
HAL Id: tel-03665789
https://theses.hal.science/tel-03665789

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D Scene Reconstruction and Completion for
Autonomous Driving

Luis Guillermo Roldão Jimenez

To cite this version:
Luis Guillermo Roldão Jimenez. 3D Scene Reconstruction and Completion for Autonomous Driving.
Robotics [cs.RO]. Sorbonne Université, 2021. English. �NNT : 2021SORUS415�. �tel-03665789�

https://theses.hal.science/tel-03665789
https://hal.archives-ouvertes.fr

Préparée à l’Université Pierre et Marie Curie

3D Scene Reconstruction and Completion
for Autonomous Driving

Reconstruction et Complétion 3D de la Scène
pour la Conduite Autonome

Soutenue par

Luis Guillermo
ROLDÃO JIMENEZ
Le 05 juillet 2021

École doctorale no130

École doctorale
Informatique,
Télécommunications
et Électronique (Paris)

Spécialité
Informatique

Composition du jury :

Bruno VALLET
DR., IGN Rapporteur

Paul CHECCHIN
Prof., Université Clermont Auvergne Rapporteur

Jean-Emmanuel DESCHAUD
CR., MINES ParisTech Examinateur

Jürgen GALL
Prof., University of Bonn Examinateur

Adrian HILTON
Prof., University of Surrey Examinateur

Anne VERROUST-BLONDET
CR., Inria Directrice de thèse

Raoul DE CHARETTE
CR., Inria Encadrant

Cyril OUAZINE
AKKA Research Invité

Contents

1 Introduction 1
1.1 Thesis context . 1
1.2 3D Vision . 2

1.2.1 3D Scanning technologies 3
1.2.2 3D Data representations 5

1.3 Thesis structure . 7

I 3D Scene Reconstruction 9

2 Statistical Update of Occupancy Grid Maps 11
2.1 Introduction . 13
2.2 Related work . 14

2.2.1 Sensor model . 15
2.2.2 Inverse sensor model 16
2.2.3 Bayesian fusion . 18
2.2.4 Update policies . 20
2.2.5 Hierarchical data structures 21

2.3 Method . 21
2.3.1 Occupancy probability from traversability 22
2.3.2 Weight measurement probability 23
2.3.3 Occupancy update . 24

2.4 Experiments . 25
2.4.1 Metrics . 26
2.4.2 Performance evaluation 26

2.5 Applications to autonomous driving 30
2.6 Conclusion . 31

3 Voxel-based Surface Reconstruction from LiDAR Data 33
3.1 Introduction . 34
3.2 Related work . 35

3.2.1 Explicit methods . 35
3.2.2 Implicit methods . 36
3.2.3 Learning-based methods 39

3.3 Method . 40
3.3.1 Voxelized representation 40
3.3.2 Explicit local surfaces 41
3.3.3 Implicit global surface 43

3.4 Experiments . 45
3.4.1 Metrics . 45

ii Contents

3.4.2 Performance evaluation 46
3.4.3 Ablation studies . 48

3.5 Conclusion . 50

II 3D Semantic Scene Completion 53

4 3D Semantic Scene Completion: Survey 55
4.1 Introduction . 56
4.2 Problem definition . 57

4.2.1 Historical background 58
4.3 Datasets and representations for SSC 59

4.3.1 Datasets . 59
4.3.2 3D SSC representations 64

4.4 Methods overview . 65
4.4.1 Input encoding . 66
4.4.2 Architecture choices 71
4.4.3 Design choices . 73
4.4.4 Training . 80
4.4.5 Evaluation . 85

4.5 Discussion . 93
4.6 Conclusion . 95

5 LMSCNet: Lightweight Multiscale Semantic Completion 97
5.1 Introduction . 99
5.2 LMSCNet . 100

5.2.1 Lightweight architecture 101
5.2.2 Multiscale completion 103
5.2.3 Training strategy . 103

5.3 Experiments . 104
5.3.1 Metrics . 105
5.3.2 Implementation details 105
5.3.3 Performance evaluation 106
5.3.4 Ablation studies . 113

5.4 Discussion . 115
5.5 Conclusion . 116

6 Conclusion 117
6.1 Contributions . 117
6.2 Future work . 118

Publications 119

Bibliography 121

Contents iii

A Statistical Update of Occupancy Grid Maps 141
A.1 Density function ρ(d) – Development and validation 141

Chapter 1

Introduction

In the last decades, research and development of autonomous vehicles has
increased considerably. Nevertheless, human drivers are still required to
remain behind the wheel for supervision and take over in case of failures
or unexpected conditions, evidencing that complete vehicle automation is
still far from accomplished. One of the main challenges to overcome lies in
the perception systems in charge of sensing and understanding the vehicle
surroundings. This is done by employing a suite of sensors gathering data
of the outside world, further processed by computer vision algorithms that
perform different tasks (Janai et al., 2020) (i.e. free space estimation (Fan
et al., 2020) or obstacle detection (Lang et al., 2019)). Therefore, reliability
of these algorithms plays a vital role and failure cases can lead to fatal
accidents. As consequence, it is crucial for autonomous vehicles to make
sense of the complex and dynamic driving scenarios encountered to operate
safely. Furthermore, the ability to create a geometrical 3D model of the
local surroundings is key to understand the structure of the scene for precise
navigation and to deal with unexpected scenarios. This is difficult given 3D
sensor limitations providing sparse and unevenly scanned data. Therefore,
different classical (Oleynikova et al., 2017; Newcombe et al., 2011; Kwon
et al., 2019) and learning-based (Yuan et al., 2018; Song et al., 2017; Groueix
et al., 2018; Liao et al., 2018) reconstruction and completion techniques have
been presented in recent years to compute a comprehensive 3D model of the
scene and provide high level information useful for trajectory planning and
decision making.

In the remainder of this chapter, we introduce the context that encom-
passes the motivation of this thesis in Section 1.1 and provide an overview
of 3D computer vision in Section 1.2. Finally, the organization outline of
this document can be found in Section 1.3.

1.1 Thesis context
This thesis has been carried out at the Robotics and Intelligent Transporta-
tion Systems (RITS) team from Inria Paris and funded by the research
department of AKKA Technologies. The RITS team is a multidisciplinary
robotics team specialized in autonomous driving, covering different research
topics ranging from perception, decision making, vehicle communications
and control systems. AKKA Research carries out R&D activities to develop

2 Introduction

Radar
Uses radio waves to
determine distance and speed
of front-facing objects.

Global Navigation
Satellite Systems (GNSS)
GPS positioning - localization.

Computers
Storage and processing of sensory data for
vehicle's perception, decision and control.

Inertial Navigation Systems (INS)
Used to measure vehicle's
displacement.

Stereo Cameras
Provide approximate 3D information from
calibrated pair of cameras.

LiDAR sensor
Priovides 360° 3D geometrical
information of vehicle
surroundings.

RGB Cameras
Provide 2D color and texture
information of vehicle
surroundings.

Figure 1.1: Traditional sensor setup for autonomous driving applications.

technological bricks that can be applied in an industrial context for mobility
solutions.

The main goal of this PhD thesis is to study and develop algorithms for
3D scene reconstruction and completion to provide enhanced environment
perception for autonomous driving. For this, we rely on 3D point clouds
which can be obtained from different sets of sensors. Figure 1.1 presents a
common setup of a self-driving vehicle. RGB and stereo cameras both pro-
vide dense visual cues of color and texture information, stereo can addition-
ally provide approximate 3D geometry cues from disparity maps. LiDAR
sensors, on the other hand, provide very accurate sparse 3D geometry infor-
mation acquired from laser beams to calculate distance to objects through
time-of-flight principle. Sophisticated LiDAR configurations are capable to
generate complete 360◦ scans and are commonly employed in autonomous
vehicle setups. Additional range sensors such as Radar or ultrasounds
are commonly used for specific applications (i.e. parking maneuvers or front
vehicle speed detection) as they provide more limited information in terms
of accuracy or resolution. Given the inherent 3D nature of LiDAR data, its
higher accuracy and large amount of information provided, we focus on its
use for all the applications presented in this thesis although our algorithms
could be applied to 3D point clouds obtained from any other sensor.

Finally, global navigation satellite systems and inertial naviga-
tion systems are commonly employed for high precision localization and
to track vehicle displacement. Embedded – or remote – computers in-
terpret acquired information and take decisions translated into instructions
for the vehicle actuators.

1.2 3D Vision

In recent years, 3D computer vision has gained major momentum thanks to
the rapid development and affordability of 3D scanning technologies and the
constant increase of computational capabilities. Meanwhile, a large number
of datasets have been released to facilitate research in different domains

1.2. 3D Vision 3

(Firman, 2016; Janai et al., 2020), including virtual and augmented reality
(VR/AR), geology, medical imaging, computer graphics and robotics.

Since autonomous vehicles evolve in a 3D world, accurate and rich 3D
geometry information is a crucial requirement for reliable navigation and
precise localization in complex dynamic scenarios. Despite maturity of 2D
computer vision algorithms and impressive performance of deep learning
techniques, images cannot provide precise geometrical depth information of
a scene. Even though recent learning-based methods perform depth estima-
tion from a single monocular image (Fu et al., 2018; Garg et al., 2019), their
accuracy is significantly below those of 3D LiDAR (Bhoi, 2019). Moreover,
2D images are illumination sensitive in contrast to LiDAR which actively
scan the scene and overcome such limitation.

Traditionally, 3D computer vision techniques relied on primitive extrac-
tion (Fischler and Bolles, 1981; Rabbani et al., 2006), geometrical priors
(Sung et al., 2015; Remil et al., 2017; Martens et al., 2017) and the use of
handcrafted features with simple classifiers (Weinmann et al., 2013; Lalonde
et al., 2006) for reconstruction, classification and segmentation tasks. How-
ever, these methods are usually designed for a given application and com-
monly present poor generalization. In recent years, the 3D vision community
has been actively investigating extension of deep learning to 3D data. As a
result, we have witnessed their adaptation to different data representations,
including multiview-based methods using 2D CNNs (Su et al., 2015), voxel-
based 3D CNNs (Maturana and Scherer, 2015; Riegler et al., 2017b) and
point-based networks (Qi et al., 2017a,b).

In this thesis we follow the same pattern. In Part I, we explore classical
3D vision techniques relying on geometrical priors for 3D reconstruction of
the scene. Moreover, we explore applications of LiDAR point clouds for au-
tonomous vehicles that can be described in two aspects: (a) temporal aggre-
gation of 3D scans for accurate 3D occupancy maps estimation (cf. Chapter
2); and (b), surface reconstruction from a single 3D scan (cf. Chapter 3).
These works were performed during a time where the field was transitioning
towards 3D deep learning. In Part II, we make the same transition and
propose an in-depth and critical analysis of the novel literature on semantic
scene completion (cf. Chapter 4). Finally, we propose a lightweight method
to semantically complete unseen and occluded regions of entire 3D scenes
(cf. Chapter 5).

1.2.1 3D Scanning technologies

Different technologies exist for the acquisition of 3D point clouds of a given
scene. We now briefly describe the most popular ones.

Laser scanners. Laser range sensors perform active sensing of the envi-
ronment by the use of time-of-flight principle. Light Detection and Ranging

4 Introduction

RGB image RGB field of view

Figure 1.2: 3D point cloud acquired from Velodyne HDL-64 laser scanner.
Frustum represents field of view of an RGB camera positioned close to the
LiDAR sensor, RGB image shown in top left for reference. Color maps
distance from sensor. Note density loss at far regions (red points) as opposed
to close areas (blue points). Data from KITTI dataset (Geiger et al., 2013).

(LiDAR) is the most popular technology, which measures distance traveled
by emitted pulsed light waves. These sensors provide the most accurate
3D information and are highly robust to the variation of lighting condi-
tions, making them ideal for day and night operation. While the recent
flash LiDARs have no moving parts, most of them still use rotating mirrors
to direct laser beams on multiple directions and create 360◦ scans of the
scene. LiDARs are the most common 3D sensors for autonomous driving
applications, providing accuracy of about ±2cm and measuring distances up
to hundreds of meters from the sensor. An example of a 3D LiDAR point
cloud is shown in Figure 1.2.

Depth cameras. These cameras provide depth information for every pixel
within a 2D image and are sometimes registered along with an RGB sensor,
thus providing RGB-D data. Many types of depth cameras exist with differ-
ent acquisition technologies (i.e. time-of-flight cameras and structured-light
cameras). However, these technologies commonly struggle in outdoor sce-
narios and lack precision when compared to laser scanners although they are
considerably cheaper. We refer to dedicated surveys for in-depth analysis of
scene reconstruction from Depth or RGB-D sensors (Zollhöfer et al., 2018;
Malleson et al., 2019).

Photogrammetry and stereoscopy. Rather than a scanning technol-
ogy, these are common techniques relying in processing algorithms to ob-
tain the 3D information from two or more monocular images of a same
scene sensed from different viewpoints, either through multi-view stereo or
Structure-from-Motion (SfM) techniques. Similarly, we refer to dedicated
surveys on SfM (Özyesil et al., 2017) and stereo vision (Sunyoto et al., 2004;
Laga et al., 2020).

1.2. 3D Vision 5

(a) Original shape (b) Non-uniform
sampling

(c) Noise and out-
liers

(d) Missing data

Figure 1.3: Point cloud artifacts obtained during the scanning process shown
in case of a 2D curve for simplicity. Adapted from: Berger et al. (2017)

1.2.2 3D Data representations

Different 3D representations exist in the literature, we now biefly present
the most popular ones. We additionally present the artifacts commonly
generated from the scanning process when generating raw 3D pointclouds
and that we tackle with the scene reconstruction (Part I) and semantic
completion (Part II) algorithms presented in this thesis.

1.2.2.1 3D Point clouds

3D point clouds (see Figure 1.4a) are the most popular and common 3D
representation. It consists in an unordered set of 3D points representing
a scanned scene with their respective coordinates. More formally, a point
cloud is as a set of 3D points {Pi | i = 1, . . . , n}, where each point Pi is a
vector of its (x, y, z) spatial coordinates which can additionally contain extra
feature channels such as reflection intensity, color, normal, etc.

In recent years, the constant evolution of LiDAR sensors enables to ob-
tain rich and accurate 3D geometric information. However, the size of the
input data along with sensing artifacts (Berger et al., 2017) still present
important challenges for 3D reconstruction and scene understanding algo-
rithms. These artifacts come from sensor limitations as they provide un-
certain measurements that depend not only on distance from sensed object,
but also on external conditions such as temperature of the environment,
lighting conditions or physical properties of impacted materials (Dong and
Chen, 2017). We now describe most important artifacts and explain how
they relate to the scene reconstruction and scene completion problems. Al-
though we present these artifacts as relative to 3D point clouds, they also
affect subsequently presented representations as they commonly derive from
the latter.

Non-uniform sampling. It refers to the distribution of points sampling
the surface. LiDAR sensors produce scans with uneven distribution given
the vertical and horizontal angular resolutions of the sensor, where density of
measurements is high at close ranges and decays rapidly with the distance
(refer to Figure 1.2). This produces ambiguities since some objects are
partially scanned. Uneven density represents a challenge for surface recon-

6 Introduction

struction algorithms that need to adapt a priori assumptions (i.e. density,
noise level) to the heterogeneous density scans.

Noise and outliers. Despite their high accuracy, LiDAR sensors are not
exempt of noisy measurements and outliers. Noise is commonly introduced
along the line of sight of the sensor and can result from surface properties
and sensor inaccuracies. Outliers in the other hand are commonly due to
structural artifacts in the acquisition process. 3D reconstruction and scene
understanding algorithms must be robust against these artifacts.

Missing data. Point clouds are sparse due to limited sensor range, non-
reflective surfaces, heterogeneous sampling and occlusions as observed in
Figure 1.2. For better scene understanding it is necessary to complete such
missing regions. Therefore, a wide variety of scene reconstruction and com-
pletion algorithms exist in the literature to recover the missing information
which are deeply studied along this thesis.

1.2.2.2 Voxel grids

3D voxel grids are a discrete volumetric representation, where each cubic cell
–known as voxel– within the 3D grid represents a defined volumetric region
of the space. Although voxel grids are commonly used to store occupancy
information derived from the point cloud (aka occupancy grids) as observed
in Figure 1.4b, other information can be stored such as point density, normal
values or gradient field distances. The representation is useful to bring
structure to the previously unstructured set of points, being convenient for
many algorithms, including neighbor search or 3D CNNs (Ahmed et al.,
2018). However, computational and memory requirements are high since
they grow cubically with the grid resolution. This can be tackled by using
hierarchical representations (detailed in Chapter 2). Given the structured
data provided by voxel grids and the ease of implementation, we use this data
representation along the complete thesis for the different methods presented.

1.2.2.3 Surface meshes

3D meshes enable a continuous representation of the scanned surface by a set
of polygons. This is commonly done by the use of 3D vertices connected to
form triangular faces representing an approximated 2D manifold embedded
in 3D space (see Figure 1.4c). The surface can be obtained from a wide
variety of approaches that can be distinguished between explicit and implicit
(Berger et al., 2017). The continuity of this representation can be of high
interest for physical modeling or detail terrain traversability applications.
We will extend on this representation in Chapter 3 where we present a

1.3. Thesis structure 7

(a) Point cloud (b) Voxel grid (c) Surface Mesh

Figure 1.4: Different 3D data representations. Each representation ex-
hibits different structural and geometrical properties, making its choice
application-oriented. Model from ShapeNet dataset (Chang et al., 2015).

voxel-based surface reconstruction method from heterogeneous density point
clouds.

1.3 Thesis structure
This thesis is organized in two parts. Part I explores traditional methods
useful for 3D scene reconstruction which we define as the process of
recovering the 3D model of a scene given one or multiple scans. We par-
ticularly study the use of discrete occupancy grids and continuous surface
meshes.

In Chapter 2 we tackle aggregation of multiple measurements in an oc-
cupancy grid representation (Roldão et al., 2018) which can be seen as in-
termediate step for scene reconstruction. Different from the literature, we
consider ray-path observations to resolve ambiguities in partially occupied
cells and consider the density of observations to weight occupancy updates.
Experiments show that our method can reduce occupancy state inaccura-
cies in partially occupied cells. Our method is of interest for localization
and creation of grid based HD maps (Kiran et al., 2018).

In Chapter 3, we shift to a continuous surface reconstruction method
from a single 3D scan (Roldão et al., 2019). To accommodate the LiDAR
heterogeneous density we propose an adaptive neighborhood strategy to
perform local approximations of the surface at different levels. The latter
are used to compute a truncated signed distance field. The final surface
is obtained by applying a meshification algorithm over the gradient field.
Our method is able to deal with sparse density scans, achieving an accurate
reconstruction of the local surroundings and completing missing regions in
small areas by interpolation.

Despite the potential of 3D scene reconstruction algorithms to complete
small regions of missing data through interpolation, completion of large areas
generated by occlusions or limited field-of-view proves more challenging and
can only be tackled by learning priors with data-driven methods. Moreover,
3D scene reconstruction only comprises geometric understanding of the scene
without considering the semantic meaning of surrounding objects which is

8 Introduction

key to leverage interaction with the real world. Therefore, in Part II of the
thesis we switch to deep learning methods to perform 3D semantic scene
completion (SSC) which jointly performs scene completion and semantic
segmentation of entire 3D scenes.

In Chapter 4 we provide an in-depth and critical analysis of the litera-
ture which was motivated by little consensus and large number of recently
published approaches (Roldão et al., 2021). We hence study the most pop-
ular datasets for the task, the wide variety of architectures employed, and
performance achieved in different scenarios.

Furthermore, in Chapter 5 we propose our lightweight multiscale seman-
tic completion network – LMSCNet –, which performs multiscale semantic
completion at different resolutions enabling faster inference times at the
coarsest subdivision (Roldão et al., 2020). We achieve a lightweight ap-
proach by employing a 2D backbone architecture that encodes one of the
spatial dimensions as a feature dimension. 3D segmentation heads at mul-
tiple scales are in charge of retrieving the 3D semantically completed scene
at different resolutions. Our method achieved state-of-the-art performance
at the time of submission on the popular SemanticKITTI dataset (Behley
et al., 2019), while requiring less computation and memory resources.

Finally, chapter 6 summarizes our contributions and gives an outlook on
future works.

Part I

3D Scene Reconstruction

In the first part of this thesis we use traditional computer vision tech-
niques useful for 3D reconstruction of the scene by using geometrical and
physical priors. This is done either for multi-frame aggregation through
the use of occupancy grids or single frame environment perception by using
surface reconstruction algorithms.

Chapter 2

Statistical Update of
Occupancy Grid Maps

The contributions of this chapter were made public in an Arxiv research
report (Roldão et al., 2018) and a workshop conference paper (Kiran et al.,
2018):

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2018). A statistical
update of grid representations from range sensors. ArXiv 2018.

Kiran, B. R., Roldão, L., Irastorza, B., Verastegui, R., Süss, S., Yogamani,
S., Talpaert, V., Lepoutre, A., and Trehard, G. (2018). Real-time dynamic
object detection for autonomous driving using prior 3D-maps. In ECCV
Workshop 2018.

Our aim in this chapter is to explore the use of 3D occupancy grid maps
for multi-frame environment mapping applications.

Note that this chapter is quite different from the rest as it concentrates
on aggregation from multiple scans without applying interpolation or com-
pletion techniques to complete missing data. Although this is not strictly
considered as reconstruction, it can be studied as a sub-part of the recon-
struction problem.

12 Statistical Update of Occupancy Grid Maps

Contents
2.1 Introduction . 13
2.2 Related work . 14

2.2.1 Sensor model . 15
2.2.2 Inverse sensor model 16
2.2.3 Bayesian fusion . 18
2.2.4 Update policies . 20
2.2.5 Hierarchical data structures 21

2.3 Method . 21
2.3.1 Occupancy probability from traversability 22
2.3.2 Weight measurement probability 23
2.3.3 Occupancy update . 24

2.4 Experiments . 25
2.4.1 Metrics . 26
2.4.2 Performance evaluation 26

2.5 Applications to autonomous driving 30
2.6 Conclusion . 31

2.1. Introduction 13

2.1 Introduction

Occupancy grids, introduced by Moravec and Elfes (1985), present a discrete
and compact representation of the environment for mobile robots. This is
done by tessellation of the space into fixed-size cells that describe a proba-
bilistic estimate of its occupancy (Thrun et al., 2005). Different from contin-
uous point-based representations, occupancy grids are immediately usable
to navigate within dynamic environments, since they segment the space into
free, occupied and unknown cells.

Occupancy grids were initially implemented in 2D to generate a pro-
jected map of the environment (Moravec and Elfes, 1985). The representa-
tion was further extended in Bares et al. (1989) and Hebert et al. (1989),
with additional height values assigned to each cell to represent non-flat sur-
faces (2.5D). Multiple height values can also be stored (Triebel et al., 2006)
to model vertical structures (i.e. underpasses). In the last decade, thanks
to increasing computational capabilities, three-dimensional grids have been
proposed (Hornung et al., 2013) and are considered for the application pre-
sented in this chapter. Furthermore, we focus on the update of occupancy
grids from multiple LiDAR scans by considering Bayesian probability (Elfes,
1989) which accounts for inaccuracies present in the sensor measurements
and vehicle pose estimations (refer to Section 2.2.3).

In the literature, it is common to update the complete state of a grid cell
from a single measurement at a given instant. However, range sensors pro-
vide only a partial observation as beams only traverse a fraction of the cell.
This is specially problematic for partially occupied cells since contradictory
observations might be acquired depending on where the cell is traversed. To
reduce inconsistencies, we propose an inverse sensor model that considers the
ray path information within cells. Experimental evaluations are performed
on both synthetic and real data by using the CARLA simulator (Dosovit-
skiy et al., 2017) and the KITTI dataset (Geiger et al., 2013), respectively.
We compare our results with the popular 3D OctoMap (Wurm et al., 2010;
Hornung et al., 2013). Our contributions can be summarized as follows:

• We propose a statistical Inverse Sensor Model (ISM) which considers
the complete set of measurements acquired from range sensors and
accounts for both the ray-path information and the density of obser-
vations.

• Our approach can be directly applied to Bayesian fusion of occupancy
grids in both linear and log-odds notation for optimized applications.

• In both synthetic and real data, our method outperforms the OctoMap
baseline providing a more detailed update of the occupancy maps and
reducing inaccuracies.

14 Statistical Update of Occupancy Grid Maps

Sensor

Field of View (FoV)

Obstacles
in FoV

(a) Real 3D scene with sensor FoV

P(occupied)
1

0

0.5

occupied

unknown

free

(b) Corresponding 2D occupancy grid

Figure 2.1: 2D projected occupancy grid (b), obtained from a real 3D
scene (a). Colormap represents probability of occupancy according to sensor
measurements. Unknown areas correspond to cells outside FoV or occluded.

2.2 Related work

The occupancy grid serves as an updatable environment model of the world,
where the occupied space covered by different objects is estimated through
a perception model evaluated for each measurement provided by range sen-
sors. This model needs to account for sensor limitations, uncertainties and
errors as described in Section 1.2.2.1. Once the model has been created, the
grid is useful to determine free and occupied space as observed in Figure
2.1. Furthermore, the grid needs to be updated from multiple observations
acquired form the sensors at different times and positions.

As explained in Dia (2020), three main steps are presented in the lit-
erature for probabilistic occupancy update of the cells in the grid map by
exploiting sensor measurements. We highlight an additional step which con-
siders the effect of long-term sensor fusion on grid-based maps:

1. A sensor model is used to account for measurement uncertainty.
This is done by modeling the uncertainty associated to sensor outputs
in different scenarios to approximate a mathematical model for sensor
measurements, and it varies according to the type of sensor employed
(Section 2.2.1).

2. The inverse sensor model represents the conditional occupancy
probability of each cell given the measurements. For this, it is com-
monly assumed that each cell is represented by an independent binary
random variable (Moravec, 1988) (Section 2.2.2).

3. Fusion of sensor measurements is performed by using Bayesian fu-
sion (Bayes, 1763). This is used to (a) fuse observations coming from
either a single or various different sensors, or (b) fuse observations
from different instants given a known sensor pose (Section 2.2.3).

2.2. Related work 15

P(z|d)

distance

d

scene

sensor

obstacle

Figure 2.2: Model for a nearest-target range sensor. The Probability Density
Function P (z|d) represents uncertainty by a normal distribution centered at
impacted distance (d), the standard deviation models the sensor precision.

4. Different update policies can be considered to tackle occupancy state
overconfidence of a cell updated from many observations (Yguel et al.,
2007), especially in unbounded domains such as the log-odd space
shown in Equation 2.5. This is important to enable occupancy updates
of changing cells in dynamic scenarios (Section 2.2.4).

Before presenting our method in Section 2.3, we provide formal defini-
tions and taxonomy that will be used along this chapter. Some of our defi-
nitions are based on the recent theses of Rakotovao (2017) and Dia (2020).

2.2.1 Sensor model

The sensor model translates the uncertainty of measurements into a prob-
abilistic distribution which provides the likelihood of getting a specific sensor
measurement. This depends on the sensor employed, its physical configu-
ration, limitations and precision. More formally, let z be a measurement
obtained from a range sensor at distance d. The sensor model is represented
by the Probability Density Function (PDF) given by P (z|d) which
depends on the distance f(d). If we assume a perfect sensor with a nearest-
target behavior, i.e. a single return is caused by nearest obstacle inside FoV
(e.g. LiDAR), the PDF can be expressed as:

P (z|d) =
{

1 if z = f(d),
0 otherwise.

(2.1)

Given the absence of perfect sensors, a probability distribution can be ob-
tained by repeating the measurement process several times to obtain the pre-
cision of the sensor (see Figure 2.2). Additional parameters can be added
to the model such as the distance from the sensor which should impact
precision (Konolige, 1997). For instance, an analytical sensor model that
considers the distance traveled by the ray through a decay rate is proposed
in Schaefer et al. (2017). Furthermore, Bennewitz et al. (2009) considers the

16 Statistical Update of Occupancy Grid Maps

angle of incidence between the sensor and impacted surface to account for
erroneous reading generated by poor-reflecting surfaces.

2.2.2 Inverse sensor model

Consider a grid of defined dimensions denoted as G, containing N cells (c)
such as G = {ci} , i = 1, . . . , N , where ci represents the i-th cell within G.
Consider also k measurements returned from one or many sensors at known
poses defined as z1, . . . , zk. The occupancy grid, which we refer to as O
represents a function that maps these measurements z1, . . . , zk into the set
of occupancy probabilities of all cells ci within G. More formally:

O{z1, . . . , zk} = {P (ci|z1 ∧ . . . ∧ zk), ∀ci ∈ G} , (2.2)

where P (ci|z1 ∧ . . . ∧ zk) = 1 − P (¬ci|z1 ∧ . . . ∧ zk) ∈ [0, 1] represents the
occupancy probability of the i-th cell according to the set of measurements.

The Inverse Sensor Model (ISM) is a function which enables to
compute the occupancy probability of each cell given a single measurement
returned by the sensor. This function considers the sensor model defined in
Section 2.2.1 and translates it into the occupancy probability of each cell
concerned within the measurement. Notice that a single measurement not
only provides information for the impacted cell at distance d but also for
all cells that have been traversed within the ray path. In the literature, it
is commonly assumed that all cells traversed by a range observation can be
considered as free while the impacted cell can be considered as occupied.
Additionally, all cells lying behind the impacted cell remain uncertain. Fur-
thermore, uncertainties accounted by the sensor model can be integrated
within this consideration. However, we highlight that for range sensors oc-
cupancy state updates of an entire cell are based on partial observations as
each ray covers an infinitesimal portion of the cell.

The first ISM was proposed in (Elfes, 1989) by considering Bayesian
probability. We refer to (Dia, 2020) for a complete mathematical derivation
of the model. The method accounts for all possible grid configurations (2N)
and evaluates all possible locations of the obstacle given by the measurement
and its uncertainty. However, the main limitation of such approach lies in
its exponential complexity, hindering practical implementations if real-time
performance is required, specially for three-dimensional grids. An extension
of the method with linear complexity was introduced in Pathak et al. (2007)
by assuming all cell states as conditionally independent given a sensor ob-
servation. This induces conflicts that may lead to inconsistent maps, even
for noise-free sensors. More recently, the techniques proposed by Rakotovao
(2017) and Kaufman et al. (2016) relax this assumption and maintain linear
complexity for nearest-target behavior sensors.

2.2. Related work 17

0

0.5

1 occupied

unknown

free

occupied

unknown

free

(a) Gaussian
(Homm et al., 2010)

0

0.5

1 occupied

unknown

free

(b) Piece-wise linear
(Weiss et al., 2007)

0

0.5

1 occupied

unknown

free

(c) Three-valued
(Wurm et al., 2010)

Figure 2.3: Examples of analytical ISMs to approximate Bayesian ISM
(Elfes, 1989). All models consider a probability distribution based on a
range measurement obtained at distance dk. The complexity of the model
directly impacts computation time of cell probabilities. Source: Rakotovao
et al. (2015).

Other methods present analytic approaches to directly represent the in-
verse sensor model by a continuous function or a discrete approximation of
the Bayesian method (refer to Figure 2.3) as follows:

P (ci|z) ≈ P distz (di), (2.3)

swhere P distz (di) is a continuous function defined over distance di from the
sensor. This enables to directly evaluate the inverse sensor model for a given
cell without considering all grid configurations, leading to a O(1) complexity
and allowing real-time implementations (Dia, 2020). For instance, some
works propose to model the ISM by a Gaussian distribution if the sensor
can be modeled by the same distribution as shown in Figure 2.3a (Payeur
et al., 1998; Gartshore et al., 2002; Homm et al., 2010; Einhorn et al., 2011;
Adarve et al., 2012). This has been done for both stereo cameras (Li and
Ruichek, 2013; Nguyen et al., 2012) and laser scanners (Weiss et al., 2007).
Another option consists in obtaining a piece-wise linear approximation which
approaches the Gaussian distribution as seen in Fig 2.3b (Weiss et al., 2007).
Additionally, a simpler representation is presented in Wurm et al. (2010) and
Hornung et al. (2013) by considering only three possible values for the ISM,
reflecting empty, occupied and unknown regions respectively and enabling
fast computation (as shown in Figure 2.3c).

Notice that the complexity of the ISM directly impacts computation
efficiency. The occupancy grid presents two main parameters: its spatial
dimensions and its resolution. While the first represents the amount of
space covered by the grid, the second refers to the number of cells within
such space. Consider a particular sensor with precision σ, if the size of the
cells within the grid – denoted as ω – is considerably larger than the sensor
precision (– low grid resolution –), formally ω � σ, simpler sensor models
can be preferred to save computation, as they approach to three-valued

18 Statistical Update of Occupancy Grid Maps

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
20 21 22 23 24 25 26 27 28 29 30

Distance of cell (cm)

(a) σ = 0.1 cm

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
20 21 22 23 24 25 26 27 28 29 30

Distance of cell (cm)

(b) σ = 0.2 cm

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
20 21 22 23 24 25 26 27 28 29 30

Distance of cell (cm)

(c) σ = 0.3 cm

Figure 2.4: Relationship between the grid resolution and the precision of
the sensor for the ISM. Figures show analytical Gaussian approximation
ISM (Figure 2.3a) for a range return at 25 cm. All cases consider cell size
ω = 0.3 cm and variable sensor precision σ. Notice that the complexity of
the model decreases with the sensor precision. Furthermore if ω � σ, the
implementation of the ISM resembles a three-valued model (Wurm et al.,
2010) shown in Figure 2.3c. Source: Dia (2020).

model presented in (Wurm et al., 2010). This can be easily appreciated
in Figure 2.4. A study of the adequate resolution of an occupancy grid
according to the sensor precision has been performed in Dia et al. (2017).

Given the ease of implementation and computation speed provided by
analytical inverse sensor models, we advocate for these methods through our
contributions presented in this chapter. However, despite the wide variety of
ISMs proposed, we highlight that none of them considers the length traversed
by the ray observations within the grid cells, which should directly impact
occupancy probability assignation. To the best of our knowledge, we are the
firsts to propose a method based in such observation. Our proposed ISM is
described in Section 2.3.

2.2.3 Bayesian fusion

Once the inverse sensor model is defined, an additional model is needed
to enable the fusion of measurements from multiple sources and from dif-
ferent moments when performing the incremental update of the occupancy
grid. For this, sensor poses for all measurements at every instant need to
be known. Thereof, we assume that we have a reasonably precise pose of
the robotic platform (namely, the autonomous vehicle) along this chapter.
In practice, poses can be estimated by integrating ego-vehicle motion from
inertial navigation systems fused with GNSS sensors (Leonard et al., 2009)
or applying registration techniques commonly used for Simultaneous local-
ization and Mapping (aka SLAM) (Bresson et al., 2017).

In the literature, the update of occupancy grids from several measure-
ments is often estimated by Bayesian methods (Elfes, 1989; Berger, 1988).

2.2. Related work 19

Different sensor measurements are usually assumed as independent to sim-
plify the calculations. Even when this is not strictly accurate, it simplifies
considerably the mapping algorithm without significantly increasing the er-
ror. To create the map, each cell’s occupancy probability is recursively
updated by performing a ray-casting operation that tracks each ray from
the sensor origin to the impact point. Commonly, cells that have been
traversed by a ray —misses— are considered as free, while cells where an
impact occurs —hits— are considered as occupied.

In this line of work, most approaches insert the different sensor measure-
ments acquired over time by applying a static state binary Bayes filter as
introduced in Elfes (1989), where the occupancy probability of a cell c is
defined by the following recursive equation:

P (c|z1:t) =
[
1 + 1− P (c|zt)

P (c|zt)
1− P (c|z1:t−1)
P (c|z1:t−1)

P (c)
1− P (c)

]−1
, (2.4)

where z1:t−1 corresponds to all previous measurements acquired; zt expresses
the current observation at time t, and P (c) represents the prior knowledge
about the map. Values are assigned to P (c|zt) as a function of the ISM
considered (cf. Section 2.2.2), which specifies the probability of a cell c
being occupied based on a single sensor measurement zt. We refer to Thrun
et al. (2005) for the entire derivation of this equation. In the literature,
it is commonly assumed a uniform prior probability, meaning P (c) = 0.5.
By making this assumption and applying a symmetric inverse sensor model
– i.e. free and occupied observations have the same weight on the ISM –
the probability update can be simplified to counting traversals and hits of
sensor measurements as proposed in Kelly et al. (2006). To output a binary
representation (i.e. occupied or free), probabilities are thresholded at 0.5,
representing everything below as free and the rest as occupied.

Equation 2.4 is commonly implemented in logarithmic form by using the
log-odds notation l(x), defined as l(x) = log

(
P (x)

1−P (x)

)
, leading to:

l(c|z1:t) = l(c|zt) + l(c|z1:t−1). (2.5)

The log-odds notation is computationally advantageous since additions
are computed faster than multiplications and also avoids numerical insta-
bilities when probabilities are close to 0 and 1. Note that in case of pre-
computed sensor models, logarithms do not have to be calculated during the
update step.

Differently, a forward sensor model proposed in Thrun (2003) refuses
the sensor measurements independence hypothesis commonly assumed by
Bayesian methods. This is done by finding the grid configuration that better
explains best causes of a complete set of measurements, commonly by ap-
plying Expectation Maximization (EM) algorithms (Dempster et al., 1977).

20 Statistical Update of Occupancy Grid Maps

2.2.4 Update policies

Update policies are commonly considered after studying the effect of long
term measurements fusion on the occupancy grid (Yguel et al., 2007). When
updates are performed by using solely the Bayesian update defined in Equa-
tion 2.4, the occupancy grid representation suffers from two major draw-
backs: (1) it is overconfident, and (2) the occupancy state of adjacent cells
is highly irregular – adjacent cells present heterogeneous probability values
even if they show the same occupancy state –. This becomes evident when
considering updates in the log-ratio space as defined in Equation 2.5, which
leads to unbounded sums along the fusion updates.

1. The overconfidence can be easily observed by considering a symmet-
ric sensor model. In such case, the number of observations required to
change the occupancy state of a cell – i.e. from free to occupied –, will
be equivalent to the number of past measurements that have defined
this state. This is specially harmful in dynamic environments where
occupancy states of cells can rapidly change.

2. On the other hand, irregularity in occupancy probabilities of ad-
jacent cells is caused by the unbounded nature of Equation 2.5. In
particular, as the viewpoint of the sensor observations change, hetero-
geneous occupancy probabilities along neighboring cells are obtained,
preventing to implement map compression techniques through the use
of hierarchical structures (cf. Section 2.2.5).

In order to solve these problems, different update policies have been pro-
posed in the literature:

Max policy. Proposed in Payeur et al. (1997), it considers the maximum
occupancy probability between the current and the previous measurement:
l(c|z1:t) = max(l(c|zt), l(c|z1:t−1)). However, this is inappropriate for dy-
namic scenarios since occupied cells can never be updated as free.

