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General introduction

Context

Composite materials have been used with outstanding success over several decades thanks
to their superior mechanical performance, high damage tolerance, excellent corrosion resis-
tance, and stable physical properties in the current industrial domain. Based on recent data,
the application of composites in Boeing airplanes grew from 1 percent in 1969 to 50 percent
in 2010.

However, despite using 2D laminates for a long time, their use in many structural appli-
cations has been limited by manufacturing problems and inferior mechanical properties.
Consequently, over the past 30 years, considerable attention has been given to developing
advanced polymer composites reinforced with 3D fiber architectures, called textile compos-
ites. In textile composites, on the one hand, the 3D mechanical properties are improved
thanks to the complex interlaced structure. On the other hand, textile reinforcements can be
produced in massive quantities at a reasonable cost by using modern, automated manufac-
turing techniques. Accordingly, they are attracting growing interest from both academia and
the industry.

Motivations

At the design stage of textile composites, the mechanical behavior and the effective proper-
ties of the material are generally not known precisely. Experimental tests are usually expen-
sive, and it is sometimes impossible to obtain all properties. Hence much effort goes into
developing mathematical tools to get the performance of the composites. The analytical
models can generally give quick and effective results, but these coarse approximations show
a deficiency in studying complex behavior. Therefore, numerical approaches such as Finite
Element Methods (FEM) are introduced to simulate realistic models and complex behaviors.

The conformal mesh, the most used technique in FEM, can discretize the actual shape of
the model. However, in the case of complex structures, like textile composites, interpenetra-
tion zones and non-physical voids are present between yarns. Although algorithms exist to
establish full conformal meshes for these structures, their computational cost is hefty. Con-
sequently, the voxel-based mesh is an exciting alternative to the conformal mesh as it does
not require an advanced algorithm and can be used to create the model directly from the
image.
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Based on the voxel type mesh, an alternative numerical solver called the Fast Fourier Trans-
form (FFT) based method was initially proposed by Moulinec and Suquet in 1994. It can
offer the results in good agreement with FEM voxel-based models. Compared with FEM,
the FFT method does not need to assemble the global stiffness matrix, which facilitates its
parallel implementation over high-performance computation systems, and complex math-
ematical operations can be easily transformed into simple multiplications in the Fourier
space. These characteristics make the FFT possess much higher computational efficiency
than conventional FEM for voxel-type meshes. Thus, developments have increased interest
in this method for multi-scale material modeling, including this Ph.D. thesis.

In general, the principle of this thesis is to push forward the application of the FFT method
in heterogeneous materials such as fibrous composites concerning elastic modeling and
damage modeling. This thesis will focus on the microscopic level, where the material is
composed of a matrix and fibers.

Objectives

Elastic modeling

Since the introduction of the FFT method, many improved schemes have been proposed
and compared with FEM. However, to the best of our knowledge, the performance of the
different FFT algorithms is often assessed quantitatively only concerning the macroscopic
responses. Although in nonlinear analysis, like damage analysis, the local response is es-
sential (interface response in particular), quantitative comparisons between FFT and FEM
have rarely been reported. Therefore, at first, a quantitative comparison between different
schemes of FFT and FEM is reported.

Secondly, despite all the advantages of the FFT method, it also presents several drawbacks.
Numerical artifacts in the form of spurious oscillations are among the critical issues of this
method for solving multiphase elastic problems such as numerical homogenization. For
decades, several causes of oscillations have been proposed in the literature, but their impacts
have rarely been reported. In this thesis, a deep analysis is accomplished by evaluating the
impact of each cause quantitatively.

Thirdly, due to the use of a voxel-based discretization, in heterogeneous materials, this the-
sis shows that the irregular discretization of the interface is the dominant cause of oscilla-
tion. Special treatments such as the composite voxel method or the neighbor voxel average
method are presented to deal with these oscillations. An improved composite voxel method
relying on a signed distance function is proposed to alleviate the implementation difficulty
of the composite voxel method for non-parametrized interface representations such as those
obtained from images.

Damage modeling

Failure under loading is one of the most severe problems and can lead to unpredictable
losses and casualties. There is hence a motivation to study failure in material and structural
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engineering, including in the case of composite materials. Among damage modeling tech-
niques, the phase-field gains increased attention because it allows dropping the requirement
of re-meshing or front tracking methods to follow the evolution of discontinuities. Indeed,
the evolution of the phase-field variable completely describes the crack and the damaged re-
gions of the material by regularizing the sharp cracks as a diffusive crack band. Meanwhile,
the displacement field and crack propagation are computed simultaneously by minimizing
the total energy with a variational approach to brittle fracture.

In the phase field, the characteristic length (lc ) is one of the essential parameters widely dis-
cussed in the literature. Even if it is a numerical parameter to describe the degree of crack
diffusion, many researchers regard it as a material parameter since it can hugely impact the
material mechanical behavior. In the literature, the study of lc is principally restricted to
homogeneous materials. In this thesis, a study of the impact of lc in the heterogeneous
medium is conducted. It is shown that the choice of the characteristic length for hetero-
geneous materials affects not only the macroscopic mechanical behavior but also the local
crack propagation pattern. Consequently, a length-insensitive phase-field model proposed
by Wu in 2017 is studied and implemented into an FFT solver. This implementation includes
a modification as compared to previous works to model heterogeneous materials correctly.

Outline

The structure of this thesis is as follows:

• Chapter 1: A general presentation of composite materials, analytical modeling tech-
niques, numerical modeling techniques, and meshing techniques. The Fast Fourier
Transform method is also introduced in this chapter, and the detailed mathematical
description. The final part is the presentation of some drawbacks of FFT and existing
improvements.

• Chapter 2: An introduction of different causes that lead to spurious oscillations and
the improved schemes proposed in the literature specifically to attenuate those oscil-
lations. A quantitative comparison between different FFT and FEM schemes and an
in-depth evaluation of the impact of each cause is reported.

• Chapter 3: A neighbor voxels averaging technique and an improved composite voxel
technique are presented, and the comparisons between each other and with the con-
ventional composite voxel method in terms of oscillations reduction.

• Chapter 4: Different damage modeling techniques and various phase-field models are
reviewed, along with their detailed mathematical descriptions.

• Chapter 5: The application of Miehe’s phase-field model in the FFT solver and a deep
analysis of the sensitivity to the choice of lc for fibrous materials on the micro-level are
shown as well as some issues of the method.

• Chapter 6: The implementation of Wu’s phase-field model into the FFT solver for het-
erogeneous materials is detailed and some illustrative numerical examples.
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• Chapter 7: The chapter is a general summary of this thesis and includes some sugges-
tions that should be interesting for future work.
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CHAPTER 1. INTRODUCTION OF MATERIALS AND MODELING TECHNIQUES

1.1 Chapter overview

In this chapter, first, a general introduction to composite materials and textile composites is
presented in Section 1.2, including their advantages, drawbacks as well as their hierarchical
structures to emphasize the importance of multi-scale modeling. Analytical modeling ap-
proaches are presented in Section 1.3. Numerical modeling techniques are shown in Section
1.4, as well as different meshing techniques such as the conformal mesh and the voxel-based
mesh. The Fast Fourier Transform (FFT) method is presented in section 1.5 with its advan-
tages, drawbacks, and recent improvements.

1.2 Material introduction

1.2.1 Composite materials

Using materials to make tools is a characteristic of human beings compared to other species.
From wood, stone to modern materials, studying and improving materials are the main lines
of human civilization evolution. However, commonly, each material has specific properties
that make it interesting for certain applications only. For example, concrete is cheap and
relatively light, but it can break apart easily under tension. By contrast, steel is strong but
expensive and heavy. An idea is to pour the concrete around pre-stressed metal bars to form
a cheap, relative light, and strong material. This kind of material is called composite material,
in which two or more different constituents are combined [1]. Composite materials have
been widely used in human civilization for thousands of years, like the bow in ancient China,
which is made of wood and leather in which the wood offers rigidity, and the leather offers
toughness.

In modern industrial domains (aerospace, automotive, marine, civil infrastructure, chemical
processing equipment, and sports), composite materials have been used with outstanding
success over several decades due to their superior mechanical performance, high damage
tolerance, excellent corrosion resistance, and stable physical properties [2–4]. Based on
recent data, the application of composites in Boeing airplanes grew from 1 percent in 1969
to 50 percent in 2010 [5]. From the view of reinforcement type, composites can be separated
as particle reinforced, fiber-reinforced, and structural composites. According to the fiber
architecture, structural composites can be subdivided into laminated composites and textile
composites in which the fibrous reinforcements are interlaced in multiple directions [3, 4].

However, despite using 2D laminates for a long time, their uses have been limited by manu-
facturing problems and inferior mechanical properties. Due to the requirement of dedicated
labor (manual lay-up of plies) and expensive facilities, the manufacturing of laminates can
be costly. Besides, the wide application of prepreg and fabric plies adds to the difficulty of
molding complex shapes. As a result, numbers of machined laminate parts need further pro-
cesses to build up a complex part. These manufacturing issues limit the widespread use of
laminates in the structures of airplanes [3].

To overcome the problems with the manufacturing and mechanical properties of laminates,
over the past 30 years, considerable attention has been given to the development of ad-
vanced polymer composites reinforced with 3D fiber architectures, which are called textile

2



CHAPTER 1. INTRODUCTION OF MATERIALS AND MODELING TECHNIQUES

composites. They are composed of textile reinforcements combined with a binding matrix
(usually polymeric), and the term "textile" is used to describe an interlaced structure con-
sisting of yarns.

In textile composites, on the one hand, the 3D mechanical properties are improved thanks
to the complex interlaced structures. On the other hand, textile reinforcements can be pro-
duced in massive quantities at a reasonable cost by using modern, automated manufac-
turing techniques. That makes textile composites at the center of the cost and performance
spectra, offering significant opportunities for new applications of polymer composites. Thus,
they are attracting growing interest from both the academic domain and industry [6].

Following the fabrication techniques, the textile composites can be classified into several
families, such as woven fabrics (weaving process), braided fabrics (braiding process), non-
crimp fabrics (stitching or knitting processes), and nonwovens [3, 7–9]. Among all the above
techniques, weaving is most used thanks to its high production speed and great flexibility to
produce a diverse range of 3D composites [7, 8].

1.2.2 Hierarchy of textile composite material

Fiber is the most basic material, which is usually defined as textile raw material. In the man-
ufacturing process, fibers are assembled into yarns by twisting or non-twisting techniques
and then fibrous plies and textile composite. Consequently, an important feature of tex-
tiles is their hierarchical nature, which can be distinguished into three levels and associated
scales:

• Fibers at the microscopic scale.

• Yarns at the mesoscopic scale.

• Fabrics at the macroscopic scale.

Each scale is classified by a characteristic length which can be 0.01 mm for fiber diameter,
0.5–10 mm for yarn diameter and repeating unit cells, and 1–10 m and above for textile struc-
tures. Each level is also characterized by dimensionality, where fibers and yarns are mostly
one-dimensional while fabrics are two- or three-dimensional. Comprehending this hierar-
chy is helpful to understand the structure and the mechanical behavior at each scale and
hence eases the material design as well as its optimization. [7]

At the design stage of textile composites, figuring out the mechanical properties is an essen-
tial step. Although WWFE can provide them authentically [10], it is often on a large scale
(e.g., macroscopic scale). When meeting issues that need to be studied at a fine scale (e.g.,
local mechanical or damage fields), the experimental tests are usually expensive and some-
times even impossible. Hence the effort goes into the development of mathematical tools to
predict the performance analytically or numerically.
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1.3 Analytical modeling techniques for composites

1.3.1 Overview

Many simple yet effective analytical methods have been proposed in the literature to com-
pute the properties of heterogeneous materials. This is achieved using a multi-scale ap-
proach [11], which, for textile composites, generally consists of two homogenization steps
that are presented as follows:

• The first is at the microscale level to obtain the properties of yarns.

• The second is at the mesoscale level from yarns to the final composite properties.

They correspond to the hierarchy of textile composite introduced in Section 1.2.2.

1.3.2 Micromechanics

Homogenization at the microscale can be achieved by micromechanical models [12–15].
The most used one is the rule of mixtures, which incorporates the Voigt [16] and Reuss [17]
models and considers that the materials are arranged in parallel along the longitudinal di-
rection and series in the transversal direction. Next, the Chamis model [18, 19] considers
a square reinforcement instead of a cylindrical one hence improving the calculation of the
transverse and shear modulus while the longitudinal properties stay the same as in the rule
of mixtures. Finally, Eshelby derived analytical solutions for a set of problems involving el-
lipsoidal elastic inclusions in an infinite elastic matrix [20, 21].

However,it should be kept in mind that these solutions are often referred to as non-inter-
acting approximations and are only valid for small inclusion volume fractions. Generally,
they give dependable results only for an inclusion volume fraction Vi

f < 0.1. In this case,

each inclusion can be assumed to be loaded by the same far-field stress σ0, so that the con-
tributions of each inclusion into additional strain can be treated separately [22].

Models for reinforcement volume fraction exceeding a few percent must account for the
interactions between local constituents. This is the case of the Mori-Tanaka scheme [23],
which, following the work of Eshelby, approximates the far-field stress acting on an inclu-
sion by an appropriate matrix overall stress. Besides, the self-consistent model is also under
the category of interacting models, where the stress acting on the inclusion stays the far-field
stress, but the matrix is replaced by an effective medium.

Moreover, many other micromechanical models have been proposed during the past cen-
tury, such as the Hashin and Rosen models [24], which have been improved in [25] for trans-
verse shear properties, the Halpin-Tsai model [26], and the bridging model [27, 28]. A com-
parative study can be found in [29–31].

1.3.3 Mesoscopic scale homogenization techniques

At the mesoscopic scale, the analytical modeling research in predicting mechanical prop-
erties of textile composites is encouraged and supported by the need for accurate and less
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complicated models that would consume less computation time as compared to numeri-
cal methods [32–34]. The availability of dependable and flexible 3D models is necessary for
research and development in advanced industries. Available analytical models for the meso-
scopic scale can be divided into the following categories: Classical Laminate Theory (CLT),
iso-strain/iso-stress models, mixed iso-strain-stress models, inclusions methods, and the
Method Of Cell (MOC).

For 2D woven fabrics, three basic models have been proposed successively based on the pi-
oneering work of Ishikawa and Chou [35–38] by using the CLT: the mosaic model, the undu-
lation model, and the bridging model. The idea of iso-strain/iso-stress models was initially
proposed in [39, 40] to discretize a Representative Volume Element (RVE) into asymmetrical
ideal cross-ply laminate blocks and then assemble them under parallel/series conditions.
This idea works well to predict the properties of 2D woven composites [41].

Figure 1.1: Schematic of three models proposed by Ishikawa and Chou [36]: (a) mosaic model, (b)
undulation model, and (c) bridging model.

To overcome some drawbacks of single iso-strain or iso-stress assemblage, researchers have
proposed mixed iso-strain-stress models, such as the parallel-series (PS) scheme [42, 43] and
the 3SHM scheme [44, 45]. The PS scheme proposes to first assemble the sub-volumes across
the loading direction under iso-strain condition (parallel) and then along the loading con-
dition under iso-stress condition (series). As for the 3SHM scheme, the technique is clearly
explained in Fig. 1.2.

The most used inclusion model is based on the Mori-Tanaka (M-T) model, where the con-
tinuous yarns are divided into sub-volumes that are considered inclusions with circular or
elliptical cross-sections. Then the sub-volumes are assembled based on their local orienta-
tions (these orientations can be approximated by statistics) [46, 47]. It is shown that the M–T
model yields better results than the classical iso-strain model, especially with knitted fabrics
[46].

The last one is the MOC, of which the fundamental idea is the same as in the methods listed
above. The RVE is decomposed into a fiber-matrix system, where the properties are evalu-
ated by the Chamis model and then upscaled with a complementary energy minimization
technique [48]. Details are shown in Fig. 1.3. As a summary, a general comparison of meso-
scopic scale analytical modeling approaches can be found in [32].
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Figure 1.2: The principle of the 3SHM model [44].

1.3.4 Conclusions

A graphical overview is shown in Fig. 1.4, where models are classified based on their predic-
tive accuracy and computational efficiency. All these analytical methods are easy to imple-
ment and have a low computational cost.

Nevertheless, most analytical models are still based on the laminate theory and local ori-
entation average approaches. Usually, they have good predictive capabilities in the fiber-
dominated directions (e.g., longitudinal direction) but not in the matrix-dominated direc-
tions, which is problematic for transverse, shear, and out-of-plane properties. Moreover, the
real geometry of the complex structure of composites with their manufacturing defects, like
voids generation during a manufacturing process [49], is neglected. Additionally, material
damage is difficult to analyze using an analytical model.
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Figure 1.3: Scheme of decomposition and re-composition (multi-scale method) of the MOC [48].

Figure 1.4: The capabilities of the various mechanical modeling approaches for composites [48].
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1.4 Numerical modeling techniques for composites

1.4.1 Overview

As stated above, analytical approaches are practical but use restrictive assumptions. Thus,
numerical methods such as the Finite Element Method (FEM) become increasingly attrac-
tive to understand the behavior of heterogeneous materials like textile composites [50]. The
great advantage is that numerical modeling can be used to analyze a structure close to real-
ity. Applying contemporary image-based characterization techniques (e.g., micro-CT) and
the growing computational capability enable researchers to analyze exact structures and di-
verse mechanical behaviors.

Figure 1.5: Multi-scale modeling strategy for textile composites.

Nonetheless, a complete representation of the microstructure of a composite part in a single
model is far beyond the current computational capability, as such a model would have to use
micrometer-sized elements. Thus, multi-scale numerical (micro and meso-level) modeling
strategies (as shown in Fig. 1.5) have gained popularity to bridge the gap between different
material scales [51].

These strategies require a detailed description of the structures, as presented in the follow-
ing.

1.4.2 Microscale geometry modeling

The microscale geometry of textile composites corresponds to a distribution of fibers and
matrix in a domain. As mentioned above, modeling the whole domain is far beyond the
current computational capability, so that an acceptable window that can stand for the char-
acteristic size of the microstructure should be chosen for study. This small representative
microstructure is called Representative Volume Element (RVE).

Accordingly, the key part of microscale modeling is the fiber (and voids if the voids are con-
sidered [52]) arrangement. Naturally, the first type of arrangements are the structured dis-
tributions shown in Fig. 1.6. The simplest among these microstructures are the periodic
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hexagonal (PH0) and periodic square (PS0) arrangements. Their use to evaluate the effective
properties of composites can be traced back to the 1960s [53]. Models with hexagonal sym-
metry (CH3, RH2, CH1, and PH0) have been shown to predict transversely isotropic elastic
overall behavior more accurately than models with tetragonal (CS8, CS7, PS0) or mono-clinic
(MS5) overall symmetry. The same phenomenon was observed in [54], where the authors
concluded that the stress state in the square unit-cell is too homogeneous, so the contribu-
tions of the fibers to the overall response are underestimated. In contrast, the test results
from the WWFE show that the overall predictive capability of the square unit cell is better
than the hexagonal arrangement [54].

Figure 1.6: Several structured periodic fiber arrangements of fiber volume fraction V f = 0.475 [55].

Although structured fiber arrangements can give reasonable estimates of the properties un-
der longitudinal direction loading, the overall behavior under transverse mechanical load-
ing depends markedly on the arrangement of the phase [56]. Furthermore, in many cases,
simple periodic micro-geometries are insufficient to provide an adequate representation of
composites as fibers are randomly distributed in reality . Besides, the distributions of micro-
stresses and micro-strains in the composite also strongly depend on the fiber arrangement.

Based on all the above reasons, stochastic fiber arrangements are often introduced into the
composite microstructure generation. It was confirmed in [54] that the properties estimated
are improved with these arrangements, especially the shear stiffness. Recently, a study of
the influence of the RVE size on mechanical properties has shown that the influence of the
random distribution on global properties is negligible when the RVE size/fiber diameter ratio
L/d > 22 [57, 58]. The remaining question is how to introduce this randomness.

Nowadays, increased algorithms are developed to introduce a random packing arrangement.
They can be divided into two classes: statical construction and dynamic types. For construc-
tive methods, the assemblies of fibers are accomplished without dynamic motion simula-
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tion or fiber diameter resizing, e.g. Random Sequential Adsorption (RSA) [59], Triangulation
based method [60], Stienen model [61], Sedimentation method [62], Layer-wise method [63],
and Nearest Neighbor Algorithm (NNA) [64]. As for dynamic approaches, the most represen-
tative instance is the Molecular Dynamic (MD) [65] model.

Each method has its advantages and drawbacks. For example, the RSA approach is the first
suggestion because of its robustness. In contrast, with its maximum packing density around
65% [66], it cannot be used for high fiber volume fraction composites, like textile composites,
where the tow fiber volume fraction can reach 75% [67]. Except for RSA, NNA, and dynamic
approaches, an issue for all methods mentioned above is that they cannot avoid the fiber
contact problem. Recently, Liu [68] and Parvathaneni [69] have pushed and accomplished
magnificent work in their thesis. Liu proposed a 2D random microstructure generator based
on the MD approach to control the local packing fraction, while Parvathaneni modified the
NNA algorithm to have better computational efficiency and generate models that are statis-
tically equivalent to the real microstructure.

1.4.3 Mesoscale geometry modeling

Mesoscopic scale modeling is an important bridge that connects the microscopic and mac-
roscopic levels. Lomov et al. [70] introduced a complete roadmap for numerical modeling
of textile composites at the mesoscale: from the yarn geometrical modeling and meshing
techniques to the boundary conditions and damage modeling. Because of the structural
complexity of yarns, mesoscale modeling can be classified into two categories: idealized
model and realistic model.

Idealized model

The "idealized model" means a simplification from the real shape. This kind of idealization
can be used to estimate macro-mechanical properties of 3D orthogonal woven composites
[71] but also to study the damage growth in woven composites [72]. Based on state of the art
[34, 70, 73, 74], these geometrical simplifications can be summarized as follows:

• Simplified yarn cross-sections, such as ellipsoidal, lenticular, racetrack, etc.

• Constant yarn cross-section.

• Functional binder yarn propagation path.

• Alignment of warp and weft yarns.

This kind of simplified geometries of textile composites can be easily constructed with avail-
able software: TexGen [75] and WiseTex [76].

Textile composites can also be modeled by the Digital Element Method (DEM), which has
first been proposed in [77] and [78]. In the DEM, each yarn is modeled as a bundle of 1D
element chains, and yarns are connected with the use of frictionless pins (as shown in Fig.
1.7). Thus, some complex behavior, such as yarns sliding, can be represented. Moreover, the
yarn undulations and varying cross-sections can be well-reproduced [79].
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Figure 1.7: Modeling of a binder yarn by the DEM [78].

Besides, an analytical approach, which assumes that the yarn geometry can be generated
by interpolating several cross-sections along two orthonormal planes, has been proposed in
[73].

Realistic model

A "realistic" model should reproduce all characteristics of the textile geometry as close as
possible to reality. With the growth of image treatment techniques, these models are usually
constructed from an SEM image. The first attempt has been presented in [80]. The main part
of this work has been the image processing on a 2D microscope image, as presented in Fig.
1.8. The yarns perpendicular to the image have been figured out by block detection, and the
undulated yarns have been modeled by segments that were designed to fit the neighboring
above yarns cross-section closely.

A 3D model reconstruction method has been proposed by Naouar et al. in [81]. The authors
applied segmentation slice by slice to identify the matrix, warp, and weft yarns and then
assign different properties to these identified constituents.

1.4.4 Meshing technique

During several decades of application of FEM, the conformal (body-fitted) mesh has been
the most desirable approach because it can capture the real geometry of the microstructure.
For modeling textile composites, due to their complex shape, tetrahedra are typically used
[82–84] despite their lower performance as compared to hexahedra [85]. Although several
examples use hexahedral or hexahedral dominant meshes [86–88], the meshing procedure
is complex. In the conformal mesh, nodes of matrix and yarn elements at the interface be-
tween the two different material phases are shared. However, automatic meshing tools for
modeling realistic and complex 3D woven architectures often lead to non-physical interpen-
etrations and voids at the contact zones between yarns (shown in Fig. 1.9).

Consequently, manual control algorithms for conformal mesh generation have been devel-
oped, such as in [89]. These algorithms work in three steps:
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Figure 1.8: The illustration flow chart of realistic modeling process based on a microscopic image
[80].

Figure 1.9: Illustration of non-physical voids and interpenetrations at the contact zone between two
yarns [89].

• Step 1 (Fig. 1.10(a)): Draw the real shape of yarns with some techniques, such as de-
scribing the form of the yarn by cross-section and path equations [70, 74]. Hence for
each cross-section curve and path curve, there will be an intersection point.

• Step 2 (Fig. 1.10(b)): Calculate the distance between intersection points among con-
tacting yarns. If the distance is less than a specific value, this intersection point is
defined as a contacting point.

• Step 3 (Fig. 1.10(c)): Use these contacting points as nodes and generate the mesh.

The above instance [89] has been adopted by Doitrand et al. [83], who modeled a multi-layer
woven composite and studied the influence of layer shifts. Other conformal mesh generation
techniques also exist, such as in [74, 90], which are not discussed here.
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(a)

(b)

(c)

Figure 1.10: General algorithm to generate a conformal mesh along the contact zone between yarns
[89].

Furthermore, another technique called the Domain Superposition Technique (DST) has been
proposed in [91] and applied for predicting the stiffness matrix of a weave-reinforced com-
posite [92]. In the DST method, the matrix domain is the global domain leaving the yarns on
independent meshes. A coupling technique between the domains ensures the continuity of
displacements while the properties of the yarns are corrected due to the superposition.

In summary, the manual mesh control algorithms are usually complex and computationally
demanding. Meanwhile, the DST method is neither straightforward to apply nor cannot be
representative of interactions between two materials.

Consequently, a voxel-based (pixel in 3D) mesh may be preferred to overcome the difficulties
of conformal mesh generation. According to [93], the generation of a voxel mesh for textile
composites can be divided into three steps:

• Step 1: Create a big voxel mesh box filled with the matrix material.

• Step 2: Establish the real geometry of yarns.

• Step 3: Assign all voxels inside the yarns geometry as yarns voxels determined by cal-
culating the position of the voxel center point.

Fig. 1.11 illustrates voxels assignment on varied materials, with the matrix in gray and the
yarn in red. Voxel-based meshes have two obvious advantages. The first is that there is no
yarn interpenetration and thus no need for manual control. The second one is the straight-
forward establishment of a realistic model from images obtained using micro-CT or SEM,
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Figure 1.11: Assignment of voxels to yarns for different voxel sizes [93].

as described in Section 1.4.3. Hence, the voxel-based mesh is attracting increased attention,
especially for complex structure modeling, such as the study of elastoviscoplasticity in poly-
crystalline [94], the study of realistic waviness in textile composites [79], progressive damage
in triaxially braided composite [95], etc.

Using a voxel-based mesh does not come without drawbacks:

• Since the element boundaries do not follow the yarn surfaces, artificial contacts be-
tween yarns are introduced, as shown in Fig. 1.12(a).

• Isolated matrix elements: the center of these elements are located within the matrix,
but most of their volume belongs to one or several yarns, as shown in Fig. 1.12(a).

• Strong numerical oscillations lie along the interface between yarns, which can be due
to the non-smooth discretization of the interface, as shown in Fig. 1.12(b).

(a)
(b)

Figure 1.12: The drawbacks of voxel-based mesh: (a) isolated matrix elements and artificial contacts
(yarns are represented in red and blue while the matrix is in gray), (b) strong numerical oscillations in
the results [93].

The first issue cannot be solved but can be reduced by refining the mesh. The second prob-
lem can be solved by reassignment:

• Re-calculation: calculate the volume fraction of yarns and matrix in these elements.

• Re-assignment: if the matrix volume fraction is lower than the volume fraction of at
least one of the yarns in these elements, it is then assigned to the yarn with the biggest
volume fraction in the element [93].
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The third drawback, which is the most severe, can be reduced by the average smoothing
method proposed by Fang et al. [96]. In this method, for each voxel along the interface, the
stress state is averaged with neighbor voxels in one or several layers with a weight function.
The results in [96] have proven that the oscillations can be significantly reduced by using this
technique, and the damage patterns were also better predicted.

1.4.5 Conclusions

In the early 20th century, due to the lack of modern computers, many simple but effective
and robust analytical approaches have been proposed by researchers for both microscopic
and mesoscopic scale modeling of composite materials.

With the development of computers, more attention is transferred to numerical methods.
One of the most used methods in the industry and research is the FEM. Thanks to the con-
tributions of researchers and engineers over decades, the accuracy and fidelity of FEM have
been proven in many domains. Relying on modern computers and imaging techniques, in-
creasingly complex structures of materials can be represented realistically. This gives some
challenges to meshing techniques. The conformal mesh is usually the first choice because it
can capture the real shape of the model. However, for modeling complex structures, like tex-
tile composites, some drawbacks are hard to overcome, such as the interpenetration prob-
lem between yarns. Although some techniques exist for establishing full-conformal meshes,
it is often at the cost of tedious programming and significant computation time.

To overcome the issues of conformal meshing, the voxel-based mesh can be preferred. It gets
rid of the interpenetration problem and makes it easier to create realistic models directly
from images. Despite it presenting some drawbacks, the voxel-based mesh is an attractive
method for modeling complex structures, like textile composites.

The following section will present an alternative to the FEM with higher computational effi-
ciency for voxel-based meshes.
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1.5 Fast Fourier Transform method (FFT)

1.5.1 Overview

As presented in Section 1.4.4, the voxel-based mesh is a simple way of representing a ge-
ometry while overcoming some problems such as interpenetrations. In addition, it can be
created directly from an image. If image’s resolution is too fine, such as an image output
from micro-CT that can easily have over millions of voxels, the computational cost can be
too large for FEM. Although parallelization techniques have been proposed, such as domain
decomposition [97] and multigrid methods [98], their applications are not straightforward
[99]. Therefore, there is a demand for approaches that can be easier to parallelize. In 1994,
the Fast Fourier Transform (FFT) method was initially proposed by Moulinec and Suquet
[100–102] as a voxel-based methodology that does not need stiffness matrix assembling, un-
like conventional FEM.

In the FFT method, we can compute the overall properties of composites, as well as the lo-
cal distribution of stresses and strains. Its analysis is based on the Lippmann-Schwinger’s
equation, which is solved iteratively by employing the Green operator of a homogeneous
reference medium. As mentioned above, FFT algorithms require data sampled in a grid of
regular spacing, allowing the direct use of digital images of the microstructure.

The local strain tensor is calculated by a convolution product with a fourth-rank Continuous
Green Operator (CGO) and a polarized term. The convolution product is transformed into a
simple tensorial product in Fourier space. The calculation of the polarized term and the CGO
multiplication are local operations that can be easily parallelized [99]. This is less straightfor-
ward for the computation of the FFT itself, but packages can easily be found with different
parallel implementations of this operation (such as FFTW [103]). Consequently, large-scale
simulations based on full-resolution images can be performed with the FFT method.

During the last decades, FFT-based methods have been applied to investigate a wide range
of physical phenomena in heterogeneous media, such as eigenstrains / thermal strains [104,
105], crystal plasticity [94, 106–110] and damage [111, 112]. A number of physics in different
types of composites have been investigated, such as the thermoelastic properties of Alu-
mina/Al composites [113], the Kapitza interface resistance of composite conductors [114],
the damage analysis of SiC/SiC materials [99], the rate-dependent behavior of resin-bonded
nonwoven structures [115], the effect of heterogeneous interphase on unidirectional fiber
composites [116], the damage of laminates [117] and the damage analysis of textile compos-
ites [118, 119].

The FFT method proposed by Moulinec and Suquet relies on a fixed-point scheme (“basic
scheme”), which consists in iteratively updating the polarized stress and reapplying the con-
volution with the CGO through FFTs until convergence. In the following, the mathematical
description of the FFT method proposed by Moulinec and Suquet is presented.

1.5.2 Mathematical description of basic scheme

As shown in Fig. 1.13, the mechanical behavior of a composite material composed of fibe-
rs and a matrix is governed by the individual behavior of each constituent and by its mi-
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Figure 1.13: Scale separation for composite materials.

crostructure. Its effective response to a prescribed path of macroscopic strains or stresses
can be determined numerically via the solution of a local problem on an RVE. This RVE is as-
sumed to be a periodic unit-cell V composed of divergent phases that are perfectly bonded,
with continuous displacements across interfaces.

The displacement, strain, and Cauchy stress fields are denoted u, ε, and σ respectively. Note
that the local strain ε (x) and the displacement u (x) fields can be split into the spatial average
and fluctuation terms, which are expressed as follows:

ε (x) = ε∗ (x)+〈ε〉 or u (x) = u∗ (x)+〈ε〉.x, (1.1)

where ε∗ (x) and u∗ (x) are the local fluctuations of the strain and displacement fields respec-
tively with u∗ (x) being periodic, and the operator 〈−〉 is the spatial average. The macroscopic
strain is hence a uniform overall strain that is defined as equal to the spatial average of the
strain field ε (x) over the domain. Defining the local fourth-order stiffness tensor as C (x) and
introducing a reference material with fourth-order stiffness tensor C0, Hooke’s law for linear
elasticity is written as:

σ (x) = C0 : ε (x)+τ (x) , ∀x ∈ V, (1.2)

where τ (x) = (C (x)−C0) : ε (x) is called the polarized tensor. Usually, the optimum choice of
reference material is

λ0 = max(λi )+min(λi )

2
, µ0 =

max
(
µi

)+min
(
µi

)
2

, (1.3)

with λi and µi the Lamé coefficients of the constituents. It can be shown [100] that the equi-
librium equation

div(σ (x)) = 0, ∀x ∈ V (1.4)

combined with the constitutive equation in Eq. (1.2) is equivalent to the periodic Lippmann-
Schwinger equation

ε (x) =−Γ0 (x)∗τ (x)+〈ε〉, ∀x ∈ V, (1.5)

where ∗ denotes a convolution product and Γ0 is the fourth-order tensor field that is called
Green operator. Meanwhile, the strain ε (x) should satisfy the compatibility equation.

ε (x) = 1

2

(∇u (x)+ (∇u (x))T)
, (1.6)
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The ∇ means gradient operation, and (−)T is the matrix transpose operator. Solving Eq. (1.5)
is not an easy task in real space because the numerical computation of a convolution product
is complicated. At the same time, the term Γ0 is easier to calculate in Fourier space. Thus,
Eq. (1.5) can be easily written in Fourier space as follows:

ε̂ (ξ) =−Γ̂0 (ξ) : τ̂ (ξ) , ∀ξ ̸= 0, ε̂ (0) = 〈ε〉, (1.7)

where the convolution is transformed into a double contraction. Here ε̂, Γ̂0 and τ̂ are the
Fourier transforms of ε, Γ0 and τ respectively. The vector of frequency, denoted by ξ, varies
in Fourier space.

Eq. (1.2) is nonlinear because of the polarization tensor. It can be solved using an iterative
fixed-point scheme:

Initialization:

(a0) ε0 (x) = 〈ε〉, ∀x ∈ V

(b0) σ0 (x) = C (x) : ε0 (x)

Iteration (i +1): εi and σi are known

(a) τi =σi −C0 : εi (x)

(b) τ̂i = F
(
τi

)
(c) ε̂i+1 (ξ) =−Γ̂0 (ξ) : τ̂i (ξ) , ∀ξ ̸= 0, ε̂ (0) = 〈ε〉
(d) εi+1 = F−1

(
ε̂i+1

)
(e) σi+1 (x) = C (x) : εi+1 (x)

(f) Convergence test: ∥〈εi+1−εi 〉∥
∥〈εi+1〉∥ ≤ e

(1.8)

Here ∥−∥ is the L2 norm, −i is the iteration count, and F() and F()−1 are the Fourier transform
and its inverse. The iterative algorithm (1.8) is stopped when the convergence condition is
satisfied (e = 1.10−12 in our calculations).

In numerical calculations, the DFT is used. The unit cell is discretized into a regular grid of
N1 ·N2 pixels in 2D cases and N1 ·N2 ·N3 voxels in 3D problems. For 3D cases, the coordinates
of each voxel labeled by i1, i2, and i3 are

x (i1, i2, i3) =
((

i1 − 1

2

)
T1

N1
,

(
i2 − 1

2

)
T2

N2
,

(
i3 − 1

2

)
T3

N3

)
,

with
i1 = 1...N1, i2 = 1...N2, i3 = 1...N3,

and Ti is the period of the unit cell in the i th direction. The definition of the discrete fre-
quencies ξi depends on whether Ni is even or odd. For the odd discretization types as those
used throughout this thesis, the discrete frequencies are given by:

ξi =−Ni −1

2

1

Ti
, ..., − 1

Ti
, ,

1

Ti
, ...,

Ni −1

2

1

Ti
.

