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Chapter 1

Introduction

1.1 Context and motivations
This dissertation discusses the study of different representations of random geometric
objects. An elementary class of objects described by their geometry consists of point
patterns, i.e. collections of points living in some metric space. In practical applications,
these points usually represent the temporal or spatial location of events, or entities of
interest. Without formalism, a point pattern is represented by a sum of Dirac atoms, i.e.

φ =
N∑
i=1

δui ,

where N ∈ N ∪ {∞}, and the ui represent the locations of these entities. When point
patterns are considered to be observations of a random phenomenon, this phenomenon is
called a point process. Point processes arise in a wide variety of contexts. Time-related
processes can represent, for example, the recorded times of financial orders, the spiking
times of a neuron, or the times of arrival of customers on a website. For spatial point
processes, one can think of the positions of trees in forests, cells in a biological tissue,
individuals in a given population, or stars, planets, galaxies in space. One can also study
spatio-temporal objects such as the time and position of earthquakes in a given area,
or the dynamics of droplets in a cloud. Depending on the phenomenon being observed,
the points, or atoms of the process, can tend to repel each other, forming rather regular
structures (for instance, trees in a forest tend to grow away from each other, in order to
have the most available nutriments in the ground, see e.g. [105]). Conversely, they can
also regroup together, forming clusters of points of possibly complex geometric structures
(for example, galaxies in the universe can tend to group together, and form filamentary
structures, see e.g. [107]).

Being able to understand, and adequately describe these objects is thus of central
interest in many areas of science, whether it is to perform prediction of future events,
estimation of biological or physical parameters, or modelling. Recent advances in
statistical learning, and particularly deep learning, have led to impressive progress in
the representation and manipulation of complex objects, yielding great performances
on a wide range of tasks, such as classification, regression, segmentation, or generation.
These methods are able to handle a vast variety of complex objects (e.g. images, audio
signals, languages), including point processes (e.g. [93, 117]). However, representations
defined by (deep) neural networks are often referred to as ’black boxes’, as we do not
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fully understand what aspects of the geometry these networks learn, which make these
representation lack interpretability, and possibly reliability. On the other hand, we find
in the literature on point processes many different mathematical representations, called
summary characteristics, that each capture a specific aspect of the geometry of point
patterns. These characteristics usually rely either on second-order statistics (e.g. the pair
correlation function, Ripley’s K-function [96], or Besag’s L-function [13]), or on distances
between neighbouring points (such as the spherical contact distribution function or the
nearest neighbours distance distribution function). None of them fully capture the entire
range of geometric structures that point processes may exhibit, and it can be challenging,
depending on the data that one is dealing with, and the task at hand, to find a suitable
representation.

Finding concise, easily manipulable representations of complex data is also an active
area of research and a central interest in the field of signal processing, where many tools
have been developed (see e.g. Mallat [79]) to extract important information about the
data with a relatively ’compact’ (or low-dimensional) representation. A useful way to
build such a representation is to leverage the possible regularities or invariances present
in the data, for which a fundamental tool is the Fourier analysis. The Fourier transform
builds a representation of signals based on their frequency, i.e. the repetition of patterns
in time or space, with complex sinusoidal functions. However, these oscillating functions
are ’delocalized’ in space, so they may no be adapted to capture sudden changes, or
sharp local transitions in the data, along the time or space axis. To capture such
local structures in signals, one can instead compute their correlations with functions
that are ’localized’ both in space (or time) and frequency, such as wavelets. Wavelet
analysis has been extensively studied in the literature, for the processing of many types
of signals and stochastic processes, including point processes (see e.g. [1, 78], in the
context of one-dimensional point processes exhibiting fractal behaviour). In this work, we
shall present different wavelet-based representations of two-dimensional stationary point
processes that, similarly to classical summary characteristics, are designed to capture
and compactly represent the geometric structures formed by the data. We study their
quality as statistical descriptors through several learning and modelling tasks.

1.2 Related works and our contributions
We give an overview of the problems considered in this dissertation, and the current
methods that have been developed to address these problems. Relatively to these works,
we highlight our contributions, that we shall detail in the following chapters. More
specific related works can be found in the introduction of each respective chapter.

1.2.1 Fourier analysis and wavelet-based representations of point pro-
cesses

A fundamental theory for the analysis of stationary stochastic processes is the Fourier
analysis. It is particularly useful, for instance, to study second-order moments, as the
covariance matrix of a stationary process is diagonal in the Fourier basis. In the context
of point processes, this has been formalized by the covariance measure in the Fourier
domain, called the Bartlett spectrum (Bartlett [9], [10, 27]), and can be estimated through
the Discrete Fourier Transform of observation samples, as we show in Section 2.8.2 of this
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work. Figure 1.1 illustrates this estimation on a distribution for which the theoretical
value of the Bartlett spectrum is known.
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Figure 1.1: Left: sample from a Cox-cirles point process (see Example 2.8.4). Right:
plot of the (theoretical) Bartlett spectrum density, and its estimation using the Discrete
Fourier Transform.

In order to extract meaningful information about the structure of signals beyond
second-order properties, [80] introduce the scattering moments, which compute a cascade
of convolutions of the input signal with wavelets, followed by a complex modulus operator.
Informally (see Section 3.2 for a more precise definition), given a zero-mean complex
function ψ, a wavelet family can be constructed by dilating and rotating ψ, i.e.

ψj,θ(u) = 2−2jψ(2−jrθu).

The scattering moments define a representation of an input signal φ, observed in a finite
window W , by computing the values

S1φ(j, θ) = 1
|W |

∫
W
|φ ? ψj,θ|(u)du

S2φ(j1, θ1, j2, θ2) = 1
|W |

∫
W
||φ ? ψj1,θ1 | ? ψj2,θ2 |(u)du,

where ? denotes the convolution operator. If Φ is a stationary point process, then the
scattering moments of its distribution are defined in expectation, i.e.

E[S1Φ(j, θ)]
E[S2Φ(j1, θ1, j2, θ2)].

In [33], the authors study the properties of scattering moments of the one-dimensional
homogeneous Poisson point process. We extend some of these results, in the two-
dimensional case, to a broader class of stationary point processes. In particular, we
study the limit behaviour of scattering moments (of first order, see Section 3.2), when
the wavelet is asymptotically contracted or dilated. These limits quantify, respectively,
the local interactions between points, and their macroscopic growth of variance. In
Section 3.3, we show that under some technical conditions:

• When the wavelet ψj,θ is asymptotically contracted (i.e. j → −∞), then E[S1Φ(j, θ)]
is proportional to the intensity of the process (i.e. its expected number of atoms
in a domain of unit volume). We show that this convergence is controlled by a
quantity that depends on the second order moments of Φ.

• When the wavelet ψj,θ is asymptotically dilated (j →∞), the limit behaviour of
2jE[S1Φ(j, θ)] is determined by the growth of variance of the number of atoms of Φ
in domains of growing volume.
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This result, illustrated in Figure 1.2 is also extended to a certain class of marked
point process, where to each atom of a point process is attached some numerical value.
Furthermore, we give an expansion formula for this class of marked point processes, in
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Figure 1.2: Illustration of the asymptotic behaviour of first order scattering moments. Left:
Poisson processes (PPP) with different intensities, a Gaussian determinantal (DPP), and
a Matérn cluster (MCP) process exhibiting the same type of macroscopic variance. Right:
a Poisson process, compared to hyperuniform processes (more regular), see Section 3.3.

the spirit of [14, 18].

1.2.2 Estimating geometric marks

Estimating numerical values associated with point patterns based on their geometry
is a well known problem that has been studied, for instance, in quantum chemistry to
estimate the energy of molecules from the geometry of its atoms (see e.g. [50]). In this
work, we shall seek to estimate the values of marks of individual points of a given point
pattern, with these marks depending on the geometry of the pattern. More precisely, we
are interested in measures of the form

φ̃ =
∑
i

m(ui, φ)δui ,

where φ = ∑
i δui is a point pattern, and m is an unknown marking function. The goal is

to estimate m based on a labeled training set. This requires to have a representation not
only for the point patterns, but also for the association of the points and their marks.
For this problem, we propose the following method: we build a representation Sφ of the
unmarked point patterns, and S′φ̃ for the marked patterns. From the training set, we
approximate the relation between Sφ and S′φ̃:

S′φ̃ ' f(Sφ).

Then, with the knowledge of φ and the approximated S′φ̃, we use an optimization
algorithm to reconstruct φ̃. Our representations S and S′ are the scattering moments of
the point patterns. Figure 1.3 illustrate our proposed method.

1.2.3 Summary characteristics and probabilistic modelling

One of the tasks that we shall study in this dissertation is the modelling of distributions
of point processes, using summary characteristics. When dealing with some observation
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~ 

Scattering 
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S(Φ) S(Φ) 
~ Regression 

Reconstruction 

Figure 1.3: Summary of the learning of geometric marks. Left: overview of the method
using the scattering moments representation. Right: an example of estimated marks,
compared to the exact ones, which depend on the Voronoi cell areas of each atom (see
Example 2.6.4).

data, one may find itself in need to model the underlying distribution from this data,
and sample from this distribution, without using classical parametric model (e.g. if no
classical parametric model fit the data satisfyingly, or if such models are hard to sample
from).

Figure 1.4 (top row) shows examples of observations from distributions that we shall
seek to approximate. In this situation, a possible way to model the distribution is to
compute summary characteristics of the observation data, and to generate new samples
that match the statistics of the observation. In more details, given an realization φ̄ of a
point process Φ, these methods consist in computing a representation K(φ̄), such that

K(φ̄) ' E[K(Φ)].

If another point pattern φ satisfies K(φ) ' K(φ̄), then K(φ) ' E[K(Φ)]. If K is a good
descriptor of the distribution of Φ, then φ is likely to be a realization of Φ. Such models,
which can be formalized as maximum entropy models, also constitute a convenient way to
assess wether the summary characteristics capture enough information about the geometry
of the data: intuitively, if the generated samples match the statistics that were used to
define the model, but do not resemble the observed data, it could indicate that these
statistics fail to capture important structural information. The challenges in defining
maximum entropy models thus reside in defining a descriptor K that characterizes the
distribution of Φ, and finding a sampling method to generate new point patterns which
descriptors match the ones of the observation φ̄.

In the context of point processes, the work of Tscheschel and Stoyan [110] studies the
use of several classical summary characteristics, such as the k-nearest neighbours distance
distribution function, to represent the distribution of point processes. In order to generate
new samples, this method relies on random search, by sequentially adding and removing
points from a Poisson point process sample. While their solution is efficient to generate
samples containing a few hundred points, forming simple geometric structures, it is not
adapted to model distributions for which samples are formed by a large number of points,
exhibiting possibly long-range interactions. In this work, we propose to represent point
process distributions with wavelet phase harmonics covariances. These moments were
introduced in [81], and used in [120] to model non-Gaussian stationary processes. They

5
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Figure 1.4: Top: samples of several point processes distributions exhibiting interactions
at multiple scales. Middle: samples from our model, for each respective distribution.
Bottom: Bartlett spectrum density curves for the true (full blue lines) and model (dashed
orange lines) distributions.

are defined by computing the correlations between phase adjusted wavelet coefficients.
The phase harmonics of a complex number z are defined by

[z]k = |z|eikϕ(z),

where |z| denotes the complex modulus of z, and ϕ(z) its argument. Wavelet phase
harmonics covariances of a point pattern Φ are defined by the correlations between the
phase harmonics of the wavelet coefficients of Φ, i.e. moments of the form

K(φ) =
∫

[φ ? ψj,θ]k(u)[φ ? ψj′,θ′ ]k
′(u− τ)du.

To generate new samples more efficiently than with a random search method, we propose
a gradient descent algorithm, that optimizes the positions of the atoms of a sample from
a Poisson distribution, in order to minimize the energy

Eφ̄(φ) = 1
2 |K(φ̄)−K(φ)|2.

By noting φ = ∑
i δui , the positions ui are updated with

ui ← ui − ζ∇uiEφ̄(φ),

for some gradient step ζ > 0. Examples of samples from this method are given in
Figure 1.4 (middle row), as well as the comparison between the Bartlett densities of
the true and model distributions (bottom row). We provide an open-source software
implementing the described method.
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The overall quality of a model can be defined by its ability to produce patterns similar
to the observation, but also with a diversity of samples comparable to that of the true
distribution. To evaluate our model with respect to these two aspects, we propose the use
of Topological Data Analysis (see e.g. [36]). This method is based on the representation
of samples from the true distribution, and samples from the model, by their persistence
diagrams. Intuitively, persistence diagrams are morphological descriptors, that describe
the size of connected components and ’holes’ that samples exhibit, when their atoms are
replaced by balls of varying size. This representation is then used to compute a notion of
’distance’ between the different samples. It allows one to evaluate whether:

• The samples from the model are ’close’ to samples from the true distribution.

• The samples from the model are not too close to the single observed sample, and
exhibit intra-class distances similar to the ones from the true distribution.

A dimension reduction method is used to approximate this distance matrix with a set of
two-dimensional points, in order to visually appreciate the two aforementioned properties
of the model.

1.2.4 Modelling texture images

Another type of data defined by complex geometric structures, that can be seen as
realizations of a two-dimensional stationary process, are spatially homogeneous images
called textures. As for two-dimensional point processes, an approximation of the distri-
bution underlying a given texture can be defined by a maximum entropy model, based
on a set of statistical constraints. One of the principal evaluation methods of maximum
entropy models for textures is visual inspection, as the human eye is often efficient in
distinguishing between ’real’ and generated samples. Finding a set of statistics that
is able to represent and model texture images is a challenging task, due to the high
complexity of geometries that they can exhibit, as illustrated in Figure 1.5 (top row).
In order to assess the ability of a given descriptor to capture geometric information, it is
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Figure 1.5: Top: examples of gray-scale and color texture images. Bottom: examples of
syntheses from our texture model.
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thus interesting to turn to this class of processes. In this framework, the pioneer work of
Portilla and Simoncelli [92] on wavelet-based representations has led to impressive results.
However, recent models relying on information captured by deep convolutional neural
networks (CNN) greatly outperform these representations. In this dissertation, we define
a wavelet-based model allowing to generate synthesized images of similar visual quality
to such CNN-based representations. This model is defined with a representation that,
similarly to wavelet phase harmonics covariances, computes the correlations between
modified wavelet coefficients: for a real number α ∈ [0, 2π], we denote the generalized
rectifier of a complex number z by

ρα(z) = max(0,Real(zeiα)).

Given a texture image x, we define its representation by the set of coefficients

C(x) =
∫
ρα(x ? ψj,θ)(u)ρα′(x ? ψj′,θ′)(u− τ)du,

for an appropriate set of indices (j, θ, α, j′, θ′, α′, τ). This set of indices, of coefficients
that we choose to correlate, has a crucial impact on the model. We observe that if this set
is too small, then the representation may fail to capture important structural information
about the image. Conversely, if the index set is too large, the model may memorize parts
of the observations, which will be reproduced in the syntheses. We illustrate this trade-off
between visual quality and diversity of the syntheses, and define a model that lies between
these two extreme cases. Figure 1.5 (bottom row) shows samples of syntheses from our
model. We provide an open-source software implementing the described method.

1.3 Outline of the dissertation
In order to present our findings, we first need to briefly review the main notions and
results from stochastic geometry on which we base our study. Chapter 2 aims to present
our principal object of interest: point processes. More specifically, we shall focus on
stationary and ergodic point processes on R2. As we take interest in representations of
such processes, we review classic descriptors, such as second-order moments and other
common summary characteristics. We then review maximum entropy models, a particular
class of models for point processes that rely on such representations.

This leads us to present in Chapter 3 the family of representations that we study in
this work, based on the wavelet transform of counting measures. We shall focus on two
types of representations: scattering moments, that are constructed by applying a cascade
of wavelet convolutions and modulus operators to the input signal, and phase harmonics
covariances, which compute correlations between phase-adjusted wavelet transforms of
the signal. We derive theoretical results for the behaviour of scattering moments to gain
some insights about the information that they capture.

We can then study the adequacy of these representations in the context of statistical
learning or modelling tasks. The first experiment, based on [28], and detailed in Chapter 4,
consists in the estimation of geometric marks (i.e. numerical values, associated with each
atom of a point process, that depend on the geometry formed by the atoms). The marking
function is not known, and shall be estimated from a label training set of realizations of
a marked point process (i.e. the data consists of several point patterns, and the label is
the associated marks). We propose the use of scattering moments as a representation of
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both point patterns and marked point patterns. We estimate the scattering moments of
marked patterns from the scattering moments of non-marked patterns, and then estimate
the marks from the moments of the marked pattern. We compare our method with
a more direct approach, using raw geometric information captured by local pair-wise
distance matrices, and observe that our method is more adapted to recover geometric
marks when the marking function has long-range dependencies.

These representations, similarly to classic summary characteristics, describe the
geometry of point patterns. As such, they can also characterize aspects of the distribution
of a point process, by considering them as empirical estimators of moments. Based
on [29], we study in Chapter 5 a maximum entropy model built on the description of
point process distributions with wavelet phase harmonics covariances. We also present a
gradient descent algorithm to efficiently sample from the model. Our findings indicate
that wavelet phase harmonics covariances offer a more adequate representation than
classic summary characteristics, such as nearest neighbours distances, to represent the
distributions of point processes in this context.

Defining a set of statistics that characterize the distribution of a stochastic process is
of central importance when defining a maximum entropy model. Following [30], we study
in Chapter 6 a possible improvement of the wavelet phase harmonics covariances. We
focus in this chapter on textures, which are stationary random images, that can be seen
as realizations of random signed measures, and present complex geometric structures.
We show that, using an appropriate set of wavelet-based covariance moments, one can
build a maximum entropy model that gives results of similar visual quality to models
built on state-of-the-art CNN-based representations, on a wide range of texture images.

Notations
We review the principal notations that shall be frequently used in this work.

• (E,B) shall denote the Borel space associated with some Polish space E, on which
point processes are defined in Chapter 2. Our particular focus will be on E = R2.

• (Ω,F ,P) denotes some probability space.

• M denotes the measurable set of counting measures, and M̄ the measurable set of
locally finite measures.

• For a Borel set (E,B) and a measure M on this space, we shall denote by
Lp(E,M) := {f : E 7→ C,

∫
E |f |pdM < ∞}. When E = Rd, for some integer

d ≥ 1, and M is the Lebesgue measure on E, we shall simply denote this space
Lp(Rd).

• For an integer N ≥ 1, XN := {0, · · · , N − 1}2 is the set on which gray-scale images
are defined, as elements of RN×N . Color images are elements of R3×N×N .

• For any s > 0, Ws := [− s
2 ,

s
2 ]2. It shall denote the window of R2 in which our point

processes will be observed.

• For any d ≥ 1, any two functions f, g ∈ L1(Rd) ∪ L2(Rd), the convolution of f and
g is denoted by f ? g :=

∫
Rd f(u)g(· − u)du.
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• For any function f from Rd to C, we note f̌ the function defined, for any u ∈ Rd,
by f̌(u) := f(−u).

• For any z ∈ C, or any complex valued function f , z∗ (respectively f∗) will denote
its complex conjugate.

• For any z ∈ C, |z| denotes its complex modulus, and ϕ(z) its argument, i.e.
z = |z|eiϕ(z).

• For f ∈ L1(Rd) ∪ L2(Rd), its Fourier transform, noted f̂ , is defined, for ω ∈ Rd, by
f̂(ω) :=

∫
Rd f(u)e−iωudu.
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Chapter 2

Stochastic geometry

In this first chapter, we recall the basic definitions and results of point process theory
that we shall need for the remainder of the work. This is by no means an exhaustive
introduction to the overall theory, as it simply highlights the notions that reappear in
the chapters that follow. For a more thorough review of the fundamentals about the
theory of point processes and random measures, and in particular, proofs of basic results,
we refer the reader to [38, 39] or [6].

2.1 Point process framework
We begin by setting up the mathematical framework that enables us to define and study
the objects called point processes and random measures. Informally, a point process can
be seen as a random collection of points, living in some topological space E. The aim of
this section is to introduce briefly the mathematical framework used to study these objects.
While the topological space E may be more general (one can consider a topological,
locally compact, second countable, Hausdorff space), let us assume in this work that it
is the d-dimensional Euclidean space Rd, for some integer d ≥ 1. More precisely, our
applications presented in Chapters 3 to 6 focus on the case E = R2. However, most of
the definitions and result remain valid for more general spaces, so we shall keep as much
as possible the notation E. When the properties of the space R2 are needed, it will be
explicitly stated in the text. E is endowed with its Borel σ-algebra noted B. Let us
denote by Bc the set of all topologically bounded (i.e. with compact closure) elements of
B.

To study a collection of points of E, it is convenient to view it as a sum of Dirac
atoms at the locations of the points. In other words, an at most countable, possibly
infinite subset {u1, . . . , uN} ⊂ E, for some N ∈ N\{0} ∪∞, will be identified with the
measure

µ =
N∑
n=1

δun . (2.1)

The collections of points considered in point process theory usually are locally finite,
i.e. finite on all bounded Borel sets B ∈ Bc. A counting measure on (E,B) is a locally
finite measure taking values values in N ∪∞. M denotes the set of all counting measures
on (E,B). More generally, the set of locally finite measures on (E,B) will be noted
M̄. It is known that any non-null measure µ ∈ M can be expressed as a sum of Dirac
atoms located at some points in E, without accumulation points. The link between
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the collection of points and the counting measure is clear: for any u ∈ E, µ(u) counts
the number of points in the collection that are equal to u. One can informally write
u ∈ µ to mean µ(u) ≥ 1. In order to consider random variables taking values in M,
one needs to endow M with a σ-algebra. LetM be the one generated by the mappings
µ 7→ µ(B), B ∈ BC .

A point process is a measurable mapping from some probability space (Ω,F ,P) to
the space (M,M). The distribution PΦ of a point process Φ is image of P by Φ, i.e.

∀ Γ ∈M, PΦ(Γ) = P({Φ ∈ Γ}). (2.2)

Note that a point process Φ can be viewed as a stochastic process: Φ = {Φ(B)}B∈Bc .
Therefore, by the Kolomogorov extension theorem, the distribution of a point process is
characterized by its finite dimensional distributions (Φ(B1),Φ(B2), . . . ,Φ(Bk))k≥1,B1,...,Bk∈Bc .

This notion can be extended to define random measures: let M̄ the space of all locally
finite measures on (E,B), endowed with the σ-algebra M̄, defined similarly toM. A
random measure is a measurable mapping Π : (Ω,F ,P) 7→ (M̄,M̄).

2.2 Basic characteristics of point processes
Many tools and functions have been developed to describe the distributions of point
processes. In this section, we review several of them, that shall be useful fro the remainder
of this dissertation.

2.2.1 Moment measures

As point processes are random measures, it is natural to look at the expected value of
such measures on Borel sets of E, or products of such measures. This can be formalized
by the definitions that follow.

Definition 2.2.1 (Mean measure). The mean measureMΦ of a point process Φ is defined
on (E,B) by

MΦ(B) = E[Φ(B)], B ∈ B. (2.3)

This definition allows us to state one of the fundamental results in the theory of point
processes.

Theorem 2.2.2 (Campbell’s averaging formula). Let Φ be a point process with mean
measure M . For any measurable function f : E 7→ R, non-negative or integrable with
respect to M , the integral

∫
E f(u)Φ(du) is a.s. well defined, and

E
[ ∫

E
f(u)Φ(du)

]
=
∫
E
f(u)M(du). (2.4)

The mean measure is simply the average number of atoms of Φ present in the set
B. This notion can be generalized by looking at the joint number of points present in
n-tuples of Borel sets.

Definition 2.2.3 (High order moment measures). For any n ≥ 1, the n-th order moment
measure of a point process Φ, noted MΦn , is the measure on (E×n,B⊗n) defined, for all
B1, B2, · · · , Bn ∈ B by:

MΦn(B1 ×B2 × · · · ×Bn) := E[Φ(B1)Φ(B2) · · ·Φ(Bn)]. (2.5)
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It is equivalent to the mean measure of the point process Φn on (E×n,B⊗n) defined by
Φn(B1 ×B2 × · · · ×Bn) = Φ(B1)Φ(B2) · · ·Φ(Bn).

For sets B1, B2, · · · , Bn that are not mutually disjoints, atoms of Φ that lie in the
intersections of those sets are counted more than once by the n-th order moment measure.
To take this into account, one can use instead the following modification.
Definition 2.2.4 (Factorial moment measures). Let Φ = ∑

i δui be a point process and
n ∈ N, n ≥ 1. The n-th factorial power of Φ, noted Φ(n), is the random measure on
(E×n,B⊗n) defined by

Φ(n) :=
∑
∆n

Φ

δ(ui,1,ui,2,··· ,ui,n), (2.6)

where ∆n
Φ := {(ui,1, ui,2, · · · , ui,n), ui,j ∈ Φ,∀j, k, j 6= k ⇒ ui,j 6= ui,k}. The n-the

factorial moment measure is defined by:

MΦ(n)(B1 ×B2 × · · · ×Bn) := E[Φ(n)(B1 ×B2 × · · · ×Bn)]. (2.7)

Furthermore, if MΦ(n) admits a density w.r.t. the Lebesgue measure, it shall be noted
ρ(n)(x1, · · · , xn).

The joint factorial moment measures characterize the distribution of a point process
Φ, provided it has exponential moments, i.e. ∀B ∈ BC ,∃ε : E[eεΦ(B)] <∞.

2.2.2 Other common characteristics

Other functions can be used to characterize the distribution of a point process. Among
them are the two following.

Void probability The void probability vΦ of a point process Φ is defined by

vΦ(B) = P(Φ(B) = 0), (2.8)

for all B ∈ B. The distribution of a simple point process (i.e. such that P(∀u ∈
E,Φ({u}) ≤ 1) = 1, meaning that, almost surely, Φ has no multiple atoms in E) is fully
characterized by the family (vΦ(B))B∈Bc .

Laplace transform The Laplace transform LΦ of a point process Φ takes a non-
negative, measurable function f and maps it to R+ by

LΦ(f) := E[e−
∫
f dΦ]. (2.9)

One can show that the Laplace transform of a point process fully characterizes its
distribution.

2.3 Poisson, clustering, and repulsive distributions
As previously explained, point processes are random collections of points in some metric
space. Depending on their distributions, realizations of point processes can exhibit
different geometric patterns. The points can tend to regroup together or repel each
other, possibly forming complex geometric structures. While there exist many classic
distributions in the literature on point processes, we shall, in this section, briefly detail
some of the most usual ones, in order to give a panorama of these objects. For a more
complete overview of the ’zoology’ of point process distributions, see for example [45].
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2.3.1 Poisson point process

The most fundamental example of point process distribution is the Poisson distribution. It
describes a process where points are ’placed independently of each other’, and identically
on the space. It is formally defined as follows.

Definition 2.3.1 (Poisson point process). Let Λ be a deterministic, locally finite measure
on (E,B). A point process Φ is a Poisson point process with intensity Λ if it satisfies the
following conditions:

1. For any B ∈ Bc, Φ(B) is a Poisson random variable with intensity Λ(B).

2. For any k ≥ 1, and for any B1, . . . , Bk ∈ Bc, pairwise disjoint, the random variables
Φ(B1), . . . ,Φ(Bk) are independent.

Its simple hypotheses (independence, Poissonianity) make the Poisson distribution
highly popular, and its properties have been extensively studied (see e.g. [71]).

Some properties of the Poisson point process

• Its mean measure M is equal to its intensity measure Λ. We say that the Poisson
point process is homogeneous if its intensity measure is proportional to the Lebesgue
measure on E.

• Its void probability is µ(B) = e−Λ(B).

• Its Laplace transform is equal to L(f) = e−
∫
E

1−e−f(u)Λ(du).

2.3.2 Other classic distributions

The Poisson point process is sometimes said to have complete independence, as the number
of points in any disjoint regions of the space are independent. It is usually considered as
a reference process, and other distributions, that exhibit spatial structures, are usually
classified in one of the two following categories: clustering or repulsive. The clustering of
points refers to their tendency to form groups, well separated from each other, whereas
a point process is said to be repulsive if the points tend to repel each other, and are
more homogeneously spread in the space. Figure 2.1 displays examples of different point
process geometries. In this section, we review several important distributions of point
process exhibiting such structures. For more details about comparison methods between
point process distributions, see [17].

Cox point processes Also called doubly stochastic point processes, Cox point pro-
cesses constitute a rich class of processes, often used to model patterns exhibiting more
clustering than the Poisson point process. Let Π be a random, locally finite, non null
measure on (E,B). A Cox point process CoxΠ on (E,B) generated by (or directed by)
Π is the mixture of Poisson point processes with respect to Π, that is, conditioned on
Π = Λ, CoxΠ is the Poisson point process with mean (deterministic) measure Λ. A rich
class of Cox processes is constituted by Neyman-Scott processes (see e.g. [85], or [37,
Section 5.3]), where ’parent points’ are drawn from a homogeneous Poisson distribution,
and from each parent point pi descend Ni children, with Ni being a Poisson r.v., and the
location of the children a determined by a given density f . For instance, if this density f
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Figure 2.1: Examples of different point process distributions. Left: Matern II point
process (repulsive), middle: homogeneous Poisson point process, right: modified Thomas
point process (clustering).

is a Gaussian function, then the resulting process is called a modified Thomas process. If
the density is uniform in a ball, it is called a Matérn cluster process.

Gibbs point processes A Gibbs process is a point process whose probability distribu-
tion has a density with respect to the probability distribution of a Poisson point process.
Informally, one obtains a Gibbs point process by ’filtering’ realizations of a Poisson
point process, giving more probability to appear to some configuration than others. The
clustering or repulsive behaviour of the distribution will depend on the filtering of the
configurations. A Gibbs point process can be defined by considering a Poisson process Φ,
and some measurable function from M to R+, such that E[f(Φ)] = 1. The point process
Φf with distribution defined by PΦf (dµ) = f(µ)PΦ(dµ) is a Gibbs point process with
density f with respect to Φ1. For a more detailed introduction to Gibbs point processes,
see e.g. [44].

Hard-core point processes Hard-core processes are defined by the property that all
atoms of its configurations are further away from each other than some minimal distance.
They are called hard-core because the points can represent the center of solid spheres
non smaller than some value. Classic examples of hard-core processes are Matérn I, II,
and III point processes (see e.g. [82, 83]).

Determinantal point processes Let Φ be a simple point process on (E,B), Λ a
locally finite measure on (E,B), and k : E2 7→ C a measurable mapping. Φ is a
determinantal point process with background measure Λ if for all n ≥ 1, the n-th order
factorial moment measure MΦ(n) of Φ admits a density ρ(n)

Λ with respect to the product
measure Λn, which equals

ρ
(n)
Λ (u1, · · · , un) = det

(
(k(ui, uj)1≤i,j≤n

)
,

for Λn-almost all (u1, · · · , un) ∈ En. Interpreting Λ as the intensity measure of a
Poisson point process Φ0, MΦ(n) has density ρ(n)

Λ w.r.t. MΦ(n)
0

([6, Chapter 5]). Classical

1In principle, one can consider Φ to be a homogeneous Poisson point process on E. However, one
cannot obtain a stationary Φf 6= Φ with this construction. Indeed, in this case f has to be translation
invariant. Therefore, by ergodicity, f ≡ 1. For this reason, such a construction is often considered in a
finite window.
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examples of determinantal point processes are the Gaussian determinantal point process,
with a kernel of the form k(u, v) = αe

− ‖u−v‖
2

β , for some positive constants α, β, and
u, v ∈ Rd (see e.g. [73]), and the Ginibre point process, with kernel of the form
k(u, v) = 1

πe
uv∗e−(|u|2+|v|2)/2, for u, v ∈ C (see e.g. [57]), both considered w.r.t. the

Lebesgue measure Λ(dx) = dx.

2.4 Palm distributions of point processes
When studying point processes, one might consider high order moments, introduced in
Section 2.2, that are the expected number of points that would appear simultaneously in
several given regions of the space. It may also be of interest to study the conditional
number of points in a given region, knowing the number of points in the other region.
Going further, on may enquire about the conditional distribution of the point process,
knowing that this process has an atom at a given position u ∈ E. However, if u is not a
fixed atom of Φ, P(u ∈ Φ) = 0, so one cannot directly consider conditional distribution
P(·|u ∈ Φ). To overcome this issue, Palm distributions were introduced, based on the
Radon-Nikodym theorem.

Definition 2.4.1 (Campbell measure and Palm distributions). Let Φ be a point process
on E, with Radon mean measure M . The Campbell measure of Φ is defined on (E ×
M,B ×M) by

C(B × Γ) := E[
∫
E
1B(u)1Γ(Φ)Φ(du)], B ∈ B,Γ ∈M.

We immediately remark that, for any Γ ∈M, C(B×Γ) ≤M(B). The Radon-Nikodym
theorem tells us that there exists a measurable function u 7→ Pu(Γ) such that,

∀B ∈ B, C(B × Γ) =
∫
E
1B(u)Pu(Γ)M(du).

Note that for a fixed Γ ∈M, Pu(Γ) is not uniquely defined, and can differ on any set
of null M measure. As E is a polish space, P·(·) can be defined as a probability kernel
from (E,B) to (M,M), implying that for any u ∈ E, Pu(·) is a probability distribution
on (M,M), called a Palm distribution of Φ.

This definition allows us to state the following results, that extends Campbell’s
averaging formula to stochastic processes.

Theorem 2.4.2 (Campbell-Little-Mecke (CLM)). Let Φ be a point process on E, with
Radon mean measure M , and Palm distributions Pu, for all u ∈ E. For all non-negative
measurable functions f : E ×M 7→ R,

E[
∫
E
f(u,Φ)Φ(du)] =

∫
E×M

f(u, µ)Pu(dµ)M(du). (2.10)

The result extends to all functions f for which either of the two sides of the equality
eq. (2.10) is finite when f is replaced by |f |.