Clamping policy. It restricts the unbounded probabilities in the log-ratio
space l(c|z1:t) by using clamping values lmin and lmax (Kraetzschmar et al.,
2004). This technique avoids overconfident cells, as clamping probabilities
enable changing occupancy state without the previously needed equivalent
number of observations. Furthermore, it deals with grid irregularity as non-
conflictive cells – cells without contradictory observations – commonly reach
clamping values. This is convenient for representation compression as neigh-
boring cells can be grouped into a single larger cell if they are depicted by
same occupancy probability.

l(c|z1:t) = max(min(l(c|zt) + l(c|z1:t−1), lmax), lmin). (2.6)

2.3. Method 21

Exponential forgetting policy. Presented in Yguel et al. (2007), it re-
ceives its name from the consideration that a past observation is exponen-
tially less important for the current occupancy state estimation. It is defined
by l(c|z1:t) = l(c|z1:t−1)(1−ζ)+ l(c|zt)ζ, where ζ is a hyper-parameter which
determines the forgetting ratio. The policy also enables to deal with over-
confidence and irregularity but can make occupancy of occluded cells rapidly
converge to an unknown state.

2.2.5 Hierarchical data structures

By definition, a discrete representation inhibits a fine-grained reconstruc-
tion. Discretization inaccuracies can be reduced by using a smaller cell size
(Milstein, 2008; Dia et al., 2017), but this increases the computation and
memory needs, particularly for 3D representations where the storage usage
increases exponentially with the resolution of the map (smaller cell size).

Recursive structures such as quadtrees (Kraetzschmar et al., 2004) and
octrees (Payeur et al., 1997, 1998; Hornung et al., 2013) are commonly used
to face this problem, leading to a O(logN) complexity for insertions and
queries. They allow to make recursive subdivisions of the space until reach-
ing a defined leaf cell of minimum size. The advantage of such structures is
that groups of cells with the same state can be grouped and represented by
a parent cell, being more computationally efficient.

2.3 Method
In this chapter we introduce an inverse sensor model based on the ray path
information and sensor density. We start by signaling potential problems
and flaws present in current methods. Our two main contributions are pre-
sented in Sections 2.3.2 and 2.3.1 and the resulting ISM is shown in Section
2.3.3. Finally, experimental results of our method and comparison with
State of the Art approach are presented in Section 2.4.

For other methods in the literature, it is commonly considered that
within a single scan, the state of each cell is binary (i.e. –free– or –occupied–
respectively). Occupancy updates are commonly done by performing a ray-
casting operation that tracks each ray from the sensor origin to the impact
coordinates as observed in Figure 2.5. Hence, a cell is set as occupied if
an impact occurred within, and free if it has been traversed by any ray.
Furthermore, for high-density range sensors, it is common to group all mea-
surements within a single time-frame for a unique update of the occupancy
grid state (Wurm et al., 2010), or group measurements with same patterns
into a single one to optimize the map updating process (Kwon et al., 2019).
The problem of such approach is that the complete state of a cell is updated
from a single partial observation, neglecting the contribution of multiple
measurements and their validity as explained in Figure 2.5.

22 Statistical Update of Occupancy Grid Maps

sensor

surface

1

2

3

P(occupied)
1

0

0.5

occupied

unknown

free

Figure 2.5: Occupancy grid frameworks generally consider that the complete
state of a cell within a scan can be updated from a single measurement.
Under this assumption, a slightly traversed cell will have the same occupancy
probability as a cell traversed by many rays (cf. compare cells 1 and 2
in the figure). Furthermore, partially occupied cells as 3 will have same
probability than a completely occupied cell if only the impact measurement
is considered.

To account for this problem, we propose to update the occupancy proba-
bility of each cell by considering the ray path information (cf. Section 2.3.1),
and the density of observations that can be obtained at such cell (cf. Section
2.3.2), which depends on its geometric position within the grid and distance
from the sensor, respectively. Our method exploits ray path information to
resolve ambiguities in partially occupied cells.

2.3.1 Occupancy probability from traversability

Different to the literature, we propose to consider the ray path information
(i.e. the distance traveled by the ray) within each voxel in order to weight
its occupancy probability. Thus our method models the fact that rays are
only partial observations and that the information completeness depends on
how all rays traverse each cell. A close idea has been presented in Schaefer
et al. (2017) through the use of a decay rate that reduces the measurements
confidence with the accumulated distance traveled by a ray within the cells.
In our case, we consider individual voxel-based distances to modulate the
occupancy probability.

As in Wurm et al. (2010) we define the fixed Pfree and Pocc observation
probabilities that are below and above 0.5 respectively (see Figure 2.3c),
and extend their three-valued ISM by linearly weighting such probabilities
according to the ray path information within the cell. Note that our choice
of the three-valued model (see Figure 2.3c) is appropriate for autonomous
driving applications as the precision of sensors σ is generally an order of
magnitude smaller than commonly used voxel sizes ω (i.e. σ = 2 cm for a
Velodyne HDL64 LiDAR vs. common 20 cm size voxels). We also tested the
Gaussian approximation ISM (Homm et al., 2010) (see Figure 2.3a) without
obtaining any significant improvement.

2.3. Method 23

c c

1 2

2

1

(a) Ray traversals – misses –
surface surface

c c

1

2
1 2

1
2

(b) Ray impacts – hits –

Figure 2.6: The occupancy probability of every cell P (c|z) is modulated
according to the traversed distance λ of the measured ray z within the cell for
both misses (a) and hits (b) observations. Higher traversed distance results
in a lower occupancy probability, this is λ1 > λ2 =⇒ P (c|z1) < P (c|z2).

Our intuition is that the occupancy probability decreases with respect to
the distance that a ray has traversed within a particular cell λ (see Figure
2.6). For the traversed cells we modulate this probability by comparing
λ with the diagonal length of the cell (

√
3ω), which corresponds to the

maximum distance that a ray can traverse (see Figure 2.6a). In the case of
impacted cells, the comparison is done with the length that the ray would
have traversed within the cell if it had not encountered any obstacle (λ+λ′)
(see Figure 2.6b), which corresponds to the maximum possible traversed
distance given the current observation.

2.3.2 Weight measurement probability

Given the uneven distribution of sensory data from LiDAR scans (see Fig-
ure 1.2), closer cells will have a considerably higher number of observations
than farther ones. This could lead to erroneous occupancy updates of cells
away from the sensor based on a few uncertain observations. To account for
this, we propose to compute the density of observations ρ(d) that the sensor
can measure from a cell at distance d and to weight the occupancy update
of each cell according to ρ(d).

More specifically, ρ(d) models the approximate density of rays that might
traverse a voxel of particular size ω at a given distance d, depending on the
vertical and horizontal angular resolutions of the sensor ϕs and θs, respec-
tively. This function has been estimated through an approximated analyt-
ical model and experimentally validated by comparing the result against
synthetic data. We refer to Appendix A for details and complete derivation
of the modeling function.

Our weighting function w(d) is then obtained by scaling ρ(d) according
to γ and clamping it to 1. γ is a hyper-parameter that will affect the drop-
off of the function and the distance at which the measurements will start

24 Statistical Update of Occupancy Grid Maps

(a) Modeling function ρ(d)

ω = 0.2 m

(b) Weighting function w(d)

Figure 2.7: (a) An example of the modeling function ρ(d) at ω = 0.2 m
voxel size. (b) Example of weight function w(d) with different γ set at a
voxel size ω = 0.2 m. For both cases we set θs = 0.16◦ and ϕs = 0.4◦.

being weighted, as it can be seen on Figure 2.7b. A larger value results in a
faster decay. Note that w(d) shows an exponential behavior similar to ρ(d).
Altogether, the weighting function writes:

w(d) = min
(

1, ρ(d)
γ

)
. (2.7)

2.3.3 Occupancy update

For the incremental update of our occupancy grid map we use Bayesian
update (Elfes, 1989) as in Equation 2.4 and integrate our proposed inverse
sensor model, where the contribution of each measurement zk in a single
scan at time t is assigned as defined in the following equation:

P (c|zkt)
1− P (c|zkt)

=


0.5 +

[
(Pocc − 0.5)λ′i

λi + λ′i

]
w(d) for a hit,

0.5−
[(0.5− Pfree)λi√

3ω

]
w(d) for a miss.

(2.8)

We account for all the information obtained from the complete set of mea-
surements in a single scan (i.e. all rays traversing and/or impacting the
voxel), weighting all observations according to the rays traversed distance λ
and the sensor density w(d).

Furthermore, we implement our occupancy updates in the log-odds form
explained in Equation 2.5 for optimization and use the clamping policy from
Kraetzschmar et al. (2004) shown in Equation 2.6 to bound probabilities
and enable rapid changes of occupancy state of cells without needing an

2.4. Experiments 25

equivalent number of observations (cf. Section 2.2.4). This last feature
is important to enable updates in dynamic environments as is the case in
autonomous driving scenarios (i.e. moving vehicles, pedestrians).

2.4 Experiments
We implement our method in C++ and use the OctoMap library (Hornung
et al., 2013) which employs an optimized octree structure for real-time im-
plementation and memory-computation efficiency. Our method is evaluated
in both real and simulated data from the KITTI dataset (Geiger et al.,
2013) and the CARLA simulator1 (Dosovitskiy et al., 2017), respectively.
We carry out all experiments with voxel size ω = 0.2m, which represents
the best trade-off between computation time and accuracy. We evaluate
three different variants of our method and compare them with OctoMap
(Hornung et al., 2013), which we use as baseline:

1. For our first variant, we simply apply our inverse sensor model defined
in Equation 2.8, we denote this method as ours_w_both.

2. For the second variant, denoted as ours_w_misses, we only apply
weighting function w(d) to misses observations, meaning w(d) = 1 for
hit measurements. This is similar to prioritizing hits as commonly
found in the literature (Hornung et al., 2013; Schaefer et al., 2017).

3. Finally, a third variant is presented by ignoring w(d) for both hits
and misses observations, named as ours_w_none. This is done to
evaluate the benefit of our weight function (Section 2.3.2).

Note that all variants of our method consider the complete set of measure-
ments in a single scan (i.e. all rays traversing and/or impacting a voxel),
which is different from OctoMap (Hornung et al., 2013) that considers a
single observation per voxel and prioritizes hit observations over misses.

Synthetic data experimental setup (CARLA). For quantitative eval-
uation, we generate a voxelized ground truth by using a pre-defined number
of sequential high density raw point clouds with known poses. We simulate
a very high resolution LiDAR (364 layers) and used all rays to annotate free
and occupied voxels in the scene – voxels that intersects the environment
are annotated as occupied, while non-intersecting voxels are annotated as
free –. We use CARLA, as the simulated LiDAR does not contain any mea-
surement errors and we can obtain accurate sensor poses for frame-to-frame
registration. Analogously, we use 64 layer LiDAR scans that overlaps with
the voxelized ground truth for evaluation.

1For experiments on the CARLA simulator, we replicate the KITTI dataset sensor
setup (http://www.cvlibs.net/datasets/kitti/setup.php).

http://www.cvlibs.net/datasets/kitti/setup.php

26 Statistical Update of Occupancy Grid Maps

Real data experimental setup (KITTI). Given the presence of sensor
noise and registration inaccuracies for the sensor poses in the real data from
KITTI, this dataset is only used for qualitative evaluation. We use one of
the residential subsets of the KITTI dataset (Geiger et al., 2013), acquired
from a roof mounted HDL-64E LiDAR sensor. Provided GPS-RTK data
was used for frame-to-frame registration and three different sub-sequences
of 60 frames without dynamic objects within the scenes were used.

2.4.1 Metrics

For quantitative evaluation we consider the mean Average Precision
(mAP), which enables to consider the classification confidence of the model.
Classifiers with less confidence in miss-classified objects will score higher that
those with high confidence.

Additionally we use a set of histograms to evaluate the confidence of
predictions for all models, representing the proportion of correctly and in-
correctly classified cells.

2.4.2 Performance evaluation

We now present quantitative results obtained on CARLA simulator (Sec-
tion 2.4.2.1) and qualitative results on the KITTI dataset (Section 2.4.2.2).
In all experiments, occupancy probabilities of all voxels are initialized with
a uniform prior P (ci) = 0.5 for all methods.

2.4.2.1 Quantitative results on simulated data (CARLA)

Evaluation is performed in a scene obtained after the fusion of 200 LiDAR
scans acquired from different poses and that intersect the CARLA voxelized
ground truth. Ground truth poses provided by the simulator are used for
registration. We evaluate occupancy state of all voxels in the final scene
after the fusion of all frames.

Hyper-parameter research. Initial experiments are performed to evalu-
ate our sensor model hyper-parameters Pfree and Pocc. Clamping thresholds
of Pmin = 0.12 and Pmax = 0.97 were set to bound probability values do-
main. For our weighting function w(d) we use γ = 32, while vertical and
horizontal angular resolutions φs and θs are set to 0.4◦ and 0.16◦ respec-
tively, corresponding to elevation and azimuth values of simulated LiDAR
sensor.

Results are shown in Table 2.1, where each column corresponds to a set
of hyper-parameters tested. It can be observed that the best performance
corresponds to the variant ours_w_misses of our method (0.95 mAP for
best hyper-parameters performance vs. 0.83 mAP for the OctoMap base-
line). Results can be explained by the larger asymmetry between misses and

2.4. Experiments 27

Pocc 0.70† 0.70 0.80† 0.80 0.6 0.55†

Method Pfree 0.30 0.40 0.20 0.30 0.45 0.45

OctoMap (Hornung et al., 2013) 0.76 0.79 0.83 0.80 0.76 0.66

ours_w_both 0.70 0.73 0.71 0.74 0.71 0.64
ours_w_misses 0.91 0.92 0.93 0.95 0.85 0.72
ours_w_none 0.79 0.78 0.83 0.86 0.72 0.63

Table 2.1: Mean Average Precision (mAP) for all methods. Columns marked
by † represent symmetric sensor models (i.e. Pocc and Pfree are equidistant
from initial prior probability P (ci) = 0.5). Best hyper-parameters for each
method are shown in blue.

hits observations enforced (i.e. no weight w(d) applied for hits, giving them
higher priority, specially at larger distances). This is a common configura-
tion in the literature (Hornung et al., 2013; Payeur et al., 1997; Yguel et al.,
2007; Kraetzschmar et al., 2004). However, one of the drawbacks of applying
w(d) to misses observations only is that a larger number of measurements
will be needed to change the occupancy state of dynamic voxels from oc-
cupied to free, especially at larger distances. Finally, slight performance
improvement of ours_w_none over OctoMap baseline (+3%) advocates for
the interest of our ray path information proposal. This can be explained by
the fact that partially occupied cells that have been traversed in a partic-
ular measurement will carry less impact in occupancy state changes when
compared to OctoMap.

From now on, we will use the best sensor model hyper-parameters found
for each method and shown in blue in Table 2.1.

Models confidence. Figure 2.8 presents a set of histograms with the con-
fidence for correctly (top) and incorrectly (bottom) classified voxels. Clas-
sifications close to the 0.5 prior probability represents lower confidence as
opposed to those at the right and left edges. A good model should be confi-
dent for correct classifications and should keep low confidence for incorrect
ones. We highlight that there is a big proportion imbalance between free and
occupied voxels in the ground truth scenes2. Again, ours_w_misses (Fig-
ure 2.8c) shows the best behavior since it correctly classifies around 69% of
all occupied voxels. Furthermore, ours_w_misses reduces overconfidence,
which is advantageous as explained in Section 2.2.4. Interestingly, correctly
classified occupied voxels (rightmost in each top histogram) show high con-
fidence, which is a desired behavior since false positives for occupied cells
can be less tolerated for autonomous driving applications. OctoMap (Figure
2.8a) presents the worst proportion of correctly classified voxels (34%).

2free to occupied proportion is around 1:15 in a voxelized outdoor scene of dimensions
51.2 × 51.2 × 6.4 m with voxel size 0.2 m

28 Statistical Update of Occupancy Grid Maps

(a) OctoMap (Hornung et al., 2013) (b) ours_w_both

(c) ours_w_misses (d) ours_w_none

Figure 2.8: Proportion of correctly and incorrectly classified voxels and their
respective occupancy probabilities for each method. Occupancy probability
value can be interpreted as the confidence on the classification.

0.50 0.970.12

(a) OctoMap (Hornung et al., 2013) (b) ours_w_both

(c) ours_w_misses (d) ours_w_none

Figure 2.9: Correctly (greenish) and incorrectly (reddish) classified voxels
and their respective occupancy probabilities. Colormap for probability val-
ues on top, borders represent clamping values Pmin = 0.12 and Pmax = 0.97
used.

2.4. Experiments 29

(a) OctoMap (Hornung
et al., 2013)

(b) ours_w_both (c) ours_w_misses

Figure 2.10: Qualitative results on the KITTI dataset (Geiger et al., 2013)
on 3 non-overlapping sections of the same sequence. Highlighted regions
show the better performance of our method with higher density of correctly
predicted occupied voxels in the ground area.

Occupancy probabilities analysis. We show qualitative classification
results in Figure 2.9. A perfect prediction would consist in a complete green-
ish scene. We show only the occupied voxels in the ground truth, meaning
that probabilities for all voxels should lie above 0.5 for a correct classification.
Voxels with probabilities close to 0.12 represent highly confident missclassi-
fied voxels as their occupancy probability is considerably lower than 0.5 –
occupancy threshold –. Again, best performance of ours_w_misses method
can be observed (Figure 2.9c) with the largest proportion of correctly pre-
dicted voxels (greenish) and less overconfidence for incorrectly predicted ones
(reddish). Interestingly, misclassification commonly occurs on ground vox-
els. This shows that measurements are highly sensitive to partially occupied
voxels that lie in a shallow angle with the sensor.

2.4.2.2 Qualitative results on real data (KITTI)

We evaluate all methods qualitatively on the KITTI dataset (Geiger et al.,
2013). In this case we do not consider ours_w_none method for our com-
parison as it neglects one of our contributions. We present the results in
Figure 2.10, again only occupied voxels are shown. An ideal reconstruction
would consist in a dense representation with almost no free voxels in the

30 Statistical Update of Occupancy Grid Maps

(a) HD-Map (b) Point cloud map matching

Figure 2.11: Occupancy grids can be used for the creation of 3D maps
employed for mapping and localization. The figure shows (a) a high level
visualization of an HD-map, and (b) the map matching process from a single
LiDAR scan (shown ad red points).

area corresponding to the ground. Similar to previous results, note the high
proportion of occupied voxels missclassified in the ground region. Results for
ours_w_misses consistently show the best reconstruction among the com-
pared methods as noticeable in red highlighted areas. This is due to the
weighting function w(d) applied to misses observations only which reduces
the influence of rays traversing cells that are far from the sensor, leveraging
the errors caused by the discretization.

2.5 Applications to autonomous driving

For autonomous driving applications it is common to register prior 3D maps
that provide a static environment model used for localization and dynamic
object detection (see Figure 2.11 for examples). These maps improve the
robustness and performance of automated vehicles and are commonly cre-
ated by using LiDAR sensors combined with GPS and inertial navigation
systems (Levinson et al., 2011). Dynamic agents as vehicles and pedestrians
can then be detected by background extraction from the pre-computed 3D
map.

While point clouds from LiDAR provide an accurate geometrical rep-
resentation, they do not explicitly provide information about unknown ar-
eas or free space and they are also memory-intensive and lack an inherent
mechanism to adapt to changes in the environment. Thereof, grid based
representations as our presented method are exploited to map the static
environment that can be used for localization purposes by map matching.
In consequence, precision of the occupancy update model is highly impor-
tant. This is a common pipeline for autonomous vehicles operating in closed
loop routes and pre-recorded paths such as shuttles or taxi services. Nowa-
days, these 3D maps not only provide geometrical but also semantic and
contextual information such as speed limits, road space, lane-markings and
distance to intersections.

2.6. Conclusion 31

In our work (Kiran et al., 2018), we review the use of 3D maps for au-
tonomous driving and how they can be applied to dynamic object detection
through background subtraction.

2.6 Conclusion
We have proposed a framework to statistically integrate range sensor mea-
surements into a probabilistic occupancy grid through Bayesian fusion (Elfes,
1989). Contrary to other methods found in the literature, our method con-
siders the ray path information by accounting for traversed distance of all
rays within grid cell and models the possible density of sensor measurements
according to the distance to weight occupancy updates.

Despite the improvements achieved by our method, discretization er-
rors still occur which highlights that further work is needed on inverse sen-
sor models to account for dynamic objects and conflictive cells in three-
dimensional occupancy grids. Grid resolution plays a vital role on the ac-
curacy of the reconstruction. While smaller voxel size would be preferred,
memory and computation requirements inhibits this practice.

Further research is needed for more efficient hierarchical data structures
to achieve multi-resolution representations. The idea of adapting cell size
on-the-fly as presented in Einhorn et al. (2011) seems an interesting direction
to explore.

Since it is not possible to achieve a continuous model with voxel-based
representations and there exists limitations for considerably higher resolu-
tions, surface representations might be preferred. This led us to the study
of continuous surface methods that would enable to precisely represent the
local surroundings without discretization and that will be presented in next
chapter.

Chapter 3

Voxel-based Surface
Reconstruction from LiDAR

Data

The contributions of this chapter were published in Roldão et al. (2019):

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2019). 3D surface
reconstruction from voxel-based LiDAR data. In ITSC 2019.

1-minute demo video: https://youtu.be/iyKShCBAW9g

Contents
3.1 Introduction . 34
3.2 Related work . 35

3.2.1 Explicit methods . 35
3.2.2 Implicit methods . 36
3.2.3 Learning-based methods 39

3.3 Method . 40
3.3.1 Voxelized representation 40
3.3.2 Explicit local surfaces 41
3.3.3 Implicit global surface 43

3.4 Experiments . 45
3.4.1 Metrics . 45
3.4.2 Performance evaluation 46
3.4.3 Ablation studies . 48

3.5 Conclusion . 50

https://youtu.be/iyKShCBAW9g

34 Voxel-based Surface Reconstruction from LiDAR Data

3.1 Introduction
For the following chapters of this thesis we concentrate on single-frame envi-
ronment perception by exploiting a single LiDAR point cloud. Furthermore,
we focus on recovering the fine-grained geometry of the scene from sparse 3D
information acquired from the range sensor by computing a continuous sur-
face of the local environment around the vehicle. While studied occupancy
grids enable to model the surroundings, discretization leads to inaccuracies
that require large memory and computation needs to be solved. Conversely,
surface reconstruction outputs a representation that evolves in a contin-
uous space, which might be useful for applications such as detail terrain
traversability or physical modeling.

In our scope, a surface can be defined as a 2D manifold embedded in
three-dimensional space R3 that closely represents the underlying geometry
acquired from the scanning process. As already explained, different rep-
resentations can be used to model this surface, including for example the
raw 3D point cloud provided by range scanners or a computed continuous
mesh formed by a set of triangles. In the literature, the process of creating
the triangular mesh from the set of points is commonly known as surface
reconstruction which is a research domain largely studied by the computer
graphics and robotics communities.

As explained in Berger et al. (2017), the reconstruction problem is ill-
posed as an infinite number of surfaces can pass through or near a given set
of data points. Thereof, prior assumptions are commonly made in the point
cloud itself (i.e. sampling density, noise level) or in the scanned shape (i.e.
smoothness, symmetries, shape primitives, global regularity) to resolve am-
biguities and combat imperfections in the raw point cloud as introduced in
Section 1.2.2.1. For large-scale reconstruction, local implicit methods based
on gradient distance fields are commonly employed (Kolluri, 2005; Bouchiba
et al., 2020). Nevertheless, one of the main challenges for such techniques
is the uneven sampling density. In consequence, these approaches consider
a fairly homogeneous density along the point cloud scan representing the
underlying surface. This inhibits their application to single-frame LiDAR
surface reconstruction.

In this chapter we present an algorithm capable to perform 3D surface
reconstruction from heterogeneous density data by using a voxel-based sta-
tistical representation. We evaluate our proposal on real and synthetic data
and compare our results with the popular IMLS algorithm (Kolluri, 2005).
Our contributions can be summarized as:

1. We present an implicit 3D surface reconstruction algorithm from het-
erogeneous density data by employing an adaptive neighborhood based
on a Gaussian confidence function.

2. Our voxel-based representation enables to store statistical data from

3.2. Related work 35

underlying points that can be efficiently stored and incrementally up-
dated.

3. Our tests in both real and simulated data show a significant improve-
ment on the quality of the reconstruction for our approach, being able
to represent fine details in areas close to the vehicle. Our method shows
a better trade-off between accuracy and density of the reconstruction.

3.2 Related work

For an exhaustive state of the art in surface reconstruction methods we
refer to Berger et al. (2017); You et al. (2020). Classically, surface recon-
struction algorithms are classified between explicit and implicit according
to the method used to describe the surface of the reconstructed scene or
object. Additionally, an alternative set of methods based on deep learning
have surged in recent years showing promising results.

3.2.1 Explicit methods

Explicit methods commonly use simple parametric equations or triangula-
tion to obtain a simplex or triangular mesh. One of the most known methods
is the Ball Pivoting Algorithm (BPA) (Bernardini et al., 1999) which per-
forms interpolation of the 3D point cloud by pivoting a sphere of a given
radius and iteratively joining three-point neighborhoods within the sphere
by a single triangle (see Figure 3.1a). The process finishes when all points
have been considered. However, the method struggles with uneven sampling
densities (see Figure 3.1a) as it relies in heuristics, failing when the curvature
of the manifold is larger than the ball radius as shown in Figure 3.1c.

Other approaches exploit geometric primitives by assuming the surface
can be described as a set of simple canonical geometric shapes through
an explicit equation. Popular approaches commonly encourage the use of
random sample consensus techniques (RANSAC) (Fischler and Bolles, 1981)
to iteratively calculate the best-fitting model. In Schnabel et al. (2007) the
technique is applied to robustly find planes, spheres, cylinders, cones and
torii that partially match the input point cloud. Additionally, Jenke et al.
(2008) considers a set of detected planar primitives and reconstructs the
scene by aligning and merging boundaries of adjacent primitives. However,
these methods are fairly limited as some regions can be poorly described by
primitives, leading to imperfect or coarse shape descriptions.

Additionally, methods based on the use of Voronoï diagrams apply De-
launay triangulation to obtain the surface mesh (Amenta and Bern, 1998;
Gopi et al., 2000; Amenta et al., 2001; Boltcheva and Lévy, 2017). It can
be proved that the lying surface is a subset of the Delaunay triangulation
envelope if the sampling density is adequate (Cazals and Giesen, 2006).

36 Voxel-based Surface Reconstruction from LiDAR Data

(a) (b) (c)

Figure 3.1: Ball Pivoting Algorithm (BPA) represented in 2D for simplicity.
(a) An evenly scanned surface, a circle of defined radius pivots along sampled
points connecting them with edges. (b) low sampling density generates holes
in the reconstruction if small radius used. (c) Small curvature can generate
non-sampled points if radius used is too large. Source: Bernardini et al.
(1999).

However, these methods are computationally expensive which inhibits their
implementation in real-time applications. A review of surface reconstruction
methods based on Voronoï can be found in Cazals and Giesen (2006).

Finally, some works propose to create local descriptors of the surface by
a set of unoriented discs or planes (aka – surfels –) calculated from the points
distribution inside defined neighborhoods (Pfister et al., 2000). In Ryde et al.
(2013), the surface elements are locally calculated within a voxel grid struc-
ture. Surfels have been recently applied for mapping applications (Behley
and Stachniss, 2018) showing interesting potential for large-scale implemen-
tations. The advantage of these methods is their ease of implementation
and low computation needs, but they do not result in a continuous surface
representations as the final model is composed of small disconnected surface
elements.

3.2.2 Implicit methods

Implicit methods represent the scene from an implicit function commonly
modeled by employing gradient distance fields. In Curless and Levoy (1996)
the use of a cumulative weighted Signed Distance Function (SDF) is pro-
posed to fuse range information from different viewpoints by using depth
cameras. The information from different range images is aligned with a
voxel grid where the signed distance values are fused and stored. This tech-
nique has long been used for representing 3D volumes in computer graphics
(Gibson, 1998; Frisken et al., 2000) and building offline reconstruction of
objects from real sensor data (Curless and Levoy, 1996).

These methods gained popularity with the introduction of KinectFusion
(Newcombe et al., 2011) where a projective Truncated Signed Distance
Function (aka p-TSDF) is used to fuse information in real time from mul-
tiple RGB-D images by tracking the camera poses. The TSDF encodes a

3.2. Related work 37

TSDF

0

μ

-μ

Figure 3.2: 3D scene (right) with a slice through the TSDF volume (left)
showing the truncation value µ, F > µ represents the truncation on observed
space (white), gradient shows smooth distance field around iso-surface (F =
0), and unobserved space behind truncation threshold is shown in gray.
Source: Newcombe et al. (2011).

gradient distance field with opposite signs in areas inside and outside objects
respectively. The surface is encoded by the zero-crossing (i.e. change of sign
within the gradient field) as shown in Figure 3.2. For implementation, voxel
grids are commonly employed and the gradient values are stored in the center
or corners of each voxel. The approach has been extended to enable faster
computation and process larger scenes (Whelan et al., 2012; Steinbrücker
et al., 2014). Furthermore, variants have been introduced by updating the
fusion scheme with different weighting functions (Oleynikova et al., 2017,
2016). However, these methods focus on multi-frame reconstruction, requir-
ing a large number of viewpoints to output a dense representation and are
sensitive to outliers.

Other implicit methods perform global approximations of the surface
from where the TSDF is obtained. Poisson reconstruction (Kazhdan et al.,
2006; Kazhdan and Hoppe, 2013) is a well-known technique for creating wa-
tertight meshes (i.e. meshes consisting in a closed surface with no holes and
clearly defined frontiers) from a set of 3D points with oriented normals by
solving the Poisson equation as shown in Figure 3.3. While the method is
robust to noise and outliers, calculation of consistent oriented normals is not
straightforward and the method is more appropriate for object reconstruc-
tion rather than complete scenes as a closed mesh is produced.

Previously defined global methods use the entire point set in the sur-
face approximation process. Nevertheless, it is also possible to obtain the
implicit surface through local approximations which involves computation
only on small subsets of the whole point cloud. The original work of Hoppe
et al. (1992) was the first to present a local implicit function from oriented
point clouds by computing a signed distance to the tangent plane of the
nearest point, estimated via Principal Component Analysis (PCA). How-
ever, the method does not produce a continuous surface approximation. An
extension was presented in Levin (2004) using Moving Least Squares (MLS)

38 Voxel-based Surface Reconstruction from LiDAR Data

Oriented Points

(a)

0 0

0

00

0

Indicator Gradient

(b)

0 0

0
0

00
0

0

0
1

1

1 1
1

1

Indicator Function

(c)
Surface

(d)

Figure 3.3: Poisson reconstruction process illustrated in 2D. (a) Oriented
points sampled from the surface result in an indicator gradient (b). The sur-
face (d) can be obtained through the indicator function (c) whose Laplacian
equals the divergence of the oriented points vector field. Source: Kazhdan
et al. (2006).

through a projection operator. Shen et al. (2004) introduced a MLS-based
definition of an implicit function to estimate a surface from polygonal data.
The same definition was then applied to point clouds through the introduc-
tion of the popular Implicit Moving Least Squares (IMLS) method (Kolluri,
2005) which considers the weighted mean of the signed distances to the
nearest tangent planes in a local neighborhood (see Figure 3.4). Exten-
sions of the method denominated as Robust-IMLS (Fleishman et al., 2005)
and Extended-IMLS (Bouchiba et al., 2020) enable to better recover sharp
features in noisy point clouds and extend the function definition to larger
extents respectively. Similar to Poisson reconstruction, implicit methods
based on signed distance fields depend on oriented normals for correct per-
formance, which are commonly calculated by considering the sensor position
and the angle with impacted surface.

The main advantage of the last set of methods based on local scalar func-
tions is their fast computation and their robustness to noisy point clouds.
Furthermore, the averaging process of IMLS based methods enables better
fitting of the underlying surface. However, these techniques struggle in the
presence of heterogeneously sampled surfaces as the neighborhood defini-
tion remains constant during the whole computation of the signed distance
field. For instance, if the neighborhood is too small the reconstruction will
contain holes in low-density areas. On the contrary, large neighborhoods
can produce loss of details given larger approximations. Thereof, we intro-
duce an implicit local method capable to adapt the neighborhood definition
according to the sampling density.

Explicit mesh from implicit gradient fields. Even though implicit
functions produce an implicit gradient field, their final output is generally
an explicit surface mesh commonly calculated for visualization purposes or
continuous surface definition. Different methods exist in the literature for

3.2. Related work 39

(a) (b) (c)

Figure 3.4: Reconstructed surface (c) obtained by the zero-crossing of the
implicit TSDF (b) obtained by IMLS from the oriented point cloud (a).
Source: Kolluri (2005).

generating the mesh from the implicit scalar function and are commonly
known as meshification algorithms. The most popular one is the marching
cubes algorithm (Lorensen and Cline, 1987) which performs triangulation
according to the values of the isosurface stored in the vertices of a cube as
seen in Figure 3.5. It has been extended in Treece et al. (1999) to better
handle ambiguities during the reconstruction by sampling the function on a
tetrahedral grid.

3.2.3 Learning-based methods

Learning-based methods are fairly new for surface reconstruction applica-
tions. A common framework is to apply learning-based normal estimation
techniques (Boulch and Marlet, 2016; Guerrero et al., 2018; Lenssen et al.,
2020) to aid traditional reconstruction methods. AtlasNet (Groueix et al.,
2018) was among the first methods to propose direct surface reconstruction
from the raw point cloud by representing 3D shapes as a set of parametric
surface elements.

Additionally, implicit deep learning reconstruction techniques have been
presented recently. (Park et al., 2019) regresses a continuous SDF with
an auto-decoder structure, reconstructing watertight surfaces for objects
with complex topologies but failing when applied to large-scale point clouds.
Other works propose to predict occupancy or signed distance fields over a
voxel grid and obtain the mesh from the predicted representation (Dai et al.,
2018; Mescheder et al., 2019). Furthermore, end-to-end surface reconstruc-
tion of small objects is presented in Liao et al. (2018) through introduction
of a differentiable Marching Cubes variant. Despite recent advances, such
methods are commonly applied to the reconstruction of small objects and
are limited for large-scale reconstruction though we highlight their large
potential.

Finally, scene completion methods (Roldão et al., 2021) could also be
considered for reconstruction, but we don’t focus on such approaches in this
chapter and refer the reader to Part II of this thesis for a deep review of
these techniques.

40 Voxel-based Surface Reconstruction from LiDAR Data

Figure 3.5: Marching cubes algorithm (Lorensen and Cline, 1987). Triangu-
lation is obtained from the signed distance values stored within the vertices
of a cube, change of sign between a cube edge represents the zero-crossing.
The figure shows some of the possible combinations. Red circles represents
positive vertices or vertices outside the surface.

3.3 Method

Let us now introduce our approach. We follow the same line of work pre-
sented by implicit methods that locally approximate the surface through a
TSDF (Hoppe et al., 1992; Fleishman et al., 2005; Kolluri, 2005; Bouchiba
et al., 2020). In contrast to these techniques that are unable to adapt to the
heterogeneous density of the input data while keeping the accuracy of the
reconstruction, we introduce a method that is able to handle this variable
density while keeping a good trade-off between the accuracy and the density
of the outputted surface.

Let us consider an input point cloud P obtained from any range sensor
at a known viewpoint and sampled by a voxel grid. Our aim is to recon-
struct the underlying 3D mesh. From the statistical distributions of the
points in each voxel (Section 3.3.1), we first approximate local planar sur-
faces (Section 3.3.2), and then compute the implicit surface representation
(Section 3.3.3) that encodes the distances to the local planar surfaces. To
accommodate to the input data heterogeneous density and gain robustness
against noise, we use an adaptive neighborhood kernel, resulting in a denser
and smoother reconstruction. The overview of our method is shown in Fig-
ure 3.6.

3.3.1 Voxelized representation

We benefit of the work presented in previous chapter (Roldão et al., 2018)
to update efficiently a regular voxel-wise representation of the point cloud
P → G = {c1, c2, . . . , cn}, with voxel size ω. In addition to the number
of points |c|, each voxel c stores the 3D statistical distribution of the points
lying inside, that is: the mean cµ and the covariance cσ. This enables a
rich compact representation of the points inside each voxel, while being
significantly lighter than storing all the points. Furthermore, the statistical

3.3. Method 41

Marching
cubes

, ,...,

adaptive neighborhood

Voxel Representation
(Sec. 3.3.1)

Explicit local surfaces
(Sec. 3.3.2)

Implicit global surface
(Sec. 3.3.3)

Point cloud ()

TSDF

3D Reconstruction

Figure 3.6: Overview of our method. From left to right: the point cloud P;
the voxel grid G at where the statistical distribution of the points is updated
(Section 3.3.1); local surface approximations at neighborhoods k ∈ [1, kmax]
of the grid vertices (Section 3.3.2); TSDF calculated from the planes by
considering its confidences from the statistics distribution (Section 3.3.3);
final 3D reconstruction.

distribution can be computed incrementally when inserting new points.

3.3.2 Explicit local surfaces

It has been shown in (Ryde et al., 2013; Behley and Stachniss, 2018), that
complex environments are efficiently approximated as a set of primitive local
surfaces. This is especially suitable for mobile robotics, as robots usually
evolve in well structured environments. Following this observation, we com-
pute local planar surfaces using the 3D statistical distribution previously
described. While a naive implementation would fit planar surfaces to each
voxel independently, this would inherently lead to a noisy reconstruction
since some voxels may have very few points, if not none, due to the hetero-
geneous density of LiDAR data.

In our pipeline we propose to use an adaptive neighborhood definition
where local surfaces are estimated from multi-scale voxels statistics. Our
neighborhood definition presents two main advantages: a) it increases the
statistical robustness which improves large planar surface estimation (e.g.
ground, walls), b) it counterbalances the lack of local data due to low density
or occlusion.

