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Introduction

Fermi gases are ubiquitous systems in nature. In the standard model of elementary
particles, fermions make up all elementary constituents of matter, and quantum de-
generate gases of fermions are found in many systems in nature, most importantly
electrons in solids and nuclear matter. Identical fermions are forbidden from occu-
pying the same quantum state, which is the statement of the famous Pauli exclusion
principle [1]. This fundamental principle contributes to keeping objects like neutron
stars, solids and atoms from collapsing under gravitational and electrostatic forces
and therefore in the stability of matter as we know it [2, 3].

The study of quantum matter has a long history and has given rise to many appli-
cations. Since the discovery of superconductivity by Heike Kamerlingh Onnes [4], it
has been subject to intense research for over a century and has enabled several tech-
nological breakthroughs. In the following decades, many phenomena in quantum
many-body systems caused by the strong quantum correlations were discovered. A
few examples of unexpected properties are the superfluidity of bosonic liquid 4He
under a critical temperature of 2.2 mK, highlighted in the experiments of Kapitza [5]
and Allen and Misener [6] in 1938, and the superfluidity of fermionic liquid 3He by
Osheroff in 1972 [7]. The non-classical properties of this new phase of matter were
mind-boggling for researchers. Indeed, no physicist had yet seen a fluid that would
creep out of the recipient it contains, or presents zero viscosity when being stirred.
Another example is 2D electron gases, a field that has strongly impacted fundamen-
tal and applied research in solid state physics. These systems are found in field
effect transistors, now an indispensable component for modern technological indus-
tries, and the quantum Hall effect was discovered in these systems [8]. This effect
has become the playground for a plethora of new research in areas ranging from
solid state physics to cold atoms.

Quantum simulation and ultracold atoms
Over the past few decades, ultracold atoms have offered new ways of studying quan-
tum systems by providing a flexible and tunable platform for realizing and simulat-
ing various quantum models [9]. This goes along Richard Feynman’s vision of using
hand-built devices to accurately simulate quantum systems and to probe their prop-
erties [10].
The idea of cooling dilute gases with radiation pressure is over four decades old [11].
This has come to fruition with the laser cooling of trapped ions [12,13] and the cool-
ing and trapping of neutral atoms [14, 15]. More advanced laser cooling techniques
such as polarisation-gradient cooling [16, 17], velocity-selective coherent population
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Introduction 5

trapping [18], and sideband cooling in harmonic traps [19] have been employed to
overcome the Doppler and recoil limits of laser cooling.
However, these techniques were not sufficient to bring atomic gases to quantum de-
generacy. It was the development of magnetic traps for neutral atoms [20] together
with evaporative cooling techniques [21, 22] that have enabled the observation of
Bose-Einstein condensation (BEC) in ultracold atomic clouds [23–25]. Far-detuned
optical traps [26] and evaporative cooling therein [27] offer added flexibility and are
now commonly used in cold atoms experiments.
Since the observation of BEC, the field has undergone rapid developments. The
phase coherence in BECs was investigated via matter-wave interference [28], and ex-
ploited to realize atom lasers [29–31].
In weakly interacting Bose gases, the excitations described by Bogoliubov theory
have been investigated [32–35]. Other excitations such as vortices [36–38] and soli-
tons [39, 40] were also observed.
All the aforementioned results can be described in a mean-field context character-
ized by weakly interacting quasiparticles. In the case of bosons for instance, for
interactions much larger than the kinetic energy, one must depart from this picture,
but therefore gains access to many rich phenomena with strong correlations between
the atoms. This regime can be reached by using Feshbach resonances [41, 42] that
modify the low energy scattering properties [43, 44].
Interactions modify in a non-trivial way the basic properties of the system. Strongly
interacting Bose gases are still an active subject of research experimentally [45–49]
and theoretically [50–55].

Ultracold Fermi gases

The adaptation of the cooling methods to fermionic alkali atoms led to the produc-
tion of a degenerate Fermi gas via evaporative cooling of spin mixtures [56]. Since
then, several Fermi gas experiments have been constructed, where mixtures of differ-
ent spin components or atomic species were cooled together [57–61]. While accessing
the strongly correlated regime using Feshbach resonances with bosons was challeng-
ing due to strong three-body recombination, Pauli blocking turned out to stabilise
Fermi gases against these losses [62], making Feshbach resonances useful to probe a
wide range of interactions.
Hence, interacting ultracold Fermi gases have attracted great theoretical interest [63].
Strongly interacting Fermi gases were soon realised [64, 65], as well as condensates
of molecules created from fermion pairs [66–68], Cooper pairs in the attractive BCS
regime [69], and superfluids of fermions [70, 71].
Fermi gas experiments have traditionally employed the alkali atoms 6Li and 40K.
Later, other fermionic isotopes have been successfully cooled to quantum degener-
acy, namely the alkaline earth atoms 87Sr [72, 73], or alkaline earth-like lanthanides
such as 161Dy [74], 171Yb and 173Yb [75, 76] with large magnetic dipole moments.
This variety of complex level structure together with the ability to tailor interaction
potential as needed enable access to many applications and phenomena.

Out of many examples is the Fermi-Hubbard model [77] which represents a key
concept in condensed matter physics providing crucial insights into electronic and
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magnetic properties of materials. It describes an ensemble of fermions trapped in a
periodic potential, within the tight binding approximation. With cold atoms quan-
tum simulators, it became possible to experimentally study the model in a pristine,
isolated environment with full control of all Hubbard parameters [78–80]. The ad-
vent of quantum gas microscopes for fermionic atoms [81–85], with their single-
lattice site resolution, has made possible precision measurement of the equation of
state [86, 87] and of spin and charge correlations [88–90] of the two-dimensional
Fermi-Hubbard model. More recently, quantum transport measurements were pos-
sible using this kind of quantum microscope [91].
Moreover, the realization of Bose [92] and Fermi [93] gases in box-like potentials,
making possible the study of these systems in a homogeneous potential, opens new
possibilities to study their properties and for instance look for new exotic phases
such as the FFLO (Fulde, Ferrell, Larkin, Ovchinnikov) phase [94, 95] characterized
by Cooper pairs with non-zero momentum and spatial modulation of the order pa-
rameter. This phase can be observed in a two-component Fermi gas with imbalanced
spin populations (partially polarized Fermi gas).

Impurity in a many-body quantum system

The limiting case of a partially polarized Fermi gas is a Fermi sea with exactly
one impurity. While being one of the simplest problem in many-body physics, the
physics of an impurity immersed in a many-body ensemble remains non-trivial and
very rich.
One of the most fundamental examples is the polaron problem introduced by Lan-
dau in 1933 in a one-page long article [96] describing an electron moving in a metal.
In 1948, Landau and Pekar further described the properties of this system [97]. The
term polaron was introduced to describe the quasiparticle arising from the interac-
tions between the conduction electron and its induced polarization in a polarized
ionic crystal. The polaron problem later has taken the form of the study of the inter-
actions between a charge carrier (electron, hole) and the phonons of an ionic crystal,
described by a field-theoretical Hamiltonian derived by Fröhlich in 1954 [98]. This
quasiparticle has different properties compared to the original impurity: in partic-
ular, it is characterized by an effective mass, a binding energy and a renormalized
response to an external electric or magnetic field.
The presence of impurities in a many-body system can affect its macroscopic prop-
erties in a spectacular way. One important example is the Kondo effect [99] initially
suggested to explain the remarkable observation in the properties of gold where at
low temperature, the resistivity of the material decreases with temperature until it
reaches a minimum at a non-zero temperature and then rises as the temperature is
lowered even further [100].
Kondo suggested that this behavior was due to the presence of magnetic impuri-
ties in the metallic sample, and the possibility of a scattering process in which the
internal spin state of the impurity and a scattered electron are exchanged. This prob-
lem, known as the Kondo problem, was revisited in 1975 by Wilson [101], and led
to one of the first theoretical developments of renormalization groups. Wilson used
a non-perturbative renormalization group method based upon the seminal work of
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Anderson on localized magnetic impurities immersed in a Fermi sea [102].
Even the presence of one impurity can drastically modify the properties of the

many- body background as introduced in the historical problem of Anderson’s or-
thogonality catastrophe (AOC) in 1967 [103]. Anderson showed that when a motion-
less impurity is introduced in a Fermi sea, the ground state of this now perturbed
system becomes orthogonal to the ground state without the impurity, with an over-
lap between the two states that decreases with the size of the system with a power
law. In cold atoms, an impurity immersed in a Fermi sea can be dressed by the back-
ground fermions and forms a polaronic quasiparticle, but due to AOC, a motionless
impurity or a heavy impurity will not form a quasiparticle.
An example of a measurement involving this effect is by exciting a massive 41K im-
purity immersed in a Fermi sea of 6Li and measuring its decoherence over time
[104,105]. The overlap between the many-body wave function of the Fermi sea before
and after a transition in the impurity vanishes as the scattering strength is increased
which signals the onset of AOC.
Other impurity problems can be found also in high energy physics, for instance in
neutron stars where protonic impurities can interact with the background neutron
superfluid [106, 107], or in quantum chromodynamics where the Polyakov loop de-
scribes the properties of a test color charge in a hot medium of gluons [108].

An impurity in a system can also be used to probe experimentally the properties
of the background system itself, acting as a test particle. For instance, measuring
the number of bosonic impurity atoms in a Fermi-Bose mixture provides an insight
on the nature of the fermionic background since the loss rate differs as a function
of interaction strength between fermions [109]. Moreover, the observation of the
crossover from few-body physics to many-body physics of a fermionic ensemble
was studied via the measurement of the interaction energy between an impurity and
a few indistinguishable fermions [110] in a quasi one-dimensional trap. This study
revealed a rapid convergence to the many-body limit of a single impurity in a Fermi
sea, showing that the many-body description is already valid for a very low number
of fermions in the background.

Experiments in our group on Bose-Fermi mixtures brought focus on impurity
physics in two and three component Fermi and Bose gases [109, 111, 112]. The Bose
component can be treated as a single impurity moving inside the fermionic super-
fluid.
In addition to the inelastic decay measurement due to three-body recombination
mentioned earlier, the measurement of critical velocity of the Fermi superfluid (the
velocity above which dissipation arises) was done by using the oscillation velocity
of the Bose component and it matched perfectly models where it is considered as a
single impurity immersed in a double Fermi sea [112].
These measurements motivated a theoretical effort to try to understand the proper-
ties of an impurity immersed in a two-component Fermi sea, where the phase di-
agram now includes a trimer sector where Efimov physics comes into play [113–117].
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Outline of the thesis

This manuscript covers the essential parts of my work over the last three years in the
Ultracold Fermi Gases group at Laboratoire Kastler Brossel (LKB) and at Laboratoire
de Physique de l’École Normale Supérieure. It is divided into two main parts, an
experimental part that describes the experimental apparatus I participated in con-
structing over the first two years of my work and a theoretical part regarding two
theoretical projects.
It is divided into five chapters structured as follows:

• Chapter 1 presents a general introduction to the physics of ultracold Fermi
gases. An overview of two-body collisions is presented within the framework
of conventional scattering theory together with a two-channel model treatment
of Feshbach resonances. The two-channel model is extended afterwards to in-
clude effects of three-body physics and by using this treatment Efimov physics
for three-identical bosons is presented, this encapsulates the most important
of Efimov’s trimers. Then a brief overview of ultracold Fermi gases and the
BEC-BCS crossover is presented. The chapter ends with an introduction about
the N + 1 problem which branches off to a description of the Bose and Fermi
polarons.

• Chapter 2 presents a description of the experimental apparatus constructed in
Lithium 3 team over the last four years. All implemented methods of cool-
ing and trapping are described along with their underlying principle and a
brief historical account. It includes a description of the optical setup that is
used to create one arm of the crossed dipole trap, which represents one of my
contributions to the apparatus.

• Chapter 3 presents the creation and characterization of a strongly interacting
Fermi superfluid. An overview of the thermometry method that was used is
provided. A measurement of the so-called “superfluid plateau” in a spin im-
balanced Fermi gas is presented. Date presented in this chapter were achieved
by the team in the course of my theory project.

• Chapter 4 presents a quick overview of a calculation already performed in the
group which deals with the energy of an impurity immersed in a fermionic
superfluid bath. We show that in order for the problem to be normalized
the density-density correlator of the bath fermions has to present a divergent
term for large impurity momenta. Afterwards a diagrammatic calculation is
presented which takes apart the different interactions in detail in the BCS limit
of the fermionic bath and identifies one divergent term.

• Chapter 5 presents a variational calculation describing the phase diagram of
an impurity immersed in a non-interacting Fermi sea. The calculation shows
the impurity starting off in a polaronic state in the weak attractive impurity-
fermion interaction limit and then just after the unitary regime a sharp transi-
tion into a trimer state takes place before the interaction strength can support
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a two-body bound state, and that is where a smooth transition between the
trimer and dimer state happens. This work was reported in [118].



Chapter 1

Ultracold Fermi gases: From few to
many

Ultra-cold Fermi gases provide a versatile and simple ensemble to study quantum
many-body physics. At the heart of their appeal is the large tunability of their in-
teractions, which allows the system to simulate the physics of a plethora of systems
found in nature and then to probe their properties.
The study of interactions in ultracold gases is essential to explain fully their proper-
ties. In this chapter an overview of basic concepts related to the study of Fermi gases
is presented. We start by the simplest form of interaction, the two-body interaction.
Though the simplest, its physics offers many ways to control a system of interacting
fermions. The basic tool to control interactions is by exploiting Feshbach resonances,
their fundamental properties are derived using a two-channels model.
In addition, the three-body problem or the Efimov problem, which is of particular
importance to the scope of this thesis, is presented. Introduced, to stay coherent,
using a similar two-channels model.
Then, an overview of ultra-cold Fermi gases and their properties is presented. The
non-interacting limit will be discussed and then interactions and their effects of the
system will be introduced.
Finally, the physics of an impurity will be presented with a variational calculation
which captures the essential properties of such a system. The case of an impurity im-
mersed in a Bose-Einstein condensate, or the Bose polaron, will be discussed along
with the case of an impurity immersed in an ultracold Fermi gas, the Fermi polaron.
The different theoretical tools will prove useful to understand in more generality the
problems this thesis tries to address in the following chapters.

1.1 Two-body problem

In order to describe the dynamics of an interacting many-body system, one has to
start by the most basic form of interaction, the interaction between two particles.
In this section an overview of the most important results for the scattering of two
particles is presented, together with a detailed treatment of the Feshbach resonances
phenomena which will introduce the principles behind the two-channel model which
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1.1. Two-body problem 11

will be used extensively in Chapter 5.

1.1.1 Universal dynamics and scaling
In general, each atom is typically localized to a volume corresponding to its thermal
DeBroglie wavelength [119]:

λdB =

√
2πh̄2

mkBT
(1.1)

where m is the mass of the atom, kB is the Boltzmann constant and T is the tempera-
ture of the gas. For instance, λdB ≈ 0.7 µm for a 6Li atom in a cloud at a temperature
of 1 µK (' 104 a0 with a0 the Bohr radius).
Another significant length scale is the interatomic distance n−1/3 which is typically
on the order of 0.5− 1 µm for a dilute gas in a cooling and trapping experiment.
These last two parameters define the degree of degeneracy of the system. Indeed,
when particles are localized over a volume λ3

dB and this volume approaches that de-
fined by the density n (assuming particles are distributed uniformly) i.e. nλ3

dB ≈ 1
the system is said to reach quantum degeneracy where it can not be described fully
by a classical model anymore and quantum effects have to be taken into account in
describing the system.

Particles interact via binary interactions where the two particles approach each
other, collide then leave the interaction region with different momenta. If the sum of
their kinetic energies is conserved the collision is called elastic and if not it is called
inelastic.
When the two particles approach each other, they induce dipoles in one another
resulting in the well-known isotropic Van der Waals interaction with a general form
Vvdw(r) ∼ −C6/r6 in the case of neutral atoms in their ground state, where C6 is a
constant which includes the induced polarizability.
The distance between the two particles is limited by the Van der Waals hard core
repulsion radius which results from the electronic exchange potential term, and it is
on the order of a few Angstroms for alkali metal atoms.
Another relevant length scale is the range of the interaction, also called the Van der
Waals length :

rvdw =
(

m∗C6

8h̄2

)1/4

(1.2)

where m∗ is the reduced mass of the two-body problem. For r > rvdw only the
asymptotic behavior of the potential matters in the scattering process. This length
scale is typically on the order of a few nanometers for alkali atoms (rvdw ' 50a0).

Dilute gases at low temperatures treated in the frame of cold atom experiments
and theory are in the configuration n−1/3, λdB > rvdw. This translates to the fact
that during the scattering process the detailed structure of the interaction potential
is not resolved by the interacting particle. This allows a unique freedom in choosing
a convenient interaction model to describe the system theoretically.
In addition, a simplification comes from the fact that atoms with a non-zero value for



12 Chapter 1. Ultracold Fermi gases: From few to many

the orbital angular momentum quantum number ` encounter a centrifugal barrier
Vrot = h̄2`(` + 1)/(2m∗r2) when they approach each other. The range of this barrier
exceeds that of the interatomic potential and so atoms with ` 6= 0 do not interact
with each other at low temperature in a first order approximation. This leaves only
collisions between atoms with ` = 0, the so-called s-wave collisions.

For spin polarized fermions, s-wave collisions are not allowed by Pauli blocking.
That means for fermions we need two atomic species or atoms from the same species
in different internal states for the scattering process to take place and for interactions
to occur in a Fermi gas.

The Van der Waals interaction potential, when modified by the attractive force
present between particles due to the induced dipoles, supports several bound states
as will be detailed. The number of vibrational states is determined by rvdw. By
exploiting these bound states in singlet potentials (potentials between particles with
S = 0 where S is the total spin of the particles) we can tune the relative energy of
the scattered atoms to have a bound state near the threshold of the potential and to
increase the interaction strength, this phenomena is known as a Feshbach resonance
and will be studied further in this chapter.

1.1.2 Scattering theory
In this section we will present the basic theoretical tools in studying the scatter-
ing of two atoms. For a more detailed discussion refer to [120]. Starting with the
Schrödinger equation for two atoms in the center of mass frame:

Ĥψ(r) =

[
− h̄2

2m∗
∇2 + V(r)

]
ψ(r) = E ψ(r) (1.3)

where V(r) is the interaction potential with an interaction range rvdw and E is the
energy of the eigenstate of the hamiltonian.
The solutions with E < 0 describe the bound states allowed by the potential V, while
the solutions with E > 0 describe scattering states with a wavefunction that can be
described by the following equation in the asymptotic limit beyond the reach of the
potential:

ψ(r) '
r�rvdw

1
(2π)3/2

(
eik.r + f (k′, k)

eikr

r

)
(1.4)

where k′ = kr/r the wave vector of the same length as k but on the axis of r, and
where we defined with the dimension of a length the scattering amplitude:

f (k′, k) = − m∗

2πh̄2 〈k
′|V̂|ψ〉 (1.5)

where |k′〉 denotes a plane wave state with momentum k′ with normalization 〈k|k′〉 =
δ(k′ − k). We see from the previous description that at a large distance from the
scatterer r � rrdw, the wavefunction consists of a plane wave plus an expanding
scattered spherical wave that vanishes at very large distances from the scatterer.

A detector at one point in space would measure the square of the sum of these
two waves at that point. The probability of a particle to be scattered in the direction
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of the scatterer within a solid angle Θ = (θ, φ) is called the differential cross section
and can be expressed in terms of the scattering amplitude as follows:

dσ

dΘ
= | f (k′, k)|2 (1.6)

By integrating the differential cross section over all directions we get the total cross
section which gives the fraction of particles which are scattered and is a measure of
the overall probability of a scattering process to take place.

Scattering amplitude basic relations and low energy limit with
contact potential
We present briefly the derivation of the most relevant formulas in the low energy
limit which will be used extensively throughout this manuscript.
We can write naively the solution of Eq. (1.3) as follows:

|ψ〉 = |φ〉 +
1

E− Ĥ0 + iε
V̂|ψ〉 (1.7)

where |φ〉 is the solution to the homogeneous noninteracting problem, ε is a small
positive parameter to avoid a singularity corresponding to the solution of the non-
interacting problem. The limit ε → 0+ is taken at the end of the calculation and
Ĥ0 is the noninteracting part of the hamiltonian Ĥ. This equation is known as the
Lippmann-Schwinger equation and its projection on the position space results in Eq.
(1.4) far from the scatterer.

By replacing |ψ〉 in the right hand side by |φ〉 we get the first Born approximation
which accounts for the effect of the first scattering process on the incoming particle,
and as long as the interaction is weak this approximation remains valid. However, in
order to characterize the system for any interaction strength we need to go beyond
the first term.
We can do that by inserting the expression of |ψ〉 in the right hand side iteratively in
what is called the Born expansion and by writing the energy as E0 the energy of the
incoming particle leading to:

|ψ〉 = |φ〉 +
1

E0 − Ĥ0 + iε
T̂|φ〉 (1.8)

where
T̂ = V̂ + V̂

1
E0 − Ĥ0 + iε

V̂ + V̂
1

E0 − Ĥ0 + iε
V̂

1
E0 − Ĥ0 + iε

V̂ + . . . (1.9)

is the T̂ operator describing the physical scattering process.
It is related to the full scattering amplitude which describes the amplitude of the
scattered wavefunction after a number of scattering processes undergone by the scat-
tered particle. Similarly to Eq. (1.5) which described the scattering amplitude after
one scattering process, we can apply iteratively Eq. (1.9) so that we can write Eq.
(1.5) as:

f (k′, k) = − m∗

2πh̄2 〈k
′|T̂|k〉
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We also define the low energy limit of the full scattering amplitude for the incoming
particle as minus the scattering length a:

lim
k→0

f (k′, k) = −a (1.10)

This parameter describes the strength of the interaction and at low energy its value
is the only parameter needed to describe the interaction.
The T operator can be written in the form of a self-consistent equation called the
Dyson equation:

T̂ = V̂ + V̂G0T̂ (1.11)

where G0 = (E0 − Ĥ0 + iε)−1 is the resolvent.

T̂ = + + + . . .

= + T̂

(1.12)

In equation Eq. (1.12) a diagrammatic representation of the Born expansion and
the subsequent resummation in the Dyson equation is shown with the two-body
interaction g0 represented by the black disk and the dashed lines representing the
propagators of the scattered particles.
In the Born approximation, only the first term is used to describe the two-body
interaction, in other words, we take T̂Born ' V̂.

Case of zero-range potential
As explained earlier, in dilute systems at low temperatures, scattered particles are
not sensitive to the details of the scattering potential. This allows a certain degree
of liberty in modeling the potential in a theoretical description of the system. A
commonly used potential is simply a contact potential, also known as the zero-range
potential:

V(r) = g0 δ(r) (1.13)

where g0 is the bare coupling constant indicating the strength of the two body scat-
tering process.
We calculate the scattering amplitude in the Born approximation from equation Eq.
(1.5) in the low energy limit:

a1 =
m∗

2πh̄2 g0 (1.14)

where a1 is the scattering length of the single two-body scattering process. However,
in order to calculate the true scattering length a we have to include the full scattering
amplitude.
Indeed, usually when writing a hamiltonian, the interaction term describes a single
scattering process between two particles. Meaning that g0 is the coupling constant
which appears as a coefficient of the interaction term. However, in order to study
physical observables, a relation to the physical coupling constant that describes the
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whole scattering process has to be established.
This is done by projecting Eq. (1.11) on plane wave states and inserting completeness
relations when necessary to get:

〈k|T̂|k〉 =
g0

1− g0∑
q

1
Ek − Eq + iε

(1.15)

where Eq = h̄2q2/(2m∗) is the energy of the scattered particle. We used the vector
sum notation ∑q =

∫
d3q/(2π)3 and d3q = dφ dθ sin(θ) dq q2.

By taking the low energy limit of the incoming particle k → 0 and by inserting the
scattering amplitude from Eq. (1.5) and Eq. (1.10) we can write:

1
g0

=
1
g
− ∑
|q|<kc

2m∗

q2 (1.16)

where we introduced the physical coupling constant g = 2πh̄2a/m∗ for two particles
scattering off a potential.
The sum in the second term diverges, in order to remedy this we introduced the
UV-cutoff in momentum space (kc). This comes as a natural outcome of choosing
a zero-range potential, and it is related to the inverse of the effective range of the
potential. In the case of an infinite-range potential, kc → 0 and g = g0, which is
reflective of the fact that in the case of a mean-field approximation of the system,
we consider all particles interacting equally with all other particles, mimicking the
infinite ranged potential picture.
Furthermore, when kc increases, the sum in Eq. (1.16) starts dominating which gives
a small and negative g0. This is reminiscent from the fact that a zero-range approx-
imation is only possible with attractive potentials [121], since repulsive ones need
always to keep a finite range. Also, when kc increases, the range of the potential
decreases which means a weaker interaction and smaller g0.

As for the scattering amplitude f (k), since the interaction potential is isotropic the
scattering amplitude depends only on the amplitude of the momentum of incoming
particle, we can calculate it from Eq. (1.15), by injecting the expression of g0 from
Eq. (1.16) we find:

f (k) = − m∗

2πh̄2
1

1
g −∑q<kc

( 1
Ek−Eq+iε + 1

Eq
)

= − m∗

2πh̄2
1

1
g + im∗k/(2πh̄2)

=
−1

a−1 + ik

(1.17)

where the sum in the denominator is calculated using residues theorem by integrat-
ing over the upper half of the complex plane.
To summarize, in order to get this result, we tuned the coupling constant g resulting
from the zero-range potential approximation in a way to recover the two-body scat-
tering length a. Furthermore, we see clearly in the last equation that to describe the
scattering of two particles in the low energy limit, only one parameter is required
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which is the scattering length a.
This constitutes the principle of universality in describing cold atoms systems we
talked about earlier in the chapter. To describe two-body interactions only one pa-
rameter is required and this goes back to the fact that particles do not resolve the
details of the interaction potential and therefore any model which recovers the be-
havior of the particle’s wavefunction far from the scatterer is sufficient.
We also note in the expression of f that the only length scale that appears is the
scattering length, which is not surprising since we chose a zero-range potential,
characterized by a single coupling constant. In the next section we will see that this
is not the case in a finite-ranged potential where its range appears as a coefficient for
the second order expansion of 1/ f .

1.1.3 Feshbach resonances
Feshbach resonances have hugely helped popularizing the use of cold atoms systems
to model physical phenomena. Their versatility, once the positions of the resonances
are known, and them needing no more than an external bias field, made their use
in experiments essential. With this powerful tool, interactions can be tuned at will
helping us simulate many types of interesting dynamics and hamiltonians and probe
their properties.
In the previous discussion the main relevant details of a single two-body interaction
at low temperature were introduced. In this picture, atoms enter and leave the inter-
action region elastically with the sum of their momenta and energies unchanged in
what is called scattering into an open channel.
However, when taking into account the internal state of the atom, two interacting
atoms could scatter into an intermediate bound state, provided the scattering length
is positive a > 0, that is embedded within the continuum of open channel scattering
states. This state usually lies in an energetically unaccessible potential with different
internal quantum numbers. The potential could support bound states trapping the
atoms before they scatter back out of the scattering region with or without excess
energy. This is usually called scattering into a closed channel.
Using selective tuning of internal states via an external factor e.g. a magnetic field,
one can shift the energy of a closed channel potential close to the open channel
threshold, increasing the probability of scattering atoms to change their internal state
and to scatter into the closed bound state. In such case, a bound-state resonance is
embedded in the scattered states continuum of the open channel. This mechanism
is called Feshbach resonance in nuclear physics [41] and in atomic physics Fano reso-
nance [122]. In molecular physics these resonances give rise to the inverse process
of a molecule in an excited state predissociating into an open channel [123]. For an
extensive review on the subject refer to [42].
Taking for example the scattering of two 6Li atoms [124], the interaction takes the
form of a linear combination of singlet and triplet molecular potentials depending
on the internal states of the scattered atoms. If the atoms approach each other in the
open channel with their unpaired electrons antiparallel and an antisymmetric wave-
function (S = S1 + S2 = 0) the potential is called a singlet potential, whereas if the
spins are parallel (S = 1) the potential is a triplet potential (referring to the energy
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triple degeneracy of this state in a two spin configuration). In Fig.1.1 the singlet and
triplet potentials for 6Li are shown.
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Figure 1.1: Closed and open channel potentials close to a Feshbach resonance. Two
atoms in their center of mass frame approach each other with a scattering potential
represented by the triplet potential (blue) with an energy E0 on the order of h ×
10 kHz. The drawing is not up to scale. A magnetic field is used to shift only
the triplet potential by an amount ∆ since it does not couple to the total zero spin
singlet potential (red). When a bound state EM in the deep singlet potential is tuned
to match to the singlet potential continuum threshold (ε = 0) atoms could scatter
into the bound state which increases significantly the scattering strength. We also
note the coupling constant between the open and closed channel which will be used
shortly.