For any u ∈ E, the quantity
∫
M f(u, µ)Pu(dµ) shall also be noted Eu[f(u,Φ)] (that

is, the expectation of f(u,Φ) for some point process Φ having distribution Pu on M).
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Reduced and high-order Palm distributions The reduced version of the Palm
distributions, noted P !

u can be defined as the Radon-Nikodym derivative of

C(1)(B × Γ) := E[
∫
E
1B(u)1Γ(Φ− δu)Φ(du)], B ∈ B,Γ ∈M. (2.11)

The Palm distributions can be extended to higher order Palm distributions Pu1,··· ,un
by taking the derivative of

Cn(B × Γ) := E[
∫
En

1B(u)1Γ(Φ)Φ(n)(du)], B ∈ B⊗n,Γ ∈M, (2.12)

and similarly for the reduced high-order versions P !
u1,··· ,un , by taking the derivative of:

C(n)(B × Γ) := E[
∫
En

1B(u)1Γ(Φ−
n∑
i=1

δui)Φ(n)(du)], B ∈ B⊗n,Γ ∈M. (2.13)

The quantity
∫
M f(u, µ)Pu1··· ,un(dµ) shall also be noted Eu1··· ,un [f(u,Φ)], and the

reduced versions E!u1··· ,un [f(u,Φ)].

2.5 Stationary point processes
For this section, we place ourselves in the case where E is some Euclidean space (our
particular focus in this work shall be E = R2). A point process Φ is called stationary
if its distribution is invariant to translation. That is, for any t ∈ E, any n ≥ 1,
and any B1, · · · , Bn ∈ Bc, the distribution of {Φ(B1), · · · ,Φ(Bn)} is equal to that of
{Φ(B1 + t), · · · ,Φ(Bn + t)}, where B + t := {u + t, u ∈ B}. Another way to say this
is, noting Φ = ∑

i δxi , Φ is equal in distribution to ∑i δxi−t. It can be convenient to
consider stationary processes, when one observes a large phenomenon that appear similar
in different positions, at smaller scale. For instance, the positions of trees in a forest can
be regarded, when observed at a certain scale, as a stationary point process. Another
example would be the positions of stars, galaxies, or other cosmological objects, projected
on a sphere around the Earth. The theory of stationary point processes gives us tools to
better describe their properties. Here, we review the principal definitions and results for
such processes.

In order to study the properties of stationary point processes, it is useful do define a
stationary framework directly on the probability space.

Definition 2.5.1 (Shift operator). For any t ∈ E, and any measure µ on (E,B), the
shift operator St applied to µ is the measure Stµ on (E,B) defined by, for all B ∈ B:

Stµ(B) = µ(B + t), (2.14)

where B + t := {u + t, u ∈ B}. If µ is a counting measure, say µ = ∑
i δui , then

Stµ = ∑
i δui−t. The shift operator can be extended to functions f with values in any

space by defining Stf(u) := f(u+ t).

Definition 2.5.2 (Flow on the probability space). Let (Ω,F) a measurable space. Let
us assume that there exists a family {θt : Ω 7→ Ω}t∈E of measurable mappings satisfying
the following conditions:

- For any t ∈ E, θt is a bijection from Ω to Ω.
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- For any t, s ∈ E, θs ◦ θt = θs+t.

- The mapping θ̃ : (E,Ω) 7→ Ω defined by θ̃(t,$) := θt($) is B ⊗ F-measurable.

Such a family will be called a (measurable) flow on (Ω,F), and the space equipped
with this flow will be noted (Ω,F , {θt}).

Definition 2.5.3 (Processes compatible with the flow). A point process Φ : (Ω,F , {θt}) 7→
(M,M) is said to be compatible with the flow if

∀t ∈ E, Φ ◦ θt = StΦ. (2.15)

Example 2.5.4. Canonical probability space with the flow. The space (Ω,F , {θt}) =
(M,M, {St}), is the canonical space on which we define Φ(µ) = µ, ∀µ ∈M, compatible
with the flow.

Definition 2.5.5 (Stationary probability). Let (Ω,F , {θt}) be a measurable space
equipped with a flow. Let P be a probability measure on (Ω,F) invariant with re-
spect to any element in the flow, that is

∀ t ∈ E, P ◦ θ−1
t = P. (2.16)

(Ω,F , {θt},P) is then called a stationary framework, and P is called the stationary
probability on (Ω,F , {θt}).

It directly follows from the above definition that a point process Φ defined on a
stationary framework (Ω,F , {θt},P) is stationary.

Example 2.5.6. The distribution of a homogeneous Poisson point process is invariant
to any shift, and can equip the canonical probability space.

Palm probabilities in the stationary framework Let Φ be a point process defined
on the stationary framework, compatible with the flow. A first observation is that its
mean measure is proportional to the Lebesgue measure. The coefficient of proportionality
is called the intensity of the process.

Definition 2.5.7 (Campbell-Matthes’ measure). Let C be a measure on (E ×Ω,B ×F)
defined by, for all B ∈ B and all A ∈ F

C(B ×A) := E
[ ∫

E
1B(u)1A(θu)Φ(du)

]
(2.17)

Note that Campbell-Matthes’ measure is an extension of the mean measure of Φ:
C(B × Ω) = MΦ(B). Moreover, for all A ∈ F , C(B × A) ≤MΦ(B), which implies that
C(·×A) admits a Radon-Nikodym derivative dC(·×A)

dMΦ(·) (u) w.r.t. MΦ. Additionally, similarly
to MΦ, C(· ×A) is invariant to any shift in E, which gives us that it is proportional to
the Lebesgue measure on E (= Rd). Thus, dC(·×A)

dMΦ(·) (u) is a constant, depending only on A
and λ. Seeing it as a function of A, one can easily check that it constitutes a probability
measure on (Ω,F), leading us to the following definition.
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Definition 2.5.8 (Palm probability). Let Φ be a point process defined on the stationary
framework (Ω,F , {θt},P), compatible with the flow, with finite non-null intensity λ. The
Palm probability of Φ is the unique measure P0 on (Ω,F) defined by

P0(A) := 1
λ|B|

E
[ ∫

E
1B(u)1A(θu)Φ(du)

]
, ∀A ∈ F , (2.18)

for any B ∈ B on finite, non-null Lebesgue measure |B|. We shall denote by E0 the
expectation under P0.

Theorem 2.5.9 (Campbell-Little-Mecke-Matthes). Let Φ be a point process defined on
the stationary framework (Ω,F , {θt},P), compatible with the flow, with finite non-null
intensity λ. Denote P0 the Palm probability of Φ. For any non-negative measurable
function f on E × Ω,

E
[ ∫

E
f(u, θu·)Φ(du)

]
= λ

∫
E
E0[f(u, ·)]du. (2.19)

The results extends for any function f for which either one of the two sides of the above
equation is finite when f is replaced by |f |.

Corollary 2.5.10. Under the assumptions of Theorem 2.5.9, 0 ∈ Φ P0-almost surely.

Definition 2.5.11 (Reduced second-order density). Let Φ be a point process defined on
the stationary framework (Ω,F , {θt},P), compatible with the flow, with finite non-null
intensity λ. Suppose thatMΦ(2) is σ-finite, and has a density w.r.t. the Lebesgue measure.
As Φ is stationary, we can write MΦ(2)(d(u, v)) = λκ(v − u)dudv, and for any B ∈ B,
E0[(Φ− δ0)(B)] =

∫
B κ(u)du. The function κ is called the reduced second order density

of Φ.

2.6 Geometric marks for stationary point processes
One can extend the notion of point process, by considering counting measures with values
attached to each atom. Such values, possibly random, are usually called the marks of
the atoms, and the associated random measure is called a marked point process. In this
work, we shall take interest in a particular class of marks, described in what follows. In
this section, we consider E = R2.

Definition 2.6.1 (Geometric marks). Let Φ be a point process defined on the stationary
framework (Ω,F , {θt},P), compatible with the flow, with finite non-null intensity λ. Let
m : R2 ×M 7→ C be a measurable function, satisfying, for any u, v ∈ R2, and any φ ∈M,

m(u− v, Svφ) = m(u, φ).

We say that the function m is translation invariant, and shall be called a geometric mark
of Φ. With the convention we consider, the associated marked point process2, noted

Φ̃ =
∑
u∈Φ

m(u,Φ)δu,

is stationary. Note that a point process without marks is the special case of m ≡ 1.
2Rigorously, a marked point process is a sum of atoms Φ̃ =

∑
i
δ(ui,mi), with (mi)i being a sequence

of random variables. When the mi ∈ C, we adopt the convention Φ̃ =
∑

u∈Φ m(u,Φ)δu, which is formally
not a marked point process.
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In what follows, we briefly recall a few basic examples of geometric marks, that will
be considered in this work (more particularly in Sections 3.3 and 3.4 and Chapter 4).
Example 2.6.2 (Shot-noise). For u ∈ R2 and Φ = ∑

i δui ∈M, we can define

m(u,Φ) :=
∑
i

1(u 6= ui)`(|u− ui|),

a shot-noise functional, with some non-negative response function `, that depends on the
distance |u− ui| between u and ui ∈ φ, e.g. `(r) = rβ, for some β > 2.
Example 2.6.3 (Nearest-neighbour distance). We can define the nearest neighbour
distance

mnn(u,Φ) = min{||u− ui||, ui ∈ Φ}.
Example 2.6.4 (Voronoi cell area and moment of inertia). The Voronoi cell of an atom
u ∈ Φ is defined by

V (u) = {v ∈ R2 : ∀ u′ ∈ Φ, ‖v − u‖ ≤ ‖v − u′‖}.

One can consider the Voronoi cell volume

mV (u,Φ) = |V (u)|, (2.20)

or its moment of inertia
mI(u,Φ) :=

∫
V
|v − u|2 dv.

Example 2.6.5 (Voronoi shot-noise). One can consider more sophisticated marks, such
as

mZ(u,Φ) =
∑
i

1(ui 6= u)`(|u− ui|)mV (u,Φ).

2.7 Ergodicity
Ergodic theory studies the conditions under which spatial averages of functions of point
processes converge to the expectation of such functions, in order to bridge the gap between
the theoretical point of view of probabilistic theory, and real-world measurements. We
saw in Section 2.5 that a point process is stationary if it appears similar at different
locations in the space. Ergodicity goes even further, saying that one can average a
function over all different locations in the space, for a single realization, and by doing so,
estimate the expected value of this function. In a sense, it can be viewed as a kind of
Law of Large Numbers. This property is useful when we are dealing with a single, large
observation, which can happen when collecting the data is difficult.

Recalling the notions of Section 2.5, let (Ω,F , {θt}t∈E ,P) a stationary framework (in
this section, E is some Euclidean space). We begin by defining invariant events under
this framework.
Definition 2.7.1 (Invariant events). An event A ∈ F is said to be ({θt}t∈E ,P)-invariant
if, for all t ∈ E,

P(A∆θtA) = 0,
where ∆ is the symmetric difference: A∆B := (A ∪B)\(A ∩B). The space

I := {A ∈ F : A is ({θt}t∈E ,P)-invariant}

is a σ-algebra, called the invariant σ-algebra.
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The fundamental theorem in ergodic theory (in the context of point processes), which
proof can be found in e.g. [67], states the following.

Theorem 2.7.2 (Birkhoff’s individual ergodic theorem). Let (Ω,F , {θt}t∈E ,P) be a
stationary framework, I its invariant σ-algebra. Let Φ be a point process on E, compatible
withe the flow, with intensity 0 < λ <∞. Let {Bn}n∈N be a convex averaging sequence,
i.e. an sequence of bounded, convex Borel sets such that for all n ∈ N, Bn ⊂ Bn+1, and
sup{r ≥ 0 : Bn contains a ball of radius r} −−−→

n→∞
∞. Let f be a measurable, integrable

function from M to C. Then

lim
n→∞

1
|Bn|

∫
Bn
f(θtΦ) dt = E[f(Φ)|I], P-a.s.

We now need the following notions:

Definition 2.7.3 (Metrically transitive, ergodic, or mixing framework). We say that
the stationary framework is metrically transitive if I is trivial, i.e. for all A ∈ F ,
P(A) ∈ {0, 1}. The framework is ergodic if for all A1, A2 ∈ F ,

lim
a→∞

1
(2a)d

∫
[−a,a]d

P(A1 ∩ θtA2)dt = P(A1)P(A2),

where d is the dimension of the Euclidean space E. The framework is said to be mixing
if for all A1, A2 ∈ F ,

lim
|t|→∞

P(A1 ∩ θtA2) = P(A1)P(A2).

The following result, which proof can be found in e.g. [6], states the relation between
the three definitions from above.

Proposition 2.7.4. Let (Ω,F , {θt}t∈E ,P) be a stationary framework. Then, the follow-
ing relations are true

mixing⇒ ergodic⇔ metrically transitive.

The mixing and ergodic properties are useful because they are easier to verify in
practice than the metrical transitivity. These notions allow us to state the main result:

Corollary 2.7.5. Under the conditions of Theorem 2.7.2, and if the stationary framework
is metrically transitive, then

E[f(Φ)|I] = E[f(Φ)]. (2.21)

2.8 Linear operators and second-order properties for sta-
tionary point processes

Second order characteristics offer a natural way to describe geometric structures in point
processes, by studying correlations between pairs of points. In this section, we shall
place ourselves in E = R2. There have been extensively studied in the literature (see e.g.
[96, 9, 27]) and constitute some of the most widely used tools to analyse point processes.

We call a shot noise of a point process Φ any random variable defined by Φ(f) =∫
R2 f(u)Φ(du), for any measurable, integrable function f : R2 7→ C. In this section, we
shall study second order moments based on shot noises for stationary processes, define the
Bartlett spectrum, and show how we can estimate it using the Discrete Fourier Transform
on a finite window.
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2.8.1 Bartlett spectrum of a point process

The Bartlett spectrum of a stationary point process is the measure that allows one to
express the covariance between shot-noises as a function of their Fourier transform. More
formally,
Proposition 2.8.1. Let Φ be a point process defined on the stationary framework
(Ω,F , {θt},P), compatible with the flow, with finite non-null intensity λ. Suppose that
γ(u) := λκ(u) − λ2 ∈ L2(R2), where κ is the reduced second-order density of Φ (cf.
Definition 2.5.11). Let us denote L2

Φ the set of complex valued, measurable, integrable
functions such that E[Φ(|f |)2] <∞. For any two functions f, g ∈ L2

Φ such that f ? ǧ ∈
L2(R2),

Cov(Φ(f),Φ(g)) = 1
(2π)2

∫
R2
f̂(ω)ĝ∗(ω)bΦ(ω)(dω),

where bΦ(ω) := γ̂∗(ω) + λ.
Proof. First remark that L2

Φ ⊆ L1(R2,MΦ)∩L2(R2,MΦ), so Cov(Φ(f),Φ(g)) := E[Φ(f)Φ(g∗)]−
E[Φ(f)]E[Φ(g∗)] is well defined, and both terms in the r.h.s. of the equality are finite.
Then, we decompose

Cov(Φ(f),Φ(g)) =
∫
R2×R2

f(u)g∗(v)MΦ(2)(d(u, v))

+ λ

∫
R2
f(u)g∗(u)du

− λ2
∫
R2×R2

f(u)g∗(v)dudv.

This gives us, with the change of variables z = v − u,

Cov(Φ(f),Φ(g)) = λ

∫
(R2)2

f(u)ǧ∗(−u− z)(κ(z)− λ)dudz

+ λ

∫
(R2)2

f(u)ǧ∗(−u− z)duδ0(dz)

= λ

∫
R2
f ? ǧ∗(−u)(κ(u)− λ)du+ λ

∫
R2
f ? ǧ∗(−u)δ0(du)

=
∫
R2
f ? ǧ∗(u)ΓΦ(du),

where
ΓΦ(du) := λκ(u)du− λ2du+ λδ0(du) (2.22)

is called the covariance measure of Φ. Recall that γ(u) = λκ(u)− λ2 ∈ L2(R2), with κ
being symmetric, so by Plancherel’s equality,

Cov(Φ(f),Φ(g)) =
∫
R2
f ? ǧ∗(u)γ(u)du+ λ

∫
R2
f ? ǧ∗(−u)δ0(du)

= 1
(2π)2

∫
R2
f̂(ω)ĝ∗(ω)γ̂∗(ω)dω + λ

(2π)2

∫
R2
f̂(ω)ĝ∗(ω)dω

= 1
(2π)2

∫
R2
f̂(ω)ĝ∗(ω)bΦ(ω)(dω). (2.23)
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Definition 2.8.2 (Bartlett spectral measure). Let Φ be a stationary point process,
satisfying the conditions of Proposition 2.8.1. Let bΦ(ω) be the function defined in
Proposition 2.8.1. Then,

BΦ(dω) := bΦ(ω)dω

is called the Bartlett spectral measure (or Bartlett spectrum) of Φ. Note that the Bartlett
spectrum can be defined for a wider class of point processes, called wide sense stationary
processes (see e.g. [27]). The function bΦ(ω) is the density of the Bartlett spectrum.

2.8.2 Discrete Fourier Transform

Let Φ be a stationary point process, satisfying the conditions of the previous section.
Let s > 0 be some positive real value, and Ws := [−s/2, s/2[2. The Discrete Fourier
Transform of Φ on Ws is defined, for any m ∈ 2πZ2, as

Fm(Φ) :=
∫
Ws

e−iu.
m
s Φ(du). (2.24)

Note that, by Campbell’s averaging formula (Theorem 2.2.2), if m = (0, 0), Fm(Φ) =
Φ(Ws), otherwise E[Fm(Φ)] = 0. We shall study

Um,s(Φ) := 1
|Ws|

|Fm(Φ)|2 (2.25)

as an estimator of the Bartlett spectrum of Φ.

Proposition 2.8.3. Let Φ be a stationary point process, satisfying the conditions of
Proposition 2.8.1. Let BΦ(dω) := bΦ(ω)dω be its Bartlett spectrum. Let Um,s defined as
in eq. (2.25). Then,

E[Um,s(Φ)] =
∫
R2
Gs(

m

s
− ω)bΦ(ω)dω = Gs ? bΦ(m

s
),

with3 Gs(u) := 1
(2π)2 s

2 sinc2( s2u1) sinc2( s2u2), and sinc(u) := sin(u)
u . Furthermore, if bΦ is

continuous at ξ ∈ E, then, if m→∞, s→∞, such that m
s = ξ 6= 0, E[Um,s(Φ)]→ bΦ(ξ).

Proof. We write, using Proposition 2.8.1, and the fact that E[Um,s] = 0 for m 6= 0,

E[Um,s(Φ)] = 1
|Ws|

Var(F ∗m(Φ))

= 1
(2πs)2

∫
R2
|f̂m|2(ω)bΦ(ω)dω,

with fm being the product of a complex exponential and the indicator function of the
window Ws, so f̂m(ω) = s2 sinc( s2(ω1 − m1

s )) sinc( s2(ω2 − m2
s )), where ω = (ω1, ω2), and

m = (m1,m2). As the sinc function is pair, we obtain

E[Um,s(Φ)] =
∫
R2
Gs(

m

s
− ω)bΦ(ω)dω = Gs ? bΦ(m

s
).

that is, E[Um,s(Φ)] is the convolution of the Bartlett spectral measure with the function
Gs, evaluated at m

s .
3Gs is the square modulus of the Fourier transform of 1Ws .
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Suppose now that bΦ is continuous at ξ ∈ E. Recall that
∫
E Gs(ξ − ω)dω = 1. Then,

let Vε be a neighbourhood of ξ such that, for any ω ∈ Vε, |bΦ(ω)− bΦ(ξ)| ≤ ε. We can
write

|Gs ? bΦ(ξ)− bΦ(ξ)| ≤ |
∫
Vε
Gs(ξ − ω)(bΦ(ω)− bΦ(ξ))dω|

+ |
∫
V cε

Gs(ξ − ω)(bΦ(ω)− bΦ(ξ))dω|

≤ ε
∫
Vε
Gs(ξ − ω)dω

+ |
∫
V cε

Gs(ξ − ω)(bΦ(ω)− bΦ(ξ))dω|,

with
∫
Vε
Gs(ξ − ω)dω ≤ 1, and

|
∫
V cε

Gs(ξ − ω)(bΦ(ω)− bΦ(ξ))dω| ≤ |
∫
V cε

Gs(ξ − ω)bΦ(ω)dω|+ |bΦ(ξ)
∫
V cε

Gs(ξ − ω)dω|.

(2.26)

Moreover, for any s ≥ 1

Gs(ξ − ω)1V cε (ω) ≤ 1
s2(ξ1 − ω1)2(ξ2 − ω2)21V cε (ω)

≤ 1
(ξ1 − ω1)2(ξ2 − ω2)21V cε (ω) ∈ L1(R2) ∩ L2(R2),

and Gs(ξ − ω) −−−→
s→∞

0. Therefore, the dominated convergence theorem applies.

Example 2.8.4 (Cox-circles point process). The Bartlett spectrum can be calculated for
the Cox point process with Poisson points of linear intensity λ′ on circles in R2 of radius
R and the (total) intensity of points denoted by λ (cf. [37, Example 10.6]).

κBC(u) = λ+


2λ′
π|u|

R√
4R2−|u|2

for |u| ≤ 2R

0 otherwise,

yielding
bBC(ω) = λ(1 + 2πRλ′J2

0 (R|ω|)), (2.27)

where J0 is the 0-th Bessel function of the first kind. Figure 2.2 shows the theoretical
Bartlett spectrum, as well as its DFT estimator, averaged over 10 realizations in a window
of size 1, for frequencies (averaged in angles) such that |ω| ∈ 2πZ2.

2.9 Spatial statistics and summary characteristics
In spatial statistics, one is dealing with the observation of one or several collections of
points (or more generally signed measures), lying on a bounded window. These collections
of points, called point patterns, or configurations, are assumed to be realizations of a
point process (or a random signed measure). In order to perform a statistical analysis
of the point patterns, it is often necessary to extract important information about this
data by representing it in a relatively concise way. In other words, one usually define
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Figure 2.2: Theoretical (black full line) and estimated (blue dotted line) Bartlett spectrum
for the Cox-circles point process with parameters R = 10/256 and 2πRλ′ = 25. The
density of the Bartlett spectrum is normalized by the total intensity λ, thus, by (2.27),
the curve is invariant to the density of circle centers (a particular numerical scenario
considered here is presented in Figure 1.1 left). Observe in particular, log10 bBC(0)/λ =
log10(1 + 2πRλ′) = log10(26) ≈ 1.415.

several functionals of the point patterns, that shall be considered as statistical estimators
of moments of the underlying point process, that aim to characterize (fully or partially)
its distribution (in Section 2.10, we saw how such estimators could be used to define a
model for the underlying distribution). For example, when observing a point pattern φ
in a window W , a very simple functional that can be considered is the average number
of points per volume unit in φ, i.e. f(φ) = 1

|W |φ(W ), where |W | denotes the volume
of W . Here, if φ is assumed to be a realization of a stationary point process Φ, then
f(φ) (strictly speaking f(Φ)) can be viewed as an estimator of the intensity of Φ. This
value alone obviously doesn’t fully characterize the process Φ, and there exist many other
classic functionals in the literature on point processes, called summary characteristics,
that capture important geometric information about point patterns. In this section, we
shall briefly review several of them, which are the most broadly used in the literature.
While these functions can be defined for point processes on Rd, for any d ≥ 1, we shall
focus on the planar case (d = 2).

2.9.1 Second-order statistics

A natural way to extract information beyond the mere intensity of a point process is
to look at second-order moments, that capture the pairwise interactions between the
atoms of the process. To this end, on can consider Ripley’s K-function ([96]), defined for
a stationary process Φ with intensity 0 < λ <∞, as

KΦ(r) := 1
λ
E0[Φ(B0(r))− 1], r ≥ 0,

which counts the average number of points present in a ball of radius r around a typical
point of Φ. Alternatives to Ripley’s K-function are Besag’s L-function ([13]), defined
as LΦ(r) :=

√
KΦ(r)
π , and the pair correlation function gΦ(r) := K′Φ(r)

2πr . These three
functions offer different representations of the same information about the process. For
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more details about these functions and their comparisons, see for example [64], which
also presents many other summary characteristics, among them the ones we shall present
in the next section. Note that the Discrete Fourier Transform, defined in Section 2.8.2,
also belongs to the family of second-order statistics.

2.9.2 Empty set and nearest neighbour statistics

Other statistics can be defined, relying on the size of sets that do not contain any points,
or on the distance between neighbouring points. The two most commonly found statistics
are the spherical contact distribution function (d.f.), defined as

Hs(r) := P(Φ(B0(r)) > 0), r ≥ 0, (2.28)

and the nearest neighbour distance d.f.,

D(r) := P0(Φ(B0(r)) > 1), r ≥ 0. (2.29)

Both the spherical contact d.f. and the nearest neighbour d.f. measure the probability
that at least one point is encountered in the ball of radius r, either centered at a typical
point of the plane (for Hs) or at a typical point of Φ (for D). The nearest neighbour
distance d.f. can be extended to an arbitrary number of neighbours:

Dk(r) := P0(Φ(B0(r)) > k), r ≥ 0, k ≥ 1. (2.30)

Remark. Note that these functions are defined by mathematical expectations, and are
therefore theoretical. We find in the literature many estimators for these statistics, see
e.g. [64].

2.10 Maximum entropy models
In Section 2.3.2, we presented a few classical distributions of point processes. When
dealing with observed data, it is often useful to try to fit a model (usually a well known
distribution) to this data. However, one can find itself in the situation where classic
parametric models fail to represent the data in a satisfying way. Suggested by statistical
physics, maximum entropy models have been introduced in [65] to build models of
probability distributions, based on partial knowledge of it, for instance by estimating
moments of functionals from the observed data (in the case of point processes, one can
use statistics called summary characteristics, that we present in Section 2.9). Intuitively,
this means that the model is ’as random as possible’ under some prescribed constraints.
Two standard models are the macro-canonical model, with expectations constraints, and
the micro-canonical model, with path-wise constraints. We review these two models in
the following sections.

2.10.1 Macro-canonical model

Let us fix 0 < λ <∞, and denote L0 a Poisson distribution on (E,B). We define

M0 := {L : L � L0},

where ’�’ means ’absolutely continuous with respect to’.
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The notion of entropy is well defined for discrete random variables. It can be extended
to stochastic processes on Euclidean spaces by the notion of differential entropy, which
is the Kullback-Leibler divergence ([70]) with respect to the Lebesgue measure. In this
work, we shall use the following definition of entropy for point processes.

Definition 2.10.1 (Kullback-Leibler divergence and entropy of a point process). Let
L1,L2 be two probability distributions on M, such that L1 � L2. The Kullback-Leibler
divergence (or KL divergence) of L1 w.r.t. L2 is defined by

KL(L1||L2) :=
∫
M

log(dL1
dL2

)dL1.

It is well defined, as shown in Lemma 2.10.2. If L0 is the Poisson distribution on (E,B),
and L � L0, then

H(L) := −KL(L||L0)

is called the entropy of L.

We shall need the following result:

Lemma 2.10.2. Let L1,L2 be two probability distributions on M, such that L1 � L2.
Then,

KL(L1‖L2) ≥ 0, (2.31)

and the inequality becomes an equality if and only if L1 = L2.

Proof. It follows from Jensen’s inequality. By definition,

1 = EL1 [1] =
∫
M
dL1 =

∫
M

dL1
dL2

dL2 = EL2 [dL1
dL2

].

The function f(u) = u log(u) being convex, 0 = f(EL2 [dL1
dL2

]) ≤ EL2 [f(dL1
dL2

)], with

EL2 [f(dL1
dL2

)] = EL2 [log(dL1
dL2

)dL1
dL2

]

=
∫
M

log(dL1
dL2

)dL1
dL2

dL2

=
∫
M

log(dL1
dL2

)dL1

= KL(L1‖L2).

Since the function f is strictly convex, we have an equality iff dL1
dL2

= 1 L2-almost
everywhere.

Let K : M 7→ RN , for some N ≥ 1, be a vector of statistics, and a ∈ RN . Note

A := {L ∈M0 : EL[K] = a}.

We are interested in solutions, if any exists, to the following problem:

L∗ ∈ arg max
L∈A
H(L). (2.32)

We are going to show the following result:
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Proposition 2.10.3. Suppose there exists some γ ∈ RN such that 0 < Zγ := EL0 [eγ.(K−a)] <
∞, and define Lγ such that

dLγ
dL0

= 1
Zγ
eγ.(K−a).

If γ.(K − a) is integrable w.r.t Lγ, and ELγ [K − a] = 0, then Lγ is the unique solution
of eq. (2.32).

Proof. Let L ∈ A. First, note that L � Lγ . Indeed, for any Γ ∈ M, Lγ(Γ) =
1
Zγ

∫
Γ e

γ.(K−a)dL0, with eγ.(K(µ)−a) > 0 for all µ ∈ M. Therefore, if Lγ(Γ) = 0, then
L0(Γ) = 0 which implies L(Γ) = 0.

Then,

−H(L) =
∫
M

log( dL
dL0

)dL

=
∫
M

log( dL
dLγ

dLγ
dL0

)dL

=
∫
M

log( dL
dLγ

)dL+
∫
M

log(dLγ
dL0

)dL

= KL(L‖Lγ) + log( 1
Zγ

)
∫
M
dL+ γ.

∫
M

(K − a)dL

= KL(L‖Lγ)− log(Zγ)
≥ − log(Zγ), (2.33)

with the last inequality given by Lemma 2.10.2 and the fact that L � Lγ . Remark that

KL(Lγ ,L0) =
∫
M

log(dLγ
dL0

)dLγ

=
∫
M

log( 1
Zγ
eγ.(K−a))dLγ

= − log(Zγ) + γ.ELγ [K − a]. (2.34)

Inserting eq. (2.34) in eq. (2.33) gives us

−H(L) ≥ KL(Lγ‖L0)− γ.ELγ [K − a]. (2.35)

It follows from eq. (2.35) and the assumption ELγ [K − a] = 0 that H(L) ≤ H(Lγ),
with equality iff KL(L‖Lγ) = 0, that is, L = Lγ .

Under some conditions, we can further express the solution of eq. (2.32) as the
minimum of Zγ .

Proposition 2.10.4. Suppose that, for all γ ∈ R∗N , EL0 [eγ.(K−a)] <∞, and PL0(γ.(K−
a) 6= 0) > 0. Then

∃ ! γ∗ ∈ arg min
γ∈RN

Zγ .

Moreover, suppose that there exists a neighbourhood V of γ∗ in which γ 7→ Zγ is differen-
tiable, and ∇Zγ = EL0 [(K − a)eγ.(K−a)] <∞. Then,

γ∗ ∈ arg min
γ∈RN

Zγ ⇔ Lγ∗ ∈ arg max
L∈A
H(L).
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Proof. If for all γ ∈ RN , EL0 [eγ.(K−a)] < ∞, then γ 7→ Zγ is defined on RN . It is easy
to see that this function is convex. If ∀ γ ∈ RN , PL0(γ.(K − a) 6= 0) > 0 (implied e.g.
by Zγ 6= 1), the function is strictly convex, and the uniqueness of the minimum follows
directly. If the function is differentiable on a neighbourhood of γ∗, then γ∗ is the unique
solution of ∇Zγ = 0. Moreover, as ∇Zγ = EL0 [(K − a)eγ.(K−a)], ∇Zγ = 0 is equivalent
to 0 = EL0 [(K − a)eγ∗.(K−a)] = Zγ∗ELγ∗ [K − a]. We know that Zγ∗ > 0, which gives us
the result.

2.10.2 Micro-canonical model

The micro-canonical model is defined similarly to the macro-canonical model, but with
path-wise constraints rather than constrains in expectations. More formally, let us fix
some ε > 0, and define

A := {µ ∈M : ‖K(µ)− a‖ ≤ ε}.
Suppose that PL0(A) > 0, and define

MA := {L � L0 : PL(A) = 1}.
We are interested in solutions, if any exists, to the following problem:

L∗ ∈ arg max
L∈MA

H(L). (2.36)

Proposition 2.10.5. The solution to eq. (2.36) is given by L∗ such that
dL∗

dL0
= 1A

PL0(A) .

Proof. It is direct to show that L∗ ∈MA. Note that

KL(L∗||L0) =
∫
A

log( 1A

PL0(A))dL∗

=
∫
A

log( 1A

PL0(A)) 1A

PL0(A)dL0

= − log(PL0(A)) 1
PL0(A)

∫
A
dL0

= − log(PL0(A)).
Now, let L ∈ A. For any Γ ∈ M, PL∗(Γ) = 0 ⇒ PL0(Γ ∩ A) = 0 ⇒ PL(Γ ∩ A) = 0 ⇒
PL(Γ) = 0, so L � L∗. One can then easily verify that

dL
dL0

= dL
dL∗

1A

PL0(A) , L-a.s.

Then,

KL(L||L0) =
∫
A

log( dL
dL0

)dL

=
∫
A

log( dL
dL∗

1A

PL0(A))dL

= KL(L||L∗) +
∫
A

log(1A)dL − log(PL0(A))
∫
A
dL

= KL(L||L∗)− log(PL0(A))
= KL(L||L∗) + KL(L∗||L0)
≥ KL(L∗||L0).
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Maximum entropy models are defined by the description of the distribution, through
the function K. This function, or descriptor, can be chosen, for instance, to be the
summary characteristics mentioned in Section 2.9. In the next chapter, we shall study
another class of descriptors, defined by a multi-scale representation of the geometry, using
wavelets.
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Chapter 3

Wavelet-based representations

As previously described, the aim of summary characteristics in spatial statistics is to
concisely describe the main geometric features of a point pattern, for instance its tendency
to exhibit clusters of points, or to form more regular patterns. Applied to realizations of
a point process, they allow one to infer information about its distribution, by estimating
their expected values. They can, for instance, be used to regress values associated to a
point pattern, or to define a maximum entropy model.

Each statistic presented in Section 2.9 describe a particular aspect of a point process,
and none of them fully characterizes its distribution. For instance, it is known that
second order statistics do not characterize the distribution of a point process. For
simple point processes, the void probability of all Borel sets characterize its distribution,
but considering only balls may not be enough, especially for anisotropic distributions.
Depending on the data and the task at hand, it is therefore a challenge to find the
appropriate representation.

In this work, we present a class of representations of stationary point processes,
constructed from a family of shot-noise processes, i.e. from a family

{
∫
ψξ(u− v)Φ(du)}ξ∈Ξ,

where the ψξ are measurable, integrable functions, and Ξ shall be specified later. This
family, that we shall present in the next chapter, is designed to separate different relevant
information about the geometric structures of processes. More precisely, these functions
are wavelets, which we shall introduce in the following section.

