)) for
each participant (they encode each of their input qubits, ancillae and magic states using O(η) qubits).
However they use O

(
η2(N + t)

)
additional qubits in the offline phase to prepare the ancillary qubits (if

the quantum communications are performed in parallel). On the other hand, [90] reduces the number
of qubits for each participant to O

(
N2) for sequential quantum communication, but this blows up to

O
(
η2N(N + t)

)
if parallelised. The construction from [5] uses a compiler that adds automatically a cost

of O
(
N2) for each base qubit. The costly double encryptions and multiple layers of traps, in particular

for the magic state distillation procedure, yields a total quantum memory cost per participant of at least
O
(
tN9η2) (this is a weak lower bound). In our paper the Server needs O(ηNd) qubits to perform the

VBQC computation, and it must be able to apply a constant-depth MBQC computation through the
DBQC Protocol to these qubits first to transform some input dummies. The graph applied contains 9
qubits per qubit in the final DT (G) used in VBQC. Each qubit in these graphs must be generated using
N qubits, resulting in a total qubit cost of O

(
ηN2d

)
for parallel rounds of quantum communication but

only O(ηNd) if they are performed sequentially. However, the Clients can prepare the additional qubits
on the fly, therefore each Client only requires three qubits of quantum memory which it uses to store its
input at the start of the protocol and the output, dummy and trap at the end. For classical inputs and
outputs, the Clients do not even need quantum memory (their inputs can be encoded into the qubits
that have been sent by adding π to the rotation angle and the outputs are classical since the Server
performs the measurements).

6.8 Conclusion and Discussion

The purpose of any cryptographic protocol is to mimic the ideal scenario where all players send their
inputs to a trusted third party and later recover their outputs. This minimal setting implies that at least
two rounds of communication are needed even when one assumes that the third participant is indeed
honest. In this respect, we achieve an almost-perfect delegated multi-party quantum computation: the
quantum communication between all Clients and the Server is round-optimal, while at the same time
removing all trust requirements between participants.

21They send states along a path of size N2 in the communication graph of the parties, and remove a party if it doesn’t
deliver a packet before resending the states along a different path of the same size. In the worst case where there are N − 1
malicious players which do not want to get caught cheating, they can drop (N − 1)(N − 2)/2 packets before they get
disconnected from the communication graph.

205

CHAPTER 6. QUANTUM ROUND-OPTIMAL DELEGATED MPQC

This is accomplished through a deconstruction-reconstruction process of a single Client protocol where
a new blind but not verifiable protocol is introduced to allow multiple Clients to prepare a good-enough
VBQC execution state collaboratively. This new protocol is highly versatile and can benefit to situations
where a unitary must be applied and yet remain unknown to all participants. In our case, by adding
straight-forward conditions on the form of the input and the unitary (namely that they do not leak
information about the final good-enough VBQC execution state and that the unitary is Clifford), we are
able to use the generated state to perform a fully verifiable computation. This depth-independent state
preparation step effectively bootstraps the verifiability of any computation by using blindness alone,
thus breaking the oft-believed principle that verifiability of the full protocol cannot be achieved unless
all sub-components are also verifiable.

Open Questions. Our result leaves a few questions open. The first one is whether it is possible to
perform a Multi-Party Quantum Computation with strictly the same number of qubits per Client as the
single Client VBQC. Lowering the classical communication requirement to a constant number of rounds
is also an interesting problem. Optimal protocols exist in the classical case with only four rounds of
communications [65], yet no explicit Quantum Secure Multi-Party Computation Protocol has sub-linear
classical round-complexity as of now. Yet another question is whether it is possible to construct a protocol
ensuring blindness without verifiability even in the presence of client-server collusion (i.e. extending [76]
to arbitrary corruptions). Finally, the Double-Blind Quantum Computation Protocol and Double-Blind
Rotated State Preparation that are used to prepare the state for the VBQC computation are interesting
implement functionalities never defined before and other protocols could benefit from using these same
functionalities as subroutines.

Future Work

We are currently developing an improvement on the State Preparation used to create a VBQC client-
encrypted state based on the Double-Blind BB84 State Preparation Protocol. The computation phase
in the DBQC Protocol can be drastically simplified in terms of the number of qubits that need to be
prepared collaboratively. We can use the bridge/break property of the BB84 state (in an MBQC graph,
a state from the computational basis breaks the graph at this vertex, while |+〉 and |−〉 create a bridge
between two nodes of a graph) to tailor-make a graph specifically for the unitaries that need to be
applied (H or I on non-inputs and SWAP or Id on inputs). The difficulty lies in avoiding attacks similar
to those presented at the end of Section 6.4.2 which depend on the type of qubits being prepared in the
Dotted-Triple Graph.

Another way to reduce the number of qubits sent by each Client would be to use the high similarity
between the DBQC implementation of H and I operations. The graphs are identical and all angles
but one are the same as well. We are currently in working on a blind quantum computation protocol
whose aim is precisely to minimise the number of transmitted qubits in this exact scenario. Preliminary
results indicate that qubits need only to be sent for inputs, the vertices where the angles differ and any
non-Clifford vertex in their future influence cone, meaning all qubits whose dependencies can be traced
back to the hidden vertex whose angles are not in {kπ/2} for 0 ≤ k ≤ 3. Since all vertices in our H/I
gadget are Clifford, this means that only two qubits would need to be sent per Client and per vertex in
the DTG, which is very close to optimal.

206

6.8. CONCLUSION AND DISCUSSION

We are also looking into more generic ways of proving that a deviation can be commuted through
the State Preparation without picking up secret parameters, instead of doing it step-wise in a way that
highly depends on the specificities of the protocol. This would help both with the above-mentioned
VBQC client-encrypted preparation based on the Double-Blind BB84 State Preparation, but also any
other future improvement to this phase of the computation. Looking even further, the definition for
good-enough states can be expanded beyond the current one and encompass other verification protocol
that require a player to prepare honestly an initial state. The question then becomes that of finding
sufficient condition for a State Preparation Protocol preparing these newly defined states to undergo
the same commutation procedure. This would expand our bootstrapping technique to other verifiable
protocols where a resource state needs to be created and allow them to be turned into multi-party
protocols in a similar way.

Finally, both the Double-Blind Rotated State Preparation Protocol and the Double-Blind BB84
State Preparation Protocol share similarities with Secret Sharing Protocols, in the sense that it is
possible to see them as the Orchestrator instructing the Clients to send a specific state (instead of the
Clients choosing this on their own in the current version). The creation of the collaboratively-generated
state then corresponds to the reconstruction phase of the Secret Sharing Protocol. Here the secrets are
necessarily classical since the Orchestrator is purely classical. It would be interesting to investigate how
other Secret Sharing Schemes where the secrets are efficiently classically describable (in the form of a
quantum circuit on known input states, the circuit being as simple as possible) could be used for MPQC.
There is a strong parallel with the classical case since Verifiable Secret Sharing is one of the techniques
used to secure SMPC Protocols, but in that case it is used without reconstruction unless some malicious
parties refuse to cooperate.

207

C
h
a
p
t
e
r 7

Qubit and Operation Optimal
Verifiable Quantum Computations

7.1 Motivation and Overview of Results

7.1.1 Benchmarking and Verification in a Networked Setting

Quantum computing promises unparalleled power for solving certain problems such as database
search [64] or integer factoring [124]. Recent experimental progress showed that the limit of
classical un-simulatability is now within reach, if not already surpassed [9]. In this regime, quantum

computers become so powerful that their classical counterparts cannot simulate their computation in a
reasonable time.

On one hand, this has triggered a lot of interest from all stakeholders starting to feel the limitations
of classical computing power and looking for ways to circumvent the inevitable slow-down of Moore’s
law, from academic labs all the way to industry users. This, in turn, has driven most recent algorithmic
and software developments in the field. More and more use cases are being studied with the goal of
running useful computations on these devices as soon as their capabilities allow it.

On the other hand, because the cloud is emerging as the preferred way of accessing quantum machines,
the questions of data and algorithm confidentiality as well as computation integrity are becoming ever
more important. First, it is expected that only the most crucial and strategic computations will be run
on these quantum computers, thus making these systems ideal targets for sophisticated hacking. Second,
disruption caused by (un)intentional mis-computations could remain undetected in the absence of means
to check the result. Even after detection, it could still be difficult to pin-point the failing component due
to the impossibility of following exactly the progress of quantum computations. Several methods for
eschewing this hurdle have been devised in the past (see e.g. [21, 53] and [58] for a review).

However, in spite of these results, the initial questions are far from resolved. This is because currently
known verifiable protocols are too sensitive to be of practical use. Indeed, they have been developed for

209

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

noiseless devices and have been optimized to detect the smallest fiddling and abort quickly. Unfortunately,
replacing perfect devices by even slightly noisy ones is not an option: the verification procedure would
keep aborting, mistakenly thinking that plain imperfections are in fact the signature of malicious
behaviour.

Several options for dealing with this sensitivity have been discussed in the past. Previous research
explored forgoing blindness [57], imposing restrictions on the noise model [71], replacing the server by
two entangled but non-communicating servers and classical clients [104], or settling for computational
security [96]. Yet these protocols either only achieve inverse-polynomial security bounds or, to obtain
exponential security, leverage the full power of fault-tolerant encoding along with a blow-up in the
size of the computation space. This makes them impractical for Noisy Intermediate-Scale Quantum
devices1 or even fault-tolerant devices that are able to perform the initial non-verifiable scheme since
the fault-tolerant scheme used to boost the verifiability must be used on top of the one that suppresses
the machine’s inherent noise.

As a consequence, before the wide-spread availability of very large fault-tolerant machines where
memory constraints are a non-factor, clients would still be left with no better alternative than to either
give up their security objectives entirely or try to convince themselves that providers are not as malicious
as they could be. They could start by benchmarking the performance and quality of the available devices
(see e.g. [82, 133, 101]) by running computations whose outcomes are known in advance, and decide
later based on these results whether to trust or not future runs on the tested service provider. However
this strategy falls short of the security expectations of most users because no benchmark entails future
fulfilment of the provider’s promises: benchmarking is not equivalent to computation verification. It
might only serve a posteriori to demonstrate that the provider cheated during the benchmark, but would
not help preventing a deviant behaviour at the time of computation.

7.1.2 Our Contribution

In this chapter, we propose a solution to these security issues while mitigating the effect of errors by
introducing a verifiable, blind and delegated quantum computing protocol for deterministic computations
with classical inputs and outputs, that is also robust to noise (Section 7.2.4). It relies on the Measurement-
Based Quantum Computation model, presented in Section 2.3, as it is the most natural one for
delegation. More precisely, it consists of multiple executions of a blind version of the Client’s computation
interleaved with test runs aimed at detecting any dishonest behaviour by the Server. These test runs are
indistinguishable from the computations. A majority vote over computations is performed at the end.

We show in Section 7.3.1 that any attempt at disturbing the computation will be with high probability
either caught or classically mitigated. The associated exponential security bound results from the majority
vote which forces the Server to attack at least half the runs in order to have a chance to corrupt the
computation, without being able to discriminate between both types of runs due to the overall blindness.
We want to stress here that we make no assumptions on the adversary in the process. The adversary
can be as malicious as it wants and the security will not be compromised. Indeed, our protocol achieves
information-theoretic security in the composable framework of Abstract Cryptography (described

1These are machines that may be (but are not necessarily) beyond classical simulatability, which starts being impractical
above 50 qubits, yet do not have the quantum memory space requirements for full fault-tolerance. Given the engineering
difficulties encountered by various teams when trying to scale quantum device, it is widely believed that such limited
devices will be the bread and butter of scientists wishing to perform quantum calculation in the foreseeable future [116].

210

7.2. BUILDING PROTOCOLS FOR SISQI, AN ITERATIVE DESCRIPTION

in Section 3.3.2). It ensures it will not be jeopardised by subsequent or simultaneous instantiations in
conjunction with other protocols.

On the other hand, the noise-robustness comes both from the classical error-correcting capability
offered by majority voting, and by preventing the Client from aborting if only a small number of test
runs are triggered. This threshold must be carefully chosen so that the Client still rightfully aborts
if there is a risk that the noise will overwhelm the error-correcting capabilities of the repetition code
provided by the majority vote, otherwise it could be abused by a malicious server. When analysing the
acceptance probability on honest noisy devices, we assume only that the noise is independent across runs
(but not necessarily identically distributed) and that the failure probability of a complete test run is
lower-bounded by a constant. This error-mitigation property of the protocol means that there is no need
to give up the ambition to provide security in a fully malicious adversarial model because of noise: in
the presence of honest noise that is sufficiently small, the computation will produce and accept correct
outputs with probability exponentially close to 1. Therefore fewer resources need to be spent on the
fault-tolerant encoding of the computation since a constant amount of noise per computation will not
corrupt our protocol.

The practical implication of verifying the computation by separating dedicated test and computation
runs is the absence of overhead for each run used in the protocol when compared to the same non-
robust, non-verifiable quantum computation in the MBQC model. In fact, the only overhead of our
scheme is the repetition of computations similar to the unprotected one (i.e. same size, connectivities
and gate set) a polynomial number of times. In particular, it does not increase the quantum memory
requirement nor require additional simultaneous entanglement between quantum systems. To the best of
our knowledge, this is the first exponentially-secure delegation protocol that lets the client use the full
extent of the available hardware for the computation tasks while tolerating a constant amount of global
noise. Any increase in the capabilities of the quantum devices can therefore be used entirely to scale-up
the clients’ computations. These properties make it the first experimentally scalable global solution to
the verification problem, going beyond past experimental feasibility demonstrations of building blocks
for verified computations [13, 12, 63, 102] and potentially serving as a blueprint for the development of
future quantum cloud applications.

7.2 Building Protocols for Small-Intermediate Scale Quantum Internet, an
Iterative Description

The architecture for which our protocols have been developed is composed of two nodes, one acting as a
limited Client while the other is a more powerful Server (but only slightly in near-term devices). We
suppose that the Client has at its disposal a single qubit on which it can apply a very small number of
operations, while the Server has at least two memory qubits (and can perform any computation with
high fidelity on them). Any mean of quantum communication can be used to transfer states across these
systems, but we describe our protocol based on the one used by trapped ion platforms. We suppose
that the qubit of the Client and one of the qubits of the Server can be entangled through a probabilistic
process (photon emission, entanglement using a beam-splitter and measurement). We also assume that
the Client and the Server can communicate classically through an authenticated classical channel. This
setup is summarised in Figure 7.1.

211

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

Figure 7.1: Simplest Experimental Setup. The communication qubits of the Client and the Server are
probabilistically entangled by making emitted photons go through a beam-splitter. The success of the
operation is heralded by their subsequent simultaneous detection in both single-photon detectors.

We will first start by describing the protocol in its simplest form on the minimal hardware presented
above, give its equivalent in circuit form and refine it slowly. A weak notion of hiding called flow-ambiguity
is applicable to this first protocol. The second protocol ensures that the Server is blind to the computation
performed and the Client’s input. These will essentially be rewrites of the MBQC and UBQC Protocols
presented in Section 2.3 in the context of very limited hardware capabilities. We then further improve the
protocol by adding verifiability for the Client against any malicious behaviour by the Server. Allowing
the Client to generate states from the computational basis and repeating the blind protocol are the only
additional requirements to obtain this verifiability. The final extension in the next Section describes
how to improve the protocol in the case where more qubits are available both in the communication
and computation phase. This presentation is iterative specifically for the purpose of being as close as
possible to the specificities of the experimental setup above. It is meant as a blueprint for future actual
proof-of-concept implementations, hence the greater level of detail and apparent repetition.

7.2.1 The Basic MBQC Protocol

For this version of the protocol, it is sufficient to consider that the Server has two quantum registers
CServ (indexed 1) and IServ (indexed 2) containing at least one qubit each. We suppose that the Server
can perform a CZ gate between its qubits according to a known graph (not necessarily universal or
complete) and measure any of them in the basis {|+θ〉〈+θ| , |−θ〉〈−θ|} for θ ∈ Θ. The protocol that will
serve as basis for all others is presented in Protocol 23. We present if for the minimal case where the
Server has exactly two qubits.

We do not impose a priori restrictions on the values of angles δ(1) and δ(2) (they will depend on the
input angles later on). The circuit that is being performed by this protocol is represented by Figure 7.2.

In our case, the graph consists simply of two vertices linked by one edge. Interestingly, this graph
has two possible flows. The first one is defined by I = {CServ} and O = {IServ} and f(CServ) = IServ,
with the partial order then being CServ � IServ, meaning that the outcome of the measurement on CServ

212

7.2. BUILDING PROTOCOLS FOR SISQI, AN ITERATIVE DESCRIPTION

Protocol 23 Base MBQC Protocol
Client’s Inputs: Two angles (φ(1), φ(2)).
Protocol:
1. The Server initialises the two registers IServ and CServ in the state |+〉.
2. The Server performs a CZ gate between the qubits in both of its registers and sends Ack to the

Client.
3. The Client sends to the Server a measurement angle δ(1).
4. The Server performs a measurement in the δ(1)-basis on register IServ and sends the outcome of

the measurement s(1) to the Client.
5. The Client sends a second measurement angle δ(2) to the Server.
6. The Server performs a measurement in the δ(2)-basis on register CServ and sends outcome s(2)

to the Client.

|0〉 H • Z(−δ(1)) H

|0〉 H • Z(−δ(2)) H

Figure 7.2: Circuit Representation of MBQC Computation Pattern. The final measurement is performed
in the computational basis.

will be used to correct the measurement angle on IServ. The second one is defined by I = {CServ, IServ}
and O = {CServ, IServ}. In that case a flow would go from the empty set to the empty set, which means
that no correction is needed (but we can reuse the same ordering). We call this flow the trivial flow. It is
important to notice that different flows lead to different computations. These cases are summed up in
Figure 7.3 (input qubits are marked with a square). In this case we set δ(1) = φ(1) and then δ(2) can
either depend on the measurement outcome (via and X correction) or simply be equal to φ(2).

Flow

(a) Linear flow from 1 to 2. (b) Trivial flow.

|0〉 H • φ(1)

|0〉 H • X φ(2)

(c) Correction induced by the linear flow.

|0〉 H • φ(1)

|0〉 H • φ(2)

(d) No corrections for the trivial flow.

Figure 7.3: Flows with Associated Computation and Correction.

This is the simplest example of a property called flow-ambiguity, introduced in [97]. Their main
result states that if a graph has more than one flow with the same vertex ordering, then the different
computations resulting from using one flow or the other are statistically indistinguishable for the Server.
This essentially means that the Client can choose whether to make the angle δ(2) dependent or not on the

213

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

outcome of the first measurement without the Server knowing which one has been chosen. Importantly,
the number of flows sharing the same ordering scales with the number of qubits in the computation
graph, therefore this property becomes more interesting the more qubits the Server controls (meaning
that it is even more useful against powerful Servers). On the other hand, this property is not formulated
in a composable framework but using entropy-based definitions. It is unclear how repeating the protocol
influences the leakage of information, so we will not consider it in a cryptographic setting.

7.2.2 Upgrading to Full Blindness using UBQC

We now augment the statistical hiding flow-ambiguity of the Base Protocol 23 to full blindness against
a malicious Server using UBQC. In contrast with the previous protocol which required no quantum
operations on the Client’s side but offered a limited variant of hiding, this iteration needs on form of
quantum communication or another between the two players so that the Server’s initial state is directly
or remotely prepared by the Client. For this purpose we first introduce the sub-routine for UBQC State
Preparation in Protocol 24. We suppose to that effect that the Client has a quantum register CCl as
well. The registers Cj are called the communications registers (of the Client and the Server depending
on j) and we suppose that they hold a single qubit each. As explained at the start of this section, these
can be probabilistically entangled using a heralded operation which when successful is equivalent to
applying CNOT gate between the two registers (with the Client’s qubit acting as control). The other
register of the Server is called the internal register as it is not similarly accessible.

Protocol 24 UBQC State Preparation
Inputs: The Server’s qubit in register CServ is initialised in the state |0〉 and the Client’s qubit in
register CCl is initialised in the state |+〉.
Protocol:
1. The Client and the Server attempt to establish entanglement on the pair of qubits in register
CCl and CServ. The parties thereafter share an EPR-pair in their communication registers after a
successful entangling operation.

