
HAL Id: tel-03665844
https://theses.hal.science/tel-03665844v1
Submitted on 12 May 2022 (v1), last revised 24 Apr 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modélisation et exploration d’architectures
neuromorphiques pour les systèmes embarqués

haute-performance
Edgar Lemaire

To cite this version:
Edgar Lemaire. Modélisation et exploration d’architectures neuromorphiques pour les systèmes em-
barqués haute-performance. Réseau de neurones [cs.NE]. Université Côte d’Azur, 2022. Français.
�NNT : 2022COAZ4009�. �tel-03665844v1�

https://theses.hal.science/tel-03665844v1
https://hal.archives-ouvertes.fr

Modélisation et Conception
d’Architectures Neuromorphiques

pour les Systèmes Embarqués
Haute-Performance

Edgar LEMAIRE
Laboratoire d’Antennes, Électronique et Télécommunications (LEAT) &

Thales Research & Technology (TRT-Fr)

Présentée en vue de l’obtention
du grade de docteur en Electronique
d’Université Côte d’Azur

Dirigée par : Benoît Miramond, LEAT
Co-Dirigée par : Sébastien Bilavarn, LEAT
Co-Encadrée par : Hadi Saoud, Thales
Soutenue le : 08 Mars 2022

Devant le jury, composé de :
Simon Thorpe, Dir. de Recherche, CerCO
Gilles Sassatelli, Dir. de Recherche, LIRMM
Olivier Bichler, Ingé. Chercheur, CEA-LIST
Jean Martinet, Professeur, I3S
Philippe Millet, Resp. pôle Innovation, Nexter
Hadi Saoud, Ingé. Chercheur, Thales
Benoît Miramond, Professeur, LEAT
Sébastien Bilavarn, Maitre de Conf., LEAT

THÈSE DE DOCTORAT

Modélisation et Conception d’Architectures Neuromorphiques
pour les Systèmes Embarqués Haute-Performance

Jury :

Rapporteurs

Simon Thorpe, Directeur de Recherche, Centre de Recherche Cerveau et Cognition
(CerCO) - CNRS/Université Toulouse 3 Paul Sabatier

Gilles Sassatelli, Directeur de Recherche, Laboratoire d’Informatique, de Robotique et
de Microélectronique de Montpellier (LIRMM) – CNRS/Université Montpellier 2

Examinateurs

Jean Martinet, Professeur des Universités, Laboratoire d’Informatique, Signaux et
Systèmes de Sophia antipolis (I3S) – CNRS/Université Côte d’Azur

Olivier Bichler, Ingénieur Chercheur, Laboratoire d’Intégration des Systèmes et
Technologies (LIST) – CEA Tech

Philippe Millet, Directeur de l’Innovation, Nexter

Hadi Saoud, Ingénieur Chercheur, Thales Research & Technology (TRT), Thales

Benoît Miramond, Professeur des Universités, Laboratoire d’Eléctronique, Antenne et
Télécommunications (LEAT) – CNRS/Université Côte d’Azur

Sébastien Bilavarn, Maître de Conférences, Laboratoire d’Eléctronique, Antenne et
Télécommunications (LEAT) – CNRS/Université Côte d’Azur

Résumé en Français

Les réseaux de neurones profonds ont permis des progrès sans précédent dans le domaine de
l’apprentissage automatique. En imitant le calcul parallèle et distribué du cerveau, de tels algo-
rithmes permettant en effet d’émuler n’importe quelle fonction, jusqu’aux plus complexes. Leurs
applications vont de la vision par ordinateur (classification, segmentation, détection...), au traite-
ment du language naturel en passant par la prédiction de séries temporelles. Dans tous ces
domaines, les réseaux de neurones profonds n’ont cessé de repousser les limites de l’intelligence
artificielle. D’autre part, nous assistons par ailleurs à l’émergence progressive de l’internet des
objets (Internet of Things, IoT). Ces systèmes embarqués connectés ont un besoin grandissant
en capacité de traitement, et les réseaux de neurones profonds semblent alors tout indiqués pour
accomplir cette tâche. Qu’il s’agisse de navigation autonome dans des drones ou dans des voitures
sans pilote, de reconnaissance faciale dans les téléphones portables ou plus généralement de traite-
ment périphérique (Edge Computing) dans les réseaux de capteurs, les applications embarquées
de l’apprentissage profond sont déjà nombreuses. Cependant, les algorithmes neuronaux sont
complexes et particulièrement gourmands en ressources de calcul. En matière de consommation
énergétique, ces derniers semblent en effet incompatibles avec la nature contrainte des systèmes
d’IoT. Dans cette optique, l’approche de l’Électronique Neuromorphique consiste à s’inspirer du
cerveau biologique pour en mimer l’efficacité énergétique. En effet, il s’agit du modèle de processeur
neuronal le plus abouti à notre connaissance, affichant une consommation d’à peine 20 watts. À
travers l’utilisation de modèles de neurones bio-inspirés proposés par les neurosciences computa-
tionnelles, l’approche Neuromorphique a pour objectif de réduire la consommation énergétique de
l’intelligence artificielle embarquée. Cette approche repose sur des arguments prometteurs: la sim-
plicité du calcul impulsionnel, l’aspect binaire des synapses et l’encodage ”épars” (sparse). Cepen-
dant, la littérature scientifique spécialisée semble manquer de comparaison étendue de l’impact
du domaine de codage sur l’efficacité énergétique des accélérateurs neuronaux. De ce fait, la
contribution principale de cette thèse est une comparaison détaillée des domaines de codage im-
pulsionnels et formels sur FPGA. Cette étude implique plusieurs cas d’usage et différents niveaux
de parallèlisme. Ce volet de la thèse a été mené a bien au moyen du développement d’un esti-
mateur de ressources et d’énergie pour les architectures neuronales sur FPGA. Cet outil permet
d’accélérer l’exploration de l’espace des applications. D’autre part, nous proposons de quantifier
les gains potentiels au moyen d’une métrique et d’un modèle de haut niveau: le ratio d’activité
synaptique. Cette métrique permet d’évaluer rapidement les gains potentiels d’énergies offerts par
le domaine impulsionnel pour une application donnée. Nous l’utilisons notamment pour trouver
de nouvelles familles de réseaux impulsionnels prometteuses en termes énergétiques. Enfin, nous
mettons à profit les enseignements de cette étude pour proposer l’accélération neuronale hybride,
une architecture mélant les deux domaines d’encodage (impulsionnel et formel). L’architecture a
été embarquée à bord du satellite OPS-SAT (lancé en Décembre 2019) et testée en vol. Ce faisant,
il s’agit de la toute première architecture neuromorphique fonctionnelle dans l’éspace.

Mots Clefs - Réseaux de Neurones Artificiels, Réseaux de Neurones Impulsionnels, Eléctronique
Numérique, Architecture Matérielle, Modélisation, Consommation énergétique, Systèmes Em-
barqués, Informatique en Périphérie, Eléctronique Neuromorphique, FPGA

i

Abstract

Deep Neural Networks have recently pushed unprecedented progress in the field of Machine Learn-
ing. Those algorithms mimic the parallel and distributed computation paradigm of the biological
brain to fit any desired functions, including the most complex ones. The range of applications for
Deep Learning is very wide: from computer vision (classification, segmentation, detection...) to
natural language processing and time-series prediction. Those domains were all greatly impacted
by Deep Neural Networks, since they are continuously pushing back the limits of Artificial Intel-
ligence. On the other hand, the emergence of the Internet of Things in recent years have opened
a brand new range of applications for Deep Learning. Indeed, the processing abilities of those
algorithms is particularly appealing for such autonomous systems like IoT. From navigation and
obstacle detection in drones and self-driving cars, to face recognition in smartphones, or more
generally for Edge Computing in networks of sensors, Deep Learning seems all indicated for the
task. However, Deep Learning models are very complex and energy-intensive. In terms of energy
consumption, they appear not to comply with the highly-constrained nature of embedded systems.
To cope with this issue, the Neuromorphic Computing approach consists in taking inspiration from
the biological brain. Our brain is indeed the most efficient neural processor anyone has ever heard
of, with only 20W of average power consumption. By using bio-inspired models from Computa-
tional Neurosciences, the Neuromorphic approach thus aims in reproducing the energy efficiency of
the brain. This choice is backed by several objective assessments, like the hardware-friendliness of
the spiking synaptic operation, the sparse computation or the lightweight communication between
neurons. However, the literature seems to lack broad and fair comparisons of the impact on neural
coding on the energy consumption of hardware neural networks. Therefore, the first contribution
of this work is a fair and extensive comparison between spiking and formal coding domains on
FPGA. The study also takes low-level implementation into account, like parallelism. It was made
possible by the development of an hardware-footprint estimator for hardware neural networks on
FPGA, which drastically facilitates and accelerates the design and applications space exploration.
Moreover, we propose an high-level metric and energy model to evaluate the energy consumption
of neuromorphic accelerators. This model named Synaptic Activity Ratio (SAR) is based on the
number of spikes per synapse and the ratio of energy consumption between spiking and formal
synaptic operations. The model is indeed able to determine whether a given CNN model (tested
on a given dataset) could bring energy savings on FPGA. This contribution also facilitates the
exploration of applications relatively to neural coding domains. For instance, we also use this
technique to find novel SNN representations which seem better adapted to hardware acceleration
than the basic rate-coded conversion approach. Finally, we use the knowledge acquired from this
study to introduce the novel concept of neural coding hybridization. We propose an hardware
architecture which uses both formal domain for feature-extraction and spiking domain for classi-
fication. The architecture was embedded on-board OPS-SAT satellite (launched Dec. 2019) for
in-flight test, being the world first neuromorphic architecture in space.

Keywords - Artificial Neural Networks, Spiking Neural Networks, Digital Electronics, Hardware
Architecture, Modeling, Energy Consumption, Embedded Systems, Edge Computing, Neuromor-
phic Electronics, FPGA

ii

Acknowledgements

I would like to express my deepest gratitude to my supervisors: Benôıt Miramond, Sébastien
Bilavarn, Hadi Saoud and Philippe Millet for their unwavering help and support during the three
years of my thesis. I would like to thank them for believing in me with this project although I had
very little experience and knowledge on digital electronics; for teaching me so much professionally,
technically and humanely; and for the support they brought me all along those three years.

I would also like to express my gratitude to Simon Thorpe, Gilles Sassatelli, Olivier Bichler
and Jean Martinet for accepting to be part of my thesis jury. It is a great honor for me to defend
my work in front of such prominent researchers.

I would also like to thank my colleagues of both LEAT and Thales RT for their support and
the many friendship we built. In particular, I would like to sincerely thank Nassim Abderrahmane
for all the work we have accomplished together, and all the help he offered me in the early stages
of my thesis.

In addition, I would like to thank my parents Frédérique and Bruno Lemaire, my sister Félicie
Lemaire, my grand-parents, uncles, aunts, cousins and friends for their support, encouragement
and prodding. Each one of them had a role to play in the achievement of this work. I would also
like to thank Manon Philip for her unwavering support and love, which helped me going forward
during hard times.

This work was funded by Thales and ANRT (Agence Nationale de la Recherche Technologique),
and hosted at both Thales Research Technology’s LCHP (High Performance Computing Labora-
tory) and CNRS & Université Côte d’Azur LEAT (Electronics, Antennas and Telecommunication
Laboratory).

iii

List of Publications

Journal Papers

Abderrahmane, N., Lemaire, E., & Miramond, B. (2020). Design space exploration of hardware
spiking neurons for embedded artificial intelligence. Neural Networks, 121, 366-386.

Lemaire, E., Miramond, B., Bilavarn, S., Saoud, H. & Abderrahmane, N., (2022). Synaptic Activ-
ity and Hardware Footprint of Spiking Neural Networks in Digital Neuromorphic Systems. ACM
Transactions on Embedded Computing Systems (Accepted for publication)

Conference Papers

Lemaire, E., Moretti, M., Daniel, L., Miramond, B., Millet, P., Feresin, F., & Bilavarn, S. (2020,
October). An FPGA-based Hybrid Neural Network accelerator for embedded satellite image clas-
sification. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5).
IEEE.

Book Chapters

Chapter 12 : Space Use-Case, in the book :
Jahre, M., Göhringer, D., & Millet, P. (Eds.). (2021). Towards Ubiquitous Low-power Image
Processing Platforms. Springer International Publishing.

Workshop Papers

Férésin, F., Kervennic, E., Bobichon, Y., Lemaire, E., Abderrahmane, N., Bahl, G., ... & Ben-
guigui, M. (2021). In space image processing using AI embedded on system on module: example
of OPS-SAT cloud segmentation. In 2nd European Workshop on On-Board Data Processing.

Patents

FISO neuron model, submitted in September 2019, in proceeding.

iv

List of Figures

1.1 Neuromorphic Computing is a trans-disciplinary approach between Deep Learning,
Digital Electronics and Computational Neurosciences. 4

2.1 Left: commonly used activation functions in formal neurons: hyperbolic tangeant
(Tanh), sigmöıd and Rectified Linear Unit (ReLU). Right: Schema of FC layer,
with 5 input and 2 output neurons. 6

2.2 Schema of a Convolutional layer, with a 5x5x1 input data, a single 3x3 filter and a
stride of 1. 8

2.3 Summary of LeNet-5 CNN. Conv is for Convolutional Layer, Pool is for Pooling
layers and D is for FC layers. The visuals are obtained using N2D2 sotfware [1] . . 8

2.4 Summary of comparisons between CPU, GPU, ASIC and FPGA for neural network
acceleration in terms of power consumption and computing power [2]. 11

2.5 Comparison of CPU, GPU, ASIC and FPGA for binary neural network acceleration
in terms of speed and performance per Watt, on various neural network topologies [3]. 12

2.6 Comparison of FPGA (Stratix 10) and GPU (Titan X) for Deep Neural Networks in
terms of performance and performance per Watt, for various optimizations: prun-
ing, compact data and binarization. [4]. 13

2.7 Illustration of a VGT-generated convolution layer architecture [5]. 14
2.8 Illustration of a Processing Element in VGT convolution layers [5]. 15
2.9 Illustration of a VGT-generated max-pooling layer architecture [5]. 16
2.10 Biological plausibility of Spiking Neuron models against implementation as stated

in [6] . 16
2.11 Illustration of the Integrate & Fire neuron model. Top: network setup, bottom:

membrane potential, input and output activity. 17
2.12 Different spike coding methods: a. is rate coding, b. is latency coding, c. is order

coding. 19
2.13 Illustration of the Convolutional Processing Element found in [7]. 23
2.14 Illustration of the weight distribution technique used in [7] to limit the memory

access rate. module has 3 input synapse data per cycle. The neuron 1 connects to
neurons 2, 3, 7, 8 and 9 in the network, and neuron 1 is fired in the last time step.
The figure shows the accumulation of three synaptic weights (w3,1 , w8,1 and w9,1). 24

2.15 Polychronous neuron circuit overview found in [8]. 25
2.16 Illustration of the pipelined parallel convolution implementation found in [9]. The

input data is first flattened in rows, and fed in a shift register. A systolic array
of Convolution Units [10] then performs the operation in a pipelined fashion. A:
Situation at clock T, B: situation at clock T+1. 26

2.17 Illustration of the training, compression, conversion and hardware deployment frame-
work proposed in [11]. 27

2.18 Illustration of stabilized DVS data used for training and testing in [12]. 28

v

LIST OF FIGURES vi

2.19 Schematic overview of the FINN architecture found in S2N2 [13]. The SWU (Sliding
Window Unit) flattens the input data and forwards it to the MVTU (Matrix Vector
Threshold Unit). Each Processing Element (PE) inside the MVTU processes one
output channel and has a number of SIMD (Single Instruction on Multiple Data)
lanes that read from input channels and multiply the input by kernel weights in
parallel. 29

2.20 Illustration of the Neural Processing Unit of SPLEAT [14]. This NPU is used to
emulate a convolution, pooling or fully-connected spiking layer in order to build a
full SNN on FPGA. 30

3.1 High level representation of PADS architecture, for a 2-layers spiking MLP. FCi
stands for the ith fully-connected layer with Ni neurons. 36

3.2 Block Diagram of the Spike Generation Cell. 37
3.3 Spike emission process flowchart. Initialization is highlighted in green, emission in

red. 38
3.4 Architecture of a generic NPU in PADS, represented with 4 input synapses. Register

barriers are represented as rectangles. 41
3.5 Architecture of a PADS Input-NPU, optimized for the input FC layer 42
3.6 Architecture of the PADS’ Terminate Delta Module with 4 output neurons. 43
3.7 Workflow for synthesis, simulation and reporting using Vivado Design Suite (2019.1).

The source code (VHDL) is depicted on the left, and the resulting report on the
right. 44

3.8 Evolution of test accuracy, number of input & output spikes and execution time (in
clock cycles) with respect to MaxPeriod. All measurements are averaged on 100
samples. Topology: 784-10 on MNIST. 48

3.9 Evolution of test accuracy, number of input & output spikes and execution time
(in clock cycles) with respect to input size. All measurements are averaged on 100
samples. Single FC layer SNN on MNIST dataset with various input sizes. 49

4.1 Illustration of the CIAR cloud segmentation task. On the left, the original image
taken by OPS-SAT. On the right, the resulting segmentation map, with cloudy
patches in yellow. Source: [15] . 54

4.2 a) Sample of MNIST dataset, b) Sample of GTSRB dataset 55
4.3 a) Sample of CIFAR 10 dataset, b) Sonar echoes from Mines VS Rocks dataset [16] 56
4.4 Examples of spectrograms from Google Speech Commands dataset [17]. Spoken

Digits dataset use in this work is a subset of Google Speech Commands. 56
4.5 Illustration of the over-the-air RadioML 2018 recording setup, found in [18]. A host

computer generates the desired RF signal, which is emitted and received via two
universal software radio peripherals (USRP). 57

4.6 Evolution of spike filtering rate on CIFAR-10 task 61
4.7 Spike Count Evolution ∆ = 5 and ∆ = 20 in Layer #0, Layer #6 and in total, for

various ΘIF on CIFAR-10 task. The vertical axis is logarithmic 62
4.8 Evolution of λ against number of parallel MACs, for Xilinx Zedboard and ZCU102

targets. 67
4.9 Unified synaptic trace format . 68

LIST OF FIGURES vii

4.10 SAR (above) and accuracy (below) on OPSSAT, MNIST, GTSRB and Mines Vs
Rocks datasets classification, for ∆ = 5, 10 and 20. λZE and λZC are also repre-
sented. Spiking inference with N2D2. 70

4.11 SAR (above) and accuracy (below) on Spoken Digits, RadioML 2018 and CIFAR-
10 datasets classification, for ∆ = 5, 10 and 20. λZE and λZC are also represented.
Spiking inference with N2D2. Additionally, for CIFAR-10 θIF varies between 0.5, 1
and 2. 71

4.12 Activity ratio on MNIST using a larger topology, obtained using N2D2. Spiking
Accuracy = 98,73%; Formal Accuracy = 99,19% 73

4.13 Spike train period with respect to element intensity according to the rate-coding
policy, with PeriodMax = 1× 1011fs and PeriodMax = 1× 107fs (default N2D2
parameters used in our experiments) . 74

4.14 Distribution of element intensity in our benchmark datasets. Left are image datasets,
right are 1D datasets. a) MNIST, b) Mines VS Rocks, c) GTSRB, d) Spoken Digits,
e) CIFAR-10, f) RadioML2018 . 76

5.1 Overview of the high-level estimation framework 80
5.2 Design space for a) FC layers (30 points), b) Conv & Pool layers (24 points each) 82
5.3 3D interpolations of LUTs (left) and FFs (right) for Fully-Connected layers. First

row: SPLEAT (red) vs HLS (blue), second row: PADS (red) vs VGT (blue). Third
row: SPLEAT (red) vs PADS (blue). 84

5.4 3D interpolations of active and idle power for Fully-Connected layers. Left: SPLEAT,
right: PADS. 86

5.5 3D interpolations of Block RAM (left) and DSPs (right) for Fully-Connected layers.
First row: SPLEAT (red) vs HLS (blue), second row: PADS (red) vs VGT (blue).
Third row: SPLEAT (red) vs PADS (blue). 87

5.6 3D interpolations of Active Power for Fully-Connected layers. First row: SPLEAT
(red) vs HLS (blue), second row: PADS (red) vs VGT (blue). Third row: SPLEAT
(red) vs PADS (blue). 88

5.7 a) Simple spike trace example with 4 input synapses and 4 time increments, b)
Illustration of PADS parallel and pipelined process. 90

5.8 Illustration of SPLEAT sequential process. 91
5.9 a) FPGA power consumption model, b) Dynamic and Static power VS LUT occu-

pation (%) on Zedboard . 92
5.10 Layer-wise LUT estimation in VGT, HLS, PADS and SPLEAT. Top: OPSSAT

RGB, bottom: Spoken Digits . 93
5.11 Layer-wise RAM and DSP estimation in VGT, HLS, PADS and SPLEAT. Top:

OPSSAT RGB, bottom: Spoken Digits . 94
5.12 Comparisons of resource usage in VGT, HLS, PADS and SPLEAT. Left: OPSSAT,

Right: Spoken Digits. Top: Full network, Bottom: Classification Stage 95
5.13 Layer-wise and total SAR for a) OPS-SAT (∆ = 4) and b) Spoken Digits (∆ = 20). 97
5.14 Layer-wise execution time (per image) estimation in VGT, HLS, PADS and SPLEAT.

Top: OPSSAT RGB, bottom: Spoken Digits . 98
5.15 Layer-wise Power estimation in VGT, HLS, PADS and SPLEAT. Top: OPSSAT

RGB, bottom: Spoken Digits . 99

LIST OF FIGURES viii

5.16 Comparisons of inference time (per image) and power usage in VGT, HLS, PADS
and SPLEAT. Left: full network, Right: classification stage. Top: time, Bottom:
power . 100

5.17 Layer-wise energy estimation (per image) in VGT, HLS, PADS and SPLEAT. Top:
OPSSAT RGB, bottom: Spoken Digits . 102

5.18 Comparisons of energy consumption per image in VGT, HLS, PADS and SPLEAT.
Left: full network, Right: classification stage. Top: power, Bottom: timing 103

5.19 Confrontation of SAR model and energy estimations for 7 datasets of the bench-
mark: MNIST, OPSSAT, GTSRB, CIFAR-10, Mines VS Rocks, Spoken Digits
and RadioML 2018. Validation is made separately for parallel and sequential ar-
chitectures. Each subfigure is divided between SAR & λ values (top) and energy
estimations (bottom). 105

5.20 SAR and energy estimations without static power consumption, on MNIST (∆ =
20) and OPSSAT(∆ = 4) . 107

5.21 SAR and energy estimations for MNIST with ∆ = 5 (left) and MNIST with ∆ = 20
after applying the DSP saturation correction (right) 108

6.1 Activity distribution in CNN layers for OPSSAT (left) and Spoken Digits (right) . 114
6.2 Spike train period with respect to element intensity according to the rate-coding

policy, with PeriodMax = 1timestep and PeriodMax = 100timesteps 115
6.3 Layer-wise and total SAR for a) OPS-SAT (∆ = 4) and b) Spoken Digits (∆ = 20). 118
6.4 Hardware footprint estimation of VGT, SPLEAT, Hybrid VGT-SPLEAT and Hy-

brid VGT-PADS on OPS-SAT RGB dataset with ∆ = 4, MinPeriod = 1 and
MaxPeriod = 100. a) LUT, b) Registers, c) Block RAM, d) DSP, e) Power, f)
Inference time and g) Energy. 119

6.5 Hardware footprint estimation of VGT, SPLEAT, Hybrid VGT-SPLEAT and Hy-
brid VGT-PADS on Spoken Digits RGB dataset with ∆ = 4, MinPeriod = 1 and
MaxPeriod = 100. a) LUT, b) Registers, c) Block RAM, d) DSP, e) Power, f)
Inference time and g) Energy. 121

6.6 a: OPS-SAT CubeSat being tested before launch. b: OPS-SAT FlatSat platform.
Photo credits: TU Graz [19]. 123

6.7 Impression of OPS-SAT in low earth orbit [20] . 124
6.8 Schematic of OPS-SAT architecture. The yellow part is for the ”technical” bus,

and the blue part is for the payload. Source: [19] 125
6.9 Illustration of the CIAR Hybrid Neural Network Architecture. 126

7.1 Illustration of the Send-on-Delta spike encoding process used in [21], for 2 IF neurons
encoding a 1D temporal signal. Left: network setup. Right: input and output data. 131

7.2 Illustration of the Leaky Integrate & Fire neuron process. The membrane potential
is shown in blue, input spikes in green and output spikes in red. 132

7.3 SAR and Accuracy measurements on the benchmark of datasets with S2NET frame-
work. Samples are presented for 5, 10 and 20 time-steps. The λ value is depicted
in orange for the Zedboard and red for the ZCU102 (see Section 4.3.2). All mea-
surements are averaged on 10 runs. 136

7.4 Hardware architecture of: a) FISO neuron with 4 input pixels, b) LIF neuron with
4 input synapses. Register barriers are shown in gray or colored rectangles. Data
stored in memory is depicted in light blue squares. 140

LIST OF FIGURES ix

7.5 a) Architecture of the Readout layer with 4 input synapses and 3 neurons. b)
Overview of the full architecture of PADS V2. 141

7.6 Chronogram of the PADS-V2 pipelined process at network-level 142

1 Illustration of the CIAR cloud segmentation task. On the left, the original image
taken by OPS-SAT. On the right, the resulting segmentation map, with cloudy
patches in yellow. Source: [15] . 160

2 Custom FPGA platform for neuromorphic accelerator deployment. The software
stack is in shades of red, and the hardware stack is in shades of blue. 162

3 Vivado block design of the FPGA part of the SNN deployment platform. 163

4 Estimations on Flip-FLop usage for OPS-SAT and Spoken Digits associated CNNs 164
5 Validation of the SAR metric & λ energy model for SPLEAT versus C-HLS on the

benchmark of datasets for full-networks. Top: SAR vs λSEQ, Bottom: SPLEAT vs
C-HLS energy consumption. 165

List of Tables

2.1 Logic resources, execution time, power and energy of FPGA SNN accelerators found
in the literature. Topology nomenclature: KcWsX = Convolution layer with K
filters of size W2 and a stride of X, KpWsX = Pooling layer with K filters of size
W2 and a stride of X. Fully-connected layers are referred to by their number of
output neurons. 22

3.1 TensorFlow Keras parameters used for training in all our experiments. 44
3.2 Hardware resources measures for PADS and VGT MLPs on OPS-SAT Grayscale

Dataset: 28× 28 - 100 - 2 . 45

4.1 Large CNN topology for Spoken Digits dataset. This CNN achieves 97.34% accuracy. 58
4.2 List of CNN topologies for the classification benchmark 59
4.3 Accuracy and synaptic activity measurements with N2D2 on all datasets of the

benchmark . 60
4.4 Logic resources, power and energy comparison for 16-bit ACC and MAC operations

on Xilinx xc7z020 FPGA. The MAC operation has been implemented with and
without DSPs. 66

4.6 Large CNN topology for MNIST dataset . 69
4.7 Network-wise Synaptic Activity Ratio for the dataset benchmark, with varying ∆

and ΘIF values. The cells are green when SAR is above λZE and λZC, yellow when
it is between the two and red when it is below. 72

5.1 Dynamic power consumption in PADS with and without power gating, on the
benchmark of datasets. VGT dynamic power usage is shown for comparison. Re-
sults are shown for the classification stage (FC layers) only. The results have been
obtained through the estimation framework, for ∆ = 20 (best accuracy). 109

6.1 CNN topologies for a) OPS-SAT and b) Spoken Digits datasets. 115
6.2 Input sizes and spike generation min and max period values for full CNN and Hybrid

classification stages on OPS-SAT and Spoken Digits dataset. 117
6.3 Measurements and estimations for VGT, SPLEAT and Hybrid VGT-PADS on OPS-

SAT Dataset. The difference is expressed in % of the measurement. 126

7.1 Parameters used for training with S2NET framework 134
7.2 Comparison of accuracy and network-wise SAR with Conversion with Rate-coding

and SGL with SoD. Bold letters show the best-case accuracy for reach method and
task. 135

7.3 Inference time of PADS-V1 and PADS-V2 on MNIST and OPS-SAT hybrid 143
7.4 Width of the spike encoding window in PADS-V1 and PADS-V2 on the benchmark

of datasets, for best-case accuracy. The width is expressed in both timesteps and
clock-cycles. 143

x

LIST OF TABLES xi

1 LUT, FF, Block RAM and DSP occupation measures for Convolution layers at
design-space measurement points. Measures obtained after hardware synthesis on
Xilinx Vivado Design Suite, targeting Xilinx Zedboard 166

2 LUT, FF, Block RAM and DSP occupation measures for Pooling layers at design-
space measurement points. Measures obtained after hardware synthesis on Xilinx
Vivado Design Suite, targeting Xilinx Zedboard 166

3 LUT, FF, Block RAM and DSP occupation results for Fully-Connected layers at
design-space measurement points. Measures obtained after hardware synthesis on
Xilinx Vivado Design Suite, targeting Xilinx Zedboard 167

4 Power measures for Fully-Connected layers at design-space measurement points.
Measures obtained after hardware synthesis and simulation on Xilinx Vivado Design
Suite targeting Xilinx Zedboard . 167

5 Power measures for Convolution layers at design-space measurement points. Mea-
sures obtained after hardware synthesis and simulation on Xilinx Vivado Design
Suite targeting Xilinx Zedboard . 168

6 Power measures for Pooling layers at design-space measurement points. Measures
obtained after hardware synthesis and simulation on Xilinx Vivado Design Suite
targeting Xilinx Zedboard . 168

7 Duration results for Fully-Connected layers at design-space measurement points.
Measures obtained by calculation and validated using post-synthesis simulation. . 169

8 Duration results for Convolution layers at design-space measurement points. Mea-
sures obtained by calculation and validated using post-synthesis simulation. 169

9 Duration results for Pooling layers at design-space measurement points. Measures
obtained by calculation and validated using post-synthesis simulation. 170

Contents

1 Introduction 1
1.1 History of Deep Learning . 1
1.2 Energy Consumption and Embedded Systems . 2
1.3 Bio-inspired neurons for Machine Learning . 2
1.4 Problem statement and outline . 3

2 State of the Art & Contributions 5
2.1 Formal neurons . 6

2.1.1 Feed-forward NN and CNNs . 7
2.1.2 Error gradient backpropagation algorithm 9

2.2 FNN in hardware . 9
2.2.1 Hardware neural networks on digital hardware 10
2.2.2 Example of FNN accelerators for FPGA 12

2.3 Spiking Neural Networks . 14
2.3.1 Principle of Spiking Neural Networks . 15
2.3.2 Spike encoding . 18
2.3.3 Training SNNs . 19
2.3.4 Terminate Delta . 20

2.4 SNNs in hardware . 21
2.4.1 Advantages of SNNs in Hardware . 21
2.4.2 Literature review . 21
2.4.3 Confronting Spiking and Formal Neural Networks 28

2.5 Conclusion . 31
2.6 Contributions . 32

2.6.1 Synaptic Activity . 32
2.6.2 Quantitative comparison of formal and spiking domains 32
2.6.3 Cartography of applications and neural coding domains 33
2.6.4 How to benefit from spiking domain ? . 33

3 Spiking Neural Networks parallel implementation: PADS 34
3.1 Hardware Architecture . 35

3.1.1 Spike Generation Cell . 35
3.1.2 Neural Processing Unit . 39
3.1.3 Terminate Delta Module . 41

3.2 Hardware Synthesis Results . 42
3.2.1 Methodology . 43
3.2.2 Comparison with VGT . 45
3.2.3 Spike Generation Overhead . 46
3.2.4 Conclusions on PADS hardware implementation 49

3.3 Conclusion . 50

xii

CONTENTS xiii

4 Synaptic Activity Ratio & Energy Modeling 52
4.1 Representative Datasets . 53

4.1.1 Used topologies . 54
4.2 Accuracy and synaptic activity measurements . 55

4.2.1 Methods . 56
4.2.2 Synaptic activity results . 58
4.2.3 Discussions on Synaptic Activity results 62

4.3 Synaptic Activity ratio . 63
4.3.1 Energy Consumption Model . 63
4.3.2 The value of λ . 65

4.4 Synaptic Activity Ratio measurements . 67
4.4.1 Synaptic Activity Ratio evaluation software 67
4.4.2 Network-wise SAR & theoretical cartography 69
4.4.3 Data type and rate-coding . 73
4.4.4 Layer-wise SAR & hybridization . 73

4.5 Conclusion . 74

5 Hardware Footprint and High-Level Estimations 77
5.1 Motivations . 79

5.1.1 Speed-up cartography and exploration . 79
5.1.2 Layer-wise approach . 79
5.1.3 Level of parallelism . 79

5.2 Framework . 80
5.2.1 Hardware measurements database . 80
5.2.2 Execution time . 85
5.2.3 Spiking hardware inference simulator . 90

5.3 Ressource estimations . 92
5.3.1 Layer-wise estimation . 93
5.3.2 Network-wise estimation . 95
5.3.3 Conclusions . 96

5.4 Inference time and power estimations . 96
5.4.1 Layer-wise estimation . 96
5.4.2 Network-wise estimation . 100
5.4.3 Conclusions . 101

5.5 Energy estimations . 101
5.5.1 Layer-wise estimation . 102
5.5.2 Network-wise estimation . 103
5.5.3 Conclusions on energy estimations . 104

5.6 Validation of the SAR model . 106
5.7 Conclusion . 107
5.8 Outlooks . 110

5.8.1 Improvement of the SAR metric . 110
5.8.2 Improvement of the estimation framework 110
5.8.3 Studying the level of parallelism . 111
5.8.4 Hybridization and other spike encoding methods 111

CONTENTS xiv

6 Neural coding domain hybridization 112
6.1 Motivations . 113

6.1.1 SAR and footprint variability . 113
6.1.2 Distribution of activity . 115
6.1.3 Formal convolutions and spiking classification 116

6.2 Estimations on hybrid architectures . 116
6.2.1 Methodology . 116
6.2.2 OPS-SAT . 117
6.2.3 Spoken Digits . 120
6.2.4 Discussions on hybrid estimations . 122

6.3 Hybrid hardware implementation . 123
6.3.1 Context . 124
6.3.2 VGT-PADS Hybrid Architecture . 124

6.4 Conclusion . 127
6.4.1 Outlook . 128

7 Enhancing PADS: FISO & LIF as Recurrent neurons 129
7.1 Theoretical Background . 130

7.1.1 Send on Delta spike encoding . 130
7.1.2 LIF Neuron . 131
7.1.3 LIF as recurrent neurons . 132
7.1.4 Surrogate Gradient Learning . 133
7.1.5 Output decoding: readout layer . 133
7.1.6 Application in the S2NET framework . 133
7.1.7 Static input samples . 134

7.2 Accuracy & SAR results . 134
7.3 PADS V2 . 138

7.3.1 Architecture . 138
7.3.2 Inference Time Results . 141

7.4 Conclusions & Outlooks . 144

8 Conclusions and outlooks 145
8.1 Conclusion . 145
8.2 Outlooks . 147

8.2.1 Short term and work-specific perspectives 147
8.2.2 Middle term outlooks and insights . 148

APPENDIX 1: CIAR project 159

APPENDIX 2: Custom SoC platform 161
.1 Programmable Logic modules . 161
.2 CPU & Embedded Linux . 162

APPENDIX 3: Additional figures 164

APPENDIX 4: Measurements 166

APPENDIX 5: Raw Estimations 171

Chapter 1

Introduction

In recent years, the field of artificial intelligence has been widely dominated by Deep Learning.
This field of Machine Learning uses Artificial Neural Networks which model the biological neural
networks in mathematical equations. This approach enables to emulate more and more complex
cognitive functions in automated algorithms, such as image classification, object detection, natural
language processing or decision making. Since it first appeared in the foreground of research in
the 90’s, all those domains have been revolutionized by Deep Learning. The complexity of the
models growing further and further, the limits of Machine Learning are constantly pushed back,
involving more and more application domains and industrial actors.

1.1 History of Deep Learning

Long before its modern supremacy, the premises of Deep Learning dates back to the very beginning
of computer science. In the same school of thought of Alan Turing, researchers like McCulloch and
Pitts worked to demonstrate that cognition could be modeled through mathematical functions. In
1943, they proposed the first artificial neuron model [22]. In this breakthrough publication, the
authors demonstrated that a network of such formal neurons was able to emulate propositional
logic functions. Later in 1957, Rosenblatt proposed the first application of formal neurons to
automated classification: the perceptron [23]. The perceptron is made of a single layer of formal
neurons. The major contribution of this pioneering publication is the learning algorithm. By
iterating over a set of labeled training samples, the algorithm automatically adjusts the synap-
tic weights to minimize the output error. In doing so, the authors proposed the first supervised
learning algorithm. However, the technique was limited to single layers of neurons, which were
only able to solve binary classification problems. This limitation was leveraged in another major
breakthrough when Werbos proposed the Multi-Layer Perceptron (MLP) and gradient BackProp-
agation (BP) algorithm in 1974 [24]. The MLP is considered by many as the first modern neural
network model, and the BP algorithm is still a fundamental element of modern Machine Learning.
The BP algorithm allows to train several successive perceptron layers at once, hence the name
Multi-Layer Perceptron. The deeper meaning of this work is even more revolutionary: an MLP
of arbitrary size and depth is theoretically able to solve any non-linear problem. However, the
feasibility of this algorithm was limited by the available computing power in the early 70’s.

Following Moore’s law, the exponential growth of computing power made it possible in 1986,
when Rumelhart proposed the first implementation of the BP algorithm in a feed-forward MLP
[25]. This work opened the gates to what has since become modern Deep Learning by using
deeper and deeper networks, the models were able to solve more and more complex tasks in various
application fields. The most prominent of which was computer vision: extracting information from
images for classification, segmentation or detection. In 1989, LeCun proposed the first Convolution
Neural Network (CNN) [26] trained with the BP algorithm. The innovation of this model is to
give a structure to the layers of neurons according to specificities of the application. For computer

1

CHAPTER 1. INTRODUCTION 2

vision, the convolution layers are designed to extract spatial patterns. LeCun later generalized
the CNN model to various tasks in the fields of image classification, speech recognition and time-
series prediction [27]. The convolution layers are still widely used in Deep Learning to this date,
and are one of the key components of modern neural network architectures like VGG-16 [28].
In recent years, other Formal Neural Networks (FNN) models have emerged for various domains
of application, like Transformer neural networks for Natural Language Processing [29]. In doing
so, the models are getting deeper and deeper and more and more complex. For example, the
recent GPT-3 transformer model proposed by the OpenAI team in 2020 [30] uses 175 billions of
parameters, i.e. 175 billions of explicit synaptic connections.

1.2 Energy Consumption and Embedded Systems

Neural network models becoming more and more complex, they have higher and higher com-
putational requirements for training and inference. For example, the GPT-3 transformer model
with 175 billion parameters requires a bare minimum of 350GB of GPU memory for inference.
That is equivalent to 8 Nvidia A6000 GPUs; the latest and most powerful deep-learning oriented
High-Performance Computing (HPC) device. This represents a power consumption of 2400W.
Therefore, the energetic scalability of Machine Learning starts to raise questions among the sci-
entific and public communities. But this energetic issue is even more problematic in the field
of embedded systems. Indeed, the recent emergence of the Internet of Things (IoT) opened a
brand new field of applications for neural networks. From autonomous navigation in drones or
self-driving cars, to advanced robotics and augmented reality, the need for such embedded artificial
intelligence is just starting to rise. By definition, those systems are isolated from the power grid,
and must run on battery or energy harvested from the environment (mostly solar panels). Quite
straightforwardly, the energy budget of Deep Learning is not compliant with such constrained
systems.

An approach chosen by many researchers in the field of neural network acceleration is to take
inspiration from the most advanced and efficient neural processor anyone has ever heard of: the
biological brain. The human brain is said to feature more than 10 000 billions synaptic connections
per cm3. On the other hand, it consumes no more than 20W in average. Since the volume of
human brain is roughly 1450cm3, that is an average of 10−17W per synapse. For comparison, the
most advanced neural network model (GPT-3) running on the most advanced hardware available
(Nvidia A6000) uses approximately 10−8W per synapse (175 billions synapses and 2400W for 8
A6000 GPUs). That is, if we omit the nature of the network itself (its topology and actual neuron
dynamics) and if we consider that the number of synapses is a reliable metric to compare the brain
and a deep learning model, the first is approximately one billion times more energy-efficient than
the latter. It seems that we indeed have a lot to learn from biology regarding low-power neural
processing.

1.3 Bio-inspired neurons for Machine Learning

In the field of Machine Learning, the main interest is to develop powerful models applied to solving
real-world problems, like image segmentation for self-driving cars or natural language processing
for virtual assistants. However, another field of research has long paid interest to artificial neu-
ral networks for other motivations. Neurosciences and Cognitive Sciences use them as a tool to

CHAPTER 1. INTRODUCTION 3

simulate cognitive functions, providing a better understanding of the underlying mechanisms of
the human mind. For this purpose, computational Neurosciences are interested in the biological
plausibility of the neuron models. In doing so, many biological neuron models have been proposed,
mimicking the event-based nature of the brain. In contrast with Machine Learning which uses
static real-valued information encoding, the biological brain uses action potentials: brief electrical
impulses better known by the name of spikes. In Spiking Neural Networks (SNNs), information is
encoded temporally with spikes. The strong hypothesis at the basis of our approach is the follow-
ing: spike encoding is one of the major sources of power efficiency in the biological brain, compared
to formal Machine Learning models. This hypothesis is backed by several factual assessments. In
the widely used Integrate & Fire spiking neuron model, multiplication-accumulation operations
are replaced with accumulation. The latter uses fewer logic and power than the first [31], hence
the expectations of a better hardware-efficiency. Moreover, the sparse encoding of information in
SNNs enables a sparse computation. In other words, the design is only active upon processing
input spikes and remains idle otherwise. This feature is known as ”frame-free”, in contrast with
the frame-constrained nature of the formal approach. Additionally, spikes enable light-weight
communication between neurons, further reducing the hardware footprint.

In the light of these assessments, a recent trend in the field of neural network acceleration is
to use bio-inspired neurons in deep-learning network models. It consists in developing application
specific hardware architectures to support the inference of deep SNN models. By using bio-inspired
neuron and event-based computation, expectations are a major reduction of energy consumption.
This is a particularly appealing promise for embedded systems. In all, SNNs are expected to
leverage the energy consumption limitations of embedded artificial intelligence. The thesis lies
precisely in this field of the research: Neuromorphic Computing. More precisely, this work deals
with the hardware acceleration of Spiking Neural Networks on FPGA, and the associated energy
savings.

1.4 Problem statement and outline

However, there is still a lack of clear, fair and extensive comparison between formal and spiking
hardware neural networks in the literature. The hardware-efficiency promises remain unproven
outside of very specific cases, and most importantly: to be quantified. In this thesis, we address
the most widely used type of SNNs to our knowledge: rate-coded SNNs converted from formal
models. The goal of this thesis is to evaluate the potential energy efficiency gains of this model
over conventional Formal Neural Networks in the context of FPGA accelerators. More precisely,
this thesis aims in providing a cartography of neural coding domains and applications. In other
words, the goal is to determine which type of application would be better suited to spiking domain
acceleration in terms of energy gains. Moreover, this study follows a hardware-software co-design
approach: the model and the underlying hardware has to be designed according to one another.
In doing so, our goal is also to find innovative ways to benefit from spiking neurons in hardware
and vice versa. The contributions of this work relatively to the literature will be described further
at the end of the State-of-the-Art section (Chapter 2).

This document begins with a detailed state-of-the-art (Chapter 2), including a theoretical
background of formal and spiking neural network models and hardware acceleration. We also
provide an overview of the existing architectures and few publications addressing the comparison
of the two neural coding domains. In Chapter 3, we describe our prototype of hardware accelerators
for fully-connected spiking layers: PADS. It is based on rate-coding, and is used as an experimental

CHAPTER 1. INTRODUCTION 4

testbench to study the energy consumption of neuromorphic systems. In Chapter 4, we propose
the Synaptic Activity Ratio (SAR) metric and the associated high-level energy estimation model.
The model is used to rapidly determine whether a model or application is suitable for spiking
acceleration, in terms of energy savings over formal acceleration. In Chapter 5, we propose an
estimation framework based on low-level measurements and FPGA modeling. The framework
enables rapid estimation of resources, power usage, inference time and energy consumption of
formal and spiking accelerator under high and low level of parallelism. The framework enables a
fast and reliable cartography of application, neural coding domain and implementation choices.
It is applied to a benchmark of datasets, and the energy estimations are confronted with the
SAR-based model. In Chapters 6 and 7, we propose two hardware implementations based on
PADS architecture. In the light of the previous studies, those architectures intends to leverage
the potential energy savings expected from neuromorphic acceleration. In Chapter 6, we propose
neural network hybridization in order to tailor the neural coding domain according to synaptic
activity at layer level. In Chapter 7, we use our acquired knowledge and models to find a more
suitable SNN representation for neuromorphic acceleration. That is, a novel representation in
which SNNs are viewed as Recurrent Neural Networks on a finite (and defined) number of timestep
[32]. Using SoD spike encoding [33] and Surrogate Gradient Learning, this new model of SNNs
achieve lower SAR than rate-based SNNs for even accuracy. We also propose an adaptation of the
PADS architecture to this new model.

DEEP
LEARNING

DIGITAL
ELECTRONICS

COMPUTATIONAL
NEUROSCIENCES

NEUROMORPHIC
COMPUTING

Figure 1.1: Neuromorphic Computing is a trans-disciplinary approach between Deep Learning,
Digital Electronics and Computational Neurosciences.

Chapter 2

State of the Art & Contributions

Chapter contents

2.1 Formal neurons . 6
2.1.1 Feed-forward NN and CNNs . 7
2.1.2 Error gradient backpropagation algorithm 9

2.2 FNN in hardware . 9
2.2.1 Hardware neural networks on digital hardware 10
2.2.2 Example of FNN accelerators for FPGA 12

2.3 Spiking Neural Networks . 14
2.3.1 Principle of Spiking Neural Networks . 15
2.3.2 Spike encoding . 18
2.3.3 Training SNNs . 19
2.3.4 Terminate Delta . 20

2.4 SNNs in hardware . 21
2.4.1 Advantages of SNNs in Hardware . 21
2.4.2 Literature review . 21
2.4.3 Confronting Spiking and Formal Neural Networks 28

2.5 Conclusion . 31
2.6 Contributions . 32

2.6.1 Synaptic Activity . 32
2.6.2 Quantitative comparison of formal and spiking domains 32
2.6.3 Cartography of applications and neural coding domains 33
2.6.4 How to benefit from spiking domain ? . 33

5

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 6

-2

0

2

4

6

-4 -2 0 2 4

Tanh Sigmoïd ReLU

(a) (b)

Figure 2.1: Left: commonly used activation functions in formal neurons: hyperbolic tangeant
(Tanh), sigmöıd and Rectified Linear Unit (ReLU). Right: Schema of FC layer, with 5 input and
2 output neurons.

Before going into more details on the works and results obtain to achieve the thesis goals, we
briefly introduce the State of the Art of neuromorphic accelerators. First, we provide information
on conventional Formal Neural Networks (FNN) and their hardware implementations. Then, we
introduce Spiking Neural Networks (SNN) and how they differ from classical FNNs. More precisely,
we are going to explain how those differences are expected to bring resource, power and energy
savings to neuromorphic computing. In doing so, we describe some existing SNN accelerators and
techniques aiming to benefit from the spiking domain promises.

2.1 Formal neurons

Formal Neurons are very roughly inspired from biological models in their behaviour. They are
designed to integrate incoming weighted activations from several uphill neurons, just like the bi-
ological neuron does with incoming action potentials in its soma. Each of those activations are
weighted by a synaptic-weight. From this ”soma activity”, which is also referred to as ”mem-
brane potential”, an output activation is computed thanks to an activation function. This output
activation is then propagated to downhill neurons. This behavior is summarized in Equation 2.1.

ylj = f(slj), slj =

Nl−1−1∑
i=0

wij ∗ yl−1
i (2.1)

With ylj being the output of the jth neuron of layer l, slj the membrane potential of the jth neuron
of layer l and wij the synaptic weight between the ith neuron of layer l − 1 and the jth neuron
of layer l, and f() the non-linear activation function. The activation function is usually a non-
linear function such as hyperbolic tangent (Tanh), sigmöıd or Rectified Linear Unit (ReLU). Those
activations functions are shown in Figure 2.1a.

However, this single artificial neuron is not useful in itself. It starts to gain interest when
using several interconnected neurons, through which information flows successively. This set of
interconnected neurons is what is called an Artificial Neural Network.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 7

2.1.1 Feed-forward NN and CNNs

Artificial Neural Networks come in various types and families. Those types are called topologies,
which characterize the organization of neurons in the network. In the present work, we deal with
feed-forward, layer-based neural networks. If some types of networks are unstructured, such as
reservoir neural networks [34] or liquid state machines ([35]), feed-forward neural networks are
formed of successive layers, through which information flows from the input to the output, always
in the same direction. Therefore, we will not cover topologies such as Recurrent Neural Networks,
in which activation does not only flows downstream, but can be branched to itself or upstream
layers. A layer is a set of neurons, which are connected to neurons of the previous and following
layers. In the Machine Learning community, the layer corresponds more to the connection scheme
between two set of neurons, than the set of neuron in itself. This connection policy will indeed
serve to emulate a transformation of information between two set of neurons. The most basic type
of layer is the Fully-Connected (FC) layer. An illustration of FC layers is shown in Figure 2.1b.

It implies an all-to-all connection between upstream and downstream neurons of a layer. This
function is used to classify data, and can be used on its own to build a Multi-Layer Perceptron
(MLP), which is composed of several successive FC layers. It has been stated by Hornik et. al. [36]
that an MLP composed of two fully-connected layers was sufficient to approximate any non-linear
separable function with an arbitrary precision, i.e. it is sufficient to solve any classification task.
However, when using only FC layers, complex classification tasks (i.e., with a lot of classes, large
images, complex objects, rotations...) requires an incredible amount of neurons in those layers.
When adding layers, the problem might be solved with fewer neurons, but this still requires a
lot of neurons and connections, which implies a huge computation and memory requirements. In
order to solve this problem, more specific layers have been proposed by LeCun et. al. [37] in 1980:
Convolutional and Pooling Layers. Convolutional layers emulate a convolution operation using
one or several filters. This type of layer is well suited for the extraction of spatial or temporal
patterns. Moreover, this layer implies a lower number of synaptic weights, as they are shared
among filters. A convolution layer with 5 filters of size 3×3 only has 3×3×5 = 45 weights, which
helps mitigating memory requirements of Artificial Neural Networks. The Convolutional layer is
represented in Figure 2.2. In this figure, two steps of the Convolutional process are represented.
The first step is the convolution of the orange patch with the filter, which results in the orange
activation in the output feature map. The last step is also shown in blue. All intermediate steps
are omitted for clarity. Pooling layers on the other hand emulate a sub-sampling operation. This
is used to mitigate the computation and memory requirements of Artificial Neural Networks, as
Convolutional layers may result in large output size due to a large number of filters or large input
vector size. Similarly to Convolutional layers, Pooling layers associate an output neuron to an
input patch. However, the output activation is not obtained by convolving a filter, but rather
using Maximum or Average operations: Max-Pooling layers compute the output activation as the
maximum value of the associated input patch, whereas Average-Pooling layers compute the output
activation as the average of the patch. The combination of Convolution and Pooling layers form
a Feature-Extraction (FE), which is usefull to pre-process the data before classification through
FC layers. Basically, a typical Convolutional Neural Network such as LeNet5 [37] (Figure 2.3) is
composed of a FE stage followed by an MLP.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 8

Filter

Output
Feature Map

Input data

Figure 2.2: Schema of a Convolutional layer, with a 5x5x1 input data, a single 3x3 filter and a
stride of 1.