The definition for even Ni can be found in [102, 120].
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The Green operator of Moulinec-Suquet (Γ̂M−S
0 )

Accompanied by the proposition of FFT methods, the expression of the Green operator was
also given in [101] and detailed in [102]. Following Eqs. (1.1), (1.2), (1.4) and (1.6), the expres-
sion of Γ̂M−S

0 (ξ) (the notation of the Green operator of Moulinec-Suquet in Fourier space)
depends on the choice of reference material. In most studies, even for anisotropic materials,
an isotropic reference material is chosen. In this case, Γ̂M−S

0 (ξ) is

Γ̂M−S
0,i j kl (ξ) =

(
δkiξlξ j +δl iξkξ j +δk jξlξi +δl jξkξi

)
4µ0∥ξ∥2

− λ0 +µ0

µ0
(
λ0 +2µ0

) ξiξ jξkξl

∥ξ∥4
, (1.9)

whereµ0 and λ0 are the Lamé coefficients of the reference material. The Dirac delta function
is denoted by δ. Eq. (1.9) is valid only if ξ ̸= 0. Otherwise,

Γ̂M−S
0 (0) = 0. (1.10)

Because Eqs. (1.4) and (1.6) are continuous, Eq. (1.9) is also continuous. In numerical cal-
culations, the domain is discretized by voxels. Thus, the DFT is applied and the local fields
u, ε and σ are always calculated at the centroid of each voxel. In the DFT, ξ is discretized
in limited series where the high frequencies are ignored. Therefore, the Green operator of
Moulinec-Suquet can also be called the “truncated Green operator”.

1.5.3 Advantages and drawbacks of FFT

The advantages of the FFT method can be seen in Section 1.5.2. One is that global stiffness
assembly is avoided in contrast to the FEM, another is that most operations are local, hence
helping the parallelization. The two global operations, namely the Fourier transform, and
its inverse can be easily parallelized with an available library, like FFTW [103]. As compared
to the DFT, the FFT relies on a divide-and-conquer algorithm to reduce the computational
complexity from O

(
N2

)
to O

(
NlogN

)
, where N is the size of the DFT matrix. With this simpli-

fication, on the one side, the complexity of calculation is reduced, and on the other side, the
DFT calculations become easy to be parallelized because the small matrix operations can be
calculated separately and then be assembled.

According to Fig. 1.14, FFT can give comparable results as FEM and significantly reduce the
CPU time. Thus, it can be competitive, especially in simulating complex structures (e.g.,
textile composites).

Despite all the advantages above, the FFT method presents several drawbacks:

• Fig. 1.15(a): The convergence of the basic scheme sharply decreases when the me-
chanical contrast increases between constituents, and convergence cannot be achiev-
ed for infinite contrasts. Simulating the voids content in the material can be difficult.

• Fig. 1.15(b): The convergence also strongly depends on the choice of the reference
material introduced in the method.

• The FFT method can only work with voxel-based mesh, so the mesh cannot be con-
formal nor be adapted or refined only in some regions. Furthermore, it is not possible
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(a) (b)

Figure 1.14: Comparisons between FFT and FEM on (a) macro-level σ− ϵ relation and (b) CPU time
(8 cores parallelization) (reproduced from [121]).

to duplicate nodes or introduce zero-volume interface elements to introduce cracks or
contact zones. In other words, for a model resolved in FFT solver, the voids and pre-
cracks should also be meshed and assigned with certain properties, although this may
not be physical.

• Fig. 1.15(c): The voxel-based models show strong oscillations around the interface
between phases.

Another characteristic of the FFT method is that the local fields are intrinsically periodic.
This facilitates the modeling procedure for periodic microstructures. However, in the case of
non-periodic microstructures, some specific modification should be introduced to cut the
periodicity.

(a) (b) (c)

Figure 1.15: Some drawbacks of the FFT basic scheme algorithm (reproduced from Lionel Gelebart -
FFT-based solvers to evaluate stress distributions in RPV steels - SOTERIA Training School 2018).

1.5.4 Improvements of FFT methods

Since 1994, many researchers have contributed to the development of the FFT method and
have proposed solutions to overcome its drawbacks. In 1999, Eyre and Milton [122] intro-
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duced an accelerated scheme which replaces the operation εi+1 (x) =−Γ0 (x)∗τ (x)i +〈ε〉 by

εi+1 = εi +2(C+C0)−1 : C0 :
(
−Γ0 ∗τi −εi +〈ε〉

)
. (1.11)

In contrast to the basic scheme, in this accelerated scheme, εi+1 satisfies the compatibility
condition only at convergence. The convergence rate of this accelerated method is propor-
tional to the square root of the contrast between the phases, and the optimum choice of
reference material can be expressed as:

λ0 =−
√

max(λi ) ·min(λi ), µ0 =−
√

max
(
µi

) ·min
(
µi

)
. (1.12)

Eyre and Milton improved the convergence rate at high contrast scenarios, nevertheless,
it cannot deal with infinite contrast problems that often occur in the presence of voids or
pre-cracks.

In 2001, J.C. Michel et al. [123] proposed an augmented Lagrangian scheme to overcome the
difficulty at infinite contrast. In this scheme, the value of C0 should be determined experi-
mentally for every studied microstructure and contrast value, which may be a limitation.

In 2010, Zeman et al. [124] and Brisard [125] proposed simultaneously the use of Conjugate-
Gradient (CG) based solvers that can improve both the sensitivity to the phase contrast and
to the choice of reference material.

Zeman et al. [124] found that the relation between microscopic strain fields and imposed
macroscopic loading strain with the FFT method can be written in a matrix form as:

(I+B) : ε= 〈ε〉. (1.13)

The Eq. 1.13 can yield at the mth iteration a strain field in the form

εm =
m∑

i=0
(−B)i : 〈ε〉 (1.14)

which is suitable for a CG solver. Brisard and Dormieux [125] have proposed to use the
Hashin-Strikmann energy principle to solve the problem instead of using the basic scheme,
but the principle stays the same.

In 2013, Gélébart and Mondon-Cancel [126] proposed a combination of the Newton-Raphson
algorithm and the CG solver to accelerate the convergence for nonlinear behavior. Based
on their results, it can be concluded that this combination is more efficient than the basic
scheme for strongly nonlinear materials.

1.5.5 Conclusions

In this section, the FFT method is briefly introduced as well as its mathematical description.
As shown in Section 1.5.2, the global assembly of the stiffness matrix is not necessary, and
the all operations can be easily parallelized thus making the FFT solvers much faster than
conventional FEM solver for voxel-based meshes.
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Figure 1.16: Number of iterations at convergence as a function of the (a) elastic contrast (Young mod-
uli ratio) and as a function of the (b) reference material for an elastic contrast of 103 (α is multiplier of
basic scheme’s optimum reference [126]).

Although it also presents several drawbacks, improvements have been progressively pro-
posed since 1994. Section 1.5.4 only includes a few of these improved schemes and many
more can be found in the literature [127–131].

Thanks to the superiority in computational efficiency compared to the conventional FEM
solvers, the FFT solvers are progressively applied in various domains where voxel-based
meshes are preferred. Apart from the applications presented in Section 1.5.1 in the form of
published papers, many works have been carried out and published in Ph.D. thesis reports.
Chen [132] has studied the damage mechanisms in SiC/SiC composites tubes to help the
development of new-generation nuclear reactors; M.T. Nguyen [133] has studied the con-
ductivity and the elastic properties of composites and polycrystals, and proposed the ap-
plication of the FFT method to study the Stokes flow problem in a porous microstructure;
Chariere [134] has studied the mechanical behavior of composites with hollow spherical in-
clusions to help to manufacture lighter composites; Gallican [135] has studied the viscoelas-
tic behavior of polymer-based composites; Eloh [136] has studied the X-ray diffraction peaks
of single crystals under external loading and the presence of linear defects such as disloca-
tion loops, and D.V. Nguyen[137] has studied the mechanical behavior of chromium coating
on a zirconium alloy substrate under the room temperature environment to help the design
of nuclear reactors.

1.6 Chapter conclusions

In this chapter, the general introduction of material and modeling techniques have been
presented. Analytical modeling is the most straightforward approach to predicting material
behavior but shows a deficiency in studying complex behaviors. Numerical approaches such
as FEM are more advanced and can simulate realistic models and complex behaviors.

In the FEM, the conformal mesh is the most used technique, as it can represent the real
shape of the model. However, in the case of complex structures, such as textile composites,
an interpenetration problem between different yarns often occurs. Even if solutions have
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been proposed, their implementation complexity and computational cost are prohibitive.
Voxel-based mesh, where the regular cube mesh is used, is attracting more attention since
it can overcome some drawbacks of conformal mesh and have the capability to create the
model directly from the image.

Based on the voxel-based mesh, a much higher computationally efficient solver relying on
the Fast Fourier Transform (FFT) method was proposed in 1994. Unlike the FEM, the assem-
bly of the global stiffness matrix is avoided in the FFT method. Likewise, most operations
are calculated locally. These two characteristics can ease the massive parallelization to take
the advantage of modern computing systems. Thus, nowadays, the FFT method is widely
applied in various domains, and attracts many researchers worldwide.

Despite all the advantages for the FFT method, the drawbacks cannot be avoided. In this
chapter, we have discussed the first two drawbacks and their improved algorithms. For the
third drawback, the numerical oscillations, which is one of the focuses of this Ph.D. thesis,
details will be presented in the next chapter with a deep analysis on different causes of nu-
merical oscillations to identify the most severe one and a quantitative comparison among
improved techniques to find an optimal algorithm.
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CHAPTER 2. INSIGHTFUL AND QUANTITATIVE ANALYSIS OF THE CAUSES OF
NUMERICAL ARTIFACTS AND IMPROVED SCHEMES FOR FFT

2.1 Chapter overview

As discussed in Section 1.5.3, the numerical oscillation (artifact) in the presence of materials
discontinuities (heterogeneity) is one of the severe problems shown in the FFT solvers, which
affects their precision and fidelity. With the oscillated results, it is hard to do the proper
analysis and understand the mechanisms. Therefore, analyzing the causes of oscillations
and proposing improved methods to reduce them are important research topics on applying
of FFT methods in mechanics.

This chapter will principally follow our publication [138]. Reviews of possible oscillation
causes and improved schemes are presented respectively in Sections 2.2 and 2.3. Section 2.4
introduces the mathematical description of improved techniques chosen for analysis. The
quantitative comparison of different improved schemes is presented in Section 2.5. Finally,
The deep analysis of each cause of oscillations is shown in Section 2.6.

2.2 Oscillation causes reported in the literature

The first cause is the Gibbs phenomenon or Gibbs effect, initially proposed by Henry Wilbra-
ham in 1848 and rediscovered by J. Willard Gibbs in 1898 [139] and well known in signal pro-
cessing. It was reported in the mechanical field in [140–143]. Fourier series approximate
periodic functions by summing numbers of normal trigonometric functions with different
frequencies and and up to a given truncation frequency. With a higher truncation, more fre-
quencies can be included in the series, and the function’s approximation can be closer and
closer to the original function. Nevertheless, Gibbs found that the error between the function
and its approximation decreases but does not reach zero when the function is discontinuous,
even for a nearly infinite number of frequencies in the series. Instead, the error approaches
a finite limit of around 9% of the discontinuity amplitude (as shown in Fig. 2.1). In hetero-
geneous materials like composites, as the constituents generally have different properties,
local fields may be discontinuous, and this may lead to the Gibbs effect.

Figure 2.1: Illustration of Fourier series approximation using N frequencies for a square wave [141].
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The second cause, proposed in [102, 125, 140, 144] is that the Discrete Fourier Transform
(DFT) cannot satisfy Shannon’s theorem for mechanical fields. Although the Fourier trans-
form requires the frequencies (sampling frequencies) to cover the range from −∞ to +∞, the
DFT needs a finite frequency interval from a numerical point of view.

Shannon’s theorem, widely applied in signal processing, image processing, and wave record-
ing, requires the sampling frequency to be at least twice the cut-off frequency (i.e., the fre-
quency above which the Fourier transforms of the local fields vanish) to recover the full in-
formation. That is why, in the sound wave recording, a music CD is recorded with a sampling
frequency of 44.1 kHz to match the human ear capability of which the cut-off frequency is
around 20kHz.

It is not possible, however, to define a cut-off frequency for mechanical fields [102]. That
means there is no resolution of the model (generally, the sampling frequency is equivalent to
the model resolution), even if it is very fine, that can fully recover the local fields information
by using the FFT solver. Therefore, the Green operator proposed by Moulinec and Suquet is
always "truncated", leading to the numerical artifacts.

The third cause is the hourglass effect, which is considered as one of the most important
origins that can lead to numerical oscillations in FEM, and which has also been observed
for the FFT method in [145]. In Fig. 2.2, a 2D finite element with reduced integration is
presented with the center lines as dash lines. The intersection of those lines is the Gauss
point used for reduced integration. If this element is submitted to a shear strain with no
volume change as shown in Fig. 2.2, the lengths of the dash lines do not change nor the
angle between them, which means that all components of stress at the Gauss point are zero.
This mode of deformation is thus a zero-energy mode because no strain energy is generated
by this element distortion, leading to non-physical results. That is called the hourglass effect.
Since the FFT method computes all fields at the center of the voxels, which can be considered
as hexahedral finite elements with reduced integration formulation, it may be prone to the
same hourglass effect as the FEM with reduced integration.

Figure 2.2: Illustration of hourglass effect: (a) 2D finite element with reduced integration under a
volume-conserving shear strain, (b) Deformed element with no strain energy.

Finally, the fourth cause is linked to the nature of the discretization type used in the FFT
method, the voxel type mesh. Similar effects were observed in the FEM simulation of textile
composites and discussed in [93], where oscillations were formed mainly due to the zig-zag
interfaces between phases (as shown in Fig. 2.3).

In general, possible origins reported in the literature that led to non-physical artifacts in FFT
solvers can be summarized as follows:
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Figure 2.3: Comparison of local stress fields between voxel mesh and conformal (consistent) mesh of
textile composite for FEM [93].

• Gibbs effect,

• Non-satisfaction of Shannon’s theorem,

• Hourglass effect,

• Zig-zag interfaces between phases.

2.3 Improved techniques proposed in the literature

Over a decade, many researchers have worked to reduce these non-physical artifacts in FFT
solvers. In the Fourier transform, the low frequency represents the global change, and the
local fluctuations are always represented by high frequencies. Therefore, a simple approach,
proposed in [142], is to use low-pass filtering to dampen the results. However, the FFT al-
ready contains less information as compared to the continuous Fourier transform and low-
pass filtering would only lead to more information loss.

The second strategy in [143] is to use "attenuation factors" based on the DFT of linear spline
functions, which means an interpolation operation is carried out to fill the missing informa-
tion between the discrete values.

On the other hand, researchers found that the numerical oscillations in the FFT can be due
to the creation of the "truncated" Green operator. In the FFT-based algorithm, the appli-
cability of the DFT is based on the assumption that the function is periodic, which is not
the case in a space-limited computational domain. Therefore, another idea is to create a
quasi-continuous Green operator to match the perfect continuous Green operator as close
as possible.
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Consistent periodized discrete Green operators, established based on this idea, were pro-
posed in [125, 144] for FFT methods based on the Hashin-Shtrikman variational formulation
and in [140] for those based on the Lippmann-Schwinger equation. In the DFT, the sampling
frequency ξ varies from −∞ to +∞, but this is not possible in practice. However, thanks to
the periodicity, which is an intrinsic property of the Fourier transform, the frequency ξ can
be replaced by ξ = mN+ l , where l ∈ [0,N−1] and m varies from −∞ to +∞. Here N is the
resolution of the model. For example, for a two-dimensional model, the consistent Green
operator can be written as follows:

Γ̂cons
0

(
ξi j

)= (
i j

)
sinc

(
πi

N

)
sinc

(
π j

N

) ∞∑
m,n=−∞

(−1)m+n

(mN+ i )2
(
nN+ j

)2 Γ̂0

(
ξ(mN+i )(nN+ j)

)
, (2.1)

where m and n have the same meaning. Compared to the Green operator proposed by
Moulinec and Suquet, Eq. (2.1) gets rid of the dependency on the discretization of the real
model, which can be refined as needed by increasing m or n.

According to [140], the consistent Green operator can reduce the oscillations, and good re-
sults can be obtained when m is superior to 81. However, there are two main drawbacks. The
first one is that the peak stress computed using this operator is lower than that computed
using the M-S (Moulinec and Suquet) operator. It is also lower compared to the analytical
solution. Another issue is the computational cost, as the calculation of the consistent Green
operator is much more computationally demanding, especially for 3D cases. Therefore, a
filtering approach was finally used in [144].

Borrowing ideas from FEM and finite differences, another strategy is to compute Discrete
Green Operators (DGO) based on finite difference discretizations. This technique was firstly
reported in [146] and followed by Dreyer [147] and Brown [148] where a centered finite dif-
ference scheme was considered. Backward and forward finite difference schemes were pub-
lished by Willot in [149]. Because of its simplicity and robustness, this research direction
has been followed by many authors in the past few years and improved approaches have
been proposed [120, 150–153] and their efficiency has been proven on diverse applications
[154–157].

Among the different schemes, the discrete Green operator calculated based on the centered
finite difference scheme on a rotated grid, called “rotated scheme” [120], is one of the most
promising schemes. This scheme was implemented in the open-source software AMITEX-
FFTP [158] developed by Lionel Gelebart et al., and it was successfully applied in [156] for
solving field dislocation mechanics problems and in [159] for analyzing the failure mech-
anisms of a SiC/SiC composite. Another very interesting discretization scheme based on
linear hexahedral element was proposed by Schneider et al. [152] and adapted both to the
basic scheme and conjugate gradient solvers. This scheme was presented in two versions,
one with reduced integration and the other with full integration, similarly to FEM. It was
analytically demonstrated that the scheme with reduced integration is equivalent to the “ro-
tated scheme” proposed in [120].

In this section, four improved schemes are introduced. The first two, low-pass filtering and
interpolation schemes, may not be sufficient to fill up the lost information. The consistent
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Green operator can reproduce the continuous operator but it requires significant computa-
tional resources, especially in the 3D cases. The idea of calculating a DGO based on finite
difference schemes seems to get a balance between the accuracy and the computational
complexity. Therefore, the improved techniques proposed by Willot [120], and Schneider
[152] are chosen for deeper analysis as well as the original basic-scheme [100]. The mathe-
matical description of the Willot [120] and Schneider [152] schemes will be presented in the
next section.

2.4 Finite-difference based improved techniques

The green operator of Moulinec and Suquet proposed in [100–102] has already been pre-
sented in Section 1.5.2. The methods described here are the rotated scheme proposed by
Willot and Schneider’s scheme based on the linear hexahedral elements.

2.4.1 Willot’s rotated scheme

Two dimensions

Inspired by the finite difference technique, Willot modified the equilibrium equation and the
strain expression, shown in Eqs. (1.4) and (1.6). They are given as follows:

k̂∗
i (ξ) σ̂i j (ξ) = 0, ε̂i j = 1

2

[
k̂i (ξ) û j (ξ)+ k̂ j (ξ) ûi (ξ)

]
, (2.2)

where k̂∗ and k̂ represent the discrete divergence and gradient operators, respectively. A hat
(−̂) indicates a variable in Fourier space while no hat means the real space. In the tradition-
ally centered scheme, k̂ is usually taken as

k̂WI−C
i (ξ) = Jsin(ξi ),

which corresponds to the divergence of stress and the gradient of displacement:

∂ jσi j (x) ≈ σi j
(
x +e j

)−σi j
(
x −e j

)
2

, ∂ j ui (x) ≈ ui
(
x +e j

)−ui
(
x −e j

)
2

,

where ei and e j represent the unit directions that can be referred to as e1 and e2 in Fig. 2.4,
and J = p−1. In [149], where the forward-and-backward finite difference scheme was pro-
posed, the k can be written as:

k̂WI−W
i (ξ) = eJξi −1,

with the divergence of stress and the gradient of displacement:

∂ jσi j (x) ≈σi j (x)−σi j
(
x −e j

)
, ∂ j ui (x) ≈ ui

(
x +e j

)−ui (x) .

Integrating Eq. (2.2), the new Green operator reads:

Γ̂WI
0,i j kl =

{
k̂i (ξ)

[
k̂m (ξ)C0,m j kn k̂∗

n (ξ)
]−1

k̂∗
l (ξ)

}
sym

, (2.3)

where the symbol sym indicates the minor symmetrization with respect to the indices
(
i , j

)
and (k, l ). As stated previously, this definition is only valid for non-zero frequency vectors so
that Eq. (1.10) can still be applied. Also note that the Moulinec-Suquet Green operator can
be recovered if k̂i (ξ) is set as k̂i (ξ) = Jξi .
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However, the centered finite difference scheme cannot define the Green operator Γ̂WI−C
0 at

three frequencies ξ = (π,0), (0,π) and (π,π). At the same time, the backward-and-forward
scheme can break the symmetry in certain models. Therefore, the rotated scheme is pro-
posed to overcome that. In this scheme, the displacement field and the divergence of the
stress field are evaluated at the four corners of the pixels while the strain and stress fields are
evaluated at the centers of the pixels, where the rotation angle is normally 45◦. This is shown
in Fig. 2.4, where the original basis (e1,e2) superimposed and the rotated basis ( f1, f2) can be
expressed as follows:

f1 = e1 +e2p
2

, f2 = e2 −e1p
2

.

Figure 2.4: Illustration of Willot’s rotated scheme: A pixel with edges parallel to the original Cartesian
basis (e1,e2) and the rotated basis with 45◦ ( f1, f2). The strain and stress fields are evaluated at the
pixel center x. The displacement and the divergence of the stress field are output along the pixel
corners.

With this new basis, the local problem equations can be written as:

σi j (x) = Ci j kl (x)εkl (x) , (2.4a)

σi 1 (x)−σi 1

(
x −p

2 f1

)
+σi 2

(
x + f2 − f1p

2

)
−σi 2

(
x − f2 + f1p

2

)
, (2.4b)

εkl (x) = 1

2
p

2

[
uk

(
x + f2p

2

)
−uk

(
x − f2p

2

)
+ul

(
x + f1p

2

)
−ul

(
x − f1p

2

)]
, (2.4c)

where x is the pixel center and the x± fi /
p

2 are the pixel corners. Re-expressing Eq. (2.4) in
the original Cartesian basis and applying the Fourier transform, k̂ can be expressed as:

k̂WI−R
i (ξ) = J

4
tan

(
ξi

2

)(
1+eJξ1

)(
1+eJξ2

)
. (2.5)

If Ni is even, the frequency can be ξ= (π,π). Thus the k̂WI−R cannot be defined. An essential
treatment should be carried out that k̂WI−R = 0 and Γ̂WI−R

0 = 0.

Three dimensions

Following the same logic, in 3D, k̂WI−R
i can be extended as

k̂WI−R
i (ξ) = J

4
tan

(
ξi

2

)(
1+eJξ1

)(
1+eJξ2

)(
1+eJξ3

)
. (2.6)
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With the assumption of isotropic reference material, the full version of the Green operator of
Willot’s rotated scheme Γ̂WI

0 in the 3D case can be given as:

Γ̂WI
0,i j kl =

(
λ0 +2µ0

)(
ri r ∗

l δ j k
)

sym
+λ0

[(
ri r ∗

l s j k
)

sym
−Re

(
ri r ∗

j

)
Re

(
rk r ∗

l

)]−µ0ri r j r ∗
k r ∗

l

µ0

[
2
(
λ0 +µ0

)−λ0
(
r 2

1 + r 2
2 + r 2

3

)2
] ,

where ri = k̂i /∥k̂∥, r ∗
i = k̂∗

i /∥k̂∗∥, ∥−∥ is the L2 norm and s is the symmetric second-order
tensor:

s j j = 4Im
(
ri r ∗

k

)2 , s j k =−4Im
(
rk r ∗

j

)
Im

(
rk r ∗

i

)
, i ̸= j ̸= k.

Here Re(.) and Im(.) are the real and the imaginary parts of the complex values, respectively.

As shown in Fig. 2.5, the Green operator of Moulinec-Suquet and Willot with centered fi-
nite difference show strong oscillations that are reduced with the green operator of Willot
with the forward-and-backward scheme and the rotated scheme. Considering the forward-
and-backward finite difference scheme may break the symmetry. Consequently, the Γ̂WI−R

is chosen for subsequent analysis.

(a) Γ̂M−S . (b) Γ̂WI−C. (c) Γ̂WI−W . (d) Γ̂WI−R.

Figure 2.5: Comparison of local stress fields between different Green operators: (a) Green operator
of Moulinec-Suquet (Γ̂M−S), (b) Green operator of Willot with centered scheme (Γ̂WI−C), (c) Green
operator of Willot with forward-and-backward scheme (Γ̂WI−W), (d) Green operator of Willot with
rotated scheme (Γ̂WI−R) [120] (remark: (b), (c) and (d) are the schemes based on finite differences).

2.4.2 Schneider’s hex scheme

The work of Willot [120] is interesting not only for the new DGO based on the rotated scheme
but also for the comparison between various finite difference schemes and how they lead to
various discrete Green operators. Based on this work, Schneider et al. [152] proposed to
use the finite element method instead of the finite difference method to construct the DGO.
They compared two types of finite elements, viz. the classical trilinear hexahedral element
with full integration and the one with reduced integration.

Following the notations of [152], it is reminded that the coordinates of the integration points
for the reference fully integrated hexahedral element [0,1]3 are

zβ =
(
aβ1 , aβ2 , aβ3

)
,β ∈ {0,1}3

with a0 = 3−p
3

6
, a1 = 3+p

3

6
,

32



CHAPTER 2. INSIGHTFUL AND QUANTITATIVE ANALYSIS OF THE CAUSES OF
NUMERICAL ARTIFACTS AND IMPROVED SCHEMES FOR FFT

and the finite element basis shape functions φα are of the form:

φα =
3∏

i=1
hαi (zi ) ,α ∈ {0,1}3, z ∈ [0,1]3

with h0 (a) = 1−a,h1 (a) = a, a ∈ [0,1] .

(a) Nodes numbering of the trilinear hexa-
hedral reference element.

(b) The displacements are at the element
corners, and the strains are at the Gauss
points.

Figure 2.6: Nodal numbering and Gauss points for trilinear hexahedral finite elements.

Similarly to Eq. (2.3) the DGO for hexahedral elements is

Γ̂S
0 = BK

(
BH

K M0BK
)−1

BH
K ,

where BK is the discrete symmetric gradient operator and −BH
K is the discrete divergence

operator at voxel K. Note that BH
K is the Hermitian conjugate (the transpose of the complex

conjugate) of BK. The operator M0 is equal to C0 when using reduced integration. Otherwise,
M0 ∈R8×3×3×8×3×3 is defined as C0 applied independently at each integration point

M0,αi jβkl =
{

C0,i j kl ,α= β
0,α ̸= β ,α,β ∈ {0,1}3, i , j ,k, l = 1. . .3.

The formula for the discrete symmetric gradient operator BK is similar to that in Eq. (2.2),
whereas this symmetric gradient is now computed at each integration point β of each voxel
K and thus involves a gradient operator k̂K,β. There are always eight symmetric gradient
operators B̃K,β ∈C3×3×3 to compute per voxel:

• in full integration, BK = (
B̃K,β

)
β∈{0,1}3 ∈C8×3×3×3 and BH

K ∈C3×3×3×8,

• in reduced integration, BK = 1
8

∑
β∈{0,1}3 B̃K,β ∈C3×3×3 and BH

K ∈C3×3×3.

Consequently, we have

B̃K,βi j k = 1

2

[
k̂K,βi (ξ)δ j k + k̂K,β j (ξ)δi k

]
.
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The discrete gradient operator k̂K,β (ξ) ∈C3 is given by

k̂K,β,i (ξ) =
∑

α∈{0,1}3

exp

(
−2πJ

3∑
j=1

ξ jα j

N j

)
(−1)αi+1

∏
k = 1. . .3

k ̸= i

hαk

(
zβk

)
 ,

while satisfying Eq. (1.10).

2.4.3 Summary

In this section, two improved schemes, Willot’s rotated scheme and Schneider’s hex scheme,
have been presented. They improve the procedure of Green operator calculation to reduce
the spurious oscillations. It has been proven in [152] that the hex scheme of Schneider with
reduced integration is equivalent to the rotated scheme of Willot. It is reminded that reduced
integration is well known to produce numerical artifacts known as the hourglass effect in
FEM computations. A similar difference between reduced and full integration when using
FFT-based numerical methods has been reported in [145].

2.5 Quantitative comparison between FFTs and FEMs

When dealing with complex analysis, like damage analysis, the local response is important
(interface response in particular). As illustrated in Fig. 2.7, oscillations are also present even
with the rotated scheme and FEM as well. Besides, the oscillations of FEM and FFT are so
similar that they cannot be distinguished with only the figure.

Therefore, it is interesting to evaluate each cause of oscillations and analyze its impact, as
proposed in this section through:

• Quantitative comparisons of the influence of different Green operators using FEM re-
sults as reference for different models proposed in [101, 120, 152]) in order to conclude
on an optimal choice.

• Identification and analysis of the causes of spurious oscillations in FFT and evaluation
of their impacts quantitatively.

2.5.1 Introduction of test case models

This thesis focuses on numerical methods so that our conclusions should be as general and
universal as possible. However, it is challenging to generate a universal model for complex
structures like textile composites. To put in evidence all artifacts presented in section 2.2,
three simple but representative models are proposed in Fig. 2.8, and we call them models A,
B, and C.
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Figure 2.7: Illustration of spurious oscillations (check-board patterns) of local stress field (σxx )
present in FFT with rotated scheme proposed in [120] (left half part) and FEM (right half part) un-
der tension in x-direction with the contrast between the fiber and matrix Young’s moduli set to
E f /Em = 22.

Model A represents a case with two phases in parallel, thus without strain concentration
points. In model B, a square inclusion is inserted into the model, with four strain concen-
tration points. Note that the meshes of models A and B are intrinsically conformal if the
fiber/inclusion volume fraction (V f ) is chosen appropriately. As for model C, it is the same
as model B but with a circular inclusion. In model C, non-smooth zig-zag interfaces are
present and the mesh is not conformal anymore if it is a voxel-based mesh.

Note that these are 3D models, even though only one voxel is used in the z-direction, and
for model A, the width (size in y−direction) is also set as one voxel size. The fiber volume
fraction is set to VA

f = 0.6 for model A, VB
f = 0.36 for model B and VC

f = 0.55 for model C. For

all three models, phase 1 (red part) is assigned as fiber, and phase 2 (blue part) is the matrix.
The fibers are composed of E-Glass, while the matrix is Epoxy PMR-15 with properties as
shown in Table 2.1.

Material type E(MPa) ν

E-Glass 72 000 0.22

Epoxy PMR-15 3750 0.375

Table 2.1: The elastic properties of fibers and matrix [30].

In the following, the FFT method using the CGO of Moulinec-Suquet is denoted as M-S, the
method using Willot’s rotated DGO (equivalent to Schneider’s DGO with reduced integra-
tion) denotes W-S and the method using Schneider’s fully integrated DGO is denoted as SF .
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(a) (b) (c)

Figure 2.8: Illustration of the three models: (a) model A, (b) model B and (c) model C (remark: the size
along y−direction of model A is set as one voxel size).

Regarding the FEM, the voxel-based hexagonal FEM with reduced integration is called FEMR
while FEMF refers to the fully integrated FEM with the same mesh type as FEMR. Further-
more, it should be pointed out that all FFT results shown below are computed using an in-
house python code while the FEM results are calculated using the Abaqus software.

2.5.2 Mesh convergence test

At first, a mesh convergence test is performed on the three models for both FFT and FEM.
The mesh resolutions are denoted as NA, NB and NC for models A, B, and C, respectively. It
is defined here as the number of voxels in the x and y directions. The resolutions used for
model A are NA = 5, 15, 45, 135, and 405. The same resolutions are used for model B. The fiber
volume fraction is exactly obtained for both models for all chosen resolutions. For model C,
the target fiber volume fraction VC

f = 0.55 can never be perfectly reached due to the intrinsic

nature of voxel meshes, even with exceptionally fine resolutions. Therefore, the first step is
to for model C verify the fiber volume fraction convergence by varying the mesh resolution.
Then, for all models, the convergence in terms of macroscopic properties should be verified.
Herein, FEMR is taken as the reference.

As shown in Figs. 2.9(a) and (b), the macroscopic properties for model A do not show any
sensitivity to the model resolution. Different FFT methods as well as FEM show good con-
sistency for all resolutions on model A with respect to Ex and Gx y , where Ex means Young’s
modulus in x-direction and Gx y stands for shear modulus in x y plane. As shown in Figs.
2.9(c) and (d), macroscopic properties for model B are converged when NB ≥ 135. The con-
vergence for Ex occurs with iteratively improving lower bounds for all methods except for SF
which gives a higher bound. For Gx y , all methods give higher bounds.

As aforementioned, because of the intrinsic characteristic of model C, the mesh convergence
of fiber volume fraction is first verified, as presented in Fig. 2.10. The mesh convergence for
fiber volume fraction begins at NC = 75 (which corresponds to the red circle in Fig. 2.10).
Hence, the resolutions chosen for the tests of elastic properties convergence are NC =75,
225, 375, representing the small, medium, and large resolutions, respectively.
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(a) (b)

(c) (d)

Figure 2.9: The variation of elastic properties (Ex and Gx y ) of different FFT algorithms with different
resolutions: (a) and (b) are for model A, (c) and (d) are for model B (remark: in all four figures, the
curves of W-S and FEMR are superimposed, and the curves colors are the same for (a)-(d)).

Table 2.2 presents the mesh convergence of model C. The Relative Errors of Properties (REP)
are calculated as follows

REP = EFFT −EFEMR

EFEMR
,

where E stands for the elastic modulus (Ex or Gx y ).

As shown in Table 2.2, the properties of model C significantly depend on the fiber volume
fraction (VC

f ). From NC = 75 to 225, the VC
f decreases from 0.5508 to 0.5502, and the Ex value

drops around 100 MPa, which cannot be neglected. From NC = 225 to 375, this change on the
properties becomes more acceptable. Furthermore, the relative errors of all FFT methods are
smaller than 1% for NC ≥ 225. Thus, for model C, the choice of resolutions in the following
begins at NC = 225.

37



CHAPTER 2. INSIGHTFUL AND QUANTITATIVE ANALYSIS OF THE CAUSES OF
NUMERICAL ARTIFACTS AND IMPROVED SCHEMES FOR FFT

Figure 2.10: The variation of fiber volume fraction of model C with different resolutions with a target
VC

f = 0.55.

Based on the tests above, we can see that FFT methods can accurately calculate the homoge-
nized elastic properties. The error between FFT methods and FEM is typically less than 0.1%.
Considering that the FFT methods have a significant advantage in computational efficiency,
they can be a desirable alternative to FEM. This is only about the homogenized properties,
however, and the local responses still need to be assessed. Hence, in the next section, the
quantitative comparison of local responses will be presented to show the difference between
FEM and FFT methods.

2.5.3 Quantitative comparison of local responses

In this part, all three models are subjected to a macroscopic strain along the x- direction
(transverse direction) with a value 〈ε〉xx = 0.001 while stress-free conditions are imposed in
the other directions (〈σ〉y y = 〈σ〉zz = 〈σ〉x y = 〈σ〉xz = 〈σ〉y z = 0). These mixed-type loading
conditions are applied using the method presented in [160]. It is reminded that periodic
boundary conditions are intrinsic to FFT methods. Due to stress-free boundaries, Poisson’s
effect is active during loading.

Based on the mesh convergence test, the resolutions chosen for model A and model B are
NA/B =135, 225, 315, and 405. The resolutions chosen for model C are NC =225, 255, 305,
345, 375 and 455. The fiber volume fractions in this part are kept as VA

f = 0.6 for model A,

VB
f = 0.36 for model B and VC

f = 0.55 for model C.

Here, the FEM results with voxel meshes are chosen as a reference to assess the performance
of different FFT methods on local fields. Due to our remarks on the hourglass effect, we
consider FEM with reduced integration (FEMR) and full integration (FEMF). The chosen
error measure is the relative absolute error of the local strains:

RE = |εFFTs −εFEMs |
|εFEMs |

, (2.7)
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NC = 75, VC
f = 0.5508

FEMR W-S M-S SF

Ex (MPa) 13373.63 13370.74 13304.28 13517.49

REP Reference −0.027% −0.52% 1.1%

Gx y (MPa) 2806.507 2806.144 2813.617 2827.081

REP Reference −0.013% 0.35% 0.73%

NC = 225, VC
f = 0.5502

FEMR W-S M-S SF

Ex (MPa) 13271.33 13270.66 13247.26 13318.85

REP Reference −0.051% −0.18% 0.35%

Gx y (MPa) 2792.032 2791.960 2794.563 2798.924

REP Reference −0.0026% 0.091% 0.25%

NC = 375, VC
f = 0.5499

FEMR W-S M-S SF

Ex (MPa) 13230.77 13229.38 13216.68 13258.79

REP Reference −0.011% −0.11% 0.21%

Gx y (MPa) 2785.611 2785.473 2786.784 2789.513

REP Reference −0.0050% 0.042% 0.14%

Table 2.2: The elastic properties (Ex and Gx y (MPa)) of model C of different FFT algorithms with
different resolutions and their relative error compared to the FEM.

where FFTs denotes the result obtained using an FFT solver and FEMs is the result obtained
from the FEM with reduced or full integration. εxx is the strain component chosen for com-
parison for models A and B. Regarding model C, the interface radial strain (εr r ) and the in-
terface tangential strain (εθθ) are chosen, which can be expressed as:

εr r = εxx ·cos(θ)2 +εy y · sin(θ)2 +εx y · sin(2 ·θ) , (2.8a)

εθθ =
(
εy y −εxx

) · sin(θ) ·cos(θ)+εx y ·
[
cos(θ)2 − sin(θ)2] , (2.8b)

where the components can be seen in Fig. 2.11.