3.1 Wavelet transform
Informally speaking, a wavelet ψ is a function averaging to zero, that is localized both is
the spatial and the frequency domain (meaning that both ψ and ψ̂ have most of their
energy concentrated in compact domains). A wavelet ψ can be constructed in such a way
that, by products of dilations and translations of this wavelet, one obtains an orthonormal
basis of L2(R2) (see e.g. [79]). Wavelets have been extensively studied in the literature
(e.g. [53, 35, 60, 41, 42]), as they constitute a popular tool in many areas of science (see
e.g. [59, 51, 79, 98]). In this section, we briefly recall the basic definitions of wavelets,
and the wavelet transform, in the context of our work.

While the definition of wavelets differ depending on the context, we shall consider
the following:
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Definition 3.1.1 (Wavelet family). Let ψ : R2 7→ C be a complex valued function such
that ψ ∈ L2(R2) ∩ L1(R2), such that

∫
R2 ψ(u)du = 0, and ‖ψ‖1 = 1. For any j ∈ Z, and

any θ ∈ [0, 2π], define
ψj,θ(u) := 2−2jψ(2−jrθu). (3.1)

If the function ψ satisfies the following condition∫
R2

|ψ̂|2(ω)
|ω|2

dω <∞, (3.2)

then ψ is called a wavelet. For any discrete subset Θ ⊂ [0, 2π], the family of functions
{ψj,θ}j∈Z,θ∈Θ is called a wavelet family. The condition eq. (3.2) is called the admissibility
condition. A wavelet family also includes a low-pass filer (i.e. local averaging function),
that we shall denote ψ0. It can be chosen, for instance, to be an isotropic Gaussian
function.

Usually, one defines ψ such that ψ̂ is centered at a frequency ξ0 ∈ R2, and has fast
decay in both the spatial and frequency domains. Informally, we can consider that
there exists constants C, C ′, and ε such that |ψ|(u) ≤ ε if |u| > C, and |ψ̂|(ω) ≤ ε if
|ω − ξ0| > C ′. A wavelet family is obtained by dilation and rotation of the wavelet
ψ (often called the mother wavelet). Let θ ∈ [0, 2π], rθ the rotation by angle θ and
j ∈ Z. The wavelet at scale j and angle θ can also be indexed by its central frequency
ξ := 2−jr−θ ξ0, that is

ψξ(u) = 2−2jψ(2−jrθu) ⇒ ψ̂ξ(ω) = ψ̂(2jrθω).

Since ψ̂(ω) is centered around ξ0, it results that ψ̂ξ(ω) is centered around the frequency
ξ. The wavelet ψξ at scale j has negligible amplitude for |u| > 2jC, and its Fourier
transform ψ̂ξ has negligible amplitude for ω such that |ω − ξ| > 2−jC ′.

By indexing the wavelets by their central frequency, we shall sometimes use the nota-
tion {ψξ}ξ∈Ξ for the wavelet family, where Ξ denotes the set of frequencies corresponding
to (j, θ) ∈ Z×Θ.

Example 3.1.2 (Morlet wavelet). A classic example is the Morlet wavelet (see [58]),
defined as

ψ(u) = 1
2πσ2 e

− |u|
2

2σ2 (eiξ0.u − cψ), (3.3)

where cψ is a constant such that
∫
R2 ψ(u)du = 0. Figure 3.1 shows the real and imaginary

parts of a Morlet wavelet, for a given ξ0, and Figure 3.2 displays a Morlet wavelet family
in the spatial and frequency domains.

Example 3.1.3 (Bump steerable wavelet). Another example of wavelet that we shall
consider in this work is the bump steerable wavelet, introduced in [81]. It is defined in
the frequency domain using polar coordinates. Let L be the even number of angles, and
denote its central frequency by ξ0 = (ω0, 0). Then

ψ̂(ω) = cψe
− (|ω|−ω0)2

ω2
0−(|ω|−ω0)2

1[0,2ω0](|ω|) cos
L
2−1(ϕ(ω))1ϕ(ω)<π

2
, (3.4)

where cψ is a normalizing constant. Figure 3.3 shows the real and imaginary parts of a
bump steerable wavelet, for a given ξ0, and Figure 3.4 displays a bump steerable wavelet
family in the spatial and frequency domains.
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Figure 3.1: A Morlet wavelet. Left: Real part, right: imaginary part.
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Figure 3.2: A Morlet wavelet family. Left: spatial domain (real part), right: frequency
domain, centered around 0 (real part).
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Figure 3.3: A bump steerable wavelet. Left: Real part, right: imaginary part.

Definition 3.1.4 (Wavelet transform). Let µ be a counting measure on (R2,B), and
Ψ = {ψ0, ψj,θ}j∈Z,θ∈[0,2π] be a wavelet family such that for all ψ ∈ Ψ, and all t ∈ R2,
ψ(t− ·) ∈ L1(R2, µ). The wavelet transform of µ is defined by the convolutions

Wµ := {µ ? ψ0, µ ? ψj,θ}j∈Z,θ∈[0,2π], (3.5)
with

µ ? ψj,θ(t) :=
∫
R2
ψj,θ(t− u)µ(du), (3.6)

and similarly for ψ0. The family of functions Wµ defined by the wavelet transform of
µ are called the wavelet coefficients (at scale j and orientation θ). In this work, for
simplicity, we shall only consider wavelets verifying ψ(u) = ψ∗(−u), for u ∈ R2.

For a random measure Φ, the wavelet transform is well defined if all ψ ∈ Ψ are
integrable with respect to the mean measure MΦ of Φ. If Φ is stationary with finite
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Figure 3.4: A bump steerable wavelet family. Left: spatial domain (real part), right:
frequency domain, centered around 0 (real part).

non-null intensity, then the wavelet transform is always well defined, due to Campbell’s
averaging formula.

Note that, if Φ is a.s. finite, then for any ω ∈ R2,

Φ̂ ? ψj,θ(ω) = ψ̂j,θ(ω)Φ̂(ω),

where Φ̂(ω) = 1
2π
∫
R2 e−2iπt.ωΦ(dt). This highlights the fact that, if ψj,θ is localized

in frequency, then so is Φ ? ψj,θ. In other words, the wavelet transform separates the
information in Φ into components at different scales and orientations, or equivalently, in
separate domains in the frequency plane.

3.2 Scattering moments
The wavelet transform is a linear operator that represents a measure by a family of
measurable functions on R2. When performing statistical analysis or learning tasks, one
is usually looking for non-linear representations of the input data. Moreover, if Φ is a
stationary process (with non-null finite intensity λ), taking the expectation of the wavelet
coefficients would give, for any u ∈ R2,

E[Φ ? ψj,θ(u)] = λ

∫
R2
ψj,θ(t)dt = 0.

This shows that, in order to extract meaningful information about the geometry of the
process, one needs to apply a non-linear operator to the wavelet transform of Φ. This
can be done, for instance, by applying the complex modulus operator to its wavelet
coefficients. Then, taking the expectancy of the resulting functions gives us a description
of the point process distribution. This defines the (first order) scattering transform of Φ,
inspired by [80]:

Definition 3.2.1 (First order scattering moments). Let Φ be a stationary point process
(or random measure) on (R2,B), and Ψ = {ψ0, ψj,θ}j∈Z,θ∈[0,2π] be a wavelet family such
all wavelet coefficients are almost surely integrable stochastic processes. The first order
scattering moments of Φ, noted S1Φ, are defined, for all j ∈ Z, θ ∈ [0, 2π], by

S1Φ(j, θ) := E[|Φ ? ψj,θ|], (3.7)
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which does not depend on u ∈ R2 by stationarity of Φ. Intuitively, the first order
scattering moments compute ’how much geometric structure at scale j and orientation θ
is present in Φ’. For example, if Φ exhibits a certain regularity at large scales (that is,
from a certain scale, the process appears uniform, with no irregularities), then the larges
scales scattering moments will have small values. Conversely, if Φ is composed of clusters
of atoms, well separated from each other, then the values of the scattering moments at
this scale will have large value.

If S1Φ(j, θ) detects the average regularity or clustering behaviour of Φ at a certain
scale and orientation, on can enquire about the regularity or clustering of S1Φ(j, θ) at
larger scales (i.e. the regularity/clustering of the regularity/clustering). This can be done
by computing the scattering transform of S1Φ(j, θ). It defines the second order scattering
moments of Φ.

Definition 3.2.2 (Second order scattering moments). Let Φ be a stationary point
process on (R2,B). Let us denote I := {(j1, j2, θ1, θ2) ∈ Z2 × [0, 2π]2 : j2 > j1}. If, for
all (j1, j2, θ1, θ2) ∈ I, the random process |Φ ? ψj1,θ1 | ? ψj2,θ2 is integrable, then Φ admits
second order scattering moments, defined by

S2Φ(j1, θ1, j2, θ2) := E
[
||Φ ? ψj1,θ1 | ? ψj2,θ2 |

]
, (3.8)

for (j1, j2, θ1, θ2) ∈ I.

Note that we only select indices j2 in I such that j2 > j1. This is heuristically
explained by the fact that the modulus operator in the first order scattering transform
’kills’ the high frequency modulations of the wavelet coefficients Φ ? ψj1,θ1 . Therefore, the
Fourier transform of the |Φ ? ψj1,θ1 | are roughly supported on the low frequencies, which
implies that the coefficients |Φ ? ψj1,θ1 | ? ψj2,θ2 are negligible when j2 ≤ j1.
Remark. One can define high order scattering moments, by cascading convolutions with
the wavelet family, composed with a modulus operator.

Additionally, the definition of the wavelet transform in Section 3.1 can be extended
to stationary marked point processes, by defining, for some wavelet ψ, and any v ∈ R2,

Φ̃ ? ψ(v) : =
∫
R2×R

ψ(v − u)m(u,Φ)Φ(du) (3.9)

The wavelet transform of Section 3.1 is a particular case, where m ≡ 1. Similarly, under
integrability conditions, one can extend the definition of first and second order scattering
moments (Section 3.2) to (geometrically) marked point processes, and they do not depend
on u ∈ R2.

3.3 Asymptotic properties of scattering moments
To gain more insights about what information this representation captures, we shall
study the limit of first order scattering moments when the scale parameter j goes to ±∞.
For simplicity, in this section we shall assume that the wavelets have compact support,
included in some bounded set B ∈ B, and are symmetric, i.e. ψ(−u) = ψ(u)1. The

1More precisely, the wavelets we shall consider, such as Morlet wavelets, verify ψ̌ = ψ∗. The results
remain valid for these wavelets, and we make the symmetric assumption for mere notation simplicity.
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results are true for any θ ∈ [0, 2π], and for notation simplification, we omit the subscript
θ in the following section.

We consider here random, possibly signed measures of the form (cf. Section 2.6)

Φ̃ =
∑
u∈Φ

m(u,Φ)δu,

where Φ is a stationary point process, with intensity 0 < λ <∞, and the functions m
are stationary, in the sense that, for any u, v ∈ R2,

m(u− v, SvΦ) = m(u,Φ).

Typically, m, called a marking function, is a measurable function of the geometry of the
points in Φ, such as the ones presented in what follows.

3.3.1 Small scale limit

The small scale limit behaviour (j → −∞) of first order scattering moments can be
described by the following result.

Proposition 3.3.1. Let Φ be a stationary point process on R2 admitting a reduced
second-order density κ (cf. Definition 2.5.11), ψ be a bounded wavelet with support
included in B, and a marking function m such that

∫
B E0,u[|m(0,Φ)|]|κ(u)|du < ∞.

Then,

S1Φ̃(j) = λE0[|m(0,Φ)|] +O(λ22j+1‖ψ‖∞
∫
B2

E0,2j(v−u)[|m(0,Φ)|]κ(2j(v − u))dudv).

Proof. We can write the following decomposition:

S1Φ̃(j) := E[|
∫
R2
ψj(u)Φ̃(du)|] = E[

∫
R2
|ψj(u)||Φ̃|(du)] + ej ,

where |Φ̃| := ∑
u∈Φ |m(u,Φ)|δu, and ej := S1Φ̃(j)− E[

∫
R2 |ψj(u)||Φ̃|(du)].

Remark also that m(u,Φ) = m(0, SuΦ) = m(0,Φ ◦ θu). Then, as Φ is stationary, we
can apply the CLMM theorem (eq. (2.19)):

E[
∫
R2
|ψj(u)||Φ̃|(du)] = E[

∫
R2
|ψj(u)m(u,Φ)|Φ(du)]

= λ

∫
R2
|ψj(u)|E0[|m(0,Φ)|]du. (i)

(3.10)
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Furthermore, note that ψj is supported in Bj := {2ju : u ∈ B}. Then,

|ej | = |E[|
∫
Bj

ψj(u)m(u,Φ)Φ(du)| −
∫
Bj

|ψj(u)m(u,Φ)|Φ(du)]|

=: |E[Z]|
≤ E[|Z|]
= E[|Z|1{Φ(Bj)>1}]

≤ 2E[
∫
Bj

|ψj(u)m(u,Φ)|Φ(du)1{Φ(Bj)>1}]

≤ 2 ||ψj ||∞︸ ︷︷ ︸
2−2j‖ψ‖∞

E[
∫
Bj

|m(u,Φ)|Φ(du)1{Φ(Bj)>1}]. (ii)

Then we write:

E[
∫
Bj

|m(u,Φ)|Φ(du)1{Φ(Bj)>1}] ≤ E[
∫
Bj

|m(u,Φ)|Φ(du)(Φ(Bj)− 1)]

= E[
∫
Bj×Bj

|m(u,Φ)|(Φ− δu)(dv)Φ(du)]

=
∫
Bj×Bj

Eu,v[|m(u,Φ)|]ρ(2)(u, v)dudv

= λ

∫
Bj×Bj

E0,v−u[|m(u, SuΦ)|κ(v − u)dudv

= λ

∫
Bj×Bj

E0,v−u[|m(0,Φ)|κ(v − u)dudv

= λ24j
∫
B×B

E0,2j(v−u)[|m(0,Φ)|]κ(2j(v − u))dudv,

(iii)

where the fourth line stems from the stationarity of Φ, and the fifth from the translation
invariance property of m. Combining eqs. (i) to (iii) completes the proof.

Remark. In the case of a Poisson point process with f ≡ 1 we find the result from [33]:

S̄Φ(j) = λ(||ψ||1 +Oj→−∞(22jλ))

3.3.2 Large scale limit

We consider here the case j → +∞. The results of this section rely on some notion
of central limit theorem, because the convolution of a wavelet ψ with a marked point
process Φ̃ operates a sum over the atoms of Φ̃. Intuitively, as the scale of the wavelet
increases, the sum extends to a wider subset of R2. Therefore, in order to apply the CLT,
we need some notion of near independence of the positions of the atoms and their marks,
as the distance between them increases. Hence, we need to introduce several definitions
before stating the main result, based on [22].
Definition 3.3.2. Let p ∈ [1,∞), we say that the pair (m,Φ) satisfies the p-moment
condition if

sup
1≤p′≤bpc

sup
u1,··· ,up′∈Rd

Eu1,··· ,up′ [|m(u1,Φ)|p] <∞,

where sup signifies here ess sup with respect to MΦ(p) .
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Definition 3.3.3. We call the correlation functions of Φ̃ the functions defined for all
p ∈ N, and all (k1, · · · , kp) ∈ Np by:

m(k1,··· ,kp)(u1, · · · , up) := Eu1,··· ,up [m(u1,Φ)k1 · · ·m(up,Φ)kp ] ρ(p)(u1, · · · , up)

Definition 3.3.4. The correlation functions of Φ̃ are said to be ω-mixing if there exists
a decreasing function ω̃ : N × R+ → R+ such that, ∀ n ∈ N, lim‖u‖→∞ ω̃(n, u) =
0 and,∀ p, q ∈ N s.t. p < q, ∀ (u1, · · · , uq) ∈ Rq, ∀ (k1, · · · , kq) ∈ Nq,

|m(k1,··· ,kq)(u1, · · · , uq)−m(k1,··· ,kp)(u1, · · · , up)m(kp+1,··· ,kq)(up+1, · · · , uq)| ≤ ω̃(K, d),

where K := ∑q
i=1 ki, and d := infi≤p, p<j≤q |uj − ui|.

Definition 3.3.5. Φ̃ is said to have fast decay of correlations if its correlation functions are
ω̃-mixing, with ω̃(n, u) = C̃nf(c̃nu) for some rapidly decreasing function f : R+ → [0, 1]
and some constants c̃n, C̃n ∈ R+.

For a stationary point process Φ on R2 with intensity λ and a marking function m,
we define

σ2(m,Φ) := λ
(
E0[m2(0,Φ)] +

∫
R2

(E0,u[m(0,Φ)m(u,Φ)]κ(u)− E0[m(0,Φ)]2λ)du
)

provided the integral exists. We observe that, in the spirit of (2.22), σ2(m,Φ) ≥ 0 is the
total mass of the covariance measure of Φ̃. For a wavelet function ψ = Real(ψ) + iIm(ψ),
denote by N (ψ) the complex Gaussian random variable with mean 0 and covariance
matrix (between real and imaginary parts)

Σ(ψ) :=
(
‖Real(ψ)‖22 〈Real(ψ), Im(ψ)〉

〈Real(ψ), Im(ψ)〉 ‖Im(ψ)‖22

)
,

where 〈·, ·〉 denotes the dot product in L2(R2).

Proposition 3.3.6. Let Φ be stationary point process on R2 with intensity λ, and m a
marking function, and ψ a compactly supported wavelet. Suppose that, for all p ∈ (1,∞),
the pair (m,Φ) satisfies the p-moment condition, Φ̃ has fast decay of correlations. Then,
0 ≤ σ2(m,Φ) <∞ and, if furthermore σ2(m,Φ) > 0, then

lim
j→∞

2jS1Φ̃(j) = σ(m,Φ)E[|N (ψ)|]. (3.11)

If the (complex) wavelet is such that its real and imaginary parts are orthogonal, with
equal L2 norm (e.g. for Morlet wavelets) then E[|N (ψ)|] = ‖ψ‖2

√
π

2 .

Proof. Let us denote

Yj := ψj ? Φ̃(0) =
∫
ψjdΦ̃

= 2−2j ∑
u∈Φ∩2jB

ψ(2−ju)m(u,Φ).

Considering the mother wavelet ψ as a test function (with support contained in a square
window), from [22, Theorem 1.12 (ii)] we know that

lim
j→∞

22jVar(Real(Yj)) = σ2(m,Φ)‖Real(ψ)‖22 (3.12)
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and similarly for Var(Im(Yj)). Using CLMM (Theorem 2.5.9),

E[Yj ] = 2−2jλE0[m(0,Φ)]
∫
R2
ψ(2−ju)du = 0.

Hence, by [22, Theorem 1.13 with Remark (vii) Multivariate central limit theorem] (since
ψ is a complex function)

2jYj d−−−→
j→∞

σ(m,Φ)N (ψ).

We then conclude using the following lemma, from [40], for which the conditions are
satisfied, due to the p-moment condition:

Lemma 3.3.7. Let (Xj)j≥1 be a sequence of random variables, such that Xj
d−−−→

j→∞
X.

If, for some δ > 0,
sup
j

E[|Xj |1+δ] <∞,

then
E[|Xj |] −−−→

j→∞
E[|X|].

For a specific wavelet ψ, such that 〈Real(ψ), Im(ψ)〉 = 0 and ‖Real(ψ)‖22 = ‖Im(ψ)‖22,
observe that real and imaginary parts of N (ψ) are independent Gaussians ‖ψ‖2√2 N (0, 1).
Consequently |N (ψ)| ∼ ‖ψ‖2√2 R(1), where R(1) is Rayleigh distribution (i.e. square root
of χ2(2) — χ-distribution with parameter 2) giving

E[|N (ψ)|] = ‖ψ‖2√
2

E[R(1)] = ‖ψ‖2√
2

√
π

2 = ‖ψ‖2
√
π

2 .

Remark. In [22], the authors give several detailed conditions concerning the point process
Φ and marking function m under which Φ̃ satisfies the fast decay of correlations and
p-moment conditions, including σ2(m,Φ) > 0, (requested in Proposition 3.3.6). The
processes satisfying these conditions include unmarked Poisson, Gaussian determinantal,
and cluster Poisson processes with fixed range dependence (such as Matérn cluster
processes, cf. Section 2.3.2), that we study in Example 3.3.8. These processes admit some
local marking functions m, such as statistics of Voronoi cells, or k-nearest neighbors.

Other, more regular distributions (such as the Ginibre point process) are shown in [22]
to satisfy the fast decay of correlations and p-moment conditions, but with σ2(m,Φ) = 0.
In this case, it is possible to obtain the Central Limit Theorem under some technical
conditions, and we refer the reader to [22] for more details.

There also exist Central Limit Theorem results for Yi involving more clustering point
process, not satisfying conditions of Proposition 3.3.6, such as intersections of Poisson
line process (see [88, 62]) .

More generally, observe that the asymptotic of the variance of Yj =
∫
ψjdΦ̃ depends

on the wavelet ψ and the marked point Φ̃. In the case of m ≡ 1, using Proposition 2.8.1,
we can express the variance of Yj as

22jVar(Yj) = 1
(2π)2

∫
R2
|ψ̂(ω)|2bΦ(2−jω)dω, (3.13)
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where bΦ is the density of the Bartlett spectrum of Φ. If Φ is a Poisson point process,
then bΦ(ω) = 1, confirming that 22jVar(Yj) → ‖ψ‖22bΦ(0), as shown in [33]. If bΦ is
continuous at 0, with 0 < bΦ(0) <∞ (e.g. Gaussian determinantal point processes and
Matérn cluster processes) then we obtain the same limit of the variance 22jVar(Yj). If
lim|ω|→0 bΦ(ω) = 0 or lim|ω|→0 bΦ(ω) =∞, the asymptotic of S1Φ(j) may be inferior or
superior to 2−j respectively, which the numerical experiments of Figure 3.6 indicate.

Example 3.3.8 (Poisson, Gaussian determinantal and Matérn cluster processes). Fig-
ure 3.5 illustrates asymptotics of scattering moments for three different distributions
of Φ verifying σ2(1,Φ) > 0 with no marking (m = 1). It shows the log2 of scatter-
ing moments (averaged in angle) for Poisson point processes of different intensities, a
Gaussian determinantal point process, and a Matérn cluster process. We can observe
that when j → −∞ (j = 0 is the smallest scale in our implementation), the scattering
moments converge towards log2(λ) (since log2(‖ψ‖1) = 0), and when j →∞, the slope
goes to -1, independently of the distribution of Φ. However the value at the origin of
this affine limit changes from one distribution to another. Let us recall that this value is:
a := 1

2 log2

(
λπ4 ‖ψ‖

2
2(1 +

∫
R2(κ(u)− λ)du)

)
. Recall from eq. (2.22) that the covariance

measure of Φ is defined as ΓΦ(du) = λδ0 + λ(κ(u)− λ). Therefore

a = 1
2 log2

(π
4 ‖ψ‖

2
2 ΓΦ(R2)

)
measures the total mass of the covariance measure of Φ, indicating the general repulsion
of points (ΓΦ(R2) < λ) or their attraction (ΓΦ(R2) > λ). In Figure 3.5, we observe
that while the Gaussian determinantal, Poisson, and Matérn cluster point processes
have the same intensity λ = 256, and the same slope of scattering moments when
j goes to ∞, they exhibit different values of a, that are increasing according to the
repulsion, Poisson-like independence, and clustering behaviour. For Poisson distributions,∫
R2(κ(u)− λ)du = 0, so a = 1

2 log2 λ
π
4 ‖ψ‖

2
2. In our simulations, using a Morlet mother

wavelet with central frequency (3π/4, 0), ‖ψ‖2 ' 169, giving for a Poisson point process
with intensity λ = 256, a = log2(256π4 169) ' 11.2. For j = 7, we find log2(S1Φ(j)) ' 4.2,
so j + log2(S1Φ(j)) ' 11.2.
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Figure 3.5: Asymptotics of scattering moments for Poisson, Gaussian determinantal
(DPP), and Matérn cluster (MCP) processes, estimated on 500 realizations.
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Figure 3.6: Asymptotics of scattering moments for various processes, estimated on 500
realizations. Left, a Poisson process is compared with a matching process, middle: with
a marked Poisson process, with Voronoi area marks, right: with a Ginibre process and a
crossing process.

Example 3.3.9 (Hyperuniform and hyper clustering processes). In Figure 3.6, we
compare a Poisson distribution with different distributions that may not satisfy the
assumptions of Proposition 3.3.6: a hyperuniform matching process (see [4]), a Ginibre
point process (which we approximate using eigenvalues of Hermitian matrices with complex
Gaussian entries, see e.g. [57]), a Poisson lines crossing process (the points of the process
are the intersections of random lines uniformly and independently drawn in the window),
and a Poisson point process geometrically marked with the areas of its Voronoi cells (cf.
Example 2.6.4).

3.4 Factorial moment expansion for scattering moments
In this section, we shall extend the result from [14], expressing functionals of a point
process Φ through its factorial moments measures. In the context of first order scattering
moments of marked point process, we consider functions of the form

F (Φ) = |
∫
R2
ψ(u)m(u,Φ)Φ(du)|.

The idea of the factorial moment expansion is to express the function F (Φ) as a telescoping
sum depending on the number of atoms in Φ. In analogy to the Taylor expansion for
functions of Euclidean spaces, on can think of this telescoping sum as a sum of derivatives,
expressed at the origin. However in our case, the origin is the point measure with no
atoms, noted ∅. For some marking functions, it is not well defined to apply them to null,
or even finite measures (think of the Voronoi cell of an atom with no points around it).
To remedy this problem, we shall express such functions in the form F (Φ) = f(Φ,Φ),
where f is a function from M×M to R. This shall allow us to circumvent the telescoping
for the value of the marking function.

For any u ∈ E, and µ ∈M, we note µu ∈M the counting measure defined by:

∀B ∈ B, µ|u(B) = µ(B ∩B0(u)),

whereB0(u) = {v ∈ R2 : ‖v‖ < ‖u‖}. Let f : M×M 7→ R. We say that f is continuous
at ∞ if ∀ν, µ ∈M, and ∀(un)n ∈ (R2)N s.t. ‖un‖ −−−→

n→∞
∞, f(ν, µ|un) −−−→

n→∞
f(ν, µ).

We define the first order differential operator of f at u by:
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f (1)
u : M×M 7→ R

(ν, µ)→ f(ν, µ|u + δu)− f(ν, µ|u).

We recursively define the nth order differential operator by:

f
(n)
u1,··· ,un(ν, µ) =

(
f

(n−1)
u1,··· ,un−1

)(1)

un
(ν, µ).

We remark that if f is continuous at ∞, then so is f (n)
u1,··· ,un , for all n ≥ 1 and

(u1, · · · , un) ∈ (R2)n (see e.g [14, 18] for a proof of this fact).
Observe that, if µ = ∑n

i=1 δui , with ‖u1‖ ≤ · · · ≤ ‖un‖, then, for any ν ∈M,

f(ν, µ) = f(ν, ∅) +
n∑
i=1

f(ν, µ|ui + δui)− f(ν, µ|ui)

= f(ν, ∅) +
∫
R2

(f(ν, µ|u + δu)− f(ν, µ|u)µ(du)

= f(ν, ∅) +
∫
R2
f (1)
u (ν, µ)µ(du).

Now, let µ ∈ M, and f continuous at ∞ and such that
∫
E |f

(1)
u (µ, µ)|µ(du) < ∞.

Then, for any (vn)n ∈ En such that ‖vn‖ −−−→
n→∞

∞, we can write

f(ν, µ) = lim
n→∞

f(ν, µ|vn)

= f(ν, ∅) + lim
n→∞

∫
R2
f (1)
u (ν, µ|vn)µ|vn(du)

= f(ν, ∅) + lim
n→∞

∫
R2
f (1)
u (ν, µ)µ|vn(du)

= f(ν, ∅) +
∫
R2
f (1)
u (ν, µ)µ(du),

where the last equality follows by dominated convergence.
Remark. As we can see, the measure ν is unchanged in the r.h.s. of the above equality.
This shall allow one to compute the value of the marking function on the entire measure
Φ.

Let Φ be a point process such that
∫
R2 E!u[|f (1)

u (Φ + δu,Φ)|]MΦ(du) <∞, where MΦ
denotes the mean measure of Φ. Then, using the Campbell-Little-Mecke theorem, we
obtain

E[f(Φ,Φ)] = E[f(Φ, ∅)] +
∫
R2

Eu[f (1)
u (Φ,Φ)]MΦ(du)

= E[f(Φ, ∅)] +
∫
R2

E!u[f (1)
u (Φ + δu,Φ)]MΦ(du),

(3.14)

This leads us to the following result:
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Proposition 3.4.1. Let Φ be a simple point process, and let f be a measurable function,
continuous at ∞, such that, for any j ∈ {1, · · · , n+ 1},∫

(R2)j
E!u[|f (j)

u (Φ + δu,Φ)|]MΦ(j)(du) <∞. (3.15)

Then,

E[f(Φ,Φ)] =E[f(Φ, ∅)] +
n∑
j=1

∫
(R2)j

E!u[f (j)
u (Φ + δu, ∅)]MΦ(j)(du)

+
∫

(R2)n+1
E!u[f (n+1)

u (Φ + δu,Φ)]MΦ(n+1)(du),
(3.16)

with, for simplicity, δu denoting
∑
i δui. If furthermore,∫

(R2)n
E!u[f (n)

u (Φ + δu,Φ)]MΦ(n)(du) −−−→
n→∞

0, (3.17)

then

E[f(Φ,Φ)] = E[f(Φ, ∅)] +
∞∑
j=1

∫
(R2)j

E!u[f (j)
u (Φ + δu, ∅)]MΦ(j)(du). (3.18)

Proof. Equation (3.14) tells us that the result holds for n = 0. Suppose that it is true
for some n ∈ N, and eq. (3.15) holds for n+ 1.

Let u ∈ (R2)n, v ∈ R2, and let Φu a point process with distribution P !
u.

∫
u∈(R2)n

∫
v∈R2

E!v[|(f (n)
u )(1)

v (Φu + δu + δv,Φu)|]MΦu(dv)MΦ(n)(du)

=
∫

(u,v)∈(R2)n+1
E!u,v[|f (n+1)

(u,v) (Φ + δu + δv,Φ)|]MΦ(n+1)(d(u, v)) <∞

Thus, E!v[|(f (n)
u )(1)

v (Φu + δu + δv,Φu)|]MΦu(dv) < ∞, MΦ(n)-a.s. We can therefore
apply eq. (3.14) to f (n)

u (Φu + δu,Φu), and obtain the result for n+ 1.

We can now apply this result to first order scattering moments of marked point
processes.
Corollary 3.4.2. Les Φ be a simple stationary point process, ψj a wavelet, m(u,Φ) a
marking function, and

f(ν, µ) = |
∫
R2
ψj(u)m(u, ν)µ(du)|,

such that the conditions of Proposition 3.4.1 are satisfied, including the condition given
by eq. (3.17). Then,

S1Φ̃(j) = λE0[|m(0,Φ)|]

+
∫
‖v‖<‖u‖

Eu,v[|ψj(u)m(u,Φ) + ψj(v)m(v,Φ)|]ρ(2)(u, v)dudv

−
∫
‖v‖<‖u‖

Eu,v[|ψj(u)m(u,Φ)|+ |ψj(v)m(v,Φ)|]ρ(2)(u, v)dudv

+R,
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with
R =

∞∑
n=3

1
n!

∑
J∈{2n}

(−1)n−|J |
∫

(R2)n
EuJ [|

∑
i∈J

ψj(ui)m(ui,Φ)|]ρ(n)(u)du,

noting u = (ui)i=1,··· ,n, and uJ = (ui)i∈J .

Proof. The proof follows directly from Proposition 3.4.1, and the following Lemma ([14]).

Lemma 3.4.3. Let f be a measurable function, continuous at ∞. Let n ≥ 1, and
u = (u1, · · · , un) ∈ En. Then, noting {2n} the set of all subsets of {1, · · · , n}, for any
ν, µ ∈M, if ‖un‖ < · · · < ‖u1‖,

f (n)
u (ν, µ) =

∑
J∈{2n}

(−1)n−|J |f(ν, µ|un +
∑
i∈J

δui), (3.19)

otherwise f (n)
u (ν, µ) = 0.

Example 3.4.4 (Voronoi marks of a determinantal point process). We check the con-
ditions of Proposition 3.4.1 for a determinantal point process (cf. Section 2.3.2) with
the marking function m(u,Φ) = V (u) (cf. eq. (2.20)), with Morlet wavelets ψj (cf.
Example 3.1.2).

First, note that eq. (3.19) also reads, for u such that ‖un‖ < · · · < ‖u1‖,

f (n)
u (ν, µ) =

∑
J∈{2n}\{1}

(−1)n−1−|J |f(ν, µ|un + δu1 +
∑
i∈J

δui)

− (−1)n−1−|J |f(ν, µ|un +
∑
i∈J

δui),
(3.20)

where {2n}\{1} denotes all subsets of {2, · · · , n}. Therefore,

|f (n)
u (ν, µ)| ≤

∑
J∈{2n}\{1}

|f(ν, µ|un + δu1 +
∑
i∈J

δui)− f(ν, µ|un +
∑
i∈J

δui)|,

which gives us,

|f (n)
u (ν, µ)| ≤

∑
J∈{2n}\{1}

||
∫
R2
ψj(u)|V (u)|(µJ + δu1)(du)|

− |
∫
R2
ψj(u)|V (u)|(µJ)(du)||

≤
∑

J∈{2n}\{1}
|
∫
R2
ψj(u)|V (u)|(µJ + δu1 − µJ)(du)|

≤
∑

J∈{2n}\{1}
|ψj(u1)||V (u1)|

≤ 2n−1|ψj(u1)||V (u1)|, (3.21)

where we noted µJ = µ|un +∑
i∈J δui. Applying eq. (3.21), we obtain∫

(R2)p
E!u[|f (p)

u (Φ + δu,Φ)|]MΦ(p)(du) ≤ 2p−1

(p− 1)!