Neighborhood definition. We define the multi-scale neighborhood at
the vertices location rather than voxel centers since implicit surfaces will
later be estimated at each vertex of the voxel representation. Let’s consider
v a vertex from the voxel-grid representation, its 8 adjacent voxels make
up the first neighborhood level denoted H1(v). Subsequently, the union of
H1(v) and the voxels adjacent to H1(v) make up the neighborhood H2(v).
More formally, the neighborhood Hk(v) is composed of the (2k)3 nearest
voxels surrounding v. A two-dimensional illustration ofHk(v) at levels k = 1

42 Voxel-based Surface Reconstruction from LiDAR Data

(a) Planar surfaces (k = 1) (b) Resulting mesh

Figure 3.7: (a) Explicit local planar surfaces with their estimated normals
for k = 1. (b) Its corresponding mesh reconstruction from the TSDF. Note
that applying k = 1 neighorhood leads to a noisy surface estimation (e.g.
car edges) that can be improved with our adaptive neighborhood strategy.

and k = 2 is presented in Figure 3.9.
Following Ryde et al. (2013), for a given neighborhood Hk we obtain the

cardinal |Hk|, statistical mean Hkµ, and covariance Hkσ from the merging of
statistical data of all voxels in Hk. This representation enables incremental
updates if new data points are perceived. The set of equations is defined as:

|Hk| =
∑
ci∈Hk

|ci| . (3.1a)

Hkµ =
∑
ci∈Hk

Γiciµ . (3.1b)

Hkσ =
∑
ci∈Hk

Γi
[
ciσ + ciµ

(
ciµ

)>
− ciµ

(
ciµ

)>]
, (3.1c)

with Γi = |ci|/∑ci∈Hk |ci|.

Local planar estimation. Having obtained the local statistics, we use
the covariance Hkσ to estimate the local planar surface of Hk through a
PCA if the following equation is satisfied:

|Hk| ≥ Nmin , (3.2)

whereNmin is a hyper parameter that defines the minimum number of points
needed within the neighborhood Hk to estimate the local plane. Suppose
(−→e1 ,
−→e2 ,
−→e3) the eigen vectors, and (λ1, λ2, λ3) the eigen values associated to

Hkσ with λ1 ≥ λ2 ≥ λ3, we define −→e3 (the least dominant axis) as the
unoriented normal of the planar estimation of the surface at neighborhood

3.3. Method 43

e2n

e1
2

1

H

Figure 3.8: The likelihood that % belongs into Π is estimated from
NPDF(% | Hkµ,Σ) shown in red. The likelihood must be higher than τ in
order to consider Π as a valid plane for % (k indices dropped for clarity).

Hk.s Since normals need to be consistently oriented, the normal −→n of the
plane is oriented towards the sensor pose sp as follows:

−→n =
{−→e3 if −→e3 · (sp −Hµ) > 0 ,
−−→e3 otherwise .

(3.3)

where · stands for the dot product. We denote Π the plane formed by the
pair of normal and center coordinates (−→n ,Hkµ). An example of the local
planar surfaces estimation is visible in Figure 3.7a, where each plane and its
oriented normal is shown in dark and light blue respectively.

3.3.3 Implicit global surface

To reconstruct the global continuous surface, we compute the Truncated
Signed Distance Field (TSDF) for each vertex v ⊆ c that lies inside the
truncation threshold.

To cope with the varying density of points in the point cloud, we first
compute an optimal neighborhood level k′ at each vertex, and then estimate
the TSDF value given this optimal neighborhood.

Adaptive neighborhood. A naive implementation of our neighborhood
definition would use a constant k throughout the scene. However, large k
values will over smooth high density regions, while small values of k will lead
to noisy estimate in low density regions. Instead, we compute the optimal
neighborhood level k′ for each vertex v, given the probability of v to belong
to a multivariate Gaussian distribution projected on Πk′ (the neighborhood
planar estimation).

For each vertex, we calculate the projection %k of v onto the plane Πk(v)
and evaluate the likelihood of this projection to belong to the Gaussian N k,
where N k is the 2D planar-Gaussian of the statistical distribution of Hk
projected onto Πk, as illustrated in Figure 3.8. The optimal neighborhood
level k′ is defined as the smallest level for which the projection of v onto
Πk has a probability to belong to the Gaussian N k greater than τ (a hyper
parameter). Formally, it is the smallest integer for which the probability
density function NPDF satisfies:

44 Voxel-based Surface Reconstruction from LiDAR Data

τ τ

(a) Neighborhood k = 1

τ

τ

(b) Neighborhood k = 2

Figure 3.9: Analogous 2D representation of the dynamic neighborhood. Pla-
nar surface approximations are performed at different neighborhood levels
k ∈ [1, kmax]. The considered plane corresponds to the minimum neighbor-
hood level that satisfies Equation 3.4a, where the schematic 1D Gaussian
distribution is shown in red.

N k
PDF(%k | Hkµ,Σ) ≥ τ ; Σ =

[
λ1 0
0 λ2

]
, (3.4a)

k′ = argmin
k

(N k
PDF)∀k ∈ [1, kmax] , N k

PDF ≥ τ. (3.4b)

In practice, we compute the optimal k′ iteratively starting at level 1 and
stops when the above equation is satisfied as it is shown in Figure 3.9. To
avoid exponential computation time, k is bounded as 1 ≤ k ≤ kmax.

TSDF computation. We now compute the TSDF value for each vertex of
the voxel grid, from the optimal local neighborhood level, while accounting
for the normal estimation at the corresponding level. In other words, we
compute TSDF(v) such that:

TSDF(v) =
−→
nk

′ · (v −Hk′
µ) . (3.5)

Our adaptive neighborhood level selection can efficiently handle varying lo-
cal density and fill gaps between missing data, such as those between two
adjacent LiDAR layers. Subsequently, the condition on the probability den-
sity function given in Equation 3.4a avoids the extension of the surface at
its borders which is visible in qualitative results.

After TSDF computation, we use the popular marching cubes (Lorensen
and Cline, 1987) explained in tion 3.2.2 to extract the mesh from the zero-
crossing of the gradient field. Figure 3.7b shows the reconstructed mesh
that results from the planes with constant neighborhood (k = 1) seen in
Figures 3.7a.

3.4. Experiments 45

3.4 Experiments

We implement our method in Python and as in the previous chapter, we
evaluate its performance on both real and simulated data from the KITTI
dataset (Geiger et al., 2013) and the CARLA simulator (Dosovitskiy et al.,
2017), respectively. In this case, we perform frame-wise evaluation by com-
paring the quality of the reconstructed mesh and its distance to ground truth
point cloud data. Performance is compared against IMLS (Kolluri, 2005)
which we use as baseline. Results from EIMLS variant (Bouchiba et al.,
2020) were also calculated with no difference on performance from IMLS.
For both synthetic and real data, we used 100 frames equi-sampled from
either an urban-like sequence from CARLA or the residential sequence 0018
from the public KITTI dataset.

Unless stated otherwise, our hyper-parameters remain unchanged in all
experiments, with: voxel size ω = 0.2m, likelihood threshold τ = 0.2,
minimum number of points Nmin = 10, and maximum neighborhood size
kmax = 5. For fair comparison, the spherical neighborhood radius of IMLS
is set to ω × kmax = 1m, and its k-nearest neighbor search to Nmin. The
weight parameter of IMLS is set to h = 1/3 (ω × kmax) = 0.33, for the
Gaussian weight to consider points at distances equivalent to our largest
neighborhood.

Noteworthy, it is impractical to have a real mesh ground-truth and
KITTI can only be used for qualitative evaluation. Therefore, we use
CARLA to measure the benefit of each of our contributions. The setup
in CARLA replicates the top-mounted Velodyne HDL64E from the KITTI
dataset. We also simulate a collocated noise-free LiDAR with abnormally
high resolution (316 layers), which serves as ground-truth for the reconstruc-
tion. Subsequently, we frame the evaluation as a set-to-set distance problem,
and measure the quality as the distance of the predicted mesh vertices (P)
to the ground-truth (GT) set.

3.4.1 Metrics

We compute the average error for each mesh vertex as a function of the
sensor distance and the cumulative delta error that indicates the percentage
of vertices of the output meshes having an error lower than a given value
(Section 3.4.2.1). Additionally, to ablate our contributions (Section 3.4.3) we
use two metrics derived from the literature: the Average Error (AE), and
the Haussdorf Distance (HD). The former measures the average distance
error from one point to its nearest point in the other set, that is:

AEP→GT =
∑
a∈P

1
|P |

min
b∈GT

|a− b| . (3.6)

46 Voxel-based Surface Reconstruction from LiDAR Data

(a) Average error (b) Delta error

Figure 3.10: Performance on the CARLA dataset from averaging of 100
frames evaluation. While the average error grows with the distance, at 30m
distance our surface reconstruction error is ≈ 0.2m whereas IMLS (Kolluri,
2005) is ≈ 0.35m.

The Haussdorf distance (Aspert et al., 2002) is classically used for point set
distances and gives a sense of the largest minimum error, it writes:

HDP→GT = max
a∈P

min
b∈GT

|a− b| . (3.7)

As each of the two metrics are directed, we also report the symmetrical met-
ric (HDsym and AEsym) as the average of both directed metrics. For instance,
the symmetrical Haussdorf metric is given by HDsym = 0.5(HDP→GT +
HDGT→P). We chose not to use the Chamfer distance used in machine
learning (Fan et al., 2017) because it isn’t a metric-scale and is thus harder
to interpret.

3.4.2 Performance evaluation

We now present quantitative results obtained on CARLA simulator (Sec-
tion 3.4.2.1) and qualitative results on the KITTI dataset (Section 3.4.2.2).

3.4.2.1 Performance on synthetic data (CARLA)

Reconstruction precision. We report the average error of our method
in Figure 3.10a, and the cumulative delta error in Figure 3.10b. For both
metrics, the accuracy of our reconstruction is significantly higher than the
one obtained by IMLS, as the average error is roughly 50% lower (Fig-
ure 3.10a). Moreover, the average error of our method remains fairly con-
stant (around 0.2m) even at larger distances while IMLS error continues to
increase.

The percentage of vertices below a given error exhibits the same behavior
(Figure 3.10b) with a significant advantage for our method. Furthermore,
almost 80% of the vertices of our mesh have an error lower than 0.2m, while

3.4. Experiments 47

CARLA input point cloud

RGB
(for visualization only)

IMLS Height [m]
2

Ours

2

Figure 3.11: Qualitative comparison on CARLA simulator. Notice that even
though IMLS outputs a denser reconstruction, it also extends all surfaces
at their borders and creates a higher number of artifacts as it can be seen
by the red circles at rightmost images. Our method is able to keep the
structure of the surface and generates fewer artifacts, performing a more
accurate reconstruction, while keeping a good density in areas near to the
vehicle.

only 40% of vertices lie below the same threshold with IMLS. These results
advocate for the higher precision of our method when compared to IMLS
which we attribute to our adaptive neighborhood that adapts to the variable
density and the Gaussian confidence function that avoids extension of the
surface.

Reconstruction density. A qualitative comparison on CARLA is shown
in Figure 3.11. Its is visible that IMLS outputs a more dense reconstruction
of the scene but also tends to extend all surfaces, generating artifacts and
inaccuracies in the reconstruction. This can be observed in the circled areas
where lampposts, traffic signs and walls are abnormally enlarged by IMLS.
On the other hand, our method preserves such details in the reconstruction
and maintains a high density in areas close to the vehicle, in agreement with
the quantitative results obtained in Figure 3.10.

3.4.2.2 Performance on real data (KITTI)

Qualitative results on KITTI residential sequence 0018 are shown in Fig-
ure 3.12. As for the results presented on the synthetic data, IMLS out-
puts a denser reconstruction but extends all surfaces out of the borders
and generates artifacts. This can be observed at the circled areas on the
rightmost images. Conversely, our method outputs a more accurate recon-
struction, keeping the structure of the scanned surface and completing small
regions of missing data at areas close to the sensor. Further quantitative

48 Voxel-based Surface Reconstruction from LiDAR Data

Height [m]
2

2

Ours

KITTI input point cloud

RGB
(for visualization only)

IMLS

Figure 3.12: Visual comparison on KITTI dataset. IMLS performs a denser
reconstruction at expenses of accuracy. Our method keeps a good trade-off
between density and accuracy on the reconstruction.

results might be obtained by randomly sub-sampling the input data and
calculating the reconstruction error over the non sub-sampled mesh. For
qualitative performance on a large sequence, we refer to our demo video
(https://youtu.be/iyKShCBAW9g).

3.4.3 Ablation studies

To evaluate the importance of our contributions, we compare the benefits of
our Adaptive Neighborhood (AN, Section 3.3.3) with or without the Gaus-
sian Confidence (GC, Equation 3.4a) and also with a naive Constant Neigh-
borhood (CN) approach. More precisely, the neighborhood Hk′ considered
for the plane estimation (cf. Section 3.3.2) differs such that:

1. AN+GC: Hk′ is the minimum neighborhood among
{
H1, · · · ,Hkmax

}
that satisfies Equation 3.2 and 3.4a.

2. AN: Hk′ is the minimum neighborhood among
{
H1, · · · ,Hkmax

}
that

satisfies Equation 3.2.

3. CN+GC: Hk′ with k′ = k, is considered only if Equation 3.2 and 3.4a
are satisfied.

4. CN: Hk′ with k′ = k, is considered only if Equation 3.2 is satisfied.

In Table 3.1, the accuracy on the reconstruction directly affects the
P→GT distances while the GT→P distances are mostly influenced by the
reconstruction density. As expected, the benefit of our adaptive neighbor-
hood strategy is noticeable when comparing AN+GC and CN+GC. Not
only AN+GC exhibits higher accuracy (lower P→GT) but it also increases

https://youtu.be/iyKShCBAW9g

3.4. Experiments 49

Average Error (m) Hausdorff Distance (m)
Method P→GT GT→P Sym. P→GT GT→P Sym.
IMLS (Kolluri, 2005) 0.37 0.09 0.23 4.54 8.32 6.43

Ours AN+GC
kmax = 5 0.14 0.13 0.14 1.39 20.49 10.94
kmax = 3 0.09 0.26 0.17 0.69 30.84 15.77

Ours AN
kmax = 5 0.30 0.12 0.21 1.69 20.36 11.02
kmax = 3 0.14 0.25 0.19 0.87 30.83 15.85

Ours CN+GC
k = 5 0.15 0.16 0.15 1.38 20.50 10.94
k = 3 0.09 0.27 0.18 0.69 30.85 15.77
k = 1 0.03 3.44 1.73 0.24 65.28 32.76

Ours CN
k = 5 0.30 0.14 0.22 1.69 20.36 11.03
k = 3 0.14 0.26 0.20 0.87 30.83 15.85
k = 1 0.03 3.44 1.73 0.24 65.28 32.76

Table 3.1: Performance on synthetic data evaluated on 100 frames from
simulated HDL-64 LiDAR on CARLA simulator (Dosovitskiy et al., 2017).
Accuracy on the reconstruction directly affects the P→GT distances while
the GT→P distances are mostly influenced by the reconstruction density.
AN: Adaptive neighborhood, GC: Gaussian confidence, CN: Constant neigh-
borhood.

(a) Ours AN+GC (b) Ours AN

(c) Ours CN+GC (d) Ours CN

Figure 3.13: Qualitative comparison of our method by removing the main
components of our proposal. Images correspond to a single frame of a point
cloud from CARLA. In shown images k or kmax equals 5. Notice that the
adaptive neighborhood (AN) preserves high level of detail and the Gaussian
confidence (GC) function avoids extension of the surface at its borders.

50 Voxel-based Surface Reconstruction from LiDAR Data

the reconstruction density (lower GT→P). When using our Gaussian Con-
fidence (GC), there is a slight density loss (lower GT→P) but a significant
accuracy increase. Qualitatively from Figure 3.13, our adaptive neighbor-
hood (AN) helps to maintain the details of the surface by not over-smoothing
the data, while the Gaussian Confidence (GC) strategy avoids to extend the
surface, keeping its structure and generating fewer artifacts.

Overall, we observe that our complete pipeline (AN+GC with kmax=5)
keeps a good trade-off between accuracy and density, which is shown by
the best result obtained AEsym (0.14m vs. 0.23m for IMLS). With larger
neighborhood (bigger kmax), the density of the reconstruction increases but
at the expense of a lower accuracy which is intuitive as there is a need to
extrapolate more the data. Since IMLS performs a denser reconstruction,
lower GT→P distances are obtained, which explains the best results on
the symmetric Hausdorff Distance (10.94m vs. 6.43m for IMLS). While our
method is less dense, our predicted mesh is significantly more precise (1.39m
vs. 4.54m for IMLS).

3.5 Conclusion

In this chapter we proposed a pipeline to effectively perform 3D surface
reconstruction of the scene from heterogeneous density LiDAR data. Our
method uses an adaptive neighborhood strategy coupled with a Gaussian
confidence estimation to best predict local surfaces converted into an implicit
TSDF used to obtain the final mesh. The use of a statistical grid-based
representation serves to reduce memory needs, perform fast updates and
directly compute the gradient field at desired neighborhood.

However, our method present some limitations that we believe are impor-
tant to remark. One of them is that we rely on the computation of oriented
normals which is a challenging problem. However, this limitation affects
any algorithm based on signed distance fields (Hoppe et al., 1992; Kolluri,
2005; Bouchiba et al., 2020). Another limitation is the iterative nature of
our confidence function which impacts the speed of our method. This could
be solved by directly selecting the appropriate neighborhood according to
the point density within each voxel, though we believe this could impact ac-
curacy of the reconstruction. Our method was evaluated in both synthetic
(CARLA) an real data (KITTI), outperforming the classical IMLS (Kolluri,
2005) though with sparser reconstruction. While our results show that local
planar surfaces are sufficient for accurate reconstruction, the method could
be extended to more complex surface definitions (i.e. polynomials).

Different to the occupancy grid approach presented in Chapter 2, the
surface reconstruction enables to obtain a continuous representation which
is of high interest for applications as terrain traversability assessment or
physical modeling. Like in previous chapter, we found that sparsity plays

3.5. Conclusion 51

a crucial role and it is the main property to tackle when performing scene
representation. However, surface reconstruction methods are not sufficient
for completing large missing areas. In the next part of this manuscript, we
will focus on deep-learning methods and show how they can be useful to
complete such regions, drawing from our experience on 3D reconstruction,
gained in these first two chapters.

Part II

3D Semantic Scene
Completion

In this part, we transition towards deep learning applications in order to
reconstruct and complete large regions of occluded or missing data. Further-
more, studied methods jointly perform semantic segmentation for complete
understanding of the scene. This task is commonly known in the literature
as semantic scene completion.

Chapter 4

3D Semantic Scene
Completion: Survey

The contributions of this chapter have been presented in Roldão et al. (2021),
submitted to the International Journal of Computer Vision (IJCV):

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2021). 3D semantic
scene completion: a survey. ArXiv 2021.

Although this work was conducted after our proposed semantic scene
completion approach (Roldão et al., 2020) presented in Chapter 5, we swap
the order in this manuscript for readability.

Contents
4.1 Introduction . 56
4.2 Problem definition . 57

4.2.1 Historical background 58
4.3 Datasets and representations for SSC 59

4.3.1 Datasets . 59
4.3.2 3D SSC representations 64

4.4 Methods overview . 65
4.4.1 Input encoding . 66
4.4.2 Architecture choices 71
4.4.3 Design choices . 73
4.4.4 Training . 80
4.4.5 Evaluation . 85

4.5 Discussion . 93
4.6 Conclusion . 95

56 3D Semantic Scene Completion: Survey

INDOOR OUTDOOR
NYUv2 / NYUCAD SUNCG SemanticKITTI

(Silberman et al., 2012)
(Real-world / Synthetic)

(Song et al., 2017)
(Synthetic)

(Behley et al., 2019)
(Real-world)

N
Y
U
v2

N
Y
U
C
A
D

wallfloor window chair bed sofa table tvs objectsfurniture motorc. roadcar sidewalkvegetationterrain building

Figure 4.1: Popular datasets for Semantic Scene Completion (SSC).
From an incomplete input view the SSC task consists in the joint estimation
of both geometry and semantics of the scene. The figure shows the 4 most
popular datasets for SSC, each showing input data and ground truth. The
complexity of SSC lies in the completion of unobserved / occluded regions
and in the sparse supervision signal (notice that real ground truth are in-
complete).

4.1 Introduction

Understanding of 3D surroundings is a natural ability for humans who ef-
fortlessly leverage prior knowledge to estimate geometry and semantics, even
in large occluded areas. This proves more difficult for computers which has
drawn wide interest from computer vision researchers in recent years (Guo
et al., 2020). Indeed, 3D scene understanding is a crucial feature for many
applications, such as robotic navigation or augmented reality, where geo-
metrical and semantics understanding is essential to leverage interaction
with the real world (Garg et al., 2020). Nonetheless, vision sensors only
provide partial observations of the world given their limited field of view,
sparse sensing and measurement noise, capturing a partial and incomplete
representation of the scene.

To address this, scene reconstruction algorithms focus on inferring the
geometry of a scene given one or more 2D/3D observations by using inter-
polation methods to complete small areas of missing data (refer to Part I
of this thesis). With recent advances of deep learning, Scene Completion
(SC) has been introduced to complete large unseen regions by the use of
data-driven approaches. Furthermore, Semantic Scene Completion (SSC)
has been presented as an extension of SC, where semantics and geometry
are jointly inferred, departing from the idea that they are entangled (Song
et al., 2017). Thus the SC and SSC tasks have significantly departed from
original scene reconstruction in terms of nature and sparsity of the input
data. As defined in Garbade (2019), the task can be considered as a seman-
tic spatial anticipation of the occluded sections of the scene. This means
that given one or multiple sparse observations of the scene from defined
viewpoints, we need to extrapolate the scene to parts that are outside the
field of view of the sensor. Figure 4.1 shows samples of input and ground

4.2. Problem definition 57

truth for the four most popular SSC datasets.
The complexity of the SSC task lies in the sparsity of the input data (see

holes in depth/LiDAR input), and the incomplete ground truth (resulting
of frame aggregation) providing a rather weak guidance. Different from
reconstruction where multiple views are aggregated, SSC requires to extract
an in-depth understanding of the scene heavily relying on learned priors to
resolve ambiguities. The increasing number of large scale datasets (Behley
et al., 2019; Song et al., 2017; Silberman et al., 2012; Straub et al., 2019) have
encouraged new SSC works in the last years. On connex topics, 3D (deep)
vision has been thoroughly reviewed (Lu and Shi, 2020; Guo et al., 2020; Liu
et al., 2019; Li et al., 2020) including surveys on 3D representations (Ahmed
et al., 2018) and task-oriented reviews like 3D semantic segmentation (Zhang
et al., 2019a; Xie et al., 2020b), 3D reconstruction (Zollhöfer et al., 2018;
Pintore et al., 2020), 3D object detection (Jiao et al., 2019), etc. Still, no
survey existed on this hot SSC topic and navigating the literature was not
trivial.

Therefore, we proposed the first comprehensive and critical review of
the Semantic Scene Completion (SSC) literature, focusing on methods and
datasets. Our contributions can be summarized as:

• We propose the first in-depth SSC survey, exposing a critical analysis
of the SSC topic and highlight the missing areas for future research.

• We aim to provide new insights to informed readers and help new ones
navigate in this emerging field which gained significant momentum in
the past few years.

• We present quantitative and qualitative comparisons and in-depth
analysis of existing methods for SSC.

To study SSC, this chapter is organized as follows. We first introduce
and formalize SSC 4.2, briefly brushing its historical background. Ad-hoc
datasets employed for the task and introduction to common 3D scene rep-
resentations is covered in Section 4.3. We study the existing works in Sec-
tion 4.4, highlighting the different input encodings, deep architectures, de-
sign choices, and training strategies employed. The section ends with an
analysis of the current performances, followed by a discussion in Section 4.5.

4.2 Problem definition
Let x be an incomplete 3D representation of a scene, Semantic Scene Com-
pletion is the function f(.) inferring a dense semantically labeled scene ŷ
such that f(x) = ŷ best approximates the real 3D scene y. Most often, x
is significantly sparser than y and the complexity lies in the inherent am-
biguity, especially where large chunks of data are missing, due to sparse

58 3D Semantic Scene Completion: Survey

outside view observed free occluded observed surface

(a) Cameras (b) LiDAR

Figure 4.2: Scene acquisition. A camera (RGB, RGB-D, Depth) senses
dense volumes but produces noisy depth measurements (a), while LiDAR
– more accurate – is significantly sparser (b). (Inspired from: Song et al.
(2017)).

sensing or occlusions (see Figure 4.2). Subsequently, the problem cannot be
addressed by interpolating data in x and is most often solved by learning
priors from (x, y) pairs of sparse input and dense 3D scenes with semantic
labels.

The nature of the sparse 3D input x greatly affects the task complexity.
While 3D data can be obtained from a wide variety of sensors, RGB-D/stereo
cameras or LiDARs are commonly employed. The former, for example,
provide a dense description of the visible surfaces where missing regions
correspond to occluded areas , as shown in Figure 4.2a. This reduces the SSC
task to estimating semantic completion only in the occluded regions (Song
et al., 2017). Conversely, LiDAR data provides considerably sparser sensing,
with density decreasing afar and point-wise returns from laser beams cover
an infinitesimal portion of the space leading to high proportion of unknown
volume, as shown in Figure 4.2b.

The rest of this section provides the reader with a brief historical back-
ground covering early works and foundations.

4.2.1 Historical background

Semantic scene completion inspires from both shape completion and seman-
tic segmentation, and thereof benefits from their individual insights. We
briefly review their own literature pointing to the respective surveys.

Completion. Completion algorithms initially used interpolation (Davis
et al., 2002) or energy minimization (Sorkine-Hornung and Cohen-Or, 2004;
Nealen et al., 2006; Kazhdan et al., 2006) techniques to complete small miss-
ing regions. Completion works were first devoted to object shape completion,
which infers occlusion-free object representation. For instance, some trends
exploit symmetry (Pauly et al., 2008; Sipiran et al., 2014; Sung et al., 2015;
De Charette and Manitsaris, 2019; Thrun and Wegbreit, 2005) and are re-
viewed in Mitra et al. (2013). Another common approach is to rely on a

4.3. Datasets and representations for SSC 59

priori 3D models to best fit sparse input (Li et al., 2015; Pauly et al., 2005;
Shen et al., 2012; Li et al., 2017; Rock et al., 2015). In recent years, model-
based techniques and new large-scale datasets enlarged the scope of action by
enabling inference of complete occluded parts in both scanned objects (Dai
et al., 2017b; Yuan et al., 2018; Rezende et al., 2016; Yang et al., 2019;
Sharma et al., 2016; Han et al., 2017; Smith and Meger, 2017; Stutz and
Geiger, 2018; Varley et al., 2017; Park et al., 2019) and entire scenes (Dai
et al., 2020; Firman et al., 2016; Zimmermann et al., 2017). Moreover,
contemporary research shows promising results on challenging multi-object
reconstruction from single RGB image (Engelmann et al., 2021). For further
analysis, we refer readers to related surveys (Yang et al., 2019; Han et al.,
2019a; Mitra et al., 2013).

Semantics. Traditional segmentation techniques reviewed in Nguyen and
Le (2013), were based on hand-crafted features, statistical rules and bottom-
up procedures, combined with traditional classifiers. The advances on deep
learning has reshuffled the cards (Xie et al., 2020b). Initial 3D deep tech-
niques relied on multiviews processed by 2D CNNs (Su et al., 2015; Boulch
et al., 2017, 2018) and was quickly replaced by the use of 3D CNNs which op-
erate on voxels (Maturana and Scherer, 2015; Riegler et al., 2017b; Tchapmi
et al., 2017; Wang et al., 2018b; Meng et al., 2019), tough suffering from
memory and computation shortcomings. Point-based networks (Qi et al.,
2017b,a; Thomas et al., 2019; Landrieu and Simonovsky, 2018; Wang et al.,
2019b; Li et al., 2018) remedied this problem by operating on points and
quickly became popular for segmentation, though generative task like SSC
are still a challenge. We refer readers to dedicated surveys on semantic seg-
mentation (Xie et al., 2020b; Gao et al., 2020).

Song et al. (Song et al., 2017) were the first to address semantic segmen-
tation and scene completion jointly, showing that both tasks can mutually
benefit. Since then, many SSC works gather ideas from the above described
lines of work and are extensively reviewed in Section 4.4.

4.3 Datasets and representations for SSC

This section presents existing SSC datasets (Section 4.3.1) and commonly
used 3D representations for SSC (Section 4.3.2).

4.3.1 Datasets

A comprehensive list of all SSC ready datasets is presented in Table 4.1.
We denote as SSC ready any dataset containing pairs of sparse/dense data
with semantics label. Note that while 14 datasets meet these criteria, only

60 3D Semantic Scene Completion: Survey

half has been used for SSC among which the four most popular are drawn in
bold in the table and previewed in Figure 4.1. Overall, there is a prevalence
of indoor stationary datasets (Silberman et al., 2012; Song et al., 2017; Wu
et al., 2020; Chang et al., 2017; Dai et al., 2017a; Armeni et al., 2017; Hua
et al., 2016; Handa et al., 2016) as opposed to outdoors (Behley et al., 2019;
Pan et al., 2020; Griffiths and Boehm, 2019).

Datasets creation. Synthetic datasets can easily be obtained by sampling
3D object meshes (Song et al., 2017; Handa et al., 2016; Fu et al., 2020) or
simulating sensors in virtual environments (Dosovitskiy et al., 2017; Gaidon
et al., 2016; Ros et al., 2016; Griffiths and Boehm, 2019). Their evident
advantage is the virtually free labeling of data, though transferability of
synthetically learned features is arguable. Real datasets are quite costly
to record and annotate, and require a significant processing effort. Indoor
datasets (Chang et al., 2017; Silberman et al., 2012; Dai et al., 2017a; Xiao
et al., 2013; Hua et al., 2016; Armeni et al., 2017; Wu et al., 2020) are
commonly captured with RGB-D or stereo sensors. Conversely, outdoor
datasets (Behley et al., 2019; Caesar et al., 2020; Pan et al., 2020) are often
recorded with LiDAR and optional camera. They are dominated by au-
tonomous driving applications, recorded in (peri)-urban environment, and
must subsequently account for dynamic agents (e.g. moving objects, ego-
motion, etc.).

Ground truth generation. An evident challenge is the dense annotation
of such datasets. Specifically, while indoor stationary scenes can be easily
entirely captured from multiple views or rotating apparatus, 3D outdoor dy-
namic scenes are virtually impossible to capture entirely as it would require
ubiquitous scene sensing.

Subsequently, ground truth y is obtained from the aggregation and labeling
of sparse sequential data {y0, y1, ..., yT } over a small time window T . Multi-
frame registration is usually leveraged to that matters, assuming that con-
secutive frames have overlapping field of view. For RGB-D datasets, mostly
stationary and indoors, it is commonly achieved from Structure from Mo-
tion (SfM) (Nair et al., 2012; Saputra et al., 2018) or visual SLAM (Saputra
et al., 2018) (aka vSLAM), which causes holes, missing data and noisy an-
notations (Fuentes-Pacheco et al., 2012). Such imperfections are commonly
reduced by inferring dense complete geometry of objects with local match-
ing of CAD models (Firman et al., 2016; Guo and Hoiem, 2013; Wu et al.,
2020), or post-processing hole filling techniques (Straub et al., 2019). In out-
door settings, point cloud registration techniques (Pomerleau et al., 2015,
2014) enable the co-location of multiple LiDAR measurements into a single
reference coordinate system (Behley et al., 2019).

4.3.
D
atasets

and
representations

for
SSC

61

Dataset Year Type Nature Input 7→Ground truth 3D Sensor # Classes Tasks* #Sequences #Frames
SSC DE SPE SS OC SNE

NYUv2 (Silberman et al., 2012)a 2012 Real-world† Indoor RGB-D → Mesh/Voxel RGB-D 894 (11) X X X X X 1449 795/654
SUN3D (Xiao et al., 2013) 2013 Real-world Indoor RGB-D → Points RGB-D - X X X X X 254 -
NYUCAD (Firman et al., 2016)b 2013 Synthetic Indoor RGB-D → Mesh/Voxel RGB-D 894 (11) X X X X X 1449 795/654
SceneNet (Handa et al., 2016) 2015 Synthetic Indoor RGB-D → Mesh RGB-D‡ 11 X X X X 57 -
SceneNN (Hua et al., 2016) 2016 Real-world Indoor RGB-D → Mesh RGB-D 22 X X X X 100 -
SUNCG (Song et al., 2017) 2017 Synthetic Indoor Depth → Mesh/Voxel RGB-D‡ 84 (11) X X 45622 139368/470
Matterport3D (Chang et al., 2017) 2017 Real-world Indoor RGB-D → Mesh 3D Scanner 40 (11) X X X 707 72/18
ScanNet (Dai et al., 2017a) 2017 Real-world Indoor RGB-D → Mesh RGB-D 20 (11) X X X X X 1513 1201/312
2D-3D-S (Armeni et al., 2017) 2017 Real-world Indoor RGB-D → Mesh 3D Scanner 13 X X X X X 270 -
SUNCG-RGBD (Liu et al., 2018)c 2018 Synthetic Indoor RGB-D → Mesh/Voxel RGB-D‡ 84 (11) X X 45622 13011/499
SemanticKITTI (Behley et al., 2019) 2019 Real-world Outdoor Points/RGB → Points/Voxel Lidar-64 28 (19) X X X 22 23201/20351
SynthCity (Griffiths and Boehm, 2019) 2019 Synthetic Outdoor Points → Points Lidar‡ 9 X X 9 -
CompleteScanNet (Wu et al., 2020)d 2020 Real-world† Indoor RGB-D → Mesh/Voxel RGB-D 11 X X X X X 1513 45448/11238
SemanticPOSS (Pan et al., 2020) 2020 Real-world Outdoor Points/RGB → Points Lidar-40 14 X X X 2988 -

‡ Simulated sensor. † Synthetically augmented. a Mesh annotations from Guo and Hoiem (2013). b Derivates from NYUv2 (Silberman et al., 2012) by rendering depth images from mesh annotation.
c Derivates from subset of SUNCG (Song et al., 2017) where missing RGB images were rendered. d Derivates from ScanNet (Dai et al., 2017a) by fitting CAD models to dense mesh.

* SSC: Semantic Scene Completion; DE: Depth Estimation; SPE: Sensor Pose Estimation; SS: Semantic Segmentation. OC: Object Classification; SNE: Surface Normal Estimation

Table 4.1: SSC datasets. We list here datasets readily usable for the SSC task in chronological order. Popular datasets are
in bold and previewed in Figure 4.1. Classes show the total number of semantic classes and when it differs, SSC classes in
parenthesis.

62 3D Semantic Scene Completion: Survey

(a) NYUv2 (Silberman et al., 2012) (b) SemanticKITTI (Behley et al., 2019)

Figure 4.3: Semantics distribution. Class-wise frequencies of the most
popular real datasets prove to be highly imbalanced.

Interestingly, while frequently referred as dense, the ground truth scenes
are often noisy and non-continuous in real datasets, being in fact an ap-
proximation of the real scene. Firstly, regardless of the number of frames
used, some portions of the scene remain occluded, see Figure 4.4d, especially
in dynamic environments. Secondly, sensors accuracy and density tend to
steadily decrease with the distance, as in Figure 4.4b. Thirdly, rigid registra-
tion can only cope with viewpoint changes, which leads to dynamic objects
(e.g. moving cars) producing traces which impact on the learning priors is
still being discussed (Rist et al., 2020a; Roldão et al., 2020; Yan et al., 2021),
see Figure 4.4c. Finally, another limitation lies in the sensors, which only
sense the geometrical surfaces and not the volumes, turning all solid objects
into shells. To produce semantics labels, the common practice is to observe
the aggregated 3D data from multiple virtual view points to minimize the
labeling ambiguity. This process is tedious and prone to errors1, visible
in Figure 4.4a. Ultimately, semantics distribution is highly imbalanced as
shown in the two most used indoor/outdoor datasets Figure 4.3.

Indoor datasets. From Table 4.1, NYUv2 (Silberman et al., 2012) (aka
NYU-Kinect) is the most popular indoor real-world dataset, composed of
mainly office and house room sceneries. Despite complete 3D ground truth
scene volumes not being originally provided, they have been generated in Guo
and Hoiem (2013) by using 3D models and 3D boxes or planes for producing
complete synthetically augmented meshes of the scene, generating 1449 pairs
of RGB-D images and 3D semantically annotated volumes. Extension of the
mesh volumes to 3D grids have been done in Song et al. (2017). However,
mesh annotations are not always perfectly aligned with the original depth

1Authors of SemanticKITTI report than semantic labeling a hectare of 3D data takes
approx. 4.5hr (Behley et al., 2019).

4.3. Datasets and representations for SSC 63

(a) Misslabeling (b) Sparse sensing (c) Object motion (d) Occlusions

Figure 4.4: Inaccuracies of SSC ground truth. Providing semantics
and geometrics annotation in real-world datasets proves to be complex, and
the resulting process is imperfect – which lead to noisy supervision signal.
Ground truth mislabeling is a well known bias (a). Sparsity is common in
LiDAR-based datasets (b). Object motion causes temporal traces (c), and
occlusions are inevitable in dynamic scenes (d). (Source: Silberman et al.
(2012); Behley et al. (2019)).

images. To solve this, many methods also report results by using depth maps
rendered from the annotations directly as in Firman et al. (2016). This vari-
ant is commonly named asNYUCAD and provides simplified data pairs at
the expense of geometric detail loss. Additional indoor real-world datasets
as Matterport3D (Chang et al., 2017), SceneNN (Hua et al., 2016) and
ScanNet (Dai et al., 2017a) can be used for completing entire rooms from
incomplete 3D meshes (Dai et al., 2020, 2018). The latter has also been
synthetically augmented from 3D object models and referred to as Com-
pleteScanNet (Wu et al., 2020), providing cleaner annotations. Addition-
ally, smaller SUN3D (Xiao et al., 2013) provides RGB-D images along with
registered semantic point clouds. Note that datasets providing 3D meshes
or point clouds easily be voxelized as detailed in Song et al. (2017). Ad-
ditionally, Stanford 2D-3D-S (Armeni et al., 2017) provides 360◦ RGB-D
images, of interest for completing entire rooms (Dourado et al., 2020b). Due
to real datasets small sizes, low scene variability, and annotation ambigui-
ties, synthetic SUNCG (Song et al., 2017) (aka SUNCG-D) was proposed,
being a large scale dataset with pairs of depth images and complete synthetic
scene meshes. An extension containing RGB modality was presented in Liu
et al. (2018) and known as SUNCG-RGBD. Despite its popularity, the
dataset is no longer available due to copyrights infringement2, evidencing
a lack of synthetic indoor datasets for SSC, that could be addressed using
SceneNet (Handa et al., 2016).