39



CHAPTER 2. INSIGHTFUL AND QUANTITATIVE ANALYSIS OF THE CAUSES OF
NUMERICAL ARTIFACTS AND IMPROVED SCHEMES FOR FFT

Figure 2.11: The interface normal and tangential strain (εr r and εθθ) of model C, as well as the angle
θ.

Note that all strain values along the interface are taken on the matrix side.

First, as shown in Fig. 2.12, the relative error between FFT and FEM results, both FEMR
and FEMF , are null for model A. Indeed, FFT and FEM results are identical for this model,
independently of Green operators or integration schemes.

(a) (b)

Figure 2.12: (a) The average relative errors for FFT results compared with FEMR and FEMF of the
model A of different resolutions, (b) The relative errors along the model A for FFT results compared
with FEMR and FEMF of resolutions 315.

For models B and C, first, we consider both the maximum relative absolute error on local
strain values along the interface and the relative absolute error on the maximum of local
strains along the interface. The latter is relevant for investigating the influence of oscillations
on damage initiation criteria. Meanwhile, the average relative error along the interface, in
the fiber center as well as over the whole domain are also taken for comparison. All these
relative errors are defined in Eq. (2.7).
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Regarding model B, Figs. 2.13(a,b) show the maximum error along the interface and Figs.
2.13(c,d) shows the error on the maximum strain along the interface. To assess the hourglass
effect, FEMR is used as reference for Figs. 2.13(a,c) while FEMF is used for Figs. 2.13(b,d).
Clearly, W-S is the most accurate when compared with FEMR while SF is the most accurate
when compared with FEMF . This confirms once again that the type of integration has an
influence even for FFT methods. This is verified for both error measures.

(a) (b)

(c) (d)

Figure 2.13: Model B: maximum relative absolute error along the interface (a) with FEMR and (b) with
FEMF , relative absolute error on the maximum strain along the interface (c) with FEMR and (d) with
FEMF (remark: the curves colors are the same for all plots).

Fig. 2.14 shows the average interface (orange contour) relative errors (a,b), the average rel-
ative errors at the fiber center (green point) (c,d) and those of whole volume (e,f). Similarly
as in Fig. 2.13, the left parts of Fig. 2.14 are the relative errors with FEMR and the right parts
are those with FEMF . These two figures re-confirm that W-S is always more accurate when
compared with FEMR, while SF is more accurate when compared with FEMF , except for the
average relative errors at the fiber center.

We noticed that the W-S method produces more oscillations in the bulk (shown in Fig. 2.23),
which however are less visible and can be neglected due to their sufficiently low values.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.14: Model B: The average errors for FFT results along the interface compared to: (a) FEMR
and (b) FEMF . The average errors for FFT results at the fiber center compared to: (c) FEMR and (d)
FEMF ; The average errors of FFT results over the whole volume compared to: (e) FEMR and (f) FEMF
(remark: the curves colors are the same for all plots).

Regarding the model C, the maximum and average relative errors are presented in Fig. 2.15
and 2.16 respectively. In general, the conclusions are the same as for model B. SF has the best
results when compared with FEMF and it is W-S when compared with FEMR. Furthermore,
Figs. 2.14 and 2.16 show that the average relative errors decrease when refining the mesh
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(a) (b)

(c) (d)

Figure 2.15: Model C: maximum relative absolute error along the interface (a) with FEMR and (b) with
FEMF , relative absolute error on the maximum strain along the interface (c) with FEMR and (d) with
FEMF (remark: the curves colors are the same for both all plots).

while the maximum errors and the errors at the maximum strain along the interface (Figs.
2.13 and 2.15) show the opposite behavior. This phenomenon can be due to the increased
error at singularities when refining the mesh. Because both model B and model C have sharp
corners, where the strain concentration appears during the loading. Note that this is a phys-
ical phenomenon for model B while it is artificially caused by the zig-zag interface for model
C. Model C has more sharp corners than those for model B, which can explain the opposite
behavior with mesh refinement on interface average errors for these two models.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16: Model C: The average errors for FFT results along the interface compared to: (a) FEMR
and (b) FEMF . The average errors for FFT results at the fiber center compared to: (c) FEMR and (d)
FEMF . The average errors of FFT results over the whole volume compared to: (e) FEMR and (f) FEMF
(Remark: the curves colors are the same for all plots).
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2.5.4 Conclusions

Three FFT methods give identical results on model A. On models B and C, however, the SF
is the most accurate when compared to full integration FEM and the W-S is more accurate
when compared to the reduced integration formulation. Considering that SF has fewer os-
cillations (detailed in the next section) than others, in consequence, if a simulation needs
high accuracy where a full integration is required in the FEM, the SF should be applied when
the simulation is performed using an FFT solver.

However, applying SF requires eight times more memory than W-S and the computation
time is also increased. In many cases, the full integration formulation is not needed, and the
hourglass effect can be easily controlled by introducing “hourglass stiffness” as done in most
FEM codes. Furthermore, the non-smooth interface has been proven to be the most critical
cause of oscillations (detailed in the next section). Thus, a reduced integration formulation
could be a better choice in many cases, where the W-S is, generally, more accurate than other
FFT methods with an optimum computational speed.

In the next section, these three FFT methods as well as the FEM with both integration for-
mulations are analyzed more thoroughly to investigate the causes of the oscillations.

2.6 Analysis of each cause of oscillations

2.6.1 Overview

The last part of our work in this chapter is an analysis of the oscillations to determine the
impact of each cause quantitatively. In this section, the FFT methods and FEMs used in
Section 2.5 are taken to make this evaluation. First of all, we need to establish a clear measure
to quantify the oscillations.

2.6.2 Definition of the oscillations

To compare the influence of oscillations, the first step is to define the criterion to quantify
them. Researchers often use the stress field to quantify the oscillations (e.g. [161]). Even
though the fiber and the matrix present the same amplitude of oscillations under some con-
ditions, the oscillations in the fiber are often stronger than in the matrix because the fiber
stiffness is normally higher than that of the matrix. Furthermore, when comparing differ-
ent algorithms, researchers often put the color maps together and compare them visually. A
better choice is to plot the curves of certain strain components of different methods along a
direction. If there are some oscillations present in the curve, the curve will not be as smooth
as it should be. This non-smoothness of the curve can be easily visualized and captured, and
referred to as the oscillation degree of this curve. A detailed definition is presented in the
following.

In Fig. 2.17, an illustrative reference curve without oscillations is shown as well as an oscil-
lated curve. To quantify the irregularity of the oscillated curve (orange curve), we introduce
a function D j standing for the differences in strain values along a curve.

D j = ε j+1 −ε j , (2.9)
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Figure 2.17: Illustration scheme of strain variation along a line in a direction (reference curve VS
oscillated curve).

where ε j is the local strain at position j in the curve, and ε j+1 is the local strain value at the
next position.

Based on the Eq. (2.9), we get the D values of the oscillated curve and the reference. Gen-
erally, the more differences that two values have, the stronger are the oscillations, under
the precondition that a reference curve is available. Therefore, we start by evaluating the
smoothness of the FEMF method for model B. The values of D for half of the interface lines
are shown in Figs. 2.18. We would expect the strain to increase increasingly intensely up to a
maximum value at the fiber corner, and then decrease. Therefore, the values of D should be
positive at the beginning and increase up to a maximum value, and then become negative
at the fiber corner. This general tendency is confirmed in Fig. 2.18. The two large spikes
are normal and correspond to the fiber corner where the maximum value is reached and D
becomes negative.

However, we also see smaller spikes, which are more visible for the vertical interface line in
Figs. 2.18(c,d). These can be considered as oscillations. Because their number stays never-
theless exceedingly small and they are localized around the fiber corners, it can be said that
FEMF has almost no oscillation and can be considered as the reference.

Therefore, we can define the error measure as

MD j = |DFFTs/FEMR
j −DFEMF

j |, (2.10)

where |.| means the absolute value. Considering that the voxel position takes the same value
independently of the method, the values of different methods can be directly compared.
If one method has fewer oscillations, its D j value should be closer to that of FEMF , which
means that higher MD j values mean stronger oscillations, and vice-versa (as shown in Fig.

2.19). Meanwhile, another function called MD is defined, which describes the average MD
value along the oscillated curve. Lower MD values mean fewer oscillations in the strain vari-
ation curves.
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(a) (b)

(c) (d)

Figure 2.18: Model B: The D values of horizontal interface line with resolution 135 (a) and resolution
405 (b). The D values of vertical interface line with resolution 135 (c) and resolution 405 (d).

(a) (b)

Figure 2.19: Illustrations of different MD values : (a) low MD values (weak oscillated curve), (b) high
MD values (strong oscillated curve).
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2.6.3 Model and loading conditions

As introduced in Section 2.5.3, the mixed-type periodic boundary conditions are also applied
in this section, with a macroscopic strain along the x- direction (transverse direction) of a
value 〈ε〉xx = 0.001 while stress-free conditions are imposed in the other directions (〈σ〉y y =
〈σ〉zz = 〈σ〉x y = 〈σ〉xz = 〈σ〉y z = 0).

Based on the results of Section 2.5.2, the resolutions chosen for model A and model B are
NA/B =135, 225, 315 and 405. The resolutions chosen for model C are NC =225, 255, 305,
345, 375 and 455. The fiber volume fractions in this part are kept as VA

f = 0.6 for model A,

VB
f = 0.36 for model B and VC

f = 0.55 for model C.

2.6.4 Deep analysis of oscillations

Figs. 2.20, 2.22 and 2.25 present the average of MD j over interface lines (denoted MD) for
model A, B and C respectively, which can be used to evaluate the impact of each cause of
oscillations. In Figs. 2.20 and 2.22, the local strain component εxx is chosen to study the
oscillations while the radial strain component εr r and the tangential strain component εθθ
are chosen instead in Fig. 2.25.

Figure 2.20: The value of MD for model A using the different methods.

As shown in Fig. 2.20, all methods show no oscillations for model A even for the original
M-S algorithm, which confirms the results shown in [102]. As mentioned in the state of the
art of this chapter, some researchers believe that one of the oscillations causes is the Gibbs
phenomenon that describes the intrinsic defect of the spectral method when dealing with
high contrast signals. This does not seem applicable to composites homogenization because
there is no Gibbs phenomenon in model A.

To better visualize the oscillations in FFT and FEM, the local strain components are plotted
for models B and C in Fig. 2.21, where the oscillations can clearly be seen.

For model B, Fig. 2.22(a) shows the value of MD along the horizontal interface line. Fig.
2.22(b) shows the MD value along the vertical interface line. Note that the strain values for
calculating MD are taken on the matrix side, which are more critical during loading (orange
line in Fig. 2.22).
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(a) (b)

Figure 2.21: (a) describes the εxx component of model B along the horizontal interface line with NB =
405; (b) shows the εr r component of model C along the interface with NC = 375 (remark: the green
line in (b) is the curve of FEM of full integration with conformal mesh, and the curves colors are the
same for both (a) and (b)).

Clearly, FFT methods based on the DGO reduce the oscillations significantly. Algorithm SF
appears as the best choice in terms of oscillations reduction. W-S algorithm takes the second
place and the M-S method is the worst. Furthermore, it should be paid attention that the
FEMR gives remarkably comparable results as W-S while the oscillations are almost invisible
on FEMF , where a full integration method is applied. This phenomenon confirms that the
hourglass effect is also one of the causes of oscillation in FFT methods, as already reported
in [145]. This is because, like in the reduced integration FEM, the strains and the stresses
calculated by FFT solvers are also computed at the centroid of the voxel, except for the SF
method. This also explains why the latter shows fewer oscillations.

In general, the difference between M-S and W-S is the improvement of the finite-difference
technique, which could be due to the non-satisfaction of Shannon’s theorem, and the differ-
ence between W-S and FEMF is mainly due to the hourglass effect. However, as shown in
Figs. 2.23(a,b) in black circles, the W-S method shows much more oscillations than others at
the fiber center which could invite to a more advanced investigation.

Fig. 2.22 also shows that the oscillations are reduced when refining the mesh, because re-
fining the mesh increases the sampling frequency. It proves that the loss of high frequencies
when discretizing the Fourier transform to a finite domain led to oscillations, which are re-
duced using a DGO.

Unlike models A and B, where both FFT methods and FEM rely on voxel meshes that are
conformal, model C cannot rely on a mesh that is both voxel-based and conformal. Given
that the non-smooth interface is one of the causes of oscillations, as shown in Fig. 2.24,
all voxel meshes show strong oscillations. Thus, FEMF with a voxel-based mesh cannot be
chosen as a reference anymore.
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(a) (b)

Figure 2.22: The values of MD for model B along (a) the horizontal interface line and (b) those of the
vertical interface line. (remark: the curves colors are the same for both (a) and (b)).

(a) (b)

Figure 2.23: Model B: (a) the values of function D (see Eq. (2.9)) of the center line with resolution
135 and (b) resolution 405 (remark: The D values is based on the local strain component εxx , and the
curves colors are the same for both (a) and (b)).

Consequently, an FEM simulation with conformal mesh with full integration formulation is
introduced to be used as a reference, so that Eq. (2.10) becomes

MD j = |DFFTs/FEMs
j −Dcon f or mal

j |.

Due to this choice of reference result, all calculations for model C do not share the same
mesh, even for the same resolution. Therefore, a linear interpolation is applied on the con-
formal mesh to obtain the D j at the same positions as used in voxel meshes. In Fig. 2.25,

the MD values for model C are presented. Herein, the radial strain component εr r and the
tangential strain component εθθ are chosen, and D j is computed along the interface arc on
the matrix side.
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Figure 2.24: The oscillations of radial strain along the interface of model C of different methods.

As shown in Figs. 2.25(a,b), W-S and FEMR show a similar behavior while SF and FEMF are
also similar. It should be noted that the MD values shown in Fig. 2.25 are at least five times
larger than those shown in Fig. 2.22 for model B. This implies that the oscillations caused
by non-smooth interfaces are much more critical than those originating from other causes
such as the hourglass effect. Nevertheless, the oscillations present in model C do not seem
to decrease with increasing resolutions (sampling frequencies). We did not investigate this
further. Besides, it is not possible to explain why there are fewer oscillations with M-S in that
regard. This is also left for future study.

(a)
(b)

Figure 2.25: The MD values for model C (a) of the interface radial strain component and (b) of the
interface tangential strain component (remark: the curves colors are the same for both (a) and (b)).
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2.6.5 Conclusions

The non-smooth interface is the most significant cause of oscillations that contributes more
than five times than others. Note that non-smooth interfaces are more common in complex
composite structures. The “truncated” Green operator could take the second place due to
its higher impact than the hourglass effect but its influence on oscillations can be reduced
significantly by using a discrete Green operator based on the finite-difference scheme. The
hourglass effect takes the third place and could be overcome by using Schneider’s discrete
Green operator with full integration. However, Schneider’s scheme means more computa-
tional resources occupation than Willot’s scheme, and is therefore recommended only if a
high precision is required. Finally, there is no evidence of the Gibbs phenomenon in our
calculations, which proves the Gibbs phenomenon is not an issue at least for mechanical
problems.

2.7 Chapter conclusions

In this chapter, we first have introduced a literature review of several causes that lead to os-
cillations in the FFT method. These causes can be divided into two categories. The first
one regroups causes related to the intrinsic characteristics of the FFT, like non-satisfaction
of Shannon’s theorem. The second one regroups causes that can be also found for FEM with
voxel-based meshes, like the hourglass effect or the non-smooth interface. Then, we have
introduced some improved techniques proposed in the literature to reduce these oscilla-
tions. Some methods are easy to implement, such as low-pass filtering, but may lead to
information loss. Meanwhile, there are also methods that work well, such as the consistent
Green operator, but which are excessively demanding in terms of computational resources.
The idea of calculating a DGO based on finite-difference schemes seems to get a balance
between the accuracy and the computational complexity.

Therefore, the improved techniques proposed by Willot [120], and Schneider [152] were cho-
sen for deeper analysis as well as the original basic scheme. A quantitative comparison be-
tween FFT methods and FEMs was accomplished. Overall, the SF is the most accurate com-
pared to the full integration FEM method and the W-S is more accurate compared to the
reduced integration formulation. Consequently, if a simulation needs high accuracy where
a full integration is required in the FEM solvers, the SF should be applied when the simula-
tion is performed using an FFT solver.

However, applying SF means more computational time, which makes its application unessen-
tial in many cases. Besides, the hourglass effect can be easily controlled by introducing
“hourglass stiffness” as done in most FEM codes. Thus, a reduced integration formulation
can be a more optimum choice, where the W-S is, generally, more accurate than other FFT
methods with an optimum computation speed.

Finally, we go back to the causes of the oscillations, where deeper analysis is performed to
evaluate the impact of each of them. The non-smooth interface can be considered the most
critical cause of oscillations. It is common in complex composite structures with voxel-based
meshing. Therefore, an interface smoothing technique becomes an exigence to get cleaner
local fields, as discussed in the next chapter.
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3.1 Chapter overview

Among the causes of oscillations, the non-smooth is the most severe one. On the one side,
it leads to local numerical oscillations at least five times stronger than others. On the other
side, it is common in heterogeneous materials. Consequently, an interface smoothing tech-
nique is necessary to get more precise local fields.

As discussed in [152], using Schneider’s full integration scheme will cost around eight times
the CPU time than Willot’s scheme. Furthermore, because the hourglass effect has the weak-
est effect among all the causes, Willot’s scheme is always chosen for this chapter’s studies.

In this chapter, two interface smoothing techniques will be presented. The first one is the
neighbour voxel average method (Section 3.2), which was initially proposed in [96] for a FEM
solver and re-proposed for FFT solvers in this thesis [162]. Another one is the composite
voxel method and, in particular, an enhanced composite voxel method proposed in this the-
sis (Section 3.3). A comparison between the different methods is performed in Section 3.4.

3.2 Neighbour voxels average method

3.2.1 Overview and description

The results of Doitrand et al. [93] have shown strong oscillations in the FEM using a voxel-
based mesh, and these oscillations seemed to be even stronger after mesh refinement, while
there was no issue with a conformal mesh. That demonstrates that this issue is mainly due to
the voxel-based mesh itself. The oscillations in FFT and FEM can also be called the “check-
board patterns” present in local strain and stress fields (as shown in Fig. 2.7). Clearly, the
value in one voxel is larger than usual, while its neighbours have lower values. Based on the
tests in Section 2.5.2, however, this does not affect the overall response. Therefore, to reduce
this issue, a simple idea is to average the voxel values with surrounding voxels.

This idea of averaging was implemented in [93] by calculating the stress at each integra-
tion point as an interpolation of the non-smoothed values at the surrounding integration
points using a least-squares method. The degree of smoothing depends on the number of
surrounding integration points that are taken into account. In [93], all integration points
that belong to elements that share a common node were taken into account. As an alterna-
tive, Fang [96] proposed an approach by averaging the target voxel value with the neighbour
voxels. In 2019, the present author proposed a similar method for FFT solvers in [162].

In general, the average equation in [96, 162] can be presented as

σ=
∫
Ωσφ (r )∫
Ωφ (r )

, (3.1)

where σ is the Cauchy stress tensor, Ω is the averaging window, φ (r ) is the weight function,
and r is the minimum distance from each surrounding voxel to the target voxel. As shown in
Eq. (3.1), two important parameters should be defined: the size of the averaging window Ω,
and the weight function φ.
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As discussed in [96], for different voxel mesh densities and resolutions, it is difficult to deter-
mine a constant window size. In order to define this window size, we first define the notion
of a layer. For a given voxel, layer L0 is a set containing only this voxel. Then, layer Li+1 is
the set of voxels whose boundaries intersect a voxel in layer Li . This intersection can be a
face, an edge, or even a voxel corner. Note that all voxels chosen in layer Li are of the same
phase as L0 to ensure that the local fields may remain discontinuous across interfaces. The
window size is defined as the layer count NL such that the neighbour voxels considered for
the averaging are all voxels contained in the sets Li , i ≤ NL.

Figure 3.1: Illustration of neighbour voxel average technique and layers used for averaging with dif-
ferent window sizes in 2D: (b) NL = 1, (c) NL = 2 and (d) NL = 3 on a bi-phase model with 81 voxels
(remark: the red and blue voxels represent different phases).

Fig. 3.1(a) presents a bi-phase model. The red and blue voxels represent each phase, and
the orange line describes the real interface. The orange voxel is the target voxel of the matrix
phase that is being treated. Figs. 3.1(b), (c), and (d) show the averaging for different layer
counts. As shown in these figures, only voxels of the same phase are considered for averaging
(the voxels marked by a cross).

A weight function can also be introduced to reduce the influence of voxels inside the window
but far away from its center, the target voxel. In general, there are three types of weight func-
tions (mentioned in [96]) that can be applied: constant, linear, and exponential functions, as
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shown in Eq. (3.2).

φ (Li ) = 1 (Constant), (3.2a)

φ (Li ) = 1− Li

Lmax +1
(Linear), (3.2b)

φ (Li ) = exp

(
Li

Lmax

)
(Exponential). (3.2c)

Therefore, the neighbour voxel average equation could be expressed generically as:

Aorange =
Aorangeφ (L0)+∑VNLi

j=1 A jφ (Li )+ ...+∑VNLmax
j=1 A jφ (Lmax)

1+VNLi ∗φLi + ...+VNLmax ∗φLmax

, (3.3)

where Aorange is the local value that needs to be averaged, and VNLi is the total voxel number
of each layer taken into account. Note that a linear weight function is chosen in [96, 162].
This is also the function that is chosen herein.

3.2.2 Test cases and conclusions

In this section, the neighbour voxel average with NL = 2 is applied on model C (presented in
Fig. 2.8), where the fiber volume fraction is set as 55%, to test the effect of this approach. The
materials properties are the same as in Table 2.1.

According to Fig. 2.25, the resolution NC = 255 is the one that shows the lowest oscillations.
It is therefore chosen for the present study. The model is subjected to periodic boundary
conditions with a macroscopic strain along the x- direction (transverse direction) of 〈ε〉xx =
1.10−3 and stress-free conditions in the other directions (〈σ〉y y = 〈σ〉zz = 〈σ〉x y = 〈σ〉xz =
〈σ〉y z = 0).

As shown in Fig. 3.2 (b), the local stress fields show very strong oscillations without average,
and the peak stress reaches over 30MPa while it is less than 25MPa in FEM results. Fig. 3.2(c)
clearly shows the effect of averaging as the interface stress is smoother, and the peak stress is
much closer to FEM results. In non-linear material modeling, the principal stresses and the
von Mises stress often play a role in yield or fracture criteria. The results for these stresses
are presented in Fig. 3.3. Once again, averaging reduces oscillations and compares well with
FEM.

To determine the optimum layer count (NL), a quantitative comparison is conducted. Our
experiences show that the oscillations are reduced significantly when increasing the NL value
at the beginning and become stable from NL ≥ 3. However, since the neighbour voxel aver-
age is only a post-processing operation, it is not coupled to the FFT solver, and there is no
guarantee that the results will respect the equilibrium and compatibility equations. There-
fore, it is preferred to keep NL as small as possible. For NL = 2, the abnormal stresses are
sufficiently low. Thus, from our point of view, NL = 2 is the best choice for the neighbour
voxel average method, which also confirms the conclusion in [96]
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(a)

(b)

(c)

Figure 3.2: Local stress (MPa) fields of model C under transverse tensile loading along x direction
(〈εxx〉 = 1.10−3): (a) FEMF Conformal mesh, (b) FFT results without average, (c) FFT results with
average of NL = 2. From left to right, they are σxx , σy y , σx y . (remark: the models in the figure are of
exactly the same size, although the images, which are captured using different software, could suggest
otherwise)
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(a)

(b)

(c)

Figure 3.3: The first principal stress σ1 MPa (left) and the von Mises stress σvm MPa (right) of model
C under 〈εxx〉 = 1.10−3 transverse tensile loading along x direction: (a) FEMF Conformal mesh, (b)
FFT results without average, (c) FFT results with average of NL = 2 (remark: the models in the figure
are of exactly the same size, although the images, which are captured using different software, could
suggest otherwise).
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3.3 Composite voxel method

3.3.1 Overview

In a voxel mesh, the properties of each voxel are usually equal to the properties of the ma-
terial, which is present at the center of the voxel [93]. It is proper if the total volume of a
voxel belongs to only one material. However, in the case of voxels shared by several phases
and thus crossed by one or multiple interfaces, this kind of properties assignment is a rough
approximation, and zig-zag interfaces are formed (shown in Fig. 3.4(a)). One of the reasons
that limit the application of voxel-based meshes is that interfaces are not as smooth as in
a conformal mesh that is closer to reality. More severely, as stated in the previous chapter,
the zig-zag interface is one of the critical causes of oscillations near the interface both in the
FFTs and the FEMs.

Apart from the neighbour voxel average method, which is a kind of post-processing, another
idea is smoothing the interface by creating a new "phase" for the voxels crossed by the in-
terface to model the interface. It should be noted that this composite voxel method is not
related to the notion of interphase, which is not discussed nor modeled herein. The proper-
ties of these voxels are then homogenized from the local phases that share the voxels. This
method is called the composite voxel method. As an illustration of this method, a 2D exam-
ple is shown in Fig. 3.4(a), where two phases in blue and red are present, as well as a zig-zag
interface. The orange line is the real interface. Meanwhile, in Fig.3.4(b), apart from the blue
and red voxels, it can be seen that all the voxels shared by two phases are shaded. They are
called composite voxels, and their properties are equal to the homogenized properties of
these two phases.

(a) (b)

Figure 3.4: Illustration of a model without composite voxel (a) and with composite voxel (b). The
orange line is the real interface [163].

3.3.2 Conventional composite voxel method

The composite voxel approach was proposed by Kabel et al. in [163] and Gélébart in [164].
The properties of a composite voxel are evaluated by a local homogenization based on the
properties of phases that share the voxel and their volume fractions (shown in Fig. 3.4(b)).
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Like the homogenization from microscopic to the macroscopic level, this local homogeniza-
tion can also rely on several techniques: Voigt, Reuss estimates proposed in [164] and Voigt-
Reuss mean, or laminate theory as proposed in [163]. The first three can be expressed as:

CVoigt =
N∑

i=1
Vphi

f Cphi
(Voigt), (3.4a)

CReuss =
(

N∑
i=1

Vphi

f

(
Cphi

)−1
)−1

(Reuss), (3.4b)

CVR-mean = 1

2

(
CVoi g t +CReuss

)
(Voigt-Reuss mean), (3.4c)

where Vphi

f and Cphi
are the volume fraction and stiffness tensor of phase phi inside the

composite voxel, respectively. One drawback of the above mixing rules is that the orientation
of the interface is neglected. In contrast, in the laminate mixing rule, the normal direction of
the interface is taken into account. The formula of the laminate mixing rule is(

P+K (Claminate −KId)−1)−1 =
〈(

P+K (C−KId)−1)−1
〉

, (3.5)

where Claminate is the homogenized elastic tensor of a composite voxel and K > 0 is a factor
that should be chosen sufficiently large. The operator 〈−〉 is the volume average within the
composite voxel. According to [163], K should be larger than the largest eigenvalue of the
stiffness matrices C (x) for all x in V. The fourth-order identity tensor is denoted as Id, and P
is the fourth-order tensor that is expressed as follows:

Pi j kl =
1

2

(
niδ j k nl +niδ j l nk +n jδi k nl +n jδi l nk

)−ni n j nl nm , (3.6)

where n is defined as the normal vector of the interface. Fig. 3.5 illustrates these three differ-
ent mixing rules. In [163], Hashin’s model with inclusion (ph1) and matrix (ph2) was tested,
and the results are shown in Fig. 3.6. When the inclusion is stiffer than the matrix, the Reuss
rule gives the best results, while the Voigt one is the best in the opposite case. Meanwhile, the
laminate rule gives a more balanced result. In [165], a combination of different mixing laws
was studied, which, however, is not our purpose. Thus, the laminate rule is chosen herein.

(a) (b) (c)

Figure 3.5: Illustration of different mixing rules: (a) Voigt, (b) Reuss and (c) Laminate.
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Figure 3.6: Comparison of relative error for different mixing rules [163].

To calculate the volume fraction of each constituent in a composite voxel, a method called
“sub-voxel approximation” has been proposed in [163]. As illustrated in Fig. 3.7, the first
step is dividing the composite voxel into Nsub sub-voxels. The second step is calculating the

center position of each sub-voxel (xphi

sub , y phi

sub , zphi

sub ), and determining the constituent (phi )
at each position with the help of the real interface. This enables to assign the properties of

the chosen constituent (Cphi
) to the corresponding sub-voxel. Finally, the number of sub-

voxels with the same constituent (Nphi

sub) divided by the total number of sub-voxels inside the

composite voxel is the volume fraction of this constituent in the composite voxel (Vphi

f =
Nphi

sub/Nsub).

Figure 3.7: Description of the calculation of the volume fraction of each constituent inside a com-
posite voxel following the method proposed by Kabel: the composite voxel consists of 25 sub-voxels,
each is assigned to a phase based on its centroid (the real interface is shown as an orange curve and
the composites voxels are shaded).

The last parameter that needs to be determined is the normal vector of a composite voxel
(n). The method, connecting the center of mass of the dominant material with the center of
the composite voxel (as shown in Fig. 3.8), was proposed in [163]. More precisely, assuming
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W to be the composite voxel and S ⊂ W to be the dominant phase, the formula of the normal
vector (n) is given as:

ñ := 1

|S|
∫

S
xd x − 1

|W|
∫

W
xd x, n = ñ

∥ñ∥ , (3.7)

where |W| = ∫
W d x and |S| = ∫

S d x. In the discretized numerical calculations, Eq. (3.7) can
be expressed as:

ñ := 1

NS
sub

∑(
xS

sub , yS
sub , zS

sub

)− (
x0, y0, z0

)
,

where
(
x0, y0, z0

)
is the center of the composite voxel.

(a) (b)

Figure 3.8: Illustration of the normal vector calculation: (a) the red phase is dominant, and (b) The
blue phase is dominant.

3.3.3 Improved composite voxel method

One main drawback of the composite voxel method proposed in [163] is that a parametric
representation of the interface and its geometry should be known in advance. When extract-
ing a model directly from an image obtained from an SEM, where the real interfaces are not
explicit nor parameterized, this approach can be difficult to apply. Besides, it is also difficult
to describe the interface mathematically for some complex structures (e.g. textile composite
and short fibers composite). Thus, for a composite voxel containing two or more phases, an
approach mainly inspired from the level-set method is proposed hereafter to calculate the
volume fraction of a phase and the normal vector.

In the conventional composite voxel method [163], the identification of the composite voxel
is determining whether a voxel contains more than one phase or not. In the proposed ap-
proach, instead of determining the number of phases in a voxel, a composite voxel zone is
created by an artificial parameter, i.e. the composite voxel zone thickness l . All voxels with
centers inside the zone are considered as composite voxels. Fig. 3.9 (red color voxels are the
inclusion (ph1), and blue ones are the matrix (ph2)) presents a simple example to describe
this new approach for two phases. The steps are as follows:

• Identification (Fig. 3.9(a)): Identify the boundaries between each phase. Parametric
representations of phases boundaries can be used if they are available. Otherwise,
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which is more common, the zig-zag interface identification can easily be made with
commercial software or algorithms.

• Calculation (Fig. 3.9(b)): For each phase phi (ph1 or ph2 in the example), calculate

the minimum distance d phi
from each voxel center to the phase boundary. Herein, a

positive value is assigned for the voxels of the inclusion ph1 and a negative value for
the matrix ph2.

• Selection/assignment (Fig. 3.9(c)): Choose a composite voxel zone thickness value l .

All voxels such that |d phi | ≤ l
2 are considered as composite voxels (marked by a cross

in the figure).

(a) (b) (c)

Figure 3.9: Illustration of the improved composite voxel method: (a) identification of the interface, (b)
calculation of the minimum distance d phi

, and (c) selection of l and determination of the composite
voxels.

The next step is to calculate the volume fractions in the composite voxels. Instead of dividing
a composite voxel into sub-voxels, we can use a regularized Heaviside function is applied

here to compute the volume fraction Vphi

f of each phase phi within the voxel:

Ṽphi

f =



0, d phi <− l
2 ,

1
2

1+ 2d phi

l +
sin

(
2d phi

π
l

)
π

 , |d phi | ≤ l
2 ,

1, d phi > l
2 .

If there are more than two phases, the real local volume fraction can be written as

Vphi

f :=
Ṽphi

f∑
phi Ṽphi

f

. (3.8)

Based on the properties of signed distance functions, the calculation of the normal vector
(n) is given as:

ñ :=∇d P, n = ñ

∥ñ∥ , with P = argmaxphi Vphi

f . (3.9)
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In numerical calculations, the gradient (∇−) in Eq. (3.9) is calculated by classical centered
finite differences. Finally, the homogenized properties of composite voxels are calculated us-
ing Eqs. (3.5) and (3.6). With this optimization, a parametric representation of the interface
is not required, and there is no need for sub-voxels.

An added advantage of this enhancement is that it can easily be generalized to Schneider’s
full integration scheme. It is possible to compute the signed distance function at each in-
tegration point and then the local phase volume fractions and normal vectors. This can be
interesting to smooth the transition over multiple integration points and reduce the oscil-
lations. Due to the significant increase in computational cost when using eight integration
points per voxel, we restricted our composite voxels analysis to Willot’s scheme.

3.4 Comparisons of interface smoothing technique

In this section, three interface smoothing techniques, implemented in FFT solver with W-S
scheme, will be compared in terms of the effect of oscillation reduction and the relative error
to the results of FEM of reduced formulation with conformal mesh. These three methods are:

• Conventional composite voxel model proposed in [163] (TCV )

• Our optimized composite voxel model (OCV )

• Neighbour voxel average method (AVE)

For the improved method OCV , it is necessary to define the composite voxel thickness zone
l . To be consistent with the conventional method TCV , we choose to set l as twice the voxel
size, which ensures that there is always at least one layer of the composite voxel at the inter-
face, and at most two layers (the one on the matrix side and the other on the fiber side). That
ensures that all voxels at the interface are included in the composite voxel zone.

As for the AVE technique, the most suitable average layer count is NL = 2 as proven in Section
3.2.2. Thus, NL = 1 and 2 are both studied in the following.

In this part, the model C shown in Fig. 2.8(c) is chosen, and subjected to a macroscopic
strain along the x- direction (transverse direction) with a value 〈ε〉xx = 0.001 while stress-free
conditions are imposed in the other directions (〈σ〉y y = 〈σ〉zz = 〈σ〉x y = 〈σ〉xz = 〈σ〉y z = 0).
These mixed-type loading conditions are applied using the method presented in [160]. It is
reminded that periodic boundary conditions are intrinsic to FFT methods. Due to stress-
free boundaries, Poisson’s effect is active during loading. Meanwhile, the resolutions chosen
for model C are NC =225, 255, 305, 345, 375 and 455, and the quantitative definition of the
oscillations is the same as in Section 2.6.2.

The first layer of voxels along the interface is occupied by the composite voxels, which cor-
respond to neither matrix nor fiber material. Therefore, it is not possible to compare the
values in this layer between the different techniques. That is why the first layer of voxels out
of the composite voxels zone, denoted as interface2nd to distinguish from the real interface,
is chosen to make the comparison in Figs. 3.10, 3.11, 3.12, 3.13, 3.14, and 3.15. Since the
composite voxels zone is very small compared to the model size, the layer of interface2nd

can also be considered as the interface response.
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(a) (b)

Figure 3.10: The interface2nd normal strain (a) and tangential strain (b) with NC = 375 and using FEM
conformal mesh (reference result) and W-S alone or combined with the conventional and enhanced
composite voxel methods. (remark: the curves colors are the same for all plots).

As shown in Fig. 3.10, where the interface2nd normal strain (εr r ) and tangential strain (εθθ)
are drawn, the composite voxel method can reduce significantly the oscillations in the pres-
ence of a non-smooth interface. Note that the detailed description of εr r and εθθ is intro-
duced in Eq. (2.8) and in Fig. 2.11.

Fig. 3.11 clearly shows the effect of the reduction of oscillations based on the OCV and the
TCV methods.

(a) (b)

Figure 3.11: The MD value of interface2nd normal (a) and tangential (b) strains using W-S and differ-
ent composite voxels approaches (remark: the curves colors are the same for all plots).

For the TCV method, we tried using different numbers of sub-voxels. The response is con-
verged at Nsub = 1681. Since model C can be treated as a 2D model, that means a 41x41
division in sub-voxels in x x y direction. With our unoptimized Python implementations,
the total computation time for the TCV method using Nsub = 1681 is of the same order as
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the one for the OCV method. More importantly, it is interesting that OCV reduces the oscil-
lations more effectively than TCV for both strain components and all resolutions, and is also
more general because it can easily deal with non-parametrized interfaces.