2. The Client chooses uniformly at random a value θ ∈R Θ and performs a measurement in the basis
associated to angle −θ on its register, effectively teleporting the state |+θ〉 up to a Z-correction
to the Server’s register. The Client records the result of the measurement p and sends Ack to the
Server.

Output: The Client outputs (θ, p) and the Server outputs its register CServ.

The correctness of this state preparation phase follows directly from the rewriting of the EPR-pair
using the θ-basis as presented in Section 2.2.3. It is strictly equivalent, in terms of the Server’s information
gain, to the Client simply preparing the state |+θ+pπ〉 and sending it to the Server.

We now present a UBQC-based Protocol in Protocol 25. Note that the qubits are prepared in the
same order as they are measured later during the computation, first the internal qubit and next the
communication register. We now suppose that the Client has (in addition to its computation), a classical
input x consisting of up to two bits.

Note that all parameters (θ̃(v) and r(v)) can be chosen by the Client in advance, and the possible
values for δ(v) may be pre-computed easily before the protocol starts: there are only 2 possible values
for δ(1) once x(1), θ̃(1) and r(1) are fixed (depending on the value of p(1)), and at most 4 values for
angle δ(2) (based on p(2) and b(1)).

214

7.2. BUILDING PROTOCOLS FOR SISQI, AN ITERATIVE DESCRIPTION

Protocol 25 UBQC Protocol on Limited Hardware
Client’s Inputs:

• Two angles (φ(1), φ(2)) and a flow f on graph G = (V = {1, 2};E = {(1, 2)}) describing the
computation.

• A classical input to the computation (x(1), x(2)) ∈ {0, 1}2.
Protocol:
1. The Server initialises the registers CServ and IServ in the state |0〉 and sends Ack to the Client.
2. The Client initialises its register CCl in the state |+〉 and sends Ack to the Server.
3. They perform one instance of the UBQC State Preparation sub-routine, let θ̃(1) be the chosen

random angle and p(1) the outcome of the measurement. The Client sets θ(1) = θ̃(1)+p(1)π+x(1)π
and reinitialises its register in the state |+〉.

4. The Server performs a SWAP gate between its registers CServ and IServ and sends Ack to the
Client.

5. They perform a second instance of the UBQC State Preparation sub-routine, let θ̃(2) be
the chosen random angle and p(2) the outcome of the measurement. The Client sets θ(2) =
θ̃(2) + p(2)π + x(2)π.

6. The Server performs a CZ gate between the qubits in both of its registers and sends Ack to the
Client.

7. For v ∈ {1, 2}:
a) The Client chooses at random a value r(v) ∈R {0, 1} and sends to the Server a measurement

angle δ(v), defined according to the UBQC angle update Equation 3.16.
b) The Server performs a measurement in the δ(v)-basis on register IServ and sends the outcome

of the measurement b(v) to the Client.
8. The Client sets its output as {s(v) := b(v) + r(v)}v∈{1,2}.

It is important to notice that the number of dependencies and hence the number of values to
pre-compute only depend on the structure of the graph, with graphs with lower connectivity needing a
lower number of pre-computations (as less corrections need to be taken into account). This low number
of dependencies was already apparent in Section 4.5.2 for the brickwork states, and is also a low constant
for other universal topologies such as cluster-state graphs, and other presently-available non-universal
topologies.

This same blinding technique was used previously in protocols that also imposed the computation to
be embedded in a universal graph such as brickwork graphs or dotted-complete graphs [78, 53]. This last
requirement however caused a blow-up in the number of qubits since the Client could not choose the
most optimal graph for its desired computation but had to make it fit these universal graphs. Relaxing
this requirement allows us to work directly with the same graph as the one used for the Client’s desired
computation rather than an expanded one. While this leaks the information about the underlying
computation graph, all the other parameters (i.e. computation angles and inputs) remain hidden, which
turns out to be sufficient for blindness. The result is a drastic reduction of required memory qubits on
the Server’s side: so long as the Client’s initial computation can be embedded in the Server’s architecture,
the fully blind version can be implemented as well.

215

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

7.2.3 Amplification of Robustness and Verifiability Through Repetition

We can further improve this algorithm by adding verifiability to it through a trappification technique
similar to that already presented in Section 3.5.2. The conditions for successfully inserting traps are that
they should: (i) have deterministic outcome if measured in the correct basis, (ii) remain undetectable
by the Server and (iii) not affect the computation. This last condition – the possibility to still run the
initial computation undisturbed – is the most challenging one. Other result modify the base graph in
a way that make traps co-exist alongside the computation that is being performed. This results in an
additional overhead both in terms of stored qubits, graph connectivity and applied gates compared to
the blind version of the computation. We show here how to alleviate this issue.

We start by introducing the Dummy State Preparation as a sub-routine in Protocol 2, similar to the
previous one but for the fact that now the Client will measure its register in the computational basis,
producing a dummy qubit. The state received by the Server is a copy of the post-measurement dummy
state and the Server is unable to distinguish the resulting mixed state from the one it receives in the
previous protocol.

Algorithm 2 Dummy State Preparation
Inputs: The Server’s qubit in register CServ is initialised in the state |0〉 and the Client’s qubit in
register CCl is initialised in the state |+〉.
Protocol:
1. The Client and the Server perform an entanglement operation CNOT on registers CCl and CServ.
2. The Client measures its register in the computational basis, receives p ∈ {0, 1} as outcome and

sends Ack to the Server.
Output: The Client outputs p, the Server outputs its register CServ.

The correctness of this state preparation phase follows directly from the CNOT operation. It is strictly
equivalent, in terms of the Server’s information gain, to the Client simply preparing the state |p〉 and
sending it to the Server. Importantly, the operations from the point of view of the Server are identical
to the ones performed in the UBQC State Preparation Protocol 24 above.

Our trap insertion strategies will be to interweave pure computation runs (i.e. without traps) with
pure test runs (i.e. containing no computation but only traps). A test run will consist of the Client
using the Dummy State Preparation for one of the two State Preparation steps and the UBQC State
Preparation for the other. Then, for this run of the protocol, the Server’s qubits remain unentangled
after application of the CZ gate and a measurement on the non-dummy qubit (henceforth called trap) in
the correct basis should always give a deterministic result.

A direct consequence of this construction is that all runs share the same underlying graph G, the
same order for the measurements of qubits, and all angles are chosen from the same uniform distribution.
We will prove formally later that this implies that the Server cannot distinguish computation and test
runs, nor tell which qubits are traps.

Exponential Security Amplification. The above approach to trap insertion is efficient as the only
overhead is the repetition of the same sub-protocol. Yet, left as such, it can only achieve a security
bound that is inverse-polynomial in the number of runs. For instance, using a single computation run
and n − 1 test runs would give the Server a 1/n chance to corrupt the computation run. The only

216

7.2. BUILDING PROTOCOLS FOR SISQI, AN ITERATIVE DESCRIPTION

previously-known method to reduce the cheating probability to exponentially-low bounds was to merge
traps into the single computation run at the expense of using a more complicated graph and then using
fault-tolerant quantum error-correction codes on top to achieve the desired amplification of the security
(blowing up the overhead in the process). We therefore as of now consider only functions on classical
inputs and outputs which are deterministically computable in the MBQC framework with angle set Θ.2

We later prove that this restriction combined with a classical repetition error-correcting code is sufficient
to go from inverse polynomial to exponentially-low cheating probabilities.

This capability has two important practical implications. It allows the Client to use the full power
of the Server’s quantum device to perform its computation in a secure way, whereas previous schemes
ate up part of its capabilities to verify the computation. Then, security-wise, even though our protocol
remains secure when executed sequentially or in parallel, each call still offers more opportunities for an
attacker to succeed.

Note that this amplification technique is common and rather intuitive in purely classical scenarios
where attacks can be correlated across various rounds. Although this claim has been made as well in
the quantum case in previous works [53, 78, 71], it remained up to now unproven. However, attacks in
the quantum realm can be entangled across rounds in a way that is much more powerful than what is
possible with classical correlations. This hurdle has not been properly addressed until now and we give
the first formal quantum treatment of this technique in the next Section.

Redo Feature. We now described an additional feature that makes the protocol even more suitable
for implementation on near-term quantum devices as it vastly improves the probability of successful
termination on honest-but-noisy devices. Because the Client or the Server may experience failures in
their experimental system, they might wish to discard and redo a given run j. In this case, one of the
parties can send a Redoj request to the other, in which case the parties simply repeat the exact same
run albeit with fresh randomness. To prevent the Client from post-selecting on the measurement results
returned by the Server,3 the Redoj request is allowed only so long as the party asking for it is still
supposed to be manipulating the qubits of run j. This is explicitly delineated in the description of the
full protocol: the Client cannot ask for a redo after the State Preparations have all been performed but
the Server can always make this request.

We show in the next section that this does not impact the blindness nor verifiability of the scheme.
This means that a dishonest Server cannot use Redo requests to trick the Client into accepting an
incorrect result. This has an important practical impact: without this feature, honest failures of the
experimental devices happening during a test run would be counted as a failed test run, thus decreasing
drastically the likelihood of successfully completing the protocol. As they can be safely ignored, the only
consequence of experimental failures that are caught during the execution is to increase the expected
number of repeated runs. This is something that is already used by experimentalists while performing
protocols, but we choose to deal with it explicitly in order to prove that this behaviour does not open a
loophole in the security of our scheme.

2Note that this restriction can be easily loosened to require the computation to be only approximately deterministically
computable on the Server’s graph for a negligible error probability.

3This does not imply that the Client may act maliciously, rather it is meant to explicitly forbid such post-processing
by honest Clients in an experimental setup where such optimisations may be tempting.

217

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

High-Level Protocol Description. The Client will run the UBQC Protocol n times, but with
update rules for the measurement angles that differ depending on the type of run. For d < n runs chosen
at random, the Client will update the measurement angles according to the computational measurement
pattern, thus resulting in computation runs. The remaining t := n − d runs will be turned into test
runs in which the trap qubit is measured in the basis it was prepared in and the dummy is measured
in a random basis. In order to tolerate noise in the computation devices, we suppose that a fraction
of the traps can be triggered without the Client aborting. Let w be the number of test runs that are
tolerated as incorrect. At the end of the protocol, the Client counts the number of test runs where the
trap measurement has failed. If this number is higher than w, the Client aborts the protocol by sending
the message Abort to the Server.4 Otherwise it sets the majority outcome of the computation runs as its
output and sends message Ok to the Server.

Intuitively, the only way for the Server to disrupt the computation without being detected is by
attacking a sufficient number of computation runs (at least d/2) without triggering too many test runs.
This allows us to boost the verifiability to a value exponentially close to 1. On the other hand, the
blindness of the protocol is not affected as it is still perfectly hiding thanks to the composability of the
basic UBQC protocol, meaning that repeating it does not break its security.

Full Protocol. The verifiable protocol is given in Protocol 26. The influence of the various parameters
on the security bounds and on the noise-robustness of our protocol is detailed in the next sections along
with the constraints they must abide. Note that, similarly to the previous protocol, it is possible for the
Client to choose the secret variables for all runs in advance and the other angles can be pre-computed.
This is important when taking experimental implementations into account as it lowers the response delay
of the Client and therefore increases the probability that the protocol terminates without the qubits
decohering. Sampling these parameters in advance must take into account the probability of having to
redo a given run j due to experimental defects. If psucc is (an upper-bound on) the probability of not
resetting a run on honest devices, then the Client needs to pre-sample N = O(n/psucc) runs with the
same proportion of computation and test runs, d/n and t/n respectively.

We now show how this protocol can be extended to the case where the Server has more qubits in
their quantum registers. This is a strict extension in the sense that the protocol presented above is a
special case of the one from the next subsection on the specific two-qubit graph presented in Figure 7.1.
The security properties of the general protocol will be directly applicable to the protocol constructed
above.

7.2.4 Full Noise-Robust Verifiable Protocol

We start by showing how to extend the State Preparation step if the Client’s and Server’s communication
registers can hold more than a single qubit and the optical link used to establish entanglement supports
multiplexing. In that case, the state preparation consists of multiple parallel executions of the previously
described state preparation protocols. Each qubit in one party’s communication register is associated
to one of the other party’s qubits and they try to establish entanglement across each of those pairs of

4w would typically be set by the Client given its a priori understanding of the quality of the Server. As discussed
further below, this does not affect security: a higher value will only induce more runs than necessary to achieve a given
confidence level, while a lower value would risk aborting with high probability.

218

7.2. BUILDING PROTOCOLS FOR SISQI, AN ITERATIVE DESCRIPTION

Protocol 26 VBQC for Small-Scale Quantum Internet
Client’s Inputs:

• Two angles (φ(1), φ(2)) and a flow f on graph G = (V = {1, 2};E = {(1, 2)}) describing the
computation.

• A classical input to the computation (x(1), x(2)) ∈ {0, 1}2.
Protocol:
1. The Client chooses uniformly at random a partition (C, T) of [n] (C ∩ T = ∅) with #C = d, the

sets of indices of the computation and test runs respectively.
2. For j ∈ [n], the Client and the Server perform the following sub-protocol (if a party receives

Redoj from the other, both parties restart run j with fresh randomness):
• If j ∈ C (the run is a computation), they perform one instance of the Basic UBQC Protocol 25,

let yj be the classical output of this computation run (after corrections from measurement
results). The Client may send message Redoj to the Server before step 5 of this sub-protocol
while the Server may send it to the Client at any time.

• If j ∈ T (the run is a test), the Client chooses tj ∈R {1, 2} uniformly at random (the index
of the trap qubit for this test run). Both parties then perform the following sub-protocol:
a) The Client and the Server perform the same State Preparation steps as in the Basic

UBQC Protocol 25, but with the Client applying the UBQC State Preparation for
qubit tj and the Dummy State Preparation for the other qubit. Let (θ̃(tj), p(tj)) and p
be their respective outputs, the Client sets θ(tj) = θ̃(tj) + p(tj)π + pπ (if the dummy is
in state |1〉 then the CZ operation will have the effect of exchanging |+θ〉 and |−θ〉).

b) The Server performs a CZ gate between the qubits in both of its registers and sends Ack
to the Client.

c) For v ∈ {1, 2}, the Client sends a measurement angle δj(v), the Server measures the
appropriate register in the δj(v)-basis, returning outcome bj(v) to the Client. The
angle δ(v) is defined as follows: if v 6= tj (dummy qubit), δj(v) ∈R Θ is chosen randomly;
if v = tj (trap qubit), the Client samples rj(v) ∈R {0, 1} and δj(v) = θj(tj) + rj(v)π.

d) The Client sets the output of test run j as s(tj) := b(tj)⊕ r(tj).
3. For all j ∈ T (test runs), the Client checks that s(tj) = 0, incrementing a counter cfail (initialised

to 0) in case of failure. If cfail ≥ w, then the Client aborts, setting Abort as its output and sending
it to the Server.

4. Otherwise, the Client checks whether there exists some value y such that # {yj | j ∈ C, yj = y} >
d/2. If such a value y exists, it sets it as its output and sends Ok to the Server. Otherwise it
outputs Abort and sends it to the Server.

qubits. Since this process is heralded, if an entanglement establishment succeeded both parties know
which qubits are entangled and can perform the next steps of the previous State Preparations (i.e. the
Client measures its half of the EPR-pair either in a θ-basis for traps and computation qubits, or the
computational basis for traps). The Server must then perform a SWAP gate (unless it is the final round
of state preparation, in which case the qubits stay in the communication register) to transfer the state
of the communication qubit to the correct position in its graph. This is then repeated until all qubits
are initialised, with the Client reinitialising its qubits to the state |+〉 after each measurement.

This is described more precisely in the following Multi-Qubit State Preparation (Protocol 3). Without
loss of generality we suppose that the size of the communication registers on the Client’s and Server’s
sides are the same and can hold Q qubits, labelled qCC,l on the Client’s side and qSC,l on the Server’s
side with l ∈ [Q]. We further make the assumption that the state of the qubits can be transferred from
any position in the communication register of the Server to any position in the internal computation

219

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

register of the Server in an efficient way. We call SWAP(q, q′) this operation between qubits q and q′ and
leave its implementation and optimisation to the Server as it is not necessarily done atomically. We also
suppose that the qubits of the Server have all been initialised in the state |0〉 while those of the Client
are in the state |+〉.

Algorithm 3 Multi-Qubit State Preparation Protocol
Inputs: The Client has as input a measurement basis B (either a random θ-basis or the computational
basis).
Public Information: Number Q of qubits in communication registers, index q of destination qubit
in Server’s internal register.
Protocol:
1. The Client and the Server attempt to probabilistically establish entanglement (equivalent to

CNOT) on any one of the pairs of qubits (qCC,l, qSC,l) for l ∈ [Q]. Let L be the index of the first
established connection.

2. The Client performs the measurement described by basis B on qubit qCC,L and records the
outcome of measurement bq. It sends Ack to the Server and reinitialises its qubit qCC,L to the
state |+〉.

3. If qSC,L 6= q, the Server performs the operation SWAP(qSC,L, q) and sends Ack to the Client. If
qSC,L = q, no operation is performed. If q is a qubit in the communication register of the Server,
it is treated by both Client and Server as part of the internal register from now on for future
executions of the State Preparation Protocol.

We note that the Multi-Qubit State Preparation is a direct generalisation of the previous State
Preparations that subsumes both the Dummy and UBQC State Preparation: if the size Q of the
communication registers is equal to 1 we recover the previous protocols. Instead of reinitialising only the
used qubit, the Client can also start anew at each run and reinitialise all its qubits as this may improve
the fidelity of the generated EPR-pair. Any intermediate setting is also possible.

We now suppose that the Client has decided to perform a fixed computation which it has translated
into a computational measurement pattern to be run on a graph G supported by the known topology of
the Server’s device. Given this graph G, we construct test runs based on a colouring of the graph. A
partition of a graph in k sets – called colours – is a valid k-colouring if all adjacent vertices in the graph
have different colours. We define it formally below.

Definition 7.1 (Graph Colouring). Let G = (V,E) be a graph and for all v ∈ V recall that NG(v) are
the neighbours of v in G. Then a set of sets of vertices {Vi}i∈[k] with Vi ⊂ V is a k-colouring if it is a
partition of V which satisfies:

(7.1)

k⋃
i=1

Vi = V

∀i ∈ [k], ∀v ∈ Vi : NG(v) ∩ Vi = ∅

Hence, for each colour i, the Client can insert traps for all vertices of Vi while placing dummies in all
other positions. This defines the test associated to colour i. It is easy to check that the traps inserted
in this way are isolated from other qubits, thus giving deterministic outcomes when measured in their
preparation basis, and that they are undetectable for the Server as a test run results for the Server in

220

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

applying the same sequence of operations as for the regular UBQC computation. The Client chooses
a colouring {Vi}i∈[k] of G at the beginning of the protocol and sends it to the Server along with the
graph G.

For each test run, after having chosen secretly choose a colour at random and sent rotated qubits for
vertices of that colour and dummies everywhere else, the Client then instructs the Server to measure
all qubits as in computation runs, but with the measurement angle of trap qubits corresponding to
the basis they were prepared in and a random measurement basis for the dummies. A test run is now
said to have passed if all the traps yield the expected measurement results, and is said to have failed
otherwise. Figure 7.4 depicts one possible succession of computation and test runs for this new trap
insertion technique.

Figure 7.4: An example set of runs of the proposed protocol. Graphs in grey denote computation runs
while graphs containing red nodes (traps) and green nodes (dummies) are test runs. This example graph
on five nodes is completely covered with traps by the presented three types of test runs. Note that the
Server remains completely oblivious of the differences between the runs, which are solely known to the
Client.

We now describe the full protocol, replacing the State Preparation sub-protocol by direct qubit
communication so as to not overload the description.

7.3 Security Results and Noise Robustness

We show that the protocol presented above is secure in the Abstract Cryptography Framework of [99],
which guarantees automatically the full composability of protocols. As a consequence, the security of
our protocol will hold in a wide range of situations of practical interest such as when different runs are
distributed to different machines to reduce the overall execution time. This framework implies a higher
standard of security than in other approaches (see e.g. [84] and Section 5.1 of [115]).