Input Conv 1 Conv 2Pool 1 Pool 2 D 1 D 2 D 3Layer

Hyper
Parameters

N
filters

= 6
W

filters
= 5

S = 1

N
filters

= 6
W

filters
= 2

S = 2

N
filters

= 16
W

filters
= 5

S = 1

N
filters

= 16
W

filters
= 2

S = 2

N
out

=
256

N
out

=
84

N
out

=
10

Out size 28x28x1 24x24x6 12x12x6 8x8x16 4x4x16 256 84 10

Illustration

Figure 2.3: Summary of LeNet-5 CNN. Conv is for Convolutional Layer, Pool is for Pooling layers
and D is for FC layers. The visuals are obtained using N2D2 sotfware [1]

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 9

2.1.1.1 Advanced layers

In recent years, new types of layers emerged in addition to the three aforementioned fundamental
layer structures. A short list of the most important advanced layers is given below for information.

• Batch-Normalization layer [38]: normalizes activation to stabilize and speed-up learning

• Recurrent layers [39]: short term memory for temporal signal processing

• Residual layer [40]: recurrent connection across several layers

• Softmax layer [41]: output layer used for caterogical classification training

In the present work, only the Softmax layer will be used for training in formal domain.

2.1.2 Error gradient backpropagation algorithm

In both Artificial Neural Networks and their biologic inspiration, the information is not located
inside neurons, but rather inside the connection between neurons: the so called synapses. Indeed,
those connections are endowed with synaptic weights, a coefficient that modulate the sign and
intensity of the information flowing through. The knowledge contained in the network is therefore
represented by the distribution of those weights among synapses. The whole goal of Machine
Learning is to find the weight distribution so that the neural network behavior fits the desired
function. In a small topology such as LeNet5 [37] (see 2.3), there are 369174 synaptic weights,
and this number is exploding when addressing state-of-the-art CNN topologies, such as VGG-
16 [28] which implies 138 millions parameters or even Transformer networks [29] that can reach
billions. Understandably, an automatic learning algorithm is used to tune those weights. The most
common family of training algorithms is based on Error Gradient Backpropagation [42] [26] [43].
The basic idea of this process is to learn statistical biases by iterating on large labelled training
datasets. To do so, the learning algorithm iterates across training samples, starting with a random
weight distribution. Each sample is associated to a label, which represents the target output of the
network for this data. The data is passed at the input of the network, and the output is retrieved:
this is the forward path. An error is computed between the actual output and the expected one
(computed from a label or a specific ground truth value), using various kind of loss functions. At
this stage, one is able to tune the weights of the last layer in order to minimize this error. The
error is then propagated backwards, layer-by-layer, from the output towards the input. At each
layer, the weights are automatically tuned to minimize the layer-wise error. More information on
this process, including the mathematical principles and equations are presented in [42]. However,
as we do not study learning algorithm, such details is out of scope of this work.

2.2 FNN in hardware

Now that the principles of Formal Neural Networks have been explained, this section will focus
on the state-of-the-art regarding the deployment of such models on hardware platforms. It should
be noted that in this whole work, we focus on neural network inference and training is considered
out of scope: it is always performed in software, and the hardware platforms only come into
consideration for the inference issue. At this stage, there are two major possibilities for hardware
artificial neural network implementation: digital or analog systems. Digital implementations have
3 major advantages over analog circuits:

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 10

• The development and deployment frameworks are more mature and accessible for digital
systems.

• The digital paradigm enable multiplexing, sequencing etc. which brings scalability.

• Analog circuits are more subject to electrical noise and technology variability, even more
when scaled-up to larger system sizes.

Moreover, if analog circuits are usually more compact than equivalent digital circuits, this trend
reverses when addressing smaller than 22nm CMOS technology [44]. Following Moore’s law,
the 22nm and smaller CMOS technology is democratizing fast, so digital circuits also take the
advantage regarding compactness. For all those reasons, we only address digital implementations
in this work. Digital systems comes in 4 main families:

• Central Processing Units (CPUs): the most generic and common type of programmable
processors, used in every computers, smartphones, and general purpose electronic devices.
This is a purely centralized Von Neumann type of architecture [45], were computation is
highly sequential in a fast and generic core, which communicates with external memories.

• Graphical Processing Units (GPUs) [46]: a more specific type of accelerator, originally used
for graphics rendering in video-games or special effets softwares. GPUs are highly paral-
lel programmable processors, composed of a very large number of small and simple cores,
dividing large computations into small portions.

• Application Specific Integrated Circuits (ASICs) [47]: a type of accelerator which is specifi-
cally designed for a given task, offering an optimal use of hardware resources (area, power,
energy...) on this task. However, this type of accelerator is very expensive to produce, and
is only conceivable for large production scales.

• Field-Programmable Gate Arrays (FPGAs) [48]: this type of device is composed of an array
of processing elements (Look-Up-Tables, Registers, Multiplexers, Digital Signal Processing
units...), which can be configured to build complex circuits using an hardware synthesis
software. The architecture is described using a Hardware Description Language [49] (VHDL
[50], Verilog [51]...), and automatically mapped to the device. The resulting accelerator can
be highly specific and thus makes a near-optimal use of resources for a given task. FPGAs
are way cheaper than ASICs to exploit, but make a less optimal use of resources, considering
all the logic used to program the device, and the unused elements of the board. Moreover,
FPGAs are re-programmable, which makes this technology well suited for early prototyping
and research.

In the next section, a literature review will help us compare hardware neural networks on those 4
types of digital hardware targets.

2.2.1 Hardware neural networks on digital hardware

In [2], the authors presented the recent advances in the field of Neural Network acceleration
regarding compression, algorithm optimization and hardware optimizations. The authors also
proposed a separation of hardware acceleration in three levels: structure level, algorithm level and
implementation level. The structure level deals with optimizations related to the network topology,
such as synapse pruning (removing synapses with insignificant weights), weight redundancy and

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 11

Figure 2.4: Summary of comparisons between CPU, GPU, ASIC and FPGA for neural network
acceleration in terms of power consumption and computing power [2].

layer decomposition. The algorithm level deals with efficient algorithms for training, and are thus
considered out of scope. Finally, the implementation level deals with hardware implementation
platforms and techniques for CPU, GPU, FPGA, ASIC and other novel technologies such as
memristor-based neural networks [52]. Concerning this implementation level, the authors made
a comparison of various CNN topologies on various hardware targets, in order to measure and
compare the subsequent efficiencies. Their results are summed-up in Figure 2.4, which shows the
power consumption and computing power (GOPS: Giga Operation Per Second) of various neural
networks on various hardware targets. In this figure, we can see that CPU is the least optimal
hardware, offering low computing power for high power consumption. On the other hand GPUs
offer the highest possible computing power, but with the highest power consumption. Finally,
ASICs and FPGAs seem a good trade-off between computing power and power consumption,
as they are specifically designed to optimize both these aspects. ASICs still offers lower power
consumption, as it is even more specific than FPGA and does not imply programming logic and
unused elements.

In [3], the authors also proposed an in-depth comparison of Neural Network acceleration re-
garding speed and performance per Watt, using various CNN topologies and hardware targets.
The results of their study is given in Figure 2.5. If their study mainly deals with binarized neural
networks, they also proposed results for non-binarized models. On those graphics, one might see
that, for non-binary models, CPU and GPUs have quite similar performances, with a slight ad-
vantage for the CPU in both metrics. On the other hand, FPGA and ASIC architectures always
offer better performance and speed-up than CPU and GPUs, in all configurations. This result
is an interesting preliminar justification for SNN that belongs to also use binary coding whose
activations are scheduled in time.

In [4], Nurvitadhi et.al. performed an in depth comparison on Neural Network acceleration
targeting FPGA and GPU, regarding performance and performance per Watt. The authors also
evaluated the influence of pruning, data compacity and binarization on the performance on both
hardware. To do so, the authors compared various Deep Neural Networks (DNN) topologies on
Nvidia Titan X, the most powerful GPU on the market, with Xilinx Stratix 10, the latest version
of large Xilinx FPGA device. The authors also evaluated Xilinx Arria 10, a smaller recent FPGA
device. The authors also developed a FPGA-based DNN accelerator architecture, which they used

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 12

Figure 2.5: Comparison of CPU, GPU, ASIC and FPGA for binary neural network acceleration
in terms of speed and performance per Watt, on various neural network topologies [3].

in their comparison. The results of the comparison are shown in Figure 2.6, for various baseline and
several optimizations: pruning, compact data and binarization. Concerning raw performance, the
only case where Stratix 10 FPGA is below the TITAN X is for baseline DNN. With optimizations,
the FPGA outperforms the GPU in all cases. Concerning performance per Watt (i.e. energy
efficiency), the FPGA performs better than the GPU in every experiment. Finally, the authors
conclude that Neural Network acceleration should focus on FPGAs rather than GPUs, in the light
of their measurements. However, most of these comparisons do not take into account the impact
of compression on network accuracy. This metric has to be considered in addition to the speed
and performance.

2.2.2 Example of FNN accelerators for FPGA

In the light of this literature review, it is clear that specific circuits such as FPGAs and ASICs are
the most suited to Neural Network acceleration in the context of energy-and-resource-constrained
embedded systems. Although there is a slight advantage for ASICs in that regard, FPGA’s
reconfigurability offers interesting prototyping capabilities, for a much lower cost than ASICs.
Hence, in our work, we focus on FPGA-based neuromorphic accelerators. In this section, we
will specifically describe two FPGA accelerators for Formal Neural Networks: VGT, which is
an architecture for fully parallel FNN acceleration, and C-HLS, which is a fully-sequential FNN
accelerator. Those two accelerators will be used in our application benchmark in Chapter 5. For
information, a wide survey of existing formal accelerators is proposed in [53].

2.2.2.1 VGT accelerator

VGT (VHDL Generation Tool) [5] is a framework for Formal Neural Network deployment, which
automatically generates VHDL code from an high-level description. In this work, the generated
circuits are referred to as VGT architectures. It should be noted that the subsequent VGT
accelerators is implemented with a high level of parallelism. Convolution layers operate in a

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 13

Classical DNN Pruned DNN

DNN on compact data Binarized DNN

Figure 2.6: Comparison of FPGA (Stratix 10) and GPU (Titan X) for Deep Neural Networks
in terms of performance and performance per Watt, for various optimizations: pruning, compact
data and binarization. [4].

streaming fashion: the input feature-maps are flattened, and streamed pixel by pixel to the layer,
in parallel for each input channels. In the same way, the output feature-maps are streamed in
parallel one pixel at a time. The architecture of the convolution itself is made of two stages:
a Processing Element for weight-multiplication (i.e. convolution of input channels with filters),
and an adder-tree for filter-wise integration (i.e. sum of weighted inputs to compute output
feature-maps). The full architecture is available in Figure 2.7. There is a Processing Element for
each input channel. Each Processing Element operates weight multiplications in parallel for each
convolution filter. Using a sliding window, weight multiplications are performed in a pipelined
systolic fashion [10]. An illustration of a Processing Element architecture is available in Figure
2.8. After the systolic arrays, an adder-tree is used to sum the results filter-wise, so that there
is one output value per output-filter. As the input feature maps are streamed to the PEs, and
thanks to the pipelined architecture, the convolution layer will produce one output value at a time
for each filter, in a streaming fashion.

The max-pooling layers of VGT works similarly to the convolution layers, except that there
is no weight multiplication, and that the adder-tree is replaced with comparator-tree in order
to extract the maximum value of each input patch. An illustration for the max-pooling layer is
available in Figure 2.9

Finally, the fully-connected layer of VGT is implemented as a parallel matrix-multiplication
architecture. The architecture is similar to that of the convolution layer depicted in 2.7. In contrast
with Convolution and Pooling layers, the input of the FC layer is not streamed but available all
in one piece. This is possible thanks to the flattening layer, that will not be described here. The
FC layer itself is made, as for Convolution layers, of a PE stage and an adder-tree stage. In the

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 14

Figure 2.7: Illustration of a VGT-generated convolution layer architecture [5].

PE stage, there is one PE per input channel. Those PE stages perform weight multiplications in
a fully-parallel way: all input activations are multiplied by all synaptic weights in parallel, thus
for a 100-100 layer, there are 100× 100 parallel multiplications. Then, the results are summed-up
to obtain the output activations, using pipelined adder-trees. There is one adder-tree per output
neuron so all output activations are processed in parallel.

2.2.2.2 C-HLS accelerator

The second FNN accelerator, which we call C-HLS accelerator, has been developped by Sebastien
Bilavarn in the LEAT laboratory. This architecture is derived from a C code completely designed
to support HLS. This code is a layer based implementation allowing 2D convolutions, ReLU, max
pooling and fully connected layers. Layers are configurable (size, input, kernels, ...) such that
typical neural network topologies like LeNet can be fully specified and simulated. Therefore this
code can also be used to generate RTL IP cores that can be further integrated with a CPU and
system bus to be quickly ran on Xilinx devices (Vivado HLS and SDSoC methodology). Loop
level parallelism can be explored introducing pipelining pragmas in the original designs, but this
is not adressed in this study, where this accelerator is parameterized in a fully-sequential fashion.
This choice has been made in order to enhance the comparison between sequential and parallel
accelerators in terms of hardware footprint and performance in Chapter 5.

2.3 Spiking Neural Networks

In previous section, we mainly focused on ”hardware-level” optimizations. If we refer to the termi-
nology proposed by [2] (introduced in section 2.2.1), there are other possibilities for optimization at
algorithmic and structural level. In this PhD thesis, we also study the algorithmic-level optimiza-
tions by addressing a brain-inspired type of neuron: spiking neurons. Consequently, in this work,
we investigate how a neural coding paradigm shift towards spiking domain could help mitigating
logic-resources occupation, power and energy consumption of FPGA accelerators. Of course, this
matter is always addressed with hardware considerations in mind: the aim is to build an hardware

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 15

Figure 2.8: Illustration of a Processing Element in VGT convolution layers [5].

platform which takes advantages of the model, and find a model which takes advantages of the
hardware possibilities. But first, a short review of Spiking Neural Networks principles will be given
to introduce all the concepts involved in our study. Then, hardware implementations of Spiking
Neural Networks will be discussed.

2.3.1 Principle of Spiking Neural Networks

Spiking Neural Network is a type of brain-inspired Neural Network that emerged from the neuro-
sciences, where it aimed in emulating the biological brain behavior for scientist to study and under-
stand the physical mechanisms underlying information propagation in biological neural networks.
The first model to emerge was the very simple Integrate and Fire (IF) neuron model proposed by
Lapicque in 1907 [54]. Later, more biologically plausible neuron models were proposed such has
the Hodgkin-Huxley (HH) [55] neuron which used a vast set of non-linear differential equations
in order to model the mechanism of action potential initiation and propagation in Giand Squid
axons. Figure 2.10 shows the biological plausibility of various spiking neurons (i.e. how close
they mimick the real physical mechanisms occurring in the biological brain) against their imple-
mentation cost in terms of Floating-Point Operation Per Seconds (FLOPS). As it can be seen in
this representation, the more a model is biologically plausible, the higher its implementation cost.
Thus the HH neurons, and other complex models are not well suited to our search for resource
and power efficiency in Machine Learning tasks. For this purpose, we tend to look for models with
the lowest implementation cost possible, which we found in the IF neuron model. Moreover, it
has been shown by Brette et. al. [56] that the IF-based neuron models are in fact very realistic
models when modeling spiking activity in the brain, and are widely used in the literature for that
purpose [57] [58]. As this model is both hardware-friendly and effective, we mostly use IF neurons
in our works.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 16

Figure 2.9: Illustration of a VGT-generated max-pooling layer architecture [5].

Figure 2.10: Biological plausibility of Spiking Neuron models against implementation as stated
in [6]

The IF neuron dynamics are governed by the differential equation 2.2.

dU l
i (t)

dt
= I li(t)− Sli(t)× θ

Sli(t) = Θ(U l
i (t)− θ)

(2.2)

Where U l
i is the membrane potential of neuron i of layer l, Sli the state of the axon (output

synapse) of neuron i, θ is the neuron threshold and Θ is the Heaviside step function. Moreover,
R is the input resistance of the neuron and I li is the input current generated by the input spikes
as shown in Equation 2.3:

I li(t) =
∑
j

wi,j × Sl−1
j (t) (2.3)

Where Sl−1
j (t) is the input spike train and wi,j are the input synaptic weights. A common approach

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 17

Membrane
potential

Threshold

Membrane
potential

Input
activity

Output
activity

Time

Time

Time

Figure 2.11: Illustration of the Integrate & Fire neuron model. Top: network setup, bottom:
membrane potential, input and output activity.

is to approximate the solution of the differential equation 2.2 using the Euler method. The discrete
solution is shown in Equation 2.4:

U l
i [t+ 1] = U l

i [t] +
∑
j

wi,j × Sl−1
j [t]− Sli[t]× θ (2.4)

In other words, the membrane potential is incremented by the sum of the weighted input
activations (i.e. input weights since input activations are binary), and decremented by θ whenever
the neuron threshold is exceeded. Additionally, over-passing the threshold triggers an output spike
(Sli[t] = 1). This process is summarized in Figure 2.11. The neuron setup depicted in the figure
features a red neuron receiving input spikes from the blue and green neurons. The membrane
potential graph shows the impact of weighted input spikes on the red neuron potential. The
bottom graphs show the input and output spikes from the point of view of the red neuron. As
shown in this Figure, the IF neuron integrates temporal and spatial information and produces an
output which is propagated towards the following neurons. Thus, its behavior is not far different
to that of a Formal neuron, except that i) multiplication-accumulation (MAC) operations are
replaced by accumulation operations (ACC), and ii) the model is event-based: spikes are received
and processed asynchronously. Hence, SNN acts as a subset of binary networks whose activations
are scheduled in time.

Those IF neurons are used to replace standard Formal neurons in mostly any kind of Neural
Network Topology. Thus, their exits Spiking Multi-Layer Perceptrons [59], Spiking Convolutional
Neural Networks [58], Spiking Auto-Encoders [60]... The only difference is the model of neuron
and the encoding of information in the network. In all, SNN process information in a dynamical

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 18

fashion using binary activations, whereas FNNs process is static but uses real-valued activations.

2.3.2 Spike encoding

If an FNN works on classical data (static images, videos...), SNNs work with spikes. Thus, the
network’s input data must be in event-based format. There are two ways to obtain such event-
based data: either by using a specific event-based sensor, or by transcoding classical data toward
spiking domain.

Event-based sensors are mostly present in the field of vision sensors, with the recent break-
through of Event-Based Camera, also called Dynamic Vision Sensors or Artificial Retinas [61].
This type of sensor is directly inspired from the biological retina behavior: it is made of an array
of sensors, each of which detects intensity gradients and generate an event whenever the measured
gradient exceeds a certain threshold. Those events usually follow the Adress Event Represen-
tation (AER) policy, in which information is represented by a packet containing locations and
timestamps of events. The generated event flux then represent the motion in an efficient way, as
only the moving objects generate events, and not the static background. Other type of event-based
sensor exist for other type of data, such as artificial cochleas for audio data [62], or even artificial
event-based skins for tactile sensors [63]. Thanks to the AER representation, event-based sensors
produce less information than their classical counterpart, as most of pixels are idle. Moreover, the
data itself is lightweight, as it only encodes position and timestamp. Moreover, such data can be
directly interpreted by an SNN, and doesn’t require a dedicated transcoding pre-processing.

However, event-based sensing is a novel technology which is not yet widespread in industry.
In most use-cases, only conventional frame-based sensors are available. Such applications thus
require a dedicate pre-processing to encode data into spikes. Their are 3 main spike encoding
policies explained below. It should be noted that in our explanations, we deal with images and
pixels, but all the notions are translatable towards other type of data.

• Rate coding [64], which consists in generating spike trains for each input pixel whose fre-
quency are proportional to input data;

• Latency coding [65], which consists in generating a single spike per input pixel, where the
emission date is proportional to the pixel’s intensity;

• Order coding [66] [67], which consists in emitting one spike per pixel in the order of intensity.
Pixels are sorted by intensity: the brightest pixel spike first, followed by the second brightest,
and so on.

Those three different methods are illustrated in Figure 2.12 for image transcoding case. The pixel
intensity is represented by grayscale squares, and the generated spikes by the red arrows on the
time axis. The rate coding approach usually offers the best performance, but generates a high
number of spikes that drastically impacts both the computation density of the processing and its
latency [64]. The latency coding [68] offers inferior performances, but enables to drastically reduce
the computation density by reducing the number of spikes flowing into the network. However, the
computation duration remains high, due to the width of the time-window [64]. Finally, the order
coding seems the most promising: it reduces performance but also reduces both the event density
and the computation duration by compressing the spike emission window [66]. However, rate-
coding was used during most of this thesis. At the time this work started, that was indeed
the most reliable spike encoding policy in terms of network accuracy. Moreover, rate-coding is

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 19

Figure 2.12: Different spike coding methods: a. is rate coding, b. is latency coding, c. is order
coding.

widespread enough so that it is well documented and supported in most SNN frameworks. The
rate-coding formula used in this thesis is given in Equation 2.5.

P =
1

MaxFreq + (MinFreq−MaxFreq)× v
,

v =
1− i
255

(2.5)

Where P is the spike train period associated to a pixel of value i (8-bit integer), MaxFreq and
MinFreq are respectively the maximum and minimum spike train frequencies.

It should be noted that even if most of this work is based on such rate-coded SNNs, other
types of encoding where studied during the thesis. In Chapter 7, we address timestep-constrained
SNNs trained through Surrogate Gradient Learning [32] [69]. This type of SNN drastically differs
from the rate-coded representation.

2.3.3 Training SNNs

In this subsection, training techniques for Spiking Neural Networks will be presented. It should
be noted that in this work, we focus on classification tasks. If FNNs mostly use variants of the
well-known Backpropagation algorithm [25] [26], in SNNs the learning phase can be performed by
three very different techniques:

1. Neural network conversion

2. Spiking Time Dependant Plasticity (STDP)

3. Spiking Backpropagation

The first training technique, and the most widely used in the literature, is neural network conver-
sion [70] [57]. This method consists in training a neural network using ReLU neurons in Formal
domain using conventional Backpropagation algorithm, and then transferring the learned synap-
tic weights to a Spiking Neural Network with the exact same topology. Some attention has to be
given to the compatibility of the trained network with SNNs: for example, there ar no mature ways
of implementing Average Pooling layers in SNNs, thus we would rather use Max Pooling layers.
Similarly, batch normalization techniques are difficult to apply in SNNs, thus it should not be
used in training. Conversion is simple to set, and offers state-of the art classification performance
in spiking domain. It is compatible with the vast majority of SNN deployment frameworks and
neuromorphic accelerators, thus this is the method we have chosen to use in our work.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 20

Secondly, Spiking Time Dependant Plasticity (STDP) [71] [72] is an unsupervised and on-line
training method which exploits the causality effect between spikes to perform data clustering. On-
line means that the training phase is not properly distinct from the test phase, as the network is
continuously learning.. Unsupervised means the training data is unlabeled: i.e. it does not require
human effort to label the training set. Indeed, the clustering relies on dataset intrinsic statistics,
and not on human-chosen classes. Additionally, STDP is a local learning rule: each synaptic
weight is tuned by the relative spiking times of uphill and downhill neurons. If an input spike
causes an output spikes (i.e. if an output spike is generated shortly after receiving an input spike),
the synapse is potentiated. On the other hand, when an input spike does not cause an output
spike, the connection is depreciated. This local aspect makes STDP more hardware-friendly than
traditional Backpropagation. Moreover, the computation itself is much simpler, as it does not
require complex partial derivative computation. However, this training method is very recent and
still under development. Notably, STDP does not provide state-of-the-art performance on most
classification tasks [73].

The third training method is Spiking Backpropagation [74] [75], also called Surrogate Gradient
Learning [32]. This method is an adaptation of the traditional Error Gradient Backpropagation
algorithm to Integrate & Fire spiking neurons. Indeed, in Error Gradient Backpropagation, the
weight increment (increase or decrease) is proportional to the derivative of the activation function.
However, as we have seen in section 2.3.1, the activation function of the IF neuron is a simple
threshold, i.e. an Heaviside function. The point is that first, this function is not differentiable in 0,
and more importantly, that its derivative equals to 0 elsewhere, thus implying a null weight update.
In order to get around this limitation and still apply Backpropagation to networks of IF neurons,
the creators of Spiking Backpropagation used an approximation of the Heaviside function (usually
a sigmöıd or hyperbolic-tangent-based function) to perform the backward path, while the forward
path uses the normal Heaviside activation function. This method has the advantages of offering
state-of-the-art classification performance on most datasets, all the while using fewer spikes and
inference time than converted SNNs [73]. Most of the thesis is based on rate-coded converted SNNs,
but Spiking Backpropagation has recently gained visibility and so have its promises for hardware
acceleration. Hence, Chapter 7 addresses the potential benefits and hardware implementation of
SNNs trained via Surrogated Gradient Learning.

2.3.4 Terminate Delta

It has been shown in section 2.3.2. how to encode conventional data like images and time series
into spikes. In this subsection, the Terminate Delta process is explained. It is used in this work
to interpret the output spikes and retrieve the predicted class accordingly. This classification
procedure is taken from N2D2 [1], a Neural Network training and deployment framework which
enables conversion towards spiking domain.

This process consists in determining the most active neuron, using a margin whose character-
ized by the parameter Delta. With a ∆ value of 2, it means that the most spiking neuron would
be enacted after it has spiked two times more than the second most active neuron. Indeed, with
rate-based SNNs, spikes arrive frequently at the output. Hence, tuning ∆ enables to take account
of more or less spikes before enacting the result. A high ∆ value will give better classification
performances, but higher execution time and higher number of spiking events in the network.
Thus, the Delta parameter is an interesting parameter to tune the trade-off duration and energy
against accuracy.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 21

2.4 SNNs in hardware

Spiking domain is expected to bring drastic hardware footprint reduction to neural network accel-
erators compared to conventional formal coding domain. Indeed, the simplicity of the Integrate
& Fire (IF) neuron model, coupled with the lightweight binary activation, could bring both logic
resource reduction and power efficiency.

2.4.1 Advantages of SNNs in Hardware

Spiking Neural Networks have several advantages over Formal Neural Networks when addressing
hardware implementations. The first lies in the activation integration mechanism: the synaptic
operation. For Integrate & Fire spiking neurons, as described in Equations 2.4, the integration
consists in accumulating a synaptic weight whenever a spike is received. Basically, this consists
in a simple Accumulation (ACC) operation. For formal neurons on the other hand, the synaptic
operation is a Multiplication-And-Accumulation (MAC), as the weight is multiplied by the real-
valued activation. This difference has two main impacts on FPGA implementations: the MAC
uses a Digital Signal Processing (DSP) unit, which is a scarce resource on most FPGAs. Moreover,
the MAC operation is considered to be at least ten times more energy-intensive than the ACC
operation. Indeed, on 45nm CMOS, Panda et. al. [76] reported 3.2pJ for a 32-bit MAC against
0.1pJ for a 32-bit ACC. The ratio of energy consumption between MAC and ACC operation will
be studied further in Chapter 4.

Consequently, hardware SNNs should be more energy-efficient than FNNs [31] [77] [78], based
on the energy cost of their respective synaptic operations. Additionally, spikes can be represented
by binary (1-bit) signals, which offers lightweight connections between neuron, where formal acti-
vations are encoded on signal from 8 to 64 bits. This enables better scalability for parallel imple-
mentations, which involves a large number of physical connections between hardware neurons [79].
Finally, the event-based processing also offers interesting properties for highly-constrained embed-
ded systems. Indeed, in SNNs, activations are scattered in time in a sparse fashion, whereas all
synapses of a layer are activated simultaneously in FNNs. In other words, the information in
SNNs is dynamic: it is spread on a temporal dimension, which offers low instantaneous computing
density [79]. In an FNN however, the behavior is fully static, implying high computation density.
This difference enables for better multiplexing possibilities, as well as low-power implementations.
However, this low instantaneous dynamic power might be counterbalanced by longer processing
time, thus energy consumption might not follow the same trend. However, energy is not the only
constraint, and power is often a limiting factor in embedded-systems, in solar-powered systems for
example.

2.4.2 Literature review

In this section, we give a short list of recent works in the field of FPGA SNN accelerators. For
the architectures where the information was available, logic resources, execution time, power and
energy consumption are summarized in Table 2.1. As some architectures are not named by their
authors, we refer to them with names inspired from their respective article titles.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 22

Table 2.1: Logic resources, execution time, power and energy of FPGA SNN accelerators found in
the literature. Topology nomenclature: KcWsX = Convolution layer with K filters of size W2 and
a stride of X, KpWsX = Pooling layer with K filters of size W2 and a stride of X. Fully-connected
layers are referred to by their number of output neurons.

Name Year Data Topology # Synapses Ressources
Power
(mW)

Time per
image (ms)

Energy per
image (mJ)

“ConfConvNode”
[7]

2018 events
CNN: 32x32-6c5s1-

6p2s2-4c5s1-4p2s2-8c5s1-4c2s1
904

21K LUTs
38K FFs

6.5 Mb BRAM
7.7 25

0.2
(220 nJ/syn)

“Large Scale SNN”
[80]

2012 events
Toroidal:

2048 neurons
2,048M

80K LUTs
91K FFs
20 DSPs

8.6 Mb BRAM

? ? ?

“Polychronous SNN”
[8]

2013 events
Unstructured
4096 neurons

1,150M
135K LUTs
581K FFs

14.4 Mb BRAM
? ? ?

“Low Power SNN”
[9]

2020 frames
CNN: 28x28-64c5s1-64p2s2-

64c5s1-64p2s2-128-10
37,248

140K LUTs
81K FFs

16.5 Mb BRAM
4600 6.1

35
(940 nJ/syn)

“IIR SNN”
[11]

2020 frames MLP: 28x28-500-500-10 647,000

125K LUTs
185K FFs
1028 DSPs

3.1 Mb BRAM

4500 0.52
2

(3,1 nJ/syn)

HFirst
[12]

2015 events
CNN: 128x128x1-12c7s2-
12p4s1-36c8s2-36p32s1

2892
17 DSP

6 Mb BRAM
250 0.002

0.5
(170 nJ/syn)

S2N2
[13]

2021
time-series
& frames

CNN: 16x16-64c5s1-64c5s1
128c3s1-128c3s1-1024-24

554368

102K LUTs
34K FFs
40 DSPs

12.7 Mb BRAM

? 0.031 ?

SPLEAT
[14]

2020 frames
CNN: 28x28-6c5s1-6p2s2-

16c5s1-16p2s2-84-10
22894

4.8K LUTs
3.2K FFs

1 DSP
0.45 Mb BRAM

315 1,4
0,5

(22 nJ/syn)

2.4.2.1 “ConfConvNode”

In [7], Camunas-Mesa et. al. introduced a configurable event-driven architecture for convolutional
layers targetting FPGAs. This architecture addressed IF neurons, and a conversion technique was
used for training. The core of this architecture is a Processing Element (PE), a building block
for user-defined spiking CNN architectures. For a better understanding, a schematic of the circuit
of a PE is given in Figure 2.13. The PE involved a convolutional processing unit and a routing
module. The convolution processing unit was used to convolve a spike with the convolution filters,
and perform the IF neuron thresholding operation. The routing module was in charge of reading
the input spike addresses and sending the output spikes to their destination neuron. In the paper,
the architecture was used to classify poker cards filmed in real time (25ms per sample) using a
Dynamic Vision Sensor (DVS) [61] (see section 2.3.2). In real-time, the architecture used 7.7mW
and 192.5µJ . The authors also evaluated the architecture on slowed DVS recordings: using a
slow-down factor of 10, the architecture used 5.25mW , and 0.85mW with a slow-down factor of
100.

2.4.2.2 “Large Scale SNN”

In [80], Cheung et. al. introduced a fully-parallel SNN hardware architecture targetting off-
the-shelf FPGA-based systems. As this architecture primarily targeted cortical simulation, the
implemented neuron was an Izhikevich model [6], but the authors claimed that it could be easily
changed to a more hardware-friendly IF model. The design was highly-pipelined, ensuring low ex-

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 23

Figure 2.13: Illustration of the Convolutional Processing Element found in [7].

ecution time. Moreover, the architecture involved a weight-distribution module, which was used to
parallelize accesses, distributions and integrations of synaptic weights concurrently. Additionally,
the synaptic weights were arranged in consecutive RAM locations, enabling to retrieve several data
in a single RAM access. This weight-distribution module is illustrated in figure 2.14. Moreover,
the architecture worked in a fully event-driven way thanks to FIFO queues between neurons. This
architecture supports 64000 neurons at a maximum rate of 1.39× 109 spikes/s , with a spike-rate
delivery up to 1.4 times faster than GPU at the time of the study (2012). However, this metric is
not standard and not comparable to other architectures. Moreover, the number of spikes strongly
depends on the data and spike encoding. The impact of data on number of spikes will be studied
in details in Chapter 4.

2.4.2.3 “Polychronous SNN”

Reference [8] introduced a hardware architecture for polychronous Spiking Neural Networks [81].
This type of neurons is based on latency coding rather than rate coding: spikes are associated
with precise latencies so that they arrive simultaneously to their destination neuron and cause it
to fire, despite being emitted asynchronously. The neuron circuit is illustrated in figure 2.15. In
this figure, timers are used to detect when pre-synaptic spikes arrive within 3ms of each other. It
should be noted that these delay is programmable. The network was trained in hardware using a
kind of STDP learning rule, adapted to programmable delay synapses. Using this approach, this
type of SNN is able to process complex spatio-temporal patterns. The architecture was highly
multiplexed to ease scalability. In the article, the authors implemented a 4000 neurons network
with 1.15 million programmable delay synapses on FPGA, and achieved real-time simulation of
cortical neurons. The authors also claim that their implementation is robust to noise from random
input spikes. This approach is promising for hardware implementations of Machine Learning
applications: encoding information in relative timing of events could increase the quantity of
information conveyed by spikes while reducing their number. However, STDP rules usually provide
lower accuracy than other methods, thus the interest of this technique remains to be proven on
classification tasks.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 24

Figure 2.14: Illustration of the weight distribution technique used in [7] to limit the memory access
rate. module has 3 input synapse data per cycle. The neuron 1 connects to neurons 2, 3, 7, 8 and
9 in the network, and neuron 1 is fired in the last time step. The figure shows the accumulation
of three synaptic weights (w3,1 , w8,1 and w9,1).

2.4.2.4 “Low Power SNN”

In [9], Ju et. al. presented an SNN architecture targeting FPGA for integration in low-power
systems, supporting all basic CNN layer types. The authors addressed the hardware-friendly IF
neuron model, and used network conversion for training, with a weight balancing method [82] to
optimize spike emission rate. Several optimizations were made to increase hardware efficiency of
the architecture. First, authors used a 8-bit fixed-point dynamic. Moreover, convolutions were
implemented in a parallel, pipelined and systolic fashion using shift-registers, ensuring fast process-
ing. For a better understanding, a schematic representation of the pipelined parallel convolution
implementation is shown in Figure 2.16. Additionally, the whole network was fully pipelined to
further reduce processing latency. The architecture has been implemented on a Xilinx’s ZCU102
FPGA, achieving 98.94% recognition rate on MNIST at 164 FPS. This is equivalent to an ac-
celeration of 41× against CPU and 22× against GPU. The architecture used 4.6W and 35mJ
per image. Additionally, the authors proposed an hardware-efficient implementation for spiking
Pooling layers.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 25

Figure 2.15: Polychronous neuron circuit overview found in [8].

2.4.2.5 “IIR SNN”

In [11], Fang et. al. proposed a novel way to implement for SNNs in hardware, and introduced
their subsequent architecture. The accelerator supported all CNN standard layers. The authors
used Leaky IF neurons, which they demonstrated to be equivalent to Time Encoding Machines. In
the light of this demonstration, the authors developed a flexible model in which SNNs are emulated
by a network of Infinite Impulse Response (IIR) units, which drastically reduce latency by enabling
neurons to encode information on small time windows. In the architecture, each layer is emulated
by a Processing Element in a multiplexed fashion, and it features a layer-level pipeline for execution
time reduction. The whole architecture is generated through High Level Synthesis (HLS), as part
of a global framework. This framework covers all steps from training, quantization, architecture
generation and deployment. An illustration of the full framework is given in Figure 2.17. Training
is performed thanks to surrogate gradient back-propagation (see section 2.3.3) using PyTorch.
The framework involves resource optimization by using pragmas in the C-HLS code to increase
or decrease parallelism according to the network size. Using their framework and architecture,
the authors obtained up to 2.9× speedup compared to Intel’s Loihi [83], 38.5× compared to
SpiNNaker [84], 1.9× compared to TrueNorth [85] and 3.3× compared to Minitaur [86]. Concerning
energy consumption per image, the authors achieved a 33.6× reduction compared to Nvidia RTX
5000, 2.6× compared to Loihi and 2.82× against SpiNNaker.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 26

Figure 2.16: Illustration of the pipelined parallel convolution implementation found in [9]. The
input data is first flattened in rows, and fed in a shift register. A systolic array of Convolution
Units [10] then performs the operation in a pipelined fashion. A: Situation at clock T, B: situation
at clock T+1.

2.4.2.6 HFirst

In [12], Orchard et. al. proposed an SNN architecture tailored for DVS signal processing, using Ad-
dress Event Representation (AER), for spatial pattern recognition. The accelerator supported all
standard CNN layers. According to the authors, the asynchronous nature of events (“frame free”
data) frees computation and communication from the rigidity of conventional clocked systems.
Using timing of spikes in object recognition, the authors demonstrated a drastic simplification
of computation. Indeed, a simple asynchronous temporal-winner-take-all (temporal WTA) pool-
ing operation was used instead of more complex synchronous operations usually implemented in
SNN accelerators. This temporal WTA drastically mitigated the processing latency as there was
no need to accumulate spikes to perform pooling. The FPGA accelerator was built in a highly
parallel and pipelined fashion and was able to reach real-time recognition of DVS data such as
written characters, written digits, and playing cards, with a latency inferior to 2µs. Example of
DVS recordings of such samples are shown in Figure 2.18. Additionally, the power consumption
of the system depended on the nature of the scene. A scene without any movement used 100mW,
but this value climbed up to 250mW for scenes with a lot of action (i.e. a lot of input events).

2.4.2.7 S2N2

S2N2 was introduced in [13], and was an FPGA architecture for streaming SNNs, which imple-
mented Leaky IF neurons and time coding policy. The architecture supported all standard CNN
layers. In this work, the term ”streaming” was used to describe the temporal nature of data,
which is streamed at the input of the network. The authors stated that SNN hardware imple-
mentation usually involved systolic array-based computation [10]. This kind of systems benefits
from a supposed high sparsity in spiking events to reduce computational requirements. This work

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 27

Figure 2.17: Illustration of the training, compression, conversion and hardware deployment frame-
work proposed in [11].

showed however that this assumption was not always true in the case of data with large temporal
dimensions, such as Deepsig RadioML 2018 dataset [18]. The authors proposed an architecture
adapted to such streaming SNNs developed using FINN framework [87]: this framework is tailored
for binary Neural Network, and has been customized by the authors to support SNN development
and deployment. As it is shown in Figure 2.19, the architecture flattened input data into streams
and convolution was operated in a parallel SIMD (Single Instruction on Multiple Data) fashion.
The resulting architecture involved intra and inter-layer parallelism, and a pipeline to efficiently
process data streams. The authors obtained a precision of 68.5% on RadioML 2018 dataset.

2.4.2.8 SPLEAT

SPLEAT [14] is an architecture for configurable SNN deployment on FPGA, which uses IF neurons.
The architecture supports convolutional, pooling and fully-connected layers, and supports both
temporal and rate coding policies thanks to a configurable spike generation cell. The architecture
has been designed to be easily configured and deployed on FPGA. It features inter-layer parallelism
(i.e. each layer is emulated by a dedicated Neural Processing Unit) and layer-wise pipeline to
reduce execution time. For a better understanding, an illustration of the architecture of such
Neural Processing Unit is given in Figure 2.20. Each Neural Processing Unit emulates a given
layer in a highly sequential fashion, enabling high scalability. Due to this implementation choice,
the FPGA logic occupation of this architecture is really low. On MNIST dataset, in average,
the architecture used 315mW, with a an execution time of roughly 100ms per image. It should
be noted that the processing time varies widely between two images, as the number of spikes
vary from one sample to the other. The architecture also features a specific module for output
classification, which interprets the spikes using a terminate delta process (see section 2.3.4).

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 28

Figure 2.18: Illustration of stabilized DVS data used for training and testing in [12].

2.4.2.9 Conclusion

In this short literature review, we have seen that implementation choices vary greatly from one
architecture to the other, depending on the chosen spiking neuron model and spike encoding
policy. In all cases, much effort was given by the authors to reduce processing latency, by using
pipelines and systolic architectures in some cases. Moreover, authors often developed specific
hardware-friendly layers or neuron models in order to reduce hardware footprint of the subsequent
implementations, in a software-and-hardware co-design fashion. Overall, this literature review
shows that SNNs are promising for hardware footprint reduction of NN implementation on FPGA.
However, this study lacks information on fair comparisons between hardware SNNs and FNNs.
Therefore, this matter is specifically addressed in the next section.

2.4.3 Confronting Spiking and Formal Neural Networks

In this section, we introduce and describe previous literature works which tackle the comparison
between formal and spiking neural network implementations on FPGA. In a first part, we address
logic resources usage comparisons, and in a second part, energy consumption comparisons.

2.4.3.1 Logic resources comparison

In [88], Khacef et. al. compared a Multi-Layer Perceptron (MLP, i.e. a neural network made
of several fully-connected layers) implementations on FPGA in both spiking and formal domains,
in identical conditions. The SNN used IF neurons and rate-coding to translate static images
into spike trains. The authors demonstrated a reduction of the FPGA logic resources occupation
by 50% when using spikes compared to formal coding on MNIST dataset, showing that a single
coding paradigm switch with no further optimizations could drastically reduce logic resources
usage of NN implementations. Moreover, the authors showed a decrease of 59% in dynamic power
usage, which is coherent with the difference in logic resources usage. However, this worked only
compared the neuron layers, and did not take in account the resource overhead involved by spike
encoding and output interpretation. Indeed, the spikes must be encoded into spike trains using
rate-coding, which requires an additional encoding module in the FPGA. In a similar way, the
output decoding via terminate delta process requires a dedicated module in FPGA. Thus, the

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 29

Figure 2.19: Schematic overview of the FINN architecture found in S2N2 [13]. The SWU (Sliding
Window Unit) flattens the input data and forwards it to the MVTU (Matrix Vector Threshold
Unit). Each Processing Element (PE) inside the MVTU processes one output channel and has a
number of SIMD (Single Instruction on Multiple Data) lanes that read from input channels and
multiply the input by kernel weights in parallel.

total logic occupation might be counterbalanced by those two modules. Despite efforts to find
other comparisons between formal and spiking domains in terms of FPGA logic occupation, none
was found. Consequently, there is a need for further work to confirm those results, and generalize
to other datasets and more complex neural network topologies.

2.4.3.2 Energy comparison

On the other hand, the comparisons of SNN and FNN FPGA accelerators regarding computing
needs and energy consumption have been studied on several occasions in the literature. More
than comparing implementations, those works focus on building a theoretical model to evaluate
the potential energy consumption reduction (or increase) when using spiking domain compared to
formal domain.

In [89], Han et. al. proposed to evaluate energy benefits of SNNs when compared to FNNs.
To do so, they proposed that energy benefits were higher at lower spike firing rates, i.e. a lower
number of spikes means lower number of operations and hence lower energy consumption. The
authors proposed to evaluate the influence of the time-window length on spike firing rate. In

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 30

Figure 2.20: Illustration of the Neural Processing Unit of SPLEAT [14]. This NPU is used to
emulate a convolution, pooling or fully-connected spiking layer in order to build a full SNN on
FPGA.

timing-aware systems such as this one, time is represented as discrete increment named time-
steps. Thus, the “time window” is the number of time-steps available for spike encoding. The
study concluded that spike density drastically increased with respect to the number of time-steps.
Thus, lower number of time-steps should be preferred in order to minimize energy consumption.

In [31], Sengupta et. al. proposed a novel ANN-to-SNN conversion technique for deep neural
networks, such as VGG-16 [28] and deep Residual topologies. This conversion process uses thresh-
old and weight balancing techniques in order to optimize the spiking activity. Using this method,
the authors performed the first ever SNN test on the full ImageNet 2012 dataset [90], achieving
30.04% top-1 error rate and 10.99% top-5 error rate. In this paper, the authors also proposed to
compare the original FNN and converted SNN regarding number of operations. The authors found
that, with VGG-16 architecture, there were 1.9× more ACC operations in the SNN than MAC
operations in the FNN, and 2.4× for the Residual architecture. The authors proposed this metric
in order to evaluate both the relevance of their conversion technique in terms of computation
reduction and energy efficiency.

In [77], the authors proposed to evaluate and compare the energy cost of formal and spiking
domain in a theoretical approach. The authors focused on rate-coded SNNs, as they claim it is
the most used and straightforward way to deploy SNN using conversion training technique. They
proposed two equivalent hardware implementations for spiking and a formal neurons and deduced
a theoretical energy cost for each of them, by dividing the processing into operations of known
energy cost (multiplication, accumulation, RAM access...). The authors estimated that the spiking
neuron energy consumption was lower to that of the formal neuron if and only if the number of
spike per synapse was inferior to 1.72. According to the authors, such value is hardly realistic

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 31

in the case of rate-coded SNNs. They concluded that efforts must be taken to benefit from the
event-based nature of SNNs. For example, they proposed to address the spike density problem by
developing novel, high-sparsity spike encoding methods.

In [78], the authors proposed a compression technique associated to FNN-to-SNN conversion,
aiming in minimizing spiking activity. In doing so, the authors hope to reduce energy consump-
tion of the subsequent SNN deployment. The iterative compression technique is attention-guided:
attention-maps derived from an uncompressed “teacher” model are used to prune the synaptic
connections of a “student” model. The model is then converted toward spike domain, obtaining
up to 33% compression rate on VGG-16 without dramatic performance loss. The authors used
an IF neuron model. They also proposed a spiking back-propagation learning technique based
on surrogate gradient (see 2.3.3). This method is used to re-train the model after compression
and conversion, in order to reduce the number of time-steps used for inference. Using this full
compression, conversion and re-training framework, the authors demonstrated near state-of-the-
art classification accuracies on CIFAR-10 (91.28%) and CIFAR-100 (64.98%), using deep VGG-16
or ResNet topologies, with drastically lower spiking activity than other methods. The authors
measured that their compressed SNN used 38.7 times fewer energy than an equivalent uncom-
pressed ANN, and 12.2 times fewer energy than an equivalent ANN with identical compression
on CIFAR-10 dataset. Compared to un uncompressed SNN, energy consumption was divided by
2.5. The authors also proposed a method to link energy consumption to spiking activity. Indeed,
the authors approximate the energy consumption of an network to the energy consumption of its
main operation: ACC for an SNN and MAC for an FNN. Counting the number of spikes, the
authors were able to estimate the relative energy consumption of an FNN and a derived converted
SNN. This approximation was used to give estimations of relative energy consumption in SNNs
and FNNs on CIFAR-10, CIFAR-100 and Tiny ImageNet datasets. In all cases, the authors esti-
mated that SNNs brought energy savings, and even-more when using the proposed compression
and re-training technique with high sparsity targets.

2.5 Conclusion

In this section, we have presented previous works studying comparisons of spiking and formal
hardware neural network implementations. In terms of logic resources usage, a single paper [88]
was found, which found interesting area and power usage savings when shifting from formal to
spiking paradigm. However, the literature clearly lacks sufficient comparisons: the only paper
which proposes such a study focuses on a single MLP architecture, which is not sufficient to draw
general conclusions. To do so, extensive comparisons covering various layer sizes, number of layers,
and type of layers (convolution and pooling) must be undertaken. Moreover, this study does not
take spike encoding in account, which could counter-balance the results. Finally, this comparison
only covers fully-parallel implementations, and should be extended to other architectural choices
and level of parallelism.

On the other hand, many papers tackle the energy-efficiency comparison between formal and
spiking hardware neural networks in a theoretical manner. In all the mentioned studies, authors
have drawn a strong dependence of energy consumption to spike firing rate. Accordingly, a lower
number of spikes during processing means a lower energy consumption. In some of those pa-
pers [31] [78], researchers proposed to sum-up the energy consumption of an hardware NN by the
number of synaptic operations. Those synaptic operations are simplified in their energy estimation
models, so a formal synaptic operation is a MAC, and a spiking one is an ACC. Morevoer, au-

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 32

thors in [89], [31] and [78] proposed techniques to reduce the spiking activity at software level, by
using novel conversion or training techniques. However, there is still a lack for fair and extensive
comparison between hardware FNN and SNNs, covering various topologies, datasets, and archi-
tectural choices. Moreover, the comparisons are often theoretical and their is a lack of quantified
comparison between formal and spiking accelerators. Additionally, the correlation between spik-
ing activity and energy consumption must be studied further and quantified, in order to ensure
the validity of such an high-level energy estimation model. Indeed, this model is much simpler
than reality: it does not take memory access, level of parallelism, or other architectural choices in
account.

2.6 Contributions

In this section, we provide details on the positioning and contribution of this thesis regarding the
above described state of the art in Neuromorphic Engineering. Each of the following subsection
is dedicated to a particular aspect of those contributions.

2.6.1 Synaptic Activity

In the literature, spiking activity is considered as a reliable metric to evaluate energy consumption
in Neuromorphic systems [31] [77] [78]. It is a common idea that the energy consumption of an
hardware neural network can be approximated by the cost of synaptic operations: Multiplication-
Accumulation (MAC) for formal neurons and Accumulation (ACC) for spiking ones. Since the
MAC operation is more energy-intensive than the other, SNNs are expected to consume less energy.
However, the number of operations in an SNN is unpredictable: it depends on synaptic activity. If
there is more than one spike per synapses, i.e. more ACCs in the SNN than MACs in the FNN the
SNN might consume more energy overall. One of the contribution of this thesis is to investigate
the correlation between synaptic activity and energy consumption of hardware SNNs (Chapter 4).