Since S = 0 for a singlet potential, an external magnetic field has no effect on its
energy, while it shifts linearly the triplet potential (in the case where mS 6= 0). The
singlet potential is not accessible for open channel atoms since their energy E0 is
much smaller than the energy barrier. However, applying the magnetic field shifts
the energy of the collision state to a place where the bound state is close enough for
the atoms to scatter into it, and to scatter back out of it.

6Li has two Feshbach resonances, one at 543 G and the other at 834 G. The former
is a very narrow resonance, which means as will be explained later that the scattering
length is modified by the resonance in a small interval around the resonance, which
hinders the usefulness of such resonance. However, the second resonance is one of
the broadest Feshbach resonances in nature [125,126], this is partly enhanced by the
large background scattering length of the triplet potential since if it were just about
h× 300 kHz deeper it would support a bound state.

Two-channels model
The two-channels model is often used to treat problems where molecular physics
comes into play.
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In this framework the molecular state with energy ε is explicitly added to the set
of possible states in addition to the continuum scattering states. The potential takes
the form of a coupling term between the open and closed channel with a coupling
constant Λk. This coupling constant is real (if not we can always choose the phase
of momentum states in a way to cancel its phase) and it is related to the overlap
between the scattering states and the molecular state wavefunctions.
We write a two-channel hamiltonian which describes the system [127]:

Ĥ = ∑
k,σ

Ek â†
k,σak,σ + εb̂†b + ∑

k,σ

Λk√
V

(b̂†ak,σa−k,−σ + â†
k,σ â†
−k,−σb) (1.18)

where â†
k,σ is the creation operator of a fermion in the open channel with momentum

k and spin σ and b̂† is the creation operator of a molecule in a bound state of the
closed channel, Ek = h̄2k2/(4m∗) is the energy of a fermion in the center of mass
frame (m∗ = m/2 in this case), ε is the energy of the molecule with respect to the open
channel asymptotic threshold, in the center of mass frame the total momentum of the
molecule is zero, and V is the quantization volume. The first two terms represent
the energy of the non interacting system Ĥ0 while the third term represents the
interacting part V̂.
To study the effects of the two-channels coupling and to recover physical quantities
like the scattering length, like in the previous section, we evaluate the matrix element
〈k′|T̂|k〉 of the T matrix, where the state |k〉 indicates a pair of atoms in the open
channel in the center of mass frame with a relative momentum k.
Similar to the treatment in Eq. (1.9) we expand the matrix element iteratively in
orders of the interaction potential V̂. Since the final state is also in the open channel,
each term should include two V̂ interactions. A diagrammatic expansion is shown
in Eq. (1.19) with the double line indicating the propagator of the molecular state
ĜM,0 and the black filled point the interaction V̂.

T̂ = + + . . .

= + T̂

(1.19)

We calculate the first term in the diagrammatic expansion:

〈k′|V̂ĜM,0V̂|k〉 =
ΛkΛk′

V
1

Ek − ε + iη
(1.20)

where we added the term with η → 0+ to select the outgoing (retarded) molecule
propagator. Indeed, this parameter appears frequently in scattering amplitudes and
it accounts for the fact that the states are not in fact plane waves which have an
infinite extension and the effect of the potential on them is immediate, but rather
they are travelling wave packets.

Another aspect of this problem is the dependence of the coupling constant on the
energy of the incoming fermions in the open channel. Indeed, the energy of atoms is
on the order of h× 10 kHz and the coupling to the closed channel depends largely
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on the detuning ε of the bound state. For broad resonances, the coupling is much
stronger than the energy of the incoming atoms and therefore depends very little on
it. With this we can replace Λk = Λ.

Going back to Eq. (1.20) we sum up the contributions in a Dyson equation as in
Eq. (1.11) knowing that the open channel propagator (round dashed circles in Eq.
(1.19)) are written as a sum 1/V ∑q Λ2/(Ek − Eq). With this we can write:

〈k′|T̂|k〉 =
Λ2

V
1

Ek − ε− Λ2

V ∑
q

1
Ek − Eq

+ iη
(1.21)

Similarly to the case of the zero-range potential, we take the low energy limit with
〈k′|T̂|k〉 = −2πh̄2/(m∗V) f (k) ' 2πah̄2/(m∗V), and with this we write:

1
a

=
4π

V ∑
q<kc

1
q2 −

2πh̄2ε

m∗Λ2 (1.22)

We notice in this expression that when a → ∞ the molecular state should come into
resonance with the incoming atoms energy which gives :

ε0 =
m∗Λ2

π2h̄2 kc (1.23)

In this case, ε0 is physical and results from the coupling of the molecular state to the
continuum which modifies the energy of the open channel scattering states [128]. At
its origin in the singlet-triplet coupling configuration is the non-diagonal hyperfine
interaction between the two incoming atoms Vhf = α (s1.i1 + s2.i2), where s1, i1 are
respectively the spin and nuclear spin numbers of one of the atoms and α is the
hyperfine coefficient. We conclude with that the condition for resonance is ∆ =
EM + ε0.
We write Eq. (1.22) as:

a =
m∗Λ2

2πh̄2(ε0 − ε)
(1.24)

We can also write the scattering amplitude:

f (k) = −Λ2m∗

2πh̄2
1

Ek + ε0 − ε− Λ2

V ∑
q

( 1
Ek − Eq

+ iη +
1

Eq

) =
−1

a−1 + ik + Rek2 (1.25)

where

Re =
πh̄4

m∗2Λ2 (1.26)

is the resonance range and it represents an effective range of the interaction V̂ and it
is inversely proportional to the coupling strength ∝ 1/Λ2. A good scale to compare
to in this case is the Fermi energy, meaning for a strong coupling (broad resonance)
with respect to the Fermi energy we have kF Re � 1 while for weak coupling (narrow
resonance) we have kF Re � 1. In a typical 6Li experiment we have kFRe ≈ 0.01.
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Magnetic tuning of Feshbach resonances
As mentioned earlier, a magnetic field can be used to shift the energy of the open
channel with respect to the closed channel. In alkali atoms, this is done by making
use of the Zeeman shift in the triplet channel potential (when mS 6= 0) due to its
non-zero total spin while the singlet channel undergoes no shift since its total spin
is zero.

In Eq. (1.24) we arrived to an expression where the scattering length diverges
when the resonance is matched. By writing ∆µ as the magnetic moment difference
between the incoming open channel state and the closed uncoupled molecular state,
we have ε− ε0 = ∆µ(B− B0).
By taking into account collisions in the open channel in the model we can write the
scattering length in Eq. (1.24) around resonance showing explicitly its open-channel
bare value without any coupling to the molecular channel (abg) with respect to the
magnetic field change in the commonly used expression [124]:

a(B) = abg

(
1− ∆B

B− B0

)
with ∆B =

m∗Λ2

2πh̄2∆µabg
=

h̄2

2∆µ m∗ Re abg
(1.27)

where B0 designates the position of the resonance and ∆B the width of the resonance,
and abg the background scattering length corresponding to the limit a(B → ∞), for
instance in Fig.2.3 we recover the famous huge scattering length of the triplet channel
when B→ ∞ for 6Li. Again, the width of the resonance is larger for small resonance
ranges Re and closer magnetic moments between the two channels.
Also, from Eq. (1.27) we notice that when a = 0 we get ∆B = B− B0 which marks the
closest zero-crossing point for the scattering length around resonance (as in Fig.2.3).
Which adds to the point that for a broad resonance (∆B � 1) the scattering length
is modified within a large interval around resonance and for a narrow resonance the
scattering length is modified in a very small interval around resonance. For instance
in Fig.2.3 there is actually a resonance around 543 G but its width is around 200 mG
which makes it invisible on such a scale used in the figure and practically useless.

Resonance strength and narrows vs. broad resonances
As explained previously, the range over which the scattering length changes with
respect to the detuning in the vicinity of the resonance is an important parameter.
Many methods exist in the literature to characterize and quantify this dependence,
and one of the most prominent is using the resonance strength parameter sres. In the
case where a Van der Waals potential is used to describe the scattering potential the
resonance strength is defined as:

sres =
rvdw

Re
(1.28)

where rvdw is the Van der Waals potential range defined in Eq. (1.2) and Re is the
resonance range defined in Eq. (1.26). For singlet and triplet channels rvdw is the
same since the dependece of the potential on the spin states of the scattered particles
starts only for distances r < rvdw.
We distinguish two asymptotic limits:
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• When sres � 1 or Re � rvdw the resonance is said to be broad. The dynamics
of the molecular state is completely dissolved in the open channel continuum
in the crossover region −1 < 1/(kFa) < 1. The details of the closed channel do
not play a role on the dynamics of the system and the scattering length is mod-
ified by shifting the magnetic field in a large vicinity around resonance. Eq.
(1.27) describes well the change of the scattering length across resonance. The
binding energy is given by the universal expression EM = −h̄/(ma2) and the
scattering cross section has the universal form σ(k) = 4π a2

1+k2a2 . The resonance
is dominated by the open channel dynamics and a single channel description
is sufficient to describe its dynamics.

• When sres � 1 or Re � rvdw the resonance is known as narrow. The molecular
state in this case modifies the many-body physics in the description of the gas.
The universal description of the molecule is restricted only to a small interval
in the vicinity of the resonance. The system cannot be described by a single
channel model and therefore the chosen two-channels treatment is essential.
Also, since the time spent in the closed channel bound state is enhanced be-
cause the resonance strength is weak and the bound state has to be closer to
the open channel threshold (ε � 1 in 1.1), the probability for the molecule
to decay to deeper vibrational levels in the closed channel potential is higher
which leads to bad inelastic collisions.

We described the Feshbach resonances phenomenon using a two-channels model
which encompasses the physics and the mechanism of achieving such resonances in
neutral atom systems. In Eq. (1.23) the value of ε0 characterizes the width of the
resonance, and kc is a cutoff related to the potential range between two particles.
When sres � 1 we have a large value of ε0 and a large value of kc that leads to
a very small potential range and a collapse in the wavefunction known as Thomas
collapse [129]. This is the reason why the two-channels model is often attributed to
narrow Feshbach resonances description [130, 131].
Since in the course of this thesis problems including an impurity immersed in a
double Fermi sea are going to be discussed, two-body interactions alone cannot
describe the full extents and properties of such systems and a three body treatment
is needed. Indeed, the concept of universality of the interaction potential breaks
down in the three-body problem and we see that in order to describe the system we
need an additional length scale as we shall see. Therefore, in the next section we will
go through the basic tools in studying the three-body problem and we will explore
the domain where this problem is relevant in the scope of this thesis.

1.2 Three-body problem
In 1970, Vitaly Efimov, then a junior researcher at the Ioffe Institute in Leningrad,
found a remarkable effect in the quantum energy spectrum of three particles [132].
He examined the case of three identical particles interacting through short-range at-
tractive interactions near resonance. In such a case, energy fluctuations (also known
as zero-point energy) hinder the possibility of two particles to bind if the binding
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energy were too weak as is the case in near resonant interactions.
Under these conditions, Efimov found that an effective long-range three-body attrac-
tion arises, and this attraction may support an infinite family of three-body bound
states (called Efimov states or Efimov trimers), in which the three particles are bound
at larger and larger distances, beyond the range of the interactions.
The Efimov effect, as it became known, is possible at distances exceeding the poten-
tial range. In the case of a strongly interacting mass imbalanced system, this happens
via an effective interaction mediated between two heavy particles by the third lighter
particle moving back and forth between them, extending thus the range over which
such an effect takes place.
This translates to the fact that at its origin, the Efimov effect is established by means
of the kinetic energy of the particles and thus brings no characteristic length scale of
its own to the system. This means that it is not affected by other length scales in the
system and therefore it is scale invariant. The energy spectrum of Efimov trimers is
discrete and since it has no characteristic length it has no low-energy cutoff and the
bound states series is infinite with a peculiar geometric series form that became a
distinctive feature of the Efimov effect.
One thing to consider also is that once the two-body interaction becomes strong
enough to support a two-body bound state, the Efimov trimer energy merges with
the molecular energy spectrum as we shall see more explicitly later, this feature is
often called the Borromean nature of the Efimov trimer.
However, the problems arising from this infinite series, including the absence of a
ground-state energy, mean that a characteristic length scale has to be defined to ac-
count for the finite size of the ground state. We will see that this length scale arises
naturally by treating the problem using a two-channel model in contrast to other
methods where this length scale has to be added manually.
In this section a calculation of the energy spectrum of three bosons in the two-
channels model is presented following the one presented in [131]. The energy spec-
trum of the trimer states is discussed as well as the properties of these trimer in such
a system. For an extensive review on the subject of Efimov physics refer to [133].

1.2.1 Two-channels model for the three identical bosons
In the following we will follow closely the calculation presented in [131] rather than
the earlier frameworks used by Efimov himself and others. This helps in using the
same terminology used previously and also in introducing the work in Chapter 5.

We consider a system composed of three identical bosons with mass m interact-
ing via a contact zero-ranged interaction potential defined as Vk−k′ = Λ. We use a
two-channel model to write the following hamiltonian in the vicinity of a narrow
Feshbach resonance:

Ĥ = ∑
k

εk â†
k âk + ∑

K
(E0 + εK/2)b̂†

K b̂K + Λ ∑
k,K

(b̂†
K âk+K/2 â−k+K/2 + â†

k+K/2 â†
−k+K/2b̂K)

(1.29)

where εk = h̄2k2/(2m), E0 is the binding energy of the molecule with respect to the
open channel threshold, â†

k is the creation operator for an open channel boson with
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momentum k, b̂†
K is that of a closed channel molecular state with momentum K.

We also mention that the coupling constant is related to a characteristic length scale
Re defined in Eq. (1.26) and to the scattering length with Eq. (1.22) which we write
in the following form in this case:

(1.30)
1
a

=
2kc

π
− 2πh̄2E0

m∗Λ2

Where a is the two body scattering length in the two-channels model, kc is a UV-
cutoff, its inverse is of the order of the Van der Waals potential range.

The three body ansatz

The problem is solved using an ansatz for the three-body problem in the center of
mass frame, that is for a zero total momentum. Because of the conversion of pairs
of atoms into molecules and vice-versa, the variational wavefunction is a coherent
superposition of three unpaired bosons (all three atoms in the open channel) with
coefficient Ak,K and of one molecule plus one boson (one atom in the open channel
and two atoms tightly bound in a molecule in the closed channel) with coefficient
βK as follows:

|ψ〉 =
(

∑
K

βK b̂†
K â†
−K + ∑

K,k
AK,k â†

k+K/2 â†
−k+K/2 â†

−K

)
|0〉 (1.31)

By solving the Schrödinger equation Ĥ|ψ〉 = E|ψ〉 where E is the trimer energy and
considering AK,k to be an even function of k we get the following pair of coupled
equations:

(
E0 − E +

3h̄2K2

4m

)
βK + 2Λ ∑

k
(AK,k + 2Ak−K/2,−k/2−3K/4) = 0 ,

ΛβK +
(

2εk − E +
3h̄2K2

4m

)
AK,k = 0

(1.32)

Since we are looking for bound states, we write the energy as E = −h̄2λ2/m < 0.
By solving the second equation and injecting the result in the first we get one equa-
tion for βK which we integrate over the angular variables to obtain a Skornyakov-
Ter-Martirosyan’s equation [134] type as follows :

(
Re(

3K2

4
+ λ2)− 1

a
+
√

3K2/4 + λ2
)

ψ(K) =
2
π

∫ ∞

0
dK′ ln

( K′2 + K2 + KK′ + λ2

K′2 + K2 − KK′ + λ2

)
ψ(K′)

(1.33)

where Re > 0 is the parameter derived in Eq. (1.26) which is related to the finite
range of the inter-channel potential, and ψ(K) = βKK and K = |K|. With this pa-
rameter the problem does not need any additional regularization encountered using
other methods [135]. For a narrow resonance kcRe � 1 [136] and here the short-
distance regularization does not involve higher angular momentum (l > 0) partial
waves [137].
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A numerical method to solve this equation will be presented in the following chap-
ters, for an analytical derivation of the following refer to [131]. The equation yields
on resonance (a→ ∞) the Efimov trimers spectrum:

λ2
n = κ2

∗e
−2πn/s0 (1.34)

with κ∗ the three-body parameter, s0 ' 1.00624 is a scaling parameter. We also
note the famous universal ratio En+1/En = e−2π/s0 ' 1/515.03 between subsequent
levels with En = −h̄2λ2

n/m the energy of the Efimov trimer bound states. The three-
body parameter can be calculated exactly κ∗Re ' 2.6531 and the scattering length
a− where the Efimov state joins the three-atom continuum at λ → 0 to find a−κ∗ '
−1.50763 which gives the value Re/a− ' −1.760.

1.2.2 Efimov trimers properties and domain
In general , for a given three-particle system, there are three inter-particle interac-
tions. At least two of these interactions are required to be resonant for the Efimov
effect to occur. This can be understood simply from the picture of mediated inter-
action we mentioned earlier where in order for one particle to mediate an effective
long-range interaction between two other particles, it must interact resonantly with
these two particles. If it interacts resonantly with only one particle, then the media-
tion to another particle is not possible.
Generally speaking, bosonic particles are favorable to the Efimov effect, whereas
fermionic particles tend to prevent the Efimov effect, since their Pauli exclusion may
overcome the Efimov attraction.
The lighter a particle is, the better it mediates interaction between other particles.
Thus, mass-imbalanced systems tend to enhance the Efimov attraction, and enable
the Efimov effect in fermionic systems.
It is useful to add a discussion on the domain of existence of the Efimov trimers.
The spectrum in Eq. (1.34) does not have a lower limit, meaning that the energy is
not bounded from below and the ground-state energy lies at −∞ giving smaller and
smaller trimer sizes. This leads to the mentioned Thomas Collapse [129] encountered
in two-body potentials with spatial dependence as 1/r2. However, if one accounts
for the physical fact of finite range interactions and the limits of the zero-range ap-
proximation it is possible to set upper and lower limits on the size of the trimer.
In the case of large binding energies, the trimer size becomes comparable to the
range of the two-body potential rvdw defined in Eq. (1.2), in this case the short-range
approximation is no longer valid and the Efimov scenario breaks down. For low
binding energies, the trimer size becomes larger than inter-particle distance n−1/3

and the surrounding atoms create additional interactions which smear the trimer
state.
In practice the number of accessible trimers is small, if we take λn0 = rvdw and λn1 =
n−1/3 where n is the particle density introduced in 1.1.1 we have λn1/λn0 = 1/α(n1−n0)

giving
n = n0 − n1 = ln(n−1/3/rvdw)/ln(α) ' 2

where α = exp(π/s0) ' 22.7 is the recurrent factor encountered in Efimov physics
(or its square for energy dependence).
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Figure 1.2: Schematic plot of the Efimov scenario. Schematic representation of
the so-called Efimov plot or Efimov scenario showing the discrete scale invariance of
the three-body spectrum for identical bosons in the zero-range theory. The wave

number κ = E
√

m/(h̄2|E|) associated with the energy E of the dimer (black) and
trimers (red) is plotted against the inverse scattering length 1/a. The blue and orange
filled regions represent the three-body scattering continuum and the particle-dimer
scattering continuum, respectively. Note that these continua overlap for 1/a > 0 and
E > 0. Special values of 1/κ and 1/a are indicated by the dots: a trimer appears
from the three-body scattering threshold at 1/a−, has a binding wave number κ∗

at unitarity, and disappears below the particle-dimer scattering threshold at 1/a∗.
Trimer resonances in the three-body continuum are indicated by dotted curves. The
discrete scale invariance of the spectrum is indicated by the grey arrows showing
the universal scaling ratio between consecutive levels. For clarity, the value of the
strength s0 has been artificially set to 3, instead of 1.00624, thus reducing the spacings
between the trimer levels to make them more visible. Figure was taken from [133].

Another known property is the behavior of the energy across resonance (for finite
values of the scattering length a). Indeed, by dimensional argument, the energy of
the trimers takes the form:

En =
h̄2

mR2
e

fn(Re/a) (1.35)

where the function fn(Re/a) should obey the following scaling:

fn(x) = f0(x/αn)/α2n (1.36)
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for En to still scale as 1/α2 = 1/515.03. This is shown in Fig.1.2. This type of scaling
corresponds to a family of functions called the log-periodic functions which have
become a signature of Efimov physics.

1.2.3 Experimental evidence of Efimov physics
Efimov physics had stayed for decades a mere theoretical prediction until the first
experimental evidence was discovered. We will only focus in this section on experi-
ments in the field of cold atoms relevant to the scope of this manuscript.
Most atomic species have interactions that decay as a ∝ 1/r6 Van der Waals potential.
Thus, to observe the Efimov trimer described earlier, neutral atoms appear to give an
ideal system. As for resonant interactions, this can be achieved by means of the Fesh-
bach resonances studied earlier. Shortly after these techniques were well-established,
many groups turned to the old problem of Efimov.

Experimental evidence of the Efimov physics was first obtained with 133Cs atoms
[138, 139] by studying the three-body losses in their Bose gas. The basic principle
behind the measurement is that each time an Efimov trimer couples to a three-atom
or to an atom-dimer threshold, the particle loss dramatically increases, and the cor-
responding scattering rate coefficients provide well-suited observables to detect Efi-
mov physics in experiments.
Although the experiment observed only one trimer state, its Efimovian nature was
convincing since it was observed in regions where the dimer state is known to be
unbound.

This experiment was later extended to other atomic species and the scaling factor
α was tested experimentally through the observation of multiple resonances and the
value of a− was measured as well as the atom-dimer scattering value which deter-
mines the value of a when the trimer state dissolves into the dimer state [140–142].
The binding energy was also directly measured via radio-frequency association, with
a three-component Fermi gas of 6Li [143, 144].

1.3 Ultra-cold Fermi gases
The first theoretical study of fermions goes back to Paul Drude’s model for the con-
ductivity in solids [145]. Drude considered metals to be composed of heavy positively
charged particles and light electrons1. Then he modeled the motion of these particles
using a purely classical treatment and using this simple approach, it became possible
to explain the basic properties of metals like conductivity and resistance.
However, the observation at the beginning of the 20th century of superconductivity
in metals changed this view. It was Heike Kamerlingh Onnes, then a professor at
the University of Leiden, who, after having succeeded in liquefying 4He earlier, used
his liquid 4He to cool down mercury when he observed the remarkable effect of the
resistivity dropping to non-measureable values at low enough temperatures2.

1Electrons were already discovered by Sir Joseph J. Thompson back in 1897.
2Onnes received the 1913 Nobel prize in physics for "his investigations on the properties of matter

at low temperatures which led, inter alia, to the production of liquid helium"
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The condensation of electrons was an utterly strange observation, since for fermions,
they cannot be in one and the same quantum state and an obvious scenario for this
to happen might be the formation of tightly bound pairs of electrons that can behave
as bosons and condense. However, at the time no known interaction could possibly
overcome the Coulomb repulsion between electron pairs.
It was not until four decades later that L. Cooper realized that fermions interacting
via an arbitrarily weak attractive interaction mediated by the crystal lattice vibra-
tions (phonons) on top of a filled Fermi sea can form a bound pair [146], and by a
result could be responsible for superconductivity.
Soon afterwards, Bardeen, Cooper and Schrieffer (BCS) developed a full theory of
superconductivity starting from a new, stable variational ground state in which
pair formation was included in a self-consistent way [147]3. Later, Popov [148],
Leggett [149] and Eagles [150] realized that the BCS formalism and its variational
ansatz provides also a description of a Bose-Einstein condensate of a dilute gas of
tightly bound pairs.
In this section, we will describe the rich physics involved in the low temperature
interacting Fermi gas, with its asymptotic regimes, the molecular Bose-Einstein con-
densate, the Barden Cooper Schriefer superfluid, and the unitary Fermi gas. To
begin, we will provide some results for non-interacting gases.

1.3.1 Non-interacting Fermi gas
We start with the basic case of a homogeneous system of non-interacting fermions
in a box with volume V in three dimensions. The study of the non-interacting (also
called ideal) Fermi gas helps understanding the role of interactions in the interacting
limit, and provides a playground for many phenomena where the effect of interac-
tions can be neglected, e.g. in a Fermi gas at thermal equilibrium.
To describe a statistical ensemble at thermal equilibrium like a gas of non-interacting
fermions we can write the following partition function in the grand canonical ensem-
ble:

Z = ∑
λ

e−βEλ (1.37)

where λ describes a single mode state in the system, Eλ is the total energy of this
state representing the eigenvalue of the single particle hamiltonian of the system
(Ĥ − µNλ)|Ψλ〉 = Eλ|Ψλ〉, where µ is the chemical potential and Nλ the number of
particles and β = 1/(kBT) is proportional to the inverse temperature, kB is the Boltz-
mann constant.
For two identical fermions, by construction, their wavefunction should be antisym-
metric with respect to the exchange of the two fermions. This results in the fact
that the two fermions cannot be in the same state, this principle is known as Pauli
exclusion principle or Pauli blocking.
This restricts the number of possible states of the particle to two |Ψλ〉 ∈ {|0〉, |1〉}
since no more than one fermion with energy Ek is allowed to exist in one state.
With this we calculate the probability of having a fermion in a state k representing

3The three scientists received the 1972 Nobel Prize in physics "for their jointly developed theory of
superconductivity, usually called the BCS-theory."
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the wavevector of the fermion if we consider the gas to be composed of free particles
since no interaction is present:

Nk = 〈a†
kak〉 =

1
Z e−βEk =

1
1 + eβEk

(1.38)

This is called the Fermi-Dirac distribution describing the occupation number Nλ.
When working with in the grand canonical ensemble we have Ek = εk − µ where
εk = h̄2k2/(2m) is the kinetic energy of a fermion with mass m and µ is the chemical
potential of the gas. In the case of an interacting system, an additional term is added
to the hamiltonian to account for the effect of interactions and trapping.
In the limit of low temperature β → ∞ fermions start filling up the lowest available
energy levels until the last ones reach what is called the Fermi energy εF and occu-
pation number of a fermion with energy lower than εF is 1 and above it is 0. This
leads the Fermi-Dirac distribution to take the following form Nk = Θ(εF − εk) with
Θ as the Heaviside step function.
This stacking of fermions creates a sphere with radius kF called the Fermi wavevec-
tor. The volume of this sphere V = 4πk3

F/3 can be related to the total number of
fermions N = ∑k<kF

Nk by considering the quantization volume in reciprocal space
(2π)3/V giving

N
(2π)3

V =
4
3

πk3
F ⇒ kF = (6π2n)1/3

where n = N/V the density of fermions per spin in a volume V .
The Fermi energy could now be calculated as follows:

EF =
h̄2k2

F
2m

=
h̄2

2m
(6π2n)2/3 (1.39)

It is common to write the last equation in the case where n designates the total
number of fermions in a double Fermi gas, i.e. a gas with equal number of fermions
in two spin states |↑〉 and |↓〉. In that case the factor 6 becomes 3. We can also define
the Fermi temperature in a homogeneous system:

TF = EF/kB =
h̄2

2mkB
(6π2n)2/3 (1.40)

where kB is the constant of Boltzmann.
The Fermi energy and therefore the Fermi temperature are an indication of the den-
sity of the system and in consequence of the interparticle distance n−1/3 previously
mentioned in 1.1.1. Thus, the ratio T/TF, similarly to λdBn−1/3, defines a value
which can be an indicator of the degeneracy of the system. If T/TF < 1 the system
is non-degenerate and a classical treatment is sufficient to describe its microscopic
properties. However, if T/TF � 1 the system is degenerate and to understand its
microscopic treatment more careful treatment taking into account the quantum na-
ture of the degenerate regime is required.
An example of these systems are metals for instance, where the Fermi temperature
of the electrons is of several 104 K, hence, electrons in metals are in deeply degener-
ate regimes and quantum many-body effects like superconductivity are manifested
in such systems. Another example are the extremely dense neutron stars with a



1.3. Ultra-cold Fermi gases 29

Fermi temperature of around 1011 K compared to typical core temperatures of 108 K.
Meaning that these systems are deeply degenerate, and that the results obtained in
ultra-cold Fermi gases physics can be in some cases extended to such systems.
As for the case of ultra-cold Fermi gases which are used in experiments, in room
temperature they are very far from degeneracy. Increasing the density of the gas
will increase its Fermi temperature and get it closer to degeneracy, however, this
will also increase three-body recombination rate which leads to solidification when
the temperature is lowered. This tradeoff is the reason researchers use very dilute
gases with densities < 1013 cm−3 and decrease the temperature of the gas to get a
degenerate gas.
The Fermi temperatures for these gases is around 1 µK which means that many steps
of cooling have to be performed to bring the gas to degeneracy. In the next chapter
we will present a full overview of the steps we use in our experiment to cool the gas.