7.3.1 Security Analysis

The purpose of the final protocol described in this chapter is to emulate the Verifiable Blind Delegated
Quantum Computation Resource while taking into account various degrees of limitations on the
underlying hardware. We recall here the definition of this resource for the specific case of classical
outputs.

Ideal Resource for Verifiable Delegated Quantum Computation. We define here a slightly
modified version of Resource 12 presented in Section 3.3.3. The resource S has interfaces for two parties
A and B. The A-interface takes two inputs: a classical input string x of length m and the description
of U , the unitary computation to perform on n+ k qubits (k of which are ancillae). The B-interface
takes two input bits c and b, both of which are filtered and set to 0 in the honest case. If c = 0, the
output at A’s interface is equal to (the classical result of)MComp ◦ U(|x〉 |0〉⊗k), whereMComp denotes

221

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

Protocol 27 Noise-Robust VBDQC with Deterministic Classical Output
Client’s Inputs:

• Angles {φ(v)}v∈V and flow f on graph G = (V,E, I,O).
• Classical input to the computation x ∈ {0, 1}#I .

Protocol:
1. The Client chooses uniformly at random a partition (C, T) of [n] (C ∩ T = ∅) with #C = d, the

sets of indices of the computation and test runs respectively.
2. For j ∈ [n], the Client and the Server perform the following sub-protocol (the Client may send

message Redoj to the Server before step 2.c while the Server may send it to the Client at any
time, both parties then restart run j with fresh randomness):
(a) If j ∈ T (test), the Client chooses uniformly at random a colour Vj ∈R {Vk}k∈[K] (this is

the set of traps for this test run).
(b) The Client sends #V qubits to the Server. If j ∈ T and the destination qubit v /∈ Vj is a non-

trap qubit (therefore a dummy), then the Client chooses uniformly at random dj(v) ∈R {0, 1}
and sends the state |dj(v)〉. Otherwise, the Client chooses at random θj(v) ∈R Θ and sends
the state

∣∣+θj(v)
〉
.

(c) The Server performs a CZ gate between all its qubits corresponding to an edge in the set E.
(d) For v ∈ V , the Client sends a measurement angle δj(v), the Server measures the appropriate

corresponding qubit in the δj(v)-basis, returning outcome bj(v) to the Client. The angle δj(v)
is defined as follows:
• If j ∈ C (computation), it is the same as in UBQC, computed using the flow and

the computation angles {φ(v)}v∈V . For v ∈ I (input qubit) the Client uses θ̃j(v) =
θj(v) + x(v)π in the computation of δj(v).

• If j ∈ T (test): if v /∈ Vj (dummy qubit), it is chosen uniformly at random from Θ; if
v ∈ Vj (trap qubit), the Client chooses uniformly at random rj(v) ∈R {0, 1} and sets
δj(v) = θj(v) + rj(v)π.

3. For all j ∈ T (test run) and v ∈ Vj (traps), the Client verifies that bj(v) = rj(v)⊕ dj(v), where
dj(v) is defined for non-dummy qubits by dj(v) =

⊕
ṽ∈NG(v) dj(ṽ) is the sum over the values of

neighbouring dummies of qubit v. Let cfail be the number of failed test runs (where at least one
trap qubit does not satisfy the relation above), if cfail ≥ w then the Client aborts by sending
message Abort to the Server.

4. Otherwise, let yj ∈ {0, 1}#O for j ∈ C be the classical output of computation run j (after
corrections from measurement results). The Client checks whether there exists some output
value y such that # {yj | j ∈ C, yj = y} > d/2. If such a value y exists (this is then the majority
output), it sets it as its output and sends message Ok to the Server. Otherwise it sends message
Abort to the Server.

a computational basis measurement. When c = 1, A receives the Abort message. At B’s interface, S
outputs nothing for b = 0 while for b = 1, B receives l(U , x), the permitted leakage.

The permitted leakage in the case of our protocol is set to G, the graph used in the computation, and
the size of the input m. When G is a universal graph for MBQC computation, the permitted leakage
reduces to an upper-bound on the size of the computation U .

Instead of following the direct approach to proving security (describing a simulator for malicious
parties), we will take a slightly different path. Proving security will rely on the results presented in [41]
and recalled in Section 3.4, which reduces the security of a Delegated Quantum Computation Protocol
to the conjunction of four stand-alone criteria:

• εcor -local-correctness, which is satisfied if the protocol with honest players outputs the expected

222

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

output;
• εbl-local-blindness, meaning that the malicious Server’s state at the end of the protocol is indistin-

guishable from the one which it could have generated on its own;
• εver -local-verifiability, if either the Client accepts a correct computation or aborts at the end of

the protocol.
• εind-independent-verification, i.e. the Server can determine on its own, using the transcript of the

protocol and its internal registers, whether the Client will decide to abort or not.

With this at hand, we now state our main result:

Theorem 7.1 (Security of Protocol 27). For n = d + t such that d/n and t/n are fixed in (0, 1)
and w such that w/t is fixed in (0, 1/2k), Protocol 27 with d computation runs, t test runs, and a
maximum number of tolerated failed test runs of w is ε-composably-secure with ε = 4

√
2εver and with

εver exponentially small in n.

Proof. We show that our protocol satisfies each of the stand-alone criteria before combining them to
get composable security.

Perfect Local-Correctness. On perfect (non-noisy) devices, local-correctness is implied by the
correctness of the underlying UBQC Protocol. This is because all the completed computation runs
correspond to the same deterministic UBQC computation, and that on such devices, general UBQC
Protocols have been proven to be perfectly correct [21, 41]. Thus εcor = 0.

Perfect Local-Blindness. To prove that Equation 3.9 holds for εbl = 0, first note that at the end of
our protocol, the Client A reveals to the Server B whether the computation was accepted or aborted.
Hence, each case can be analysed separately. Second, we show that the interrupted runs that have
triggered a Redo can be safely ignored. Indeed, each one of them is the beginning of an interrupted
UBQC computation, and, because UBQC is composable and perfectly blind [41], no information can leak
to the Server through the transmitted qubits. In addition, our protocol restricts the honest party A in
its ability to emit Redo requests, so that no correlations are created between the index of the interrupted
runs and U or the secret random parameters used in the runs (angle and measurement padding, and
trap preparations). As a consequence, from the point of view of B, the state of the interrupted runs
is completely independent of the state of the non-interrupted ones and does not contain information
regarding the input, computation or secret parameters. That is, its partial trace over A can be generated
by B alone.

For the non-interrupted runs, we can invoke the same kind independence argument between the
computation runs and the test runs. As a result blindness of our protocol stems from the blindness of
the underlying computation runs. In case the full protocol is a success, we can rely on the composability
of the perfect blindness of each UBQC computation run to have perfect local-blindness. For an abort,
we can consider a situation that is more advantageous for B by supposing that alongside the Abort
message sent by A, it also gives away the location of the trap qubits. In this modified situation, the
knowledge of the computation being aborted does not bring additional information to B as it only
reveals that one of the attacked position was a trap qubit, which B now already knows. Using our
independence argument between trap location on the one hand and the inputs, computation and other

223

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

secret parameters, we conclude that revealing the location of the trap qubits does not affect the blindness
of the computation runs. Hence, using composability again and combining the abort and accept cases,
we arrive at Equation 3.9 with εbl = 0.

Perfect Local-Independent-Verification. Because in our protocol, the Client shares with the
Server whether the computation was a success or an abort, this is trivially verified.

Exponential Local-Verifiability (Proof Sketch). Local-verifiability is satisfied if any deviation
by the possibly malicious Server yields a state that is εver -close to a mixture of the correct output and
the Abort message. Equivalently, the probability that the Server makes the Client accept an incorrect
outcome is bounded by εver . Let d/n, t/n and w/t be the ratios of test, computation and tolerated failed
test runs. Our protocol’s local-verifiability is given by Lemma 7.1. We give below a sketch of the main
ideas yielding the result.

The first step is to describe all the messages received by the Client during the execution of the
protocol without making assumptions on the behaviour of the Server. This comprises the outcomes of
the computational runs, but also the measurement of trap qubits and of any other qubit used in the
computation or in the tests. Following [53], this can be expressed as the state one would obtain in the
perfect protocol followed by a pure deviation on this state.

The second step consists of using this state to bound the probability of failure, i.e. the probability of
accepting the computation but having the wrong result. This happens if at least d/2 outcomes of the
computation runs have had at least one bit-flip, and no more than w test runs have failed.

In the third step, we use the randomisation over the prepared qubits and measurement angles to twirl
the deviation of the Server and to reduce it to diagonal form in the Pauli basis. This further simplifies
the expression for the bound.

The fourth step exploits this reduced form of the attack by noticing that it can be dealt with in a
classical fashion. To this end, possible attacks are classified using two criteria:

1. Does the attack affect at least d/2 computation runs? Only such attacks stand a chance to corrupt
the result of the computation, otherwise the repetition code automatically corrects the deviations.

2. Does the attack make less than w of the t test runs fail? Only then will the deviations be tolerated
without triggering a client-side abort.

Depending on the answer to the questions above, the attack falls in one of four regimes. Optimally, the
protocol would abort if and only if the result of the computation is corrupted. Clearly, we cannot hope
to perfectly achieve this. We therefore must take into account two types of incorrect categorisation. A
false positive happens when the protocol aborts although less than d/2 computation runs have been
affected. While this is undesirable behaviour in terms of noise-tolerance, it does not affect security. Since
we are here analysing the verifiability of our protocol, we are solely concerned about false negatives: the
attack affects at least d/2 computation runs and no abort is triggered. To achieve a satisfying level of
security, no attack should fall into this regime with more than negligible probability.

For intuition’s sake, we give here an analysis of the average case (Figure 7.5). If the Server deviates
in exactly half of the runs on a single qubit (which we suppose to be sufficient for corrupting the
computation), the number of affected computation runs will be d/2 on average. In other words, there are

224

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

Affected and failed

0 tt/2t/(2k) 0 tt/(2k) t/2

0 t

Test runs

Less than half runs attacked More than half runs attacked

Cannot affect enough comp. runs Possibly affects enough comp. runs

Affected and passed

Figure 7.5: Because of blindness, an attack on less than half of the runs is likely to affect less than
d/2 computation runs. As such attacks are error-corrected, the protocol should output a result. On
the contrary, if an attack is performed on more than half the runs, it has a chance to corrupt the
computation and the result should not be trusted. Likewise, in the first case, less than t/2 test runs
should be affected, while in the second more than t/2 should be. Yet, there are only 1/k test qubits per
test run meaning that affected test runs turn into failed test runs with 1/k probability. If the threshold
value w is set below t/2k, aborts are thrown only when there is a effective risk of tampering. Here, we
arbitrarily set k = 4.

good chances that just enough computation runs are affected to corrupt the final result. This is because
the attacker is blind and hence the deviations are randomly distributed over computation and test runs.
Similarly, we expect the number of affected test runs to be t/2. Considering that any qubit in a run has
a probability of 1/k to be a trap, we expect the number of failed test runs, i.e. the number of test runs
with at least one affected trap, to be t/2k. As a consequence, choosing w ≥ t/2k cannot lead to a secure
protocol, since the simple attack described above has a non-negligible probability of corrupting the final
result while remaining unnoticed. Conversely, setting w ≤ t/2k foils this strategy.

The proof presented below goes beyond this average case analysis by showing that this attack is
essentially optimal. It uses concentration bounds for the underlying probability distributions to obtain
precise bounds that are exponentially-low in the various parameters.

Proof of Exponential Composable-Security. Our protocol has perfect correctness (for noiseless
devices), blindness and input-independent verification. In addition, it is εver -locally-verifiable with εver

exponentially small in n. Therefore, by the Local-Reduction Theorem, it is ε-composably-secure with
ε = δ = 4

√
2εver and ε exponentially small in n.

�

Note that because we used the Local-Reduction Theorem to obtain fully composable security, we
incur an additional square root on our verifiability bound given by Equation 3.15 and need to satisfy the
additional independence property. This is of course not required if the protocol is only used sequentially
with other schemes, which will probably be the case in early quantum computations since the machines
will not be able to handle multiple protocols at the same time. In this case, the stand-alone model would
be sufficient since it provides sequential composition, but would fail if parallel composition is needed.

We now prove formally the verifiability of our protocol.

225

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

Lemma 7.1 (Local Verifiability of Protocol 27). Let 0 < w/t < 1/2k and 0 < d/n < 1 be fixed ratios,
for a k the number of different test runs. Protocol 27 is εver -locally-verifiable for exponentially-low εver .

Proof. We will take a direct approach for proving Lemma 7.1 by bounding the probability of yielding a
wrong output while not aborting. To do so, we consider the state of the combined computation as if it
were a single verified computation and not made of separate sequential runs. Once again, in our protocol,
because the parties can only ask for redoing a run independently of the input, computation, used
randomness and of the output of the computation itself (comprising the result of trap measurements),
interrupted runs can be safely ignored in the verification analysis as the state corresponding to these
runs is uncorrelated to that of the completed runs. The combined computation view will be useful as we
want to consider the Server B performing any kind of attack. In particular, it could decide to perform
some action on a qubit given measurements in one or several of the underlying runs, or to entangle the
various underlying runs together. Yet, for each qubit of the combined computation, we will continue to
refer to the underlying run this qubit would belong to if the computation was done using sequential runs.

Output of the combined computation. We first consider the density operator B({Fj}j , ν) that
corresponds to the classical messages the Client A receives during its interaction with B, comprising the
final message containing the encrypted measurement outcomes. Below, the CPTP maps {Fj}j represent
the chosen behavior of B and possibly act on the combined computation as a whole, and not only run
by run. By representing the classical messages as quantum states in the computational basis, we can
always write:

(7.2) B({Fj}j , ν) = TrB
{∑

b

|b+ cr〉〈b| FP
(
|0〉〈0|B ⊗

∣∣Ψν,b
〉〈

Ψν,b
∣∣)P†F† |b〉〈b+ cr|

}
where b is the list of measurement outcomes defining the computation branch; ν is a composite

index relative to the secret parameters chosen by A, i.e. the type of each underlying run, the padding
of the measurement angles and measurements outcomes and the trap setup; |b+ cr〉〈b| ensures that
only the part corresponding to the current computation branch is taken into account and removes the
One-Time-Pad encryption on non-output and non-trap qubits while leaving output and trap qubits
unaffected, i.e. encrypted; |0〉〈0|B is some internal register for B in a fixed initial state; and

∣∣Ψν,b
〉
is

the state of the qubits sent by A to B at the beginning of the protocol tensored with quantum states
representing the measurement angles of the computation branch b.

To obtain this result, we can follow the line of proof of [53] and [78] applied to the combined
computation. This works by noting that for a given computation branch b and given random parameters ν,
all the measurement angles are fully determined. Therefore, provided that the computation branch
is b, we can include the measurement angles into the initial state. This defines

∣∣Ψν,b
〉
. Then, each Fj is

decomposed into an honest part and a pure deviation. All the deviations are commuted and collected
into F applied after P, the unitary part of honest protocol, is applied. The projections onto |b〉 then
ensures that after the deviation induced by B the perceived computation branch is b. This, together
with the decrypting of non-output non-trap qubits, gives Equation 7.2.

Probability of failure. A failure for the combined computation occurs when the result after the
majority vote is incorrect while the computation is accepted.

226

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

The combined computation being deterministic, we can define P⊥, the projector onto the subspace
of incorrect states for the output qubits before the majority vote. Yet, for the combined computation to
be accepted, no more than w test runs have a trap qubit measurement outcome opposite to what was
expected. Let T denote the set of trap qubits which is determined by T , the set of test runs, and the
type of each test run. In absence of any deviation on the combined computation, their expected value is
|rT〉 =

⊗
t∈T |rt〉 where rT = (rt)t∈T denotes the measurement outcome padding values restricted to trap

qubits. Therefore, the projector onto the states of the trap qubits yielding to an accepted combined
computation can be written as

∑
w∈W X

w
T |rT〉〈rT|Xw

T with Xw
T =

⊗
t∈T X

wt
t , and where W is the set of

length #T binary vectors w such that wH(w) < w, i.e. that have a one in no more than w underlying
(test) runs. Combining the projector onto incorrect output and the one for accepted computation, we
obtain the probability of failure:

(7.3)
Pr(fail) =

∑
ν

∑
w∈W

∑
b,k,σ,σ′

Pr(ν) Tr
{

(P⊥ ⊗Xw
T |rT〉〈rT|Xw

T) ·

(
αkσα

∗
kσ′ |b+ cr〉〈b|σP

∣∣Ψν,b
〉〈

Ψν,b
∣∣P†σ′ |b〉〈b+ cr|

)}

where F has been decomposed into Kraus operators indexed by k, that were in turn decomposed onto
the Pauli basis through the coefficients αkσ and αkσ′ . Consequently, σ and σ′ are Pauli matrices.

Necessary condition for failure. The difficulty with the above expression for the probability of
failure consists in determining the exact form of P⊥ and manipulating it. Instead, we will derive a coarse
necessary condition for the final state of the non-trap qubits to be in the subspace defined by P⊥. Then,
we will upper bound Pr(fail) by evaluating the probability of satisfying our necessary condition while
accepting the whole computation.

First, note that the output of the computation being classical and deterministic, we can write the
correct decrypted output state as |sO〉〈sO| for some length |O| binary vector sO over the set of output qubit
positions O of the combined computation. Next, as for the trap qubits, the value sent to the Client is
One-Time-Padded by the value of the random parameter rO to preserve blindness of the Server (i.e. cr is
0 for output qubits). Hence, the state of the output qubits received by the Client in absence of deviation
is |sO + rO〉〈sO + rO|.

Now, because the result of the computation is the majority vote of the measurement outcomes for the
output qubit for each underlying computation run, each result bit is protected by a length d repetition
code. All attacks resulting in less than d/2 non-trivially affected underlying computational runs will be
corrected. Conversely, for a failure to happen, it is necessary that at least d/2 underlying computation
runs are non-trivially affected by the attack Ω. This means that the subspace stabilized by P⊥ is also
stabilized by the coarser projection operator

∑
v∈V X

v
O |sO + rO〉〈sO + rO|Xv

O , where V is the set of binary
vectors v over O with wH(v) ≥ d/2, i.e. with ones in at least d/2 positions of computational runs. As a

227

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

consequence, the latter projector can be used to replace P⊥ which yields an upper bound on Pr(fail):

(7.4)

Pr(fail) ≤
∑
ν

v∈V,w∈W
b′,k,σ,σ′

Pr(ν)αkσα∗kσ′ Tr
{

(Xv
O ⊗Xw

T) (|sO + rO〉〈sO + rO| ⊗ |rT〉〈rT|) (Xv
O ⊗Xw

T)·

|b+ cr〉〈b|σP
∣∣Ψν,b

〉〈
Ψν,b

∣∣P†σ′ |b〉〈b+ cr|

}

where b′ is the binary vector obtained from b by restricting it to non-output, non-trap qubits, i.e. b =
(bO, bT , b′). Since cr = 0 for output and trap qubits, the above equation is obtained from the simple
equality

∑
b(〈sO + rO|⊗〈rT|)(Xv

O⊗Xw
T) |b+ cr〉〈b| =

∑
b′(|sO + rO〉⊗|rT〉⊗|b′〉)(Xv

O⊗Xw
T) and the circularity

of the trace.

Using blindness of the scheme. The design of the protocol yielding the combined computation
ensures blindness. This implies that the resulting state of any set of qubits after applying P and taking
the average over their possible random preparations parameters is a completely mixed state. This can
be applied in the above equation for the set of non-output and non-trap qubits. For output and trap
qubits, we need first to compute inner products before taking the sum over their random preparation
parameters νO and νT respectively. However, we know that the perfect protocol produces the traps in
their expected states |so + ro〉 and |rt〉. This gives, using the circularity of the trace:

(7.5)

Pr(fail) ≤
∑
νO,νT

v∈V,w∈W
b′,k,σ,σ′

Pr(νO, νT)αkσα∗kσ′
[
〈sO + rO| ⊗ 〈rT| ⊗ 〈b′| (Xv

O ⊗Xw
T)

[
σ

(
|sO + rO〉〈sO + rO| ⊗ |rT〉〈rT| ⊗

I
Tr I

)
σ′
]
(Xv

O ⊗Xw
T) |sO + rO〉 ⊗ |rT〉 ⊗ |b′〉

]
As the Pauli matrices are traceless, this imposes σl = σ′l for l /∈ O ∪ T, where subscript l is used to select
the action of σ and σ′ on qubit l. For output qubits,

∑
ro
〈so + ro|Xvo

o σo |so + ro〉〈so + ro|σ′oXvo
o |so + ro〉

vanishes for σo 6= σ′o and similarly for the traps,
∑
rt
〈rt|Xwt

t σt |rt〉〈rt|σ′tX
wt
t |rt〉 vanishes for σt 6= σ′t.