2.6.2 Quantitative comparison of formal and spiking domains

The bibliography proposed in this section outlines a lack of fair and extensive comparison between
formal and spiking implementations of neural networks on FPGA. To our knowledge, a single
paper [88] proposes a quantitative measure of the logic resources savings when using spike coding
compared to formal coding. Regarding energy consumption comparison, some papers [31] [77] [78]
address the issue at a theoretical level, based on the number of operations in each coding domain
(ACC and MAC). However, those papers does not perform clear power or energy measure, and
only produce theoretical high-level indications. Consequently, one of the objectives of this thesis is
to perform an extensive comparison between formal and spiking implementations on FPGA, using
various level of parallelism, and on an extensive application benchmark. Rather than directly
proposing a benchmark of applications and accelerators, we propose an estimation framework.
The framework provides resource, power, inference time and energy estimations for formal and
spiking neural networks under two extreme level of parallelism: fully-parallel and fully-multiplexed
implementations. In doing so, the framework eases the extensive comparison between formal and
spiking coding domains. This framework is described in Chapter 5, and applied to a range of
representative datasets.

CHAPTER 2. STATE OF THE ART & CONTRIBUTIONS 33

2.6.3 Cartography of applications and neural coding domains

Some of the aforementioned datasets are images, and others are vector datasets (Fourrier Trans-
form of voice recordings, sonar echoes...). Some have high number of classes, and some are binary
tasks. This approach aims in proposing a comparison in a wide, representative range of appli-
cations. In doing so, we also investigate the conditions that seems suitable to neuromorphic
acceleration. Indeed, some tasks may be suited to spikes while some others might not. The goal
of this thesis is therefore to propose a cartography of neural coding domain with respect to ap-
plications. More generally, we are interested in finding the suitable conditions for spiking neural
networks. Such conditions ranges from the resolution of input data to the depth of the network and
the number of classes. Moreover, this cartography is complemented by the influence of parallelism
on neuromorphic accelerators.

2.6.4 How to benefit from spiking domain ?

The proposed study led to several assessment regarding the energy consumption of rate-coded
SNN accelerators on FPGA. In addition to the cartography of applications, we also propose several
contributions and insights regarding hardware implementation of SNNs. Those contributions are:

• Neural coding domain hybridization (Chapter 6): tailoring coding domain to synaptic ac-
tivity at layer level, in order to draw the best from both worlds.

• A prototype of hardware implementation of timestep-constrained SNNs trained through Sur-
rogate Gradient Learning and using Send-on-Delta spike encoding. This method is expected
to reduce synaptic activity and inference time in SNNs while maintaining state-of-the-art
classification accuracy [73] [32] [91].

The development of those architectures was led by the insights provided by the study of energy
consumption in neuromorphic accelerators. In both cases, the goal is to reduce synaptic activity
to minimize both the number of operations (i.e. spikes) and temporal sparsity of spikes.

Chapter 3

Spiking Neural Networks parallel imple-
mentation: PADS

Chapter contents

3.1 Hardware Architecture . 35
3.1.1 Spike Generation Cell . 35
3.1.2 Neural Processing Unit . 39
3.1.3 Terminate Delta Module . 41

3.2 Hardware Synthesis Results . 42
3.2.1 Methodology . 43
3.2.2 Comparison with VGT . 45
3.2.3 Spike Generation Overhead . 46
3.2.4 Conclusions on PADS hardware implementation 49

3.3 Conclusion . 50

34

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 35

In this chapter, we are going to introduce PADS (Parallel Architecture for Dense Spiking
layers), an FPGA accelerator for spiking fully-connected layers. In a first section, we explain the
hardware implementation of PADS in details. Then, the architecture is compared to an equivalent
highly-parallel accelerator for Formal Neural Networks. This comparison brings our first insights
on the cartography of suitable application domains and contexts for PADS accelerator. Moreover,
a System-on-Chip (SoC) architecture is developed for PADS testing and deployment in FPGA.

3.1 Hardware Architecture

PADS is developed as a prototype for rate-based Spiking Neural Networks acceleration on FPGA.
In doing so, the goal is to provide an experimental prototype for the thesis, serving for experiments
and further improvements. Two major choices have been made during development: first, PADS
only covers Fully-Connected layer. That is, in order to reduce development time before obtaining
a prototype. Second, PADS uses a highly parallel implementation. This choice is motivated by
two aspects: On the one hand, to reduce execution time and mitigate dynamic encoding drawback.
On the other hand to facilitate development for the aforementioned reasons.

PADS uses the Integrate & Fire neuron model described in Section 2.3.1. The architecture
comes in the form of a parameterizable VHDL code. The topology is defined in a package file, and
is automatically mapped in the FPGA during synthesis. Therefore, each PADS implementation
is specific to a defined MLP topology, in contrast with a programmable core such as Xilinx DPU
[92]. PADS is designed to run with a clock period of 10ns (100MHz). In PADS, each neuron
is physically implemented by a dedicated Neural Processing Unit (NPU). Each synapse is also
physically instantiated in the design by a dedicated wire. Apart from spiking fully-connected
layers of IF neurons, the architecture features a Spike Generation Cell (GenCell) for spike encoding
(Section 2.3.2), and a Terminate Delta Module (TDM) for output decoding (Section 2.3.4). An
overview of the architecture is presented in Figure 3.1. On this figure, each NPU is represented
with a different color. The output of each NPU is connected to all downstream neurons in a
fully-parallel fashion. Only two layers are represented in the figure but there can be any number
of layers.

In Figure 3.1, the colored arrows are hardware synapses: 1-bit signals carrying NPU output
spikes. The black arrows emerging from the Spike Generation Cell are also hardware synapses
but contain an 8-bit address signal in addition to the 1-bit spike signal. The reason behind this
address signal will be explained further in 3.1.1. The input pixel signal carries input data in a
streaming fashion, one pixel at a time in a given order. The out class signal carries the identifier
of the winning class, and the stop network signals is triggered when the Terminate Delta condition
is reached.

3.1.1 Spike Generation Cell

The Spike Generation Cell, also called GenCell, is in charge of the spike encoding of input data
into spike trains following the rate-coding policy (Section 2.3.2). In the model, each input pixel is
associated to an input neuron which emits spikes at a rate derived from the rate-coding equation
(Equation 2.5). The GenCell emulates all input neurons in a sequential fashion. The GenCell
receives a stream of input pixels (8-bit integers) at a rate of one pixel per clock cycle. The
GenCell’s output is made of two signals: a 8-bit address signal, and a 1-bit spike signal. The

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 36

Spike
Generation

Cell

Terminate
Delta
Module

NPU
1,N1

NPU
1,1

NPU
1,2

NPU
2,N2

NPU
2,1

NPU
2,2

FC1 FC2

out_class

stop_network

input_pixel

.

.

.

.

.

.

Figure 3.1: High level representation of PADS architecture, for a 2-layers spiking MLP. FCi stands
for the ith fully-connected layer with Ni neurons.

corresponding architecture is given in Figure 3.2, and the spike generation process is illustrated
by the flowchart given in Figure 3.3. Two processing phases can be distinguished:

• The initialization phase: In the first time-step (v time=0) the GenCell receives the input
input frame in a streaming fashion, one pixel per clock cycle. Each pixel is associated with
a period corresponding to the frequency of the spike train to be generated (Equation 2.5).

• The spike emission phase: On the following time-steps (v time¿0), the input periods are
compared to the current v time. A spike is emitted when v time ≡ 0 modulo P (P the
spike train Period). In other words, a spike is generated when the remainder of the division
between v time and P is zero.

Before going in more details, it should be noted that the rate-coding policy is pre-computed off-line
to simplify the implementation. Pixels being 8-bit encoded, there are 256 possible pixel values
and thus 256 possible spike train periods. The 256 periods are computed off-line and stored in
a hard-coded LUT. The period corresponding to a pixel value i is stored at the ith cell of the
aforementioned LUT.

3.1.1.1 Double Counter

The GenCell features a nested double counter which paces the spike generation process. The outer
counter controls discrete “virtual” time increments. Indeed, the spike train periods are defined in
terms of “virtual” time-steps rather than real time. This “virtual” time is referred to as v time in
the following. At each v time increment, an inner counter Cpixel scans the input neurons, at a rate
of one per clock cycle and generates a spike if v time%P = 0. For example, the GenCell time-step
length (i.e. v time increment) on MNIST is 784 clock cycles (28x28p samples). The value of Cpixel

thus points to the current active input neuron (i.e. input pixel). Moreover, the output address
signal (o addr) always carries the value of Cpixel. In all, the double counter acts as a finite state
machine which controls the GenCell behavior.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 37

Period
BRAM

Rate
Coding

LUT

Double
Counter

co
un

t

v_time

o_addr

=?

Spiking
Time

BRAM

Period

+

=?

1

0

o_spike

Next spiking time

Period

Current spiking time

i_pixel

enable

Figure 3.2: Block Diagram of the Spike Generation Cell.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 38

START
v_time=0
count=0

vtime==0 YESNO

Period(count) = LUT_period(i_pixel)
SpikingTime(count) = LUT_period(i_pixel)

count=count+1

count==N

YES

vtime=vtime+1
count=0

NO

SpikingTIme(count)
==

vtime

YES

SpikingTime(count) = SpikingTIme(count)+Period(count)
Output_spike = True

Output_address = count

NO

Output_spike = False
Output_address = count

Figure 3.3: Spike emission process flowchart. Initialization is highlighted in green, emission in red.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 39

3.1.1.2 Initialization Phase

The initialization phase occurs when v time=0. During this phase the GenCell receives the input
data stream at a rate of one pixel per clock cycle. The stream must be synchronized with the
Cpixel counter so that each input neuron can be associated to the right pixel value. For each pixel,
the corresponding spike train period is retrieved in the rate-coding LUT. The subsequent period
value is stored in the Period LUT (P-LUT). Additionally, a copy of the value is stored in the Next
Spiking Time LUT (NST-LUT) as explained in the following. The address in the LUT is given
by the neuron counter (Cpixel). The NST-LUT is used to prevent the use of a hardware-intensive
modulo operator. That is, the NST-LUT directly indicates the “next-spiking time”. When Cpixel

reaches the last pixel, v time is incremented and the Spike Emission Phase begins.

3.1.1.3 Spike Emission Phase

The spike emission phase begins when v time>0. The process is written in pseudo-code in Algo-
rithm 1, and is also shown in the red section of the flowchart in Figure 3.3.

Algorithm 1
Pseudo-code of the Spike Emission Phase in the GenCell process

v time← 1
while stop network 6= True do

Cpixel ← 0
for n in J0, Npixel−1K do

if NSTn = v time then
o spike← True
o addr ← Cpixel

NSTn ← NSTn + Pn

else
o spike← False

Cpixel ← Cpixel + 1

v time← v time+ 1

At each v time increment, the GenCell scans all the input neurons one by one. For a given
neuron n (Cpixel = n), the Next Spiking Time NSTn is retrieved from the NST-LUT. The period
Pn is retrieved from the P-LUT. If v time= NSTn, a spike is emitted. It should be noted that the
corresponding neuron address (Cpixel = n) is carried by o addr output signal. The Next Spiking
Time is incremented by Pn and the new value is stored in the nth cell of the NST-LUT. This whole
process has been developed to avoid using a modulo operator, which is not adapted to hardware
implementations and caused timing violations at 100MHz. This process is repeated for each input
neuron. When the last neuron is reached, v time is incremented and the process starts again from
the first neuron until reaching the termination condition explained in Section 3.1.3.

3.1.2 Neural Processing Unit

The Neural Processing Unit (NPU) is in charge of emulating a single IF spiking neuron. There
are two types of NPUs: one is specifically designed for the first layer, and one is generic for all the

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 40

other layers. In our model the membrane potential accumulator is not reset after a spike emission.
The IF threshold θIF is rather subtracted from the accumulator.

3.1.2.1 Generic NPU

The generic NPU (G-NPU) architecture is made of three stages: the weight-affectation stage,
the integration stage, and the accumulator & threshold stage. This architecture is represented in
Figure 3.4 for an example neuron with 4 input synapses.

The weight affectation stage is composed of one multiplexer per input synapse: if a synapse is
active (i.e. a spike is received though that synapse), the multiplexer forwards the corresponding
synaptic weight and 0 otherwise. It should be noted that the synaptic weights are hard-coded
in the G-NPU design. Then, the resulting set of weights and zeros are summed together in the
integration stage. Summation is performed by a 2-by-2 pipelined adder-tree. In doing so, the
architecture is able to process 1 spike per input synapse and per clock cycle. Register barriers
after each stage ensure synchronization and limit the critical path of the design. The adder-tree
is automatically generated thanks to hand-coded VHDL functions and packages.

The resulting sum is added to the membrane potential accumulator (orange register in Figure
3.4). If the result is above the neuron threshold (ΘIF), a spike is emitted and ΘIF is subtracted
from the membrane potential accumulator. Otherwise, no spike is emitted and the membrane
potential remains unchanged. This process is pipelined in the same fashion than the rest of the
architecture. Its implementation is described in Algorithm 2.

Algorithm 2
Pseudo-code of the PADS NPU accumulation & threshold stage process.

potential spike(t)← potential(t-1) + val(t)−ΘIF

potential nospike(t)← potential(t-1) + val(t)
if potential(t-1) > ΘIF then

o spike← True
potential(t)← potential spike(t-1)

else
o spike← False
potential(t)← potential nospike(t-1)

In the pseudo-code, V al(t) is the adder-tree output at clock-cycle t, and potential(t) is the
membrane potential at clock-cycle t. potential spike(t) is represented by the red register on Figure
3.4, and potential nospike(t) by the orange one.

3.1.2.2 First Layer NPU

The first layer NPU (FL-NPU) is based on the generic architecture presented above, but optimized
for the first layer. As seen in 3.1.1, the GenCell is sequential and emits at most one spike per cycle.
The Gencell also features an address signal which carries the address of the emitting neuron. Thus,
the input parallelism featured in the generic NPU is useless in this context: only one synapse will
be stimulated at a time. A simplified version is therefore designed to save hardware resources. As
this layer is often the biggest in an MLP topology (highest number of neurons and synapses), this
optimization might bring interesting resource savings (Section 3.2). The FL-NPU architecture is
given in Figure 3.5. This architecture is made of two stages: the weight affectation stage and

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 41

+

+

+

-θ

>θ?

+

+

0
1

0
1

0
1

0
1

1
0

Weight
Affectation

Stage

Integration
Stage

Accumulation & Threshold
Stage

i_spike
1

i_spike
2

i_spike
3

i_spike
4

o_spike

0

0

0

0

w
1

w
2

w
3

w
4

Figure 3.4: Architecture of a generic NPU in PADS, represented with 4 input synapses. Register
barriers are represented as rectangles.

the accumulation & threshold stage. In the weight affectation stage, the weight is retrieved in a
Look-Up-Table (LUT) using the address signal (i addr). It should be noted that the weight LUTs
are stored in Block RAM during synthesis, in contrast with the G-NPU in which the synaptic
weights are hard-coded. The accumulation & threshold stage works exactly like in the generic
NPU design.

3.1.3 Terminate Delta Module

The Terminate Delta Module (TDM) is in charge of the Terminate Delta procedure introduced in
Section 2.3.4. The TDM counts output spikes on the last layer of the SNN, and determines when
a neuron has spiked ∆ times more than any other neuron. ∆ is a user-defined parameter. In some
cases, the Terminate Delta condition is never achieved, and the network runs indefinitely. This
problem arises when there are not enough output spikes, or when the concurrence between several
neurons is too fierce. To cope with this issue, the TDM also features a timeout mechanism which
forces the network to stop after a certain number of clock cycles. The TDM implementation is
pipelined like all the other modules, and is able to receive one spike per synapse at each clock
cycle. The architecture is illustrated in Figure 3.6, where the timeout implementation and register
barriers are not shown for the sake of clarity.

The TDM is made of 4 stages: a counter stage, two trees of max operators, and the delta
stage. First, the counter stage counts the number of output spikes on-the-fly. The counts are
stored in an array of registers indexed in the same order as the output neurons. In the second
stage, a pipelined tree of maximum operators is used to find the index of the maximum value in
the array. This value (Max 1) and its index (ID Max 1) are stored in registers. Max 1 is replaced by

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 42

-θ

>θ?

+

+

1
0

Weight
Affectation

Stage

Accumulation & Threshold
Stage

o_spike

weight
LUT

1

00

i_spike

i_addr

Figure 3.5: Architecture of a PADS Input-NPU, optimized for the input FC layer

a zero in the array, which is passed to the next maximum-tree stage. This second pipelined tree of
maximum operators finds the maximum value (Max 2) in the new array. At this phase, the TDM
has thus retrieved the maximum spike count (Max 1), the second maximum spike count (Max 2),
and the index of the most spiking neuron (ID Max 1). Those three values are passed to the delta
stage. The absolute value of Max 1-Max 2 is computed. If it is greater than ∆, the Terminate Delta
condition is reached and ID Max 1 is the winning class. Otherwise, the process continues until the
condition is met or the timeout procedure forces the network to stop.

3.2 Hardware Synthesis Results

In this section, PADS is synthesized on FPGA. We analyze the hardware synthesis results in
terms of logic resources usage, power usage, execution time and energy consumption. PADS will
be compared to the VGT architecture, a parallel accelerator for Formal Neural Networks described
in Section 2.2.2.1. The VGT architecture uses the same level of parallelism and implementation
choices than PADS. Like in PADS, each neuron of the model is hard-coded in the design. VGT
neurons have a similar structure made of three stages: A weight affectation stage (MAC opera-
tion), a tree of adders for input activity integration, and a ReLu stage for the activation function.
The whole neuron is pipelined like PADS. This similarity enables a fair comparison. Some ad-
ditional experiments on PADS are also presented in a second time. Those experiments aim at
understanding the influence of various SNN-specific hyper-parameters on SNN acceleration. In
the remaining of this document, we oppose static and dynamic processing. Dynamic refers to
time-based computation, like in rate-based SNNs. On the other hand, FNNs are static models.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 43

i_spike
1

1
0

+1

i_spike
2

1
0

-

i_spike
3

1
0

+1

i_spike
4

1
0

+1

MAX
TREE

1
C

1
C

2
C

3
C

4
C

1 0 C
3
C

4

Max value has
been popped-out

MAX
TREE

2

>Δ

+1

Max
2

Max
1

ID_Max
1

stop_network

out_class

abs

Counters Stage First Max Tree Stage Second Max Tree Stage Delta Stage

Figure 3.6: Architecture of the PADS’ Terminate Delta Module with 4 output neurons.

3.2.1 Methodology

PADS and VGT architectures are applied to the OPS-SAT [93] classification task. A simple
MLP topology is used. The Terminate Delta Module is configured with ∆ = 4. The GenCell is
configured with MaxPeriod = 10 and MinPeriod = 1.

3.2.1.1 Dataset Specifications

The grayscale OPS-SAT dataset is made of 28x28p grayscale patches extracted from 1920x1080p
RGB satellites images taken by the OPS-SAT embedded camera (See Chapter 6.3.1.1 and Ap-
pendix 8.2.2). The original satellite images have variable light expositions, noise levels and orien-
tations. The task is to classify each patch as ”cloud” or ”no-cloud”. The dataset is made of 100
860 patches extracted from 16 full-size HD pictures. There are 40 078 cloud patches and 60 782
no-cloud patches. The dataset is split in two random batches, with 90% for training and 10% for
testing.

3.2.1.2 Training with TensorFlow Keras

A Multi-Layer Perceptron (MLP) with topology 28 × 28 - 100 - 2 is used for classification. The
MLP is trained on this dataset using TensorFlow with Keras front-end. The training hyper-
parameters are listed in table 3.1. The synaptic weights are clipped between −1 and 1. This
weight clipping is used before conversion towards spiking domain in order to balance weights and
neuron threshold (ΘIF). This method is inspired from N2D2 [1], and is analogous to a weight-
balancing technique [82]. In addition, a Softmax [94] activation function is used in the output layer
during training in formal domain. The test score obtained in formal domain using TensorFlow
is 71%. For test in spiking domain, the TF-trained weights are exported to N2D2 for spiking
inference. The result spiking test score is also 71% with ∆ = 4. For comparison, the original
formal CNN obtained 81% accuracy on RGB patches (instead than grayscale).

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 44

Table 3.1: TensorFlow Keras parameters used for training in all our experiments.

Parameter Value

Loss Categorical Crossentropy
Optimizer Adam
Epochs 50
Batch Size 128

Validation Splot 0.1

Compilation
&

Hardware
Synthesis

Post-Synthesis
Simulation

(XSIM)

Power
Analysis

Tool

Architecture

RTL
Source Code

Configuration
File

Synaptic
Weights File

Vivado Design Suite (2019.1)

Testbench

RTL
Testbench

Code

Clock
constraint file

VHDL Source

 Gate-Level
 Code

SAIF
File

Logic resources report

Execution time report

Power report

Report

➢ # LUT

➢ # Registers

➢ # Block RAM

➢ # DSP

➢ Execution Time

➢ Static Power

➢ Dynamic Power

Figure 3.7: Workflow for synthesis, simulation and reporting using Vivado Design Suite (2019.1).
The source code (VHDL) is depicted on the left, and the resulting report on the right.

It should be noted that N2D2 has been widely used for SNN experiments during this Phd thesis
as it was one of the only framework to offer both training and SNN conversion at the time work
began. Moreover, N2D2 is developed by the CEA LIST which is part of the french technological
research ecosystem.

3.2.1.3 Hardware Synthesis & Power Estimation

After learning, the trained synaptic weights are exported as VHDL packages for PADS and VGT
architectures. PADS and VGT are both configured with the same 28×28 - 100 - 2 MLP topology.
Both architectures are synthesized separately using Vivado Design Suite, the Xilinx framework for
hardware synthesis, targeting the XCZU9EG family device of a ZCU102 board. The synthesis,
simulation and reporting workflow is illustrated in Figure 3.7. A post-synthesis simulation is
performed afterwards using the Vivado XSIM simulation tool. Vivado XSIM tool uses a custom
VHDL testbench to provide input signals for the design. A specific testbench is developed for each
architecture. For PADS the data is streamed by the testbench as required by the GenCell design.
For VGT on the other hand, the pixels are injected all at once as specified in the VGT design.
The aim of this realistic simulation is to generate a SAIF (Switching Activity Interchange Format)
file. This file contains log of all signal switches occurring in the architecture during simulation.
It is later used in the Vivado Power Analysis tool in order to estimate the power usage of the IP

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 45

Table 3.2: Hardware resources measures for PADS and VGT MLPs on OPS-SAT Grayscale
Dataset: 28× 28 - 100 - 2

Module GENCELL FC1 FC2 T DELTA TOTAL

Architecture PADS PADS VGT PADS VGT PADS PADS VGT
LUT (#) 9 944 7 662 940 659 1 574 1 776 138 19 318 942 435
FF (#) 283 2 798 671 168 2 065 1 772 85 5 231 672 940

BRAM (#) 1 0 0 0 0 0 1 0
DSP (#) 0 0 755 0 40 0 0 795

DYNAMIC
POWER (mW)

196 39 4 465 12 12 1 248 4 477

based on its simulated internal activity. The synthesis results for both VGT and PADS are given
in Table 3.2.

3.2.2 Comparison with VGT

At first glance, Table 3.2 clearly shows that logic resources requirements are lower for PADS.

3.2.2.1 DSP usage

First, VGT uses 795 DSPs, whereas PADS doesn’t use any. This substantial gap is directly
related to the fundamental difference between formal and spiking coding domain. As mentioned
in Section 2.3.1, SNNs integrate information via simple ACC operations, whereas FNNs require
MAC operations. During synthesis, Vivado maps each parallel MAC operation on a DSP (Digital
Signal Processor). DSPs are specifically optimized for that purpose. On the other hands, ACC
operations are directly mapped in the Programmable Logic. DSP being a scarce resource in
FPGAs, PADS seems preferable in that regard.

3.2.2.2 LUTs and Registers in FC layers

Second, VGT uses 49 times more Look-Up-Tables (LUTs) and 129 times more registers (also called
Flip-Flops, FF). As shown in Table 3.2, this significant difference is mostly due to the first layer
(FC1). For FC1 specifically, VGT uses 123 times more LUTs and 240 times more FFs than PADS.
On the other hand the resource usage of the second layer (FC2) is similar in PADS and VGT.
Indeed, there are two types of Neural Processing Units (NPU) in PADS: a FL-NPU optimized for
the first layer, and a G-NPU for all the others. As explained in 3.1.2 the G-NPU has a large input
parallelism which implies an adder-tree for input integration. Instead, the first layer NPU only
has a single input and an addressing mechanism which only requires one adder. Consequently, the
G-NPU is much more resource intensive.

3.2.2.3 Power Usage

Third, VGT uses 18 times more power than PADS overall, and the overhead is mostly due to
FC1, where VGT uses 114 times more power than PADS. This observation matches with the
resource usage results. This is quite straightforward, as more resources implies more signals and
thus, more signal toggles during execution. This in turns implies a higher power usage. Moreover,
computation is sparse in PADS due to the rate-coding policy. This implies a low signal toggle rate

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 46

in the design. On the other hand, VGT works on static data, thus the signal toggle rate is much
higher. This difference explains the power usage difference.

So, PADS provides interesting resource and power savings compared to VGT. The absence of
DSPs in PADS design provide a better scalability, since this resource is scarce on FPGA circuits.
The lower power usage could also benefit to low-power applications, such as in solar-powered
systems.

3.2.3 Spike Generation Overhead

Table 3.2 highlights the resource overhead induced in PADS by the GenCell and the Terminate
Delta Module (TDM). Indeed VGT does not requires such specific modules, dedicated to spike
encoding and decoding. Concerning the TDM, the overhead is not very significant: it is only
accountable for 0.7% of LUTs and 1.6% of registers in PADS. On the other hand, the overhead
caused by the GenCell is much noteworthy. It represents 51.4% of LUTs, and 6.5% of registers of
the total design (GenCell+PADS+TDM). Thus, optimizing the GenCell is interesting to further
reduce the hardware footprint of PADS.

3.2.3.1 Execution Time & Energy Overhead

The resource overhead is not the only issue with this module. The sequential output allows using
a hardware-friendly FL-NPU in the first layer. However, the drawback on execution time is very
significant. PADS takes 8000 clock cycles in average for classification of OPS-SAT 28x28 grayscale
patches, whereas VGT takes only 23. At 100MHz this is equivalent to 83µs for PADS and 230ns
for VGT. PADS energy consumption is thus 2.1× 10−5J per image in average, whereas it is only
6.5 × 10−7J in VGT. In other words, PADS is 32 times more energy intensive than VGT. Thus,
PADS architecture does not comply with our initial intuition that spiking domain mitigates energy
consumption. This observation is entirely due to the execution time overhead. It should be noted
that this is not a strict disadvantage for PADS. The energy consumption is higher, but spread
across extended period of times. Thus, PADS is compliant with low-power applications, such as
solar-powered systems (satellites...).

3.2.3.2 Causes of the timing Overhead

The difference in execution time is quite straightforward: VGT works in a static and synchronous
fashion, where all inputs are presented at once for each layer. Oppositely, PADS works in a
dynamic and asynchronous fashion because of the event-based nature of spiking domain. This
mechanism intrinsically results in higher execution time, and is even more visible when using a
sequential spike-encoding module like the GenCell. As mentioned earlier in Section 3.1.1, the
GenCell scans the input vector entirely at each time-step, which results in timing overhead.

In the remaining of this subsection, we propose two experiments to investigate the behavior
of the GenCell. More specifically, we study the influence of spatial and temporal resolution of
spike encoding on the behavior of the GenCell. Temporal resolution refers to the number of
periods available for spike encoding. Spatial resolution refers to the input size. The aim of
those experiments is also to evaluate a potential trade-off between execution time and prediction
accuracy.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 47

3.2.3.3 Influence of Temporal Resolution

As a reminder, the rate-coding formula is given in Equation 3.1.

P =
1

MaxFreq + (MinFreq−MaxFreq)× v
,

v =
1− i
255

(3.1)

Where P is the spike train period associated to a pixel of value i (8-bit integer), MaxFreq and
MinFreq are respectively the maximum and minimum spike train frequencies.

As mentioned in Section 3.1.1, the GenCell operates in a time-step based fashion rather than
real-time. Spike train periods are thus expressed in terms of time-steps. According to Equation 3.1,
spike trains are encoded with periods ranging from MaxPeriod = 1

MinFreq
to MinPeriod = 1

MaxFreq
.

The difference between MinPeriod and MaxPeriod characterizes the temporal resolution of spike
encoding. There is thus a finite number of possible periods between MinPeriod and MaxPeriod.
Those parameters must have a strong influence on execution time as they govern the spike emission
rate. MinPeriod is set to 1, so that spike trains are able to begin at the first time-step. With a
fixed MinPeriod = 1, MaxPeriod defines the temporal resolution by itself.

Under those conditions, Figure 3.8 shows the influence of MaxPeriod, i.e. temporal resolution.
In this experiment PADS is configured with a small mono-layer 784-10 topology. The classifier
is applied to MNIST dataset. TensorFlow Keras is used for training with the parameters listed
in 3.1. The weights are exported in a VHDL package, and PADS is configured with the 784-10
topology. For each value of MaxPeriod, we perform behavioral simulation at Register Transfer
Level (RTL) using Modelsim, on a hundred MNIST samples. We measure the average prediction
accuracy, number of input & output spikes, and execution time with respect to MaxPeriod.

Figure 3.8 shows that high MaxPeriod values (i.e. high temporal resolutions) offers significantly
better accuracy, lower execution times and lower number of input spikes. However, the number of
output spikes is slightly lower for low temporal resolutions. Indeed, low temporal resolution implies
that fewer periods are available for spike encoding. In other words, very different pixels might be
encoded with identical spike trains. Thus, the network behavior is deteriorated which explains
the heavily degraded accuracy (solid black line) at low MaxPeriod values, and the increased
execution time. The execution time is higher because of the altered behavior: the Terminate
Delta Module has more difficulty to determine the winning class under such conditions. Moreover,
lower MaxPeriod value does not only imply lower resolution but higher input spike rates as shown
in the Figure (red bars). As explained previously, power usage is directly related to signal toggles
in the design. Higher spike rates results in higher signal toggle rates which in turns increase
dynamic power usage.

Consequently, high MaxPeriod values (i.e. high temporal resolutions) can help mitigating
execution time, and further reduce power usage. However, execution time remains very high with
9000 clock cycles at best. This execution time is even higher than with the 784-100-2 topology used
for OPS-SAT grayscale patch classification (8000 clock cycles). Consequently, smaller topologies
does not imply lower execution times. Fine tuning the temporal resolution does not enable to
compete with VGT either, in terms of processing speed.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 48

Figure 3.8: Evolution of test accuracy, number of input & output spikes and execution time
(in clock cycles) with respect to MaxPeriod. All measurements are averaged on 100 samples.
Topology: 784-10 on MNIST.

3.2.3.4 Influence of Spatial Resolution

In this paragraph we study the influence of spatial resolution on the GenCell behavior and sub-
sequent execution time. Because of the sequential nature of the GenCell, the time-step length
depends on the input size. The process requires to scan the whole ”Next Spiking Time” vector
(NST-LUT) (Section 3.1.1) at each time-step at a rate of one element per clock cycle. For example,
on MNIST dataset, the time-step length is 784 clock cycles. Quite straightforwardly the execution
time could be mitigated by reducing the input size. In other words, input down-sampling could
provide interesting speed-ups at the cost of a loss of information.

For that purpose, we study the influence of input down-sampling on PADS behavior. A single
FC layer SNN is used with Isize inputs and 10 outputs. Isize is the input size varying from 28 to 10.
A specific network is trained for each input size using Tensorflow Keras with the parameters given
in 3.1. A Resize layer from Keras front-end is used at the input. This layer down-samples the
input data to the required Isize value. Moreover, the resized samples are also exported in VHDL
testbenches for later simulation. Each set of trained weights is exported in a dedicated VHDL
package and PADS is configured successively with each topology. Each iteration is simulated at
RTL level using Modelsim, using the previously exported down-sampled data. Each simulation
covers a hundred of such samples. We measure the variations of average accuracy, number of input
& output spikes and execution time with respect to input size. The results of this experiment are
shown in Figure 3.9. It should be noted that we use MinPeriod = 1 and MaxPeriod=100.

The MLP topology changes with input size, thus the network is retrained each time. Thus,
variations of testing accuracy are not only caused by spatial resolution. Intrinsic variability of
training also plays a role. Therefore, the difference between formal and spiking accuracy should
be studied, rather than spiking test accuracy only. In doing so, the training variability is mitigated.
This difference is referred to as ”accuracy gap”. The accuracy gap increases towards low input

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 49

Figure 3.9: Evolution of test accuracy, number of input & output spikes and execution time (in
clock cycles) with respect to input size. All measurements are averaged on 100 samples. Single
FC layer SNN on MNIST dataset with various input sizes.

sizes (i.e. low spatial resolutions). Accordingly, the converted SNN supported by PADS seems
less robust to down-sampling than the original FNN tested in TensorFlow.

Moreover, smaller input sized means fewer neurons in the input layer. Fewer neurons in turns
generate fewer spikes thus the number of input spike per image (red bars) increases with respect
to input size. On the other hand, the number of output spike per image is higher for low input
sizes. Thus, at low spatial resolutions, fewer input spikes generates more output spikes than at high
spatial resolutions. This phenomenon confirms the degradation of the network’s behavior for higher
down-sampling rates. As in the previous experiment (temporal resolution), loss of information
also increases execution time. Consequently, reducing spatial resolution through down-sampling
of input data does not mitigate latency, and heavily degrades accuracy. Thus, down-sampling is
not viable to reduce latency in PADS. This experiment also shows that PADS is more affected by
spatial down-sampling than the original TensorFlow model.

3.2.4 Conclusions on PADS hardware implementation

In this section, PADS is compared to VGT on OPS-SAT grayscale dataset with a 784 − 100 − 2
MLP. Under such conditions, PADS enables drastic logic resources savings relatively to VGT. The
most significant difference lies in DSP usage. If VGT uses a lot of DSPs for MAC operations,
PADS uses only LUTs and Flip-Flops for ACC operations. A major difference was also found in
the first layer, where the specific NPU enabled drastic resources savings in terms of LUTs and

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 50

Registers. At the same time, PADS provides substantial power savings relatively to VGT with
248mW and 4477mW respectively (18 times less).

However, the dynamic nature of information and the sequential behavior of the GenCell are
responsible for the timing overhead in PADS. Indeed, PADS is in average 30 times slower than VGT
on the OPS-SAT grayscale dataset. Despite power savings, it consumes in average 2.1 × 10−5J
per image, against 6.5 × 10−7J for VGT. PADS uses more energy, but spread across a longer
processing time. Fine-tuning the temporal resolution of rate encoding mitigates the GenCell
latency. However, VGT still remains several dozens of times faster than PADS, even with optimal
temporal resolution. On the other hand, down-sampling the input data does not mitigate latency:
the loss of spatial information seems to make the classification task harder, increasing the execution
time. Additionally, one simple way to solve the temporal sparsity of spike encoding could be a
parallelization of the GenCell process. For this purpose, a fully-parallel version of the GenCell was
developed with simplified hardware implementation. After preliminary experiments on MNIST,
the parallel GenCell saturates the Zedboard resources on its own. Therefore, this approach is
unrealistic. On the other hand, proposing an intermediate level of parallelism would have required
too much development for the purpose of our prototype. Moreover, this feature would have been
incompatible with the NPU design of PADS.

In the light of these considerations, a first cartography of favorable application domains for
PADS arises. PADS is more suited to systems constrained by the resource (e.g. drones, satellites..)
or power budget (e.g. solar or wind powered systems), whereas VGT is more suited to systems
constrained by energy (e.g. battery-powered systems) or time (e.g. real-time applications).

Because PADS is more resource and power efficient, it is preferable to use VGT in the context
of highly constrained solar-powered embedded systems, such as Satellites. Indeed, size, weight and
power are the most limiting factors, rather than overall energy consumption. The logic resource
and dynamic power savings implies that it might be used in more constrained systems than VGT
would which are limited by instantaneous power rather than overall energy consumption. This is
also true for other types of solar powered devices. On the other hand, PADS is not adapted to
battery-powered systems, as energy becomes the limiting factor in such conditions. PADS seems
less adapted adapted to real-time systems either because of its increased execution time. At this
point it should be noted that all presented results are constrained to rate-coded MLP deployed
on highly parallel hardware. Moreover, they are constrained to OPS-SAT classification task. In
Chapter 5, those results are generalized to low-level of parallelism and a benchmark of 7 datasets
(images and 1D signals).

3.3 Conclusion

In this Chapter, we have presented the PADS architecture. PADS is a highly-parallel Spiking
MLP architecture featuring a Spike Generation Cell, two variants of Neural Processing Units,
and a Terminate Delta Module. PADS was developed as a first prototype of SNN hardware
accelerator in the thesis, serving as a toolbox to investigate such implementations and support later
improvements. PADS was compared to an equivalent highly-parallel formal architecture: VGT.
During this comparison, PADS demonstrated drastic logic resources and power savings compared
to VGT. However, the dynamic nature of rate-coding and the sequential implementation of the
Spike Generation Cell were found responsible for a severe increase in execution time. Consequently,
PADS energy-intensiveness was a lot greater than that of VGT. However, in PADS, this energy
consumption is spread across time.

CHAPTER 3. SPIKING NEURAL NETWORKS PARALLEL IMPLEMENTATION: PADS 51

This observation led us to our firsts insights concerning the cartography between applications
and coding domain. PADS seems well suited to highly resource and power constrained systems,
such as satellites. Indeed, such systems have drastic constraints in terms of size and weight. Saving
resources is thus helpful in that regard. Moreover, solar-powered devices like satellites are limited
in terms of instantaneous power usage rather than overall energy consumption. VGT does not
comply with such constraints because of the high instantaneous power usage when PADS seems
well suited to this type of systems. On the other hand, VGT is much more adapted for battery-
powered systems, where overall energy consumption is the limiting factor. Moreover, PADS seems
less adapted to real-time systems because of its long response time.

However, those insights are only true for very specific cases. Only two architectures where
compared, which does not covers other implementation choices, such as sequential architectures.
Moreover, this comparison only covered a single MLP topology, and a single application (OPS-SAT
grayscale patch classification). Additionally, this comparison only stands for conversion-based and
rate-based SNN models. In Chapter 7, we address a novel type of SNN models. Since rate-based
converted SNNs are responsible for a significant inference time overhead, we have indeed looked
for alternative choice in the literature. Moreover, our experiment concerning the spatial resolution
influence on PADS did not provide the expected results. Indeed, reducing spatial resolution was
intended to reduce execution time, but the opposite phenomenon arose. This finding was imputed
to loss-of-information. Consequently, the idea of Neural Network Hybridization emerged. It will
be introduced in details in Section 6.

In addition to this work, a SoC design was developed to support PADS hardware deployment.
The role of this platform is to support hardware deployment of PADS and other hardware acceler-
ator on FPGA. In doing so, it provides a useful testbench to test the architecture in real conditions
and probe the actual power consumption of the design. The latter was not undertaken during this
thesis, due to the lack of material and knowledge at that time. However, the SoC will enable such
study in further works. The design is described in details in Appendix 8.2.2. For information,
it features a Petalinux OS running on the Cortex ARM A-53 of the board to control and send
data to the accelerator in the programmable logic. The SoC features all necessary interfaces to
enable direct communication between the Linux user-space and the accelerator (kernel drivers,
AXI interface...).

Chapter 4

Synaptic Activity Ratio & Energy Mod-
eling

Chapter contents

4.1 Representative Datasets . 53
4.1.1 Used topologies . 54

4.2 Accuracy and synaptic activity measurements . 55
4.2.1 Methods . 56
4.2.2 Synaptic activity results . 58
4.2.3 Discussions on Synaptic Activity results 62

4.3 Synaptic Activity ratio . 63
4.3.1 Energy Consumption Model . 63
4.3.2 The value of λ . 65

4.4 Synaptic Activity Ratio measurements . 67
4.4.1 Synaptic Activity Ratio evaluation software 67
4.4.2 Network-wise SAR & theoretical cartography 69
4.4.3 Data type and rate-coding . 73
4.4.4 Layer-wise SAR & hybridization . 73

4.5 Conclusion . 74

52

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 53

This chapter is dedicated to the study of Synaptic Activity in Spiking Neural Networks. Synap-
tic Activity refers to events occurring in synapses, i.e. spikes. As explained earlier in Section
2.4.3.2, Formal Neural Networks (FNN) work in a synchronous fashion with one and only one
activation per synapse. On the other hand, the dynamic behavior of SNNs imply an unpredictable
number of spikes per synapse and per sample.

The effective number of spikes is crucial when addressing SNN hardware implementations,
as it could imply a computation overhead. The computation overhead could counter-balance
the advantage of Accumulation (ACC) over Multiplication-Accumulation (MAC) (Section 2.3.1).
Hence, the energy savings brought by spiking domain are thus not guaranteed. In this chapter,
we study how synaptic activity varies under the influence of dataset, topology and various SNN-
specific hyper parameters.

The raw spike count is relevant to compare computational efficiency in different SNN appli-
cations or topologies, but it does not help in the comparison with FNNs. Therefore, we propose
the Synaptic Activity Ratio (SAR) metric: the ratio between Nspikes and Nsynapse. This metric is
inspired from the literature (see Section 2.4.3.2) and is used to assess the computational overhead
induced by execution in spiking domain. In doing so, we provide a high-level energy consumption
model, based on the relative computation requirements of FNNs and SNNs. The model assimilates
the processing of a neuromorphic accelerator to that of its synaptic operations: Multiplication-
Accumulation (MAC) for FNNs and Accumulation (ACC) for SNNs. Indeed, Kundu et. al. [78]
have already shown that computation in neural network accelerators is largely dominated by
synaptic operations.

The raw synaptic activity measurements and subsequent SAR results are applied to a bench-
mark of Machine Learning datasets. Those datasets cover different types of data, with various
spatial dimensions and complexities. This study aims in providing a high-level cartography of
applications and coding domains.

4.1 Representative Datasets

The seven classification datasets of the benchmark address two types of data: Spatial data and
1D vectors. Each type of data can be mono or multi-channel. There are three datasets for each
type of data, seven in total. For each type, there are three datasets with increasing complexity. In
this work, state-of-the-art classification accuracy is used as an indicator of complexities. Spatial
and vector data are used to evaluate the impact of data type on synaptic activity and SAR.

Image classification datasets are:

1. OPS-SAT RGB [93]: Classification of patches (28x28x3) extracted satellite images in two
classes: cloud and no-cloud. The state-of-the-art accuracy is 81% [93]. This task is part
of a larger cloud segmentation application. Figure 4.1 features an example full-size satellite
of OPS-SAT dataset on the left. Additionally, the segmentation mask resulting from patch
classification is shown on the left.

2. MNIST [95]: Handwritten digits classification task, the most basic and used benchmark
application in the SNN community. It is made of ten classes of 28x28 grayscale images. The
state-of-the-art accuracy is 99.84% [96]. Some samples of MNIST are shown in Figure 4.2a.

3. GTSRB [97]: German traffic signs classification task, a more complex image classification
set with 43 classes of 32x32 RGB images. Its state-of-the-art accuracy is 99.71% [98]. Figure
4.2b presents some examples of GTSRB images.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 54

Figure 4.1: Illustration of the CIAR cloud segmentation task. On the left, the original image
taken by OPS-SAT. On the right, the resulting segmentation map, with cloudy patches in yellow.
Source: [15]

4. CIFAR-10 [99]: common objects classification task, an even more complex image classifi-
cation task, commonly used in NN community, with 10 classes of 32x32 RGB images. Its
state-of-the-art accuracy is 99.70% [100]. A selection of CIFAR-10 samples are shown in
Figure 4.3a.

1D data classification datasets are:

1. Mines versus Rocks [16]: classification of sonar echoes from rocks and military mines in the
ground. It is made of two classes of 60-elements vectors, thus it is quite a simple and small
classification task. The state-of-the-art accuracy on this task is 90.4% [16]. The task is yet
very simple: the input resolution is very low, and there is only two output classes. The low
accuracy is mostly due to the low amount of samples in the dataset. Figure 4.3b shows two
sonar echoes examples for rocks and mines.

2. Spoken Digits [101]: this dataset is made of the ten groups of 0 to 9 audio digits, extracted
from the Google Speech Commands [17] dataset. A Mel Frequency Cepstral Coefficients
transform (MFCC) with 39×13 dimensional features was applied to those audio recordings.
When this chapter was written (September 2021), no publication mentioning classification
accuracy on this dataset was found. However, an accuracy of 97.34% is achieved using the
topology given in Table 4.1. Some examples of spectrograms from Google Speech Commands
dataset are given in Figure 4.4,

3. Deepsig RadioML 2018 [18]: A dataset which includes both synthetic simulated signals
and over-the-air recordings of 24 digital and analog modulation types of RF signals. An
illustration of the RF recording experimental setup is given in Figure 4.5. The dataset is
made of 24 classes of 1024-elements vectors with 2 channels, and it represents a difficult
classification task. Its state-of-the-art classification accuracy is 64% [102].

4.1.1 Used topologies

Each set of training and testing of formal CNNs takes important amount of time (especially with
the selected AI framework, i.e. N2D2), so using state-of-the-art deep neural networks would have

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 55

(a) (b)

Figure 4.2: a) Sample of MNIST dataset, b) Sample of GTSRB dataset

required an unmanageable simulation time. In addition, inference in spike-domain also takes a
large amount of time (that is proportional to the complexity and depth of the selected topology).
Therefore, we could not use state-of-the-art CNNs to perform this study. However, we made
an exploration of topologies and hyper-parameters to provide the best results possible in the
limits of our computational power and available time. Instead, a custom CNN was used for each
dataset (topology description is available in Tables 4.2). With those topologies, the goal is not
to achieve state-of-the-art accuracy, but rather to compare SNNs and FNNs in terms of accuracy
and Synaptic Activity Ratio.

4.2 Accuracy and synaptic activity measurements

In this section, we study the impact of dataset and CNN topology on synaptic activity and network
accuracy. Additionally, we study the impact of two SNN-specific hyper-parameters: ∆ and ΘIF.

4.2.0.0.1 Studying ∆ influence Indeed, as explained in Section 2.3.4, this parameter has
a strong impact on the behavior of the network: increasing ∆ means that the Terminate Delta
Module will wait for a larger difference between the most active neuron and the second most
active. In other words, the Terminate Delta Module (TDM, Section 3.1.3) will wait for more
output spikes. Thus the total number of spikes flowing in the network will also increase. On
the other hand, it is usually admitted that a higher ∆ will have a positive impact on prediction
accuracy [64]. Thus, one of our concerns is to study the possible trade-off between accuracy and
synaptic activity.

4.2.0.0.2 Studying ΘIF influence A higher firing threshold in Integrate & Fire (IF) (ΘIF)
will cause fewer spikes to pass to the next layer, impacting the overall synaptic activity. However,

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 56

(a) (b)

Figure 4.3: a) Sample of CIFAR 10 dataset, b) Sonar echoes from Mines VS Rocks dataset [16]

Figure 4.4: Examples of spectrograms from Google Speech Commands dataset [17]. Spoken Digits
dataset use in this work is a subset of Google Speech Commands.

it is difficult to predict how the network will react to such a change in ΘIF: the synaptic activity
could decrease because fewer spikes are allowed to pass, but the Terminate Delta Procedure could
in turn last longer and thus allow more spikes to flow in the network, resulting in an equal number
of spikes overall. Hence, studying the influence of this parameter is also one of our concerns. The
impact of ΘIF will be assessed on CIFAR-10 only, because its application to all datasets would
require unrealistic amount of simulation time.

4.2.1 Methods

A few definitions are provided in the following before going into further details:

task: the combination formed by a dataset and its associated CNN,

experiment: the ensemble formed by the task and the set of hyper-parameters used for training
and testing,

trial: is the realization of an experiment (usually, 10 trials are executed for each experiment in
order to obtain averaged and statistically representative results).

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 57

Figure 4.5: Illustration of the over-the-air RadioML 2018 recording setup, found in [18]. A host
computer generates the desired RF signal, which is emitted and received via two universal software
radio peripherals (USRP).

Each trial is made using N2D2 [1], thus the accuracy and synaptic activity measurements are
software simulation results. However, the resulting hardware architecture configured with the
trained weights and identical hyper-parameters should reproduce the behavior of N2D2. Con-
sequently, we are confident that the synaptic activity measured in N2D2 will be the same in a
subsequent hardware implementation using PADS (Chapter 3) or SPLEAT [14] (Section 2.4.2.8).

4.2.1.0.1 Default hyper-parameters For each trial, N2D2 is configured with the required
dataset and its corresponding CNN topology. The hyper-parameters are set to selected values:

• There are no on-the-fly pre-processing on input data;

• MinPeriod is set to 1;

• MaxPeriod is set to 100;

• if not mentioned otherwise, the default value of ∆ is 4;

• the default Integrate & Fire threshold ΘIF value is 1.

4.2.1.0.2 Experimental method For each trial:

• the dataset is split with 80% of samples for training, 10% for validation and 10% for testing;

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 58

Table 4.1: Large CNN topology for Spoken Digits dataset. This CNN achieves 97.34% accuracy.

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (507,1)
1 Conv 32 5 1 (503,3)
2 MaxPool 3 2 2 (252,3)
3 Conv 64 5 1 (248,5)
4 MaxPool 5 2 2 (124,5)
6 Conv 128 5 1 (120,5)
7 MaxPool 5 2 2 (60,5)
8 FC 250
9 FC 100
10 FC 10

• training is performed until the ”learning plateau” is reached, where the network accuracy
reaches a stable value and is not increased by further training epochs;

• the trained network is first tested in formal domain, providing a baseline test accuracy; then,
the network is transcoded and tested in spiking domain, using N2D2 as well;

• accuracy and synaptic activity are logged during the test (e.g. accuracy of learning and
testing, for each of formal and spiking domain);

• Each experiment is averaged on 10 runs.

4.2.2 Synaptic activity results

The experimental protocol is applied to each of the 6 tasks of our benchmark. The results obtained
after averaging all measurements on 10 trials are presented in Table 4.3. The synaptic activity is
expressed as the number of output spikes of that layer, also called spike count.

4.2.2.0.1 Influence of ∆: When analyzing those results, we observe that the spiking accuracy
is always lower than formal accuracy. In other word, transcoding towards spiking domain implies
a loss of accuracy. However, this degradation seems to be mitigated by increasing ∆.

Let us imagine a situation where a pixel is encoded in a spike-train with Period = 100. If the
Terminate Delta condition is reached before the 100th time-step, the prediction would be enacted
before any spike is emitted by this pixel. Thus, the network would have stopped with incomplete
information. Increasing ∆ implies to wait for more output spikes. In that regard, increasing ∆
should result in better accuracy and higher spike counts.

Our results confirms this statement. For example, in the GTSRB task, the ∆ = 20 experiment
provides an accuracy of 93.5% against 83.3% with ∆ = 5. Moreover, the average total spike count
is 2.1 times higher with ∆ = 20. This trend is found in all other experiments. Thus, tuning ∆
enables to optimize the trade-off between accuracy and synaptic activity.