∫
(R2)p1

|ψj(u1)|Eu[|V (u1)|]MΦ(p)(du),

(3.22)
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where we note (R2)p1 = {(u1, · · · , up) : ∀ i 6= 1, ‖ui‖ < ‖u1‖}.
Now, in order to bound the expected value of the Voronoi cell surface Eu[|V (u1)|], we

need to explicitly write its dependency on Φ:

Eu[|V (u1)|] = E!u[|VΦ+δu(u1)|] (3.23)
≤ E!u[|VΦ+δu1

(u1)|] (3.24)

=
∫
R+

P!
u(|VΦ+δu1

(u1)| > t)dt

=
∫
R+

P!
u(|VΦ+δu1

(u1)| > πr2)2πrdr

≤
∫
R+

P!
u(∃i ∈ {1, · · · , 6} : Φ(∠i(r)) = 0)2πrdr (*)

≤
6∑
i=1

∫
R+

P!
u(Φ(∠i(r)) = 0))2πrdr, (3.25)

where {∠i(r)}i=1,··· ,6 forms a partition of Bu1(r), with every {∠i(r)} having the same
volume. The explanation for eq. (*) is geometric: if every subset {∠i(r)} of Bu1(r)
contains an atom, then the Voronoi cell of u1 is contained in Bu1(r)2.

Let Φ be a Poisson point process on (R2,B), with intensity 0 < λ < ∞. We know
that, for all B ∈ B,

P(Φ(B) = 0) = e−E[Φ(B)].

Furthermore, we know that, for any N ≥ 1, and any u ∈ (R2)N , the reduced Palm version
of Φ at u, noted Φ!

u, is equal in distribution to Φ. Thus, for all B ∈ B,

P(Φ!
u(B) = 0) = e−E[Φ(B)].

Now, let ΦK be a stationary determinantal point process, with Hermitian kernel K, and
intensity λ (that is, for all B ∈ B, E[ΦK(B)] = E[Φ(B)]). Then, for all B ∈ B, we know
that ([16]),

P(ΦK(B) = 0) ≤ P(Φ(B) = 0) = e−E[Φ(B)] = e−E[ΦK(B)].

Let u = (u1, · · · , up) ∈ Rp. One can show that the reduced Palm version of ΦK at u,
noted ΦK!

u , is also a determinantal point process, which kernel shall be noted Ku. Denote
also ΦKu!

P the Poisson point process with the same mean measure as ΦK!
u . Then, for all

B ∈ B ([16]),

P!
u(ΦK(B) = 0) = P(ΦK!

u (B) = 0)
≤ P(ΦKu!

P (B) = 0)

= e−E[ΦKu!
P (B)]

= e−E[ΦK!
u (B)]

≤ e−(E[ΦK(B)]−p)

= e−(E[Φ(B)]−p),

2Indeed, the partition {∠i(r)}i=1,··· ,6 can be defined by 6 points v1, · · · , v6, such that for all i, the
angle ̂viu1vi+1 equals π

3 . Let v be the atom of Φ lying inside the subset of Bu1 (r) inside {∠i(r)}. Since
̂viu1vi+1 = π

3 , and ‖v − u1‖ ≤ r the bisector of [u1, v] intersects [u1, vi] and [u1, vi+1].
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where the last inequality comes from the fact that E[ΦK!
u (B)] ≥ E[ΦK(B)]− p (see [22,

eq.(1.6) in the Supplemental content], for a proof).
We can then write, for any r ≥ 0, and any i ∈ {1, · · · , 6},

P!
u(ΦK(∠i(r)) = 0) ≤ e−(E[Φ(∠i(r))]−p)

≤ ep−λ
πr2

6 .

Injecting this inequality in eq. (3.25), it gives us

E!u[VΦ+δu(u1)] ≤ 6
∫
R+
ep−λ

πr2
6 2πrdr

= cp,

where cp = 6ep
∫
R+ e−λ

πr2
6 2πrdr = cep <∞.

Going back to eq. (3.22), we obtain

∫
Ep

E!u[|f (p)
u (Φ + δu,Φ)|]MΦ(p)(du) ≤ c 2p−1

(p− 1)!e
p
∫

(R2)p1
|ψj(u1)|MΦ(p)(du)

≤ c 2p−1

(p− 1)!e
pλp

∫
(R2)p1

|ψj(u1)|du

= c
2p−1

(p− 1)!e
pλpπp−1

∫
R2
|ψj(u)||u|2(p−1)du, (3.26)

where the second inequality comes from the fact that, for a determinantal point process,
for any u ∈ Ep, ρ(p)(u) ≤ λp.

Now, as ψj is a Morlet wavelet (cf. eq. (3.3)), we can give an upper bound for |ψj(u)|:

|ψj(u)| ≤ 1
2πσ2 2−2je−2−2j |u|2/(2σ2)|ei2−jξ0.u − cψ| ≤ 2−2jc′ψe

−2−2j |u|2/(2σ2),

where c′ψ is a positive constant. Therefore,

∫
R2
|ψj(u)||u|2(p−1)du ≤ 2−2jc′ψ

∫
R2
e−2−2j |u|2/(2σ2)|u|2(p−1)du

≤ 2−2jc′ψ

∫
[0,2π]

dθ

∫
R+
e−2−2jr2/(2σ2)r2p−1dr

≤ 2−2jc′ψ2π(22j2σ2)p
∫
R+
e−r

2
r2p−1dr

≤ 2−2jc′ψ2π(22j2σ2)p 1
2

∫
R+
e−rrp−

1
2 r−

1
2dr

≤ 2−2jc′ψπ(22j2σ2)p
∫
R+
e−rrp−1dr

≤ πc′ψ22j(p−1)σ2p2p(p− 1)!

Injecting this into eq. (3.26), we obtain∫
Ep

E!u[|f (p)
u (Φ + δu,Φ)|]MΦ(p)(du) ≤ c1(4πσ2eλ22j)p, (3.27)
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where c1 is a positive constant, independent of p. This shows that, for all p,∫
(R2)p

E!u[|f (p)
u (Φ + δu,Φ)|]MΦ(p)(du) <∞,

so the condition Equation (3.15) of proposition 3.4.1 is satisfied. If furthermore 4πσ2eλ22j <
1, then ∫

(R2)p
E!u[|f (p)

u (Φ + δu,Φ)|]MΦ(p)(du) −−−→
p→∞

0,

and eq. (3.18) holds. In conclusion, factorial moment expansions of any order exist for
all scattering moments S1Φ̃(j) of any scale j, for a determinantal process marked by the
volumes of the Voronoi cells. Also, the infinite expansion exists for all sufficiently small
scales with respect to the intensity of the determinantal process. Remark that the fact
that Φ is a determinantal point process introduces the factor ep in the bound eq. (3.27)
w.r.t. a Poisson point process.

Remark. Note that the wavelet transform (eq. (3.9)) is a linear function (shot-noise
functional) of the (marked) point process. In other words, it is a first-order U -statistics of
Φm; cf [71, Section 12.3]. The fact that scattering moments S1Φ(j, θ) are defined via the
modulus of the wavelet transform makes them dependent on all higher-order correlation
functions of Φ: the factorial moment expansions of S1Φ(j, θ) involve all moment measures
(in contrast to the square norm of the wavelet transforms, which can be represented using
the first and second-order U -statistics and thus their expansion involves only the first two
correlation functions). Consequently, the first order scattering moments are supposed
to capture more information regarding the intrinsic dependence of the points than just
the pairwise correlations. We shall see in our numerical study that this information
allows one to efficiently recover some geometric marks which do depend on higher order
correlations, e.g, the Voronoi cell characteristics.

3.5 Wavelet phase harmonics covariance
We shall now take interest in another class of representations based on the wavelet
transform of point processes. Scattering moments decompose the information of a point
process into different features at different scales, and those features in different sub-
features at different scales. However, this representation does not take into account the
dependencies between the different features at different scales. Furthermore, the modulus
operator introduced in the definition of scattering moments remove the phase information
of the wavelet coefficients, which can contain important information about the geometry
of the observed pattern, as illustrated in [92, 120].

For this reason, in [120], the authors introduce covariance moments between wavelet
coefficients, which phases are adjusted by a non-linear operator. In this section, we shall
review this representation, for stationary random measures defined on (R2,B).

As stated in Section 3.1, for a wavelet ψ with central frequency ξ0, one builds a
wavelet family by dilating and rotating ψ. The wavelet at scale j and angle θ has central
frequency ξ := 2−jr−θ ξ0. In this section, we shall, for notations simplicity, identify
the central frequency ξ with the indices of the wavelets, (j, θ). We are interested, in
this section, in capturing the dependencies between wavelet coefficients of a stationary
point process Φ, at possibly different scales, orientations, and spatial positions. To study
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such dependencies, one can naturally look at the covariance moments between wavelet
coefficients, that is, moments of the form

CΦ(ξ, ξ′, τ) = E[Φ ? ψξ(u) Φ ? ψξ′(u− τ)∗], (3.28)
for (ξ, ξ′) ∈ (Z × [0, 2π])2, τ ∈ R2. Note that in this case, we do not need to subtract
the expected averages, since the wavelets ψξ have zero means. Furthermore, as Φ is
stationary, the value in the right hand side of eq. (3.28) does not depend on u, that can
be set to 0.

Suppose that Φ satisfies the conditions of Section 2.8, that is, it is stationary, has a
non-null finite intensity, and with a σ-finite second-order factorial moment measure MΦ(2)

absolutely continuous w.r.t. the Lebesgue measure. Then, using eq. (2.23), we obtain

CΦ(ξ, ξ′, τ) =
∫
R2
ψ̂ξ(ω)ψ̂∗ξ′(ω)e−iω.τ bΦ(ω)dω. (3.29)

Therefore, computing CΦ(ξ, ξ′, τ), for τ ∈ R2, is equivalent to computing the Fourier
transform of ψ̂ξψ̂∗ξ′bΦ.

Recall also that the wavelets considered in this work are localized in frequency, i.e.
there exists a constant C ′ such that ψ̂(ω) ' 0 if |ω − ξ0| > C ′. This means that, the
(approximate) frequency support of ψξ is contained in a ball centered around 2−jr−θξ0
and of radius 2−jC ′. If C ′ is small enough, then for ξ 6= ξ′, ψξ and ψξ′ approximately
have disjoint frequency supports, meaning that

ψ̂ξ(ω)ψ̂∗ξ′(ω) ' 0, ∀ω ∈ R2.

This implies that the covariance between wavelet coefficients will be close to zero, even
though they may not be independent.

To remedy this problem, one can apply a non-linear operator to the wavelet coefficients,
in order to modify their frequency support, so that they may overlap. The phase harmonics
operator, that we shall now define, is particularly suited for that purpose.

Definition 3.5.1 (Phase harmonics operator). Let z ∈ C, and denote |z| its modulus,
and ϕ(z) its phase, i.e. z = |z|eiϕ(z). The phase harmonics operator is defined, for every
k ∈ Z, by

[z]k := |z|eikϕ(z). (3.30)

Note that, for any z ∈ C, [z]0 = |z|, [z]1 = z, and [z]−1 = z∗. More generally, for any
k ∈ Z, ([z]k)∗ = [z]−k and |[z]k| = |z| for k ∈ Z.

For k ∈ Z and z ∈ C, the phase harmonics operator has the same effect on the phase
of z than taking z to the power k. However, using estimators of high order moments can
prove problematic, due to their possibly large variance. This operator, however, does not
change the modulus of z.

We can apply the phase harmonics operator to the wavelet coefficients of µ ∈M to
adjust their phase.

Definition 3.5.2 (Wavelet phase harmonics). Let µ be a measure on (R2,B), and
ψ ∈ L1(R2, µ). We define the wavelet phase harmonics (WPH) of µ by

[µ ? ψξ]k = |µ ? ψξ|eikϕ(µ?ψξ), (3.31)

for ξ ∈ Λ = Z× [0, 2π], and k ∈ Z.
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The phase harmonics operator was introduced in [81], and used in [120] to build a
class of representations, and define maximum entropy models for non-Gaussian stationary
processes. The idea of multiplying the phase of complex wavelet coefficients to compute
their dependencies was already present in [92], although it was not conceptualized in an
operator, that can be computed for any k ∈ Z.

Frequency transposition The phase harmonics operator modifies the phase of com-
plex wavelet coefficients, without modifying its modulus. In [81], the authors explain
that such an operator, called a frequency transposition, performs a dilation in the Fourier
domain. They show that, in the frequency domain, if ψ̂j1,θ2 is approximately supported on
the ball Bξ(C ′) of radius C ′, centered at ξ ∈ C, then [ψ̂j1,θ2 ]k is approximately supported
on Bkξ(kC ′). This property, illustrated in [120] in the case of realizations of stationary
processes, allows us to capture dependencies of wavelet coefficients across scales and
angles, as we shall detail next.

Definition 3.5.3 (WPH covariance moments). Let Φ be a stationary point process
on (R2,B), and Ψ = {ψ0, ψξ}ξ∈Ξ=Z×[0,2π] be a wavelet family such that all wavelet
coefficients have finite second-order moments. For any ξ, ξ′ ∈ Ξ, k, k′ ∈ Z, τ ∈ R2, let us
note γ = (ξ, ξ′, k, k′, τ). The WPH covariance of Φ is defined by

KγΦ := Cov
(
[Φ ? ψξ]k(u), [Φ ? ψξ′ ]k

′(u− τ)
)
. (3.32)

Note that, as Φ is stationary, the r.h.s. of eq. (3.32) does not depend on u ∈ R2.

Note that the WPH covariance representation does not need to include the covariance
between coefficients for all indices ξ, ξ′ ∈ Ξ, k, k′ ∈ Z, τ ∈ R2, because some of these
covariance moments are nearly zero (as explained by the frequency transposition property).
A way to choose the coefficients in the representation shall be detailed in Section 5.4, in
the case where this representation is used to define a maximum entropy model.

3.6 Estimation and coefficient selection
Estimation The wavelet-based representations presented in Sections 3.2 and 3.5 capture
information about the distribution LΦ of Φ by computing mathematical expectancies of
non-linear functions applied to the the wavelet transform of Φ (cf. Section 3.1). In other
words, we build representations of the form

R(Φ) = E[f(Φ)],

for non-linear functions f .
If Φ is a stationary, ergodic point process, these expectations can be estimated from a

realization φ̄ of Φ, observed on a finite window W , by spatial averaging over the window.
That is, we build our estimators as

R̂W (Φ) := 1
|W |

∫
W
f(Φ|W )(u)du,

where Φ|W = Φ ∩W . Note that, if we were given Φ over the whole space R2 instead of
the bounded window W , we could define

R̂W,R2(Φ) := 1
|W |

∫
W
f(Φ)(u)du,
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and this estimator would be unbiased. Furthermore, Birkhoff’s ergodic theorem (cf.
eq. (2.21)) would tell us that

lim
|W |→∞

R̂W,R2(Φ) = R(Φ), P-a.s.

As we only observe Φ|W , that is the points of Φ that lie inside W , the wavelet coefficients
Φ|W ? ψj,θ(u) at points u ∈ W near the border of W cannot take into account points
outside W . One can therefore consider that the observation sample has no point outside
W , or consider other types of border corrections. For instance, in this work, we shall
usually perform a periodic boundary correction, i.e; consider that the sample repeats itself
outside W , when W is a square window. This can be done by using periodic wavelets
{ψsξ}, defined as

ψsξ(u) :=
∑
n∈Z2

ψξ(u+ sn), (3.33)

where s > 0 is the size of the square window W . We shall however often make the
approximation that |W | is large enough, so that border effects are negligible, and the
ergodic theorem holds.

Finite representation In Section 3.1, the wavelet transform has been defined with
an infinite wavelet family {ψj,θ}, with j ∈ Z and θ ∈ [0, 2π]. For practical purposes, we
need to select a finite number of such coefficients.

For the angular parameter θ, this can be done by simply selecting discrete, evenly
spaced angles in [0, 2π]. Thus θ shall be parametrized by θ = 2π l

L , with l ∈ {0, · · · , L−1},
for some L ≥ 1. In our simulations, we shall usually take L = 4 or L = 8.

The scale parameter j will be taken in {0, · · · , J − 1}, for some J ≥ 1. The highest
frequency captured by the wavelet transform is therefore determined by the central
frequency ξ0 of the mother wavelet. Equivalently, the wavelet family will not capture
structures smaller than C, the size of the approximate spatial support of ψ. The parameter
ξ0 must therefore be chosen according to the task at hand. In practical applications, one
deals with samples observed inside a bounded window W . The maximal scale parameter
J is typically chosen so that the approximate support of the wavelets ψJ−1,θ (those with
maximal support) is contained in the observation window, i.e. 2JC ≤ s, for a square
window W of size s. Scales equal or larger than J are carried by the low-pass filter ψ0,
whose frequency support is centered at ξ = 0.

Properties The estimators of scattering moments and wavelet phase harmonics co-
variance moments enjoy properties that make them suitable for statistical learning of
non-linear functions of a (possibly marked) point pattern, a point process, or its distribu-
tion. First, being defined with a global spatial average, these representations are invariant
to translations, which can be a desirable property (e.g. if the function to approximate is
itself also translation invariant). Another property that is sometimes required of such
descriptors is some notion of stability. In other words, if a point pattern undergoes some
kind of small deformation, then the associated value of the function to approximate
might not change too much. Thus, the descriptor of this point pattern should not be
too affected by this deformation either. In the case of estimators of first order scattering
moments, such stability property can be easily proven.
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Proposition 3.6.1. Let φ ∈ M be a finite counting measure, i.e. φ = ∑N
i=1 δui. Let

m ∈ RN , m = (m1, · · · ,mN ). We define φ̃ = ∑N
i=1miδui. Let us also define the marks

and positions perturbations: uε ∈ (R2)N and mε ∈ RN . We note φε = ∑N
i=1 δui+uε,i, and

φ̃ε = ∑N
i=1(mi +mε,i)δui+uε,i. Finally, note

Ŝ1φ̃ =
∫
R2
|φ̃ ? ψ|(u)du,

for some wavelet ψ, and similarly for φ̃ε. Suppose that ψ is integrable, and such that
∀ u, t ∈ R2, |ψ(u+ t)− ψ(u)| ≤ ‖t‖ς(u), for some integrable function ς. Then,

|Ŝ1φ̃− Ŝ1φ̃ε| ≤ ‖ς‖1‖m‖2‖|u|ε‖2 + ‖ψ‖1‖mε‖1

where |u|ε = (‖uε,i‖)i=1,··· ,N .

Proof. Let us denote ξ̃ = ∑N
i=1miδui+uε,i . Using the fact that, for all z, z′ ∈ C, ||z|−|z′|| ≤

|z − z′|, we write

|Ŝ1φ̃− Ŝ1φ̃ε| = |Ŝ1φ̃− Ŝ1ξ̃ + Ŝ1ξ̃ − Ŝ1φ̃ε|
≤ |Ŝ1φ̃− Ŝ1ξ̃|+ |Ŝ1ξ̃ − Ŝ1φ̃ε|

≤
∑
i

|mi|
∫
R2
|ψ(u− ui)− ψ(u− ui − uε,i)|du+

∑
i

|mε,i|
∫
R2
|ψ(u− ui − uε,i)|du

≤ ‖ς‖1
∑
i

|mi|‖uε,i‖E + ‖ψ‖1
∑
i

|mε,i|

≤ ‖ς‖1‖m‖2‖|u|ε‖2 + ‖ψ‖1‖mε‖1.

In this chapter, we have presented two classes of representations of stationary point
processes, based on a multi-scale decomposition of the geometric information with a
wavelet transform.

In the remainder of this work, we shall study the adequacy of these representations
to perform statistical learning and probabilistic modelling tasks.
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Chapter 4

Scattering moments for point
process marks regression

In this chapter, we propose to address the problem of learning marks of point processes:
an unknown function, called a marking function, takes as argument a point pattern, and
produces numerical values, called marks, associated with each point of the pattern. Our
goal is to learn this function, from examples of point patterns with observed marks, in
order to predict unknown marks for new point patterns.

Our particular motivation comes from the problem of learning how the cell loads in
wireless networks depend on the geometry of the base stations (and possibly of the traffic
demand). One may want to learn this dependence directly from real data, collected
in the existing operational networks, to predict the loads of base stations for different
configurations of base stations, and/or different traffic demand (see more details in the
Related works paragraph). In this work, we consider some simple, generic marks, often
appearing in this context. They are produced by the standard shot-noise interference
model, the nearest neighbour distance, and some characteristics of the Voronoi cells (cf.
Section 2.6 Figure 4.1). Our goal is to to understand the efficiency of our proposed
method to represent the dependence of the marks on the geometry of point patterns,
rather than to solve the original cell load problem for some particular real network data.

Figure 4.1: Exact (blue) and reconstructed (orange) marks being the surface areas of the
Voronoi cells.
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Learning geometric marks via local or global representation The problem of
learning the marking function, as posed above, does not seem amenable to any direct
statistical approach, due to the structure of the space of marked point measures. To
overcome this difficulty, we need some suitable representation of the geometry of point
patterns, and we propose two approaches in this regard.

As a baseline, we propose to estimate the mark of each point using a statistical
regression model based on the local distance matrix of a suitable chosen vicinity of this
point. In this relatively simple approach, the training data set consists of an ensemble
of central marked points, surrounded by some number, say K, of their (non-marked)
neighbours. Observe that the dimension of the representation of the local geometry of
the point (local distance matrix) increases as K2. For highly non-local marking functions
(e.g. related to power-law shot-noise function), one might need to chose a large number of
neighbours K, proportional to the total number of points, possibly making this baseline
approach inefficient.

When the marks have non-local dependence, or when we have no prior knowledge of
the dependence range, we further propose to use the scattering moments representation
(cf. Section 3.2) to capture the geometry of marked point patterns. Recall that the
scattering moments are defined as the spatial average of a cascade of convolutions with a
wavelet family, followed by a complex modulus operator. The property of the modulus
operator makes this representation locally invariant to small translations ([31]), and
the global averaging implies a global translation invariance. Furthermore, they have
been shown ([80, 31], Proposition 3.6.1) to be stable to small deformations of the input
signal. These invariance and stability properties make them useful in signal processing, in
particular in relation to statistical learning. Indeed, if the information content of a signal
is typically not (strongly) affected by translations, rotations, and small deformations,
similar properties of the signal representation allows one to capture this content in a
more concise way, and hopefully learn its intrinsic structure from a smaller number of
signal samples. The pertinence of this approach has already been demonstrated in various
contexts (see e.g. [31, 100, 63]).

Using scattering moments to represent marked point processes, our learning problem
can be addressed in the following two steps (also depicted on Figure 4.2):

• We build a statistical regression model on scattering moments of the marked point
patterns, with the explanatory variables being the scattering moments of the non-
marked point patterns. This model is computed on the training data consisting
of point patterns with observable marks, and is meant to be used to estimate
the (marked) scattering moments of new point patterns, for which marks are not
observed.

• We estimate (reconstruct) the marks of new point patterns, for which marks are not
observed, from their estimated scattering moments. It is a non-convex optimization
problem, that we numerically solve using the L-BFGS-B algorithm [34, 121].

Compared to our baseline approach, for which the size of the representation of the
local geometry of a point grows quadratically with its number of neighbours, the scattering
representation grows logarithmically with the neighbouring size. However, it may suffer
from possible errors, introduced in the reconstruction phase (absent in the benchmark
approach). The overall benefits of the scattering approach become significant for highly
non-local marking functions.
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Figure 4.2: An overview of our method for the reconstruction of geometric marks via
scattering moments.

In general, the quality of the regression of the scattering moments depends on
the sensitivity of the marking function to small point pattern deformations. On the
other side, in the reconstruction phase (recovering of marks from the true or estimated
scattering moments) significant errors consist in swapping a large and a small mark of two
neighbouring points (not leading to a significant modification of the scattering moments).
The quality of this phase of the approach depends thus on the existence of clusters of
points in point patterns — a problem already studied in the literature; cf Section 4. The
Poisson point process, considered in this paper, exhibits a baseline type of clustering.

Related works Stochastic-geometric study of cellular networks expanded rapidly in
recent years, primarily through analytic results regarding Poisson network models ([21]).
Performance evaluation of operational wireless cellular networks, in particular the quality
of service perceived by users in function of the traffic demand, is a complex problem
involving stochastic and geometric modelling of several network layers. A key element of
this problem is the analysis of the cell loads, which non trivially depend on the geometric
configuration of serving base stations and their traffic demands, and capture in a concise
way the quality of service offered by the individual cells. A detailed physical model of cell
loads was proposed in [103] and revisited in [19, 20, 15], including the validation with
respect to some data collected in operational networks.

Recently, the prediction of the cell loads has been the subject of a machine learning
study published in [5], though not as the geometric problem posed in our paper. Indeed,
in this earlier paper, the number and the locations of base stations are fixed, and the
problem consists in learning the loads of this given configuration of stations in function of
their traffic demands. This (non-geometric) problem is cast and solved in the framework
of monotone interpolation of Lipschitz functions.

The problem formulated and studied in our paper allows one to address the orthogonal
question of learning the cell loads, given constant traffic demand, in function of the
geometry of the network. Combining the two approaches, left for future work, may allow
one to predict the performance of new geometric configurations of base stations and
traffic demand, by collecting the cell load data in existing operational networks, thus
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offering an alternative to building and solving complex physical models.
Observe that, even for a fixed number of base stations, the two dimensional location

of each base station on the plane makes the dimension of our input data two times higher
than the one considered in [5]. The use of wavelet scattering transforms allows one to
leverage geometric invariants, such as translation and rotation, and thus significantly
reduce the dimension of the representation. Scattering moments have been proven useful
in this context in a number of tasks such as quantum molecular energy prediction [63, 49]
or texture classification [100].

Geometric marks (also called score functions) have received a lot of attention in
stochastic geometry and spatial statistics, where they represent some interaction of a
given point with the whole point pattern. If this interaction is local in some sense, and
the underlying point process exhibits some decay of correlations, then it is possible to
establish asymptotic results (including central limit theorems) regarding the sums of the
geometric marks in increasingly large windows (cf e.g. [90, 11, 22]. These results can be
used to study large-scale asymptotics of the scattering moments, as in [33].

We mentioned earlier in this introduction that the quality of reconstruction of the
marks depends on whether point process is regular, or exhibits clusters of points. These
notions are formalised in [16, 17], and it is argued that Poisson point process can be
considered as a reference type of point clustering, to which more regular point processes
(e.g. determinantal ones) and more clustering ones (e.g. permanental and Cox processes)
can be compared.

The remaining part of this chapter, based on [28], is organized as follows: in Section 4.1,
we describe several models of geometric marks and formulate the problem of their
statistical learning. We then present our main approach to solving this problem, based
on scattering transforms of marked point processes. We also describe the benchmark
approach, to which our method shall be compared. The numerical results of both
approaches applied to the considered mark models are presented in Section 4.2.

4.1 Statistical learning of geometric marks
In this section, we formally present the problem of learning geometric marks of point
processes, and formulate possible solutions to address this problem. Our main approach,
described in Section 4.1.4, uses the scattering moments of marked point patterns, which
are presented in Section 4.1.3. An alternative method is proposed in Section 4.1.5, based
on a distance matrix representation of point neighbourhoods. This alternative approach
is used as a comparative benchmark for our numerical study in Section 4.2.

4.1.1 Geometric characteristics of wireless networks

In stochastic-geometric modeling of networks (e.g. wireless networks), one usually
represents locations of objects (e.g. transmitters/receivers) as points of a point process,
and their characteristics as marks. These characteristics can depend not only on the
given object, but also on the geometry of the network (at least locally, e.g. the surface of
the cell served by the base station, the extra-cell interference). These marks, called in
what follows geometric marks (cf.Section 2.6), are the object of interest in this study.

In this work, we shall consider consider stationary marks. Recall from Section 2.6,
that they are defined as mappings m : R2 ×M 7→ R such that, for any u, v ∈ R2, and
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any φ ∈M, m(u− v, Svφ) = m(u, φ).
We denote by Mi := m(ui,Φ) the geometric mark of the point ui of Φ. Note that the

process Φ̃ := ∑
i δ(ui,Mi) ∼

∑
iMiδui is a stationary marked point process.

In the remainder of this chapter, we shall consider the basic examples presented
in Section 2.6. For a better understanding of the context, we interpret the points
ui as locations of base stations of some cellular network. The shot-noise mark (cf.
Example 2.6.2) can be considered as the total power (usually interpreted as interference)
received at a given base station in the network, transmitting with unit power. The
Voronoi cell (cf. Example 2.6.4) is a fundamental model for cellular networks. Its area
and moment of inertia can be interpreted as very simple proxys for the traffic demand
and the cell load of a base station (see [21, Section 4.1.8]). The Voronoi shot-noise mark
(cf. Example 2.6.5), can be also interpreted as the interference, however with the stations
transmitting the signals with a power proportional to their Voronoi cells. (Similar kinds
of dependence, with more complex expressions, can be recognized in the cell load model
of [103].)

4.1.2 Problem formulation

Let us now formulate the main problem studied in this chapter, that is the problem of
the learning of geometric marks. Suppose the marking function m is not known explicitly.
One observes only some realizations of the marked point process Φ̃ with points restricted
to some finite observation window W . Denote these realizations by

φ̃k =
∑
i

mi(k)δui(k),

with ui(k) ∈ W , k = 1, . . . , n, forming a training set of data. The problem consists in
learning the function m from the training set, so as to be able to calculate approximations
of the unobserved marks mi = m(φ, ui) for a new realization φ = ∑

i δui of Φ.

4.1.3 Scattering moments of marked point processes

Recall from Section 3.2, the wavelet transform of a marked point process is defined by

Φ̃ ? ψ : =
∫
R2
ψ(v − u)m(Φ, u)Φ̃(du)

=
∑
ui∈Φ

Miψ(u− ui),

and that first and second order scattering moments (Section 3.2) can similarly be extended
to marked point processes. Scattering moments have not yet been extensively theoretically
studied in the context of the theory of point processes. Some asymptotic properties
at small and large scale (j → −∞ and j → ∞ respectively) have been presented in
section 3.3, extending results of [31].

As explained in Section 3.6, for a given realization φ̃ of Φ̃ observed in a finite
window W , empirical scattering moments Ŝ1Φ̃(j, θ) and Ŝ2Φ̃(j1, θ1, j2, θ2) are obtained
by replacing the expectation by a spatial averaging of the fields |φ̃ ? ψ(j,θ)(u)| and
||φ̃ ?ψ(j1,θ1)|?ψ(j2,θ2)(u))|, respectively, over u ∈W . When W increases, these (empirical)
moments become asymptotically non-biased estimators of S1Φ̃(j, θ) and S2Φ̃(j1, θ1, j2, θ2),
respectively, provided Φ̃ is ergodic (under some technical conditions about the wavelet
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ψ), (cf ergodic theorem for point processes [39, Theorem 13.4.III], or Section 2.7). For
some other properties of the scattering moment estimators see [33, Section 5.1].

The empirical scattering moments are calculated over a finite square window W by
periodizing the input signal. As a consequence, the value of the mark is calculated as if
the point process were periodic.

As explained in Section 3.6, in order to define a finite wavelet family, we need to
choose a finite number of scales j ∈ {0, · · · , J−1}. Assume that there is also a wavelet at
scale jmin small enough so that it separates all the points in every pattern (theoretically
corresponding to jmin ∼ −∞). At this scale, ŜΦ̃(jmin, θ) is proportional to the empirical
mean 1

|W |
∫
W 2 mφ(du), and does not depend on θ.

The first and second empirical scattering moments calculated on Φ̃ form finite-
dimensional vectors. We denote by ŜΦ̃, and Ŝ2Φ̃, respectively, the vector of the first
moments and the joint vector of the first and second moments. If there is no ambiguity,
for simplicity, in what follows we shall simply call them scattering moments of Φ̃ (without
distinction between first and second order).

4.1.4 Learning of marks via scattering moments

Recall from Section 4.1.2 that our goal is to learn the marking function m from the
training set of data, which consists of examples of realizations of a marked point process
Φ̃ in a finite window. Note that this problem consists in the interpolation of the function
m on the space R2 ×M, and, due to the complexity of this space, it is not amenable to
any direct statistical approach. To overcome this difficulty, we map this original problem
to some finite dimensional regression problem, and solve it using classical tools.

More specifically, in our main approach, we shall capture the function m through
the relation between the vector of the first order scattering moments Ŝφ̃ of the marked
point pattern, and the two order moments Ŝ2φ of the non-marked one. This relation is
established using a regression model described in Section 4.1.4. In order to be able to
use it to estimate the marks mi = m(ui, φ), we need next to solve an inverse problem
described in Section 4.1.4. It consists in reconstructing marks from the regressed scattering
moments, knowing the positions of the points in φ.

Linear regression

Let Xk := Ŝ2φk and Yk := Ŝφ̃k, k = 1, . . . , n, be the vectors of the (empirical) scattering
moments, calculated for the training data set consisting of n realizations of the point
process Φ̃, where φk = ∑

i δui(k) and φ̃k = ∑
imi(k)δui(k) (cf. Sections 4.1.2 and 4.1.3).

Our goal is to find a common relation between Xk and Yk for all samples k, and the
simplest possible one is a linear relation, represented by some matrix B and vector β0
such that

BXk + β0 ≈ Yk for all k = 1, . . . , n. (4.1)

If the linear function does not allow one to capture the dependence, we can use kernel
regression, or more advanced machine learning methods. For simplicity, in this study, we
focus on the linear ridge regression, detailed in what follows.

To find the relation (4.1), we will use linear ridge model; cf [97, Section 7.5]. For
λ = (j, θ), denote by β(λ) the line of the matrix B (4.1), and similarly the component
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β0(λ) for the vector β0. Let Yk(λ) := Ŝφ̃k(λ) be the (j, θ)-component of Ŝφ̃k. The ridge
model consists in minimizing the regularized sum of the squared residuals

n∑
k=1

[β(λ)Xk + β0(λ)− Yk(λ)]2 + γ(λ)||β(λ)||2 ,

for some regularization parameter γ(λ) ≥ 0, chosen by cross-validation (to minimize this
squared residuals on the validation set: a subset of the training set), where ‖ · ‖ is the
Euclidean norm. This model admits a well known explicit solution in the form

[β̂0(λ), β̂(λ)]t = (XtX + γ(λ)I)−1XtY(λ), (4.2)

where, for all k = 1, · · · , n, X(k, ·) = [1, Xk(·)], Y(λ)(k) = Yk(λ), and I is the identity
matrix of dimension n+ 1.