Hence we get:

(7.6)

Pr(fail) ≤
∑
νO,νT

v∈V,w∈W
k,σ

Pr(νO, νT)|αkσ|2 ×
∏
o∈O

| 〈so + ro|Xvo
o σo|so + ro〉|2 ×

∏
t∈T

| 〈rt|Xwt
t σt|rt〉|2

≤
∑
k,σ

|αkσ|2f(σ)

with

(7.7) f(σ) =
∑
νO,νT

v∈V,w∈W

Pr(νO, νT)×
∏
o∈O

| 〈so + ro|Xvo
o σo|so + ro〉|2 ×

∏
t∈T

| 〈rt|Xwt
t σt|rt〉|2

228

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

Worst case scenario (for the upper-bound). The worst case scenario corresponds to maximising
the bound on Pr(fail). Since we have

∑
k,σ |αkσ|2 = 1, our bound is worst when αkσ = 1 for σ such that

the value of f(σ) is maximum. In this case we get:

(7.8) Pr(fail) ≤ max
σ

f(σ)

Simplified expression for the bound. Given our protocol, a global trap and output qubit config-
uration νO, νT is defined by (i) the set T of trap qubits, itself entirely determined by the position and
kind of test runs within the sequence of runs, and (ii) the preparation parameters θl and rl of each
trap and output qubits. Each parameter of (i) and (ii) being chosen independently, the probability of a
given configuration νO, νT can be decomposed into the probability Pr(T) for a given configuration of trap
locations multiplied by the probability of a given configuration for the prepared state of the trap and
output qubits,

∏
l∈O∪T

∑
θl,rl

Pr(θl, rl). Using this, one can rewrite f(σ):

(7.9) f(σ) =
∑

T
v∈V,w∈W

Pr(T)×
∏
o∈O

∑
θo,ro

Pr(θo, ro)| 〈so + ro|Xvo
o σo|so + ro〉|2×

∏
t∈T

∑
θt,rt

Pr(θt, rt)| 〈rt|Xwt
t σt|rt〉|2

Now, let σ be a maximising attack and denote by σ|X the binary vector indexed by qubit positions of
the combined computation where ones mark qubit positions for which σ acts as X or Y . In the following,
we allow O to also denote the binary vector over qubit positions of the combined computation where
ones are positioned for qubits in O, and similarly for T. Using the fact that | 〈so + ro|Xvo

o σo|so + ro〉|2 is
equal to 1 for Xvo

o σo ∈ {I, Z} and 0 otherwise, we obtain that

(7.10)
∏
o∈O

∑
θo,ro

Pr(θo, ro)| 〈so + ro|Xvo
o σo|so + ro〉|2 =

1 for O� σ|X = v

0 otherwise

where, for a and b binary vectors, a � b is the bit-wise binary product vector. We obtain a similar
expression for the trap qubits. Inserting these expressions in Equation 7.7 we obtain that for the attack
to be successful, it must affect in a non-trivial way at least d/2 computation runs, and at most w test
runs. The probability of failure can thus be rewritten as:

(7.11) Pr(fail) ≤ max
σ

∑
T∈Υσ

Pr(T)

where Υσ are configurations where the binary vector σ|X has ones in at most w test runs and has ones
on at least d/2 computation runs.

Closed form upper bound. Now, assume that the maximum above is attained for some σ that
happen to affect one of the run, say k, on more than one qubit. Consider σ′ with the sole difference to σ
that only one of the qubits in run k is affected by the attack. Because run k is still non trivially affected
by σ and σ′, we conclude that all configurations T in Υσ are also in Υσ′ . Therefore

(7.12) Pr(fail) ≤ max
m

max
σ∈Em

∑
T∈Υσ

Pr(T)

where Em denotes the set of Pauli operators with m single qubit deviations all in distinct runs. Note
that the parameter m and the locations of the attacks within each run describe the adversary’s strategy.

229

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

Additionally, since the random choice of test runs is completely uniform, the term
∑
T∈Υσ Pr(T) is

invariant under permutations of the test and computation runs. We can hence restrict the range of the
maximum to the specific Pauli operators σm with a deviation on a single qubit in each of the first m
runs:

(7.13) Pr(fail) ≤ max
m

∑
T∈Υσm

Pr(T)

0 d d+ t = n

Comp. runs Test runs

Z < d/2 Z > d/2

Affected Affected Aff. & passed

XY < w

Aff. & failed

Y > w X

Aff. & failed Aff. & passed

Figure 7.6: The four cases needed to determine a closed form upper bound for the probability of failure.
First, we determine the probability for the number of affected computation runs. If it is low enough
(Z < d/2), no need to abort. If it is high (Z ≥ d/2), we find a bound on the probability that the number
of failed test runs Y is below or above w.

Formal bound. To find a closed form upper bound for the right-hand side of Equation 7.13, we fix
an arbitrary threshold (1/2− φ)n for m controlled by the (small) parameter φ > 0 and distinguish two
regimes (see Figure 7.6):

1. For m ≤ (1/2− φ)n, we use an upper bound on the probability that σm manages to affect at least
d/2 computation runs, then ignoring the condition that σm affects less than w traps.

2. For m ≥ (1/2− φ)n, we conversely upper-bound the probability that σm triggers not more than
w traps, thus ignoring the condition that σm affects more than d/2 computation runs. This is done
in two steps:

a) Find a lower bound (with high probability) on the number of affected test runs.
b) Use this number to find a lower bound on the number of triggered traps.

In the following, we define the constant ratios of test, computation and tolerated failed test runs as
δ := d/n, τ := t/n and ω := w/t. Let Z be a random variable counting the number affected computation
runs and Y a random variable counting the number of failed test runs, i.e. the number of affected test

230

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

runs where the deviation hits a trap. We have that:

(7.14)

Pr [fail] ≤ max
m

∑
T∈Υσm

Pr(T) = max
m

Pr
[
Z ≥ d

2 ∧ Y ≤ w
]

= max
{

max
m≤(1

2−φ)n
Pr
[
Z ≥ d

2 ∧ Y ≤ w
]
, max
m≥(1

2−φ)n
Pr
[
Z ≥ d

2 ∧ Y ≤ w
]}

≤max
{

max
m≤(1

2−φ)n
Pr
[
Z ≥ d

2

]
, max
m≥(1

2−φ)n
Pr [Y ≤ w]

}
Since Pr [Z ≥ d/2] and Pr [Y ≤ w] are respectively increasing and decreasing with the number of

attacked runs, both inner maximums are attained for m = (1/2− φ)n and we therefore focus on this
case.

We start by computing a bound on the probability too many of the computation runs failed. Note that
Z is (n, d,m)-hypergeometrically distributed (of mean md/n). We are then interested in the following
probability which we can upper-bounded using Corollary 2.2 (Serfling’s bound) for m/n < 1/2:

(7.15) Pr
[
Z ≥ d

2

]
≤ exp

(
−2
(

1
2 −

m

n

)2
d2

m

)
≤ exp

(
− 4δ2φ2

1− 2φn
)

We then focus on upper-bounding the probability that not enough test runs failed. We start by defining
the random variable X counting the test runs affected by the Server’s deviation. Then, for any threshold
x we have that:

(7.16) Pr [Y ≤ w] = Pr [Y ≤ w | X < x] Pr [X < x] + Pr [Y ≤ w | X ≥ x] Pr [X ≥ x]

The threshold x for variable X will be fixed later such that the probability Pr [X < x] is negligible. With
this in mind, we simplify the expression above by upper-bounding it in the following way:

(7.17) Pr [Y ≤ w] ≤ Pr [X < x] + Pr [Y ≤ w | X ≥ x]

Note that decreasing X also makes Y smaller. This is to be understood in the following way: Y is
dependent on X. For all x1 ≤ x2 and for all y it holds that Pr[Y ≤ y|X = x1] ≥ Pr[Y ≤ y|X = x2]. In
other words, Y conditioned on X = x1 is less than Y conditioned on X = x2 in the usual stochastic
order. Therefore:

(7.18) Pr [Y ≤ w] ≤ Pr [X < x] + Pr [Y ≤ w | X = x]

We now fix the threshold x to (m/n − ε1)t and use the fact that X is (n, t,m)-hypergeometrically
distributed (of mean mt/n) to apply Corollary 2.1 (tail-bound for hypergeometric distributions) and
obtain, for all ε1 > 0:

(7.19) Pr
[
X ≤

(m
n
− ε1

)
t
]
≤ exp

(
−2 t

2

m
ε21

)
= exp

(
− 4τ2ε21

1− 2φn
)

231

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

In other words, this means that with high probability, the attack will affect at least (m/n− ε1) t test
runs. As the next step, we can derive from here a bound on the probability that the random variable Y is
below some threshold. Since the type of test runs is sampled independently uniformly at random from the
set of test runs, Y conditioned on the event that X = (m/n− ε1) t follows a ((m/n− ε1) t, 1/k)-binomial
distribution. Let ε2 > 0. Applying Lemma 2.1 (Hoeffding’s bound for binomial distributions), we arrive
at:

(7.20)
Pr
[
Y ≤

(
1
k
− ε2

)(m
n
− ε1

)
t

∣∣∣∣ X =
(m
n
− ε1

)
t

]
≤ exp

(
−2t

(m
n
− ε1

)
ε22

)
= exp

(
− (1− 2φ− 2ε1) τε22n

)
We choose to set the threshold for failed test runs to the value above w = (1/k − ε2) (1/2− φ− ε1) t.
Combining the previous expressions, we therefore obtain:

(7.21) Pr [Y ≤ w] ≤ exp
(
− 4τ2ε21

1− 2φn
)

+ exp
(
− (1− 2φ− 2ε1) τε22n

)
We combine this bound on failed test runs with the bound on affected computation runs (Eq. 7.15) to
upper-bound the failure probability given in Eq. 7.14 for m = (1/2− φ)n as follows:

(7.22) Pr [fail] ≤ max
{

exp
(
− 4δ2φ2

1− 2φn
)
, exp

(
− 4τ2ε21

1− 2φn
)

+ exp
(
− (1− 2φ− 2ε1) τε22n

)}
This bound holds for any ω = (1/k − ε2)(1/2− φ− ε1), ε1 ∈ (0, 1/2), ε2 ∈ (0, 1/k) and φ ∈ (0, 1/2− ε1).
To obtain an optimal bound, this expression must be minimized over ε1, ε2, and φ. Irrespective of
the exact form of the optimal bound, choosing φ, ε1, and ε2 sufficiently small implies the existence of
protocols with verification exponential in n, for any fixed 0 < ω < 1/2k and fixed δ, τ ∈ (0, 1). �

7.3.2 Noise Robustness

7.3.2.1 Local-Correctness on Honest-but-Noisy Devices

The local-correctness property discussed in the previous section did not take into account device
imperfections. In fact, the analysis of blindness and verification makes no distinction between these
imperfections and potentially malicious behaviours. Although satisfying these properties makes our
protocol a concrete implementation of the Ideal Resource for Verifiable Delegated Quantum Computation,
it could still fall short of expectations in terms of usability. Fortunately, for a class of realistic imperfections,
our protocol has the additional property of being capable of correcting their impact and accepting with
high probability. The final outcome is then the same as that obtained on noiseless devices with honest
participants.

This additional noise-robustness property, the main innovation of this work, amounts to prove that
Protocol 27 satisfies the local-correctness property with negligible εcor for noisy honest Client and/or
Server devices. We prove this property under the following restrictions:

• The noise can be modelled by run-dependent Markovian processes – i.e. a possibly different
arbitrary CPTP map acting on each run.

232

7.3. SECURITY RESULTS AND NOISE ROBUSTNESS

• The probability that at least one of the trap measurements fails in any single test run is upper-
bounded by some constant pmax < 1/2 and lower-bounded by pmin ≤ pmax .

Theorem 7.2 states that, in order for the protocol to terminate correctly with overwhelming probability
on these noisy devices, w should be chosen such that w/t > pmax . Conversely, for any choice of w/t < pmin ,
we show that the protocol aborts with overwhelming probability. Recall that the constant ratios of test,
computation and tolerated failed test runs are given by δ, τ and ω.

Theorem 7.2 (Local-Correctness of VDQC Protocol on Noisy Devices). Assume a Markovian run-
dependent model for the noise on Client and Server devices and let pmin ≤ pmax < 1/2 be respectively a
lower and an upper-bound on the probability that at least one of the trap measurement outcomes in a
single test run is incorrect. If ω > pmax , Protocol 27 is εcor -locally-correct with exponentially-low εcor :

(7.23) εcor = exp
(
−2(ω − pmax)2τn

)
+ exp

(
−2
(

1
2 − pmax

)2
δn

)
.

On the other hand, if ω < pmin, the Client’s acceptance probability in Protocol 27 is exponentially-low
and upper-bounded by:

(7.24) exp
(
−2(pmin − ω)2τn

)
Proof. We define random variables Y that corresponds to the number of failed test runs during one
execution of the protocol, and Z counting the number of affected computation runs (where at least one
bit of output is flipped). We call Ok the event that the Client accepts at the end of the protocol - if not
many test runs fail, meaning that Y < w - and Correct the event corresponding to a correct output - if
few of the computation runs have their output bits flipped and therefore Z < d/2.

For ω > pmax . Equivalently, we have that w > tpmax . We are looking to lower-bound the probability
of an honest run producing the correct outcome and not aborting. This happens if the noise has not
disturbed too many computation and test runs (less than d/2 and w respectively):

(7.25) Pr [Correct ∧ Ok] = Pr
[
Z <

d

2 ∧ Y < w

]
= Pr

[
Z <

d

2

]
Pr [Y < w]

The second equality stems from the fact that the noise on runs is independent across runs and the
nature of each run is chosen uniformly at random. We start by considering the effect on computation
runs. If a computation run is affected by a given noise, then there is at least one type of test run that
would have been affected (triggering traps) by the same noise. Since pmax is an upper-bound on the
probability that any type of test run fails, then it is also an upper-bound on the probability that the
outcome of the computation is incorrect if we assume (in the worst case) that any corruption on a single
qubit of a computation run leads to a corrupted computation. Let Ẑ1 be a random variable following a
(d, pmax)-binomial distribution of mean dpmax . Since we suppose that the noise is not correlated across

233

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

runs (meaning that the probabilities runs fail on noisy devices are independent), Z is upper-bounded by
Ẑ1 in the usual stochastic order, which in this case gives:

(7.26) Pr
[
Z <

d

2

]
≥ Pr

[
Ẑ1 <

d

2

]
= 1− Pr

[
Ẑ1 ≥

d

2

]
Since pmax < 1/2 then E

(
Ẑ1

)
= dpmax < d/2 and Lemma 2.1 yields:

(7.27) Pr
[
Ẑ1 ≥

d

2

]
≤ exp

(
−2
(
dpmax − d

2
)2

d

)
= exp

(
−2δ

(
pmax −

1
2

)2
n

)
= εZ ∈ negl(n)

Then Pr[Correct] = Pr [Z < d/2] ≥ 1− εZ .
We can now focus on the test runs. Note that Y describes exactly the number of test rounds in which

at least one trap measurement outcome is incorrect (by definition of a failed test run). The probability
that a given test run fails is therefore upper-bounded by pmax . Let Ŷ1 be a random variable following
a (t, pmax)-binomial distribution. Since we suppose that the noise is not correlated across runs, Y is
upper-bounded by Ŷ1 in the usual stochastic order:

(7.28) Pr [Y < w] ≥ Pr
[
Ŷ1 < w

]
= 1− Pr

[
Ŷ1 ≥ w

]
Further, since E

(
Ŷ1

)
= tpmax < w, applying Lemma 2.1 yields:

(7.29) Pr
[
Ŷ1 ≥ w

]
≤ exp

(
−2(tpmax − w)2

t

)
= exp

(
−2(ω − pmax)2τn

)
= εY,1

Then Pr[Ok] = Pr [Y < w] ≥ 1− Pr
[
Ŷ1 ≥ w

]
= 1− εY,1. We conclude that with high probability not

enough test runs are corrupted to trigger an abort and the Client accepts the outcome of the computation.
Combining these inequalities gives:

(7.30) Pr [Correct ∧ Ok] ≥ (1− εZ)(1− εY,1) ≥ 1− (εZ + εY,1)

For ω < pmin. In that case, we have that tpmin > w. We show that the probability of accepting is
upper-bounded by a negligible function. Let Ŷ2 be a random variable following a (t, pmin)-binomial
distribution, the number of failed test runs Y then is lower-bounded by Ŷ2 of mean tpmin in the usual
stochastic order:

(7.31) Pr [Y < w] ≤ Pr
[
Ŷ2 < w

]
This number of failed tests is higher than the acceptable threshold tpmin > w, therefore using Lemma 2.1
directly and the same simplifications as above, we get:

(7.32) Pr
[
Ŷ2 < w

]
≤ exp

(
−2(pmin − ω)2τn

)
= εY,2

234

7.4. CONCLUSION AND DISCUSSION

Therefore Pr [Ok] ≤ εY,2 ∈ negl(n). This is a case of false-positive since the outcome is still correct in
this scenario.

�

Since the results for blindness, blindness, input-independent verification and verifiability already
integrate the noise in their analyses (as explained below, they consider the most general deviation, which
includes noise), this new bound concerning local-correctness on noisy devices can also be used alongside
these previous bounds using the Local-Reduction Theorem from [41], yielding in this case a value for
ε = max{δ, εcor} that may now depend on the noise level of the devices since εcor > 0 (however, note
that if δ > εcor , then the noise has no impact on the total ε).

7.4 Conclusion and Discussion

We have presented above a protocol that is the first of its kind with respect to its ability to withstand
noise while allowing to successfully execute computations in an unconditionally verifiable way with
relatively modest overhead. These capabilities are made possible thanks to the nature of the computation,
its deterministic classical output combined with a classical repetition code favourably replacing more
resource-demanding fault-tolerant constructions. The obtained error-mitigation capabilities can then be
used to tolerate noise while having the computation perform correctly.

Role of Noise Assumptions in Correctness Analysis. As stated in Section 7.3.1, our security
proof does not rely on any assumption regarding a specific form or strength of the noise. On the contrary,
it simply considers any deviation as potentially malicious and showed that the protocol would provide
information theoretic verification and blindness of the computation.

The assumptions introduced Section 7.3.2, which deals with the correctness of the protocol on
honest noisy devices, serve a different purpose: when the imperfections of the devices are light enough
(markovian and of limited strength), we show their impact on the computation can always be mitigated.
The noise models include not only independent Pauli operators acting on qubits, but also more general
operators that are independent between various runs. As a consequence, under these mild restrictions,
the computation will accept with high probability. If the Server sells to the Client a service with a low
honest level of noise, the Client will hence not only get a security guarantee in case the Server lied
and decides to deviate maliciously but also a performance guarantee that an honest computation will
terminate correctly.

Consequently, there is no security risk in first probing the device to find out about the noise level and
then using it to set the admissible ratio of failed test runs w/t to a compatible value. The value for w/t
might even be adjusted between two executions of the full protocol to cope with drifting values of noise.
An over-inflated value of w/t only results in superfluous repetitions and hence a longer running time
for the protocol. Conversely, setting the value of w/t too low carries the risk of aborting most of the
time and thus not being able to ever complete the computation, as is the case with previous protocols
without error-correction capabilities.

Regarding the assumption that the noise maps between each run are independent, this can realistically
be achieved in an experimental setup by simply waiting long enough between each run for all the states
to decohere or resetting the state of the system. This guarantees that the noise of one run only depends

235

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

on the classical parameters of a previous run. This of course prolongs the duration of the experiment,
but this overhead is not too prohibitive considering the low coherence time of quantum memories. We
do not require that the noise is identically distributed, which takes into account situations where the
noise level might fluctuate in an experiment (e.g. temperature changes, optical alignment modification,
transient vibrations).