4.2.2.0.2 Influence of ΘIF: We also study the influence of ΘIF on accuracy and synaptic
activity with CIFAR-10 task. The results (Table 4.3) show that, for a constant value of (∆),
higher values ΘIF provide significantly better accuracies. For ∆ = 5, the accuracy is 11.45% with

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 59

Table 4.2: List of CNN topologies for the classification benchmark

(a) OPSSAT RGB

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (28,28,3)
1 Conv 3 5 1 (24,24,3)
2 MaxPool 3 2 2 (12,12,3)
3 Conv 5 5 1 (8,8,5)
4 MaxPool 5 2 2 (4,4,5)
5 FC 10
6 FC 2

(b) MNIST

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (28,28,1)
1 Conv 6 5 1 (24,24,6)
2 MaxPool 6 2 2 (12,12,6)
3 Conv 16 5 1 (8,8,16)
4 MaxPool 16 2 2 (4,4,16)
5 FC 84
6 FC 10

(c) GTSRB

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (32,32,3)
1 Conv 32 5 1 (28,28,32)
2 MaxPool 32 2 2 (14,14,32)
3 Conv 32 5 1 (10,10,32)
4 MaxPool 32 2 2 (5,5,32)
6 FC 120
7 FC 43
8 FC 10

(d) CIFAR 10

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (32,32,3)
1 Conv 32 5 1 (28,28,32)
2 MaxPool 32 2 2 (14,14,32)
3 Conv 64 5 1 (10,10,64)
4 MaxPool 64 2 2 (5,5,64)
3 Conv 128 5 1 (1,1,128)
6 FC 10

(e) Mines VS Rocks

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (60,1)
1 FC 200
2 FC 2

(f) Spoken Digits

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (507,1)
1 Conv 3 5 1 (503,3)
2 MaxPool 3 2 2 (252,3)
3 Conv 5 5 1 (248,5)
4 MaxPool 5 2 2 (124,5)
6 Conv 5 5 1 (120,5)
7 MaxPool 5 2 2 (60,5)
8 FC 100
9 FC 10

(g) RadioML 2018

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (1024,2)
1 Conv 32 5 1 (1020,32)
2 MaxPool 32 2 2 (510,32)
3 Conv 64 5 1 (506,64)
4 MaxPool 64 2 2 (253,64)
6 Conv 128 5 1 (249,128)
7 MaxPool 128 2 2 (124,128)
8 FC 256
9 FC 125
10 FC 24

ΘIF = 0.5, 31.8% with ΘIF = 1 and 57.8% with ΘIF = 2. As there are 10 classes, the accuracy
with ΘIF=0.5 and ∆ = 5 is close to randomness.

However, high values of ΘIF implies higher synaptic activity. For ∆ = 5, the total spike count
is 1375 with ΘIF = 0.5, 32967 with ΘIF = 1 and 313019 with ΘIF = 2. Those trends are also
visible with ∆ = 10 and ∆ = 20. Thus, ΘIF also enables a trade-off between accuracy and synaptic
activity.

However, this behavior is quite surprising. Indeed, lowering ΘIF in a layer means easing output
spike firing. Thus, a synaptic activity overhead could be expected for low values of ΘIF. Our
hypothesis is that spikes indeed flow more easily through the network with ΘIF=0.5, including a
large number of “undesired” spikes reaching the output. This phenomenon is illustrated in Figure
4.6. This figure shows the spike filtering rate for all 9 experiments on CIFAR-10 task. The filtering
rate is the ratio between the numbers of input spikes and output spike as given by Equation 4.1.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 60

Table 4.3: Accuracy and synaptic activity measurements with N2D2 on all datasets of the bench-
mark

Task
FNN

ACC. (%)
∆

SNN
ACC. (%)

Layer 0
(# spikes)

Layer 1
(# spikes)

Layer 2
(# spikes)

Layer 3
(# spikes)

Layer 4
(# spikes)

Layer 5
(# spikes)

Layer 6
(# spikes)

Layer 7
(# spikes)

Layer 8
(# spikes)

Layer 9
(# spikes)

Total
(# spikes)

OPS-SAT
(Std. dev.)

91.95
(0.37)

5
91.78
(0.52)

200
(84)

216
(60)

104
(25)

79
(20)

37
(6)

8
(1)

4
(0)

648
(196)

10
91.88
(0.83)

683
(252)

561
(116)

243
(38)

228
(36)

85
(9)

18
(2)

10
(0)

1828
(453)

20
91.92
(1.21)

9 117
(14 351)

1 057
(477)

394
(136)

379
(141)

114
(32)

26
(11)

13
(3)

11 100
(15 151)

MNIST
(Std. dev.)

99,2
(0,2)

5
97,3
(0,6)

128
(12)

870
(56)

391
(23)

481
(38)

269
(19)

65
(5)

38
(3)

2242
(156)

10
98,9
(0,5)

263
(16)

2 525
(106)

1 028
(34)

895
(94)

501
(45)

80
(4)

55
(2)

5 347
(301)

20
99,1
(0,6)

501
(22)

3 921
(188)

1 570
(60)

1 388
(144)

768
(69)

141
(5)

98
(3)

8 387
(491)

GTSRB
(Std. dev.)

95,5
(0,8)

5
83,3
(5,1)

4 083
(549)

8 195
(1 373)

3 052
(503)

2 054
(448)

1 231
(243)

145
(19)

136
(14)

175
(21)

19 071
(3 170)

10
90,6
(1,8)

6 285
(937)

10 852
(2 583)

3 979
(927)

3 260
(690)

1 936
(391)

259
(53)

272
(42)

366
(58)

27 209
(5 681)

20
93,5
(1,4)

8 947
(1 239)

15 888
(3 167)

5 779
(1 112)

4 574
(948)

2 738
(547)

435
(76)

481
(64)

646
(91)

39 488
(7 244)

CIFAR-10
(Std. dev.)

69,8
(1,1)

5
ΘIF = 1

31,8
(6,1)

4 772
(953)

16 167
(2 281)

6 275
(803)

3 395
(519)

2 129
(254)

87
(9)

82
(8)

32 967
(4 837)

10
ΘIF = 1

50,2
(2,7)

10 655
(591)

30 490
(2 482)

11 446
(846)

7 169
(775)

4 479
(414)

220
(9

201
(8)

64 660
(5 125)

20
ΘIF = 1

57,8
(1,9)

22 919
(771)

58 790
(4 786)

22 091
(1 591)

15 943
(1 668)

10 074
(932)

531
(21)

482
(20)

130 830
(9 789)

5
ΘIF = 2

59,2
(0,9)

56 165
(1 592)

65 231
(6 567)

24 978
(2 134)

9 298
(1 244)

6 005
(667)

161
(12)

60
(3)

161 898
(12 409)

10
ΘIF = 2

59,2
(0,9)

83 542
(1 740)

97 492
(10 141)

37 323
(3 213)

141 341
(1 881)

9 225
(1 006)

254
(19)

98
(4)

242 275
(18 004)

20
ΘIF = 2

59,2
(0,9)

110 520
(1 522)

120 233
(13 565)

49 826
(4 322)

19 464
(2 506)

12 484
(1 341)

352
(37)

140
(7)

313 019

5
ΘIF = 0.5

11.45
(0.002)

5
(1)

104
(14)

64
(8)

603
(75)

388
(43)

68
(3)

143
(6)

1376
(150)

10
ΘIF = 0.5

11.54
(0.002)

68
(15)

1 310
(193)

673
(82)

2 780
(322)

1 617
(161)

137
(6)

316
(13)

6 900
(792)

20
ΘIF = 0.5

12.14
(0.008)

574
(185)

7 714
(1 314)

3 401
(480)

6 713
(619)

3 797
(268)

257
(12)

656
(39)

23 112
(2 916)

Mines VS
Rocks

(Std. dev.)

79,2
(9,8)

5
74,2
(5,8)

136
(69)

299
(159)

8
(2)

443
(230)

10
75

(4,4)
259
(72)

576
(158)

20
(8)

855
(238)

20
78,8
(5,6)

490
(232)

1 090
(499)

34
(24)

1 614
(755)

Spoken
Digits

(Std. dev.)

88,55
(2,3)

5
38,2

(10,1)
13 918
(1 684)

24 908
(17 681)

13 348
(8 975)

4 839
(772)

3 223
(561)

1 013
(280)

884
(243)

93
(3)

43
(3)

61 473
(30 202)

10
71,6
(4,7)

103 463
(17 488)

5 776
(3 534)

3 148
(1 914)

2 899
(736)

1 891
(496)

1 839
(560)

1 367
(422)

221
(16)

308
(17)

120 912
(25 083)

20
87,5
(4,2)

228 752
(26 123)

12 988
(8 818)

6 933
(4 481)

5 727
(948)

5 705
(682)

3 068
(932)

2 351
(708)

387
(28)

578
(57)

244 128
(42 777)

RadioML
(Std. dev.)

42
(0,3)

5
20,5
(5,6)

16 791
(3 542)

108 234
(23 076)

64 131
(13 455)

12 5167
(24 690)

86 702
(16 732)

13 201
(1 936)

12 185
(1 846)

191
(19)

119
(15)

265
(34)

42 6986
(85 345)

10
31,6
(4,9)

32 167
(2 479)

206 629
(26 715)

121 349
(15 074)

232 232
(25 878)

160 043
(16 370)

23 934
(2 201)

22 191
(2 058)

471
(54)

302
(26)

714
(68)

800 033
(90 923)

20
37,5
(3,8)

508 836
(1 290)

325 052
(36 528)

190 171
(20 596)

360 255
(30 068)

248 090
(18 679)

38 796
(2 584)

36 050
(2 412)

895
(75)

595
(37)

1442
(83)

98 4637
(112 352

FR(Li, Lj) =
N i

N j
(4.1)

Where FR(Li, Lj) is the filtering rate from layer i to layer j and N i the spike count at layer i.

For ΘIF=1 and ΘIF=2, the filtering rate is always larger than one, thus there is always more
input spikes than output spikes: the SNN acts as a spike (low-pass) filter. ΘIF=0.5 experiments
demonstrate the opposite: there are more output spikes than input spikes. This observation backs
our hypothesis that a low threshold generates “undesired” spikes in the intermediate layers. This
phenomenon is also responsible for the drastically deteriorated accuracy, as the Terminate Delta
procedure is altered by undesired spikes.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 61

Δ = 10Δ = 5 Δ = 20

￼

Θ = 0.5 Θ = 1 Θ = 2

Figure 4.6: Evolution of spike filtering rate on CIFAR-10 task

4.2.2.0.3 Combined effect of ∆ and ΘIF Moreover, ∆ and ΘIF have a combined effect on
accuracy and synaptic activity. We have seen that ∆ had an impact on accuracy in GTSRB and
other tasks. This is also the case on CIFAR-10 with ΘIF = 0.5 and ΘIF = 1. But with ΘIF = 2,
the accuracy is constant for all values of ∆. However, the synaptic activity is still affected. With
ΘIF = 2, the total synaptic activity for ∆ = 5 is 161898, 242275 for ∆ = 10 and 313019 for
∆ = 20. In order to further investigate the combined effect of ∆ and ΘIF, we analyze the Spike
Count Evolution (SCE) between ∆ = 5 and ∆ = 20 against ΘIF, as described in Equation 4.2.

SCEl(∆1,∆2) =
N l

∆1

N l
∆2

(4.2)

Where SCEl(∆1,∆2) is the SCE of layer l between ∆1 and ∆2, and N l
∆1

the spike count at layer
l for ∆1.

The SCE is measured in the input layer (Layer #0), in the output layer (Layer #6) and in
total. The results are given in Figure 4.7. The vertical axis is logarithmic. The general trend
is that SCE decreases with ΘIF, i.e. the spike count is more affected by ∆ with low ΘIF values.
Moreover, for ΘIF = 1 and ΘIF = 2, the SCE is higher for the output layer than for the input. This
trend is drastically reversed when addressing ΘIF = 0.5: the SCE is more than 50 times higher in
the input layer than in the output layer. If we refer to Figure 4.6, we can thus assume that the
evolution of filtering rate is mostly due to the SCE in the input layer. In other words, the SNN
behavior is deteriorated by the excessive number of spikes in the first layer.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 62

Θ = 0.5 Θ = 1 Θ = 2

Layer #0 Layer #6 Total

Figure 4.7: Spike Count Evolution ∆ = 5 and ∆ = 20 in Layer #0, Layer #6 and in total, for
various ΘIF on CIFAR-10 task. The vertical axis is logarithmic

To prevent this behavior, ΘIF could be decreased locally in the first layer, as proposed in the
Spike Select method proposed in [64]. However, preliminary experiments showed that accuracy
was drastically affected by the Spike Select technique, thus it was let out of scope of our study.
Further work is therefore required in that regard.

4.2.2.0.4 Influence of dataset At first glance, the synaptic activity measurements are indeed
very different from one task to another. However, the number of synapses involved has an impact
on this metric. To isolate the intrinsic effect of dataset, synaptic activity can be normalized with
respect to number of synapses. This metric is proposed in the next section: Synaptic Activity
Ratio (SAR).

4.2.3 Discussions on Synaptic Activity results

In this section, we have studied the influence of the Terminate Delta criterion (∆) and the Integrate
& Fire neuron threshold (ΘIF) on synaptic activity and accuracy of spiking CNNs on various
datasets. Both SNN-specific hyper-parameters highlight the existing trade-off between synaptic
activity and accuracy.

Increasing the value of ∆ improves accuracy at the expense of a greater synaptic activity.
Similarly, increasing the value of ΘIF also improves accuracy and increases synaptic activity.
Moreover, the filtering rate of the network is severely affected by ΘIF. With ΘIF=0.5, there are

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 63

more output spikes than input spikes. On the other hand, with ΘIF = 1 and ΘIF = 2 we observe
the opposite: the network acts as a strong spike filter, with fewer output spikes at the output than
at the input.

Additionally, some combined effects of ∆ and ΘIF have been found. If Delta has a strong
influence on accuracy with ΘIF = 0.5 and ΘIF = 1, this is not the case when ΘIF = 2: the
accuracy remains the same for all values of ∆. Moreover, as explained above, the influence of ∆
on the filtering rate varies with ΘIF: for ΘIF = 0.5 the filtering rate increases with respect to ∆,
but we observe the opposite for ΘIF = 1 and ΘIF = 2. Lastly, for ΘIF = 0.5, the SCE was greater
in the input layer. On the other hand, the SCE was greater in the output layer for ΘIF = 1 and
ΘIF = 2.

Consequently, this study helps to understand the behavior of a rate-coded Spiking Neural
Network, and how it reacts to different hyper-parameters. More specifically, the study highlighted
a strong trade-off between accuracy and synaptic activity. As discussed in our experiments on
PADS architecture (Section 3.2), higher synaptic activity implies higher signal toggle rate in the
design. In turns, an higher toggle rate implies higher dynamic power usage. Thus, there exists an
interesting trade-off between power usage and accuracy. The SAR eases the exploration of such
trade-off, as it only requires software-level information.

However, those results only enable the comparison between various experiments on a same
task. As explained previously, the spike count has to be normalized to the number of synapse in
order to evaluate the impact of the dataset independently from the topology. Moreover, one of
our main concern is comparing SNNs and FNNs. Hence, we introduce a metric called ”Synaptic
Activity Ratio” in the next section. Indeed, in addition to enabling comparison between different
SNN topologies, this metric could also enable high-level comparison of SNNs and FNNs in terms
of number of operations, and thus, in terms of relative energy consumption per sample.

Lastly, the investigation was limited to converted rate-coded SNNs. The results could be
different using other spike-coding techniques, advanced weight and threshold balancing methods,
or even totally different SNN model representation. However, the Synaptic Activity Ratio metric
proposed in the next section is designed to be adapted to any SNN model.

4.3 Synaptic Activity ratio

The Synaptic Activity Ratio (SAR) is a novel metric inspired from previous works, which proposes
to count operations in SNNs and equivalent FNNs to assess their relative energy efficiency. The
number of spikes per synapse was proposed in various forms in the literature [89] [31] [78] to assess
potential energy gains of SNNs. This metric remains however qualitative and lacks formalization.
In this section, we propose a formalization through the SAR. Moreover, we develop an high-level
model for energy-wise cartography of applications and coding domains that is based on the SAR
metric. This model will be confronted to actual energy estimations in Chapter 5. It should be
noted that the model is only adapted to FPGA implementations.

4.3.1 Energy Consumption Model

As a reminder, we call synaptic operation the integration of an input activation in the neuron.
In both FNNs and SNNs, the computation is widely dominated by synaptic operations [78] in
Convolution and Fully-Connected layers. This observations comes from measurements of Floating
Point Operation per second (FLOP/s) and energy in SNNs and ANNs is directly proportional with

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 64

the number of synapses remaining after pruning, that is the number of ACC and MAC operations
respectively. Hence, all other computations are neglected in our model. Consequently, the energy
consumption of a NN model can be expressed as the energy consumption of its synaptic operations,
as shown in Equation 4.3

EFNN = NMAC ∗ EMAC

ESNN = NACC ∗ EACC

(4.3)

Where EFNN (respectively ESNN) is the energy consumption of a formal (respectively spiking)
neural network implementation, and EMAC (respectively EACC) is the energy cost of a MAC (re-
spectively ACC) operation.

In this model, the execution time of the architecture is assimilated to the execution time of
synaptic operations (MAC & ACC). The rest of the computation is neglected just as for energy
consumption, since synaptic operations are largely dominant in neural network processing.

Let λ = EMAC

EACC
be the ratio between the energy consumptions of a MAC and an ACC operation.

The value of λ depends on the implementation technology of each neuron (digital or analog, using
LUTs/FFs or dedicated DSPs, semiconductor technology etc.). For example, in the literature
we found that Panda et. al. [76], working with 32nm CMOS technology and 32-bit dynamics,
measured 3.2pJ energy consumption for a MAC, and 0.1pJ for an ACC. Hence, and for that
specific case, λ = 32. Integrating λ into Equation 4.3 yields to Equation 4.4, which defines the
relative energy model between spiking and formal domains.

ESNN

EFNN

=
1

λ
× NACC

NMAC

(4.4)

In a Formal Neural Network, there is one single activation per synapse, as information is
static and synchronous. Therefore, there is one and only one MAC operation per synapse. Thus
NMAC = Nsynapses. On the other hand, in SNNs the number of activation is the number of spikes.
Synaptic activity is non-deterministic, but depends on several hyper-parameters (Section 4.2) and
random initialization. Hence, NACC = Nspikes. Replacing this equality in Equation 4.4 yields to
Equation 4.5.

ESNN

EFNN

=
1

λ
× Nspikes

Nsynapses

ESNN

EFNN

=
1

λ
× SAR

(4.5)

Indeed, SAR is defined as the ratio between the spike count and the number of synapses.
Additionally, Equation 4.6 represents an alternative SAR metric defined at layer level. This layer-
level SAR is a fully novel proposition, whose aim is to study the SAR metric at a finer granularity.
In details, layer-level SAR can be expressed using the output spike count from the previous layer,
enabling easy computation based on the N2D2 logs. It should be noted that this layer-wise SAR
only makes sense for Convolution or Fully-Connected layers. Pooling layers are not covered as
computation in the network is dominated by Convolution and Full-Connected layers [78].

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 65

SARl =
N l

ACC

N l
MAC

SARl =
N l

input spikes

N l
input synapses

SARl =


N l−1

output spikes∗N
l
neurons

N l−1
neurons∗N l

neurons
if l is FC

N l−1
output spikes∗N

l
filters∗(F

l
width−S

l)2

N l−1
neurons∗N l

filters∗(F
l
width−Sl)2

if l is Conv
,

SARl =
N l−1

output spikes

N l−1
neurons

(4.6)

With:

• SARl the Synaptic Activity Ratio for layer l,

• N l
ACC the number of ACC for spiking layer l and N l

MAC the number of MAC for its formal
counterpart,

• N l
input spikes the number of input spikes for a layer l for an inference on a single sample,

• N l
input synapses the number of input synapses of a layer l

• N l
neurons the number of output neurons of a layer l,

• N l
filters the number of filters, F l

width the width of the filter and Sl the stride of a convolution
layer l.

4.3.2 The value of λ

In this subsection, we focus on the value of λ, the energy consumption ratio between MAC and
ACC operations. More specifically, we aim at finding the λ value corresponding to our specific
hardware target: Xilinx xc7z020 FPGA (Zedboard). The λ value will be useful when interpreting
the SAR results. Indeed, according to Equation 4.5, λ provides a frontier between coding domains:
if SAR< λ, ESNN < EFNN and vice versa.

In FPGAs, operations are usually mapped to the programmable logic, in LUTs and Flip-
Flops. However, Xilinx boards feature specific circuits for Digital Signal Processing: DSPs. Those
processing units are optimized for multiplication operation. During hardware synthesis, Vivado
maps MAC operations on DSPs. However, DSP is a scarce resource on FPGAs: there are only
220 DSPs on a Zedboard, and 2520 on a ZCU102. To cope with this scarcity, Vivado is able
to map several parallel MAC operations on a single DSP by increasing its working frequency.
Indeed, DSPs have a maximum working frequency of 741MHz [103]. Usually, we work with a
clock frequency of 100MHz, thus a single DSP can be shared for up to 7 parallel MAC operations.
In all, Vivado is able to synthesize up to 1540 different MAC operations on the 220 available DSPs
of a Zedboard. We thus have the following statement for Zedboard:

• For 0 to 1540 MAC operations, Vivado uses DSPs

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 66

Table 4.4: Logic resources, power and energy comparison for 16-bit ACC and MAC operations on
Xilinx xc7z020 FPGA. The MAC operation has been implemented with and without DSPs.

ACC
MAC

w/o DSP
MAC

w DSP

LUT
(#)

16 253 16

FF
(#)

80 112 48

DSP
(#)

0 0 1

Dynamic Power
(mW)

1.6 7.1 1.8

Energy
(pJ)

16 71 18

• Above 1540 MAC operations, Vivado uses LUTs and FFs.

In order to characterize the λ value, we have measured the hardware footprint of ACC operation
as well as MAC operation with and without using DSPs on Xilinx Zedboard (Table 4.4). In this
table, we have λ1 = EnergyMAC DSP

EnergyACC
= 1.1 and λ2 = EnergyMAC no DSP

EnergyACC
= 4.4. When DSPs are used the

ratio is named λ1, and λ2 otherwise. Therefore, the value of λ for a Xilinx Zedboard is defined as
shown in Equation 4.7.

λ =

{
1.1 if NMAC ≤ 1400
1.1×1400+4.4×(NMAC−1400)

NMAC
if NMAC ≥ 1400

(4.7)

Where NMAC is the number of parallel MAC operations.

Furthermore, Equation 4.7 can be generalized to other Xilinx boards, as shown in Equation
4.8.

λ =

{
λ1 if NMAC ≤ 7×Nmax

MAC
λ1×7×Nmax

MAC+λ2×(NMAC−7×Nmax
MAC)

NMAC
if NMAC ≥ 7×Nmax

MAC

(4.8)

Where NMAC is the number of parallel MAC operations, Nmax
MAC is the number of available DSPs

on the board, λ1 is the energy consumption (EMAC

EACC
) using DSPs and λ2 without using DSPs.

For ZCU102, we measure the energy of ACC and MAC operations with and without DSPs:EZCU102
ACC =

18fJ , EZCU102
MAC w\ DSP = 27fJ and EZCU102

MAC w\o DSP = 103fJ . Thus, we found λZCU10Z
1 = 1.5, and

λZCU10Z
2 = 5.7. Moreover, in the case of ZCU102, there are 2520 available DSPs, thusNmax

MAC = 2520.
Using Equations 4.7 and 4.8, we compute λ for Zedboard and ZCU102, with respect to the number
of synapses in the design (i.e. the number of MAC operations). The results are provided in Figure
4.8.

In order to estimate λ for Zedboard (λZE) and ZCU102 (λZC), we count the number of MACs
in VGT [5] architecture with respect to the network topology. Consequently, the SAR metric
is specifically adapted to a comparison between PADS and VGT, two equivalent parallel neuro-
morphic accelerators. Equations 4.9 are derived from the VGT code. The code is available on

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 67

#MAC

λ

0

2

4

6

0 50000 100000 150000

Zedboard ZCU102

Figure 4.8: Evolution of λ against number of parallel MACs, for Xilinx Zedboard and ZCU102
targets.

GitHub [104]. Those equations enable to compute the number of MACs required for Conv and
FC layers in VGT architecture.

NMAC
Conv = NChan

In ×NChan
Out ×HFilter ×WFilter

NMAC
FC = NNeur

In ×NNeur
Out

(4.9)

Where NMAC
Conv is the number of MACs in a VGT convolution layer with NChan

In input and NChan
Out

output channels, using a convolution filter of height HFilter and width WFilter. N
MAC
FC is for Fully-

Connected layers having NNeur
In input and NNeur

Out output neurons.

We estimate the total number of MACs for each topology using Equation 4.9. The subsequent
counts are shown in Table 4.5a. In the end, the values of λZE and λZC given in Table 4.5a are
derived from Equation 4.5 based on the number of MACs shown in Table 4.5a. The resulting λ
values are used in the next section. It helps determining if an application is suitable for spiking
domain regarding SAR: if SAR< λ, ESNN < EFNN and vice versa.

4.4 Synaptic Activity Ratio measurements

Based on the synaptic activity results of Section 4.2 (Table 4.3), we compute the layer-wise and
network-wise SAR for each experiment. To do so, a python software is developed. The program
takes synaptic activity trace from N2D2 and computes layer-wise and network-wise SAR.

4.4.1 Synaptic Activity Ratio evaluation software

The SAR estimation software works on N2D2 output files: synaptic activity logs. Those logs
contains the synaptic trace of all layers of the network for one image. A dedicated python plug-in
catches those files on the fly as they are automatically overwritten by N2D2 at each log. For each
layer, 50 activity logs are stored in a auto-generated folder tree. The software then translates

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 68

(a) Number of MAC operations in the VGT ar-
chitecture adapted to each CNN of our bench-
mark (topologies in Tables 4.2).

Task Number of MACs

MNIST 24 894
GTSRB 137 682

CIFAR-10 260 680
Mines

VS
Rocks

12 400

Spoken
Digits

137 692

RadioML
2018

40 722 383

(b) Estimated values of λ on the dataset bench-
mark using VGT architecture on Zedboard and
ZCU102

Task λZE λZC

OPSSAT 1.5 1.35
MNIST 4.21 2.72
GTSRB 4.37 5.15

CIFAR-10 4.38 5.42
Mines

VS
Rocks

4.03 1.50

Spoken
Digits

4.25 3.32

RadioML
2018

4.40 5.70

Timesteps

In
pu

t
S

yn
ap

se

1

2

3

4

N
S

1 1 1 1 t
max

1

1

1

1

1

1

0 0 0 0

0 0 0 0

000

00

0 00 0

0

0

0

.

.

.

. . .

Figure 4.9: Unified synaptic trace format

the activity logs into a unified format: a 2D matrix with flattened input synapses as rows and
timesteps as columns. This format is shown in Figure 4.9. Each cell contains the state of an input
synapse i at a given timestep: 1 if it carries a spike and 0 otherwise.

To build this unified synaptic trace format, the real-time synaptic trace of N2D2 is discretized.
The temporal sampling rate (timestep length) is set according to the real PADS GenCell behavior
(see Section 3.1.1). A function automatically scans all input synaptic traces and determines the
minimum delay between two spikes δt. As the GenCell emits at most one spike per timestep, the
temporal resolution of the discretization process is set to δt. As a reminder, the timestep duration
of PADS GenCell is equal to the input size in clock cycles (784 clock cycles for MNIST, 3072
for GTSRB...). The program then counts the total number of spikes per synapse and computes
the SAR according to formulas 4.5 and 4.6 for network-wise and layer-wise SAR respectively.
Layer-wise and network-wise SAR are computed for each experiment of the benchmark using the
dynamic SAR estimator software.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 69

Table 4.6: Large CNN topology for MNIST dataset

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (28,28,1)
1 Conv 32 5 1 (24,24,32)
2 MaxPool 32 2 2 (12,12,32)
3 Conv 32 5 1 (8,8,32)
4 MaxPool 32 2 2 (4,4,32)
6 FC 120
7 FC 84
8 FC 10

4.4.2 Network-wise SAR & theoretical cartography

The SAR results are presented in Figures 4.10 and 4.11. In those figures, Ci stands for the ith

convolution layer, and FCi stands for the ith fully-connected layer. In this section, we analyze
the network-wise SAR results (in gray) on the dataset benchmark. These values are compared to
λZE and λZC to assess the suitability to spiking domain. The network-wise results are compiled in
Table 4.7 . In this table, the cells are green when the SAR is above λZE and λZC. This is the best
case for spiking domain according to Equation 4.5. The cells are yellow when SAR is between the
two λ values. In this case, the suitability depends on the hardware target. When SAR is below
both λ values, the case is favorable to formal domain and cells are in red.

The network-wise SAR increases with ∆ in each topology, as expected from the raw synaptic
activity analysis. Moreover, the SAR seems to increase with task complexity. The SAR is indeed
higher in CIFAR-10 than in GTSRB, which is higher than in MNIST. The same trend is visible
for vector data (Mines VS Rocks, Spoken Digits and RadioML 2018). In other words, spiking
acceleration seems better suited for simple tasks, at least for rate-based models. Additionally, the
SAR is generally higher for 1D vector datasets at comparable complexity level. For both Spoken
Digits and RadioML datasets, the best case accuracy (∆ = 20) fails to meat the λ. According
to the proposed model, the SNN will thus use more energy than an equivalent FNN on those
tasks. More generally, the SAR results tend to indicate that spiking domain is more suited to
image datasets than 1D vector datasets. It should be noted that this statement is constrained to
converted rate-coded SNNs and parallel accelerators. When analyzing those results in the light
of the lambda values of Table 4.5b, we observe that spiking domain is preferable in environments
where DSPs are saturated. Indeed, λ increases when DSPs are saturated (Figure 4.8). This is
visible on the figures, as λZE is usually lower than λZC. As large topology uses more MACs,
and thus more DSPs, this statement should imply that spiking domain takes advantage from
topology size. For example, OPS-SAT is a very small CNN topology, thus the values of λ are
small. Thus, OPS-SAT with ∆ = 20 is not suitable to spiking domain even if the SAR is low
(2.2). However, topologies associated to complex datasets are larger than that of simple datasets.
In order to separate the effect of topology size and dataset complexity, we use a larger CNN
topology on MNIST and measure SAR with N2D2. The larger topology is provided in Table 4.6.
The subsequent SAR measurements and lambda values are shown in Figure 4.12.

The SAR for MNIST with either the baseline (Figure 4.10) or larger topology (Figure 4.12)
are very close. The values of λZE and λZC are much greater in the larger CNN (λOPSSAT

ZE = 1.5 and
λRadioML

ZE = 4.40), thus this implementation is even more favorable to spiking domain, according
to the SAR energy model. This experiment thus comforts our hypothesis that SAR is related

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 70

MNIST OPS-SAT

GTSRB MVR

Figure 4.10: SAR (above) and accuracy (below) on OPSSAT, MNIST, GTSRB and Mines Vs
Rocks datasets classification, for ∆ = 5, 10 and 20. λZE and λZC are also represented. Spiking
inference with N2D2.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 71

Spoken Digits RadioML 2018

CIFAR-10

Figure 4.11: SAR (above) and accuracy (below) on Spoken Digits, RadioML 2018 and CIFAR-10
datasets classification, for ∆ = 5, 10 and 20. λZE and λZC are also represented. Spiking inference
with N2D2. Additionally, for CIFAR-10 θIF varies between 0.5, 1 and 2.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 72

Table 4.7: Network-wise Synaptic Activity Ratio for the dataset benchmark, with varying ∆ and
ΘIF values. The cells are green when SAR is above λZE and λZC, yellow when it is between the
two and red when it is below.

Task
FNN

ACC. (%)
∆

SNN
ACC. (%)

SAR

OPSSAT RGB
(Std. dev.)

91.95
(0.37)

5
91.78
(0.52)

0.39

10
91.88
(0.83)

0.92

20
91.92
(1.21)

2.22

MNIST
(Std. dev.)

99.2
(0.2)

5
97.3
(0.6)

0.58

10
98.9
(0.5)

0.82

20
99.1
(0.6)

1.24

GTSRB
(Std. dev.)

95.5
(0.8)

5
83.3
(5.1)

2.24

10
90.6
(1.8)

3.59

20
93.5
(1.4)

7.70

CIFAR-10
(Std. dev.)

69.8
(1.1)

5
ΘIF = 0.5

11.45
(6.1)

0.05

10
ΘIF = 0.5

11.54
(1.9)

0.23

20
ΘIF = 0.5

12.14
(0.9)

0.73

5
ΘIF = 1

31.8
(0.9)

0.94

10
ΘIF = 1

50.2
(2.7)

2.57

20
ΘIF = 1

57.8
(1.9)

7.57

5
ΘIF = 2

59.2
(0.9)

7.88

10
ΘIF = 2

59.2
(0.9)

11.77

20
ΘIF = 2

59.2
(0.9)

15.64

Mines VS
Rocks

(Std. dev.)

79.2
(9.8)

5
74.2
(5.8)

0.58

10
75

(4.4)
1.07

20
78.8
(5.6)

3.34

Spoken
Digits

(Std. dev.)

88.55
(2.3)

5
38.2

(10.1)
2.04

10
71.6
(4.7)

6.41

20
87.5
(4.2)

8.24

RadioML
(Std. dev.)

42
(0.3)

5
20.5
(5.6)

6.20

10
31.6
(4.9)

11.45

20
37.5
(3.8)

17.41

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 73

Figure 4.12: Activity ratio on MNIST using a larger topology, obtained using N2D2. Spiking
Accuracy = 98,73%; Formal Accuracy = 99,19%

to intrinsic task complexity, and not topology size. In the next section of this chapter (Section
4.4.3), we focus on the relation between data type (spatial or vector) and SAR. The aim is to
explain why vector datasets demonstrate higher SAR than images. Our intuition is that vector
datasets are not intrinsically unfavorable to spiking domain. Rather, our hypothesis is that the
current rate-coding policy (Equation 2.5) is not adapted to the data distribution.

4.4.3 Data type and rate-coding

As explained in section 2.3.2, the rate-coding policy associates spike trains with high frequency to
pixels with high intensity, and vice versa. The spike train period with respect to input intensity
is represented in Figure 4.13. For a better readability, the vertical axis is logarithmic. According
to this Figure, rate-coding makes a clear distinction between elements of very low intensity and
others. On the other hand, Figure 4.14 provides the distribution of intensity in input data for
all datasets of the benchmark. In this figure, image datasets (on the left) features wide intensity
distribution, ranging from 0 to 255. On the other hands, the distribution is much narrower for
vector datasets (on the right): there is no (or very few) elements of low intensity in such data. The
current rate-coding function (Figure 4.13) is therefore not suited for data with narrow intensity
distribution. In the current situation, rate encoding implies a drastic loss of information of in the
case of vector datasets. This phenomenon explains why such data have poor accuracy and high
SARs. The SAR and accuracy could be improved by rescaling input data on J0; 255K or by moving
to another spike coding strategy.

4.4.4 Layer-wise SAR & hybridization

Besides the aforementioned network-wise results, the SAR was also computed at the layer level
following Equation 4.6. In SAR result figures (Figures 4.10 and 4.11), the convolution layers
(Conv) are shown in variations of blue, and the fully-connected (FC) layers are shown in nuances

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 74

Intensity

P
er

io
d

(fs
)

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1,00E+11

0 50 100 150 200 250

Figure 4.13: Spike train period with respect to element intensity according to the rate-coding
policy, with PeriodMax = 1 × 1011fs and PeriodMax = 1 × 107fs (default N2D2 parameters
used in our experiments)

of green. This finer granularity level offers a different view on this metric. It shows how SAR
varies from one layer to another in the same experiment. As seen in the results, the SAR indeed
varies greatly from one layer to the other. For example in RadioML task with ∆ = 20, the SAR
in layer Conv1 (24.9) is nine times higher than in FC1 (2.8). This is the most extreme case of
intra-topology SAR variability. The gap is not so high in other experiments, but remains always
significant.

According to those layer-wise results and based on the SAR energy model, some layers seem
more adapted to spiking domain than others within the same network. Moreover, some layers even
show a local SAR favorable to spiking domain (below or between λZE and λZC), whereas others
are not. This is the case in Spoken Digits with ∆ = 20; where FC2 is the only layer whose SAR
is below λZE. In other words, the layer-wise SAR of some layer seem suitable for spiking domain
acceleration while the overall SAR does not. Under such circumstances, adapting the coding
domain at layer-level could be a fruitful compromise between spiking and formal implementation.

4.5 Conclusion

In this chapter, we proposed a list of machine learning datasets with various levels of difficulty,
covering both spatial (images) and vector data (sonar echoes, Fourrier transform of voice recordings
and RF signals). This benchmark represents a wide variety of possible applications for embedded
neural networks. Synaptic activity was measured on this benchmark using various CNN topologies.
The influence of SNN-specific hyper-parameters on synaptic activity and SAR was studied, namely
∆ and ΘIF. This study highlighted the trade-off between synaptic activity and accuracy. Moreover,
studying the influence of ∆ and ΘIF helped us to understand the behavior of spiking neural

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 75

networks in various conditions.
We also propose a model to assess the potential energy savings provided by spiking acceler-

ation over conventional formal implementations. This model is based on the Synaptic Activity
Ratio metric (i.e. average number of spikes per synapse), and on the relative cost of MAC and
ACC operations in FPGA. Based on a widespread approximation in literature [78] [31], the model
assimilates the energy consumption of an hardware neural network to that of the synaptic oper-
ations: MACs in FNNs, ACCs in SNNs. In order to refine this approach, we propose a model to
evaluate λ = EMAC

EACC
on FPGA targets. The model takes the saturation of DSP into account, which

depends on the target device and on the FNN accelerator baseline design (VGT in this case).
The position of the SAR relatively to λ therefore defines the suitability of the model to spiking
acceleration: (SAR) < λ indicates that the spiking model should use less energy than the formal
one in hardware. Thanks to the model, we are thus able to propose a fast, high-level cartography
of suitable applications for neuromorphic acceleration based on rate-coded SNNs. For instance,
the model is applied to a benchmark of datasets using the N2D2 [1] framework.

The results show that simpler tasks provide better SAR independently from topology size.
Accordingly, simple tasks seems more suited to rate-based spiking domain. Additionally, spiking
domain was more suited to images than 1D data. In response, we propose that tailoring the rate-
coding policy to the data dynamic range could be a solution. The same kind of study should be
applied to other types of spike coding (time, rank order...). The SAR metric and λ model can be
used to determine the suitability of a spike encoding rule to hardware acceleration. Finally, this
method could be applied to other families of SNNs: in Chapter 7, we use the SAR metric and λ
model on a novel, timestep-constrained SNN model proposed by Neftci et. al. [32]. Lastly, we have
studied layer-wise SAR, and found great variability of SAR within a same network. Some layers
show SAR lower than λ, whereas others don’t. More generally, we propose that coding domain
hybridization could be an interesting idea, by tailoring the coding domain at a finer granularity,
and thus benefiting from spiking domain locally in the architecture. This proposition will be
studied further when addressing coding domain hybridization in Chapter 6.

CHAPTER 4. SYNAPTIC ACTIVITY RATIO & ENERGY MODELING 76

(a)
(b)

(c) (d)

(e) (f)

Figure 4.14: Distribution of element intensity in our benchmark datasets. Left are image datasets,
right are 1D datasets. a) MNIST, b) Mines VS Rocks, c) GTSRB, d) Spoken Digits, e) CIFAR-10,
f) RadioML2018

Chapter 5

Hardware Footprint and High-Level Es-
timations

Chapter contents

5.1 Motivations . 79
5.1.1 Speed-up cartography and exploration . 79
5.1.2 Layer-wise approach . 79
5.1.3 Level of parallelism . 79

5.2 Framework . 80
5.2.1 Hardware measurements database . 80
5.2.2 Execution time . 85
5.2.3 Spiking hardware inference simulator . 90

5.3 Ressource estimations . 92
5.3.1 Layer-wise estimation . 93
5.3.2 Network-wise estimation . 95
5.3.3 Conclusions . 96

5.4 Inference time and power estimations . 96
5.4.1 Layer-wise estimation . 96
5.4.2 Network-wise estimation . 100
5.4.3 Conclusions . 101

5.5 Energy estimations . 101
5.5.1 Layer-wise estimation . 102
5.5.2 Network-wise estimation . 103
5.5.3 Conclusions on energy estimations . 104

5.6 Validation of the SAR model . 106
5.7 Conclusion . 107
5.8 Outlooks . 110

5.8.1 Improvement of the SAR metric . 110
5.8.2 Improvement of the estimation framework 110
5.8.3 Studying the level of parallelism . 111
5.8.4 Hybridization and other spike encoding methods 111

77

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 78

In this chapter, we propose a framework for high level prototyping of neuromorphic accelerators
on FPGA. Based on high-level information (description of the CNN and software inference logs),
the framework is able to accurately estimate logic resources occupation, power, execution time
and energy of various FPGA NN accelerators. The goal of is to enable the exploration of design
spaces and application use cases for neuromorphic acceleration. Most importantly, the framework
focuses on the comparison of formal and spiking domains under two opposed levels of parallelism.
The framework involves estimation for the following designs:

• PADS: the fully-parallel spiking architecture for FC layers introduced in Chapter 3.

• SPLEAT: the fully-sequential spiking architecture described in Section 2.4.2.8.

• VGT: the fully-parallel formal architecture described in Section 2.2.2.1.

• C-HLS: the fully-sequential formal architecture described in Section 2.2.2.2.

The framework is built upon two main bricks: the hardware-footprint database and the spiking
inference simulator. The first is a structured set of hardware measurements (LUT,FF, RAM,
DSP, Dynamic Power, Execution Time) derived from a vast hardware synthesis and simulation
campaign. It should be noted that the database required 264 sets of hardware synthesis, post-
synthesis simulation and power analysis using Xilinx Vivado toolchain. That is more than 300
hours of computation, not counting all the software crashes and unused results. Interpolation of
the database enables reliable resource estimations. Inference time and dynamic power estimations
for formal architectures (VGT and C-HLS) are obtained in the same way, as they only depend
on the CNN topology. However in spiking architecture (PADS and SPLEAT), time and power
also depends on synaptic activity. That is the role of the second brick of framework: the spiking
inference simulator. This software uses information from the hardware footprint database and
N2D2 synaptic activity logs. It provides reliable time and power estimations for SPLEAT and
PADS. Finally, energy estimations are derived from time and power estimations. The framework
is described in details in Section 5.2. The framework is built at layer level. Hence, the database
and inference simulator provide layer-wise estimations, which are combined at network-level. A
Specific software is developed to simulate network-level pipeline in VGT, PADS and SPLEAT.
C-HLS architecture does not feature inter-layer pipeline and is thus not concerned.

The framework is applied to the benchmark of Machine Learning datasets mentioned in Section
4.1. It should be noted that this corresponds to 143 layer-wise measurements. Obtaining hardware
measurements would have required 100+ hours of computation using conventional methods. The
framework reduces this duration to a few minutes. In doing so, we provide insights and trends
on the cartography of applications, coding domain and architectural choices. In this document,
explanations focus on OPS-SAT and Spoken Digits datasets for clarity and simplicity purpose, but
all the other results are listed in Appendix .2. Resource estimations are provided in Section 5.3,
power and inference time in Section 5.4 and energy in Section 5.5. When analyzing the results,
the goal will be to find the conditions in which SNNs are preferable over FNNs, and quantify the
savings. Moreover, the energy estimations results are used to validate the SAR energy model in
Section 5.6.

Additionally, it should be noted that all hardware experiments performed in this section have
been made on Xilinx Zedboard. The comparisons between two architectures can be extrapolated
to other board, but the absolute values provided are only valid for this specific hardware target.
Indeed, low-level optimizations and CMOS technology can change from one board to the other
and drastically change the subsequent resource, power and energy estimations.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 79

5.1 Motivations

One of the main goals of this thesis is to provide a cartography of applications, neural coding
domains and parallelism. To do so, the most direct approach would have been to provide direct
hardware measurements on a defined benchmark. Instead, we have chosen to propose a framework
and software for layer-wise estimation. In this section, we provide details on the elements which
motivated this approach.

5.1.1 Speed-up cartography and exploration

As mentioned in the introduction, hardware measurements of a single design requires extended
periods of time for synthesis, post-synthesis simulation and power analysis. Moreover, the number
of parameters involved in our cartography is nearly infinite. For example: the CNN topology, the
initial weight distribution, the threshold of Intergate & Fire neurons, the ∆ value in the Terminate
Delta, the rate encoding frequency ranges... Each combination of parameters requires hours of
work and computation, thus it is unrealistic to provide an exhaustive exploration. A framework
which enables low-level estimations based on high-level information therefore drastically mitigates
the time requires for exploration. In doing so, this work enables to rapidly draw trends in the
cartography. The benchmark presented in this section (and in Appendix .2) would have required
approximately 500 hours of computation alone. Thanks to the framework, results can be obtained
in less than an hour. Moreover, the framework can be used by other students and researchers to
extend the benchmark proposed in this Chapter.

5.1.2 Layer-wise approach

The layer-wise approach of the framework is motivated by three distinct aspects. First, layers are
the basic bloc of feed-forward neural network topologies. Providing layer-wise results for the most
common types (convolution, max-pooling and fully-connected) enables to reconstruct a wide range
of CNN topologies. Second, fully-parallel implementations of large designs such as RadioML 2018
CNN (Table 4.2) often overpass the available resources of the target board (Zedboard). In such
conditions, synthesis duration is largely extended. Moreover, the results are distorted by low-level
optimization, altering generalization of measurements. Performing synthesis at layer-level solves
this issue as designs are smaller. Third and last, the layer-wise approach gives the opportunity to
study the possibilities of hybridization. This feature will be used further in Chapter 6.

5.1.3 Level of parallelism

The four architectures that compose our benchmark are either fully sequential or fully parallel.
Those are only prototypes and a realistic architecture should involve an intermediate level of
parallelism. However, studying the two extremes of the spectrum yields insights on the underlying
trends. More than proposing a real benchmark for the four chosen architecture, the goal is rather to
study the influence of parallelism on the comparison between formal and spiking coding domains.
Moreover, the layer-wise estimations will also provide insights on the tuning of parallelism at layer
level in spiking architectures. Such information lacks in literature and could facilitate the adoption
of spiking technology in industry.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 80

Spike Trace Generator

Hardware
Measurement

Database

Interpolation
API

Spiking
Hardware
Inference
Simulator

Single
Spike

Calculator

N2D2 LOGS

VGT Time

PADS Time

SPLEAT Time

C-HLS Time

C-HLS Power

LAYER #1

Logic usage,
dynamic power,

time, energy

SPLEAT

.

.

.

.

.

.

VGT

.

.

.

C-HLS

.

.

.

Spike
Trace

Logic usage

Raw
Data

PADS Power

SPLEAT Power

PADS Single
Spike Time

SPLEAT Single
Spike Time

FRAMEWORK ESTIMATION REPORT

LAYER #1

Logic usage,
dynamic power,

time, energy

TOTAL

Logic usage,
dynamic power,

time, energy

PADS

CNN
Topology

VGT
High-Level
Simulator

SPLEAT
& PADS

Active
& Idle

Dynamic
Power

VGT Power

Figure 5.1: Overview of the high-level estimation framework

5.2 Framework

In this section, we describe the high-level estimation framework in details. An overview of the
framework is available in Figure 5.1. The structure is divided in three main areas, illustrated in
shades of red, green and blue. Each area corresponds with one section of the framework. The green
section addresses the hardware measurement database. It also involves the python API developed
for interpolation of measurements. The logic resources estimations (LUT, FF, RAM, DSP) for all
architectures are obtained directly after interpolation, as well as VGT dynamic power and C-HLS
power and execution time. The green area will be described in Subsection 5.2.1. The red section
addresses the generation of spike traces from the N2D2 activity logs. It has already been described
in the previous chapter (Section 4.4.1). Finally, the blue section covers the inference simulators.
The role of this area is to compute dynamic power and inference times for spiking accelerators
based on spike traces, active and idle power from the database, and single spike execution times.
The single spike execution times are computed separately (Subsection 5.2.2.3). The hardware
spiking inference simulator is described in Subsection 5.2.3. Additionally, a dedicated high-level
behavioral simulator computes VGT inference times (Subsection 5.2.2.2). It has been developed
to simulate the inter-layer pipeline in this architecture.

5.2.1 Hardware measurements database

We begin by describing the green area of the framework in Figure 5.1. That is, the hardware
measurement database and python interpolation API. In a first time, we describe the structure of
the database i.e. design spaces and the experimental protocol settled for hardware measurements.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 81

Then, we describe and shortly discuss the 3D interpolation of hardware metrics on the design
spaces.

5.2.1.1 Design Spaces & Measurement Campaign

The database should provide information at layer level for each of the four architectures (SPLEAT,
C-HLS, PADS and VGT). There are 3 types of layers: Convolution (CONV), Pooling (POOL)
and Fully-Connected (FC). The database is thus divided in 12 sets, one for each combination of
layer and architecture. Those sets are called “design spaces” in the remaining of this work. We
focus on 2D design spaces, i.e. design spaces that are governed by two parameters. The number
of dimensions of a design space corresponds to the number of considered variables (i.e. hyper-
parameters). In our case, the study is limited to 2D design spaces. The corresponding hyper
parameters are:

• For Convolution layers: Number of filters (Nfil) and width of input (Sin);

• For Pooling layers: Number of input channels (N in
chan) and input width (Nout

chan);

• For Fully-Connected layers: Number of input neurons (N in
neur) and number of output neurons

(Nout
neur).

There are other hyper-parameters such as the number of input channels in convolutions or the
stride in max-poolings. However, each additional dimension multiplies the number of hardware
synthesis required to build the database. Using more than 2D design spaces would imply an
unmanageable amount of time. A preliminary study (which is not detailed here) have shown that
hardware footprint is mostly governed by the two selected hyper-parameters. That is, apart from
the number of input channels in convolution layers (N in

chan). This parameter has as strong influence
that must be taken in account. In a dedicated paragraph at the end of this subsection, we provide
the approximation made to acknowledge this parameter. However, N in

chan is not considered in the
convolution design space, and the approximation is only applied during interpolation.

Each design space is thus defined by the range of its defining variables. For each layer, the
ranges are tuned to cover all layers involved in the CNNs of the benchmark benchmark (Section
4.1.1). It should be noted that the first fully-connected layer (FC1) of RadioML 2018 CNN is not
covered, due to its eccentricity. RadioML-FC1 has 15872 input neurons, where the second largest
layer only has 800. It is thus omitted in all the following results.

• For Convolution layers: Nfil varies from 1 to 50, and Sin from 1 to 128 (128× 128p images);

• For Pooling layers: Nfil varies from 1 to 50, and Sin from 1 to 128;

• For Fully-Connected layers: N in
neur varies from 1 to 800 and Nout

neur varies from 1 to 250.