To compare OCV and AVE, the MD values are shown in Figs. 3.12. These two graphs show
that OCV reduces the oscillations more effectively than the AVE if one layer is used whereas
with two layers AVE becomes more effective. However, as illustrated in Fig. 3.13, the AVE
cannot treat well the abnormal phenomenon on the normal interface2nd strain at around 45
degrees, while the OCV does not have this kind of issue.

Besides, AVE is a kind of post-treatment, where the equilibrium equation and the compati-
bility condition are not verified. If a very high reduction of oscillations is required, a combi-
nation of these two methods can be applied. This possibility is not discussed herein, and the
OCV seems to be a more optimal choice.

(a) (b)

Figure 3.12: The MD values of interface2nd normal strain component (a) and of the tangential strain
component (b). (remark: AVE 1L means NL = 1 and so on, and the curves colors are the same for all
plots).

In order to validate these interface smoothing techniques, we investigate the relative errors
after applying these treatments. The reference is also the FEM of reduced formulation with
conformal mesh.

The relative error for model C is first checked and shown in Fig. 3.14. For the normal strain
error, apart from an abnormal result at N = 251 that has not been investigated yet, the differ-
ent smoothing techniques effectively reduce the error and give comparable results. Regard-
ing the tangential strain error, Fig. 3.14.(b) shows that the composite voxel method is still
effective but not the neighbour voxels averaging. In addition, our proposed optimization of
the composite voxel method does not deteriorate nor improve the accuracy significantly.

The second part is to verify the influence of the OCV technique on the two other models. For
model A, the influence of OCV is null except for the voxels inside the composite voxel zone
because of the homogenization in this zone.
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Figure 3.13: The interface2nd normal strain (εr r ) component of different approaches of model C with
NC = 375 (remark: AVE 1L means NL = 1 and so on).

(a)
(b)

Figure 3.14: The average of relative error of interface2nd normal strain component (a) and of the tan-
gential strain component (b) of model C with different interfaces moothing techniques.

Regarding model B, the relative errors are shown in Fig. 3.15. The errors for M-S are also re-
ported for comparison. We observe that AVE 2L increases the errors significantly making this
only relevant for non-smooth interfaces and thus does not apply to general situations. The
OCV technique also increases a little the relative error, which is quite normal because adding
composite voxels artificially reduces the contrast between fiber and matrix. Nevertheless, the
relative error of the OCV method is much lower than the AVE 2L method. Furthermore, it is
very close to the M-S scheme.

In conclusion, the increase of the error for models A and B is acceptable for the improved
composite voxel method that contributes to the universality of this approach in a general
application.
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(a)
(b) (c)

Figure 3.15: Relative errors with respect to FEMR along the layer of interface2nd using W-S and dif-
ferent smoothing techniques: (a) average relative error, (b) maximum relative errors; (c) errors on the
maximum strain (remark: AVE 2L means NL = 2, and the curves colors are the same for all plots).

3.5 Chapter conclusions

Figs. 3.2, 3.3, and 2.24 show that the zig-zag interfaces can lead to stronger non-physical
oscillations and peak stresses than FEM conformal mesh. These strong and non-physical
artifacts are problematic for damage and fracture modeling.

Therefore, this chapter has investigated two techniques to improve the zig-zag interfaces due
to the voxel-based discretization. They are

• the neighbour voxels average method,

• the composite voxel method.

The first investigation is on the neighbour voxels averaging (AVE). Figs. 3.2 and 3.3 show
that it reduces the oscillations significantly and leads to peak stresses much closer to FEM
conformal mesh results, as well as smoother local fields. Regarding the layer count (NL) used
for averaging, our results show that the oscillation reduction becomes less effective when
NL > 2 and almost non-effective when NL > 3. To minimize the computational cost, NL = 2 is
the best choice for the neighbour voxels average method.

The second part is our study on the composite voxel method. An improved composite voxel
method (OCV ) is proposed in this chapter. Compared with the conventional composite voxel
method TCV , the OCV does not require parametric representations of interfaces and can
hence be applied directly to digital images. Additionally, our results show that this simplified
method is still at least as effective as the TCV in terms of oscillations reduction and accuracy.

When comparing the OCV with the neighbour voxels average method AVE, it is observed
that OCV reduces the oscillations more effectively than AVE with one layer (NL = 1) but less
effectively than AVE with two layers (NL = 2). In addition, we noticed an increase in the error
when there are no zig-zag patterns for all these smoothing techniques. This increase is more
significant when using AVE with two layers compared to OCV . Besides, Fig. 3.13 shows that
the AVE cannot treat well some abnormal phenomenons, while the OCV does not have this
issue.
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As a conclusion, both AVE and OCV have good oscillation reduction effect. On the one hand,
since AVE is non-intrusive and easier to implement, even if it has some drawbacks on the
accuracy, it can be used when only post-processing is possible. On the other hand, OCV
shows less relative error than average methods, which makes it more suitable for complex
analysis. It additionally ensures that the computed smooth fields satisfy equilibrium and
compatibility equations.

Up to now, we have only discussed elastic behavior modeling using an FFT solver. In the
next chapters, damage modeling in heterogeneous materials using the phase-field method
and an FFT solver will be discussed.
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4.1 Chapter overview

Structural failure under loading is one of the most severe problems as it can lead to unpre-
dictable losses and casualties. Therefore, failure study is one of the most important topics
nowadays in material and structural engineering. A general introduction of different failure
and damage modeling techniques, as well as the phase-field method, is presented in Section
4.2 of this chapter. Then, a detailed mathematical description of the phase-field method is
shown in Section 4.3.

4.2 Damage modeling of material

4.2.1 Phenomenological modeling

In the engineering domain, phenomenological failure criteria have been used for decades to
estimate the feasibility of designs quickly. The maximum stress/strain criterion is undoubt-
edly one of the most straightforward criteria. It predicts failure when critical conditions
in loading are larger than the strengths (tension, compression, shear) or maximum allow-
able strain (tension, compression, shear). However, real loading conditions are often very
complex, especially for composite materials, and the maximum stress/strain criteria do not
model mixed loading conditions. These can be modeled with the Tsai-Hill criterion.

Due to the quadratic form of the Tsai-Hill criterion, it can not distinguish between tension
and compression. This is the reason why the Tsai-Wu criterion has been proposed in [166].
For composite materials, a 3D failure criterion proposed by Hashin in [167, 168] became
more and more popular because it can predict the failure both for different constituents
(matrix/fiber) and directions.

4.2.2 Fracture mechanics modeling

The failure criteria presented above can also be used to predict crack initiation, and they can
be completed with a suitable crack propagation criterion. This subject has been extensively
studied since the milestone work of Griffith [169] and Irwin [170], who established the the-
ory of Linear Elastic Fracture Mechanics (LEFM). In the work of Griffith, a global energy ap-
proach is provided to find quantitative relations between the crack length, the resistance to
the crack growth of the materials, and the criterion of crack propagation that regards fracture
as a competition between the surface energy of propagation and the elastic energy stored in
the bulk material. Griffith proposed the relation:

σ
p

a =
√

2Eτ

π
, (4.1)

where a describes the crack length, and τ is the surface energy density. In general, the energy
release rate G can be written as G = 2.τ for brittle materials. Under the critical case, where
σ=σc , we can get the critical energy release rate formulation:

Gc =
σ2

c aπ

E
. (4.2)
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Decades later, Irwin [170] introduced the Stress Intensity Factor (SIF), which is widely used
in engineering and can be expressed as

KI =σ
p
πa. (4.3)

In the case of mixed loading, the relation between G and Ki is

G = K2
I

E′ +
K2

II

E′ +
K2

III

2µ
(4.4)

where E′ = E for plane stress and E′ = E
1−ν2 for plane strain. When G > Gc or K > Kc , crack

propagation is predicted. Based on the above equations, it can be seen that a pre-existing
crack is needed, which means only crack propagation can be predicted with these theories.

With LEFM, it is possible to predict if the crack will propagate and also the crack propagation
direction. The numerical implementation of this theory is quite complex as introducing and
propagating a crack poses a great challenge in a mesh-based technique such as a standard
finite element approach with a continuous displacement field. The displacement jump due
to the crack can be captured by two methods in general.

The first one uses standard finite element polynomial approximation and relies on meshes
that conform to discontinuities which requires duplicating nodes, and reconstructing or
adapting the mesh [171].

The second one is called enriched FEM and consists in enriching the polynomial approxi-
mation space so that the discontinuities can be modeled independently of the mesh, which
is an attractive feature as no mesh modification is needed [172]. This enrichment can be
achieved, on the one hand, by adding special shape functions to the standard finite element
(extrinsic enrichment); or on the other hand, by modifying some of the shape functions (in-
trinsic enrichment). The most popular of these enriched methods are the XFEM [173] and
the GFEM [174], where the main difference is that the XFEM only involves local enrichment
while the GFEM enriches all the nodes in the discretization [175]. One challenge for these
enriched methods is that since the crack is not modeled by the mesh, it must be represented
in a separate mesh or using implicit representations like signed distance functions. This can
become a great challenge for complex crack propagation patterns, especially in 3D.

4.2.3 Cohesive Zone Model (CZM)

One of the drawbacks of LEFM described above is that a singularity is present at the crack
tip, which leads to an infinite stress at this point. This is not physical and raises a problem for
numerical modeling as any crack propagation criterion would be instantaneously satisfied
whichever the loading with a sufficiently fine mesh at the crack tip.

Fortunately, under the framework of fracture mechanics, it is possible to introduce a Cohe-
sive Zone Model (CZM) to remove this singularity. This approach was pioneered by Dugdale
[176] and Barenblatt [177]. As shown in Fig. 4.1, the singularity at the crack tip is embed-
ded in a process zone which corresponds to a prospective surface that can be separated un-
der loading. In [177], the forces that prevent the crack separation were related to atomic or
molecular attractions. The creation of a new crack surface was interpreted as a breaking of
atomic and molecular bonds in the material.
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Figure 4.1: Schematic representation of the cohesive zone. The green arrows represent the distribu-
tion of tractions over the process zone [175].

This kind of cohesive force is usually modeled by a traction-separation law, which describes
the variation of traction (σ) and displacement jump between crack surfaces (δ). In most
cases, a bilinear separation-traction law is used, which is shown in Fig. 4.2. The {N,S,T},

{t1, t2, t3}, {δ0
1,δ0

2,δ0
3}, and {δ f

1 ,δ f
2 ,δ f

3 } denote the cohesive zone strength, traction, initial soft-
ening displacement, and final failure displacement along the normal direction (mode I) as
well as the tangent directions (mode II and III) respectively. For other traction-separation
laws, the reader is referred to [178].

Figure 4.2: Bilinear traction-separation law (a) under mode I, (b) under mode II and III (compression
can not lead to a cohesive zone failure).

Nowadays, the cohesive zone model is more and more used for simulating fiber/matrix debond-
ing or yarns/matrix separation in composite materials [179, 180].
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A frictionless interfacial cohesive zone model is detailed in the following. Supposing an
initial interface stiffness {k1,k2,k3}, the constitutive relationship at the interface can be de-
scribed as: 

t1

t2

t3

=
k1 0 0

0 k2 0
0 0 k3


δ1

δ2

δ3

 . (4.5)

The softening initiation displacement, δ0
1 (Traction), δ0

2 (Shear), δ0
3 (Shear), can be defined

as:

δ0
1 =

N

k1
, δ0

2 =
S

k2
, δ0

3 =
T

k3
. (4.6)

Meanwhile, the final displacements for the state of complete debonding, δ f
1 (Traction), δ f

2

(Shear), δ f
3 (Shear) are obtained as:

δ
f
1 = 2GIC

N
, δ

f
2 = 2GIIC

S
, δ

f
3 = 2GIIIC

T
. (4.7)

With the help ofδ0
i andδ f

i as well as the strengths, it is easy to establish the traction-separation
law for each direction. Generally, to simplify the calculation, in the literature [179], it is usu-
ally assumed that k1 = k2 = k3 = k, S = T, and GIIc = GIIIc . Under mixed loading, the effective
relative displacement δm can be easily expressed as the norm of the vector of displacement
under different directions:

δm =
√

〈δ1〉2 +δ2
2 +δ2

3 =
√
〈δ1〉2 +δ2

shear, (4.8)

with 〈x〉 expressed as

〈x〉 =
{

0, x ≤ 0

x, x > 0
(4.9)

The damage evolution function of interface d is then given by

d = δ
f
m

(
δmax

m −δ0
m

)
δmax

m

(
δ

f
m −δ0

m

) , d = [0,1] (4.10)

where δmax
m = max

(
δmax

m ,δm
)
. The δ0

m and δ f
m denote the initial failure and final failure dis-

placement of the surface, and can be obtained by adopting a quadratic stress criterion and
the power interaction law of the energy, as detailed in [178, 179, 181].
In Eq. (4.10), d = 0 means no interfacial damage while the interface will be totally damaged if
d = 1. This damage parameter only describes the failure state of the interface, which is inde-
pendent of the bulk material properties. However, the cohesive zone model only deals with
the separation of the crack surface hence it should incorporate extra approaches, such as
LEFM, to determine the propagation of the crack. Considering the exigence of a pre-defined
crack for LEFM, from the fundamental point of view, LEFM and CZM require criteria to de-
termine when/where a crack will initiate, grow, and in which direction.

The application of cohesive zone models in standard FEM usually involves inserting co-
hesive elements into the mesh. However, as most traction-separation laws have an initial
part where the force increases monotonically with the displacement until a maximum value,
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these insertions can modify the global stiffness of the material. This issue can be overcome
by only allowing element opening once the critical criterion is achieved or inserting cohe-
sive elements dynamically into the mesh during the simulation when the criterion is satis-
fied. This second approach requires a non-negligible modification of FE codes [175]. This
approach, however, has the advantage of solving another issue of cohesive elements, which
is mesh dependence. Indeed, if cohesive elements are pre-inserted into the mesh, the crack
can only propagate along element boundaries, which may lead to a non-physical zig-zag
pattern.

Finally, implementing cohesive zone models for studying interface debonding involves fewer
difficulties, as cohesive elements can be inserted only along the interface.

4.2.4 Continuum Damage Mechanics (CDM)

Another discipline called Continuum Damage Mechanics has been developed. If we look at
the microscopic scale, right before the moment the material attains its strength, the macro-
crack does not propagate directly. There is first an accumulation and evolution of local
micro-defects, such as micro-cracks and micro-cavities. Because of these micro-defects,
the surface for bearing the load reduces, and the material can not bear the load as before
even if the effective macroscopic load increases on the material. From a global point of view,
this phenomenon can be regarded as a degradation of local material properties. The degree
of material degradation can be described by a continuous parameter d , which is called the
damage variable. This variable d varies from 0 to 1, where 0 means intact state and 1 means
fully degraded state. In [182], the relation between stress (σ) and effective stress (σeff) can be
written as:

σeff =
σ

1−d
. (4.11)

In fact, the formula (1− d) can be generalized as a degradation function g (d) that varies
from 1 to 0 when d increases from 0 to 1. This degradation function or evolution law can be
empirical or phenomenological [175]. Under the assumptions of CDM, the material is still
continuous under the degradation process, and the local mechanical fields are also contin-
uous, which eases the implementation into standard finite elements in contrast to LEFM. In
fact, under this continuous approach, damaged regions can naturally grow, branch, coalesce
without any numerical difficulty. In general, numerically, the evolution and propagation of
damage can be divided into four steps:

• Elastic part: The model is under mechanical loading and the damage initiation crite-
rion is not satisfied, although local fields concentration point(s) may appear due to the
micro-defects or the geometry.

• Damage initiation: When one or several points reach the damage initiation criterion,
the damage variable becomes non-zero (d > 0) and can be calculated from a certain
formulation.

• Damage evolution: With the loading increasing continuously, the damage at these
points increases, and the stress fields decrease with the application of the degrada-
tion function until (d = 1), where the local stress fields vanish. An important property
is that d cannot decrease.
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• Damage propagation: When the local stresses fields at these points vanish, these points
can not bear the load, which is transferred to other points. Consequently, the damage
initiation criterion may then be satisfied at these other points. Progressively, the dam-
age field will continue updating until the final failure of the model.

In [118, 183], a simple damage model was applied for textile composites. The damage model
utilized in these two papers is summarized hereafter. First, damage initiation criteria for
yarns and matrix are established, where yarns utilize the maximum principal stress criterion
while a modified von Mises yield criterion is applied for the matrix. Then, a value I can be
calculated from these formulations to describe the difference between the actual load and
damage criterion, if I < 1, it means the actual load is below the strength while I = 1 means
damage begins, and I > 1 means damage evolving. With the values of I, the damage variables
(di ) of yarns and matrix in different directions can be calculated by

di = 1

exp(−c1Ii )+ c2
, g (di ) = 1−di , (4.12)

where parameters c1 and c2 are empirical constants. Generally, c2/c1 = 1.62 can give close
agreement with experimental tests. In [118], constants c1 = 8 and c2 = 13 have been used.
Because the di in Eq. (4.12) can exceed 1, the degradation of elastic properties (E) can be
expressed as:

E = max(0.001,min(di ))E0, (4.13)

where elastic properties with a superscript 0 correspond to the undamaged properties of
constituents.

One of the drawbacks of this approach is that the numerical solution largely depends on the
mesh size because the energy dissipated decreases and the local fields are increased with
mesh refinement. Consequently, it is common to introduce a characteristic internal length
l , which is a measure for the size of the localized area. The softening response after damage
initiation is then characterized by a stress–displacement response rather than a stress-strain
response. The crack band model falls under this category. It was first proposed in [184], then
followed by Lapczyk et al. [185], and Fang et al. [186]. In this method, the dissipated energy
within an element of the mesh is set equal to the material fracture energy when the element
has failed, which can be written as follows:

1

2
ε

f
eqσ

f
eq l 3 = Gc l 2 (4.14)

where l is the characteristic length of the element, defined as the cube root of the element’s

volume in the case of cubic voxel elements, and ε f
eq and σ f

eq are the failure equivalent strain
and equivalent peak stress. The equivalent displacement will vary with element size, and is
defined as

δeq = εeq l . (4.15)

Combining with Hashin’s 3D damage initiation criterion (detailed in [179]), the evolution of
the damage variable for each direction can be written as:

dI =
δ

f
i ,eq

(
δi ,eq −δ0

i ,eq

)
δi ,eq

(
δ

f
i ,eq −δ0

i ,eq

) , (i = Lt ;Lc;Tt ;Tc;Zt ;Zc;Mt ;Mc) (4.16)
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where Lt means longitudinal tension, Lc means longitudinal compression, Tt is transver-
sal tension, Tc is transversal compression, Zt is z-direction tension, Zc is z-direction com-
pression, Mt denotes the matrix tension, and Mc denotes the matrix compression. This is
illustrated in Fig. 4.3.

Figure 4.3: The schematic of a strand yarn with directions [186].

In Eq. (4.16), δi ,eq is the current equivalent displacement defined as in Eq. (4.15) and detailed
in [186] for different directions. The displacement δ0

i ,eq is the initial equivalent displace-

ment at which the failure criterion is satisfied, and δ
f
i ,eq is the full equivalent displacement

at which the material is completely failed. They are defined as:

δ0
i ,eq = δi ,eq /

√
Ii , (4.17)

δ
f
i ,eq = 2GI/

(
σi ,eq /

√
Ii

)
. (4.18)

Here, Ii is the value of the damage initiation criterion, GI is the critical energy release rate un-
der mode I, and σi ,eq is the current equivalent stress for a failure direction which is detailed
in Table 1 of [186].

To assemble different damage variables into a matrix that describes a 3D damage field of the
model, the Murakami damage model [187] can be adopted.

Non-local integration damage model

Apart from the crack band theory, another approach to solve the mesh dependency is the
non-local damage model. Unlike the local model, the local fields at a point depend not only
on the parameters at that point but also on the local fields in a finite neighborhood of that
point. The solution may then depend on the size of the “neighborhood”, but no longer on
the mesh size.

The first idea is obviously taking an average over this finite neighborhood. This kind of work
was pioneered by Bazǎnt and Jirásek [188]. The non-local variable r is defined within a FE
domain Ω by:

r (x) = ∫
B(x) r

(
y
)

w
(
x − y

)
dy∫

B(x) w
(
x − y

)
dy = 1

B(x) = {y ∈Ω, |x − y | < lc }

 , ∀x ∈Ω (4.19)

where r can be damage variable or other local fields, and the size of the "neighborhood" is
defined by a characteristic length lc . The weight function w

(
x − y

)
decreases monotonically

with increasing distance |x − y | to reduce the influence of points far away from x.
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Gradient-Enhanced Damage (GED) model

In order to reduce the computational cost due to the neighborhood search and non-local in-
tegration formulation, a so-called Gradient-Enhanced Damage model (GED) was proposed
in [189]. If the weighting function w is chosen as a Gauss function, and r is chosen as local
equivalent strain εeq , the non-local integration formulation Eq. (4.19) can be easily rewrit-
ten in the form of a Taylor expansion, and the non-local equivalent strain εeq can be ap-
proximated by solving a partial differential equation instead of computing an average. By
omitting the higher order terms, an explicit form of non-local gradient formulation can be
obtained:

r = r + l 2
c∆r . (4.20)

First, high order gradient terms have been neglected in the explicit model. Second, the ex-
plicit formulation is said to be weakly non-local because the non-local strain in a point de-
pends only on the local strain and its gradients at the same point. Third, the explicit gradient
formulation imposes stronger continuity requirements on the displacements because of the
gradient term [190]. To avoid these drawbacks, the implicit non-local formulation

r − l 2
c∆r = r, (4.21)

is often preferred.

The gradient-based model has been the object of many propositions and novelties, such as
in [191, 192], which will not be discussed here. Alternative non-local damage models such as
the thick level-set method [193] will not be presented here either.

The phase-field model, a modeling technique between fracture and damage mechanics, is
attracting increased attention in the research domain. This is also one of the centers of this
Ph.D. thesis. On the one hand, the phase-field can be under the category of gradient-based
model. On the other side, it is closer to fracture mechanics. Therefore, it will be introduced
in the following as an independent section.

4.2.5 Phase-field model

Similar to the CDMs, the phase-field models also utilize a damage variable d , which varies
in the range [0,1] to describe the failure state. The powerful idea is that this damage variable
is also used to describe the cracks. Sharp cracks are regularized as diffusive crack bands
by a function of d [194, 195]. On the one hand, the evolution of the phase-field variable
itself completely describes the crack and the damaged regions of the material. On the other
hand, phase-field models are closely related to the variational approach to brittle fracture
[196]. This approach enables to simultaneously get the displacement field and the cracks by
minimizing the total potential energy of the cracking solid.

Table 4.1 shows the mathematical equations of the phase-field [197] and the GED [189] mod-
els. Since they have similar mathematical formulations, it is natural to compare them, like
the work in [198, 199]. The results of [198, 199] have shown that these two models are simi-
lar but also different. The similarities and differences can be summarized as two parts: the
mathematics and the fundamental idea.
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gradient-enhanced damage model phase-field model

PDE equation r − l 2
c∆r = r d − l 2

c∆d =−g ′ (d)Hlc /Gc

Table 4.1: The PDE equation of gradient-enhanced damage model [189] and phase-field model.

Regarding the mathematics, based on Table 4.1, several conclusions can be raised:

• Left part of the equation: On the one side, in the phase-field model, the operator is
applied to the damage variable itself. On the other side, the non-local variable r can
also be the non-local damage variable in the GED [198]. In a sense, they can be similar.

• Right part of the equation: In the phase-field model, when d = 1, its right part totally
vanishes, which ensures a constant bandwidth of the crack. However, it is not the case
in the GED models which results in damage widening.

• Considering the classical phase-field [197] and GED [189] models, their damage pro-
files are different. As shown in Fig. 4.4, the damage diffusion in phase-field has an
exponential form while it has a Gaussian form in the GED models.

(a)

(b)

Figure 4.4: Typical damage profile of (a) phase-field model in [197] and (b) GED model in [189].

Recently, gradient damage models have been proposed that tend to be closer to the phase-
field model, such as [200]. They compare well in terms of equations and solutions. That
is why the researchers consider the phase-field model as a gradient-type non-local damage
model. However, their fundamental ideas are different. The gradient-type non-local damage
model was proposed to average the local damage field to solve the mesh dependency, while
the phase-field departs from the discontinuous description of the crack, where a distribution
function is introduced to smear this discontinuity. For example, the regularization from the
sharp crack to the diffusive crack is not introduced in [200] even if the final equations are
almost the same as the phase-field. More details can be found in the review paper [201].

Despite the fundamental idea, generally, the phase-field method can be described as a kind
of non-local gradient type model that uses a damage field d to regularize a sharp crack by
a diffusive crack band, and this damage variable can be solved by minimizing the Griffith
energy principle. The major characteristics of phase-field can be summarized as follows:
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• The phase-field model is purely based on energy minimization and there is no need
for a pre-defined crack, hence, the crack initiation, growth, and coalescence can be
automatically determined.

• Multi-cracks merging and branching problems can be solved without additional effort.

• The model can easily be applied in 3D cases, and numerical implementation is straight-
forward.

• The model is non-local and intrinsically avoids mesh dependency.

In contrast, computational cost is one of the most severe drawbacks of phase-field, which
can be dealt with using parallelization. The FFT method is easy to parallelize, hence, com-
bining the phase-field with the FFT solver seems very interesting. This is the research track
pursued in this thesis.

Many applications of the phase-field model can be found in the literature: [202] studies the
damage and fracture behavior of quasi-brittle heterogeneous materials; T.H.N. Nguyen Hun
[203] studied crack propagation in clay materials under humidity to improve the under-
standing of degradation mechanisms in civil engineering structures; Rabette [204] studied
the micro-cracks inside compressed energetic materials (e.g., explosive powders), and B.T.
Vu [205] studied the damage behavior of anisotropic composite materials, like, graphite-
epoxy composites.

In the next section, a detailed mathematical description of different phase field methods is
presented to explore the theoretical aspects of phase-field.

4.3 Phase-field theoretical aspects

4.3.1 Griffith theory

The phase-field model is based on Griffith’s theory [169]. In this energetic approach, the
damage evolution and crack propagation are a consequence of the competition between the
bulk energy stored in the body and the energy dissipation from the opening of the crack
surface. From this point of view, in quasi-static loading, the total energy Π can be expressed
as:

Π :=Φs +Φd −P, (4.22)

whereΦs is the strain energy stored in the cracked body,Φd is the energy dissipated for open-
ing the crack surface, and P is the external loading. We consider a domainΩ⊂ Rn (n = 1,2,3)
that contains a crack set Γ with Γ⊂ Rn−1, and is under a volumetric loading by a body force
f ∗, a displacement u∗ on the boundary ∂Ωu , and a surface force t∗ on the complementary
boundary ∂Ωt , where the symbol ()∗ means a prescribed term. A detailed formulation of the
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components in Eq. 4.22 is presented as follows:

Φs =
∫
Ω
ϕ (ε (u) ,Γ)dV, (4.23a)

Φd =
∫
Γ

Gc dS, (4.23b)

P =
∫
Ω

f ∗ ·udV +
∫
∂Ωt

t∗ ·udS +
∫
∂Ωu

(σ ·n) ·u∗dS, (4.23c)

where ϕ is the elastic strain energy density stored in the cracked body, Gc is the critical
energy release rate,σ and n are the stress tensor and the normal vector outside the boundary,
and the

∫
dV and

∫
dS correspond to the volume and surface integration respectively.

The displacement field and the crack set can be solved by minimizing the total energy with
the variational approach [195]:

(u (t ) ,Γ(t )) = Arg{min[Π (u,Γ)]} (4.24)

under the constraint of irreversibility, which is stated as Γ̇≥ 0, and under the boundary con-
ditions: u(x) = u∗ at ∂Ωu , and σ ·n = t∗ at ∂Ωt with n the outward unit normal vector to the
external boundary ∂Ω, (∂Ω= ∂Ωu

⋃
∂Ωt ).

4.3.2 Regularization of sharp crack

The solid Ω with crack set Γ is presented in Fig. 4.5. The conventional sharp crack is shown
in Fig. 4.5(a) and the diffusive crack in Fig. 4.5(b). The damage variable d represents the
local damage state with d = 1 for fully damaged material, and d = 0 for intact state.

Since the models in Fig. 4.5. (a) possess a sharp crack, if we draw the evolution of d along the
AB line, we will get the delta function shown in the yellow window. This is in contrast with
the diffusive crack presented in Fig. 4.5. (b), where the crack is approximated as a finite limit
crack band characterized by a length parameter lc .

(a) (b)

Figure 4.5: A solid body Ω with the crack set Γ: (a) sharp cracks with its modeling and (b) approxi-
mated diffuse crack bands.
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Figure 4.6: Illustration of diffusive damage profile of a crack at x = 0 for various length parameters lc

(Miehe’s method).

The influence of lc on the damage band diffusion is presented in Fig. 4.6. The smaller lc is,
the narrower the crack band is. If lc = 0, a sharp crack is fully recovered. In most works, the
function used to describe the diffusive crack state is one of: Miehe [197, 206], Pham [200],
and Wu [207, 208]. Actually, Pham’s function was initially proposed for a gradient damage
model. As explained in Section 4.2.5, his formulation is not much different from the phase-
field method. Hence, Pham’s method is included in this review but it is not discussed in
details. The three diffusive crack functions are expressed as

d M (x) = exp

(
−|x|

lc

)
, Miehe, (4.25a)

d P (x) =
(
1− |x|

2lc

)2

, Pham, (4.25b)

d W (x) = 1− sin

( |x|
lc

)
, Wu. (4.25c)

It can be seen that they all satisfy d = 1 when x = 0, and that d vanishes away from x = 0.
This is also shown in Fig. 4.7.

Figure 4.7: The damage profile of three diffusive crack functions.

Looking at Miehe’s formulation as an example, in a 1D case, it can be easily verified that the
diffusive crack function in Eq. (4.25)(a) is a solution to the following ordinary differential
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equation (ODE).
1

lc
d (x)− lc d ′′ (x) = 0, (4.26)

subject to the Dirichlet-type boundary conditions: d (x = 0) = 1 and d (x =±∞) = 0. In con-
sistence with the variational approach to fracture, the crack surface functional can be ob-
tained from the minimization of the crack surface that yields the ODE shown in Eq. (4.26):

d (x) = arg{ inf[Γl ]} ,

with Γl expressed as

Γl (d) =
∫ +∞

−∞
1

2

[
1

lc
d 2 + lc

(
d ′)2

]
dx =

∫ +∞

−∞
γdx,

where γ is the crack surface density. When the value of lc approaches zero, the regularized
crack surface Γl converges to a sharp crack. Meanwhile, the extension to higher dimension
is straightforward:

γ (d ,∇d) = 1

2

[
1

lc
d 2 + lc (∇d)2

]
, (4.27)

with d ′ →∇d . The crack surface density function in Eq. (4.27) depends on the diffusive crack
function d , but this definition is not unique. In 2017, Wu [207] proposed a generic form of
the crack surface density function:

γ (d ,∇d) = 1

c0

[
1

lc
α (d)+ lc (∇d)2

]
, (4.28)

where α (d) is called geometric crack function and satisfies α (d = 0) = 0 and α (d = 1) = 1.
Factor c0 is the scaling factor which ensures the regularized crack at the fully damaged state
represents a sharp crack [207]. The expressions of α (d) and c0 are

α (d) = ζd + (1−ζ)d 2, (4.29a)

c0 = 4
∫ 1

0

√
α (d)dd , (4.29b)

where ζ ∈ [0,2] to guarantee α (d) ∈ [0,1]. In short, the α and c0 values of the approaches
presented in Eq. (4.23) are summarized in Table 4.2.

ζ α (d) c0 d (x)

Miehe [197, 206] 0 d 2 2 exp
(
− |x|

lc

)
Pham [200] 1 d 8/3

(
1− |x|

lc

)2

Wu [207, 208] 2 2d −d 2 π 1− sin
( |x|

lc

)
Table 4.2: The parameters of different types of diffusive cracks.

There also exist other functions such as those proposed in [209] and [210], which are not
presented here. Fig. 4.8 presents the profile of α (d) with different ζ values. Since α (d) is not
monotonic in the ranges ζ < 0 and ζ > 2, they are forbidden to avoid non-physical damage
diffusion with the increase of d .
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Figure 4.8: The crack geometry function α (d) for different values of parameter ζ.

4.3.3 Combination between regularized crack and Griffith theory

With the regularized crack field, sharp cracks are approximated by a diffusive band as follow-
ing:

Γ≈ Γl (d) =
∫

B
γ (d ,∇d)dV,

where B ⊂ Ω denotes the localization band over which the crack is smeared. In practice,
this band is usually sufficiently small compared to the considered domain Ω. Therefore, the
crack surface energy can be approximated as:

Φd =
∫
Γ

Gc dΓ≈
∫

B
Gcγ (d ,∇d)dV. (4.30)

The strain energy can be expressed as:

Φs =
∫
Ω
ϕ (ε (u) ,d)dV =

∫
Ω

g (d)ϕ0 (ε (u))dV, (4.31)

where g (d) and ϕ0 are the energetic degradation function and initial strain energy respec-
tively. In general, the expression of the total energy (Eq. (4.22)) is

Π (u,d) =
∫
Ω
ϕ (ε (u) ,d)dV +

∫
B

Gcγ (d ,∇d)dV −
∫
∂Ωt

t∗ ·udS −
∫
∂Ωu

(σ ·n) ·u∗dS, (4.32)

with the assumption that the body force f is null and B denotes the crack localization band
with B ⊂Ω. Considering that the displacement and phase-fields (u,d) can be determined by
solving the minimization problem shown in Eq. (4.24), we write Eq. (4.32) in the variational
form:

δΠ (u,d) =
∫
Ω
σδεdV +

∫
B

∂ϕ

∂d
δddV +

∫
B

Gc

(
∂γ

∂d
δd + ∂γ

∂∇d
δ∇d

)
dV −

∫
∂Ωt

t∗ ·δudS, (4.33)

where σ= ∂ϕ
∂ε denotes the Cauchy stress, and δu = 0 for ∀x ∈ ∂Ωu . In general, Eq. (4.33) can

be divided into two parts δΠ (u,d)P1 and δΠ (u,d)P2. The first one is the mechanical part
without damage that is written as follows:

δΠ (u,d)P1 =
∫
Ω
σδεdV−

∫
∂Ωt

t∗ ·δudS.
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Applying the divergence theorem, δΠ (u,d)P1 can be written as:

δΠ (u,d)P1 =−
∫
Ω
∇·σδudV +

∫
∂Ωt

(
σ ·n − t∗·)δudS,

which is equivalent to the strong form

∇·σ= 0 in Ω,

σ ·n = t∗ on ∂Ωt .

Regarding δΠ (u,d)P2, it can be written as:

δΠ (u,d)P2 =
∫

B
g ′ (d)ϕ0δddV +

∫
B

Gc

c0lc
α′ (d)δddV +

∫
B

2Gc lc

c0
∇d∇δddV. (4.35)

Application the theorem of divergence yields

δΠ (u,d)P2 =
∫

B
g ′ (d)ϕ0δddV +

∫
B

Gc

c0lc
α′ (d)δddV −

∫
B
∇·

(
2Gc lc

c0
∇d

)
δddV+∫

∂B

(
2Gc lc

c0
∇dδd

)
·ndS.

(4.36)

The surface integral vanishes by considering on the crack boundary the condition: ∇d (x) ·
n = 0. Thus, we have:

δΠ (u,d)P2 =
∫

B
g ′ (d)ϕ0δddV +Gc

[∫
B

1

c0lc
α′ (d)δddV −

∫
B

2lc

c0
·∆dδddV

]
,

in the case of a homogeneous material, for which Gc and lc are constant over the domain Ω.
Due to the irreversibility of Γ, the rate Γ̇l is elaborated as:

Γ̇l =
∫

B
γ̇dV =

∫
B

ḋδdγdV ≥ 0, (4.37)

by re-writing the term
[

1
c0lc

α′ (d)− 2lc
c0

·∆d = δdγ
]

. The irreversibility in Eq. (4.37) can be

satisfied if the following conditions are met:

δdγ≥ 0, ḋ ≥ 0. (4.38)

Owing to the unilateral stationary condition of the total energy functional (δΠ (u,d)P2 ≥ 0),
the governing equations of the damage field are{

−g ′ (d)ϕ0 −Gcδdγ= 0, ḋ > 0,

−g ′ (d)ϕ0 −Gcδdγ< 0, ḋ = 0.
(4.39)

Eqs. 4.38 and 4.39 require a derivable and decreasing degradation function g (d). Re-writing[
f
(
ϕ0,d

)=−g ′ (d)ϕ0 −Gcδdγ
]
, the phase-field evolution equation can be summarized by

the following Karush-Kuhn-Tucker conditions:

ḋ ≥ 0, f
(
ϕ0,d

)≤ 0, ḋ f
(
ϕ0,d

)≡ 0,

where f
(
ϕ0,d

) ≤ 0 can be treated as the damage criterion. When ḋ ≥ 0, it follows from
f
(
ϕ0,d

)= 0 that:
Gcδdγ=−g ′ (d)ϕ0.