Decoupling Verifiability and Fault-Tolerance. We want to emphasize that our scheme does not
rely on nor provide fault-tolerance. It is quite the opposite in that it decouples the quantum error-
correction scheme devoted to fault-tolerant computing from the (in our case classical) one that ensures
sensitive verification.

More precisely, traps inserted in MBQC schemes (see [53, 78]) have bounded sensitivity, i.e. the
probability ε of not detecting an attack with a given trap is bounded away from 0. In these schemes,
to boost the detection sensitivity of each trap exponentially, the computation path is encoded fault-
tolerantly so that all small-weight errors can be corrected. Then, if the number of correctable errors
is d then a malicious Server has to attack at least d locations for it to have a non-trivial effect on the
computation. This, in turn, dramatically reduces the probability of a trap not detecting an effective
attack to εd. This use of fault-tolerance is comparable to the repetition of test rounds in our protocol.

Quite naturally, the fault-tolerant encoding induces overhead that reduces the size of the computation
that can be verified using a given finite-sized Server. But the real trouble comes from the realization
that the magnitude of this overhead is dictated by the security objectives of the Client: the higher the
desired trap sensitivity, the larger the overhead. Hence, while our protocol enables a Client to use all the
available qubits to perform a verified computation up to an arbitrary security level, using the techniques
from [53, 78] and requiring the same security level might simply consume all the qubits to build a single
trusted qubit.

However, for our protocol to accept with overwhelming probability, the average ratio of failed test
runs must be upper-bounded away from 1/2k. This is unfortunately a global metric: it is easier to attain
a perceived noise level below our 1/2k threshold for a 2-qubit computation than it is for a 100-qubit
computation. This can be understood in the following way. The built-in error mitigation capability of
our protocol does not stop errors from propagating into the result, but only serves to recover the correct
result from the noisy outcomes of each unprotected computational run. The other way around, proper
fault-tolerance prevents error-propagation and would be useful in lowering the ratio of failed test runs
in large computations and arrive at the 1/2k ratio of failed test runs required to perform the verified
computation. Anyhow, this would also be required for implementations of [53, 78]: the aforementioned
fault-tolerant encoding only takes care of sensitivity boosting while leaving all the traps unprotected
and vulnerable to noise.

To summarize, the advantage of the decoupling we propose between fault-tolerant computation and
robust verification is that, while fault-tolerance is likely unavoidable in order to achieve the noise level
for our protocol to be useful to honest participants for large computations on yet-to-be-created systems,
it does not condition the verifiability bounds of our protocol whatsoever and our security parameters can
be chosen independently of the quantum error-correction used to perform the computation. Conversely,
those same bounds would be unreachable on realistic systems if the verification is performed using
fault-tolerant trap sensitivity boosting due to large resource overheads imposed by even moderately

236

7.4. CONCLUSION AND DISCUSSION

stringent security levels.

Fine-Tuning the Number of Repetitions. Once the noise level pmax has been determined and
used to constrain w as explained in Section 7.3.2, we can look at ways to optimize the resource overhead
for robust verification in terms of excess number of runs compared to standard MBQC5.

The first obvious parameter influencing the overhead is the number k of different types of test
runs. We can look at the problem the other way around. The amount of tolerated noise pmax , which is
inherent to the devices upon which the computation is being performed, is upper-bounded by ω and the
correctness bound on noisy devices depends exponentially on the square of the gap between these two
values. On the other hand, the value of ω is upper-bounded by 1/2k. Therefore, higher values of k induce
lower amounts of tolerated noise and a higher number of repetitions. In our scheme, k also corresponds
to the number of colours in the graph colouring chosen by the Client on the Server’s graph G. While the
problem of finding an optimal (i.e. minimal) graph colouring is NP−Complete for general graphs, there
exist efficient algorithms to compute approximately optimal graph colourings.

For any general graph, a greedy algorithm yields a k-colouring for k ≤ D(G)+1, with D(G) being the
maximum degree of G. Also note that most graphs used in MBQC are planar and the celebrated 4-Colour
Theorem states that any planar graph is 4-colourable, hence bounding k by 4. Efficient algorithms
to find such a colouring exist (quadratic in the number of vertices of the graph [120]) which would
then be of practical interest in designing robust verifiable schemes. Furthermore, as k = 2 is the best
possible value for our scheme and because it is efficient to check if a graph is bi-partite, the value k = 2
should be tested. Note that the brickwork graph (which is universal for quantum computations) and
all dotted (edge-decorated) graphs are bipartite. In contrast, testing the case of a 3-colourable graph
is NP−Complete, so for large planar graphs the Client may have to choose a 4-colouring instead at the
expense of more repetitions of the protocol for attaining the same verification bound.

Once k is fixed, for targeted values of perceived noise level resistance, acceptance and failure
probabilities, numerical optimizations can be used to determine the best values for the total number of
runs n, the ratio of test runs t/n, and the ratio of test runs allowed to fail w/t using equation 7.22.

Link to Certification and Benchmarking. Finally, we want to point out a connection between
certification and verification that stems directly from the presented protocol. As mentioned in the
introduction, two broad strategies can be pursued when one wants to give guarantees with respect to a
device sold to clients.

On one hand, the provider and the device can be certified by a trusted third party and the provider
commits to manufacture the device that has been certified. The commitment is enforced not by design
but legally. This is often chosen for efficiency reasons: the certification is done once and in case of
widespread services or devices, the cost (in time, money, effort) to certify it is absorbed into the volume
of service or devices provided. Another reason for choosing this form of certification is that it offers a
natural way to cope with imperfect devices. Most devices are certified to within some acceptable range
of performance describing its nominal behaviour.

5Note that this is the only source of overhead as each run requires the same resources as the original MBQC.

237

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

This however has caveats, as recent years have proven. For the commitment to be effective, there
needs to be a reasonable chance to catch deviations from the certified behaviour which supposes in turn
that devices are prevented from sensing whether they are being tested or not.6

On the other hand, the provider can choose to opt for a verifiable device (or service). In that case
the security is better as there is no commitment required, only fact-based trust dependent on a series of
tests. The trouble with such a strategy is - or rather was up to now - its high overhead in the context of
quantum computing, making it inaccessible and extremely expensive in any foreseeable future.

Our results show that for certain classes of computations this does not need to be the case. In
fact, the best of both worlds can be combined. Test runs are indeed probing whether our device and
computation is abiding by some certification standards expressed in terms of an effective noise level. This
is done continuously through the computation in order to prevent the device from adapting its behaviour.
Since the computation is blind, even a fully malicious adversary cannot successfully fool the protocol. So
in effect, blindness allows to combine computation and certification to arrive at verification, retaining
the efficiency and imperfection tolerance of certification while keeping the unconditional security of
verified schemes. While this is clearly more expensive than simple certification, this overhead should be
acceptable for a wide range of practical situations. A natural open question, that we leave for further
research, is whether this strategy can be extended to other protocols and if there are situations where
other schemes are more efficient.

Future Work

As part of the Quantum Internet Alliance Blueprint Project which aims at demonstrating a full-stack
implementation of a multi-node quantum protocol (from classical control using a generic quantum
programming language all the way down to the hardware), we have had discussions for the past year
with two experimental teams for the purpose of performing the protocol presented above in the simplest
case (two Server-side qubits) using the setup presented in Figure 7.1.

We are currently trying to find optimisations of the bound presented in Equation 7.22 given fixed
values for the total number of completed runs, as this number is directly proportionate to the time
required for running the experiment.

Future improvements that are being considered as well look into expanding the range of feasible
computations from almost-deterministic to BQP decision problems, and later sampling problems.

Another direction is to find a way to bridge even closer benchmarking and verification by looking
at the possible computation that can be performed by a Server if the Client, upon accepting a non-
corrupted computation, returns the secret parameters of the traps and indicates to the Server which ones
were triggered. This could help the Server with improving its own architecture by acquiring valuable
information regarding the operations that fail most often. If it doesn’t break the security of the Client,
it is a win-win situation and could potentially be an argument against the Server cheating. The type of
information that the Server can gather depends on the types of test runs that are performed, so it is a

6This was exactly the strategy developed by some car makers: by guessing when the engine was being run on a
test-bench they would reduce its power as to pass the tests while offering a widely different behaviour when in real
conditions. It was only after independent associations measured the emissions in road-like conditions and found a gap
large enough that it could not be explained by variations in physical conditions that extensive search was conducted and
the deviation discovered. Had the gap been smaller, it would have most certainly gone undetected.

238

7.4. CONCLUSION AND DISCUSSION

challenge to find the test that would yield the most information to the Server. Interweaving test types
across different vertices could be a possible way to probe more interesting properties.

Lowering the Number of Different Test Runs. Finally, due to the importance of the value of k
governing the types of test runs that can be performed, we are investigating ways in which this value can
be reduced, for example by merging various vertices of different colours in a graph into a single vertex to
lower the number of colours required. This merged vertex would then need to be tested differently from
the current single-qubit vertices, by embedding deterministic Clifford computations (or any deterministic
computation that can be simulated in a reasonable amount of time) in the graph in these locations
unknown to the Server. The result of [20] indicates that at least two types of test runs may be required
for these merged vertices. These computations are separated from the rest of the graph using the same
dummy qubits as in the previous case. They could allow for adversarially-secure benchmarking of the
hardware, where not even the hardware or its operator are aware of the tests being performed. This
question is therefore tightly intertwined with the previous one and it seems like there might be a trade-off
between the two goals. The idea presented above can be formalised as follows.

Definition 7.2 (Connected Open Graph Covering). Let G = (V,E) be a finite undirected graph,
C = {Vi}i with Vi ⊆ V for all i and F ⊆ V . We say that {C,F} is an open connected covering of graph
G with frontier F if the following conditions are met (and call the Vi the components of the covering):

1. The Vi along with the frontier are a vertex-covering of graph G: F
⋃
i Vi = V .

2. No two vertices of different components are linked via an edge: for all i 6= j, v ∈ Vi and w ∈ Vj,
we have (v, w) /∈ E and (w, v) /∈ E. Equivalently, all exterior vertices of each component are only
linked to frontier vertices:

⋃
v∈Vi NG(v) \ Vi ⊂ F , where NG(v) is the set of neighbours of vertex v

in graph G.
3. Each sub-graph Gi := (Vi, Vi × Vi ∩ E) is connected.
4. The frontier and components are disjoint: for all i, Vi ∩ F = ∅; and the components are pair-wise

disjoint: for all i 6= j, Vi ∩ Vj = ∅.

We say that such a covering is testable if it further satisfies the following definition:

Definition 7.3 (Deterministically Testable Covering). We say that a connected open covering of a
graph G is deterministically testable if each component Vi of the covering has a flow (fi,�i) and it
is efficient to sample an MBQC computation on Vi defined by

(
Ii, Oi, {α(v)}v∈Vi\Oi

)
with Ii, Oi ⊂ Vi

such that, after the computation has been performed on input state |+〉⊗#Ii , the result of a measurement
in basis {|+〉 , |−〉} is deterministic. We further say that these tests are flow-compatible with a given
flow (f,�) on G if for all i the measurement orderings induced by �i and � are compatible, i.e. for all
v, w ∈ Vi we have v �i w if and only if v � w.

Note that this is an extension of the notion of test runs that have been presented previously, as a
graph where every qubit is either a trap or a dummy qubit is an example of a testable connected open
covering of the graph. It is then possible to extend the notion of graph colouring to these coverings in
the following way.

239

CHAPTER 7. QUBIT AND OPERATION OPTIMAL VERIFIABLE QUANTUM COMPUTATIONS

Definition 7.4 (Puzzle-Piece Coverings). Let {Cl, Fl}l∈[k] be a set of coverings and their associated
frontiers for a given graph G. We say that this set is a puzzle of graph G if, for all l,

⋃
l′ 6=l Cl′ = Fl and

Cl′ ∩ Cl = ∅ for all l′ 6= l.

We can then use these puzzle coverings for testing the honesty of the Server in the same way as the
colourings presented above. For each test run, the Client will sample such a covering Cl from this set
of coverings uniformly at random, along with a deterministic MBQC computation for each Vi,l. Then,
for all qubits in the frontier Fl of the covering it will send dummy qubits. On the other hand, the rest
of the qubits will be sent in a state

∣∣+θ(v)
〉
with θ(v) ∈R Θ chosen uniformly at random. This has the

effect of separating the components Vi,l into independent graphs, on which the Server performs the
computation following the instructions of the Client. As before, due to the hiding property of the UBQC
Protocol upon which this extension is based, the Server has no idea whether the qubits that it measures
are performing the Client’s true computation or correspond to a test and it is therefore deterred from
cheating lest it springs a trap. Now the number of tests is governed by the new value for k, which is
potentially lower than then one resulting from the choice of colouring described earlier. However, more
research is needed to precisely evaluate the number of test types required per covering to determine if
there is any real gain in using this technique. It should be sufficient to define test runs such that no
Pauli deviation of the Server commutes with all possible tests. Going further, in the case where the
initial graph can be used to perform deterministic MBQC computations, the trivial puzzle-piece covering
consisting of the whole graph could be considered as well and the number of test runs would simply
consist of those required to test for any possible deviation on the entire graph.

The previous protocols only assume a number of qubits that is barely large enough to perform the
initial desired computation of the Client. If we push the number of qubits even further, where it stops
being prohibitive to run multiple different computations at the same time in parallel, we can instead
embed the computation that is to be performed in one of the covering components Vi. Interestingly,
the coverings can be seen as extensions of trap insertion techniques such as the ones from [53, 78]. The
sampling of tests by the Client no longer rely on puzzle coverings but instead on choosing uniformly at
random an open connected covering from a set of coverings such that one of the components always
allows the initial computation to be performed. There is however a necessary condition on this sampling:
every qubit must have a non-negligible probability of being included in one of the test components during
this sampling. More work is required to determine whether this condition is sufficient to guarantee the
verifiability of the overall scheme.

Replacing the Dotted-Triple Graph VBQC in MPQC Protocol. The extreme case where the
whole graph is considered to be a single puzzle piece leads to an interesting situation: there is no need
to use dummies to break this graph apart and the Client needs only to send |+θ〉 states to the Server.
Recalling the proofs and discussions of the previous chapter, it is simple to produce collaboratively
encrypted |+θ〉 states in such a way that the Server’s deviation commutes with the preparation phase
without picking up a dependency on the honest Client’s secret parameters. The troublesome part stems
only from the preparation of the dummies, which requires both a more in-depth analysis and multiply
the number of qubits sent by the each Client by a factor 9. Removing the need to produce dummies
in an MBQC-based verifiable blind protocol can drastically simplify the MPQC protocol previously

240

7.4. CONCLUSION AND DISCUSSION

presented in this thesis while reducing the Server’s memory requirement to #U +N where #U is the
number of qubit in the base MBQC computation that the N Clients wish to run on the Server.

241

Bibliography

[1] E. Adlam and A. Kent, Knowledge-concealing evidencing of knowledge about a quantum
state, Phys. Rev. Lett., 120 (2018), p. 050501, https://doi.org/10.1103/PhysRevLett.120.

050501, https://link.aps.org/doi/10.1103/PhysRevLett.120.050501.

[2] D. Aharonov, A. Chailloux, M. Ganz, I. Kerenidis, and L. Magnin, A simpler proof
of the existence of quantum weak coin flipping with arbitrarily small bias, SIAM Journal on
Computing, 45 (2016), pp. 633–679, https://doi.org/10.1137/14096387X, https://doi.

org/10.1137/14096387X.

[3] G. Alagic and A. Russell, Quantum-secure symmetric-key cryptography based on
hidden shifts, in Advances in Cryptology – EUROCRYPT 2017, J.-S. Coron and
J. B. Nielsen, eds., Cham, 2017, Springer International Publishing, pp. 65–93,
https://doi.org/10.1007/978-3-319-56617-7_3, https://link.springer.com/

chapter/10.1007/978-3-319-56617-7_3.

[4] P. Aliferis and D. W. Leung, Computation by measurements: A unifying picture, Phys. Rev. A,
70 (2004), p. 062314, https://doi.org/10.1103/PhysRevA.70.062314, http://link.aps.

org/doi/10.1103/PhysRevA.70.062314.

[5] B. Alon, H. Chung, K.-M. Chung, M.-Y. Huang, Y. Lee, and Y.-C. Shen, Round efficient
secure multiparty quantum computation with identifiable abort, 2020, https://eprint.iacr.

org/2020/1464.

[6] A. Ambainis, A new protocol and lower bounds for quantum coin flipping, Journal of
Computer and System Sciences, 68 (2004), pp. 398 – 416, https://doi.org/https:

//doi.org/10.1016/j.jcss.2003.07.010, http://www.sciencedirect.com/science/

article/pii/S0022000003001417.
Special Issue on STOC 2001.

[7] A. Ambainis, A. Rosmanis, and D. Unruh, Quantum attacks on classical proof systems: The
hardness of quantum rewinding, in 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, Oct 2014, pp. 474–483, https://doi.org/10.1109/FOCS.2014.57, https:

//www.computer.org/csdl/proceedings-article/focs/2014/6517a474/12OmNAHEpAr.

[8] M. V. Anand, E. E. Targhi, G. N. Tabia, and D. Unruh, Post-quantum secu-
rity of the cbc, cfb, ofb, ctr, and xts modes of operation, in Post-Quantum Cryp-
tography, T. Takagi, ed., Cham, 2016, Springer International Publishing, pp. 44–
63, https://doi.org/10.1007/978-3-319-29360-8_4, https://link.springer.com/

chapter/10.1007%2F978-3-319-29360-8_4.

243

https://doi.org/10.1103/PhysRevLett.120.050501
https://doi.org/10.1103/PhysRevLett.120.050501
https://link.aps.org/doi/10.1103/PhysRevLett.120.050501
https://doi.org/10.1137/14096387X
https://doi.org/10.1137/14096387X
https://doi.org/10.1137/14096387X
https://doi.org/10.1007/978-3-319-56617-7_3
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_3
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_3
https://doi.org/10.1103/PhysRevA.70.062314
http://link.aps.org/doi/10.1103/PhysRevA.70.062314
http://link.aps.org/doi/10.1103/PhysRevA.70.062314
https://eprint.iacr.org/2020/1464
https://eprint.iacr.org/2020/1464
https://doi.org/https://doi.org/10.1016/j.jcss.2003.07.010
https://doi.org/https://doi.org/10.1016/j.jcss.2003.07.010
http://www.sciencedirect.com/science/article/pii/S0022000003001417
http://www.sciencedirect.com/science/article/pii/S0022000003001417
https://doi.org/10.1109/FOCS.2014.57
https://www.computer.org/csdl/proceedings-article/focs/2014/6517a474/12OmNAHEpAr
https://www.computer.org/csdl/proceedings-article/focs/2014/6517a474/12OmNAHEpAr
https://doi.org/10.1007/978-3-319-29360-8_4
https://link.springer.com/chapter/10.1007%2F978-3-319-29360-8_4
https://link.springer.com/chapter/10.1007%2F978-3-319-29360-8_4

BIBLIOGRAPHY

[9] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas,
S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler,
C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov,
E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh,
S. Mandrà, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Ru-
bin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick,
A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven,
and J. M. Martinis, Quantum supremacy using a programmable superconducting pro-
cessor, Nature, 574 (2019), pp. 505–510, https://doi.org/10.1038/s41586-019-1666-5,
https://doi.org/10.1038/s41586-019-1666-5.

[10] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and
D. Wichs, Multiparty computation with low communication, computation and interac-
tion via threshold fhe, in Advances in Cryptology – EUROCRYPT 2012, D. Pointcheval
and T. Johansson, eds., Berlin, Heidelberg, 2012, Springer Berlin Heidelberg, pp. 483–
501, https://doi.org/10.1007/978-3-642-29011-4_29, https://link.springer.com/

chapter/10.1007/978-3-642-29011-4_29.

[11] Y. Aumann and Y. Lindell, Security Against Covert Adversaries: Efficient Protocols for Realistic
Adversaries, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 137–156, https://doi.

org/10.1007/978-3-540-70936-7_8, http://dx.doi.org/10.1007/978-3-540-70936-7_

8.