The other parameters have the following default values:

• For Convolution layers: Filter size is 5×5, Stride is 1 and N in
chan = 1 during the measurement

campaign;

• For Pooling layers: Filter size is 2× 2, Stride is 2 and N in
chan = Nfilters;

• For Fully-Connected layers, there are no other hyper-parameters.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 82

(a) (b)

Figure 5.2: Design space for a) FC layers (30 points), b) Conv & Pool layers (24 points each)

We select a set of points in each design space. 30 for Fully-connected layers, and 24 for
Convolution and Pooling. Those points are the same for each architecture, except for PADS which
does not cover Convolution and Pooling. At each point, we measure the hardware footprint of each
accelerator: PADS, VGT, SPLEAT and C-HLS. The resulting Design Spaces with measurement
points are shown in Figure 5.2a for FC layers and Figure 5.2b for convolution and pooling layers.
The design spaces of convolution and pooling layers are identical.

The synthesis and measurement protocol for each point is the same as described in Section
3.2.1. For a given measurement point, each architecture is configured according to the coordinates
of the point. The four designs are synthesized independently using Vivado Design Suite. A
VHDL testbench is configured for each architecture and used for post-synthesis simulation using
Vivado XSIM. This VHDL testbench contains realistic input stimuli for the layer. Those stimuli
are inspired from previous experiments. During post-synthesis simulation, all signal switches are
logged in a SAIF file (Switching Activity Interchange Format). This file is then used in the Vivado
Power Analyzer to estimate dynamic power consumption. The realistic stimuli in the testbenches
ensure an accurate estimation. Finally, logic resource and power reports are stored in XML format.
This protocol is repeated four times (four architectures) for each of the 78 measurement points.
All the synthesis, post-synthesis simulation, reporting and storage has been automated via bash
and TCL scripts. A bash scripts iterates over all measurement points, and launches a dedicated
TCL script for each. The TCL script opens Vivado, loads source files, performs synthesis and
post-synthesis simulation. Afterward, a TCL command automatically generates and stores power
and resources reports in XML format.

5.2.1.1.1 N in
chan in convolution layers As explained in previous section, N in

chan is not consid-
ered in the design space of convolution layers. In this section, we explain how it is approximated
differently for each architecture.

• PADS is not concerned at it does not feature convolution.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 83

• SPLEAT is event-based, thus the only change is the number of bits required to encode an
event (the channel address is encoded in binary). Preliminary experiments have shown that
the impact of such modification is negligible even for large number of input channels.

• C-HLS is fully-sequential, thus the number of input channels multiplies the execution time
but does not affected resources and power. The number of channels is therefore addressed
later

• In VGT, input channels are processed in parallel. Thus, input channels multiplies the logic
resources and power footprint, but doesn’t affect execution time.

5.2.1.1.2 Idle power usage measurements PADS and SPLEAT are spiking accelerators
which use a sparse temporal information coding. That is, the circuit is in idle state between
two spikes. Consequently, the overall dynamic power usage is computed as a weighted average
of active and idle power consumptions in the spiking hardware inference simulator (Subsection
5.2.3.2). Hence we measure both active and idle power consumption for spiking architecture.
That is, using two distinct testbenches: one with regular input stimuli, and the other with empty
signals.

5.2.1.2 3D interpolation

All the raw results of the aforementioned measurement campaign are available in tables in Ap-
pendix .2. As explained previously, those results are used in estimation through interpolation.
For example, in order to obtain the LUT usage for a PADS FC layer with a given configuration,
all LUT measurements for PADS FC design space are placed on a regular grid and interpolated
using the python Scipy Interpolate library. This mechanism is fully automated through a python
software which retrieves the data in the XML files, performs interpolation and retrieves the result.
The logic resource estimations for all architectures, as well as dynamic power for VGT and C-HLS
are directly obtained through interpolation. For SPLEAT and PADS, inference simulation is re-
quired to obtain accurate estimations based on interpolated active and dynamic power. In this
subsection, we show the 3D surface graphs resulting for interpolation of all measurements. Those
results provide interesting preliminary insights on the design space exploration. For that purpose,
they are presented in three sets of comparisons:

• A comparison between SPLEAT and C-HLS, to visualize the influence of spiking domain on
sequential architectures

• A comparison between PADS and VGT, for the same influence on parallel architectures

• A comparison between SPLEAT and PADS, for the influence of parallelism on spiking domain
in hardware

In this section, we limit our scope to Fully-Connected layers. First because PADS only covers
FC layers, and second because the results are similar for convolution and pooling layers in other
architectures. Moreover, the number of graphs and discussions would be two great covering all
three types of layers.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 84

Look Up Tables Registers (FFs)

HLS

SPLEAT

VGT

PADS

PADS

SPLEAT

Figure 5.3: 3D interpolations of LUTs (left) and FFs (right) for Fully-Connected layers. First
row: SPLEAT (red) vs HLS (blue), second row: PADS (red) vs VGT (blue). Third row: SPLEAT
(red) vs PADS (blue).

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 85

5.2.1.2.1 Look-Up-Tables & Registers The results for LUTs and Registers (Flip-Flops,
FF) are shown in Figure 5.3. LUTs and FFs are the two basic logic elements of the Programmable
Logic. Every design uses some, which is not the case of more specialized elements like RAM or
DSP. Moreover, RAM and DSPs can be synthesized in LUTs and FFs when the dedicated elements
are saturated. Thus, LUTs and Registers usage is a global indicator of FPGA occupation. The
interpolation surfaces for LUTs (left) and FFs (right) are shown as 3D surfaces. The first row
depicts SPLEAT against C-HLS, the second depicts PADS against VGT, and the third SPLEAT
vs PADS.

5.2.1.2.2 Memory & DSPs The 3D surface plots for Block RAM (BRAM) and DSP usage in
Fully-Connected layers are provided in Figure 5.5. RAM and DSPs are specialized logic elements,
in contrast with LUTs and Flip Flops. DSP are used for multiplication-accumulation operations.
Block Memory is used to store data mostly in sequential architectures. As explained in previous
subsection, LUTs and FFs can be used instead of RAM and DSP when such scarce resources are
saturated. This could affect logic occupation and power usage. Thus, those two resources are also
valuable indicators of FPGA occupation.

5.2.1.2.3 Power The power interpolation results are divided in two metrics: active and idle
power usages. Active power corresponds to a situation where the architecture is receiving and
processing input stimuli. On the other hand, idle power corresponds to an architecture in idle
state. Active power is measured for all architectures, but idle power is only considered in spiking
architectures. Indeed, only spiking architecture are susceptible of being in idle state during some
part of processing. The results of interpolation on active power measurement are given in Figure
5.6. The interpolation of idle power on fully-connected spiking layers are given in 5.4. In idle
power figures, active power is also represented for comparison.

The results shows that idle power is very similar to active power in all cases. Thus, the design
does not benefit from the event-based coding in terms of energy consumption. Power-gating or
clock-gating techniques might be used to nullify power usage in idle state. This possibility will be
explored further in outlooks and discussions. The results presented in this section give a global
view resource and power usages in neuromorphic accelerators depending on parallelism and coding
domain. If sequential accelerators might seem more scalable at first, this is not guaranteed for
larger topologies because of RAM saturation. However, SPLEAT demonstrates drastically lower
resource and power usages than PADS on current design spaces. On the other hand, SPLEAT
uses a little more resources and power than C-HLS, although the difference is not significant in
front of the available resources. PADS demonstrate both lower power and resource usage than
VGT across all design space. Moreover, the metrics increases faster for VGT. Thus, PADS is more
scalable than VGT among parallel implementation both in terms of logic resources and power
usage. Finally, idle power in spiking architecture is very close to active power. Thus, no major
power savings should be expected from the asynchronous behavior of PADS and SPLEAT.

5.2.2 Execution time

In this section, we describe how are made estimations of inference time. The method is different
for each architecture.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 86

Idle

Active

SPLEAT PADS

Figure 5.4: 3D interpolations of active and idle power for Fully-Connected layers. Left: SPLEAT,
right: PADS.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 87

HLS

SPLEAT

VGT

PADS

PADS

SPLEAT

Block RAM DSPs

Figure 5.5: 3D interpolations of Block RAM (left) and DSPs (right) for Fully-Connected layers.
First row: SPLEAT (red) vs HLS (blue), second row: PADS (red) vs VGT (blue). Third row:
SPLEAT (red) vs PADS (blue).

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 88

HLS

SPLEAT

VGT

PADS

PADS

SPLEAT

ACTIVE POWER

Figure 5.6: 3D interpolations of Active Power for Fully-Connected layers. First row: SPLEAT
(red) vs HLS (blue), second row: PADS (red) vs VGT (blue). Third row: SPLEAT (red) vs PADS
(blue).

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 89

5.2.2.1 C-HLS inference time interpolation

C-HLS is fully sequential and does not feature inter-layer pipeline. That is, the exeuction time of a
layer only depends on its configuration. Hence, execution time in C-HLS is dealt with as resource
estimations: it is measured at each measurement point in the design spaces, and interpolated
using the same Scipy Interpolate python library. Moreover, the total execution time is the sum of
layer-wise results, as no pipeline is involved.

5.2.2.2 VGT behavioral simulation

VGT features inter-layer pipeline, therefore the behavior of previous layers affects the following
ones. Consequently, the inference time of a layer does not only depend on the configuration
of the layer, but on the configuration of all previous layers. A simple python software is thus
developed for high-level behavioral simulation of VGT. The simulator reproduces the behavior
of VGT layers and inter-layer pipeline without performing the actual computations. It has been
developed by analyzing the VHDL code and studying behavioral simulations of the architecture
in Modelsim software. Moreover, the simulator has been validated on several cases by comparison
with Modelsim behavioral simulations. It is used to provide accurate layer-wise and network
inference time estimations for VGT.

5.2.2.3 Spiking architectures: single spike execution time

In spiking architectures, inference time is estimated using a dedicated spiking inference simulator.
The simulator is based on two elements: the synaptic traces obtained from N2D2 spiking inference,
and the single spike execution time. The simulator will be detailed later in Subsection 5.2.3. In
this paragraph, we provide information on those single spike execution times. That is, the time
required to process a single input spike in either SPLEAT or PADS. In order to obtain equations
that define execution time with respect to layer configuration, the VHDL code of SPLEAT and
PADS is analyzed in depth. The analysis yields to Equations 5.1 and 5.2 for execution times (in
clock cycles) of SPLEAT and PADS respectively.

δtSPLEAT Conv = 4 + (
K

S
)2 ×NK

δtSPLEAT Pool = 1 +K2

δtSPLEAT FC = 3 +Nout

(5.1)

With δt the processing times (in clock cycles) for a single spike, K the kernel size (five for
convolutions, two for max-pooling), S the stride (one for convolutions, two for max-pooling), NK

the number of kernels, and Nout the number of output neurons. For a better understanding of
those equations, more material on SPLEAT is available in [14].

δtPADS FC = 2 + log2(Ninput) (5.2)

With δt the processing time (in clock cycle) for a single spike and Ninput the number of input
neurons. This equation directly illustrates the process of the Generic Neural Processing Unit
(NPU) of PADS shown in Figure 3.4 (Section 3.1.2). Indeed, log2(Ninput) is the depth of the
adder tree in the Generic NPU. The 2 additional clock cycles are caused by the threshold & firing
process.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 90

S
1

S
2

S
3

Time
t
1

t
2

t
3

(a)

Δtt
PADS

δtt
PADS

T
im
e

δtt
CLK

0

(b)

Figure 5.7: a) Simple spike trace example with 4 input synapses and 4 time increments, b)
Illustration of PADS parallel and pipelined process.

The two equations are verified on several measurement points using Modelsim behavioral sim-
ulation before the measurement campaign. Both equations are integrated in python functions to
be used later in the spiking hardware inference simulator (Section 5.2.3).

5.2.3 Spiking hardware inference simulator

In this subsection, we describe the spiking hardware inference simulator used to estimate inference
time and dynamic power usage of spiking architectures. It is based on spike traces derived from
N2D2 synaptic logs, single spike processing times, as well as active and idle power interpolations.

5.2.3.1 Inference time

Inference time estimation in SPLEAT and PADS is based on the same spike trace used by the SAR
estimator in Section 4.4.1. The spike trace is converted from N2D2 format to a unified format.
That is, each layer is associated with an spike trace in the form of a 2D matrix of size N×M. N is
the number of input synapses, and M the number of time increments. Indeed, time is discretized
in increments of one clock cycle (10ns at 100MHz). As a reminder, N2D2 spiking inference is
configured to mimic the spike generation process of the GenCell. Thus N2D2 synaptic activity
effectively represents the real input stimuli of hardware spiking layers, as it involves the exact
same network with identical hyper-parameters. A simple spike trace with 4 output synapses and
4 time increments (i.e. 4 clock cycles) is provided in Figure 5.7a. The inference time estimation
is also based on the single spike processing times (δtPADS) and δtSPLEAT obtained in 5.2.2. The
estimation protocol is different for PADS and SPLEAT, as described below.

5.2.3.1.1 Simulation for PADS PADS is a fully-parallel pipelined architecture, therefore it
is able to receive up to one spike per synapse and per clock cycle. In other words, PADS is able to
process one spike trace column per clock cycle. The pipeline process is illustrated in Figure 5.7b.
In this Figure, δtPADS = 3 clock cycles, i.e. the pipeline is three stage deep. A python simulator

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 91

Time
Δtt

SPLEAT
δtt
SPLEAT

δtt
CLK

0

Figure 5.8: Illustration of SPLEAT sequential process.

is developed to compute execution time based on spike traces derived drom N2D2. Knowing the
values of δtCLK (10ns at 100MHz) and δtPADS (Section 5.2.2), it is able to provide accurate time
estimations from high-level spike trace information.

5.2.3.1.2 Simulation for SPLEAT SPLEAT on the other hand is a highly sequential, with
no intra-layer pipeline. Hence, spikes must be processed one by one. SPLEAT is thus able to
process at most one spike-trace cell per clock cycle. SPLEAT is event-based, thus empty cells are
not processed. The ensuing process is illustrated in Figure 5.8. Like for PADS, a python simulator
is developed to compute inference time based on spike traces, δtCLK and δtSPLEAT values. In the
figure, δtSPLEAT = 3, like in PADS figure

Finally, SPLEAT and PADS are both event-based architectures which feature inter-layer
pipeline. The propagation of spikes in the network is neglected in front of the actual processing
time, thus we consider that all layers are active simultaneously. In consequence the network-
level execution time is computed as the maximum layer-wise execution time in both PADS and
SPLEAT. In other words, the network-wise inference time is the maximum layer-wise inference
time (among all layers of the architecture).

5.2.3.2 Power estimator

In FPGA, power consumption is divided between static and dynamic components. Dynamic power
consumption (PDynamic = P run) is the power consumed by signal switches inherent to the processing
state. Static power consumption is the power consumed by the designed when powered on, but
without any clock or signal input. Static power consumption is composed of the board static
consumption (P empty), and the design static consumption (P idle). This FPGA energy model was
proposed in [105] and illustrated in Figure 5.9a. Moreover, let P Static = P empty+P idle. Experiments
show that P idle is negligible in front of P empty, thus we consider P Static = P empty. The results of
such experiment is illustrated in Figure 5.9b. It shows evolution of dynamic and static power
consumption against FPGA occupation. Static power consumption is not affected by design size,
thus P Static = P empty. Thus, in the model P Static is considered as an offset which depends on the
device. For the Zedboard that is 0.250W.

For formal architectures (VGT and C-HLS), dynamic power consumption depends only on con-
figuration. It is thus directly obtained through interpolation of the power measurements database.
For spiking architectures on the other hand (PADS and SPLEAT), power consumption depends
on active power consumption, idle power consumption and synaptic activity. As a reminder, ac-
tive power consumption corresponds to the Neural Processing Unit (NPU) state when it is busy
processing spikes. Idle power corresponds to the NPU state when awaiting input stimuli. Both
have been measured for SPLEAT and PADS in Section 5.2.1.2.3. Dynamic power estimation is
computed as an average between active and idle state. The python code for inference time esti-

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 92

(a)

%LUT

P
ow

er
 (m

W
)

0

200

400

600

20 40 60 80

STATIC DYNAMIC

(b)

Figure 5.9: a) FPGA power consumption model, b) Dynamic and Static power VS LUT occupation
(%) on Zedboard

mation is reused to count the number of active and idle clock cycles during processing. Like for
inference time, PADS and SPLEAT dynamic power consumption is estimated separately. Based
on an input spike trace, the simulator outputs the proportion of time passed in active (nactive) and
idle (nidle) states, in number of clock cycles. Dynamic power estimation is computed according to
Equation 5.3. It should be noted that nactive + nidle is equal to ∆tPADS or ∆tSPLEAT for PADS or
SPLEAT respectively.

PDynamic =
nactive × P active + nidle × P idle

nactive + nidle

(5.3)

5.3 Ressource estimations

The estimation framework is applied to the benchmark of seven datasets: MNIST, OPS-SAT,
GTSRB, CIFAR-10, Mines VS Rocks, Spoken Digits and RadioML 2018. All raw estimation
results are available in Appendix .2. In this document, we focus on two interesting cases: OPS-
SAT and Spoken Digits tasks. This section is dedicated to the logic resource estimations of the four
accelerators (VGT, PADS, C-HLS and SPLEAT) on the benchmark of datasets. That is Look-Up-
Tables (LUTs), Registers (Flip-Flops, FFs), Block RAMs (RAMs) and Digital Signal Processors
(DSPs) estimations. Before going into further details, a few notation should be introduced to
simplify explanations. The estimations are noted MetricObj

Arch , where:

• Metric is the considered resource (LUT,FF,DSP,RAM),

• Obj is the considered object, it can be a full CNN (MNIST, OPS-SAT...), a sub-part of the
CNN (CL: classification, FE: feature extraction) or a specific layer (C1: first convolution,
P2: second pooling, FC1: first fully-connected),

• Arch is the considered architecture (PADS,VGT,SPLEAT,C-HLS).

Therefore, LUTMNIST
VGT refers to the LUT usage the full MNIST CNN implemented with VGT.

RAMGTSRB-FC2
PADS refers to the RAM usage of the second FC layer of GTSRB implemented with

PADS. Consequently, the ratio between two estimations is noted
MetricObj

Arch

MetricObj
Arch

. It is used to describe

savings or overheads between two architectures.
Moreover, the estimation results discussed through three sets of comparisons: PADS vs. VGT,

SPLEAT vs. C-HLS and SPLEAT vs. PADS. The two main goals of the study are indeed the
comparison of formal and spiking domains and the influence of parallelism on spiking accelerators.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 93

Figure 5.10: Layer-wise LUT estimation in VGT, HLS, PADS and SPLEAT. Top: OPSSAT RGB,
bottom: Spoken Digits

5.3.1 Layer-wise estimation

First, we provide layer-wise resource estimations. Figure 5.10 features the layer-wise LUT usage
for the four architectures on OPS-SAT and Spoken Digits datasets. It should be noted that FF
usage is strongly correlated with LUT usage, thus it is not shown here. The FF usage graph is
available in Appendix .2. Figure 5.11 shows the layer-wise RAM and DSP usage.

Estimations yields that LUTConv
SPLEAT ≈ LUTConv

C-HLS . However, it also shows that LUTPool
SPLEAT

≈ 1.5× LUTPool
C-HLS . Therefore, SPLEAT is not suited to max-pooling layers. The estimations are

coherent with the literature, as transcoding max-pooling layers towards spiking domain is widely
accepted as challenging [106]. In literature, authors propose to incorporate pooling operation in
convolution layers. That is, by using a stride of two [14] or specific synaptic weight matrices [107].
Such a mechanism could thus benefit to spiking CNN hardware implementations. Additionally,
LUTFC

SPLEAT ≈ 2.5 × LUTFC
C-HLS . Thus, SPLEAT uses more LUTs in both Pool and FC layers.

This is explained by low-level differences between SPLEAT and C-HLS. The latter is automati-
cally generated from synthetisable C code. Pragmas ensure the maximum level of multiplexing
during synthesis. SPLEAT on the other hand is designed by hand and does not feature such

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 94

Figure 5.11: Layer-wise RAM and DSP estimation in VGT, HLS, PADS and SPLEAT. Top:
OPSSAT RGB, bottom: Spoken Digits

low-level optimizations. The difference in implementation choices explains the difference between
expectations and estimations. Indeed, the literature reports up to 50% resource savings [88] when
using spiking rather than formal acceleration. Figure 5.11 shows that RAM and DSP usage is
similar in C-HLS in Convolution and FC layers. Similarly to LUT estimations, that is not true for
max-pooling layers. Indeed, C-HLS max-pooling layers mostly use RAM whereas SPLEAT max-
pooling layers mostly use DSPs. In both cases, usage remains very low and is far from reaching
the board capacity.

The comparison between PADS and VGT (FC layers) yields that LUTOPSSAT-FC
PADS

≈ LUTOPSSAT-FC
VGT . However, LUT Spoken-FC1

VGT ≈ 2.5×LUT Spoken-FC1
PADS and 1.2 for FC2. Hence, PADS

enables resource savings over VGT for large layer sizes. This is coherent with the 3D plots of
LUT interpolation surface shown in Figure 5.3 (first column, second raw), which shows that VGT
resource usage increases faster than PADS. The savings offered by PADS are even greater regarding
DSP usage. Indeed, VGT uses a lot of DSPs whereas PADS uses none. In Spoken Digits CNN,
both FC1 and FC2 reach the maximum DSP capacity of the board on their own (Zedboard has 220
DSPs available). The saturation of DSP by VGT is responsible for the LUT overhead observed in
large FC layers. In all, PADS offers 100% reduction of DSP usage which is a critical and scarce
resource in FPGAs, and 2.5 reduction of LUT usage in large FC layers. This is thus an interesting

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 95

Figure 5.12: Comparisons of resource usage in VGT, HLS, PADS and SPLEAT. Left: OPSSAT,
Right: Spoken Digits. Top: Full network, Bottom: Classification Stage

feature for embedded systems in which size is critical.
Lastly, the comparison between PADS and VGT resource estimations yields that SPLEAT

LUT usage is far below that of PADS. This is quite straightforward due to the very different level
of parallelism. Moreover, PADS resource usage strongly depends on layer size. This is not the case
for SPLEAT. Thus, the resource overhead of PADS is greater in larger layers: LUT Spoken-FC1

PADS ≈
1700 × LUT Spoken-FC1

SPLEAT . In the much smaller OPSSAT-FC2 layer, the ratio is only 4. That is,
SPLEAT is preferable over PADS regarding LUT usage. As a counterpart, PADS reduces Block
RAM usage by 100% compared to SPLEAT. However, SPLEAT BRAM usage is negligible in front
of the available resource, so that PADS savings are not significant.

5.3.2 Network-wise estimation

After discussing layer-wise resource results, we propose to compare accelerators at network level.
The results provided in Figure 5.12 are obtained by summing the layer-wise estimations. It should
be noted that effect of DSP and BRAM saturation is not taken in account here. Therefore,
the total DSP and BRAM usage may overpass the board limit in some cases (Zedboard). This
approximation is the same for all architectures, thus the results remain comparable. Improvements
regarding the acknowledgment of DSP and BRAM saturation will be detailed in the outlooks of
this Chapter (Section 5.8).

The top row of Figure 5.12 features the resource usage estimations for full CNNs. PADS does
not cover convolution and pooling layer therefore it does not appear in those results. The bottom
row features resource estimation for the fully-connected stages including PADS. The network-

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 96

wise estimations confirm the conclusions derived from layer-level results. In general, we observe
LUT SPLEAT ≈ 2 × LUTC-HLS . The network wise DSP and Block RAM usage are equivalent in
C-HLS and SPLEAT in both OPS-SAT and Spoken Digits datasets. The classification-stage level
estimations for VGT and PADS also confirms the layer-wise results: PADS offers 50% LUT saving
in Spoken Digits, and 100% DSP savings in both datasets. PADS and VGT feature very similar
low-level implementation choises, except for the coding domain. Hence, those results confirm that
spiking domain provides reliable resource savings in highly parallel architectures, especially for
large network sizes. Lastly, the results also confirm the conclusions derived from the comparison
of SPLEAT and PADS at layer level. That is, SPLEAT uses much fewer resources than PADS,
especially in larger FC layers.

5.3.3 Conclusions

As explained earlier, fully-parallel implementations are unrealistic for state-of-the-art CNN im-
plementations. For simple tasks implying small topologies, high-level of parallelism is however
conceivable. In this context, spiking implementations could bring substantial resource savings.
That is mitigating size and weight in the system. In satellite applications such as OPS-SAT cloud
segmentation [93], small CNNs are sufficient for acceptable accuracy, and size is one of the most
limiting factors. Such application could therefore benefit from spiking highly-parallel implemen-
tations instead of formal ones. The same conclusions can be made for other niches applications,
like object tracking in drones [108] also involves small CNNs and drastic size constraints. Such
applications could also benefit from spiking highly-parallel acceleration. In both cases, one might
expect to reduce LUT usage by 50% and DSP usage by 100%. Thus, smaller FPGAs can be used
for the same task, reducing weight and size of the system. Furthermore, the resource estimations
have confirmed that max-pooling operation is challenging for spiking domain. Indeed, SPLEAT
uses ten times more resources than C-HLS for max-pooling layers. Such layers might be integrated
to convolution operations as proposed in literature [14] [106].

5.4 Inference time and power estimations

In this section, we describe the inference time and power estimations for the four accelerators on
OPS-SAT and Spoken Digits datasets. Like for other results, the estimations for all datasets of the
benchmark are available in Appendix .2. Like for resources, we begin with layer-wise estimations
and give network level results afterwards. The same notations are used: MetricObj

Arch , where Metric
can be either T for time and P for power consumption. Additionally, DP and SP stands for
dynamic and static power respectively. Like for resource results, estimations are discussed by
comparing SPLEAT to C-HLS, PADS to VGT and SPLEAT to PADS. Before going into further
details, the layer-wise and total SAR obtained on OPS-SAT and Spoken Digits are reminded in
Figure 5.13. For OPS-SAT, formal test accuracy is 91.2% and spiking test accuracy is 91.1%
(∆ = 4). For Spoken Digits, formal accuracy is 88.55% and spiking is 87.5% (∆ = 20).

5.4.1 Layer-wise estimation

The layer-wise inference time estimations are depicted in Figures 5.14. For spiking accelerators,
the results are averaged on 100 images. Indeed execution time of spiking accelerators depends on

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 97

(a) (b)

Figure 5.13: Layer-wise and total SAR for a) OPS-SAT (∆ = 4) and b) Spoken Digits (∆ = 20).

synaptic activity, i.e. on the input sample. The estimations are obtained with MinPeriod = 1
timesteps and MaxPeriod = 1000 timesteps.

As expected, C-HLS is much slower than SPLEAT for convolutions and FC layers. C-HLS
convolutions are a hundred to a thousand times slower than SPLEAT. For FC layers, that is three
to a hundred times slower. That is the counterpart of the resource savings brought by the intense
multiplexing of C-HLS architecture. It should be noted that SPLEAT inference time is affected

by SAR. Indeed the ratio of inference time
TConv&FC

C-HLS

TConv&FC
SPLEAT

is greater for layers with low SAR (Figure

5.13). In other words, SPLEAT convolutions and FC are always faster than C-HLS and even more
for low layer-wise SAR. Thus, the estimations confirms that SPLEAT inference time is coherent
with layer-wise SAR. For max-pooling layers, SPLEAT is not always faster: On Spoken Digits,
SPLEAT is three to ten times slower than C-HLS. This observation confirms the incompatibility
of max-pooling operation and spike coding.

The comparison between PADS and VGT yields that PADS is slower than VGT in all studied
layers. In both FC1 layers, PADS is two times slower. In FC2 layers, that is five times. Therefore,
the resource savings of PADS FC layers are made at the expense of inference time. In Figure 5.13,
SAROPSSAT-FC < 1. That is, there are fewer synaptic operations in the SNN than there are in
the FNN. In the light of this metric, one might expect PADS to be faster in OPS-SAT FC layers.
However, the temporal sparsity of spikes is not taken in account in SAR. This sparsity is intrinsic to
rate encoding but strengthen by the Spike Generation Cell design. In consequence, PADS is slower
than VGT even when SAR<1. Moreover, this time the inference time ratios are not consistent with

SAR trends. That is,
TSpoken-FC2

PADS

TSpoken-FC2
VGT

is greater than
TSpoken-FC1

PADS

TSpoken-FC1
VGT

although SARSpoken-FC1 > SARSpoken-FC2 .

That is also caused by the temporal sparsity of spikes, which is non deterministic and not taken
in account by the SAR metric.

The comparison between PADS and SPLEAT yields interesting results to understand the
influence of parallelism on rate-coded SNN accelerators. Indeed, SPLEAT and PADS have similar
inference time for all FC layers except Spoken-FC1. That is surprising, as the parallelism and
pipeline of PADS should enable a drastic speed-up. As shown in Figure 5.13, SARSpoken-FC1 is a
lot higher than in other layers. When SAR is low, SPLEAT is able to process spikes on-the-fly,
i.e. before the next spike arrives. In such condition, the parallelism and pipeline of PADS are
useless, and the two architectures have the same inference time. On the other hand, things changes
for higher SAR since spikes arrive much more frequently or even simultaneously at the input of

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 98

Figure 5.14: Layer-wise execution time (per image) estimation in VGT, HLS, PADS and SPLEAT.
Top: OPSSAT RGB, bottom: Spoken Digits

the layer. Thus, SPLEAT is not able to process spikes as they arrive, hence the observed time
overhead. Under such conditions, the parallelism of PADS is better exploited and the architecture
is much faster than SPLEAT. This observation deeply strengthen the role of the SAR metric:
it can be used to tune parallelism at layer level in spiking architectures. Using lower level of
parallelism when SAR is low can bring substantial resource savings (Section 5.3) without time
overhead.

The layer-wise dynamic power estimations are provided in Figure 5.15. At this stage, only
dynamic power is taken in account. Static power only makes sense at network level: it is related
to the whole design and board. Estimations demonstrates that SPLEAT dynamic power usage
is lower than C-HLS in all layers of both CNNs, except Spoken Digits-FC1. That is, even in
max-pooling layers which caused resource and time overhead. DPSPLEAT is 2 to 4 times lower
than DPC-HLS , except in Spoken Digits FC1 where DPSPLEAT ≈ 2×DPC-HLS . Overall, SPLEAT
provides greater power savings over C-HLS when SAR is low. This is coherent with previous ob-
servations on inference time: a low SAR means that SPLEAT latency is masked by the temporal
sparsity of spikes. In such conditions, SPLEAT is often idle and waiting for inputs. On the other

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 99

Figure 5.15: Layer-wise Power estimation in VGT, HLS, PADS and SPLEAT. Top: OPSSAT
RGB, bottom: Spoken Digits

hand, C-HLS processes pixels without interruption, thus the dynamic power is higher. Addition-
ally, C-HLS power overhead in pooling-layers can be attributed to the Block RAMs. In all, highly
sequential spiking accelerators provides substantial power savings over formal ones. Those savings
are correlated to layer-wise SAR.

The second comparison yields that PADS provides significant dynamic power savings over
VGT. That is, DPPADS is two three times smaller than DPVGT . That is, the time overhead
of highly-parallel spiking accelerators is compensated by dynamic power savings. Moreover, the
power savings are also correlated with SAR. That is, DPVGT

DPPADS
follows the same trend as SAR.

Lastly, the comparison between SPLEAT and PADS confirms the discussions on computation
density. SPLEAT dynamic power usage is drastically lower than PADS as expected from the
parallelism. Moreover, DPPADS

DPSPLEAT
is higher for higher SAR: 60 in Spoken-FC1 (SAR=16) and only

2.3 in OPSSAT-FC2 (SAR=0.8). The computation density explains such results: as explained,
PADS processes spikes in parallel when SAR is high. Such high computation density increases
dynamic power usage, which is visible in the results. This observation strengthen our statement
that the SAR metric is a crucial tool for layer-level tuning of parallelism in spiking accelerators.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 100

Figure 5.16: Comparisons of inference time (per image) and power usage in VGT, HLS, PADS
and SPLEAT. Left: full network, Right: classification stage. Top: time, Bottom: power

In doing so, one is not only able to optimize inference time for resource usage, but also dynamic
power.

5.4.2 Network-wise estimation

After studying layer-wise results, inference time and power estimations are provided at network
level in Figure 5.16.

Network-wise inference time estimations are depicted in the top row of Figure 5.16. Like for
resource results, the figure is divided between full CNN estimations (left) and classification stage
estimations (right). Inference time estimations are discussed first and power will be addressed
after. The comparison of SPLEAT and C-HLS yields that SPLEAT is even faster at network-
level. Indeed, SPLEAT features an inter-layer pipeline whereas C-HLS does not. SPLEAT is
13,000 times faster on OPS-SAT, and 6,500 times on Spoken Digits. The trend is consistent with
SAR and previous observations: SAR is higher in Spoken Digits, thus spike density is higher and
SPLEAT is not able to process all spikes on-the-fly. The comparison between PADS and VGT
are also consistent with layer-wise results. On OPS-SAT PADS classification stage is 1.5 times
slower than VGT. On Spoken Digits that is 4.9 times. Like for sequential architectures, this is
coherent with the SAR metric. Lastly, the comparison of PADS and SPLEAT yields that SAR is
also interesting for tuning parallelism at network-level. Indeed, for OPS-SAT network-level times
are equivalent. For Spoken Digits where SAR is higher, PADS is a hundred time faster. In such
context parallelism is required to mitigate latency in high SAR applications but useless otherwise.

The network-wise power estimations are depicted in the bottom row of Figure 5.16. In contrast

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 101

with layer-wise results, the graphs feature the static power of the Xilinx Zedboard (0.250 W). Like
for time estimations, the network-level power is coherent with aforementioned layer-wise results:
spiking domain enables substantial power savings over formal domain. SPLEAT reduces dynamic
power by a factor two compared to C-HLS, and PADS enables 50% savings over VGT. Is should
be noted that PADS power savings are slightly improved in OPS-SAT, i.e. low SAR. However,
the savings are negligible in front of the common static power offset. That is, the overall power
usage (dynamic+static) will remain unchanged. This is true for FPGA where static power is
high. However, static power is much lower in ASICs. Such systems could therefore highlight the
power savings provided by spiking domain. Lastly, the comparison between PADS and SPLEAT
is consistent with the layer-level discussions: SAR is higher in Spoken Digits, thus computation
density in PADS is higher. That explains the increased power consumption difference in Spoken
Digits. However, the differences are also negligible in front of static power.

5.4.3 Conclusions

The study of time and power estimations yields several strong conclusions. The layer-wise results
confirmed that max-pooling layers are challenging for spiking domain. SPLEAT max-pooling layers
indeed suffer severe latency overhead compared to C-HLS when SAR is high. That is, despite the
higher level of multiplexing found in C-HLS architecture. However, SPLEAT is much faster than
C-HLS overall (factor 6500 to 13000), all while reducing dynamic power usage by a factor two. The
differences in processing time is mostly due to low-level implementation choices, and the power
savings are small in front of the static power offset, which mitigates the proposed results. On the
other hand, PADS is slower than VGT (factor 1.5 to 5) due to the temporal sparsity of spikes.
This temporal sparsity is intrinsic to rate encoding, but increased by the current sequential spike
generation process. Reducing spike temporal sparsity is therefore crucial to compete with highly
parallel formal accelerators. Such improvement will be detailed in the outlooks of this chapter.
Regarding power, PADS also provides savings which are small in front of the static power offset.

Moreover, the results discussed in this section strengthen the role of the SAR metric. Indeed, it
can be used to tune parallelism at both layer and network-level. That is, high level of parallelism
should be used to mitigate timing when SAR is high. Otherwise, parallelism is useless and does
not provide speed-up. For example, using SPLEAT instead of PADS in OPSSAT Classification
stage does not imply latency overhead, but provide 90% savings in resource and dynamic power.
Realistic architectures should feature intermediate level of parallelism, which can be tuned using
SAR. Further work should be undertaken to quantify the relation between SAR and parallelism
in spiking accelerators.

5.5 Energy estimations

Finally, timing and power are combined to provide energy estimations (E = P × ∆T). In this
section, we proceed like for other estimations: layer-wise estimations are addressed first, followed
by network-level results. Energy is widely accepted as the most important and universal limiting
factor for embedded systems. The results of this section are thus crucial for the cartography of
applications and neural coding domains. In this section, the same notations are used to simplify
explanations. The estimations are noted EObj

Arch , where E stands for energy consumption. It should
be noted that static power is taken in account in network-wise energy estimations, but not in
layer-wise.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 102

Figure 5.17: Layer-wise energy estimation (per image) in VGT, HLS, PADS and SPLEAT. Top:
OPSSAT RGB, bottom: Spoken Digits

5.5.1 Layer-wise estimation

Layer-wise energy estimations for VGT, C-HLS, PADS and SPLEAT on OPS-SAT (above) and
Spoken Digits (below) datasets are provided in Figure 5.17. The comparison of SPLEAT and C-
HLS yields that the first provide drastic power savings in Conv and FC layers. That is, EConv

SPLEAT

is forty to two thousand times lower than EConv
C-HLS . In FC layers, energy is reduced by a factor 2

to 200. Moreover, SPLEAT energy savings are higher for low layer-wise SAR. That is,
EConv & FC

SPLEAT

EConv & FC
C-HLS

is loosely proportional to the layer-wise SAR. On the other hand, pooling layers imply an en-
ergy consumption overhead in Spoken Digits CNN. Thus, the power savings observed in SPLEAT
pooling layers over VGT are not significant enough to compensate the latency overhead. Those es-
timations confirm that max-pooling layers should be avoided in spiking architectures, particularly
when SAR is high.

In highly parallel architectures, the layer-wise energy savings provided by PADS is less straight-
forward. According to Figure 5.17, PADS and VGT have nearly identical energy consumption in
FC1OPS-SAT. In FC2OPS-SAT, PADS uses 2 times more energy than VGT. Hence PADS does

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 103

Figure 5.18: Comparisons of energy consumption per image in VGT, HLS, PADS and SPLEAT.
Left: full network, Right: classification stage. Top: power, Bottom: timing

not provide reliable-energy savings over VGT despite the low layer-wise SAR measured in OPS-
SAT. In Spoken Digits, E Spoken-FC1

PADS is 20% lower than E Spoken-FC1
VGT , whereas E Spoken-FC2

PADS is three
times higher than E Spoken-FC2

VGT . More than a confirmation that PADS does not provide reliable
energy savings at layer-level, this second result is incoherent with SAR measurements. That is,

SARSpoken−FC1 > SARSpoken−FC2, but
ESpoken-FC1

PADS

ESpoken-FC1
VGT

<
ESpoken-FC2

PADS

ESpoken-FC2
VGT

. Therefore, the SAR is not correlated

to layer-wise energy ratios in highly-parallel architectures.
Lastly, the layer-wise comparison of PADS and SPLEAT yields that the first is only preferable

to the second when SAR is high, in terms of energy consumption. When SAR is low (OPSSAT-
FC1&FC2 and Spoken-FC1), SPLEAT consumes 2.3 to 9 times fewer energy than PADS. On
Spoken-FC2 on the other hand (high SAR), SPLEAT consumes 2.3 times more energy than PADS.
This observation confirms the role of SAR in determining parallelism at layer-level for resource,
time, power and energy optimization.

5.5.2 Network-wise estimation

The network-level estimations are provided in Figure 5.18. Like for previous estimation metrics,
the results are split between full-network (top) and classification stage (bottom). The comparison
between C-HLS and SPLEAT confirms that the latter provides drastic energy savings over the
first. That is, EOPSSAT

HLS ≈ 1000×EOPSSAT
SPLEAT and E Spoken

HLS ≈ 25×E Spoken
SPLEAT. Those ratios are consistent

with the network-level SAR measurements (0.4 in OPS-SAT and 8.3 in Spoken-Digits). That is,
SPLEAT advantage is greater for low SAR.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 104

In the field of highly parallel architectures, PADS uses more energy than VGT in both datasets.
More precisely EOPSSAT

PADS ≈ 1.3 × EOPSSAT
VGT and E Spoken

PADS ≈ 3 × E Spoken
VGT . Those ratios are consistent

with the network-wise SAR, and indicates that PADS energy overhead is mitigated for low SAR.
That is, the estimations confirm our hypothesis that spiking domain is better adapted to low
SAR. The energy overhead is due to the inference time overhead in PADS, which is caused by
the temporal sparsity of spike encoding. Hence, reducing temporal sparsity of spike encoding is
crucial to compete with formal implementation in terms of energy. Moreover, those results are
not consistent with the expected cartography based on SAR study (Section 4.4). The correlation
between estimation-based cartography and SAR-based cartography will be discussed in details in
Section 5.6, for both high and low level of parallelism.

Finally, the comparison between PADS and SPLEAT confirms the role of SAR in tailoring par-
allelism for spiking implementations. Indeed, SPLEAT uses fewer energy than PADS on OPSSAT
where SAR is low (10%), but more on Spoken Digits where SAR is high (17 times more). That
is, it is preferable to use SPLEAT than PADS on OPSSAT. That is not only for the slight energy
savings but also for the drastic resource savings provided by SPLEAT over PADS. On the other
hand, when SAR is high like in Spoken Digits, higher level is necessary to mitigate latency and
energy.

5.5.3 Conclusions on energy estimations

Energy is widely accepted as the most limiting factor for embedded systems. The conclusions
derived from the energy estimations are thus crucial for the cartography of applications and coding
domains. The network-level estimations have shown that SPLEAT provides drastic energy savings
over C-HLS, regardless of SAR. However, SPLEAT is even more advantageous for low SAR. In
such conditions, energy consumption is reduced by a factor 1000. However, the conclusions are
mitigated by the difference of low-level implementation in the two sequential architectures. The
comparison is not exactly made with all other things equal, thus the savings might also come
from architectural choices. Further experiments should be undertaken with more comparable
sequential accelerators to confirm our findings. On the other hand, VGT and PADS are much
more similar to each other, increasing our confidence in the following results. That is, PADS uses
1.3 to 3 times more energy than VGT on OPSSAT and Spoken Digits respectively. This overhead
is caused by the temporal sparsity of spikes, due to the rate-encoding itself but also to the Spike
Generation Cell implementation. This issue should be addressed urgently to leverage spiking
domain energy benefits. For both datasets, the SAR-based cartography proposed in Section 4.4 is
partially contradicted by energy estimations. This issue will be addressed in the following section
(5.6).

Concerning layer-wise estimations, the results confirmed that max-pooling layers are challeng-
ing for SNNs, and must be avoided in spiking hardware implementations. That is, by using higher
strides in convolution as proposed in the literature [14] [106]. Moreover, the results confirmed the
role of SAR in tailoring parallelism, whether at layer or network level. Indeed, the highly parallel
design of PADS is underused in low SAR cases, which creates unnecessary resource and power
overhead without reducing inference time. On the other hand, parallelism is necessary to mitigate
latency when SAR is high.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 105

MNIST OPSSAT

GTSRB CIFAR-10

MVRocks Spoken Digits

RadioML

Figure 5.19: Confrontation of SAR model and energy estimations for 7 datasets of the benchmark:
MNIST, OPSSAT, GTSRB, CIFAR-10, Mines VS Rocks, Spoken Digits and RadioML 2018. Val-
idation is made separately for parallel and sequential architectures. Each subfigure is divided
between SAR & λ values (top) and energy estimations (bottom).

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 106

5.6 Validation of the SAR model

One of the goals of this chapter is also to confront the SAR energy model with energy estimations.
In doing so, the goal is to evaluate the reliability of the metric, and its usability. More specifically,
SAR does not take low-level implementation choices into account such as parallelism or pipeline.
As a reminder, the SAR energy model intends to determine whether an application is suitable
to spiking acceleration. It is interpreted as a ratio of energy consumption (modulo a constant λ)
between equivalent formal and spiking applications. The model is reminded in Equation 5.4.

SAR =
ESNN

EFNN

× λ,

λ =
EMAC

EACC

(5.4)

Where ESNN and EFNN are the energy consumption of equivalent spiking and formal accelera-
tors, and EMAC and EACC are the energy consumption of MAC and ACC accelerators. The value
of λ depends on the device and on the number of MACs in the formal design, as explained in
Section 4.3.2 (Equation 4.8). In this case, λ is computed for the Xilinx Zedboard (Zynq-7020).
It depends on the design, thus it is computed for each task of the benchmark separately with
parallel (PADS/VGT) and sequential (SPLEAT/C-HLS) architectures. According to the model,
spiking domain enables energy savings when SAR> λ and vice versa. The SAR and λ values are
shown alongside energy estimations in Figure 5.19. To allow comparison with PADS, all results
are limited to the classification stage. The full-network comparisons for SPLEAT and C-HLS are
shown in Appendix .2.

In the Figure, cases where the SAR model is correlated with energy estimations are marked
with a green tick. Otherwise, graphs are marked with a red cross. For parallel implementations, the
SAR model is accurate in five cases out of seven. For sequential implementations on the other hand,
the model is wrong in five cases out of seven. A simple explanation can be given for this difference.
PADS and VGT have very similar implementations (i.e. same level of parallelism and same intra
and inter-layer pipeline). On the other hand, we have already explained the low-level differences
between SPLEAT and C-HLS. The SAR model is made to compare equivalent architectures thus
it is not fully adapted for C-HLS and SPLEAT. Thus, the SAR-based cartography is sensitive to
low-level implementation differences.

On the other hand the model is more accurate for the comparison of VGT and PADS. The
model still fails in two cases: MNIST and OPSSAT. There are three points which explain the
incorrectness of the model on those two cases. First, energy ratio between PADS and VGT is
smaller in MNIST and OPSSAT than in other tasks. Hence, the difference of energy consumption
might fall within the margin of error of our model. Second, the SAR model does not acknowledge
the temporal sparsity of spikes. The sparsity has a strong influence on inference time and therefore
energy consumption, which is not represented in the SAR model. Those two first explanations will
serve for future improvements of the SAR model. Third, the SAR model is based on the design
activity (i.e. dynamic power) and neglects the static component. In FPGAs, static power is high
and often represents in a significant proportion of the overall power usage. In ASICs on the other
hand, the static component is much less significant. In all, the SAR model seems better suited
to ASIC implementation than FPGAs. Figure 5.20 shows the energy estimations for MNIST and
OPS-SAT when neglecting the static power consumption. In this context, the model is more
accurate: the prediction becomes valid for OPSSAT, but still fails on MNIST.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 107

MNIST OPS-SAT

Figure 5.20: SAR and energy estimations without static power consumption, on MNIST (∆ = 20)
and OPSSAT(∆ = 4)

Lastly, it should be noted that all results were obtained with ∆ = 20. That is to ensure
the best accuracy, at the expanse of synaptic activity. Indeed the goal of this section is not to
provide an energy benchmark for SNN and FNN but rather to validate the SAR model. In Section
4.2, we have shown that SAR increases with ∆. This parameter could be fine-tuned to obtain
the best compromise between accuracy and SAR. For example the energy estimation fro VGT
and PADS on MNIST with ∆ = 5 is provided in Figure 5.21a. In this case, the SAR model is
valid, and PADS consumes fewer energy than VGT. The counterpart is a loss of SNN accuracy
(98.74% to 97.9%). This observation confirms that tuning ∆ leverages the trade-off between
energy consumption and performance in rate-coded hardware SNNs. Moreover, the figure shows
that PADS provides substantial energy saving over VGT in Mines Versus Rocks. Our intuition is
that the small size of input (i.e. small timestep length in the spike generation process) enables
inference time savings and thus energy savings.

5.7 Conclusion

In this chapter, a framework for hardware-footprint estimation of neuromorphic accelerators was
provided. The framework covers wide range of layer sizes for 4 different architectures: PADS
and SPLEAT for spiking domain, VGT and C-HLS for formal domain. SPLEAT and C-HLS
are highly sequential while VGT and PADS are highly parallel. The framework is based on an
hardware measurement campaign, design space interpolation and estimation of inference time and
power. In doing so, the framework drastically facilitates the cartography of applications, neural
coding domain and level of parallelism. Indeed, the results presented in this section would have
required hundreds of hours of synthesis and simulation. Thanks to the framework, such results
are obtained in a few minutes.

The framework was applied to Spoken Digits and OPSSAT datasets. Energy is the most com-
monly limiting factor in embedded systems, thus it is the main metric used for cartography. In this
context, the suitability of spiking domain is not straightforward. SPLEAT provided substantial

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 108

MNIST (Δ=5)Δ=5))

(a)

MNIST (Δ=20 + DSP correction)Δ=20 + DSP correction)

(b)

Figure 5.21: SAR and energy estimations for MNIST with ∆ = 5 (left) and MNIST with ∆ = 20
after applying the DSP saturation correction (right)

energy savings over C-HLS (up to a factor 1000), but the architectures have different low-level
implementations. Therefore, the generalization of conclusions is mitigated. On the other hand,
PADS and VGT have very similar implementations and the comparison is more reliable. In such
conditions, spiking domain is responsible for increasing energy consumption by a factor 1.3 on
OPSSAT and 3 on Spoken Digits. However, further experiments have shown that PADS could
bring energy savings for very low SAR, like on MNIST with ∆ = 5. However, the current SAR-
based cartography under-estimates PADS energy consumption and is inconsistent with energy
estimations. Methods to improve the reliability of the SAR-based cartography will be discussed
in the outlooks of this chapter. Moreover, PADS reduces energy consumption by a factor 3.3 in
Mines Versus Rocks, despite the SAR predictions. That is thanks to the small size of Mines Ver-
sus Rocks samples, which reduces the timestep of the spike generation process in turns reducing
inference time and energy consumption. Hence, spiking domain is also adapted to datasets with
small samples. In all, the energy overhead of PADS is due to the temporal sparsity of spikes in
the current spike encoding. Reducing the temporal sparsity of spikes is thus crucial in order to
compete with formal architectures regarding inference time and energy consumption.

However, there are some applications where energy is not the only limiting factor. In drones
and satellite applications for example, size is crucial. In solar-powered systems on the other hand,
power consumption is the most limiting aspect. Spiking applications could therefore be suited
to such applications, as it enables reliable resource and power savings over formal domain. That
is, PADS reduces the LUT usage by 50% and DSP usage by 100%, while providing 50% savings
in dynamic power. In applications such as on-board satellite cloud segmentation use-case [93]
(Section 6.2.2) or object-tracking in drones [108], spiking domain should be preferred over formal
inference.

Additionally, the comparison of SPLEAT and PADS yields that high level of parallelism does
not always provide speed-up in spiking domain. That is, for low SAR, PADS did not reduce
inference time over SPLEAT, both at layer and network level. In such conditions, using lower level

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 109

Table 5.1: Dynamic power consumption in PADS with and without power gating, on the bench-
mark of datasets. VGT dynamic power usage is shown for comparison. Results are shown for
the classification stage (FC layers) only. The results have been obtained through the estimation
framework, for ∆ = 20 (best accuracy).