Using (4.2), one can calculate approximations Ŝφ̃(λ) of the scattering moments of a
new marked configuration φ̃ = ∑

imi(k)δui observing only its points φ = ∑
i δui

ˆ̂Sφ̃(λ) := β̂(λ) Ŝ2φ+ β̂0(λ),

where Ŝ2φ is the vector of the first and second order scattering moments calculated on φ
(without marks). Remember, expression (4.2) requires the tuning of the regularization
parameters γ(λ) ≥ 0, usually needed in high dimensional regression problems when the
matrix XtX is not invertible. The ordinary least square (OLS) estimator corresponding
to γ(λ) = 0 is usually not performing well in this case.

Reconstruction

Using linear ridge, we calculate approximations ˆ̂Sφ̃(j, θ) of the scattering moments of a
new marked configuration φ̃, observing only φ. Denote the whole vector of ˆ̂Sφ̃(j, θ) by
ˆ̂Sφ̃. From ˆ̂Sφ̃ we estimate (reconstruct) unknown marks mi of φ̃ by looking for a solution
to the following minimization problem

arg min
φ̃′ :φ′=φ

||Ŝφ̃′ − ˆ̂Sφ̃||2, (4.3)

where we minimize over all arbitrarily marked configurations φ̃′ having the same atoms as
φ, and Ŝφ̃′ denotes the scattering moment calculated for φ̃′ . It should be noted that (4.3)
is a non convex optimization problem. To solve it, we use the L-BFGS-B algorithm,
which is a limited-memory algorithm for solving large nonlinear optimization problems
subject to simple bounds on the variables (cf. [77, 121]).

4.1.5 Learning via local distance representation

In the following approach, taken as a benchmark, we consider each marked point
(ui(k),mi(k)) of each realization φ̃k, k = 1, . . . , n, of the training set, along with some
neighborhood, as one element of the new training data set. Therefore, in this case, the
training set consists of point patterns having a marked point in their center, surrounded
by some neighboring points. Using the linear ridge regression method described in
Section 4.1.4, we regress the marks of those central points with respect to the vectors
containing all inter-point distances in the considered point neighborhood, ordering the
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points according to the distance to the central point. Note that, in this approach, there
is no reconstruction phase, as the marks are directly approximated. The main parameter
of this approach is the number of neighbouring points K of each central point.

4.2 Numerical results
In this section, we provide the details of our numerical study of the problem considered
in this chapter. We begin by describing some general assumptions and procedures.

4.2.1 General numerical framework

Scattering moments approach

For our numerical experiments, for each specific geometric model, we create a data set
(denote it by X ) of Poisson point patterns φk (with constant intensity to be specified)
using the R software and its package Spatstat for point process analysis [7]. The points
are considered in the unit square window, and their marks are analytically computed
(according to the given model) using Spatstat with the window mapped to the torus,
thus leading to the marked point patterns φ̃k, k = 1, . . . , n. The size of the data set X is
n = 10k marked point patterns.

The (empirical) scattering moments are computed on these point patterns (with and
without marks) using ScatNet software [3] developed in Matlab (no Spatstat implemen-
tation is available yet). It uses the Morlet wavelet ( [58], cf. eq. (3.3)). Because this
software uses raster images, we convert each marked point pattern of X into images of
size 27 × 27 pixels (removing images with points corresponding to the same pixel).

The following family of scattering moments are computed. Recall from Section 4.1.3
that there is a minimal scale jmin such that, at this scale, the first order scattering moments
correspond to the empirical mean measure, and do not depend on the angle θ (we can
therefore take only one). We further choose J = 7, and L = 8 (i.e. θ ∈ {0, · · · , 7π/8}).
Thus, there are 1 + 8 × 7 = 57 first order scattering moments (the dimension of the
regressed vectors Ŝφ̃k is 57), and 8× 8× 7×6

2 = 1344 second order scattering moments
(thus making the dimension of the explanatory vectors Ŝ2φk equal to 57 + 1344 = 1401).

We use the linear ridge regression, described in Section 4.1.4, on the data set X . To
optimize the regression parameters, we use a 5-fold cross-validation [97, Section 1.4.8] on
X .

Having calculated the estimators ˆ̂Sφ̃ of the first order scattering moments Ŝφ̃ for
the point patterns in the test set, we use the L-BFGS-B algorithm to solve the inverse
problem (4.3), i.e. to reconstruct the marks. This is a steepest descent algorithm for
which it is important to optimize (ideally via cross-validation) the number of iterations;
to be explained in Section 4.2.3. Using a rule of thumb (no formal cross-validation), we
fix the number of steps so as to minimize the mean square error (MSE) on the test data
set.

Benchmark

As explained in Section 4.1.5, for every image in the data set X , we consider each point
of the image, along with its K neighbours as an element of a new data set X ′. More
precisely, we take the first 20k points of the images of X , and create X ′ with K neighbours

59



of the chosen point. The value of K depends on the range of dependence of a given mark
model; it is experimentally discovered for each mark, as will be explained in Section 4.2.3.
We use X ′ to regress the marks of the central points directly, using linear ridge regression
with respect to the vector of dimension K(K − 1) of the local distance matrix. Note that
there is no reconstruction phase in the benchmark method.

Validation methodology

To test our main approach, we produce an independent data set of 100 marked point
pattern realizations, and we use the first 100 points of this set for the benchmark approach.

For all points in the respective test sets, we compute Q-Q plots, the root mean square
error (RMSE), the normalized RMSE with normalization by the range (max−min) of
the marks (NRMSE1), and the normalized RMSE with normalization by the mean of
the marks (NRMSE2).

In order to study the quality of the representation of the mark point patterns by
their first order scattering moments (independently of the regression), we also perform
the reconstruction of marks 4.1.4 directly from the exact (and not regressed) scattering
moments Ŝφ̃. Note, these latter are not exact marks but marks reconstructed from exact
empirical scattering moments of the given point pattern. The gap between them and
the marks reconstructed from the regressed moments allows one to apprehend the error
introduced by the regression and the one introduced by the reconstruction.

4.2.2 Results

We now present our numerical study of different mark models, presented in Section 2.6.
The observed results are discussed in Section 4.2.3.

Shot-noise

We consider shot-noise marks (cf. Example 2.6.2), with the response function `(r) :=
max(10r, 0.6)−3. For this example the data set X consists of 10k realizations of Poisson
point process with intensity 40 (recall, we consider the unit square window). In order
to observe how the performance of our approach depends on the size of the data set,
we first use only 5k elements of X as the training set for the linear ridge regression
method. Next, we use the whole training set, with linear ridge regression. For the
benchmark method, we choose a neighbourhood of K = 15 points. The number of
iterations for the reconstruction from the exact scattering moments and estimated ones
is taken, respectively, 30 and 4; see Section 4.2.3 for the explanation.

Figure 4.3 presents an example of the reconstruction of marks of one given image,
with our method, and Figure 4.4 shows Q-Q plots for various reconstruction variants.
Table 4.1 gives the reconstruction errors. Recall that the Q-Q plot (c) and the last
column of the table represents the error of the reconstruction of the marks from the exact
(and not regressed) scattering moments.

Nearest neighbour distance

The data set for this example is also made of 10k realizations of a Poisson point process
with intensity 40. In this case, in Figures 4.5 and 4.6 and Table 4.2, we only show the
results for the entire training set. For this mark model we do not consider the benchmark,
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Figure 4.3: Reconstructed image example (mapped to 2D; the peaks of the lines
correspond to the values of marks of points numbered in lexicographic order; orange
curve — reconstruction, blue — exact values).

(a) (b) (c)

Figure 4.4: Shot-noise reconstruction. Q-Q plots (reconstructed mark in function of its
true value) for 100 test images (a) estimated scattering moments, (b) exact scattering
moments, (c) benchmark.

method scattering scattering exact bench-
5 000 10 000 scatt. mark

RMSE 1.99 1.98 1.64 1.98
NRMSE1 9.21e-2 9.15e-2 7.56e-2 9.14e-2
NRMSE2 3.32e-1 3.29e-1 2.75e-1 3.29e-1

Table 4.1: Shot-noise reconstruction errors using different methods.

because the nearest neighbour distance is equal to the first element of the distance matrix.
Thus, the scattering moment approach cannot do better. The number of iterations
for the reconstruction from the exact scattering moments and estimated ones is taken,
respectively, 250 and 8.

method estimated scatt. exact scatt. benchmark
RMSE 3.14e-2 2.06e-2 –
NRMSE1 1.21e-1 7.94e-2 –
NRMSE2 3.94e-1 2.58e-1 –

Table 4.2: Nearest neighbour distance; reconstruction error

Voronoi cell surface area

For this example, the training set X consists of 10 000 realizations of Poisson point
process with intensity 30. The reconstruction results are presented on Figures 4.7 and 4.8
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Figure 4.5: Reconstructed image example for the nearest neighbour model.

(a) (b)

Figure 4.6: Nearest neighbour distance reconstruction; example and Q-Q plots using: (a)
estimated scattering moments, (b) exact scattering moments.

and in Table 4.3. The neighborhood for the benchmark is very large K = 35 (more than
the average number of points) because the sum of the areas of the Voronoi cells in the
finite window is constant equal to the total window surface area, which introduces a
strong global dependence for this mark. The number of iterations for the reconstruction
from the exact scattering moments and estimated ones is taken, respectively, 30 and 6.

Figure 4.7: Reconstructed image example for the Voronoi cell surface model.

method estimated scatt. exact scatt. benchmark
RMSE 9.71e-3 7.33e-3 9.60e-3
NRMSE1 6.60e-2 4.98e-2 6.52e-2
NRMSE2 2.87e-1 2.16e-1 2.85e-1

Table 4.3: Voronoi cell surface reconstruction errors.
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(a) (b) (c)

Figure 4.8: Voronoi cell surface area reconstruction; example and Q-Q plots using: (a)
estimated scattering moments, (b) exact scattering moments, (c) benchmark.

Voronoi cells moment of inertia

For this example, similarly to the previous example, the training set X consists of 10k
realizations of a Poisson point process with intensity 30. The results are presented on
Figures 4.9 and 4.10 and in Table 4.4. The neighborhood for the benchmark is K = 15
(note that the global dependence specific for the Voronoi surface area does exist here).
The number of iterations for the reconstruction, from the exact scattering moments and
the estimated ones, are chosen as 150 and 8, respectively.

Figure 4.9: Reconstructed image example for the Voronoi cell moment of inertia model.

(a) (b) (c)

Figure 4.10: Voronoi cell moment of inertia reconstruction; example and Q-Q points
using (a) estimated scattering moments, (b) exact scattering moments, (c) benchmark.
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method estimated scatt. exact scatt. benchmark
RMSE 2.42e-4 1.37e-4 2.65e-4
NRMSE1 5.98-2 3.39e-2 6.53e-2
NRMSE2 7.12e-1 4.04e-1 7.74e-1

Table 4.4: Voronoi cell moment of inertia reconstruction errors.

Voronoi shot-noise

For this example, similarly to the previous example, the training set X consists of 10k
realizations of a Poisson point process with intensity 30. The results are presented in
Figures 4.11 and 4.12 and in Table 4.5. The neighborhood for the benchmark is K = 15 .
The number of iterations for the reconstruction, from the exact scattering moments and
the estimated ones, are chosen as 50 and 5, respectively.

Figure 4.11: Reconstructed image example for the Voronoi shot noise model.

(a) (b) (c)

Figure 4.12: Voronoi shot-noise reconstruction; example and Q-Q points using (a)
estimated scattering moments, (b) exact scattering moments, (c) benchmark.

method estimated scatt. exact scatt. benchmark
RMSE 4.18e-2 3.02e-2 4.29e-2
NRMSE1 9.24-2 6.69e-2 9.50e-2
NRMSE2 3.76e-1 2.72e-1 3.86e-1

Table 4.5: Voronoi shot-noise reconstruction errors.

4.2.3 Discussion

The following remarks can be formulated regarding the observed results.
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Reconstruction from the exact and estimated moments

Observing the Q-Q plots and (N)RMSE’s of the marks reconstructed from the exact first
order scattering moments, we see ’how much information’ they effectively carry regarding
the marking function. While all marks are relatively well reproduced in this way, the
quality of the reconstruction depends on the type of dependencies represented by a given
mark. For example, the shot-noise and the surface areas of the Voronoi cell are more easy
to represent than the nearest neighbour. This can be explained by different sensitivity
(stability) to small deformations of the point pattern, with a precise formulation yet to
be theoretically studied on the ground of point processes.

A typical significant error in the signal reconstruction, both from the exact and the
estimated scattering moments, consists in the swap of a large and a small mark of two
neighbouring points (e.g. the points number 36 and 37 on Figure 4.3), not leading to a
significant modification of the considered scattering moments. This effect can be seen
also on the Q-Q plots where many points significantly far from the diagonal appear in
symmetric pairs. We believe these swapping errors should occur less often for more
regular (less clustering) point processes than the considered Poisson one. Examples
of such point processes are determinantal point processes; see [16, 17] for a clustering
comparison theory. Future studies should investigate this issue.

As already mentioned, it is important to properly tune the number of iterations of the
steepest descent algorithm used in the reconstruction phase, preventing it from going too
deeply into potential local minima. We observe the following local-global reconstruction
quality trade-off: while some number of initial iterations makes all the marks approach
their right values, further iterations improve the quality of approximation of some subset
of marks at the price of degrading this quality for the remaining ones, as illustrated in
Figure 4.13. This trade-off can be observed on average by watching the RMSE on the
test set, which first decreases and then increases. We use this observation to choose an
optimal number of iterations. It is larger for the reconstruction from the exact scattering
moments than for the reconstruction from the estimated ones, where this effect is less
visible.

Choice of neighbourhood

A crucial benchmark parameter is the number of neighbors to be considered in the local
representation. They should be selected in function of the type of mark dependence. If
no a priori information is available, this can be done observing the RMSE on the test set
as shown in Table 4.6. Observe that the constant sum of the Voronoi cell areas makes
them globally dependent, unlike the Voronoi moments of inertia.

model K 10 15 20 35
Shot-noise 2.00 1.98 1.98 –
Voronoi area 1.04e-2 1.00e-2 9.80e-3 9.60e-3
Voronoi inertia 2.76e-4 2.65e-4 2.80e-4 –
Voronoi shot-noise 4.32e-2 4.30e-2 4.29e-2 –

Table 4.6: Choice of the number of neighbours K for the benchmark approach and the
corresponding RMSE.
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Figure 4.13: Reconstruction of a sample of the Voronoi shot-noise marks from the
estimated scattering moments after 1, 5 and 50 iterations. 5 iterations give the smallest
RMSE of 4.17e-2, while 50 iterations used for the reconstruction from the exact scattering
moments improve the reconstruction of some marks but give worse RMSE of 5.26e-2.

Quality of the regression

The regression relative errors

εm(j, φ) := |
ˆ̂Sφ̃(j, θ)− Ŝφ̃(j, θ)|

Ŝφ̃(j, θ)

calculated on the training and test set, presented on Figure 4.14, show that there is no
overfitting in the regression of the scattering moments.
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Figure 4.14: Relative errors εm(j, θ) for (j, θ) in order
(0, 0), (1, π/8), . . . , (2, 0), . . . , (7, 7π/8); calculated on training and test set.

Scattering moments versus benchmark

With respect to the RMSE, the scattering moments approach outperforms the benchmark
for all marks except for the Voronoi surface area with the neighborhood taking almost all
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points and, for obvious reasons, the nearest neighbor distance. A significant difference
can be observed on the Q-Q plots of the shot-noise example in Figure 4.4, and the Voronoi
shot-noise example in Figure 4.12, where the benchmark essentially fails to capture the
marking function. This shows that the benchmark approach might not be appropriate in
the case of long-range dependent marks.

4.3 Discussion
Motivated by the stochastic-geometry problems related to wireless networks, in this study
we have discussed how to learn a point-marking function dependent on the configurations
of points. We propose two different approaches to address the problem, using tools
from statistical learning. The baseline approach extracts the geometric information for
each point based on the matrix distance of its nearby points. It is then solved using
the ridge linear regression method, and the difficulty lies in the choice of the number
of nearby points. The other approach uses multi-scale wavelet scattering moments to
define a global feature vector for all the points in the domain, and another feature vector
for the points with marks. The relation between the two feature vectors is also learned
using linear regression. We then solve a non-convex optimization problem to reconstruct
the marks, from the predicted feature vector with marks. These feature vectors are
translation-invariant and stable to deformation of the domain.

Depending on the nature of the clustering of the points and the regularity of the
marking function, we find that the scattering moments predict as good as the baseline
approach, showing that they capture well the geometric property. In case where marks
depend on points in a non-local way, the scattering moments method outperforms the
benchmark approach.

Regarding practical applications, it seems promising to combine geometry with local
demand, in order to obtain an operational method for cell load prediction in cellular
networks.

Future directions to be explored may include a combination of the two approaches,
e.g. by representing the neighbourhood of each point not by its distance matrix, but by
its scattering moments. Replacing the linear regression by others such as kernel regression
or neural network approaches are also of potential interest. Additionally, the impact
of regularity or clustering of the underlying point patterns on the quality of scattering
representation ought to be better understood.

Limitations of scattering moments This work demonstrated the ability of wavelet
scattering moments to adequately capture important geometric structures in point
patterns, and their amenability to be used in a learning task involving point processes.
However, they do not fully characterize these processes. Indeed, scattering moments
do not capture the dependencies between wavelet coefficients at different scales and
orientations. Interpreting the first order scattering moments as measuring ’how much
structure at each scale and orientation is present in the data’, second order coefficients
measure the partition of these structures between larger scales, but not the joint presence
of structures at different scales. Additionally, due to the wavelet symmetries and the
use of the modulus operator, this representation is invariant to changes of sign in the
marking function, and to space reversal (u→ −u), which probably explains the error due
to the swapping of marks between nearby points. Other wavelet-based representations,
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such as the WPH covariance presented in Section 3.5, may help capture this kind of
missing information. To study the quality of WPH covariance moments as descriptors of
the geometry in point processes, we shall use them to define a model for stationary point
process distributions, as detailed in the next chapter.
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Chapter 5

Point process synthesis using
wavelet phase harmonics and
gradient descent

In order to generate new realizations of a stochastic process of which we have only one
realization, one needs to build a probabilistic model which approximates the distribution
of this process, and from which we can efficiently sample from. In this chapter, we are
interested in generative models for stationary, ergodic point processes. Such models are of
interest in a wide range of applications [64, Section 6], for instance biology [8, 46], ecology
[116], turbulent flows in atmosphere science [48, 87, 84, 47], or cosmology [108, 104]. In
many of these domains, the observed patterns exhibit complex structures, with a large
number of particles (such as filaments in cosmology, or vortices in turbulent flows).

More particularly, we seek to generate realizations formed by a large number of
particles, with both short and long range interactions. Figure 5.1 shows some examples
of distributions that we shall consider. Currently, for such diverse geometries exhibiting
long-range interactions, which naturally appear e.g. in cosmology or turbulent flows
in physics and atmosphere science, no model has been proposed in the literature on
point processes. To address this problem, we shall introduce a statistical model inspired
from the maximum-entropy principle ([65], cf. Section 2.10), to approximate such point
process distributions and simulate new realizations.

Figure 5.1: Samples of point processes of various geometries. The number of points
ranges from 1000-13000.

Recall from Section 2.10, maximum entropy models are based on the description of
the distribution with a set of moments, or their estimators. Intuitively, this means that
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the model is ’as random as possible’ under certain constraints, based on the information
captured by the moments.

5.1 Generation of point processes with maximum entropy
models

When defining a generative model based on the maximum entropy principle, there are
three underlying problems:

1. Choosing the moments that will describe the distribution. They should be informa-
tive enough to capture the geometric structures characterizing the distribution. On
the other hand, they should be accurately estimated from a single observation, so
the number of moments should not be too large.

2. Specifying a model deriving from these moments. This can be done by defining
a maximum entropy model such as the macro-canonical model (maximizing the
entropy under expectation constraints), or the micro-canonical model (maximizing
the entropy under path-wise constraints).

3. Generating new samples from the model. In the micro-canonical setup, this can be
done by minimizing an energy, that defines the set of admissible realizations. The
minimization method must make it possible to generate diverse low energy samples
without being too costly in terms of calculation.

Recall from Section 2.10, under some technical assumptions (in particular, having
density with respect to the reference Poisson distribution), the solution of the macro-
canonical model is given by the Gibbs point process. Sampling from the macro-canonical
model is usually computationally very expensive (c.f. [32]). Therefore, we shall place our
model in the micro-canonical setup, as detailed in Section 5.2. The main challenges then
reside in the problems 1 and 3.

In Section 5.3, we present our method to address the problem of generating new
samples: we minimize the energy of a new sample by moving the particles of an initial
random configuration using the gradient of its energy with respect to the particles positions.
In the point process literature, a classical method (see [110]) consists in updating an
initial random configuration by successively replacing the particles one by one, with new
particles located at random positions (we shall call this method random search). The
major drawback of this method is its computational cost, as the optimization, which does
not use gradient information to minimize the energy, requires a large number of energy
evaluations. In fact, this method has been applied to generate point processes formed by a
few hundred particles. On the other hand, advanced methods in the modelling of textures
and non-Gaussian stationary processes allow for fast sampling by first drawing from
an initial Gaussian distribution, and minimizing an energy by gradient descent on the
amplitudes of the pixels of the image (see e.g. [92, 54, 32, 120]). Our approach leverages
the efficiency of this sampling method, while ensuring that the resulting samples are
atomic measures. The idea of moving the points according to their gradient is often used
in molecular dynamics (e.g. [118, 119]), however it requires knowledge of the physical
mechanisms behind the underlying process. Our statistical modeling approach has a
potential to simulate new, complex particle configurations directly from one observation,
when the underlying physical phenomena are very complicated to model.
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This brings us to the other challenge that we address in this work: choosing the
moments that we shall use to characterize the distribution. We shall use the wavelet phase
harmonics (WPH) covariance moments, presented in Section 3.5, and briefly reviewed in
Section 5.4. Recall that, similarly to scattering moments (cf. Section 3.2, and used in
Section 4.1.3), they are spatial statistics based on coefficients computed from a wavelet
transform of atomic measures. It is known that the covariance between the wavelet
coefficients capture only second-order correlations, which are equivalent to the Bartlett
spectrum (cf. eq. (3.29) and Section 2.8). To capture information beyond second-order
correlations, we apply a non-linear phase harmonic operator to the wavelet coefficients.
This operator acts on the complex phase of the wavelet coefficients, without changing
their amplitude. The covariance between the resulting coefficients allows one to capture
particles interactions across different scales.

Compared to high-order correlation functions, (see [109, Section 12.4.2]), our moments
have the potential to define a sufficient set of statistics, while maintaining a small
estimation error, which is similar to the second-order statistics. Other statistics often
used in the point process literature (cf. Section 2.9), such as the k nearest neighbour
distribution function suggested in [110], have a number of elements that grows with
the intensity. Since there is only one observation, the number of moments should be
limited, in order to control their estimation variance. The wavelet transform allows for
direct control over the scales of the structures that we wish to capture, regardless of the
intensity of the process. This property allows one to model point processes formed by a
large number of particles with a limited number of moments.

The wavelet phase harmonic covariance descriptors are defined as spatial averages
evaluated over a point process realization. In practice, the calculation of such descriptors
can be done by discretization of the observation window in the form of a grid of pixels.
However, making these descriptors differentiable with respect to the positions of the
particles remains a challenge. In this regard, we describe in Section 5.5 a complete
numerical scheme allowing one to solve this problem. It is based on a differentiable
discretization of atomic measures. We further present a multi-scale optimization in the
gradient descent, intended to avoid unwanted shallow minima of the energy.

In Section 5.6, we evaluate our model on some distributions exhibiting various
geometric structures, like Cox point processes on the edges of Poisson-Voronoi tessellations
and on the Boolean model with circular grains. Other processes we consider are Matern
hard-core and cluster processes driven by Poisson processes with turbulent intensities.
Their intensities are sampled from a turbulent flow simulated from Navier-Stokes equations
[99]. Besides the visual inspection of the samples from our generative model, we evaluate
second order correlations and compare the persistent homology diagrams, that has been
proven useful for topological data analysis (see e.g. [36]).

To evaluate the possible benefits of our methods relatively to the well established
model of [110], Section 5.7 presents a comparison between the two methods, in terms of
speed of convergence of the optimization methods, and of quality of the models.

For simplicity, we present our model with strong assumptions about the data (station-
arity, periodicity, square window). In practical cases, these assumptions would probably
not be fully met, so we discuss in Section 5.9 how to relax these assumptions.

Finally, in Section 5.8, we propose a modified version of our model, that consists in
adding a regularization term intended to improve the diversity of the generated samples.
Moreover, we give a proof of a result stating the translation invariance of our model (see
Section 5.3.2).

71



5.2 Micro-canonical framework for point processes
This section details the specific context of this study, and the definitions that we shall
need.

We consider here stationary, ergodic point processes on E = R2 (cf. Sections 2.5
and 2.7). Recall that a point process Φ is stationary if its distribution is invariant to
translation, i.e.

LStΦ = LΦ,

where LΦ denotes the distribution of Φ, and StΦ(B) := Φ(B + t), for all B ∈ B, and
all t ∈ R2. Note that St is a simple example of a push-forward operator on Φ, which is
generally noted F#µ for a point measure µ and a measurable function F : R2 −→ R2,
and is simply the displacement of its atoms by the function F

F#µ =
∑
i

δF (ui).

Recall also that Φ is said to be ergodic if the empirical averages of integrable functions
f , over windows of increasing sizes Ws = [−s, s[×[−s, s[, converge almost surely to the
expectation of f , i.e.

lim
s→∞

1
|Ws|

∫
Ws

f(SuΦ) du = E[f(Φ)] =
∫
M
f(µ)LΦ(dµ), P-a.s. (5.1)

For a given s > 0, we denote by Ms the set of counting measures on Ws, andMs its
induced σ-algebra. We will consider Ws with addition and scalar multiplication modulo
Ws. Also we shall denote by S̄u the corresponding shift operator on Ms with torus
correction on the window Ws.

For a point process Φ on R2, one can only observe realizations of Φ on bounded
subsets of R2. For the remainder of this chapter, we shall consider realizations of
point processes observed on a finite square window Ws = [−s, s]2, for some s > 0. We
denote by Φ̄ the restriction of Φ to Ws, that is Φ̄ is a point process on Ws such that,
∀n ∈ N,∀ (B1, ..., Bn) ∈ B(Ws)n, (Φ(B1), ...,Φ(Bn)) = (Φ̄(B1), ..., Φ̄(Bn)) in distribution
(where B(Ws) stands for the Borel σ-algebra on Ws). A realization of Φ observed on Ws

is therefore a realization of Φ̄, and will be noted φ̄.
As mentioned in Section 5.1, we shall place ourselves in the context of maximum

entropy models (cf. Section 2.10). Such models are based on the following intuitive idea:
given an observation pattern, we aim at finding new patterns that are similar to, but
different from the observation. To this end, we define a notion of similarity by choosing
a set of statistics that will be computed on the observation and on the new patterns.
The two will be considered similar if their statistics match. Furthermore, if the chosen
statistics describe sufficiently well the point process behind our observation, we do not
want to add any more constraints, that is, we want to find new patterns ’as random
as possible’, under the constraints defined by the statistics. This can be formalized by
maximizing the entropy of the model. They are used in large classes of stochastic models
[56], and will inspire our particle gradient descent model. In this work, we place ourselves
in the micro-canonical setting.

Consider a mapping
K : Ms 7→ Cd,

for some d ≥ 1, that shall define our set of statistics (e.g. statistics presented in Section 2.9,
or wavelet-based statistics in Chapter 3).
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Micro-canonical model The micro-canonical model is defined by replacing the expec-
tation constraints E(K(Ξ)) = a with pathwise constraints. Let φ̄ ∈Ms be our observation
sample, of unknown distribution. For all µ ∈Ms, we define the energy of µ as:

Eφ̄(µ) := 1
2 |K(µ)−K(φ̄)|2. (5.2)

The micro-canonical set of level ε, for some ε > 0, is defined as

Ωε := {µ ∈Ms : Eφ̄(µ) ≤ ε}. (5.3)

The micro-canonical model is defined as the distribution L that minimizes the KL
divergence with respect to the reference distribution L0 under pathwise constraints
requiring L to be supported on Ωε:

arg min
L

KL(L,L0) (5.4)

given
∫
Ms

1(µ ∈ Ωε)L(dµ) = 1, (5.5)

where 1(·) is the indicator function. As stated in Proposition 2.10.5, if L0(Ωε) > 0, the
solution to this problem (5.4) (5.5), is the measure L having a uniform density on Ms

given by dL
dL0

(µ) = 1
L0(Ωε)

1(µ ∈ Ωε), L0-a.s.
In order to consider the micro-canonical model as a good approximation of the

observation distribution, one usually aims at finding K satisfying the following properties:

(P1) Concentration property: The value of K(Φ̄) should concentrate around its mean, i.e.
K(Φ̄) ' E[K(Φ̄)] with high probability. A natural assumption is that the variance
of K(Φ̄) is small.

(P2) Sufficiency property: The moments E[K(Φ̄)], should characterize the unknown
distribution as completely as possible. It requires thatK has a strong (distributional)
discriminate power.

A natural framework allowing one to address (P1) and (P2) consists in defining the
descriptors K = (K1, . . . ,Kd) as a vector of empirical averages

Ki(µ) = 1
|Ws|

∫
Ws

fi(S̄uµ) du µ ∈Ms, (5.6)

for a sufficiently rich class of functions fi on Ms, and relying on the ergodic assump-
tion (5.1) regarding Φ. These properties are needed in order to have a model that
reproduces typical geometric structures in Φ, and generates diverse samples.

In this study, we shall consider that the number of points of our model in Ws is fixed.
In such case it is customary to take homogeneous Poisson point process distribution
conditioned to have exactly n points in Ws as the reference measure, which is equivalent
to n points sampled uniformly, independently in Ws. We will note this distribution Ln0 .

Sampling from the uniform density on Ωε efficiently remains an open problem. In the
literature of stochastic process modelling, most sampling algorithms rely on the following
method: one first samples from an initial, high-entropy measure, and iteratively minimize
the energy (cf. (5.2)) of this sample until it reaches Ωε. By choosing a high entropy
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initial measure, one hopes that the resulting model also has a high entropy. Recall that
the micro-canonical model has the highest entropy supported on Ωε. Contrary to the
classical method in the point process literature [110, 69], which relies on random search,
popular methods in image modelling use gradient descent to perform fast sampling in
the micro-canonical set. However, optimizing the values of the image pixels does not
guarantee that the resulting sample is an atomic measure. For these reasons, in what
follows we propose a model based on the transport of a Poisson point process via a
gradient descent algorithm.

5.3 Particle gradient descent model
In Section 5.3.1, we introduce the particle gradient descent model, that uses gradient
descent on the positions of the particles of the sample. This model consists in using the
gradient of a prescribed energy to move the points of an initial random configuration,
until we obtain a pattern similar (in an informal sense) to the observation. We then
present in Section 5.3.2 a theorem stating that this model preserves some basic invariances
of the original distribution. This result, allowing us to gain some understanding about
the entropy of our model, extends the results of [32]. While we focus here on planar
point processes, our approach can readily be extended to any dimensions.

5.3.1 Particle gradient descent model

As in Section 5.2, let φ̄ ∈ Ms be our observation sample of unknown distribution, and
K : Ms −→ Cd, for some d ≥ 1, a mapping defining our descriptors. We note the resulting
energy Eφ̄ (cf. eq. (5.2)).

Let φ̄0 sample from an initial distribution that we choose as Lφ̄(Ws)
0 (i.e. the same

number of particles as φ̄, drawn uniformly and i.i.d.). We minimize the energy of φ̄0
through its gradient with respect to the particles positions. More precisely, we define the
mapping

F : Ms −→ Ms

µ = ∑
i δui 7−→

∑
i

δui−ζ∇uiEφ̄(µ) (5.7)

for some gradient step ζ > 0. The measure F (µ) can be seen as the push-forward Fµ#µ
of the measure µ by the mapping Fµ(u) := u − ζ∇uEφ̄(µ). Note that the function
Fµ depends on the measure µ which is pushed forward. For any initial point measure
φ̄0 ∈Ms we define the successive point measures:

φ̄n := Fφ̄n−1#φ̄n−1, n ≥ 1. (5.8)

Pushforward of the point process distributions The pushforward operation F#µ
on Ms induces the corresponding pushforward operation on the probability measures
on Ms, which are distributions of point processes. We denote this latter by F#: For a
probability law L on Ms F#L(Γ) := L({µ ∈ Ms : Fµ#µ ∈ Γ}), for any Γ ∈ Ms. Then,
for an initial probability law Lφ̄0

on Ms we define the successive probability laws

LΦ̄n := F#LΦ̄n−1
, n ≥ 1. (5.9)
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Note that LΦ̄n is the distribution of the point process Φ̄n obtained by n iterations of (5.8)
starting from Φ̄0 having law LΦ̄0

= LΦ̄(Ws)
0 . Our model is defined by setting a fixed

number of iterations as a stopping rule. Figure 5.2 illustrates the particle gradient descent
method to generate samples in Ωε.

ϕ̄0

ϕ̄n
ϕ̄

Ωϵ

𝕄s

ˣ

ˣ

ˣ

ˣϕ̄1

Figure 5.2: Overview of the particle gradient descent method: starting from φ̄0 ∈Ms, we
iteratively modify the configuration until reaching Ωε.

Observe that our model takes inspiration from the micro-canonical model, however
there is no guarantee that our model reaches Ωε (defined in (5.3)), for any ε > 0. By
setting a fixed number of iterations and not rejecting any configuration, we make the
implicit assumption that our model reaches a low energy level.

5.3.2 Leveraging invariances

One can leverage some a priori known invariance properties of Φ (for instance stationarity
or isotropy), by building a model that satisfies the same invariance properties as Φ. By
using the descriptor K with the same invariance, the particle gradient model respects
these invariance properties. In particular, we obtain a stationary point process model
when K is defined by the empirical averaging (5.6).