1.3.2 Interacting Fermi gas and the BEC-BCS crossover

In the case of a gas of fermions composed of two equally populated spin states, in-
teractions arise and become more important and the physics described earlier needs
to be modified due to large scale coherence which leads to many-body phenomena
arising.
Unlike Bose gases which suffer from huge three-body losses in the limit of strong
interactions due to three-body recombination, Fermi gases do not have this problem
since Pauli exclusion principle blocks these combinations which leads to gases with
life times longer than the times needed to run an experimental sequence in cold
atoms experiments.
In the case of strongly attractive interaction kF a� 1, the ground state of the system
should be a BEC of tightly bound molecular pairs. When the binding energy largely
exceeds the Fermi energy, the fermionic nature of the gas becomes irrelevant since
paired fermions have different momenta and therefore no Pauli blocking happens.
In the other case of weak attractive interactions kF a � −1, there is no bound state
for two isolated fermions, but Cooper pairs form in the medium for fermions close
to the Fermi sphere. The ground state of the system is a condensate of Cooper pairs
as described by BCS theory. In contrast to the case of molecular condensate, the
binding energy of these pairs is much smaller than the Fermi energy and thus the
Pauli principle plays a major role.
In between, it crosses the unitary limit where the scattering length diverges and the
properties of the gas become scale invariant.

It was then realized by Leggett [151] building upon the work of Popov [148] that
the transition from the BCS to the BEC regime is a smooth crossover. In light of what
was explained this sounds a bit odd since the two-body physics shows a threshold
behavior at the unitary limit, below which there is no bound state for two particles.
However, in the presence of the Fermi sea, the transition is manifested simply by a
crossover from a regime of tightly bound pairs to a regime where these pairs are of
much larger size than the interparticle spacing.
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BCS limit

In this regime of weak attractive interactions kF a → 0−. Fermions are weakly
attracted to each other and will form an ensemble of phase-coherent Cooper pairs
protected by the superfluid gap ∆/E2

F ∼ 8 e−π/(2kF |a|)/e2. However, the pairing gap is
still exponentially smaller than the Fermi energy, meaning that the pairing is fragile
and excitations could break up pairs easily.
The ground state energy per unit volume of the BCS-superfluid is mainly given by:

εG,BCS =
3
5

nEF(1 +
10
9π

kFa +
4(11− 2 ln(2))

21π2 (k f a)2) (1.41)

where the first term is the energy of the non-interacting normal state, where 3EF/5 is
the average kinetic energy per fermion in the Fermi sea., the second is a mean-field
shift and the next term was obtained by Galitskii, Lee and Yang, in the context of
repulsive hard-sphere fermions [152, 153]. The generalization of this expansion to
attractive interactions was shown in [154].

BEC limit

In the regime of small positive scattering lengths kFa → 0+, opposite-spin fermions
are strongly attracted to each other and form tightly bound dimers of size a and
binding energy −h̄2/(ma2) . The dimers are composite bosons that condense at low
temperature and can be described by a Gross-Pitaevskii equation for small scattering
lengths. Consequently, the ground state energy per unit volume reads:

ε = − h̄2

ma2 nM +
1
2

gMn2
M

(
1 +

128
15
√

π

√
nM(cMa)3 + . . .

)
(1.42)

where nM = n/2 is the dimer density, gM = 2πh̄2cMa/m and cMa ' 0.6 a is the dimer-
dimer scattering length [62, 155]. The first term is the binding energy per molecule
in the tightly bound limit. The second term is a mean field contribution describing
the repulsive interaction between molecules in the gas [156].

Unitary limit

In the unitary limit, the scattering length drops out as a scaling parameter and we
retrieve relations that are analog to the ideal Fermi gas. All the complexity of the
interacting system is thus encapsulated in a few universal numerical constants. In-
deed, the energy density can be expanded as

ε =
3
5

nEF(ξ − ζ

kFa
+ . . . ) (1.43)

The numerical constant ξ is the Bertsch parameter ξ = 0.376 [157]. The other nu-
merical constant ζ was measured to give ζ = 0.87 [158]. The analytical or numerical
calculation of those two parameters represent a challenging problem as they cannot
be obtained by standard perturbative methods due to the lack of small parameters
in the system.
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The unitary gas is revisited in the third chapter where a presentation of our ex-
trapolation of previous measurements of the equation of state of a unitary Fermi gas
is presented. For an extensive review on the BCS-BEC crossover refer to [159].

The previous discussion concerns purely fermionic gases which do not interact
with the environment. However, their properties can be modified dramatically if
such an interaction is introduced. An iconic problem is the study of the quantum
system’s properties when one particle is immersed in the system, an umbrella term
is impurity physics.
In the next section we will explore the main theoretical results in this domain and we
will see how the physics of the BEC-BCS crossover affects the state of the impurity.

1.4 Impurity physics

Properties of quantum systems can be modified dramatically when they interact
with an environment. One of the first systems in which this phenomenon has been
recognized is an electron moving in a deformable crystal. As originally pointed out
by Landau and Pekar [97], Fröhlich and Holstein [98,160] a single electron can cause
distortion of the ionic lattice that is sufficient to provide a strong modification of the
electron motion.
Schematically this can be described as an electron moving together with its screening
cloud of collective excitations which take the form of vibrations due to the attraction
and repulsion between the electron and the crystal, these vibrations of the crystal are
commonly known as phonons. This effect not only renormalizes the effective mass of
the electron but can also make its propagation (partially) incoherent. The resulting
electron dressed by the phonons has been termed polaron.

Polaron physics is important for understanding many solid state materials in-
cluding ionic crystals and polar semiconductors [161–164], and even high tempera-
ture superconductors [165]. It has also been discussed in the context of electrons on
the surface of liquid helium [164, 166].
Furthermore, in several technologically relevant materials, such as organic semi-
conductors used in flexible displays, unusual temperature dependence of electron
mobility arises from the strong coupling of electrons to phonons [167, 168].
The idea of polaronic dressing has been extended far beyond electron-phonon sys-
tems and has become an important paradigm in physics. One important example
is charge carriers in systems with strong magnetic fluctuations, such as holes doped
into antiferromagnetic Mott insulators [169, 170] or electrons in magnetic semicon-
ductors [171, 172], which can be described as magnetic polarons. Even in the Stan-
dard Model of high energy physics the way the Higgs field produces masses of other
particles [173, 174] is closely related to the mechanism of polaronic dressing.
The study of the problem has had major influences on theoretical approaches also.
For instance, the Kondo effect [99, 102], in which scattering of a localized spin on
conduction electrons leads to the formation of a bound state, was the starting point
of the application of the renormalization group approach to condensed matter sys-
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tems. The crucial aspect of most impurity problems is that simple perturbative and
mean-field approaches are not sufficient. Powerful analytical methods have been
employed to explore this problem including bosonization (see e.g. [175, 176]), renor-
malization group [101, 177, 178], and Bethe ansatz solution [179, 180].
In a broader perspective, the polaron problem represents a sub-class of quantum
impurity problems, in which a single impurity introduces interactions (or at least
non-trivial dynamics) in the many-body system which is hosting it. These systems
have long been a fertile ground for testing analytical, field-theoretical, and numerical
methods for studying quantum many-body systems.

In ultracold atomic gases, the realization of impurity systems has led to a dra-
matic increase of activity in this topic. Using this platform, researchers have been
able to create a large variety of polaronic systems with different impurity masses,
bath and impurity types and tunable interactions. When the impurity is immersed
in a Bose-Einstein condensate it is called a Bose polaron and many experimental real-
izations using fermionic and bosonic impurity atoms were realized [181–187].
The case of an impurity immersed in a spin polarized Fermi sea is known as a
Fermi polaron and its first experimental realization was as a side effect of experiments
aiming at observing the superfluid transition in a Fermi gas using spin-imbalanced
samples [188,189]. In the first experiment, a superfluid core was observed as Cooper
pairing dominates the superfluid region and a polarized non-interacting gas was
observed on the outer shell of the sample, however, between these two regions a
partially polarized gas formed and showed interesting results.
While the physics of this experiment is going to be shown in detail in Chapter 3
it is important to note that the difference between its result and the one in [189]
has launched a considerable theoretical effort to understand this problem [190–196].
Later experiments [109, 197–199] focused on studying the properties of an impurity
immersed in a spin polarized system as well as in a fermionic superfluid with two
spin states instead of one using the rich environment of Fermi gases where the BEC-
BCS crossover provides a bath where a transition between the Bose polaron and the
Fermi polaron can be achieved.
In the following a brief overview of each polaron regime is going to be presented.

1.4.1 Bose polaron
The Bose polaron problem is connected to the original polaron problem investigated
by Landau and Pekar [97], for which a conduction electron is immersed in a phonon
bath. In cold atoms, the Bose polaron can be realized by considering an impurity
immersed in a Bose-Einstein condensate, the interaction is manifested by Bogoliubov
excitations in the BEC. For a recent review refer to [200].
A commonly known model is the Fröhlich hamiltonian:

Ĥ =
h̄2 p2

2mi
+ ∑

k
h̄ωk b̂†

kb̂k + ∑
k

Vk eik.r (b̂k + b̂†
−k) (1.44)

where r and p are the impurity position and momentum vectors respectively, mi is
the mass of the impurity, b̂†

k is the creation operator of a phonon at wavevector k
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and energy ωk and Vk is the matrix element of the impurity-phonon interaction at
momentum k.
While this model was originally introduced in the context of electron-phonon sys-
tems, the Fröhlich hamiltonian has been shown to describe the interaction between
impurity atoms and Bogoliubov modes of a BEC [201, 202] in the limit where the
scattering of phonon at finite momentum can be neglected.
This model is characterized by two important parameters: the impurity mass mi and
the impurity-phonon coupling strength. In the weak coupling regime, the polaron
can be thought of as a quasi free impurity carrying a loosely bound screening cloud
of phonons. It was previously described by a weak coupling mean-field theory [203]
and a full description of its properties was shown in [204]. The mean-field expres-
sion of the energy is of the form Emf

n = gibnb where gib = 2πh̄2aib/mib where aib is the
impurity-phonon scattering length and mib is the impurity-phonon reduced mass.
In this limit, the effective mass m∗ of the Bose polaron tends towards mi.

Figure 1.3: Average energy of an impurity immersed in a Bose-Einstein condensate
as a function of the interaction parameter. The results are obtained by fitting the
spectroscopic signal of the impurity (blue dots), while the blue line is the spectrum
calculated using a variational ansatz taking into account three-body correlation [204,
205]. The green dashed line shows the perturbative regime result and the red line
shows the result of a variational calculation without considering three-body physics.
Figure taken from [206].

In the strong coupling regime, on the other hand, the screening cloud is so large that
the impurity becomes effectively trapped in the resulting potential. To explore the
strongly interacting regime, a variational ansatz has been used [205, 207], as well as
a field theoretical study [208]. These studies are in agreement and determined the
energy of the polaron for any interaction strength.
When aib > 0, an impurity-boson dimer can be formed, but contrary to the Fermi
polaron case [130], there is no sharp transition expected from the Bose polaron to the
molecular state. Both studies expect a smooth transition between the two states: the
energy of the polaron tends asymptotically towards that of the shallow dimer energy
and the effective mass of the Bose polaron tends smoothly towards m∗ = mi + mb,
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signature of the dimer state.
For aib > 0, a repulsive branch of the Bose polaron also exists. While in the weakly
interacting regime aib → 0+, the Bose polaron is well-defined and can be described
with a perturbative expansion, in the strongly interacting regime the Bose polaron
is ill-defined for 1/(knaib � 1), with a strong decay into the lower-lying energy
branches.

Moreover, three-body effects were taken into account in [205, 209]. They showed
that three-body physics can affect the Bose polaron in the strongly interacting regime
with an avoided crossing between the polaronic energy branch and the trimer en-
ergy branch, meaning the impurity becomes smoothly bound into an Efimov trimer
in this regime. An effect to be contrasted with the first order transition observed
between the polaron and the trimer state for an impurity in a normal phase Fermi
sea [118] and the smooth crossover in case the Fermi sea allows interactions [130].
The Bose polaron has been investigated experimentally in the strongly interacting
regime in JILA with fermionic 40K impurities in a BEC of 87Rb [210] and in Aarhus
University with 39K for the impurities and the BEC using two different internal
states [206].
In the latter experiment, a clear signal of the Bose polaron was observed by using
RF spectroscopy and an energy shift predicted in [204] due to three-body correla-
tions has been observed which means that to describe accurately the physics of Bose
polarons three-body effects have to be taken into account.

1.4.2 Fermi polaron
The question of spin-imbalanced Fermi gases has been an intriguing problem for
decades. Originally, it was understood that pairing and superfluidity could sus-
tain a certain amount of spin imbalance, above which the system would undergo
a quantum phase transition towards a normal state [211, 212]. Four decades later,
experiments done at MIT and Rice university [188, 189, 213] have revived the old
problem in a way and opened it to new possibilities in another way.
One remarquable feature of [188] is the observation of three different phases in the
cloud. At the center, a superfluid core, where the densities of the two spin states are
equal was observed, then an intermediate normal shell where the two states coexist
with one component acting as a bath and the other component as an impurity and
finally an outer rim of the majority component.
The intermediate phase raised many interesting questions regarding the phase dia-
gram of an impurity of minority atoms, and it was known to be as the Fermi polaron
problem.
The Fermi polaron is a quasiparticle arising from the interaction of an impurity with
a spin-polarized Fermi gas. The impurity in this case is dressed by the particle-hole
excitations of the surrounding Fermi sea. For a recent review refer to [214].
Typically, the hamiltonian of the system, also called the N + 1 body problem, de-
scribes simply an impurity interacting with a Fermi sea and is written as:

Ĥ = ∑
k

h̄2k2

2m
â†

k âk +
h̄2 p2

2m
ĉ†

p ĉp +
g0

V ∑
k,k′ ,q

â†
k+q ĉ†

k′−q ĉk′ âk (1.45)
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where â†
k is the creation operator of a fermion with momentum k and mass m, ĉ†

p
is the creation operator of an impurity with momentum p and mass m, g0 is the
bare coupling constant of the interaction impurity-fermion, it can be normalized by
adding a UV-cuttof as seen in section 1.1 resulting in Eq. (1.16).

Variational approach
As part of the theoretical effort aimed at studying the observations in [188], a varia-
tional ansatz was proposed in [191] that described an impurity scattering in a polar-
ized Fermi sea and creating one particle-hole excitation:

|ψ〉 =
(

A + ∑
k,q

B(q, k)â†
k âq ĉ†

k−q

)
|φFS〉 (1.46)

where A is the amplitude of the state |φFS〉 = |0〉 ⊗ |FS〉 that describes a non interact-
ing majority Fermi sea plus a minority atom with zero momentum, and B(q, k) is the
amplitude of the second state that describes a perturbed Fermi sea with a majority
atom with momentum q (with |q|< kF ) excited to momentum k (with|k|> kF ).
To determine the properties of the polaron, one finds the amplitudes A and B(q, k)
that minimize the expectation value of the hamiltonian presented in Eq. (1.45).
The minimization leads to an implicit equation for the energy of the minority particle
at unitarity a→ ∞:

E = ∑
|q|<kF

1

∑|k|>kF
( 1

εk+εq−k−εq−E −
1

2 εq
)−∑|k|<kF

1
2 εq

(1.47)

where εk = h̄2k2/2m the energy of a fermion with mass m.
At low momentum k0 of the impurity, the dispersion relation of the impurity can be
expanded as:

E(k0) = ηEF +
h̄2k2

0
2m∗

+ . . . (1.48)

The moving impurity becomes dressed by the Fermi sea and that results in a quasi-
particle with an effective mass m∗ and binding energy ηEF and η < 0.
These two parameters depend on the interaction strength 1/(kFa), where a is the
impurity-fermion scattering length. Far in the BCS limit (1/(kFa) � −1), the impu-
rity behaves as a free particle with mass m, thus η = 0.

At unitarity, a numerical solution of Eq. (1.47) yields η ' −0.606 and m∗ '
1.17 m. Despite it being a variational calculation and can only give an upper bound
for the value of η, it is remarkably close to the results obtained using variational
Fixed-Node Monte-Carlo predictions [215] (η = −0.58, m∗ = 1.04 m), and using di-
agrammatic Monte-Carlo [216] (η = −0.59, m∗ = 1.09 m). This can be explained by
the relatively weak probability of excitation of a particle-hole pair (' 25% in the
variational calculation), confirmed by an expansion of the polaron energy as a func-
tion of the number of excited particle-hole pairs that converges quite fast [216, 217].
Furthermore, experimental measurements from MIT using a density profile analy-
sis [218, 219] and our group using a collective modes study [220] showed that the
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effective mass is indeed close to unity, with m∗ = 1.06 m and m∗ = 1.17 m respec-
tively, thus barely modified by the interactions. The results for η are summerized in
Fig.1.4.
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Figure 1.4: Fermi polaron energy. The blue dashed line gives the numerical solution
for the ansatz with one particle-hole excitation [221]. Green filled squares show a few
points obtained from the diagrammatic Monte-Carlo calculations [216]. Red filled
triangles show points resulting from Fixed-Node Monte Carlo calculations [222]. The
blue empty circle shows the result corresponds to a RF measurement at unitarity
in agreement with the theories [198]. We see full agreement between the results
obtained.

In the BEC limit, the impurity can form a dimer with an atom from the majority.
It was shown that the phase transition is located at (1/(kFa) = 0.91), with a sharp
crossing between the energy curves of the Fermi polaron and the dimer. Above this
critical value, the impurity can be roughly considered as a boson interacting with
the Fermi sea with an atom-dimer scattering length aad = 1.18 a [134, 223, 224].

1.4.3 Impurity in a two-component Fermi gas
Experiments on dual superfluids raised many questions regarding the behavior of
an impurity immersed in a superfluid of spin 1/2 fermions [111, 225, 226]. In these
experiments, the polaron is weakly coupled to the background superfluid and the
interaction could be accurately modeled within mean-field approximation.
Further theoretical works explored the strong coupling regime between the impu-
rity and the background fermions using mean-field theory to describe the fermionic
superfluid [114, 117, 130]. They highlighted the role of Efimov physics in the phase
diagram of the system and as a consequence some results were plagued by unphys-
ical ultraviolet divergences.
Indeed, in the Fermi polaron case, no three-body effects are possible since Pauli
blocking forbids interactions between spin polarized fermions. On the contrary, the
Bose polaron is subject to Efimov effects [132] and three-body interactions play an
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essential role in the strongly interacting regime.
The nature of the transition between the polaron and the trimer state is intrigu-
ing since it depends heavily on the background interactions. Indeed, it was shown
in [130] using a mean-field approach to describe the superfluid, that superfluid ex-
citations provide a strong coupling between the polaron and trimer state making for
a smooth avoided crossing between the two branches. However, for a background
Fermi sea in the normal state, it was shown in [118] that this transition takes the
form of a sharp first order transition.
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Figure 1.5: Stability diagram for an impurity in vacuum. Polaron, dimer and trimer
states in the case of the impurity and two fermions with equal masses, and calcu-
lated using a coupled channel model (figure was taken from [117]). Variational
approaches based on a mean-field description of the background superfluid sug-
gest that the polaron/trimer transition is a crossover [130]. Here, a′ designates the
impurity-fermion interaction scattering length, whereas a designates that between
the fermions. The diagram was obtained by calculating the energy of the polaron,
trimer and dimer states and choosing the lowest value for each impurity-fermions
and fermion-fermion interaction.

The presence of the two-component Fermi sea allows access to Efimov effects even
for a fermionic impurity and a trimer bound state becomes accessible in the phase
diagram of the problem along with the dimer state present in the strongly interacting
regime. A phase diagram for the problem without the presence of the Fermi sea is
shown in Fig.1.5. It was obtained (See supplemental material in [117]) by searching
values where the mean field energies of the three sectors are equal.
Moreover, the presence of the Fermi sea allows us to study the transition between a
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polaronic state in the presence of two component fermionic superfluid and a Bose
polaron when the fermion-fermion interaction is increased.
The study of a polaron immersed in a two-component Fermi sea will be a central
part of this manuscript. We will see how the calculation of the energy of the polaron
in an interacting superfluid presents divergent terms which are reminiscent from the
three-body physics which will be the main focus of Chapter 4.
The problem mentioned earlier regarding an impurity immersed in a non-interacting
Fermi sea is going to be detailed in Chapter 5 where we will use a variational ansatz
to explore the phase diagram.

Summary
In this chapter we have presented basic concepts concerning the physics of ultra-cold
Fermi gases which are particularly relevant to the objectives of this manuscript.
A description of two-body and three-body physics and a review of the main theo-
retical results in their respective domains were first presented. These concepts will
be used extensively in the last two chapters to help presenting the theoretical calcu-
lations done throughout my thesis work.
A particular focus on impurity physics was given, especially the case of a Fermi
polaron, which will be relevant to two problems which will be discussed in later
chapters.



Part I

The Lithium Experiment
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This part deals with the Lithium 3 experiment that I joined as a
PhD student from September 2017 to July 2019 under the supervi-
sion of Tarik Yefsah (in large majority) and Christophe Salomon.
My work contributed to the completion of the experimental ap-
paratus and the optimization of evaporative cooling down to near
quantum degeneracy.
This was a collective effort involving also Shuwei Jin, Julian Struck,
Yann Kiefer, Darby Bates, Kunlun Dai, Bruno Peaudecerf and Joris
Verstraten.

After I left the experiment to start a theory project, the Lithium
3 team achieved the precise characterization of quantum degener-
acy through the analysis of in-situ profile of the gas and the previ-
ously measured Equation of state, as well as superfluidity. A more
detailed description of the apparatus and results can be found in
Shuwei Jin’s PhD thesis [227].



Chapter 2

A new generation Lithium machine

The first part of thesis work included participating in building an experimental ap-
paratus aiming at producing a Fermi superfluid of 6Li atoms. To obtain a Fermi su-
perfluid, several cooling steps are needed. This chapter will start with an overview
of the 6Li atom, and will mainly focus on the main experimental setup. An explana-
tion of the cooling and manipulation steps will be presented and the technical details
of its implementation in our setup will be viewed starting from the generation of a
hot vapor of atoms to obtaining a degenerate Fermi gas.

2.1 Overview of the setup

The main goal of the experimental sequence is to achieve an ultra-cold atomic gas
of 6Li using laser cooling and manipulation techniques. The full apparatus is under
ultra high vacuum ≈ 10−9Pa, which creates a low pressure environment in which
minimal losses of the atoms are observed during the time required to run the exper-
imental sequence, which is on the order of 1 minute.
The ultra-high vacuum system is comprised of several parts designed to produce,
cool and image an atomic vapor of 6Li atoms. An overview of the setup is presented
in Fig. 2.1.
The sequence starts with the production of a hot Lithium vapor creating a vapor
pressure which propels the atoms through a collimation tube. The atomic jet is then
slowed down by the Zeeman slower, enough to be captured in the magneto-optical
trap (MOT). The atoms are then cooled down further using D2 and D1 cooling tech-
niques to a temperature which allows them to be captured efficiently by an optical
dipole trap. The atoms are then transported optically to the science cell where they
are captured by another optical trap which forms with the transport beam a cross
dipole trap. Then the evaporative cooling starts in the cross dipole trap, and after-
wards the transport beam is switched off and further evaporative cooling steps are
performed on the atoms in the remaining beam.

At the end of the cooling sequence, we end up with a quantum degenerate spin
1/2 Fermi gas of 6Li atoms at a temperature of a few tens of nano Kelvins. For the
unpolarized phase the sample is in a superfluid phase.

41
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Figure 2.1: 3D CAD model of the main vacuum setup. The main parts are indicated:
1. Oven. 2. Atomic beam shutter. 3. Differential pumping section. 4. Zeeman
slower. 5. MOT chamber. 6. MOT beam, 3 in total. 7. MOT coil, 2 in total. 8. D1
gray molasses beam, 3 in total. 9. Science cell. 10. Feshbach and curvature coils. 11.
Getter pumps. 12. Ion pumps.

2.2 The 6Li atom
Lithium is an alkali metal with atomic number 3. It appears naturally in two stable
isotopes. 7Li with four neutrons, and 6Li with three. Since the two isotopes differ by
a single spin-1/2 particle, they exhibit different quantum statistics. 7Li is a composite
boson, while 6Li is a composite fermion. This thesis is solely concerned with the
fermionic isotope. For more details on 6Li refer to [126].

2.2.1 Level structure
6Li has a single, unpaired valence electron. The ground state configuration is 1s22s1,
and the lowest excited state configuration is 1s22p1. The spin-orbit interaction be-
tween the intrinsic angular momentum of the valence electron (spin S) and the an-
gular momentum of its orbit (L) leads to the splitting of this line into the D1 and D2

lines, and to the fine structure levels each with an angular momentum J = L + S, its
possible values give rise to a quantum number J ∈ [L− S, L + S].