Classification
Stage

Dynamic Power (mW)
PADS
No PG

PADS
PG

VGT

OPSSAT 0.07 0.03 0.15
MNIST 0.97 0.57 2.07
GTSRB 4.04 2.07 12.4

CIFAR-10 0.08 0.02 0.19
MVR 1.07 1.05 1.26

Spoken Digits 1.53 0.98 3.32

of parallelism brings drastic resource and power savings (up to 90%) without increasing inference
time. Furthermore, PADS and SPLEAT are both prototypes with extreme level of parallelism.
An accomplished accelerator should involve an intermediate level of parallelism, possibly different
from one layer to the other. In this context, SAR can be used to tune parallelism at both layer
and network level. Such possibility will be investigated further in the outlooks.

5.7.0.0.1 Discussions on power usage In this chapter, we have seen that the power savings
provided by spiking domain could be penalized in two ways:

• First, a large part of the dynamic power usage in FPGA systems is due to clock signals.
The clocks still use power when the design is in idle state, i.e. waiting input spikes. Hence,
idle states and active states are equivalent in terms of dynamic power consumption. The
Neural Processing Units of PADS are often in such idle state due to the high temporal
sparsity of spike encoding. That is the intrinsic sparsity of rate-encoding coupled with the
sequential Spike Generation Cell. Therefore, the dynamic power savings brought by the
simpler computation are over-compensated by the consumption of idle state.

• Second, power consumption has two components: dynamic power usage mentioned above,
and static power consumption. If the dynamic power usage is related to the intrinsic signal
toggles in the design, the static power can be considered as an offset depending on the device.
For FPGAs, the static component stands for a large part of the overall power consumptions
(approximately 25% in a Zedboard at 100% occupation, in average). In turns, the power
savings are often not significant in front of the static power offset for FPGA targets. That is
even more true with small designs that occupies small portions of the programmable logic.
In such conditions, the dynamic power savings are not visible at system level.

In order to simulate the the effect of a strong power gating on spiking architecture, idle power
consumption is set to 0 in our estimation framework. This approach neglects the cost of the
additional hardware required to manage clock-gating, but it still provides a good estimation of the
potential gains. The results on a few datasets are shown in Table 5.1 for information. Hence, this
preliminary experiments show that spiking accelerator could indeed mitigate the temporal sparsity
of spikes through a power-gated implementations. Such feature should be studied in further work.

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 110

On the other hand, a good solution to enhance the power savings of neuromorphic circuits is
to address target with lower static-to-dynamic power consumption ratio. For example, ASIC tech-
nology demonstrates much lower static power consumptions than FPGAs for equivalent designs.
This technology was not available during the PhD thesis, but it should be addressed in further
work, possibly at simulation level. Moreover, addressing ASICs instead of FPGA is a much easier
task for our estimation approach. If FPGAs have limited resources which creates side-effect during
synthesis, this is not so much the case with ASICs. Therefore, such devices seem better suited for
our estimation framework approach and this possibility should be studied further.

In all, addressing both of those issues to enhance the power savings of spiking accelerators
could in turn leverage the expected energy savings.

5.8 Outlooks

In this section, we provide some outlooks on the future improvement of the work presented in this
section.

5.8.1 Improvement of the SAR metric

As shown in the previous section, the SAR metric is not always able to predict which coding
domain is preferable in terms of energy consumption. In highly-parallel accelerators (PADS and
VGT) that is because the SAR metric does not take spike sparsity into account. To cope with
this issue, the SAR metric should be improved by multiplying the result by a variable representing
spike sparsity as described in Equation 5.5.

ESNN

EFNN

= (
SAR

λ
)× γ (5.5)

Where γ is the sparsity factor. A possibility would be to set γ to the average time between two
consecutive input spikes. Such model should be tested and validated experimentally in further
work.

5.8.2 Improvement of the estimation framework

Other sources of error lies in the energy estimation framework. First, the saturation of DSP is
taken in account in the SAR model, but not in the network-wise estimations. Indeed, the sum
of layer-wise DSP usage often overpasses the limit of the synthesis target (Zedboard). This could
cause inconsistency between the SAR model and energy estimations. To cope with this issue,
the saturation of DSPs can be approximated using the Table 4.4 of Section 4.3.2. Indeed, this
table shows the hardware cost (resource, power and energy) for a MAC acceleration implemented
with and without DSP. Hence, the exceeding DSPs can be converted in LUTs and Registers, and
the energy consumption corrected accordingly. Such work has been done on MNIST (∆ = 20) as
shown in Figure 5.21b. The correction does reduce the error margin, but the SAR-based estimation
remains incorrect.

Another way to cope with the issue could be to use ASIC estimations instead of FPGA. Such
designs are not affected by such resource saturation, thus no correction is required. Moreover, the
FPGA synthesis tool (Vivado) used to obtain all results performs low-level optimizations depending
on the board limitations. Such mechanisms could affect the consistency and generalization of the

CHAPTER 5. HARDWARE FOOTPRINT AND HIGH-LEVEL ESTIMATIONS 111

estimations. Targeting ASIC rather than FPGA could also avoid such concerns. Additionally,
the static power consumption in FPGAs is high and often masks the energy savings provided by
spiking domain. In ASICs, the static component is much smaller in front of dynamic power usage.
As power savings are made on the dynamic component, ASIC technology could highlight the
energy benefits of spiking domain. The estimator will be adapted to ASIC technology in further
work.

Additionally, C-HLS should be replaced by an architecture closer to SPLEAT in terms of low-
level implementation choices. For example, a more relevant formal sequential architecture should
have the same inter-layer pipeline as SPLEAT, and the same intra-layer level of parallelism. In
doing so, the comparison of SAR predictions and energy estimations will gain relevance.

5.8.3 Studying the level of parallelism

Lastly, this work demonstrated that PADS did not reduce latency compared to SPLEAT when
SAR is low. That is, such high level of parallelism is not necessary to sustain the actual density of
computation. SPLEAT and PADS are two prototypes which feature two opposed extreme levels
of parallelism, but a realistic architecture must involve an intermediate level of parallelism. The
goal is to find the lowest possible level of parallelism that does not affect inference time. For
example, by using several SPLEAT Neural Processing Unit per layer. In doing so, the quantity
of allocated resources and power is strictly adapted to the density of spikes. In further work, an
analytic model should be constructed to study this optimal point. SPLEAT will also be adapted
to feature intermediate level of parallelism.

5.8.4 Hybridization and other spike encoding methods

This study also brought several insights and perspectives for the remaining of this work. First,
coding domain should be tailored to SAR at layer level. For example in Spoken Digits, spiking
domain is preferable in FC1 but not in FC2 (in terms of energy consumption). In the light of
those observations, using spiking domain on one layer and formal domain on the other could bring
the best from both worlds to a same topology. In the next chapter of this thesis (Chapter 6), such
concept will be investigated and applied to OPS-SAT and Spoken Digits dataset.

Moreover, temporal sparsity of spikes in the current encoding technique is responsible for the
energy overhead in the studied neuromorphic implementations. Hence, reducing temporal sparsity
is a crucial issue that must be tackled. Two possibilities arises. First, the temporal sparsity
depends on the timestep length in the Spike Generation Cell. This timestep is proportional to the
input size. In Chapter 3, down-sampling the input resulted in a loss of information that increased
inference time and lowered accuracy. Hybridization could cope with this issue, as spike encoding
can be made on intermediate activation (i.e. between two layers rather than at the input). Indeed,
the size of deep layers are often lower than the size of samples. Second, the temporal sparsity
is also intrinsic to rate-based SNNs, as information is encoded through time. In Chapter 7, we
investigate a novel type of SNN with lower temporal sparsity and constrained number of timesteps.
In the current rate-based SNN model, inference time is not deterministic and drastically vary from
one image to the other (up to a factor ten). This could cause timing violation issues for integration
in a system. The constrained number of timesteps used for spike encoding in Chapter 7 solves
this issue that was let aside in our previous discussions.

Chapter 6

Neural coding domain hybridization

Chapter contents

6.1 Motivations . 113
6.1.1 SAR and footprint variability . 113
6.1.2 Distribution of activity . 115
6.1.3 Formal convolutions and spiking classification 116

6.2 Estimations on hybrid architectures . 116
6.2.1 Methodology . 116
6.2.2 OPS-SAT . 117
6.2.3 Spoken Digits . 120
6.2.4 Discussions on hybrid estimations . 122

6.3 Hybrid hardware implementation . 123
6.3.1 Context . 124
6.3.2 VGT-PADS Hybrid Architecture . 124

6.4 Conclusion . 127
6.4.1 Outlook . 128

112

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 113

The idea of tailoring the coding domain at layer level has been mentioned several times in this
document. Rather than using a fully-formal or fully-spiking accelerator, the inter-layer variability
of SAR and hardware footprint estimation suggests that hybridization could bring benefits and
mitigate drawbacks from both worlds. Therefore we propose a novel approach for neuromorphic
systems: hybrid acceleration. i.e. a combination of formal and spiking accelerators. In this
chapter, we focus on a specific type of hybridization:

• Formal feature extraction stage (Convolution & Pooling) for example with VGT,

• Transcoding of feature-maps achieved with the Spike Generation Cell of PADS 3.

• Spiking classification stage (Fully-connected) for example using SPLEAT or PADS Neural
Processing Units

First, we introduce the motivations that led to the development of neural coding hybridization.
This concept is applied to OPS-SAT and Spoken Digit datasets. We use the estimation framework
described in Chapter 5 to estimate energy consumptions on VGT-PADS and VGT-SPLEAT hybrid
architectures. For comparison, results for VGT and SPLEAT architectures are also provided. In
doing so, the aim of hybridization is to benefit from the low power and logic usage of spiking
accelerators, while mitigating their intrinsic time overhead. Third and last, a prototype of VGT-
PADS hybrid accelerator for OPS-SAT cloud segmentation task is proposed. This architecture is
embedded on-board OPS-SAT satellite for in-flight testing. The hardware measurement, inference
time and power usages obtained in real conditions are confronted to the estimations.

6.1 Motivations

In this section, we provide a list of elements which motivated the hybridization approach. Each
of the following subsections is dedicated to one particular motivation.

6.1.1 SAR and footprint variability

Results of Chapters 4 and 5 have shown that SAR and energy estimations varied drastically from
one layer to another within a same spiking-CNN. As a result, some layers of a model might be
suited to spiking acceleration while others are not. This is the case in Spoken Digits (∆ = 20)
as reminded in Figure 6.3, where only fully-connected layers have SAR below λ. As explained
previously, λ is a value specific to the target (Zedboard) and design which represents the ratio
of energy consumption between a MAC and an ACC operation (see 4.3.2). Using spiking coding
domain in the classification stage (FC layers) of Spoken Digits might thus bring energy savings
locally in the architecture.

6.1.1.1 Input size and loss of information

The influence of the spatial resolution of input data was measured in Section 3.2.3. As explained
in Chapter 3 (Section 3.1.1), the temporal sparsity of spike encoding depends on input size. More
precisely, the time increment of the spike encoding process (timestep) is equivalent to the sample
size in clock cycles. For OPS-SAT, that is 28 × 28 × 3 = 2352 clock cycles (23520 ns). Thus,
down-sampling input size was expected to increase the input spike rate through decreasing the
GenCell timestep. However, the opposite was observed and down-sampling input size resulted in an

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 114

OPS-SAT Spoken Digits

Figure 6.1: Activity distribution in CNN layers for OPSSAT (left) and Spoken Digits (right)

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 115

Table 6.1: CNN topologies for a) OPS-SAT and b) Spoken Digits datasets.

(a)

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (28,28,3)
1 Conv 3 5 1 (24,24,3)
2 MaxPool 3 2 2 (12,12,3)
3 Conv 5 5 1 (8,8,5)
4 MaxPool 5 2 2 (4,4,5)
5 FC 10
6 FC 2

(b)

Layer Type # Kernels Kernel size Stride Output Shape

0 Input (507,1)
1 Conv 3 5 1 (503,3)
2 MaxPool 3 2 2 (252,3)
3 Conv 5 5 1 (248,5)
4 MaxPool 5 2 2 (124,5)
6 Conv 5 5 1 (120,5)
7 MaxPool 5 2 2 (60,5)
8 FC 100
9 FC 10

Intensity

P
er

io
d

(fs
)

1,00E+07

1,00E+08

1,00E+09

1,00E+10

1,00E+11

0 50 100 150 200 250

Figure 6.2: Spike train period with respect to element intensity according to the rate-coding policy,
with PeriodMax = 1timestep and PeriodMax = 100timesteps

extended processing time and lower accuracy. That is because of the arbitrary loss of information
caused by down-sampling. The idea behind hybridization is thus to use the first layers of a CNN as
a pre-processing for down-sampling without loss of information. Indeed, deeper layer activations
often have lower resolution than the input sample. That is the case for FC1 in both OPS-SAT
and Spoken Digits CNN topologies 6.1. In doing so, we hope to reduce the spike temporal sparsity
and therefore reduce inference time.

6.1.2 Distribution of activity

In Chapter 4 (Section 4.4.3), we have shown that data distribution in vector datasets was not
suited to the current rate-encoding policy. As a reminder, the rate-encoding rule is pictured in
Figure 6.2: the graph shows that rate-coding policy discriminates pixels with very low intensity
from others. Therefore, narrow data distribution such as that of Spoken Digits samples are poorly
represented by the rate encoding policy. On the other hand, the distribution of intermediate ac-
tivation are depicted in Figure 6.1 for each layer of OPS-SAT and Spoken Digits CNNs (Pooling
layers have no influence on activity distribution, thus they are not represented). The CNN topolo-
gies are described in Table 6.1. In the following, we refer to the output of the feature extraction
stage as ”latent representation”, a common use in Machine Learning. In Figure6.1, the latent
representation (Conv2 for OPS-SAT and Conv3 for Spoken Digits) have sparse distributions, with

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 116

a lot of pixels with very low intensity. This distribution thus appears to be much more adapted
to the rate-encoding policy than the input samples. As explained in section 4.4.3, a better spike-
encoding should result in a more efficient processing, i.e. less spikes are needed for classification.
In turns, this is expected to reduce SAR and in turns inference time and energy consumption of
spiking accelerators.

6.1.3 Formal convolutions and spiking classification

Moreover, it should be noted that this work focuses on a specific hybridization scheme where
the feature extraction stage operates in formal domain and classification stage in spiking domain.
There are a lot of different possibilities of hybridization and our specific approach relies in three
elements: First, the number of successive transcoding (passing from one coding domain to another)
must not be too great, as encoding and decoding spiking information requires specific hardware
which counter-balance the resource and power savings of spiking accelerators. Therefore, we limit
our approach to two successive coding domains. Second, a spike encoding module was already
developed earlier in the thesis (GenCell), whereas the spike decoding module must be developed
from scratch. Indeed, the current Terminate Delta Module only works for categorical classification
and cannot provide accurate decoding. Therefore, we concentrate on one single type of transcoding:
formal towards spikes. Third and last PADS (which has been developed during this thesis: Chapter
3) only covers spiking fully-connected layers in its current development state, thus it is only able
to replace the classification stage for hybridization.

6.2 Estimations on hybrid architectures

In this section, we apply the estimation framework to hybrid architectures on OPS-SAT and Spo-
ken Digits dataset. Such hybrid estimation requires a specific method described in the following.

6.2.1 Methodology

The hybridization approach involves a few differences with the estimations provided in Chapter 5.
Indeed, the inference time and dynamic power estimations for the hybrid architectures cannot be
made on the original N2D2 activity logs. Indeed, spiking activity is influenced by hybridization,
such as a reduction of temporal sparsity as explained in the motivations. This difference must
be taken in account as it is one of the major appeal of hybridization: reducing spike encoding
temporal sparsity enables to decrease inference time and therefore reduce energy consumption.
For each task, the fully-connected stage must be tested in spiking domain separately on a new
dataset of latent representation. To do so, we build a dataset of OPS-SAT latent representation
and perform spiking inference test using N2D2. The spike encoding is configured with the new
MinPeriod and MaxPeriod values found in Table 6.2. As a reminder, the period values depends
on the GenCell timestep length, which itself depends on the sample size: the timestep length is
the input size expressed in clock cycles (1clk=10ns at 100MHz). All input sizes and corresponding
period hyper-parameters are listed in Table 6.2 for convenience. The timestep used to encode latent
representation is indeed much smaller than that required to encode input samples, which promises
to reduce encoding temporal sparsity and improve processing speed in the spiking classification
stages.

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 117

Table 6.2: Input sizes and spike generation min and max period values for full CNN and Hybrid
classification stages on OPS-SAT and Spoken Digits dataset.

OPS-SAT Spoken Digits
Input shape

(size)
MinPeriod

(ns)
MaxPeriod

(ns)
Input shape

(size)
MinPeriod

(ns)
MaxPeriod

(ns)

Full network
28x28x3
(2352)

23 520 2 352 000 507x1x1 5 070 507 000

Hybrid
classification

stage

80x1x1
(80)

800 80 000
295x1x1

(295)
2 950 295 000

As it is not possible to retrieve the latent representation directly from N2D2, we use Tensor-
Flow instead. To do so, the synaptic weights are exported from N2D2 to TensorFlow, and the
intermediates activation are extracted by running the feature-extraction stage and logging the
output. Each resulting feature-map is labeled according to the original label of the sample. The
classification stage is then tested in spiking domain using N2D2 configured with the periods of
Table 6.2. The subsequent synaptic logs are used to estimate time, power and energy in the spiking
classification stages of VGT-SPLEAT and VGT-PADS using the estimation framework presented
in Chapter 5. For VGT and SPLEAT, the estimations are obtained as described in Chapter 5. It
should be noted that there are a few difference between N2D2 and TensorFlow formal inference.
Thus, there are slight differences between the estimations provided in this section and that of
Chapter 5.

Additionally and in contrast with Chapter 5, we take into account the duration of the Gen-
Cell initialization phase in the inference time estimations. This initialization phase lasts for one
timestep, as described in Chapter 3. The corresponding time overhead is added to the overall in-
ference time estimations (FE stage for full network and CL stage for hybrid network). Moreover,
we also take into account the resource and power usages of the GenCell. To do so, the GenCell
are synthesized separately, in the right configurations, to provide accurate resource and power
estimations. In future work, those metrics will be directly obtained by incorporating GenCell
estimations to the overall framework.

6.2.2 OPS-SAT

In this section, we apply the hardware footprint estimator to OPS-SAT dataset for VGT, SPLEAT,
VGT-PADS and VGT-SPLEAT. OPS-SAT dataset seem well suited to hybridization for two main
reasons: first, the OPS-SAT feature maps are 30 times smaller than the input samples, which
enables to reduce temporal sparsity of spike encoding by a factor 30. Second, the activity distri-
bution is wider in feature-maps than in input samples. Moreover, the OPS-SAT use-case of CIAR
project offers to deploy and test the architecture directly on-board a satellite. That is a good
opportunity for such a proof of concept. The OPS-SAT use-case will be presented in details in
6.3.1. As a reminder, the CNN used for OPS-SAT classification is available in Table 6.1a.

6.2.2.0.1 SAR on OPS-SAT SAR and accuracy measurements for OPS-SAT spiking CNN
are reminded in Figure 6.3. In this section we focus on ∆ = 4, as the accuracy improvements
achieved for higher ∆ values are minimal and are not worth the SAR overhead (see complete
Figures in Chapter 4). With ∆ = 4, both formal and spiking test reached 81 % accuracy using

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 118

(a) (b)

Figure 6.3: Layer-wise and total SAR for a) OPS-SAT (∆ = 4) and b) Spoken Digits (∆ = 20).

N2D2. All layer-wise SAR measurements for OPSSAT ∆ = 4 are lower than the λ thresholds,
which means all layers are suitable for spiking conversion and not only the classification stage.
That is according to the SAR model described in Chapter 4 (Section 4.3.2). As a reminder, λ is
the ratio of energy consumption between a MAC operation and an ACC operation. It depends
on the hardware target and the number of MACs involved in the formal architecture (VGT). The
values have been plotted for Zedboard (λZE in orange) and ZCU102 (λZC in red). In this chapter,
we focus on λZE has estimations are made for Zedboard. In Figure 6.3, all layers of the OPS-
SAT-related CNN are already suitable for spiking domain, according to the λ model. Therefore,
the goal is not to tailor coding domain with respect to SAR, but rather to benefit from the lower
input resolution and wide activation distribution (Figure 6.1) of the latent representation. As a
reminder, OPS-SAT samples have 2352 values while OPS-SAT latent representation only have 80.

6.2.2.0.2 Estimations on OPS-SAT Before going into further details, we remind the no-

tations used to compare estimations (already used in Chapter 5): MetricTask-LayerArch stands for the
estimation of a metric on a given dataset, for a given layer (or group of layers) and architecture.
For example E Spoken-Conv

SPLEAT is the Energy consumption of SPLEAT Convolution layers on Spoken
Digits dataset. Moreover, the Classification stage is noted CL, and the Feature-Extraction stage
is noted FE.

The resource, time, power and energy estimations on OPS-SAT dataset are provided in Figure
6.4 for VGT, SPLEAT, hybrid VGT-SPLEAT and VGT-PADS. As already stated in previous
chapter, the most limiting factor in most embedded systems is energy. Therefore, we begin by
discussing the impact of hybridization in the light of energy consumption. In this chapter, we
refer to the Feature Extraction stage (convolution and pooling layers) as FE, and the classification
stage (fully-connected) as CL. As shown in the bottom row of the Figure, hybridization enables
to drastically reduce the energy overhead of spiking neural networks. For VGT-SPLEAT, on the
one hand using the formal VGT FE stage reduces EFE by a factor 11.5. On the other hand,
hybridization enables to reduce the GenCell timestep from 2352 clock cycles (i.e. sample size)
to 80 clock cycles (i.e. feature-maps size). This allows to drastically reduce the rate-encoding
temporal sparsity, and thus inference time and energy: ECL

SPLEAT ≈ 20 × ECL
VGT-SPLEAT. This is

also visible in the inference time results: TCL
SPLEAT ≈ 27 × TCL

VGT-SPLEAT. In all, the results show
hybridization with SPLEAT enables to reach the same energy consumption than a pure VGT
(EVGT ≈ EVGT-SPLEAT).

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 119

a b

c d

e f

g

Figure 6.4: Hardware footprint estimation of VGT, SPLEAT, Hybrid VGT-SPLEAT and Hybrid
VGT-PADS on OPS-SAT RGB dataset with ∆ = 4, MinPeriod = 1 and MaxPeriod = 100. a)
LUT, b) Registers, c) Block RAM, d) DSP, e) Power, f) Inference time and g) Energy.

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 120

Similarly to VGT-SPLEAT, hybridization with PADS enables to reduce the energy consump-
tion in the classification stage. Comparing with energy estimations of Chapter 5 for PADS (Figure
5.18) yields that ECL

PADS ≈ 2.5×ECL
VGT-PADS. Furthermore, energy estimations without hybridization

issued that ECL
PADS > ECL

SPLEAT. As a reminder, that is because PADS parallelism is not exploited
due to spike temporal sparsity of OPS-SAT task: TCL

SPLEAT ≈ TCL
PADS while PCL

SPLEAT < PCL
PADS.

With hybridization, we observe that TCL
VGT-SPLEAT ≈ 4 × TCL

VGT-PADS. That is, temporal sparsity
of spike is higher and SPLEAT is no longer able to process spike at the same rate than PADS.
Consequently, we observe that ECL

VGT-SPLEAT ≈ 4 × ECL
VGT-PADS. In other words, hybridization

increases the parallelism requirements and PADS is therefore preferable in this context. Further-
more, we observe that VGT-PADS CL stages uses even fewer energy than pure VGT CL stage:
ECL

VGT ≈ 2×ECL
VGT-PADS. That is, hybridization enables to draw energy savings from PADS, whereas

it was not the case in Chapter 5. However, at network level EVGT ≈ EVGT-PADS because most of
the energy consumption lies in the VGT FE stage used in both. Therefore, hybridization does not
provide significant energy savings on OPS-SAT.

However, using the SPLEAT classification stage instead of VGT enables significant resource
savings: the overall LUT and FF usage are reduced by 30% and DSP usage by 80%. Dynamic
power usage is also reduced by 10% which is not significant. That is, VGT-SPLEAT hybridization
enables to reduce the resource usage of OPS-SAT classification implementation without the usual
energy overhead attributed to SPLEAT. For VGT-PADS, the resource savings are much less
significant as the OPS-SAT CNN is small: as shown in Chapter 5, PADS resource savings over
VGT arise for larger layer sizes. Therefore, we expect more significant resources savings on Spoken
Digits Dataset.

In all, estimations show that hybridization offers an interesting trade-off between the resource
efficiency of spiking domain and speed of formal accelerators. However, OPS-SAT dataset is not
the best application case for hybridization. Indeed, most of computation in VGT on OPS-SAT
dataset takes place in the feature-extraction stage. Thus, the transcoding of the classifications
stage does not drastically change the overall footprint. In the next section (6.2.3), hybridization
is applied to the Spoken Digits CNN, where classification stage is much more important.

6.2.3 Spoken Digits

In this section, we apply the hybridization principle to Spoken Digits datasets whose CNN topology
is reminded in Table 6.1. Spoken Digits is well suited to hybridization: the feature-maps are smaller
than the input, and show a wide pixel distribution. The narrow intensity distribution of Spoken
Digits samples have already been pointed as a cause for the bad SAR scores of spiking CNNs in
Section 4.4.3. The much wider distribution of feature-maps should provide a better rate encoding
of data. In doing so, we hope to decrease SAR and inference time compared to the original SNN.

6.2.3.0.1 SAR on Spoken Digits The SAR distribution in Spoken Digits is shown in Figure
6.3. In this section, we focus on ∆ = 20 to reach the same accuracy as the formal model and
provide a fair context for comparisons. As shown in the figure, the FC2 layer is the only one whose
SAR is below both λZE values for ∆ = 20. According to the model, FC2 is thus the only suitable
layer for acceleration in spiking domain, whereas the feature extraction stage is not. Thus, in
this case the interest of hybridization is not only to benefit from the latent representation small
resolution and wide activation distribution, but also to benefit from the low SAR of the FC2 layer.

The hardware estimations for VGT, SPLEAT, VGT-SPLEAT and VGT-PADS are given in
Figure 6.5. Like for OPS-SAT, we begin by discussing the energy estimations as this is the most

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 121

a b

c d

e f

g

Figure 6.5: Hardware footprint estimation of VGT, SPLEAT, Hybrid VGT-SPLEAT and Hybrid
VGT-PADS on Spoken Digits RGB dataset with ∆ = 4, MinPeriod = 1 and MaxPeriod = 100.
a) LUT, b) Registers, c) Block RAM, d) DSP, e) Power, f) Inference time and g) Energy.

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 122

limiting metric in embedded systems. Using the VGT FE stage instead of SPLEAT FE stage
enables substantial energy savings: EFE

SPLEAT ≈ 327 × EFE
VGT-SPLEAT. However, in contrast with

OPS-SAT hybridization increases the energy consumption of SPLEAT. Indeed, ECL
VGT-SPLEAT ≈

3× EFE
SPLEAT. As explained in Chapter 5, the density of spikes is so higher in Spoken Digits FC1

(SARSpoken-FC1 ≈ 2.8) that SPLEAT layers are not able to process spikes on-the-fly, even without
hybridization. Therefore, reducing temporal sparsity through hybridization does not speed-up
SPLEAT inference time. In all, E Spoken

VGT-SPLEAT is slightly higher than E Spoken
SPLEAT. Furthermore, VGT-

SPLEAT is much more energy-intensive than VGT: E Spoken
VGT-SPLEAT ≈ 86×E Spoken

VGT That is, SPLEAT
is not suited to hybridization in tasks with high SAR.

The conclusion is very different for VGT-PADS: thanks to the high level of parallelism, PADS
is able to process spikes on-the-fly regardless of density. Therefore, reducing temporal sparsity
enables to drastically reduce inference time and energy consumption in PADS classification stage.
If we refer to the results of Chapter 5, ECL

PADS ≈ 3600×ECL
VGT-PADS. Without hybridization, PADS

classification stage consumes more energy than VGT (Chapter 5). We observe the opposite with
hybridization: ECL

VGT ≈ 1.6× ECL
VGT-PADS. In contrast with OPS-SAT, this saving is significant at

network level as most of VGT energy consumption lies in the classification stage (80%). Indeed,
VGT-PADS provides 30% energy savings over VGT at network level. Therefore, hybridization
with PADS provides energy savings where PADS alone does not.

Moreover, energy savings provided by VGT-PADS also come with substantial resource and
power savings. Hybridization with PADS enables to reduce LUT usage by a factor 2.4, register
usage by 40% and DSP usage by 80%. Moreover, VGT-PADS dynamic power is 45% lower
than pure VGT (43% for total power). Those savings are much more significant than on OPS-
SAT dataset for two reasons. First, the layers are larger than in OPS-SAT and PADS resource
savings arises for larger topologies. Second, most of the resource usage of VGT is located in the
classification stage thus savings are significant at network level. In all, VGT-PADS hybridization
seems very promising for embedded acceleration, as it enables significant savings in all metrics
except inference time. Indeed, VGT-PADS is still 23% slower than pure VGT, but this overhead
remains manageable. On the other hand, VGT-SPLEAT also provide substantial resource savings.
However it is not necessary to discuss those results as SPLEAT provides even more resource savings
for fewer energy.

6.2.4 Discussions on hybrid estimations

In the light of the estimations on OPS-SAT and Spoken Digits dataset, hybridization seems a
good opportunity of trade-off between spiking and formal hardware acceleration. Indeed, the
classification stage benefits from the resource and power efficiency of spiking domain all the while
mitigating the inference time of spiking implementations. This second aspect is achieved by both
using a faster formal feature-extraction stage and reducing the GenCell timestep length. Indeed,
decreasing the timestep length reduces the temporal sparsity of spike encoding. This enables a
drastic speed-up in spiking accelerators provided that they are able to sustain the increased spike
density. On OPS-SAT, the SAR is low enough (SAR ≈ 0.4). Therefore SPLEAT is able to process
spikes on-the-fly, even with a lower spike temporal sparsity. VGT-SPLEAT thus competes with
pure VGT in terms of energy consumption on OPS-SAT. However, a higher level of parallelism
is required for hybridization on Spoken Digits which features a higher SAR (SAR ≈ 4). Under
such conditions, spikes arrive faster than the processing ability of VGT-SPLEAT, causing a severe
time and energy overhead. On the other hand, VGT PADS is designed to process spikes on-the-fly
regardless of the density. Therefore, hybridization with PADS reduces energy consumption by 30%

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 123

(a) (b)

Figure 6.6: a: OPS-SAT CubeSat being tested before launch. b: OPS-SAT FlatSat platform.
Photo credits: TU Graz [19].

at network-level. On OPS-SAT, the savings are less significant and the energy consumptions are
similar at network level. Hybridization also provides substantial resource savings. Like for energy,
those savings are more important when the classification stage is larger: VGT-PADS reduces LUT
usage by 40%, DSP usage by 80% and total power usage by 43% on Spoken Digits dataset. For
the same reason, the savings are less significant on OPS-SAT dataset.

In all, hybridization implies a higher spike density, which requires a higher level of parallelism
than a full spiking topology. If the architecture is able to benefit from the lower temporal sparsity
of spikes, hybridization provides significant energy savings compared to fully-spiking implemen-
tations. Furthermore, hybridization offers significant energy and resource savings over formal
implementations, provided that the classification stage is significant in front of the convolution
stage. In this work, we only address a simple case where hybridization is limited to the classifica-
tion stage.

However, hybridization could be made earlier in the network. The trade-off between the speed
of formal accelerators and resource and power efficiency of spiking accelerators must be explored
further in future works. The SAR metric and estimation framework will enable to find the optimal
hybridization scheme for each topology.

In the following section, we propose an hardware implementation for the VGT-PADS hybrid
accelerator. The estimations will be confronted to real hardware measurements in order to verify
the benefits of hybridization. In doing so, we also provide hardware measurements on VGT and
SPLEAT implementations for OPS-SAT dataset. In doing so, we propose to evaluate the reliability
of our estimation framework, and strengthen the confidence in the conclusions of Chapter 5.

6.3 Hybrid hardware implementation

In this section, we describe the hardware implementation of the VGT-PADS hybrid neuromorphic
accelerator. This accelerator is developed in the context of CIAR project and applied to the
OPS-SAT cloud segmentation application. The architecture was embedded onboard OPS-SAT
satellite for in-flight testing on real images. In doing so, the system was both the first spiking
neural network accelerator in space, and the first hybrid neural network in space. The hardware
measurements are confronted with the estimation results.

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 124

Figure 6.7: Impression of OPS-SAT in low earth orbit [20]

6.3.1 Context

6.3.1.1 OPS-SAT orbital laboratory

The hybrid neural network accelerator (VGT-PADS) was developed in collaboration with the
CIAR project hosted by IRT Saint-Exupéry. The CIAR project addresses deployment of FPGA
neural network accelerators in spatial application. More specifically, the CIAR project is implied
in experimentation on-board OPS-SAT [109] provided by the European Space Agency (ESA). This
satellite is a testing platform for European researchers in the satellite field. It is a CubeSat [110],
and measures 10 × 10 × 30cm. It weights 5.5kg. The main advantage of CubeSats is their small
size and low weight, which facilitates the access to orbit. Figure 6.6 shows pictures of OPS-SAT
and the associated “FlatSat” platform. The “FlatSat” architecture is identical to the satellite
and serves as a test platform for applications and experiments. For illustration, an impression of
OPS-SAT in low earth orbit is shown in Figure 6.7.

OPS-SAT includes various systems to support a large set of experiments. Each of these mod-
ules is specifically hardened for space applications. A description of the full satellite platform is
provided in Figure 6.8. However, our experiment only involves the SoC Processor Payload and
the HD camera. The camera is used to take photos of the earth to test application in-flight. The
OPS-SAT dataset pictures were also taken from this camera, before being manually selected and
labeled by CIAR project members. The SoC is a hardened MitySOM, which contains an ARM
CPU, DDR4 memory and a Cyclone V FPGA. The VGT-PADS hybrid architecture is developed
targeting this board.

6.3.2 VGT-PADS Hybrid Architecture

During CIAR project, the VGT-PADS hybrid hardware architecture was developed aiming in
reducing resource and power usage of neural network acceleration for space applications, all the
while reducing the intrinsic latency of spiking accelerators. In the present section, we describe the
VGT-PADS hardware implementation and confront actual hardware measurements with estima-
tions. Such comparison is made on VGT, SPLEAT and VGT-PADS accelerators. It should be

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 125

Figure 6.8: Schematic of OPS-SAT architecture. The yellow part is for the ”technical” bus, and
the blue part is for the payload. Source: [19]

noted that VGT-SPLEAT was not implemented in hardware, due to the aforementioned estimated
latency and energy overhead. Therefore it is not featured in this section.

6.3.2.1 Architecture

The VGT-PADS hybrid architecture combines a formal feature extraction stage (conv+pool) with
a spiking classification stage (fully-connected). The formal feature extraction stage is implemented
using the VGT architecture (Section 2.2.2.1), and the classification stage using PADS FC layers
(Section 3.1). The interface between the two is based on the Spike Generation Cell (GenCell).
An additional module retrieves the VGT latent representation, performs flattening and streams
pixels to the GenCell. A Terminate Delta Module (TDM) is used to decode the spiking output
and retrieve the winning class. The architecture is shown in Figure 6.9. The output of VGT
feature maps are stored in FIFO queues, one for each channel. When the last pixel is received,
the FM VALID signal is raised, triggering the flattening process. Pixels are streamed one by one
to the GenCell, following a user-defined flattening policy.

In the following subsection, we provide hardware measurements performed on the VGT-PADS
hybrid accelerator, alongside hardware measurements for SPLEAT and VGT. The three acceler-
ators are tested on OPS-SAT dataset. The measurements are confronted to the estimations to
confirm the benefits of hybridization and strengthen the confidence in our estimation framework.

6.3.2.2 Results

All three architectures are configured for the OPS-SAT classification tasks, with the synaptic
weights resulting from N2D2 training and conversion. Each architecture is synthesized and imple-
mented using Vivado design suite targeting Xilinx Zedboard. The resulting hardware measurement

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 126

VGT (Feature Extraction) Interface PADS (Classification)

Figure 6.9: Illustration of the CIAR Hybrid Neural Network Architecture.

Table 6.3: Measurements and estimations for VGT, SPLEAT and Hybrid VGT-PADS on OPS-
SAT Dataset. The difference is expressed in % of the measurement.

VGT VGT-PADS SPLEAT

MEAS. EST.
DIFF
(%)

MEAS. EST.
DIFF
(%)

MEAS. EST.
DIFF
(%)

Time (ns) 8 835 9 850 11.5 10 985 9 191 16.3 248 073 216 997 13.2
Dynamic

Power (W)
0.21 0.58 171.5 0.15 0.52 256.2 0.03 0.04 43.9

Static
Power (W)

0.26 0.25 4 0.25 0.25 0 0.25 0.25 0

LUT (#) 22 549 26 500 17.5 17 245 25 900 50.2 2 398 1 730 27.9
FF (#) 30 671 25 200 17.8 23 996 25 600 6.7 724 951 31.3

BRAM (#) 0 0 0 0 0 0 3.5 3 14.3
DSP (#) 760 255 70 200 60 70 8.00 6 25

Energy (nJ) 4 152 8 176 96.9 4 394 7 077 61.1 69 469 62 923 9.4

(resources, power, inference time and energy consumption averaged on 10 samples) are given in
Table 6.3 alongside corresponding estimations. The difference between both values is expressed in
% of the real measurement. The error margin is displayed in green when it is below 30%, orange
when it is around 50% and red when it is greater than 70%. It should be noted that the hardware
measurements are different from the original results provided in the CIAR publication [93]. That
is because our laboratory uses a different toolchain (Xilinx) than that of CIAR project (Quartus),
which imply an incompatibility between the two designs.

Most of the estimations fall within a 15% margin of error with respect to the actual hardware
measurement, which is considered acceptable seeing the order of magnitudes involved. However,
there appears to be two major sources of errors in our estimations: dynamic power estimation and
DSP usage estimation. First, the substantial error for DSP usage estimation can be explained by
the difficulty of predicting the low-level Vivado optimizations. Indeed, Vivado is able to multiplex
several MAC operations in a single DSP or use LUT and Registers instead. Moreover, the effect
of DSP saturation is difficult to extrapolate from layer-level to network-level. However, for both

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 127

VGT-PADS and VGT, DSP usage is under-estimated while LUT and Register usage is over-
estimated: thus, we assume that Vivado used LUTs and Registers in place of some DSPs in
the design. However, the two errors compensate each other (DSPs are used instead of LUTs).
Overall, the DSP usage is difficult to estimate due to saturation, multiplexing and alternative
synthesis optimizations. To cope with this problem, the hardware database must be rebuilt with
no DSP constraints during synthesis. In doing so, we aim in obtaining a flat resource usage
estimation that is less influenced by low-level optimizations. Moreover, a source of error arises
from the approximation made on VGT convolution layers. In Chapter 5.2.1.1, we explained that
the estimations are obtained for 1 input channel, and multiplied by the number of channels. This
approximation is valid for resource estimations, but not for power. Indeed, synthesis performs
low-level optimization when all channels are synthesized at once. Therefore, the database should
be extended to take into account the number of input channels in VGT convolution layers (3D
design space).

Second, the substantial error in dynamic power estimation is related to the same kind of
issue. Indeed, the network-level dynamic power estimation is computed as the sum of layer-wise
estimations. However, Vivado performs low-level optimization such as resource and clock sharing
during synthesis. As clocks are responsible for a very significant proportion of dynamic power
at layer-level (around 30% in average), clock sharing brings significant dynamic power reduction
at network-level. Therefore, the dynamic power estimations demonstrate a wide margin of error
compared to actual measurements. In turns, this also affects the energy estimations derived from
power and time. However, the conclusions derived from estimations in the previous subsection
are still valid, as the comparisons are not too much affected by this error: VGT and VGT-PADS
still demonstrate a similar energy consumption, while SPLEAT is much more energy intensive.
Therefore, those results strengthen the confidence in the resource and time estimation results, and
confirm the benefits of hybridization. However, the dynamic power estimation must be improved
to reduce the error margin. This will be addressed in the outlooks section of this Chapter (Section
6.4.1).

6.4 Conclusion

Estimations and hardware measurement results have shown that hybridization represents an in-
teresting trade-off between formal and spiking implementations. It is the most useful in topologies
such as Spoken Digits, where the classification stage represents most of VGT energy consumption.
On this dataset, VGT-PADS hybrid architecture provides 30% energy savings over pure VGT
architecture. It uses 40% fewer LUTs, 80% fewer DSPs and consumes 43% less power. Those
substantial savings are promising for the field of embedded artificial intelligence. On OPS-SAT
dataset, the classification stage is less significant, thus resource and energy savings are less signif-
icant. As explained before, this study focuses on a precise type of architecture, where the feature
extraction stage operates in formal domain while the classifier is works with spikes. PADS should
be extended to convolution and pooling layers to enable hybridization earlier in the network.
The optimal hybridization scheme must be determined for each application in further work, by
exploring the trade-off between resource savings and energy savings. More details are given in
the outlooks section (Section 6.4.1). Moreover, this study shows that hybridization increases the
parallelism and pipeline requirements in the spiking classifier, as spikes arrive more frequently due
to the lower temporal sparsity of encoding. This is particularly visible in Spoken Digits results
where SAR is high. In such context, SPLEAT demonstrates a severe latency overhead despite the

CHAPTER 6. NEURAL CODING DOMAIN HYBRIDIZATION 128

reduction of temporal sparsity. Therefore, the level of parallelism must be fine-tuned according
to the actual temporal sparsity of spikes and SAR in further works. This will be detailed in the
outlooks section.

Additionally, the confrontation of estimations on hardware measurements for VGT, VGT-
PADS and SPLEAT applied to OPS-SAT dataset strengthen the confidence in the estimation
framework, and confirms the benefits of hybridization. Indeed, most metrics where estimated with
a margin of error of 15%. Dynamic power estimations suffered severe errors due to unaccounted
low-level optimizations performed by Vivado, but all qualitative comparisons remain valid. The
improvement of power estimations will be addressed further in the outlooks. Moreover, those
results strengthen our confidence in the conclusions drawn from comparisons of formal and spiking
accelerators in Chapter 5.

6.4.1 Outlook

In order to improve the estimation framework, we intend to rebuild the hardware footprint
database in future work. That is, by using a specific synthesis policy which does not limit the
number of available resources. In doing so, interpolation will provide more accurate results, es-
pecially for DSP usage. Indeed, such flat resource estimations are less influenced by low-level
synthesis optimizations of Vivado. Moreover, we propose to analyze the clock sharing optimiza-
tions performed by Vivado when combining layers at network-level. In doing so, we intend in
refining the dynamic power estimation and provide more accurate absolute values. Moreover, as
explained in Chapter 5, the estimator can be used to determine the optimal level of parallelism in
spiking accelerators. This perspective is even more appealing for hybridization where parallelism
requirements are higher.

Finally, another way to improve the energy efficiency of hardware SNNs is to addressed new
type of spike coding which demonstrate lower temporal sparsity and SAR. In Chapter 7, we will also
address such new representation with SNNs trained through Surrogate Gradient Learning (SGL)
[32] [73]. In addition to lower SAR, this type of SNN is timestep-constrained, thus inference time
does not depend on synaptic activity but rather on a user defined hyper-parameter. Such feature
could increase the appeal for hardware SNN accelerators as it facilitates the timing management
at system level. The SAR for SG learning will be measured on the dataset benchmark, and PADS
will be adapted to this new SNN model.

Chapter 7

Enhancing PADS: FISO & LIF as Recur-
rent neurons

Chapter contents

7.1 Theoretical Background . 130
7.1.1 Send on Delta spike encoding . 130
7.1.2 LIF Neuron . 131
7.1.3 LIF as recurrent neurons . 132
7.1.4 Surrogate Gradient Learning . 133
7.1.5 Output decoding: readout layer . 133
7.1.6 Application in the S2NET framework . 133
7.1.7 Static input samples . 134

7.2 Accuracy & SAR results . 134
7.3 PADS V2 . 138

7.3.1 Architecture . 138
7.3.2 Inference Time Results . 141

7.4 Conclusions & Outlooks . 144

129

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 130

In this chapter we address a novel representation of SNNs proposed by Neftci et. al. in [32].
This new type of SNNs represents Leaky Integrate and Fire (LIF) neurons as Recurrent Neurons
with binary outputs and inputs. Indeed, LIF and Recurrent Neurons share major similarities
such as their similar architecture, temporal dynamics and training through weight adjustment.
Considering the SNN as an RNN enables to use existing and mature training methods, such
as the well-established Backpropagation Through Time (BPTT) algorithm. This algorithm is
adapted to the LIF neuron activation function using the Surrogate Gradient Learning (SGL)
technique [32] [91]. This method has two main advantages: first SNNs trained through Surrogate
Gradient Learning demonstrated lower spiking activity and inference time for comparable accuracy
than converted rate-coded SNNs [73]. Moreover, training in spiking domain enables to penalize
spiking activity during training. This novel model of SNNs is promising for hardware acceleration.
Indeed, the previous chapters of this thesis have shown that minimizing spiking activity (i.e. SAR)
and inference time is a crucial matter to leverage energy savings in neuromorphic accelerators.

The SNN model proposed in [32] is described in details in Section 7.1. We also describe the
S2NET framework proposed by Zimmer et. al. in [21]. This pytorch-based training framework
implements the Surrogate Gradient Learning technique alongside Send-on-Delta spike encoding. It
is used to measure accuracy and SAR on the benchmark of datasets (MNIST, OPSSAT, GTSRB,
CIFAR-10, Mines VS Rocks, Spoken Digits and RadioML 2018) in Section 7.2. The results
are confronted with that of rate-coded SNNs obtained in Chapter 4. Lastly, we propose a first
prototype of hardware implementation of such SGL-trained SNN model. The architecture is based
on PADS and adapted to the LIF dynamics of S2NET.

7.1 Theoretical Background

In this section, we describe the SNN model proposed in [21]. Rather than rate-encoding like in
previous chapters of this thesis, the authors used the Send-on-Delta [33] technique which tailors
temporal sampling to the signal gradient. This encoding scheme is described in Section 7.1.1.
Moreover, the model is based on the equivalence between LIF neurons and recurrent neural cells.
The LIF neuron dynamics are described in Section 7.1.2, and the equivalence with recurrent
neurons is discussed in Section 7.1.2. Thanks to this equivalence, SNNs can be trained using
algorithms developed for Recurrent Neural Networks (RNN) such as the Backpropagation Through
Time (BPTT) algorithm. In section 7.1.4, we describe the Surrogate Gradient Learning technique
proposed in [32]. This algorithm is an adaptation of the BPTT to the LIF activation function.
The output spike decoding process is described in Section 7.3.1.4. In Section 7.1.6, we describe
the simplification to the model brought by the S2NET framework. Since this framework and the
SNN model were originally intended for temporal signal processing, Section 7.1.7 describes how
the model is adapted to static samples.

7.1.1 Send on Delta spike encoding

The Send-on-Delta (SoD) spike encoding method is inspired from [33], in which Miskowicz et. al.
proposed a strategy for information encoding in event-based sensors. This method is adapted in
the S2NET framework which is used in this chapter. It is based on a signal-dependent sampling
scheme which is able to represent information in fewer spikes (sparse coding) than conventional
rate-based methods. According to the authors and to the conclusions of this thesis so far, such
a feature could provide substantial energy savings in clock-gated or power-gated hardware SNN

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 131

x(t)

W
ON
>0

W
OFF
<0

-W
ON
W

OFF

x(t)

t

Spike
Encoding

t

θ

θ

θ -θ

-θ

-θ θ

θ

Figure 7.1: Illustration of the Send-on-Delta spike encoding process used in [21], for 2 IF neurons
encoding a 1D temporal signal. Left: network setup. Right: input and output data.

implementations (see outlooks of Chapter 5). The SoD method is based on lateral connections
between spiking neurons. In Figure 7.1, the SoD method is illustrated for a simplistic case where 2
Integrate & Fire (IF) neurons encode a 1D temporal signal. The goal of SoD is to detect increase
or decrease in the input data. The IF neuron is able to detect an increase in input signal through
a threshold mechanism and membrane potential reset. In Figure 7.1, the threshold is noted Θ.
The green neuron detects increases thanks to a positive synaptic weight whereas the red neuron
detects decreases thanks to a negative weight. As shown in the figure, the sampling rate is not
arbitrary fixed but depends on the temporal variations. Moreover, the lateral connections enables
to reset the membrane potential of both neurons whenever one of them emits a spike.

This mechanism can be generalized to populations of N neurons to process temporal input
signals with N dimensions. For example, this mechanism can be applied to layers of Gabor
filters [111] which are used to detect edges in 2D images. In this chapter, the SoD encoding is
used in all layers of the networks. That is, the first layer of neurons performs spike encoding of
analog inputs through SoD, and the following layers of LIF neurons do the same of spiking inputs.
Additionally, the parameters of SoD (synaptic weights and neuron threshold) are learned during
training. The resulting spike encoding scheme is therefore optimized to minimize spiking activity
and maximize accuracy.

7.1.2 LIF Neuron

The LIF neuron is similar to the IF neuron used in the previous chapter of this thesis. The
difference lies in the leakage of the membrane potential responsible for the Leaky Integrate & Fire
appellation. The dynamics of this neuron illustrated in Figure 7.2 and described in Equation 7.1:

τmem
dU l

i (t)

dt
= −(U l

i (t)− Urest) +RI li(t) (7.1)

Where U l
i is the membrane potential of the ith neuron of layer l, τmem is the membrane time

constant, Urest is the resting potential, R the input resistance and I the input current. Whenever
the membrane potential overpasses the neuron threshold θ, a spike is emitted in output and the

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 132

Membrane
Potential Threshold

Time

Time

Time

Input
Spikes

Output
Spikes

Figure 7.2: Illustration of the Leaky Integrate & Fire neuron process. The membrane potential is
shown in blue, input spikes in green and output spikes in red.

membrane potential is instantaneously decreased by θ − Urest. The output spike train is noted
Sli(t) = Θ(U l

i (t)− θ) where Θ is the Heaviside step function. Incorporating this threshold term in
Equation 7.1 yields:

dU l
i (t)

dt
= − 1

τmem

((U l
i (t)− Urest) +RI li(t))− Sli(t)(θ − Urest) (7.2)

The input current is generated by input spikes coming from neurons of the layer l−1 as described
in Equation 7.3.

I li(t) =
∑
j

wi,j × Sl−1
j (t) +

∑
j

vi,j × Slj(t) (7.3)

Where
∑

j wi,j × S
l−1
j (t) is the feed-forward term (influence of input spikes) and

∑
j vi,j × Slj(t) is

the recurrent term for lateral connections (see Section 7.1.1). wi,j and vi,j are the synaptic weights
of the input and recurrent synapses respectively. In all, the LIF neuron is able to process temporal
information thanks to the membrane potential leakage. Indeed, the relative timing of input spikes
has no influence on the IF neuron potential, whereas it does in the LIF neuron. This features also
decreases the number of spikes in the networks, as all membranes are constantly decreasing.

7.1.3 LIF as recurrent neurons

The solution of the differential equation 7.1 can be approximated on discrete time through the
Euler Method as shown in Equation 7.4. Moreover, we set Urest = 0 and R = 1.