The left part is called "crack resistance" and describes how hard it is to open the crack while
the right one is called "crack driving force". The evolution ofϕ0 can automatically determine
the damage variable d , with no need to define pre-cracks.
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To summarize, in the homogeneous material case, the local damage evolution equation of
the phase-field is written as:

g ′ (d)ϕ0 + Gc

c0lc
α′ (d)− 2Gc lc

c0
·∆d = 0, (4.40)

by enforcing ḋ ≥ 0. However, in the heterogeneous material case, Gc (x) and lc (x) are func-
tions of x for x ∈Ω, so the term 2Gc lc

c0
∆d should be corrected as:

2Gc lc

c0
∆d =∇·

(
2Gc lc

c0
∇d

)
, (4.41)

and the damage evolution function should be written as:

g ′ (d)ϕ0 + Gc

c0lc
α′ (d)−∇·

(
2Gc lc

c0
∇d

)
= 0. (4.42)

Eqs. (4.40) and (4.42) are the keys for solving the phase-field evolution equation.

4.3.4 Energetic degradation function

Since α (d), lc , c0 have been determined in previous sections, the next variable that needs to
be determined is g (d), the energetic degradation function.

In general, this function has to satisfy the following conditions:

• g (0) = 1 (intact state) and g (1) = 0 represents fully broken state,

• g ′ (d) = dg
dd < 0, d ∈ [0,1),

• g ′ (1) = 0.

Based on the papers [207, 208, 211], a general degradation function is introduced, which can
be expressed as follows:

g (d) := (1−d)p

(1−d)p +Q (d)
= 1

1+ω (d)
, ω (d) = Q (d)

(1−d)p , (4.43)

with the exponent p > 0 and the continuous function Q (d) > 0. Because Q (d) is strictly
positive, the following polynomial is considered:

Q (d) = a1d +a1a2d 2 +a1a2a3d 3 + ... = a1d ·P (d), (4.44a)

P (d) = 1+a2d +a2a3d 2 + .... (4.44b)

In this type of degradation function, the parameters ai and p need to be determined. In
the following, a 1D bar problem is taken as example to illustrate the determination of these
parameters.

The bar x ∈ [−L,L] is assumed sufficiently long so that the crack state is not affected by
boundary effects. The bar is loaded at both ends by an increasing displacement u∗ along
the x direction and the crack initiates at the symmetric point x = 0. Meanwhile, the crack
band is limited in the interval [−D;D], with D < L.
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Because of the constitutive equation, the local strain field can be expressed as:

ε (d) = σ

E0

[
g (d)

]−1 = σ

E0
[ω (d)+1] , (4.45)

for ω (d) = [
g (d)

]−1 −1 defined in Eq. (4.43). Therefore, the displacement u∗ imposed at the
extremity is given by

u∗ = σ

E0

∫ L

0

[
g (d)

]−1 dx = σ

E0

[
L+

∫ D

0
ω (d)dx

]
= σ

E0
L+ 1

2
w (σ) ,

where w (σ) := 2σ
E0

∫ D
0 ω (d)dx is the apparent displacement jump due to the opening of the

crack. At the same time, with Eqs. (4.45) and (4.40), we can get:

σ2ω′ (d)−A0
[
α′ (d)−2l 2

c∆d
]= 0, A0 = 2E0Gc

c0lc
. (4.46)

In the elastic stage, the crack fields are null along the bar, so ∆d = 0. Thus, Eq. (4.46) can be
written as

σ2ω′ (d)−A0α
′ (d) = 0, (4.47)

which it is only validated at the point the stress reaches is strength (σ=σc ) according to Eq.
(4.39). Thus, the strength (maximum stress) can be calculated as:

σc =
√

A0
α′ (0)

ω′ (0)
. (4.48)

It is reminded that the generic geometric crack function is α (d) = ζd + (1−ζ)d 2, where ζ ∈
[0,2] to avoid non-physical damage (explained in Section 4.3.2). Thus, we have two cases to
discuss:

• ζ = 0, α′ (0) = 0, we can get σc = 0. The damage variable d > 0 since the beginning of
the loading and increases gradually with loading increment.

• ζ > 0, α′ (d) = ζ > 0, we obtain σc > 0. The response of the phase-field has an initial
elastic stage in which the material remains undamaged. In this case, the strength σc

can be expressed as:

σc =
√

2E0Gc

c0lc
· ζ

a1
. (4.49)

When the stress exceeds the critical value σ>σc , the diffusive crack will localize into a local-
ization band with its size controlled by the length scale lc . As mentioned above, the crack is
limited into a zone [−D,D]. Building upon the above setting, multiplying Eq. (4.46) by d ′ and
integrating with respect to x ∈ [−D,D], we get

σ2ω (d)−A0
[
α (d)− l 2

c (∇d)2]= 0. (4.50)

Denoting d∗ = d(x = 0) when the maximum damage state is reached, and assuming ∇d = 0
at this moment, the stress σ at this point is:

σ
(
d∗)=√

A0
α (d∗)

ω (d∗)
=σc

√
ω′ (0)

α′ (0)

α (d∗)

ω (d∗)
. (4.51)
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Integrating Eqs. (4.43), (4.44) and (4.29) into Eq. (4.51), the stress σ (d∗) can be re-written as:

σ
(
d∗)=σc

√
[ζ+ (1−ζ)d∗] (1−d∗)p

ζP (d∗)
. (4.52)

Since ∇·σ= dσ
dx = 0, σ (x) =σ (d∗). Inserting Eq. (4.51) into Eq. (4.50), we obtain:

d(d)

dx
=− 1

lc
H

(
d ,d∗)

, with H
(
d ,d∗)=√

α (d)− α (d∗)

ω (d∗)
·ω (d), (4.53)

if x is in the interval x ∈ [0,D]. If we inverse and integrate Eq. (4.53), we can obtain:

x
(
d ,d∗)= lc

∫ d∗

d
H−1 (

d̃ ,d∗)
dd̃ , D

(
d∗)= lc

∫ d∗

0
H−1 (

d̃ ,d∗)
dd̃ , (4.54)

where d̃ also describes the damage variable but distinguishes with the value d in the sub-
script of integration operator. Changing the variable x 7−→ d (x) and taking Eq. (4.54) into
account, the apparent jump displacement yields:

w
(
d∗)= 2σ

E0

∫ D

0
ω (d)dx = 2

√
2Gc lc

c0E0

∫ d∗

0

√
α (d∗)

ω (d∗)α
(
d̃

)−α (d∗)ω
(
d̃

)ω(
d̃

)
dd̃ . (4.55)

In the case that 0 < ζ ≤ 2, and by inserting Eqs. (4.29), (4.43), (4.51), Eq. (4.55) can be re-
written as follows:

w
(
d∗)= 4Gc

√
ζ

c0σc

∫ d∗

0

[
P (d∗)

(1−d∗)p · ζ+ (1−ζ) d̃

ζ+ (1−ζ)d∗ − P
(
d̃

)(
1− d̃

)p

]−1/2 √
d̃ ·P

(
d̃

)(
1− d̃

)p dd̃ . (4.56)

From Eqs. (4.55) and (4.56), we can discuss three different cases:

• Miehe’s model (ζ = 0): In this case, σc and the initial elastic stage do not exist. There-
fore, the jump distance w(d∗) can only be described by Eq. (4.55), where the phase-
field response always depends on lc .

• Pham’s model (ζ= 1, σc varies): In this case, σc and initial elastic stage exists. Based on
Eq. (4.49), σc is a function of a1 and lc . However, a1 = 2 in this case. Thus, the value of
σc and the phase-field response depends on the choice of lc .

• Wu’s model (ζ = 2, σc is fixed): In this case, σc and initial elastic stage exists, and σc

is fixed. The displacement jump (Eq. (4.56)) will become independent to lc . When
d∗ = 1, the opening crack displacement reaches its maximum value, we have:

wc = 2πGc

c0σc

√
ζP (1) lim

d∗→1

(
1−d∗)1−(p/2) . (4.57)

According to Eq. (4.49), a1 will vary and can be expressed as

a1 = 2E0Gc

σ2
c

· ζ

c0lc
. (4.58)

In the following, we will discuss the coefficients ai , and the degradation function g (d) for the
three abovementioned models.
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The energetic degradation function of Miehe’s model

As presented in [197, 206], the energetic degradation function g (d) is given as:

g (d) = (1−d)2 , (4.59)

where ai and p can be obtained from:

a1 = 2, a2 =−0.5, ai = 0, i ≥ 3, p = 2. (4.60)

In most implementations, a small positive numerical parameter k is introduced in the degra-
dation function, e.g. g (d) = (1−d)2 + k in order to prevent the difficulty of solving the
equilibrium equations with zero stiffness at points where d = 1. In general, the value of k
should be chosen large enough so that the equilibrium equations are still well-posed but
small enough so that the artificial stiffness that is added in totally damaged regions is negli-
gible.

Because ζ = 0 for this method, there is no elastic stage, which means the damage becomes
strictly positive right from the beginning of the loading. That means the peak stress can only
be reached at the critical damage value (dc ).

∂σ

∂d
|d=dc = 0, (4.61)

which can be considered as the strength. Based on [201], for Miehe’s model, dc is given as
dc = 1

4 which conducts to a strength σc of

σc = 3

16

√
3E0Gc

lc
. (4.62)

The energetic degradation function of Pham’s model

The g (d) of Pham’s model as well as the ai values are the same as in Miehe’s model. In this
method, there is an elastic stage when ζ= 1. Integrating ζ= 1 into Eq. (4.49), the strength in
Pham’s method can be expressed as:

σc =
√

3E0Gc

8lc
. (4.63)

The energetic degradation function of Wu’s model

Wu’s model incorporates the cohesive zone model, the stress softening law depends on the
crack opening displacement. When the crack initiates, the initial slope k0 is expressed as:

k0 = lim
d∗→0

∂σ

∂w
=− c0

4π
· σ

2
c

Gc
·
[
ζ
(
a2 +p +1

)−1
]3/2

ζ2
(4.64)

with a2 defined as

a2 = 1

ζ

[(
−4πζ2

c0
· Gc

σ2
c
·k0

)2/3

+1

]
− (

p +1
)

. (4.65)
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Accordingly, for a given traction–separation law σ (w) with wc already known, the parameter
a3 in the quadratic polynomial P (d) can be calibrated as:

a3 =
0, p > 2,

1
a2

[
1
ζ

(
c0wc ft
2πGc

)2 − (1+a2)

]
, p = 2.

(4.66)

Generally, the values of (ai )i≥3 can be omitted.

Linear softening case:

In this thesis, a linear softening law is considered, where the relation between σ and the
crack opening displacement w is shown in Fig. 4.9(a). In this case, the initial slope is k0 =
− σ2

c
2Gc

, and if ζ= 2 and p = 2, it is easy to calculate:

a1 = 4

π
· E0Gc

σ2
c lc

, a2 =−1

2
, a3 = 0 (4.67)

where the energetic degradation function is:

g (d) = (1−d)2

(1−d)2 +a1d
(
1− 1

2 d
) (4.68)

which is shown in Fig.4.9(b).

(a) (b)

Figure 4.9: (a) The relation between the stress σ and the opening crack displacement w for the linear
softening law [208], (b) Energetic degradation function for the linear softening law with different val-
ues of a1 [201].

Other softening laws can be found in [207]. From a numerical point of view, the function
derivative g ′(d) should be monotonically increasing, which equivalently means that the func-
tion g (d) itself should be convex [192]. This condition is equivalent to:

a1 ≥ 3

2
. (4.69)

In practical applications, lc is chosen as small as possible.
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4.3.5 Combination between different diffusive crack and degradation func-
tions

Generic degradation functions have been expressed in Eq. (4.43), where a1 determines the
independence of lc , and a2 depends on the type of softening law.

In the case ζ ̸= 0, where there is an elastic stage, it may seem a good idea to combine the
different types of diffusive crack profile with lc independent degradation function to have
different types of lc independent phase-field models. However, the work in [201] shows that
the feasibility of this idea is restricted due to the irreversibility of the damage profile ḋ > 0.

To prove this, we go back to the example of the bar studied in the previous section, where
the crack band is limited in the interval [−D,D], with D the semi-crack bandwidth. Based on
[207], the initial semi-crack bandwidth (σ=σc ) can be expressed as:

D0 = lc
3

√
− c0π2σ2

c

4k0ζ2Gc
(4.70)

where D0 is a function of ζ. Meanwhile, the ultimate semi-crack bandwidth (d∗ = 1) can be
derived with the help of Eq. (4.54):

Du = lc

∫ 1

0
H−1 (

d̃ ,1
)

dd̃ =


lcp
1−ζ ln

(
2
p

1−ζ+2−ζ
ζ

)
, ζ ∈ (0,1]

lcp
1−ζ

(
π
2 −arcsin

(
2−ζ
ζ

))
, ζ ∈ [1,2]

(4.71)

which is also a function of ζ. Because of the irreversibility condition, the crack bandwidth
cannot shrink with increasing d which yields the following condition:

D0 (ζ) ≤ Du (ζ) . (4.72)

Therefore, a relation between the initial and final semi-crack bandwidth depending on the
variation of ζ is shown in Fig. 4.10. As shown in the figure, for Pham’s diffusive crack (ζ= 1),
three softening laws can be used except for the linear case that is the most common law.
As for Wu’s diffusive crack, the four standard softening laws can all be used. For Miehe’s
diffusive crack, establishing a lc independent phase-field would require more work.

4.3.6 Choice of stored energy functional

The stored energy functional ϕ describes the energy stored in the body from the intact state
to the fully cracked state, which are characterized by the initial free energy density function
ϕ0 and an energetic degradation function g (d), where ϕ = g (d)ϕ0. For an isotropic elastic
body, the initial free energy density can be expressed as:

ϕ0 (ε) = 1

2
ε : E0 : ε= 1

2
λ0tr 2 (ε)+µ0ε : ε= 1

2
σ : S0 :σ=ϕ0

(
σ

)
, (4.73)

where λ0 and µ0 represent the lamé coefficients; S0 := E−1
0 denotes the fourth-order com-

pliance tensor, and σ = E0 : ε is the effective stress tensor. Besides, under complex loading
conditions, it might be relevant to split the free energy density into separate tension and
compression part to model the effect of damage only on the tension part.
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Figure 4.10: Initial and ultimate semi-crack bandwidth with the variation of ζ [201].

Model without split

In the phase-field proposed in [194], no split is considered and the free energy density is
simply expressed as

ϕ+ (d ,ε) =ϕ (d ,ε) , ϕ− (d ,ε) = 0 =⇒ ϕ (d ,ε) = g (d)ϕ0 (ε) . (4.74)

In this case, the stress field is:

σ= ∂ϕ

∂ε
= g (d)σ, σ= ∂ϕ0

∂ε
= E0 : ε, (4.75)

with the evolution of phase-field given by

Gcδdγ=−g ′ (d)H, H = ∂ϕ

∂g
=ϕ0 (ε) . (4.76)

This type of method ignores the difference between the tensile and compressive behavior
and predicts the same damage profile in regions under compression as well as under ten-
sion. That is not realistic for brittle or quasi-brittle fracture. Furthermore, it does model the
unilateral effect under cyclic loading [212, 213], and the crack surfaces may be penetrated by
existing cracks under compressive loading.

Miehe’s model with split

Miehe [197, 206] applied a spectral decomposition to the strain tensor in order to fully dis-
tinguish the tension and compression strain:

ε=
3∑

n=1
εn pn ⊗pn = ε++ε− (4.77)

where εn and pn denote the eigenvalues and eigenvectors of the strain tensor respectively.
Note that ε+ and ε− represent respectively the positive and negative parts of the strain tensor:

ε+ =
3∑

n=1
〈εn〉+pn ⊗pn , ε− =

3∑
n=1

〈εn〉−pn ⊗pn (4.78)

93



CHAPTER 4. REVIEW OF DAMAGE MODELING OF MATERIAL AND PHASE-FIELD
METHOD

with the bracket operators 〈x〉+ = x+|x|
2 , and 〈x〉− = x−|x|

2 . The operator ⊗ denotes the outer
product of two vectors. It then follows that:

ϕ±
0 = 1

2
λ0 (〈tr (εn)〉±)2 +µ0ε± : ε±. (4.79)

As damage only affects the tension part, the stress tensor can be expressed as:

σ= g (d)
[
λ0〈tr (εn)〉+I+2µ0ε+

]+ [
λ0〈tr (εn)〉−I+2µ0ε−

]
(4.80)

with I the identity matrix. The decomposition can be performed by projection tensors P−
and P+ which are given as follows:

P+ := ∂ [ε+ (ε)]

∂ε
, and P− = I−P+ (4.81)

with I the fourth-order identity tensor. The decomposition of strain can be given as:

ε+ = P+ : ε, and ε− = P− : ε. (4.82)

The detailed expression of the projection tensor can be found in [214, 215], and Appendix A
of [216]. Besides, a shifted split algorithm has been proposed in [217] where the split proce-
dure is performed in the previous loading increment to avoid costly linearization procedures
when solving the displacement problem.

Wu’s model with split

Similarly to the strain tensor decomposition, the effective stress σ can also be decomposed,
as proposed in [208, 218]:

σ=
3∑

n=1
σn pn ⊗pn =σ++σ−. (4.83)

The notations σn , pn , and σ± have the same meaning as in the strain decomposition. In
general, this approach is simpler than strain decomposition and gives

σ+
1 = 〈σ1〉+, σ+

2 = 〈
max

(
σ2, ν̃0σ1

)〉
+ ,

σ+
3 = 〈

max
[
max

(
σ3, ν̃0

(
σ1 +σ2

))
, ν̃0σ1

]〉
+ .

(4.84)

The orthogonal condition σ+ : C0 : σ− = 0 holds. Parameter setup ν̃0 = ν0
1−ν0

can be used
in 3D and plain strain conditions, while ν̃0 = ν0 should be used in plane stress condition.
Alternative decompositions can be found in [219, 220]

With the above split, the positive and negative parts of the energy are

ϕ±
0 = 1

2
σ± : S0 :σ±. (4.85)

As in the strain decomposition, the stress field is expressed as:

σ= g (d)σ++σ−,
∂ϕ±

0

∂ε
=σ±. (4.86)
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In the case of isotropic material, to simplify the calculation, a so-called equivalent effective
stress σeq

+ is defined in [207] to represent σ+:

σ
eq
+ = 1

1+βc

(
βc〈σ1〉+

√
3J2

)
(4.87)

with βc := σ
compression
c

σtension
c

−1; σ1 denoting the largest eigenvalue, and J2 the invariant of the devia-

toric part of the effective stress tensor. It then follows that

ϕ+
0 = 1

2

(
σ

eq
+

)2

E0
(4.88)

if βc →∞, σeq
+ = 〈σ1〉+, which leads to the Rankine energy:

ϕ+
0 = 1

2

(〈σ1〉+
)2

E0
. (4.89)

Hybrid formulation

Different damage behaviors in tension and compression cannot be distinguished in the for-
mulation of no split phase-field. Therefore, the split scheme is often preferred, although it
leads to a nonlinear equilibrium equation which requires more computational effort for its
solution.

To overcome the above issue, a hybrid formulation is applied in [207, 208, 221]. The no split
energy and split energy are applied in the stress field and the crack phase evolution, respec-
tively and separately.

Although this hybrid formulation does not violate the second law of thermodynamics, as
shown in [222], it breaks the variational consistency because the stress field and the crack
phase-field use different energy functionals. It is still attractive from a computational point
of view as the stress is simply given by σ = g (d)E0 : ε, which is a linear relation. In addi-
tion, Ambati et al. [221] confirmed that the crack patterns obtained with this hybrid for-
mulation almost coincide with Miehe’s model with single split, with slight differences in the
load-displacement curve.

For synthesis, the energy ϕ0 applied in the mechanical part can be expressed as:

ϕ0 = 1

2
ε : E0 : ε (4.90)

while different types of energy ϕ+
0 that can be used for the evolution of the phase-field are

given by

ϕ+
0 =


ϕ+

0 (ε) ,

1
2

(
σ

eq
+

)2

E0
,

ϕ+
0

(
σ

)
.

(4.91)

95



CHAPTER 4. REVIEW OF DAMAGE MODELING OF MATERIAL AND PHASE-FIELD
METHOD

In the unique energy strategy, whether there is a split or none, the displacement and crack
fields can be obtained by solving:

(u,d) = Arg
{

minu,dΠ (u,d)
}

(4.92)

As for the hybrid formulation, the minimization problem in Eq. (4.92) does not hold anymore
for both fields (u,d). A separated minimization function is considered instead:u = Arg

{
minuΠ (u,d)

}
d = Arg

{
mindΠ

+ (u,d)
} (4.93)

where the energy is not split in the displacement minimization problem but only in the crack
problem.

4.3.7 Irreversibility of crack phase-field

Damage models should reflect the physics, where a fully damaged material can not be dam-
aged further, and the damage state cannot be recovered. Consequently, the boundedness
d ∈ [0,1] and irreversibility condition ḋ ≥ 0 should be met and dealt with carefully.

For the quadratic crack function α (d) = d 2 the boundeness d ∈ [0,1] is intrinsically satisfied.
Therefore, in [194], authors only enforced the irreversibility condition when the crack phase-
field is close to one:

d (x, t > t0) = 1, if d (x, t0) ≈ 1. (4.94)

In order to prevent cracks from healing when the energyϕ+
0 decreases, the energy entered at

each load increment can be replaced by a local history field, as proposed in [197]:

H(x, tn) := max0≤t≤tn

[
ϕ+

0 (x, t )
]

. (4.95)

This can make sure the energy entered in each increment is always the largest one among
the 0 ≤ t ≤ tn . However, in other cases (ζ ̸= 0), the bound d ∈ [0,1] is not always satisfied. In
fact, for the phase-field models where the elastic part exists, the damage can be calculated
as negative when σ<σc . This is the reason why extra constraints need to be added.

Eq. (4.39) can be rewritten as follows:

R =−g ′ (d)ϕ0 −Gcδdγ≤ 0 (4.96)

where Gcδdγ denotes the crack resistance and −g ′ (d)ϕ0 is the driving force. If R = 0, it
means the crack resistance is equal to the driving force where d > 0 and a correct value is
calculated. If R < 0, it means the added energy is not sufficient to increase the damage state
so d should be stable with respect to the previous increment. Finally, if R > 0, the added
energy is larger than the crack resistance so the material cannot sustain the load anymore,
therefore d should be set to 1 [223–225], i.e.:

0 ≤ dn < dn+1 < 1, R = 0,

dn = dn+1, R < 0,

dn+1 = 1, R > 0.

(4.97)
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In [226, 227], the condition (4.97) was replaced by:

H(x, tn) := max0≤t≤tn

[
ϕ+

0 (x, t ) ,
1

2

σ2
c

E0

]
(4.98)

with the use of the Rankine formulation under the assumption of existence of the elastic
stage. This ensures that d ≥ 0 as well as the irreversibility. However, if d > 1, we need force
that d = 1.

4.3.8 Synthesis of different phase-fields

It should be remarked that all the descriptions above are based on the assumption that the
model is loading-rate independent. Rate dependent models can be found in [197, 207]. In
[197], Miehe mentions that applying viscous parameters can stabilize the numerical treat-
ment even for a rate-independent model. However, based on the tests in [208, 216], this
stabilization by an artificial viscosity might not be necessary to get converged results. There-
fore, in the case of the loading-rate independent model, we do not need to apply viscosity.

Eq. (4.42) is rewritten below:

g ′ (d)ϕ0 + Gc

c0lc
α′ (d)−∇·

(
2Gc lc

c0
∇d

)
= 0.

In order to simplify the formulations and help the reader pick up the phase-field key param-

Model α (d) α
′
(d) c0 g (d) lc

Crack
bandwidth

Miehe [197, 206] d 2 2d 2 (1−d)2 lc = 27
256

E0Gc

σ2
c

∞
Pham [200] d 1 8/3 (1−d)2 lc = 3

8
E0Gc

σ2
c

4lc

Wu - Linear
[207, 208]

2d −d 2 2−2d π (1−d)2

(1−d)2+a1d
(
1− 1

2 d
) Numerical

parameter
πlc

Table 4.3: The parameters of different type of phase-field methods.

eters, a summary of all the parameters of three phase-fields models is shown in Table 4.3. As
for the energy ϕ0, it is an independent parameter that can be chosen separately.

Accordingly, the evolution equation of different phase-fields can be written as follows:

Miehe’s model

−2(1−d)ϕ0 + Gc

lc
d −∇· (Gc lc∇d) = 0, (4.99)

Pham’s model

−2(1−d)ϕ0 + 3

8

Gc

lc
−∇·

(
3Gc lc

4
∇d

)
= 0, (4.100)
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Wu’s model linear softening law

− 4a1 (1−d)(
2a1d −4d −a1d 2 +2d 2 +2

)2ϕ0 + 2

π

Gc

lc
(1−d)−∇·

(
2Gc lc

π
∇d

)
= 0. (4.101)

4.4 Chapter conclusions

In this chapter, a review of existing damage modeling has been accomplished. First, we
have phenomenological failure criteria widely used in industrial engineering, although they
are not suitable for complex analysis. Then we have LEFM thanks to the pioneering work
of Griffith and Irwin, which is a good tool for studying crack propagation. However, the
crack tip stress calculated by LEFM is infinite hence leading to instantaneous crack propaga-
tion. In addition, as the displacement field in the standard FEM is continuous, some special
techniques have to be implemented to introduce the displacement discontinuity due to the
crack. The 3D implementation of these techniques for problems with multi-cracks branch-
ing and merging is still a tough task.

The cohesive zone model has been proposed to solve the infinite stress at the crack tip in
LEFM. A process zone is introduced around the crack tip, and crack opening is interpreted
as atomic or molecular bonds breaking between two surfaces. This approach is suitable for
studying the interfacial damage problem, but it only deals with the separation of the crack
surface, not its propagation. Extra approaches such as LEFM are necessary to determine the
propagation of the crack. Considering the exigence of a pre-defined crack for LEFM, from
a fundamental point of view, LEFM and CZM are not self-contained, requiring additional
criteria to determine when/where a crack initiates and grows and in which direction.

In parallel with fracture mechanics, the Continuum Damage Mechanics have been devel-
oped to deal with the degradation of material properties due to an accumulation and evolu-
tion of microcracks. In CDM, the damaged regions can naturally grow, branch, and coalesce
without any numerical difficulty. To resolve the mesh dependency, non-local damage mod-
els have been proposed, such as the integration and gradient-based models. Then, we have
the phase-field method that can be categorized as a gradient-based non-local model. Phase-
field uses the damage variable to describe, on the one hand, the degradation of the material,
and on the other hand, the cracks, which are regularized as diffusive crack bands. By utiliz-
ing the variational approach to brittle fracture, which minimizes the total potential energy,
it is possible to solve the displacement fields and cracks simultaneously.

Three different phase-field models, Wu, Pham, and Miehe, have been presented in detail in
this chapter. In phase-field methods, the most important parameter is lc , which controls the
width of the diffusive crack. For Miehe’s and Pham’s model, the length parameter lc should
be considered as a material parameter [200, 228–231], like in table 4.3. Even though these
formulations come from the analytical solution of a 1D bar with homogeneous crack phase-
field [231] or from the experimentation and inverse analysis [232], they can give good results
in some cases, like in [230, 233]. However, if lc is considered a material parameter, its value
should be fixed for a given material. These estimations are often too large for the problem
dimensions, which lead to some bizarre phenomena [234]. Furthermore, the diffusive crack
bandwidths of Miehe’s and Pham’s models are quite large, which results in crack merging
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when two cracks are close to each other [235] or impinging on the hole if the crack is close
[236].

On the contrary, Wu’s scheme is free of this dilemma as lc can always be treated as a nu-
merical parameter and be chosen as a small positive number [208, 234]. Furthermore, the
bandwidth of Wu’s model is much more narrow than the two others. However, compared to
the two other phase-fields, the evolution equation of Wu’s phase-field becomes nonlinear,
resulting in increased complexity in solving the equation and higher computational costs.

In the last two chapters, Wu’s and Miehe’s models are chosen to study the impact of lc for
heterogeneous materials.
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CHAPTER 5. SENSITIVITY OF MIEHE’S PHASE-FIELD TO THE CHOICE OF THE LC FOR
FIBROUS MATERIAL ON MICRO-LEVEL

5.1 Chapter overview

As stated in the previous chapter, the characteristic length lc is a significant parameter in
Miehe’s phase-field model. However, according to the state of the art [201, 230], researchers
have often studied its influence on homogeneous materials while the case of heterogeneous
materials has rarely been investigated. This is the key part of this chapter. A review of Chen’s
implementation of Miehe’s model will be presented in Section 5.2 as well as the problem
statement in Section 5.3. The analysis of lc based on the homogeneous formulation (Eq.
(4.40)) will be shown in Section 5.4, and that based on the heterogeneous formulation (Eq.
(4.42)) will be presented in Section 5.5.

5.2 Review of Chen’s implementation of Miehe’s model

Inspired from the work of Bourdin [194, 195], Miehe’s phase-field model [197, 206] is proba-
bly the most widely used phase-field model nowadays. However, one of this model’s draw-
backs is the high computational cost requirement. A sufficiently refined mesh is necessary to
accurately describe the gradient term, and the convergence of the conventional alternating
minimization algorithm is relatively slow.

Therefore, one of the solutions is using parallel implementation to benefit from the modern
computers. Fortunately, as presented in Section 1.5, the FFT method is an intrinsically par-
allelized solver. Furthermore, some complex mathematical operations in the real space are
much simpler in the frequency domain, like the gradient term in FFT is a simple multipli-
cation. Therefore, a combination between the phase-field method and the FFT solver could
overcome some of the drawbacks of the phase-field approach. Such a combination and a
weak coupling solving algorithm have been developed by Chen in [216], the analysis in this
chapter is mainly based on these developments.

Because Miehe’s method is an lc sensitive approach, where lc should be considered as a
material parameter, lc should be unique for each material. In the case of a heterogeneous
model, Gc and lc are functions of x in the model, so the divergence of Gc lc is not equal to zero.
On the contrary, in a homogeneous material model, they are constant and can be treated
as simple factors. That is the difference between Eqs. (4.42) and (4.40), where these two
equations are recalled in the following.

The generic homogeneous formulation (Eq. (4.40)) is

g ′ (d)ϕ0 + Gc

c0lc
α′ (d)− 2Gc lc

c0
·∆d = 0. (5.1)

The generic heterogeneous formulation (Eq. (4.42)) is

g ′ (d)ϕ0 + Gc

c0lc
α′ (d)−∇·

(
2Gc lc

c0
∇d

)
= 0. (5.2)

102



CHAPTER 5. SENSITIVITY OF MIEHE’S PHASE-FIELD TO THE CHOICE OF THE LC FOR
FIBROUS MATERIAL ON MICRO-LEVEL

However, in most applications in the literature, the heterogeneity in the mathematical equa-
tion has been omitted in the case of heterogeneous media, like [216], and like [84, 237–239]
for other phase-fields. Recent studies [106, 240] propose a multi-phase-field method but
only for solving anisotropic problems, and [226, 241–243] study the interface debonding and
the crack propagation without considering this heterogeneity. To summarize, in these pa-
pers, Eq. (4.40), which is called homogeneous formulation, is applied instead of Eq. (4.42)
even in the presence of a heterogeneous medium.

In this chapter, the homogeneous formulation of Miehe’s model that omits the heterogeneity
is applied for the first part of the analysis (Section 5.4), and is then compared to the corrected
formulation which is introduced in the second part (Section 5.5). Accordingly, at first, Eq.
(4.99) can re-written as:

−2(1−d)H+ Gc

lc
d −Gc lc∆d = 0 (5.3)

which is the damage evolution equation. Besides, the mechanical local governing equations
are 

div(σ (u,d)) = 0,

σ= g (d)
[
λ0〈tr (εn)〉+I+2µ0ε+

]+ [
λ0〈tr (εn)〉−I+2µ0ε−

]
,

ε= 1
2

(∇u +∇Tu
)

.

(5.4)

The energy here is always split both for the mechanical and damage part with the strain
decomposition method presented in Section 4.3.6. The so-called maximum positive elastic
energy history H is defined as

H(ε (x, t )) = maxt∈[0,t ]
[
ϕ+

0 (ε (x, t ))
]

. (5.5)

Additionally, in [197, 216], a viscous regularization is implemented in order to improve the
stability of the numerical solution. However, based on the tests of [216], adding the viscous
parameter was not very efficient, thus, in the following, this parameter is not taken into ac-
count.

In [216], Miehe’s phase-field model is solved by a fixed-point algorithm. Eq. (5.3) can be
simplified into the form:

Atn (x)d (x)−∆d (x) = Btn (x) (5.6)

which can be written as:(
1

l 2
c (x)

+ 2Htn (x)

Gc (x) lc (x)

)
d (x)−∆d (x) = 2Htn (x)

Gc (x) lc (x)
(5.7)

with

Atn (x) = 1

l 2
c (x)

+ 2Htn (x)

Gc (x) lc (x)
, Btn (x) = 2Htn (x)

Gc (x) lc (x)
. (5.8)

Because Htn (x) is calculated at each time step tn , Atn and Btn only need to be updated at tn .
By introducing a reference term, Eq. (5.6) can be rewritten as:

Atn
0 d (x)−∆d (x) = τ (x) , (5.9)

with τ (x) the polarized term of phase-field:

τ (x) = Btn (x)− (
Atn −Atn

0

)
, (5.10)
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where Atn
0 can be given as:

Atn
0 = min

(
Atn

)+max
(
Atn

)
2

, (5.11)

which is an homogeneous constant at each time step tn . In Fourier space, the derivation can
be easily transformed into a multiplication with frequency vector ξ, where ∆d (x) becomes

F(∆d) (ξ) =− (ξ ·ξ)F(d) (ξ) (5.12)

with F(−) the Fourier transform. Therefore, a fixed-point algorithm can be easily executed
by assuming the polarization term is already known at the i th iteration, which gives:

d̂ i+1 (ξ) = τ̂i (ξ)

Atn
0 +ξ ·ξ (5.13)

until the following convergence criterion is verified

e = ||d i+1 −d i ||2 ≤ 1.10−6 (5.14)

where ||−||2 represents the L2 norm over the model. Fig. 5.1 represents the flow chart imple-
mented in [216] for solving the Miehe’s phase-field.

Figure 5.1: The flow chart of Miehe’s phase-field method based on the fixed-point algorithm and
FFT solver proposed in [216] (remark: CV is convergence check, ACV is convergence acceleration
algorithm).

In this scheme, the damage field is calculated based on the energy calculation at the previous
time increment which requires a very fine loading time step to get accurate results. As shown
in Fig. 5.2 in [216], the results are not stable anymore when δε is larger than 5.10−7. This time
step has been checked in our cases but further verifications are needed for the general case.
In summary, for all our analyses done with Chen’s implementation of Miehe’s model, the
time step will be 5.0 . 10−7.

Besides, although it has been concluded in Chapter 2 that Willot’s rotated scheme is prefer-
able among the improved schemes, we did not succeed in implementing this scheme for the
phase-field solver. To avoid using two different schemes for the mechanical and phase-field
parts, Moulinec and Suquet’s original collocation scheme has been used for both solvers.
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Figure 5.2: Stress-strain relations with different time increment δε.

5.3 Problem statement

Papers [230, 234] show clearly the lc sensitivity in Miehe’s phase-field model, which is one
of the most critical issues that limit its application. However, this kind of analysis is mainly
based on a homogeneous model with only one phase. The impact of lc with a heterogeneous
model with several phases like in composites (fiber and matrix system) or polycrystals has
rarely been reported, even if the phase-field has been successfully applied on these materials
for several years.

Furthermore, as illustrated in the previous chapter, Miehe’s phase-field has no initial elastic
stage. That means the damage in one material is strictly positive no matter how hard it is to
be damaged. Therefore, it is interesting to study the damage field evolution in a heteroge-
neous material such as composites composed of rigid fibers and a soft matrix.

In the FFT method, every voxel needs to be assigned certain properties, so that even models
with pre-cracks like single or double notch models become heterogeneous medium models.
Indeed, in those models, artificial elastic properties are usually assigned in the pre-crack or
void [216].

The objective of this chapter is to investigate the influence of Miehe’s model’s lc for hetero-
geneous materials. As shown in [238], this influence can be related to the inter-fiber distance
for fiber/matrix materials like composites. A similar but deeper analysis is proposed in this
chapter, for the homogeneous formulation in Eq. (4.40) and then the corrected formulation
for heterogeneous materials in Eq. (4.42).

In the following, the models are subjected to a macroscopic strain along the x- direction
(transverse direction) with a time step δ〈εxx〉 = 5 . 10−7 until the final failure while stress-free
conditions are imposed in the other directions (〈σy y〉 = 〈σzz〉 = 〈σx y〉 = 〈σxz〉 = 〈σy z〉 = 0).
These mixed-type loading conditions are applied using the method presented in [160]. It is
reminded that periodic boundary conditions are intrinsic to FFT methods. Due to stress-free
boundaries, Poisson’s effect is active during loading.
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5.4 Analysis of the impact of lc with homogeneous formula-
tion

First, in this part, the homogeneous formulation presented in Eq. 5.3 is applied for all test
cases.