Both of these states have a natural line width of ΓD = 2π × 5.87 MHz. These
transitions give the excited states 2P1/2 and 2P3/2 corresponding to the values J = 1/2
and J = 3/2 respectively, with a relatively small fine structure splitting of ≈ 10 GHz.
The D2 line is used in the Zeeman slower, the magneto optical trap, the imaging and
in repumping atoms during these phases, while the D1 line is used only for D1 gray
molasses.
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By increasing the resolution on the spectroscopic levels, the interaction with the
nucleus can no longer be neglected and another splitting is observed. The nucleus
spin (I = 1) interaction with the fine structure levels gives rise to another quantum
number F ∈ [J − I, J + I] and the hyperfine structure. The ground state 2S1/2 with
J = 1/2 splits into two levels corresponding to F = 1/2 and F = 3/2 with a splitting
of ≈ 228.8 MHz. The 2P1/2 splits also into two levels with F = 1/2, 3/2. While the
2P3/2 splits into three levels with F = 1/2, 3/2, 5/2.
Due to the weak coupling of the valence electron to the nuclear spin, the hyperfine
splitting of the excited level 2P3/2 does not exceed the natural line width, which
explains the lower limit of the MOT cooling of around the Doppler temperature.
The full level structure is depicted schematically in Fig2.2.
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Figure 2.2: Level structure of 6Li. (a): Fine and hyperfine structure of 6Li atom. The
ground state and 2P excited states are shown. Energy splittings are not to scale. (b):
Zeeman sub-levels of the lowest two hyperfine states, the lower two states will be
used as two spin states for evaporative cooling.

In the presence of an external magnetic field, a final splitting occurs to the atomic
levels, the Zeeman splitting, due to interaction between the intrinsic magnetic mo-
ment of the atom (spin) with the external magnetic field.
As the magnetic field increases from zero, the Zeeman interaction is initially small
compared to the hyperfine interaction. Thus, we can treat the interaction pertuba-
tively with respect to the hyperfine splitting. In this case, the vector F precesses
around the magnetic field vector B, and therefore F is still a good quantum number.
When the coupling to the field is large compared to the hyperfine splitting, we enter
the so-called Paschen-Back regime, where F is no longer a good quantum number.
The full Hamiltonian needs to be diagonalized in |mS, mI〉 basis. Traditionally, the
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lowest six states stemming from Zeeman splitting of the lowest two hyperfine states
are denoted |1〉, |2〉, . . . , |6〉.
This regime dominates in the case of 6Li even for a few tens of Gauss since its hyper-
fine splitting is weak. In Fig.2.2(b) we show the Zeeman sub-levels of the lowest two
hyperfine states. The energies are plotted using the Breit-Rabi formula [228] which
is written for a state with J = 1/2 as follows:

∆EZ(F± = I ± 1/2, mF) = −hAFS

4
+ gImFµBB± hAFS(I + 1/2)

2

√
1 +

2mFx
I + 1/2

+ x2 (2.1)

where we used the notation x =
(gJ − gI)µBB
hAFS(I + 1/2)

, and gJ and gI are the Landé g-factors

and AFS is the magnetic dipole hyperfine constant. Refer to [126] for the values of
these constants and for more details on the level structure.
In our setup, we work in the high field regime during evaporation, where we prepare
the system in a balanced mixture of states |1〉 and |2〉.

2.2.2 Feshbach resonances of 6Li
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Figure 2.3: Feshbach resonances for 6Li atom. Values of the s-wave scattering length
for the three energetically lowest Zeeman sub-levels of the 6Li atom. The scattering
length is in units of Bohr’s radius. Data was taken from [229].

One of the reasons leading to the wide use of 6Li in cold atoms experiments is
its extremely broad Feshbach resonances [42, 230]. For each pair of the three lowest
hyperfine sub-levels in Fig. 2.2(b), i.e. |1〉, |2〉 and |3〉, there exists a Feshbach
resonance around ≈ 300 G wide.
For the evaporation process, we use mainly the states |1〉 and |2〉 after applying a
bias field corresponding to the field value on resonance at 832 G, and we modify our
imaging resonance to correspond to this at high field values.
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2.3 Vacuum setup

Maintaining an ultra-high vacuum regime is essential for atomic gas experiments.
Indeed, for atoms cooled down to mK or even µK, any collision with molecules from
the residual room temperature gas would inflict huge atom losses. For this reason
extra care is required in preparing the experimental environment to be extremely
isolated and under very low pressure, usually lower than 1 nP (nanopascal).
Continuous pumping is provided by four getter pumps which use chemical absorp-
tion to get rid of Hydrogen mainly, which is too light to be pumped by other pump-
ing methods. The getter pumps also have an ionic pump stage, which is mainly
warranted by the two ion pumps.

2.4 671 nm Laser setup

D1 Lock

Old beat 
note test

D1 1

D1 3

D1 2

Not used for now

L1L2

f=300mm

f=200mm

f=125mm

EOM1

AO
M

1

Telescope 
x0.5

   Iris

   Shutter

Toptica TA Pro 
D2

M1

AO
M

3

OI1

OI2

D2 Lock

f=300mm

AO
M

4

 D-shaped mirror

AOM5

f=150mm

f=200mm

AOM6

f=175mm ?

Telescope 
x2

TA  
MOT

OI3

f=75mm

AOM7

f=150mm

f=-50mm

EOM2

f=150mm

f=200mm

MOT 1

MOT 3

MOT 2

MOT 4

50      5050      50

50      50

AOM8

f=30mm

f=100mm

TA 
Zeeman

OI4

f=175mm

f=250mm

AOM9

50      50

OP1

 f=175mm

AOM2AOM10

OP2

Imaging 
MOT

f=250mm

Imaging 
MOT 2 

(NOT USED 
NOW)

 Flip mirror

Imaging 
Science

Atomic Jet 
Fluorescence

f=200mm    f=250mm f=200mm EO
M

2

Zeeman

50      50

Connected to 
lambda-meter

f=150mm 

Fabry 
Pérot

From HFI

Half-wave Plate

Quarter-wave Plate

Toptica TA Pro 
D1

Telescope

Figure 2.4: 6Li optical table. Detailed reconstruction of the 6Li optical table. The
spectroscopy part is left out. We use two master lasers one for the cooling steps
which use the D2 transition (Zeeman, MOT, D2 molasses), and the other is used
solely for the D1 gray molasses. To make up for the low power output of the Toptica
lasers, we use two TA chips placed in the paths of the MOT and Zeeman beams.

We operate a dedicated optical table for all laser setups running at 671 nm used to
cool, trap and image the atoms. At this wavelength, available laser diodes have typ-
ically 20 mW power, which is usually barely sufficient to capture and cool lithium
atoms.
Although a 2.1 W solid state laser was designed and operated at this wavelength
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[231], commercially available choices are still limited in their power. For our ex-
periment, we use two Toptica TA pro lasers and two TA chips to deliver the power
needed to the various optical setups needed.
The first laser is operated at the D2 transition wavelength. The secondary output
beam is sent through a spectroscopy cell containing Lithium vapor to lock the laser
frequency. We use the modulation transfer spectroscopy technique [232] to lock the
laser on the transition |F = 3/2〉 → |F′ = 5/2〉.
The primary output power (around 350 mW) is separated into two main paths, one
for the Zeeman slower and one for the MOT beams. Each beam is amplified by a TA
chip to reach the required intensity.
For the Zeeman and MOT beams, an electro-optical modulator (EOM) is used to gen-
erate sidebands with a power equal to 10 % of the main carrier power. The sideband
will provide the repumping needed during the Zeeman and MOT phases as we will
see in the next section. The MOT beam is separated into four beams to provide the
light for all MOT arms.
The second laser is operated at the D1 transition wavelength. A part of the main out-
put beam is sent also through the spectroscopy cell to lock the laser frequency on the
crossover between the transitions |F = 1/2〉 → |F′ = 3/2〉 and |F = 3/2〉 → |F′ = 3/2〉.
Similar to the first laser, an EOM is used to generate the repumper sidebands.
A detailed schematic of the laser table setup is shown in Fig.2.4.

2.5 Absorption imaging

Working principle
To get quantitative information regarding the atomic cloud, we take images of the
cloud and analyze the resulting density profiles. From that we can extract many
experimental parameters e.g. temperature, atom number, velocity distribution, posi-
tion, etc . . .
To that aim we use absorption imaging. In its simplest form, when we shine a reso-
nant laser beam on a cloud of atoms, the absorption of photons of the beam results
in an intensity profile which reflects the density profile of the imaged cloud. The
atomic density on the camera sensor could be related to the attenuation of the light
intensity using Beer-Lambert law which can be written in 3D as:

OD(x, y) = − ln
(

I f (x, y)
Ii(x, y)

)
= σ ñ(x, y) ; ñ(x, y) =

∫ ∞

−∞
n(x, y, z)dz (2.2)

where I f , Ii are the probe beam intensity values before and after the atomic cloud
respectively, and σ is the scattering cross section, defined by the probability of a
photon to be scattered by an atom, it is given by:

σ =
σ0

1 + I0/Isat + 4δ2
L/Γ2

D
(2.3)

where σ0 = 3λ2/(2π) is the scattering cross section on resonance, δL is the aforemen-
tioned laser detuning with respect to the atomic transition, ΓD is the natural line
width, Isat is the saturation intensity of the transition we use for imaging.
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Implementation
In practice we take three consecutive images of the atoms, the first one with the
atomic cloud and the probe beam, resulting in an intensity profile I f = Iat, the second
one is only with the probe beam Ii, and the third one without neither the atoms nor
the probe beam Ire f . We reconstruct the optical density (OD) as follows:

OD(x, y) = − ln
(

Iat − Ire f

Ii − Ire f

)
(2.4)

Noting that this designates the optical density integrated over the imaging direction.
To calculate the atom number for instance from previous data we simply integrate
the whole optical density profile and divide by σ:

Nat =
∫ ∫

ñ(x, y)dxdy =
1
σ

∫ ∫
OD(x, y) dx dy (2.5)

To calculate the temperature we use the time-of-flight technique. Using this tech-
niques implies the assumption that the thermal energy of the cloud is much higher
than its interaction energy. To perform the measurement, we take several images
with different expansion times of the atomic cloud after having turned off the trap.
The cloud expands ballistically in time, and its size changes as follows:

z(t) =
√

z2
0 + b2t2 (2.6)

where z0 is the root mean squared size of the cloud (assumed to have a Gaussian
spatial profile) before expanding, and b is a parameter determined by the velocity of
expansion.
The temperature of the cloud is related to the expanded (Gaussian) width by the
relation T = mσ2

v/kB. So by fitting several cloud width values at different times we
can extract the temperature and initial size of the cloud.

For our imaging system for the MOT we send a resonant laser on the transition
|F = 3/2〉 → |F′ = 5/2〉 with linear polarization, the imaging beam is several mil-
limeters wide at the atoms position. Then we place a double convergent lens with
equal distance to have the atoms in the object plane and the camera sensor in the
imaging plane. Since atoms during the MOT phase could fall down to the |F = 1/2〉,
before each imaging sequence we shine a repumper beam resonant with the transi-
tion |F = 1/2〉 → |F′ = 3/2〉 to transfer the atoms to |F = 3/2〉 state.
As suggested by Eq. (2.2), there is an interplay between the intensity of the probe
beam and the maximal optical density (OD) value obtained, since for lower inten-
sity values compared to the saturation intensity we increase the cross section and
correspondingly the maximal OD value. However, for low intensities, the number
of incident photons becomes lower, for this reason we use special cameras 1 which
feature CCD sensors with very high quantum efficiency i.e. incident photon to con-
verted electronic count ratio. Also, we tune our probe beam intensity to around
I = 0.1 Isat.

1For instance PCO.Pixelfly CCD camera which has a quantum efficiency of 50% for 670nm light.
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High field imaging

To probe atoms in the science cell with a bias magnetic field of 832 G during evapora-
tion, the imaging beam frequency needs to be red-detuned of about 1 GHz according
to the Breit-Rabi formula. This is done by using another laser source and performing
an offset-lock with the D2 laser [233]. For technical details refer to [234].

2.6 Magneto-optical trap
The MOT loading is the first trapping step towards preparing an ultracold fermionic
superfluid of 6Li. It brings down the temperature of the hot atomic vapor to the mK
range.
By imaging the cloud at this step many debugging issues could be resolved early and
easily. Furthermore, the MOT is the starting phase for further cooling techniques
and eventually for optical transport towards the science cell where the experiment
actually takes place. As the name suggests, this phase includes the simultaneous
trapping and cooling of the slow atomic beam by the MOT beams and the magnetic
field gradient created by the MOT coils. The steps towards loading the MOT are
presented in moderate detail in this section.

2.6.1 Atomic beam
The oven is a T-shaped tube filled with about 1g of natural Lithium and 1g of pure
6Li. Since the natural abundance of 6Li is around 7.5 %, with this choice we have
approximately equal amounts of 6Li and 7Li. An illustration of the oven is found in
Fig.2.5.

1

2Atomic jet

Figure 2.5: The oven. The
oven is T-shaped, tube 1
is where Lithium is stocked
and it is heated to around
500◦C. Tube 2 is the colli-
mation tube and is heated to
around 550◦C.

Its temperature is stabilized using a relay sys-
tem which reads constantly the temperature of the
oven and keeps it close to a predetermined thresh-
old. This is done by connecting to a control module
two heating elements wound around the two parts
of the tube, the vertical and horizontal ones, and two
thermocouples positioned to measure both tempera-
tures. The first vertical part is the main oven cham-
ber, it is heated to about 500◦C to get high pressure
vapor (≈ 10mP), since Lithium has very low vapor
pressure at room temperature [126].

The second part is a 5 mm diameter tube which is
heated up to 550◦C to avoid having Lithium building
up and clogging the tube, to create a first differential
pumping step which separates the high vacuum oven
part from the ultra-high vacuum experiment, and to
collimate the atomic jet. For more information about
the oven design and function refer to [235].

The pressure build-up produces a collimated
atomic beam moving with a mean thermal velocity vT =

√
2kBT/m = 1700 m.s−1.
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The atomic flux is estimated in these conditions by collecting the fluorescence light
scattered by the atomic jet near the output of the oven when shone by a resonant
laser beam. The result is about 3× 1012 atoms/s, which is good when compared to
other similar experimental setups [235].

Moreover, in order to avoid the accumulation of atoms on the glass window
on the other side of the machine, and more importantly to avoid having collisions
between the atomic jet and the MOT atoms once the MOT is loaded, an electronically
controllable shutter is positioned at the output of the oven. An electronic circuit
receives a TTL signal from the control module connected to the main experiment
control computer, which activates an Arduino module controlling a stepper motor
which moves the shutter. The shutter is opened during the MOT loading phase only
and then it remains closed until the end of the experimental run.

2.6.2 Zeeman Slower

Working principle

The capture velocity of MOT traps is about ≈ 50 m.s−1, so atoms exiting the oven
must be slowed down to be collected by the MOT. Consider a two level atom with
an atomic transition frequency ωA/2π moving with a mean thermal velocity vT =
1700 m.s−1. In order to slow it down, we send a counter-propagating laser beam
with frequency ωL/2π close to the atomic transition frequency ωA/2π. Due to their
relative movement, the atomic transition frequency must be shifted from the atomic
resonance to account for the Doppler effect by an amount kL.v where kL is the wave
vector of the laser and v is the velocity of the atom. As a rule of thumb, an atom
moving at 1 m.s−1 is shifted by 1 MHz with respect to a light beam with λ = 1 µm.
If the laser frequency is tuned to match the atomic transition frequency taking into
account the Doppler shift, the atom absorbs with large probability a photon with
momentum h̄kA and reemits another one in any direction, resulting on average in a
reduction of its velocity by an amount vR = h̄kA/m which is the recoil velocity of the
6Li atom in our case. Soon enough, the atom will be slowed down to a velocity which
changes the Doppler shift significantly to a point where the laser beam becomes out
of resonance with the atomic transition.
To solve this problem we can either chirp the laser frequency or create a laser beam
with several sidebands in a given interval which accounts to the Doppler broadening,
or apply a fine tuned spatially varying magnetic field which causes the Zeeman sub-
levels to change their energy splitting values in a way to be always resonant with
the laser beam at taking into account the Doppler shift. The latter proposition is the
basic idea behind the Zeeman slower [236] 2.
The position dependent magnetic field B(z) should verify:

µBB(z) = h̄(ωL −ωA) + h̄kL.v(z) (2.7)

where µB is the Bohr’s magneton.

2The Nobel prize in physics in 1997 was awarded to W.D. Phillips, S. Chu and C. Cohen-Tannoudji
for the development of methods to cool and trap atoms with laser light.
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Figure 2.6: Magnetic field of the Zeeman slower. Measured magnetic field values
at multiple positions of the Zeeman slower with a current I = 20A (red dots), and
expected variation of the magnetic field calculated for the same current value (blue
line). Here the position at 0 corresponds to the beginning of the Zeeman slower for
atoms coming from the oven. The measured and expected values are in satisfactory
agreement. Figure adapted from M. Delehaye’s thesis [237] and S. Jin’s thesis [227].

Implementation

In the experiment, the slower is a 60 cm tube with 24 layers of copper wires wound
around it creating solenoids of decreasing diameter to match a predetermined mag-
netic profile, a current of 20 A is passed through the slower.
The atomic transition used for slowing down the beam is on the D2 line, |F =
3/2, mF = 3/2〉 → |F′ = 5/2, mF = 5/2〉. The light used is a locked monochro-
matic 671nm light (see section 2.4), the source is a Toptica TA Pro laser, then it is
amplified by a TA chip to get around 80mW of power on the atoms. The laser beam
has a diameter of approximately 1 cm at the entrance of the opposite side of the
MOT chamber and it is focused at the position of the oven to account for the diver-
gence of the atomic beam while it propagates to the MOT chamber. The light has a
σ+ circular polarization, driving transitions with ∆mF = 1, which locks the atoms in
a cycling transition |F = 3/2〉 → |F′ = 5/2, mF = 5/2〉. The chosen magnetic field pro-
file is a spin-flip configuration, see Fig.2.6, where the field starts with a high value
B(z = 0) = 600 G and has a zero-crossing before the end of the slower tube, where
the field is reversed and arrives at a value of −200 G and the field has a non-zero
value at the end of the tube B(z = l) = 4 G, where l is the length of the slower.
The spin-flip configuration is achieved practically by starting to wind coils with a
relatively big diameter, then gradually decreasing that until it is zero, then before
the end of the slower tube, repeating the same process backwards, by starting with
small diameter coils and finishing with bigger ones, creating an inverted Zeeman
slower at the end of the first one to create a field in the opposite direction. The field
has a zero in the region between the two ’sub-slowers’.

This configuration has many advantages, on the one hand, an increasing mag-
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netic field configuration requires a significant compensation field for its final field
value in the MOT chamber, while on the other hand, a simple decreasing field con-
figuration ends with a zero-field value making the Zeeman light resonant with the
atoms in the MOT chamber, and is detrimental to the trapping efficiency of the MOT.
Moreover, both configurations consume more power than the spin-flip configuration.
All of the previous problems are totally avoidable with the spin-flip configuration.
However, it has two main problems which need to be taken into account.
First, since the field value at the entrance of the MOT chamber is not strictly zero, we
need to add a compensation coil which brings the field value to zero at the position
of the MOT cloud.
Second, since there exists a region where the magnetic field vanishes, where due to
stray fields from the slower solenoids which become more prevalent now that the
strong magnetic field component parallel to the slower axis is zero, the atomic spin
could precess around these field vectors and this results in atoms decaying back to
|F = 1/2〉 after having absorbed the slower light which is a dark state for the slower
beam.
For the previous reason, this configuration requires an additional beam which we
call the repumper beam, which is derived from the main beam and detuned using
an EOM at 228 MHz and at around 10 % of the main beam power. This beam works
on pumping the atoms in the zero and negative field regions back to a state which
the slower beam could target.
The Zeeman slower slows down atoms to a velocity of around 50 m.s−1 which is
within the capture capacity of the MOT. For more details on the subject we refer to
the following theses [235, 237, 238].

2.6.3 Magneto-optical trap (MOT) and compressed MOT

Working principle

Atoms arrive in the MOT chamber with a mean velocity of around ≈ 50 m.s−1 after
being slowed in the Zeeman slower. The idea behind the trapping method is to im-
print the spatial distribution of the slowed atomic jet on different values of Zeeman
shifts induced by a magnetic field which brings the atoms transition closer to a red-
detuned light which brings back the atoms towards the center [15]. We see in Fig.2.7
an oversimplified illustration of the trapping method in 1D.
Consider an atom with two hyperfine levels |F = 0〉 and |F = 1〉 with a transition
frequency ωA/2π. In the presence of a magnetic field which changes its sign at the
origin (anti-Helmholtz coil configuration), the |F = 1〉 level splits into three Zeeman
sub-levels with mF = −1, 0, +1 with an energy which depends on the position and is
proportional to the magnetic field gradient.
The next ingredient is to shine two counter-propagating laser beams parallel to the
field vector with frequency ωL/2π. The frequency of the laser is red-detuned with
respect to the atomic transition with detuning δL = ωL − ωA < 0. The beams are
circularly polarized with σ+ and σ− polarizations.
When an atom in the ground state is displaced parallel to the z-axis, the laser beam
coming from the opposite direction (with polarization σ−) becomes resonant with
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the transition |F = 0, mF = 0〉 → |F = 1, mF = −1〉 and the radiation pressure force
pushes back the atom towards the center of the trap. Similarly, when an atom is dis-
placed in the other direction it is pushed back by the beam with σ+ polarization. The
displaced atoms also loses energy due to emitting a photon in a random direction,
which also creates a cooling effect, this is the basic principle behind Doppler cooling.

F = 0

F = 1

mF = + 1

mF = 0

mF = − 1

mF = − 1

mF = 0

mF = + 1

mF = 0
z

ωA
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σ+

σ−

σ−
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Figure 2.7: Magneto-optical trap. (a). Simplified illustration of the working prin-
ciple of a MOT. In reality, the situation is more complicated since both the ground
and excited states have several Zeeman sub-levels. (b). MOT beams configuration
schematic, the two coils (in yellow) are in anti-Helmholtz configuration.

The combined effect creates an efficient trapping method capable of trapping and
cooling the atoms to temperatures which could theoretically reach the Doppler tem-
perature. This temperature is around 150µK in the case of 6Li.
However, typical temperatures at the end of this phase are 5 or 6 times the Doppler
temperature, which is in part due to the unresolved hyperfine structure of the D2

line in 6Li which causes heating due to atoms depumping from non-targeted levels,
also to collective photon scattering phenomena.
Indeed, after a certain atomic density threshold, the probability for a photon emitted
by an atom to be reabsorbed by neighboring atoms becomes significant which cre-
ates a repulsive effect between the atoms [239]. A possible remedy was the dark-spot
technique where the MOT beams are blocked in a diameter smaller than the cloud’s
diameter, which creates a region where no spontaneous emissions occur [240]. In our
case, we do not need this kind of mechanisms because the MOT phase is followed
by a gray molasses phase which is much more beneficial in terms of phase space
density gains.

Implementation
In the experiment, our setup includes two identical coils to generate a magnetic field
gradient on the order of 10 G/cm. The coils are shaped like cones in order to allow
more optical access to the main MOT chamber. As for the MOT beams, they are
derived from the same beam, red-detuned by −3Γ with respect to the |F = 3/2〉 →
|F′ = 5/2〉 transition. They are also superposed with a repumper beam which is
detuned by 228 MHz to pump back atoms from the |F = 1/2〉 state as was the case
for the Zeeman slower.
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The beams are split into four arms in 3 perpendicular axes. In one direction we install
two counter-propagating beams, and we use mirrors in the other two directions to
reflect back the beam. The output power per MOT arm is P0 ≈ 10 mW with a waist
w0 = 7 mm, leading to an intensity I = 2P0/(πw2

0) ≈ 5Isat, where Isat is the saturation
intensity of the D2 line Isat = 2.54 mW/cm2.

During the experimental sequence, we switch on the magnetic field and the MOT
beams during 2 s, trapping around 109 atoms on average. Afterwards, while keeping
the MOT beams power stable, we increase the density of the cloud by ramping up
the current in the coils linearly during 50ms, increasing the gradient to 25 G/cm.
The compressed MOT cloud at the end of this step has a 2 mm diameter and a
temperature slightly more than 1 mK. The last step helps in increasing the density
of the cloud without huge temperature jumps, which increases the collision rate, an
important parameter for the evaporation as we shall see.

2.7 Optical molasses

The MOT represents an essential step in cooling the atomic gas, at the end of which
we have phase space densities on the order of nλ3

dB ∼ 10−6, and while it is a big
step compared to the initial thermal state of the gas in the 500◦C oven, it is far from
enough for the atoms to be loaded in an optical trap with a depth of 1 mK which is
the main objective behind the first cooling steps.
For that we wish to improve the phase space density. To this end, we need to reach
sub-Doppler temperatures, and we do that by means of employing gray molasses
cooling technique on the D1 spectroscopic line.

2.7.1 D2 molasses

Motivation and working principle

The gray molasses technique, as we shall see in 2.7.2, involves light shifts of the Zee-
man sub-levels, which are generally orders of magnitude smaller than shifts caused
by bias fields. In fact, in their first studies, these shifts were approximated by ’ficti-
tious’ bias magnetic fields [241] which cause Zeeman splittings similar to the one we
see in weak bias field regimes. This translates experimentally to the fact that all mag-
netic field gradients should be turned off for the gray molasses to work efficiently.
As the electric current in the large MOT coils is still circulating, turning off these
coils includes a transitional phase of several milliseconds where the fields and the
subsequent induced fields, eddy fields, go to zero. This brings out the need for a
step in the experimental sequence between the MOT phase and the D1 cooling phase
where the atoms are still subject to a friction force confining them, and naturally, this
step should not require any magnetic components. In our case we decided to go with
an optical molasses on the D2 line, which requires basically that we keep the MOT
beams while turning off the fields.
Optical molasses work similarly to the optical part in the MOT, the only difference
is that the spatial Zeeman splitting does not exist anymore due to the absence of the
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magnetic field gradient 3. Instead, the moving atom’s transition is shifted only by a
Doppler shift resulting from its velocity component towards the light source, which
results in the transition becoming resonant with the red-detuned laser soon enough
and a radiation pressure force causing friction and cooling.
This method is generally known as Doppler cooling [11].

Implementation

We switch off the MOT coils and keep the beams for a duration of 3 ms, at the same
time we change the frequency of the beams by means of commanding a voltage
controlled oscillator (VCO) connected to an accousto-optical modulator (AOM) on
the path of the beam. This brings the detuning from −3Γ to −Γ. Also we decrease
the beam intensity by 25%. At the end of this phase we obtain an optical molasses
with a temperature of around 900µK.

2.7.2 D1 gray molasses and sub-Doppler cooling

Working principle

As explained in the previous section, the typical phase space density achievable in
the MOT phase of 6Li is too low in order for the subsequent optical trapping tech-
niques to work efficiently. Several techniques have been explored, for instance, a
lithium quantum gas was produced by exploiting the higher-lying ultra-violet tran-
sitions of 6Li [242]. While the narrow transitions give rise to much lower Doppler
temperatures, these methods involve many technical difficulties we would rather
avoid.

Historically, sub-Doppler temperatures were observed in optical molasses of sodium
atoms [16, 243], which led to several theoretical studies to explain the observed tem-
peratures. The explanation came as a cooling mechanism in play which was coined
Sisyphus cooling or polarization gradient cooling [17, 244].