Outdoor datasets. SemanticKITTI (Behley et al., 2019) is the most
popular large-scale dataset and currently the sole providing single sparse
and dense semantically annotated point cloud pairs from real-world scenes.
It derivates from the popular odometry benchmark of the KITTI dataset

2https://futurism.com/tech-suing-facebook-princeton-data

64 3D Semantic Scene Completion: Survey

(a) Point Cloud (b) Voxel Grid (c) Implicit Surface (d) Mesh

Figure 4.5: SSC representations. Several 3D representations co-exist in
the literature. Its choice has major impact on the method to use, as well as
the memory or the computation needs. (Source: Wang et al. (2018c, 2019c);
Song et al. (2017); Dai et al. (2018))

(Geiger et al., 2013), which provides careful registration and untwistering
considering vehicle’s ego-motion. Furthermore, voxelized dense scenes were
later released as part of an evaluation benchmark with hidden test set 3.
The dataset presents big challenges given the high scene variability and the
high class imbalance naturally present in outdoor scenes (Figure 4.3b). Se-
manticPOSS (Pan et al., 2020) also provides single sparse semantic point
clouds and sensor poses in same format as the latter to ease its imple-
mentation. Furthermore, synthetic SynthCity additionally provides dense
semantic point clouds and sensor poses. It has the advantage of excluding
dynamic objects, which solves the effect of object motion (cf. Figure 4.4c),
but not occlusions (cf. Figure 4.4d).

4.3.2 3D SSC representations

We now detail the common 3D representation for SSC output, shown in
Figure 4.5. While voxel grid or point cloud are the most used, other im-
plicit/explicit representations are of interest for applications like rendering,
fluid simulation, etc.

Point cloud. It is a convenient and memory efficient representation, which
expresses scene geometry in the 3D continuous world as a set of points lying
on its surface. Different from others, point cloud omits definition of the free
space. Few works have in fact applied point-based SSC (Zhong and Zeng,
2020), due to the complexity of point generative tasks. Notably, PCN (Yuan
et al., 2018) was the first to address object completion followed by Wang
et al. (2020d,b); Zhang et al. (2020); Wang et al. (2019d); Wen et al. (2020);
Wang et al. (2020c); Tchapmi et al. (2019); Xie et al. (2020a).

Voxel grid. It encodes scene geometry as a 3D grid, in which cells de-
scribe semantic occupancy of the space. Opposed to point clouds, grids

3http://www.semantic-kitti.org/tasks.html

4.4. Methods overview 65

conveniently define neighborhood with adjacent cells, and thus enable easy
application of 3D CNNs, which facilitates to extend deep learning architec-
tures designed for 2D data into 3D (Song et al., 2017; Garbade et al., 2019;
Guo and Tong, 2018; Roldão et al., 2020; Li et al., 2020b; Zhang et al.,
2018a, 2019b; Chen et al., 2020a, 2019b; Dai et al., 2020, 2018; Dourado
et al., 2020a,b; Cherabier et al., 2018). However, the representation suffers
from constraining limitations and efficiency drawbacks since it represents
both occupied and free regions of the scene, leading to high memory and
computation needs. Voxels are also commonly used as a support for implicit
surface definition which we now describe.

Implicit surface. It encodes geometry as a gradient field expressing the
signed distance to the closest surface, known as the Signed Distance Function
(SDF). For scene completion, the value of the gradient field is estimated at
specific locations, typically at the voxel centers, for voxel grids (Dai et al.,
2018, 2020), or at the point locations for point clouds (Rist et al., 2020a).
Implicit surface may also be used as input (Zhang et al., 2018a; Wang et al.,
2019c; Chen et al., 2019b; Song et al., 2017; Dai et al., 2020, 2018; Dourado
et al., 2020a,b; Li et al., 2020b; Chen et al., 2020a; Zhang et al., 2019b) to
reduce the sparsity of the input data, at the expense of greedy computation.
For numerical reason, most works encode in fact a flipped version (cf. f-
TSDF, Section 4.4.1). Meshes, explained in details below, can be obtained
from the implicit surface, by using meshification algorithms such as marching
cubes (Lorensen and Cline, 1987).

Mesh. It enables an explicit surface representation of the scene by a set
of polygons. Implementing deep-learning algorithms directly on 3D meshes
is challenging and most works obtain the mesh from intermediate implicit
voxel-based TSDF representations (Dai et al., 2018, 2020) by minimizing dis-
tance values within voxels and applying meshification algorithms (Lorensen
and Cline, 1987). Other alternatives contemplate applying view inpaint-
ing as in Han et al. (2019b) or using parametric surface elements (Groueix
et al., 2018), which are more oriented to object/shape completion. Further-
more, recent learning-based algorithms such as Deep Marching Cubes (Liao
et al., 2018) enable to obtain continuous meshes end-to-end from well sam-
pled point clouds, but similarly have not been applied to fill large areas of
missing information or scenes.

4.4 Methods overview

The seminal work of Song et al. (2017) first addressed Semantic Scene Com-
pletion (SSC) with the observation that semantics and geometry are ‘tightly
intertwined’. While there have been great progresses lately, the best methods

66 3D Semantic Scene Completion: Survey

still perform little below 30% mIoU on the most challenging SemanticKITTI
benchmark (Behley et al., 2019), advocating that there is significant margin
for improvement.

Inferring a dense 3D scene from 2D or sparse 3D inputs is in fact an
ill-posed problem since the input data are not sufficient to resolve all ambi-
guities. As such, apart from Zheng et al. (2013); Lin et al. (2013); Geiger and
Wang (2015); Firman et al. (2016), all existing works rely on deep learning
to learn semantics and geometric priors from large scale datasets reviewed
in Section 4.3.1.

In the following we provide a comprehensive survey of the SSC litera-
ture. Unlike some historical computer vision tasks, for SSC we found little
consensus and a wide variety of choices exists. As such we also focus on the
remaining avenues of research to foster future works.

The survey is organized in sections which follow of a standard SSC
pipeline, with each section analyzing the different line of choices. We start
in Section 4.4.1 by reviewing the various input encoding strategies, broadly
categorized into 2D/3D, and discuss their influence on the global problem
framing. Following this, we study SSC deep architectures in Section 4.4.2.
While initially, the task was addressed with vanilla 3D CNNs, other archi-
tectures have been leveraged such as 2D/3D CNNs, point-based network, or
various hybrid proposals. Section 4.4.3 presents important design choices,
such as contextual aggregation which greatly influences any geometrical task
like SSC, or lightweight architectures to leverage the burden of 3D networks
spanning from compact 3D representations to custom convolutions. We dis-
cuss the training strategies in Section 4.4.4, along with the losses and their
benefits. Finally, a grouped evaluation of the metrics, methods performance,
and network efficiency is in Section 4.4.5.

We provide the reader with a digest overview of the field, chronologically
listing methods in Table 4.2 – where columns follow the paper structure.
Because SSC definition may overlaps with some reconstruction methods that
also address semantics, we draw the inclusion line in that SSC must also
complete semantics and geometry of unseen regions. We in-distinctively
report as SSC any method meeting these criteria. Looking at Table 4.2, it
illustrates both the growing interest for the task and the lack of consensus.

4.4.1 Input encoding

Given the 3D nature of the task, there is an evident benefit of using 3D
inputs as it already withholds geometrical insights. As such, it is easier to
leverage sparse 3D surface as input in the form of occupancy grid, distance
fields or point clouds. Another line of work uses RGB data in conjunction
with depth data since they are spatially aligned and easily handled by 2D
CNNs.

4.4.
M
ethods

overview
67

Input Encoding
(Section 4.4.1)

Architecture
(Section 4.4.2)

Design choices
(Section 4.4.3)

Training
(Section 4.4.4)

Evaluation
(Section 4.4.5)

Open source

2D 3D

RG
B

D
ep

th
/R

an
ge
/H

H
A

O
th
er

(s
eg
.,
no

rm
al
s,

et
c.
)

O
cc
.
G
rid

T
SD

F

Po
in
t
C
lo
ud

N
et
wo

rk
ty
pe

C
on

te
xt
ua

lA
wa

re
ne

ss

Po
sit

io
n
Aw

ar
en

es
s

Fu
sio

n
St
ra
te
gi
es

Li
gh

tw
ei
gh

t
D
es
ig
n

R
efi

ne
m
en
t

En
d-
to
-e
nd

C
oa

rs
e-
to
-fi
ne

Tw
o
st
ag

e

M
ul
ti-

sc
al
e

A
dv

er
sa
ria

l

Lo
ss
es

N
Y
U
b

SU
N
C
G

c

Se
m
an

tic
K
IT

T
I

O
th
er

Fr
am

ew
or
k

W
ei
gh

ts

2017 SSCNet (Song et al., 2017)a X volume DC X CE X X X Caffe X

2018 Guedes et al. (2018) X X volume DC E X CE X -
ScanComplete (Dai et al., 2018) X volume GrpConv X `1 CE X X TF X
VVNet (Guo and Tong, 2018) X X view-volume DC E X CE X X TF X
Cherabier et al. (2018) X X volume PDA E MSO X X X CE X -
VD-CRF (Zhang et al., 2018b) X volume DC X X CE X X -
ESSCNet (Zhang et al., 2018a) X volume GrpConv Sparse X CE X X PyTorch X
ASSCNet (Wang et al., 2018d) X view-volume Mscale. CAT CE X X TF
SATNet (Liu et al., 2018) X X view-volume ASPP M/L X CE X X PyTorch X

2019 DDRNet (Li et al., 2019) X X view-volume LW-ASPP M DDR X CE X X PyTorch X
TS3D (Garbade et al., 2019)a X X hybrid DC E X CE X X X -
EdgeNet (Dourado et al., 2020a) X X volume DC X M X CE X X -
SSC-GAN (Chen et al., 2019b) X volume DC X BCE CE X X -
TS3D+RNet (Behley et al., 2019) X X hybrid DC E X CE X -
TS3D+RNet+SATNet (Behley et al., 2019) X X hybrid DC E X CE X -
ForkNet (Wang et al., 2019c) X volume DC X BCE CE X X TF X
CCPNet (Zhang et al., 2019b) X volume CCP DC GrpConv X X CE X X -
AM2FNet (Chen et al., 2019a) X X hybrid DC X M X X BCE CE X -

2020 GRFNet (Liu et al., 2020) X X view-volume LW-ASPP DC M DDR X CE X X -
Dourado et al. (2020b) X X volume DC X E X X CE X -
AMFNet (Li et al., 2020c) X X view-volume LW-ASPP L RAB X CE X X -
PALNet (Li et al., 2020b) X X hybrid FAM DC X M X PA X X PyTorch X
3DSketch (Chen et al., 2020a) X X hybrid DC X M DDR X X BCE CE CCY X X PyTorch X
AIC-Net (Li et al., 2020a) X X view-volume FAM AIC M Anisotropic X CE X X PyTorch X
Wang et al. (2020a) X volume Octree-based X BCE CE X -
L3DSR-Oct (Wang et al., 2019a) X volume Octree-based X BCE CE X X X -
IPF-SPCNet (Zhong and Zeng, 2020) X X hybrid E X CE X -
Chen et al. (2020b) X volume GA Module X BCE CE X X -
LMSCNet (Roldão et al., 2020) X view-volume MSFA 2D X X CE X X PyTorch X
SCFusion (Wu et al., 2020) X volume DC X X CE X X -
S3CNet (Cheng et al., 2020) X X X hybrid L Sparse X X BCE CE PA X -
JS3C-Net (Yan et al., 2021) X volume Sparse X CE X PyTorch X
Local-DIFs (Rist et al., 2020a) X point-based X BCE CE SCY X -

a These original works were significantly extended in Guo and Tong (2018), Behley et al. (2019), or Roldão et al. (2020). b Includes both NYUv2 (Silberman et al., 2012), NYUCAD (Firman et al., 2016). c Includes both SUNCG (Song et al., 2017),
SUNCG-RGBD (Liu et al., 2018). d Includes both ScanNet (Dai et al., 2017a), CompleteScanNet (Wu et al., 2020). Fusion Strategies - E, Early. M, Middle. L, Late.

Contextual Awareness - DC, Dilated Convolutions. (LW)-ASPP, (Lightweight) Atrous Spatial Pyramid Pooling. CCP, Cascaded Context Pyramid. FAM, Feature Aggregation Module. AIC, Anisotropic Convolutional Module. GA, Global
Aggregation. MSFA, Multi-scale Feature Aggregation. PDA, Primal-Dual Algorithm. Lightweight Design - GrpConv, Group Convolution. DDR, Dimensional Decomposition Residual Block. RAB, Residual Attention Block. MSO, MultiScale

Optimization. Losses - Reconstruction: BCE, Binary Cross Entropy. `1, L1 norm. Semantic: CE, Cross Entropy. PA, Position Awareness. Consistency: CCY, Completion Consistency. SCY, Spatial Semantics Consistency.

Table 4.2: Semantic Scene Completion (SSC) methods.

68 3D Semantic Scene Completion: Survey

3D grid-based. In most works, 3D occupancy grid (aka Voxel Occu-
pancy) is used (Roldão et al., 2020; Garbade et al., 2019; Yan et al., 2021;
Wu et al., 2020), encoding each cell as either free or occupied. Such rep-
resentation is conveniently encoded as binary grids, easily compressed (cf.
Section 4.4.3.4), but provides little input signal for the network. An alter-
native richer encoding is the use of TSDF (Figure 4.6c), where the signed
distance d to the closest surface is computed at given 3D locations (usually,
voxel centers), as in Dai et al. (2020, 2018); Chen et al. (2020a); Cherabier
et al. (2018). Instead of only providing input signal at the measurement
locations like occupancy grids or point cloud, TSDF provides a richer su-
pervision signal for the network. The sign for example provides guidance on
which part of the scene is occluded in the input. The greedy 3D computa-
tion can be avoided using projective TSDF (p-TSDF, cf. Figure 4.6b) which
only computes the distance along the sensing path (Newcombe et al., 2011),
but with the major drawback of being view-dependent. Highlighted by Song
et al. (2017), another limitation of TSDF or p-TSDF lies in the strong gra-
dients being in the free space area rather than close to the surface where
the networks needs guidance. This is noticeable in Figure 4.6b, 4.6c since
the red/blue gradients are afar from the surface. To move strong gradients
closer to the surface, they introduced flipped TSDF (f-TSDF, Figure 4.6d)
such that f-TSDF = sign(TSDF)(dmax− d) with dmax the occlusion bound-
ary, showing improvement in both network guidance and performance (Song
et al., 2017). However, the field yet lacks thorough study on the benefit of
TSDF encoding. While f-TSDF is still commonly used in recent SSC (Zhang
et al., 2018a,b; Dourado et al., 2020a,b; Zhang et al., 2019b; Li et al., 2020b;
Chen et al., 2019a) or SC (Denninger and Triebel, 2020), other approaches
stick with original TSDF (Dai et al., 2018; Zhang et al., 2018b; Chen et al.,
2020a; Wang et al., 2019c). Furthermore, the benefit of f-TSDF over TSDF
is questioned in Zhang et al. (2018b); Garbade et al. (2019) with exper-
iments showing it may slightly harm the performance or bring negligible
improvemsent. Except for the lighter p-TSDF, all TSDF-variants require
high computation times and hinder real time implementations.

3D point cloud. Despite the benefit of such representation, only three re-
cent SSC works (Zhong and Zeng, 2020; Rist et al., 2020a,b) use point cloud
as input encoding. In Zhong and Zeng (2020), RGB is used in conjunction
to augment point data with RGB features, whereas Rist et al. (2020a,b) re-
project point features in the top-view space. Despite the few SSC methods
using points input, it is commonly used for object completion (Yuan et al.,
2018; Huang et al., 2019; Xie et al., 2020a; Wang et al., 2020b).

2D representations. Alternatively, depth maps or range images (i.e. 2D
polar-encoded LiDAR data) are common 2D representations storing geo-

4.4. Methods overview 69

(a) Surface (b) Projective TSDF (c) TSDF (d) Flipped TSDF

Figure 4.6: TSDF variants. Projective TSDF (b) is fast to obtain but
view-dependent. TSDF (c) (Dai et al., 2018; Chen et al., 2019b; Wang
et al., 2019c, 2020a; Chen et al., 2020b) solves the view dependency but
gradient is stronger at farther areas from the surface, being inadequate for
learning-based methods. In contrast, f-TSDF (d) (Song et al., 2017; Zhang
et al., 2018a; Dourado et al., 2020a; Zhang et al., 2019b; Cheng et al., 2020;
Dourado et al., 2020b; Chen et al., 2019a) has strongest gradient near the
surface. (Source: Song et al. (2017)).

metrical information, therefore suitable candidates for the SSC task. In-
deed many works (Behley et al., 2019; Cheng et al., 2020; Guo and Tong,
2018; Li et al., 2020a,b,c, 2019; Lin et al., 2013; Liu et al., 2018; Wang
et al., 2018d) used either representation alone or in conjunction with other
modalities. Opposite to point cloud but similarly to grid representation,
such encoding enables meaningful connexity of the data and cheap process-
ing with 2D CNNs. Some works propose to transform depth into an HHA
image (Gupta et al., 2014), which keeps more effective information when
compared to the single channel depth encoding (Guo and Tong, 2018; Liu
et al., 2018). Additional non-geometrical modalities such as RGB or LiDAR
refraction intensity provide auxiliary signals specifically useful to infer se-
mantic labels (Behley et al., 2019; Garbade et al., 2019; Liu et al., 2018; Li
et al., 2019; Liu et al., 2020; Li et al., 2020c; Chen et al., 2020a; Zhong and
Zeng, 2020; Cherabier et al., 2018). In practice, some works have shown
that good enough semantic labels can be inferred directly from depth/range
images (Behley et al., 2019; Yan et al., 2021; Cherabier et al., 2018) to guide
SSC.

Interestingly, the vast majority of the literature only accounts for sur-
face information while ignoring any free space data provided by the sensors
(see Figure 4.2). While free space labels might be noisy, we believe it pro-
vides an additional signal for the network which was found beneficial in Rist
et al. (2020a); Wu et al. (2020). Conversely, we highlight that encoding un-
known information brings little improvement given experiments performed
during the development of our LMSCNet network (Roldão et al., 2020) to
be presented in next chapter.

70 3D Semantic Scene Completion: Survey

: Feature Lifting

: Feature Fusion

3D U-Net

2D Encoder

FL

3D Encoder

FL

2D Encoder

Optional Multi-branch

2D 3D

2D 3D2D Input

2D Input

3D Output

Depth F

RGB
Depth

HHA SSC

3D Encoder
F

FL

3
D

-b
ac

kb
on

e

2D U-Net

FL

3D 2D

FL

2D 3D

3D Decoder

3D Output3D Input

Occupancy

fTSDF

SSC
2
D

-b
ac

kb
on

e

(a) View-Volume Networks

3D U-Net

3D Output3D Input

Occupancy

fTSDF

SSC

(b) Volume Networks

...

Point-based MLP
3D Output

SSC

3D Input

Point cloud
Obs. Point
Encoder

Obs. to Occl.
Point Decoder

(c) Point-based Networks

p
oi

n
t-

2
D 3D Input

Point cloud 2D U-Net

...

3D Output

SSC

Point-based MLPPoint-based MLP

Bird-Eye View

3D Input

Occupancy

fTSDF

Bird-Eye View

2D Input
3D Output

2D U-Net

SSC

3D U-Net

F

p
ar

.2
D

-3
D

...

Point-based MLP
3D Output

SSC

2D Input

2D U-Net

FL

2D 3D 3D Input

Point cloud

F

Obs. Point
Encoder

Obs. to Occl.
Point Decoder

p
oi

n
t-

au
g
.

3D Input

Occupancy

fTSDF 3D Encoder

3D Output

SSC

3D U-NetRGB
Depth

HHA

2D Encoder

FL

2D 3D2D Input

F

m
ix

-2
D

-3
D

(d) Hybrid Networks

(a) View-Volume Nets., 3D-backbone: (Guo and Tong, 2018; Liu et al., 2018; Li et al., 2019; Liu
et al., 2020; Li et al., 2020c,a), 2D-backbone: (Roldão et al., 2020).

(b) Volume Nets.: (Song et al., 2017; Guedes et al., 2018; Zhang et al., 2018b,a; Dourado et al.,
2020a; Chen et al., 2019b; Wang et al., 2019c; Zhang et al., 2019b; Wang et al., 2020a; Chen
et al., 2020b; Yan et al., 2021; Dourado et al., 2020b; Wu et al., 2020; Cherabier et al., 2018; Dai
et al., 2018; Wang et al., 2019a)

(c) Point-based Nets.: (Zhong and Zeng, 2020)

(d) Hybrid Nets., point-2D: (Rist et al., 2020a,b), parallel-2D-3D: (Cheng et al., 2020),
point-augmented: (Zhong and Zeng, 2020), mix-2D-3D: (Garbade et al., 2019; Behley et al.,
2019; Li et al., 2020b; Chen et al., 2020a)

Figure 4.7: Architectures for SSC. For compactness we do not display
all connections but rather focus on the global architectures and information
exchanges between the different networks. F© stands for any type of fusion.

4.4. Methods overview 71

4.4.2 Architecture choices

Directly linked to the choice of input encoding, we broadly categorize ar-
chitectural choices in 4 groups. In details: Volume networks leveraging
3D CNNs to convolve volumetric grid representations, Point-based networks
which compute features on points locations, View-Volume networks that
learn the 2D-3D mapping of data with 2D and 3D CNNs, and Hybrid net-
works that use various network to combine modalities of different dimension.
All architectures output N × C data (N the spatial dimensions and C the
number of semantic classes) where the last dimension is the probability of
either semantic class at the given location. In most works, the final pre-
diction is the softmax output along the classes probabilities. We refer to
Figure 4.7 for a visual illustration of either architecture type.

Volume networks. As they are convenient for processing grid data 3D
CNNs (Figure 4.7b) are the most popular for SSC (Song et al., 2017; Guedes
et al., 2018; Zhang et al., 2018b,a; Dourado et al., 2020a; Chen et al., 2019b;
Wang et al., 2019c; Zhang et al., 2019b; Wang et al., 2020a; Chen et al.,
2020b; Yan et al., 2021; Dourado et al., 2020b; Wu et al., 2020; Cherabier
et al., 2018; Dai et al., 2018; Wang et al., 2019a). Since completion heavily
requires contextual information it is common practice to use a UNet archi-
tecture (Ronneberger et al., 2015) (see Figure 4.7), i.e. encoder-decoder with
skip connections. The benefit of the latter is not only to provide contextual
information but also to enable meaningful coarser scene representation, used
in SSC for outputting multi-scale predictions (Roldão et al., 2020; Zhang
et al., 2018a) or for enabling coarse-to-fine refinement (Dai et al., 2018).

There are two important limitations of 3D CNNs: their cubically grow-
ing memory need, and the dilation of the sparse input manifold due to
convolutions. To circumvent both, one can use sparse 3D networks like
SparseConvNet (Graham et al., 2018; Zhang et al., 2018a) or Minkowski
Network (Choy et al., 2019) which conveniently operate only on input ge-
ometry, thus allowing high grid resolution where each cell contains typically
a single point. While they were found highly beneficial for most 3D tasks,
they show limited interests for SSC since the output is expected to be more
dense than the task input. Considering the output to be sparse, Dai et al.
(2020) used a sparse encoder and a custom sparse generative decoder to
restrict the manifold dilation, applied for SC rather than SSC. This is ben-
eficial but cannot cope with large chunks of missing data. An alternative
is Yan et al. (2021) that first performs pointwise semantic labeling using
a sparse network. To enable a dense SSC output in Zhang et al. (2018a),
authors merge the output of multiple shared SparseConvNets applied on
sub-sampled non-overlapping sparse grids. Both Zhang et al. (2018a); Dai
et al. (2020) are clever use of sparse convolutions but somehow limit the
memory and computational benefit of the latter. In Cherabier et al. (2018),

72 3D Semantic Scene Completion: Survey

variational optimization is used to regularize the model and avoid the need
of greedy high-capacity 3D CNN.

View-volume networks. To take advantage of 2D CNNs efficiency, a
common strategy is to use them in conjunction with 3D CNNs as in Guo
and Tong (2018); Liu et al. (2018); Li et al. (2020a, 2019); Liu et al. (2020);
Roldão et al. (2020); Li et al. (2020c), see Figure 4.7a. Two different schemes
have been identified from the literature. The most common, as in Guo and
Tong (2018); Liu et al. (2018); Li et al. (2020a, 2019); Liu et al. (2020);
Li et al. (2020c), employs a 2D CNN encoder to extract 2-dimensional fea-
tures from 2D texture/geometry inputs (RGB, depth, etc.), which are then
lifted to 3D and processed by 3D CNN (Figure 4.7a, 3D-backbone). Op-
tional modalities may be added with additional branches and mid-fusion
scheme (Liu et al., 2018; Li et al., 2020a, 2019; Liu et al., 2020). In brief,
the use of sequential 2D-3D CNNs conveniently benefits of different neigh-
boring definitions, since 2D neighboring pixels might be far away in 3D and
vice versa, thus providing rich feature representation, at the cost of increased
processing. To address this limitation, the second scheme (Figure 4.7a, 2D-
backbone) projects 3D input data into 2D, then processed with normal 2D
CNN (Roldão et al., 2020) significantly lighter than its 3D counterpart. The
resulting 2D features are then lifted back to 3D and decoded with 3D con-
volutions, retrieving the third dimension before the final prediction. This
latter scheme is irrefutably lighter in computation and memory footprint
but better suited for outdoor scenes (cf. Section 4.4.5), as the data exhibits
main variance along two axes (i.e. longitudinal and lateral).

Point-based networks. To ultimately prevent discretization of the input
data, a few recent works (Zhong and Zeng, 2020; Rist et al., 2020a,b) employs
point-based networks, see Figure 4.7c. In 2018, Yuan et al. (2018) first
proposed to apply permutation-invariant architecture (Qi et al., 2017b) to
object completion with promising results. However, its use for SSC was
hindered by the limited points capacity, the need of fixed size output, and
the use of global features extraction. To date, only SPC-Net (Zhong and
Zeng, 2020) relies solely on point-based network – XConv (Li et al., 2018) –
to predict the semantics of observed and unobserved points. The fixed size
limitation is circumvented by assuming regular distribution of unobserved
points. Overall, we believe point-based SSC has yet attracted too few works,
and is a viable avenue of research.

Hybrid networks. A number of other works combine architectures al-
ready mentioned, which we refer as hybrid networks (Rist et al., 2020a,b;
Cheng et al., 2020; Zhong and Zeng, 2020; Garbade et al., 2019; Behley
et al., 2019; Li et al., 2020b; Chen et al., 2020a), see Figure 4.7d. A com-

4.4. Methods overview 73

mon 2D-3D scheme combines 2D and 3D features (e.g. RGB and f-TSDF)
through expert modality networks in a common latent space decoded via
a 3D CNN (Garbade et al., 2019; Chen et al., 2020a) (Figure 4.7d, mix-
2D-3D). This enables additional benefit with the combined use of texture
and geometrical features. Similarly, IPF-SPCNet (Zhong and Zeng, 2020)
performs semantic segmentation from RGB image on an initial 2D CNN
and lifts image labels to augment ad-hoc 3D points (Figure 4.7d, point-
augmented). In Rist et al. (2020a,b), PointNet (Qi et al., 2017b) encodes
geometrical features from sub set of points latter convolved in a bird eye
view (BEV) projection with 2D CNN in a hybrid architecture manner (Fig-
ure 4.7d, point-2D). Another strategy employs parallel 2D-3D branches to
process the same data with different neighborhoods definition contained in
the 2D projected image and 3D grid as in Li et al. (2020b). Recently,
S3CNet (Cheng et al., 2020) combines 3D voxelized f-TSDF and normal fea-
tures with a 2D BEV (Chen et al., 2017), passing both modalities through
sparse encoder-decoder networks for late fusion (Figure 4.7d, parallel-2D-
3D), achieving impressive results in outdoor scenes. A similar architecture
is proposed by Abbasi et al. (2018) to perform what they refer to as scene ex-
trapolation (Song et al., 2018), by performing extrapolation of a half-known
scene into a complete one.

4.4.3 Design choices

The significant sparsity difference between the input data and the expected
dense output imposes special design choices to be made, specifically to en-
sure efficient flow of information. In the following, we elaborate on the
most important ones such as contextual awareness (Section 4.4.3.1), posi-
tion awareness (Section 4.4.3.2) and fusion strategies (Section 4.4.3.3). Fi-
nally, we detail lightweight designs (Section 4.4.3.4) to efficiently process
3D large extent of sparse data, and the common refinement processes (Sec-
tion 4.4.3.5).

4.4.3.1 Contextual awareness

To correctly complete missing information in the scene, it is necessary to
gather contextual information from multiple scales, which enables to disam-
biguate between similar objects present in the scene. This makes possible
to capture both local geometric details and high-level contextual informa-
tion (Song et al., 2017). A common strategy to accomplish this is to add
skip connections between different convolutional layers to aggregate features
from different receptive fields (Song et al., 2017; Roldão et al., 2020; Zhang
et al., 2018a; Guo and Tong, 2018; Garbade et al., 2019; Liu et al., 2018;
Chen et al., 2019b; Dourado et al., 2020a; Zhang et al., 2019b; Chen et al.,
2020a; Dai et al., 2020; Dourado et al., 2020b). Additionally, serial context

74 3D Semantic Scene Completion: Survey

C1 C2 C3 CN F

(a) Serial

C2

C1

C3

CN

F DNN

DNN

DNN

F

F

(b) Self-cascaded

C2

C3

CN

C1

F

(c) Parallel

Figure 4.8: Multi-scale contextual aggregation. While context is indu-
bitably important for SSC, different strategies are used to aggregate features
from various spatial/scale contexts. Color blocks stand for convolutions with
different dilation rates. F© stands for any type of fusion.

aggregation with multi-scale feature fusion can be used as proposed in Li
et al. (2020b), Figure 4.8a. In Song et al. (2017), the use of dilated convolu-
tions (aka ‘atrous’) (Yu and Koltun, 2016) are proposed to increase receptive
fields and gather context information at low computational cost. The strat-
egy became popular among most works (Song et al., 2017; Guo and Tong,
2018; Garbade et al., 2019; Liu et al., 2018; Wang et al., 2019c; Dourado
et al., 2020a,b; Zhang et al., 2019b; Li et al., 2020c; Chen et al., 2020a; Li
et al., 2020b; Roldão et al., 2020; Wu et al., 2020). Such convolutions are
only suitable for dense networks (as opposed to sparse networks), and even
then should only be applied in deeper layers of the network after dilation
of the input manifold. In Liu et al. (2018), a feature aggregation module is
introduced by using Atrous Spatial Pyramid Pooling blocks (ASPP) (Chen
et al., 2018), which exploits multi-scale features by employing multiple par-
allel filters with different dilation rates, Figure 4.8c. A lightweight ASPP is
presented in Li et al. (2019). Dilated convolutions in the ASPP module can
be replaced by Residual dilated blocks (He et al., 2016) to increase spatial
context and improve gradient flow. A Guided Residual Block (GRB) to am-
plify fused features and a Global Aggregation module to aggregate global
context through 3D global pooling are proposed in Chen et al. (2020b). An
additional feature aggregation strategy is presented in Zhang et al. (2019b),
where multi-context aggregation is achieved by a cascade pyramid archi-
tecture, Figure 4.8b. In Cherabier et al. (2018) multi-scale features are
aggregated together following a Primal-Dual optimization algorithm (Pock
and Chambolle, 2011), which ensures semantically stable predictions and
further acts as a regularizer for the learning.

4.4. Methods overview 75

4.4.3.2 Position awareness

Geometric information contained in voxels at different positions has high
variability, i.e. Local Geometric Anisotropy. In particular, voxels inside an
object are homogeneous and likely to belong to a same semantic category
as their neighbors. Conversely, voxels at the surface, edges and vertices of
the scene provide richer geometric information due to the higher variance of
their surroundings. To deal with this, PALNet (Li et al., 2020b) proposes
a Position Aware loss (cf. Section 4.4.4.1), which consists in a Cross En-
tropy loss with individual voxel weights assigned according to their geomet-
ric anisotropy, providing slightly faster convergence and improving results.
Likewise, AM2FNet (Chen et al., 2019a) supervises contour information by
an additional cross entropy loss as supplementary cue for segmentation.

In the same line of work, EdgeNet (Dourado et al., 2020a) calculates
Canny edges (Canny, 1986) then fused with a f-TSDF obtained from the
depth image. Hence, it increases gradient along the geometrical edges of
the scene. Additionally, detection of RGB edges enables to identify objects
lacking geometrical saliency. The same network is used in Dourado et al.
(2020b) to predict complete scenes from panoramic RGB-D images.

Similarly, Chen et al. (2020a) introduces an explicit and compact geomet-
ric embedding from depth information by predicting a 3D sketch containing
scene edges from an input TSDF. They show that this feature embedding
is resolution-insensitive, which brings high benefit, even from partial low-
resolution observations.

4.4.3.3 Fusion strategies

SSC requires to output both geometry and semantics. Though highly cou-
pled – geometry helping semantics and vice-versa –, there is a natural benefit
to use inputs of different natures for example to provide additional texture
or geometry insights. We found that about two third of the literature uses
multi-modal inputs though it appears less trendy in most recent works (see
Table 4.2 col ‘Input’). For the vast majority of multi-input works, RGB is
used along various geometrical input (Guedes et al., 2018; Liu et al., 2018;
Li et al., 2019; Garbade et al., 2019; Dourado et al., 2020a; Behley et al.,
2019; Chen et al., 2019a; Dourado et al., 2020b; Liu et al., 2020; Li et al.,
2020c; Chen et al., 2020a; Li et al., 2020a; Zhong and Zeng, 2020) as it is
a natural candidate for semantics. Even without color, fusing 2D and 3D
modalities is often employed because it enables richer features estimation.
This is because 2D and 3D neighborhood differ, since 2D data results of pla-
nar projection along the optical axis of the sensor. Subsequently, a common
strategy consists in fusing geometrical features processed with different 2D /
3D encoding to obtain richer local scene descriptors. In Behley et al. (2019)
depth and occupancy are fused while Li et al. (2020b) uses depth along

76 3D Semantic Scene Completion: Survey

Mod. 1

Mod. 2

F DNN SSC

(a) Early Fusion

F
DNN

DNN

Mod. 1

Mod. 2

SSC

(b) Late Fusion
si

n
g
le

-s
ta

g
e

DNN

DNN

DNN

F
Mod. 1

Mod. 2

SSC DNNFF +F

DNN

DNN

SSC

Mod. 1

Mod. 2

m
u
lt
i-

st
ag

e

(c) Middle Fusion

(a) Early Fusion (Guedes et al., 2018; Guo and Tong, 2018; Garbade et al., 2019; Zhong and
Zeng, 2020; Dourado et al., 2020b; Behley et al., 2019; Cherabier et al., 2018).

(b) Late Fusion (Li et al., 2020c; Liu et al., 2018; Cheng et al., 2020).

(c) Middle Fusion, single-stage: (Liu et al., 2018; Dourado et al., 2020a; Li et al., 2020b; Chen
et al., 2020a), multi-stage.: (Li et al., 2019; Liu et al., 2020; Li et al., 2020a; Chen et al., 2019a).

Figure 4.9: Fusion Strategies. To accommodate for multiple input modal-
ities (Mod. 1, Mod. 2), several fusion strategies are found in the literature.
Here, F© stands for fusion and might be any type of fusion like concat C©,
sum +©, multiply ×©, convolutions, etc.

TSDF-like data. As mentioned earlier (cf. Section 4.4.1), TSDF provides a
gradient field easing the network convergence. Finally, application-oriented
fusion is also found such as fusing bird eye view along geometrical inputs as
in Cheng et al. (2020) – which is better suited for outdoor SSC.

We group the type of fusion in threefold, shown in Figure 4.9. Fusion
applied at the input level (Early fusion), at the mid-level features (Middle
fusion), or at the late/output level (Late fusion). They are respectively
referred as E, M, and L in column ‘Fusion strategies’ Table 4.2.

Early fusion. The most trivial approach is to concatenate inputs modal-
ities (Guedes et al., 2018; Guo and Tong, 2018; Garbade et al., 2019; Zhong
and Zeng, 2020; Dourado et al., 2020b; Behley et al., 2019; Cherabier et al.,
2018) before any further processing, see Figure 4.9a. There are two strategies
here: when spatially aligned (e.g. RGB/Depth) inputs can be concatenated
channel wise; alternatively inputs can be projected to a shared 3D common
space (aka features lifting). For spatially aligned modalities, it is common to
use pairs of normals/depth (Guo and Tong, 2018) or RGB/semantics (Behley
et al., 2019) and to process them with 2D CNNs. The second strategy lifts
any 2D inputs to 3D – assuming depth information and accurate inter-
sensors calibration – and process it with 3D networks. This has been done
with RGB/depth (Guedes et al., 2018), depth/semantics (Garbade et al.,
2019; Cherabier et al., 2018), points/semantics (Zhong and Zeng, 2020). Ex-

4.4. Methods overview 77

cept when using points, this second strategy leads to a sparse tensor since
not all 3D cells have features. Noteworthy, Garbade et al. (2019); Behley
et al. (2019); Zhong and Zeng (2020); Cherabier et al. (2018) use semantics,
which is first estimated either from RGB or depth-like data. A 2D or 3D
network processes the concatenated tensor, and while it logically outper-
forms single-modality input (Guo and Tong, 2018; Dourado et al., 2020a;
Garbade et al., 2019) there seems to be little benefit to apply early fusion.

Middle fusion. To exploit all modalities, middle fusion uses expert net-
works that learn modality-centric features. A straightforward fusion strategy
is employed in Chen et al. (2020a); Dourado et al. (2020a); Li et al. (2020b);
Liu et al. (2018) where the features are simply concatenated and processed
with a UNet style architecture (cf. Figure 4.9c, single-stage), which improves
over early fusion but still limits the exchange of information between modal-
ities. The information flow is improved in Li et al. (2019); Liu et al. (2020);
Li et al. (2020a); Chen et al. (2019a) by fusing modality-centric features in
a multi-stage manner (cf. Figure 4.9c, multi-stage); meaning that low-level
features from different modalities are fused together and aggregated with
fused mid/high level features gathered similarly. While ultimately the num-
ber of fusion stages shall be function of the input/output size, 3 stages are
often used (Li et al., 2019, 2020a; Chen et al., 2019a), though Liu et al.
(2020) claims 4 stages boost performances with similar input/output. The
fused mechanism can be a simple summation (Li et al., 2019) or concatena-
tion (Li et al., 2020a), but Chen et al. (2019a); Liu et al. (2020) benefit from
smarter selective fusion schemes using respectively RefineNet (Lin et al.,
2017) and Gated Recurrent Fusion.
Overall, the literature consensus is that middle fusion is highly efficient
for SSC. The ablation studies of Liu et al. (2020) reports that any selec-
tive fusion schemes brings at least a 20% performance boost over simple
sum/concat/max schemes.