U l
i [t+ 1] = e

−∆t
τmem × (U l

i [t]− Sli[t]× θ) + (1− e
−∆t
τmem)× (

∑
j

wi,j × Sl−1
j [t] +

∑
j

vi,j × Slj[t]) (7.4)

Where ∆t is the time increment between two timesteps. According to Neftci et. al. [32], those
equations precisely describe a Recurrent Neural Network with binary output and whose activation

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 133

function is an Heaviside (threshold) function. Thanks to this equivalence, the network of LIF
neurons can be trained using the well-established RNN training methods, such as the BPTT
algorithm. The BPTT algorithm is an adaptation of the static BP algorithm for dynamic pattern
recognition used in formal RNNs. However, the Heaviside activation function is not adapted to
the BPTT algorithm. In the next subsection, we describe how BPTT is adapted to networks of
LIF neurons through Surrogate Gradient Learning.

7.1.4 Surrogate Gradient Learning

In the BPTT algorithm, the adjustment of synaptic weights is proportional to the partial deriva-
tives of the activation function. Since the activation function of the LIF neuron is an Heaviside
step-function, two issues arise:

• First, the Heaviside function is not derivable in 0,

• Second and most importantly, the derivative of the Heaviside function is 0 on R∗.

• In all, the weight adjustment factor cannot be computed in zero, and it is equal to zero
everywhere else.

To cope with these issues, Neftci et. al. [32] proposed to use an approximation of the Heaviside
function in the backpropagation algorithm: a sigmöıd function. In other word, the activation
function is a sigmöıd during the backward path, and an Heaviside during the forward path. Using
this technique, several papers in the literature have demonstrated state-of-the-art classification
accuracy with reduced synaptic activity [73] [32] [91] [21]. As explained before, training in spiking
domain enables to optimize the spiking activity: the number of spikes can be penalized at network-
level by taking it into account in the loss function. In the S2NET framework [21], all layers of
the networks are trained using the Surrogate Gradient Learning technique. That is, including the
first layer which performs SoD encoding of analog input data.

7.1.5 Output decoding: readout layer

Finally, the output spiking activity is decoded through a readout layer. This layer is made of
non-firing neurons with no lateral connections. In classification tasks, each class is associated with
an output neuron like for Terminate Delta (Chapter 2). The probability of each class is defined by
the normalized average membrane potential of the corresponding neuron. This method has been
proposed by Zimmer et. al. in [21] as a simplification of the model developed by Neftci in [32],
which implied a softmax function. According to the authors, the training is more stable with
an average function. Moreover, the latter is more hardware-friendly than the complex softmax
function.

7.1.6 Application in the S2NET framework

In the next section, we use the S2NET framework proposed by Zimmer et. al. in [21], which
implements the aforementioned SNN model and Surrogate Gradient Learning in PyTorch. Using
this framework, we measure accuracy and SAR on the benchmark of datasets. The results will
be confronted to that of rate-coded converted SNNs. In this framework, the neuron threshold (θ)
is a trainable parameter which is common to the layer. The neuron threshold is analogous to ∆

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 134

Table 7.1: Parameters used for training with S2NET framework

Parameter Value

Sigma value 5
Learning Rate 0.0005
Weight Decay 0.00004

Reg. Loss Coef. 0
Optimizer RAdam
Gamma 0.8

Step Size 3
Epochs 100

in the Send-on-Delta encoding method, but we use θ for the sake of consistency with previous
chapters. Moreover, the exponential decay of the membrane potential is approximated by a linear
decay (β). This parameter is also trained through Surrogate Gradient Learning, and shared among
all neurons of a layer. Finally, in the S2NET framework uses a threshold balancing technique is
applied: the neuron threshold θ is normalized by the norm of the synaptic weight matrix. The
specific LIF dynamics implemented in the S2NET framework are summarized in Equation 7.5:

U l
i [t+ 1] = (U l

i [t]− Sli[t]× θl ×Bl
i)× βl + (

∑
j

wi,j × Sl−1
j [t] +

∑
j

vi,j × Slj[t])× (1− βl)

Sli[t] = Θ(U l
i [t]− θl ×Bl

i)

Bl
i = ||wi,j||2

(7.5)

Where U l
i [t] is the membrane potential of neuron i of layer l at timestep t, Sl−1

j [t] is the state
of the input synapse coming from neuron j of layer l − 1 at time t, wi,j is the synaptic weight
between neuron i and j, βl is the membrane decay factor of layer l, θl the threshold of neurons in
layer l and Θ is the Heaviside function. The threshold is normalized by Bl

i to balance weights and
threshold. It should be noted that wi,j, β

l and θl are trainable parameters, the two latter being
common to all neurons of a same layer.

7.1.7 Static input samples

The SNN model described in this section was originally developed to process temporal data, such
as time series, video recordings or data from dynamic vision sensors. In practice, the continuous
time is discretized in timesteps like shown in Equations 7.4. Moreover, the model is also applicable
to static data like the one used in our benchmark of dataset (Chapter 4). To do so, the same
input sample is presented for several successive time-steps. The number of timesteps will define
the spike encoding window for all layers of the neural network, i.e. If the input sample is presented
for five timesteps, spikes will be encoded on five timesteps in all successive layers.

7.2 Accuracy & SAR results

The model described in previous section (Section 7.1) is applied to the benchmark of datasets:
MNIST, GTSRB, CIFAR-10, Mines Vs. Rocks, Spoken Digits and RadioML 2018. For each
dataset, we measure accuracy and SAR for various number of timesteps. As explained before, the

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 135

Table 7.2: Comparison of accuracy and network-wise SAR with Conversion with Rate-coding and
SGL with SoD. Bold letters show the best-case accuracy for reach method and task.

Conversion \& Rate SGL \& SoD

Task ∆
SNN

ACC. (%)
SAR TS

SNN
ACC. (%)

SAR

MNIST
λZE=4.2 / λZC=2.7

5 97.3 0.58 5 98.5 0.60
10 98.9 0.82 10 98.6 1.41
20 99.1 1.24 20 98.6 3.12

GTSRB
λZE=4.4 / λZC=5.2

5 83.3 2.24 5 96.7 1.18
10 90.6 3.59 10 96.8 2.33
20 93.5 7.70 20 96.6 4.92

CIFAR-10
λZE=4.4 / λZC=5.4

5 31.8 0.94 5 53.4 0.82
10 50.2 2.57 10 53.7 1.69
20 57.8 7.57 20 53.7 3.58

Mines V Rocks
λZE=4.0 / λZC=1.5

5 74.2 0.58 5 83.8 1.48
10 75 1.07 10 83.3 3.11
20 78.8 3.34 20 75.7 6.42

Spoken Digits
λZE=4.4 / λZC=5.4

5 38.2 2.04 5 79.7 1.24
10 71.6 6.41 10 80.7 2.94
20 87.5 8.24 20 81.5 6.49

RadioML 2018
λZE=4.4 / λZC=5.7

5 20.5 6.20 5 58.4 0.98
10 31.6 11.45 10 60.0 2.21
20 37.5 17.41 20 60.7 4.85

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 136

Figure 7.3: SAR and Accuracy measurements on the benchmark of datasets with S2NET frame-
work. Samples are presented for 5, 10 and 20 time-steps. The λ value is depicted in orange for
the Zedboard and red for the ZCU102 (see Section 4.3.2). All measurements are averaged on 10
runs.

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 137

static samples are presented for a given number of time-steps. This number defines the width of
the spike-encoding window. In other words, if the sample is presented for three timesteps, spikes
are encoded on three timesteps in all the network. Since a larger time-window enables to encode
richer information using more spikes, we suspect a trade-off between SAR and accuracy which can
be leveraged by tuning the number of timesteps. The results of this set of experiments is shown
in Figure 7.3. All values are averaged on 10 runs. The same parameters listed in 7.1 are used for
all tasks to enhance the intrinsic influence of the data. It should be noted that OPS-SAT is not
covered in this study due to technical issues.

We begin by comparing the network-wise SAR and accuracy obtained with S2NET with the
previous results obtained with Conversion and rate-encoding using N2D2 (Chapter 4). In order
to facilitate the discussion, the network-level results are summarized in Table 7.2. As a reminder,
the SAR is considered suitable for spiking acceleration when it is below the λ value, according
to the model proposed in Section 4.3.2. λ represents the ratio of energy consumption between
a MAC operation and an ACC operation on FPGA. It depends on the target board and on the
baseline formal design (VGT formal parallel accelerator). In Table 7.2, we provide λZC for the
ZCU102 board, and λZE for the Zedboard. The SAR is displayed in green if it is below both λ
values, orange between and red over. Moreover, the best-case accuracy is displayed in bold letters
to enhance comparison between the two training methods. According to the results, Surrogate
Gradient Learning does not always provide better accuracy than conversion. The latter indeed
performs better on MNIST, CIFAR-10 and Spoken Digits datasets. However, the same default
training parameters (Table 7.1) were used for all S2NET training runs. That is to enhance the
comparison between datasets, but a fine tuning could provide better classification accuracy in
further works. Indeed, Surrogate Gradient Learning is able to reach state-of-the-art accuracy
according to the literature. On the other hand, SGL performs significantly better than conversion
on on GTSRB and RadioML 2018 datasets. On the latter, the best-accuracy is nearly two times
higher with Surrogate Gradient Learning.

However, the main matter of this study is not accuracy but Synaptic Activity Ratio (SAR).
According to the results, SGL achieves substantially lower SAR than conversion for most datasets.
That is apart from MNIST, in which SAR are very close for both methods. As depicted in Table
7.2, the best-case accuracy for conversion is reached for SAR deemed unsuitable for spiking ac-
celeration (red). Using SGL, not only a better accuracy is reached, but the SAR is also suitable
for spiking acceleration (green). In Spoken Digits, the best case accuracy with SGL is associated
to a red SAR. However, the SAR becomes favorable to spikes if the number of timesteps is re-
duced from 20 to 10. Under such conditions, the model only looses 1% accuracy compared to the
best-case. For Conversion, the only configuration suitable for hardware acceleration is ∆ = 5, but
the accuracy is only 38.2%. In all, Surrogate Gradient Learning and Send-on-Delta encoding are
more adapted to hardware acceleration than conversion and rate-coding. Furthermore, increas-
ing the number of timesteps does not always provide a better accuracy. For MNIST, CIFAR-10
and GTSRB, increasing the number of timesteps over 10 degrades accuracy. Therefore, increas-
ing the number of timesteps arbitrarily is counter-productive and each model should be tuned
experimentally.

Additionally, the reduction of synaptic activity is not the only advantage of the SNN model
proposed in the S2NET framework. As explained before, the spikes are encoded on a time-window
with fixed length. This is a major difference with rate encoding in which the number of timesteps
is non deterministic and depends on spiking activity and Terminate Delta termination condition.
For hardware acceleration in highly parallel architectures, this means that the inference time is
fully deterministic. The integration of such hardware accelerator in wider systems is therefore

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 138

facilitated by the easier management of timings. Moreover, the timestep constraint of this SNN
model enables to tune the width of the spike encoding window. On the other hand, the window
width is data dependent in rate-coding: it cannot be tuned and can grow to very large numbers
in some cases. This matter will be studied at the end of the next section.

7.3 PADS V2

In this section, we propose an hardware architecture dedicated to the acceleration of SNN inference,
using the model described in the previous section (7.1). This architecture is based on PADS: it is
fully parallel and pipelined. Moreover, only fully-connected layers are supported. In the following,
the previous version of PADS is referred to as PADS-V1, and the new iteration as PADS-V2. The
architecture is described in details in Section 7.3.1. Then, we confront PADS-V1 and PADS-V2
in terms of inference time on a few examples. The aim of this study is to determine if this SNN
model used in recent frameworks such as S2NET [21] could provide lower inference time than
rate-coded converted SNNs in FPGA accelerators.

7.3.1 Architecture

The architecture is made of three distinct modules, each of which is based on the Generic Neural
Processing Unit of PADS-V1. Those modules are:

• The Formal Input Spiking Output (FISO) layer to encode pixels into spike trains,

• The LIF layer made of LIF neurons for hidden layers

• The Readout layer made of non-firing neurons and a dedicated module to compute the
maximum membrane potential value.

The architecture is fully-parallel, meaning that each neuron is physically implemented in hardware
like in PADS-V1. Moreover, the architecture features an end-to-end pipe-line from spike-encoding
(FISO layer) to spike-decoding (Readout layer) to reduce inference time. After describing each
module in a dedicated subsection below, the last paragraph describes the mechanism of pipe-
line synchronization implemented in PADS-V2. It should be noted that this feature was note
implemented in PADS-V1. Before going into further details, we provide some simplifications of
the model in the first subsection.

7.3.1.1 Simplification

First, the lateral connections are not implemented in the current stage of development. However,
the S2NET network enables to deactivate lateral connection for training and testing. Without
lateral connections, the accuracy is slightly degraded and the number of spikes is higher, but the
model is still functional. This feature is used to validate the architecture in it current state of
development. Moreover, the membrane potential equations of S2NET are expressed differently to
facilitate hardware implementation. The goal of those simplifications is to enable as much off-line
computation as possible. In doing so, we avoid costly hardware operations such as multiplication
and divisions. As a reminder, the original model proposed in [21] (without lateral connections) is

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 139

shown in Equations 7.6:

U l
i [t+ 1] = (U l

i [t]− Sli[t]× θl ×Bl
i)× βl + (

∑
j

wi,j × Sl−1
j [t])× (1− βl)

Sli[t] = Θ(U l
i [t]− θl ×Bl

i)

Bl
i = ||wi,j||2

(7.6)

Where U l
i [t] is the membrane potential of neuron i of layer l at timestep t, Sl−1

j [t] is the state
of the input synapse coming from neuron j of layer l − 1 at time t, wi,j is the synaptic weight
between neuron i and j, βl is the membrane decay factor of layer l, θl the threshold of neurons in
layer l and Θ is the Heaviside function. The threshold is normalized by Bl

i to balance weights and
threshold. It should be noted that wi,j, β

l and θl are trainable parameters, the two latter being
common to all neurons of a same layer. The equation of the membrane potential can be expressed
in a different manner:

U l
i [t+ 1] = U l

i [t]× βl − Sli[t]× θl ×Bl
i × βl + (

∑
j

wi,j × (1− βl)× Sl−1
j [t])

Sli[t] = Θ(U l
i [t]− θl ×Bl

i)

Bl
i = ||wi,j||2

(7.7)

In this equation, a lot of multiplications can be made off-line. That is the case for the following
products: θl × Bl

i × βl, wi,j × (1 − βl), θl × Bl
i and ||wi,j||2. Those values are therefore pre-

processed and either stored in RAMS (synaptic weights wi,j × (1 − βl)) or hard-coded in the
neuron. Deporting those operations off-line enables to relieve the number of on-line operations
supported by the programmable logic.

Moreover, the Readout layer process is also simplified. In the S2NET model, the Readout layer
is made of non-firing leaky neurons. At the end of processing, the winning neuron is selected as the
one whose average membrane potential is the highest. It should be noted that this is a temporal
average across the discrete time window. However, the goal of the Readout layer is mostly to
determine the most active output neuron. The same thing can be achieved by using non-leaky in
addition to non-firing neuron, and finding the maximum total membrane potential rather than the
maximum average. In doing so, the architecture is relieved from costly multiplication (leakage)
and division (average) operations.

7.3.1.2 Formal Input Spiking Output layer

The FISO layer is designed to encode input data into spike trains according to the Send-on-Delta
method (Section 7.1.1), except it does not feature lateral connections to inhibit all neurons when
a spike is emitted. In contrast with the GenCell used in the previous chapter, the FISO layer
combines both the spike encoding process and the first layer of neurons. This implementation
relieves the architecture from the overhead imputed to the dedicated spike generation module. It
should be noted that the concept of FISO neuron was first proposed during the early stages of the
thesis. At that time, we were not aware of the S2NET-like SNN models, and the FISO neuron
was intended to facilitate hybridization between Formal Neural Networks and rate-coded SNNs.
This led to a patent filling in September 2019 concerning the concept of hybrid neural processing
unit.

The FISO layer is implemented in parallel: there is one FISO neuron for each input neuron in
the model. The architecture of the FISO neuron is depicted in Figure 7.4a. It derives closely from

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 140

>θ*BB

θ*BB*Bβ β

β

w
1
*B(1-β)

1

0

Weight
Multiplication

Adder Tree Thresholding, Firing and Leakage

x
1

x
2

x
3

x
4

CLK
RST

EN

S
OUT

w
2
*B(1-β)

w
3
*B(1-β)

w
4
*B(1-β)

(a)

>θ*BB

β

β

1

0

Weight
Affectation

Adder Tree Thresholding, Firing and Leakage

θ*BB-β

1

00

1

00

1

00

1

00

S
1

S
2

S
3

S
4

CLK
RST

EN

S
OUT

w
1
*B(1-β)

w
1
*B(1-β)

w
1
*B(1-β)

w
1
*B(1-β)

(b)

Figure 7.4: Hardware architecture of: a) FISO neuron with 4 input pixels, b) LIF neuron with 4
input synapses. Register barriers are shown in gray or colored rectangles. Data stored in memory
is depicted in light blue squares.

the Generic Neural Processing Unit (NPU) of PADS-V1. We only address the differences between
the FISO neuron and the PADS-V1 NPU in this section. For more information on the hardware
implementation, refer to the description of PADS-V1 NPU in Section 3.1.2. The main differences
are the following: first, the weight affectation stage, which is replaced by a weight multiplication
stage. Indeed, the integration of analog input requires to multiply weight with input activations.
Second, the membrane potential decay: the membrane potential (orange register in Figure 7.4a)
is multiplied with the decay factor (β) before weight accumulation (blue and red registers). The
other differences have no influence on the implementation: the multiplication of synaptic weights
with 1 − β is performed off-line, and so are the products θ × B × β and θ × B. Moreover, the
architecture features an enable port to ensure synchronization in the pipeline. This mechanism is
described in a dedicated paragraph at the end of this section.

7.3.1.3 LIF layer

The LIF neuron is similar to the FISO neuron, except that it features a weight affectation stage like
in the original PADS-V1, since the inputs are binary signals. The architecture of the LIF neuron
is given in Figure 7.4b. More detail on this implementation can be found in the description of
PADS-V1 NPU in Section 3.1.2.

7.3.1.4 Readout layer

The Readout layer includes both the last layer of neurons and the selection of the winning class.
It is illustrated in Figure 7.5a with 4 input synapses and 3 output neurons. The neurons are
non-leaky and non-firing neurons which forwards their membrane potential to a comparator. The
comparator is a pipelined tree of maximum operators designed to retrieve the maximum membrane
potential (i.e. most active neuron). The CLK (clock), RST (reset) and EN (enable) signals are
only depicted in the first readout neuron for the sake of simplicity.

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 141

w
1

Weight
Affectation

Adder Tree Accumulator

1

00

w
2 1

00

w
3 1

00

w
4 1

00

S
1

S
2

S
3

S
4

U1
OUT

CLK
RST
EN

Rd_neuron
2

Rd_neuron
3

Rd_neuron
1

MAX

MAX
U2

OUT

U3
OUT

ID
WIN

Comparator

(a)

FISO
1

FISO
2

FISO
L

LIF
1

LIF
2

LIF
M

RD
1

RD
2

RD
N

C
O
M
P
A
R
A
T
O
R

FISO
CTRL

LIF
CTRL

READOUT
CTRL

S1 S2
FISO Layer LIF Layer Readout Layer

X
1

X
2

X
K

Val0 Val1 Val2 ValOUT

ID
WIN

EN EN EN EN

(b)

Figure 7.5: a) Architecture of the Readout layer with 4 input synapses and 3 neurons. b) Overview
of the full architecture of PADS V2.

7.3.1.5 Pipeline & synchronization

A global overview of an MLP with three layers is depicted in Figure 7.5b. In order to ensure the
synchronization of the pipeline, each layer is associated with a control unit. To better illustrate this
matter, a chronogram of the network process is provided in Figure 7.6. The layers are synchronized
using a valid signal. On the chronogram, the pipeline depth of the FISO layer is two clock cycles.
Therefore, the FISO neurons starts processing input upon receiving the input valid signal (val0).
When data reaches the end of the pipeline (after two clock cycles), the output valid signal (val1) is
raised. Moreover, the valid signal remains up for the duration of the time-window, e.g. three clock
cycles for three time-steps in the chronogram. This mechanism is repeated in each successive layer
to ensure an end-to-end pipeline from spike encoding (FISO layer) to decoding (Readout layer). It
should be noted that the pipeline depth in Figure 7.6 have been arbitrarily fixed to two, three and
four clock cycles. The real pipe-line depth can be calculated depending on the layer configuration,
as described in the next section.

7.3.2 Inference Time Results

The PADS-V2 architecture proposed in the previous section enables drastic acceleration com-
pared to PADS-V1. This is achieved by both the timestep constraint and the fully-parallel spike
encoding. In PADS-V1, the Spike Generation Cell is a dedicated module which encodes infor-
mation sequentially. The sequential choice was made to limit the resource overhead caused by
spike encoding: preliminary experiments have shown that a fully-parallel Spike Generation Cell
for OPS-SAT dataset already saturates the Zedboard resources. In PADS-V2 the spike encoding
is parallel, but it is directly supported by the first layer of neurons (FISO layer). In doing so,
the cost of parallelization is mitigated. Evaluation of the resource cost of PADS-V2 should be

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 142

X
1
,X

2
,…,X

K

ID
WIN

FISO
pipeline

LIF pipeline

Readout pipeline

FISO active

LIF active

Readout active

Val0

Val1

Val2

ValOUT

CLK

Figure 7.6: Chronogram of the PADS-V2 pipelined process at network-level

undertaken in further work. However, preliminary experiments shows that this implementation is
much faster than PADS-V1. Both architectures are applied to two different tasks: a three-layer
MLP (784-100-10) for MNIST classification, and a smaller MLP (80-10-2) for hybrid OPS-SAT
classification (Chapter 6). The inference times are listed in Table 7.3.

Moreover, we provide the width of spike encoding window for both PADS-V1 and PADS-V2,
for all datasets of the benchmark. Those values correspond to the best case accuracy of each
method, and it is averaged on 10 samples. The results are shown in Table 7.4. In those results,
the width of the spike encoding window is often smaller for rate-encoding in terms of timesteps.
However, the sequential GenCell implies a much higher width in terms of clock cycle, since a
timestep lasts for several clock-cycles (Chapter 3.1.1). As a reminder, parallelization of the Spike
Generation Cell was found to be very resource-intensive in Chapter 3.1.1. Therefore, reducing the
number of clock cycles for spike encoding through parallelization of the GenCell is not a viable
solution. In PADS-V2 on the other hand, the width in timesteps is equal to the width in clock
cycle, thanks to the fully-parallel spike encoding. In this case, parallelization is accessible since i)
the spike generation is incorporated among a layer of LIF neurons ii) the SoD generation process
is much simpler than rate coding in terms of hardware. Therefore, PADS-V2 spike encoding is
temporally compact, reducing the overall inference-time by several order of magnitudes compared
to PADS-V1. Moreover, the spike-encoding window width is a user-defined parameter in PADS-
V2, whereas it is unpredictable and data-dependent in PADS-V1. Thus, the number of timesteps
can grow out of control, like for RadioML-2018 in Table 7.4. In PADS-V2, the width of the window
is fixed in advance, thus the problem does not arise. The variability of inference time in PADS-V1
is also a significant drawback because it complicates its integration in wider systems: in PADS-V2,
the predictable inference time is much easier for timing management.

The preliminary experiments show that PADS-V2 is indeed much faster than PADS V1. That
is thanks to the timestep-constrained representation of the SNN model, and to the end-to-end
pipeline and fully-parallel implementation. Moreover, PADS-V2 architecture is much less influ-
enced by input size than PADS-V1, as the spike encoding process is no longer dependent on
input size. Thus, the new model of SNN seems much more adapted to hardware acceleration
than rate-coded converted models studied in the previous chapters. Indeed, inference time was
found to be the major source of energy overhead in spiking accelerators in Chapters 5 and 6. The
timestep-constrained SNN model presented in this chapter, and the PADS-V2 architecture, could

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 143

Table 7.3: Inference time of PADS-V1 and PADS-V2 on MNIST and OPS-SAT hybrid

PADS
V1

PADS
V2

MNIST
784-100-10

∼15 000 clk 39 clk

OPS-SAT (Hybrid)
80-10-2

∼120 clk 27 clk

Table 7.4: Width of the spike encoding window in PADS-V1 and PADS-V2 on the benchmark of
datasets, for best-case accuracy. The width is expressed in both timesteps and clock-cycles.

Spike encoding window width
PADS-V1
best acc.

PADS-V2
best acc.

TS CLK TS CLK

MNIST 5 3920 10 10

GTSRB 5 15360 10 10

CIFAR-10 14 43008 10 10

MVR 9 540 5 5

Spoken Digits 10 5070 20 20

RadioML 2018 80 245760 20 20

therefore leverage significant energy savings. However, further work is required to deploy and test
the architecture in hardware, in order to evaluate the resource, power and energy consumption
of this architecture. Moreover, PADS-V2 is a prototype architecture and an operational design
should involve a lower level of parallelism.

Additionally, the inference time in PADS-V2 is fully deterministic and only depends on the layer
configuration. That is a major difference with PADS-V1, in which inference time is unpredictable
and variable from one sample to another. This features facilitates the implementation of PADS-
V2 in wider systems, easing timing management between the components. The inference time of
PADS-V2 depends on the pipeline depth of each layer, as shown in the chronogram of Figure 7.6.
The total execution time is expressed in Equation 7.8:

∆TTotal = ∆TFISO
pipe +

Nhidden∑
j

∆T j-LIF
pipe + ∆TRD

pipe +N ts (7.8)

Where ∆TTotal is the total execution time (in clock cycles), ∆T layer
pipe is the pipe-line depth (in

clock cycles) of a given layer, Nhidden is the number of hidden layers of LIF neurons and N ts is
the number of time-steps for sample encoding. For FISO and LIF layers, the pipeline depth is
computed as shown in Equation 7.9. It is the depth of the adder-tree, plus three clock cycles for
threshold, firing and leakage.

∆TFISO LIF
pipe = log2(N input) + 3 (7.9)

Where N input is the number of input synapses. The pipeline depth of the readout layer is computed
like shown in Equation 7.10. This time, the processing is divided in two separate pipe-line. For

CHAPTER 7. ENHANCING PADS: FISO & LIF AS RECURRENT NEURONS 144

readout neurons, the pipeline depth is the depth of the adder-tree, as there is no threshold, firing
and leakage. After that, the pipeline depth of the comparator is the depth of the tree of maximum
operators.

∆TReadout
pipe = log2(N input) + log2(Noutput) (7.10)

Where Noutput is the number of output neurons. Those equations have been validated through
hardware simulation.

7.4 Conclusions & Outlooks

In this chapter, we have described a novel model of SNNs proposed by Neftci et. al. in [32]. The
model represents the network of LIF neurons as a Recurrent Neural Network (RNN) in order to
use a variant of the Backpropagation Through Time algorithm: the Surrogate Gradient Learning.
This model was adapted and simplified by Zimmer et. al. in the S2NET framework, which provides
GPU-accelerated Surrogate Gradient Learning on timestep-constrained SNNs. This model uses the
Send-on-Delta spike encoding method, whose parameters are also learned during training. Thanks
to those features, the resulting SNN demonstrates lower Synaptic Activity Ratio than conversion
and rate-coding on the benchmark of static datasets (Chapter 4). That is while maintaining
acceptable or better accuracy than the previous technique used in this thesis. Moreover, the
literature now describes state-of-the-art accuracy using this method.

The PADS architecture has been adapted to the S2NET SNN model, notably through adding
a leakage factor to the membrane potential and integrating spike encoding in a layer of FISO
neurons. PADS-V2 benefits from the fixed and low number of timesteps thanks to a fully-parallel
implementation and an end-to-end pipeline. In doing so, the architecture achieves drastically
reduced inference times compared to PADS-V1. On a 784-100-10 MLP applied to MNIST dataset,
PADS-V2 demonstrates a constant inference time of 39 clock cycles per image. On the other hand,
PADS-V1 implies variable inference time for an average 15 000 clock cycles. Thus, the time-
constrained SNN model seems more adapted to hardware implementation, and could leverage
drastic energy savings. However, further work is required to deploy the architecture in hardware
and measure resource, power and energy consumption.

Moreover, PADS-V2 remains a prototype: an operational architecture should involve an inter-
mediate level of parallelism. Indeed, a fully-parallel implementation like PADS is not realistic to
deploy state-of-the-art models with several millions of neurons. Like explained in Chapter 5, par-
allelism can be tailored at layer level according to SAR: layers with higher SAR are implemented
with more parallel NPUs than others. Such intermediate level of parallelism will be addressed in
further works.

Chapter 8

Conclusions and outlooks

The field of Neuromorphic Computing has emerged recently as an answer to the energy require-
ments of Deep Learning models in view of their deployment in embedded systems. Deep neu-
ral networks are particularly appealing for autonomous and smart devices. Through the use of
bio-inspired spiking neurons, the goal of Neuromorphic Computing is to leverage energy savings
in hardware neural network accelerators. This widespread approach in the literature relies on
the strong hypothesis that the the biological brain draws its energy efficiency from spike-based
processing. Those expectations are backed by the respective computational costs of formal and
spiking neurons: the accumulation operation of the latter is more hardware-friendly than the
multiplication-accumulation operation of formal neurons. Moreover, the sparsity of spike encod-
ing enables a sparse computation, i.e. the system is only active upon receiving information.
That is, in contrast with FNN in which computation does not depend on data. Additionally, the
lightweight communication between neurons should further reduce the hardware footprint of spik-
ing implementations. However, to the best of our knowledge, there was a lack of fair, extensive and
quantitative comparison between formal and spiking accelerators in the literature. This matter
was the main topic of the thesis: determine and quantify the potential energy savings offered by
Neuromorphic Computing.

In the literature, it appeared that the number of spikes generated by the network (i.e spiking
activity) is often considered as a reliable high-level metric to assess energy consumption of spik-
ing hardware accelerahttps://manga-encyclopedie.fandom.com/fr/wiki/Vegetotors relatively to an
FNN baseline. This approach is based on the number of synaptic operations (MAC in formal neu-
rons, ACC in spiking ones). However, the correlation between this metric and the actual energy
consumption of SNNs remained unclear, and unproven when we started our study. Therefore,
one other goal of this thesis was to propose a finer energy consumption model based on synaptic
activity and confront the results with actual energy measurements.

Additionally, the last important goal of this thesis was to propose a cartography of applications
and neural coding domains, in order to find specific use-cases in which neuromorphic acceleration
could bring game-changing energy savings for deployment in embedded systems. In addition to
exploring application cases, we were interested in finding ”conditions” that enhance the energy
savings of spiking implementations. Those conditions vary from the resolution of input data,
the quantity of classes, the distribution of pixels... In other words, one of our concerns was to
determine what makes an application suitable for spiking domain.

8.1 Conclusion

In this thesis, we have chosen to primarily address rate-coded Spiking Neural Networks and con-
version training techniques, since those two methods were the most widespread and documented in
the literature. Moreover, this family of SNNs is supported by several machine learning frameworks
like N2D2. Several contributions were proposed to fulfill the thesis goals and answer its initial

145

CHAPTER 8. CONCLUSIONS AND OUTLOOKS 146

questions.
First, we have proposed a high-level energy estimation model for FPGA neural network accel-

erators. This model is based on the Synaptic Activity Ratio metric (number of spike per synapse),
and a modeling of MAC and ACC implementations on FPGA. The model proposes to compute
the ratio of energy consumption between a MAC and ACC operations in a specific design, for a
specific target board. This value, λ, depends on the saturation of DSP resources in the FPGA. If
the average number of spike per synapses (SAR) is greater than λ, this means that the model is
not suited for spiking acceleration. Thanks to this comparison method, one can rapidly determine
which type of application seems suitable for spiking acceleration. The model was confronted to
energy estimations on a few datasets. On most tested cases, for fully-parallel architectures, the
SAR&λ model accurately predicted the preferable coding domain in terms of energy consumption.
That was not the case for fully-sequential architectures, since the two implementations (SPLEAT
and C-HLS) have two much different low-level design choices (pipeline). On the other hand, the
model is not quantitatively correlated with the estimated ratios of energy consumption. Our hy-
pothesis is that the model does not take the temporal sparsity of spikes into account, which is
a strong bias considering that the tested architectures maintain their power consumption in idle
state (i.e. between two spikes). This matter will be addressed further in the outlooks.

Second, we have proposed a framework for estimation of logic resource usage, power consump-
tion, inference time and energy of FPGA neural network accelerators. This framework is based on
the interpolation of a hardware-footprint database and low level simulation of spiking inference.
It is able to determine the hardware footprint of a typical spiking or formal hardware accelera-
tor, under high or low levels of parallelism. In doing so, the goal is not to provide an absolute
estimation of hardware footprint, but rather to facilitate the rapid comparison of coding domains
and levels of parallelism in the application space. Thanks to the framework, the cartography of
neural coding domain and architectural choices on a benchmark of seven datasets was possible in
a few hours. Without the framework, this study could have taken hundreds of hours of synthesis,
simulation and result extraction. Using our framework, the extensive comparison of hardware
FNNs and SNNs has shown that spikes are not always better in terms of energy consumption (far
from it). Indeed, the temporal sparsity of rate-coded spike trains causes a substantial overhead in
inference time, and in turns, in energy consumption. To cope with this issue, specific strategies
have to be settled, like reducing temporal sparsity of spikes or number of spikes per synapses.
The estimation framework led to a publication in ACM Transaction on Embedded Computing
Systems, Special Issue : Accelerating AI on the edge [112].

To answer this matter, we have proposed two different approaches. On the one hand, this
thesis is among the first to study the concept of neural network hybridization. The motivations
for this approach are numerous: tailoring the neural coding domain to layer-wise synaptic activ-
ity, using the formal feature-extraction stage as a pre-processing to lower resolution and widen
data distribution. Both energy estimations and hardware implementations demonstrate that this
approach could indeed leverage energy savings where spiking domain alone could not. Our hybrid
architecture led to a publication in ISCAS 2020 conference [113], and to a use-case chapter in the
Tulipp Book [114]. On the other hand, we use our high-level SAR-based energy model to find
a more suitable family of SNN models. In doing so, we address the timestep-constrained SNNs
trained through Surrogate Gradient Learning proposed for the very first time in 2019 by Neftci et.
al.. This family of model demonstrates lower SAR and spike temporal sparsity than rate-based
approaches, while offering state-of-the-art classification accuracy. We proposed an hardware accel-
erator based on this family of SNN models (PADS-V2), and obtained substantially lower inference
time than with the former rate-coding and conversion approach. Hence, this approach seems

CHAPTER 8. CONCLUSIONS AND OUTLOOKS 147

promising to reduce the energy consumption of neuromorphic implementations. In PADS V2 im-
plementation, we used the FISO neuron model which was patented during the first year of this
thesis. The PADS V2 implementation will be the main topic of an upcoming conference paper.

Additionally, this thesis has led to the deployment of the first ever neuromorphic accelerator
in space, as well as the first hybrid accelerator, on-board ESA’s OPS-SAT experimental satellite.
The satellite was launched in December 2019, and the VGT-PADS hybrid architecture (Chapter
6) was successfully tested in-flight. This world premiere was achieved in collaboration with IRT
Saint-Exupéry and CIAR project. This led to a publication for the European OBDP workshop [93].

Lastly, one of the main assessments of this work is that rate-coding is not suited to energy
efficiency in digital neuromorphic circuits compared to classical floating-point approaches. As
demonstrated in Chapter 5, rate-coding often leads to an energy consumption overhead, whether
due to the number of operations (i.e. number of spikes) or to the temporal sparsity of spikes. The
latter implies a higher inference time, and an energy overhead due to both idle and static power
consumptions (particularly on FPGAs). However, those conclusions are not inevitably true for
SNNs in general, since other methods than rate-coding exists. Other encoding schemes should be
studied in this regard, such as temporal [68] or rank-order [66] coding. While reducing the number
or temporal sparsity of spikes, those methods are also more biologically plausible. They indeed
reproduce the mechanism observed in retina sensory fibers since they are interpreted as intensity-
to-latency encoders [115]. Addressing temporal and rank-order encoding is therefore coherent with
the bio-inspiration approach of neuromorphic engineering, in our hunt for brain-inspired energy
efficiency.

8.2 Outlooks

All along this document, retrospective analysis of our development and results have led to several
short-term outlooks. Those propositions are either intended to strengthen our results, or to delve
deeper on some aspects that were left apart.

8.2.1 Short term and work-specific perspectives

Since PADS and SPLEAT are two prototypes with extreme (high and low) levels of parallelism,
those are only laboratory prototypes unsuitable for state-of-the-art model emulation or opera-
tional deployment. Hence, one of the first short-term development to make is the development
of a neuromorphic accelerator featuring an intermediate, configurable levels of parallelism. For
example, such an architecture might be based on the SPLEAT Neural Processing Core, which is
already adapted to multiplexing. The goal is therefore to deploy several SPLEAT cores in parallel
for each layer. Since we have found that SAR was an indicator of parallelism requirements, it can
be used to determine the optimal number of parallel cores in each layers. Thus, further studies
on the relation between SAR and parallelism requirements will be addressed in further works.
Similarly, the exploration of intermediate levels of parallelism might also be a future feature of the
hardware-footprint and energy estimation framework. In doing so, the framework can estimate
energy consumption for parallelism configuration, allowing to find a Pareto-optimal solution. Ad-
ditionally, the architecture should be adapted to the timestep-constrained SNN model [32] [21]
studied in Chapter 7, rather than the original rate-based model it was designed for. The goal is
indeed to benefit from the temporal compactness and low SAR of such novel SNN models.

CHAPTER 8. CONCLUSIONS AND OUTLOOKS 148

Moreover, we are also interested in improving further the SAR metric and the subsequent
high-level energy model. The SAR metric must take the temporal sparsity of spikes into account
to provide a quantitative estimation of energy ratios. Indeed, the current approach neglects the
idle power usage of hardware architectures, which represents an important part of the overall
energy consumption. Indeed, our measurements have shown that the idle dynamic power usage
(i.e. dynamic component of power consumption of a neural core waiting for input spikes) was
nearly as high as the active dynamic power usage (i.e. dynamic component of a neural core
actively processing spikes). That is mostly due to the clock toggle signals, which are independent
from the presence or absence of input stimuli. In temporally sparse SNNs, idle state represents
a large portion of time in each neurons, which should be accounted for in the SAR metric. The
effect of idle state is less of a problem in temporally compact SNNs. However, if there is no
mean to decrease temporal sparsity of spikes in a given application, the problem might also be
addressed the other way around. Instead of adapting the metric, a clock-gating mechanism in
the architecture could preclude the influence of dynamic power consumption in idle state. By
deactivating the clock signals locally when a core is in idle state, such low-level optimization could
provide substantial energy savings in neuromorphic implementations. Moreover, the result would
be closer to the SAR-based model.

Additionally, this study has shown that FPGA was not the best suited device for neuromorphic
acceleration. That is because of the large static power consumption which has two noticeable
effects. First, the static power offset masks the dynamic power savings, particularly for small
designs in which the dynamic component of power consumption is negligible in front of the other
(on Zedboard). Preliminary experiments targeting other and larger boards have shown the same
issue, if not worse. Second, a high static power consumption further penalizes the energy cost
of idle state in temporally sparse SNNs (rate-coding & conversion). Clock-gating can drastically
reduce the dynamic power usage in idle state, but not the static component. One way to cope
with this issue is to address Application Specific Integrated Circuits (ASICs), which demonstrate
much lower static power consumption. ASICs are integrated circuits specifically manufactured
according to the RTL description, in contrast with FPGAs which are array of re-configurable
elements. The hardware of ASICs being dedicated and specific, the static power consumption
can be much lower. The deployment of neuromorphic accelerators on ASICs rather than FPGAs
could therefore enhance the low-power capabilities of spiking neurons, and in turns leverage the
expected energy savings.

Furthermore, this study focuses on feed-forward CNN architectures. In future works, we will
extend our cartography of neural coding domains to other models, such as Recurrent Neural
Network, Reservoir Computing or Residual architectures. Lastly, one of the most promising
application of Spiking Neural Networks are their use in combination with Dynamic Vision Sensors
(i.e. Event-based cameras). Therefore, the neuromorphic acceleration applied to event-based
sensors will be addressed in further work.

8.2.2 Middle term outlooks and insights

We certainly still have a lot to learn from the energy efficiency of our biological brain. Since it
is the most efficient (by far) neural processor anyone has ever heard of, taking inspiration from
Neurosciences models must be a fruitful approach. The most important thing to learn from this
thesis is: using a naive approach of hardware implementation is not sufficient to benefit from the
energy efficiency of spike encoding. Three major necessary conditions to take advantage from
spikes were identified in this work.

CHAPTER 8. CONCLUSIONS AND OUTLOOKS 149

• First, the number of spikes can compensate the energy efficiency of the ACC operation over
the MAC. Therefore, the SAR should be studied to evaluate the potential energy savings
brought by spiking acceleration for a given neural network model and application.

• Second, one must ensure of the temporal compactness of spike encoding, since the idle energy
consumption (i.e. waiting between spikes) can compensate the energy savings obtained on
active processing.

• Third, when temporal sparsity of spikes is not an option (in specific application cases for
example), systems should involve a clock-gating mechanism to preclude idle energy con-
sumption.

• Fourth and last, ASIC technology seems more suited to neuromorphic acceleration than
FPGAs. That is thanks to the lower static power consumption of ASICs. Indeed, this
feature enhances the dynamic power savings offered by the spiking synaptic operation, and
further reduces the idle dynamic power consumption.

When looking towards ASICs and power-gating techniques, a particularly appealing emerging
technology arises from literature: Non Volatile RAM devices (NVRAM) [116]. This technology
is able to retain information when turned off like an hard drive, but offers much faster read and
right accesses. Using this RAM technology, parts of the system can be instantly turned off and
on for a strong and efficient power-gating: idle neurons can be turned-off while waiting for input
spikes. Moreover, NVRAMs demonstrate very low, if not negligible energy consumption compared
to standard RAM technologies. Some specific types of NVRAMs, such as RRAMs [117] or STT-
RAMs [118] [119], have even more appealing features for Neuromorphic Computing. Indeed, such
devices are able to physically emulate synapses: their internal resistivity can be tuned according
to the intensity of current passing through. This mechanism is analogous to synaptic plasticity,
and this devices are better known under the name of Memristor [120]. Using Memristor crossbar
arrays, researchers are currently working on emulating simple neural networks and even local
learning rules like Spike Time Dependent Plasticity [121] [122] [123]. This technology promises
a breakthrough reduction of energy consumption in neuromorphic systems [124] [125]. However,
this field of research is still in its very early stages, since the Memristor technology itself is very
immature. The intrinsic variability of the production method, and the difficulty to stabilize them
on large scales are still limiting the technology deployment. The latest experiments on Memristor
crossbars only involve a few dozens of synapses, which is far from supporting basic CNN models,
let alone state-of-the-art Deep Learning topologies. Still, the Logic-in-Memory approach of this
emerging field of research could be the key to the brain-inspired energy efficiency.

Bibliography

[1] O. e. a. Bichler, “N2d2-neural network design & deployment,” Manual available on Github,
2017.

[2] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu, “Recent advances in convolutional
neural network acceleration,” Neurocomputing, vol. 323, pp. 37–51, 2019.

[3] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr, “Accelerating
binarized neural networks: Comparison of fpga, cpu, gpu, and asic,” in 2016 International
Conference on Field-Programmable Technology (FPT). IEEE, 2016, pp. 77–84.

[4] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T. Liew,
K. Srivatsan, D. Moss, S. Subhaschandra et al., “Can fpgas beat gpus in accelerating next-
generation deep neural networks?” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 5–14.

[5] M. K. Hamdan, “Vhdl auto-generation tool for optimized hardware acceleration of convolu-
tional neural networks on fpga (vgt),” Ph.D. dissertation, Iowa State University, 2018.

[6] E. M. Izhikevich, “Which model to use for cortical spiking neurons?” IEEE transactions on
neural networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[7] L. A. Camuñas-Mesa, Y. L. Domı́nguez-Cordero, A. Linares-Barranco, T. Serrano-
Gotarredona, and B. Linares-Barranco, “A configurable event-driven convolutional node
with rate saturation mechanism for modular convnet systems implementation,” Frontiers in
neuroscience, vol. 12, p. 63, 2018.

[8] R. M. Wang, G. Cohen, K. M. Stiefel, T. J. Hamilton, J. C. Tapson, and A. van Schaik,
“An fpga implementation of a polychronous spiking neural network with delay adaptation,”
Frontiers in neuroscience, vol. 7, p. 14, 2013.

[9] X. Ju, B. Fang, R. Yan, X. Xu, and H. Tang, “An fpga implementation of deep spiking
neural networks for low-power and fast classification,” Neural computation, vol. 32, no. 1,
pp. 182–204, 2020.

[10] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong, “Auto-
mated systolic array architecture synthesis for high throughput cnn inference on fpgas,” in
Proceedings of the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[11] H. Fang, Z. Mei, A. Shrestha, Z. Zhao, Y. Li, and Q. Qiu, “Encoding, model, and archi-
tecture: Systematic optimization for spiking neural network in fpgas,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[12] G. Orchard, C. Meyer, R. Etienne-Cummings, C. Posch, N. Thakor, and R. Benosman,
“Hfirst: A temporal approach to object recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 10, pp. 2028–2040, 2015.

150

BIBLIOGRAPHY 151

[13] A. Khodamoradi, K. Denolf, and R. Kastner, “S2n2: A fpga accelerator for stream-
ing spiking neural networks,” in The 2021 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2021, pp. 194–205.

[14] N. Abderrahmane, “Hardware design of spiking neural networks for energy efficient brain-
inspired computing,” Ph.D. dissertation, Université Côte d’Azur, 2020.

[15] P. S. Lacoste, “Deux premières en ia embarquée à bord de satellites • irt saint exupéry •
technological research institute.” [Online]. Available: https://www.irt-saintexupery.com/
fr/two-premieres-in-on-board-artificial-intelligence-on-satellites/

[16] R. P. e. a. Gorman, “Analysis of hidden units in a layered network trained to classify sonar
targets,” Neural networks, vol. 1, no. 1, pp. 75–89, 1988.

[17] P. Warden, “Speech commands: A dataset for limited-vocabulary speech recognition,” arXiv
preprint arXiv:1804.03209, 2018.

[18] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal
classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp.
168–179, 2018.

[19] [Online]. Available: https://directory.eoportal.org/web/eoportal/satellite-missions/o/
ops-sat#?TMYJ1faHerb

[20] “Ops-sat.” [Online]. Available: https://www.esa.int/Enabling Support/Operations/
OPS-SAT

[21] R. Zimmer, T. Pellegrini, S. F. Singh, and T. Masquelier, “Technical report: super-
vised training of convolutional spiking neural networks with pytorch,” arXiv preprint
arXiv:1911.10124, 2019.

[22] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activ-
ity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[23] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organi-
zation in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[24] P. Werbos, “Beyond regression:” new tools for prediction and analysis in the behavioral
sciences,” Ph. D. dissertation, Harvard University, 1974.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[26] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural computation,
vol. 1, no. 4, pp. 541–551, 1989.

[27] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and time series,”
The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995, 1995.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

https://www.irt-saintexupery.com/fr/two-premieres-in-on-board-artificial-intelligence-on-satellites/
https://www.irt-saintexupery.com/fr/two-premieres-in-on-board-artificial-intelligence-on-satellites/
https://directory.eoportal.org/web/eoportal/satellite-missions/o/ops-sat#?TMYJ1faHerb
https://directory.eoportal.org/web/eoportal/satellite-missions/o/ops-sat#?TMYJ1faHerb
https://www.esa.int/Enabling_Support/Operations/OPS-SAT
https://www.esa.int/Enabling_Support/Operations/OPS-SAT

BIBLIOGRAPHY 152

[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, 2017, pp. 5998–6008.

[30] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” arXiv
preprint arXiv:2005.14165, 2020.

[31] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural networks:
Vgg and residual architectures,” Frontiers in neuroscience, vol. 13, p. 95, 2019.

[32] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural networks,”
IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63, 2019.

[33] M. Miskowicz, “Send-on-delta concept: An event-based data reporting strategy,” sensors,
vol. 6, no. 1, pp. 49–63, 2006.

[34] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to recurrent neural net-
work training,” Computer Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[35] W. Maass, “Liquid state machines: motivation, theory, and applications,” Computability in
context: computation and logic in the real world, pp. 275–296, 2011.

[36] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[37] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL: http://yann. lecun.
com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift,” in International conference on machine learning. PMLR,
2015, pp. 448–456.

[39] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural
networks,” in 2013 IEEE international conference on acoustics, speech and signal processing.
Ieee, 2013, pp. 6645–6649.

[40] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and
the impact of residual connections on learning,” in Thirty-first AAAI conference on artificial
intelligence, 2017.

[41] B. Asadi and H. Jiang, “On approximation capabilities of relu activation and softmax output
layer in neural networks,” arXiv preprint arXiv:2002.04060, 2020.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by
error propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech.
Rep., 1985.

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

BIBLIOGRAPHY 153

[44] A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware spiking neurons design: Analog
or digital?” in The 2012 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2012, pp. 1–5.

[45] J. Von Neumann, “The general and logical theory of automata.” 1951.

[46] T. S. Crow, “Evolution of the graphical processing unit,” A professional paper submitted in
partial fulfillment of the requirements for the degree of Master of Science with a major in
Computer Science, University of Nevada, Reno, 2004.

[47] M. J. S. Smith, Application-specific integrated circuits. Addison-Wesley Reading, MA,
1997, vol. 7.

[48] S. M. Trimberger, Field-programmable gate array technology. Springer Science & Business
Media, 2012.

[49] R. W. Hartenstein, Hardware description languages. North-Holland, 1987.

[50] Z. Navabi, VHDL: Analysis and modeling of digital systems. McGraw-Hill New York, 1993,
vol. 2.

[51] D. Thomas and P. Moorby, The Verilog® hardware description language. Springer Science
& Business Media, 2008.

[52] A. Thomas, “Memristor-based neural networks,” Journal of Physics D: Applied Physics,
vol. 46, no. 9, p. 093001, 2013.

[53] S. Mittal, “A survey of fpga-based accelerators for convolutional neural networks,” Neural
computing and applications, vol. 32, no. 4, pp. 1109–1139, 2020.

[54] L. F. Abbott, “Lapicque’s introduction of the integrate-and-fire model neuron (1907),” Brain
research bulletin, vol. 50, no. 5-6, pp. 303–304, 1999.

[55] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its
application to conduction and excitation in nerve,” The Journal of physiology, vol. 117,
no. 4, pp. 500–544, 1952.

[56] R. Brette, “What is the most realistic single-compartment model of spike initiation?” PLoS
Comput Biol, vol. 11, no. 4, p. e1004114, 2015.

[57] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep
learning in spiking neural networks,” Neural Networks, vol. 111, pp. 47 – 63, 2019. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0893608018303332

[58] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for energy-
efficient object recognition,” International Journal of Computer Vision, vol. 113, no. 1, pp.
54–66, 2015.