In this scenario, two counter-propagating beams with perpendicular linear polar-
izations create a spatially dependent periodic polarization gradient. An atom in its
ground state with two Zeeman sub-levels g−, g+ will see its ground state degeneracy
lifted by the effect of the polarization [241]. The atom, depending on its position,
will interact with light with different polarization. This creates a periodic potential
in which the atom is moving which also changes its pumping rate depending on its
position in the potential.
An atom in a state g+ in an interval with polarization σ− is in a potential valley by
construction for negative detuning of the laser beam. It transforms while moving its
kinetic energy to potential energy while climbing the potential, and upon reaching
the hill, the polarization changes back to σ+. Here, the probability of the atom being
pumped back into g− by emitting a photon with an energy which is equal to the en-
ergy it spent climbing is maximum at this point. The cycle goes on, and on average
the gas cools down. The randomness of the spontaneous emission process gives a

3In fact, the mechanism behind the optical molasses was already at play during the MOT phase as
we mentioned, which contributed to the cooling of the cloud.
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lower bound to the gas temperature, the recoil temperature, which is around 3.5 µK
for 6Li.
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Figure 2.8: D1 cooling mechanism. (a). The ground state configuration without
coupling to the light field, |g+〉 and |g−〉 are degenerate. (b). The state configuration
after coupling to the light field. For a polarization configuration with two linear
polarizations with an angle φ, the motion of the atom allows for an atom initially
prepared in a state |ψNC〉 to have a non-zero probability of decaying into a coupled
state, and this coupling is maximal when the two energy levels are close. A second
scattering process brings back the atom into the non-coupled state.

The only drawback of the previous method is the persisting coupling between the
atoms and the light field, which means that the atoms could still interact with each
other by means of multiple photon scattering which could excite atoms back to po-
tential maxima and increase their kinetic energy instead of decreasing it. For this
reason people have tried to incorporate dark non-coupled states in which the atoms
weakly interact with the light field. Gray molasses is one of these techniques which
was first proposed in [245–247] in the follow-up of different experimental schemes
using Λ transitions [18].

Consider an atom with a transition J = 1 ↔ J′ = 1 moving in a polarization in-
duced potential created by two counter-propagating beams with polarizations form-
ing an angle φ. Its Zeeman sub-levels will have a Λ form as in Fig.2.8.b. in which we
have a superposition of non-coupled ground states for each polarization value, for
instance, for a σ+ polarized light, atoms in the state |J = 1, mJ = +1〉 are not coupled
to the light field, and the same holds for |J = 1, mJ = −1〉 when the polarization
is σ−. The coupled state feature the same polarization induced spatially varying
potential as in Sisyphus technique, and it is shifted to higher energies if the laser is
blue detuned δL > 0. An illustration of the mechanism is shown in Fig.2.8.
An atom in a dark state |ψNC〉 has a probability of emitting a photon and decaying
(with a probability 1/2) into the coupled state |ψC〉, this results from the motion
of the atom in the polarization induced potential, and it is dependent on the angle
φ, for more details see [246, 248]. This probability is highest in the minima of the
periodic potential. Once the atom is in a coupled state, the same Sisyphus cooling
scenario plays out, the atom climbs the potential for a distance zC = v γC with γC
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the pumping rate of the laser beam. The atom then decays back to a non-coupled
state when the polarization changes again. The cycle continues until the atom has
very small velocity causing the overall temperature of the gas to cool down. The
only inconvenience is that for this configuration, the Doppler mechanism will cause
heating due to the positive detuning, which could be negligible if the atoms velocity
is sufficiently small at the beginning of this phase.

Gray molasses was first realized experimentally with 87Rb and 133Cs atoms [249,
250], using the D2 line. For 6Li atom, the excited-state hyperfine splitting on the D2

transition is small (4.4 MHz for 6Li) compared to the natural width of the transition
ΓD. So any control over these levels is lost if we want to repump atoms which fall in
dark states and the overall efficiency of the gray molasses technique falls drastically.
An alternative is to use the D1 line which has larger hyperfine splitting (26.1 MHz for
6Li). Since 2012, D1 gray molasses has been used by several groups in cooling atomic
species like Lithium, Potassium and Sodium, started by our group [251, 252]. It has
become a standard technique for sub-Doppler cooling due to its easy implementation
and high efficiency. For all these species the lowest temperatures achieved are on the
order of 10− 12 times the single photon recoil temperature.

Implementation

As we saw, since the gray molasses efficiency is very sensitive to external magnetic
fields, all bias fields should be strictly zero before starting this phase. To this end we
install three pairs of compensation coils and we use the atom number and tempera-
ture of the D1 cloud to calibrate these fields.
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Figure 2.9: Performance of D1 cooling. Temperature and number of atoms as a
function of the duration of D1 capture. We see that after 3 ms of capture time, we
reach a stationary regime where the temperature stabilizes and we do not suffer
from atom losses. Figure adapted from S. Jin’s thesis [227].

We use three retro-reflected beams in three directions, one of them is superposed
with one of the MOT arms with a power of ≈ 80 mW and a waist of 8 mm, while the
others are independent and pass through different windows of the MOT chamber
with a power of ≈ 20 mW and a waist of 4 mm, giving an intensity ≈ 30Isat

4 in

4As tradition goes, Isat used for all calculations is the one for the D2 line.
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each direction. The beams are blue detuned with respect to the transition 2S1/2, F =
3/2→ 2P1/2, F′ = 3/2, we also install a repumper beam resonant with the transition
2S1/2, F = 1/2 → 2P1/2, F′ = 3/2. The repumper is derived from the main beam and
its frequency is modulated using a dedicated EOM driven by a DDS circuit with a
linewidth of 20Hz, insuring a good coherence between the two beams.
The experimental sequence is the following, first we switch on the compensation
coils which reach their stationary regime in about 1 ms. At the same time we switch
on the D1 beams at full intensity during 3 ms to capture the atoms from the D2

molasses. Afterwards we decrease during 2 ms both the principle and repumper
intensity values to 50% of the initial value, we leave them at this value for 1 ms to
allow the cloud to thermalize, this step seems to decrease the temperature by about
30% without significant atom losses.
The logic behind the previous steps lies in the fact that the gray molasses capture
velocity scales as I/δ2 and the temperature of the molasses scales as I/δ, with I
the beam intensity and δ the beam detuning. That means that first we have to
shine a high intensity beam to increase the capture efficiency, then by decreasing the
intensity in the second step we cool down the cloud.

The intensity ramp has been optimized by taking different intensity ratios and
measuring the temperature and atom number of the D1 cloud, we noticed that if
we ramp down the intensity to < 50% the temperature continues to drop while
atom losses increase slightly. For 10 % of the initial intensity we get a cloud with
T = 20 µK and less than 10 % of the initial atom number. The final step is turning
off the repumper beam alone for 10 µs, this drives the atom population into the
|2S1/2, F = 1/2〉 state, which means a cloud consisting of a mixture of atoms in states
|1〉 and |2〉, which will be beneficial for subsequent cooling steps.

At the end of this step the cloud is cooled down to around 70µK and we have an
average of 6× 108 atoms which constitutes about 80 % of the atom number in the D2

molasses cloud. We report in Fig.2.9 measurements done on the D1 cloud.

2.8 Optical dipole traps

In previous sections we have encountered trapping techniques relying on the radi-
ation pressure force. These near-resonant traps allow to capture and accumulate
atoms even from a thermal gas. However, the performance of these traps is limited
in several ways. The reachable temperature is limited by the transition line-width
(or recoil energy for narrow lines), the attainable density is limited by light-assisted
inelastic collisions, and the overall internal dynamics are perturbed by resonant pro-
cesses. So in order to be able to manipulate the atomic cloud further, e.g. to perform
evaporative cooling or to study the evolution of the system in different trap geome-
tries, one has to resort to non-dissipative trapping methods with which we are able
to trap the gas without unnecessary perturbations to its dynamics.

A first example of these non-dissipative methods is magnetic trapping [20, 253].
Relying on the Zeeman interaction between the atomic spin and an external mag-
netic field, we can trap atoms depending on their spin state by using pairs of coils
positioned carefully to create the required potential. Magnetic traps have been pop-
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ular in the cold atoms community for their deep potentials, practicality and stability
after installation. However, the existence of the coils limits the optical access, the
nature of the Zeeman interaction renders the trap state-dependent, the confinement
i.e. trapping frequencies are very limited compared to other trapping techniques,
and finally the confining magnetic field prevents the usage of Feshbach resonances
that are essential for evaporation cooling.

A good alternative is optical dipole trapping which relies on the electric dipole
interaction with a far-detuned light, an interaction that is much weaker than the ones
discussed above. Although optical dipole traps need high power lasers which were
not commonly available until a few years back, they allow more versatility in terms
of trapping geometries (harmonic potentials, lattice potentials, box potentials, etc).
Hence, for neutral atoms it has become customary to use this trapping method to
manipulate the gas at its final stages of cooling and to tailor the final experimental
setup.

The first dipole force traps were demonstrated using dieletric spheres5 [254],
while the first observations of optically trapping neutral atoms were made with the
trapping of sodium atoms cooled to below 1 mK [26].

The dipole force
When a two-level atom with transition frequency ω0 and linewidth Γ is placed into
laser light, the electric field E induces an atomic dipole moment p that oscillates at
the driving frequency ω. The amplitude of the dipole moment is simply related to
the electric field amplitude by |p|= α|E| where α is the complex polarizability which
depends on the driving frequency ω. The interaction potential of the induced dipole
moment p in the driving field in the limit of large detuning ∆� Γ is given by:

Udip(r, z) = −1
2
〈p.E(r)〉 =

3πc2

2ω3
0

Γ
∆

I(r, z) (2.8)

where ∆ = ω−ω0 is the detuning, I is the electric field intensity and it has a spatial
dependence which determines the spatial form of the potential. For a gaussian beam
propagating along the z axis the expression of the intensity profile is as follows:
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√
1 +

z2
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R

(2.9)

with w0 the waist of the beam defined as the 1/e2 radius of the gaussian radial profile,
P0 the total power, and zR is the Rayleigh range. Also, we consider r = 0, z = 0 is the
focal point position.

The optical dipole force is derived from the potential in Eq. (2.8). It emerges, from
the interaction of the intensity gradient of the light field with the induced atomic
dipole moment as described in Eq. (2.8). While the radiation pressure force describes
the dissipative (imaginary) part of this interaction, the dipole force describes the non-
dissipative (real) part.

5The first experiments involved a combination of radiation pressure and dipole force, and were the
subject of the 2018 Nobel prize of physics "for groundbreaking inventions in the field of laser physics".
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As we see, if the laser is red-detuned (∆ < 0), the dipole potential is attractive
and the atoms are trapped in intensity maxima, and the opposite case applies to
blue-detuned lasers (∆ > 0). We note the dependence of the dipole potential on the
ratio I/∆ in contrast to the dependence of the radiation pressure potential on I/∆2.
From this we see that at large detunings the dissipative part all but vanishes, and
the overall weak, yet more important non-dissipative part takes over the light-atom
interaction effect.

Although far detuned, the laser beam could still excite atoms with very low
probability, which, combined with power fluctuations, sets a limit to the performance
of dipole traps, which is one of the reasons the transport beam is turned off after
an initial step of evaporation. For these traps we deploy lasers tuned at a frequency
several hundred Terahertz away from the atomic transition, and due to the weak
nature of the dipole force, these lasers need to have powers ranging from several to
hundreds of Watts depending on the required trap depth.

2.8.1 Optical transport
To gain more optical access, a much needed requirement to further manipulate the
atoms and perform measurements, we transport the atoms from the main MOT
chamber to the science cell.

The most common technique of optically transporting atoms is by shining a high-
power far red-detuned laser on the atoms [255–257]. The atoms will see the focus
of the gaussian beam as a potential minimum and will fall into the trap if their
thermal energy is lower than the trap depth. Then the focus is moved mechanically
by changing the length of light travel between its source and the atoms.

Implementation

For our optical transport, we use a high-power laser from IPG photonics with a
wavelength λIPG = 1070 nm and a maximum power around 200 W focused down on
the atoms with a calculated waist of 62 µm. At maximum power we have around 170
W on the atoms. An illustration of the optical table of the transport setup is shown
in Fig.2.10.

In order to move the focus of the beam, we use a motorized linear translation
stage on which two mirrors are mounted. We can slide the motorized stage over a
range of 16 cm, this means an effective focal sliding distance of 32 cm since it has
two mirrors, slightly larger than the 31.5 cm required to get from the MOT chamber
to the science cell center.

The power of the transport beam is controlled by mounting a half-wave plate
on a motorized rotational mount combined with a high-extinction ratio optical cube
placed afterwards. The mount is being controlled electronically via a module com-
manded by analog signals sent from the control computer. This allows to change
the power of the laser beam in a range from 50 mW to 170 W. This power control
method avoids using AOMs which are susceptible to thermal lensing issues at these
high powers. However, it limits the time scale over which we can modulate the beam
power. Indeed, although the rotational mount has a maximum speed of around 5
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cycles per second, induced vibration in the optical setup limit drastically the speed
at which we rotate the mount. This is not completely inconvenient since we keep the
laser power constant during the transport and we only change it during evaporative
cooling, which requires power modulation on a scale of several seconds, which is
feasible using our setup.
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Figure 2.10: Optical transport laser setup. The rotational mount after the fiber
provides control over the power of the laser, with the remaining power going into
the beam dump. We position two telescopes to change the beam diameter in order
to have the correct waist value at the level of the atoms. The translation stage slides
the beam’s focus from the center of the MOT chamber to the center of the science
cell.

During the sequence, the optical trap is switched on during the D2 molasses
step and we keep it at maximum power during the D1 molasses. We calibrate the
centering of the beam using an imaging axis perpendicular to the transport beam,
and by changing the horizontal and vertical angles of the last two mirrors in the setup
shown in Fig.2.10. Then we optimize the focal position by scanning the atom number
in the science cell after the transport for different initial positions of the translation
stage. The loading of the trap depends on the trap depth which is in our case at
maximum power around 1.5 mK, which gives a ratio of trap depth to temperature of
around η = U0/(kBT) = 20 at the end of the D1 molasses step. We manage optimally
to have an elongated cloud of around 5 × 106 atoms at a temperature of around
120 µK in the science cell after this step is over.

The heating observed at the end of this phase could be explained partly by the
influence of the dipole trap inducing a light shift (around 52 MHz for the D1 line
at this power) in the atomic transitions targeted by the gray molasses which renders
the cooling process less efficient for the atoms falling in the transport beam. Another
reason is the increased density of atoms inside the trap, an effect which is proven to
increase the temperature of the molasses [258].
Also, by measuring the intensity noise spectrum, the power noise of the laser we
find a peak at around 10 kHz, which means that heating will occur if the trapping
frequency is around half of that value [259], which is close to the measured value
as we shall see. We tried using a proportional–integral–derivative controller (PID)
system to regulate this power but the trials were cut short by comparing the evap-
oration results before and after this regulation without noticing much difference so
we used this beam without power regulation and we tried to limit the effect of the
power fluctuations by switching off this beam once we load successfully the atoms
in another dipole trap beam in the science cell.
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Trapping frequency

Atoms sit at the bottom of the gaussian dipole potential described in Eq. (2.8). For
the coldest atoms, this potential could be approximated by two concentric harmonic
potentials with frequencies ωr and ωa, one along the propagation access of the beam
and the other in the plane perpendicular to it at z = 0. This is easily derived by
expanding the gaussian profile in Eq. (2.9) for small r and z values around zero, we
obtain:

Udip(r, z) ≈ U0 +
1
2

m(ω2
r r2 + ω2

az2)

with ωr =

√
4U0

mw2
0

, ωa =

√
2U0

mz2
R

, U0 =
3c2

w0ω3
0

Γ
∆

P0

(2.10)

where U0 < 0 denotes the potential depth.

In order to have an estimate of the efficiency of the evaporation in the dipole trap,
and to calculate the collision rate and phase space density, we need to know exactly
the trapping frequencies of our trap. This is a straightforward calculation using the
expressions in Eq. (2.10) and calculating the waist using classical optical laws, but
due to thermal lensing problems and the uncertainty on the exact positioning of the
optical elements, we opt to experimentally measure the trapping frequency of the
trap [256, 257]. This measurement depends on the assumption that atoms occupy a
small area at the bottom of the trap where the gaussian intensity/potential profile
could be approximated by a harmonic curve as we did above, which is not an ideal
approximation in our case given the current parameters of the gas like temperature
and atom number, but it helps giving a lower limit of the trapping frequency in our
trap.
At this temperature, similar to a classical trap, the gas follows Boltzmann spatial and
momentum distributions.
If the dipole trap is switched off, the gas will start a ballistic expansion following its
initial velocity distribution. Then, if the trap is switched back on, a breathing mode
will be triggered [260,261]. The atoms will be pulled back to the trap by a force pro-
portional to the square of its radial trapping frequency, then by holding them inside
the trap, they will continue to oscillate. An oscillating density profile in the trap
which oscillates at the same frequency is obtained if the cloud is probed at several
time intervals during this process.
The amplitude of the oscillation is attenuated by atoms exploring anharmonic parts
of the potential and thus interacting destructively with atoms at the center of the
trap. This is partly evident from the fact that the attenuation happens on a time
scale of around 200 µs, which is much shorter than the lifetime of the gas mainly af-
fected by residual heating or collisions with the residual gas at this stage, measured
to be several seconds for atoms in the transport dipole trap. This means the trap-
ping frequency in this measurement is slightly underestimated and subsequently the
waist is overestimated.
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Figure 2.11: Radial frequency measurement. The breathing mode is triggered by
deconfining the gas, leaving it to expand for a certain time (between 30 to 50 µs here)
and then we hold the atoms inside the trap and measure the radial size of the cloud
for different hold time durations. Figure adapted from S. Jin’s thesis [227].

The results of this measurement are shown in Fig.2.11. We measure the breathing
mode frequency to be ωb = 2π × (7.93± 0.08) kHz which is twice the radial trapping
frequency value [260, 261] which leads to a trapping frequency ωr = 2π × 3.97 kHz.
By calculating subsequently the waist we find a waist of w = 85.6 µm at P = 160 W.
This differs from the designed value for the reasons cited above. With this waist
we can calculate the axial trapping frequency to find ωa = 2π × 8 Hz which is
relatively small and allows the cloud to expand over 3 cm in the axial direction,
which decreases the density, and consequently the evaporation efficiency.

Transport ramp

As mentioned previously, to transport the atoms, we send an analog signal to the
translation stage, moving the focus of the beam accordingly after trapping the cloud
in the optical trap. If one chooses the simplest solution of a linear ramp, sliding the
focus causes oscillations of the cloud along the transport axis, and upon arrival the
abrupt stop causes sloshing that leads to heating and atom losses. For this reason we
use an acutely configured ramp which compensates the axial excitations by deceler-
ating upon stopping in a way that the cloud is at rest at the end of the transport. In
literature this effect is called "shortcut to adiabaticity" and it has been studied and
observed experimentally [262]. A type of ramp which verifies this condition is the
quartic ramp (forth order in time). It is composed of different segments of linear
jerks leading to a continuous acceleration ramp which avoids inertial kicks to the
atoms during the transport. The stage reaches a maximum velocity of 320 mm.s−1

and a maximum acceleration of 1280 mm.s−2. The minimized kick at the beginning
of the ramp is compensated at the end of the ramp by a well calibrated negative ac-
celeration value. This minimizes the inertial force once the focal point arrives at the
science cell. We transport the atoms during 1.2 s, a duration which takes into account
the speed limitations of the translation stage and the required minimal duration to
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perform the quartic ramp.

We transport about 80 % of the atoms trapped in the dipole trap to the science
cell, which translates to around 1 million atoms at the end of the transport ramp. The
loss of atoms is due to residual atom spilling during the transport duration of 1.2 s.
By measuring the temperature we find T = 150 µK. The increase in temperature of
about 30 µK is mostly attributed to the transverse shaking of the cloud which occurs
during the transport due to the rail-guided translation stage we are using. We note
that photon scattering is estimated to be around 7 photons/s which translates to a
temperature increase of about 1 µK/s during the transport.

2.8.2 Cross dipole trap

Once in the science cell, we can start evaporative cooling that requires a high collision
rate hence a high density. In order to increase the density, confinement is increased
in the axial direction by crossing the first transport beam with another perpendicular
high-power beam to provide a second trapping potential decreasing further the trap
volume and therefore increasing the atom density. The downside could be loss of
atoms if the trapping volume is small compared to the volume of the atomic cloud
at its current temperature. That is why we choose a waist not smaller than 60 µm in
the experiment. A schematic illustration of the trap is shown in Fig.2.12.
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Figure 2.12: Cross dipole trap in the science cell. The transport beam is crossed
with a second dipole trap beam in the science cell to create a cross dipole trap.
Trapping frequencies at the beginning of evaporation are indicated for each axis.
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Figure 2.13: Cross dipole trap optical setup. (a). The beam is separated into two
paths with perpendicular polarizations using a polarizing beam splitter (C1), and on
each path an AOM is installed which is used first to control the power by means of a
computer-controlled analog signal which feeds the power regulator of a VCO mod-
ule which controls the AOM. Second, as a fast switch to cut off the power coming
from this arm by means of a TTL signal. Finally, each beam’s path is coupled in a
fiber coupler which goes to the main experimental table. For arm 2, all power is di-
verted in FC1 using HW2 while FC1 is not used for now. (b). Optical setup after the
high-power fiber output. The ALS power is monitored using the photodiode PD1
which is handy during evaporation to directly measure the power on the atoms.

The laser system used is a high-power continuous wave laser from Azurlight Systems
(ALS) with a wavelength λALS = 1064 nm and a maximum power output of 45 W. An
illustration of the optical setup that I have developped is in Fig.2.13. The power is
split into two independent paths using a polarizing beam splitter (C1), then an AOM
is installed in the path of each beam, and the diffracted order (order −1) is coupled
into a fiber coupler connected to a high-power fiber.
In practice, the output power is around 38 W. However, at these high power values,
fluctuations have been observed inside the optical fiber over time which limited the
output. A steady output power is achieved at around 18 W, so the power ratio
between the two paths is modified to obtain this power value at the end of the first
fiber, and the AOM is switched-off on the second path to dump all remaining power
in beam dump 6. The ALS laser is always operated at maximum power to guarantee
a stable beam mode shape over all experimental runs.

Implementation and results
The trapping frequency is measured as explained in the previous chapter. Starting
by ramping down the power of the transport beam, then proceeding to switch off
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the other inducing radial oscillations a value of ωr = 65.0± 1.0 µm is obtained which
is close to the designed value.
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Figure 2.14: ALS and IPG trapping frequencies for different power values. For
fitting the curves, a square root function is used to get the trapping frequency value
according to the expected curve ωr ∝

√
P to obtain the waists of the beams. The

square root behavior of the two curves showcase the limited effect of the experimen-
tal factors on the trapping frequencies e.g. thermal lensing, jittering optical table,
etc. Figure adapted from S. Jin’s thesis [227].

Finally, the waist of the two dipole trap beams is measured directly by measuring the
trap frequency for different values of power. This should result in a curve ωr(P) ∝√

P as seen in Eq. (2.10). By fitting the obtained data the following values for the
waists of the two beams are obtained:

wALS = 65.0± 1.0 µm, wIPG = 88.7± 0.3 µm (2.11)

The measurement of the IPG waist is compatible with the one reported in Fig.2.11
in the MOT chamber, and the measurement of the ALS waist is compatible with the
designed value. Since the measurement in the transport beam is done before shining
the cross beam, the waist is still overestimated as was the case in the MOT chamber.
However, the waist of the cross beam is compatible with the designed value because
of the axial confinement in this trap provided by the transport beam, which in its
role prevents the cloud from exploring anharmonic sections of the potential.

2.9 Evaporative cooling

Evaporative cooling describes the process of energetic particles leaving a system with
a finite trapping energy [263]. This process happens naturally since there are always
high energy particles in the tail of the thermal Maxwell-Boltzmann distribution. If
these particles leave the system, it gives rise to a redistribution of energy in the
system and an overall cooling of the system.
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Evaporative cooling of trapped neutral atoms was suggested for a gas of atomic
hydrogen as an efficient way of achieving Bose-Einstein Condensation (BEC) [264].
The technique was extended to alkali atoms a few years later using Sodium and
Rubidium atoms [22] and it was the key ingredient which led to achieve BEC in the
same year [23, 25]6.

The attractiveness of evaporative cooling comes from its simplicity and more so
from the fact that it is applicable to a wide range of temperatures and densities. The
only limit is that the thermalization time should be about 30 to 100 times shorter
than the lifetime of the sample, which could be determined by loss, heating, and
inelastic collision processes.

2.9.1 Working principle
The basic idea is to allow high-temperature atoms to escape the trap, a crossed op-
tical dipole trap in our case detailed in 2.8.2. Many parameters play a role in this
process, the density of atoms in the trap, the trap depth, the initial temperature, trap
geometry, and the effective cross section of elastic collisions.
The efficiency of evaporation is determined by the combination of all previous pa-
rameters and it is in competition with cooling speed. An extreme example that
would demonstrate this trade-off is if we imagine an extremely large trap depth to
cloud temperature ratio η = U0/kBT, if we wait enough, there is a probability that
the whole energy of the cloud is carried by one particle which escapes the trap and
therefore the whole system is cooled to zero temperature [263], this event could take
an infinite amount of time to actually happen. Which means that an efficient and
slow evaporation is compromised by the finite lifetime of the atoms in the trap. So to
strike a balance between evaporation efficiency and duration is the first requirement
for evaporation.
A relevant parameter to benchmark the evaporation is the phase space density, which
is defined as:

PSD = nλ3
dB (2.12)

where λdB is the De Broglie wavelength λdB =
√

2πh̄2/(mkBT), and n is the density
at the center of the cloud. We remind that PSD ≈ 1 in the degenerate regime.
Also, in forced evaporation, an important condition to achieve a sustained evapora-
tion is to maintain or increase the elastic collision rate:

Γcoll = nσv (2.13)

where n is the density of the gas, σ = 4πa2 is the elastic cross section in the non-
unitary regime for a two-component Fermi gas and a is the s-wave scattering length
between the two spin states, v is the mean velocity of atoms in the trap. In the
unitary regime in a harmonic trap geometry, which is our case, we write:

Γcoll
a→∞=

2Nh̄2ω̄3

π(kBT)2 (2.14)

6Eric A. Cornell, Wolfgang Ketterle, and Carl E. Wieman were awarded the 2001 Nobel prize in
physics for their realization of Bose-Einstein Condensation for neutral atoms.
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where N is the number of atoms per spin state, ω̄ = (ωxωyωz)1/3 is the geometric
mean of the trapping frequencies. The relation is deduced in [265].

Due to Pauli blocking for fermions, having an atomic cloud composed of only
one state sets the elastic cross section to zero and no evaporation takes place. For
this reason the sample is prepared in the two states |1〉 and |2〉 in Fig.2.2.1, and a
balanced atomic population in both states is sought.
By insuring a high collision rate, the probability of hot atoms leaving the trap can be
maximized. But for a large value of η no atoms could escape the high walls of the
potential, that is why the evaporation is forced by lowering the optical trap depth
insuring a constant η value during the process.
Another important element is to increase the collision cross section, and this is done
by means of creating a bias field to exploit molecular energy levels which exist in
the Zeeman-shifted relative energy range of the two spin states in the trap, this
phenomenon is known as Feshbach resonance and was explained in detail in 1.1. At
resonance, a attains very large values and the collision rate is maximized.
During the final steps of evaporation, the optical dipole potential, which was lowered
drastically, is so weak that it cannot trap the atoms anymore against gravity. In order
to avoid atom spilling, another curvature field is added which acts as a magnetic
confining potential to increase confinement in the axial direction of the cross dipole
trap as will be explained.

2.9.2 State populations

As mentioned earlier, it is important to prepare the cloud so that a balanced atomic
population in the lower sub-Zeeman levels of the ground state is ensured. After D1

cooling, which is the last experimental step to change the state populations, a bit
more than 65% of atoms are in state |1〉 and the rest are in state |2〉. This is a direct
result of intentionally switching off the repumper beam of the D1 gray molasses just
before the end of the phase as mentioned previously.
A further step of transferring atoms between the two states to balance the population
is thus needed.