[12] S. Barz, J. F. Fitzsimons, E. Kashefi, and P. Walther, Experimental verification of quantum
computation, Nature Physics, 9 (2013), pp. 727–731, https://doi.org/10.1038/nphys2763,
https://doi.org/10.1038/nphys2763.

[13] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and
P. Walther, Demonstration of blind quantum computing, Science, 335 (2012), pp. 303–
308, https://doi.org/10.1126/science.1214707, https://science.sciencemag.org/

content/335/6066/303, https://arxiv.org/abs/https://science.sciencemag.org/

content/335/6066/303.full.pdf.

[14] M. Ben-Or, C. Crepeau, D. Gottesman, A. Hassidim, and A. Smith, Secure multiparty
quantum computation with (only) a strict honest majority, in Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’06, Washington, DC, USA,
2006, IEEE Computer Society, pp. 249–260, https://doi.org/10.1109/FOCS.2006.68, http:

//dx.doi.org/10.1109/FOCS.2006.68.

[15] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribu-
tion and coin tossing, Theoretical Computer Science, 560 (2014), pp. 7 – 11,

244

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1007/978-3-642-29011-4_29
https://link.springer.com/chapter/10.1007/978-3-642-29011-4_29
https://link.springer.com/chapter/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1007/978-3-540-70936-7_8
http://dx.doi.org/10.1007/978-3-540-70936-7_8
http://dx.doi.org/10.1007/978-3-540-70936-7_8
https://doi.org/10.1038/nphys2763
https://doi.org/10.1038/nphys2763
https://doi.org/10.1126/science.1214707
https://science.sciencemag.org/content/335/6066/303
https://science.sciencemag.org/content/335/6066/303
https://arxiv.org/abs/https://science.sciencemag.org/content/335/6066/303.full.pdf
https://arxiv.org/abs/https://science.sciencemag.org/content/335/6066/303.full.pdf
https://doi.org/10.1109/FOCS.2006.68
http://dx.doi.org/10.1109/FOCS.2006.68
http://dx.doi.org/10.1109/FOCS.2006.68

BIBLIOGRAPHY

https://doi.org/10.1016/j.tcs.2014.05.025, http://www.sciencedirect.com/

science/article/pii/S0304397514004241.
Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84.

[16] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen, and
A. Sahai, Threshold cryptosystems from threshold fully homomorphic encryption, in Advances
in Cryptology – CRYPTO 2018, H. Shacham and A. Boldyreva, eds., Cham, 2018, Springer
International Publishing, pp. 565–596, https://doi.org/10.1007/978-3-319-96884-1_19,
https://link.springer.com/chapter/10.1007%2F978-3-319-96884-1_19.

[17] D. Boneh and M. Zhandry, Secure signatures and chosen ciphertext security in a
quantum computing world, in Advances in Cryptology – CRYPTO 2013, R. Canetti
and J. A. Garay, eds., Berlin, Heidelberg, 2013, Springer Berlin Heidelberg, pp. 361–
379, https://doi.org/10.1007/978-3-642-40084-1_21, https://link.springer.com/

chapter/10.1007%2F978-3-642-40084-1_21.

[18] X. Bonnetain, M. Naya-Plasencia, and A. Schrottenloher, Quantum security anal-
ysis of aes, IACR Transactions on Symmetric Cryptology, 2019 (2019), pp. 55–93,
https://doi.org/10.13154/tosc.v2019.i2.55-93, https://tosc.iacr.org/index.php/

ToSC/article/view/8314.

[19] G. Brassard, C. Crepeau, R. Jozsa, and D. Langlois, A quantum bit commitment scheme
provably unbreakable by both parties, in Proceedings of 1993 IEEE 34th Annual Foundations of
Computer Science, 1993, pp. 362–371, https://doi.org/10.1109/SFCS.1993.366851, https:

//ieeexplore.ieee.org/abstract/document/366851.

[20] A. Broadbent, How to verify a quantum computation, Theory of Computing, 14 (2018), pp. 1–
37, https://doi.org/10.4086/toc.2018.v014a011, http://www.theoryofcomputing.org/

articles/v014a011.

[21] A. Broadbent, J. Fitzsimons, and E. Kashefi,Measurement-Based and Universal Blind Quan-
tum Computation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 43–86, https://doi.

org/10.1007/978-3-642-13678-8_2, https://doi.org/10.1007/978-3-642-13678-8_2.

[22] D. E. Browne, E. Kashefi, M. Mhalla, and S. Perdrix, Generalized flow and determinism
in measurement-based quantum computation, New Journal of Physics, 9 (2007), p. 250, http:

//stacks.iop.org/1367-2630/9/i=8/a=250.

[23] H. Buhrman, N. Linden, L. Mančinska, A. Montanaro, and M. Ozols, Quantum majority
and other boolean functions with quantum inputs, 2021, https://www.youtube.com/watch?v=

0l49tmUimhk.

[24] N. Büscher, D. Demmler, N. P. Karvelas, S. Katzenbeisser, J. Krämer,
D. Rathee, T. Schneider, and P. Struck, Secure two-party computation in a
quantum world, in Applied Cryptography and Network Security, M. Conti, J. Zhou,
E. Casalicchio, and A. Spognardi, eds., Cham, 2020, Springer International Publishing,
pp. 461–480, https://doi.org/10.1007/978-3-030-57808-4_23, https://link.springer.

com/chapter/10.1007/978-3-030-57808-4_23.

245

https://doi.org/10.1016/j.tcs.2014.05.025
http://www.sciencedirect.com/science/article/pii/S0304397514004241
http://www.sciencedirect.com/science/article/pii/S0304397514004241
https://doi.org/10.1007/978-3-319-96884-1_19
https://link.springer.com/chapter/10.1007%2F978-3-319-96884-1_19
https://doi.org/10.1007/978-3-642-40084-1_21
https://link.springer.com/chapter/10.1007%2F978-3-642-40084-1_21
https://link.springer.com/chapter/10.1007%2F978-3-642-40084-1_21
https://doi.org/10.13154/tosc.v2019.i2.55-93
https://tosc.iacr.org/index.php/ToSC/article/view/8314
https://tosc.iacr.org/index.php/ToSC/article/view/8314
https://doi.org/10.1109/SFCS.1993.366851
https://ieeexplore.ieee.org/abstract/document/366851
https://ieeexplore.ieee.org/abstract/document/366851
https://doi.org/10.4086/toc.2018.v014a011
http://www.theoryofcomputing.org/articles/v014a011
http://www.theoryofcomputing.org/articles/v014a011
https://doi.org/10.1007/978-3-642-13678-8_2
https://doi.org/10.1007/978-3-642-13678-8_2
https://doi.org/10.1007/978-3-642-13678-8_2
http://stacks.iop.org/1367-2630/9/i=8/a=250
http://stacks.iop.org/1367-2630/9/i=8/a=250
https://www.youtube.com/watch?v=0l49tmUimhk
https://www.youtube.com/watch?v=0l49tmUimhk
https://doi.org/10.1007/978-3-030-57808-4_23
https://link.springer.com/chapter/10.1007/978-3-030-57808-4_23
https://link.springer.com/chapter/10.1007/978-3-030-57808-4_23

BIBLIOGRAPHY

[25] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, 2001, pp. 136–145,
https://doi.org/10.1109/SFCS.2001.959888.

[26] A. Chailloux and A. Leverrier, Relativistic (or 2-prover 1-round) zero-knowledge protocol
for NP secure against quantum adversaries, in Advances in Cryptology – EUROCRYPT
2017, J.-S. Coron and J. B. Nielsen, eds., Cham, 2017, Springer International Publishing,
pp. 369–396, https://doi.org/10.1007/978-3-319-56617-7_13, https://link.springer.

com/chapter/10.1007%2F978-3-319-56617-7_13.

[27] A. Chi-Chih Yao, Quantum circuit complexity, in Proceedings of 1993 IEEE 34th Annual
Foundations of Computer Science, Nov 1993, pp. 352–361, https://doi.org/10.1109/SFCS.

1993.366852, https://ieeexplore.ieee.org/document/366852.

[28] S. Coretti, U. Maurer, and B. Tackmann, Constructing confidential channels from authen-
ticated channels—public-key encryption revisited, in Advances in Cryptology - ASIACRYPT
2013, K. Sako and P. Sarkar, eds., Berlin, Heidelberg, 2013, Springer Berlin Heidelberg,
pp. 134–153, https://doi.org/10.1007/978-3-642-42033-7_8, https://link.springer.

com/chapter/10.1007/978-3-642-42033-7_8.

[29] R. Cramer, I. B. Damgrd, and J. B. Nielsen, Secure Multiparty Computation and Secret
Sharing, Cambridge University Press, USA, 1st ed., 2015, https://dl.acm.org/doi/book/

10.5555/2846411.

[30] C. Crépeau, D. Gottesman, and A. Smith, Secure multi-party quantum computation, in
Proceedings of the Thiry-fourth Annual ACM Symp. on Theory of Computing, STOC ’02,
New York, NY, USA, 2002, ACM, p. 643, https://doi.org/10.1145/509907.510000, http:

//doi.acm.org/10.1145/509907.510000.

[31] C. Crepeau and J. Kilian, Achieving oblivious transfer using weakened security assumptions,
in [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, 1988,
pp. 42–52, https://doi.org/10.1109/SFCS.1988.21920, https://ieeexplore.ieee.org/

document/21920.

[32] J. Daemen and V. Rijmen, Specification of Rijndael, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2002, pp. 31–51, https://doi.org/10.1007/978-3-662-04722-4_3, https://doi.

org/10.1007/978-3-662-04722-4_3.

[33] I. Damgård, J. Funder, J. B. Nielsen, and L. Salvail, Superposition attacks on cryptographic
protocols, in Information Theoretic Security, C. Padró, ed., Cham, 2014, Springer International
Publishing, pp. 142–161, https://doi.org/10.1007/978-3-319-04268-8_9, https://link.

springer.com/chapter/10.1007%2F978-3-319-04268-8_9.

[34] C. Dankert, R. Cleve, J. Emerson, and E. Livine, Exact and approximate uni-
tary 2-designs and their application to fidelity estimation, Phys. Rev. A, 80 (2009),
p. 012304, https://doi.org/10.1103/PhysRevA.80.012304, https://link.aps.org/doi/

10.1103/PhysRevA.80.012304.

246

https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-319-56617-7_13
https://link.springer.com/chapter/10.1007%2F978-3-319-56617-7_13
https://link.springer.com/chapter/10.1007%2F978-3-319-56617-7_13
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852
https://ieeexplore.ieee.org/document/366852
https://doi.org/10.1007/978-3-642-42033-7_8
https://link.springer.com/chapter/10.1007/978-3-642-42033-7_8
https://link.springer.com/chapter/10.1007/978-3-642-42033-7_8
https://dl.acm.org/doi/book/10.5555/2846411
https://dl.acm.org/doi/book/10.5555/2846411
https://doi.org/10.1145/509907.510000
http://doi.acm.org/10.1145/509907.510000
http://doi.acm.org/10.1145/509907.510000
https://doi.org/10.1109/SFCS.1988.21920
https://ieeexplore.ieee.org/document/21920
https://ieeexplore.ieee.org/document/21920
https://doi.org/10.1007/978-3-662-04722-4_3
https://doi.org/10.1007/978-3-662-04722-4_3
https://doi.org/10.1007/978-3-662-04722-4_3
https://doi.org/10.1007/978-3-319-04268-8_9
https://link.springer.com/chapter/10.1007%2F978-3-319-04268-8_9
https://link.springer.com/chapter/10.1007%2F978-3-319-04268-8_9
https://doi.org/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304

BIBLIOGRAPHY

[35] V. Danos and E. Kashefi, Determinism in the one-way model, Phys. Rev. A, 74 (2006),
p. 052310, https://doi.org/10.1103/PhysRevA.74.052310, http://link.aps.org/doi/

10.1103/PhysRevA.74.052310.

[36] V. Danos, E. Kashefi, and P. Panangaden, The measurement calculus, J. ACM,
54 (2007), https://doi.org/10.1145/1219092.1219096, http://doi.acm.org/10.1145/

1219092.1219096.

[37] D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation, Proceedings of
the Royal Society of London. Series A: Mathematical and Physical Sciences, 439 (1992), pp. 553–
558, https://doi.org/10.1098/rspa.1992.0167, https://royalsocietypublishing.org/

doi/10.1098/rspa.1992.0167.

[38] J. Don, S. Fehr, C. Majenz, and C. Schaffner, Security of the fiat-shamir transformation in
the quantum random-oracle model, in Advances in Cryptology – CRYPTO 2019, A. Boldyreva
and D. Micciancio, eds., Cham, 2019, Springer International Publishing, pp. 356–383, https:

//doi.org/10.1007%2F978-3-030-26951-7_13, https://link.springer.com/chapter/10.

1007%2F978-3-030-26951-7_13.

[39] M. Doosti, N. Kumar, M. Delavar, and E. Kashefi, Client-server identification protocols
with quantum puf, 2020, https://arxiv.org/abs/2006.04522.

[40] Y. Dulek, A. B. Grilo, S. Jeffery, C. Majenz, and C. Schaffner, Secure multi-
party quantum computation with a dishonest majority, in Advances in Cryptology – EURO-
CRYPT 2020, A. Canteaut and Y. Ishai, eds., Cham, 2020, Springer International Publishing,
pp. 729–758, https://doi.org/10.1007/978-3-030-45727-3_25, https://link.springer.

com/chapter/10.1007/978-3-030-45727-3_25.

[41] V. Dunjko, J. F. Fitzsimons, C. Portmann, and R. Renner, Composable secu-
rity of delegated quantum computation, in Advances in Cryptology – ASIACRYPT 2014,
P. Sarkar and T. Iwata, eds., Berlin, Heidelberg, 2014, Springer Berlin Heidelberg,
pp. 406–425, https://doi.org/10.1007/978-3-662-45608-8_22, https://link.springer.

com/chapter/10.1007%2F978-3-662-45608-8_22.

[42] F. Dupuis, S. Fehr, P. Lamontagne, and L. Salvail, Adaptive versus non-adaptive
strategies in the quantum setting with applications, in Advances in Cryptology – CRYPTO
2016, M. Robshaw and J. Katz, eds., Berlin, Heidelberg, 2016, Springer Berlin Heidelberg,
pp. 33–59, https://doi.org/10.1007/978-3-662-53015-3_2, https://link.springer.

com/chapter/10.1007/978-3-662-53015-3_2.

[43] F. Dupuis, S. Fehr, P. Lamontagne, and L. Salvail, Secure certification of mixed quan-
tum states with application to two-party randomness generation, in Theory of Cryptography,
A. Beimel and S. Dziembowski, eds., Cham, 2018, Springer International Publishing, pp. 282–314,
https://doi.org/10.1007/978-3-030-03810-6_11, https://rd.springer.com/chapter/

10.1007/978-3-030-03810-6_11.

[44] F. Dupuis, J. B. Nielsen, and L. Salvail, Secure Two-Party Quantum Evaluation of Uni-
taries against Specious Adversaries, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010,

247

https://doi.org/10.1103/PhysRevA.74.052310
http://link.aps.org/doi/10.1103/PhysRevA.74.052310
http://link.aps.org/doi/10.1103/PhysRevA.74.052310
https://doi.org/10.1145/1219092.1219096
http://doi.acm.org/10.1145/1219092.1219096
http://doi.acm.org/10.1145/1219092.1219096
https://doi.org/10.1098/rspa.1992.0167
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167
https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167
https://doi.org/10.1007%2F978-3-030-26951-7_13
https://doi.org/10.1007%2F978-3-030-26951-7_13
https://link.springer.com/chapter/10.1007%2F978-3-030-26951-7_13
https://link.springer.com/chapter/10.1007%2F978-3-030-26951-7_13
https://arxiv.org/abs/2006.04522
https://doi.org/10.1007/978-3-030-45727-3_25
https://link.springer.com/chapter/10.1007/978-3-030-45727-3_25
https://link.springer.com/chapter/10.1007/978-3-030-45727-3_25
https://doi.org/10.1007/978-3-662-45608-8_22
https://link.springer.com/chapter/10.1007%2F978-3-662-45608-8_22
https://link.springer.com/chapter/10.1007%2F978-3-662-45608-8_22
https://doi.org/10.1007/978-3-662-53015-3_2
https://link.springer.com/chapter/10.1007/978-3-662-53015-3_2
https://link.springer.com/chapter/10.1007/978-3-662-53015-3_2
https://doi.org/10.1007/978-3-030-03810-6_11
https://rd.springer.com/chapter/10.1007/978-3-030-03810-6_11
https://rd.springer.com/chapter/10.1007/978-3-030-03810-6_11

BIBLIOGRAPHY

pp. 685–706, https://doi.org/10.1007/978-3-642-14623-7_37, http://dx.doi.org/10.

1007/978-3-642-14623-7_37.

[45] F. Dupuis, J. B. Nielsen, and L. Salvail, Actively Secure Two-Party Evalua-
tion of Any Quantum Operation, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 794–811, https://doi.org/10.1007/978-3-642-32009-5_46, https://doi.org/10.

1007/978-3-642-32009-5_46.

[46] S. Dziembowski and U. Maurer, On generating the initial key in the bounded-
storage model, in Advances in Cryptology - EUROCRYPT 2004, C. Cachin and
J. L. Camenisch, eds., Berlin, Heidelberg, 2004, Springer Berlin Heidelberg, pp. 126–
137, https://doi.org/10.1007/978-3-540-24676-3_8, https://link.springer.com/

chapter/10.1007%2F978-3-540-24676-3_8.

[47] P. H. Eberhard and R. R. Ross, Quantum field theory cannot provide faster-than-light
communication, Foundations of Physics Letters, 2 (1989), pp. 127–149, https://doi.org/10.

1007/BF00696109, https://link.springer.com/article/10.1007/BF00696109.

[48] A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett., 67 (1991),
pp. 661–663, https://doi.org/10.1103/PhysRevLett.67.661, https://link.aps.org/

doi/10.1103/PhysRevLett.67.661.

[49] S. Fehr, J. Katz, F. Song, H.-S. Zhou, and V. Zikas, Feasibility and com-
pleteness of cryptographic tasks in the quantum world, in Theory of Cryptogra-
phy, A. Sahai, ed., Berlin, Heidelberg, 2013, Springer Berlin Heidelberg, pp. 281–
296, https://doi.org/10.1007/978-3-642-36594-2_16, https://link.springer.com/

chapter/10.1007/978-3-642-36594-2_16.

[50] W. Feller, An Introduction to Probability Theory and Its Applications, John Wiley
& Sons, 1991, https://www.wiley.com/en-us/An+Introduction+to+Probability+Theory+

and+Its+Applications%2C+Volume+2%2C+2nd+Edition-p-9780471257097.

[51] A. Fiat and A. Shamir, How to prove yourself: Practical solutions to identification and signature
problems, in Advances in Cryptology — CRYPTO’ 86, A. M. Odlyzko, ed., Berlin, Heidelberg,
1987, Springer Berlin Heidelberg, pp. 186–194, https://doi.org/10.1007/3-540-47721-7_

12, https://link.springer.com/chapter/10.1007%2F3-540-47721-7_12.

[52] J. F. Fitzsimons, Private quantum computation: an introduction to blind quantum computing
and related protocols, npj Quantum Information, 3 (2017), p. 23, https://doi.org/10.1038/

s41534-017-0025-3, https://doi.org/10.1038/s41534-017-0025-3.

[53] J. F. Fitzsimons and E. Kashefi, Unconditionally verifiable blind quantum computation,
Phys. Rev. A, 96 (2017), p. 012303, https://doi.org/10.1103/PhysRevA.96.012303, https:

//link.aps.org/doi/10.1103/PhysRevA.96.012303.

[54] T. Gagliardoni, A. Hülsing, and C. Schaffner, Semantic security and indis-
tinguishability in the quantum world, in Advances in Cryptology – CRYPTO 2016,
M. Robshaw and J. Katz, eds., Berlin, Heidelberg, 2016, Springer Berlin Heidelberg,
pp. 60–89, https://doi.org/10.1007/978-3-662-53015-3_3, https://link.springer.

com/chapter/10.1007/978-3-662-53015-3_3.