5.4.1 Unit-cell model with two half fibers on the borders (l f constant)

Inspired from the paper [238], first of all, a unit-cell model with two half fibers on the borders
is analyzed (as shown in Fig. 5.3). The model size is 20 µm (0.02mm) with fiber volume frac-
tion V f = 0.55, and the inter-fiber distance (l f ) is 3.29 . 10−3 mm while one voxel size is used
in the thickness. The resolution of the model is N = 225. The blue part is the fiber for which

the material is E-glass with properties: E f = 74 000 MPa, ν f = 0.2, and G f
c = 9.0 . 1010 N/mm

to make sure that the fiber is unbreakable. The red part is the matrix for which the material
is Epoxy MY750 with properties: Em = 4650 MPa, νm = 0.35, Gm

c = 9.6 . 10−4N/mm which are
taken from the paper [238].

Figure 5.3: The composite model with two half fibers on the borders (blue part: fiber; red part: ma-
trix).

In this series of simulations, the value of lc varies from 2.7 . 10−4mm to 8.2 . 10−3mm while
the inter-fiber distance is fixed. The minimum value of lc satisfies Miehe’s criterion which
states that l mi n

c /h = 3 > 2, where h denotes the voxel size. As shown in Fig. 5.4, the first
observation is that the maximum stress decreases with increasing lc . When lc increases from
2.7 . 10−4mm to 1.6 . 10−3mm, the peak stress almost drops to half its initial value, which
confirms the conclusion that lc should be considered as a material parameter.

Furthermore, an interesting fact, which has not been presented in other papers, is that when
l f is much larger than lc , it can be seen that the final failure strain will converge to a stable
value. However, when the l f /lc ratio is less than 2, the crack bandwidth becomes larger than
the inter-fiber distance and the final failure strain increases with lc . This effect cannot be
observed for homogeneous models like in Figure 19 of [201] or Figure 6 of [230]. It seems
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that, in our cases, the presence of the fibers delays the damage evolution when the l f /lc

ratio is sufficiently small, while the fibers have little effect on matrix damage evolution when
this ratio is sufficiently large.

(a) (b)

Figure 5.4: The macroscopic stress-strain curves of the unit-cell model with two half fibers on the
borders with different values of lc .

In the Table 5.1, the maximum damage values in the fibers at the final failure strain are pre-
sented for different l f /lc ratios. It is surprising that the damage in the fiber is not null even

if G f
c = 9.0 . 1010N/mm, which should be high enough to prevent fiber damage. Therefore, a

deeper analysis needs to be carried out to investigate the non-physical damage in the fiber.

l f /lc 12.2 6.1 4.1 2.5 2.1 1.5 1 0.61 0.5 0.4

d max
f 0.085 0.15 0.23 0.38 0.45 0.56 0.67 0.8 0.84 0.88

Table 5.1: The maximum damage d max
f in the fiber at the final failure strain for different l f /lc ratio.

The local damage fields for different
l f

lc
ratios are presented in Fig. 5.5. When the ratio is

equal to 12.2, there is a clear change of the damage field between matrix and fibers. For a
ratio of 2.5, the interfaces become smeared and they cannot be distinguished anymore for
ratios of 1 and 0.5.

Fig. 5.5 implies that the damage in the matrix is diffused into the fiber, and Fig. 5.6 confirms
this. As shown in the figure, whatever the l f /lc ratio, the damage profiles are so smooth that

we cannot even distinguish the transition between matrix and fibers. Considering that G f
c is

high enough to prevent fiber failure, the only explanation is that the damage in the fibers is
due to the diffusion from the matrix and is not physical.

To confirm this, the value of G f
c is changed to 9.6 . 104 and 9.0 . 1020 N/mm. As shown in

Fig. 5.7, whatever the value, the macroscopic stress-strain curve does not change, and the
damage profile also remains stable. This confirms that the damage in the fiber is artificially
caused by diffusion of matrix damage.
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Figure 5.5: The local damage fields at final failure for different values of
l f

lc
: (a) 12.2; (b) 2.53; (c) 1; (d)

0.5 (remark: the semi-circles with dash lines are the fiber contours).

(a) (b)

Figure 5.6: The damage profile of the model along the center line with different l f /lc ratios.
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(a)

(b)

Figure 5.7: The stress-strain relation (a) and damage profile (b) for l f /lc = 2.5 and different values of

G f
c (remark: all stress curves overlap).

5.4.2 Unit-cell model with two fibers (lc constant)

In this section, the model has been changed to the two-fibers unit-cell model presented in
Fig. 5.8 with a total fiber volume fraction of 0.15 and one voxel size is used in the thickness.
The resolution of the model is N = 225.

Figure 5.8: Two-fibers unit-cell composite model with l f constant (blue part: fiber and red part: ma-
trix).

Considering that Miehe’s model is an lc sensitive approach, herein, we will make the analy-
sis of macroscopic mechanical response and local crack patterns by considering lc as a con-
stant, and varying the inter-fiber instance l f from 2.75 . 10−3mm to 2.67 . 10−4mm.

The blue part is fiber for which the material is E-glass with properties: E f = 74000 MPa,
ν f = 0.2. Meanwhile, the red part is the matrix for which the material is Epoxy MY750 with
properties: Em = 4650 MPa, νm = 0.35. Regarding the damage properties of the constituents,

109



CHAPTER 5. SENSITIVITY OF MIEHE’S PHASE-FIELD TO THE CHOICE OF THE LC FOR
FIBROUS MATERIAL ON MICRO-LEVEL

two series of damage properties are tested, as shown in table 5.2. Note that it may seem
that these two tests are irrelevant and not comparable because the damage properties are
totally different. However, it is interesting to see that they both lead to the same conclusion.
Besides, the choices of lc also satisfy the criterion, where lc /h > 2.

Test 1 Test 2

G f
c (N/mm) 9 . 1010 60

Gm
c (N/mm) 9.6 . 10−4 0.003

lc (mm) 8.8 . 10−4 7.0 . 10−4

Table 5.2: The damage properties of different tests.

Furthermore, the l f herein is set as much smaller than twice the distance from the fiber-
matrix interface to the border, and since periodic boundary conditions are used, the strain
concentration point is expected to be the center zone of the model. The closer the two fibers
are, the more concentrated should the strain be. Examples of pure elastic tests with different
l f values (as shown in Fig. 5.9) can well illustrate this phenomenon.

(a) (b)

Figure 5.9: The strain component εxx of the two fibers unit cell model without the phase-field (purely
elastic with 〈ε〉 = 0.005): (a) l f = 6.2.10−4mm, and (b) l f = 2.67.10−4mm (remark: all conditions are
the same as the tests with phase-field).

Figs. 5.10 and 5.11 show the local damage fields and the macroscopic stress-strain curves for
different l f /lc ratios. Fig. 5.10 demonstrates that when lc is fixed, for both two tests, if l f is
too small, the crack will jump to the borders. However, normally, the smaller l f is, the closer
two fibers are, and there should be more strain concentration at the center of the model, as
shown in Fig. 5.9.

Furthermore, if we look at the stress-strain curves (Fig. 5.11), if we decrease l f from the
highest value, there is a first stage where the final failure is progressively brought forward
due to an increase of strain concentration. If we continue decreasing l f until a certain value
of 9.78 . 10−4mm for Test 1 and 6.2 . 10−4mm for Test 2, however, there is a second stage
where failure is delayed, which is not physical anymore. The only explanation is that lc is too
large compared to l f .
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Figure 5.10: The local damage fields at final failure of unit-cell two fiber models with lc constant, and
l f = Test 1 :(a) 6.2 . 10−4 mm, (b) 2.67 . 10−4 mm; Test 2: (c) 6.2 . 10−4 mm, (d) 2.67 . 10−4 mm (remark:
the circles with dash lines are the fiber contours).

(a) (b)

Figure 5.11: The macroscopic stress-strain curves of the two fibers unit-cell model (lc fixed) shown
with different values of lc : (a) Test 1 and (b) Test 2.

Fig. 5.12 shows the damage profile along the center line of the model, for the two tests and
different l f /lc ratios. The cases for which the crack is along the borders have been excluded.
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With the same lc values, the non-physical damage distribution from the matrix to the fiber
can be observed for both tests because the damage variation from the matrix to the fiber is
continuous. The smaller the l f is, the higher damage of the fibers have. Secondly, the crack
bandwidth appears to be slightly affected by the inter-fiber distance. For both tests, if we
decrease l f , the crack bandwidth decreases slightly. Besides, the crack bandwidth of Test 2 is
smaller than Test 1 because Test 2 has smaller lc .

Figure 5.12: The damage profile of the model along the center line with different l f /lc ratios: (a) Test
1 and (b) Test 2.

5.4.3 Unit-cell model with two fibers (l f constant)

Meanwhile, the two-fibers unit-cell model is taken to analyze the behavior in the case of l f

being constant but varying the lc values. The model is shown in Fig. 5.13, where the l f is
fixed at 2.75 . 10−3 mm.

Figure 5.13: Two-fibers unit-cell composite model with l f fixed blue part: fiber and red part: matrix.

The elastic properties are the same as in Section 5.4.2, while regarding the damage proper-

ties, G f
c = 60N/mm, and Gm

c = 0.003 N/mm.
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Fig. 5.14 shows the macroscopic stress-strain curve of the model shown in Fig. 5.8. We can
see the same tendency as in Section 5.4.1: with increasing lc the maximum macroscopic
stress decreases.

Figure 5.14: The macroscopic stress-strain curves of the model shown in Fig. 5.8 for different values
of lc .

However, if we look at the local damage fields in Fig. 5.15, on the one hand, for a
l f

lc
ratio from

12 to 3.5, the damage profile becomes more and more diffusive. Note that the minimum
value of lc satisfies Miehe’s criterion as l mi n

c /h = 2.6 > 2, where h denotes the voxel size. On
the other hand, if lc is large, as in Fig. 5.15(f), the crack jumps from the model center to
the border, which is obviously non-physical. Indeed, as mentioned before, the inter-fiber
distance is much lower than the fiber-border distance., the strain concentration should be at
the center, and the damage initiation and the crack propagation should also be at the center
as observed in Fig. 5.15(a-e).

In Fig. 5.16, the damage profile along the center cross-section line is plotted. In the figure,

the non-physical damage in the fiber can be clearly observed. The case
l f

lc
= 1.7 is shown

separately to emphasize that the cracks are on the borders.

Another interesting point is that, in Fig. 5.16, the borders are actually regions of damage

concentration for all
l f

lc
ratios, which may explain why the crack will grow on the border if lc

is sufficiently large.
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Figure 5.15: The local damage fields at final failure with different lc values, and
l f

lc
=: (a) 12; (b) 9.2; (c)

6.9; (d) 5.5; (e) 3.5; (f) 1.7 (remark: the circles with dash lines are the fiber contours).

(a) (b)

Figure 5.16: The damage profile of the model along the center line with different l f /lc ratios.
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5.4.4 Unit-cell model with two fibers (decreasing fiber lc )

As shown before, there is non-physical damage in the fiber due to the matrix damage dif-
fusion. In the phase-field model, lc controls the crack bandwidth, so a smaller lc means
thinner damage diffusion bandwidth. Therefore, the idea is to downsize the lc value of fiber
to form a thinner damage diffusion bandwidth and reduce the non-physical damage state in
the fiber. In this section, the model is taken from Section 5.4.3, where the inter-fiber distance
is fixed to 2.75 . 10−3mm. The elastic properties and the damage properties of the materials
are the same as for Test 1 in section 5.4.2. The characteristic length of the matrix is fixed to
l m

c = 8.8.10−4mm while for the fiber the two values in Table 5.3 are tested. They both satisfy
Miehe’s criterion l f /h > 2, where h is the voxel size.

Test 1 Test 2

l f
c (mm) 8.8.10−4 2.3.10−4

Table 5.3: The fiber characteristic length values for different test cases.

(a) (b)

Figure 5.17: The damage field in the fiber at the final failure: (a) l f
c = 8.8.10−4 mm, (b) l f

c = 2.3.10−4

mm.

Figure 5.18: The damage field of the model at the final failure: (a) l f
c = 8.8.10−4mm, (b) l f

c =
2.3.10−4mm (Remark: the circles with dash lines are the fiber contours).
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As shown in Fig. 5.17, the damage in the fibers is reduced from 0.3 to 0.08. In Fig. 5.18,

however, we see that the crack in the matrix jumps from the center (l f
c = 8.8.10−4mm) to

the border (l f
c = 2.3.10−4mm). Meanwhile, Fig. 5.19 shows that Test 2 features a larger peak

stress and final failure strain.

Figure 5.19: The macroscopic stress-strain curves for two different l f
c values.

Fig. 5.20(a) shows the values of the history variable at different locations during loading. It
can be seen that the behavior for Test 1 is normal and physical, as the energy at the center is
always higher than at the border until final failure due to the strain concentration. For Test 2,
however, the strain energy at all locations perfectly coincides with Test 1 in a first stage but at
some point the strain energy at the border grows much faster. Fig. 5.20(b) which shows the
damage evolution at the same locations during loading leads to a similar conclusion. The
behavior for Test 1 is also more physical while Test 2 behavior is incomprehensible.

(a) (b)

Figure 5.20: The history (a) and the damage (b) values at the border and the center of the model with

two different l f
c values (remark: the curves begin at 〈ε〉xx = 5 . 10−4).
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It is hard to explain why the crack would initiate at the border from a physical point of view.
As a conclusion, the impact of lc for heterogeneous materials can be considered as twofold.
On the one hand, the choice of l m

c impacts the behavior of the fiber. On the other hand,

the choice of l f
c also impacts the matrix behavior. In both cases, this influence due to the

formulation is artificial and cannot be justified from a physical point of view.

5.4.5 RVE multi-fiber model

In this part, the RVE shown in Fig. 5.21 is tested for different values of lc . The same value is
used for fiber and matrix to avoid the non-physical behavior discussed above. This RVE is
reproduced from the paper [238] as well as the material properties: the blue part is fiber for

which the material is E-glass with properties: E f = 74000MPa, ν f = 0.2, and G f
c = 9.0 . 1010

N/mm to make sure that the fiber cannot fail. On the other side, the red part is matrix
for which the material is Epoxy MY750 with properties: Em = 4650MPa, νm = 0.35, Gm

c =
9.6 . 10−4 N/mm.

Figure 5.21: The model RVE with multi-fibers inspired from [238].

The model size is 21.3 µm (0.0213mm) with resolution N = 225, and only one voxel is used
in the thickness. Note that the fiber volume fraction is V f = 0.60, and the minimum l mi n

c =
2.9 . 10−4 ensures lc /h > 2.

In Fig. 5.22, two phenomena can also be observed. The first is that the crack patterns are
influenced by lc . The second is that the damage in the matrix is diffused into the fibers. Fig.
5.23 shows also that the peak maximum stress decreases when lc is increased.
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Figure 5.22: The local damage fields at final failure for the RVE model (resolution 225) with different
values of lc =: (a) 2.9 . 10−4 mm, (b) 4.8 . 10−4 mm, (c) 9.5 . 10−4 mm and (d) 1.9 . 10−3 mm.

Figure 5.23: The macroscopic stress-strain curves of the RVE model (resolution 225) with different lc

values.

As mentioned above, many researchers consider the characteristic length lc as a material
parameter. For Miehe’s model, the expression of lc can be determined from a 1D model
which gives:

l Miehe
c = 27

256

EGc

σ2
c

. (5.15)
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We find the properties in [238] which reports a σc for the matrix of σm
c = 80Mpa, which gives

a lc = 7.3 . 10−5mm. In order to integrate this lc into the model, an adaptation is necessary
to meet Miehe’s criterion, so the resolution is increased to 875. Besides, lc = 3.0 . 10−4mm is
also tested, which is the value used in [238].

The damage fields are presented in Fig. 5.24, and the macroscopic stress-strain curves are
shown in Fig. 5.25.

Figure 5.24: The local damage fields at final failure of the RVE model (resolution 875) with different
values of lc =: (a) lc = 7.3.10−5 mm, and (b) lc = 3.10−4 mm.

Figure 5.25: The macroscopic stress-strain curves of the RVE model (resolution 875) with different lc

values.
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5.5 Analysis of the impact of lc with heterogeneous formula-
tions

As aforementioned, in heterogeneous media, parameters Gc and lc are not constant over
the domain. If we use Eq. (5.3) in a heterogeneous model, as analyzed in the previous sec-
tion, the damage in one material diffuses into the others without any physical meaning, and
varying the damage properties does not reduce this diffusion.

Accordingly, in this part, the heterogeneity correction (Eq. (4.41)) is added into Eq. (5.3) to
form a heterogeneous formulation that can be written as:

−2(1−d)H+ Gc

lc
d −∇· (Gc lc∇d) = 0 (5.16)

without considering the rate-dependent case. In order to implement Eq. 5.16 into the fixed
point solver, inspired from the paper [244], we introduce:

Q (x) = Gc (x) lc (x) . (5.17)

Introducing a fluctuation term Q′ (x), we have:

Q (x) = Q0 +Q′ (x) (5.18)

where

Q0 = max(Q (x))+min(Q (x))

2
. (5.19)

Therefore, Eq. (5.16) can be rewritten as:

Gc (x)

lc (x)
d (x)−∇· (Q0 (x)∇ (d (x)))−∇· (Q′ (x)∇d (x)

)= 2(1−d)H (5.20)

where H, the history, is expressed in Eq. (5.5). Because Q0 is constant over the domain, Eq.
(5.20) gives (

Gc (x)

lc (x)
+2Htn (x)

)
d (x)−Q0 (x)∆d (x) = 2Htn (x)+∇· (Q′ (x)∇d (x)

)
. (5.21)

Setting Atn = Gc (x)
lc (x) +2Htn (x), Btn = 2Htn (x), D =∇· (Q′ (x)∇d (x)

)
, we have:

Atn d (x)−Q0 (x)∆d (x) = Btn +D. (5.22)

Polarizing A with Atn
0 = max(A)+min(A)

2 , Eq. 5.22 gives:

Atn
0 d (x)−Q0 (x)∆d (x) = τ (x) (5.23)

with
τ (x) = Btn − (

Atn −Atn
0

)
d (x)+D. (5.24)

At a given time step tn+1, and iteration i , a new damage field can be solved from Eq. (5.23):

d̂ tn+1
i+1 = τ̂i

Atn
0 +Q0 (ξ ·ξ)

(5.25)

where a fixed point algorithm can still be established. It can be summarized as follows:
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Initialization, if tn = 0 :

(a0) d 0 (x) = 0

(b0) ∇· (Q′ (x)∇d 0 (x)
)= 0

(c0) Calculate Q′ (x) and Q0 (x)

if tn ̸= 0 :

(a1) Atn (x) is known and Atn
0 is known

(b1) Btn (x) is known and d tn (x) is known

(c1) Calculate D(x), and τ (x)

Time tn+1 :

While convergence criterion is not met:

(a2) τ̂i (x) = F[τi (x)] i th iteration

(b2) d̂ tn+1
i+1 (ξ) = τ̂i (x)

Atn
0 +Q0.(ξ·ξ)

(c2) d tn+1
i+1 (x) = F−1[d̂ tn+1

i+1 ] (x)

(c2) Calculate Di+1 (x), and τi+1 (x)

(d2) Convergence test

(5.26)

The calculation of D(x) can also be performed in Fourier space, because the derivation op-
eration in real space is a simple multiplication in Fourier space, which can be given as:

D(x) = F−1 (
J ·ξ ·F

(
Q′ (x) ·F−1 (

J ·ξ · d̂ (x)
)))

(5.27)

where J = p−1. Compared to the uncorrected formulation, the correction adds one more
Fourier transform, and two more inverse transforms. Besides, the convergence test is the
same as Eq. (5.14)

5.5.1 Unit-cell model with two fibers

In this section, the model geometry is the same as in Section 5.4.3, as well as the elastic

properties and loading conditions. Regarding the damage properties, the G f
c is given as 60

N/mm and Gm
c = 0.0030 N/mm. Meanwhile, two lc values, summarized in Table 5.4, are

taken for this study.

Fig. 5.26 presents the macroscopic responses for two lc values after the heterogeneity correc-
tion. It implies that this correction has a non-negligible effect on macro-level σ−ε relations.
On the contrary to the statement in [245], this phenomenon states that Eq. (4.41) can never
be omitted for heterogeneous materials.
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Test 1 Test 2

lc (mm) 7.00 . 10−4 5.00 . 10−4

Table 5.4: The damage properties of different tests.

Figure 5.26: The macroscopic stress-strain relations with/without heterogeneity correction.

Then damage profiles along the centerline are plotted in Fig. 5.27. Regarding this figure,
the damage in fiber is suppressed, which suggests that the non-physical damage diffusion
between phases can be stopped by adding this heterogeneity correction.

Figure 5.27: The damage profiles along the centerline of different lc values: (a) lc = 7.00 . 10−4 mm;
(b) lc = 5.00 . 10−4 mm.

However, adding this correction also has its cost. Fig. 5.28 shows the iteration numbers of
the fixed-point solver of each time step. The results show that adding heterogeneity cor-
rection will massively increase the iteration numbers required for convergence. Another
phenomenon can be seen in Figs. 5.28(c) and (d), where iteration numbers required for
convergence will decrease with loading increment and re-increase at the final failure for the
heterogeneous formula.
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Figure 5.28: The number of iterations of phase-field solutions (fixed-point solver) of each time step
with different lc values: (a), (b) lc = 7.00 . 10−4 mm, and (c), (d) lc = 5.00 . 10−4 mm. (a) and (c) show
the raw iteration numbers, while for (b) and (d), these raw values are post-treated by an FFT low-pass
filtering for smoothing, where the pass frequency fpass = 500 Hz (remark: all y−axis are plotted in
logarithmic form).

Test
name

Homogeneous
formula

Heterogeneous
formula

Test 1 6.48 . 104 1.36 . 107

Test 2 6.09 . 104 1.22 . 107

Table 5.5: The total iteration numbers of homogeneous and heterogeneous formula.

In this study, the Anderson acceleration scheme has been applied for both homogeneous
and heterogeneous formulation to speed up convergence. This acceleration scheme has
been detailed in [99] and studied for homogeneous formulation in [216]. Table 5.5 implies
that the heterogeneous formulation will add more than 200 times of iterations despite the
accelerating algorithm. Besides, our following study will show that the heterogeneous for-
mula is sensible to the contrast of damage properties, like Gc . The higher the contrast is,
the more iterations are required. Thus, the application of the heterogeneous formula in high
contrast scenarios (e.g., composite with voids) should be further investigated.
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5.5.2 Single notch model

In order to better study the impact of the Anderson acceleration scheme and contrast of
damage properties, a simpler model (single-notch model) has been studied. As shown in
Fig. 5.29, it is a square plate of length 1mm. A straight horizontal notch of 0.5 mm is located
at the mid-height of the left edge. The width of the notch is one voxel size. Because the FFT
solver is intrinsically periodic, we need to add lateral bands, denoted as M2 (purple material),
to avoid spurious effects due to the boundary conditions. Material M2 is also used for the
notch. Note that, in this study, the resolution is given as N = 251 (mesh size h = 4.00 . 10−3

mm) and lc = 0.02 mm.

Figure 5.29: The geometry of single notch plate (Material 1 (M1) is in yellow and Material 2 (M2) in
purple).

In this study, the following material parameters are adopted for M1: Young’s modulus: E0 =
2.1 . 105 MPa, Poisson’s ratio ν= 0.3, and critical energy release rate Gc = 2.7 N/mm. Besides,
the void-like properties of M2 are: Ee

0 = 21 MPa, νe = 0.3. As for Ge
c , three values are chosen

(Table 5.6).

Test 1 Test 2 Test 3

Ge
c (N/mm) 2.70 27 2700

Contrast
Ge

c /Gc
1 10 1000

Table 5.6: The damage properties of different tests.

For all three tests, a tensile loading along y−direction with time step δ〈εy y〉 = 5.00 . 10−7 is
applied while stress-free conditions are imposed in other directions (〈σxx〉 = 〈σzz〉 = 〈σx y〉 =
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〈σxz〉 = 〈σy z〉 = 0). Table 5.7 shows the total iteration numbers of the fixed-point solver,
where several conclusions can be obtained. Compared to the homogeneous formulation,
the heterogeneous formula is sensible to the contrast of damage properties. The higher the
contrast is, the more iterations are required. On the other hand, the Anderson acceleration
scheme can significantly reduce the iteration numbers. They, nevertheless, still have a sim-
ilar order of magnitude to those without acceleration. Hence, may a more efficient scheme
can be investigated in the future.

Heterogeneous formulation

Contrast 1 10 1000

with acceleration 8.45 . 104 3.24 . 105 3.78 . 106

without acceleration 4.48 . 105 5.71 . 105 5.40 . 106

Homogeneous formulation

Contrast 1 10 1000

with acceleration 8.45 . 104 8.46 . 104 8.47 . 104

without acceleration 4.48 . 105 4.46 . 105 4.47 . 105

Table 5.7: The total iteration numbers of homogeneous and heterogeneous formula.

5.6 Chapter conclusions

Thanks to the different tests and analyses conducted in this chapter, several conclusions can
be raised.

At first, many works have reported that the lc should be treated as a material parameter
because the choice of lc impacts material behaviors. Based on the above studies, we would
like to say the second part of this theory «choice of lc impacts material behaviors» has been
reconfirmed. However, its first part should be discussed more prudently for heterogeneous
materials.

In the case of a heterogeneous material like a composite composed of a soft matrix and
rigid inclusions/fibers, the relation between the inter-fiber distance l f and the characteristic
length lc has a huge impact on both the crack propagation patterns and the macroscopic
stress-strain response. From a mechanical point of view, if two fibers are closer than others,
there is more concentration of strain in the matrix zone between these two fibers. There-
fore, damage should initiate in this zone. If two fibers are placed closer and closer, damage
initiation should occur earlier.

With the application of Miehe’s phase-field, this is not verified. On the one hand, if the l f /lc

ratio is not large enough (the l f is too small or the lc too large), although there is much more
concentration of strain in this inter-fiber zone, the crack jumps to somewhere else. On the
other hand, if the l f /lc ratio allows for an inter-fiber crack, but if it is not sufficiently large,
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damage initiation is delayed and the peak macroscopic stress increases when the inter-fiber
distance decreases, which is not physical. Consequently, an appropriate l f /lc ratio is nec-
essary for heterogeneous materials to get a proper crack initiation and propagation pattern
and macroscopic stress-strain relation. However, the safe l f /lc ratio varies a lot for differ-
ent combinations of fiber/matrix properties. Based on our experience, l f /lc ≥ 4 is recom-
mended.

Thirdly, in Miehe’s model without heterogeneity correction in the mathematical equation,
damage can diffuse from one phase to the other. Based on our analysis of a fibrous material,
this can lead to two issues:

• For a composite material under transverse loading, the matrix damage should be dom-
inant. However, the damage in the matrix can be diffused into the fiber, even if the fiber

fracture toughness G f
c is very large. This diffusion strongly depends on lc . The larger

the lc , the stronger the diffusion.

• The interactions of damage behavior between matrix and fiber are twofold. The dam-
age in the matrix can affect the damage in the fiber, and reciprocally. For example, if
we only reduce lc in fibers to reduce the fiber damage, at the same time, the damage
behavior in the matrix also changes.

Therefore, setting up different lc values between phases by, for example, giving a smaller lc

value for a more rigid material to decrease the diffusion, seems difficult. Based on our tests,
this idea can help reduce the damage in the fiber. It nevertheless leads to damage initiation
and cracks propagation in the matrix in a way that cannot be explained.

Then, a correction of the implementation of Miehe’s phase-field model in the FFT solver
for heterogeneous materials has been assessed. With this correction, the non-local term
becomes ∇· (Gc lc∇d), and two changes can be observed:

• The macro-level mechanical responses are changed, which implies that the hetero-
geneity in the mathematical formulation cannot be omitted.

• The damage diffusion between phases can be stopped at the interfaces.

Hence, the heterogeneous formulation should be applied for heterogeneous materials. Nev-
ertheless, this correction is costly, raising hundred times of complexity based on our studies.
On the other hand, this increase of CPU time is sensible to the contrast of material properties.
The higher the contrast is, the more iterations are required for convergence. Thus, efficient
accelerating algorithms and improved schemes should be investigated in the future.

For a general conclusion, in order to get a regular damage field, the characteristic length lc

should be as small as possible. However, in Miehe’s method, it is related to material behavior.
In our experience, a ratio l f /lc > 4 should be used, which widely limits the application of this
phase-field model to heterogeneous materials.

One of the promising solutions for heterogeneous materials may be the implementation of a
model which would suppress the sensitivity on lc . As introduced in Chapter 4, one of the can-
didates is Wu’s model [207, 208]. Thus, Wu’s phase-field model will be introduced in the FFT
solver in the next chapter, where the heterogeneous formulation is naturally implemented.
In this method, lc is considered as a purely numerical parameter that does not affect the
mechanical behavior as long as it is chosen small enough.

126



Chapter 6

Damage modeling of material with Wu’s
phase-field model by FFT solver

Contents
6.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Reminder of Wu’s phase-field model . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 The difficulty of applying Fixed-point algorithm . . . . . . . . . . . . . . . . 129

6.4 Applying Wu’s phase-field model by Newton-Krylov algorithm in FFT solver 130

6.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.1 Single notch model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.2 Asymmetric double notch model . . . . . . . . . . . . . . . . . . . . . . . 139

6.5.3 Single notch with a reinforced fiber . . . . . . . . . . . . . . . . . . . . . 141

6.5.4 Unit-cell model with two fibers with l f constant . . . . . . . . . . . . . 142

6.5.5 Unit-cell model with two fibers with lc constant . . . . . . . . . . . . . . 144

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

127



CHAPTER 6. DAMAGE MODELING OF MATERIAL WITH WU’S PHASE-FIELD MODEL BY
FFT SOLVER

6.1 Chapter overview

Based on the investigations presented in the previous chapter, it is clear that the character-
istic length lc has a significant impact on the damage behavior, especially for heterogeneous
materials. Crack initiation and propagation are influenced, and non-physical damage dif-
fusion occurs between phases. Some solutions to improve the phase-field model have been
attempted. The main idea was to assign lc values as small as possible. In Miehe’s model, un-
fortunately, lc is defined as a material parameter, and a too-small value of lc leads to a nearly
linear behavior, which is not physical. We need a phase-field method that would define lc as
a numerical parameter. In particular, we would like the results to converge in terms of crack
initiation and propagation, dissipated energy and overall strength for a sufficiently small lc .
Wu claimed that his method possesses these features in [207, 208]. We choose to investigate
this method in this chapter.

A reminder of Wu’s phase-field model is presented in Section 6.2. Sections 6.3 and 6.4 will
present some trials to implement it in the FFT solver, and the results of testing cases will be
in Section 6.5.

6.2 Reminder of Wu’s phase-field model

Based on Eqs. (4.56) and (4.57), it can be clearly seen that when there is an elastic stage, the
displacement because of the opening of the crack is function of σc and d . At final failure,
when d = 1, the final crack opening displacement wc only depends on σc and not on lc .
Furthermore, the peak stress is limited by σc . Note that the numerical stability condition
a1 ≥ 3

2 requires lc to be as small as possible. Therefore, any phase-field model that has a
purely elastic stage can theoretically be implemented as an lc insensitive method, like [246].
However, due to the irreversibility of the damage field ḋ ≥ 0, the initial damage localization
bandwidth D0 needs to be inferior or equal to the damage localization bandwidth at final
failure Du (D0 ≤ Du). Based on Fig. 4.10, in order to integrate the linear softening law, Wu’s
phase-field is an optimal choice.

For Wu’s phase-field with the linear softening law, the phase-field evolution equation can be
expressed as:

2

π

Gc

lc
(1−d)−∇· (

2Gc lc

π
∇d)+ g ′(d)Hmax = 0, (6.1)

where the generic evolution equation of phase-field is written in Eq. (4.42), and the differ-
ent parameters are written in Table. 4.3. Besides, because g (d) is a rational function, its
derivation is straight forward and we have

g ′(d) =− 4a1(1−d)

(2a1d −4d −a1d 2 +2d 2 +2)2
. (6.2)

The history variable is denoted H and is defined as

H = <σ1 >2

2E0
(6.3)

where the Rankine criterion is used with the stress split, <−>= max{−,0} being the positive
part operator. Stress σ1 represents the maximum principal stress. Because Wu’s phase-field
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has an elastic stage, if the evolution is used as is, the damage calculated in the elastic stage
will be negative. In order to correct this issue, and enforce the irreversibility of the damage
field, an extra condition needs to be satisfied:

Hmax(x, tn) := max0≤t≤tn

[
H(x, t ),

1

2

σ2
c

E0

]
. (6.4)

This conditions ensures d = 0 during the elastic stage. If d > 1 in the calculation, then the
condition d = 1 is applied.

6.3 The difficulty of applying Fixed-point algorithm

Following the procedure used for dealing with Miehe’s model with the heterogeneity correc-
tion, the evolution equation of Wu’s phase-field can be written as:

A0d(x)+Q0∆d(x) = τ(x), (6.5)

with
τ(x) = B− (A−A0)d(x)−D. (6.6)

The coefficients are given by 
A = 2

π
Gc
lc

B = g ′(d)Hmax + 2
π

Gc
lc

D =∇(
Q′(x) ·∇d(x)

) (6.7)

with A0 = max(A)+min(A)
2 , Q0 = max(Q)+min(Q)

2 , and Q(x) = Q′(x)+Q0 = 2Gc lc
π . The damage field

d i+1 at iteration i +1 at time increment tn can be calculated as.

d̂ i+1
tn

= τ̂i

A0 −Q0 · (ξ ·ξ)
. (6.8)

There is an inconsistency with this fixed-point algorithm that can be proven for a simple 1D
case discretized with only one element. Indeed, in this case the damage would be distributed
in a homogeneous way (∇d = 0), so the non-local term would be equal to zero (D = 0). Thus,
it would be possible to rewrite Eq. (6.1) as

2

π

Gc

lc
(1−d) = 4a1(1−d)

(2a1d −4d −a1d 2 +2d 2 +2)2
Hmax (6.9)

and obtain the analytical solution

dhom = 1−
√

Ma1 −
p

2Ma1Hmax

M(a1 −2)
(6.10)

with M = Gc
πlc

. At the last time increment tn of the elastic stage, where the peak stress would

be reached in the element we would have d(x) = 0 and Hmax = H = 1
2
σ2

c
E0

. As a result, we would
have

g ′(0) =−a1 =−4E0Gc

πσ2
c lc

⇒ B = g ′(0)Hmax + 2

π

Gc

lc
=−4E0Gc

πσ2
c lc

1

2

σ2
c

E0
+ 2

π

Gc

lc
= 0. (6.11)
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At the next time increment tn+1, we would have Hmax > 1
2
σ2

c
E0

. At the first iteration of the fixed-
point algorithm, we would need to calculate τ(x), in which d(x) would be taken from the last
iteration of time increment tn , in our case d(x) = 0. We would be facing the problem that

Hmax > 1
2
σ2

c
E0

would lead to B < 0, which would result in a negative damage field (d i=1
tn+1

).

Figure 6.1: Illustration plot of the values of g ′(d) when d < 0.

One might think that getting a negative damage field at some iteration of the fixed-point
algorithm would not be a major issue as the algorithm might still converge to a physically
acceptable value. Fig. 6.1, however, clearly shows that this would be unlikely. Indeed, this
figure shows that once d becomes negative, g ′(d) decreases drastically down to very large
but negative values, leading to B ≪ 0. This issue is not met for Miehe’s model, where the
fixed-point algorithm always computes positive damage values. In conclusion, the same
algorithm cannot be used for Wu’s phase-field model.

6.4 Applying Wu’s phase-field model by Newton-Krylov algo-
rithm in FFT solver

Therefore, Newton-Raphson’s method, one of the most traditional method for solving non-
linear equations, is applied in this chapter. This approach is based on the iteration:

d i+1 = d i − R(d)

R′(d)
, (6.12)

where the residual function R(d) is

R(d) = g ′(d)Hmax + 2

π

Gc

lc
(1−d)−∇· (

2Gc lc

π
∇d) (6.13)

and its derivative

R′(d) = ∂R(d)

∂d
. (6.14)

Eq. 6.12 can be re-written as:
R′(d)δd =−R(d) (6.15)
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with δd = di+1 −di . Because most terms in R(d) are linear, we only have to compute g ′′(d).
We get g ′′(d) =

a1

(
−3(1−d)2+a1(1.5d 2−3d+2)

)
[

(1−d)2+a1d(1−0.5d)
]3

R′(d)δd = g ′′(d)Hmaxδd − 2
π

Gc
lc
δd −∇· ( 2Gc lc

π ·∇δd).