Late fusion. Few works use late fusion for SSC (Li et al., 2020c; Cheng
et al., 2020; Liu et al., 2018), see Figure 4.9b. The straightforward strategy
in Li et al. (2020c) is to apply fusion (namely, element-wise multiplication)
of two SSC branches (a 3D guidance branch, and a semantic completion
branch), followed by a softmax. The benefit still appears little (5 to 10%)
given the extra computational effort. Similarly, color and geometry branches
are concatenated and shallowly convolved before softmax in Liu et al. (2018),
also providing small benefit (less than 3%). A unique strategy was proposed
in the recent S3CNet (Cheng et al., 2020) where the output of parallel 2D
top-view and 3D SSC are fused together in a semantic-wise manner. While it
was only evaluated on outdoor scenes – which setup naturally minimizes ver-
tically overlapping semantic labels – ablation reports an overall 20% boost.

78 3D Semantic Scene Completion: Survey

Summarizing the different strategies, Middle fusion appears to be the
best general SSC practice, though Late fusion was found beneficial in some
specific settings. On fused modalities, RGB/geometry fusion boosts perfor-
mance but at the cost of an additional sensor need, but even using fusion
of geometrical input with different encodings is highly beneficial. An inter-
esting insight from Dourado et al. (2020a); Chen et al. (2020a) advocates
that RGB or geometry can be fused with edges features as they provide
additional boundaries guidance for the SSC network.

4.4.3.4 Lightweight designs

A few optimization techniques are often applied for lightweight SSC archi-
tectures with the aim of addressing two separate problems: how to improve
the memory or computation efficiency, and how to design meaningful con-
volutions to improve the information flow. We detail either problem and its
solutions below.

Memory and computation efficiency. Voxel grids are often used as in-
put/output encoding of the 3D data since current datasets provide ground
truth in such format. However only a tiny portion of the voxels are oc-
cupied which makes naive dense grid inefficient in memory and computa-
tion. Memory wise, a few works use compact hierarchical 3D represen-
tation inspired from pre-deep learning, like Kd-Tree (Bentley, 1975) and
Octree (Meagher, 1982). Octree-based deep networks are often used for
learning object reconstruction (Wang et al., 2017; Riegler et al., 2017a,b;
Wang et al., 2018b) though little applied on real semantic scene completion
problem (Cherabier et al., 2018; Wang et al., 2019a, 2020a). Meanwhile,
deep Kd-Networks (Klokov and Lempitsky, 2017) proposal seems less ap-
propriate and has not yet been applied to SSC. Computation wise, (Cher-
abier et al., 2018) proposed a custom network architecture with adjustable
multi-scale branches which inference and backpropagation can be ran in
parallel, subsequently enabling faster training and good performance with
low-capacity dense 3D CNNs. Alternatively, few SSC works (Zhang et al.,
2018a; Dai et al., 2020) use sparse networks like SparseConvNet (Graham
et al., 2018) or Minkowski (Choy et al., 2019) which operate only in active
locations through a hash table. While sparse convolutions are very mem-
ory/computation efficient, they are less suitable for completion, since they
deliberately avoid filling empty voxels to prevent dilation of the input do-
main. To remedy this for SSC task, dense convolutions are still applied in
the decoder, which subsequently reduces sparse networks efficiency. Over-
all, while Kd/Octree networks are highly memory efficient, the complexity
of their implementation have restricted a wider application. Contrastingly,
sparse networks (Graham et al., 2018; Choy et al., 2019) are more used
(Zhang et al., 2018a; Cheng et al., 2020; Yan et al., 2021; Dai et al., 2020).

4.4. Methods overview 79

Efficient convolutions. A key observation is the spatial redundancy of
data, since neighboring voxels contain similar information. To exploit such
redundancy, Zhang et al. (2018a) proposes Spatial Group Convolutions (SGC)
to divide input volume into different sparse tensors along the spatial dimen-
sions which are then convolved with shared sparse networks. A similar
strategy is followed by Dai et al. (2018), dividing the volumetric space into
a set of eight interleaved voxel groups and performing an auto-regressive
prediction (Reed et al., 2017). Dilated convolutions are also widely used
for semantic completion methods (Song et al., 2017; Guo and Tong, 2018;
Garbade et al., 2019; Liu et al., 2018; Wang et al., 2019c; Chen et al., 2019b;
Li et al., 2019; Dourado et al., 2020a; Zhang et al., 2019b; Li et al., 2020c;
Chen et al., 2020a; Li et al., 2020b; Liu et al., 2020; Dourado et al., 2020b;
Roldão et al., 2020; Chen et al., 2020b), since they increase receptive fields at
small cost, providing large context, which is crucial for scene understanding
as discussed in Section 4.4.3.1. Dilated convolutions with separated kernels
are proposed in Zhang et al. (2019b) by separating the input tensor into
subvolumes. This enables to reduce the number of parameters and consider
depth profiles in which depth values are continuous only in neighbouring
regions.
DDRNet (Li et al., 2019) also introduces Dimensional Decomposition Resid-
ual (DDR) block, decomposing 3D convolutions into three consecutive layers
along each dimension, subsequently reducing the networks parameters. In
Li et al. (2020a), this concept is extended with use of anisotropic convo-
lutions, where the kernel size of each 1D convolution is adaptively learnt
during training to model the dimensional anisotropy.

4.4.3.5 Refinement

Refinement is commonly used in many vision tasks, but little applied in
SSC. VD-CRF (Zhang et al., 2018b) extends SSCNet (Song et al., 2017)
by applying Conditional Random Field (CRF) to refine output consistency,
achieving little over 4% gain. Additionally, S3CNet (Cheng et al., 2020)
presents a 3D spatial propagation network (Liu et al., 2017) to refine seg-
mentation results after fusion of 2D semantically completed bird eye view
image and 3D grid. In Zhang et al. (2019b), guided residual refinement is
also applied where low level features are reintroduced at the refinement stage
to boost preservation of fine-grained details, which boost results by about
12%. Additional partial refinement is applied in Dourado et al. (2020b); Wu
et al. (2020) to fuse SSC predictions from different viewpoints, by either
softmax applied to overlapping partitions (Dourado et al., 2020b; Wu et al.,
2020) or an occupancy based fusion policy (Wu et al., 2020). Though little
works address the refinement problem, some notable performance boost are
found in the literature, thus being an encouraging topic to explore.

80 3D Semantic Scene Completion: Survey

4.4.4 Training

We now detail the SSC training process, starting with the SSC losses (Sec-
tion 4.4.4.1), and subsequently the implemented training strategies (Sec-
tion 4.4.4.2).

4.4.4.1 Losses

We classify the SSC losses found in the literature in 3 broad categories:
reconstruction losses which optimize geometrical accuracy, semantics losses
which optimize semantics prediction, and consistency losses which guides
the overall completion consistency. Note that other non-SSC losses are often
added and that the type of SSC losses are commonly mixed – specifically,
reconstruction+semantics (Dai et al., 2018; Wang et al., 2020a; Chen et al.,
2020b; Cheng et al., 2020) or all three types (Chen et al., 2019b, 2020a;
Wang et al., 2019c; Rist et al., 2020a,b). We refer to Table 4.2 for a quick
overview of the losses used by each method.
In this section, we also refer to ŷ as SSC prediction and y as ground truth,
though for clarity we add subscript notation to distinguish between SSC
encoding. For example, ymesh corresponds to the ground truth mesh.

Reconstruction losses. These losses penalize the geometrical distance of
the output ŷ to ground truth y, in a self-unsupervised manner.

On occupancy grids outputs (ŷocc), Binary Cross-Entropy loss (BCE)
is most often used (Rist et al., 2020a; Wang et al., 2020a; Chen et al.,
2020b; Cheng et al., 2020; Rist et al., 2020b) to discriminate free voxels
from occupied. Assuming a binary class mapping where all non-free semantic
classes map to ‘occupy’. It writes:

LBCE = − 1
N

N∑
i=0

ŷocci log(yocci)− (1− ŷocci)log(1− yocci) , (4.1)

with N the number of voxels. The drawback of such loss is that it provides
little guidance to the network due to its sparsity. Smoother guidance can be
provided by outputting an implicit surface (ŷSDF) through minimization of
the predicted signed distance values in ŷSDF and corresponding SDF-encoded
mesh (ySDF) – using `1 or `2 norms.

On points outputs (ŷpts), the above losses can also be used to penal-
ize distance to a ground truth mesh, though it is more common to apply
points-to-points distances, thus assuming a ground truth point cloud (ypts).
To that end, permutation-invariant metrics are used. The Chamfer Dis-
tance (CD) (Fan et al., 2017) calculates the symmetrical closest point dis-
tance between two point clouds, such as:

LCD = 1
|ypts|

∑
p∈ypts

min
q∈ŷpts

‖p− q‖2 + 1
|ŷpts|

∑
q∈ŷpts

min
p∈ypts

‖q − p‖2 . (4.2)

4.4. Methods overview 81

The Earth Mover’s Distance (EMD) Kurenkov et al. (2018); Fan et al.
(2017) finds a bijection φ : y −→ ŷ that minimizes average distance both sets,
which is computationally expensive. It writes:

LEMD = min
φ:ypts−→ŷpts

1
|ypts|

∑
p∈ypts

‖p− φ(p)‖2 . (4.3)

Notice that standard EMD requires point sets to have same cardinality,
which makes it a tough candidate for SSC. In fact, CD and EMD are com-
monly used for object completion tasks (Fan et al., 2017; Yuan et al., 2018)
but have been little explored for SSC because of their computational greed-
iness (Fan et al., 2017).

Semantic losses. Such losses are suitable for occupancy grids or points
and can accommodate for either C classes (considering only semantics classes
of occupied voxels or points) or C + 1 classes (considering all voxels/points
and ‘free space’ being the additional class). Note that only the second case
(C + 1 classes) enforce reconstruction, so the first one (C classes) would
require additional reconstruction losses. Cross-Entropy loss (CE) is the
preferred loss for SSC (Song et al., 2017; Roldão et al., 2020; Zhang et al.,
2018a; Guo and Tong, 2018; Garbade et al., 2019; Liu et al., 2018; Li et al.,
2019; Dourado et al., 2020a; Zhang et al., 2019b; Chen et al., 2019b; Li
et al., 2020a,c; Cherabier et al., 2018), it models classes as independent thus
considering the latter to be equidistant in the semantic space. Formally,
supposing (y, ŷ) it writes:

LCE = − 1
C

N∑
i=0

N∑
c=0

wcŷi,c log
(

eyi,c∑C
c′ eyi,c′

)
, (4.4)

assuming here that y is the one-hot-encoding of the classes (i.e. yi,c = 1 if yi
label is c and otherwise yi,c = 0). In practice, (y, ŷ) can be either occupancy
grids (yocc, ŷocc) or points (ypts, ŷpts). A rare practice from Wang et al.
(2019c) is to address classification with BCE (Equation 4.1) through the
sum of C binary classification problems between each semantic class and
the free class. However, such practice is unusual and arguably beneficial.

Recently, PALNet (Li et al., 2020b) proposed the Position Aware
loss (PA), a weighted cross-entropy accounting for the local semantics en-
tropy to encourage sharper semantics/geometric gradients in the comple-
tion (cf. Sec 4.4.3.2). The loss writes:

LPA = − 1
N

N∑
i=0

C∑
c=0

(λ+ αWLGAi)ŷocci,c log
(

ey
occ
i,c∑C

c′ e
yocc

i,c′

)
, (4.5)

with λ and α being simple base and weight terms, and WLGAi being the
Local Geometric Anisotropy of i that scales accordingly to the semantic en-
tropy in its direct vicinity (i.e. WLGA lowers in locally smooth semantics

82 3D Semantic Scene Completion: Survey

areas). We refer to Li et al. (2020b) for an in-depth explanation. From the
latter, LPA leads to small performance gain of 1–3%. Noteworthy, this loss
could easily accommodate point clouds as well.

Note that reconstruction or semantics losses can only be computed on
known ground truth location, due to the ground truth sparsity. Additionally,
because SSC is a highly imbalanced problem (cf. Figure 4.3), class-balancing
strategy is always used.

Consistency losses. Different from most semantics losses, these losses
(Chen et al., 2020a; Rist et al., 2020a,b) provide a self-supervised semantic
signal. In Chen et al. (2020a) the completion consistency (CCY) of pre-
dictions from multiple partitioned sparse inputs is enforced via a Kullback-
Leibler divergence. Differently, Rist et al. (2020a,b) enforces spatial se-
mantics consistency (SCY) by minimizing the Jenssen-Shannon diver-
gence of semantic inference between a given spatial point and some given
support points. This self-supervision signal is available at any position within
the scene. However, the strategy for support points is highly application de-
pendent and while suitable for outdoor scene which have repetitive semantic
patterns, we conjecture it might not scale as efficiently to cluttered indoor
scenes.

Overall, little self-supervised or even unsupervised strategies exist and
we believe such type of new losses (Zhang and Chen, 2021) should be en-
couraged.

4.4.4.2 Training strategies

The vast majority of SSC works are trained end-to-end, sometimes with
multi-scale reconstructions. Few works also employ two-stage training or n-
stage with coarse-to-fine strategies, or even train with adversarial learning
to enforce realism. Strategies are illustrated in Figure 4.10 (with link color
indicating the stage) and reviewed below.

End-to-end. Most architectures (Figure 4.10a, left) are trained end-to-
end and output a single scale SSC (Song et al., 2017; Guo and Tong, 2018;
Li et al., 2019; Dourado et al., 2020a; Zhang et al., 2019b; Li et al., 2020b;
Liu et al., 2020; Li et al., 2020a; Chen et al., 2020b; Garbade et al., 2019;
Dourado et al., 2020b; Cherabier et al., 2018; Rist et al., 2020a; Wang et al.,
2020a) – often similar to the input size. Training that way is straightforward
and often offers minimal memory footprint. Noteworthy, Dai et al. (2020) –
which does geometric completion only – gradually increases sparsity during
training to ease completion of large missing chunks.

4.4. Methods overview 83

s

(2D/3D
grid

or Points)

2D/3D CNN

(3D grid
or Points)

si
n
g
le

-s
ca

le

FL : Feature Lifting

: Stage 1

: Stage 2

: Stage 3

1:X : Scale

(3D grid)

1:8
(3D grid)

1:4
(3D grid)

1:2
(3D grid)

(3D grid)

3D CNN

m
u
lt
i-

sc
al

e

(a) End-to-end

2D Semantics
/ 3D Sketch

FL

(2D/3D
grid)

2D/3D CNN

3D CNN

(3D grid)co
n
v+

co
n
v

2D Semantics

FL

(2D grid)

2D/3D CNN

(Points)(Points)
...

Point-based MLP

co
n
v+

p
oi

n
t

(b) Two-stage

F

(3D grid)

F

1:4 1:4

1:2

3D CNN

3D CNN

F

1:2

3D CNN

1:4
(3D grid)

1:2
(3D grid)

(3D grid)

1:1

(c) Coarse-to-fine

(2D/3D
grid)

Generator

Discriminator

Real/Fake

(3D grid)

(3D grid)

3D CNN

(d) Adversarial

(a) End-to-end, single-scale: (Song et al., 2017; Guo and Tong, 2018; Li et al., 2019; Dourado
et al., 2020a; Zhang et al., 2019b; Li et al., 2020b; Liu et al., 2020; Li et al., 2020c,a; Chen et al.,
2020b; Wang et al., 2020a; Garbade et al., 2019; Rist et al., 2020a; Cherabier et al., 2018;
Dourado et al., 2020b), multi-scale: (Zhang et al., 2018a; Roldão et al., 2020).

(b) Two-stage, conv+conv: (Li et al., 2020c; Garbade et al., 2019; Liu et al., 2018),
conv+point: (Zhong and Zeng, 2020).

(c) Coarse-to-fine: (Dai et al., 2018).

(d) Adversarial: (Wang et al., 2018d, 2019c; Chen et al., 2019b; Wu et al., 2020).

Figure 4.10: Training strategies. Most SSC are trained end-to-end (a)
outputting single or multi-scale SSC. Differently, two-stage training (b) com-
monly lift semantic features calculated on sparse input to a second stage
network. Coarse-to-fine (c), similarly to multi-scale relies on multiple size
predictions, but trains in a multi-stage coarse to fine manner. Finally, Adver-
sarial training (d) discriminates between ground truth and predicted scenes.
F© stands for fusion of any type.

84 3D Semantic Scene Completion: Survey

To guide the training, multi-scale SSC outputs can also be supervised, typi-
cally from early layers of a UNet decoder. A simple, yet efficient multi-scale
strategy (Roldão et al., 2020; Zhang et al., 2018a) is to minimize the sum of
SSC losses at different resolution (Figure 4.10a, right), thus also enforcing
coarse SSC representations in the network. In Zhang et al. (2018a), two
different scales are predicted, versus four in Roldão et al. (2020) providing
down to 1:8 (1 over 8) downscaled SSC. In the latter, authors also report
that the decoder can be ablated to provide very fast inference at coarsest
resolution (370FPS at 1:8 scale). All end-to-end networks are commonly
trained from scratch, though some of them (Dourado et al., 2020a; Zhang
et al., 2019b; Liu et al., 2018; Song et al., 2017; Guo and Tong, 2018) report
pretraining on the synthetic SUNCG.

Two-stages. Some works also use two-stage training, where the first stage
learns 2D or 3D semantics, and the second stage predicts SSC from input
and inferred semantics (Figure 4.10b), as in Li et al. (2020c); Garbade et al.
(2019); Zhong and Zeng (2020); Liu et al. (2018). Noteworthy, one may argue
these methods are still end-to-end, since off-the-shelf semantics networks
could be used. Only SATNet (Liu et al., 2018) is strictly two-stage since
semantics is also refined in the second stage.

Coarse-to-fine. ScanComplete (Dai et al., 2018) also follows a multi-scale
strategy somehow close to Roldão et al. (2020); Zhang et al. (2018a), though
training in a coarse-to-fine manner (Figure 4.10c). In details, three sequen-
tial training are achieved at increasingly higher resolutions, with each stage
network taking as input the ad-hoc sparse input and the previous stage SSC
prediction (for stage>1). Interestingly, no one explored a continuous curricu-
lum learning setting, which could yield stabler training and performance im-
provement. Still, Cherabier et al. (2018) (intentionally omitted Figure 4.10c)
applies a unique coarse-to-fine proposal in a fully end-to-end manner, via
parallel backpropagations in all scales. Of similar spirit, Dai et al. (2020)
proposes an iteration-based progressive refinement during training for scene
completion, but insights of such strategy are not deeply discussed.

Adversarial. Even SSC ground truth have large missing chunks of data,
leading to ambiguous supervision. To address this, Wang et al. (2018d,
2019c); Chen et al. (2019b); Wu et al. (2020) use adversarial training (Fig-
ure 4.10d), since the discriminator provides an additional supervision signal.
This is straightforward implemented in Wu et al. (2020); Chen et al. (2019b),
where the discriminator classifies ground truth from generated SSC (aka
real/fake). In Wang et al. (2018d, 2019c) of same authors, 2 discriminators
are used in a somehow similar fashion to discriminate both the SSC output
and the latent depth or semantics features to enforce deep shared represen-

4.4. Methods overview 85

tation. Additionally, Chen et al. (2020a) employs a Conditional Variational
Autoencoder (CVAE) to generate completed border sketches to be fed to
the main SSC branch. Despite few works on the matter, adversarial ap-
pears a logical choice to improve SSC consistency and provide additional
self-supervision. Both Wang et al. (2018d) and Wu et al. (2020) report a
10%-15% boost on several datasets.

Finally, on implementation – where mentioned – only Dai et al. (2018);
Zhong and Zeng (2020); Wang et al. (2018d, 2019c); Roldão et al. (2020)
train with Adam optimizer, Chen et al. (2019b) with a mix of Adam/SGD,
and all others use only SGD with momentum 0.9 and 10−4 weight decay,
except for Zhang et al. (2019b); Dourado et al. (2020a); Li et al. (2020c);
Chen et al. (2020b); Wang et al. (2017, 2020a); Chen et al. (2019b) using
5× 10−4. The training most often uses standard learning rate scheduler (Li
et al., 2019; Zhang et al., 2019b; Li et al., 2020b; Liu et al., 2020; Li et al.,
2020a; Chen et al., 2020b; Wang et al., 2017; Zhong and Zeng, 2020; Garbade
et al., 2019; Wang et al., 2020a) though sophisticated scheduling (Dourado
et al., 2020a) or fixed learning rate (Li et al., 2020c) are also used. Because
of 3D greediness, the common practice is to train with small batch size of
1 (Li et al., 2020c), 2 (Li et al., 2019), 3 (Dourado et al., 2020a), 4 (Guo and
Tong, 2018; Zhang et al., 2019b; Li et al., 2020b; Liu et al., 2020; Li et al.,
2020a; Dourado et al., 2020a; Roldão et al., 2020; Zhong and Zeng, 2020;
Chen et al., 2019b; Cherabier et al., 2018), 8 (Wang et al., 2017, 2020a,
2018d, 2019c) or 16 (Chen et al., 2020b) to fit in standard 12GB GPUs.

4.4.5 Evaluation

We now provide in-depth evaluation of the field, reviewing first the common
metrics (Section 4.4.5.1), the qualitative and quantitative performance of the
literature (Section 4.4.5.2), and the networks efficiency (Section 4.4.5.3).

4.4.5.1 Metrics

Joint Semantics-Geometry. Preferred metric for SSC is the mean Jac-
card Index or mean Intersection over Union (mIoU) (Everingham
et al., 2014), which considers IoU of all semantic classes for prediction, with-
out considering free space. It writes

mIoU = 1
C

C∑
c=1

TPc
TPc + FPc + FNc

, (4.6)

where TPc, FPc and FNc are the true positives, false positives and false neg-
atives predictions for class c, respectively. Since ground truth is commonly
semi-dense for real-world datasets, evaluation is performed in known space
only.

86 3D Semantic Scene Completion: Survey

Geometry only. Because mIoU considers semantic classes, the pure geo-
metrical reconstruction quality is not encompassed. Therefore Intersection
over Union (IoU), along with Precision and Recall are commonly used
on the binary free/occupy scene representation, obtained by mapping all
semantic classes to occupy.

Alternatively, any distance metrics from Section 4.4.4.1 (i.e. `1, `2,
EMD or CD) may be used as in Dai et al. (2018, 2020) though less used
in real datasets, due to their lower precision when sparsity increases.

On common practice, we highlight that evaluation on real indoor or out-
door datasets is usually performed differently. This results of the common
sensors setup, respectively RGB-D (indoor) and LiDAR (outdoor), provid-
ing significantly different density information. Referring to Figure 4.2, in
real indoor Song et al. (2017) the geometrical IoU is evaluated on input oc-
cluded regions while the mIoU is evaluated on input occluded (blue) and ob-
served (red) surfaces. In real outdoor Behley et al. (2019) the IoU and mIoU
are commonly evaluated on the entire known space, regardless whether re-
gions were observed or occluded in the input. Obviously, synthetic datasets
can cope with either practice. In the following, we describe the common
practices and report semantics metrics (mIoU) along with geometrical ones
(Precision, Recall, IoU).

4.4.5.2 Performances

We report the available mIoU and IoU performance on the most popular
SSC datasets in Table 4.3, which are all obtained from voxelized ground
truth. For non-voxel methods the output is voxelized beforehand. Addition-
ally, detailed classwise performance of top five methods for SemanticKITTI,
NYUv2 and SUNCG are presented in Tabs. 4.4, 4.5 and 4.6, respectively.
From the performance Table 4.3, the mIoU of the best methods plateaus
around 75− 85% on synthetic indoor dataset, 41% on real indoor, and 30%
on real outdoor. Importantly, note that all indoor datasets performance are
evaluated at 1:4 of the original ground truth resolution – that is 60×36×60
– for historical reasons4. This makes indoor / outdoor performance compar-
ison tricky. It is interesting to note that IoU – geometrical completion (i.e.
ignoring semantics) – is way higher than best mIoU. In detail, best IoU are
73% on real indoor, and 57% on real outdoor. Qualitative results of a dozen
of methods are shown in Figure 4.11 for indoor datasets, and Figure 4.12
for outdoor datasets.

4In their seminal work, for memory reason Song et al. (2017) evaluated SSC only at the
1:4 scale. Subsequently, to provide fair comparisons between indoor datasets and methods,
all other indoor SSC have been using the same resolution despite the fact that higher
resolution ground truth is available. Recent experiments in Chen et al. (2020a) advocate
that using higher input/output resolution boosts the SSC performance significantly.

4.4. Methods overview 87

NYUCAD (Firman et al., 2016)

RGB Depth Visible Surface Ground Truth SSCNet 3DSKetch
(Song et al., 2017) (Chen et al., 2020a)

(a)

RGB Depth Visible Surface Ground Truth SSCNet DDRNet PALNet 3DSKetch AIC-Net
(Song et al., 2017) (Li et al., 2019) (Li et al., 2020b) (Chen et al., 2020a) (Li et al., 2020a)

(b)

RGB Depth Visible Surface Ground Truth SSCNet DDRNet PALNet 3DSKetch
(Song et al., 2017) (Li et al., 2019) (Li et al., 2020b) (Chen et al., 2020a)

(c)

SUNCG (Song et al., 2017)

Depth Visible Surface Ground Truth SSCNet VVNet ESSCNet CCPNet
Song et al. (2017) Guo and Tong (2018)Zhang et al. (2018a)Zhang et al. (2019b)

(d)

Depth Visible Surface Ground Truth SSCNet VVNet ESSCNet CCPNet
(Song et al., 2017) (Guo and Tong, 2018)(Zhang et al., 2018a)(Zhang et al., 2019b)

(e)

Sofa Table TVs Furn. ObjectsBedChairWindowWallFloorCeil.

Figure 4.11: Performance of indoor Semantic Scene Completion on
NYUCAD (Firman et al., 2016) and SUNCG (Song et al., 2017). Meth-
ods with RGB modalities (i.e. 3DSketch) enable to detect color salient
objects as highlighted door in row (a). Position awareness also contributes
to better reconstruction consistency and inter-class distinction as seen in
columns (b), (c) by PALNet (Li et al., 2020b) and 3DSketch (Chen et al.,
2020a). Multi-scale aggregation also improves reconstruction performance
as seen on rows (d), (e), where CCPNet (Zhang et al., 2019b) achieves best
performance on SUNCG (Song et al., 2017).

Overall, one may note the synthetic to real best performance gap of
indoor datasets, which is approx. 10− 35% mIoU and 10 − 18% IoU.
While a difference is expected, once again it highlights that geometry has
a smaller synthetic/real domain gap compared to semantics. On a gen-
eral note also, most methods perform significantly better on IoU than on
mIoU, demonstrating the complexity of the semantics scene completion. In
fact, the ranking of methods differs depending on the metric. For example,
on NYUv2 (indoor) CCPNet (Zhang et al., 2019b) gets best indoor mIoU
(41.3%) while Chen et al. (Chen et al., 2020b) is best on IoU (73.4%), and
on SemanticKITTI (outdoor) S3CNet (Cheng et al., 2020) has best mIoU
(29.5%) and Local-DIFs (Rist et al., 2020a) best IoU (57.7%). Note also the
large difference between best indoor/outdoor metrics. While only a handful

88 3D Semantic Scene Completion: Survey

methods (Song et al., 2017; Zhang et al., 2018a; Liu et al., 2018; Roldão et al.,
2020) are evaluated in both setups, they indeed perform significantly worse
on outdoor data – though indoor/outdoor performance should be carefully
compared given the different resolution. This is partially explained by the
higher sparsity in outdoor datasets, visible in ‘input’ of Figure 4.12. Another
explanation is the higher number of classes in SemanticKITTI versus NYU
and the extreme class-imbalance setup given that minor classes are very
rarely observed, see Figure 4.3. On general qualitative results, either indoor
(Figure 4.11) or outdoor (Figure 4.12) results show that predictions are ac-
curate in large homogeneous areas (walls/ground, floor, buildings) and most
errors occur at object boundaries. This is evident in Table 4.4, where most
methods achieve high performance in largest classes of SemanticKITTI, but
struggle with predictions in less represented ones (e.g. bicycle, motorcycle,
person). Worth mentioning, S3CNet (Cheng et al., 2020) achieves consider-
ably larger scores in rare classes (+25%, +37%, +38% respectively), more
than twice when compared to next best classed scores. The reason for such
behavior is regrettably not deeply explored in their work.

Inputs. To ease interpretation, col ‘Input’ in Table 4.3 shows the nature
of input used, where ‘G’ is Geometry of any type (depth, TSDF, points,
etc.) – possibly several – and ‘T’ is Texture (RGB). From Table 4.3 using
both geometry and texture (G+T) performs among the best indoor, such
as 3DSketch (Chen et al., 2020a) which relies on textural edges and depth.
Generally speaking, G+T enables the prediction of non salient geometric
objects (i.e. paints, windows, doors) as shown on Figure 4.11a by the door
predicted 3DSketch (Chen et al., 2020a) and missed by SSCNet (Song et al.,
2017). Noteworthy, among the best mIoU methods Zhang et al. (2019b);
Cheng et al. (2020); Chen et al. (2020a) all use TSDF-encoding as geomet-
rical input. On outdoor datasets, only TS3D (Garbade et al., 2019) uses
texture without significant improvement. We conjecture the reason is three-
fold. First, we argue the field of view being significantly bigger than indoor
the color is less informative. Second, the depth sensor (LiDAR) in outdoor
dataset is very precise (as opposed to RGB-D in indoor settings) and provide
a more discriminative signal. Thirdly, the possibly inaccurate Camera-Lidar
calibration and the absence of 1 to 1 associations.

Architecture and design choices. One may notice the good perfor-
mance of hybrid networks (Chen et al., 2020a; Li et al., 2020b; Zhong and
Zeng, 2020; Cheng et al., 2020) (Figure 4.7d), which we believe results of
richer input signal due to the fusion of multiple modalities. We also argue
that multiple neighboring definitions (2D and 3D) provide beneficial comple-
mentary signals. For instance, S3CNet combines 2D BEV and 3D f-TSDF
for late fusion through post-processing refinement, achieving best semantic

4.4. Methods overview 89

SemanticKITTI (Behley et al., 2019)

Input Ground Truth SSCNet-full LMSCNet
(Song et al., 2017) (Roldão et al., 2020)

(a)

(b)

RGB Ground Truth S3CNet
(Cheng et al., 2020)

(b)

(d)

Input Ground Truth ESSCNet JS3C-Net
(Zhang et al., 2018a) (Yan et al., 2021)

(c)

(f)

Ground Truth Local-DIFs Input Local-DIFs (Large)
(Rist et al., 2020a) (Rist et al., 2020a)

(d)

(h)

carbicycle motorcycle truck other-vehicle person bicyclist motorcyclist roadparking

sidewalk other-ground building fence vegetationtrunk terrainpole traffic-sign

Figure 4.12: Performance of outdoor Semantic Scene Comple-
tion on SemanticKITTI (Behley et al., 2019). LMSCNet (Roldão et al.,
2020) proposes a lightweight architecture with small performance decrease,
rows (a), (b). S3CNet (Cheng et al., 2020) achieves SoA performance by
their sparse bird’s eye view and 3D f-TSDF feature encoders, rows (c), (d).
Two-stage JS3CNet (Yan et al., 2021) performs point-wise semantic segmen-
tation and semantic scene completion sequentially, enabling better comple-
tion as seen in rows (e), (f). Finally, Local-DIFs (Rist et al., 2020a) enables
continuous surface prediction, thanks to deep implicit functions, which en-
able predictions of considerably larger spatial extent, rows (g), (h).

90 3D Semantic Scene Completion: Survey

Indoor Outdoor

Real-world Synthetic Real-world
NYUv2 NYUCAD SUNCG SemanticKITTI

(Silberman et al., 2012) (Firman et al., 2016) (Song et al., 2017) (Behley et al., 2019)
60× 36× 60 60× 36× 60 60× 36× 60 256× 32× 256

Method Input Prec. Recall IoU mIoU Prec. Recall IoU mIoU Prec. Recall IoU mIoU Prec. Recall IoU mIoU

2017 SSCNet (Song et al., 2017)a G 59.3† 92.9† 56.6† 30.5† 75.0† 96.0† 73.0† - 76.3 95.2 73.5 46.4 31.7 83.4 29.8 9.5
SSCNet-full (Roldão et al., 2020) G - - - - - - - - - - - - 59.6 75.5 50.0 16.1

2018 Guedes et al. (2018) G+T 62.5 82.3 54.3 27.5 - - - - - - - - - - - -
VVNet (Guo and Tong, 2018) G 69.8† 83.1† 61.1† 32.9† 86.4† 92.0† 80.3† - 90.8 91.7 84.0 66.7 - - - -
VD-CRF (Zhang et al., 2018b) G - - 60.0† 31.8† - - 78.4† 43.0† - - 74.5 48.8 - - - -
ESSCNet (Zhang et al., 2018a)b G 71.9 71.9 56.2 26.7 - - - - 92.6 90.4 84.5 70.5 62.6 55.6 41.8 17.5
SATNet (Liu et al., 2018) G+T 67.3† 85.8† 60.6† 34.4† - - - - 80.7* 96.5* 78.5* 64.3* - - - -

2019 DDRNet (Li et al., 2019) G+T 71.5 80.8 61.0 30.4 88.7 88.5 79.4 42.8 - - - - - - - -
TS3D (Garbade et al., 2019)c G+T - - 60.0 34.1 - - 76.1 46.2 - - - - 31.6 84.2 29.8 9.5

TS3D+DNet (Behley et al., 2019) G - - - - - - - - - - - - 25.9 88.3 25.0 10.2
TS3D+DNet+SATNet (Behley et al., 2019) G - - - - - - - - - - - - 80.5 57.7 50.6 17.7

EdgeNet (Dourado et al., 2020a) G+T 79.1† 66.6† 56.7† 33.7† - - - - 93.1* 90.4* 84.8* 69.5* - - - -
SSC-GAN (Chen et al., 2019b) G 63.1 87.8 57.8 22.7 80.7 91.1 74.8 42.0 83.4 92.4 78.1 55.6 - - - -
ForkNet (Wang et al., 2019c) G - - 63.4† 37.1† - - - - - - 86.9 63.4 - - - -
CCPNet (Zhang et al., 2019b) G 78.8† 94.3† 67.1† 41.3† 93.4† 91.2† 85.1† 55.0† 98.2 96.8 91.4 74.2 - - - -
AM2FNet (Chen et al., 2019a) G+T 72.1 80.4 61.3 31.7 87.2 91.0 80.2 44.6 - - - - - - - -

2020 GRFNet (Liu et al., 2020) G+T 68.4 85.4 61.2 32.9 87.2 91.0 80.1 45.3 - - - - - - - -
AMFNet (Li et al., 2020c) G+T 67.9 82.3 59.0 33.0 - - - - - - - - - - - -
PALNet (Li et al., 2020b) G 68.7 85.0 61.3 34.1 87.2 91.7 80.8 46.6 - - - - - - - -
3DSketch (Chen et al., 2020a) G+T 85.0 81.6 71.3 41.1 90.6 92.2 84.2 55.2 - - 88.2* 76.5* - - - -
AIC-Net (Li et al., 2020a) G+T 62.4 91.8 59.2 33.3 88.2 90.3 80.5 45.8 - - - - - - - -
Wang et al. (2020a) G - - - - - - - - 92.1 95.5 88.1 74.8 - - - -
IPF-SPCNet (Zhong and Zeng, 2020) G+T 70.5 46.7 39.0 35.1 83.3 72.7 63.5 50.7 - - - - - - - -
Chen et al. (2020b) G - - 73.4 34.4 - - 82.2 44.5 - - 84.8 63.5 - - - -
LMSCNet (Roldão et al., 2020) G - - - - - - - - - - - - 77.1 66.2 55.3 17.0

LMSCNet-SS (Roldão et al., 2020) G - - 62.2‡ 28.4‡ - - - - - - - - 81.6 65.1 56.7 17.6
S3CNet (Cheng et al., 2020) G - - - - - - - - - - - - - - 45.6 29.5
JS3C-Net (Yan et al., 2021) G - - - - - - - - - - - - 71.5 73.5 56.6 23.8
Local-DIFs (Rist et al., 2020a) G - - - - - - - - - - - - - - 57.7 22.7

a Results in SemanticKITTI reported on Roldão et al. (2020). b Results in SemanticKITTI reported on Yan et al. (2021).
c Results in SemanticKITTI reported on Behley et al. (2019).

Input: Geometry (depth, range, points, etc.), Texture (RGB). † Pretraining on SUNCG. * Texture input not used due to absence in SUNCG. ‡ Own
implementation.

Table 4.3: SSC performance on the most popular datasets. The
relatively low best mIoU scores on the challenging real outdoor Se-
manticKitti (Behley et al., 2019) (29.5%) and real indoor NYUv2 (Silber-
man et al., 2012) (41.1%) show the complexity of the task. In the ‘method’
column, we indicate variants with an offset. To better interpret the perfor-
mance, column ‘Input’ shows the type of input modality used where ‘G’ is
Geometry (depth, range, points, etc.) and ‘T’ is Texture (RGB). Note that
all indoor datasets report performance for 60 × 36 × 60 grids for historical
reasons though 4x bigger input is commonly treated, cf. Section 4.4.5.2.
Top 5 methods are highlighted in each column from red to white.

Method In
pu

t

�
ro
ad

(1
5.

30
%

)

�
si
de
w
al
k

(1
1.

13
%

)

�
pa

rk
in
g

(1
.1

2%
)

�
ot
he
r-
gr
.(

0.
56

%
)

�
bu

ild
in
g

(1
4.

1%
)

�
ca
r

(3
.9

2%
)

�
tr
uc
k

(0
.1

6%
)

�
bi
cy
cl
e

(0
.0

3%
)

�
m
ot
or
cy
cl
e

(0
.0

3%
)

�
ot
he

r-
ve
h.

(0
.2

0%
)

�
ve
ge
ta
ti
on

(3
9.

3%
)

�
tr
un

k
(0

.5
1%

)

�
te
rr
ai
n

(9
.1

7%
)

�
pe

rs
on

(0
.0

7%
)

�
bi
cy
cl
is
t

(0
.0

7%
)

�
m
ot
or
cy
cl
is
t

(0
.0

5%
)

�
fe
nc

e
(3

.9
0%

)

�
po

le
(0

.2
9%

)

�
tr
.
si
gn

(0
.0

8%
)

m
Io
U

S3CNet (Yan et al., 2021) G 42.0 22.5 17.0 7.9 50.2 31.2 6.7 41.5 45.0 16.1 39.5 34.0 21.2 45.9 35.8 16.0 31.3 31.0 24.3 29.5
JS3CNet (Yan et al., 2021) G 64.7 39.9 34.9 14.1 39.4 33.3 7.2 14.4 8.8 12.7 43.1 19.6 40.5 8.0 5.1 0.4 30.4 18.9 15.9 23.8
Local-DIFs (Rist et al., 2020a) G 67.9 42.9 40.1 11.4 40.4 34.8 4.4 3.6 2.4 4.8 42.2 26.5 39.1 2.5 1.1 0 29.0 21.3 17.5 22.7
TS3D+DNet+SATNet (Behley et al., 2019) G 62.2 31.6 23.3 6.5 34.1 30.7 4.9 0 0 0.1 40.1 21.9 33.1 0 0 0 24.1 16.9 6.9 17.7
LMSCNet-SS(Roldão et al., 2020) G 64.8 34.7 29.0 4.6 38.1 30.9 1.5 0 0 0.8 41.3 19.9 32.1 0 0 0 21.3 15.0 0.8 17.6

Table 4.4: Detailed SSC class performance on SemanticKITTI
(Behley et al., 2019) dataset. Best 5 methods are presented and or-
dered in decreasing mIoU performance from top to bottom.