For that a Radio-frequency (RF) antenna close to the science cell is used, powered
using a signal generated by a high precision frequency generator and then amplified
by an RF amplifier of 50 W. The spectral width of the generator signal is negligible
compared to the widened atomic transition due to the factors mentioned earlier.
To chirp the frequency of the generator within an interval around the atomic transi-
tion frequency, the transition frequency should be well-known. For that the number
of atoms in one state (state |1〉 for instance) is probed while sending a RF signal
with fixed frequency in a designated interval. A dip in the atom number points to
the transition, which is then measured more precisely by reducing the interval of
scanned values. In our case the transition is found at ωA = 2π × 76.267 MHz with
a width at two sigma of ≈ 10 kHz. This transition frequency value corresponds
according to Breit-Rabi formula in Eq. (2.1) to a bias magnetic field value of 832 G,
which is the applied value corresponding to the Feshbach resonance between these
two states.
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Figure 2.15: Evolution of populations in states |1〉 and |2〉 during an RF sweep. At
unitarity, an RF sweep of 400 kHz is applied with variable durations and the atom
number in each state in measured. For long sweep times the two populations inverse
adiabatically in agreement with Eq. (2.15). Figure adapted from S. Jin’s thesis [227].

Afterwards, a sweep is performed within an interval of values centered around the
measured transition frequency. If the sweep is performed slowly enough (with re-
spect to the Rabi frequency), all atoms are transferred from state |1〉 to state |2〉. This
process is called adiabatic passage, and the probability of transfer during the sweep
is calculated using Landau-Zener formula [266, 267]:

P|1〉→|2〉 = 1− exp
(
− Ω2

4∆ν
t
)

(2.15)

With Ω denoting the Rabi frequency between the two states, ∆ν/t is the sweep speed,
∆ν the interval of frequencies and t the sweep duration. The result of this sweep is
in Fig.2.15, an exponential evolution in agreement with Eq.(2.15) is observed. The
probability of transfer approaches one for very slow sweeps compared to the Rabi
frequency |∆ν/t|� Ω2.

Rabi oscillations

The Rabi frequency can be calculated using the exponential time constant τ = 4∆ν/Ω2

of the probability curve. This is equivalent to the two curves in Fig.2.15. This gives
the following values: τ1 = 0.86± 0.08 ms and τ2 = 0.80± 0.05 ms, and therefore two
Rabi frequency values Ω1 = 2π× (6.86± 0.63) kHz and Ω2 = 2π× (7.12± 0.44) kHz.
To double check this value, which is constant in the setup since the power of the RF
signal is not changed, the Rabi frequency can be directly measured by sending reso-
nant RF pulses of different durations, and then measuring the atom number in one
of these states. By construction, the atomic population will oscillate with a frequency
equal to the Rabi frequency, see Fig.2.16.

With these values the atomic population in states |1〉 and |2〉 is balanced by sim-
ply applying a RF sweep with a duration corresponding to the point where the
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two populations are equal in Fig.2.15. So a single linear RF sweep of 400 kHz cen-
tered around the atomic transition during 550 µs is applied which results in around
1.1× 106 atoms in each spin state with a temperature around 150 µK.
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Figure 2.16: Rabi oscillations between state |1〉 and |2〉 at unitarity. A coherently
driven atomic state by a resonant signal will oscillate with a frequency equal to the
Rabi frequency. The value obtained by fitting the curve is Ω = 2π × (7.51± 0.03)
kHz. Figure adapted from S. Jin’s PhD thesis [227].

2.9.3 Magnetic fields in the science cell

For efficient evaporation, as mentioned earlier, a bias magnetic field is needed to
maximize elastic collisions between the spin states present in the cloud at this stage.
For this goal, a pair of coils, named Feshbach coils, are installed in Helmholtz con-
figuration to provide a bias field of 832 G corresponding to the resonance value as
detailed in Fig.2.3.
The Feshbach coils provide a field offset of 3.78 G/A, so we need to power them
using high current cable with around 220 A. Feshbach coils have a diameter of 86
mm and they are placed closest to the science cell.

As mentioned earlier, decreasing the power of a dipole trap during evaporation
causes the trap to become weakly confining in the axial direction. For that we add a
pair of coils in Helmholtz configuration but placed at a well configured distance to
create a curvature potential to keep the atoms confined during evaporation. In our
case, the curvature coils provide a curvature gradient of 0.033 G/cm/A. A plot of
the magnetic field values for both pairs of coils is shown in Fig.2.17.

To characterize well the evaporation process, trap frequency values need to be
known very precisely. Since curvature coils provide a confining potential, the ques-
tion of knowing their trapping frequency arises. This frequency is measured by
moving the IPG focal point on the ALS axis, then abruptly switching off the IPG
beam and leaving the atoms to expand in the ALS alone. Then the triggered axial
oscillation in the ALS potential happens in a potential with a frequency equal to the
quadratic sum of two contributions: One of the ALS axial trapping potential which
is known and the one from the curvature coils ω2

⊥ = ω2
curv + ω2

a . Doing this measure-
ment yields ωcurv = 2π × (23.4± 0.1) Hz which is higher than the axial frequency of
the ALS, around ωa ≈ 2π × 7 Hz.
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Figure 2.17: Feshbach and curvature fields in the horizontal plane. Due to their
Helmholtz configuration, Feshbach coils provide a non-confining bias field, while
the curvature coils provide a confining field. These curves are obtained using a
numerical simulation taking into account the geometry of the pairs of coils. Along
the vertical axis, the magnetic field creates an anti-confining potential. However, this
is largely compensated by the optical trap confining potential.

2.9.4 Cooling to degeneracy
Combining all previous ingredients, at the beginning of evaporation, the cloud con-
tains around 1.1× 106 atoms per state at a temperature of around 150 µK. The crossed
beams geometry places the atoms near the center of both traps, which allows us to
make the approximation that the cloud is confined in a three dimensional harmonic
potential resulting from the cross dipole trap and the curvature coils. The harmonic
trapping frequencies are the following:

• On x axis (IPG beam axis), the trapping frequency is a combination of the
ALS radial trapping, the IPG axial trapping, and the curvature coils magnetic
trapping. At this step the dominating frequency is the ALS radial frequency
ωx ≈ ωr,ALS = 2π × 2.2 kHz.

• On y axis (ALS beam axis), the trapping frequency is a combination of the
IPG radial trapping, the ALS axial trapping, and the curvature coils magnetic
trapping. At this step the dominating frequency is the ALS radial frequency
ωy ≈ ωr,ALS = 2π × 2.7 kHz.

• On z axis (perpendicular to the XY plane), the trapping frequency is a combina-
tion of the IPG radial trapping, the ALS radial trapping, and the curvature coils
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magnetic trapping. At this step the dominating frequency is a combination of

the ALS and the IPG radial frequencies ωz ≈
√

ω2
r,ALS + ω2

r,IPG = 2π× 3.4 kHz.
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Figure 2.18: Evaporation power ramps. The sequence starts by an exponential ramp
decreasing the power of the IPG to around 12% of its initial value while keeping the
ALS at constant power. Before the end of the exponential ramp, the ALS powered
is ramped down linearly to around 10 W, then we proceed to decrease again the
ALS power keeping constant the IPG power. Afterwards the IPG beam after a final
exponential ramp is turned off and the evaporation is continued only in the ALS
trap. Figure adapted from S. Jin’s PhD thesis [227].

With these values we calculate a phase space density using Eq. (2.12) and we find
PSD = 7.4 × 10−4 reminding that the regime of degenerate Fermi gas is reached
when PSD ≈ 1. We can also calculate the collision rate using Eq. (2.13) to find
Γcoll ≈ 9000 s−1, a very good value to start with.
The evaporation starts by ramping up the curvature and Feshbach coils currents,
then waiting around 300 ms for the magnetic fields to stabilise. Afterwards the ALS
power is kept constant while decreasing the power of the IPG beam by 88% reaching
a power PIPG = 28.5 W. At the end of this process the cloud has N = 3.4× 105 atoms
at a temperature T = 23 µK which gives PSD = 2.2× 10−2 and Γcoll ≈ 3.2× 104 s−1.
All atoms at the end of this step are transferred into the cross trap and both of its
beams provide similar potential depths (image in Fig.2.12).

Then the power of both beams is decreased linearly, the sequence is reported in
Fig.2.18. During the fifth phase of evaporation, the IPG beam is turned off com-
pletely and the evaporation is continued solely in the ALS trap. This is because the
IPG has significant power fluctuations at this power level which cause heating. The
remaining confining forces are those of the ALS beam and the curvature coils. After
the IPG is turned off, two additional evaporation steps are performed in the ALS
alone, this results in a significant increase in phase space density of which we report
the results in Fig.2.19.
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Figure 2.19: Phase space density evolution during evaporation. After switching
off the IPG a factor of 2 in temperature is gained, which means a stable ratio η =
U0/(kBT) is maintained since the IPG trapping frequency is very close to that of
the ALS at that point in evaporation. At the end of the evaporation sequence, a
phase space density of around 0.2 is obtained. Figure adapted from S. Jin’s PhD
thesis [227].

Summary
In this chapter an overview of the main experimental steps used to obtain a degen-
erate Fermi gas was presented.
Starting by producing an atomic vapor of 6Li atoms, which are slowed down by a
Zeeman slower and then captured by the MOT. They are subjected to two additional
cooling steps of D2 molasses and D1 gray molasses. Then they are loaded into an
optical dipole trap which transports them to the science cell where another optical
dipole trap is used to increase confinement and density. An RF sweep is applied to
balance populations in the two lowest spin states. Then, a bias field and a curvature
field are applied to increase the cross section of the elastic collisions and to increase
confinement respectively. Then by ramping down the power of the beams of the
cross dipole trap a dense fermionic cloud is obtained.

At the end of the evaporation sequence, a cloud with N = 6× 104 and T = 2 µK
is obtained which leads to a phase space density of 0.2. We note that in this regime
measuring the temperature using time of flight methods is not reliable anymore since
the ballistic expansion is no longer a valid model due to two main reasons: Firstly,
the strong interactions of the unitary regime at which the imaging is performed re-
distribute the momentum between atoms in a non-trivial way, and the imprinted
velocity distribution measured during time of flight is not closely related to the ther-
mal distribution of the cloud anymore. Second, the expansion time of the cloud at
this temperature is limited by the imaging system detection threshold, and getting
a good signal-to-noise ratio is quite hard. That is why people resort to other tech-
niques to measure the temperature of the cloud in this regime like the virial theorem
and equation of state fitting which will be discussed in the next chapter.



Chapter 3

From superfluidity to single atom
imaging

In the previous chapter, a description of the experimental apparatus and its steps
was introduced. In the final stages of the evaporative cooling, a cloud of about 60
thousand atoms is obtained, at a temperature measured to be around 2 µK using the
time of flight method.
However the ballistic expansion of the gas when released from the trap, which is the
basic assumption behind the time of flight method is no longer a valid assumption
since the gas is at unitarity (a → ∞) and the dynamics of the system are dominated
by its strong interactions.

The transition from a normal phase to a superfluid phase for a Fermi gas can-
not be easily observed as for bosonic gases, where bosonic statistics dictate a to-
tal collapse of the atoms into a single quantum state which can be directly ob-
served [66, 68, 268, 269]. In a strongly interacting Fermi gas, the emergence of a
superfluid alters very little the density profile of the trapped gas, and to observe
directly superfluidity, going beyond looking at the density profile of the cloud while
it is cooled is needed.

In this chapter the main methods used to probe the properties of the gas at this
limit will be explained. Starting by a brief overview of the thermodynamic properties
of a Fermi gas, its equation of state, and the different expansion regimes for a Fermi
gas in different limits.
The result of the fitting of the experimental density profile using this equation of
state will also be presented. Then a discussion over a qualitative characterization of
superfluidity using the analysis of the density profiles of a spin imbalanced gas will
follow. Finally, we will talk about the prospects of the 6Li machine.

3.1 Thermodynamics of ultracold Fermi gases

For fermions in the ultracold regime, interatomic interactions can be described using
a single parameter, the scattering length a. At these low temperatures the thermal
wavelength (λdB) attains large values compared to the interatomic interaction range
and the details of this interaction become irrelevant. Leading to the universality
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property where the dynamics of the system do not depend on the details of the in-
teraction potential, and therefore the physics of interactions does not a priori depend
on the atomic species used in the experiment.
The other natural length scale to consider in these systems is the inter-particle dis-
tance n1/3 ∝ k−1

F . The behavior of the Fermi gas is governed by the ratio 1/(kFa) and
we can write the chemical potential of the gas as a function of its parameters:

µ = f (m, n, kBT, a) (3.1)

where kB is the Boltzmann constant and m is the mass of the atomic species in the
gas. According to Vaschy-Buckingham theorem, we can always write an equivalent
equation to Eq. (3.1) as a function of dimensionless parameters leading to:

µ

EF
= F(

T
TF

,
1

kFa
) (3.2)

where kF = (2π2n)1/3 is the Fermi wavevector, EF = h̄2k2
F/(2m) the Fermi energy, and

TF = EF/kB the Fermi temperature .
In the case of resonant interactions, the so-called unitary limit where a → ∞, the
scattering length becomes irrelevant and drops out from all physical quantities leav-
ing the average interatomic distance as the only relevant length scale in the system.
The only relevant energy scale is the Fermi energy EF which does not depend on the
type of interactions [270]. Thus, at finite temperature, thermodynamic properties
like entropy, energy, compressibility and specific heat are universal and depend only
on the ratio T/TF.
Moreover, in this case, a single equation which relates these thermodynamic vari-
ables can encompass all the macroscopic properties of the system. Such an equation
is called the equation of state (EoS). It was measured in our group at ENS in 2009 and
2010 at zero temperature in the whole BEC-BCS crossover and at finite temperature
at unitarity at ENS and Tokyo and later at MIT [157, 271, 272]. We exploit the results
of MIT to interpolate our measurements in order to determine T/TF of our cloud.
It is worth noting that at zero temperature, the chemical potential is related to the
Fermi energy simply by a factor:

µ = ξEF (3.3)

where ξ = F(0, 0) is the Bertsch parameter [273], and determining its value is the
solution for the unitary gas problem at zero temperature.

3.1.1 Equation of state
The equation of state is a term used for all expressions relating fundamental thermo-
dynamic properties, and it describes the macroscopic properties of a system in ther-
mal equilibrium. Measuring the EoS marked an important milestone in the field of
ultracold atoms and presented an opportunity to validate theoretical models which
predicted the behavior of the unitary Fermi gas.
In order to relate the EoS to our measurements, we need to express it in terms of the
integrated density distributions that are probed by imaging the cloud (as detailed in
section 2.5).
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However, taking into account exactly the inhomogeneity of the optical potential is
not an easy task. For this reason, approximations are used which allow to compare
our results with the homogeneous case, and the most prominent of these methods is
the local density approximation (LDA).
In the local density approximation, we consider that over a mesoscopic length scale,
smaller than the size of the system and larger than the interatomic distance, the sys-
tem is homogeneous and in thermodynamic equilibrium. This allows us to define
local variables such as pressure and temperature and write a local equation of state.
This small system exchanges atoms and energy with the neighboring systems mean-
ing that to describe it we have to work in the grand-canonical ensemble formalism
defining a local chemical potential:

µσ(r) = µ0,σ −U(r) (3.4)

where µ0,σ is the global chemical potential of the homogeneous gas of atoms with
spin σ, U(r) is the trapping potential, in our case the optical dipole potential de-
scribed in section 2.8, and n(r) is the density at position r.
In the small volume described by the LDA the grand potential Ω (T, µσ, V) is mini-
mum, where V is the volume of the small LDA box. A direct result of this minimiza-
tion is the Gibbs-Duhem relation [159]:

V dP = S dT + N↑ dµ↑ + N↓ dµ↓ (3.5)

which gives an EoS relating the measured density n = N/V to the pressure:

nσ(µσ(r), T) =
∂P(µσ(r), T)

∂µσ

∣∣∣
T

(3.6)

where nσ and P are the local density and pressure of the untrapped homogeneous
gas respectively. This relation has been measured previously [157, 271], and the
measured data from [157] will be used for the pressure to interpolate a function to
compare the results with and extract the temperature as will be detailed in the next
section.

3.2 Quantitative analysis of density distributions

The main purpose of imaging and image analysis is to record density distributions
of the atomic gas, whether it is trapped (in situ) or after a ballistic expansion. Almost
all experimental knowledge about the physics and properties of cold atoms system
comes from processing and analyzing these images. In the experiment, we are able
to obtain density profiles for each spin state after analysing images of atomic clouds.

In order to evaluate the thermodynamic properties of the gas, and especially the
temperature in our case, we need to have an expression for the density profile and to
relate it to these properties. Starting by deriving this expression for a non-interacting
Fermi gas in a harmonic potential, then we relate this expression to the local unitary
regime density in LDA.
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3.2.1 Non-interacting Fermi gas in a harmonic trap

For N non-interacting particles with energies εi, the Fermi-Dirac statistics governs
the density distribution. Since in LDA each small volume is allowed to exchange
particles and energy with the neighboring volumes, we write the occupation dis-
tribution in a state i in the Fermi sea in a small box defined by LDA in the grand
canonical ensemble as follows:

n̄i =
1

exp ((εi − µ0)/kBT) + 1
(3.7)

with µ0 the global chemical potential and kB the Boltzmann constant. We note that
n̄i ∈ {0, 1} due to Pauli blocking.
Consider these particles confined in a three dimensional harmonic trap, with the
trapping potential:

V(r) =
m
2

(ω2
x x2 + ω2

y y2 + ω2
z z2) (3.8)

where ωi is the trapping frequency along the axis i. Supposing the thermal kinetic
energy of the particles to be much higher than the quantum mechanical harmonic
level spacings in the trap h̄ ωi.
We can neglect the level structure and write the energy of each particle as simply
the sum of its kinetic energy and the trapping potential at its position, showing
that LDA is a valid approximation in this setting (also called the Thomas-Fermi
approximation), and it allows us to write the occupation of a phase space slot {r, p}
as follows:

f (r, p) =
1

exp (β(p2/2m + V(r)− µ0)) + 1
(3.9)

where β = 1/(kBT). Note that since we have a spin balanced gas of the same species
we dropped the σ index.
With this we can calculate the density distribution of a thermal non-interacting gas:

n(µ(r), T) =
∫ d3 p

(2πh̄)3 f (r, p) = − 1
λ3

dB
Li3/2

(
−eβ(µ0−V(r)

)
(3.10)

where λdB is the thermal De Broglie wavelength and Lin is the polylogarithm func-
tion of n-th order 1 and V(r) is the potential in Eq. (3.8).

In our images, the three dimensional density profile is not accessible hence the
imaging light already "integrates" the density along its axis of propagation. Then
when visualizing the measured data, a general tendency is to integrate the density
over one axis to obtain one dimensional graph which is then fitted to extract the

1The polylogarithm function is defined as:

Lin(z) =
∞

∑
k=1

zk

kn
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temperature. For that we integrate Eq. (3.10) along two of the three axes to obtain:

n̄0(z) =
∫ +∞

−∞

∫ +∞

−∞
dx dy n(µ(r), T)

=
∫ +∞

−∞

∫ +∞

−∞
dx dy − 1

λ3
dB

Li3/2

(
−eβ(µ0−m

2 (ω2
x x2+ω2

y y2+ω2
z z2)
)

= − 1
λ3

dB

2π

mβωxωy
Li5/2

(
−eβµ(z)

) (3.11)

where µ(z) = µ0 − mω2
z z2/2 is the local chemical potential encountered in Eq. (3.6)

in one dimension.
We can also relate n̄0(z) to the pressure [274], starting from the first equality in
Eq. (3.11) and after making the change of variables x1 = ωxx/ω, y1 = ωyy/ω and
ρ2 = x2

1 + y2
1 we write:

∫ +∞

−∞

∫ +∞

−∞
dx dy =

ω2

ωxωy

∫ +∞

−∞

∫ +∞

−∞
dx1 dy1 =

2πω2

ωxωy

∫ +∞

0
ρ dρ

(the cloud is trapped in a gaussian beam typically and therefore is symmetric by
rotation around the beam’s axis). With this we can write:

n̄0(z) =
2πω2

ωxωy

∫ +∞

0
ρ dρ n(µ(z)−mω2ρ2/2)

= − 2π

mωxωy

∫ +∞

0
dµ n

(
µ(r)

)
= − 2π

mωxωy

[
P(µ)

]−∞

µ(z)

where we used dµ = −mω2d(ρ2/2). With that we finally get the relation:

P0(µ(z), T) =
mωxωy

2π
n̄0(z) (3.12)

Note that in the derivation of this expression the fact that the pressure and density
are parameters of the non-interacting gas were not relevant. Hence, the relation also
holds in the strongly interacting limit.
We note also the relation of the pressure for a non-interacting gas:

P0(µ(z), T) = − 1
βλ3

dB
Li5/2

(
−eβµ(z)

)
(3.13)

3.2.2 Unitary Fermi gas
To use the measured data, an expression relating the measured one dimensional
unitary gas density n̄(z) to the data in Ku et al. [157] is needed. As mentioned
earlier, all thermodynamic quantities in the unitary limit depend only of the ratio
T/TF. So we choose the pressure data h(βµ(z)) = P(µ(z), T)/P0(µ(z), T), with P the
pressure of the unitary gas and P0 that of the ideal gas. To this end, we write the
pressure equation of state as follows:

P(µ(z), T) = P0(µ(z), T) h(βµ(z)) (3.14)
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where the function h(βµ(z)) is plotted in Fig.3.1. We see that in the limit of high
temperature, h(βµ(z)) ' 1.

Using Eq. (3.12) we can write a relation for n̄(z), the measured density of the
unitary gas:

n̄(z) = − 2π

mωxωyβλ3
dB

Li5/2

(
−eβµ(z)

)
h(βµ(z)) (3.15)

This expression turned out to be very useful since it allowed to measure directly
the equation of state and to transform each point in the integrated density profile
(which is the outcome of one experimental image) to a point in the function h(βµ(z))
[271, 274].
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Figure 3.1: Interpolation function used to extract T/TF. Red triangles: Third order
virial expansions derived from Eq. (3.20). Green squares: Data from Ku et al. [157]
obtained by measuring the equation of state for a unitary Fermi gas. Blue circles:
Low temperature extension using the fermionic and bosonic excitations spectrum in
the superfluid phase [275]. (a). Pressure data with respect to βµ. (b). Temperature
data with respect to βµ. (c). Density data with respect to βµ. The dashed black
line marks the limit beyond TC. Figure adapted from Bruno Peaudecerf (Private
communication).

The function in Eq. (3.15) us used to fit the density data and obtain the value βµ for
every point in the density profile. Then the value is used at the center of the trap to
calculate T/TF from the relation2:

T
TF

=
4π

(3π2nλ3
dB(β µ))2/3

(3.16)

With TF = h̄2(3π2n)2/3/2mkB the Fermi temperature and n is the density at the center
of the trap.

2In practice interpolated data from Ku et al. were also used
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Superfluid excitations in the low temperature limit
The previous data was restricted to a certain range of fugacity and can be extended
to the low temperature limit when T/TF < TC ' 0.17 TF [276] which is the criti-
cal temperature for the superfluid transition. We know that in the limit T = 0 for
a unitary gas, the only relevant energy scale is the Fermi energy and the Bertsch
parameter (ξ = 0.376 [157]) defines the scaling factor of the energy with respect to
it [273] as follows:

µ = ξEF (3.17)

Beyond this limit, temperature dependence of the energy can be accounted for by
the elementary excitations present in the superfluid phase: bosonic Bogoliubov-
Anderson phonons and fermionic gapped Bogoliubov quasiparticles. Their contri-
butions are given by [275]:

E(n, T)
T�TF=

3
5

nEF(n)

[
ξ +

√
3π4

16ξ3/2

(
kBT

EF(n)

)4

+
5
2

√
2π∆(n)3kBT

EF(n)4 exp
(
−∆(n)

kBT

)]
(3.18)

∆(n)
a→∞≈

(
2
e

)7/2

EF(n) (3.19)

where ∆ is the pairing gap from BCS theory, and E(n, T) is an energy density.

Virial expansion in the high temperature limit
The data from Ku et al. can also be extended to the high temperature limit T/TF >

1 using the virial expansion. Though the system is strongly correlated system at
low temperatures, with increasing temperatures the correlation between particles
becomes weaker.
At sufficiently high temperatures, the scattering cross section is of the order of the
square of the thermal de Broglie wavelength, which becomes much smaller than the
average inter-atomic distance. As a result, the inclusion of few-body correlations is
already sufficient to describe the underlying properties of the system. These few-
body correlations can be exactly taken into account using few-particle solutions and
virial expansion [277]. The expansion for pressure is written as:

P(µ, T) =
2

βλ3
dB

∑
j

bjejβµ (3.20)

With bj the j-th virial coefficient. In our data, the first three orders are used with the
known coefficient values: b1 = 1, b2 = 3

√
2/8 [278] and b3 = −0.29095295 [277].

Interpolation curves and comments
With the previous analysis the interpolation curves used in the thermometry are
shown in Fig.3.1.
We note that for the limit of high temperature (small βµ) the pressure curve tends to
unity, which is the expected behavior since the gas would look more and more like
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an ideal gas at higher temperature.
At low temperatures, the normalized density shows a dramatic upturn signaling the
importance of strong interactions and eventually the superfluid phase (above the
dashed line), and afterwards it asymptotically reaches the zero-temperature value
1/ξ3/2 ' 4.34. The pressure does not show an upturn but smoothly attains a limiting
value. The smooth behavior is expected for a second-order transition, where first
derivatives of the pressure with respect to the chemical potential are continuous
across the transition.

3.2.3 Implementation and results

An EoS fitting is performed at different levels of the evaporation sequence once the
IPG is turned off and the evaporation continues in the ALS (See section 2.9).
In Fig.3.2 images at different final values of the ALS power corresponding to differ-
ent values of trap depths are shown. The result of the EoS fit during evaporation
and the corresponding T/TF values at the center of the trap are also presented.
As evaporation proceeds, the temperature decreases and reaches the critical value
TC/TF ' 0.17 at the center of the trap, with TF the Fermi temperature of the homo-
geneous gas below which the system becomes superfluid [157, 271]. The T/TF value
of 0.05 is clearly deep in the superfluid regime.
However, to directly observe superfluidity many methods have been developed. In
the following more focus will be brought on the method in which a spin imbalance
is created in the system and a superfluid core is distinctly observed in the density
profile of the difference between the two spins.
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Figure 3.2: EoS fitting of the unitary degenerate gas. The atomic cloud in the ALS
at different steps of the evaporation (PALS = 320, 110, 30 mW). The double integrated
density profile n̄(x) is fitted with the EoS to obtain the ratio T/TF corresponding to
the LDA value at the center of the trap. A denser cloud at the center at colder tem-
peratures is observed which corresponds to an increase in the phase space density.
Figure adapted from S. Jin’s thesis [227].
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3.3 Searching fermionic superfluidity

In order to check if the system has reached the superfluid regime, the general con-
sensus was that the system should exhibit some aspect of superfluid flow that would
not be possible in a classical system.
Nevertheless, many attempts at observing such kind of behavior have failed due to
the complexity of the strongly interacting regimes physics, which could obscure the
superfluid transition despite it being known for its dramatic and abrupt indicators.
To cite one example of these dramatic signs, the superfluid transition is easily ob-
served in liquid Helium 3, where the liquid shows unusual properties as creeping
out of the recipient which contains it and having zero viscosity.
In cold atoms experiments this turned out to be a challenge. One of many exam-
ples are the attempts at observing the so-called scissors mode [279] which have been
hammered down by later studies showing similar behavior in normal gases deep in
the hydrodynamic regime [280, 281].
The effort continued and culminated in many experiments which established meth-
ods to detect superfluidity. In bosonic systems, merely measuring the condensate
fraction [68,269,282] is a reliable measurement to detect bosonic superfluidity, where
the density profile presents a clear bimodial distribution. This method would not be
useful for a Fermi gas at unitarity since no condensation is allowed.
In fermionic system, one possibility is by using a rapid ramp method in which a
swift ramp of the magnetic field to the BEC side to capture the momentum distribu-
tion of fermionic pairs by projecting them onto molecules [69, 283] gave satisfactory
results. A more direct method is to stir the superfluid and to observe vortices which
are a signature of superfluidity [71].