(6.16)

This linear problem is solved using a Conjugate Gradient (CG) solver, which does not re-
quire to introduce a reference material or a polarization term. The non-local term is directly
computed using

∇· (
2Gc lc

π
∇d) = F−1

(
J ·k ·F

(
Q′(x) ·F−1(J ·k · d̂(x))

))
(6.17)

with J =p−1. The FFT and its inverse only need to be computed for the calculation of this
non-local term. Note that we did not either be able to implement Willot’s rotated scheme
for the phase-field solver for this chapter. To avoid using two different schemes for the me-
chanical and phase-field parts, we used Moulinec and Suquet’s original collocation scheme
for both solvers. This implementation of the heterogeneous formulation deals correctly with
complex numbers both in real and Fourier space in the intermediary steps. This is in contrast
with the code used in the previous chapter for Miehe’s model.

Regarding the CG solver, we need to introduce LP(x) and RP(x) as follows:{
LP(d) =− 2

π
Gc
lc
δd + g ′′(d)Hmaxδd −∇· ( 2Gc lc

π ·∇δd),

RP(d) =−g ′(d)Hmax − 2
π

Gc
lc

(1−d)+∇· ( 2Gc lc
π ∇d).

(6.18)

The pseudo-code of the CG solver for Wu’s phase-field is presented in (6.19). It is a standard
CG solver except for operation f1 which is a special treatment to remove the accumulation
of floating point error. The convergence criterion of the CG solver is set as 1.0 . 10−6.

The result of the CG solver is δd , thus, dnew = dol d + δd , and convergence is verified for
the new damage field. As opposed to the conventional convergence check in Eq. 5.14, in
our implementation, the convergence criterion for Newton-Raphson’s algorithm is based on
the residual RP(d) of the phase-field evolution equation. The algorithm is summarized in
pseudo-code in (6.20).

In order to simplify the calculation, in this implementation, the hybrid formulation is ap-
plied, where there is a split in the history variable used for damage evolution (Eqs. (6.3) and
(6.4)) but no tension/compression split in the mechanical part. Thus, the equations for the
mechanical part can be written as: 

div(σ(u,d)) = 0,

σ= g (d)∂ϕ0
∂ε ,

ε= ∇u+∇Tu
2 .

(6.21)

This formulation could be solved using the same weak coupling used for Miehe’s model (as
shown in Fig. 5.1), where we chose to solve the damage and displacement fields only once
per time increment. This approach required to use a sufficiently fine time step to obtain
converged results. In this chapter, in order to use larger time steps, we preferred a stronger
coupling and switched to an alternating minimization algorithm.
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Initialization: d(x) is already known for previous iteration

(a0) Define CG solver tolerance (tol)

(b0) i = 0 (Initialize iteration of CG solver), and define imax

(c0) δd i=0 = 0

(d0) Calculate RP(d , x) and LP(δd i=0, x)

(e0) Calculate r = RP−LP

( f0) Define a = r

(g0) Define delnew = r T · r

While (delnew ≥ tol2):

(a1) Calculate i = i +1

(b1) Calculate LP(a, x)

(c1) Define q = LP(a, x)

(d1) Calculate α= delnew
aT .q

(e1) Calculate δi
d = δi−1

d +α∗a

( f1) if i is divisible by 10

Calculate LP(δi
d , x)

Calculate r = RP−LP

else

Calculate r = r −α.q

end

(g1) Define delol d = delnew

(h1) Calculate delnew = r T.r

(i1) Define β= delnew
delol d

( j1) Calculate a = r +β.a

End

(6.19)

The flow chart of alternating minimization is given in Fig. 6.2. As shown in this figure, first we
have the mechanical solve, and then the phase-field solve, for which we included the details
of the Newton-Raphson algorithm. Outside these two loops, there is another loop, called
the alternating minimization loop, to make sure that all damage and mechanical fields are
well updated in the current time increment. This alternating minimization loop is controlled
by the alternating minimization iteration number «al t» and the convergence check «AltCV»,
which is a based on the damage change:

e = ||dal t −dal t−1||2 (6.22)

where || − ||2 represents the L2 norm over the model. Because of this convergence check,
the damage field computed by the phase-field solver may be used to update the degrada-
tion function and go back to the mechanical solver. The new displacement field would then
update the history variable and go into the phase-field solver again. This could be done sev-
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Initialization, if tn = 0 :

(a0) d tn=0(x) = 0

If tn ̸= 0 :

(a1) d tn is known

Time tn +1 : first input d tn+1
i=0 = d tn

While convergence criterion is not met:

(a2) Call CG solver, with input d tn+1
i

(b2) d tn+1
i+1 = d tn+1

i +δd

(c2) Re-calculate RP(d tn+1
i+1 , x)

(d2) if RP < than tolerance (1..10−6), convergence is met

(6.20)

eral times until convergence of the alternating minimization scheme, thus ensuring a strong
coupling between the displacement field and the phase-field. The advantage of this algo-
rithm is that we do not need a very refined time step to get accurate results. Based on our
tests, δ〈ε〉 ≤ 1.00 . 10−4 is acceptable (results are shown in Section 6.5.1), which is 200 times
larger than the value used with the weak coupling.

Figure 6.2: The flow chart of Wu’s phase-field method based on the Newton-Krylov algorithm in FFT
solver (remark: CV is damage field convergence check. AltCV is alternating minimization conver-
gence check. The part in the red rectangular is the main algorithm for solving the damage field).

6.5 Numerical examples

The proposed algorithm is designed to solve general 3D problems, but to limit the computa-
tion time in our tests we used models with only one voxel thickness in the third dimension.
Due to the periodic boundary conditions, the out-of-plane strain components are constant
in the third direction, which is equivalent to the generalized plane strain condition.
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As for loading conditions, in these analyses, the notch models are subjected to a macro-
scopic strain along the y- direction with a loading rate δ〈ε〉y y = 1.10−4 (thanks to alternating
minimization) until final failure while stress-free conditions are imposed in the other direc-
tions (〈σ〉xx = 〈σ〉zz = 〈σ〉x y = 〈σ〉xz = 〈σ〉y z = 0). These mixed-type loading conditions are
applied using the method presented in [160]. Due to stress-free boundaries, Poisson’s effect
is active during loading. Regarding the two-fibers composite models, the loading direction
is changed to x with δ〈ε〉xx = 1.10−4, and 〈σ〉y y = 0, while others are unchanged.

6.5.1 Single notch model

Inspired from the literature, the first model we tested is the single notch plate. This example
is a popular benchmark test to verify phase-field models for brittle fracture [197, 208, 216,
221]. As shown in Fig. 6.3, it is a square plate of length 1mm. A straight horizontal notch of
0.5 mm is located at the mid-height of the left edge. The width of the notch is one voxel size.
Because the FFT solver is intrinsically periodic, we need to add lateral bands, denoted as M2
(purple material) to avoid spurious effects due to the boundary conditions. Material M2 is
also used for the notch.

(a) (b)

Figure 6.3: The geometry of single notch plate: (a) Lateral bands thickness fixed for testing mesh size
convergence. (b) Lateral bands number of voxels fixed for other tests. Material 1 (M1) is in yellow and
Material 2 (M2) in purple.

In addition, we need to assign properties in the notch as well as the lateral bands that are low
enough to model voids but not too low to cause numerical instabilities. Fig. 6.3(a) represents
the model for voxel size convergence tests, for which we ensured that the volume fraction of
the lateral bands is maintained at 10% for all resolutions. Apart from these voxel size conver-
gence tests, we used bands of a thickness as small as possible to minimize the computational
cost. We found that a thickness of 5 voxels, as shown in 6.3(b), is the minimum value to get
convergence in the FFT solver and break the periodicity.
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In all single notch model tests, the following material parameters are adopted for M1: Young’s
modulus: E0 = 2.1.105 MPa, Poisson’s ratio ν = 0.3, failure strength σc = 2445.42 MPa, and
fracture critical energy release rate Gc = 2.7 N/mm. These properties result in an internal
length lch = E0Gc

σ2
c

= 0.095 mm. Considering that a1 ≥ 3
2 is an exigence for Wu’s phase-field,

the condition lc ≤ 0.08mm has to be satisfied for this material. Miehe’s criterion regarding
the ratio between lc and the voxel size h still has to be verified for Wu’s model. Here we
have 2h ≤ lc ≤ 0.08mm. Besides, the void-like properties of M2 are: Ee

0 = 21 MPa, νe = 0.3,
σe

c = 24.4542 MPa, and Ge
c = 2.7 N/mm, which result in the same lch value as for M1.

The first test is the voxel size convergence test. In these tests, resolution N = 101(101×121),
N = 251(251 × 301), and N = 401(401 × 481) are chosen, which correspond to voxel sizes
h = 0.01mm, 4.10−3mm, and 2.5.10−3mm respectively. Characteristic length lc is fixed to
0.05mm. The macroscopic stress-strain curves of the principal material are shown in Fig.
6.4. They coincide well among different resolutions. This is also verified for the damage
fields, which are shown in Fig. 6.5. Despite the resolution N = 101 already being fine enough,
in the next analysis, N = 251 is chosen to get more possibilities for the choice of lc with re-
spect to Miehe’s criterion (lc /h > 2).

Figure 6.4: The macroscopic strain-stress curves of principal material under voxel size convergence
tests with different resolutions.

Figure 6.5: The damage field of the model of under voxel size convergence tests: (a) N = 101, (b)
N = 251 and (c) N = 401

In the next analysis, the lc sensitivity of Wu’s method is presented. The material elastic prop-
erties and damage properties stay the same as above, but the model is changed to that in
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Fig. 6.3(b). As mentioned before, the resolution chosen here is N = 251, with a voxel size
h = 4.00 . 10−3mm. In these tests, the smallest value used for the characteristic length is
lc = 0.01mm, which results in lc /h = 2.51 and hence satisfies Miehe’s criterion.

(a)

(b) (c)

Figure 6.6: The macroscopic stress-strain curves of single-notch model (N = 251) under y-direction
loading for different methods: (a) Wu-FFT, (b) Wu-FEM, (c) Miehe-FFT (homogeneous formulation).

As shown in Fig. 6.6(a), the macroscopic response changes with the variation of lc , which
differs with the conclusion declared in paper [208]. We observed the same phenomenon
using an FEM implementation of Wu’s method, as shown in 6.6(b).

To investigate the cause of this sensitivity, we simulated the single notch tests using the FEM
solver again but without lateral bands and with a zero-thickness notch created by duplicating
nodes (monophase model without void-like material 2). Results with a very fine resolution
are plotted as red curves in Fig. 6.6(a) and (b). These curves feature an earlier failure than
the first model, which might impute the lc sensitivity to the presence of a void-like material.

From these two figures, it can also be seen that the bigger lc , the higher the peak stress and
the later the final failure. The opposite effect is observed with the homogeneous formulation
of Miehe’s model, as shown in Fig. 6.6(c). The fact that the two models lead to two opposite
tendencies suggests that there is a particular effect of the heterogeneity due to material 2 for
Wu’s phase-field model.

In order to verify this hypothesis, three additional tests are simulated by increasing the dam-
age properties of M2 to Ge

c = 2.7.104 N/mm, and σe
c = 2445.42 MPa. These tests of Wu’s
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model are accomplished using the FEM solver with a resolution N = 63 (63× 73), lc = 0.04
and 0.05mm. The results are shown in Fig. 6.7. As it can be seen, increasing the damage
properties of M2 affects significantly the macroscopic response, even though M2 has a low
volume fraction and should play a little role in damage evolution as compared to M1.

Figure 6.7: The macroscopic stress-strain curves of M1 with Ge
c = 2.7 . 104N/mm, and σc =

2445.42MPa, and model resolution N = 63 using the FEM solver.

Table 6.1 represents the damage state at the notch tip under a macroscopic loading of <
εxx >= 0.004 for a resolution N = 251. For Wu’s model, both using FFT and FEM, when in-
creasing lc the damage d decreases. Regarding Miehe’s model, the change is less visible but
tends to be in the opposite direction. It can be confirmed that the presence of void-like ma-
terial (M2) affects the macroscopic behavior but a further investigation is needed to identify
the reasons.

FFT-Wu FEM-Wu
FFT-Miehe homogeneous

formulation

lc = 0.01mm 0.33 0.34 0.086

lc = 0.02mm 0.213 0.25 0.088

lc = 0.03mm 0.15 0.19 0.09

Table 6.1: The damage state d at the notch tip under the loading of 〈ε〉xx = 4.10−3.

Figure 6.8: The damage fields of the single-notch model with resolution N = 251 under y-direction
loading using Wu’s method in FFT solver: (a) lc = 0.01mm, (b) lc = 0.02mm and (c) lc = 0.03mm.

137



CHAPTER 6. DAMAGE MODELING OF MATERIAL WITH WU’S PHASE-FIELD MODEL BY
FFT SOLVER

The local damage field for resolution N = 251 is shown in Fig. 6.8. It can be clearly seen that
the crack bandwidth becomes larger and larger when increasing lc .

In Section 5.5.2, we have studied the iteration numbers under different contrasts of damage
properties. Similar tests are also presented here. Note that the model’s resolution is N = 251,
with a voxel size h = 4.00 . 10−3 mm and lc = 0.02 mm. Moreover, three contrast values are
presented in table 6.2.

Ge
c (N/mm) 2.70 27 2700

Contrast
Ge

c /Gc
1 10 1000

Table 6.2: The damage properties of different tests.

Besides, the time step convergence studies are also carried out herein, where three time steps
are also adopted, which are δ〈ε〉 = 1.00 . 10−4, 5.00 . 10−5 and 2.00 . 10−5. We first show the
macro-level stress-strain relations in Fig. 6.9. As shown in the figure, the macro-level stress-
strain curves are coincident for all three contrasts even if decreasing the time step by five
times. Thus, a time step 1.00 . 10−4 can be acceptable.

Figure 6.9: Macro-level stress-strain relation curves of (a) contrast 1, (b) contrast 10 and (c) contrast
1000 (remark: the curve thickness of different time steps are different, which is for distinguishing the
curves between each other).
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Next, the total iteration numbers of the CG solver are presented in Table 6.3. Like Miehe’s
model with heterogeneous formulation, Wu’s model is also sensitive to the contrast of dam-
age properties. Thus, in the case of high contrast models, an acceleration scheme should be
considered.

Time step

1.00 . 10−4 5.00 . 10−5 2.00 . 10−5

Contrast 1 1.48 . 105 2.08 . 105 2.92 . 105

Contrast 10 3.34 . 105 4.58 . 105 7.96 . 105

Contrast 1000 3.22 . 106 4.17 . 106 6.44 . 106

Table 6.3: The total iteration numbers until the final failure of different cases.

6.5.2 Asymmetric double notch model

The next model that we propose to analyze is the asymmetric double notch model, which is
presented in Fig. 6.10. It is a square plate of length 1mm with a voxel size thickness. Two
notches of 0.2 mm are located at two edges of the model, the one is at 0.55mm of height and
the other is at 0.45mm of height. The height of the notch is kept at 1 voxel size as previously
and the width of each lateral band at 5 voxel sizes as well.

Figure 6.10: Illustration of Asymmetric double notch model.

For this model, mesh convergence is no longer analyzed and a resolution N = 251 is used
with lc = 0.01mm, 0.02mm, and 0.03mm. The macroscopic response is shown in Fig. 6.11,
and the local damage field is shown in Fig. 6.12. Figs. 6.11(a) and 6.12(a),(c),(e) are the re-
sponses for Wu’s method, while the rest are those of Miehe’s model. Viewing these figures,
we can raise similar conclusions from the macroscopic response of the asymmetric double
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(a) (b)

Figure 6.11: The macroscopic stress-strain curves of the asymmetric double notch model under y-
direction loading using different methods: (a) Wu-FFT and (b) Miehe-FFT (homogeneous formula-
tion).

notch model as from the single notch model. As for damage fields, it can be seen that dam-
age diffusion is larger when increasing lc . However, if lc is too large (in our case, lc = 0.03mm,
Fig. 6.12(e)), the two cracks connect and merge. Although this merge is not shown in Miehe’s
model because of the convergence problem, this tendency can also be seen in the local dam-
age fields.

Figure 6.12: The damage fields of single-notch model(N = 251) under y-direction loading using dif-
ferent methods: Wu’s model: (a) lc = 0.01 mm, (b) lc = 0.02 mm, (c) lc = 0.03 mm. Miehe’s model: (d)
lc = 0.01 mm, (e) lc = 0.02 mm, (f) lc = 0.03 mm.
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6.5.3 Single notch with a reinforced fiber

In this section, a single notch model with a fiber reinforcement is simulated, as presented in
Fig. 6.13. A notch of 0.2mm is placed at the mid-height of the left edge with a thickness of one
voxel. The model is a square plate of 1mm with a thickness of one voxel in the third direction.
The circular reinforced fiber is at the mid-height, and 0.65mm away from the left edge, and
each lateral band has a width of 5 voxels. The resolution chosen for this model is N = 251
as previously. The void-like material (purple) has properties: E = 21MPa, ν = 0.3, Gc = 2.7
N/mm, and σc = 24.45 MPa. The principal material (cyan) has properties: E = 4650MPa,
ν = 0.35, Gc = 0.2 N/mm, and σc = 100 MPa. The reinforcement (yellow) has properties:
E = 210000 MPa, ν= 0.3, Gc = 30 N/mm, and σc = 2445.42 MPa.

Figure 6.13: Illustration of the single notch model with fiber reinforcement.

The macroscopic responses are shown in Fig. 6.14. The observations and conclusions are
similar as previously: when increasing lc , the peak stress becomes larger, and the damage
propagation is delayed. Besides, we can also see clearly two stages of crack propagation. The
first stage is the crack propagation from the crack tip to the fiber, and the second stage is the
propagation along the fiber interface.

Meanwhile, the damage field is presented in Fig. 6.15. The images on the top show the first
stage of crack propagation, while the second stage is shown on the bottom. As shown in these
figures, for lc = 0.01mm, and 0.02mm, the crack will first propagate from the notch tip to the
fiber, then propagate along the fiber interface until final failure. However, for lc = 0.03mm, it
seems that crack propagation along the fiber interface occurs independently at the top and
bottom, with no connection to the crack propagating from the notch tip in the first stage.
This is another proof that the characteristic length lc affects the local damage pattern when
it is too large.
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Figure 6.14: The macroscopic stress-strain curves of the single notch model with a fiber reinforcement
for different values of lc .

Figure 6.15: The damage fields of the single-notch model with fiber reinforcement (N = 251) under
y-direction: (a),(b), and (c) the first stage of crack propagation; (d),(e), and (f) the second stage of
crack propagation.

6.5.4 Unit-cell model with two fibers with l f constant

In this part, the model utilized is the same as in section 5.4.3, and is shown in Fig. 6.16. The
model size is 0.02× 0.02mm with two fibers of diameter 6.2.10−3 mm located at the mid-
height. The inter fiber distance is fixed to 2.76.10−3 mm.

The blue part is fiber, for which the material is E-glass of properties: E f = 74000 MPa, ν f =
0.2, G f

c = 60 N/mm. Meanwhile, the red part is matrix for which the material is Epoxy MY750
of properties: Em = 4650 MPa, µm = 0.35, Gm

c = 0.003 N/mm. Besides, the inter fiber distance
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Figure 6.16: Two-fibers unit-cell composite model with l f fixed (blue part: fiber and red part: matrix.

is much smaller than twice the distance from the fiber-matrix interface to the border. Con-
sidering the periodic boundary conditions, the strain concentration point should be at the
center of model.

In Fig. 6.17, the macroscopic response of Wu’s and Miehe’s models, with the same model and
material parameters, are presented. Viewing the macroscopic response, it can be seen that
Miehe’s model is lc sensitive, as increasing lc reduces the maximum stress, and moves the
crack propagation forward. Wu’s method, on the contrary, shows no lc -sensitivity.

(a) (b)

Figure 6.17: The macroscopic stress-strain curves of unit-cell model with two fibers under y-direction
loading for different methods: (a) Wu-FFT and (b) Miehe-FFT (homogeneous formulation)

Based on table 4.3, it can be seen that the crack bandwidth of Wu’s model isπlc , which means
that damage vanishes completely outside this bandwidth interval. From lc = 2.3 . 10−4mm
to lc = 8.0 . 10−4 mm, the ratio l f /lc decreases from 12 to 3.5, which means the fiber is always
out of the crack bandwidth, which could explain the lc insensitivity. However, for the models
with one or two notches, the crack initiates close to an interface between two materials and
can be affected by the second material.
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6.5.5 Unit-cell model with two fibers with lc constant

In order to analyze the matrix damage diffusion into the fibers, the two-fibers unit cell model
is tested with a fixed lc = 5.0 . 10−4mm. All the model details and material parameters are
the same as in the model with with l f fixed, except that l f now varies from 2.75 . 10−3mm to
2.67 . 10−4mm.

The macroscopic response is shown in Fig. 6.18, where we see a similar tendency as for
Miehe’s model. In a first stage, when we decrease l f damage initiation and failure occurs
earlier. Nevertheless, if we continue decreasing l f , despite the increasing concentration of
strain, failure is delayed, and we get a higher peak stress.

This phenomenon can be explained by considering the crack bandwidth as discussed in the
previous section. When l f reduces from 1.87 . 10−3 mm to 1.53 . 10−3 mm, the l f /lc ratio
reduces from 3.74 to 3.06. Since π≈ 3.14, the fibers end up out of the crack bandwidth, and
the response becomes physical (damage initiation and failure occur earlier). However, if we
reduce l f from 1.53 . 10−3 mm to 9.78 . 10−4 mm, the l f /lc ratio decreases from 3.06 to 1.96,
so parts of the fibers end up within the crack bandwidth. The peak stress is higher because
of the fibers in the crack propagation path, and the final failure strain becomes larger. There-
fore, it is interesting to see if there is damage diffusion in Wu’s model.

Figure 6.18: The macroscopic stress-strain curves of two fiber unit-cell models (lc = 5.10−4mm) with
different inter fiber distance l f .

The local damage fields are presented in Fig. 6.19. When l f > 6.2 . 10−4mm, the crack passes
through the model center, while when l f is too small, the crack propagates on the other
side of the fiber-matrix interface rather than through the center. It can also be seen that the
damage in the fiber is much lower than in the matrix because the crack at the model center
features a necking effect, which means matrix damage diffusion into fibers is successfully
prevented.

The damage profiles along the center cross-section line shown in Fig. 6.20 re-confirm these
conclusions. For Wu’s method, the matrix damage diffusion into the fibers is totally sup-
pressed for all l f values except for the smallest one. On the contrary, we can see a significant
and non-physical damage diffusion in Miehe’s method.
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Figure 6.19: The damage fields of two fibers unit-cell model with lc fix (lc = 5 . 10−4mm).

(a) l f = 2.75 . 10−3 mm. (b) l f = 1.87 . 10−3 mm. (c) l f = 1.51 . 10−3 mm.

(d) l f = 9.78 . 10−4 mm. (e) l f = 6.2 . 10−4 mm. (f) lc = 2.67.10−4 mm.

Figure 6.20: The damage state along the center cross-section line of the two fibers unit-cell model
with lc fixed (lc = 5 . 10−4mm).
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6.6 Conclusions

In Wu’s phase-field model, degradation function g (d) is nonlinear, which makes it quite dif-
ficult to solve Wu’s phase-field evolution equation using the FFT solver with a fixed-point
algorithm. Thus, we developed a new phase-field solver based on the FFT method. We took
advantage of this new implementation to consider a strong coupling of the phase-field with
the displacement field to alleviate restrictions on the time step.

This new algorithm involves three nested loops to compute the displacement field and phase-
field at each increment. The top loop is the alternating minimization, in which we alternately
solve the displacement solver where the degradation function is updated at each iteration
and the phase-field solver where the history variable is updated at each iteration. Due to its
nonlinearity, the phase-field evolution equation is solved using a Newton-Raphson loop, of
which each iteration involves a linear system of equations that is solved using a CG solver.
The last loop is the CG solver itself, where at each iteration, the FFT and its inverse are used
to compute the non-local term with the correct formulation for heterogeneous materials.

Wu’s model is lc insensitive in the literature, but only for homogeneous models [208]. Based
on our tests, for a heterogeneous model, if the crack initiates at the interface between dif-
ferent materials, lc impacts the response. The larger lc , the bigger the impact is. On the
contrary, in our models inspired from the composites, if the crack diffusion bandwidth does
not include a second material, the method becomes lc insensitive. In Wu’s phase-field, the
crack bandwidth is well defined and has a size of πlc . In the case of composite materials,
if l f ≥ πlc , the model response is surely lc insensitive. Furthermore, the crack patterns can
also be impacted if l f /lc ratios are too small even with Wu’s phase-field model. Fortunately,
in Wu’s model, lc is considered as a purely numerical parameter and can be chosen small
enough to get converged predictions, as long as it remains large enough compared to the
voxel size.
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General conclusions and perspectives

7.1 Conclusions

In this Ph.D. thesis report, three years of research on elastic and damage modeling of hetero-
geneous materials based on the Fast Fourier Transform (FFT) and phase-field models have
been summarized. The FFT and phase-field methods have been applied diversely in dif-
ferent domains in the literature. This work has been the opportunity to review a large part
of the existing literature. In the beginning, our objective was to use FFT and phase-field to
study the textile composite, where the voxel-based mesh is preferable. However, when pro-
foundly studying these methods from the most uncomplicated cases, we found three major
issues: The first is the presence of strong oscillations in FFT methods. The second is the
non-physical damage diffusion between phases in phase-field methods, and the third is the
sensitivity of lc of Miehe’s phase-field model on crack patterns. Thus, we decided first to
resolve these issues, which led to our several original contributions. These reviews and con-
tributions have been presented in six chapters, with the scope of the three first chapters
restricted to elastic behavior and that of the three last chapters widened to model damage
and fracture.

In the first chapter, textile composites have been introduced, and a review of existing mod-
eling techniques for these materials has been presented. Different analytical approaches for
the microscopic scale as well as the mesoscopic scale have been reviewed and compared
to evaluate their differences, advantages, and drawbacks. Due to the demand for complex
structure and behavior modeling, it has been shown that numerical approaches have be-
come more and more popular, and in particular the Finite Element Method (FEM).

In the same chapter, we have also discussed different geometry modeling techniques for the
microscopic and mesoscopic scales to form realistic microstructures and mesostructures of
composite materials. Due to the complexity of these geometries, automatically generating
conformal meshes is a tough task, with multiple issues such as non-physical interpenetra-
tion and voids. Although correction techniques exist to deal with those issues, our review
has led us to conclude that they can involve high computational costs.

Consequently, we have turned our investigation to voxel-based meshes, which offered the
possibility to overcome some drawbacks of conformal meshes, and also create models di-
rectly from images. In this chapter, we have discussed the steps for generating the voxel
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mesh, the drawbacks of the voxel mesh, and the existing solutions to overcome some of those
drawbacks.

A numerical method tailored for voxel-based meshes, the Fast Fourier Transform (FFT) based
method initially proposed by Moulinec-Suquet, has been presented in the chapter. We have
detailed the mathematical aspects of the method to demonstrate why it has a higher compu-
tational efficiency than conventional FEM. At the end of this chapter, some drawbacks and
improved schemes have been presented.

In the second chapter, we have thoroughly investigated a specific drawback of the FFT method
and existing solutions to overcome it. We have focused on the presence of numerical artifacts
in the form of spurious oscillations in the results obtained with the FFT method.

Among existing solutions to deal with this issue, we have focused on Discrete Green Opera-
tors (DGOs) based on finite-difference schemes or FEM, as proposed respectively by Willot
and Schneider. Quantitative comparisons between FFT methods and FEM with reduced and
full integration have led us to conclude that Schneider’s scheme with full integration is sim-
ilar to the full integration formulation of FEM, and has a better accuracy than reduced in-
tegration formulations like Willot’s scheme. The full integration scheme, however, requires
eight times more memory and a much greater computation time. Thus, we have concluded
that Willot’s scheme could be a better choice in many cases, as it had a good balance between
computational accuracy and speed.

Although the different causes of the numerical artifacts had already been identified in the
literature, our quantitative analysis has enabled us to rank them in terms of impact on the
predictions. In general, the non-smooth zig-zag pattern of the interface caused by the voxel-
based discretization appeared to be the most significant cause of oscillations that contributed
more than five times than others.

Interface smoothing techniques to reduce oscillations caused by the non-smooth interface,
namely the composite voxel method and the neighbor voxels average method, have been
presented in the third chapter.

The neighbor voxels average method (AVE) has been shown to reduce the oscillations signif-
icantly, with peak stresses much closer to FEM conformal mesh results, and a much cleaner
local field.

An improved composite voxel method (OCV ) has also been proposed in the chapter. Com-
pared with the conventional composite voxel method TCV , OCV has been enhanced to be
applicable directly to interfaces for which there is no parametric representations, such as
those found in digital images. The most important aspect that we found is a better oscilla-
tions reduction effect with OCV as compared to TCV .

In general, we observed that both AVE and OCV had a good oscillation reduction effect. We
felt problematic, however, that AVE is only a post-processing operation, which does not en-
sure that all results still satisfy equilibrium and compatibility equations. Even though AVE
could be considered as easier to implement, we concluded that it should be used only when
a non-intrusive approach is needed. When technically possible, our analysis led us to rec-
ommend OCV as it showed a good relative error and oscillation reduction.
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From the fourth chapter, we have turned our attention to damage modeling in composite
materials. In this chapter, a review of existing damage modeling has been presented. Among
damage modeling techniques, the phase-field model has gained an increased attention be-
cause it allows dropping the requirement of re-meshing or front tracking methods to follow
the evolution of the discontinuities. Indeed, the evolution of the phase-field variable (d)
can completely describe the crack and the damaged regions of the material by regularizing
the sharp cracks as a diffusive crack band. Meanwhile, the displacement field and crack
propagation are computed simultaneously by minimizing the total energy with a variational
approach to brittle fracture. Therefore, in the phase-field model, we found that crack initi-
ation, growth, and coalescence can be automatically determined, and multi-cracks merging
and branching problems can be solved without additional efforts.

In this chapter, we emphasized that the phase-field method imposed severe restrictions re-
garding the mesh size, which could only be satisfied either by an adaptive meshing technique
or a uniformly refined mesh. This is why we came up with the idea of combining the phase-
field and FFT methods. Our vision was that the efficient and simple parallelization of the
FFT and its inverse for voxel-based meshes made the FFT method a serious candidate for
phase-field modeling of damage and fracture in composite materials.

We focused on three phase-field models, namely Wu’s, Pham’s, and Miehe’s, which we pre-
sented in details in this chapter. In phase-field methods, lc is an essential parameter, which
controls the width of the diffusive crack. In Miehe’s and Pham’s models, the length parame-
ter lc appeared in our review to be considered as a material parameter, while it appeared as
a purely numerical one in Wu’s phase-field. Most studies, however, discussed the influence
of lc only for homogeneous materials.

In the fifth chapter, we analyzed the impact of lc in heterogeneous media with Miehe’s phase-
field model. Our main concern was that in Miehe’s model, lc should be fixed, as it is consid-
ered a material parameter, but in heterogeneous materials like composites, the fibers can
be arranged randomly, and we can find a wide range of inter-fiber distances l f . Therefore,
we investigated the case of a composite composed of a soft matrix and unbreakable rigid
inclusions/fibers. We identified that when l f was small compared to lc (typically l f /lc < 4),
non-physical damage diffusion occurred from the matrix to the fibers, which corrupted the
results both in terms of crack patterns and overall mechanical response.

In summary, on the one side, we need an appropriate lc value to obtain a reasonable macro-
scopic mechanical response. On the other side, a strong limitation is set to this choice be-
cause of the local crack patterns. Therefore, the application of Miehe’s phase-field model for
modeling heterogeneous materials is strongly limited.

Finally, we found during our analysis that our implementation of Miehe’s phase-field model
in the FFT solver was not correct for heterogeneous materials. We presented a correction in
this chapter as well as its implementation. Although we could not successfully implement
this correction in the FFT solver used in this chapter, our preliminary results showed that
this correction could reduce the non-physical damage diffusion from matrix to fibers but led
to non-physical crack patterns.
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In the last chapter, we chose to study Wu’s length insensitive phase-field model. Our idea
was that since in composite materials, the characteristic length lc should be small enough
compared to the inter-fiber distance l f , we needed a phase-field model that defined lc as a
purely numerical parameter which could take arbitrarily small values.

In this chapter, we first presented the implementation of Wu’s model in the FFT solver by
applying the Newton-Krylov method. In addition, we used an alternating minimization to
alleviate restrictions on the time step. We also took advantage of our new implementation to
include the correction of the formulation for heterogeneous materials.

Although Wu’s model has been proved to be lc insensitive for homogeneous materials in the
literature, our tests on a heterogeneous material led us to differ. When the crack initiated
near an interface between phases with different damage properties (e.g. Gc , and σc ), we
found that lc had an impact on the behavior. Only when the second material was not inside
the crack diffusion bandwidth did the method become lc insensitive.

In the case of composite materials, small l f /lc values also led to a non-physical macroscopic
response and crack pattern as observed with Miehe’s model in the fifth chapter. Fortunately,
in Wu’s model, lc is considered as a purely numerical parameter. Accordingly, we could
choose a characteristic length lc as small as possible as long as we also respected Miehe’s
criterion regarding the mesh size (lc /h > 2, h being the mesh size). For a sufficiently small
value, we observed that the non-physical damage diffusion from matrix to fibers was re-
duced and that the predictions became length-insensitive both in terms of crack pattern
and overall response.

To summarize, the key original contributions of this Ph.D. thesis are as follows:

• Developed the method to reduce the numerical artifacts in the FFT solver.

– We have quantitatively compared and ranked different causes of oscillations in
FFT methods when modeling the elastic response of heterogeneous materials. It
shows that the non-smooth interface due to the voxel-type discretization is the
most critical cause.

– Numerical experiments show that Willot’s rotated scheme is a good compromise
between the oscillation reduction effect and CPU time. However, it cannot sup-
press the oscillations due to the non-smooth interface, requiring an interface
smoothing technique.

– The neighbor voxel average method has been re-proposed in the FFT solver. Mean-
while, an enhanced composite voxel method has been proposed to facilitate its
application on image-based models, where the non-parametric representation
of interfaces is often the case. The latter has a better oscillation reduction effect,
which is more preferred.

• Developed the methods to improve the FFT solver’s phase-field accuracy and general-
ity.

– On the contrary to the literature, we have proven that the homogeneous formula-
tion cannot be omitted, which leads to damage diffusion for heterogeneous ma-
terials. Thus, we implemented this heterogeneity correction for Miehe’s and Wu’s
model in FFT.
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– A thorough analysis of Miehe’s phase-field has shown that choosing an appropri-
ate lc is a challenging task, Wu’s phase-field model was then developed in FFT
solver.

– Numerical results show that Wu’s model is partially lc insensitive for heteroge-
neous materials. If one phase is outside another phase’s fracture zone, the model
is lc insensitive. Otherwise, the model becomes lc sensitive. To reduce or avoid
this effect, lc in Wu’s model should be chosen as small as possible.

Besides, these contributions have been disseminated in the form of:

• a paper in a peer-reviewed international journal:

– X.Ma,M. Shakoor, D. Vasiukov, S. V. Lomov, and C. H. Park, “Numerical artifacts
of fast fourier transform solvers for elastic problems of multi-phase materials:
their causes and reduction methods,” Computational Mechanics 2021 67:6, pp.
1661–1683, Apr. 2021,

• two oral presentations at international conferences (the author of this thesis being the
presenter for the first one):

– X. Ma, M. Shakoor , D. Vasiukov, S.V. Lomov, and C.H. Park , “Numerical artifacts
in FFT solver for elastic problems of multi-phase materials and their reduction
with a level-set based composite voxel method,” in ACEX conference, Malta, July
4-8, 2021

– D. Vasiukov, S.V. Lomov, X. Ma and M. Mehdikhani, “In situ optical observation
of the transverse crack nucleation and growth in cross-ply laminates”, in HyFiSyn
Conference, Leuven(Belgium), Sept. 15-16, 2021

• and a poster presentation at an international work-shop:

– X. Ma, K-K. Parvathaneni, S.V. Lomov, D.Vasiukov, M.Shakoor and C-H.Park, “Quan-
titative comparison between fast fourier transform and finite element method
for micromechanical modeling of composite,” in FiBre-MOD conference, Leu-
ven(Belgium), Dec. 9-12, 2019

7.2 Perspectives

In addition to original contributions, we also identified several new possibilities that this
research work has opened and should be considered in future work. Several flaws of the
current work that we noted should also be filled.

Future works on our enhanced composite voxel method

In our actual enhanced composite method, we need to calculate the signed distance function
from each voxel center to the interface. However, the calculation is based on the non-smooth
interface that generates a non-smooth signed distance function. We plot the signed distance
function of the first layer voxel of the matrix along the interface (model C in Chapters 2 and
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3 is used) in Fig. 7.1(a) that clearly presents this phenomenon. A possible idea is to apply a
low-pass filtering process to reduce the oscillation state of the signed distance function, like
in Fig. 7.1(b). May this improve the oscillation reduction of the present enhanced composite
voxel method again.

Figure 7.1: The signed distance function of the first matrix voxel layer along the interface: (a) raw
values and (b) values after low-pass filtering ( fp s describes the bandwidth of the FFT low-pass filter).