4.4. Methods overview 91

Method In
pu

t

�
ce
il.

(0
.7

4%
)

�
flo

or
(1

2.
44

%
)

�
w
al
l(

9.
67

%
)

�
w
in
.

(2
.1

2%
)

�
ch
ai
r

(2
.0

3%
)

�
be

d
(9

.1
7%

)

�
so
fa

(6
.7

8%
)

�
ta
bl
e

(4
.1

4%
)

�
tv
s

(0
.5

3%
)

�
fu
rn
.

(3
6.

64
%

)

�
ob

js
.

(1
5.

74
%

)

m
Io
U

CCPNet (Zhang et al., 2019b)† G 25.5 98.5 38.8 27.1 27.3 64.8 58.4 21.5 30.1 38.4 23.8 41.3
3DSketch (Chen et al., 2020a) G+T 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1
ForkNet (Wang et al., 2019c)† G 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
IPF-SPCNet (Zhong and Zeng, 2020) G+T 32.7 66.0 41.2 17.2 34.7 55.3 47.0 21.7 12.5 38.4 19.2 35.1
SATNet (Liu et al., 2018)† G+T 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4

† Pretraining on SUNCG.

Table 4.5: Detailed SSC class performance on NYUv2 (Silberman
et al., 2012) dataset. Best 5 methods are presented and ordered in de-
creasing mIoU performance from top to bottom.

Method In
pu

t

�
ce
il.

(2
.6

8%
)

�
flo

or
(1

2.
27

%
)

�
w
al
l

(3
3.

55
%

)

�
w
in
.

(5
.7

9%
)

�
ch
ai
r

(1
.8

0%
)

�
be

d
(5

.9
5%

)

�
so
fa

(4
.9

4%
)

�
ta
bl
e

(2
.9

0%
)

�
tv
s

(0
.3

6%
)

�
fu
rn
.

(1
5.

04
%

)

�
ob

js
.

(1
4.

73
%

)

m
Io
U

3DSketch (Chen et al., 2020a)‡ G* 97.8 91.9 84.1 72.6 60.8 86.8 81.7 68.7 52.6 75.7 68.2 76.5
Wang et al. (2020a) G 98.2 92.8 76.3 61.9 62.4 87.5 80.5 66.3 55.2 74.6 67.8 74.8
CCPNet (Zhang et al., 2019b) G 99.2 89.3 76.2 63.3 58.2 86.1 82.6 65.6 53.2 76.8 65.2 74.2
ESSCNet (Zhang et al., 2018a) G 96.6 83.7 74.9 59.0 55.1 83.3 78.0 61.5 47.4 73.5 62.9 70.5
EdgeNet (Dourado et al., 2020a) G* 97.2 94.4 78.4 56.1 50.4 80.5 73.8 54.5 49.8 69.5 59.2 69.5

* Texture input not used due to absence in SUNCG.
‡ Results provided by authors.

Table 4.6: Detailed SSC class performance on SUNCG (Song et al.,
2017) dataset. Best 5 methods are presented and ordered in decreasing
mIoU performance from top to bottom.

completion performance on SemanticKITTI (Behley et al., 2019) by a con-
siderable margin (+5.7% mIoU) . Qualitative results of the approach are
shown in Figure 4.12c, 4.12d. Similarly, JS3CNet (Yan et al., 2021) ranks
second in same dataset (23.8% mIoU and 56.6% IoU) with point-wise seman-
tic labeling through SparseConvNet architecture (Graham et al., 2018) and
dense semantic completion using a point-voxel interaction module, enabling
to better infer small vehicles as shown in circled areas of Figure 4.12e, 4.12f.
Analogously, PALNet (Li et al., 2020b) middle fuses depth image and f-
TSDF features, achieving good performance on NYUv2 (34.1% mIoU and
61.3% mIoU) and NYUCAD (46.6% mIoU and 80.8% mIoU) datasets, such
performance can also be attributed to its position aware loss, to be discussed
next.

Contextual awareness (Section 4.4.3.1) seems also to play an important
role for the task. This is noticeable with CCPNet (Zhang et al., 2019b)
encouraging results given the use of a single geometric input. We observe the

92 3D Semantic Scene Completion: Survey

benefit of its consistency loss in the highlighted areas of Figure 4.11d, 4.11e.
On position awareness (Section 4.4.3.2) it seems to boost intra-class con-

sistency together with inter-class distinction. For example 3DSKetch (Chen
et al., 2020a) and PALNet (Li et al., 2020b), both use position awareness
and achieve high performances in indoor scenes with 3DSketch ranking in
top 2 in mIoU (Table 4.3), visible in Figs. 4.11a, 4.11b, 4.11c. Similarly,
S3CNet dominates performance in SemanticKITTI as already mentioned,
which performance is noticeable in Figs. 4.12c, 4.12d.

An interesting observation is the high density of the completion even
regarding the ground truth, visible in Figs. 4.12b, 4.12g, 4.12h. This re-
lationship is studied in Dai et al. (2020), where sparsity is exploited by
removing input data to impulse unknown space completion.

4.4.5.3 Network efficiency

Method Params (M) FLOPs (G)

2017 SSCNet (Song et al., 2017)a 0.93 163.8
VVNet (Guo and Tong, 2018)a 0.69 119.2
ESSCNet (Zhang et al., 2018a)a 0.16 22
SATNet (Liu et al., 2018)a 1.2 187.5

2018 DDRNet (Li et al., 2019) 0.20 27.2
CCPNet (Zhang et al., 2019b) 0.09 11.8

2020 GRFNet (Liu et al., 2020) 0.82 713
PALNet (Li et al., 2020b) 0.22 78.8
AIC-Net (Li et al., 2020a) 0.72 96.77
Chen et al. (2020b) 0.07 1.6

a Reported in Zhang et al. (2019b).

(a) 60× 36× 60 prediction (indoor)

Method Params (M) FLOPs (G)

2017 SSCNet (Song et al., 2017)b 0.93 82.5
SSCNet-full (Song et al., 2017)b 1.09 769.6

2019 TS3D (Garbade et al., 2019)b 43.77 2016.7
TS3D+DNet (Behley et al., 2019)b 51.31 847.1
TS3D+DNet+SATNet (Behley et al., 2019)b 50.57 905.2

2020 LMSCNet (Roldão et al., 2020) 0.35 72.6
JS3C-Net (Yan et al., 2021) 3.1 -
Local-DIFs (Rist et al., 2020a) 9.9 -

b Reported in Roldão et al. (2020).

(b) 256× 32× 256 prediction (outdoor)

Table 4.7: Network statistics. Number of parameters and FLOPs are
reported per method, grouped by resolution output: 60 × 36 × 60 for typical
indoor datasets (Silberman et al., 2012; Firman et al., 2016; Song et al.,
2017) or 256× 32× 256 for outdoor dataset (Behley et al., 2019).

In Table 4.7, network parameters and floating-point operations (FLOPs)
are listed – where possible – with separation of indoor and outdoor networks
because they have different output resolution. Notice the extreme varia-
tions between networks, which scale from 1:144 in number of parameters
and 1:1260 in FLOPs. Chen et al. (2020b) and LMSCNet (Roldão et al.,

4.5. Discussion 93

2020) are by far the lightest networks with the fewest parameters and lower
FLOPs, in indoor and outdoor settings respectively. They also account for
the lower number of operations, which can – though not necessarily (Ma
et al., 2018) – contribute to faster inference times. Furthermore, the use of
sparse convolutions (Graham et al., 2018) is commonly applied as a strategy
to reduce memory overhead in Zhang et al. (2018a); Dai et al. (2020); Yan
et al. (2021); Cheng et al. (2020).

4.5 Discussion

Despite growing interest, there are still major challenges to solve SSC as
the best methods still perform poorly on real datasets (see Tabs. 4.5, 4.4).
In this section, we wish to highlight important remaining issues and pro-
vide future research directions.Despite growing interest, there are still ma-
jor challenges to solve SSC as the best methods still perform poorly on real
datasets (see Tabs. 4.5, 4.4). In this section, we wish to highlight important
remaining issues and provide future research directions.

Best practices for SSC. Among the various viable SSC choices, some
were proven highly beneficial. Contextual aggregation (Section 4.4.3.1) for
example, to improve the information flow. Further geometrical cues often
boost SSC, whether if it is multiple geometrical representations (e.g. depth
+ voxel, Section 4.4.1) or boundaries (e.g. edges, Section 4.4.3.2). On
training, Rist et al. (2020a) shows free space supervision close to the ge-
ometry can provide sharper inference, and we believe adversarial training
(Section 4.4.4.2) is key to cope with the ground truth ambiguities. On eval-
uation, we encourage authors to evaluate on indoor and outdoor dataset ex-
hibiting different challenges. Finally for real-time applications, more works
like Roldão et al. (2020); Chen et al. (2020b) should account for lightweight
and fast inference architectures (Section 4.4.5.3).

Supervision bias. An important challenge for completion results from the
big imbalance ratio between free and occupied space (9:1 in both NYUv2 (Song
et al., 2017; Silberman et al., 2012) and SemanticKITTI (Behley et al.,
2019)) which biases the networks towards free space predictions. To deal
with this problem, random undersampling of the major free class is often
applied (Song et al., 2017) to reach an acceptable 2:1 ratio. The strategy
reportedly improves completion performance (i.e. +4% IoU (Song et al.,
2017)) and is widely employed (Zhang et al., 2018a; Garbade et al., 2019;
Liu et al., 2018; Dourado et al., 2020a; Zhang et al., 2019b). Similarly, loss
can be balanced to favor occupy predictions (Li et al., 2019; Liu et al., 2020).
Again, few works like Rist et al. (2020a) efficiently benefit from free space
information.

94 3D Semantic Scene Completion: Survey

Semantic class balancing. Imbalance is also present in the semantic
labels, specially in outdoor datasets, where there is a prevalence of road
or vegetation (see Figure 4.1 and 4.3). Class-balancing can be applied to
mitigate imbalanced distribution, usually weighting each class according to
the inverse of its frequency (Roldão et al., 2020), though prediction of under-
represented classes still suffer (e.g. pedestrian or motorcycle in Behley et al.
(2019)). This may have catastrophic impact for robotics application. An
approach worth mentioning is S3CNet (Cheng et al., 2020), where combined
weighted cross entropy and position aware loss (cf. Section 4.4.4.1) achieve
impressive improvements in under-represented classes of SemanticKITTI.
We believe SSC could benefit of smarter balancing strategies.

Object motion. As mentioned in Section 4.3.1, real-world ground truth is
obtained by the rigid registration of contiguous frames. While this corrects
for ego motion, it doesn’t account for scene motion and moving objects pro-
duce temporal tubes in the ground truth, as visible in SemanticKITTI (Behley
et al., 2019) (Figure 4.4c). As such, to maximize performance, the SSC net-
work must additionally predict motion of any moving objects.
To evaluate the influence of such imperfections for SSC, some works recon-
struct target scenes by accounting only for a few future scans (Yan et al.,
2021; Rist et al., 2020a). Results show marginal completion improvement
from the application of such strategy. An alternative proposal (Kim and
Kim, 2020), is to remove dynamic objects from the detection of spatial singu-
larities after frames registration. On the challenging SemanticKITTI (Behley
et al., 2019), because there are little insights to classify dynamic objects, all
methods tend to predict vehicles as stationary (cf. Figure 4.12) – producing
appealing results but being punished by dataset metrics. This obviously
result of the dataset bias, given the abundance of parked vehicles.

The introduction of larger synthetic datasets (Dosovitskiy et al., 2017;
Ros et al., 2016) could be an interesting solution to fight ground truth in-
accuracies.

Datasets extendable for SSC. Because semantic labeling is the most
complex and costly, we denote that a large amount of existing 3D seman-
tics datasets (Vallet et al., 2015; Hackel et al., 2017; Roynard et al., 2018;
Straub et al., 2019; Caesar et al., 2020; Tan et al., 2020; Fu et al., 2020)
could also be extended to SSC at the cost of some processing effort. A se-
lective list of these SSC-extendable datasets is in Table 4.8 and we believe
that their use should be encouraged to serve the interest of research on SSC.
Interestingly, most need little processing for SSC (e.g. sparse input genera-
tion from 3D meshes or point clouds, virtual sensor configurations) (Vallet
et al., 2015; Hackel et al., 2017; Roynard et al., 2018; Straub et al., 2019;
Tan et al., 2020), though some require more complex processing (e.g. ag-

4.6. Conclusion 95

Dataset Year Type Nature Data 3D Sensor # Classes Extension #Sequences

IQMulus (Vallet et al., 2015) 2015 Real-wolrd Outdoor → Points Lidar - Sparse input scene subsampling -
Semantic3D (Hackel et al., 2017) 2017 Real-world Outdoor → Points 3D Scanner 8 Sparse input scene subsampling 30
Paris-Lille-3D (Roynard et al., 2018) 2018 Real-world Outdoor → Points Lidar-32 50 Sparse input scene subsampling 4
Replica (Straub et al., 2019) 2019 Real-world† Indoor → 3D Mesh RGB-D 88 Sparse input from virtual RGB-D 35
nuScenes (Caesar et al., 2020) 2020 Real-world Outdoor Points/RGB → Lidar-32 32 Dense scenes registration 1000
Toronto-3D (Tan et al., 2020) 2020 Real-world Outdosor → Points Lidar-32 8 Sparse input scene subsampling 4
3D-FRONT (Fu et al., 2020) 2020 Synthetic Indoor → Mesh - - Sparse input from virtual RGB-D -

† Synthetically augmented.

Table 4.8: SSC-extendable datasets. To promote research on SSC we
highlight that existing 3D semantic datasets could be extended for SSC,
at the cost of processing work (cf. col. ‘Extension’). While some exten-
sions could be obtained with little processing (e.g. Replica (Straub et al.,
2019), 3D-Front (Fu et al., 2020)), others are significantly more complex
(e.g. nuScenes (Caesar et al., 2020)).

gregation of sparse inputs (Caesar et al., 2020)). We also encourage the
use of autonomous driving simulators such as CARLA (Dosovitskiy et al.,
2017), SYNTHIA (Ros et al., 2016) for synthetic dataset generation, devoid
of dynamic objects and subsequent registration problems. More extensive
surveys on RGB-D and Lidar datasets are provided in Gao et al. (2020);
Firman (2016).

4.6 Conclusion

In this chapter we provided a comprehensive review of 3D Semantic Scene
Completion (SSC). Even though reviewed techniques achieve encouraging
results in the task, performance still shows large gap for improvement in
real-world data (41.3% and 29.5% mIoU on indoor and outdoor scenes re-
spectively), evidencing its difficulty.

Furthermore, we highlighted the most important points to consider for
the task, covering the input encoding and modalities applied (Section 4.4.1).
While the calculation of a TSDF for input encoding is very popular, it com-
monly requires high computation times and it seems to bring small benefit
when compared to regular occupancy encoding. Additional depth modal-
ity seems to bring good results as it provides complementary 2-dimensional
neighboring information. Naturally, RGB enables performance improvement
as it brings additional texture features.

We also provided an overview of the popular architectures considering
both performance and computational complexity. We remark once again
the relevance of multi-scale contextual information to improve performance
as it enables to gather features from different scales to capture both local
geometrical details and high-level contextual information (Section 4.4.3.1).
We also showed that position awareness provides important guidance by
exploiting the local geometric anisotropy, either through border detection
techniques or the use of dedicated losses (Section 4.4.3.2).

96 3D Semantic Scene Completion: Survey

Moreover, we covered popular lightweight architecture designs to reduce
memory overhead without compromising accuracy (Section 4.4.3.4). Sparse
convolutions have gained popularity in recent works as they enable to reduce
the large memory needs of dense convolutions, although they must be em-
ployed in combination to the latter to enable data dilation required for the
completion task. Dilated convolutions are also widely used as they provide
large context through augmented receptive fields at small cost.

Finally, we presented the most common losses and metrics employed
to perform and evaluate the task, reviewing and critically analyzing major
aspects of proposed approaches, including important design choices to be
considered, and compared their performance in popular datasets. In the
next chapter we present our contribution for lightweight multiscale semantic
completion of outdoor scenes.

Chapter 5

LMSCNet: Lightweight
Multiscale Semantic

Completion

The contributions of this chapter were published in Roldão et al. (2020):

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2020). LMSCNet:
Lightweight multiscale 3D semantic completion. In 3DV 2020.

1-minute demo video: https://youtu.be/J6dYoWx4Xqw
10-minute explanation video: https://youtu.be/Wh1qrqqnOgE

The code is publicly available at:

https://github.com/cv-rits/LMSCNet

The work presented in this chapter was carried out before the 3D se-
mantic scene completion survey (Roldão et al., 2021) covered in Chapter 4.

To avoid repetition with the latter, we do not cover related works. This
reduces the length of the chapter, although we believe it carries the main
algorithmic contribution of this thesis.

https://youtu.be/J6dYoWx4Xqw
https://youtu.be/Wh1qrqqnOgE
https://github.com/cv-rits/LMSCNet

98 LMSCNet: Lightweight Multiscale Semantic Completion

Contents
5.1 Introduction . 99
5.2 LMSCNet . 100

5.2.1 Lightweight architecture 101
5.2.2 Multiscale completion 103
5.2.3 Training strategy . 103

5.3 Experiments . 104
5.3.1 Metrics . 105
5.3.2 Implementation details 105
5.3.3 Performance evaluation 106
5.3.4 Ablation studies . 113

5.4 Discussion . 115
5.5 Conclusion . 116

5.1. Introduction 99

car roadparking sidewalk building fence vegetationtrunk terrainpole traffic-sign

(viz. only)

Figure 5.1: 3D LiDAR scans provide sparse data with large regions of miss-
ing information due to sensor configuration, occlusions and limited field of
view. Semantic scene completion (SSC) aims to jointly complete and se-
mantically label the sparse 3D scene.

5.1 Introduction

In the previous chapter we have highlighted the importance and evolution of
the semantic scene completion (SSC) task, which aim is to jointly complete
and semantically annotate entire 3D scenes. As explained in Section 4.2, the
problem is commonly addressed by learning priors from pairs of sparse and
dense semantically labeled 3D scenes. The topic gained popularity with the
introduction of SSCNet (Song et al., 2017) which semantically completes 3D
indoor scenes from RGB-D scans. Despite variety of existing approaches pre-
sented in indoor RGB-D data, only a few works (Song et al., 2017; Garbade
et al., 2019; Behley et al., 2019) were presented in outdoor LiDAR scenes at
the time of submission. Although, outdoor SSC has received more interest
thanks to the recent introduction of the outdoor large-scale SemanticKITTI
dataset (Behley et al., 2019). However, little attention has been given to
lightweight semantic completion methods in general for real time applica-
tions and fast inference.

Therefore, in this chapter we propose a Lightweight Multiscale Semantic
Completion Network, coined LMSCNet, for multiscale 3D semantic comple-
tion from voxelized sparse 3D LiDAR scans. As opposed to the literature,
we use a 2D UNet backbone with comprehensive multiscale skip connections
to enhance feature flow, along with 3D segmentation heads. To the best of
our knowledge, it is the only method that uses a 2D backbone architecture
for semantic completion. In our proposal, multiscale predictions are also
possible given informative features map flow, preserving computation effi-
ciency and enabling very fast inference at coarse levels. Figure 5.5 shows the
multiscale output of our LMSCNet on the SemanticKITTI dataset (Behley
et al., 2019), using a single sparse LiDAR scan input encoded in a voxel
grid.

While some works use progressive multiscale losses (Dai et al., 2020, 2018;
Li et al., 2009), the literature ignores the benefit of multiscale completion
which we prove useful for reducing inference times. Our method performed
on par on semantic completion and better on occupancy completion than all
other published methods on the SemanticKITTI benchmark at the time of

100 LMSCNet: Lightweight Multiscale Semantic Completion

submission – while being significantly lighter and faster –. Post-submission
methods have improved the performance shown by LMSCNet, though at
larger memory and computation costs. As such, our approach provides a
great performance/speed trade-off for mobile-robotics applications. Abla-
tion studies demonstrate that our method is robust to lower density inputs,
and that it enables very high speed semantic completion at the coarsest
level. To summarize, the main contributions of our work are:

1. A novel 3D semantic scene completion pipeline from occupancy grids.

2. A lightweight architecture with a mix of 2D/3D convolutions leading
to significantly less parameters.

3. A modular multiscale pipeline that enables coarser inferences at very
high speeds.

4. State of the art performance on SemanticKITTI (Behley et al., 2019)
at submission time.

5. An architecture that ranks among the lightest and fastest methods for
semantic scene completion on the SemanticKITTI benchmark.

In this chapter we omit the related works section as a large state of the
art on Semantic Scene Completion has been already presented in Chapter 4.
Therefore, we directly introduce our method in the following section.

5.2 LMSCNet

Given a sparse 3D voxel grid, our goal is to predict the 3D semantic scene
representation, where each voxel is being assigned a semantic label Cs =
[c0, c1, . . . , cN], where N is the number of semantic classes and c0 stands for
free voxels. Our architecture, coined LMSCNet and shown in Figure 5.2, is
based on a lightweight UNet style architecture to predict 3D semantic com-
pletion at multiple scales, allowing fast coarse inference, beneficial for mobile
robotics applications. Instead of greedy 3D convolutions, we mostly employ
2D convolutions along the height axis; similar to a bird-eye view. While the
mix of 2D/3D convolutions has been used in other tasks, to the best of our
knowledge we are the first to do semantic scene completion directly from
3D data processed by a 2D CNN backbone. In the following, we detail our
custom lightweight 2D/3D architecture (Section 5.2.1), the multiscale recon-
struction (Section 5.2.2), and the overall training pipeline (Section 5.2.3).

5.2. LMSCNet 101

C
2D

 (
32

, 3
, 1

)

C
2D

 (
32

, 3
, 1

)

P
O

O
L

C
2D

 (
48

, 3
, 1

)

P
O

O
L

C
2D

 (
64

, 3
, 1

)

P
O

O
L

C
2D

 (
80

, 3
, 1

)

C
2D

 (
80

, 3
, 1

)

C
2D

 (
4,

 3
, 1

)

D
 (

4,
 6

, 2
)

C
A

T

C
2D

 (
64

, 3
, 1

)

C
2D

 (
8,

 3
, 1

)

D
 (

8,
 6

, 2
)

C
A

T

C
2D

 (
48

, 3
, 1

)

C
2D

 (
16

, 3
, 1

)

D
 (

16
, 6

, 2
)

C
A

T

C
2D

 (
32

, 3
, 1

)

D (4, 8, 8)

D (8, 4, 4)
D (4, 4, 4)

C
2D

 (
48

, 3
, 1

)

C
2D

 (
64

, 3
, 1

)

2D ConvolutionC2D

POOL

D

CAT Concatenation

3D Segmentation Head3D SH

2D Transpose Convolution

Max Pooling 3D SH (8, N+1)

(1:2)

(1:4)

(1:8)

2D Backbone

3D SH (8, N+1)

3D SH (8, N+1)

3D
 S

H
 (

8,
 N

+
1)

(H/2, W/2, D/2)

(H/8, W/8, D/8)
(H/4, W/4, D/4)

X

Y

f

X

Y

Z

X

Y

Z

(H, W, D) (H, W, D)

Figure 5.2: LMSCNet: Lightweight Multiscale Semantic Comple-
tion Network. Our pipeline uses a 2D UNet backbone architecture (in
gray) with 3D segmentation heads (in red) to perform 3D semantic segmen-
tation and completion at different scales, while preserving low complexity.
Convolution parameters shown as: (number of filters, kernel size and stride).
3D segmentation heads parameters shown as: (number of filters input, num-
ber of filters output).

5.2.1 Lightweight architecture

To infer a dense output from the sparse input voxel grid, we use a standard
encoder-decoder UNet architecture (Ronneberger et al., 2015) with 4 lev-
els, thus learning features at decreasing resolutions. At each level, a series
of convolution operations is applied followed by a pooling; downscaling the
resolution size by 2. The reduction of spatial dimensions in UNets is benefi-
cial for semantic tasks as it subsequently increases the kernels field-of-view
at no cost. Note that dilated convolutions (a.k.a ‘atrous’) with increasing
dilation rates cannot be used in the encoder due to the sparse input nature.
Though dense convolutions in the encoder imply a dilation of the input man-
ifold (Graham et al., 2018) as shown in Figure 5.3, we argue this is beneficial
for 3D semantic completion, given the sparse 7→dense nature of the task.

5.2.1.1 2D backbone

As already mentioned, the backbone of our network is composed solely by
2D operations to reduce computation needs. To preserve a lightweight archi-
tecture, we use 2D convolutions along the X,Y dimensions, thus turning the
height dimension (Z) into a feature dimension. Notice that we directly pro-
cess 3D data with our 2D UNet in contrast to other 2D/3D works that rely
on 2.5D data like depth (Guo and Tong, 2018; Liu et al., 2018) or bird-eye
view (Chen et al., 2017). While using 2D convolutions implies loosing 3D
spatial connexity, it also enables significantly lighter operations. To further
reduce the memory requirements, we keep a minimum number of features in
each convolution layer. Along with the standard skip connections, we also
enhance information flow in the decoder by concatenating the output of

102 LMSCNet: Lightweight Multiscale Semantic Completion

(a) (b) (c)

Figure 5.3: Dense convolution increases the number of active (i.e. non-zero)
sites, thus dilating the manifold. (a) Sparse input data. (b) Result after
applying standard 3x3 convolution with constant weights 1/9. (c) Result
after applying again that same convolution. Source: Graham et al. (2018)

C
3D

 (
f m

, 3
, 1

)

A
S

P
P

C
3D

 (
f o

u
t,

3,
 1

)

E
xp

an
d

 D
im

SH(fm, fout)

(a) 3D Seg. Head

C3D (fout, 3, 1)

C3D (fout, 3, 1)

C3D (fout, 3, 2)

C3D (fout, 3, 2)

C3D (fout, 3, 3)

C3D (fout, 3, 3)

+

(b) ASPP block (Liu et al., 2018)

Figure 5.4: (a) 3D segmentation heads are in charge od retrieving the 3D
semantic information at multiple scales from the high level features received
from the 2D backbone. (b) We use Atrous 3D convolutions – ASPP blocks
from (Liu et al., 2018) – to preserve low inference complexity and enlarge
receptive fields at low computational cost.

each level to all lower levels. Technically, we upsample coarse feature maps
learning ad-hoc deconvolution before concatenation to lower levels, which is
shown with purple deconv (aka transpose convolution) blocks in Figure 5.2.
Intuitively, this enables our network to use high level features from coarser
resolutions, and thus enhance the spatial contextual information.

5.2.1.2 3D segmentation head

Different from other works handling point cloud as bird-eye-view, the task
of 3D semantic completion actually requires to retrieve the 3rd dimension
“flatten” by the 2D convolutions. In other words, while 2D CNNs output
3D features maps, our decoder must output 4D tensor; the last dimension
being the semantic class-wise probability distribution.
To address this, we introduce 3D segmentation heads depicted as red 3D
blocks in Figure 5.2 and shown in details in Figure 5.4a. The heads use a
series of dense and dilated convolutions. The latter, in the form of Atrous
Spatial Pyramid Pooling as shown in Figure 5.4b – aka ASPP (Chen et al.,
2018; Liu et al., 2018) –, is beneficial to fuse information from different

5.2. LMSCNet 103

1/8 resolution 1/4 resolution 1/2 resolution original resolution

Figure 5.5: Our pipeline enables multiscale reconstruction. To supervise
coarser representation, we use majority vote pooling from the original reso-
lution ground truth.

receptive fields thanks to the convolutions with increasing dilation rates
(here [1, 2 and 3]). Note that dilated convolutions though light and powerful
are not appropriate for sparse inputs and as such cannot be used in the
encoder. In our segmentation head, the benefit of preceding ASPP with
dense 3D convolutions is dual: a) to further densify the feature maps, b) to
ward off features from the segmentation heads and the backbone features.
This last property is required to enable multiscale capacity which we now
describe.

5.2.2 Multiscale completion

In the same vein as Zhang et al. (2018a); Dai et al. (2020), we aim to output
multiscale completion to enable both coarse scene representation and faster
scene completion at lower resolution – beneficial for mobile robotics appli-
cations. We subsequently attach a 3D segmentation head after each level of
the 2D UNet architecture, thus providing outputs at input relative scale of
1
2l ∀ l ∈ {0, 1, 2, 3}, e.g. half of the original size for l = 1. A sample output
at different scales is shown in Figure 5.5. As already mentioned, we noticed
experimentally the importance of separating the segmentation features from
the main features of the 2D backbone, which again justifies the additional
3D convolutions in the segmentation head. The main interests of our mul-
tiscale architecture is that it infers semantic scene completion at a desired
scale as needed, reducing the computation and memory requirements. This
is further analyzed in Section 5.3.3.3.

5.2.3 Training strategy

We train our LMSCNet from scratch in a standard end-to-end fashion from
pairs of sparse input voxel (x) and semi-dense semantically labeled voxel
grid (ŷ). It is important to note that in a real setup, a dense ground truth is
impractical for scene completion, due to occlusions and sensor field-of-view
limitations. As such, the ground truth ŷ is also sparse and encoded with
N+2 classes (N semantic classes, 1 free class, 1 unknown). Similar to others

104 LMSCNet: Lightweight Multiscale Semantic Completion

(Song et al., 2017; Liu et al., 2018; Garbade et al., 2019) we use a sparse loss
strategy, backpropagating the gradient only where ground truth is known.
For each scale l, we train with a cross-entropy loss defined as :

Ll = −
N∑
c=0

wcŷi,c log
(

eyi,c∑N
c′ eyi,c′

)
, (5.1)

where y is the network output, i a voxel index, and ŷi,c a one-hot vector (i.e.
ŷi,c = 1 if voxel i is labeled class c, otherwise ŷi,c = 0). Note that semantic
tasks are by nature highly class-imbalanced problems. This is especially
true in outdoor settings, which causes the prevalence of classes like road or
vegetation (refer to Figure 4.3b of Chapter 4). We account for the class-
imbalance nature in Equation 5.1 by weighting each class loss according to
the inverse of the class-frequency fc as in Milioto et al. (2019), thus using
wc = 1

log (fc+ε) (with ε� 1). Finally, the complete network loss is a weighted
sum of all level losses1 and writes:

L =
3∑
l=0

αlLl , (5.2)

where αl is the per-level loss weight, written for generality, though we use
αl = 1, ∀l which works well and preserves multiscale capacity. Note that
some of our choices were guided by faster training or inference speed. For
example, unlike Zhang et al. (2018a, 2019b); Dourado et al. (2020a); Dai
et al. (2020); Song et al. (2017), we avoid using Truncated Signed Distance
Function variants (TSDF) that require a greedy computation time and was
found to be of little benefit (Garbade et al., 2019; Behley et al., 2019). We
also tried to encode input as N+2 classes, that is with unknown class, but
we noticed little improvement – if any – at the cost of a large pre-processing
time for ray casting.

5.3 Experiments

We implement our method using PyTorch and evaluate its performance
in both indoor – NYUv2 (Silberman et al., 2012) – and outdoor – Se-
manticKITTI (Behley et al., 2019), nuScenes (Caesar et al., 2020) – scenes.
We refer to Section 4.3.1 of Chapter 4 for further details on each dataset.

Outdoor scenes. We evaluate our LMSCNet method by training on the
recent semantic scene completion benchmark from SemanticKITTI (Behley
et al., 2019) providing 3D voxel grids from semantically labeled scans of a

1In Equation 5.2, losses from heterogeneous resolutions can be summed due to the
ad-hoc normalization in Equation 5.1

5.3. Experiments 105

Velodyne HDL-64E rotating LiDAR in outdoor urban scenes (Geiger et al.,
2013). In Behley et al. (2019), the inputs are voxelized single scans, while
the ground truth was obtained from the voxelized aggregation of succes-
sive registered scans (refer to Section 4.3.1 of previous chapter). Grids are
256×256×32 with 0.2m voxel size, and it is important to note that input
and ground truth are sparse, with average density of 6.7% and 65.8%, re-
spectively. We additionally perform qualitative evaluations of our method
in nuScenes (Caesar et al., 2020), by voxelizing LiDAR scenes with the same
dimensions as the ones from the SemanticKITTI benchmark.

Indoor scenes. We also evaluate our method in NYUv2 (Silberman et al.,
2012) composed mainly of office and house room scenery. For evaluation we
use the voxelized input volumes of dimensions 240×144×240 with voxel size
0.02 m, and ground truth volumes at a fourth of the input size as generated
in (Song et al., 2017). Given that synthetic SUNCG dataset (Song et al.,
2017) is no longer available, we train our network solely on NYUv2 for indoor
scenes.

5.3.1 Metrics

We use standard mIoU as a semantic completion metric, measuring the
intersection over union averaged over all classes (N semantic classes + free).
The number of semantic classes corresponds to 20 and 12 for SemanticKITTI
and NYUv2 datasets, respectively. Additionally, we consider completion
metrics IoU, Precision, and Recall to provide a sense of the scene completion
quality, regardless of the assigned semantic labels (i.e. considering the binary
free / occupied setting). We highlight that completion is crucial for obstacle
avoidance in mobile robotics.

For outdoor scenes obtained from LiDAR range scans, both IoU and
mIoU metrics are calculated in all the voxels that are known in the groundtruth.
Conversely, for indoor scenes scanned with RGB-D sensors, semantic com-
pletion (mIoU) is evaluated in the known surface and occluded space, while
occupancy completion (IoU) is evaluated in the occluded space only. We
refer to Section 4.2 of previous chapter for more details and justification.

5.3.2 Implementation details

For SemanticKITTI we use the original train/val splits with 3834/815 grids
(Behley et al., 2019), adding x-y flipping augmentation for generalization.
Similarly, we use original train/val splits of NYUv2 defined in Song et al.
(2017) with 795/654 grids. In both cases we use Adam optimizer for train-
ing our network (β1 = 0.9, β2 = 0.999) with learning rate of 0.001 scaled
by 0.98epoch. Training fits in a single 11GB GPU with batch size 4 for Se-
manticKITTI and takes around 48 hours to converge (80 epochs). With the

106 LMSCNet: Lightweight Multiscale Semantic Completion

same GPU configuration, training takes around 3 hours to converge with
batch size 16 in the considerably smaller NYUv2 dataset by considering the
same number of epochs for training.

5.3.3 Performance evaluation

5.3.3.1 Semantic Scene Completion

Outdoor scenes. We report performance on the hidden SemanticKITTI
test set in Table 5.1. The evaluation was conducted on the official server,
hence with the full size ground truth. We ranked first in occupancy comple-
tion and second in semantic completion against published methods at the
time of submission. Performance was initially reported against four state-of-
the-art methods: SSCNet (Song et al., 2017), TS3D (Garbade et al., 2019),
TS3D+DNet (Behley et al., 2019) and finally TS3D+DNet+SATNet (Behley
et al., 2019). Because SSCNet output is 4x downsampled, we also reported
performance using deconvolution to reach full input resolution, hereafter de-
noted SSCNet-full. Approaches posterior to our submission include JS3C-
Net (Yan et al., 2021) and S3CNet (Cheng et al., 2020), both based on
sparse encoder-decoder architectures (Graham et al., 2018), and Local-DIFs
(Rist et al., 2020a) using deep implicit functions through a point-based fea-
ture extractor. We first detail semantic completion performance and then
demonstrate the speed and lightness of our architecture.

Overall, our network performed on par with best methods at submission
time, ranking 2nd on the semantic completion metric (mIoU), though more
recent methods outperform us. However, we highlight that our method
is significantly lighter and faster than all other approaches (refer to Sec-
tion 5.3.3.4). Note also that TS3D uses additional RGB input, and all
TS3D+DNet use also LiDAR refraction intensity. Furthermore, all post-
submission methods use the more informative input point cloud rather than
the discretized voxelized grids provided by the SemanticKITTI benchmark.
Despite this, our method still performs 2nd among all methods on the com-
pletion metric (IoU) and outperforms all methods previous to submission
by a comfortable margin. Again, completion is of high importance for prac-
tical mobile robotics applications. The highly imbalanced class frequencies
(shown in parenthesis in Table 5.1) illustrate the task complexity. Specifi-
cally, we outperformed existing methods at submission time on the largest
four classes but performed on par or lower on the rest, which advocates
for the need of improvement in our balancing strategy. S3CNet (Cheng
et al., 2020) shows outstanding performance in rare classes, more than twice
when compared to next best classed scores. Regrettably, the reason for such
behavior is not deeply explored in their work.