3.3.1 Spin imbalanced systems
One of the most common and easy to implement methods to verify superfluidity is
inducing a spin imbalance in the system and looking for pairing signatures in the
sample [189, 213].

In order to understand this method, we need to recall that one of the most promi-
nent features of superfluidity is the emergence of an energy gap ∆ in the system. This
gap corresponds to the pairing energy of the Cooper pairs which form after the su-
perfluid transition.
In the presence of a spin imbalance in the gas translated to an imbalance in the chem-
ical potential δµ = µ↑ − µ↓, an interplay takes place between the gap energy and the
chemical potential. If it is less costly to break a Cooper pair and flip its spin (δµ > ∆),
a spin polarized superfluid forms and it cannot be detected easily. Whilst if the spin
imbalance stays below the gap value (δµ < ∆) an imbalanced superfluid stays the
favored state of the system. This problem was first studied in superconductors by
Clogston and Chandrasekhar [211,212] and is known as the Clogston-Chandrasekhar
limit.

3We recommend watching Alfred Leitner’s 1963 videos on the superfluid transition in liquid Helium
at Michigan state university.
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In this regime, the minority atoms will pair up with majority atoms in the core to
form Cooper pairs, this pairing induces little changes to the transition frequencies of
the atoms at unitarity. The majority atoms in the outer shell form a fully polarized
ideal Fermi gas. Between these two shells, the remaining minority atoms will polar-
ize the medium creating polarons which form dimers in the BEC limit [188, 284].
In the superfluid core the pairing mechanism imposes the constraint n↑ = n↓ or using
the Gibbs-Duhem relation:

∂P↑
∂µ↑

=
∂P↓
∂µ↓

(3.21)

Using the fact that the pressure is proportional to the integrated density n̄(z) as in
Eq. (3.12) we can get the result in the center region:

∂(n̄↑ − n̄↓)
∂z

= 0 (3.22)

This allows us to detect superfluidity by simply taking two consecutive images of
both spin states and subtracting the resulting density profiles. The existence of a con-
stant difference between the density profiles is a signature of pairing and therefore
of superfluidity.

Implementation

To induce spin imbalance, a RF sweep is used as explained in section 2.9.2. By mod-
ifying the RF sweep duration applied before the evaporation and probing the atom
number after the evaporation, a spin imbalance of 2:1 is induced, meaning N↑ = 2N↓.
Afterwards, the camera is used to take two fast successive shots of the two spin states
with an exposure of 7 µs each and an interval of 3 µs between them. This is accom-
panied by a shift in the resonant light frequency by 80MHz corresponding to the
Zeeman shift between the spin states |1〉 and |2〉 at 832 G.
Typical pictures are shown in Fig.3.3, where a constant difference between the two
states indicates a superfluid core in the gas.
The inner shell extending on 30 pixels ≈ 180 µm is a superfluid indicated by the
plateau in the density difference. The second shell consists of the polaron partially
polarized phase with a non-zero minority density, and it extends for around 15 pix-
els ≈ 90 µm on each side. The outermost shell is a fully polarized gas in the normal
phase.
The general direction for the experiment is to explore many-body bulk systems using
fermions. To this end, the group is now working on a single-atom quantum micro-
scope able to take high resolution images for the atomic cloud, opening the way to
study correlations leading to many-body phenomena which are not yet understood.
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Figure 3.3: Spin imbalanced gas density profile. In red the profile density for
atoms in state |1〉. In blue the profile density for atoms in state |2〉. In purple the
difference between the two profiles is plotted. In this observation N↑ ≈ 20000 and
N↓ ≈ 12000. A clear sign of superfluidity is observed in the center part of the cloud
as the densities are equal due to pairing mechanisms. In the most outer shell a fully
polarized ideal gas of atoms in state |1〉 is formed. In between a partially polarized
phase is present with non-zero minority atoms density. Figure adapted from S. Jin’s
thesis [227].

3.4 Single-atom imaging of fermions

The next goal of the experimental setup is to achieve single-atom imaging of fermions
as means to study bulk Fermi gases. Indeed, the last few years have seen many
breakthroughs in quantum gas microscope experiments. These aim mainly to study
2D gases trapped in optical lattice potentials with resolutions attaining single-atom
and single-lattice-site sizes [81–84, 285]. These experiments help probing variables
which are otherwise unaccessible, which also helped revisiting long-standing ques-
tions, to cite a few observing the Mott insulator phase transition [286], and the study
of fermion correlation in the 2D Fermi-Hubard model [88].

As the name suggests, single-atom imaging for a bulk system involves installing
a high-resolution microscope objective able to reach resolutions on the order of the
interatomic distance.
In this imaging scheme, fluorescence imaging technique is used, which relies on
shining a resonant light on the cloud and collecting from another angle the scattered
photons. The number of scattered photons and the quantum efficiency of the camera
sensor determine the signal-to-noise ratio reached and whether it is sufficient to
discern different atoms. While the scattering process takes place, the atoms attain
higher temperatures because of the accumulative recoil energy. This is avoided by
applying a cooling scheme simultaneously, and the chosen scheme is Raman side-
band cooling.
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Moreover, studying bulk systems differs from the case of optical lattice systems,
where the system is left to evolve with a predetermined set of parameters and then
imaged.
In order be able to capture the physics of the system, the imaged atoms distribution
should reflect the results of the system’s dynamics, which are non-trivially perturbed
by the imaging and simultaneous cooling process. For this reason an optical lattice
is ramped up before imaging to pin atoms in place and freeze their position for
imaging. The subsequent cooling of atoms during imaging also takes advantage of
the optical lattice in the Raman-sideband cooling technique as will be explained.
This lattice is often called the pinning lattice.

3.5 Prospects of the 6Li machine
The new experimental apparatus offers many interesting research paths to explore
and help understanding the complex physics governing quantum many body sys-
tems. Using spin resolved single atom imaging will open the way to studying real
time dynamics and spatial distributions in the gas which might help shed light on
long-standing questions in the field. For instance one of the possible directions
would be to study the physics of the FFLO transition in spin imbalanced Fermi gases.

In this chapter we started by the superfluid phase was characterized by compar-
ison with the equation of state. We presented the methodology we followed and
the obtained results of fitting the experimental density profile using the Equation of
state of the strongly interacting gas with our density profiles.

Then we presented a further verification of the superfluid state by measuring the
density profile of the cloud after having induced a spin imbalance and observing the
constant value in the profile representing the difference between the densities of the
two spin states in which we prepare the gas.

Finally, we described the prospective ingredients needed to achieve single-atom
imaging of the fermionic gas in the bulk.

The presence of a high-resolution microscope and a box potential opens up many
possibilities which were not technically available to other experiments.
One possibility is to use the box potential to determine the critical temperature de-
pendence on the interaction strength across the BEC-BCS crossover by measuring the
momentum distribution of fermion pairs after a rapid ramp towards the BEC side of
the resonance [66, 188]. This measurement can be related to the critical temperature
of the cloud since we are in a homogeneous potential.
In the Conclusion of this manuscript, a proposition to observe the phase diagram of
an impurity immersed in a two-component Fermi sea is presented.
This chapter wraps up the experimental part of this thesis and we will then move on
to describe our theoretical studies conducted in the last year of my PhD work.



Part II

Impurity immersed in a
two-component Fermi sea
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This part deals with two theoretical studies I have conducted
starting from August 2019 until June 2020 under the supervision of
Frédéric Chevy and Xavier Leyronas.
In the following, two aspects of the impurity problem in a double
Fermi sea will be presented.
First, the case of an impurity immersed in an interacting fermionic
superfluid is studied, and the main focus is to investigate the fun-
damental processes behind divergences present in the energy of
the impurity. The presented part does not show yet the full answer
to the problem as the work is still ongoing at the time of writing
this chapter.
Second, the case of an impurity immersed in a non-interacting dou-
ble Fermi sea is presented. The different phases of such a system
are studied and the nature of the phase transitions that might take
place is presented. This study has led to a publication focusing on
the nature of transition between the polaron and trimer regime in
such a system [118].



Chapter 4

Impurity in an interacting medium:
a perturbative approach

The physics of an impurity immersed in a many-body ensemble is one of the sim-
plest yet non trivial paradigms in many-body physics. In their seminal works, Lan-
dau and Pekar proposed that the properties of conduction electrons in a dielectric
medium could be understood in terms of so-called polarons, i.e. quasi-particles re-
sulting from the dressing of the electrons by collective excitations in the material
identified to be the vibrations of the surrounding crystal i.e. optical phonons [97].
The properties of the polaron in different regimes has been an intriguing research
field for decades. The case of an impurity immersed in a spin 1/2 superfluid
was brought into light following experimental works on Bose-Fermi superfluids
[111, 225, 226]. In these experiments, the impurity is weakly coupled to the back-
ground unpolarized superfluid. When the impurity is considered in a fermionic su-
perfluid, two regimes arise depending on the nature of interactions in the superfluid.
As the fermion-fermion interaction is varied in the BCS-BEC crossover, from a weakly
attractive interaction on the BCS side of the crossover where fermions form loose
Cooper pairs to a strongly attractive interaction on the BEC side where the Fermi
gas condenses in a BEC of tightly bound dimers, the polaronic state switches from a
Fermi polaron on the BCS side to a Bose polaron on the BEC side as was shown in
Chapter 1.
When studying the phase diagram of the impurity in this setup assuming contact in-
teractions between the impurity and the fermions, a peculiar UV-divergent term ap-
pears when treating the energy perturbatively with respect to the impurity-fermion
interaction [117], this has been observed before in bosons [287] and is typical in
three-body problems with contact interactions.
In this chapter, a quick overview of the problem is presented and then a more de-
tailed treatment in the many-body regime is presented using the Green’s function
formalism.
We start by introducing basic theoretical tools which will be used to demonstrate im-
portant properties of the impurity system, mainly the Green’s function formalism.
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4.1 Perturbative expansion of the impurity energy
We study a regime of an impurity and two fermi seas without making any assump-
tions about the background fermions. In the Fermi polaron regime, the impurity-
fermion interaction is weak and attractive a → 0−, so we can treat it pertubatively.
In [117] this problem was studied perturbatively and as we will see, divergent terms
appear in the limit of large impurity momentum. This was cured by introducing
a three-body interaction in the problem and using a few-body approach an explicit
form of this divergent term was obtained. This was used to renormalize the diverg-
ing term in the polaron energy.
We will be mainly interested in identifying processes leading to a divergent term in
the polaron energy before introducing the three-body interaction.

4.1.1 Preliminary calculation
Consider an impurity with mass mi immersed in a spin 1/2 fermions sea of mass m.
The hamiltonian of the system is written as:

Ĥ = Ĥ f + Ĥimp + Ĥint + Ĥ f
int

= ∑
k,σ

h̄2k2

2m
â†

k,σ âk,σ + ∑
q

h̄2q2

2mi
ĉ†

q ĉq +
g′0
V ∑

k,q,k′ ,q′ ,σ
δk+q,k′+q′ ĉ†

q′ â
†
k′ ,σ ĉq âk,σ

+
g0

V ∑
k,q,k′ ,q′

δk+q,k′+q′ â†
q′ ,↑ â

†
k′ ,↓ âq,↓ âk,↑

(4.1)

where ĉq is the annihilation operator of an impurity with momentum q, âk,σ is the
annihilation operator of a fermion with momentum k and spin σ, and g′0 and g0 are
the bare coupling constants of the fermion-impurity and the fermion-fermion inter-
actions respectively.
As seen in the Chapter 1, the contact potential coupling constant g′0 can be regular-
ized by introducing a UV cutoff leading to an expression relating it to the scattering
length through the following equation:

1
g′0

=
1
g′
− 1
V ∑

k<Λ

2m∗

h̄2q2
(4.2)

where Λ is a UV cutoff, g′ is the physical coupling constant between the impurity and
background fermions, and it is related to the scattering length a using the relation:
g′ = 2πh̄2a′/m∗, with m∗ as the impurity-fermion reduced mass.
For weak interactions we can treat the coupling constant pertubatively, we find up
to 2nd order:

g′0 = g′ +
g′2

V ∑
k<Λ

2m∗

h̄2q2
+ o(g′2) (4.3)

We calculate the first order of perturbation of the energy of the impurity, with
|Ψ0〉 = |φ0〉 ⊗ |0〉 the ground state of the superfluid with energy E0 and the impurity
respectively:

E(1) = 〈Ψ0|Ĥint|Ψ0〉 =
g′0NF

V = g′n +
g′2n
V ∑

k<Λ

2m∗

q2 (4.4)
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where NF is the total number of fermions in both states. We see that we recover the
mean field energy in the first term, and the second term will play a role in cancelling
the divergence in the second term of the perturbative energy expansion which we
calculate in the following:

E(2) = ∑
i 6=0,q 6=p

|〈φi, q|Ĥint|p, φ0〉|2
E0 − Ei − εq

=
g
′2
0
V2 ∑

i 6=0,q 6=p

|〈φi|
∫

d3r ψ†
0(r)ψ0(r)e−iqr|φ0〉|2

E0 − Ei − εq
(4.5)

where ψ†
0(r) is the field operator that creates a fermion at position r and E0 is the

ground state of the fermionic background, Ei is the energy of a state |φi〉 of the
fermionic background, εq is the impurity’s unperturbed energy. We define:

ρ−q = ∑
σ

∫
d3rψ†

0(r)ψ0(r)e−iqr , (4.6)

as the Fourier transform of the density operator, and:

χ(q, E) =
1

NF
∑
i 6=0

|〈φi|ρ−q|φ0〉|2

Ei + E− E0
(4.7)

as the density response function. With these definitions we can write the energy as:

E = g′n +
g′2n
V ∑

q<Λ
[
2m∗

h̄2q2
− χ(q, εq)] (4.8)

where εq is the energy of the impurity.

4.1.2 Asymptotic behavior
For large momenta |q|→ ∞ of the impurity, the function χ has to behave as 1/q2 to
cancel the otherwise divergent first term in the sum. At this limit, the energy of the
excitations is mainly that of the particles since the holes are confined to the Fermi
sphere and their energy becomes negligible, leading to the consideration that the
eigenstates of the many-body hamiltonian correspond to free particle excitations of
momentum q and energy h̄2q2/(2m). For an ideal Fermi gas, the response function
then simplifies to:

χ(q, εq) '
|q|→∞

1
NF

(
1

Eq + εq
) ∑

i 6=0
|〈ψi|ρ−q|ψ0〉|2= (

1
Eq + εq

)S(q) (4.9)

where Eq = h̄2q2/2m is the Fermionic excitation energy, and S(q) is the static struc-
ture factor, it characterizes the two body correlations in interacting systems and is
measurable exactly. Its expression in the large momentum limit is [288, 289]:

S(q) '
|q|→∞

1 +
C2

4NFq
+ o (

1
q

) (4.10)

where C2 is Tan’s contact, first introduced by Shina Tan in 2008 [290, 291], a funda-
mental quantity that characterizes short-range two-body correlations. This simple
analysis yields:

χ(q, εq) '
|q|→∞

2m∗

h̄2q2
+

2m∗C2

4h̄2NFq3
+ o (

1
q

) (4.11)
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The first term cancels with the term coming from regularizing the coupling constant
in Eq. (4.2), but we see that the subdominant term presents a UV-logarithmic diver-
gence in Eq. (4.8);
We also note that there are other terms in the expansion which come from the de-
nominator in Eq. (4.9) that contribute to the subdominant term, for that we note that
this formula only indicates the general behavior of χ(q, E) when |q|→ ∞ without
accurately describing the coefficient of the divergent term. This result means that
the regularization of the coupling constant was not enough.
This logarithmic divergence is typical of a singularity in the three-body problem
for particles with contact interactions. This characteristic was first discovered by
Wu [287] for a system of three bosons and was also investigated in the context of
nuclear physics [106] or more recently with cold atoms [114, 292–294].
In the following, we present a diagrammatic calculation to understand the origin
of the 1/q3 term in the function χ(q, εq). We start by extracting this function from
the impurity’s Green’s function expansion and then by carefully going through the
different diagrams and finding those at the origin of the logarithmic divergence.

4.2 Green’s function for an interacting system
The Green’s function formalism together with Feynman diagrams form one of the
essential tools for modern quantum many-body physics, whether it is in particle
physics, condensed matter or cold atoms physics.
The physics of quantum interacting systems becomes complex very fast, with the
number of scattering processes in the Hilbert space increasing exponentially when
the number of particles is increased when it is treated perturbatively. To that end,
the Green’s function formalism allows us to avoid the jumble of creation and anni-
hilation operators encountered in perturbation theory calculations. This is done by
ordering these operators in a way which allows us to map them to a unique intuitive
graphical representation or Feynman diagram which helps writing these terms and
extract useful features from them before moving to write their analytic expressions.
We start this section by defining the Green’s function in a many-body system at zero
temperature then we introduce briefly the time evolution operator and the adiabatic
activation principles which will be handy in giving a general formula for the Green’s
function in a many-body regime.

4.2.1 Green’s function: Definition
The Green’s function, also called propagator in the path integral formalism, rep-
resents the amplitude that a single particle (hole) with momentum k added to the
many-body system in a single particle state ψk at a time t′ (t) will remain in the same
single-particle state after a certain time t− t′ (t′− t). This probability is expressed by
an expectation value:

G(k; t− t′) = −i〈T âk(t)â†
k(t′)〉 (4.12)

where âk and â†
k are respectively the annihilation and creation operators for the

particle, T is the time ordering operator which will order the operators that follow
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it in a chronological order (with a minus sign in case of interchange of fermionic
operators).
The expectation value is, at zero temperature, calculated in the many-body ground
state |Ψ0〉. For non-zero temperatures it becomes a quantum statistical expectation
value where in addition to the usual quantum expectation value we also average
over a suitable statistical ensemble of many-body states.
For interacting systems, the particle is created in the system and left to evolve and
scatter with other particles, and then the Green’s function measures the probability
of this particle to stay in its original state.
This description fits perfectly with many experiments done in solid state physics for
instance. There, a sample is exposed to a beam of electrons and then the number of
electrons that come through from the original beam is measured, and how much is
scattered [295].

4.2.2 Time evolution operator
For an interacting system we can write the hamiltonian of the system in the following
way:

Ĥ = Ĥ0 + ĤI (4.13)

where Ĥ0 is an exactly solvable part describing the non-interacting system and ĤI is
treated as a perturbation and usually includes the interactions.

In the interaction picture (Dirac picture), operators transform according to Ĥ0, so
that:

ĤI(t) = eiĤ0t/h̄ĤIe−iĤ0t/h̄ (4.14)

and wave-functions transform according to ĤI :

ih̄
d|Ψ(t)〉I

dt
= ĤI(t)|Ψ(t)〉I (4.15)

This differential equation can be integrated giving:

|Ψ(t)〉I = T exp
{
− i

h̄

∫ t

t0

dt′ĤI(t′)
}
|Ψ(t0)〉I (4.16)

We define the time evolution operator as:

Û(t, t0) = T exp
{
− i

h̄

∫ t

t0

dt′ĤI(t′)
}

(4.17)

We can check that it agrees with the simple definition of the time evolution operator
of the time-independent Schrödinger equation Û(t, t0) = exp{−i(t− t0)ĤI/h̄} in the
case where ĤI is time independent.
The last equation can be written in a more explicit form by using the Taylor’s expan-
sion of the exponential function as the following:

Û(t, t0) =
∞

∑
n=0

1
n! (ih̄)n

∫ t

t0

dt1

∫ t

t0

dt2...
∫ t

t0

dtnT [ĤI(t1)ĤI(t2)...ĤI(tn)] (4.18)

where T is the time ordering operator. We can verify that Û†(t0, t) = Û(t, t0) and
Û(t, t1)Û(t1, t0) = Û(t, t0).
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4.2.3 Adiabatic activation
The one particle Green’s function in an interacting system is written as:

G(k; t− t′) = −i
〈ΨGS|T âk(t)â†

k(t′)|ΨGS〉
〈ΨGS|ΨGS〉

(4.19)

where |ΨGS〉 is the unknown many-body ground state of the interacting system de-
scribed by the full hamiltonian Ĥ in Eq. (4.13), and âk and â†

k are respectively the
annihilation and creation operators for a particle with momentum k.
We want to relate this function to the Green’s function of the non-interacting system:

G0(k; t− t′) = −i〈Ψ0|T âk(t)â†
k(t′)|Ψ0〉 (4.20)

where Ψ0 is the ground state of the non-interacting system described by Ĥ0.
To establish the connection we will switch on the interactions adiabatically, this can
be done by constructing the following hamiltonian:

Ĥ(t) = Ĥ0 + e−ε|t|ĤI(t) (4.21)

At time t→ −∞ this represents the unperturbed system with ground state Ψ0, while
at time t = 0 it represents the full interacting system. The parameter ε is taken to be
real and infinitesimally small, so that the changes occur adiabatically 1.
That means we can consider a time evolution operator corresponding to the hamil-
tonian in Eq. (4.21), the energy levels will shift and move continuously, but their
occupation will not change. If a particle is in the ground state energy level, it will
not transition to a higher level but follow the change of the wavefunction associated
with the ground state.
With this we can write:

|ΨGS〉 = Û(0,−∞)|Ψ0〉 (4.22)

This result is known as the Gell-Mann and Low theorem [296].
After transforming the creation and annihilation operators to the interaction picture
using

[âk(t)]H = Û(0, t)[âk(t)]IÛ(t, 0),

the Green’s function in Eq. (4.19) for t > t′ is written as:

G(k; t− t′) = −i
〈Ψ0|Û(∞, 0)Û(0, t)âk(t)Û(t, 0)Û(0, t′)â†

k(t′)Û(t′, 0)Û(0,−∞)|Ψ0〉
〈Ψ0|Û(∞, 0)Û(0,−∞)|Ψ0〉

(4.23)
Using the properties of the time evolution operator we can simplify the expression
as follows:

G(k; t− t′) = −i
〈Ψ0|Û(∞, t)âk(t)â†

k(t′)Û(t′,−∞)|Ψ0〉
〈Ψ0|Û(∞,−∞)|Ψ0〉

(4.24)

1One must be careful when taking the limit ε → 0 as it might lead to an oscillating phase as
explained in [295]
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Finally we write the full expression of the Green’s function used here with the help
of the expression written for the time evolution operator in Eq. (4.18):

(4.25)G(k; t − t′) =
−i

〈Ψ0|Û(∞,−∞)|Ψ0〉
〈Ψ0|

∞

∑
n=0

1
n! (ih̄)n

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2...

∫ ∞

−∞
dtn

e−ε(|t1|+...+|tn|)T [âk(t)ĤI(t1)ĤI(t2)...ĤI(tn)â†
k(t′)]|Ψ0〉

Here we used the time reversal symmetry of the adiabatic activation, meaning that
the hermitian conjugate of the time-evolution operator for a state evolving from
t → −∞ to t = 0 is equal to the time-evolution operator evolving from t = 0 to
t→ ∞.
The last two expressions only contain expectation values with respect to the ground
state of the non-interacting system, which is the goal behind the adiabatic activation:
no more expectation values with respect to the unknown many-body ground state.
The exponential factor will be set to 1 when taking the limit ε→ 0.
This expression allows the many-body problem to be treated iteratively in a man-
ner similar to perturbation theory where for the first order the particle interacts
only once with the bath and for the second it interacts twice and so on. This treat-
ment allows us, if we are patient enough, to capture all physical processes allowed
by quantum many-body physics and therefore describe the full system accurately.
However, as we will see, the number of allowed combinations of these operators in
the development of the Green’s function explodes which restricts largely the analyt-
ical capabilities of this method.

4.2.4 Vacuum polarisation

We worked out the numerator in Eq. (4.19), as for the denominator we can write it
as follows:

(4.26)
S0 = 〈Ψ0|Û(∞,−∞)|Ψ0〉

=
∞

∑
n=0

1
n! (ih̄)n

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2...

∫ ∞

−∞
dtn〈Ψ0|T [ĤI(t1)ĤI(t2)...ĤI(tn)]|Ψ0〉

The last expression describes interactions already happening in the background bath
with no influence from the particle we are considering. Therefore, all terms in Eq.
(4.25) containing non-interacting propagators of the concerned particles will have
a part in which only bath interactions appear (disconnected diagrams) and will be
canceled with the corresponding term in S0, leaving only terms where the particle
of interest is interacting with the bath (connected diagrams).
This term is called vacuum polarisation since it was inspired by Quantum Electrody-
namics theory where virtual electron-positron pairs are created in vacuum and they
change the distribution of charge in the system and therefore polarize it.
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4.3 Perturbative expansion using Green’s function
formalism

As seen in the last section, the energy presents logarithmic divergences in the limit
|q|→ ∞ due to the presence of a 1/q3 term in χ(q, εq). In the regime of weak attractive
interactions between the impurity and the fermions, and by using the perturbative
expansion of the Green’s function of the impurity, we isolate the contribution of
χ(q, εq) in the second order term and then we try to identify the diagrams describing
physical processes responsable for this divergence. We start by studying the Green’s
function of an impurity immersed in an interacting superfluid.

4.3.1 The impurity’s Green function
Using the definition in Eq. (4.19) we can write the Green function of the impurity as
follows:

GI(p; t) = −i
〈ΨGS|T ĉp(t)ĉ†

p(0)|ΨGS〉
〈ΨGS|ΨGS〉

(4.27)

where the expectation value is taken on the function |ΨGS〉 = |ψ0〉 ⊗ |0〉, where |0〉 is
the vacuum of the impurity and |ψ0〉 is the ground state of the interacting bath.
Since we are studying the polaron’s energy, we want to study the effect of an im-
purity’s creation on the Fermi sea. That’s why we start from a ground state of an
interacting Fermi sea and no impurity. Note that for this, in Eq. (4.24) the Û opera-
tors on the right and left of the impurity operators are equal to 1.