248

https://doi.org/10.1007/978-3-642-14623-7_37
http://dx.doi.org/10.1007/978-3-642-14623-7_37
http://dx.doi.org/10.1007/978-3-642-14623-7_37
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-540-24676-3_8
https://link.springer.com/chapter/10.1007%2F978-3-540-24676-3_8
https://link.springer.com/chapter/10.1007%2F978-3-540-24676-3_8
https://doi.org/10.1007/BF00696109
https://doi.org/10.1007/BF00696109
https://link.springer.com/article/10.1007/BF00696109
https://doi.org/10.1103/PhysRevLett.67.661
https://link.aps.org/doi/10.1103/PhysRevLett.67.661
https://link.aps.org/doi/10.1103/PhysRevLett.67.661
https://doi.org/10.1007/978-3-642-36594-2_16
https://link.springer.com/chapter/10.1007/978-3-642-36594-2_16
https://link.springer.com/chapter/10.1007/978-3-642-36594-2_16
https://www.wiley.com/en-us/An+Introduction+to+Probability+Theory+and+Its+Applications%2C+Volume+2%2C+2nd+Edition-p-9780471257097
https://www.wiley.com/en-us/An+Introduction+to+Probability+Theory+and+Its+Applications%2C+Volume+2%2C+2nd+Edition-p-9780471257097
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://link.springer.com/chapter/10.1007%2F3-540-47721-7_12
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1038/s41534-017-0025-3
https://doi.org/10.1103/PhysRevA.96.012303
https://link.aps.org/doi/10.1103/PhysRevA.96.012303
https://link.aps.org/doi/10.1103/PhysRevA.96.012303
https://doi.org/10.1007/978-3-662-53015-3_3
https://link.springer.com/chapter/10.1007/978-3-662-53015-3_3
https://link.springer.com/chapter/10.1007/978-3-662-53015-3_3

BIBLIOGRAPHY

[55] R. Gennaro, C. Gentry, and B. Parno, Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers, in Advances in Cryptology – CRYPTO
2010, T. Rabin, ed., Berlin, Heidelberg, 2010, Springer Berlin Heidelberg, pp. 465–
482, https://doi.org/10.1007/978-3-642-14623-7_25, https://link.springer.com/

chapter/10.1007/978-3-642-14623-7_25.

[56] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov,
Full-field implementation of a perfect eavesdropper on a quantum cryptography system, Nature
Communications, 2 (2011), p. 349, https://doi.org/10.1038/ncomms1348, https://doi.

org/10.1038/ncomms1348.

[57] A. Gheorghiu, M. J. Hoban, and E. Kashefi, A simple protocol for fault tolerant verification
of quantum computation, Quantum Science and Technology, 4 (2018), p. 015009, https://doi.

org/10.1088/2058-9565/aaeeb3, https://doi.org/10.1088%2F2058-9565%2Faaeeb3.

[58] A. Gheorghiu, T. Kapourniotis, and E. Kashefi, Verification of quantum compu-
tation: An overview of existing approaches, Theory of Computing Systems, 63 (2019),
pp. 715–808, https://doi.org/10.1007/s00224-018-9872-3, https://doi.org/10.1007/

s00224-018-9872-3.

[59] G. C. Ghirardi, R. Grassi, A. Rimini, and T. Weber, Experiments of the EPR type
involving CP-violation do not allow faster-than-light communication between distant observers,
Europhysics Letters (EPL), 6 (1988), pp. 95–100, https://doi.org/10.1209/0295-5075/6/

2/001, https://doi.org/10.1209/0295-5075/6/2/001.

[60] O. Goldreich, Foundations of Cryptography, vol. 1, Cambridge University Press, Cam-
bridge, 2004, ch. Pseudorandom Permutations, pp. 164–169, https://doi.org/10.1017/

CBO9780511721656.

[61] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game, in Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, New York,
NY, USA, 1987, ACM, pp. 218–229, https://doi.org/10.1145/28395.28420, http://doi.

acm.org/10.1145/28395.28420.

[62] E. Greene and J. A. Wellner, Exponential bounds for the hypergeometric distribution,
Bernoulli, 23 (2017), p. 1911–1950, https://doi.org/10.3150/15-bej800, http://dx.doi.

org/10.3150/15-BEJ800.

[63] C. Greganti, M.-C. Roehsner, S. Barz, T. Morimae, , and P. Walther, Demonstration of
measurement-only blind quantum computing, New Journal of Physics, 18 (2016), p. 250, https:

//doi.org/10.1088/1367-2630/18/1/013020, https://iopscience.iop.org/article/10.

1088/1367-2630/18/1/013020.

[64] L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev.
Lett., 79 (1997), pp. 325–328, https://doi.org/10.1103/PhysRevLett.79.325, https://

link.aps.org/doi/10.1103/PhysRevLett.79.325.

[65] S. Halevi, C. Hazay, A. Polychroniadou, and M. Venkitasubramaniam, Round-
optimal secure multi-party computation, in Advances in Cryptology – CRYPTO 2018,
H. Shacham and A. Boldyreva, eds., Cham, 2018, Springer International Publishing,

249

https://doi.org/10.1007/978-3-642-14623-7_25
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_25
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_25
https://doi.org/10.1038/ncomms1348
https://doi.org/10.1038/ncomms1348
https://doi.org/10.1038/ncomms1348
https://doi.org/10.1088/2058-9565/aaeeb3
https://doi.org/10.1088/2058-9565/aaeeb3
https://doi.org/10.1088%2F2058-9565%2Faaeeb3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1007/s00224-018-9872-3
https://doi.org/10.1209/0295-5075/6/2/001
https://doi.org/10.1209/0295-5075/6/2/001
https://doi.org/10.1209/0295-5075/6/2/001
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
http://doi.acm.org/10.1145/28395.28420
https://doi.org/10.3150/15-bej800
http://dx.doi.org/10.3150/15-BEJ800
http://dx.doi.org/10.3150/15-BEJ800
https://doi.org/10.1088/1367-2630/18/1/013020
https://doi.org/10.1088/1367-2630/18/1/013020
https://iopscience.iop.org/article/10.1088/1367-2630/18/1/013020
https://iopscience.iop.org/article/10.1088/1367-2630/18/1/013020
https://doi.org/10.1103/PhysRevLett.79.325
https://link.aps.org/doi/10.1103/PhysRevLett.79.325
https://link.aps.org/doi/10.1103/PhysRevLett.79.325

BIBLIOGRAPHY

pp. 488–520, https://doi.org/10.1007/978-3-319-96881-0_17, https://link.springer.

com/chapter/10.1007%2F978-3-319-96881-0_17.

[66] S. Hallgren, A. Smith, and F. Song, Classical cryptographic protocols in a quantum
world, International Journal of Quantum Information, 13 (2015), p. 1550028, https://

doi.org/10.1142/S0219749915500288, https://www.worldscientific.com/doi/abs/10.

1142/S0219749915500288.

[67] M. Hayashi and T. Morimae, Verifiable measurement-only blind quantum computing with stabi-
lizer testing, Phys. Rev. Lett., 115 (2015), p. 220502, https://doi.org/10.1103/PhysRevLett.

115.220502, https://link.aps.org/doi/10.1103/PhysRevLett.115.220502.

[68] M. Hein, J. Eisert, and H. J. Briegel, Multiparty entanglement in graph states, Phys. Rev. A,
69 (2004), p. 062311, https://doi.org/10.1103/PhysRevA.69.062311, https://link.aps.

org/doi/10.1103/PhysRevA.69.062311.

[69] M. Houshmand, M. Houshmand, S.-H. Tan, and J. Fitzsimons, Composable secure multi-
client delegated quantum computation, arXiv e-prints, (2018), arXiv:1811.11929, https://

arxiv.org/abs/1811.11929.

[70] M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia, Breaking symmet-
ric cryptosystems using quantum period finding, in Advances in Cryptology – CRYPTO
2016, M. Robshaw and J. Katz, eds., Berlin, Heidelberg, 2016, Springer Berlin Heidelberg,
pp. 207–237, https://doi.org/10.1007/978-3-662-53008-5_8, https://link.springer.

com/chapter/10.1007/978-3-662-53008-5_8.

[71] T. Kapourniotis and A. Datta, Nonadaptive fault-tolerant verification of quantum supremacy
with noise, Quantum, 3 (2019), p. 164, https://doi.org/10.22331/q-2019-07-12-164,
https://doi.org/10.22331/q-2019-07-12-164.

[72] T. Kapourniotis, V. Dunjko, and E. Kashefi, On optimising quantum communication in
verifiable quantum computing, arXiv e-prints, (2015), arXiv:1506.06943, https://arxiv.org/

abs/1506.06943.

[73] T. Kapourniotis, E. Kashefi, L. Music, and H. Ollivier, Delegating multi-party quantum
computations vs. dishonest majority in two quantum rounds, 2021, https://arxiv.org/abs/

2102.12949.

[74] E. Kashefi, A. Kent, V. Vedral, and K. Banaszek, Comparison of quantum oracles,
Phys. Rev. A, 65 (2002), p. 050304, https://doi.org/10.1103/PhysRevA.65.050304, https:

//link.aps.org/doi/10.1103/PhysRevA.65.050304.

[75] E. Kashefi, L. Music, and P. Wallden, The quantum cut-and-choose technique and quantum
two-party computation, 2017, https://arxiv.org/abs/1703.03754, https://arxiv.org/

abs/1703.03754.

[76] E. Kashefi and A. Pappa, Multiparty delegated quantum computing, Cryptography, 1
(2017), pp. 1–20, https://doi.org/10.3390/cryptography1020012, https://www.mdpi.

com/2410-387X/1/2/12.

[77] E. Kashefi and P. Wallden, Garbled quantum computation, Cryptography, 1 (2017), https:

//doi.org/10.3390/cryptography1010006, https://www.mdpi.com/2410-387X/1/1/6.

250

https://doi.org/10.1007/978-3-319-96881-0_17
https://link.springer.com/chapter/10.1007%2F978-3-319-96881-0_17
https://link.springer.com/chapter/10.1007%2F978-3-319-96881-0_17
https://doi.org/10.1142/S0219749915500288
https://doi.org/10.1142/S0219749915500288
https://www.worldscientific.com/doi/abs/10.1142/S0219749915500288
https://www.worldscientific.com/doi/abs/10.1142/S0219749915500288
https://doi.org/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevLett.115.220502
https://link.aps.org/doi/10.1103/PhysRevLett.115.220502
https://doi.org/10.1103/PhysRevA.69.062311
https://link.aps.org/doi/10.1103/PhysRevA.69.062311
https://link.aps.org/doi/10.1103/PhysRevA.69.062311
https://arxiv.org/abs/1811.11929
https://arxiv.org/abs/1811.11929
https://doi.org/10.1007/978-3-662-53008-5_8
https://link.springer.com/chapter/10.1007/978-3-662-53008-5_8
https://link.springer.com/chapter/10.1007/978-3-662-53008-5_8
https://doi.org/10.22331/q-2019-07-12-164
https://doi.org/10.22331/q-2019-07-12-164
https://arxiv.org/abs/1506.06943
https://arxiv.org/abs/1506.06943
https://arxiv.org/abs/2102.12949
https://arxiv.org/abs/2102.12949
https://doi.org/10.1103/PhysRevA.65.050304
https://link.aps.org/doi/10.1103/PhysRevA.65.050304
https://link.aps.org/doi/10.1103/PhysRevA.65.050304
https://arxiv.org/abs/1703.03754
https://arxiv.org/abs/1703.03754
https://arxiv.org/abs/1703.03754
https://doi.org/10.3390/cryptography1020012
https://www.mdpi.com/2410-387X/1/2/12
https://www.mdpi.com/2410-387X/1/2/12
https://doi.org/10.3390/cryptography1010006
https://doi.org/10.3390/cryptography1010006
https://www.mdpi.com/2410-387X/1/1/6

BIBLIOGRAPHY

[78] E. Kashefi and P. Wallden, Optimised resource construction for verifiable quantum computation,
Journal of Physics A: Mathematical and Theoretical, 50 (2017), p. 145306, https://doi.org/

10.1088/1751-8121/aa5dac, https://doi.org/10.1088/1751-8121/aa5dac.

[79] J. Kilian, Founding crytpography on oblivious transfer, in Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, New York, NY, USA, 1988, Association
for Computing Machinery, p. 20–31, https://doi.org/10.1145/62212.62215, https://doi.

org/10.1145/62212.62215.

[80] M. S. Kiraz, Secure and Fair Two-Party Computation, PhD thesis, Department of Mathematics
and Computer Science, 08 2008, https://doi.org/10.13140/RG.2.1.4458.2004.

[81] A. Y. Kitaev, Quantum computations: algorithms and error correction, Russian Mathematical
Surveys, 52 (1997), pp. 1191–1249, https://doi.org/10.1070/rm1997v052n06abeh002155,
https://doi.org/10.1070/rm1997v052n06abeh002155.

[82] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer,
R. Ozeri, S. Seidelin, and D. J. Wineland, Randomized benchmarking of quantum
gates, Phys. Rev. A, 77 (2008), p. 012307, https://doi.org/10.1103/PhysRevA.77.012307,
https://link.aps.org/doi/10.1103/PhysRevA.77.012307.

[83] V. Kolesnikov and T. Schneider, Improved garbled circuit: Free xor gates and applications,
in Automata, Languages and Programming, L. Aceto, I. Damgård, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, eds., Berlin, Heidelberg, 2008, Springer
Berlin Heidelberg, pp. 486–498, https://doi.org/10.1007/978-3-540-70583-3_40, https:

//link.springer.com/chapter/10.1007%2F978-3-540-70583-3_40.

[84] R. König, R. Renner, A. Bariska, and U. Maurer, Small accessible quantum information
does not imply security, Phys. Rev. Lett., 98 (2007), p. 140502, https://doi.org/10.1103/

PhysRevLett.98.140502, https://link.aps.org/doi/10.1103/PhysRevLett.98.140502.

[85] H. Kuwakado and M. Morii, Quantum distinguisher between the 3-round feistel cipher and
the random permutation, in 2010 IEEE International Symposium on Information Theory, June
2010, pp. 2682–2685, https://doi.org/10.1109/ISIT.2010.5513654, https://ieeexplore.

ieee.org/document/5513654.

[86] H. Kuwakado and M. Morii, Security on the quantum-type even-mansour cipher, in 2012
International Symposium on Information Theory and its Applications, Oct 2012, pp. 312–316,
https://ieeexplore.ieee.org/document/6400943.

[87] D. Leichtle, L. Music, E. Kashefi, and H. Ollivier, Verifying quantum computations
on noisy devices with minimal overhead, 2020, https://arxiv.org/abs/2011.10005, https:

//arxiv.org/abs/2011.10005.

[88] Y. Lindell and B. Pinkas, An Efficient Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries, Springer, Berlin, Heidelberg, 2007, p. 52, https://doi.org/

10.1007/978-3-540-72540-4_4, http://dx.doi.org/10.1007/978-3-540-72540-4_4.

[89] Y. Lindell and B. Pinkas, A proof of security of yao’s protocol for two-party computation, Jour-
nal of Cryptology, 22 (2009), pp. 161–188, https://doi.org/10.1007/s00145-008-9036-8,
https://doi.org/10.1007/s00145-008-9036-8.

251

https://doi.org/10.1088/1751-8121/aa5dac
https://doi.org/10.1088/1751-8121/aa5dac
https://doi.org/10.1088/1751-8121/aa5dac
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.13140/RG.2.1.4458.2004
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1070/rm1997v052n06abeh002155
https://doi.org/10.1103/PhysRevA.77.012307
https://link.aps.org/doi/10.1103/PhysRevA.77.012307
https://doi.org/10.1007/978-3-540-70583-3_40
https://link.springer.com/chapter/10.1007%2F978-3-540-70583-3_40
https://link.springer.com/chapter/10.1007%2F978-3-540-70583-3_40
https://doi.org/10.1103/PhysRevLett.98.140502
https://doi.org/10.1103/PhysRevLett.98.140502
https://link.aps.org/doi/10.1103/PhysRevLett.98.140502
https://doi.org/10.1109/ISIT.2010.5513654
https://ieeexplore.ieee.org/document/5513654
https://ieeexplore.ieee.org/document/5513654
https://ieeexplore.ieee.org/document/6400943
https://arxiv.org/abs/2011.10005
https://arxiv.org/abs/2011.10005
https://arxiv.org/abs/2011.10005
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
http://dx.doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/s00145-008-9036-8
https://doi.org/10.1007/s00145-008-9036-8

BIBLIOGRAPHY

[90] V. Lipinska, J. Ribeiro, and S. Wehner, Secure multiparty quantum computation with
few qubits, Phys. Rev. A, 102 (2020), p. 022405, https://doi.org/10.1103/PhysRevA.102.

022405, https://link.aps.org/doi/10.1103/PhysRevA.102.022405.

[91] M. Liu, J. Krämer, Y. Hu, and J. A. Buchmann, Quantum security analysis of a lattice-based
oblivious transfer protocol, Frontiers Inf. Technol. Electron. Eng., 18 (2017), pp. 1348–1369,
https://doi.org/10.1631/FITEE.1700039, https://doi.org/10.1631/FITEE.1700039.

[92] Q. Liu and M. Zhandry, Revisiting post-quantum fiat-shamir, in Advances in Cryptol-
ogy – CRYPTO 2019, A. Boldyreva and D. Micciancio, eds., Cham, 2019, Springer In-
ternational Publishing, pp. 326–355, https://doi.org/10.1007/978-3-030-26951-7_12,
https://link.springer.com/chapter/10.1007%2F978-3-030-26951-7_12.

[93] H.-K. Lo, Insecurity of quantum secure computations, Phys. Rev. A, 56 (1997), pp. 1154–
1162, https://doi.org/10.1103/PhysRevA.56.1154, http://link.aps.org/doi/10.1103/

PhysRevA.56.1154.

[94] H.-K. Lo, Insecurity of quantum secure computations, Physical Review A, 56 (1997),
p. 1154–1162, https://doi.org/10.1103/physreva.56.1154, http://dx.doi.org/10.

1103/PhysRevA.56.1154.

[95] H.-K. Lo and H. F. Chau, Is quantum bit commitment really possible?, Phys. Rev. Lett.,
78 (1997), pp. 3410–3413, https://doi.org/10.1103/PhysRevLett.78.3410, http://link.

aps.org/doi/10.1103/PhysRevLett.78.3410.

[96] U. Mahadev, Classical verification of quantum computations, in 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, M. Thorup, ed.,
IEEE Computer Society, 2018, pp. 259–267, https://doi.org/10.1109/FOCS.2018.00033,
https://doi.org/10.1109/FOCS.2018.00033.

[97] A. Mantri, T. F. Demarie, N. C. Menicucci, and J. F. Fitzsimons, Flow ambiguity: A path
towards classically driven blind quantum computation, Phys. Rev. X, 7 (2017), p. 031004, https:

//doi.org/10.1103/PhysRevX.7.031004, https://link.aps.org/doi/10.1103/PhysRevX.

7.031004.

[98] U. Maurer, Constructive cryptography – a new paradigm for security defini-
tions and proofs, in Theory of Security and Applications, S. Mödersheim and
C. Palamidessi, eds., Berlin, Heidelberg, 2012, Springer Berlin Heidelberg, pp. 33–
56, https://doi.org/10.1007/978-3-642-27375-9_3, https://link.springer.com/

chapter/10.1007/978-3-642-27375-9_3.

[99] U. Maurer and R. Renner, Abstract cryptography, in Innovations in Computer Science,
Tsinghua University Press, jan 2011, pp. 1 – 21, https://conference.iiis.tsinghua.edu.

cn/ICS2011/content/papers/14.html.

[100] D. Mayers, Unconditionally secure quantum bit commitment is impossible, Phys. Rev. Lett.,
78 (1997), pp. 3414–3417, https://doi.org/10.1103/PhysRevLett.78.3414, http://link.

aps.org/doi/10.1103/PhysRevLett.78.3414.