5.3.
E
xperim

ents
107

scene completion semantic scene completion

Approach pr
ec
isi
on

re
ca
ll

Io
U

�
ro
ad

(1
5.
30
%
)

�
sid

ew
al
k

(1
1.
13
%
)

�
pa

rk
in
g

(1
.1
2%

)

�
ot
he

r-
gr
ou

nd
(0
.5
6%

)

�
bu

ild
in
g

(1
4.
1%

)

�
ca
r
(3
.9
2%

)

�
tr
uc
k

(0
.1
6%

)

�
bi
cy
cl
e

(0
.0
3%

)

�
m
ot
or
cy
cl
e

(0
.0
3%

)

�
ot
he

r-
ve
hi
cl
e

(0
.2
0%

)

�
ve
ge
ta
tio

n
(3
9.
3%

)

�
tr
un

k
(0
.5
1%

)

�
te
rr
ai
n

(9
.1
7%

)

�
pe

rs
on

(0
.0
7%

)

�
bi
cy
cl
ist

(0
.0
7%

)

�
m
ot
or
cy
cl
ist

(0
.0
5%

)

�
fe
nc

e
(3
.9
0%

)

�
po

le
(0
.2
9%

)

�
tr
affi

c-
sig

n
(0
.0
8%

)

m
Io
U

Pre-submission

SSCNet (Song et al., 2017) 31.7 83.4 29.8 27.6 17.0 15.6 6.0 20.9 10.4 1.8 0 0 0.1 25.8 11.9 18.2 0 0 0 14.4 7.9 3.7 9.5
*SSCNet-full (Song et al., 2017) 59.6 75.5 50.0 51.2 30.8 27.1 6.4 34.5 24.3 1.2 0.5 0.8 4.3 35.3 18.2 29.0 0.3 0.3 0 19.9 13.1 6.7 16.1
TS3D (Garbade et al., 2019) 31.6 84.2 29.8 28.0 17.0 15.7 4.9 23.2 10.7 2.4 0 0 0.2 24.7 12.5 18.3 0 0.1 0 13.2 7.0 3.5 9.5
TS3D+DNet (Garbade et al., 2019) 25.9 88.3 25.0 27.5 18.5 18.9 6.6 22.1 8.0 2.2 0.1 0 4.0 19.5 12.9 20.2 2.3 0.6 0 15.8 7.6 7.0 10.2
TS3D+DNet+SATNet (Garbade et al., 2019) 80.5 57.7 50.6 62.2 31.6 23.3 6.5 34.1 30.7 4.9 0 0 0.1 40.1 21.9 33.1 0 0 0 24.1 16.9 6.9 17.7

Our submission

LMSCNet 77.1 66.2 55.3 64.0 33.1 24.9 3.2 38.7 29.5 2.5 0 0 0.1 40.5 19.0 30.8 0 0 0 20.5 15.7 0.5 17.0
LMSCNet-singlescale 81.6 65.1 56.7 64.8 34.7 29.0 4.6 38.1 30.9 1.5 0 0 0.8 41.3 19.9 32.1 0 0 0 21.3 15.0 0.8 17.6

Post-submission

S3CNet (Cheng et al., 2020) - - 45.6 42.0 22.5 17.0 7.9 50.2 31.2 6.7 41.5 45.0 16.1 39.5 34.0 21.2 45.9 35.8 16.0 31.3 31.0 24.3 29.5
JS3C-Net (Yan et al., 2021) 71.5 73.5 56.6 64.7 39.9 34.9 14.1 39.4 33.3 7.2 14.4 8.8 12.7 43.1 19.6 40.5 8.0 5.1 0.4 30.4 18.9 15.9 23.8
Local-DIFs (Rist et al., 2020a) - - 57.7 67.9 42.9 40.1 11.4 40.4 34.8 4.4 3.6 2.4 4.8 42.2 26.5 39.1 2.5 1.1 0 29.0 21.3 17.5 22.7
* Own implementation, derived from Song et al. (2017).

Table 5.1: Comparison of published methods on the official SemanticKITTI (Behley et al., 2019) benchmark (hidden test
set). Best results at submission time are highlighted on blue and best post-submission results in red.

108 LMSCNet: Lightweight Multiscale Semantic Completion

In addition to the multiscale proposal (LMSCNet), we also report results
for LMSCNet-singlescale – a variation of LMSCNet where we train with
L = L0 –, which logically performs a little better at full size though at the
cost of loosing crucial multiscale capacity.

Indoor scenes. While it was not included in our initial research (Roldão
et al., 2020), for completeness of the thesis we evaluate LMSCNet on indoor
scenes. Importantly, one has to note that LMSCNet using 2D backbone is
inherently more adapted to outdoor scenes having lower variance along the
3rd axis. Table 4.5 lists methods trained solely on NYUv2 for fair compar-
ison. As expected, LMSCNet performs average in mIoU among depth-only
methods (28.4% vs 41.1% best), although being 2nd in IoU (62.2% vs 73.4%).
When using additional texture modality (i.e. RGB-D) all methods outper-
form LMSCNet on mIoU, though we still rank 3rd in IoU. Given common
practice, all methods produce output at a fourth of the input resolution.
Therefore, we train only a section of our UNet architecture for single scale
predictions at 1/4 of the input size.

5.3.3.2 Qualitative performance

We compare qualitatively full size outputs of our LMSCNet and SSCNet-full
in Figure 5.6, with view pairs from 4 scenes of the SemanticKITTI valida-
tion set2. At the rightmost, ground truth visualization also illustrates the
sparse supervision complexity since holes are still visible. Our method pro-
duces visually smoother semantic labels, easily noticeable in rows 5-8, and
is able to reconstruct thin structures, like trees or cars (rows 6 or 7). For
a comprehensive analysis, we further test the same model (trained on 64-
layer LiDAR from SemanticKITTI) on the popular nuScenes dataset (Cae-
sar et al., 2020), which uses a 32-layers LiDAR. Figure 5.8 shows that our
network better adjusts to the change of density and maintains the smooth-
ness in the reconstruction. Qualitative results on a section of the vali-
dation set sequence of SemanticKITTI can be found on our demo video
https://youtu.be/J6dYoWx4Xqw.

We also show qualitative results for indoor scenes on the NYUv2 vali-
dation set in Figure 5.7. We compare our single-scale architecture against
best ranked method 3DSketch (Chen et al., 2020a). We use our own imple-
mentation of their architecture for obtaining the visual results. It can be
observed that our method performs a more noisy semantic reconstruction,
specially in large areas such as the walls. Similarly, LMSCNet struggles to
predict the windows in all samples. This is expected as they are hard to
detect without color information.

2Note that SemanticKITTI benchmark (i.e. test set) does not provide any visual
results. Hence, we omit TS3D baselines due to retraining complexities and their use of
additional modalities (RGB or LiDAR intensity).

https://youtu.be/J6dYoWx4Xqw

5.3. Experiments 109

Performance in SemanticKITTI (Behley et al., 2019) (64 layers)

Input SSCNet-full LMSCNet (ours) Ground Truth
Song et al. (2017)

carbicycle motorcycle truck other-vehicle person bicyclist motorcyclist roadparking

sidewalk other-ground building fence vegetationtrunk terrainpole traffic-sign

Figure 5.6: Qualitative 3D semantic completion at full size on the Se-
manticKITTI (Behley et al., 2019) validation set. Each pairs of rows show
a single scene with different viewpoints. Compared to SSCNet-full (Song
et al., 2017), our LMSCNet provides smoother semantics labels and is capa-
ble of retrieving finer details. This is evident when looking at the cars (rows
7-8) or the trees (rows 5-6).

110 LMSCNet: Lightweight Multiscale Semantic Completion

scene completion semantic scene completion

Method in
pu

t

pr
ec
isi
on

re
ca
ll

Io
U

�
ce
il.

(0
.7
4%

)

�
flo

or
(1
2.
44

%
)

�
wa

ll
(9
.6
7%

)

�
w
in
.
(2
.1
2%

)

�
ch
ai
r
(2
.0
3%

)

�
be

d
(9
.1
7%

)

�
so
fa

(6
.7
8%

)

�
ta
bl
e

(4
.1
4%

)

�
tv
s
(0
.5
3%

)

�
fu
rn
.
(3
6.
64

%
)

�
ob

js.
(1
5.
74

%
)

m
Io
U

Pre-submission

SSCNet (Song et al., 2017) G 57.0 94.5 55.1 15.1 94.7 24.4 0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7
ESSCNet (Zhang et al., 2018a) G 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0 33.4 11.8 26.7
TS3D (Garbade et al., 2019) G+T - - 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1
DDRNet (Li et al., 2019) G+T 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4
SSC-GAN (Chen et al., 2019b) G 63.1 87.8 57.8 - - - - - - - - - - - 22.7
AM2FNet (Chen et al., 2019a) G+T 72.1 80.4 61.3 19.3 92.6 26.1 11.1 19.1 51.9 47.0 16.7 14.9 35.9 14.0 31.7
GRFNet (Liu et al., 2020) G+T 68.4 85.4 61.2 24.0 91.7 33.3 19.0 18.1 51.9 45.5 13.4 13.3 37.3 15.0 32.9
CCPNet (Zhang et al., 2019b) G 74.2 90.8 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5
AMFNet (Li et al., 2020c) G+T 67.9 82.3 59.0 16.7 89.2 27.3 19.2 20.2 56.1 50.4 15.1 13.5 36.8 18.0 33.0
PALNet (Li et al., 2020b) G 68.7 85.0 61.3 23.5 92.0 33.0 11.6 20.1 53.9 48.1 16.2 24.2 37.8 14.7 34.1
3DSketch (Chen et al., 2020a) G+T 85.0 81.6 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1
AIC-Net (Li et al., 2020a) G+T 62.4 91.8 59.2 23.2 90.8 32.3 14.8 18.2 51.1 44.8 15.2 22.4 38.3 15.7 33.3

Our submission

LMSCNet-singlescale G 71.5 71.5 62.2 28.3 93.5 32.3 2.5 14.4 44.3 35.1 15.0 0 30.5 16.4 28.4

Post-submission

IPF-SPCNet (Zhong and Zeng, 2020) G+T 70.5 46.7 39.0 32.7 66.0 41.2 17.2 34.7 55.3 47.0 21.7 12.5 38.4 19.2 35.1
Chen et al. (Chen et al., 2020b) G - - 73.4 - - - - - - - - - - - 34.4

Input: Geometry (depth, range, points, etc.), Texture (RGB).

Table 5.2: Comparison of published methods on the NYUv2 (Silberman
et al., 2012) dataset. Best results at submission time are highlighted on
blue and best post-submission results in red. We only show methods trained
solely on NYUv2 for a fair comparison.

RGB Depth *3DSketch LMSCNet-singlescale Ground Truth
Chen et al. (2020a) (ours)

Sofa Table TVs Furn. ObjectsBedChairWindowWallFloorCeil.

* Own implementation to compute predicted scenes.

Figure 5.7: Qualitative 3D semantic completion at a fourth of the input
resolution on the NYUv2 (Silberman et al., 2012) validation set. LMSC-
Net performs correctly though output is noisy when compared to 3DSketch
(Chen et al., 2020a). We highlight that 3DSketch additionally uses RGB
modality which enables to detect texture salient objects (e.g. windows).

5.3. Experiments 111

Performance in nuScenes (Caesar et al., 2020) (32 layers)

Input SSCNet-full LMSCNet (ours)
Song et al. (2017)

carbicycle motorcycle truck other-vehicle person bicyclist motorcyclist roadparking

sidewalk other-ground building fence vegetationtrunk terrainpole traffic-sign

Figure 5.8: Inference results on nuScenes (Caesar et al., 2020) with 32-
layers LiDAR, while being trained on 64-layers SemanticKITTI. Our method
performs well with sharp scene labeling, despite the change of input density.

LMSCNet scale IoU mIoU

1:1 (full size) 54.22 16.78
1:2 56.27 16.78
1:4 59.36 17.19
1:8 65.45 17.37

Table 5.3: LMSCNet multiscale semantic completion performance on Se-
manticKITTI validation set. We reach similar performance at all levels,
even better at the coarsest resolutions .

5.3.3.3 Multiscale performance

Table 5.3 shows multiscale performance of our method on the SemanticKITTI
validation set, where the scale is relative to the full size resolution (level 0).
From Section 5.2.2, scale at level l is 1

2l . Ground truths at lower resolu-
tion were obtained from majority vote pooling of the full size ground truth.
From the above table, our architecture maintains a good performance in all
resolutions, with best performance logically reached at the lowest resolution
(highest level). Qualitative multiscale completion is visible in Figure 5.5.
We believe that our custom 3D segmentation heads aid in the disentan-
glement of the 3D segmentation features from the 2D backbone high level
features, thus contributing to the multiscale capacity of our architecture.
Additionally, at coarser resolution our network reaches very fast inference,
which will be described in details in the following section.

112 LMSCNet: Lightweight Multiscale Semantic Completion

Figure 5.9: Architectures performance versus speed (markers are scaled
with # of parameters) of all methods at submission time. Notice that
TS3D+DNet+SATNet is the only better method on semantics (+0.69
mIoU) though less time performant (x17 slower) and worse on completion
(-4.72 IoU).

5.3.3.4 Architectures comparison

Table 5.4 reports networks statistics for our architecture and all above men-
tioned baselines at submission time. We only provide the number of param-
eters of the post-submitted methods as these are the only data provided in
their works. All performances were evaluated with same input scene size as
the SemanticKITTi benchmark. From the table, even at full size LMSCNet
has significantly less parameters (0.35M) and lower computational cost for
inference (72.6G FLOPs). Compared to any TS3D baselines, it is at least
an order of magnitude faster. However, SSCNet (original or full) is twice
faster than LMSCNet, though with more parameters and worse performance
(cf. Table 5.4). Since lighter models does not always run faster due to the
sequentiality of some operations on GPU, we conjecture the higher speed of
SSCNet is caused by the lower number of convolutional operations compared
to LMSCNet full scale (16 vs. 25).

In last rows of Table 5.4, we report statistics for coarser completion,
removing unnecessary parts of our network at inference. Lower resolution
inference allows significant speedups in the processing, reaching 372 FPS
at the highest scale – being 6x faster than SSCNet and 300x faster than
TS3D+DNet+SATNet–. Figure 5.9 illustrates the architectures performance
versus speed. Notice that even at full scale we provide a better speed-
performance balance. Because semantic completion is an application of high
interest for mobile robotics, like autonomous driving, our lighter architec-
ture is beneficial for embedded GPUs and enables coarse scene analysis at
high speed.

5.3. Experiments 113

Method Params (M) FLOPs (G) FPS

Pre-submission

*SSCNet (Song et al., 2017) 0.93 82.5 56.90
*SSCNet-full (Song et al., 2017) 1.09 769.6 45.94
*TS3D (Garbade et al., 2019) 43.77 2016.7 9.79
*TS3D+DNet (Behley et al., 2019) 51.31 847.1 8.72
*TS3D+DNet+SATNet (Behley et al., 2019) 50.57 905.2 1.27

Our submission

LMSCNet 0.35 72.6 21.28
LMSCNet (1:2) 0.32 13.7 126.38
LMSCNet (1:4) 0.28 5.7 323.46
LMSCNet (1:8) 0.24 4.4 372.24

Post-submission

JS3C-Net (Yan et al., 2021) 3.1 - -
Local-DIFs (Rist et al., 2020a) 9.9 - -

* Own implementation to compute network statistics

Table 5.4: Network statistics. Even at full resolution LMSCNet (ours) has
significantly less parameters with lower FLOPs. On a speed basis, we are
twice slower than SSCNet-full (Song et al., 2017) which performs worse than
us (see Table 5.1). Still, our multiscale versions – denoted LMSCNet (1:x)
– enable very fast inference.

5.3.4 Ablation studies

To study the benefit of our design choices, we conduct a series of ablation
studies on SemanticKITTI validation set. This is done by modifying impor-
tant blocks of our architecture and evaluating its performance.

Influence of input resolution. We evaluate our robustness, by retriev-
ing the original 64-layers KITTI scans used in SemanticKITTI and simu-
lating 8/16/32 layers LiDARs with layers subsampling3, as in Jaritz et al.
(2018).

Figure 5.10 shows quantitative and qualitative performance using sim-
ulated and original LiDAR. As expected, lower layers input deteriorate the
performance, especially in areas far from the sensor location, but our net-
work still performs reasonably well on semantics (mIoU) and completion
(IoU). This is visible in the middle image as 8 layers input (2.10% density)
is sufficient to retrieve the general outline of the scene.

3Every 2nd, 4th and 8th layer are subsampled to simulate 32, 16 and 8 layer LiDARs,
respectively. Unlike Jaritz et al. (2018), note that data SemanticKITTI uses KITTI odom-
etry set in which data is already untwisted.

114 LMSCNet: Lightweight Multiscale Semantic Completion

(a) Quant. Performance (b) 8 layers (c) 16 layers

Figure 5.10: Semantic scene completion results from simulated lower reso-
lution LiDAR sensors (downsampled from 64 layers input). Even with only
8 layers input our LMSCNet correctly predicts the scene outline.

Method IoU mIoU

LMSCNet (ours) 54.22 16.78
w/o Deconv 52.79 15.64
w/o ASPP 53.81 16.21
w/o Multiscale UNet 53.54 16.22

Table 5.5: Ablation study of our model design choices on the Se-
manticKITTI Behley et al. (2019) validation set.

Deconv versus Upsampling. As we aimed to preserve a lightweight ar-
chitecture, we tried to remove the parameters-greedy deconv layers from our
network (cf. Figure 5.2), replacing them with zero-cost up-sampling layers.
From Table 5.5, performance without deconv introduces a 1.43% and 1.14%
performance drop for completion and semantic completion respectively, with
only 3% less parameters.

Dilated convolutions. We evaluate the benefit of dilated convolutions in
the decoder by ablating ASPP blocks from the segmentation head (see Fig-
ure 5.4). Table 5.5 indicates that mIoU drops by 0.41% without ASPP. We
conjecture that the boost of ASSP results come from the increasing receptive
fields of the inner dilated convolutions, providing richer features.

Multiscale UNet decoder. As illustrated in Figure 5.11, unlike vanilla
UNet decoder we concatenate the features at the end of each decoder level to
all other levels. This is intended to aggregate multiscale features and should
intuitively help considering coarser semantic features for fine resolutions.
Furthermore, the importance of multiscale feature aggregation for SSC is
highlighted in Section 4.4.3.2.

We assess the benefit of our multiscale UNet by evaluating Vanilla UNet
in the last row of Table 5.5, which shows that our proposal boosts completion
by 0.68% and semantic completion by 0.56%.

5.4. Discussion 115

concat

concat

concat

x2

x2

x2

(a) Vanilla UNet decoder

concat

concat

concat

x2

x2

x2

x4

x8 x4

(b) Multiscale UNet decoder

Figure 5.11: Decoders comparison. While Vanilla UNet decoder only con-
siders features from the previous level (a), we instead use Multiscale UNet
where all coarser levels enhance spatial contextual information (b). Circles
show intermediary operations to reach required feature maps size.

5.4 Discussion

Review of our work. We believe that our architecture proposal presents
an interesting alternative for mobile robotic applications. UNet architec-
tures have been employed by a wide variety of methods for semantic scene
completion before (Zhang et al., 2018a; Dourado et al., 2020a; Dai et al.,
2020) and after (Wang et al., 2020a; Zhong and Zeng, 2020; Yan et al., 2021;
Cheng et al., 2020; Rist et al., 2020a)

However, no other method envisaged the use of 2D convolutions to re-
duce memory needs. Only the work of Zimmermann et al. (2017) employs
a complete 2D architecture for 3D occupancy completion. While this choice
produces a lighter architecture, recent post-submission methods using com-
plete 3D architectures through the use of sparse convolutions (Yan et al.,
2021; Cheng et al., 2020) or point-based networks (Rist et al., 2020a) have
shown better performance.

A limitation of our approach is that the use of additional modalities will
importantly increase the architecture complexity as the number of filters
for each convolutional layer will be scaled with the number of employed
modalities. Furthermore, we believe that scenes with high variance degree
in all dimensions affect the performance of our architecture given the spatial
connectivity loss by the use of 2D convolutions. This can be observed in our
performance shown in NYUv2 (Silberman et al., 2012) dataset.

Data challenges. As the ground truth data from SemanticKITTI (Behley
et al., 2019) is generated by accumulating successive LiDAR frames, moving
objects lead to traces in the 3D data due to this accumulation over several
time steps. Although this creates problems on the evaluation, we show that
it does not carry big impact on performance given the larger proportion
of parked vehicles on the SemanticKITTI scenes. This can be observed in
some of the qualitative results presented in Figure 5.6. The issue could be

116 LMSCNet: Lightweight Multiscale Semantic Completion

solved by removing supervision along the moving agents in the ground truth
scenes or using simulation environments such as CARLA (Dosovitskiy et al.,
2017). However, recent works have presented similar strategies showing only
a slight gain in performance (Rist et al., 2020a; Yan et al., 2021).

5.5 Conclusion
In this chapter we presented a novel method, coined LMSCNet for 3D se-
mantic scene completion, which benefits from mixing 2D/3D convolutions to
preserve lightweight architecture, while enabling multiscale inference. Our
method has been tested in both indoor and outdoor scenarios trough the
use of 3-dimensional scenes from the NYUv2 (Silberman et al., 2012) and
the SemanticKITTI (Behley et al., 2019) and nuScenes (Caesar et al., 2020)
datasets, respectively.

On the challenging SemanticKITTI benchmark, our method performed
on par with state of the art approaches for semantic completion with a
much lighter architecture and at faster inference speeds. For completion,
our method outperformed all approaches at the time of submission. Results
show that the loss of 3D spatial connexity caused by the 2D backbone of
our architecture does not impair performance. Our proposal is robust to
much lower input density LiDARs without dramatic drops on performance.
Results show that even at very low resolution LiDAR (8 layers), our method
is still capable to correctly predict the outline of the scene.

We additionally show generalization of our architecture by testing it on
unseen urban scenes of the nuScenes dataset, which considerably differ from
the SemanticKITTI scenes used for training. We highlight the impressive
performance of learning based methods enabling to complete entire scenes
despite occlusions and missing information, in contrast to traditional meth-
ods considered in the first part of this thesis. We encourage the use of our
method and development of more advanced scene completion methods for
further applications such as road detection, obstacle detection and tracking,
and ultimately, vehicle navigation.

Chapter 6

Conclusion

6.1 Contributions

In this thesis we presented different techniques to generate a 3D model of
the environment from sparse LiDAR point clouds intended for autonomous
driving applications. This was achieved through the use of both traditional
computer vision techniques relying on geometrical and physical priors, and
deep learning techniques relying on data-driven priors.

In the first part of the thesis we investigated the use of occupancy grids
for multi-frame aggregation of LiDAR scans and proposed to take advantage
of the ray-casting operation to analyze the distance traversed by the rays
within each voxel to adjust the occupancy probability update. Furthermore,
we introduced a new weighting modeling to account for the density of ob-
servations at a given cell and avoid overconfidence at low density regions.
Experiments showed that our proposed method reduces inaccuracies present
in partially occupied cells for both real and simulated data. The benefit of
3D maps representation is shown useful for scene reconstruction, localization
and mapping applications.

We also proposed a pipeline to calculate a continuous surface represen-
tation of the surroundings from the input point cloud. Our method is ro-
bust against heterogeneous density data inherent to LiDAR sensors. This is
achieved through the use of an adaptive neighborhood strategy that adapts
to the point density. The surface representation is of high interest for phys-
ical modeling or fluid simulation. We showed through our experiments that
our method achieves an accurate reconstruction at close surroundings and
is capable to complete small areas of missing data through interpolation
which results from the use of a gradient distance field calculated from the
local explicit planar estimation.

In the second part of the thesis, we switched to contemporary deep learn-
ing methods to complete and semantically label sparse 3D scenes through
the semantic scene completion task. Given little consensus and the wide va-
riety of approaches existing in the literature, we presented the first in-depth
survey to highlight the most important points to consider for the topic. We
also compared performance of state-of-the-art approaches in both indoor
and outdoor datasets.

Finally we presented LMSCNet, a lightweight multiscale semantic com-
pletion network from a voxelized input point cloud. Our method employs

118 Conclusion

a 2D CNN backbone to reduce memory and computation overhead by en-
coding one of the spatial dimensions as a feature dimension. Custom 3D
segmentation heads predict the semantic 3D scene at different resolutions
thanks to our UNet design architecture. Our finding shows that the loss of
3D spatial connexity caused by our 2D backbone does not impair the perfor-
mance. Moreover, our architecture achieves real-time inference at different
resolutions, being significantly lighter and faster that all other approaches
proposed in the literature on the SemanticKITTI dataset. The robustness
of our method was proved in low resolution point clouds. Furthermore, our
experiments showed good generalization into the nuScenes dataset.

6.2 Future work
Unlike Part I of this thesis, recent works now use deep learning for recon-
struction (Groueix et al., 2018; Park et al., 2019), mostly relying on interme-
diate representations as TSDFs or voxel occupancy (Dai et al., 2017b; Park
et al., 2019; Mescheder et al., 2019; Chen and Zhang, 2019). Of interest,
DeepMarchingCubes (Liao et al., 2018) showed that it is possible to perform
the task end-to-end and predict sub-voxel accurate 3D shapes of arbitrary
topology. However, the approach requires large memory needs and is limited
to low resolution outputs.

This limitation typically affects all 3D CNN based algorithms. Further
research in optimization techniques such as sparse convolutions (Graham
et al., 2018) or hierarchical data structures like octrees (Riegler et al., 2017b;
Wang et al., 2018b) to deal with sparse 3D data is encouraged. Alternately,
point-based networks (Qi et al., 2017b,a; Li et al., 2018; Wang et al., 2019b;
Thomas et al., 2019; Richard et al., 2020) have gained momentum but are
still limited for reconstruction and completion of large scenes and have been
directly applied only to completion of single objects (Yuan et al., 2018;
Tchapmi et al., 2019; Wang et al., 2020c; Wen et al., 2020).

Another interesting line of research would consist in the use of monocular
images (RGB) to perform semantic scene completion by relying on 3D data
for self-supervision as it is done for depth estimation (Fu et al., 2018; Gur
and Wolf, 2019). Recent works have already shown that it is possible to
learn geometry from 2D images (Fan et al., 2017; Wang et al., 2018a; Yin
et al., 2020). These methods would present an interesting alternative to the
considerably more expensive LiDAR sensors.

Finally, while we mostly studied frame-wise scene reconstruction and
completion, it would be interesting to exploit large input sequences to fuse
information across the temporal domain to improve performance. Semantic
scene reconstruction and completion from multiple scans has been recently
presented in Wu et al. (2020). This could provide meaningful temporal
information such as speed and intentions of moving agents in the scene.

Publications

This thesis led to the following publications:

• Roldão, L., de Charette, R. and Verroust-Blondet, A.
A statistical update of grid representations from range sensors.
arXiv 2018.

• Ravi Kiran, B., Roldão, L., Irastorza, B., Verastegui, R., Suss, S.,
Yogamani, S., Talpaert, V., Lepoutre, A., and Trehard, G.
Real-time dynamic object detection for autonomous driving
using prior 3d-maps
ECCV Workshop 2018.

• Roldão, L., de Charette, R. and Verroust-Blondet, A.
3D Surface reconstruction from voxel-based lidar data.
ITSC 2019.

• Roldão, L., de Charette, R. and Verroust-Blondet, A.
LMSCNet: Lightweight Multiscale 3D Semantic Completion.
3DV 2020.

• Roldão, L., de Charette, R. and Verroust-Blondet, A.
3D Semantic Scene Completion: a Survey.
ArXiv 2021 - Submitted to IJCV.

Bibliography

Abbasi, A., Kalkan, S., and Sahillioglu, Y. (2018). Deep 3D semantic scene
extrapolation. The Visual Computer 2018.

Adarve, J., Perrollaz, M., Makris, A., and Laugier, C. (2012). Computing
occupancy grids from multiple sensors using linear opinion pools. In ICRA
2012.

Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova, K., Das, R., Gusev,
G., Aouada, D., and Ottersten, B. (2018). A survey on deep learning
advances on different 3D data representations. arXiv 2018.

Amenta, N. and Bern, M. (1998). Surface reconstruction by voronoi filtering.
In SCG 1998.

Amenta, N., Choi, S., and Kolluri, R. K. (2001). The power crust. In SMA
2001.

Armeni, I., Sax, S., Zamir, A., and Savarese, S. (2017). Joint 2D-3D-
semantic data for indoor scene understanding. ArXiv 2017.

Aspert, N., Cruz, D., and Ebrahimi, T. (2002). MESH: measuring errors
between surfaces using the hausdorff distance. ICME 2002.

Bares, J., Hebert, M., Kanade, T., Krotkov, E., Mitchell, T. M., Simmons,
R., andWhittaker, W. (1989). Ambler: an autonomous rover for planetary
exploration. IEEE Computer 1989.

Bayes, T. (1763). An essay towards solving a problem in the doctrine of
chances. Philos. Trans. R. Soc. 1763.

Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss,
C., and Gall, J. (2019). SemanticKITTI: A dataset for semantic scene
understanding of LiDAR sequences. In ICCV 2019.

Behley, J. and Stachniss, C. (2018). Efficient surfel-based SLAM using 3D
laser range data in urban environments. In RSS 2018.

Bennewitz, M., Stachniss, C., Behnke, S., and Burgard, W. (2009). Utilizing
reflection properties of surfaces to improve mobile robot localization. In
ICRA 2009.

Bentley, J. L. (1975). Multidimensional binary search trees used for asso-
ciative searching. CACM 1975.

122 Bibliography

Berger, J. O. (1988). Statistical decision theory and bayesian analysis.
Springer: Series in Statistics.

Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guennebaud, G.,
Levine, J. A., Sharf, A., and Silva, C. T. (2017). A survey of surface
reconstruction from point clouds. CGF 2017.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C. T., and Taubin, G.
(1999). The ball-pivoting algorithm for surface reconstruction. TVCG
1999.

Bhoi, A. (2019). Monocular depth estimation: A survey. ArXiv 2019.

Boltcheva, D. and Lévy, B. (2017). Surface reconstruction by computing
restricted voronoi cells in parallel. CAD 2017.

Bouchiba, H., Santoso, S., Deschaud, J.-E., Rocha-Da-Silva, L., Goulette,
F., and Coupez, T. (2020). Computational fluid dynamics on 3D point
set surfaces. J. Comput. Phys. 2020.

Boulch, A., Guerry, J., Saux, B. L., and Audebert, N. (2018). SnapNet:
3D point cloud semantic labeling with 2D deep segmentation networks.
Comput. & Graph. 2018.

Boulch, A. and Marlet, R. (2016). Deep learning for robust normal estima-
tion in unstructured point clouds. CGF 2016.

Boulch, A., Saux, B. L., and Audebert, N. (2017). Unstructured point
cloud semantic labeling using deep segmentation networks. In Eurograph-
ics Workshop 2017.

Bresson, G., Alsayed, Z., Yu, L., and Glaser, S. (2017). Simultaneous local-
ization and mapping: A survey of current trends in autonomous driving.
T-IV 2017.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Kr-
ishnan, A., Pan, Y., Baldan, G., and Beijbom, O. (2020). nuScenes: A
multimodal dataset for autonomous driving. In CVPR 2020.

Canny, J. (1986). A computational approach to edge detection. TPAMI
1986.

Cazals, F. and Giesen, J. (2006). Delaunay triangulation based surface re-
construction: Ideas and algorithms. Effective Comput. Geom. for Curves
and Surfaces 2006.

Chang, A. X., Dai, A., Funkhouser, T. A., Halber, M., Nießner, M., Savva,
M., Song, S., Zeng, A., and Zhang, Y. (2017). Matterport3D: Learning
from RGB-D data in indoor environments. In 3DV 2017.

Bibliography 123

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li,
Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F.
(2015). ShapeNet: An information-rich 3D model repository. ArXiv 2015.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.
(2018). DeepLab: Semantic image segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. TPAMI 2018.

Chen, R., Huang, Z., and Yu, Y. (2019a). AM2FNet: Attention-based
multiscale & multi-modality fused network. ROBIO 2019.

Chen, X., Lin, K.-Y., Qian, C., Zeng, G., and Li, H. (2020a). 3D sketch-
aware semantic scene completion via semi-supervised structure prior. In
CVPR 2020.

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017). Multi-view 3D object
detection network for autonomous driving. In CVPR 2017.

Chen, X., Xing, Y., and Zeng, G. (2020b). Real-time semantic scene com-
pletion via feature aggregation and conditioned prediction. In ICIP 2020.

Chen, Y., Garbade, M., and Gall, J. (2019b). 3D semantic scene completion
from a single depth image using adversarial training. In ICIP 2019.

Chen, Z. and Zhang, H. (2019). Learning implicit fields for generative shape
modeling. In CVPR 2019.

Cheng, R., Agia, C., Ren, Y., Li, X., and Bingbing, L. (2020). S3CNet:
A sparse semantic scene completion network for LiDAR point clouds. In
CoRL 2020.

Cherabier, I., Schönberger, J. L., Oswald, M., Pollefeys, M., and Geiger, A.
(2018). Learning priors for semantic 3D reconstruction. In ECCV 2018.

Choy, C., Gwak, J., and Savarese, S. (2019). 4D spatio-temporal ConvNets:
Minkowski convolutional neural networks. In CVPR 2019.

Curless, B. and Levoy, M. (1996). A volumetric method for building complex
models from range images. In SIGGRAPH 1996.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T. A., and
Nießner, M. (2017a). ScanNet: Richly-annotated 3D reconstructions of
indoor scenes. In CVPR 2017.

Dai, A., Diller, C., and Nießner, M. (2020). SG-NN: Sparse generative neural
networks for self-supervised scene completion of RGB-D scans. In CVPR
2020.

124 Bibliography

Dai, A., Qi, C. R., and Nießner, M. (2017b). Shape completion using 3D-
encoder-predictor CNNs and shape synthesis. In CVPR 2017.

Dai, A., Ritchie, D., Bokeloh, M., Reed, S., Sturm, J., and Nießner, M.
(2018). ScanComplete: Large-scale scene completion and semantic seg-
mentation for 3D scans. In CVPR 2018.

Davis, J., Marschner, S., Garr, M., and Levoy, M. (2002). Filling holes in
complex surfaces using volumetric diffusion. 3DPVT 2002.

De Charette, R. and Manitsaris, S. (2019). 3D reconstruction of deformable
revolving object under heavy hand interaction. arXiv 2019.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from
incomplete data via the EM. JRSS 1977.

Denninger, M. and Triebel, R. (2020). 3D scene reconstruction from a single
viewport. In ECCV 2020.

Dia, R. (2020). Towards environment perception using integer arithmetic
for embedded application. PhD Thesis, Université Grenoble Alpes, 2020.

Dia, R., Mottin, J., Rakotovao, T. A., Puschini, D., and Lesecq, S. (2017).
Evaluation of occupancy grid resolution through a novel approach for
inverse sensor modeling. In IFAC 2017.

Dong, P. and Chen, Q. (2017). LiDAR remote sensing and applications.
Taylor & Francis Series Remote Sens. Appl.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017).
CARLA: An open urban driving simulator. In CoRL 2017.

Dourado, A., de Campos, T. E., Kim, H. S., and Hilton, A. (2020a). Ed-
geNet: Semantic scene completion from RGB-D images. ICPR 2020.

Dourado, A., Kim, H., de Campos, T. E., and Hilton, A. (2020b). Semantic
scene completion from a single 360-Degree image and depth map. In
VISIGRAPP 2020.

Einhorn, E., Schröter, C., and Groß, H. (2011). Finding the adequate res-
olution for grid mapping - cell sizes locally adapting on-the-fly. In ICRA
2011.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and
navigation. IEEE Computer 1989.

Engelmann, F., Rematas, K., Leibe, B., and Ferrari, V. (2021). From points
to multi-object 3D reconstruction. In CVPR 2021.

Bibliography 125

Everingham, M., Eslami, S., Gool, L., Williams, C. K., Winn, J., and Zis-
serman, A. (2014). The Pascal visual object classes challenge: A retro-
spective. IJCV 2014.

Fan, H., Su, H., and Guibas, L. (2017). A point set generation network for
3D object reconstruction from a single image. In CVPR 2017.

Fan, R., Wang, H., Cai, P., and Liu, M. (2020). SNE-RoadSeg: Incorporat-
ing surface normal information into semantic segmentation for accurate
freespace detection. In ECCV 2020.

Firman, M. (2016). RGB-D datasets: Past, present and future. In CVPR
Workshop 2016.

Firman, M., Aodha, O. M., Julier, S. J., and Brostow, G. J. (2016). Struc-
tured prediction of unobserved voxels from a single depth image. In CVPR
2016.

Fischler, M. and Bolles, R. (1981). Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography. CACM 1981.

Fleishman, S., Cohen-Or, D., and Silva, C. T. (2005). Robust moving least-
squares fitting with sharp features. In SIGGRAPH 2005.

Frisken, S., Perry, R. N., Rockwood, A., and Jones, T. (2000). Adaptively
sampled distance fields: a general representation of shape for computer
graphics. In SIGGRAPH 2000.

Fu, H., Cai, B., Gao, L., Zhang, L.-X., Li, C., Xun, Z., Sun, C., Fei, Y.,
Zheng, Y., Li, Y., Liu, Y., Liu, P., Ma, L., Weng, L., Hu, X., Ma, X., Qian,
Q., Jia, R., Zhao, B., and Zhang, H. (2020). 3D-FRONT: 3D furnished
rooms with layOuts and semaNTics. ArXiv 2020.

Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D. (2018). Deep
ordinal regression network for monocular depth estimation. In CVPR
2018.

Fuentes-Pacheco, J., Ascencio, J. R., and Rendón-Mancha, J. M. (2012).
Visual simultaneous localization and mapping: a survey. Artif. Intell.
2012.

Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. (2016). VirtualWorlds as
proxy for multi-object tracking analysis. In CVPR 2016.

Gao, B., Pan, Y., Li, C., Geng, S., and Zhao, H. (2020). Are we hungry for
3D LiDAR data for semantic segmentation? ArXiv 2020.

126 Bibliography

Garbade, M. (2019). Semantic segmentation and completion of 2D and 3D
scenes. PhD Thesis, University of Bonn, 2019.

Garbade, M., Sawatzky, J., Richard, A., and Gall, J. (2019). Two stream
3D semantic scene completion. In CVPR Workshop 2019.

Garg, R., Wadhwa, N., Ansari, S., and Barron, J. (2019). Learning single
camera depth estimation using dual-pixels. In ICCV 2019.

Garg, S., Sünderhauf, N., Dayoub, F., Morrison, D., Cosgun, A., Carneiro,
G., Wu, Q., Chin, T., Reid, I. D., Gould, S., Corke, P., and Milford, M.
(2020). Semantics for robotic mapping, perception and interaction: A
survey. Found. Trends Robot. 2020.

Gartshore, R., Aguado, A., and Galambos, C. (2002). Incremental map
building using an occupancy grid for an autonomous monocular robot. In
ICARCV 2002.

Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets
robotics: The KITTI dataset. IJRR 2013.

Geiger, A. and Wang, C. (2015). Joint 3D object and layout inference from
a single RGB-D image. In GCPR 2015.

Gibson, S. (1998). Using distance maps for accurate surface representation
in sampled volumes. In SIGGRAPH 1998.

Gopi, M., Krishnan, S., and Silva, C. T. (2000). Surface reconstruction
based on lower dimensional localized delaunay triangulation. CGF 2020.

Graham, B., Engelcke, M., and van der Maaten, L. (2018). 3D semantic
segmentation with submanifold sparse convolutional networks. In CVPR
2018.

Griffiths, D. and Boehm, J. (2019). Synthcity: A large scale synthetic point
cloud. ArXiv 2019.

Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and Aubry, M. (2018).
AtlasNet: A Papier-Mâché approach to learning 3D surface generation.
In CVPR 2018.

Guedes, A. B. S., de Campos, T. E., and Hilton, A. (2018). Semantic scene
completion combining colour and depth: preliminary experiments. ArXiv
2018.