This requires some explanation, since invariance properties of the distribution of Φ
do not, in general, imply any natural invariance of its restriction Φ̄ to Ws. Indeed, while
some invariances can be observed on the torus for the distribution of Φ on R2 (the most
popular being translation invariance), it does not imply the same for Φ̄ with respect to
the translation on Ws. The latter, that we call circular stationarity, requires also Φ
to be periodic. However, circular stationarity of the generated point process on large
window Ws (as a distributional approximation of Φ̄) can be considered as a desirable
ersatz of the stationarity of Φ. Indeed, in what follows we shall formulate a result saying
that, when K and the distribution of Φ̄0 are invariant with respect to some subset of
rigid circular transformations on Ws, then the resulting model satisfies this property as
well.

More specifically, a rigid circluar transformation on Ws is an invertible operator T on
Ws of the form Tu := Au+ u0 for some orthogonal matrix A with entries in {−1, 0, 1}
and u0 ∈Ws. Note that the matrix A is restricted in integer entries for T to be a well
defined invertible operator. It encapsulates translations, flips, and orthogonal rotations.

We say that:
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• The initial probability law LΦ̄0
of the model is invariant to the action of T if

∀ Γ ∈Ms, LΦ̄0
(T−1

# (Γ)) = LΦ̄0
(Γ).

• The descriptor K is invariant to the action of T if ∀ µ ∈Ms, K(T#µ) = K(µ).

Theorem 5.3.1. Let T be a rigid circular transformation. Let Φ̄0 be a point process on
Ws such that its distribution LΦ̄0

is invariant to the action of T and let K be a descriptor
invariant to the action of T . Then, for all n ∈ N, LΦ̄n defined as the push-forward of LΦ̄0
by (5.9) is invariant to the action of T . This result also holds true for the distributions
of our model, defined by section 5.3.1.

The proof is given in Section 5.8, for a more general model.
The result itself is inspired from [32], where the preservation of invariance is proven

for the gradient descent model in the pixel domain. Observe, the invariance of the
distribution of the point process Φ̄n increases the diversity of the generative model
samples. Any descriptor taking the form of eq. (5.6), using the periodic shift operator
S̄u, is invariant to all circular translations.

A drawback is that such a boundary condition introduces a statistical bias to the
spatial average (5.6) as an estimator of E[K(Φ̄)] in the case of a non periodic Φ over
Ws. One can expect, however, that when the window size is large enough and spatial
correlations of the patterns are not too large, this border effect becomes negligible.

5.4 Wavelet phase harmonic descriptors
Classical descriptors for spatial point process usually include statistics more or less directly
related to the pair correlation function, such as Ripley’s K-function, Besag’s L-function,
or the radial distribution function (see [37, Section 4.5]). All of these functions only
capture second order correlations of the process. Other usual functions are the empty
space function or the k-nearest neighbors function; (see Section 2.9, and [37, Section 2.3.4
and 4.1.7]). In [110], the authors advocate the use of the k-nearest neighbors distribution
function, with a k significantly greater than 1. In addition to being non-differentiable,
these moments suffer from another drawback. If one wants to capture geometric structures
formed by the particles, up to a fixed scale, the number of moments (i.e. the k nearest
neighbours) will grow linearly with the number of particles forming such structures. This
can become a problem if the intensity of the process is large, both computationally, and
from a statistical point of view, as the variance of the moments may become large when
estimated from a single observation.

For this reason, we choose to use descriptors for which the spatial range of structure
captured is independent of the intensity of the process, and the computational time is
linear in the number of points. As a result, this method would become much faster for
large samples, as the number of statistics would remain constant. In this work, we shall
use the wavelet phase harmonics (WPH) covariance moments (cf. eq. (3.32)) to represent
the distributions of our point processes. Recall from Section 3.5, these moments are based
on the wavelet transform of a point process (eq. (3.5)), and in this study we shall used
periodic wavelets for the observation window Ws (cf. eq. (3.33)). The WPH covariance
moments use a non-linear operator to adjust the phase of the wavelet coefficients, in
order to capture dependencies between coefficients at different scales and orientations.

More precisely, to capture edge-like structures in a planar point process, we shall use
bump steerable wavelets. Recall from Example 3.1.3, they are defined by the translations,
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dilations and rotations of a complex analytic function ψ(u) ∈ C with compact frequency
support. The finite wavelet family is defined as {ψξ}ξ∈Ξ, for ξ = (j, θ), with 0 < j < J ,
and J such that all wavelets have (approximate) support contained in the observation
window Ws. Scales equal or larger than J are carried by a low-pass filter ψ0 whose
frequency support is centered at 0. The angles are chosen such that θ = 2π `

L , with
` ∈ {0, · · · , L− 1}. For any ξ, ξ′ ∈ Ξ, k, k′ ∈ Z, τ ∈Ws, we note γ = (ξ, ξ′, k, k′, τ), and
estimate

KγΦ̄ = Cov
(
[Φ̄ ? ψξ]k(u), [Φ̄ ? ψξ′ ]k

′(u− τ)
)
, (5.10)

which does not depend on u ∈Ws, as the process is (circular) stationary. Recall that the
phase harmonics operator [·]k is defined, for all z ∈ C, as

[z]k = |z|eikϕ(z).

As explained in Section 3.5, the overlap between the frequency support of [Φ̄ ? ψξ]k
and that of [Φ̄ ? ψξ′ ]k

′ is necessary for the wavelet phase harmonic covariance to be
large. Due to the frequency transposition property of the wavelet phase harmonics, it
is empirically verified that the covariance at kξ ' k′ξ′ is often non-negligible when the
process is non-Gaussian (i.e. has structures beyond second order correlations). We shall
follow this empirical rule to define a set of WPH coefficients to correlate.

Let vξ,k = E([Φ̄ ? ψξ(u)]k). We define the descriptors K(µ) using (5.6), as empirical
estimators of moments. Additionally, let us denote µξ,k(u) := [µ ? ψξ(u)]k − vξ,k. Taking
the spatial average (5.6) gives the descriptor of the form:

K(µ) =
(

1
|Ws|

∫
Ws

µξ,k(u) µξ′,k′(u− τ ′)∗du
)

(ξ,k,ξ′,k′,τ ′)∈Υ
. (5.11)

As Φ̄ is circular-stationary, it suffices to choose τ ′ 6= 0 to measure spatial shifts (i.e., there
is no need to consider u− τ , for some non null τ). Note also that K(µ) is invariant with
respect to any circular translation S̄u of µ ∈Ms on u ∈Ws.

In the numerical computation, we shall replace vξ,k in (5.11) by v̄ξ,k = 1
|Ws|

∫
Ws

[φ̄ ?
ψξ(u)]kdu as a plug-in estimator for the first-order moment vξ,k. The K(φ̄) modified in
this way becomes an empirical estimator of the covariances in eq. (5.10). This is a good
approximation of K(µ) as the estimation variance of the covariance moments is typically
much larger than that of the first-order moments.

Note that the wavelet phase harmonics do not increase the amplitude of the wavelet
coefficients with k > 1. This approach may thus significantly reduce the variance of
the descriptor K (to satisfy (P1)) compared to the higher order correlations, while still
capturing information beyond second-order correlations (to satisfy (P2)).

Choice of the covariance set Υ in (5.11) Rather than detailing the full list of
elements in Υ, we provide an intuitive way to choose the set Υ. For the full list, see
[29, Section 4]. Overall, the total number of elements in Υ is in the order of O(L2J2).
Note that the smallest structures that the descriptors can capture depend on the spatial
support C of the wavelet ψ. Information about structures smaller than C can be added
in a post-processing step that will be explained in Section 5.
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• Choice of J : The covariance set Υ depends on the parameter J , which is the
maximal scale of the wavelet transform. A suitable choice for this parameter J
would be one allowing for a good trade-off between satisfying the sufficiency of K,
while maintaining the concentration property (cf. properties (P1) and (P2) from
Section 2.10).

• The parameter τ ′ is chosen so that each wavelet is translated in a particular direction
in order to capture correlations along nearby edges in the observation.

• Choice of (ξ, ξ′, k, k′): These parameters are chosen in order to capture 2nd-order
correlations, as well as dependencies between wavelet coefficients at different scales
and orientations, both with and without phase information, based on a rule of
thumb that kξ ≈ k′ξ′ due to the frequency transposition property of the wavelet
phase harmonics.

5.5 Numerical scheme for particle gradient descent
Calculating the wavelet phase harmonic covariances can be computationally demanding
(due to the calculation of two integrals). In order to gain some efficiency, we can perform
the computations in a discrete domain. However, the energy needs to remain differentiable
with respect to the positions of the points in the pattern. We propose a method, consisting
of a Gaussian smoothing of the configuration of points, to address this problem. Building
on that method, we then present two technical aspects of the sampling method.

In this section, we discuss a complete numerical scheme to generate samples from the
particle gradient descent model, defined with the wavelet phase harmonic descriptors
presented in Section 5.4. It is composed of the following ideas:

• Discretization for an approximate calculation of the covariance of the wavelet
phase harmonics: necessary to accelerate the calculation of the descriptor and the
gradients.

• Multiscale optimization: allowing one to avoid shallow local minima in the gradient
descent model. At each scale, we use a quasi-Newton gradient-descent method for
greater efficiency.

• Final blurring (optional): to add a priori information on structures whose size is
smaller than C into the model samples. It helps to get rid of some clusterisation
(clumping) artifact caused by the initial discretization.

5.5.1 Discretization

Differentiable discretization of atomic measures

To compute the descriptor K in (5.11) for a point measure µ, we need to integrate
functions over the observation window Ws (first for the convolution operators, then for
the averages). Computationally efficient integration requires discretization of the atomic
measure. The main difficulty is to do it in such a way that the (periodic) convolutions
of the discretized atomic measures with wavelets, as in (6.2), remain differentiable with
respect to the positions of the original atoms in µ, so that we can still perform gradient
descent. Classical finite element methods may not achieve this goal efficiently.
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We are going to approximate our atomic measures on Ws by matrices (images) of
given size N × N (the image resolution), and then use the automatic differentiation
software Pytorch [89] to perform the following operations. It allows one to compute the
derivative of a modified energy w.r.t. any point ui in µ. The following paragraph details
this discretization:

We first map a given point measure µ on Ws to a continuous function µσ by the
convolution

µσ(u) := µ ? gσ(u) =
∑
ui∈µ

e−
|u−ui|

2
2σ , x ∈Ws (5.12)

with a (periodized) Gaussian function gσ of given standard deviation σ. Then we evaluate
µσ on the N ×N regular grid inside Ws and denote the resulting matrix µNσ , with entries
called (values of) pixels. The convolution with a Gaussian function makes each entry
of µNσ smoothly depend on the atom positions of µ. We then compute K̄(µNσ ) instead
of K(µ), where K̄ is this discrete analogy of the descriptor (5.11) (cf. [120]1). Note
that, because the value of a pixel continuously depends on the positions of the atoms,
this discretization makes our descriptor only invariant to discrete translations (multiple
of the pixel size 2 s

N ), for which Theorem 5.3.1 applies. The gradient of the energy
|K̄(µNσ )− K̄(φ̄Nσ )|2 with respect to each atom position of µ can therefore be computed
using automatic differentiation (with the Pytorch software [89]). Indeed, we know that
K̄ is differentiable w.r.t. each entry of µNσ , as a combination of linear and non-linear
operators. Moreover, for any i, j ∈ {1, N}2, noting ĩ = −s + 2si/N, j̃ = −s + 2sj/N ,
(5.12) gives us that

µNσ (i, j) = µ ? gσ (̃i, j̃) =
∑
ui∈µ

e−
|(̃i,j̃)−ui|

2
2σ , (5.13)

which is differentiable w.r.t. any ui in µ. This discretization step is illustrated in the
Figure 5.3.

Figure 5.3: The differentiable discretization of a courting measure µ into a point-image µNσ on a
N ×N regular grid.

In signal processing, the Gaussian function acts as a low-pass filter. It is needed to
cut-off high frequency information of µ so that µσ can be discretized into an image with
negligible aliasing effect. This means that µσ carries the information on the positions

1Computations are produced using a software available at https://github.com/kymatio/
phaseharmonics
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of µ up to some precision which depends on σ. The subsequent evaluation of µσ on the
grid N ×N in µNσ implies that σ cannot be taken too small. Indeed, we take σmin = s

N
as the lowest value of σ.

Wavelet discretization and choice of scales

As stated in Section 5.4, the family of wavelets used in our descriptor is constructed by
dilating the mother wavelet ψ in the range of the scales 0 ≤ j < J . Based on the choice
of N , we set C = 2s

N . In this way, the spatial support of ψ has a radius C of one pixel
of the image. As a consequence, this smallest-scale wavelet ψ can also be discretized
(without significant aliasing) in order to compute the discretized descriptor K̄.

The choice of the largest scale J can be decided based on the visual structures in the
observation. For example, if we want to model structures whose spatial size is close to the
size of the window [0, 1/8]2 ⊂Ws, we shall set 2JC = 1/8, i.e. J = log2(N)−3− log2(2s).

5.5.2 Multiscale optimization

Phase harmonic covariance moments of point process images (i.e. point patterns converted
into regular pixel grids, as described above) may have large values at high frequencies
(large values of |ξ|, |ξ′| in (5.11)), due to the fact that the point-images are composed of
local spikes when σ is small. This implies that these high frequency statistics have an
important impact on the gradient of K̄, which in turn can lead to the gradient descent
model being trapped at shallow local minima, where only the high frequencies are well
optimized to match the observation.

This optimization issue can be overcome by matching the descriptors from low
frequency to high frequency in a sequential order, through an appropriate modulation
of the parameter σ ∈ σ0, σ1, ..., σJ−1 of the Gaussian functions used to discretize µ,
introduced in Section 5.5.1.

Indeed, since Gaussian functions are low-pass filters, we can interpret the convolution
in (5.12) as a blurring, limiting the space localization of Dirac measures. When such
smoothing of the point pattern is done by a Gaussian function that has a large σ, the
high frequencies of the signal function are close to 0 and the same holds true for the
phase harmonics, because wavelets are localized in frequency. Therefore the wavelet
phase harmonics are dominated by the low frequencies. Thus, by smoothing the observed
sample and generating the optimal one with high variance Gaussian function, we create
a new objective leading, in the gradient descent optimization, to a point configuration
for which only low frequencies moments (small values of |ξ|, |ξ′| in (5.11)) are matched
with the ones of our observed sample. Thus, we propose a multiscale gradient descent
procedure that consists in choosing first a high value for precision parameter σ, run the
optimization algorithm, and then reduce the value of σ to run the optimization again,
starting from the result of the previous run (and repeat this operation until σ = σJ−1).
We choose σj := s

N 2J−j−2. Note that σJ−1 is equal to σmin. For numerical efficiency, we
perform the gradient descent procedure using the L-BFGS optimization algorithm [76].

Empirical evidence in Section 5.6.2 shows that the above multi-scale optimization
procedure allows one to reconstruct (modulo translation) the observed sample when using
K̄ defined with J = log2(N)− 2, which is not the case when simultaneously optimizing
all frequencies. In order to preserve the ability to reproduce geometric structures at all
scales, we shall also apply this multiscale optimization method to our model defined with
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J = log2(N)− 3.

5.5.3 Final blurring

We observed that the contrast between the continuous nature of our objects and the
discrete approximation described in Section 5.5.1 creates undesired artificial structures
at frequencies higher than the image resolution: when the number of particles in a
configuration is large with respect to the number of pixels in the image, or if the
configuration exhibits strong clustering behaviour, several pixels may contain more
than one particle. In such cases, our algorithm produces samples having an artificial
clustering structure inside each of these pixels (see [29, Section 5] for an illustration of
this phenomenon).

To remove this artificial clustering, we chose to force these high frequencies to be
“as random as possible”, i.e. to have Poisson-like structure. To this end, we introduce
a uniform i.i.d. perturbation of the positions of points after the last optimization run.
It can be viewed as an additional, this time stochastic, measure transport, following
the deterministic one from the particle gradient descent. This final randomization can
be viewed as enforcing a-priori information on high frequency structures of the process:
Poisson-like structure.

5.6 Numerical experiments
In this section we present numerical experiments involving our generative model. We
begin by presenting in Section 5.6.1 our numerical settings, in particular the distributions
of point processes whose samples are used as original point patterns. We next evaluate
how well our generative model with the phase harmonic covariance descriptor can generate
samples similar to those given by the original point processes. In Section 5.6.2, we evaluate
these models by comparing samples from the original distributions to samples from our
models, visually as well as by estimating their power spectrum (defined as the average
over angles of the squared modulus of the Discrete Fourier Transform, cf. Section 2.8).
The power spectrum gives information equivalent to the second order correlation function
of the process (cf. [26]), which captures clustering or repulsive behaviour between atoms
of a realization. Such information cannot always be detected visually. In order to
further quantify how well our model captures visual geometric structures, and to gain
some insight into the ability of our model to produce diverse samples, we shall use the
topological data analysis (TDA), derived from the theory of persistent homology. The
comparison will be done in Section 5.6.3.

5.6.1 Numerical settings

We first describe the original point processes on which we shall evaluate the particle
gradient-descent model, then specify the parameters of the model in the numerical
experiments.

Original point process distributions

For our experiments, we choose point process distributions that show complex geometric
structures, for which we can visually recognize geometric structures. We begin by
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presenting results for Cox (double-stochastic Poisson) processes with Poisson points living
on one dimensional structures generated by two famous stochastic geometric models,
namely edges of the Voronoi tessellation, and the Boolean model with circular grains of
fixed radius considered in Example 2.8.4. Both underlying geometric models are generated
by a Poisson parent process within the observation window Ws, and we construct these
models in a periodic way to avoid border effects. We call the respective Cox processes
Voronoi and Circle processes. Note that, for these two processes, Poisson points live on
different geometric shapes: polygons for the Voronoi and possibly overlapping circles for
other one. Additionally, we consider two different radii of circles.

Then, we take interest in distributions having turbulent intensity (derived from
the simulations of a decaying isotropic turbulent vorticity field driven by 2d Navier-
Stokes equations, see e.g. [99]). Such fields exhibit complex mulsticale structures, and
are representations of physical phenomena, known to be difficult to model faithfully.
Furthermore, the distributions we consider have much greater intensities that the previous
Cox models. From the turbulent intensity, we sample three different processes, exhibiting
distinct microscopic structures (repulsive, independent or clustering): a Matern cluster
process, a Poisson point process and a Matern II hard-core process, see [37, Example
5.5 and Section 5.4, respectively]. We study the ability of our model to reproduce
simultaneously the macroscopic (i.e. the turbulent intensity) and microscopic structures
(i.e. at small scales) of the process.

The number of points in the Cox Voronoi, Small circles, Big circles, and the Turbulent
Hardcore, Poisson, ad Cluster processes are around, respectively, 1 900, 2 500, 2 000,
1 700, 3 800 and 13 000. Note that, for comparison, point patterns considered in [110]
have around 400 points.

Image resolution, number of iterations and computation time

As discussed in Section 5.5.1, point configurations are convoluted with Gaussian densities
and evaluated on N ×N grid (as images) in order to efficiently compute our descriptors,
and move the particles with gradient descent. For simplicity, we fix s = 1/2 for all the
examples that we shall consider. The ultimate Gaussian variance (precision) of this
mapping is thus σmin = 1

2N . The larger N is, the more information we are able to keep
(in high frequencies), but the larger the computation time. We chose for our experiments
a resolution of N = 128. We show one example where a higher resolution, N = 256, is
used to capture most of the high frequency information. The number of iterations of
the L-BFGS optimization is chosen to be 100 for each scale σj (a total of 400 iterations
for N = 128, and 500 iterations for N = 256). The number of angles in the steerable
wavelets is L = 8. The average computation time on 4 GPU (Nvidia Tesla P100) for a
sample for a turbulent process having roughly 13 000 points with resolution N = 256 is
between 5 and 10 minutes while the same task at the resolution N = 128 takes between
1 and 2 minutes.

5.6.2 Visual evaluation and spectrum comparison

We evaluate the ability of our model to capture and reproduce geometric structures
exhibited by realizations of the point processes described in Section 5.6.1. A natural
first method to assess the sufficiency of a generative model (property (P2)) is visual
evaluation, which is widely used in image analysis but subjective. We then compare
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Figure 5.4: Three Cox models; original sample, reconstruction, and synthesis. For the power
spectrum plots, the full lines correspond to the original distributions, and the dashed lines
correspond to the models. The y-axis is presented in log scale.

the power spectra of our models and the original distributions. To estimate the power
spectra, we generate (for each original distribution) 10 i.i.d. samples from the same
model (i.e. from the same observation sample φ̄, but with different initial configurations
φ̄0). We average the power spectra of the 10 syntheses, and compare it to the average
of 10 i.i.d. samples from the original distribution. All these samples will also serve in
Section 5.6.3 to compare their geometric similarities.

Figure 5.4 shows a study of our three Cox distributions. The first line presents
samples from the original distributions. The second line presents samples from the model
using our descriptor with J = log(N)− 2. In this setup, the concentration property is
not satisfied (see property (P1) in Section 5.2), and the result is the memorization of
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Figure 5.5: Synthesis of turbulence processes with various microscopic structures (Hardcore,
Poisson, and Cluster), and their power spectrum plots. Full lines correspond to the original
processes, dashed lines correspond to the model. For the Cluster distribution, the dotted line
corresponds to our model defined with the resolution N = 256.

the observation sample φ̄. Indeed, this line shows quite faithful reconstructions of the
original samples subjected to a periodic translation, up to some precision error due to
a finite image resolution N . This is however not a good model because it essentially
only contains the observation φ̄. It suggests that we need to improve the concentration
property (P1) of the descriptors in order to enlarge the ensemble Ωε. (Note that, in the
work of [110], the authors use the term ’reconstruction’ to refer to random sampling
method, which we call in this work ’synthesis’.)

In order to improve (P1), we shall reduce the parameter J in the wavelet transform.
The third line of Figure 5.4 shows realizations sampled using J = log(N)− 3 for different
original distributions. Our analysis in Section 5.5.1 suggests that this range of J can
model structures whose spatial size is at most 1/8 of the window Ws. Observe that most
polygons and circles are well reproduced in the synthesis of Voronoi and Small circles.
The Big Circles are harder to model since the size of each circle is slightly larger than
1/8 of Ws.

In the last line of Figure 5.4, we present the power spectrum (cf. Equation (2.25)) for
k ∈ N ∩ [1, 128[ from the original distributions and as well as from our model. Larger
errors can be observed at k near zero (say k=1,2 and 3). This is because only the average
spectral information is captured (and matched) using the low-pass filter ψ0 in the wavelet
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transform, which is included in the descriptor K(µ) (c.f. (5.11)). Moreover, the variance
of the empirical information at small k can create extra error since it can be far away
from its expectation. Similarly, because the wavelet convolutions average the spectral
information over different frequency bands when using a reduced number of τ ′ in K(µ),
our descriptor does not capture fast oscillations in the power spectra in the range of
k ≤ N/2 = 64 (see [120] for more details about how to capture these oscillations). This
is observed in the cases of Small and Big Circles Cox processes. See example 2.8.4 for a
theoretical formula of the power spectrum in the case of (Small or Big) circles. When
k > N/2 = 64, the descriptor K̄ (cf. 5.5.1) does not contain accurate spectral information
due to a finite image resolution N . In this regime, we observe a smooth decay of the
(log) power spectrum towards 0. We observed that if we apply the final blurring (cf.
Section 5.5.3), then the error of the model spectrum becomes larger. Therefore, for these
three processes, no final blurring has been applied.

All models discussed up to now are Cox processes, with Poisson (hence independent)
points sitting on some random macroscopic structures. Figure 5.5 presents our analysis of
three turbulent point processes having different microscopic structures: a hardcore, a non-
correlated (Poisson) and a clustering one. We see that our generated samples capture to
some extent this microscopic structure. For the clustering model, the presented synthesis
is done with N = 256. We see that our model (using J = log(N) − 3) can generate
samples with similar macroscopic and microscopic structure. The power spectrum at
small k has larger errors, as we have observed in the Cox models. However, since the
power spectra are mostly smooth in these Turbulent processes, we observe a relatively
small spectrum error over a wide range of k. This is also due to the use of the final
blurring which helps to remove some artificial spectrum errors for k > N/2. For the
clustering model, we also compare the power spectrum of two models with different
resolutions: N = 128 and N = 256. We see that setting a higher resolution reduces
significantly the error, allowing to match the spectrum up to k ' 80. we still observe
some small error when k ≥ 80, probably because of the final blurring (cf. Section 5.5.3),
which may also impact the high frequencies that we optimize. Overall, both the visual
and the spectral analysis suggest that our model can generate well various Turbulent
points processes.

5.6.3 Persistent homology and topology analysis

As previously mentioned, power spectrum evaluation corresponds to the comparison
of second order moments, which only partially capture geometric structures. Visual
evaluation can be more discriminate, but is subjective. To evaluate more precisely the
ability of our model to capture the geometric structures of the given distributions, we
shall use a representation of objects derived from persistent homology theory, which is a
powerful algebraic tool for studying the topological structure of shapes, functions, or in
our case point clouds. We shall perform this evaluation by comparing the persistence
diagrams of the generated samples to those of the original ones. Furthermore, this
representation allows us to evaluate in a simple way the ability of our model to produce
diverse samples.

We begin by a brief, intuitive presentation of persistence diagrams, and the whole
comparison method that will be simply referred to as topology data analysis (TDA). For
more details we refer the reader to [23, Section 11.5]. We then present the TDA of our
point process distributions and models. TDA can be seen as a complementary tool with
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respect to the spectrum analysis, being more consistent with visual perception (see [29,
Appendix C] for more details about this link).

Persistence diagram Persistent homology theory describes a way to encode the
topological structure of a point cloud through a representation called persistent diagram
(PD). It is constructed, for a given point configuration φ ∈Ms, from the family (Gr)r≥0
of Gilbert graphs, where the vertices are the positions of atoms of φ, and the edges are
pairs of points closer to each other than r. (In our case we use the periodic metric.) Then,
we fill-in the triangles (triplets of points joined by edges) of the graph. Points, edges and
filled-in triangles constitute the so-called 2-skeleton of the Vietoris-Rips (VR) complex.
For any r ≥ 0, we study two characteristics of the skeleton: its connected components, and
its holes (this latter notion is well formalized in the algebraic topology, in our case they
correspond to the natural idea of a hole). Each connected component “is born” at time
(radius) r = 0 and it “dies” at some time r > 0 when it is merged with another connected
component. Similarly, each hole has a birth time (r > 0) corresponding to the minimal
radius at which it appears, and a (larger) death time corresponding to the minimal radius
for which the hole is completely filled-in by the triangles. The persistence diagram of φ
is the collection of pairs of birth and death times of the connected components and holes.
It is hence a point process in the positive orthant of the plane, offering a multiscale (as
our wavelet-base descriptor) description of the topology of φ. As our descriptor, it is also
stable to small deformations of φ. It is hence interesting to use this alternative tool to
evaluate our generative model.

Topological data analysis Our approach in this matter is inspired by [36], and we
refer the reader to this paper for a more detailed description. We use the ’holes’ birth-
death process, as it appears more relevant to capture information in the Cox distributions,
such as the polygons and the circles.

In order to compare the distributions of our models to the original distributions,
we compute the PDs of our samples from each distribution (cf. Section 5.6.2 for a
description of these samples). Recall, these PDs can be viewed again as point clouds
in two dimensions. Therefore, a distance between two PDs can be computed, and we
use in this regard a periodic version of the Wasserstein distance between two point
clouds on the plane (we found that the bottleneck distance also suggested in [36] is not
sufficiently discriminating for our point patterns). We obtain in this way a distance
matrix between different PDs (reflecting topological similarities or differences of the
point processees realizations for which PDs were calculated). We then apply a standard
dimension reduction algorithm (namely Multi Dimensional Scaling) to this distance
matrix, to represent every PD (and hence the corresponding sample) as one point on the
plane, and we visualize the representation of all samples.

TDA of our experiments In the plots on the first line of Figure 5.6, we study sepa-
rately the Cox Voronoi and Big circles processes, and the turbulent hardcore process. In
each plot, we observe 20 dots (having different shapes), each representing one configura-
tion of points in Ws (the term "dot" is used to avoid confusion with points in Ws). For
each model there are 10 dots representing i.i.d. realizations of the original distribution
and 10 representing realizations from the generative model. For each plot, the sample
additionally marked with a black dot represents the observation used in our model to
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Cox Voronoi Cox Big circles Turbulence hardcore

Cox — three distributions Turbulence — three distributions

Figure 5.6: TDA of the distributions presented in this study, and their respective models.

produce the 10 syntheses.
We see in the first two Cox examples a clear separation between the original process

and the model, implying a lack of sufficiency (P2) in our model. This is probably because,
in order to satisfy (P1) and produce diverse samples, we have chosen to reduce J , and
therefore lose some information about large scale structures of the process. On the
other hand, we observe that this separation is smaller for the Turbulence hard-core case,
where there is a better balance between (P1) and (P2). The error in the Cox models
is probably due to the difficulty to reproduce highly constrained structures (perfect
circles or convex polygons). These observations agree with our visual evaluation of
the syntheses: the Voronoi and (more particularly so) the Big circles models are easily
discriminated from their original distributions (their highly constrained structures are
not perfectly reproduced in the syntheses), but this discrimination is harder for the
Turbulent hardcore case. Moreover, these figures indicate, by the spread of the dots
representing the syntheses, that our model reproduces, to some extent, the diversity in
the samples of the original distributions (suggesting a certain entropy in our model).
To further reduce the distances between the model samples and the original samples of
a process, while maintaining a similar diversity (and hence a similar entropy between
the model distribution and the original distribution) remains an interesting problem for
future works.

The two plots in the second line present the TDA of the three Cox distributions
together, and the three turbulent distributions together. We observe that, for the Cox
distributions, the Small circles model is about as close to the original Small circles
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distribution as it is to the original Big circles distribution. Nevertheless, the original
distribution of the Big circles and the Small circles are well separated, suggesting that
there is a topological distinction that is not well respected in the small circles. However,
this kind of error is hard to perceive visually. On the other hand, the Voronoi case is
well separated from the other two, suggesting that the model is better than the ones of
the circles distributions. For the turbulence case, we observe that the three distributions
(both original and model) are well separated, and each respective model is closer to its
original distribution than to the other distributions. This agrees with our earlier visual
and spectral analysis, suggesting that our model is able to capture complex geometric
structures formed by a large amount of points.

Remark: We used the R packages TDAstats [115] to calculate the PDs of our
point patterns and TDA [52] to calculate their Wasserstein distances. Due to memory
constraints, for second line, the analysis was done using a random thinning to reduce
the number of points of each sample to 2 000, which could artificially impact the results.
The experiments were repeated several times and the variability in the random thinning
did not impact our conclusions.

5.7 Numerical comparisons
In this section, in order to illustrate the advantages of the method presented here, we
present a brief comparison between the method presented in [110] and ours.

5.7.1 Differences between the two methods

The method developed in [110] and ours are based on the same idea: to produce similar
but different point patterns to a given observation, one first defines what should be ’similar’
between the observation and the synthesis, by choosing a set of statistical constraints,
computed on the observation. Then, starting from an initial random configuration of
points, one iteratively modifies this configuration in order to match the set of prescribed
statistics (by minimizing an energy E, related to the square difference between the
statistics of the original and the synthesised point patterns). If the set of statistics does
not describe the observation itself, but rather its underlying distribution, then the output
of the optimization procedure should be a new point pattern, similar but different to the
observation.

However, the two methods differ on two points:

• First, the optimization method to match the set of statistics. In [110], the opti-
mization steps can be described as follows: given the point configuration being

synthesized φk =
N∑
i=1

δui,k at some step k, a point in the configuration is chosen

uniformly at random, say uj,k, for j ∈ {1, · · · , N}. A candidate for a new point
v ∈ W is chosen uniformly at random in the observation window. Then, if the
energy of φ̃k := φk − δuj,k + δv is lower than the energy of φk, we define φk+1 = φ̃k.
Otherwise, φk+1 = φk. We call this optimization random search (RS).

In our method, φk+1 =
N∑
i=1

δui,k−ζ∇ui,kE(φk), where ∇ui,kE(φk) is the gradient of

the energy with respect to the point ui,k of φk, see (5.7). This optimization method
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will be noted (GD).

• Second, the set of statistical constraints used to describe the geometry of the point
patterns. In [110], the authors use the k nearest neighbour distance distribution
functions (d.f.) Dk(r), for k ∈ {1, · · · , kmax}, kmax ≥ 1, and evaluated at a sequence
of radii r ∈ {r0, · · · , rmax}, rmax > 0, (see [106, p. 267]). We call this statistical
descriptor nearest neighbour distances (NND).
Our statistics are based on the covariance between phase harmonics of the wavelet
phase harmonics coefficients (WPH) of the point patterns (see 5.4).

5.7.2 Preliminary discussion

Before presenting a numerical comparison between the two methods, we briefly explain
what the limitations of the method in [110] are, and why our method could overcome
such limitations.

The optimization method in [110] is based on random search. This implies that for
some configuration φk at some step k, there may be a lot of failing new candidates to
replace some point in φk before finding one that reduces the energy of φk. This means
that there may be a lot of energy evaluations before updating the current configuration.
Furthermore, each iteration, requiring one energy evaluation, only moves one point in
the configuration. Conversely, at each iteration, our algorithm computes the energy as
well as the gradient of the energy, and all the points are moves according to the gradient.
This implies that, for some energy level e > 0, the gradient descent method may reach
this level in less iterations than [110].