Despite being created for smoothing the interface, the composite voxel method actually cre-
ates a third phase between two initial phases, which may change the behaviors compared to
the original model. Hence, energy conservation regularization functions can be introduced
into the present method to solve the above issue. The following equation can describe this
idea: [

Πph1 +Πph2

]
shar p

=
[
Πph1 +Πph2 +Πphtr ansi t i on

]
di f f usi ve

whereΠphi describes the strain energy for each phase. This means the energy stored in sharp
and diffusive interfaces should be the same.

Acceleration schemes for phase-field models with heterogeneous formula-
tion

Chapters 5 and 6 show that the heterogeneous formulation, also named complete formula-
tion, is very important for heterogeneous materials. However, we found their limits in terms
of iteration numbers. In particular, it is sensitive to the contrast of damage properties, which
will cause issues in the presence of voids in composite materials. This increase of computa-
tional complexity occurs for both two phase-fields.

In Miehe’s model, the Anderson acceleration scheme has been applied. It can reduce the
iteration numbers but with limited effect. As for Wu’s model, none of the accelerating al-
gorithms has been added. Thus, a more efficient scheme can be proposed for these two
phase-fields in the future.
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Multi-phase-fields

As discussed in the sixth chapter, Wu’s phase-field model becomes lc sensitive when the
crack initiates at the interface. One idea proposed in this thesis is choosing an lc as small
as possible. Another idea is to use multi-phase-fields [247], where each phase has its own

damage variable (d phi
) that is solved independently. One of the drawbacks is that calcula-

tions become much more complex for the multi-phase system. On the other hand, when
using multi-phase-fields, each phase-field only deals with one phase, where the homoge-
neous formulation can be applied naturally. Thus, it is interesting to compare the CPU time
of these two methods (multi-phase-fields vs. heterogeneous formula) for multi-phase mod-
els.

interface and interphase modeling

On the one hand, in this work, we have focused on damage and fracture modeling mainly
in the matrix phase, although we could set up different properties for each phase, including
fibers. Interface modeling, however, was completely discarded. Several works have been car-
ried out in the literature recently to access this point, where there are two main directions.
One is coupling the phase-field model with the cohesive zone model like in [242, 245]. An-
other is to smear the sharp interface by a diffusive interface band with another phase-field
like in [226, 241].

Figure 7.2: Illustration scheme of the model with diffusive interface powered by phase-field [241].

Inspired by the latter, an interesting and innovative point is to replace the diffusive interface
(phase-field) with our enhanced composite voxel method, which creates a diffusive interface
band between two phases.

Thus, we actually have three phases for a two-phase composite system: matrix, fiber, and
interface formed of the composite voxels. The interface herein has a thickness hence can
also be considered as interphase. Interface or interphase? Two directions can be followed:
One introduces energy conservation regularization functions to recover the sharp interface
as aforementioned. Another is considering this "interface" as true interphase because [248,
249] have implied that a transition domain between matrix and fiber for composite materials
truly exists.

As for the damage model, Wu’s phase-field model can be adopted because lc can be chosen
as small as possible to reduce the lc effects.
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More complex models

As mentioned in Chapters 5 and 6, we did not succeed in implementing Willot’s rotated
scheme for phase-field solvers. Filling this gap is also an important part of future work.

After finishing all the above works, our parallelized and efficient implementation enables
the modeling of complex structures with a reasonable computational cost. More complex
models can be achieved. The first part can be the study of the 3D crack propagation for
UD composites, where these experiments are accomplished with 3P bending tests, shown
in Fig. 7.3. In the figure, first, we can see a UD composite material under 3P bending load-
ing. Then, a high-speed camera is set to capture the crack propagation along the transverse
direction (Fig. 7.3(b)). Meanwhile, another camera is used for longitudinal direction crack
propagation (Fig. 7.3(a)). With this setup, we can observe the 3D crack propagation frame by
frame. Our objective is to create a real microstructure model and observe the real-time crack
propagation in virtual experiments using FFT and phase-fields.

Figure 7.3: 3P bending tests of UD composites.

The second part can go back to the original background of this thesis: Multi-scale modeling
of damage behavior of textile composites with detailed microstructures. Even though these
studies have been massively carried out for years, they were often limited in one scale. An
interesting idea can be found in [119], in which they coupled the macro-level and meso-level,
considering yarns as homogeneous materials.

Therefore, further work can couple the meso-level and micro-level that involve the fibers
and the matrix on the microscopic scale in the yarns. Because the FFT methods can enable
the creation of millions of voxels, one of the scenarios can be replacing the homogeneous
yarns with the real microstructure of fibers and matrix, which will create a huge model with
high accuracy. If this idea is far beyond our capability, a second option is to re-utilize the
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logic in [119], which associates each yarn voxel to a microscopic RVE, whose behavior can be
obtained by an upscaling procedure from the results of the microscopic scale.

Besides, considering that some types of polymers in composite materials often show loading
rate-dependent nonlinear plastic behavior, further investigation can be carried out by taking
it into account. For modeling loading rate-dependent behavior, a viscous parameter can be
simply introduced like in [206, 207]. The papers [94] and [126] can also help us for achiev-
ing this goal, as elasto-viscoplastic behavior of polycrystals has been modeled using an FFT
solver in the first one, and an accelerated version of the FFT solver for non-linear cases has
been proposed in the second one.
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[129] T. de Geus, J. Vondřejc, J. Zeman, R. Peerlings, and M. Geers, “Finite strain fft-based
non-linear solvers made simple,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 318, pp. 412–430, 2017.

xiv



BIBLIOGRAPHY

[130] D. Wicht, M. Schneider, and T. Böhlke, “On quasi-newton methods in fast fourier
transform-based micromechanics,” International Journal for Numerical Methods in
Engineering, vol. 121, no. 8, pp. 1665–1694, 2020.

[131] D. Wicht, M. Schneider, and T. Böhlke, “Anderson-accelerated polarization schemes
for fast fourier transform-based computational homogenization,” International Jour-
nal for Numerical Methods in Engineering, vol. 122, no. 9, pp. 2287–2311, 2021. 22

[132] Y. Chen, Damage mechanisms in SiC/SiC composite tubes : three-dimensional analysis
coupling tomography imaging and numerical simulation. PhD thesis, University of
Paris Est, 2017. Thèse de doctorat dirigée par Sab, Karam Mécanique Paris Est 2017.
22

[133] M. T. Nguyen, Contribution aux méthodes de calcul des propriétés élastiques et de trans-
port des milieux hétérogènes par la Transformée de Fourier. PhD thesis, University of
Paris Est, 2018. Thèse de doctorat dirigée par Monchiet, Vincent et To, Quy Dong Mé-
canique Paris Est 2018. 22

[134] R. Chariere, Développement de nouveaux matériaux polymères composites allégés à
base de micro-sphères creuses modifiées. PhD thesis, University of Paris-Saclay, 2019.
Thèse de doctorat dirigée par Gélébart, Lionel Mécanique des matériaux Université
Paris-Saclay (ComUE) 2019. 22

[135] V. Gallican, Homogenization estimates for polymer-based viscoelastic composite mate-
rials. PhD thesis, University of Sorbonne, 2019. Thèse de doctorat dirigée par Brenner,
Renald Mécanique Sorbonne université 2019. 22

[136] K. S. Eloh, FFT-based modelling of X-Ray Diffraction peaks : application to dislocation
loops. PhD thesis, Université de Lorraine, 2020. Thèse de doctorat dirigée par Jacques,
Alain et Berbenni, Stéphane Sciences des matériaux Université de Lorraine 2020. 22

[137] D. V. Nguyen, Comportement mécanique à température ambiante d’un revêtement de
chrome déposé sur un substrat en alliage de zirconium. PhD thesis, University of Paris-
Saclay, 2021. Thèse de doctorat dirigée par Gélébart, Lionel Mécanique des matériaux
université Paris-Saclay 2021. 22

[138] X. Ma, M. Shakoor, D. Vasiukov, S. V. Lomov, and C. H. Park, “Numerical artifacts of fast
fourier transform solvers for elastic problems of multi-phase materials: their causes
and reduction methods,” Computational Mechanics 2021 67:6, vol. 67, pp. 1661–1683,
4 2021. 26

[139] J. W. GIBBS, “Fourier’s series,” Natures, vol. 59, 1898. 26

[140] K. S. Eloh, A. Jacques, and S. Berbenni, “Development of a new consistent discrete
green operator for FFT-based methods to solve heterogeneous problems with eigen-
strains,” International Journal of Plasticity, vol. 116, pp. 1–23, 5 2019. 26, 27, 29

[141] R. Ma and W. Sun, “Fft-based solver for higher-order and multi-phase-field fracture
models applied to strongly anisotropic brittle materials,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 362, p. 112781, 2020. 26

xv



BIBLIOGRAPHY

[142] P. Shanthraj, P. Eisenlohr, M. Diehl, and F. Roters, “Numerically robust spectral meth-
ods for crystal plasticity simulations of heterogeneous materials,” International Jour-
nal of Plasticity, vol. 66, pp. 31–45, 2015. 28

[143] S. Kaßbohm, W. H. Müller, and R. Feßler, “Improved approximations of Fourier coef-
ficients for computing periodic structures with arbitrary stiffness distribution,” Com-
putational Materials Science, vol. 37, pp. 90–93, 8 2006. 26, 28

[144] S. Brisard and L. Dormieux, “Combining Galerkin approximation techniques with the
principle of Hashin and Shtrikman to derive a new FFT-based numerical method for
the homogenization of composites,” Computer Methods in Applied Mechanics and En-
gineering, vol. 217-220, pp. 197–212, 4 2012. 27, 29

[145] M. Leuschner and F. Fritzen, “Fourier-Accelerated Nodal Solvers (FANS) for homoge-
nization problems,” Computational Mechanics, vol. 62, pp. 359–392, 2018. 27, 34, 49

[146] W. Müller, “Mathematical vs. Experimental Stress Analysis of Inhomogeneities in
Solids,” in International Seminar on Mechanics and Mechanisms of Solid-Solid Phase
Transformations, vol. 06, pp. 139–148, Springer, Berlin, Heidelberg, 1996. 29

[147] W. Dreyer, W. H. Müller, and J. Olschewski, “Approximate analytical 2D-solution for
the stresses and strains in eigenstrained cubic materials,” Acta Mechanica, vol. 136,
no. 3, pp. 171–192, 1999. 29

[148] C. M. Brown, W. Dreyer, and W. H. Müller, “Discrete fourier transforms and their ap-
plication to stress-strain problems in composite mechanics: A convergence study,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 458, pp. 1967–1987, 8 2002. 29

[149] F. Willot and Y.-P. Pellegrini, “Fast Fourier Transform computations and build-up of
plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous me-
dia,” in 11th International Symposium on Continuum Models and Discrete Systems,
pp. 443–449, Presses des mines, 7 2008. 29, 30

[150] F. Willot, B. Abdallah, and Y.-P. Pellegrini, “Fourier-based schemes with modified Green
operator for computing the electrical response of heterogeneous media with accu-
rate local fields,” International Journal for Numerical Methods in Engineering, vol. 98,
pp. 518–533, 5 2014. 29

[151] M. Schneider, F. Ospald, and M. Kabel, “Computational homogenization of elastic-
ity on a staggered grid,” International Journal for Numerical Methods in Engineering,
vol. 105, no. 9, pp. 693–720, 2016.

[152] M. Schneider, D. Merkert, and M. Kabel, “FFT-based homogenization for microstruc-
tures discretized by linear hexahedral elements,” International Journal for Numerical
Methods in Engineering, vol. 109, pp. 1461–1489, 3 2017. 29, 30, 32, 34, 52, 54

[153] A. Vidyasagar, W. L. Tan, and D. M. Kochmann, “Predicting the effective response of
bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods,”
Journal of the Mechanics and Physics of Solids, vol. 106, pp. 133–151, 9 2017. 29

xvi



BIBLIOGRAPHY

[154] S. Berbenni, V. Taupin, K. S. Djaka, and C. Fressengeas, “A numerical spectral approach
for solving elasto-static field dislocation and g-disclination mechanics,” International
Journal of Solids and Structures, vol. 51, pp. 4157–4175, 11 2014. 29

[155] S. Berbenni, V. Taupin, C. Fressengeas, and L. Capolungo, A Fast Fourier Transform-
Based Approach for Generalized Disclination Mechanics Within a Couple Stress Theory,
pp. 47–75. Springer International Publishing, 2016.

[156] K. S. Djaka, A. Villani, V. Taupin, L. Capolungo, and S. Berbenni, “Field Dislocation
Mechanics for heterogeneous elastic materials: A numerical spectral approach,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 315, pp. 921–942, 3 2017. 29

[157] R. A. Lebensohn and A. Needleman, “Numerical implementation of non-local poly-
crystal plasticity using fast Fourier transforms,” Journal of the Mechanics and Physics
of Solids, vol. 97, pp. 333–351, 12 2016. 29

[158] “AMITEX-FFTP.” http://www.maisondelasimulation.fr/projects/amitex/general/_-
build/html/. 29

[159] S. Yan, X. Zeng, and A. Long, “Meso-scale modelling of 3D woven composite T-joints
with weave variations,” Composites Science and Technology, vol. 171, pp. 171–179, 2
2019. 29

[160] M. Kabel, S. Fliegener, and M. Schneider, “Mixed boundary conditions for FFT-based
homogenization at finite strains,” Computational Mechanics, vol. 57, no. 2, pp. 193–
210, 2016. 38, 64, 105, 134

[161] K. S. Eloh, A. Jacques, and S. Berbenni, “Development of a new consistent discrete
green operator for FFT-based methods to solve heterogeneous problems with eigen-
strains,” International Journal of Plasticity, vol. 116, pp. 1–23, 5 2019. 45

[162] X. Ma, K. K. Parvathaneni, S. Lomov, D. Vasiukov, M. Shakoor, and C. H. Park, “Quan-
titative comparison between fast fourier transform and finite element method for mi-
cromechanical modeling of composite,” in FiBreMOD conference 2019, 12 2019. 54,
56

[163] M. Kabel, D. Merkert, and M. Schneider, “Use of composite voxels in FFT-based ho-
mogenization,” Computer Methods in Applied Mechanics and Engineering, vol. 294,
pp. 168–188, 2015. 59, 60, 61, 62, 64

[164] L. Gélébart and F. Ouaki, “Filtering material properties to improve fft-based methods
for numerical homogenization,” Journal of Computational Physics, vol. 294, pp. 90–95,
2015. 59, 60

[165] R. Charière, A. Marano, and L. Gélébart, “Use of composite voxels in FFT based elastic
simulations of hollow glass microspheres/polypropylene composites,” International
Journal of Solids and Structures, vol. 182-183, pp. 1–14, 1 2020. 60

[166] S. W. Tsai and E. M. Wu, “A General Theory of Strength for Anisotropic Materials,” Jour-
nal of Composite Materials, vol. 5, pp. 58–80, 1 1971. 72

xvii



BIBLIOGRAPHY

[167] Z. Hashin, “Failure Criteria for Unidirectional Fiber Composites,” Journal of Applied
Mechanics, vol. 47, pp. 329–334, 6 1980. 72

[168] Z. Hashin, “Fatigue failure criteria for unidirectional fiber composites,” Journal of Ap-
plied Mechanics, Transactions ASME, vol. 48, no. 4, pp. 846–852, 1981. 72

[169] A. Griffith, “The phenomena of rupture and flow in solids,” Philosophical Transactions
of the Royal Society of London, vol. 221, pp. 163–198, 1920. 72, 81

[170] G. R. Irwin, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate,”
Journal of Applied Mechanics, vol. 24, pp. 361–364, 09 1957. 72, 73

[171] P. Bouchard, F. Bay, Y. Chastel, and I. Tovena, “Crack propagation modelling using an
advanced remeshing technique,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 189, no. 3, pp. 723–742, 2000. 73

[172] T.-P. Fries and T. Belytschko, “The extended/generalized finite element method: An
overview of the method and its applications,” International Journal for Numerical
Methods in Engineering, vol. 84, no. 3, pp. 253–304, 2010. 73

[173] N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth with-
out remeshing,” International Journal for Numerical Methods in Engineering, vol. 46,
no. 1, pp. 131–150, 1999. 73

[174] T. Strouboulis, I. Babuška, and K. Copps, “The design and analysis of the generalized
finite element method,” Computer Methods in Applied Mechanics and Engineering,
vol. 181, no. 1, pp. 43–69, 2000. 73

[175] M. Shakoor, V. M. T. Navas, D. P. Munõz, M. Bernacki, and P.-O. Bouchard, “Computa-
tional methods for ductile fracture modeling at the microscale,” Archives of Computa-
tional Methods in Engineering 2018 26:4, vol. 26, pp. 1153–1192, 9 2018. 73, 74, 76

[176] D. Dugdale, “Yielding of steel sheets containing slits,” Journal of the Mechanics and
Physics of Solids, vol. 8, no. 2, pp. 100–104, 1960. 73

[177] G. Barenblatt, “The mathematical theory of equilibrium cracks in brittle fracture,” in
Advances in Applied Mechanics (H. Dryden, T. von Kármán, G. Kuerti, F. van den Dun-
gen, and L. Howarth, eds.), vol. 7, pp. 55–129, Elsevier, 1962. 73

[178] S. Metoui, Separated représentations for th multiscale simulation of the mechanical
behavior and damages of composite materials. PhD thesis, ENSAM, 2015. Thèse de
doctorat dirigée par Iordanoff, IvanAmmar, AminePrulière, Etienne et Dau, Frédéric
Mécanique-matériaux Paris, ENSAM 2015. 74, 75

[179] C. Zhang, J. Curiel-Sosa, and T. Q. Bui, “A novel interface constitutive model for predic-
tion of stiffness and strength in 3d braided composites,” Composite Structures, vol. 163,
pp. 32–43, 2017. 74, 75, 77

[180] M. Herráez, D. Mora, F. Naya, C. S. Lopes, C. González, and J. LLorca, “Transverse
cracking of cross-ply laminates: A computational micromechanics perspective,” Com-
posites Science and Technology, vol. 110, pp. 196–204, 2015. 74

xviii



BIBLIOGRAPHY

[181] P. P. Camanho and C. G. Dávila, “Mixed-mode decohesion finite elements for the sim-
ulation of delamination in composite materials,” 2002. 75

[182] L. Kachanov, “Time of the rupture process under creep conditions,” Izvestiia Akademii
Nauk SSSR, Otdelenie Teckhnicheskikh Nauk, vol. 8, pp. 26–31, 1958. 76

[183] M. Matveev, A. Long, and I. Jones, “Modelling of textile composites with fibre strength
variability,” Composites Science and Technology, vol. 105, pp. 44–50, 2014. 77

[184] Z. P. Bažant and B. H. Oh, “Crack band theory for fracture of concrete,” Matériaux et
Construction 1983 16:3, vol. 16, pp. 155–177, 5 1983. 77

[185] I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced mate-
rials,” Composites Part A: Applied Science and Manufacturing, vol. 38, no. 11, pp. 2333–
2341, 2007. CompTest 2006. 77

[186] F. Guo-dong, L. Jun, and W. Bao-lai, “Progressive damage and nonlinear analysis of 3d
four-directional braided composites under unidirectional tension,” Composite Struc-
tures, vol. 89, no. 1, pp. 126–133, 2009. 77, 78

[187] S. Murakami, “Mechanical modeling of material damage,” Journal of Applied Mechan-
ics, Transactions ASME, vol. 55, no. 2, pp. 280–286, 1988. 78

[188] Z. P. Baz�ant and G. Pijaudier-Cabot, “Nonlocal Continuum Damage, Localization
Instability and Convergence,” Journal of Applied Mechanics, vol. 55, pp. 287–293, 06
1988. 78

[189] R. H. J. PEERLINGS, R. DE BORST, W. A. M. BREKELMANS, and J. H. P. DE VREE, “Gra-
dient enhanced damage for quasi-brittle materials,” International Journal for Numer-
ical Methods in Engineering, vol. 39, no. 19, pp. 3391–3403, 1996. 79, 80

[190] R. Peerlings, M. Geers, R. de Borst, and W. Brekelmans, “A critical comparison of non-
local and gradient-enhanced softening continua,” International Journal of Solids and
Structures, vol. 38, no. 44, pp. 7723–7746, 2001. 79

[191] J.-J. Marigo, C. Maurini, and K. Pham, “An overview of the modelling of fracture by
gradient damage models,” Meccanica 2016 51:12, vol. 51, pp. 3107–3128, 10 2016. 79

[192] E. Lorentz, “A nonlocal damage model for plain concrete consistent with cohesive frac-
ture,” International Journal of Fracture 2017 207:2, vol. 207, pp. 123–159, 6 2017. 79, 91

[193] N. Moës, C. Stolz, P.-E. Bernard, and N. Chevaugeon, “A level set based model for dam-
age growth: The thick level set approach,” International Journal for Numerical Meth-
ods in Engineering, vol. 86, no. 3, pp. 358–380, 2011. 79

[194] B. Bourdin, G. Francfort, and J.-J. Marigo, “Numerical experiments in revisited brittle
fracture,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 4, pp. 797–826,
2000. 79, 93, 96, 102

[195] B. Bourdin, G. A. Francfort, and J.-J. Marigo, “The variational approach to fracture,”
Journal of Elasticity 2008 91:1, vol. 91, pp. 5–148, 3 2008. 79, 82, 102

xix



BIBLIOGRAPHY

[196] G. Francfort and J.-J. Marigo, “Revisiting brittle fracture as an energy minimization
problem,” Journal of the Mechanics and Physics of Solids, vol. 46, no. 8, pp. 1319–1342,
1998. 79

[197] C. Miehe, M. Hofacker, and F. Welschinger, “A phase field model for rate-independent
crack propagation: Robust algorithmic implementation based on operator splits,”
Computer Methods in Applied Mechanics and Engineering, vol. 199, no. 45, pp. 2765–
2778, 2010. 79, 80, 83, 84, 90, 93, 96, 97, 102, 103, 134

[198] R. de Borst and C. V. Verhoosel, “Gradient damage vs phase-field approaches for frac-
ture: Similarities and differences,” Computer Methods in Applied Mechanics and Engi-
neering, vol. 312, pp. 78–94, 2016. Phase Field Approaches to Fracture. 79, 80

[199] T. K. Mandal, V. P. Nguyen, and A. Heidarpour, “Phase field and gradient enhanced
damage models for quasi-brittle failure: A numerical comparative study,” Engineering
Fracture Mechanics, vol. 207, pp. 48–67, 2019. 79

[200] K. Pham, H. Amor, J.-J. Marigo, and C. Maurini, “Gradient damage models and their
use to approximate brittle fracture,” International Journal of Damage Mechanics,
vol. 20, no. 4, pp. 618–652, 2011. 80, 83, 84, 97, 98

[201] J.-Y. Wu, V. P. Nguyen, C. T. Nguyen, D. Sutula, S. Sinaie, and S. P. Bordas, “Phase-field
modeling of fracture,” vol. 53 of Advances in Applied Mechanics, pp. 1–183, Elsevier,
2020. 80, 90, 91, 92, 93, 102, 106

[202] T. H. N. Nguyen, Contributions to multiscale modelling of quasi-brittle damage in het-
erogeneous materials. PhD thesis, University of Paris est, 2019. Thèse de doctorat
dirigée par Yvonnet, Julien Mécanique Paris Est 2019. 81

[203] D.-A. Hun, Fracture modeling in clay materials under hydric shrinkageModélisation de
fissure dans les matériaux argileux sous retrait hydrique : numerical models, compar-
isons with experiments and stochastic aspects. PhD thesis, University of Paris Est, 2020.
Thèse de doctorat dirigée par Yvonnet, JulienGuilleminot, Johann et Bornert, Michel
Mécanique Paris Est 2020. 81

[204] F. Rabette, Prédiction de la microfissuration par champ de phase et méthode FFT pour
les matériaux énergétiques comprimés. PhD thesis, Mines Paris-tech, 2021. Thèse
de doctorat dirigée par Willot, François et Trumel, Hervé Morphologie mathématique
Université Paris sciences et lettres 2021. 81

[205] B. T. Vu, Modeling and simulation of damage in anisotropic materials by the phase-field
method. PhD thesis, University of Paris-Est, 2021. Thèse de doctorat dirigée par Hé,
Qi-Chang et Le Quang, Hung Génie Civil Paris Est 2021. 81

[206] C. Miehe, F. Welschinger, and M. Hofacker, “Thermodynamically consistent phase-
field models of fracture: Variational principles and multi-field fe implementations,”
International Journal for Numerical Methods in Engineering, vol. 83, no. 10, pp. 1273–
1311, 2010. 83, 84, 90, 93, 97, 102, 155

xx



BIBLIOGRAPHY

[207] J.-Y. Wu, “A unified phase-field theory for the mechanics of damage and quasi-brittle
failure,” Journal of the Mechanics and Physics of Solids, vol. 103, pp. 72–99, 2017. 83,
84, 87, 91, 92, 95, 97, 126, 128, 155

[208] J.-Y. Wu and V. P. Nguyen, “A length scale insensitive phase-field damage model for
brittle fracture,” Journal of the Mechanics and Physics of Solids, vol. 119, pp. 20–42,
2018. 83, 84, 87, 91, 94, 95, 97, 99, 126, 128, 134, 136, 146

[209] R. Alessi, J.-J. Marigo, and S. Vidoli, “Gradient damage models coupled with plasticity:
Variational formulation and main properties,” Mechanics of Materials, vol. 80, pp. 351–
367, 2015. Materials and Interfaces. 84

[210] A. Karma, D. A. Kessler, and H. Levine, “Phase-field model of mode iii dynamic frac-
ture,” Phys. Rev. Lett., vol. 87, p. 045501, Jul 2001. 84

[211] E. Lorentz, S. Cuvilliez, and K. Kazymyrenko, “Convergence of a gradient damage
model toward a cohesive zone model,” Comptes Rendus Mécanique, vol. 339, no. 1,
pp. 20–26, 2011. 87

[212] J. Mazars, Y. Berthaud, and S. Ramtani, “The unilateral behaviour of damaged con-
crete,” Engineering Fracture Mechanics, vol. 35, no. 4, pp. 629–635, 1990. 93

[213] H. Reinhardt and H. Cornelissen, “Post-peak cyclic behaviour of concrete in uniax-
ial tensile and alternating tensile and compressive loading,” Cement and Concrete Re-
search, vol. 14, no. 2, pp. 263–270, 1984. 93

[214] C. Miehe, “Comparison of two algorithms for the computation of fourth-order
isotropic tensor functions,” Computers and Structures, vol. 66, no. 1, pp. 37–43, 1998.
94

[215] C. Miehe and M. Lambrecht, “Algorithms for computation of stresses and elasticity
moduli in terms of seth–hill’s family of generalized strain tensors,” Communications
in Numerical Methods in Engineering, vol. 17, no. 5, pp. 337–353, 2001. 94

[216] Y. Chen, D. Vasiukov, L. Gélébart, and C. H. Park, “A fft solver for variational phase-field
modeling of brittle fracture,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 349, pp. 167–190, 2019. 94, 97, 102, 103, 104, 105, 123, 134

[217] T. Nguyen, J. Yvonnet, Q.-Z. Zhu, M. Bornert, and C. Chateau, “A phase field method
to simulate crack nucleation and propagation in strongly heterogeneous materials
from direct imaging of their microstructure,” Engineering Fracture Mechanics, vol. 139,
pp. 18–39, 2015. 94

[218] J.-Y. Wu and M. Cervera, “A novel positive/negative projection in energy norm for the
damage modeling of quasi-brittle solids,” International Journal of Solids and Struc-
tures, vol. 139-140, pp. 250–269, 2018. 94

[219] J.-Y. Wu and S.-L. Xu, “Reconsideration on the elastic damage/degradation theory for
the modeling of microcrack closure-reopening (mcr) effects,” International Journal of
Solids and Structures, vol. 50, no. 5, pp. 795–805, 2013. 94

xxi



BIBLIOGRAPHY

[220] I. Carol and K. Willam, “Spurious energy dissipation/generation in stiffness recovery
models for elastic degradation and damage,” International Journal of Solids and Struc-
tures, vol. 33, no. 20, pp. 2939–2957, 1996. 94

[221] M. Ambati, T. Gerasimov, and L. D. Lorenzis, “A review on phase-field models of brit-
tle fracture and a new fast hybrid formulation,” Computational Mechanics 2014 55:2,
vol. 55, pp. 383–405, 12 2014. 95, 134

[222] J.-Y. Wu, “Robust numerical implementation of non-standard phase-field damage
models for failure in solids,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 340, pp. 767–797, 2018. 95

[223] H. Amor, “Approche variationnelle des lois de griffith et de paris via des modeles non-
locaux d’endommagement: Etude theorique et mise en oeuvre numérique,” PhD the-
sis, Université de Paris 13, 2008. 96

[224] F. Francisco and P. Jong-Shi, Finite-Dimensional Variational Inequalities and Comple-
mentarity Problems, vol. 1 and 2. Springer New York, 2004.

[225] P. Farrell and C. Maurini, “Linear and nonlinear solvers for variational phase-field
models of brittle fracture,” International Journal for Numerical Methods in Engineer-
ing, vol. 109, no. 5, pp. 648–667, 2017. 96

[226] P. Zhang, X. Hu, S. Yang, and W. Yao, “Modelling progressive failure in multi-phase ma-
terials using a phase field method,” Engineering Fracture Mechanics, vol. 209, pp. 105–
124, 2019. 97, 103, 153

[227] P. Zhang, W. Yao, X. Hu, and T. Q. Bui, “3d micromechanical progressive failure simula-
tion for fiber-reinforced composites,” Composite Structures, vol. 249, p. 112534, 2020.
97

[228] H. Amor, J.-J. Marigo, and C. Maurini, “Regularized formulation of the variational brit-
tle fracture with unilateral contact: Numerical experiments,” Journal of the Mechanics
and Physics of Solids, vol. 57, no. 8, pp. 1209–1229, 2009. 98

[229] E. Tanné, T. Li, B. Bourdin, J.-J. Marigo, and C. Maurini, “Crack nucleation in varia-
tional phase-field models of brittle fracture,” Journal of the Mechanics and Physics of
Solids, vol. 110, pp. 80–99, 2018.

[230] X. Zhang, C. Vignes, S. W. Sloan, and D. Sheng, “Numerical evaluation of the phase-
field model for brittle fracture with emphasis on the length scale,” Computational Me-
chanics 2017 59:5, vol. 59, pp. 737–752, 1 2017. 98, 102, 105, 106

[231] T. T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, and R. L. Roy,
“On the choice of parameters in the phase field method for simulating crack initiation
with experimental validation,” International Journal of Fracture 2016 197:2, vol. 197,
pp. 213–226, 2 2016. 98

xxii



BIBLIOGRAPHY

[232] T. Nguyen, J. Yvonnet, M. Bornert, and C. Chateau, “Initiation and propagation of com-
plex 3d networks of cracks in heterogeneous quasi-brittle materials: Direct compari-
son between in situ testing-microct experiments and phase field simulations,” Journal
of the Mechanics and Physics of Solids, vol. 95, pp. 320–350, 2016. 98

[233] A. Mesgarnejad, B. Bourdin, and M. Khonsari, “Validation simulations for the varia-
tional approach to fracture,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 290, pp. 420–437, 2015. 98

[234] T. K. Mandal, V. P. Nguyen, and J.-Y. Wu, “Length scale and mesh bias sensitivity of
phase-field models for brittle and cohesive fracture,” Engineering Fracture Mechanics,
vol. 217, p. 106532, 2019. 98, 99, 105

[235] E. Martínez-Pañeda, A. Golahmar, and C. F. Niordson, “A phase field formulation for
hydrogen assisted cracking,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 342, pp. 742–761, 2018. 99

[236] G. Molnár and A. Gravouil, “2d and 3d abaqus implementation of a robust staggered
phase-field solution for modeling brittle fracture,” Finite Elements in Analysis and De-
sign, vol. 130, pp. 27–38, 2017. 99

[237] J. M. Sargado, E. Keilegavlen, I. Berre, and J. M. Nordbotten, “High-accuracy phase-
field models for brittle fracture based on a new family of degradation functions,” Jour-
nal of the Mechanics and Physics of Solids, vol. 111, pp. 458–489, 2018. 103

[238] J. Espadas-Escalante, N. van Dijk, and P. Isaksson, “A phase-field model for strength
and fracture analyses of fiber-reinforced composites,” Composites Science and Tech-
nology, vol. 174, pp. 58–67, 2019. 105, 106, 117, 119

[239] Y. Cao, W. Shen, J. Shao, and W. Wang, “A novel fft-based phase field model for damage
and cracking behavior of heterogeneous materials,” International Journal of Plasticity,
vol. 133, p. 102786, 2020. 103

[240] J. Bleyer and R. Alessi, “Phase-field modeling of anisotropic brittle fracture including
several damage mechanisms,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 336, pp. 213–236, 2018. 103

[241] G. Li, B. Yin, L. Zhang, and K. Liew, “Modeling microfracture evolution in heteroge-
neous composites: A coupled cohesive phase-field model,” Journal of the Mechanics
and Physics of Solids, vol. 142, p. 103968, 2020. 103, 153

[242] M. Paggi and J. Reinoso, “Revisiting the problem of a crack impinging on an interface:a
modeling framework for the interaction between the phase field approach for brittle
fracture and the interface cohesive zone model,” Computer Methods in Applied Me-
chanics and Engineering, vol. 321, pp. 145–172, 2017. 153

[243] T. Guillén-Hernández, I. G. García, J. Reinoso, and M. Paggi, “A micromechanical anal-
ysis of inter-fiber failure in long reinforced composites based on the phase field ap-
proach of fracture combined with the cohesive zone model,” International Journal of
Fracture 2019 220:2, vol. 220, pp. 181–203, 7 2019. 103

xxiii



BIBLIOGRAPHY

[244] D. Jeulin, “Towards crack paths simulations in media with a random fracture energy,”
International Journal of Solids and Structures, vol. 184, pp. 279–286, 2020. Physics and
Mechanics of Random Structures: From Morphology to Material Properties. 120

[245] Y. Chen, L. Gélébart, A. Marano, and J. Marrow, “Fft phase-field model combined with
cohesive composite voxels for fracture of composite materials with interfaces,” Com-
putational Mechanics, vol. 68, pp. 433–457, 8 2021. 121, 153

[246] R. J. Geelen, Y. Liu, T. Hu, M. R. Tupek, and J. E. Dolbow, “A phase-field formulation for
dynamic cohesive fracture,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 348, pp. 680–711, 2019. 128

[247] F. Ernesti, M. Schneider, and T. Böhlke, “Fast implicit solvers for phase-field fracture
problems on heterogeneous microstructures,” Computer Methods in Applied Mechan-
ics and Engineering, vol. 363, p. 112793, 2020. 153

[248] B. Wang, G. Fang, S. Liu, and J. Liang, “Effect of heterogeneous interphase on the me-
chanical properties of unidirectional fiber composites studied by fft-based method,”
Composite Structures, vol. 220, pp. 642–651, 2019. 153

[249] Q. Wu, M. Li, Y. Gu, S. Wang, and Z. Zhang, “Imaging the interphase of carbon fiber
composites using transmission electron microscopy: Preparations by focused ion
beam, ion beam etching, and ultramicrotomy,” Chinese Journal of Aeronautics, vol. 28,
no. 5, pp. 1529–1538, 2015. 153

xxiv



Abstract

This PhD thesis addresses numerical modeling of the fracture of heterogeneous materials
using a Fast Fourier Transform (FFT) based method and a phase-field model. FFT-based
numerical methods relying on the voxel type mesh, show higher computational efficiency
and similar accuracy as the finite element method for the same mesh type. These methods,
however, are well-known to lead to numerical artifacts (spurious oscillations). The first part
focuses on these artifacts and their causes. A neighbor voxel average and an improved com-
posite voxel method relying on a signed distance function are proposed to reduce those oscil-
lations. The second part of the thesis focuses on damage modeling using a length-insensitive
phase-field model. The correct implementation of this model for heterogeneous materials
within the FFT solver is presented, and it is shown that this model suppresses the influence
of the characteristic length on local and global responses as compared to classical models.

Résumé

Cette thèse de doctorat aborde la modélisation de la rupture de matériaux hétérogènes en
utilisant une méthode numérique basée sur la Transformée de Fourier Rapide (TFR) et une
approche champ de phase. Les méthodes basées sur la TFR ont démontré une haute effi-
cacité et une précision similaire à celle des éléments finis pour des maillages de type voxel.
Cependant, elles génèrent des artefacts (oscillations) numériques. La première partie de
cette thèse se concentre sur l’étude de ces artefacts et de leurs causes, et sur les traitements
numériques permettant de les atténuer. La deuxième partie de cette thèse concerne la mod-
élisation de la rupture à l’aide d’une approche champ de phase insensible à la longueur car-
actéristique. La mise en œuvre correcte de ce modèle pour des matériaux hétérogènes dans
le solveur TFR est présentée, et il est montré que l’influence de la longueur caractéristique
est supprimée par rapport aux modèles classiques.
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