Guerrero, P., Kleiman, Y., Ovsjanikov, M., and Mitra, N. (2018). PCPNet
learning local shape properties from raw point clouds. CGF 2018.

Bibliography 127

Guo, R. and Hoiem, D. (2013). Support surface prediction in indoor scenes.
ICCV 2013.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M. (2020).
Deep learning for 3D point clouds: A survey. TPAMI 2020.

Guo, Y.-X. and Tong, X. (2018). View-Volume network for semantic scene
completion from a single depth image. In IJCAI 2018.

Gupta, S., Girshick, R. B., Arbeláez, P., and Malik, J. (2014). Learning rich
features from RGB-D images for object detection and segmentation. In
ECCV 2014.

Gur, S. and Wolf, L. (2019). Single image depth estimation trained via
depth from defocus cues. CVPR 2019.

Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., and
Pollefeys, M. (2017). Semantic3D.net: A new large-scale point cloud
classification benchmark. ISPRS 2017.

Han, X., Laga, H., and Bennamoun, M. (2019a). Image-based 3D object re-
construction: State-of-the-art and trends in the deep learning era. TPAMI
2019.

Han, X., Li, Z., Huang, H., Kalogerakis, E., and Yu, Y. (2017). High-
resolution shape completion using deep neural networks for global struc-
ture and local geometry inference. In ICCV 2017.

Han, X., Zhang, Z., Du, D., Yang, M., Yu, J., Pan, P., Yang, X., Liu, L.,
Xiong, Z., and Cui, S. (2019b). Deep reinforcement learning of volume-
guided progressive view inpainting for 3D point scene completion from a
single depth image. In CVPR 2019.

Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., and Cipolla, R.
(2016). SceneNet: Understanding real world indoor scenes with synthetic
data. In CVPR 2016.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for
image recognition. In CVPR 2016.

Hebert, M., Caillas, C., Krotkov, E., Kweon, I.-S., and Kanade, T. (1989).
Terrain mapping for a roving planetary explorer. In ICRA 1989.

Homm, F., Kaempchen, N., Ota, J., and Burschka, D. (2010). Efficient
occupancy grid computation on the GPU with LiDAR and radar for road
boundary detection. In IV 2010.

128 Bibliography

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W.
(1992). Surface reconstruction from unorganized points. In SIGGRAPH
1992.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W.
(2013). OctoMap: an efficient probabilistic 3D mapping framework based
on octrees. Auton. Robot. 2013.

Hua, B.-S., Pham, Q.-H., Nguyen, D., Tran, M., Yu, L.-F., and Yeung, S.
(2016). SceneNN: A scene meshes dataset with annotations. In 3DV 2016.

Huang, H., Chen, H., and Li, J. (2019). Deep neural network for 3D point
cloud completion with multistage loss function. In CCDC 2019.

Janai, J., Güney, F., Behl, A., and Geiger, A. (2020). Computer vision
for autonomous vehicles: Problems, datasets and state-of-the-art. Found.
Trends Comput. Graph. Vis. 2020.

Jaritz, M., de Charette, R., Wirbel, É., Perrotton, X., and Nashashibi,
F. (2018). Sparse and dense data with CNNs: Depth completion and
semantic segmentation. In 3DV 2018.

Jenke, P., Krückeberg, B., and Straßer, W. (2008). Surface reconstruction
from fitted shape primitives. In VMV 2008.

Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., and Qu, R. (2019).
A survey of deep learning-based object detection. IEEE Access 2019.

Kaufman, E., Lee, T., Ai, Z., and Moskowitz, I. S. (2016). Bayesian occu-
pancy grid mapping via an exact inverse sensor model. In ACC 2016.

Kazhdan, M. and Hoppe, H. (2013). Screened poisson surface reconstruction.
TOG 2013.

Kazhdan, M. M., Bolitho, M., and Hoppe, H. (2006). Poisson surface recon-
struction. In SGP 2006.

Kelly, A., Stentz, A., Amidi, O., Bode, M., Bradley, D., Diaz-Calderon,
A., Happold, M., Herman, H., Mandelbaum, R., Pilarski, T., Rander, P.,
Thayer, S., Vallidis, N., and Warner, R. (2006). Toward reliable off road
autonomous vehicles operating in challenging environments. IJRR 2006.

Kim, G. and Kim, A. (2020). Remove, then revert: Static point cloud map
construction using multiresolution range images. In IROS 2020.

Kiran, B. R., Roldão, L., Irastorza, B., Verastegui, R., Süss, S., Yogamani,
S., Talpaert, V., Lepoutre, A., and Trehard, G. (2018). Real-time dynamic
object detection for autonomous driving using prior 3D-maps. In ECCV
Workshop 2018.

Bibliography 129

Klokov, R. and Lempitsky, V. (2017). Escape from cells: Deep Kd-networks
for the recognition of 3D point cloud models. In ICCV 2017.

Kolluri, R. (2005). Provably good moving least squares. In SIGGRAPH
2005.

Konolige, K. (1997). Improved occupancy grids for map building. Auton.
Robot. 1997.

Kraetzschmar, G., Gassull, G., and Uhl, K. (2004). Probabilistic quadtrees
for variable-resolution mapping of large environments. In IFAC 2004.

Kurenkov, A., Ji, J., Garg, A., Mehta, V., Gwak, J., Choy, C. B., and
Savarese, S. (2018). DeformNet: Free-form deformation network for 3D
shape reconstruction from a single image. In WACV 2018.

Kwon, Y., Kim, D., An, I., and Yoon, S. (2019). Super rays and culling
region for real-time updates on grid-based occupancy maps. T-RO 2019.

Laga, H., Jospin, L. V., Boussaïd, F., and Bennamoun, M. (2020). A survey
on deep learning techniques for stereo-based depth estimation. TPAMI
2020.

Lalonde, J.-F., Vandapel, N., Huber, D., and Hebert, M. (2006). Natural
terrain classification using three-dimensional ladar data for ground robot
mobility. JFR 2006.

Landrieu, L. and Simonovsky, M. (2018). Large-scale point cloud semantic
segmentation with superpoint graphs. In CVPR 2018.

Lang, A., Vora, S., Caesar, H., Zhou, L., Yang, J., and Beijbom, O. (2019).
PointPillars: Fast encoders for object detection from point clouds. In
CVPR 2019.

Lenssen, J. E., Osendorfer, C., and Masci, J. (2020). Deep iterative surface
normal estimation. In CVPR 2020.

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G. A.,
Fletcher, L., Frazzoli, E., Huang, A. S., Karaman, S., Koch, O., Kuwata,
Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax, R., Walter, M. R.,
Barrett, D., Epstein, A., Maheloni, K., Moyer, K., Jones, T., Buckley, R.,
Antone, M. E., Galejs, R., Krishnamurthy, S., and Williams, J. (2009). A
perception-driven autonomous urban vehicle. STAR 2009.

Levin, D. (2004). Mesh-independent surface interpolation. MATHVISUAL
2004.

130 Bibliography

Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S.,
Kolter, J. Z., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G.,
Stavens, D., Teichman, A., Werling, M., and Thrun, S. (2011). Towards
fully autonomous driving: Systems and algorithms. IV 2011.

Li, D., Shao, T., Wu, H., and Zhou, K. (2017). Shape completion from a
single RGB-D image. TVCG 2017.

Li, J., Han, K., Wang, P., Liu, Y., and Yuan, X. (2020a). Anisotropic
convolutional networks for 3D semantic scene completion. In CVPR 2020.

Li, J., Liu, Y., Gong, D., Shi, Q., Yuan, X., Zhao, C., and Reid, I. D.
(2019). RGB-D based dimensional decomposition residual network for 3D
semantic scene completion. In CVPR 2019.

Li, J., Liu, Y. W., Yuan, X., Zhao, C., Siegwart, R., Reid, I., and Cadena, C.
(2020b). Depth based semantic scene completion with position importance
aware loss. RA-L 2020.

Li, L.-J., Socher, R., and Fei-Fei, L. (2009). Towards total scene under-
standing: Classification, annotation and segmentation in an automatic
framework. In CVPR 2009.

Li, S., Zou, C., Li, Y., Zhao, X., and Gao, Y. (2020c). Attention-based multi-
modal fusion network for semantic scene completion. In AAAI 2020.

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., and Chen, B. (2018). PointCNN:
convolution on X-transformed points. In NIPS 2018.

Li, Y., Dai, A., Guibas, L., and Nießner, M. (2015). Database-assisted object
retrieval for real-time 3D reconstruction. CGF 2015.

Li, Y., Ma, L., Zhong, Z., Liu, F., Chapman, M. A., Cao, D., and Li, J.
(2020). Deep learning for LiDAR point clouds in autonomous driving: A
review. TNNLS 2020.

Li, Y. and Ruichek, Y. (2013). Building variable resolution occupancy grid
map from stereoscopic system — a quadtree based approach. In IV 2013.

Liao, Y., Donné, S., and Geiger, A. (2018). Deep Marching Cubes: Learning
explicit surface representations. In CVPR 2018.

Lin, D., Fidler, S., and Urtasun, R. (2013). Holistic scene understanding for
3D object detection with RGB-D cameras. In ICCV 2013.

Lin, G., Milan, A., Shen, C., and Reid, I. (2017). RefineNet: Multi-path
refinement networks for high-resolution semantic segmentation. In CVPR
2017.

Bibliography 131

Liu, S., Hu, Y., Zeng, Y., Tang, Q., Jin, B., Han, Y., and Li, X. (2018). See
and think: Disentangling semantic scene completion. In NIPS 2018.

Liu, S., Mello, S. D., Gu, J., Zhong, G., Yang, M.-H., and Kautz, J. (2017).
Learning affinity via spatial propagation networks. In NIPS 2017.

Liu, W., Sun, J., Li, W., Hu, T., and Wang, P. (2019). Deep learning on
point clouds and its application: A survey. IEEE Sensors 2019.

Liu, Y. W., Li, J., Yan, Q., Yuan, X., Zhao, C.-X., Reid, I., and Cadena, C.
(2020). 3D gated recurrent fusion for semantic scene completion. ArXiv
2020.

Lorensen, W. and Cline, H. (1987). Marching cubes: A high resolution 3D
surface construction algorithm. In SIGGRAPH 1987.

Lu, H. and Shi, H. (2020). Deep learning for 3D point cloud understanding:
A survey. arXiv 2020.

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet V2: Prac-
tical guidelines for efficient CNN architecture design. In ECCV 2018.

Malleson, C., Guillemaut, J.-Y., and Hilton, A. (2019). 3d reconstruction
from rgb-d data. RGB-D Image Anal. Process. Adv. Comput. Vis. Pattern
Recog.

Martens, W., Poffet, Y., Soria, P. R., Fitch, R., and Sukkarieh, S. (2017).
Geometric priors for gaussian process implicit surfaces. RA-L 2017.

Maturana, D. and Scherer, S. A. (2015). VoxNet: A 3D convolutional neural
network for real-time object recognition. In IROS 2015.

Meagher, D. (1982). Geometric modeling using octree encoding. Comput.
Graph. Image Process. 1982.

Meng, H.-Y., Gao, L., Lai, Y., and Manocha, D. (2019). VV-Net: Voxel
VAE net with group convolutions for point cloud segmentation. In ICCV
2019.

Mescheder, L. M., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger,
A. (2019). Occupancy networks: Learning 3D reconstruction in function
space. In CVPR 2019.

Milioto, A., Vizzo, I., Behley, J., and Stachniss, C. (2019). RangeNet ++:
Fast and accurate LiDAR semantic segmentation. In IROS 2019.

Milstein, A. (2008). Occupancy grid maps for localization and mapping.
IntechOpen: Motion Planning.

132 Bibliography

Mitra, N., Pauly, M., Wand, M., and Ceylan, D. (2013). Symmetry in 3D
geometry: Extraction and applications. CGF 2013.

Moravec, H. (1988). Sensor fusion in certainty grids for mobile robots. AI
Mag. 1988.

Moravec, H. and Elfes, A. (1985). High resolution maps from wide angle
sonar. ICRA 1985.

Nair, R., Lenzen, F., Meister, S., Schäfer, H., Garbe, C., and Kondermann,
D. (2012). High accuracy TOF and stereo sensor fusion at interactive
rates. In ECCV Workshop 2012.

Nealen, A., Igarashi, T., Sorkine-Hornung, O., and Alexa, M. (2006). Lapla-
cian mesh optimization. In GRAPHITE 2006.

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davi-
son, A., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011).
KinectFusion: Real-time dense surface mapping and tracking. In ISMAR
2011.

Nguyen, A. and Le, H. (2013). 3D point cloud segmentation: A survey. In
RAM 2013.

Nguyen, T.-N., Michaelis, B., Al-Hamadi, A., Tornow, M., and Meinecke,
M. (2012). Stereo-camera-based urban environment perception using oc-
cupancy grid and object tracking. In ITSC 2012.

Oleynikova, H., Millane, A., Taylor, Z., Galceran, E., Nieto, J., and Sieg-
wart, R. (2016). Signed distance fields: A natural representation for both
mapping and planning. In RSS Workshop 2016.

Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., and Nieto, J. (2017).
Voxblox: Incremental 3D euclidean signed distance fields for on-board
mav planning. In IROS 2017.

Özyesil, O., Voroninski, V., Basri, R., and Singer, A. (2017). A survey of
structure from motion. Acta Numerica 2017.

Pan, Y., Gao, B., Mei, J., Geng, S., Li, C., and Zhao, H. (2020). Seman-
ticPOSS: A point cloud dataset with large quantity of dynamic instances.
In IV 2020.

Park, J. J., Florence, P., Straub, J., Newcombe, R. A., and Lovegrove, S.
(2019). DeepSDF: Learning continuous signed distance functions for shape
representation. In CVPR 2019.

Bibliography 133

Pathak, K., Birk, A., Poppinga, J., and Schwertfeger, S. (2007). 3D forward
sensor modeling and application to occupancy grid based sensor fusion.
In IROS 2007.

Pauly, M., Mitra, N., Giesen, J., Groß, M., and Guibas, L. (2005). Example-
based 3D scan completion. In SGP 2005.

Pauly, M., Mitra, N., Wallner, J., Pottmann, H., and Guibas, L. (2008).
Discovering structural regularity in 3D geometry. In SIGGRAPH 2008.

Payeur, P., Hebert, P., Laurendeau, D., and Gosselin, C. (1997). Probabilis-
tic octree modeling of a 3D dynamic environment. In ICRA 1997.

Payeur, P., Laurendeau, D., and Gosselin, C. (1998). Range data merging
for probabilistic octree modeling of 3D workspaces. In ICRA 1998.

Pfister, H., Zwicker, M., Baar, J. V., and Gross, M. (2000). Surfels: surface
elements as rendering primitives. In SIGGRAPH 2000.

Pintore, G., Mura, C., Ganovelli, F., Perez, L. J. F., and an Enrico Gobbetti,
R. P. (2020). State-of-the-art in automatic 3D reconstruction of structured
indoor environments. CGF 2020.

Pock, T. and Chambolle, A. (2011). Diagonal preconditioning for first order
primal-dual algorithms in convex optimization. In ICCV 2011.

Pomerleau, F., Colas, F., and Siegwart, R. (2014). A survey of rigid 3D
pointcloud registration algorithms. In AMBIENT 2014.

Pomerleau, F., Colas, F., and Siegwart, R. (2015). A review of point cloud
registration algorithms for mobile robotics. Found. Trends Robot. 2015.

Qi, C. R., Su, H., Mo, K., and Guibas, L. (2017a). PointNet: Deep learning
on point sets for 3D classification and segmentation. In CVPR 2017.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In NIPS
2017.

Rabbani, T., Heuvel, F., and Vosselman, G. (2006). Segmentation of point
clouds using smoothness constraint. ISPRS 2006.

Rakotovao, T. (2017). Integer occupancy grids : a probabilistic multi-
sensor fusion framework for embedded perception. PhD Thesis, Université
Grenoble Alpes, 2017.

Rakotovao, T. A., Mottin, J., Puschini, D., and Laugier, C. (2015). Real-
time power-efficient integration of multi-sensor occupancy grid on many-
core. In ARSO Workshop 2015.

134 Bibliography

Reed, S., Oord, A., Kalchbrenner, N., Colmenarejo, S. G., Wang, Z., Chen,
Y., Belov, D., and Freitas, N. D. (2017). Parallel multiscale autoregressive
density estimation. In ICML 2017.

Remil, O., Xie, Q., Xie, X., Xu, K., and Wang, J. (2017). Surface recon-
struction with data-driven exemplar priors. CAD 2017.

Rezende, D. J., Eslami, S., Mohamed, S., Battaglia, P., Jaderberg, M., and
Heess, N. (2016). Unsupervised learning of 3D structure from images. In
NIPS 2016.

Richard, A., Cherabier, I., Oswald, M., Pollefeys, M., and Schindler, K.
(2020). KAPLAN: A 3D point descriptor for shape completion. In 3DV,
volume abs/2008.00096.

Riegler, G., Ulusoy, A. O., Bischof, H., and Geiger, A. (2017a). OctNetFu-
sion: Learning depth fusion from data. In 3DV 2017.

Riegler, G., Ulusoy, A. O., and Geiger, A. (2017b). OctNet: Learning deep
3D representations at high resolutions. In CVPR 2017.

Rist, C. B., Emmerichs, D., Enzweiler, M., and Gavrila, D. M. (2020a).
Semantic scene completion using local deep implicit functions on LiDAR
data. ArXiv 2020.

Rist, C. B., Schmidt, D., Enzweiler, M., and Gavrila, D. M. (2020b). SCSS-
net: Learning spatially-conditioned scene segmentation on LiDAR point
clouds. In IV 2020.

Rock, J., Gupta, T., Thorsen, J., Gwak, J., Shin, D., and Hoiem, D. (2015).
Completing 3D object shape from one depth image. In CVPR 2015.

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2018). A statistical
update of grid representations from range sensors. ArXiv 2018.

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2019). 3D surface
reconstruction from voxel-based LiDAR data. In ITSC 2019.

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2020). LMSCNet:
Lightweight multiscale 3D semantic completion. In 3DV 2020.

Roldão, L., de Charette, R., and Verroust-Blondet, A. (2021). 3D semantic
scene completion: a survey. ArXiv 2021.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. In MICCAI 2015.

Ros, G., Sellart, L., Materzynska, J., Vázquez, D., and López, A. M. (2016).
The SYNTHIA dataset: A large collection of synthetic images for seman-
tic segmentation of urban scenes. In CVPR 2016.

Bibliography 135

Roynard, X., Deschaud, J.-E., and Goulette, F. (2018). Paris-Lille-3D: A
large and high-quality ground-truth urban point cloud dataset for auto-
matic segmentation and classification. IJRR 2018.

Ryde, J., Dhiman, V., and Platt, R. (2013). Voxel planes: Rapid visualiza-
tion and meshification of point cloud ensembles. IROS 2013.

Saputra, M. R. U., Markham, A., and Trigoni, A. (2018). Visual SLAM and
structure from motion in dynamic environments. CSUR 2018.

Schaefer, A., Luft, L., and Burgard, W. (2017). An analytical LiDAR sensor
model based on ray path information. RA-L 2017.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient RANSAC for point-
cloud shape detection. CGF 2007.

Sharma, A., Grau, O., and Fritz, M. (2016). VConv-DAE: Deep volumetric
shape learning without object labels. In ECCV Workshop 2016.

Shen, C., O’Brien, J., and Shewchuk, J. (2004). Interpolating and approxi-
mating implicit surfaces from polygon soup. TOG 2004.

Shen, C.-H., Fu, H., Chen, K., and Hu, S. (2012). Structure recovery by
part assembly. TOG 2012.

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmen-
tation and support inference from RGB-D images. In ECCV 2012.

Sipiran, I., Gregor, R., and Schreck, T. (2014). Approximate symmetry
detection in partial 3D meshes. CGF 2014.

Smith, E. and Meger, D. (2017). Improved adversarial systems for 3D object
generation and reconstruction. In CoRL 2017.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T. A.
(2017). Semantic scene completion from a single depth image. In CVPR
2017.

Song, S., Zeng, A., Chang, A. X., Savva, M., Savarese, S., and Funkhouser,
T. (2018). Im2Pano3D: Extrapolating 360° structure and semantics be-
yond the field of view. In CVPR 2018.

Sorkine-Hornung, O. and Cohen-Or, D. (2004). Least-squares meshes. In
ICSMA 2004.

Steinbrücker, F., Sturm, J., and Cremers, D. (2014). Volumetric 3D mapping
in real-time on a CPU. In ICRA 2014.

136 Bibliography

Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.,
Mur-Artal, R., Ren, C., Verma, S., Clarkson, A., Yan, M., Budge, B., Yan,
Y., Pan, X., Yon, J., Zou, Y., Leon, K., Carter, N., Briales, J., Gillingham,
T., Mueggler, E., Pesqueira, L., Savva, M., Batra, D., Strasdat, H. M.,
Nardi, R. D., Goesele, M., Lovegrove, S., and Newcombe, R. A. (2019).
The Replica dataset: A digital replica of indoor spaces. ArXiv 2019.

Stutz, D. and Geiger, A. (2018). Learning 3D shape completion from laser
scan data with weak supervision. In CVPR 2018.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E. (2015). Multi-view
convolutional neural networks for 3D shape recognition. In ICCV 2015.

Sung, M., Kim, V. G., Angst, R., and Guibas, L. (2015). Data-driven
structural priors for shape completion. TOG 2015.

Sunyoto, H., van der Mark, W., and Gavrila, D. (2004). A comparative
study of fast dense stereo vision algorithms. In IV 2004.

Tan, W., Qin, N., Ma, L., Li, Y., Du, J., Cai, G., Yang, K., and Li, J.
(2020). Toronto-3D: A large-scale mobile LiDAR dataset for semantic
segmentation of urban roadways. In CVPR Workshop 2020.

Tchapmi, L. P., Choy, C., Iro, Gwak, J., and Savarese, S. (2017). SEGCloud:
Semantic segmentation of 3D point clouds. In 3DV 2017.

Tchapmi, L. P., Kosaraju, V., Rezatofighi, H., Reid, I., and Savarese, S.
(2019). TopNet: Structural point cloud decoder. In CVPR 2019.

Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F., and
Guibas, L. (2019). KPConv: Flexible and deformable convolution for
point clouds. In ICCV 2019.

Thrun, S. (2003). Learning occupancy grid maps with forward sensor mod-
els. Auton. Robot. 2003.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. The
MIT Press: Probabilistic Robotics.

Thrun, S. and Wegbreit, B. (2005). Shape from symmetry. In ICCV 2005.

Treece, G. M., Prager, R., and Gee, A. (1999). Regularised marching tetra-
hedra: improved iso-surface extraction. Comput. & Graph. 1999.

Triebel, R., Pfaff, P., and Burgard, W. (2006). Multi-level surface maps for
outdoor terrain mapping and loop closing. In IROS 2006.

Vallet, B., Brédif, M., Serna, A., Marcotegui, B., and Paparoditis, N. (2015).
TerraMobilita/iQmulus urban point cloud analysis benchmark. Comput.
& Graph. 2015.

Bibliography 137

Varley, J., DeChant, C., Richardson, A., Ruales, J., and Allen, P. (2017).
Shape completion enabled robotic grasping. In IROS 2017.

Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G. (2018a).
Pixel2Mesh: Generating 3D mesh models from single RGB images. In
ECCV 2018.

Wang, P., Liu, Y., Guo, Y., Sun, C., and Tong, X. (2017). O-CNN: octree-
based convolutional neural networks for 3D shape analysis. TOG 2017.

Wang, P.-S., Liu, Y., and Tong, X. (2020a). Deep Octree-based CNNs with
output-guided skip connections for 3D shape and scene completion. In
CVPR Workshop 2020.

Wang, P.-S., Sun, C., Liu, Y., and Tong, X. (2018b). Adaptive O-CNN: A
patch-based deep representation of 3D shapes. TOG 2018.

Wang, W., Yu, R., Huang, Q., and Neumann, U. (2018c). SGPN: Similarity
group proposal network for 3D point cloud instance segmentation. In
CVPR 2018.

Wang, X., Ang, M., and Lee, G. H. (2020b). Cascaded refinement network
for point cloud completion. In CVPR 2020.

Wang, X., Ang, M., and Lee, G. H. (2020c). Point cloud completion by
learning shape priors. In IROS 2020.

Wang, X., Oswald, M., Cherabier, I., and Pollefeys, M. (2019a). Learning
3D semantic reconstruction on octrees. In GCPR 2019.

Wang, Y., Sun, Y., Liu, Z., Sarma, S., Bronstein, M., and Solomon, J.
(2019b). Dynamic graph CNN for learning on point clouds. TOG 2018.

Wang, Y., Tan, D. J., Navab, N., and Tombari, F. (2018d). Adversarial
semantic scene completion from a single depth image. In 3DV 2018.

Wang, Y., Tan, D. J., Navab, N., and Tombari, F. (2019c). ForkNet: Multi-
branch volumetric semantic completion from a single depth image. In
ICCV 2019.

Wang, Y., Tan, D. J., Navab, N., and Tombari, F. (2020d). SoftPoolNet:
Shape descriptor for point cloud completion and classification. In ECCV
2020.

Wang, Y., Wu, S., Huang, H., Cohen-Or, D., and Sorkine-Hornung, O.
(2019d). Patch-based progressive 3D point set upsampling. In CVPR
2019.

138 Bibliography

Weinmann, M., Jutzi, B., and Mallet, C. (2013). Feature relevance assess-
ment for the semantic interpretation of 3D point cloud data. ISPRS 2013.

Weiss, T., Schiele, B., and Dietmayer, K. (2007). Robust driving path
detection in urban and highway scenarios using a laser scanner and online
occupancy grids. In IV 2007.

Wen, X., Li, T., Han, Z., and Liu, Y.-S. (2020). Point cloud completion by
skip-attention network with hierarchical folding. In CVPR 2020.

Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J., and Mc-
Donald, J. (2012). Kintinuous: Spatially extended kinectfusion. In AAAI
2012.

Wu, S.-C., Tateno, K., Navab, N., and Tombari, F. (2020). SCFusion: Real-
time incremental scene reconstruction with semantic completion. In 3DV
2020.

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard,
W. (2010). Octomap : A probabilistic, flexible, and compact 3D map
representation for robotic systems. In ICRA Workshop 2010.

Xiao, J., Owens, A., and Torralba, A. (2013). SUN3D: A database of big
spaces reconstructed using SfM and object labels. In ICCV 2013.

Xie, H., Yao, H., Zhou, S., Mao, J., Zhang, S., and Sun, W. (2020a). GRNet:
Gridding residual network for dense point cloud completion. In ECCV
2020.

Xie, Y., Tian, J., and Zhu, X. X. (2020b). Linking points with labels in 3D:
A review of point cloud semantic segmentation. Geosci. Remote Sens.
2020.

Yan, X., Gao, J., Li, J., Zhang, R., Li, Z., Huang, R., and Cui, S. (2021).
Sparse single sweep LiDAR point cloud segmentation via learning contex-
tual shape priors from scene completion. In AAAI 2021.

Yang, B., Rosa, S., Markham, A., Trigoni, N., and Wen, H. (2019). Dense
3D object reconstruction from a single depth view. TPAMI 2019.

Yguel, M., Aycard, O., and Laugier, C. (2007). Update policy of dense maps:
Efficient algorithms and sparse representation. STAR 2007.

Yin, W., Zhang, J.-M., Wang, O., Niklaus, S., Mai, L., Chen, S., and Shen,
C. (2020). Learning to recover 3D scene shape from a single image. ArXiv
2020.

Bibliography 139

You, C. C., Lim, S. P., Tan, J. S., Lee, C. K., and Khaw, Y. M. J. (2020). A
survey on surface reconstruction techniques for structured and unstruc-
tured data. In ICOS 2020.

Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated
convolutions. In ICLR 2016.

Yuan, W., Khot, T., Held, D., Mertz, C., and Hebert, M. (2018). PCN:
Point completion network. In 3DV 2018.

Zhang, G. and Chen, Y. (2021). A metric for evaluating 3D reconstruction
and mapping performance with no ground truthing. ArXiv 2021.

Zhang, J., Zhao, H., Yao, A., Chen, Y., Zhang, L., and Liao, H. (2018a). Ef-
ficient semantic scene completion network with spatial group convolution.
In ECCV 2018.

Zhang, J., Zhao, X., Chen, Z., and Lu, Z. (2019a). A review of deep learning-
based semantic segmentation for point cloud. IEEE Access 2019.

Zhang, L., Wang, L., Zhang, X., Shen, P., Bennamoun, M., Zhu, G., Shah,
S. A. A., and Song, J. (2018b). Semantic scene completion with dense
CRF from a single depth image. Neurocomputing 2018.

Zhang, P., Liu, W., Lei, Y., Lu, H., and Yang, X. (2019b). Cascaded context
pyramid for full-resolution 3D semantic scene completion. In ICCV 2019.

Zhang, W., Yan, Q., and Xiao, C. (2020). Detail preserved point cloud
completion via separated feature aggregation. In ECCV 2020.

Zheng, B., Zhao, Y., Yu, J. C., Ikeuchi, K., and Zhu, S.-C. (2013). Beyond
point clouds: Scene understanding by reasoning geometry and physics. In
CVPR 2013.

Zhong, M. and Zeng, G. (2020). Semantic point completion network for 3D
semantic scene completion. In ECAI 2020.

Zimmermann, K., Petrícek, T., Salanský, V., and Svoboda, T. (2017). Learn-
ing for active 3D mapping. In ICCV 2017.

Zollhöfer, M., Stotko, P., Görlitz, A., Theobalt, C., Nießner, M., Klein, R.,
and Kolb, A. (2018). State of the Art on 3D reconstruction with RGB-D
cameras. CGF 2018.

Appendix A

Statistical Update of
Occupancy Grid Maps

In the following we will detail the density function presented in Section 2.3.2
of Chapter 2 which is used to weight the measurements according to their
distance from the sensor as shown in Equation 2.7.

A.1 Density function ρ(d) – Development and val-
idation

The density function ρ(d) has been obtained by several approximations, but
still reflects an accurate model of the reality.

Sensor-voxel measurement density model. Let’s start by considering
a LiDAR sensor placed at a given point in space. To approximate the density
of rays that can traverse a voxel of particular size ω placed at distance d
from the sensor, we account for three different cases according to the number
of faces of the voxel seen by the sensor (from one to three depending on the
voxel position). Referring to Figure A.1, the three cases can be modeled as:

α1(d) = 2
ϕs

tan−1
(

ω

2d− ω

) 2
θs

tan−1
(

ω

2d− ω

)
. (A.1a)

α2(d) = 2
ϕs

tan−1
(√

2ω
2d−

√
2ω

)
2
θs

tan−1
(

ω

2d−
√

2ω

)
. (A.1b)

α3(d) = 2
ϕs

tan−1
(√

3ω
2d−

√
3ω

)
2
θs

tan−1
(√

3ω
2d−

√
3ω

)
, (A.1c)

where ϕs and θs correspond to the vertical and horizontal angular resolutions
of the sensor. Note that the three cases considered simplify the calculations
but do not lead to an exact model. Cases 3 and 1 represent upper and lower
bounds, respectively.

142 Statistical Update of Occupancy Grid Maps

Sensor

ϕ β

(a) 1 face seen (α1)

ϕ

β

Sensor

(b) 2 faces seen (α2)

ϕ

β

Sensor

(c) 3 faces seen (α3)

Figure A.1: Cases considered to model the number of rays that traverse
a voxel of size ω at distance d. For each case, faces seen by sensor are
highlighted in gray.

The modeling function ρ(d) can be then considered as the weighted arith-
metic mean of these three values (Equation A.2). The weights are assigned
considering the percentage of voxels that fit in any of the three different
cases at the surface of a sphere of radius d.

ρ(d) = η1(d)α1(d) + η2(d)α2(d) + η3(d)α3(d)
ηt(d) , (A.2)

where ηt(d) approximates the number of voxels of size ω at the surface of
the sphere:

ηt(d) ≈ 4π d2

ω2 . (A.3)

If we suppose the sensor placed at the center of the sphere, the number
of voxels where two faces can be seen η2(d), are the ones placed within the
perpendicular planes to the axes (Oxy, Oxz and Oyz), except for the voxels
aligned with the axes where only one face can be seen η1(d). The rest of
voxels are represented by η3(d).

η1(d) = 6. (A.4a)

η2(d) ≈ 3
(2πd

w

)
−12. (A.4b)

η3(d) ≈ 4πd2

ω2 −η1(d)−η2(d). (A.4c)

A.1. Density function ρ(d) – Development and validation 143

.

(a) w = 0.6m

.

(b) w = 0.8m

Figure A.2: Our model was validated with experimental data by inserting
a spherical synthetic pointcloud of radius r in a voxel grid of cell size ω.
Figures show comparison between experimental (depicted in blue) and the
estimated density function ρ(d) (shown in red) at two different voxel sizes.

Notice that for larger distances, most of the voxels will belong to η3. More-
over, if d� w, then η3 can be approximated to ηt and our modeling function
can be simplified as ρ(d) ≈ α3(d).

Model validation. To validate our model, let us compare its results with
the ones obtained by inserting a synthetic spherical pointcloud in a voxel
grid at different resolutions and counting the number of rays traversing each
cell in a 100m distance range, this can be seen on Figure A.2. Notice that
the green and orange curves represent the upper and lower bounds α3(d)
and α1(d), respectively. The blue line represents the results obtained with
the experiment, which are close to the upper bound since as it was stated
previously, if d� w most of the voxels are represented by α3(d). The density
function ρ(d), as presented in Equation A.2 can also be seen in red. Thereof,
the modeling function is used to obtain our weighting function w(d).

MOTS CLÉS

Reconstruction 3D de la scène, complétion sémantique 3D de la scène, segmentation sémantique 3D, re-
construction de surface, nuages de points, grilles de voxels, conduite autonome.

RÉSUMÉ

Dans cette thèse, nous nous intéressons à des problèmes liés à la reconstruction et la complétion des scènes 3D à
partir de nuages de points de densité hétérogène. Dans ce cadre, nous proposons différentes méthodes utiles lors de la
création d’un modèle 3D de l’environnement.

Dans une première partie, nous étudions l’utilisation de grilles d’occupation tridimensionnelles pour la reconstruction
d’une scène 3D à partir de plusieurs observations, ce qui est utile pour la localisation d’un robot mobile ou d’un véhicule
autonome et les applications de cartographie. Nous proposons d’exploiter les informations de trajet des rayons pour
résoudre des ambiguïtés dans les cellules partiellement occupées. Notre approche permet de réduire les imprécisions
dues à la discrétisation et d’effectuer des mises à jour d’occupation des cellules dans des scénarios dynamiques.

Puis, dans le cas où le nuage de points correspond à une seule observation de la scène, nous introduisons un algorithme
de reconstruction de surface implicite 3D capable de traiter des données de densité hétérogène en utilisant une stratégie
de voisinages adaptatifs. Notre méthode permet de compléter de petites zones manquantes de la scène et génère une
représentation continue de la scène adaptée à la modélisation physique ou à l’évaluation de la traversabilité du terrain.

Enfin, nous nous intéressons aux approches d’apprentissage profond adaptées à la complétion sémantique d’une scène
3D, c’est-à-dire qui permettent de compléter les données d’entrée 3D et d’effectuer une segmentation sémantique de
ces données. Après avoir présenté une étude approfondie des méthodes existantes, nous introduisons une nouvelle
méthode de complétion sémantique multi-échelle appropriée aux scénarios en extérieur. Pour ce faire, nous proposons
une architecture constituée d’un réseau neuronal convolutif hybride basé sur une branche principale 2D pour réduire les
coûts de calcul et comportant des têtes de segmentation 3D pour prédire la scène sémantique complète à différentes
échelles. Notre approche est nettement plus légère et plus rapide que les approches existantes, tout en ayant une
efficacité similaire.

ABSTRACT

In this thesis, we address the challenges of 3D scene reconstruction and completion from sparse and heterogeneous
density point clouds. Therefore proposing different techniques to create a 3D model of the surroundings.

In the first part, we study the use of 3-dimensional occupancy grids for multi-frame reconstruction, useful for localization
and HD-Maps applications. This is done by exploiting ray-path information to resolve ambiguities in partially occupied
cells. Our sensor model reduces discretization inaccuracies and enables occupancy updates in dynamic scenarios.

We also focus on single-frame environment perception by the introduction of a 3D implicit surface reconstruction
algorithm capable to deal with heterogeneous density data by employing an adaptive neighborhood strategy. Our method
completes small regions of missing data and outputs a continuous representation useful for physical modeling or terrain
traversability assessment.

We dive into deep learning applications for the novel task of semantic scene completion, which completes and seman-
tically annotates entire 3D input scans. Given the little consensus found in the literature, we present an in-depth survey
of existing methods and introduce our lightweight multiscale semantic completion network for outdoor scenarios. Our
method employs a new hybrid pipeline based on a 2D CNN backbone branch to reduce computation overhead and 3D
segmentation heads to predict the complete semantic scene at different scales, being significantly lighter and faster than
existing approaches.

KEYWORDS

3D scene reconstruction, 3D semantic scene completion, 3D semantic segmentation, surface reconstruction,
point clouds, voxel grids, autonomous driving.

	Introduction
	Thesis context
	3D Vision
	3D Scanning technologies
	3D Data representations

	Thesis structure

	I 3D Scene Reconstruction
	Statistical Update of Occupancy Grid Maps
	Introduction
	Related work
	Sensor model
	Inverse sensor model
	Bayesian fusion
	Update policies
	Hierarchical data structures

	Method
	Occupancy probability from traversability
	Weight measurement probability
	Occupancy update

	Experiments
	Metrics
	Performance evaluation

	Applications to autonomous driving
	Conclusion

	Voxel-based Surface Reconstruction from LiDAR Data
	Introduction
	Related work
	Explicit methods
	Implicit methods
	Learning-based methods

	Method
	Voxelized representation
	Explicit local surfaces
	Implicit global surface

	Experiments
	Metrics
	Performance evaluation
	Ablation studies

	Conclusion

	II 3D Semantic Scene Completion
	3D Semantic Scene Completion: Survey
	Introduction
	Problem definition
	Historical background

	Datasets and representations for SSC
	Datasets
	3D SSC representations

	Methods overview
	Input encoding
	Architecture choices
	Design choices
	Training
	Evaluation

	Discussion
	Conclusion

	LMSCNet: Lightweight Multiscale Semantic Completion
	Introduction
	LMSCNet
	Lightweight architecture
	Multiscale completion
	Training strategy

	Experiments
	Metrics
	Implementation details
	Performance evaluation
	Ablation studies

	Discussion
	Conclusion

	Conclusion
	Contributions
	Future work

	Publications
	Bibliography
	Statistical Update of Occupancy Grid Maps
	Density function (d) – Development and validation