Moreover, the statistical constraints used in [110] are based on 3 parameters: the
number of neighbours for the points in the configuration, the maximal radius at which to
evaluate whether or not there is a neighbour, and the number of radii between 0 and
this maximal radius. While this latter relates to the precision of the d.f.’s, and can be
pretty much fixed for any observation, this is not the case for the first two parameters.
Indeed, kmax and rmax have to be chosen so as to describe the geometry formed by the
points, up to some scale. The maximal radius rmax can be seen as the maximal scale
up to which the statistical constraints describe the geometric structure. This can be
fixed depending on the observation, but should not be too large, in order to satisfy the
ergodic averaging property. However, for a fixed sequence of radii, the parameter kmax
can change significantly depending on the observation. Even if two configuration exhibit
structures up to similar scales, the number of nearest neighbours inside some ball may
differ depending on the intensity of the process. For instance, consider the Cox Circles
distribution, where points are located on circles of fixed radius r0, with the center of
those circles forming a Poisson point process. If the observed pattern has around 10
points per circle, one would probably need to fix rmax = 2r0, and kmax = 10. However, if
the circles contain an average of 100 points, then one would have to increase kmax up to
100, even if the circles have the same size as before. This would increase significantly the
number statistics to compute at every step. Conversely, our descriptors only depend on a
number of scales at which we compute the wavelet coefficients, which does not depend on
the intensity of the process. The only parameters to fix are the maximal scale J , and the
minimal scale, set by the resolution N , which relates to the precision set by the number
of radii in the k nearest neighbours case. In the above Cox Circles example, if the points
have Poisson distribution on the circles, then the size of the descriptor will not change
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between the two setups (10 or 100 points per circles).

5.7.3 Numerical comparison

In this section we present a numerical comparison between the method of [110] and ours.
This comparison aims at illustrating the two following points:

1. For the same energy, the gradient descent optimization method reaches low energy
levels in less time (i.e. less evaluations of energy value) than the optimization
method used in [110]. To highlight this point, we shall consider the Cox Voronoi
example, and use the WPH descriptors (c.f. (5.11)) to define the energy, and
compare the RS and GD optimization methods.

2. The amount of information captured by the kth nearest neighbours d.f.’s depends on
the intensity of the process, regardless of the scales of the structures. Considering
the Turbulent Poisson example with different intensities, we shall see that, for a
fixed descriptor (i.e. fixed kmax, rmax, number of r), the quality of the syntheses
decreases with the intensity of the process.

These two points are illustrated in the two following sections, respectively. A last
section will present an overall comparison of the two methods, on the Cox Voronoi and
Turbulence Poisson examples.

Comparison between RS and GD (Cox Voronoi example)

For this experiment, we study the Cox Voronoi example, and define the energy from
the wavelet phase harmonics covariances, presented in Section 5.4. Let K be our
descriptor (defined in (5.11)), φ̄ our observation sample, and Eφ̄(·) = 1

2 |K(·)−K(φ̄)|2|
the corresponding energy. We define the relative energy by

e(·) = 2 EΦ̄(·)
|K(φ̄)|2

= |K(·)−K(φ̄)|2

|K(φ̄)|2
. (5.14)

We ran the optimization of the energy with the random search method from [110],
and observe the relative energy of the syntheses (for 10 syntheses), after n = 19870 and
n = 29805 iterations, i.e. respectively 10 and 15 iterations per point. After n = 19870
iterations, the algorithm reaches a relative energy of e = 9, 00.10−4 (with a std of
9, 23.10−5), and after n = 29805 iterations, we found e = 4, 76.10−4 (std= 2, 47.10−5). It
took an average of 1h04min and 1h36min respectively. We observed the respective relative
energies, and ran our gradient descent optimization algorithm (without the multi-scale
procedure) until the relative energy reaches the levels from the random search method.
The results and comparisons with our method are summarized in Table 5.1.

Dependence of WPH and NND on the intensity of points (Turbulence Pois-
son example)

To illustrate our second point, for NND descriptor we fix the parameters of the k th
nearest neighbours d.f.’s to kmax = 16, rmax = .125 (on a window of size 1), and discretize
Dk(r), r ∈ (0, rmax], regularly by 250 values of radii r. With this fixed descriptor, we
perform a synthesis using RS optimization for three different observations: the Turbulence
Poisson observation randomly thinned to have 500 points, the same observation thinned
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Random search Gradient descent
e = 9, 00.10−4 19870 (1h04m) 52 (0m35s)
e = 4, 76.10−4 29805 (1h36m) 69 (0m45s)

Table 5.1: Speed comparison between random search and gradient descent, in number of
iterations (computation time in parenthesis) for the synthesis of Poisson Voronoi patterns.
The time per iteration in the gradient descent method is larger, due to the possible
several energy (and gradient) evaluations for the line search. However, the total amount
of time is much lower. The computations have been run on a single GPU Nvidia Tesla
P100.

to 2000 points, and the raw observation, which contains 3784 points. We set the number
of iterations to 400 iterations per point. Figure 5.7 shows examples of syntheses for the
3 different patterns, as well as syntheses from our method using WPH descriptor with
GD multiscale optimization. We observe that the method using the RS+NND fails to
reproduce the geometric structures in the example with the largest number of points.
Figure 5.7 also presents the estimations of the spherical contact distribution function
(SCDF), defined for a point process Ξ as Hs(r) := 1− P(Ξ ∩B(0, r) = ∅), where B(0, r)
denotes the ball of radius r, centered at 0. For the observation with the largest number
of points, the model from [110] presents a larger error than ours.

Direct comparison

On the two distributions considered above, we shall illustrate the overall performance
of both methods. We ran 10 simulations of syntheses from the method of [110], with
kmax = 64 for the Cox Voronoi example, and kmax = 128 for the Turbulence Poisson
example, with 400 iterations per point. For both models we perform also the syntheses
from our multiscale gradient descent method (with 400 iterations).

The two families of examples of syntheses share the same corresponding, original
pattern of points coming from the original distributions. We also simulate other 9 patterns
for the original distributions to compare the averaged statistics and the diversity among
the original distribution and the models.

We compare the different distributions with visual evaluation (Figure 5.8), TDA
(Figure 5.9), and by estimation of the SCDF (Figure 5.10). For the evaluation with
TDA, in addition to the visualization of a 2-dimensional representation of the distance
matrix between (the PD of) all original and synthesized point patterns (cf. Section 5.6.3),
we also computed the average Wasserstein distance between all pairs of point patterns
belonging to different distributions. In more details, for a given distribution (Cox Voronoi
or Turbulence Poisson), let M := Morig/GD+WPH be the 10×10 distance matrix between
the 10 realizations of the original distribution and the 10 realizations of our model. We
compute dorig/GD+WPH = 1

100
∑
i,jMi,j . Similarly, we compute dorig/RS+NND for the

RS+NND model. We obtained, for the Cox Voronoi example, dorig/GD+WPH = 0.75, and
dorig/RS+NND = 1.52, showing a significant advantage to our method. Our experiments
on the Turbulence Poisson example gave dorig/GD+WPH = 0.61, and dorig/RS+NND = 0.62.
These results are coherent with the visual evaluation, that indicates a better performance
of our model, especially for the Cox Voronoi example. The better performance of our
method for the Turbulence Poisson example is best illustrated in Figure 5.10, that shows
a greater error for the RS+NND model than ours on the estimation of the spherical
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Figure 5.7: Syntheses from the model of [110] and our model, from observations containing
500, 2000 and 3784 points. The last line shows estimations of the spherical contact
distribution function Hs(r), for the corresponding models and methods, averaged over
10 realizations. For the three plots, the full line (blue) corresponds to the observation
distribution, the (green) dashed line to the method (RS+NND), and the (orange) dash-
dotted line to (GD+WPH).

contact distribution function.

5.8 Regularized model and proof of Theorem 5.3.1
Note that eq. (5.2) admits at least one global minimum, which is the observation φ̄ itself.
By building the model defined in Section 5.3, one hopes to generate new configurations φ̄′
such that Eφ̄(φ̄′) ' 0, and φ̄′ 6= φ̄. If the descriptor K is well chosen, then local minima
of Eφ̄ correspond to configurations that are likely to have been drawn from LΦ̄ (i.e. the
model is a good approximation of the true distribution).

The landscape of Eφ̄ is defined by the descriptor K. One might find itself in the
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Original RS+NND GD+WPH

Figure 5.8: Visualization of syntheses for the Cox Voronoi and Turbulence Poisson
examples. Left: observations, middle: RS+NND, right: GD+WPH.

Cox Voronoi Turbulence Poisson

dorig/RS+NND = 1.52 dorig/RS+NND = 0.62
dorig/GD+WPH = 0.75 dorig/GD+WPH = 0.61

Figure 5.9: Visualization of the TDA of the three distributions (Original, GD+WPH,
RS+NND), for the Cox Voronoi example (left), and the Turbulence Poisson example
(right). The black point represents the observation pattern used for the syntheses. The
averaged (true) distances between the original and synthesized patterns (via Wasserstein
distance of persistence diagrams) are given as well.

situation where a certain descriptor K gives poor local minima, (i.e. K does not satisfy
the sufficiency property (P2), so samples from the model defined with K are not similar
to φ̄), but incorporating additional constrains to K result in a model for which the only
local minimum is φ̄ itself. This is the case, for instance, when adding new constraints to
K leads to a violation of the concentration property (P1), due to the high variance of
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Figure 5.10: Estimation of the spherical contact distribution functions (SCDF), for the
Cox Voronoi example (left), and the Turbulence Poisson example (right). For the two
plots, the full (blue) line corresponds to the observation distribution, the dashed-dotted
(green) line to the method (RS+NND), and the dash-dotted (orange) line to (WPH+GD).

the new descriptor, as it will be illustrated in Figure 5.42.
To address this issue, we propose an alternative model allowing for the use of a

descriptor K that may not satisfy (P1). It consists in adding a regularization term to the
energy Eφ̄(µ) in (5.2), so as to prevent the gradient descent algorithm converge to the
global minimum which is φ̄. This can be realized, for example, using a Wassertein-type
distance between the current and the initial configuration of points, as described in what
follows.

The regularization that we introduce in this section aims at preventing the successive
iterations of the gradient descent model considered in Section 5.3.1 to move too far away
from its initial configuration. It is achieved by adding the distance between the initial
configuration and optimized configuration as a penalization term in the objective. It thus
forces the model to explore local minima of Eφ̄(·) around the initial configuration. As all
the configurations are measures with equal mass, it is natural to consider the Wasserstein
distance between them. However, as this distance is computationally expensive to
compute, we choose to replace it with the sliced Wesserstein distance [24]. For counting
measures with same mass, the 2-Wasserstein distance is defined as:

W2(µ, ν) = min
σ∈SN

( N∑
i=1
||ui − vσ(i)||2

) 1
2
,

where the minimum is taken over the set SN of permutations of (1, . . . , N).
The square SW2 distance between two planar counting measures µ and ν is then

defined as follows:

SW2
2(µ, ν) :=

∫
θ∈S1
W2

2 (θ#µ, θ#ν)dθ,

where θ# designates the pushforward by the orthogonal projection operator in the
direction θ.

The use of SW2 instead of W2 is motivated by the fact that applying the projection
operators leads us to compute W2 on R instead of R2, which is much faster, as we simply
need to sort the Dirac measures to obtain the optimal matching. It has been shown [25]
that SW2 is indeed a distance, and that it induces the same topology as W2 for compact

2Note that the violation of (P1) does not imply memorizing φ̄.
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domains. One can approximate SW2 by choosing a certain number of fixed directions
[24].

We use this distance with respect to the initial configuration φ̄0 ∈Ms as a regulariza-
tion term in the minimization of Eφ̄(·) defined in Eq. (5.2). More precisely, we consider
the following optimization problem

arg min
f∈F(R2)

1
2 |K(f#φ̄0)−K(φ̄)|+ η

1
2SW

2
2(f#φ̄0, φ̄0), (5.15)

where the minimization is done over the set F(R2) of measurable functions from R2 into
itself, and η ≥ 0 is a regularization parameter.

This new optimization problem implies that we do not try to sample from the
microcanonical set here, as we suppose that it does not contain enough realizations of Φ̄.

Note, in (5.15) we optimize the transport f# of a given initial configuration φ̄0 towards
φ̄, by minimizing the value of the function

Eφ̄0
φ̄

(f) = Eφ̄(f#φ0) + η
1
2SW

2
2(f#φ̄0, φ̄0)

= 1
2 |K(f#φ̄0)−K(φ̄)|+ η

1
2SW

2
2(f#φ̄0, φ̄0).

In a similar way as eq. (5.7), for any initial measure φ̄0 and any measurable function
f , we define a function from R2 to R2

x 7−→ ∇uEφ̄0
φ̄

(f) := η∇uSW2(f#φ̄0, φ̄0) +∇uEφ̄(f#φ̄0).

The sequence of point-configuration transports induced by gradient descent algorithm is
defined recursively by taking an initial configuration φ̄0, f0 := Id (identity) and for n ≥ 0 fn+1 : x 7−→ u− ζ∇uEφ̄0

φ̄
(fn ◦ . . . ◦ f0)

φ̄n+1 = fn+1 #φ̄n = (fn ◦ . . . ◦ f0)#φ̄0.
, (5.16)

where ζ > 0 is some gradient step size.
In analogy to (5.8) and (5.9), for all n ≥ 1, φ̄n transports the initial distribution L0

(of φ̄0) to some Ln. Note Lk = LΦ̄n is the distribution of the point process Φ̄n obtained
by n iterations of (5.16) started of Φ̄0 having law L0 = LΦ̄0

.

Proof of Theorem 5.3.1

Proof. In order to prove Theorem 5.3.1, we need to formally define Eq. (5.7). Recall that
in this section and in what follows, Ws is interpreted as endowed with the addition and
scalar multiplication modulo Ws.

For µ ∈Ms and any u ∈ Supp(µ)3, we define the following functions:

hµu : R2 −→ Ms

v 7−→ µ− δu + δu+v,

Kµ
u : R2 −→ Cd ≡ R2d

v 7−→ K ◦ hµu(v),
3For any counting measure µ, Supp(µ) is defined as the union of all singletons where µ has an atom,

i.e. Supp(µ) = x : µ(x) > 0.
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Eµu : R2 −→ R+

v 7−→ Eφ̄ ◦ h
µ
u(v).

The function Kµ
u can be complex valued. However, as our energy function is the

square Euclidean norm, it is equivalent to consider that Kµ
u has values in R2d. Moreover,

we assume in what follows that the function K is such that for all µ ∈ Ms and all
u ∈ Supp(µ), Kµ

u is differentiable. We can then define from chain rule, for any µ ∈Ms

and any u ∈Ws

∇uK(µ) :=
{
Jac[Kµ

u ](0) if u ∈ Supp(µ)
0 otherwise (5.17)

and

∇uEφ̄(µ) :=
{
Jac[Eµu ](0) if u ∈ Supp(µ)
0 otherwise (5.18)

where Jac[f ] denotes the Jacobian matrix of the function f . When u ∈ Supp(µ), the
chain-rule gives Jac[Eµu ](0) = (∇uK(µ))t(K(µ)−K(φ̄)).

Additionally, for φ0 ∈M, u ∈ φ0, and any f ∈ F(R2), we define the functions

hφ̄0
f,u : R2 −→ M

v 7−→ f#µ− δf(u) + δf(u)+v,

and

SW2
φ̄0
f,u : R2 −→ R+

v 7−→ SW2(hφ̄0
f,u(v), φ0).

For any u ∈ φ̄0, and any f ∈ F(R2), SW2
φ̄0
f,u is differentiable, so we can define a

function from R2 to R2

u 7−→ ∇uSW2(f#φ̄0, φ̄0) :=

 J [SW2
φ̄0
f,u](0) if u ∈ Supp(f#φ̄0)

0 otherwise.

The result follows from the fact that, for each n ≥ 0, the function u 7−→ fn(u) =
fn(u, φ̄0) defined in (5.16) satisfies

fn(Tu;T#φ̄0) = Tfn(u; φ̄0), φ̄0 ∈Ms (5.19)
and, by consequence, the same holds for the composition Fn(u, φ̄0) := fn ◦ . . . ◦ f1(u, φ̄0).

Indeed, if (5.19) holds, then for Φ̄n := Fn#Φ̄0 = Fn(·, Φ̄0)#Φ̄0,

T#Φ̄n =
∑
u∈Φ̄0

δTFn(u,Φ̄0)

=
∑
u∈Φ̄0

δFn(Tu,T#Φ̄0)

=
∑

u∈T#Φ̄0

δFn(u,T#Φ̄0
)

= Fn#(T#Φ̄0).
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Then for any Γ ∈Ms, as Φ̄0 is invariant to the action of T :

P(Φ̄n ∈ T−1
# (Γ)) = P(T#Φ̄n ∈ Γ)

= P(Fn#(T#Φ̄0) ∈ Γ)
= P(Fn#Φ̄0 ∈ Γ)
= P(Φ̄n ∈ Γ),

where the second to last equality comes from the invariance of the distribution of Φ̄0 to
the action of T .

It remains to prove (5.19), which can be done by induction. It is trivially true for
n = 0, as f0 = Id. Assume now that (5.19) is satisfied for all fk, k = 1, . . . , n and,
consequently, for Fn = fn ◦ . . . ◦ f1. Then, it remains to show that, for all φ̄0 ∈Ms,

fn+1(Tu;T#φ̄0) = Tfn+1(u; φ̄0).

Let us fix, without loss of generality, ζ = η = 1, then

fn+1(u, φ̄0) := u−∇uSW2(Fn(·, φ̄0)#φ̄0, φ̄0)−∇uEφ̄(Fn(·, φ̄0)#φ̄0). (5.20)

If u 6∈ Fn(·, φ̄0)#φ̄0, then the gradients are null, so the result is trivial.
If u ∈ Fn(·, φ̄0)#φ̄0, then there exists ui ∈ φ̄0 such that u = Fn(ui, φ̄0). We study the

second and third term of the r.h.s. of eq. (5.20) separately. Let us note A the linear
component of T , i.e. Tu+Av = T (u+v), for u, v ∈ R2. In what follows, we shall simplify
the notation replacing Fn(·, φ̄0)#φ̄0 by Fn and Fn(ui, φ̄0) by Fn(ui).

We can write, as K is invariant to T ,

∇TFn(ui)Eφ̄(TFn) =
(
∇TFn(ui)K(TFn)

)t(
K(TFn)−K(T#φ̄)

)
=
(
∇TFn(ui)K(TFn)

)t(
K(Fn)−K(φ̄)

)
, (5.21)

with

∇TFn(ui)K(TFn) = J [KTFn
TFn(ui)](0) = J [K ◦ hTFnTFn(ui) ◦A](0)At, (5.22)

where we used the fact that A−1 = At. Furthermore, using the fact that K is invariant
to T ,

K ◦ hTFnTFn(ui) ◦A(v)

= K

(
TFn − δTFn(ui) + δTFn(ui)+Av

)
= K

(
TFn − δTFn(ui) + δT (Fn(ui)+v)

)
= K

(
T#
(
Fn − δFn(ui) + δFn(ui)+v

))
= K

(
Fn − δFn(ui) + δFn(ui)+v

)
= K ◦ hFnFn(ui). (5.23)
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Using (5.22) and (5.23) in (5.21) we then obtain

∇TFn(ui)Eφ̄(TFn) =
(
∇Fn(ui)K(Fn)At

)t(
K(Fn)−K(φ̄)

)
= A

(
∇Fn(ui)K(Fn)

)t(
K(Fn)−K(φ̄)

)
= A∇Fn(ui)Eφ̄(Fn).

The computations for the regularization term follow the same lines, as the gradient of
the regularization function is equivariant to T and, the regularization itself is invariant.
Finally, we obtain

fn+1(Tu, T#φ̄0) = Tu−A∇uSW2(Fn(·, φ̄0)#φ̄0, φ̄0)−A∇uEφ̄(Fn(·, φ̄0)#φ̄0)
= T (u−∇uSW2(Fn(·, φ̄0)#φ̄0, φ̄0)−∇uEφ̄(Fn(·, φ̄0)#φ̄0))
= Tfn+1(u, φ̄0),

which concludes the proof.

5.9 Relaxing the assumptions on the data
In order to present our model in a simple setting, strong theoretical assumptions have
been made on the data. However, in real world applications, the data will most likely
not satisfy these assumptions. This section presents ideas on how to adapt our model in
such cases.

Non-periodic boundaries Recall that our descriptor, defined in (5.11), applies peri-
odic boundary correction to point patterns in a square window. If the structure of the
observed pattern is not periodic, one can modify the descriptor by applying non-periodic
integrals in (5.11) over some smaller window. In particular, we suggest a scale-dependent
reduction of the integration window, pertinent when the wavelet ψ has a compact (or
approximately compact) spatial support. Specifically, we consider a new descriptor K̃
by considering the integrals in (5.11) with i = (ξ, k, ξ′, k′, τ ′) ∈ Υ over smaller windows
Wsi ⊂ Ws, such that boundary effects are negligible. Our current software can also
handle such non-periodic boundary conditions.

More general observation windows Additionally, we considered that the observed
pattern lies in a square observation window. If this is not the case, one could use a
similar idea to the non-periodic case: embed the observation window in a square window
and considering integrals in (5.11) over the observation window.

Non stationary process In [69], the authors focus on building a model for non
stationary point processes inspired by [110]. Similarly, one might adapt our method to
model non stationary processes. This could be done by modifying two aspects of the
method. First, the initial distribution Φ0 (cf. Section 5.3.1) could be chosen as a non
stationary Poisson point process, estimating the intensity with a kernel estimator, such
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as in [69]. In addition, as pointed out in [69], the descriptor should be adapted not to
be translation invariant. This could be done, for example, by applying local integrals
over patches of the observation window in (5.11) (this requires some notion of "local
stationarity" of the process). Another method that may be useful in this scenario is
the regularization proposed in Section 5.8, where a regularization term is added to the
energy. This term consists of the (Sliced Wasserstein) distance [95] between the initial
configuration and the current configuration (the one being optimized). By adding this
regularization term to the energy, the points of the configuration are forced not to move
too far away from the initial configuration, which could help preserve the non stationarity
of the initial distribution in the distribution of the model.

5.10 Discussion
In this chapter, we presented a particle gradient descent model to simulate stationary and
ergodic point processes, based on a single observation in a square window. This model is
able to synthesize processes formed by a large number of points, exhibiting interactions
at multiple scales. Our method is built upon recent works on gradient descent methods
to approximate the micro-canonical model. To characterize complex geometric point
patterns, we use the wavelet phase harmonic descriptors that allow to explicitly control
the scales of the structures to model. Compared to the classical approaches developed in
[109, 110], our approach brought a new perspective to the modeling of point processes,
through the lens of wavelet analysis and image modeling.

While numerical results on Cox and Turbulent distributions illustrate the ability of
the model to capture various geometric structures in the observation, these distributions
are not perfectly well approximated by our model, as shown in Figure 5.6. In order
to study what geometric information is missing from our wavelet covariance descriptor,
we shall take interest in the modelling of texture images, as they can exhibit complex
structures, often more easily perceptible.
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Chapter 6

Generalized rectifier wavelet
covariance models for texture
synthesis

In Chapter 5, we used wavelet phase harmonics covariance statistics (cf. Section 3.5) to
represent the distribution of point processes, and built a maximum entropy model based
on this representation. We shall now study what possible improvements can be made to
this set of descriptors, by focusing on texture images, which can be view as stationary
random fields, and can exhibit more complex geometric structures than point processes.
The model developed in this chapter can, however, be readily applied to random measures
and stationary point processes.

6.1 Modelling texture images
Textures ares spatially homogeneous images, consisting of similar patterns forming a
coherent ensemble. In texture modeling, one of the standard approaches to synthesize
textures relies on defining a maximum entropy model [65] using a single observed image
[94]. Recall from 2.10, maximum entropy models consist of computing a set of prescribed
statistics from the observed texture image, and then generating synthetic textures
producing the same statistics as the observation. If the statistics correctly describe
the structures present in the observation, then any new image with the same statistics
should appear similar to the observation. A major challenge of such methods resides
in finding a suitable set of statistics, that can generate both high-quality and diverse
synthetic samples. This problem is fundamental as it is at the heart of many texture
related problems. For example, in patch re-arrangement methods for texture modeling,
these statistics are used to compute high-level similarities of image patches [75, 94]. Such
statistics are also used in texture interpolation for probing visual perception [114], style
transfer and image inpainting [55, 72].

A key question along this line of research is to find what it takes to generate natural
textures. This problem was originally posed in [66], in which the author looks for a
statistical characterization of textures. In the classical work of [92], the authors presented
a model whose statistics are built on the wavelet transform of an input texture image.
These statistics were carefully chosen, by showing that each of them captured a specific
aspect of the structure of the image. This model produces satisfying results for a wide
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range of textures, but fails to reproduce complex geometric structures present in some
natural texture images. Figure 6.1 presents a typical example composed of radishes,
and synthetic images from three state-of-the-art models developed over the last few
decades. To address this problem, the work of [54] proposes to use statistics built
on the correlations between the feature maps of a deep convolutional neural network
(CNN), pre-trained on the ImageNet classification problem [43, 102]. While this model
produces visually appealing images, these statistics are hard to interpret. The work of
[112] made a significant simplification of such statistics, by using the feature maps of
a one-layer rectifier CNN with random filters (without learning). A crucial aspect of
this simplification relies on using multi-scale filters, which are naturally connected to the
wavelet transform. In this chapter, we propose a wavelet-based model, more interpretable
than CNN-based models (with learned or random filters), to synthesize textures with
complex geometric structures. It allows one to bridge the gap between the classical work
of [92], and state-of-the-art models.

Observation PS VGG RF

Figure 6.1: Example of syntheses from three texture models in chronological order. From
left to right: the observed texture in gray-scale, synthesis from PS ([92]), from VGG
([54]), and from RF ([112]).

This model is built on the recent development of the phase harmonics for image
representations and non-Gaussian stationary process modeling, introduced in [81, 120],
and presented in Section 3.5 in the stochastic-geometric framework. Recall that the phase
harmonics are non-linear transformations that adjust the phase of a complex number. In
[92, 120], the authors illustrate that the phase dependencies between wavelet coefficients
across scales contain important information about the geometric structures in textures
and turbulent flows, and that they can be captured by applying the phase harmonics to
complex wavelet coefficients. Remarkably, [81] show that the phase harmonics admit a
dual representation, closely related to the rectifier non-linearity in CNNs.

In this work, we present the following results:

• We develop a family of texture models based on the wavelet transform and a
generalized rectifier non-linearity, that significantly improves the visual quality of
the classical wavelet-based model of [92] on a wide range of textures. It relies on
introducing spatial shift statistics across scales to capture geometric structures in
textures.

• By changing the number of statistics in our models, we show explicitly the trade-off
on the quality and diversity of the synthesis. When there are too many statistics, our
model tends to memorize image patches. We further investigate such memorization
effects on non-stationary images and find that it sometimes relies on what statistics
are chosen, rather than on how many.
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• Through the modeling of geometric structures in gray-scale textures, our model
indicates the possibility of reducing significantly the number of statistics in the
works of [54] and [112], to achieve a similar visual quality.

The rest of this chapter is organized as follows: Section 6.2 reviews the framework
of microcanonical maximum-entropy models, build upon a general family of covariance
statistics. We then present our model for both gray-scale and color textures in Section
6.3. Section 6.4 shows synthesis results of our model, compared with state-of-the-art
models. Finally, in Section 6.5, we discuss possible improvements of our model.

Notations For the remainder of this chapter, N denotes a positive integer. A gray-scale
image x is an element of RN×N , i.e. x = x(u), u ∈ XN , with XN := {0, · · · , N − 1}2.
Recall, a color image x = {xc}c=1,2,3 is an element of R3×N×N , or equivalently, each
xc ∈ RN×N . We shall denote x̄ the observed texture (observation), which is assumed to
be a realisation a random vector X. For any complex number z ∈ C, z∗ is the complex
conjugate of z, Real(z) its real part, |z| its modulus, and ϕ(z) its phase. In this work,
for the sake of clarity, the model proposed in [92] shall be abbreviated PS, the model
presented in [112] shall be noted RF (as they use random filters), and the VGG-based
model of [54] shall be referred to as VGG.

6.2 Microcanonical covariance models
We briefly review the standard framework of micro-canonical maximum-entropy models
for textures. To reliably estimate the statistics in these models, we assume that a texture
is a realization of a stationary and ergodic process (restricted to XN ). We then review a
special family of statistics that are used in the state-of-the-art texture models (mentioned
in Figure 6.1), based on covariance statistics of an image representation.

6.2.1 Framework

Given a observation texture x̄, we aim at generating new texture images, similar but
different from x̄. To that end, a classical method is to define a set of statistics Cx̄,
computed on the observation, and try to sample from the microcanonical set

{x : ‖Cx− Cx̄‖ ≤ ε},

where ‖ · ‖ denotes the L2 norm.
Under the stationary and ergodic assumption of X, one can construct Cx as a

statistical estimator of E(CX), from a complex-valued representation Rx(γ, u) ∈ C as a
function of (γ, u) in an index set Γ×XN . The set of covariance statistics Cx of a model
can then be constructed by computing an averaging over the spatial variable u, i.e.

Cx(γ, γ′, τ) := 1
|XN |

∑
u∈XN

Rx(γ, u)Rx(γ′, u− τ)∗, (6.1)

for (γ, γ′, τ) ∈ Υ ⊆ Γ×Γ×XN . The statistics Cx(γ, γ′, τ) can be interpreted as estimating
the covariance (resp. correlations) between RX(γ, u) and RX(γ′, u− τ) for zero-mean
RX (resp. non-zero mean RX). The ergodicity assumption ensures that when N is large
enough, the approximation Cx̄ ' E(CX) over Υ should hold with high probability. Under
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these conditions, it makes sense to sample the microcanonical set in order to generate
new texture samples. To draw the samples, we follow gradient-based sampling algorithms,
suitable in high-dimensions [32], to minimize the objective function ‖Cx−Cx̄‖2, starting
from an initial sample from a normal distribution. This sampling method is similar to
the one presented in Section 5.3 to sample from point processes (recall that the method
proposed in Section 5.3 use a differentiable mapping from point patterns to images, cf.
Section 5.5.1).

This framework encompasses a wide range of state-of-the-art texture models, such
as [92, 54, 112, 120]. In particular, the PS model developed in [92] takes inspiration
from the human early visual system to define a multi-scale representation based on the
wavelet transform of the image [61]. We next review a family of covariance model which
generalizes the statistics in the PS model. We write CM the statistics for a specific model
M that uses the representation RM.

6.2.2 Wavelet phase harmonic covariance models

We review a family of microcanonical covariance models defined by a representation built
upon the wavelet transform and phase harmonics (Sections 3.1 and 3.5). The wavelet
phase harmonics covariance representation is defined for texture images in the same way
as for point processes. It defines a class of covariance statistics that capture dependencies
between wavelet coefficients across scales.

Wavelet transform

For texture modeling, we consider oriented wavelets to model geometric structures in
images at multiple scales. They include the Morlet wavelets (cf. Example 3.1.2) and
steerable wavelets (such as Example 3.1.3), proposed in [58, 101, 111]. In particular, the
Simoncelli steerable wavelets have been used to model a diverse variety of textures in
[92].

Oriented wavelets are defined by the dilation and rotation of a complex function
ψ : R2 7→ C on a plane. Let rθ denote the rotation by angle θ in R2. They are derived
from ψ with dilations by factors 2j , for j ∈ {0, 1, · · · , J − 1}, and rotations rθ over angles
θ = `π/L for 0 ≤ ` < L, where L is the number of angles in [0, π). The wavelet at scale
j and angle θ is defined by

ψj,θ(u) = 2−2jψ(2−jrθu), u ∈ R2

Scales equal or larger than J are carried by a low-pass filter φJ . These continuous
wavelets are then discretized (with periodic boundary condition) to define a discrete
wavelet transform in the spatial domain XN .

The wavelet transform of an image x ∈ RN×N is a family of functions obtained by the
convolution of x with the discrete wavelets. Let Λ := {0, · · · , J − 1} × π

L{0, · · · , L− 1}
be the index set of the wavelet coefficients. For notation convenience, we denote the
resulting coefficients by

x ? ψj,θ(u) =
∑
v∈XN

x(u− v)ψj,θ(v), u ∈ XN , (j, θ) ∈ Λ. (6.2)

The low-pass coefficients x ? φJ are defined similarly.
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Wavelet phase harmonics and the PS model

To model natural textures, it has been shown ([92, 120]) that it is crucial to capture
statistical dependencies between wavelet coefficients across scales. This can be achieved
by using a wavelet phase harmonic representation, which is defined by the composition
of a linear wavelet transform of x, and a non-linear phase harmonic transform.

In [81], the authors introduce the phase harmonics to adjust the phase of a complex
number z ∈ C (cf. Section 3.5). Recall that the phase harmonics {[z]k}k∈Z of a complex
number z ∈ C are defined by multiplying its phase ϕ(z) of z by integers k, while keeping
the modulus constant, i.e. ∀ k ∈ Z, [z]k := |z|eikϕ(z)..

The wavelet phase harmonic representation (WPH) is then defined by

RWPHx(γ, u) = [x ? ψj,θ(u)]k − µγ , γ = (j, θ, k) ∈ Γ = Λ× Z, (6.3)

where µγ is defined as the spatial average of [x̄ ? ψj,θ]k.
It is shown in [120] that the PS model can be regarded as a low-order wavelet phase

harmonics covariance model, which considers only a restricted number of pairs (k, k′). In
the next section, we shall use a dual representation of the phase harmonic operator to
define a covariance model to capture high-order phase harmonics.

6.3 Generalized rectifier wavelet covariance model
In the previous section, we presented a class of models, built from the wavelet phase
harmonic representation. A dual representation of the phase harmonic operator [·]k can
be defined via a generalized rectified linear unit, that we review in Section 6.3.1. We
then discuss in Section 6.3.2 how to define an appropriate index set of Γ for gray-scale
textures. Section 6.3.3 extends the model to color textures.

6.3.1 From phase harmonics to the generalized rectifier

The generalized rectified linear unit of a complex number z, with a phase shifted by
α ∈ [0, 2π], is defined by

ρα(z) = ρ(Real(eiαz)), (6.4)

where ρ is a rectified linear unit, i.e. for any t ∈ R, ρ(t) := max(0, t). In [81], it is
shown that applying a Fourier transform on ρα(z) along the variable α results in the
phase harmonics of z (up to some normalization constant). This suggests an alternative
model, defined by coefficients of the form

RALPHAx(γ, u) = ρα(x ? ψj,θ(u))− µγ , γ = (j, θ, α), (6.5)

for γ ∈ Γ = Λ× [0, 2π], and, as before, µγ is defined as the spatial average of ρα(x̄?ψj,θ(u))
over u ∈ XN .