[59] P. O’Connor and M. Welling, “Deep spiking networks,” arXiv preprint arXiv:1602.08323,
2016.

http://www.sciencedirect.com/science/article/pii/S0893608018303332

BIBLIOGRAPHY 154

[60] K. S. Burbank, “Mirrored stdp implements autoencoder learning in a network of spiking
neurons,” PLoS computational biology, vol. 11, no. 12, p. e1004566, 2015.

[61] J. A. Leñero-Bardallo, T. Serrano-Gotarredona, and B. Linares-Barranco, “A 3.6µs latency
asynchronous frame-free event-driven dynamic-vision-sensor,” IEEE Journal of Solid-State
Circuits, vol. 46, no. 6, pp. 1443–1455, 2011.

[62] V. Chan, S.-C. Liu, and A. van Schaik, “Aer ear: A matched silicon cochlea pair with ad-
dress event representation interface,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 54, no. 1, pp. 48–59, 2007.

[63] A. Slepyan and N. Thakor, “Towards scalable soft e-skin: Flexible event-based tactile-sensors
using wireless sensor elements embedded in soft elastomer,” in 2020 8th IEEE RAS/EMBS
International Conference for Biomedical Robotics and Biomechatronics (BioRob). IEEE,
2020, pp. 334–339.

[64] N. Abderrahmane, E. Lemaire, and B. Miramond, “Design space exploration of hardware
spiking neurons for embedded artificial intelligence,” Neural Networks, vol. 121, pp. 366–386,
2020.

[65] T. Gollisch and M. Meister, “Rapid neural coding in the retina with relative spike latencies,”
science, vol. 319, no. 5866, pp. 1108–1111, 2008.

[66] G. Portelli, J. M. Barrett, G. Hilgen, T. Masquelier, A. Maccione, S. Di Marco, L. Berdon-
dini, P. Kornprobst, and E. Sernagor, “Rank order coding: a retinal information decoding
strategy revealed by large-scale multielectrode array retinal recordings,” Eneuro, vol. 3,
no. 3, 2016.

[67] S. Thorpe and J. Gautrais, “Rank order coding,” in Computational neuroscience. Springer,
1998, pp. 113–118.

[68] B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural networks using sparse
temporal coding,” in 2018 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2018, pp. 1–5.

[69] W. Fang, Z. Yu, Y. Chen, T. Masquelier, T. Huang, and Y. Tian, “Incorporating learnable
membrane time constant to enhance learning of spiking neural networks,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2661–2671.

[70] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A
tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, 2017.

[71] J. C. Thiele, O. Bichler, and A. Dupret, “Event-based, timescale invariant unsupervised
online deep learning with stdp,” Frontiers in Computational Neuroscience, vol. 12, p. 46,
2018. [Online]. Available: https://www.frontiersin.org/article/10.3389/fncom.2018.00046

[72] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-based
spiking deep convolutional neural networks for object recognition,” Neural Networks,
vol. 99, pp. 56–67, 2018. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0893608017302903

https://www.frontiersin.org/article/10.3389/fncom.2018.00046
http://linkinghub.elsevier.com/retrieve/pii/S0893608017302903
http://linkinghub.elsevier.com/retrieve/pii/S0893608017302903

BIBLIOGRAPHY 155

[73] G. Srinivasan, C. Lee, A. Sengupta, P. Panda, S. S. Sarwar, and K. Roy, “Training deep
spiking neural networks for energy-efficient neuromorphic computing,” in ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 8549–8553.

[74] S. M. Bohte, J. N. Kok, and J. A. La Poutré, “Spikeprop: backpropagation for networks of
spiking neurons.” in ESANN, 2000, pp. 419–424.

[75] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep learning
in spiking neural networks,” Neural Networks, vol. 111, pp. 47–63, 2019.

[76] P. Panda, S. A. Aketi, and K. Roy, “Toward scalable, efficient, and accurate deep spiking
neural networks with backward residual connections, stochastic softmax, and hybridization,”
Frontiers in Neuroscience, vol. 14, 2020.

[77] S. Davidson and S. B. Furber, “Comparison of artificial and spiking neural networks on
digital hardware,” Frontiers in Neuroscience, vol. 15, p. 345, 2021.

[78] S. Kundu, G. Datta, M. Pedram, and P. A. Beerel, “Spike-thrift: Towards energy-efficient
deep spiking neural networks by limiting spiking activity via attention-guided compression,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 3953–3962.

[79] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, and E. Beigne,
“Spiking neural networks hardware implementations and challenges: A survey,” ACM
Journal on Emerging Technologies in Computing Systems (JETC), vol. 15, no. 2, pp. 1–
35, 2019.

[80] K. Cheung, S. R. Schultz, and W. Luk, “A large-scale spiking neural network accelerator for
fpga systems,” in International Conference on Artificial Neural Networks. Springer, 2012,
pp. 113–120.

[81] E. M. Izhikevich, “Polychronization: computation with spikes,” Neural computation, vol. 18,
no. 2, pp. 245–282, 2006.

[82] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in 2015
International joint conference on neural networks (IJCNN). ieee, 2015, pp. 1–8.

[83] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi,
N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with on-chip learning,”
Ieee Micro, vol. 38, no. 1, pp. 82–99, 2018.

[84] E. Painkras, L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester,
A. D. Brown, and S. B. Furber, “Spinnaker: A 1-w 18-core system-on-chip for massively-
parallel neural network simulation,” IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp.
1943–1953, 2013.

[85] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L.
Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A million spiking-neuron integrated circuit
with a scalable communication network and interface,” Science, vol. 345, no. 6197, pp. 668–
673, 2014.

BIBLIOGRAPHY 156

[86] D. Neil and S.-C. Liu, “Minitaur, an event-driven fpga-based spiking network accelerator,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp.
2621–2628, 2014.

[87] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu, M. Leeser,
and K. Vissers, “Finn-r: An end-to-end deep-learning framework for fast exploration of
quantized neural networks,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 11, no. 3, pp. 1–23, 2018.

[88] L. Khacef, N. Abderrahmane, and B. Miramond, “Confronting machine-learning with neu-
roscience for neuromorphic architectures design,” in 2018 International Joint Conference on
Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[89] B. Han, A. Sengupta, and K. Roy, “On the energy benefits of spiking deep neural networks:
A case study,” in 2016 International Joint Conference on Neural Networks (IJCNN). IEEE,
2016, pp. 971–976.

[90] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” Advances in neural information processing systems, vol. 25, pp.
1097–1105, 2012.

[91] S. R. Kheradpisheh and T. Masquelier, “Temporal backpropagation for spiking neural net-
works with one spike per neuron,” International Journal of Neural Systems, vol. 30, no. 06,
p. 2050027, 2020.

[92] Xilinx, “Zynq dpu v3.2 - product guide,” 07 2020.

[93] F. Férésin, E. Kervennic, Y. Bobichon, E. Lemaire, N. Abderrahmane, G. Bahl, I. Grenet,
M. Moretti, and M. Benguigui, “In space image processing using ai embedded on system on
module: example of ops-sat cloud segmentation,” in 2nd European Workshop on On-Board
Data Processing, 2021.

[94] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[95] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to doc-
ument recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[96] A. Byerly, T. Kalganova, and I. Dear, “A branching and merging convolutional network with
homogeneous filter capsules,” arXiv preprint arXiv:2001.09136, 2020.

[97] J. e. a. Stallkamp, “Man vs. computer: Benchmarking machine learning algorithms for traffic
sign recognition,” Neural networks, vol. 32, pp. 323–332, 2012.

[98] Á. e. a. Arcos-Garćıa, “Deep neural network for traffic sign recognition systems: An analysis
of spatial transformers and stochastic optimisation methods,” Neural Networks, vol. 99, pp.
158–165, 2018.

[99] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”
2009.

[100] P. e. a. Foret, “Sharpness-aware minimization for efficiently improving generalization. arxiv
2020,” arXiv preprint arXiv:2010.01412.

BIBLIOGRAPHY 157

[101] L. K. et. al., “Written and spoken digits database for multimodal learning,” Oct. 2019.

[102] L. Zhejun, “Resnet for radio recognition,” Jun 2019. [Online]. Available: https:
//github.com/liuzhejun/ResNet-for-Radio-Recognition

[103] Xilinx, “Zynq-7000 soc data sheet - overview,” 7 2018.

[104] I. S. U. Muhammad K A Hamdan, “Automatic vhdl generation for cnn models,” 05 2020.

[105] R. Bonamy, S. Bilavarn, D. Chillet, and O. Sentieys, “Power modeling and exploration of
dynamic and partially reconfigurable systems,” Journal of Low Power Electronics, vol. 12,
no. 3, pp. 172–185, 2016.

[106] B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and tools for the conversion of
analog to spiking convolutional neural networks,” arXiv preprint arXiv:1612.04052, 2016.

[107] Y. Li, S. Deng, X. Dong, R. Gong, and S. Gu, “A free lunch from ann: Towards efficient,
accurate spiking neural networks calibration,” arXiv preprint arXiv:2106.06984, 2021.

[108] M. A. Akhloufi, S. Arola, and A. Bonnet, “Drones chasing drones: Reinforcement learning
and deep search area proposal,” Drones, vol. 3, no. 3, p. 58, 2019.

[109] D. Evans and M. Merri, “Ops-sat: A esa nanosatellite for accelerating innovation in satellite
control,” in SpaceOps 2014 Conference, 2014, p. 1702.

[110] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and F. Patrone, “Small satellites
and cubesats: Survey of structures, architectures, and protocols,” International Journal of
Satellite Communications and Networking, vol. 37, no. 4, pp. 343–359, 2019.

[111] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for recogni-
tion,” in 2010 IEEE computer society conference on computer vision and pattern recognition.
IEEE, 2010, pp. 2559–2566.

[112] E. Lemaire, B. Miramond, S. Bilavarn, H. Saoud, and N. Abderrahmane, “Synaptic activity
and hardware footprint of spiking neural networks in digital neuromorphic systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 37, no. 4, p. 26, 2022.

[113] E. Lemaire, M. Moretti, L. Daniel, B. Miramond, P. Millet, F. Feresin, and S. Bilavarn, “An
fpga-based hybrid neural network accelerator for embedded satellite image classification,” in
2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp.
1–5.

[114] M. Jahre, D. Göhringer, and P. Millet, Towards Ubiquitous Low-power Image Processing
Platforms. Springer, 2021.

[115] E. D. Adrian and R. Matthews, “The action of light on the eye: Part i. the discharge of
impulses in the optic nerve and its relation to the electric changes in the retina,” The Journal
of Physiology, vol. 63, no. 4, p. 378, 1927.

[116] A. Chen, “A review of emerging non-volatile memory (nvm) technologies and applications,”
Solid-State Electronics, vol. 125, pp. 25–38, 2016.

https://github.com/liuzhejun/ResNet-for-Radio-Recognition
https://github.com/liuzhejun/ResNet-for-Radio-Recognition

BIBLIOGRAPHY 158

[117] W. Zhuang, W. Pan, B. Ulrich, J. Lee, L. Stecker, A. Burmaster, D. Evans, S. Hsu, M. Tajiri,
A. Shimaoka et al., “Novel colossal magnetoresistive thin film nonvolatile resistance random
access memory (rram),” in Digest. International Electron Devices Meeting,. IEEE, 2002,
pp. 193–196.

[118] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating stt-ram as
an energy-efficient main memory alternative,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2013, pp. 256–267.

[119] K. Wang, J. Alzate, and P. K. Amiri, “Low-power non-volatile spintronic memory: Stt-ram
and beyond,” Journal of Physics D: Applied Physics, vol. 46, no. 7, p. 074003, 2013.

[120] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor
found,” nature, vol. 453, no. 7191, pp. 80–83, 2008.

[121] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor crossbar-based
neuromorphic computing system: A case study,” IEEE transactions on neural networks and
learning systems, vol. 25, no. 10, pp. 1864–1878, 2014.

[122] C. Li, Z. Wang, M. Rao, D. Belkin, W. Song, H. Jiang, P. Yan, Y. Li, P. Lin, M. Hu
et al., “Long short-term memory networks in memristor crossbar arrays,” Nature Machine
Intelligence, vol. 1, no. 1, pp. 49–57, 2019.

[123] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-
Barranco, “Stdp and stdp variations with memristors for spiking neuromorphic learning
systems,” Frontiers in neuroscience, vol. 7, p. 2, 2013.

[124] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor deep spiking neu-
ral computing system: A step toward realizing the low-power stochastic brain,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 2, no. 5, pp. 345–358,
2018.

[125] P.-F. Chiu, M.-F. Chang, C.-W. Wu, C.-H. Chuang, S.-S. Sheu, Y.-S. Chen, and M.-J.
Tsai, “Low store energy, low vddmin, 8t2r nonvolatile latch and sram with vertical-stacked
resistive memory (memristor) devices for low power mobile applications,” IEEE Journal of
Solid-State Circuits, vol. 47, no. 6, pp. 1483–1496, 2012.

[126] M. Toumazet, “Ops-sat: Ai in the stars – an article by members • irt
saint exupéry • technological research institute,” Jan 2021. [Online]. Available:
https://www.irt-saintexupery.com/ops-sat-ai-in-the-stars/

[127] Xilinx, “Petalinux tools documentation - reference guide,” 07 2020.

https://www.irt-saintexupery.com/ops-sat-ai-in-the-stars/

APPENDIX 1: CIAR project

The CIAR (Autonomous and Reactive Image Chain) project [126] is a project led by Saint-Exupery
Technical Research Institute (IRT) involving several private and public research partners, including
ActiveEon, AViSTO, ELSYS Design, GEO4i, Thales Alenia Space and the LEAT laboratory. The
CIAR project is dedicated to the development of Neural Network accelerators for on-board satellite
image processing, targeting OPS-SAT Cyclone V SoC. This project has an access to the OPS-
SAT platform provided by ESA. The CIAR project thus represents a valuable opportunity for
architecture testing in real-world conditions.

The CIAR project use-case answers to a very concrete problem for observation satellites: the
limited communication bandwidth between the satellite and its ground control. Indeed, imaging
satellites role is to take high-resolution pictures of the Earth from space. Those pictures are then
sent to the ground for exploitation. However, the bandwidth between the satellite and its ground
station is very limited. Thus, sending high-resolution pictures is not a trivial concern and sending
useless images should be avoided.

The specific use-case of the CIAR project is to automatically segment clouds on pictures.
In doing so, the system is able to extract the parts where the ground is visible. Using this
method, only useful information is sent to the ground to help relieve the communication bandwidth.
Therefore, our goal is to build a cloud segmentation system and deploy it on the OPS-SAT SoC.
The system separates full-size (1920x1080p) images in 28x28p patches, and classifies each as
”cloud” or ”no-cloud”. The results are recombined after classification to form full-size cloud
segmentation maps. The cloud segmentation process is illustrated in Figure 1. The original
picture is on the left. On the right, patches classified as cloud appear in yellow.

Several Artificial Neural Networks models and hardware architectures have been developed to
address the cloud classification task. Each model has been evaluated in terms of performance,
resource and power usage, execution time and energy consumption. The goal is to determine
which type of application would suit best to the cloud segmentation use-case in the context of
highly constrained satellite systems. The various Neural Network models are:

• LeNet CNN architecture designed using VGT generator (Section 2.2.2.1),

• Spiking Multilayer Perceptron coded by hand in VHDL (PADS architecture),

• Tiny-Yolo CNN architecture generated using VGT,

• Fully-Convolutional Neural Network (FCN) architecture without fully-connected layers gen-
erated using VGT,

• Spiking CNN (S-CNN) coded by hand in VHDL.

• Hybrid Neural Network (HNN) mixing VGT-generated and hand-coded VHDL.

OPS-SAT LIST OF MODULES:

• The Satellite Experimental Processing Platform (SEPP): an Altera Cyclone V System-on-
Chip (SoC), alsa called MitySOM, with large memory capabilities in order to support ad-
vanced software and hardware experiments. This SoC is made of an FPGA Fabric, a dual-

159

APPENDIX 1: CIAR PROJECT 160

Figure 1: Illustration of the CIAR cloud segmentation task. On the left, the original image
taken by OPS-SAT. On the right, the resulting segmentation map, with cloudy patches in yellow.
Source: [15]

core ARM Cortex-A9 CPU, 1GB of on chip DD3 memory and 8GB of additional external
memory. The board uses 5W in average.

• Optical Camera: a BST IMS-100 camera designed specifically for space applications. At an
altitude of 600km, the camera has a field of view of 135× 105kms, with a resolution of 53m.

• Fine Attitude Control and Determination System (ACDS): a system composed of sun sensors
and gyroscopes to measure and control the attitude of the satellite.

• Optical Receiver: a laser communication receiver, embedded for the first time in a CubeSat.

• Software Defined Radio (SDR) front-end: a radio communication system where hardware
components (amplifiers, filters, mixers...) have been replaced by software elements. The
SDR is used to measure the level of interference in various communication experiments.

• GPS for satellite localization.

• S-Band, X-Band and UHF antennas for communication with the ground base.

APPENDIX 2: Custom SoC platform

In order to test and deploy PADS on FPGA, a custom SoC platform was designed targeting
Xilinx Zynq UltraScale+ (ZUS+) boards. An overview of the SoC architecture is provided in
Figure 2. The platform has been developed to validate the architecture in hardware, and serve as
a testbench for hardware measurement of power consumption. However, probing power on FPGA
devices requires specific knowledge and material that were not immediately available. Therefore,
this aspect was let aside in the thesis. However, hardware measurements using the custom SoC
architecture should take place in further works. Moreover, the platform will be used in other
projects at the laboratory and support other FPGA accelerators in further works.

The SoC involves 3 distinct elements:

• The embedded CPU (ARM Cortex A53 MPCore) of the ZUS+ SoC

• The embedded Memory (RAM DDR) of the ZUS+ SoC

• The embedded FPGA (Programmable Logic) of the ZUS+ SoC

The CPU is used to control and exchange data with the Neuromorphic Accelerator synthesized
on the FPGA. The FPGA and the CPU are connected through an AXI bus. In the following
subsections, each element of the platform is described in details.

.1 Programmable Logic modules

PADS is integrated in the system as an AXI Stream slave peripheral. In doing so, an AXI Stream
slave port is added to the IP. Input samples are streamed to PADS trough the AXI Stream interface.
Moreover, the AXI Stream slave port is customized for the architecture. First, the data is arranged
in a pixel by pixel stream as required by the GenCell (3.1.1). Second, the interface manages PADS
control signals and ensures synchronization. The interface also manages the stop network, which
triggers a reset signal for PADS.

Additional Xilinx built-in modules are added to the design. For instance, GPIO and AXI
Direct Memory Access (DMA) cores are used. The GPIO core provide an interface between
external signals of PADS (o class and stop network) and the memory-mapped AXI bus. It should
be noted that the stop network GPIO is configured to enable CPU interruption. The AXI DMA
core provides a direct interface between the DDR memory and AXI Stream slave peripherals
through the memory-mapped AXI bus. The AXI DMA is used to transfer the input samples
stored in the DDR to PADS.

This design is configured in Vivado Design Suite, synthesized and implemented for ZCU102
board (ZUS+ family). The Vivado block design synthesized on the FPGA is available in Figure
3. This figure features four distinct areas. The Processing System is the CPU of the board. The
Interconnects area contains auto-generated modules for AXI memory-mapping. The Interfaces
contains the GPIO and AXI DMA modules. Finally, the PADS area contains the neuromorphic
accelerator.

The SoC DDR is mapped on the AXI bus memory-map. The FPGA modules are also mapped
on the AXI memory map. DDR and FPGA modules can thus be accessed using those addresses
through the AXI bus. The CPU communicates with the accelerator through by this mean.

161

APPENDIX 2: CUSTOM SOC PLATFORM 162

TERMINAL

HOST COMPUTER

C
+

+
 P

R
O

G
R

A
M

D
M

A
 P

R
O

X
Y

 D
R

IV
E

R X
IL

IN
X

D

M
A

D
R

IV
E

R

GPIO

ZYNQ ULTRASCALE+ BOARD

NEUROMORPHIC
ACCELERATOR

(PADS)

CPU
(ARM CORTEX A53)

FPGA
(Programmable Logic)

IN
T

E
R

C
O

N
N

E
C

T
(M

em
or

y-
M

a
pp

ed
 A

X
I)

PETALINUX

D
M

A
E

N
G

IN
E

D
R

IV
E

R

S
ys

F
s

P
e

rip
he

ra
l

In
te

rf
ac

e stop_network

o_addr
S

E
R

IA
L

P
O

R
T

C
+

+
 P

R
O

G
R

A
M

MEMORY
(DDR)

A
X

I S
T

R
E

A
M

AXI
DMA

pixel

reset

enable

AXI
STREAM

Slave
Port

Figure 2: Custom FPGA platform for neuromorphic accelerator deployment. The software stack
is in shades of red, and the hardware stack is in shades of blue.

.2 CPU & Embedded Linux

A Petalinux distribution [127] is deployed on the CPU of the Zynq UltraScale+ SoC. The distri-
bution is configured specifically for the platform using a hardware specification file. This file is
generated after FPGA synthesis and contains specifications on the hardware design. The Kernel
is also configured to enable DMA Drivers and SysFs virtual file-system. The AXI memory-map
(containing DDR and FPGA peripheral addresses) is also specified in the device-tree of the Kernel.
The Kernel is cross-compiled targeting the ARM-A53 of the SoC.

A C++ program is used to control the SNN accelerator. The software runs on the ARM-A53
core. It is used for data transfer to and from the accelerator. It also manages the control signals
(enable, start, stop...)

• Step 1: Initialize AXI DMA and GPIO interfaces.

• Step 2: Write the input sample in the DDR.

• Step 3: Transfer data from DDR to PADS using the AXI DMA.

• Step 4: Wait for the stop network to raise an interruption.

• Step 5: Retrieve the prediction on the GPIO connected to o class.

• Step 6: Wait a few milliseconds and go back to step 2 for a new sample.

This program uses two medium of communication with the peripherals. First, the AXI DMA
is accessed through two layers of drivers. At the bottom of the stack, a DMA Engine Driver and
a Xilinx DMA Driver enable to control the DMA with a kernel-level API. Additionally, a DMA
Proxy Driver is used as an overlay on top of those two drivers. The DMA Proxy Driver enables

APPENDIX 2: CUSTOM SOC PLATFORM 163

Processing System Interconnects Interfaces PADS

Figure 3: Vivado block design of the FPGA part of the SNN deployment platform.

access to the kernel-level DMA API directly from Linux user-space. This DMA Proxy Driver thus
drastically simplifies development. The C++ Program uses the Proxy DMA Driver API manages
data transfer between PADS and DDR.

Second, GPIO interfaces are configured and used through a SysFs virtual file-system interface.
This interface enables a mapping between the kernel virtual addresses and the AXI bus physical
addresses. GPIO addresses are accessed, configured, read and written through the SysFs. It is
thus used to access o addr and stop network signals through GPIOs. The SysFs also enables to use
the stop network signal as an interruption. Indeed, the C++ program waits for this interruption
before starting the next sample. The C++ program is cross-compiled for the custom Petalinux
distribution. The Linux image, boot files and compiled C++ application are stored in an SD
card alongside data samples. The ZCU102 board is configured in SD mode, thus Petalinux boots
automatically when the board is started.

APPENDIX 3: Additional figures

Figure 4: Estimations on Flip-FLop usage for OPS-SAT and Spoken Digits associated CNNs

164

APPENDIX 3: ADDITIONAL FIGURES 165

OPS-SAT MNIST GTSRB

CIFAR-10 MVR Spoken

RadioML

Figure 5: Validation of the SAR metric & λ energy model for SPLEAT versus C-HLS on the
benchmark of datasets for full-networks. Top: SAR vs λSEQ, Bottom: SPLEAT vs C-HLS energy
consumption.

APPENDIX 4: Measurements

Table 1: LUT, FF, Block RAM and DSP occupation measures for Convolution layers at design-
space measurement points. Measures obtained after hardware synthesis on Xilinx Vivado Design
Suite, targeting Xilinx Zedboard

Look Up Tables Flip Flops Block RAM DSP
#K - INSIZE SPLEAT ANN SEQ. ANN PAR. SPLEAT ANN SEQ. ANN PAR. SPLEAT ANN SEQ. ANN PAR. SPLEAT ANN SEQ. ANN PAR.

1 - 5 29 156 290,5 19 148 12374,5 0 0 0 0 1 10
1 - 10 88 294 581 68 240 24749 0 0 0 0 1 10
1 - 25 121 233 1057 106 301 1811 0 1 0 0 1 19
1 - 50 146 259 1566 117 338 2985 2 4 0 2 1 20
10 - 5 48 155 4083 35 152 2767 0 0 0 0 1 10
10 - 10 106 295 8166 100 250 5534 0 0 0 0 1 10
10 - 25 143 232 9082 127 301 10509 4 1 0 2 1 8
10 - 50 176 247 10476 152 340 14946 17 4 0 2 2 10
25 - 5 48 158 9135 41 159 6291,5 0 0 0 0 1 10
25 -10 107 296 18270 107 255 12583 0 0 0 0 1 10
25 - 25 145 231 20080 136 301 24014 8 1 0 2 2 10
25 - 50 182 242 24280 213 342 34095 34 4 0 2 2 10
50 - 5 102 152 16207,5 87 164 11765 0 0,5 0 0 1 10
50-10 166 293 32415 156 264 23530 1 0,5 0 0 1 10
50-25 214 222 36598 188 313 45978 17 1,5 0 2 2 10
50-50 320 235 32995 251 351 24637 68 4,5 0 2 2 10
128-5 107 155 32482 96 176 26178 0 1 0 0 1 10
128-8 141 287 64964 134 268 52356 1 1 0 0 1 10
128-16 193 291 57994 193 273 49386 17 1 0 0 1 10

Table 2: LUT, FF, Block RAM and DSP occupation measures for Pooling layers at design-space
measurement points. Measures obtained after hardware synthesis on Xilinx Vivado Design Suite,
targeting Xilinx Zedboard

Look Up Tables (#) Flip Flops (#) Block RAM (#) DSP (#)
#K - IN WIDTH SPLEAT ANN SEQ. ANN PAR. SPLEAT ANN SEQ. ANN PAR. SPLEAT ANN SEQ. ANN PAR. SPLEAT ANN SEQ. ANN PAR.

1 - 5 107.0 73 116 90.0 80 241 0.0 0 0 0.0 0 0
1 - 10 171.0 85 117 136.0 102 242 0.0 0 0 0.0 0 0
1 - 25 420.0 100 234 157.0 123 513 0.0 0 0 0.0 0 0
1 - 50 1260.0 114 387 215.0 143 909 0.0 0 0 0.0 0 0
10 - 5 182.0 78 885 124.0 86 2176 0.0 0 0 0.0 0 0
10 - 10 559.0 83 966 167.0 104 2177 0.0 0 0 0.0 0 0
10 - 25 2587.0 85 1809 246.0 115 4788 0.0 0 0 2.0 0 0
10 - 50 10606.0 89 3292 615.0 127 8658 0.0 0 0 2.0 1 0
25 - 5 305.0 83 2164 134.0 93 5401 0.0 0 0 0.0 0 0
25 -10 1248.0 82 2163 198.0 106 5402 0.0 0 0 1.0 0 0
25 - 25 6236.0 81 4455 381.0 119 11913 0.0 0 0 3.0 1 0
25 - 50 28199.0 84 9058 1045.0 128 21582 0.0 0 0 3.0 2 0
50 - 5 494.0 89 4291 144.0 100 10778 0.0 0 0 0.0 0 0
50-10 2278.0 87 4302 215.0 117 10780 0.0 0 0 3.0 0 0
50-25 12146.0 88 8827 648.0 126 23780 0.0 0 0 3.0 1 0
50-50 65196.0 83 11233 1356.0 136 27552 0.0 0 0 3.0 2 0
128-16 13715.0 88 15935 1016.0 123 40104 0.0 0 0 0.0 1 0

166

APPENDIX 4: MEASUREMENTS 167

Table 3: LUT, FF, Block RAM and DSP occupation results for Fully-Connected layers at design-
space measurement points. Measures obtained after hardware synthesis on Xilinx Vivado Design
Suite, targeting Xilinx Zedboard

Look Up Tables (#) Flip Flops (#) Block RAM (#) DSP (#)

#IN - #OUT SPLEAT PADS
ANN
SEQ.

ANN
PAR.

SPLEAT PADS
ANN
SEQ.

ANN
PAR.

SPLEAT PADS
ANN
SEQ.

ANN
PAR.

SPLEAT PADS
ANN
SEQ.

ANN
PAR.

10-1 43 136 41 127 20 140 29 207 0 0 0 0 0 0 1 5
10-10 43 1251 46 973 20 1109 34 1676 0 0 0 0 0 0 1 50
10-50 76 6276 48 5417 39 5198 43 8615 0 0 0 0 1 0 1 192
10-100 47 9279 50 16486 29 6205 47 18647 0 0 0 0 0 0 1 220
10-250 45 31398 47 24673 26 25570 52 40767 0 0 1 0 0 0 1 220
50-1 72 467 46 367 35 555 38 452 0 0 0 0 1 0 1 14
50-10 69 4216 51 3584 41 4636 50 4161 0 0 0 0 0 0 1 134
50-50 68 21432 45 31349 44 21635 64 25306 0 0 1 0 1 0 1 220
50-100 77 43682 46 56926 40 43247 69 47932 2 0 2 0 1 0 1 220
50-250 78 111381 46 93149 41 111815 71 100092 1 0 4,5 0 1 0 1 220
100-1 75 824 49 867 38 1036 48 828 0 0 0 0 1 0 1 25
100-10 43 7702 52 9198 20 8596 52 8089 0 0 0 0 0 0 1 220
100-50 79 41505 46 67460 42 41445 66 47814 2 0 2 0 1 0 1 220
100-100 76 83034 47 131657 39 82358 71 93282 1 0 3,5 0 1 0 1 220
100-250 73 216270 47 187192 36 220899 78 182121 0 0 7 0 1 0 1 220
250-1 78 2060 53 2803 41 2532 59 2617 1 0 0 0 1 0 1 66
250-10 43 17739 48 44119 20 20731 61 31081 0 0 1 0 0 0 1 220
250-50 74 96902 51 216015 37 98998 70 147959 1 0 4 0 1 0 1 220
250-100 75 196948 52 361862 38 198768 74 265192 0 0 7 0 1 0 1 220
250-250 72 547792 48 610794 35 628317 82 545554 0 0 14 0 1 0 1 220
800-120 66 212369 61 2363622 43 238607 82 1867470 0 0 27 0 1 0 1 220

Table 4: Power measures for Fully-Connected layers at design-space measurement points. Mea-
sures obtained after hardware synthesis and simulation on Xilinx Vivado Design Suite targeting
Xilinx Zedboard

Power (mW)
#IN - #OUT SPLEAT PADS ANN SEQ, ANN PAR,

10-1 4 5 2 10
10-10 4 29 2 64
10-50 5 108 2 243
10-100 4 154 2 497
10-250 4 467 2 749
50-1 5 11 2 16
50-10 6 65 2 105
50-50 4 279 2 486
50-100 8 535 2 826
50-250 6 1259 2 1283
100-1 5 22 2 24
100-10 4 94 2 155
100-50 8 405 2 682
100-100 6 732 2 1218
100-250 5 1887 2 1792
250-1 6 32 2 49
250-10 4 164 2 349
250-50 6 679 2 1318
250-100 5 1338 2 2216
250-250 5 2
800-120 4 1174 2 3000

APPENDIX 4: MEASUREMENTS 168

Table 5: Power measures for Convolution layers at design-space measurement points. Measures
obtained after hardware synthesis and simulation on Xilinx Vivado Design Suite targeting Xilinx
Zedboard

Power (mW)
#K - INSIZE SPLEAT ANN SEQ. ANN PAR.

1 - 5 2 4 11
1 - 10 4 5 22
1 - 25 4 4 31
1 - 50 8 5 39
10 - 5 3 4 48
10 - 10 5 5 96
10 - 25 19 4 103
10 - 50 066 5 97
25 - 5 3 4 96
25 -10 5 4 192
25 - 25 36 4 180
25 - 50 138 5 167
50 - 5 5 4 155
50-10 8 5 311
50-25 71 6 274
50-50 144 7 541
128-5 5 4 251
128-8 8 5 503
128-16 73 5 525

Table 6: Power measures for Pooling layers at design-space measurement points. Measures ob-
tained after hardware synthesis and simulation on Xilinx Vivado Design Suite targeting Xilinx
Zedboard

Power (mW)

#K - IN WIDTH SPLEAT ANN SEQ. ANN PAR.
1 - 5 0.003 0,01 0,006
1 - 10 0.003 0,01 0,004
1 - 25 0.004 0,01 0,01
1 - 50 0.011 0,01 0,014
10 - 5 0.003 0,01 0,038
10 - 10 0.005 0,01 0,024
10 - 25 0.014 0,01 0,069
10 - 50 0.03 0,01 0,098
25 - 5 0.004 0,01 0,08
25 -10 0.011 0,01 0,045
25 - 25 0.021 0,01 0,156
25 - 50 0.059 0,01 0,23
50 - 5 0.004 0,01 0,147
50-10 0.013 0,01 0,079
50-25 0.033 0,01 0,296
50-50 0.067 0,01 0,358
128-16 0.039 0,01 0,535

APPENDIX 4: MEASUREMENTS 169

Table 7: Duration results for Fully-Connected layers at design-space measurement points. Mea-
sures obtained by calculation and validated using post-synthesis simulation.

Duration (ns)
#IN - #OUT SPLEAT PADS ANN SEQ, ANN PAR,

10-1 40 60 340 70
10-10 130 60 3310 70
10-50 530 60 16510 70
10-100 1030 60 33010 70
10-250 2530 60 82510 70
50-1 40 80 1540 90
50-10 130 80 15310 90
50-50 530 80 76510 90
50-100 1030 80 153010 90
50-250 2530 80 382510 90
100-1 40 90 3040 100
100-10 130 90 30310 100
100-50 530 90 151510 100
100-100 1030 90 303010 100
100-250 2530 90 757510 100
250-1 40 100 7540 110
250-10 130 100 75310 110
250-50 530 100 376510 110
250-100 1030 100 753010 110
250-250 2530 100 1882510 110
800-120 1230 120 3333910 130

Table 8: Duration results for Convolution layers at design-space measurement points. Measures
obtained by calculation and validated using post-synthesis simulation.

Duration (ns)
#K - INSIZE SPLEAT ANN SEQ. ANN PAR.

1 - 5 290 5020 34
1 - 10 290 163820 109
1 - 25 290 1979870 685
1 - 50 290 9476620 2509
10 - 5 2540 9420 34
10 - 10 2540 325420 109
10 - 25 2540 3946720 685
10 - 50 2540 18902220 2509
25 - 5 6290 22620 34
25 -10 6290 810220 109
25 - 25 6290 9847270 685
25 - 50 6290 47179020 2509
50 - 5 12540 44620 34
50-10 12540 1618220 109
50-25 12540 19681520 685
50-50 12540 94307020 2509
128-5 32040 113260 34
128-8 32040 2252140 73
128-16 32040 25806500 265

APPENDIX 4: MEASUREMENTS 170

Table 9: Duration results for Pooling layers at design-space measurement points. Measures ob-
tained by calculation and validated using post-synthesis simulation.

Duration (ns)
#K - INSIZE SPLEAT ANN SEQ. ANN PAR.

1 - 5 50 3110 50
1 - 10 50 27860 1040
1 - 25 50 102110 6290
1 - 50 50 440110 25040
10 - 5 50 6210 50
10 - 10 50 60971 1040
10 - 25 50 226583 6290
10 - 50 50 977317 25040
25 - 5 50 15510 50
25 -10 50 157260 1040
25 - 25 50 582510 6290
25 - 50 50 2513010 25040
50 - 5 50 31010 50
50-10 50 541510 1040
50-25 50 1165010 6290
50-50 50 5026010 25040
128-16 50 1950470 2600

APPENDIX 5: Raw Estimations

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MNIST

C1 258 289 4 2 0.023 439044 10098
P1 1626 221 0 2 0.009 852340 7671
C2 228 265 1 1 0.010 1384758 13847
P2 696 174 0 1 0.006 325090 1950

FC1 123 119 7 1 0.018 272561 4906
FC2 106 91 0 0 0.005 25199 125

TOTAL 3035 1157 12 5 0.071 1384758 444507

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1
P1
C2
P2

FC1 164934 166842 0 0 0.896 18300.0 16396
FC2 6587 7329 0 0 0.062 23104.0 1432

MNIST

TOTAL 171520 174171 0 0 0.958 23104 27909

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MNIST

C1 4396 3824 0 10 0.098 6680 654
P1 1099 2871 0 0 0.098 6390 626
C2 72532 50272 0 60 0.962 4010 3857
P2 1442 3466 0 0 0.048 3090 148

FC1 315191 227678 0 220 1.928 13290 25623
FC2 7402 6833 0 193 0.138 5770 796

TOTAL 402060 294940 0 483 3.220 15780 54756

171

APPENDIX 5: RAW ESTIMATIONS 172

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MNIST

C1 233 286 4 1 0.014 125036600 1750512.4
P1 91 118 1 0 0.016 977800 15644.8
C2 303 262 1 1 0.011 60130800 661438.8
P2 81 98 0 0 0.016 445800 7132.8

FC1 60 78 10 1 0.019 6325300 120180.7
FC2 45 54 1 1 0.017 255100 4336.7

TOTAL 811 893 17 4 0.095 193171400 66644133

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

OPSSAT

C1 246 265 3 1 0.017 1024304.0 17413
P1 907 192 0 1 0.006 296333.0 1777
C2 202 210 1 1 0.009 315095.0 2835
P2 210 146 0 0 0.003 591702.2 1775

FC1 106 91 0 0 0.005 58480.0 292
FC2 65 51 0 0 0.002 38455.0 76

TOTAL 1733 952 4 3 0.042 1024304 299096

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1
P1
C2
P2

FC1 6308 7012 0 0 0.062 46076 2856
FC2 260 248 0 0 0.004 38395 153

OPSSAT

TOTAL 6568 7260 0 0 0.066 46076 14560

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

OPSSAT

C1 6737 7047 0 30 0.19 6680 1269.2
P1 571 1446 0 0 0.022 6390 140.58
C2 11500 8702 0 30 0.202 4020 812.04
P2 492 1100 0 0 0.014 3100 43.4

FC1 6953 6518 0 185 0.135 1450 195.75
FC2 221 371 0 10 0.016 350 5.6

TOTAL 26472 25183 0 255 0.58 9850 8175.5

APPENDIX 5: RAW ESTIMATIONS 173

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

OPSSAT

C1 207 266 3 1 0.012 113235399 1358824.788
P1 96 120 1 0 0.016 971600 15545.6
C2 276 232 1 1 0.011 19399300 213392.3
P2 83 96 0 0 0.016 377600 6041.6

FC1 45 54 0 1 0.017 33100 562.7
FC2 22 29 0 1 0.016 6433 102.928

TOTAL 727 796 5 4 0.09 134023432 45567966.88

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

GTSRB

C1 294 366 18 2 0.081 32616662 2641949.622
P1 10543 552 0 3 0.028 13090140 366523.92
C2 240 295 5 1 0.026 59256398 1540666.348
P2 1551 218 0 1 0.011 5332540 58657.94

FC1 148 128 37 1 0.035 4618640 161652.4
FC2 122 118 4 1 0.013 886004 11518.052
FC3 115 106 2 1 0.008 332371 2658.968

TOTAL 13011 1780 65 10 0.202 59256398 26783891.9

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1
P1
C2
P2

FC1 580849 741511 0 0 3.443 139830 481434.69
FC2 84934 84788 0 0 0.472 144558 68231.376
FC3 32069 32131 0 0 0.202 196552 39703.504

GTSRB

TOTAL 697851 858429 0 0 4.117 196552 858342.584

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

GTSRB

C1 56740 45131 0 30 0.955 8920 8518.6
P1 6287 16397 0 0 0.204 8590 1752.36
C2 671751 489375 0 320 8.884 5870 52149.08
P2 2762 6908 0 0 0.098 4830 473.34

FC1 2606894 1967153 0 220 10.667 19050 203206.35
FC2 141808 101654 0 221 1.179 19680 23202.72
FC3 51046 36912 0 205 0.552 14230 7854.96

TOTAL 3537286 2663527 0 995 22.542 33160 755782.72

APPENDIX 5: RAW ESTIMATIONS 174

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

GTSRB

C1 270 318 15 2 0.02 691612500 13832250
P1 86 123 4 2 0.02 9772700 195454
C2 293 273 4 2 0.013 1873068800 24349894.4
P2 84 110 1 0 0.016 1616000 25856

FC1 67 80 48 1 0.025 28836100 720902.5
FC2 53 72 6 1 0.018 3145300 56615.4
FC3 47 63 3 1 0.017 255100 4336.7

TOTAL 897 1036 77 9 0.132 2608306500 996373083

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

CIFAR-10

C1 294 366 18 2 0.081 141491930 11460846.33
P1 10543 552 0 3 0.028 38334740 1073372.72
C2 247 318 6 1 0.03 742796350 22283890.5
P2 2917 250 0 3 0.014 16405740 229680.36
C3 159 189 1 0 0.006 898385570 5390313.42

FC1 107 92 1 0 0.004 218635 874.54
TOTAL 14265 1765 26 9 0.163 898385570 371033240.4

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1
P1
C2
P2
C3

FC1 9576 10862 0 0 0.077 218585 16831.045

CIFAR-10

TOTAL 9576 10862 0 0 0.077 218585 71477.295

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

CIFAR-10

C1 56740 45131 0 30 0.955 10290 9826.95
P1 6287 16397 0 0 0.204 8940 1823.76
C2 1172139 901745 0 320 12.663 8670 109788.21
P2 5494 13791 0 0 0.165 5890 971.85
C3 2070432 1624128 0 320 17.504 4920 86119.68

FC1 15717 12381 0 220 0.191 1850 353.35
TOTAL 3326807 2613572 0 890 31.683 12350 394372.55

APPENDIX 5: RAW ESTIMATIONS 175

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

CIFAR-10

C1 270 318 15 2 0.02 691612500 13832250
P1 86 123 4 2 0.02 9772700 195454
C2 307 282 5 2 0.015 2204025600 33060384
P2 94 120 1 0 0.017 6066900 103137.3
C3 198 176 2 1 0.011 72486400 797350.4

FC1 46 56 1 1 0.016 387100 6193.6
TOTAL 999 1073 26 8 0.1 2984351200 1044522920

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MVR
FC1 127 130 4 1 0.013 513805 6679.465
FC2 60 51 0 0 0.003 24460 73.38

TOTAL 186 181 4 1 0.016 513805 136672.13

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MVR
FC1 96686 96782 0 0 1.053 3221 3391.713
FC2 2413 2874 0 0 0.036 3239 116.604

TOTAL 99098 99655 0 0 1.089 3239 4337.021

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MVR
FC1 96021 91776 0 220 1.209 31850 38506.65
FC2 3084 2828 0 74 0.055 31850 1751.75

TOTAL 99105 94603 0 294 1.264 2780 4208.92

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

MVR
FC1 55 72 4 1 0.018 1830100 32941.8
FC2 41 50 1 1 0.017 423766 7204.022

TOTAL 95 122 5 2 0.035 2253866 642351.81

APPENDIX 5: RAW ESTIMATIONS 176

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

SPOKEN

C1 233 249 1 1 0.011 196172 2157.892
P1 873 189 0 1 0.006 2947540 17685.24
C2 215 228 2 1 0.014 377495 5284.93
P2 1174 197 0 1 0.007 5568490 38979.43
C3 199 205 1 1 0.008 604133 4833.064
P3 1174 197 0 1 0.004 3049290 12197.16

FC1 125 124 10 1 0.023 4058808 93352.584
FC2 106 91 0 0 0.005 55539 277.695

TOTAL 3420 1450 14 7 0.078 5568490 1826464.72

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1
P1
C2
P2
C3
P3

FC1 216639 233426 0 0 1.402 29431 41262.262
FC2 7702 8596 0 0 0.071 38369 2724.199

SPOKEN

TOTAL 224341 242022 0 0 1.473 38369 66109.787

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

SPOKEN

C1 2225 2208 0 10 0.059 5510 325.09
P1 556 1410 0 0 0.022 4810 105.82
C2 10785 8852 0 30 0.228 6270 1429.56
P2 832 2147 0 0 0.032 5410 173.12
C3 19463 14441 0 50 0.326 5700 1858.2
P3 832 2147 0 0 0.032 2790 89.28

FC1 562019 409155 0 220 3.075 15850 48738.75
FC2 9198 8089 0 220 0.155 5770 894.35

TOTAL 605626 447577 0 530 3.921 15070 62856.97

APPENDIX 5: RAW ESTIMATIONS 177

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

SPOKEN

C1 212 256 1 1 0.012 19302733 231632.796
P1 94 118 1 0 0.016 872600 13961.6
C2 262 247 2 1 0.013 48369700 628806.1
P2 85 108 1 0 0.016 575600 9209.6
C3 279 229 1 1 0.011 20261166 222872.826
P3 85 108 1 0 0.016 328100 5249.6

FC1 62 80 13 1 0.02 8880100 177602
FC2 45 54 0 1 0.017 303100 5152.7

TOTAL 1122 1192 20 5 0.123 98893099 3040962.794

SPLEAT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1 294 366 18 2 0.081 19938770 1615040.37
P1 14058 659 0 3 0.035 260275990 9109659.65
C2 288 372 23 2 0.099 196932750 19496342.25
P2 12579 685 0 3 0.034 24896490 846480.66
C3 265 350 17 1 0.075 50042510 3753188.25
P3 12579 685 0 3 0.007 3595730 25170.11

FC1
FC2 126 126 10 1 0.023 1366975 31440.425
FC3 111 98 2 1 0.005 325310 1626.55

RADIOML

TOTAL 28892 2849 68 16 0.359 260275990 158508077.9

PADS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1
P1
C2
P2
C3
P3

FC1
FC2 265065 283572 0 0 1.249 338255 422480.495
FC3 29874 30837 0 0 0.16 324715 51954.4

RADIOML

TOTAL 294939 314408 0 0 1.409 338255 561165.045

APPENDIX 5: RAW ESTIMATIONS 178

VGT
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1 56740 45131 0 30 0.955 10590 10113.45
P1 6888 17943 0 0 0.215 10570 2272.55
C2 1148879 901156 0 320 15.062 13230 199270.26
P2 10317 26535 0 0 0.337 12650 4263.05
C3 4165095 3362637 0 640 44.595 13030 581072.85
P3 10317 26535 0 0 0.337 8410 2834.17

FC1
FC2 435017 336722 0 220 2.833 43450 123093.85
FC3 57320 40687 0 220 0.458 14570 6673.06

RADIOML

TOTAL 5881084 4732955 0 1430 64.49 27820 1801066.8

C-HLS
LUT
(#)

FF
(#)

RAM
(#)

DSP
(#)

Dyn. Pow.
(W)

Time
(ns)

Energy
(nJ)

C1 270 318 15 2 0.02 691612500 13832250
P1 88 124 4 2 0.02 12861500 257230
C2 283 309 14 2 0.02 6904563200 138091264
P2 96 127 5 1 0.02 13211100 264222
C3 320 297 15 2 0.02 14482726400 289654528
P3 96 127 5 1 0.02 19504700 390094

FC1
FC2 60 79 14 1 0.021 10088500 211858.5
FC3 48 60 2 1 0.017 1147299 19504.083

RADIOML

TOTAL 1248 1420 66 12 0.158 22135715199 9031371801

	Introduction
	History of Deep Learning
	Energy Consumption and Embedded Systems
	Bio-inspired neurons for Machine Learning
	Problem statement and outline

	State of the Art & Contributions
	Formal neurons
	Feed-forward NN and CNNs
	Error gradient backpropagation algorithm

	FNN in hardware
	Hardware neural networks on digital hardware
	Example of FNN accelerators for FPGA

	Spiking Neural Networks
	Principle of Spiking Neural Networks
	Spike encoding
	Training SNNs
	Terminate Delta

	SNNs in hardware
	Advantages of SNNs in Hardware
	Literature review
	Confronting Spiking and Formal Neural Networks

	Conclusion
	Contributions
	Synaptic Activity
	Quantitative comparison of formal and spiking domains
	Cartography of applications and neural coding domains
	How to benefit from spiking domain ?

	Spiking Neural Networks parallel implementation: PADS
	Hardware Architecture
	Spike Generation Cell
	Neural Processing Unit
	Terminate Delta Module

	Hardware Synthesis Results
	Methodology
	Comparison with VGT
	Spike Generation Overhead
	Conclusions on PADS hardware implementation

	Conclusion

	Synaptic Activity Ratio & Energy Modeling
	Representative Datasets
	Used topologies

	Accuracy and synaptic activity measurements
	Methods
	Synaptic activity results
	Discussions on Synaptic Activity results

	Synaptic Activity ratio
	Energy Consumption Model
	The value of

	Synaptic Activity Ratio measurements
	Synaptic Activity Ratio evaluation software
	Network-wise SAR & theoretical cartography
	Data type and rate-coding
	Layer-wise SAR & hybridization

	Conclusion

	Hardware Footprint and High-Level Estimations
	Motivations
	Speed-up cartography and exploration
	Layer-wise approach
	Level of parallelism

	Framework
	Hardware measurements database
	Execution time
	Spiking hardware inference simulator

	Ressource estimations
	Layer-wise estimation
	Network-wise estimation
	Conclusions

	Inference time and power estimations
	Layer-wise estimation
	Network-wise estimation
	Conclusions

	Energy estimations
	Layer-wise estimation
	Network-wise estimation
	Conclusions on energy estimations

	Validation of the SAR model
	Conclusion
	Outlooks
	Improvement of the SAR metric
	Improvement of the estimation framework
	Studying the level of parallelism
	Hybridization and other spike encoding methods

	Neural coding domain hybridization
	Motivations
	SAR and footprint variability
	Distribution of activity
	Formal convolutions and spiking classification

	Estimations on hybrid architectures
	Methodology
	OPS-SAT
	Spoken Digits
	Discussions on hybrid estimations

	Hybrid hardware implementation
	Context
	VGT-PADS Hybrid Architecture

	Conclusion
	Outlook

	Enhancing PADS: FISO & LIF as Recurrent neurons
	Theoretical Background
	Send on Delta spike encoding
	LIF Neuron
	LIF as recurrent neurons
	Surrogate Gradient Learning
	Output decoding: readout layer
	Application in the S2NET framework
	Static input samples

	Accuracy & SAR results
	PADS V2
	Architecture
	Inference Time Results

	Conclusions & Outlooks

	Conclusions and outlooks
	Conclusion
	Outlooks
	Short term and work-specific perspectives
	Middle term outlooks and insights

	APPENDIX 1: CIAR project
	APPENDIX 2: Custom SoC platform
	Programmable Logic modules
	CPU & Embedded Linux

	APPENDIX 3: Additional figures
	APPENDIX 4: Measurements
	APPENDIX 5: Raw Estimations