[101] A. J. McCaskey, Z. P. Parks, J. Jakowski, S. V. Moore, T. D. Morris, T. S. Humble,
and R. C. Pooser, Quantum chemistry as a benchmark for near-term quantum computers,

252

https://doi.org/10.1103/PhysRevA.102.022405
https://doi.org/10.1103/PhysRevA.102.022405
https://link.aps.org/doi/10.1103/PhysRevA.102.022405
https://doi.org/10.1631/FITEE.1700039
https://doi.org/10.1631/FITEE.1700039
https://doi.org/10.1007/978-3-030-26951-7_12
https://link.springer.com/chapter/10.1007%2F978-3-030-26951-7_12
https://doi.org/10.1103/PhysRevA.56.1154
http://link.aps.org/doi/10.1103/PhysRevA.56.1154
http://link.aps.org/doi/10.1103/PhysRevA.56.1154
https://doi.org/10.1103/physreva.56.1154
http://dx.doi.org/10.1103/PhysRevA.56.1154
http://dx.doi.org/10.1103/PhysRevA.56.1154
https://doi.org/10.1103/PhysRevLett.78.3410
http://link.aps.org/doi/10.1103/PhysRevLett.78.3410
http://link.aps.org/doi/10.1103/PhysRevLett.78.3410
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1103/PhysRevX.7.031004
https://doi.org/10.1103/PhysRevX.7.031004
https://link.aps.org/doi/10.1103/PhysRevX.7.031004
https://link.aps.org/doi/10.1103/PhysRevX.7.031004
https://doi.org/10.1007/978-3-642-27375-9_3
https://link.springer.com/chapter/10.1007/978-3-642-27375-9_3
https://link.springer.com/chapter/10.1007/978-3-642-27375-9_3
https://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html
https://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/14.html
https://doi.org/10.1103/PhysRevLett.78.3414
http://link.aps.org/doi/10.1103/PhysRevLett.78.3414
http://link.aps.org/doi/10.1103/PhysRevLett.78.3414

BIBLIOGRAPHY

npj Quantum Information, 5 (2019), p. 99, https://doi.org/10.1038/s41534-019-0209-0,
https://doi.org/10.1038/s41534-019-0209-0.

[102] W. McCutcheon, A. Pappa, B. A. Bell, A. McMillan, A. Chailloux, T. Lawson,
M. Mafu, D. Markham, E. Diamanti, I. Kerenidis, J. G. Rarity, and M. S.
Tame, Experimental verification of multipartite entanglement in quantum networks, Na-
ture Communications, 7 (2016), p. 13251, https://doi.org/10.1038/ncomms13251, https:

//doi.org/10.1038/ncomms13251.

[103] C. Mochon, Quantum weak coin flipping with arbitrarily small bias, 2007, https://arxiv.org/

abs/0711.4114.

[104] T. Morimae and K. Fujii, Secure entanglement distillation for double-server blind quantum com-
putation, Phys. Rev. Lett., 111 (2013), p. 020502, https://doi.org/10.1103/PhysRevLett.

111.020502, https://link.aps.org/doi/10.1103/PhysRevLett.111.020502.

[105] S. Mossayebi and R. Schack, Concrete Security Against Adversaries with Quantum Superposi-
tion Access to Encryption and Decryption Oracles, arXiv e-prints, (2016), arXiv:1609.03780,
https://arxiv.org/abs/1609.03780.

[106] L. Music, C. Chevalier, and E. Kashefi, Dispelling myths on superposition attacks: For-
mal security model and attack analyses, in Provable and Practical Security, K. Nguyen,
W. Wu, K. Y. Lam, and H. Wang, eds., Cham, 2020, Springer International Publishing,
pp. 318–337, https://doi.org/10.1007/978-3-030-62576-4_16, https://link.springer.

com/chapter/10.1007/978-3-030-62576-4_16.

[107] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:
10th Anniversary Edition, Cambridge University Press, 2000, https://doi.org/10.1017/

CBO9780511976667.

[108] G. M. Nikolopoulos and E. Diamanti, Continuous-variable quantum authentication of physical
unclonable keys, Scientific Reports, 7 (2017), p. 46047, https://doi.org/10.1038/srep46047,
https://doi.org/10.1038/srep46047.

[109] N. None, From long-distance entanglement to building a nationwide quantum internet: Report of
the doe quantum internet blueprint workshop, DOE OSTI Technical Report, (2020), https:

//doi.org/10.2172/1638794, https://www.osti.gov/biblio/1638794.

[110] A. Pappa, P. Jouguet, T. Lawson, A. Chailloux, M. Legré, P. Trinkler, I. Kerenidis,
and E. Diamanti, Experimental plug and play quantum coin flipping, Nature Communi-
cations, 5 (2014), p. 3717, https://doi.org/10.1038/ncomms4717, https://doi.org/10.

1038/ncomms4717.

[111] J. L. Park, The concept of transition in quantum mechanics, Foundations of Physics,
1 (1970), pp. 23–33, https://doi.org/10.1007/BF00708652, https://doi.org/10.1007/

BF00708652.

[112] C. Peikert, V. Vaikuntanathan, and B. Waters, A framework for efficient
and composable oblivious transfer, in Advances in Cryptology – CRYPTO 2008,
D. Wagner, ed., Berlin, Heidelberg, 2008, Springer Berlin Heidelberg, pp. 554–

253

https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/ncomms13251
https://doi.org/10.1038/ncomms13251
https://doi.org/10.1038/ncomms13251
https://arxiv.org/abs/0711.4114
https://arxiv.org/abs/0711.4114
https://doi.org/10.1103/PhysRevLett.111.020502
https://doi.org/10.1103/PhysRevLett.111.020502
https://link.aps.org/doi/10.1103/PhysRevLett.111.020502
https://arxiv.org/abs/1609.03780
https://doi.org/10.1007/978-3-030-62576-4_16
https://link.springer.com/chapter/10.1007/978-3-030-62576-4_16
https://link.springer.com/chapter/10.1007/978-3-030-62576-4_16
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1038/srep46047
https://doi.org/10.1038/srep46047
https://doi.org/10.2172/1638794
https://doi.org/10.2172/1638794
https://www.osti.gov/biblio/1638794
https://doi.org/10.1038/ncomms4717
https://doi.org/10.1038/ncomms4717
https://doi.org/10.1038/ncomms4717
https://doi.org/10.1007/BF00708652
https://doi.org/10.1007/BF00708652
https://doi.org/10.1007/BF00708652

BIBLIOGRAPHY

571, https://doi.org/10.1007/978-3-540-85174-5_31, https://link.springer.com/

chapter/10.1007/978-3-540-85174-5_31.

[113] D. Pointcheval and J. Stern, Security proofs for signature schemes, in Advances in Cryptology
— EUROCRYPT ’96, U. Maurer, ed., Berlin, Heidelberg, 1996, Springer Berlin Heidelberg,
pp. 387–398, https://doi.org/10.1007/3-540-68339-9_33, https://link.springer.com/

chapter/10.1007%2F3-540-68339-9_33.

[114] C. Portmann, Quantum authentication with key recycling, in Advances in Cryptology – EU-
ROCRYPT 2017, Proceedings, Part III, vol. 10212 of Lecture Notes in Computer Science,
Springer, 2017, pp. 339–368, https://doi.org/10.1007/978-3-319-56617-7_12, https:

//link.springer.com/chapter/10.1007/978-3-319-56617-7_12.

[115] C. Portmann and R. Renner, Cryptographic security of quantum key distribution, arXiv
e-prints, (2014), arXiv:1409.3525, https://arxiv.org/abs/1409.3525.

[116] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum, 2 (2018), p. 79, https:

//doi.org/10.22331/q-2018-08-06-79, https://doi.org/10.22331/q-2018-08-06-79.

[117] E. M. Rains, Nonbinary quantum codes, IEEE Transactions on Information Theory, 45
(1999), pp. 1827–1832, https://doi.org/10.1109/18.782103, https://ieeexplore.ieee.

org/document/782103.

[118] R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett., 86 (2001),
pp. 5188–5191, https://doi.org/10.1103/PhysRevLett.86.5188, http://link.aps.org/

doi/10.1103/PhysRevLett.86.5188.

[119] H. Robbins, A remark on stirling’s formula, The American Mathematical Monthly, 62 (1955),
pp. 26–29, http://www.jstor.org/stable/2308012.

[120] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas, Efficiently four-coloring planar
graphs, in Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, New York, NY, USA, 1996, Association for Computing Machinery, p. 571–575,
https://doi.org/10.1145/237814.238005, https://doi.org/10.1145/237814.238005.

[121] L. Salvail, C. Schaffner, and M. Sotáková, On the Power of Two-Party Quantum Cryp-
tography, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 70–87, https://doi.org/

10.1007/978-3-642-10366-7_5, http://dx.doi.org/10.1007/978-3-642-10366-7_5.

[122] L. Salvail, C. Schaffner, and M. Sotáková, Quantifying the leakage of quantum proto-
cols for classical two-party cryptography, International Journal of Quantum Information, 13
(2015), p. 1450041, https://doi.org/10.1142/S0219749914500415, https://doi.org/10.

1142/S0219749914500415.

[123] R. J. Serfling, Probability inequalities for the sum in sampling without replacement, Ann.
Statist., 2 (1974), pp. 39–48, https://doi.org/10.1214/aos/1176342611, https://doi.

org/10.1214/aos/1176342611.

[124] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in Proceed-
ings of the 35th Annual Symposium on Foundations of Computer Science, SFCS ’94, USA,
1994, IEEE Computer Society, p. 124–134, https://doi.org/10.1109/SFCS.1994.365700,
https://doi.org/10.1109/SFCS.1994.365700.

254

https://doi.org/10.1007/978-3-540-85174-5_31
https://link.springer.com/chapter/10.1007/978-3-540-85174-5_31
https://link.springer.com/chapter/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/3-540-68339-9_33
https://link.springer.com/chapter/10.1007%2F3-540-68339-9_33
https://link.springer.com/chapter/10.1007%2F3-540-68339-9_33
https://doi.org/10.1007/978-3-319-56617-7_12
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_12
https://link.springer.com/chapter/10.1007/978-3-319-56617-7_12
https://arxiv.org/abs/1409.3525
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1109/18.782103
https://ieeexplore.ieee.org/document/782103
https://ieeexplore.ieee.org/document/782103
https://doi.org/10.1103/PhysRevLett.86.5188
http://link.aps.org/doi/10.1103/PhysRevLett.86.5188
http://link.aps.org/doi/10.1103/PhysRevLett.86.5188
http://www.jstor.org/stable/2308012
https://doi.org/10.1145/237814.238005
https://doi.org/10.1145/237814.238005
https://doi.org/10.1007/978-3-642-10366-7_5
https://doi.org/10.1007/978-3-642-10366-7_5
http://dx.doi.org/10.1007/978-3-642-10366-7_5
https://doi.org/10.1142/S0219749914500415
https://doi.org/10.1142/S0219749914500415
https://doi.org/10.1142/S0219749914500415
https://doi.org/10.1214/aos/1176342611
https://doi.org/10.1214/aos/1176342611
https://doi.org/10.1214/aos/1176342611
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700

BIBLIOGRAPHY

[125] B. Škorić, Quantum readout of physical unclonable functions, International Journal of Quantum
Information, 10 (2012), p. 1250001, https://doi.org/10.1142/S0219749912500013, https:

//doi.org/10.1142/S0219749912500013.

[126] D. Unruh, Universally composable quantum multi-party computation, in Advances in Cryptology
– EUROCRYPT 2010, H. Gilbert, ed., Berlin, Heidelberg, 2010, Springer Berlin Heidelberg,
pp. 486–505, https://doi.org/10.1007/978-3-642-13190-5_25, https://link.springer.

com/chapter/10.1007%2F978-3-642-13190-5_25.

[127] D. Unruh, Quantum Proofs of Knowledge, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 135–152, https://doi.org/10.1007/978-3-642-29011-4_10, http://dx.doi.org/10.

1007/978-3-642-29011-4_10.

[128] D. Unruh, Collapse-binding quantum commitments without random oracles, in Advances in
Cryptology – ASIACRYPT 2016, J. H. Cheon and T. Takagi, eds., Berlin, Heidelberg, 2016,
Springer Berlin Heidelberg, pp. 166–195, https://doi.org/10.1007/978-3-662-53890-6_6,
https://link.springer.com/chapter/10.1007/978-3-662-53890-6_6.

[129] D. Unruh, Computationally binding quantum commitments, in Advances in Cryptology – EU-
ROCRYPT 2016, M. Fischlin and J.-S. Coron, eds., Berlin, Heidelberg, 2016, Springer
Berlin Heidelberg, pp. 497–527, https://doi.org/10.1007/978-3-662-49896-5_18, https:

//link.springer.com/chapter/10.1007/978-3-662-49896-5_18.

[130] J. Watrous, Zero-knowledge against quantum attacks, SIAM Journal on Computing, 39
(2009), pp. 25–58, https://doi.org/10.1137/060670997, http://dx.doi.org/10.1137/

060670997.

[131] S. Wehner, C. Schaffner, and B. M. Terhal, Cryptography from noisy storage, Phys. Rev.
Lett., 100 (2008), p. 220502, https://doi.org/10.1103/PhysRevLett.100.220502, https:

//link.aps.org/doi/10.1103/PhysRevLett.100.220502.

[132] S. Wiesner, Conjugate coding, SIGACT News, 15 (1983), p. 78–88, https://doi.org/10.1145/

1008908.1008920, https://doi.org/10.1145/1008908.1008920.

[133] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen,
N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-
Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov,
S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim, Benchmarking
an 11-qubit quantum computer, Nature Communications, 10 (2019), p. 5464, https://doi.

org/10.1038/s41467-019-13534-2, https://doi.org/10.1038/s41467-019-13534-2.

[134] Q. Xu, X. Tan, and R. Huang, Improved resource state for verifiable blind quantum compu-
tation, Entropy, 22 (2020), https://doi.org/10.3390/e22090996, https://www.mdpi.com/

1099-4300/22/9/996.

[135] A. C.-C. Yao, How to generate and exchange secrets, in Proceedings of the 27th Annual Symposium
on Foundations of Computer Science, SFCS ’86, USA, 1986, IEEE Computer Society, p. 162–167,
https://doi.org/10.1109/SFCS.1986.25, https://doi.org/10.1109/SFCS.1986.25.

[136] J. Zou, Z. Wei, S. Sun, X. Liu, and W. Wu, Quantum circuit implementations
of aes with fewer qubits, in Advances in Cryptology – ASIACRYPT 2020, S. Mo-

255

https://doi.org/10.1142/S0219749912500013
https://doi.org/10.1142/S0219749912500013
https://doi.org/10.1142/S0219749912500013
https://doi.org/10.1007/978-3-642-13190-5_25
https://link.springer.com/chapter/10.1007%2F978-3-642-13190-5_25
https://link.springer.com/chapter/10.1007%2F978-3-642-13190-5_25
https://doi.org/10.1007/978-3-642-29011-4_10
http://dx.doi.org/10.1007/978-3-642-29011-4_10
http://dx.doi.org/10.1007/978-3-642-29011-4_10
https://doi.org/10.1007/978-3-662-53890-6_6
https://link.springer.com/chapter/10.1007/978-3-662-53890-6_6
https://doi.org/10.1007/978-3-662-49896-5_18
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_18
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_18
https://doi.org/10.1137/060670997
http://dx.doi.org/10.1137/060670997
http://dx.doi.org/10.1137/060670997
https://doi.org/10.1103/PhysRevLett.100.220502
https://link.aps.org/doi/10.1103/PhysRevLett.100.220502
https://link.aps.org/doi/10.1103/PhysRevLett.100.220502
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.1038/s41467-019-13534-2
https://doi.org/10.3390/e22090996
https://www.mdpi.com/1099-4300/22/9/996
https://www.mdpi.com/1099-4300/22/9/996
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

BIBLIOGRAPHY

riai and H. Wang, eds., Cham, 2020, Springer International Publishing, pp. 697–
726, https://doi.org/10.1007/978-3-030-64834-3_24, https://link.springer.com/

chapter/10.1007%2F978-3-030-64834-3_24.

256

https://doi.org/10.1007/978-3-030-64834-3_24
https://link.springer.com/chapter/10.1007%2F978-3-030-64834-3_24
https://link.springer.com/chapter/10.1007%2F978-3-030-64834-3_24

	Introduction
	Preliminaries in Probability Theory and Quantum Information
	Useful Inequalities from Probability Theory
	Binomial Distribution
	Hypergeometric Distribution

	Quantum Information Theory
	Quantum States
	Quantum Operations
	Useful Results from Quantum Information

	Measurement-Based Quantum Computing
	Graph State Bridge Operation

	Cryptographic Security Frameworks
	Basic Cryptographic Primitives
	Common Primitives
	Classical Bit Commitment

	Model for Quantum Networked Machines
	``Ideal vs. Real'' Frameworks of Security
	Stand-Alone Model of Security
	Abstract Cryptography Framework
	Ideal Functionalities and Resources
	Quantum One-Time Pad Security

	Local Criteria of Security for Delegated Quantum Computation
	Core Cryptographic Protocols
	Hiding Delegated Quantum Computations in MBQC
	Verifying MBQC Through Trap Insertion
	The Classical Yao Protocol
	Universal Thresholdiser

	Boosting Protocol Security with Quantum Cut-and-Choose
	Motivation and Overview of Results
	Weaker Adversaries, Simpler Protocols
	Our Contribution

	Inverse-Polynomial Quantum Cut-and-Choose
	Formalising the Moving Parts of Quantum Cut-and-Choose
	Constraints on the Sender and Receiver CP-maps
	The Quantum Cut-and-Choose Ideal Functionality and Protocol
	Security of the Quantum Cut-and-Choose Protocol
	Analysis of Quantum Rewinding

	Exponentially-Secure Fraction Classical Cut-and-Choose
	New Constraints, Ideal Resource and Protocol Presentation
	Security of the Fraction Classical Cut-and-Choose Protocol
	Discussion

	The Protocol Compiler
	New Semi-Malicious Adversaries
	Constraints on Abstract Protocols
	Presentation of the Compiler
	The Compiler: Main Results

	Application to Secure Two-Party Quantum Computation
	The VBQC-Based 2PQC Protocol
	Security Results and Compiler Application

	Conclusion and Discussion

	Computational Security Model for Superposition Attacks
	Motivation and Overview of Results
	Analysis of Existing Security Models
	Our Contribution

	New Security Model for Superposition Attacks
	The Modified Honest-but-Curious Yao Protocol
	Security and Superposition-Compatibility of Symmetric Encryption
	Presentation of the Modified Yao Protocol

	Superposition Attack on Yao's Protocol
	Quantum Embedding of the Classical Protocol
	Generating the Correct and Unpolluted Superposition
	Applying the State Generation Procedure to the Full Attack
	The Full Attack is not Malicious
	Attack Optimisation and Application to Oblivious Transfer

	Security Model Satisfiability
	Superposition-Resistance of the Classical One-Time Pad
	Superposition-Resistant Yao Protocol

	Conclusion and Discussion

	Quantum Round-Optimal Delegated MPQC
	Motivation and Overview of Results
	Delegation, Distribution and Composition
	Our Contribution

	High-Level Construction of a Delegated MPQC Protocol from VBQC
	Deconstructing the VBQC Protocol
	Reconstructing a DMPQC Protocol with the DBQC Ideal Resource
	Usage of the Classical SMPC Ideal Resource

	Double-Blind State Generation and Computation
	Double-Blind Rotated State Preparation
	Double-Blind BB84 State Preparation
	Double Blind Quantum Computation Protocol

	Using DBQC to Bootstrap Verification
	VBQC Client-Encrypted State Preparation Using DBQC
	Effect of Adversarial Deviation during DBQC on Prepared State
	Compatibility of Good-Enough States and Proofs of Verifiability

	Full Delegated MPQC Protocol and Security Analysis
	Implementing the Classical SMPC Resource
	Useful Functions
	Constructing the Classical SMPC Functionalities

	Performance Analysis and in-depth Comparison with Previous Work
	Conclusion and Discussion

	Qubit and Operation Optimal Verifiable Quantum Computations
	Motivation and Overview of Results
	Benchmarking and Verification in a Networked Setting
	Our Contribution

	Building Protocols for SISQI, an Iterative Description
	The Basic MBQC Protocol
	Upgrading to Full Blindness using UBQC
	Amplification of Robustness and Verifiability Through Repetition
	Full Noise-Robust Verifiable Protocol

	Security Results and Noise Robustness
	Security Analysis
	Noise Robustness

	Conclusion and Discussion

	Bibliography