Relation with high-order phase harmonics Based on the duality between the
phase harmonics k ∈ Z and the phase shift variable α ∈ [0, 2π], we now present the
relation between CALPHA and the high-order phase harmonics in CWPH. The following
result was first proved in [81],
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Proposition 6.3.1. There exists a complex-valued sequence {ck}k∈Z such that for all
(j, θ, α) ∈ Γ, (j′, θ′, α′) ∈ Γ, and all τ ∈ XN ,

CALPHAx((j, θ, α), (j′, θ′, α′), τ) =
∑

(k,k′)∈Z2

ckc
∗
k′C

WPHx((j, θ, k), (j′, θ′, k′), τ)ei(kα−k′α′).

Proof. Using the fact that

ρ(Real(zeiα)) = ρ(Real(|z|ei(ϕ(z)+α)))
= |z|ρ(cos(α+ ϕ(z)),

and taking the Fourier transform of ρα(z) in the variable α, we obtain

F(ρα(z))(k) := 1
2π

∫
[0,2π]

ρα(z)e−ikαdα

= |z| 1
2π

∫
[0,2π]

ρ(cos(α+ ϕ(z))e−ikαdα

= |z|eikϕ(z)ck

= [z]kck,

where ck is the Fourier transform of h(.) := ρ(cos(.)) at the frequency k. The function
α 7→ ρα(z) being periodic in α, we have its decomposition in Fourier series

ρα(z) =
∑
k∈Z
F(ρα(z))(k)eikα

=
∑
k∈Z

ck[z]keikα.

We can then write, for any z, z′ ∈ C, and α, α′ ∈ [0, 2π],

ρα(z)ρα′(z′)∗ =
∑

k,k′∈Z2

ckc
∗
k′ [z]k[z′]−k

′
ei(kα−k

′α′).

Replacing z and z′ by any two wavelet coefficients x ? ψj,θ(u) and x ? ψj′,θ′(u− τ),
we thus obtain the relation in Proposition 6.3.1.

We remark that the sequence {ck}k∈Z is uniquely determined by the rectifier non-
linearity ρ, and they are non-zero if k is even ([81]). This result shows that for a suitable
choice of (α, α′), the covariance statistics CALPHAx can implicitly capture CWPHx with
a wide range of k and k′.

Relation with second order statistics Using a simple decomposition of wavelet
coefficients into their positive, negative, real and imaginary parts, we can further show that
the covariance statistics CALPHAx capture the classical second order statistics of wavelet
coefficients, also used in the PS model (with phase harmonic coefficients k = k′ = 1).

Proposition 6.3.2. Let I = {0, π2 , π,
3π
2 }. There exists a finite complex-valued sequence

{wα,α′}(α,α′)∈I2 such that for all (j, θ) ∈ Λ, and all τ ∈ XN ,∑
(α,α′)∈I2

wα,α′C
ALPHAx((j, θ, α), (j′, θ′, α′), τ) = 1

XN

∑
u∈XN

(
x?ψj,θ(u)

)(
x?ψj′,θ′(u−τ)

)∗
.

(6.6)
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Proof. Let z ∈ C, and recall from eq. (6.4), that ρα(z) = ρ(Real(zeiα)). Note that we
have the following relation

z = ρ0(z)− ρπ(z)− i(ρπ
2
(z)− ρ 3π

2
(z)). (9)

We can then write

zz′∗ =
(
ρ0(z)− ρπ(z)− i(ρπ

2
(z)− ρ 3π

2
(z))

)(
ρ0(z′)− ρπ(z′)− i(ρπ

2
(z′)− ρ 3π

2
(z′))

)
=

∑
α,α′∈I2

wα,α′ρα(z)ρα′(z′),

with I = {0, π2 , π,
3π
2 }. Replacing z with x ? ψj,θ(u), z′ with x ? ψj′,θ′(u − τ), and

injecting this relation in eq. (6.1) gives us the desired result.

This shows that using only four α uniformly chosen between [0, 2π] is sufficient to
capture second order statistics. Because the wavelet transform is an invertible linear
operator (on its range space), computing the r.h.s of eq. (6.6) for all (j, θ, τ), as well as
the low-pass coefficients carried out by ΦJ , is equivalent to computing the correlation
matrix of x.

Relation with the RF model Setting aside the subtraction by the spatial mean µγ ,
the RF model can be viewed as a particular case of models defined by eq. (6.5). Indeed,
the statistics of the RF model take the form of eq. (6.1), with

RRFx(f, u) = ρ(x ? ψf (u)),

where {ψf} being a family of multi-scale random filters (samples from a uniform distribu-
tion, see [112] for more details). By writing ρα(x ? ψj,θ(u− τ)) = ρ(x ?Real(ψτj,θeiα)(u)),
with ψτj,θ denoting the translation of ψj,θ by τ , we see that the models are similar, the
difference being that our models use wavelet-based filters instead of random ones.

6.3.2 Defining an appropriate Υ
The choice of the covariance set Υ is of central importance in the definition of the model.
Intuitively, a too small set of indices will induce a model that could miss important
structural information about the texture that we want to synthesize. Conversely, if Υ
contains too many indices, the syntheses can have good visual quality, but the statistics
of the model may have a large variance, leading to the memorization of some patterns
of the observation. There is a trade-off between these two aspects: one must capture
enough information to get syntheses of good visual quality, but not much, so as not to
reproduce parts of the original image. To illustrate this point, we shall study the model
ALPHA defined with three different sets Υ : A smaller model ALPHAS with a limited
amount of elements in Υ, an intermediate model ALPHAI, and a larger model ALPHAL.

To precisely define these models, let us note J := {0, · · · , J−1}, Θ := π
L{0, · · · , L−1},

and AA = 2π
A {0, · · · , A−1}. Let us also define the set T := {0}∪{2j(cos(θ), sin(θ)) : 0 ≤

j < J, θ ∈ π
L{0, · · · , 2L− 1}}, from which the spatial shift shall be selected. Table 6.1

summarizes the conditions that all parameters have to satisfy to be contained in these
sets. Additionally, these models include large scale information through the covariance of
a low-pass filter, i.e. the spatial average of x ? φJ(·)x ? φJ(· − τ), for τ ∈ T. To count
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the size of Υ without redundancies, in Section 6.4.1 we provide an upper bound on the
non-redundant statistics in our models. This upper bound is used to count the number
of statistics in our models. To keep this number from being too large, instead of taking
all shifts in a square box, such as in [92], we choose to select only shifts of dyadic moduli,
and with the same orientations as the wavelets.

Model Scales Angles Phase shift Spatial shift Size of Υ

ALPHAS
(j,j′)∈J2

|j′−j|≤1 (θ, θ′) ∈ Θ2 (α, α′) ∈ A4×A1
τ∈T if (j,θ)=(j′,θ′)
τ=0 otherwise. ( J |Θ|2 + J |Θ||T|)|A4|

ALPHAI (j, j′) ∈ J2 (θ, θ′) ∈ Θ2 (α, α′) ∈ A4×A1 τ ∈ T J2|Θ|2|A4||T|

ALPHAL (j, j′) ∈ J2 (θ, θ′) ∈ Θ2 (α, α′) ∈ A2
4 τ ∈ T J2|Θ|2|A4|2|T|

Table 6.1: List of indices in Υ for different ALPHA models.

ALPHAS vs. ALPHAI The small model ALPHAS is inspired from the PS model, as it
only takes into account of the interactions between nearby scales (i.e. |j′ − j| ≤ 1), and
the spatial shift correlations are only considered for (j, θ) = (j′, θ′). There are two notable
differences in the statistics included in the ALPHAS and ALPHAI models. The first
one is the range of scales being correlated. It has been shown in [120] that constraining
correlation between a wider range of scales induces a better model for non-Gaussian
stationary processes, and a better estimation of cosmological parameters from observed
data [2]. The second difference, which has a significant impact on the number of statistics
(it increases the model size by a factor ∼10), is the number of spatial shifts in the
correlations. In the ALPHAI model, spatially shifted correlations are computed for all
pairs of coefficient (γ, γ′). For both stationary textures and non-stationary images in
gray-scale, shape and contours of salient structures and objects are better reproduced
with ALPHAI, as illustrated in Figure 6.2 and Figure 6.3.

ALPHAI vs. ALPHAL As we observe in Figure 6.2, the ALPHAI model, containing 4
times less coefficients than the ALPHAL, suffers less from memorization effects, while still
capturing most of the geometric information in the images. This small loss of information
can be partially explained by the frequency transposition property of the phase harmonics
operator [81], for compactly supported wavelets in the frequency domain, as detailed in
the following.

First, remark that the simple linear relation( ∑
α∈A4

ρα(z)eikα
)
ρ0(z) =

∑
α∈A4

ρα(z)ρ0(z)eikα (6.7)

tells us that computing all correlations for α ∈ A4 and α′ = 0 gives us at least the
information contained in the r.h.s. of eq. (6.7).

Furthermore, if α ∈ A4 = {0, · · · , 3π
4 }, we make the following approximation

∑
α∈A4

ρα(z)eikα '
∫

[0,2π]
ρα(z)e−ikαdα = 2πck[z]k.
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Recall also from the proof of Proposition 6.3.2, that F(ρα(z))(k) = [z]kck, where the
Fourier transform is taken along the variable α. Therefore,

ρ0(z) =
∑
k∈Z

ck[z]k.

Therefore, ( ∑
α∈A4

ρα(z)eikα
)
ρ0(z) '

( ∫
[0,2π]

ρα(z)e−ikαdα
)
ρ0(z)

= 2πck[z]k
( ∑
k′∈Z

ck′ [z′]k
′)

= 2πck
∑
k′∈Z

ck′ [z]k[z′]k
′
.

Then, replacing z and z′ with wavelet coefficients, we get

∑
α∈AA

e−ikαCALPHAx((j, θ, α), (j′, θ′, 0), τ) ' 2πck
∑
k′∈Z

ck′C
WPHx((j, θ, k), (j′, θ′, k′), τ).

Using Plancherel’s theorem, we can write that

CWPHx((j, θ, k), (j′, θ′, k′), τ) = 1
|XN |

∑
ω∈ 2π

N
XN

F([x ? ψξ]k)(ω)F([x ? tτψξ]−k
′)(ω),

where the Fourier transform of an image x is defined by F(x)(ω) := ∑
u∈XN x(u)e−iωu,

and tτ denotes the translation by τ , i.e. tτf(·) = f(· − τ).
Now, suppose that the wavelets ψα have disjoint compact frequency support, in

balls Bξ(2−jC ′), where ξ = 2−jr−θξ0, and ξ0 is the central frequency of the mother
wavelet ψ (cf. Section 3.1). Suppose also that frequency transposition property of the
phase harmonics operator (cf. [81]) is such that [x ? ψξ]k has (approximately) frequency
support in Bkξ(k2−jC ′). Then, for all ξ, ξ′, and all k ∈ Z, there exists only one k∗ such
that the frequency supports of [x ? ψξ]k and [x ? ψξ′ ]−k

∗ are not disjoint, i.e. such that
CWPHx((j, θ, k), (j′, θ′, k′), τ) 6= 0. This tells us that∑

α∈AA

e−ikαCALPHAx((j, θ, α), (j′, θ′, 0), τ) ' ckck∗CWPHx((j, θ, k), (j′, θ′, k∗), τ).

Thus, computing all correlations for α ∈ A4, and α′ = 0 gives us (approximately) all
the information contained in WPH coefficients for any pair k, k′.

This result lies on several approximations, and strong assumptions about the wavelets,
which are not fully met in practice. For this reason, setting α′ = 0 instead of α′ ∈ A4
effectively reduced the amount of information captured by the statistics, and therefore
increases the diversity of the model. However, as we observe in Figure 6.2, there is not
too much information lost, and the resulting model still captures most of the important
geometric structures in texture images. In order to avoid this memorization effect, we
shall, in the rest of the chapter, consider only the intermediate model.
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Observation ALPHAS (3.5k) ALPHAI (35k) ALPHAL (142k)

Figure 6.2: Examples of syntheses from the ALPHA models defined in Table 6.1. Visually
similar image patches in textures are highlighted by red circles. The number of statistics is
given in brackets next to each model name. From top to bottom: a Julesz counterexample,
a stationary texture image, a stationary turbulent field and a non-stationary image. We
see that the model ALPHAI achieves a balance between the visual quality and diversity
on these examples.

6.3.3 Modelling color interactions

In order to generate color images, the covariance model ALPHAI defined in Section 6.3.2
could be directly applied to each R, G and B color channel independently. However, it
would not take into account the color coherence in the structures of the observation.

To capture color interactions in the observation image, we shall impose the covariance
between the coefficients of (6.5) for all indices in Υ and all color channels. More precisely,
let x = {xc}c=1,2,3 be a color image, with the parameter c representing the color channel.
The ALPHAC color model is defined by correlations between coefficients of the form:

RALPHACx(γ, u) = ρα(xc ? ψj,θ)(u)− µγ , γ = (j, θ, α, c). (6.8)

The set of indices is defined as

ΥALPHAC := {(γ, γ′, τ) : ((j, θ, α), (j′, θ′, α′), τ) ∈ ΥALPHAI , (c, c′) ∈ {1, 2, 3}2}.

Reduced ALPHAC The model ALPHAC has a large size as it computes correlations
between all coefficients for all color channels. This size can be significantly reduced by
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Obs ALPHAS (3.5k) ALPHAI (35k) ALPHAL (142k)

Figure 6.3: Visual comparison of syntheses from the ALPHAS, ALPHAI and ALPHAL
models.

computing spatially shifted coefficients only for the same color channels (to capture their
geometries).

More precisely, it is defined by the following index set: Υ := {(γ, γ′, τ) : ((j, θ, α), (j′, θ′, α′), τ) ∈
ΥALPHAI , c = c′ ∈ {1, 2, 3}} ∪ {(γ, γ′, 0) : ((j, θ, α), (j′, θ′, α′), 0) ∈ ΥALPHAI , (c, c′) ∈
{1, 2, 3}2}. This gives a model of size about three times smaller (∼ 113k), with little
degradation of the visual quality, as shown in Figure 6.4.
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Obs ALPHAC (320k) Reduced (113k)

Figure 6.4: Visual comparison of syntheses from ALPHAC model and its reduced version.

6.4 Numerical experiments
In this section, we compare our intermediate model to the state-of-art models (PS, RF
and VGG) on both gray-scale and color textures. We first specify the experimental
setup and detail the size of each model. We then present the synthesis results of various
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examples, and discuss their quality through visual inspection. A quantitative evaluation
of the quality of the syntheses, based on the synthesis loss of the VGG model, and
proposed in [112], is also discussed here.

6.4.1 Experimental Setup

For our experiments, we choose gray-scale and color textures with various visual structures.
Our natural texture examples were obtained from the following three sources: CNS NYU1,
Textures.com2, Describable Textures Dataset model3 and the Github page of [12] 4. In the
gray-scale examples, we also include a turbulent vorticity flow, which is simulated from
Navier-Stokes equations in two dimensions ([99]). These examples all contain complex
geometric structures that are hard to model by the classical PS model.

The texture images presented in this work have a size of N = 256, giving a number of
pixels of ∼65k. For all the ALPHA models, we use Morlet wavelets. This choice differs
from the PS model, which uses Simoncelli steerable wavelets. As illustrated in Figure 6.5,
this choice can have a visible impact on the quality of the textures. We observe that,
while on the first example, the coherence of the structures appear similar for the three
wavelet families, the second example shows that the wavelets used in [92] are less efficient
in reproducing the contours of the objects (small pebbles). While in our experiments,
we chose to use the classical Morlet wavelets, an optimal choice for the wavelet family
remains an open problem.

Observation Simoncelli Bump Morlet

Figure 6.5: Comparison between different wavelets families used in the ALPHAI model.
Central zooms of syntheses using the same covariance model, with three different wavelet
families. From left to right: observation, Simoncelli steerable wavelets, bump steerable
wavelets (cf. Example 3.1.3), and Morlet wavelets (Example 3.1.2).

The number of orientations is set to L = 4, and the maximal scale is J = 5. The
maximal scale parameter also plays an important role in the definition of the wavelet
transform. It determines the scales of the structures being captured by the transform.
If this parameter is too small, large structures in the observation image might not be
captured and reproduced in the model syntheses. Conversely, if J is too large, then

1http://www.cns.nyu.edu/~lcv/texture/
2https://textures.com/
3https://www.robots.ox.ac.uk/~vgg/data/dtd/index.html
4https://github.com/guillaumebrg/texture_generation
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the large scale statistics may have a high variance, inducing a memorization effect in
the syntheses. Figure 6.6 illustrates this point on two examples from Section 6.4.2. By
setting J = 4 (i.e. the maximal range of structures captured by the wavelets is of size
24 = 16), we observe on the first example that the larger structures (bubbles) are not
well reproduced. When J is set to 6, the observation is almost identically reproduced by
the synthesis. Similarly on the second examples, several parts of the synthesis appear
very similar to ones in the observation. We found that a suitable trade-off consists in
setting J = 5 for images of size N = 256.

Observation J = 4 J = 5 J = 6

Figure 6.6: Syntheses from the ALPHAC model defined with three different maximal
scale parameter J ∈ {4, 5, 6}.

Similarly to [54] and [112], we use the L-BFGS algorithm [86] for the optimization
of the objective. As in the VGG model ([54]), we further apply a histogram matching
procedure as post-processing after optimization.

Number of statistics Here, we detail the number of statistics in the different ALPHA
models. We begin by giving the formula for each model (note that we do not include the
low-pass statistics, which numbers are negligible). To (partially) avoid redundancy in
the coefficients, for all models, we compute only the correlations for indices in Υ such
that j2 ≥ j1. This gives us the following formulas for the number of statistics:

• #(ALPHAS) = (2J − 1)|Θ4|2|A4|+ J |Θ4||A4||T|

• #(ALPHAI) = 1
2J(J + 1)|Θ4|2|A4||T|

• #(ALPHAL) = 1
2J(J + 1)|Θ4|2|A4|2|T|

• #(ALPHAC) = 9
2J(J + 1)|Θ4|2|A4||T|

Note that, for all ALPHA models, we also compute first order statistics µγ , i.e. the
spatial averages of RALPHAx̄(γ, u). There are J |Θ4|2 statistics of this sort in every model,
which is negligible with respect to the total number of second order statistics.

Note also that there are still some redundancies in these statistics, as for j = j′, all
correlations for θ, θ′, α, α′, τ are counted twice. The number of such statistics is5, for all

5The number of such moments is of the order of J |Θ|3 for the small model, J |Θ|4 for the intermediate
and large models, and 9J |Θ|4 for the color model.
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model, superior to the number of first order statistics, which shows that our formula is
in fact an upper bound for the exact number of statistics.

This leads us to the following descriptor sizes: for gray-scale textures, the number of
the statistics used in the ALPHAI model is ∼35k. The small model ALPHAS has ∼3.5k
statistics, while the large model ALPHAL has ∼142k statistics. For comparison, the PS,
RF and VGG models have ∼7k, ∼525k , ∼177k statistics respectively. For color textures,
the number of statistics of the ALPHAC model is ∼320k, while for the PS, RF and VGG
models, it is ∼36k, ∼525k, ∼177k respectively.

Non-periodic boundaries in natural images The convolution operation in the
wavelet transform ((6.2)) is performed using the Fast Fourier Transform. Additionally,
recall from Section 6.2.1 that spatial shifts are defined with periodic boundary conditions.
This implies periodicity of the input image x. However, natural texture images are not
periodic, so one needs to adapt the computation of coefficients to take into account
possible border effects. To that end, instead of averaging over all u ∈ XN as in eq. (6.1),
each correlation coefficient is averaged over a sub-window inside XN (also proposed for
the point process synthesis model, cf. Section 5.9), which size depends on the scales of the
coefficients being correlated. More precisely, let γ = (j, θ, α) and γ′ = (j′, θ′, α′). Note
jm := max(j, j′). We define Xjm := {u = (u1, u2) ∈ XN : 2jm ≤ ui < N − 2jm , i = 1, 2}.
Then, for non periodic images, we compute

CALPHAx(γ, γ′, τ) = 1
|Xjm |

∑
u∈XN

1Xjm (u)1Xjm (u− τ)RALPHAx(γ, u)RALPHAx(γ′, u− τ),

(6.9)
where the spatial shifts are defined periodically. Note that the spatial averages µγ

and µγ′ are also performed on Xjm .

6.4.2 Results

In Figure 6.7, we present examples of syntheses from the ALPHAI (or ALPHAC), PS,
RF and VGG models, for both gray-scale and color textures, as well as for non-stationary
images. We observe that our model ALPHAI produces texture syntheses of similar visual
quality to the RF and VGG models. It also significantly outperforms the PS model in
terms of the visual quality, without introducing visible memorization effects. As the
model PS uses the statistics closer to ALPHAS compared to ALPHAI, the performance of
PS is somehow expected. More synthesis examples can be found in Figures 6.9 and 6.10.

Note that for the tiles example (the fifth row) in Figure 6.7, the VGG model produces
less convincing textures, because the long-range correlations present in the image (aligned
tiles) are not reproduced. To remedy this issue, it has been proposed in [12] to add
spatial shifts to the correlations of the network feature maps. These shift statistics are
similar to the parameter τ in our model. We also observe that, in the case of the sixth
row example (flowers), all models fail to reproduce complex structures at object-level.
Possible improvements of such models is further discussed in Section 6.5.

For non-stationary images, we find that certain image patches can be more or less
memorized by the RF, VGG and ALPHAI models, as illustrated in the seventh row
example. Understanding such memorization effect of non-stationary images is a subtle
topic, as we find that in some binary images (x̄(u) ∈ {0, 1}), only the PS model can
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reproduce the observation, even though it has a much smaller number of statistics (the
last row example). We find that this is related to the spatial correlation statistics in PS
(non-zero τ). By removing this constraint, x̄ is no longer always reproduced. This simple
example suggests that sometimes it is very important to choose the right statistics to
capture specific geometric structures. The non-stationary nature also appear in some
logo near the boundary of some textures (e.g. bottom left in the observation of the
first and fourth rows). Although this logo is reproduced by RF, VGG, ALPHAI and
ALPHAC, it is a very local phenomenon, as we do not find visible copies of the textures
when there is no logo, and it is likely related to the way one addresses the boundary
effect (cf. Section 6.4.1).

VGG score In [112], the authors proposed to use the synthesis loss of the VGG model
to evaluate the quality of syntheses from any model. The goal is to define a quantitative,
and more objective evaluation method than mere visual inspection. Since the VGG model
produces syntheses almost indistinguishable from real textures, it is natural to consider
its loss to asses the quality of a synthesis. We computed this loss for the examples
presented in Figure 6.7, and report it in Table 6.2. Note however that this loss is not
exactly the same as the one used in [112], as the layers selected to compute the loss
are different. In this work, we chose to use the layers suggested in [54], i.e. ’conv1_1’,
’pool1’, ’pool2’, ’pool3’, and ’pool4’ of the VGG-19 network ([102]), and compute the
relative VGG loss6.

We notice that this score is not always consistent with visual inspection, as there are
texture examples and models for which the syntheses do not look much like the observation
image, yet produce a small VGG loss (see e.g. the first and last rows of Figure 6.7,
the RF model syntheses have the smallest loss). It should also be noted that the VGG
loss reported on the VGG syntheses is not the synthesis loss after optimization, as a
histogram matching (HM) procedure is performed as post-processing after optimization.
We observed that the VGG loss of the syntheses from the VGG model after HM was
considerably higher than the one for syntheses before it, while being visually very similar
as illustrated in Figure 6.8. These observations suggest that the VGG score suffers from
instabilities after reaching a certain level (that is, if the VGG loss is small enough, small
perturbations of the values of the image pixels might have a strong impact on the loss).

Data / Model ALPHAI VGG PS RF
Radishes 5.02e-05 1.87e-05 2.37e-04 1.13e-05
Cherries 4.86e-05 1.47e-06 6.68e-04 9.65e-06
Gravel 5.97e-05 3.08e-06 7.25e-04 1.29e-05

Turbulence 5.59e-05 5.97e-05 2.42e-04 3.95e-05

Table 6.2: Relative VGG loss of each model on examples in Figure 6.7. Each row
corresponds to the same row in Figure 6.7.

6Using the code from https://github.com/ivust/random-texture-synthesis/blob/master/vgg_
loss.py (function style_loss_relative).
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6.5 Discussion
In this work, we presented a new generative model for texture images built on a wavelet-
based representation of geometric structures. Inspired from the classical work of [92],
this model incorporates a wider range of statistics, by computing covariances between
rectified wavelet coefficients, at different scales, phases and positions. We showed that this
model is able to capture and reproduce complex geometric structures, present in natural
textures or physical processes, producing syntheses of similar quality to state-of-the-art
models that use CNN-based representations.

Being defined with a wavelet family instead of multi-scale random filters, the proposed
model uses less statistics than the RF model for color textures. For the gray-scale textures,
our model has about 15 times less statistics, as it focuses on capturing the geometric
structures present in images. However, further reduction of the number of statistics
remains an open problem. For instance, the size of the model could be reduced with a
more sophisticated selection of the spatial shift parameter τ , depending on the scales of
the coefficients being correlated. Additionally, our color model is defined by computing
covariances between coefficients of all different color channels, and is therefore nine times
larger than the gray-scale model. In model of [92] extended to color images performs a
Principal Component Analysis on the color channels ([113]). A similar idea could also
be applied to our model for color images. Another line of research to reduce the size
of the model could be to incorporate a second layer of wavelet transform ([74, 100]).
Such statistics could also capture additional information to improve the quality of the
synthesized textures.

Finding a minimal set of statistics to define a texture model is important because
a large number of statistics can result in a high variance of the estimators, and the
associated model can suffer from memorization effects. That is, parts of the observation
image can be reproduced in the syntheses. This is a problem because the aim of the
model is to approximate the underlying distribution of the observation, and therefore
produce diverse textures. In this regard, the mere visual evaluation of the synthetic
textures can fail to take this aspect of the model into account. A more general evaluation
of texture models is an interesting line of research, left for future works.
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Observation PS (3.2k/17k) RF (525k) Ours (35k/320k) VGG (177k)

Figure 6.7: Visual comparison between the gray-scale and color models. ’Ours’ denotes
the ALPHAI model for gray-scale images and the ALPHAC model for color images.
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Before hist. match. After hist. match.

Figure 6.8: Visual comparison of syntheses from the VGG model, before and after
histogram matching. Before, the relative VGG loss is 2.22e-08, while after, the loss is
5.38e-05.
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Observation PS (3.2k) RF (525k) ALPHAI (35k) VGG (177k)

Figure 6.9: Further visual comparison between different texture models on gray-scale
images.
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Observation PS (17k) RF (525k) ALPHAC(320k) VGG (177k)

Figure 6.10: Further visual comparison between different texture models on color images.
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Chapter 7

Conclusion

This dissertation studied different wavelet-based representations of random geometric
processes, and in particular point processes. Similarly to classical summary characteristics,
these representations capture geometric structures by applying non-linear transformations
to the data to extract relevant information about the inter-point distances. However, the
wavelet transform separates the structures present in the data at different scales, which
allows one to decompose the information into different parts, making such representations
suitable for statistical tasks such as regression or probabilistic modelling.

7.1 Summary of findings
We first studied the scattering moments representation of point processes (cf. Section 3.2),
which decompose the geometric structures into different frequency bands, and those bands
into different frequency sub-bands. We observed that this relatively concise representation
( 1k statistics) is able to efficiently represent the geometry of point processes, and is
suitable to perform the task we considered, which was to estimate different geometric
marks associated with point patterns.

The scattering moments, however, do not capture the dependencies between the
different frequency parts of the patterns. Additionally, the complex modulus operator
discards the phase of the wavelet coefficients, and induces symmetries which may lead to
the loss of important information about the data. For these reasons, we took interest in
the wavelet phase harmonics covariance moments, which compute correlations between
phase adjusted wavelet coefficients at different frequency bands. We found that this
representation is able to capture the geometry of various point process distributions, and
allows to efficiently model these distributions, compared to the summary characteristics
usually considered in the literature.

To further improve the representation of complex geometric objects, we turned
to the modelling of texture images, where state-of-the-art methods are based on the
representation of images with convolutional neural networks. By noticing the important
amount of information carried by spatially shifted wavelet coefficients, we built a wavelet
covariance model that performs similarly to these CNN-based state-of-the-art models,
illustrating that such wavelet-based model can capture most of the geometric information
present in random processes such as natural texture images.
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7.2 Future perspectives
While this work presents empirical evidence that wavelet-based moments can adequately
describe point patterns and point processes, little is known about their mathematical
properties, such as their discriminating power, their limit behaviour, their stability to
deformations, their dependency on different geometric marks, or their ability to fully
characterize a certain class of point processes. Recent advances have been made in this
area (see e.g. [91]), and further efforts in this direction is an interesting line of research.

The optimization method presented in Chapter 5 differs from classic gradient-descent
models, such as in Chapter 6, as it moves mass around in space, rather than changing
the values of each pixel. Preliminary results indicate the possibility of synthesizing
physical fields (such as a turbulent flows, or an observation of cosmic gas) with this
method, by approximating this field by a sum of Gaussian functions. More precisely, we
generate x̃(u) = ∑

i exp(−(u − ui)2/2σ2
i )/(σi

√
2π), such that Cx ∼ Cx̃, by optimizing

the parameters xi and σi, that is, the positions and variances of the Gaussian functions.
It could be interesting to study if this method can improve synthesis models, e.g. by
avoiding shallow local minima of the objective function.

Another promising line of research is the use of Topological Data Analysis (cf.
Section 5.6.3) to evaluate the error between a distribution and a model. This method
seems to be able to distinguish between various types of point process distributions, but
also between different samples from a same distribution, enabling to evaluate the diversity
of a model. TDA has been proposed for analysing images in learning tasks (see e.g. [68],
so it could be promising to study this tool as an evaluation of texture synthesis models.

The scattering moments and phase harmonics covariances offer representations of
somewhat different nature: the former captures rich information of processes at each scale,
with an architecture similar to these of CNNs by using a cascade of linear and non-linear
operators, while the other efficiently captures correlations between the different scales. It
is easy to see that spatially shifted correlations, as in eq. (6.1), have a direct link with a
second layer of convolution, by noting that Rx(γ, ·) ? ψ(u) =

∫
Rx(γ, u− τ)ψ(τ)dτ . A

unifying way to encode the information contained in both types of moments (scattering
and phase harmonics covariance) could be an interesting way to further improve the
representation of geometric objects.
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MOTS CLÉS

processus ponctuels, traitement du signal, apprentissage statistique, synthèse

RÉSUMÉ

Cette dissertation présente une classe de représentations de processus ponctuels. Inspirés par le succès des méthodes
d’ondelettes en traitement du signal, ces descripteurs sont basés sur la convolution d’un processus ponctuel avec un
famille d’ondelettes. À partir de ces convolutions sont construits des ensembles de descripteurs statistiques de processus
ponctuels stationnaires, en appliquant des opérateurs non linéaires, suivis d’un moyennage spatial. Tout comme les
caractéristiques classiques pour les processus ponctuels, ces statistiques sont conçues pour extraire les informations
contenues dans le processus en un nombre relativement faible de valeurs numériques, en décrivant sa géométrie. Leur
but est de décrire la façon dont les atomes du processus ont tendance à se repousser, ou bien se regrouper, et de la
sorte former des formes géométriques complexes. De par leur construction, ces descripteurs bénéficient de plusieurs
propriétés qui les rendent adaptés à des tâches d’apprentissage et d’analyse statistique. Afin d’illustrer la qualité de ces
représentations en tant que descripteurs statistiques, nous étudions plusieurs problèmes impliquant l’analyse statistique
de processus ponctuels. Dans un première expérience, nous cherchons à estimer une fonction inconnue qui prend en
argument une configuration de points, et renvoie une version marquée de cette configuration, c’est-à-dire pour laquelle
une valeur numérique est associée à chaque atome de la configuration. Nous utilisons une représentation en ondelettes
de ces configurations pour estimer la relation entre leur versions non marquées et marquées. Dans un second temps,
nous étudions la capacité de ces descripteurs à modéliser certaines distributions de processus ponctuels, en définissant
un modèle de maximum d’entropie défini par des statistiques d’ondelettes, calculées sur une unique observation. Pour
ces deux problèmes, nous observons que les représentations que l’on propose amènent de meilleures performances
que les statistiques classiques couramment utilisées dans la littérature sur les processus ponctuels. Enfin, pour étudier
à quel point de telles représentations peuvent capturer les structures géométriques présentes dans les textures, nous
définissons un model de maximum d’entropie qui s’appuie sur des statistiques d’ondelettes similaires, produisant des
synthèses de qualité comparable à celles de l’état de l’art, dont les modèles sont basés sur des representations à partir
de réseaux convolutionels profonds.

ABSTRACT

This dissertation presents a class of representations of spatial point processes. Inspired from the success of wavelet
methods in signal processing, these descriptors rely on the convolution of a point process with a family of wavelet filters.
From these convolutions are built sets of statistical descriptors of stationary point process, by applying non-linear opera-
tors, followed by a spatial averaging. Much like classical summary characteristics for point processes, these statistics are
designed to extract information about the process with a relatively small number of numerical values, by describing its
geometry. Their goal is to describe whether the atoms of the process tend to repel each other, or cluster together, and by
doing so, form possibly complex geometric shapes. By construction, these descriptors enjoy several properties that make
them suitable for statistical analysis and learning tasks. To illustrate the quality of these representations as statistical
descriptors, we study several problems involving statistical analysis of point processes. In a first experiment, we seek to
estimate an unknown function that takes as input a point pattern, and returns a marked version of this pattern, where a
numerical value is associated to each atom of the pattern. We use a wavelet-based representation of point patterns to
estimate the relation between their non-marked and marked version. We then study, in a second experiment, the ability
of such representations to model the distribution of a point process, by defining a maximum entropy model defined by a
set of wavelet-based statistics, computed on a single observation. For these two problems, we observe that our represen-
tations lead to better performance than summary statistics commonly used in the literature on point processes. Finally,
to study to what extent such representations can capture geometric structures of texture images, we define a maximum
entropy model relying on similar wavelet statistics, yielding syntheses of similar visual quality to state-of-the-art models
based on deep convolutional neural networks representations.

KEYWORDS

point processes, signal processing, statistical learning, synthesis
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