First order
Using Eq. (4.25) we can write the first order perturbation expansion of this function
(which corresponds to the term of the sum with n = 1 without the denominator):

GI,1(p; t) =− i〈Ψ0|
1
ih̄

∫ ∞

−∞
dt1T [ĉp(t)ĤI(t1)ĉ†

p(0)]|Ψ0〉

=− g′0
h̄V

∫ ∞

−∞
dt1 ∑

k,q,k′ ,q′ ,σ
δk+q,k′+q′〈Ψ0|T [ĉp(t)ĉ†

q′(t1)ĉq(t1)â†
k′ ,σ(t1)âk,σ(t1)ĉ†

p(0)]|Ψ0〉

(4.28)

we calculate the expectation value, for that we observe that the expectation value of
a product of an impurity operator and a bath operator factorizes.
Then, we use Wick’s theorem which allows the expectation value of a product of
creation and annihilation operators to be written as a product of expectation values
of all possible pairs of creation and annihilation operators.
So we can write the expectation value as follows:

〈Ψ0|T [ĉp(t)ĉ†
q′(t1)]|Ψ0〉〈Ψ0|T [ĉq(t1)ĉ†

p(0)]|Ψ0〉〈Ψ0|T [â†
k′ ,σ(t1)âk,σ(t1)]|Ψ0〉

−〈Ψ0|T [ĉp(t)ĉ†
p(0)]|Ψ0〉〈Ψ0|T [ĉq(t1)ĉ†

q′(t1)]|Ψ0〉〈Ψ0|T [â†
k′ ,σ(t1)âk,σ(t1)]|Ψ0〉

=i2δpq′δpqδkk′GI,0(p, t− t1)GI,0(p, t1)nk,σ(t1)− i2δqq′δkk′GI,0(p, t)GI,0(p, t1 − t1)nk,σ(t1)

where nk,σ(t) is the number of fermions in single-particle state ψk,σ at instant t, this
observable does not depend explicitly on time.
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We also leave out the second term since it represents a disconnected diagram which
cancels with the denominator from Eq. (4.24) as was seen in Section 4.2.4. With this
we can write Eq. (4.28) as:

GI,1(p; t) =
g′0n
h̄

∫ ∞

−∞
dt1GI,0(p, t− t1)GI,0(p, t1) (4.29)

where n = ∑k,σ nk,σ is the density of fermions in the bath, and:

GI,0(p, t) = −iθ(t)e−iεpt/h̄ (4.30)

is the impurity’s free particle Green’s function, where εp = h̄2 p2/(2mi). We kept only
the retarded part since we’re studying the propagation of the impurity in a ground-
state without the impurity (we start by creating the impurity and any term that does
not take this into account is equal to zero). This term gives the mean-field contri-
bution in the self-energy of the impurity (first term in Eq. (4.8)). In diagrammatic
terms this gives a tadpole diagram and its middle part gives a contribution to the
self energy g′0n/h̄.

Second order
Similar to the previous calculation, we can write the second order of perturbation
for the impurity’s Green’s function as follows:

GI,2(p, t) = −i〈Ψ0|
1

2(ih̄)2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2T [ĉp(t)ĤI(t1)ĤI(t2)ĉ†

p(0)]|Ψ0〉

=
ig′20

2h̄2V2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 ∑

kqk′q′k1q1k′1q′1,σ
δ k+q

k′+q′
δk1+q1 ,k′1+q′1

〈T [ĉp(t)ĉ†
q′(t1)ĉq(t1)

â†
k′ ,σ(t1)âk,σ(t1)ĉ†

q′1
(t2)ĉq1(t2)â†

k′1 ,σ(t2)âk1,σ(t2)ĉ†
p(0)]〉

(4.31)

we evaluate the expectation value first, we leave out all terms containing loops of
the impurity propagator (cf. Eq. (4.30)). We write the expectation value over the
impurity operators as:

〈T [ĉp(t)ĉ†
q′(t1)ĉq(t1)ĉ†

q′1
(t2)ĉq1(t2)ĉ†

p(0)]〉 = i3δp,q′δq,q′1
δp,q1 GI,0(p, t− t1)GI,0(q, t1 − t2)GI,0(p, t2)

+ i3δp,q′1
δq,pδq1 ,q′GI,0(p, t− t2)GI,0(q, t1)GI,0(q1, t2 − t1)

where terms that also contain a fermionic loop were cancelled by the denominator
of Eq. (4.27). For the other two terms they are equal if we replace t1 by t2. If we plug
that in Eq. (4.31) we get:

GI,2(p, t) =
g′20

h̄2V2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 ∑

p1

〈T ρ̂p1−p(t1)ρ̂p−p1(t2)〉GI,0(p, t− t2)GI,0(p, t1)GI,0(p1, t2 − t1)

In case p = p1, we get ρ̂0 = N̂ the number operator in the bath, we find:

GI,2(p, t) =
g′20n2

h̄2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2GI,0(p, t− t2)GI,0(p, t1)GI,0(p1, t2 − t1)
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In case p 6= p1:

GI,2(p, t) =
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2

[
g′20

h̄2V2 ∑
p1 6=p

GI,0(p1, t2 − t1)〈ρ̂p1−p(t2)ρ̂p−p1(t1)〉
]

GI,0(p, t− t2)GI,0(p, t1)

(4.32)

where ρ̂q = ∑k,σ ĉ†
k,σ ĉk+q,σ is the Fourier transform of the bath density at wave-vector

q.
The quantity between brackets contributes to the self energy (the rest of the equa-
tion are the incoming and outgoing impurity particle and the bracketed part is the
interaction with the bath).
We are going to limit ourselves to this order for the impurity’s Green function (sec-
ond order in g′0), but we will follow the evolution of the fermionic expectation value
to understand the divergence, for that we follow the same steps as before but with
Ĥ f

int as the interaction hamiltonian to capture the interactions between fermions.

As a sanity check, we insert a completeness relation ∑i|ψi〉〈ψi|= 1 between the
two density operators. Then, we take the Fourier transform with respect to the time
difference t2 − t1. We find

Σ(2)
pol(p, t) =

g′20
h̄2V2 ∑

p1 6=p
GI,0(p1, t)〈ρ̂p1−p(t)ρ̂p−p1(0)〉

=
∫ ∞

−∞

du
2π

g′20
h̄2V2

e−iut

u + iη
e−iεp1 t/h̄ ∑

p1 6=p
∑
i 6=0

e−i(Ei−E0)t/h̄|〈ψi|ρ̂p−p1 |Ψ0〉|2
(4.33)

where η → 0+. We can see this as the Fourier transform of a function Σ(2)
pol(p, ω)

defined as:

Σ(2)
pol(p, t) =

∫ ∞

−∞

dω

2π
e−iωtΣ(2)

pol(p, ω)

with the variable change ω = u + εp/h̄− E0/h̄ + Ei/h̄ with the same variables in Eq.
(4.5) to get the following function (we put h̄ = 1):

Σ(2)
pol(p, ω) =

g′20
V2 ∑

p1 6=p
∑
i 6=0

|〈ψi|ρ̂p−p1 |Ψ0〉|2

ω + i η − (Ei − E0 + εp1)
(4.34)

For ω = 0 and p = 0, the result obtained by usual perturbation theory back in Eq.
(4.5) is recovered.

4.3.2 Expectation value of the density-density correlation
function

As seen in Eq. (4.33) and back in Eq. (4.8) the expectation value of the density-
density correlation function is responsible for the divergent term for |q|→ ∞.
We start by writing properly this expectation value defined for q 6= 0, (notice that
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the time ordering operator T always operates on what is inside the expectation
brackets):

iχT(q, t) = 〈T ρ̂q(t)ρ̂−q(0)〉 = ∑
k,k′ ,σ,σ′

〈T a†
k,σ(t)ak+q,σ(t)a†

k′ ,σ′(0)ak′−q,σ′(0)〉 (4.35)

where the expectation value is taken over |Ψ0〉 the ground state of the interacting
bath. Its Fourrier transform can be written as:

χT(q, ω) = ∑
i 6=0

|〈φi|ρ−q|φ0〉|2

ω + iη − Ei + E0
−∑

i 6=0

|〈φi|ρq|φ0〉|2

ω + iη + Ei − E0
(4.36)

This definition could be related to the one in Eq. (4.7) by the expression χ(q, E) =
−NF χT,R(q,−E), where χT,R(q,−E) is the retarded part of χT(q,−E).
We would like to express this expectation value in terms of the non-interacting
fermionic Green’s function:

G0,σ(k, t− t′) = −i〈ΨFS|T âk,σ(t)â†
k,σ(t′)|ΨFS〉

= −ie−iEk,σ(t−t′)/h̄
[
θ(kσ > kF,σ)θ(t > t′)− θ(kσ < kF,σ)θ(t < t′)

] (4.37)

where here we either treat a fermion propagating above the Fermi sea, or a hole
propagating inside the Fermi sea.
In reciprocal space, the Green’s function takes the following form:

G0,σ(k) =
θ(|k|> kF)

ω− Ek,σ + iη
+

θ(|k|< kF)
ω− Ek,σ − iη

(4.38)

where Ek = h̄2k2/(2mσ) is the energy of the fermion added to the system.
In [117] the three-body regularization of the problem needs a ∝ 1/|q|3 subdominant
term in the expansion of χ(q, t) at |q|→ ∞. Although the treatment there did not
make any assumptions about the fermions interaction. For simplicity, we will start
in the limit of a weakly interacting bath (BCS limit) for the time being.
As before, we use the adiabatic activation technique to treat the fermionic interac-
tions considering that the fermion-fermion scattering length is small and negative
(BCS side).

Zeroth order
The zeroth order is calculated by taking the expectation value of the expression
directly over the non-interacting ket, we can use Wick’s theorem to write as follows:

iχT
0 (q, t) = ∑

k,k′ ,σ,σ′
〈T a†

k,σ(t)ak+q,σ(t)a†
k′ ,σ′(0)ak′−q,σ′(0)〉 = ∑

k,σ
G0,σ(k,−t)G0,σ(|k + q|, t)

(4.39)

Other contractions are zero since |q|6= 0. This term corresponds to two counter-
propagating fermions, one with momentum k + q and the other with momentum
k:

0 t1

k + q, σ

k, σ
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We take the Fourier transform to find:

χT
0 (q, ω) = ∑

k,σ

[
θ(|k|< kF,σ)θ(|k + q|> kF,σ)

ω + Ek − Ek+q,σ + iη
− θ(|k|> kF,σ)θ(|k + q|< kF,σ)

ω + Ek − Ek+q,σ − iη

]
(4.40)

where we used following relation which can be proven using residue integrals:

θ(t > 0) = −
∫ ∞

−∞

du
2πi

e−iut

u + iη

Now, since we were studying the propagation of the impurity starting from the im-
purity’s vacuum state, only the retarded part of the function G0(p1, t2 − t1) in Eq.
(4.32) is taken, therefore t2 > t1. So the second term in the last equation (advanced
part) will be discarded in the evaluation of Σ(2)

pol(p, ω).
These functions are called in condensed matter theory the Lindhard functions and
integrating them is an important step in many problems, i.e. Lindhard’s dielectric
functions for calculating response functions of an electron gas to external perturba-
tions and the RPA’s bubble.

Asymptotic behavior
How does the zeroth order of the density-density correlator behave at large |q| val-
ues? For that we go back to the self-energy of the impurity in Eq. (4.34). We replace
χT by χT

0 which is of particular interest here, then we can write:

Σ(2)
pol(p, t) = i

g′20
h̄2V2 ∑

q 6=0
G0(q, t)χT

0 (q, t) (4.41)

Taking the Fourier Transform of this product of functions gives a convolution in the
frequency domain, we will take ω = 0 to match up the expression with the one
obtained through the perturbative calculation in Eq. (4.32):

Σ(2)
pol(p, ω = 0) = i

g′20
h̄2V2 ∑

q 6=0

∫ dω′

2π
χT

0 (q, ω′)G0(q,−ω′)

= i
g′20

h̄2V2 ∑
q 6=0

∫ dω′

2π

χT
0,r(q, ω′)− χT

0,a(q, ω′)
−ω′ − εq + iη

(4.42)

Where χT
0,r and χT

0,a are respectively the retarded and advanced parts shown in Eq.
(4.40) and integrated over k. By integrating over the advanced part, the integrand
has two poles ω′ = −εq + iη and ω′ = Ek+q,σ − Ek + iη, both in the upper half plane.
So by integrating over the lower half plane, the function is holomorphic and it gives
0.
As for the first integration, the function has two poles ω′ = −εq + iη and ω′ =
Ek+q,σ − Ek − iη, so if we integrate over the upper half plane we will have one pole
ω′ = −εq + iη and we write this function as follows:

χT
0,r(q,−εq) = 2

∫ d3k
(2π)3

θ(|k|< kF)θ(|k + q|> kF)
−εq + Ek − Ek+q + iη

= −2
∫ d3k

(2π)3
θ(|k|< kF)θ(|k + q|> kF)

q2/2m∗ + k.q/m− iη
(4.43)
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For q� kF, the second step function equals 1 always. The integrand can be separated
into real and imaginary parts using the following formula:

1
x± iη

= P 1
x
∓ iπη(x) (4.44)

we notice that the principle value part has no poles and the imaginary term cancels
when taking the limit η → 0, with that the integration yields:

χT
0,r(q,−εq) = 2m

∫ kF

0

dk
(2π)2

k
q

ln
(

q− k
q + k

)
=

q→∞
− m

π2

∫ kF

0
dk

k
q

[ k
q

+ (
k
q

)3 + O((
k
q

)5)
]

∝
|q|→∞

1
q2 + O(

1
q4 )

(4.45)

So the leading term in χT
0,r is of order 1/q2 and the next order is 1/q4, none of these

terms gives a logarithmic divergence, which is expected since we saw that the term
responsible is proportional to Tan’s contact C2 which needs at least second order
interactions to appear.

First order

We write the first order as follows:

iχT
1 (q, t) = −i

g0

V

∫
dt1 ∑

k,k′ ,σ,σ′
k1,p,k′1,p′ ,σ1

δk1+p
k′1+p′
〈T â†

k,σ(t)âk+q,σ(t)â†
p′ ,−σ1

(t1)âp,−σ1(t1)

â†
k′1,σ1

(t1)âk1,σ1(t1)â†
k′ ,σ′(0)âk′−q,σ′(0)〉

(4.46)

We evaluate term by term Wick’s contractions which result out of this term, all
subsequent sums in front of each contraction are over all momenta and spin variables
except q. Then we evaluate the limit lim|q|→∞ χ1(q,−εq) after each term in its turn:

iχT,(1)
1 (q, t) = −i

g0

V ∑
k,p,σ

∫
dt1G0,−σ(p, t1 − t)G0,−σ(p + q, t− t1)G0,σ(k− q,−t1)G0,σ(k, t1)

(4.47)

0
t1

t

k, σ

k− q, σ

p + q,−σ

p,−σ

As before, we take the Fourier transform and we get for its asymptotic behavior:

χ(1)
1 (q,−εq) = ∝

|q|→∞

1
q4 + O(

1
q6 )
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The details of this calculation were reported in Appendix A.
Another possible diagram:

χT,(2)
1 (q, t) =

g0

V ∑
k,p,σ

∫
dt1G0,σ(k,−t)G0,−σ(p, t1 − t1)G0,σ(k + q, t− t1)G0,σ(k + q, t1)

(4.48)

0 t

t1

k, σ

k + q, σ k + q, σ

p,−σ

For its asymptotic behavior we can write:

χT,(2)
1,r (q,−εq) = −g0n ∑

k

θ(|k|< kF)θ(|k + q|> kF)
(q2 + q.k)2 ∝

1
q4 + O(

1
q5 )

Other diagrams resembling:

t1

0 t
k + q, σ

k, σ

p,−σ1 k1 , σ1

do not contribute since they are disconnected diagrams as we have mentioned before.

4.3.3 Ladder approximation
For the fermion-fermion scattering length to appear, we should regularize the inter-
action constant g0 in each of the two significant first order diagrams we saw previ-
ously. This is done by considering the ladder approximation in which we consider
that when taking the thermodynamic limit all diagrams containing fermions or im-
purity loops will go to zero since they are proportional the density. Meaning that all
remaining diagrams must always have impurity-fermion interaction at each node.
The subsequent series of diagrams is called the ladder series and the calculation in-
volving all contributions is called the ladder resummation.
We start by a ladder resummation of the diagram in Eq. (4.47) by writing the sum
over the ladder diagrams as two fermions interacting via an interaction vertex γ↑,↓
as follows:

P− p, ↑

P− p− q, ↑

p, ↓

p + q, ↓

γ↑↓ = + + + . . .

(4.49)
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where P = (P, Ω), p = (p, ω1) are internal four momenta we will sum on and q =
(q, ω) is the four momentum of the impurity.
We can then write a Bethe-Salpeter equation for γ↑,↓:

γ↑↓ = + + . . . = + γ↑↓
(4.50)

We can write an expression for the Bethe Salpeter equation for γ↑,↓, recalling that at
T = 0, Feynman rules add a factor i in front of the recursive part, as follows:

γ↑,↓(P− p, p; P− p− q, p + q) = g0 + ig0 ∑
p1

G0,↑(P− p1)G0,↓(p1)

γ↑,↓(P− p1, p1; P− p− q, p + q)
(4.51)

By writing the Bethe Salpeter equation with γ↑,↓ including the first interaction and
followed by two fermion propagators, we can see that γ↑,↓ only depends on the total
four-momentum P = (P, Ω), with that we can write:

γ−1
↑,↓(P, Ω) = g−1

0 − i ∑
p1

G0,↑(P− p1)G0,↓(p1)

We perform the residues integral over the two advanced and retarded parts of
G0,↓(p1) to get:

γ−1
↑,↓(P, Ω) = g−1 −∑

p1

2m∗

p2
1
− ∑
|p1|>kF

θ(|P− p1|> kF)
Ω− Ep1 − EP−p1 + iη

+ ∑
|p1|<kF

θ(|P− p1|< kF)
Ω− Ep1 − EP−p1 − iη

(4.52)

Inserting that into Eq. (4.47) we find:

χT,(1)
1 (q, ω) =

2i
V ∑

P,p

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dΩ
2π

G0,↓(p, ω1)G0,↓(p + q, ω1 + ω)

G0,↑(P− p− q, Ω−ω−ω1)G0,↑(P− p, Ω−ω1)γ↑,↓(P)

(4.53)

We consider in the following that all fermions have the same mass m and drop the
spin index. The product of four Green’s functions of the form Eq. (4.38) gives 24 = 16
terms.
We will focus mainly on the term resulting from multiplying only the retarded parts
of the Green’s functions. We dedicate Appendix B to discussing other terms. The
term is written as:

χT,(1,1)
1,r (q, ω) =

2i
V ∑

P,p

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dΩ
2π

θ(|p|> kF)
ω1 − Ep + iη

θ(|P− p− q|> kF)
Ω−ω1 −ω− EP−p−q + iη

θ(|p + q|> kF)
ω + ω1 − Ep+q + iη

θ(|P− p|> kF)
Ω−ω1 − EP−p + iη

γ↑,↓(P)

(4.54)

We notice that the second and third terms are retarded and advanced respectively
with respect to the variable ω, we separate the product into a sum of a retarded and
advanced term and we drop the advanced term.
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The remaining integrand has three poles with respect to the variable ω1, two of them
in the lower half of the complex plane and one in the upper half. Thus, we perform
the integral over ω1 by closing the contour over the upper half of the complex plane,
with that we get:

χ(1,1)
1,r (q, ω) =

2
V ∑

P,p

∫ ∞

−∞

dΩ
2π

θ(|p|> kF)θ(|P− p− q|> kF)
(Ω− EP−p − Ep + iη)(Ω− Ep+q − EP−p−q + iη)

θ(|p + q|> kF)θ(|P− p|> kF)
(Ω + ω− EP−p − Ep+q + iη)

γ↑,↓(P)

(4.55)

We need to evaluate the function χT,(1,1)
1,r (q, ω) at the frequency value ω = −εq which

corresponds to the impurity’s kinetic energy. Then we take the |q|→ ∞ limit. For
that we write the function as follows:

χT,(1,1)
1,r (q,−εq) =

∫ d3P
(2π)3

∫ ∞

−∞

dΩ
2π

γ↑,↓(P, Ω) F(Ω, P, q, kF, m, mi) (4.56)

where the function F is given by:

F(Ω, P, q, kF, m, mi) =
∫ d3 p

(2π)3
θ(|p|> kF)θ(|P− p− q|> kF)

(Ω− EP−p − Ep + iη)(Ω− Ep+q − EP−p−q + iη)
θ(|p + q|> kF)θ(|P− p|> kF)
(Ω− εq − EP−p − Ep+q + iη)

(4.57)

We note that F is holomorphic in the upper half of the complex plane with respect to
Ω. We split the complex function γ↑,↓(P) into a sum of an advanced and a retarded
function: γ↑,↓(P) = γR

↑,↓(P) + γA
↑,↓(P).

The function γR
↑,↓(P) is holomorphic in the upper-half of the complex plane and

γA
↑,↓(P) is holomorphic in the lower half of the complex plane. With that we find

that only γA
↑,↓(P) will contribute in Eq. (4.56) in order for the integrand to not be

holomorphic in the lower-half plane and integrate to zero with respect to Ω.
We do the following rescaling |p| by |q| we find:

F(Ω, |P|, q, kF, m, mi) =
(2m)3

q3 F(
Ω

q2/(2m)
,
|P|
|q| , 1,

kF

q
, 1,

m
mi

)

By studying the behavior of the function γ↑,↓(P, Ω) at |P|, Ω → ∞ we find that its
limit is zero. We prove that by noticing that the second sum in Eq. (4.52) is zero when
|P|→ ∞, we write the Heaviside function in the first sum as 1− θ(|P− p1|< kF) and
the second term subsequently goes to zero for |P|→ ∞. For the remaining sum we
can calculate it using the method detailed in Appendix D, to find that γ−1

↑,↓(P, Ω)
diverges for |P|, Ω→ ∞.
As a result, in F we can replace the first two arguments in the last expression by zero
at lowest order and we find:

χT,(1,1)
1,r (q,−εq) ∝

|q|→∞

A
q3 (4.58)
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with A given by:

A =
∫ d3P

(2π)3

∫ ∞

−∞

dΩ
2π

γA
↑,↓(P, Ω) (2m)3F(0, 0, 1, 0, m, mi)

By definition we have ∫ ∞

−∞

dΩ
2π

γA
↑,↓(P, Ω) = γ↑,↓(P, t = 0−)

and equivalently: ∫ d3P
(2π)3 γ↑,↓(P, t = 0−) = γ↑,↓(r = 0, t = 0−)

The last expression can be related to the two-body contact as shown in [297, 298]:

C2 = −m2 γ↑,↓(r = 0, t = 0−)

In this context the contact C2 will help us identify diverging terms as it appears as a
prefactor for these terms.
With that the coefficient of the divergent term becomes:

A = −8 m C2F(0, 0, 1, 0, m, mi)

This gives one of the contributions to the divergent term in Eq. (4.8). With the
notations used in [117] we calculate the function F(0, 0, 1, 0, m, mi) and we find:

F(0, 0, 1, 0, m, mi) =
m3

π2 κI I(η)

where η = mi/m and κI I(η) = −π
2 η arctan

(
1√

η(η+2)

)
.

The work on other terms is still under progress and other diagrams which are not
included in ladder resummation with respect to the fermion-fermion interaction are
being investigated.

Summary and future work
In this chapter we took a look at the logarithmic divergent terms which are present
in the perturbative expansion of the energy of a polaron with respect to its interac-
tion with an interacting Fermi gas.
A diagrammatic expansion was presented and we managed to identify one contri-
bution to this divergence with the study of the ladder resummation of a diagram
representing the propagation of two fermions.
Other terms are being investigated in order to find other divergent terms in the
diagrammatic expansion of the fermion-fermion interaction.

An obvious prospective is to explore more diagrams and try to identify all the
ones contributing to the 1/q3 term in χT(q,−εq) in the BCS limit of the impurity-
fermion and fermion-fermion interaction. Second order diagrams will contribute to
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the divergent term since it is proportional to the two-body contact C2 which appears
only in second order perturbative expansions of this type.
The extension of the calculation to all values of interaction strength across the BEC-
BCS crossover for the fermionic bath and the impurity-fermion interaction is an
intriguing outlook.
Also, exploring values where a′ > Re can be interesting, this is where a smooth
crossover to a trimer state is predicted [130].



Chapter 5

Impurity immersed in a double
non-interacting Fermi sea

Two-component Fermi systems are a fundamental tool in which a broad range of
physical phenomena appear by exploiting their various interaction strengths and
properties, as was presented in previous chapters.
At low temperature, when a weak attraction is present between the two compo-
nents of fermions, typically two internal states of the same species (e.g. two spin
1/2 states), particles tend to form Cooper pairs and form a BCS superfluid. When
increasing the attraction, the two components form a dimer, a diatomic bosonic
molecule transforming the ensemble into a BEC.
Since the two regimes depend on the interaction strength between the two compo-
nents when they are paired, the transition between them is a crossover. It was shown
that the mean-field wavefunction smoothly interpolates the BEC and BCS superflu-
ids [150, 151], in what became to be known as BCS-BEC crossover theory and which
has become the subject of extensive studies theoretically and experimentally. For
more details refer to Chapter 1.

Yet richer problems emerged when people started investigating three-component
Fermi gases, initially motivated by its analogy to quark-hadron continuity in dense
nuclear matter [299] and more so in the field of cold-atoms for the experimental re-
alization of such systems using 6Li atoms [143, 300].
Theoretically, the problem of three-component Fermi gases provides several chal-
lenges. The ordinary mean-field approximation treatment does not work since it
misses completely Efimovian effects (See Chapter1) which play an essential role
here [115].
Then, when considering the ground state of the three-component Fermi gas beyond
mean-field, a serious problem arises when three distinguishable fermions can form
an infinitely deep bound state in the zero-ranged potential limit, this previously men-
tioned phenomenon is known as the Thomas collapse [129], which was not present in
two-component systems due to Pauli blocking. Therefore, a three-component Fermi
gas in the zero range approximation does not have a many-body ground state and if
it exists, it is bound to the potential range and thus is not universal. This echoes the
results found for the Efimov trimer in the first chapter.
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However, a ground state of the three-component Fermi gas can be found in the
vicinity of a narrow Feshbach resonance where both the scattering length a and
the resonance range Re are much larger than the potential range, this results in it
becoming irrelevant and not appearing in equations. This represents a universal
ground state in the sense that it exists for any kind of interaction potential and is
characterized completely by the density expressed by the Fermi wavevector kF, the
scattering length a and the effective range Re. The case of a broad Feshbach reso-
nance, which is more relevant experimentally since in experiments working around
a broad resonance is much simpler and allows fine control over interactions, was
studied extensively [191, 217, 221, 301].

Experiments in our group on Bose-Fermi mixtures brought focus on impurity
physics in two and three component Fermi and Bose gases [109,111,112]. This started
a theoretical effort trying to understand the phase diagram of an impurity immersed
in a two-component Fermi sea, where the phase diagram now includes a trimer sec-
tor where Efimov physics comes into play [113–117]. For a more general introduction
refer to Chapter 1.
In the weak impurity-fermions interaction regime, the impurity experiences a weak
attractive interaction and can be described as a Fermionic polaron. In the regime
of increased impurity-fermions interaction that does not support a two-body bound
state (dimer), a three-body state, a trimer, forms. For strong interactions that sup-
port a two-body bound state the trimer state transitions into a dimer state [302]. A
schematic phase diagram of the problem is presented in Fig. (1.5).
By using a mean-field description of the superfluid composed of the two majority
fermions, a smooth crossover between the polaron and trimer regimes was proposed
using the following ansatz [130]:

|ψ〉 =
(

αb̂†
0 + ∑

k,k′
βk,k′ b̂†

k′ γ̂
†
k,↑γ̂

†
−k−k′ ,↓

)
|BCS〉

where |BCS〉 is the BCS mean-field ground state of majority fermions, b̂†
k is the cre-

ation operator of an impurity of momentum k and γ̂†
k,σ is that of the Bogoliubov

modes of the underlying superfluid.
The polaron-trimer crossover arises from the fact that the superfluid’s excitations
happen in pairs (the Bogoliubov excitations) and trimers arise as a bound state be-
tween the superfluid Cooper pairs and the impurity.
In light of the foregoing, an intriguing question is what would happen if there was
no superfluid and the two majority components do not interact? What type of exci-
tation would favor the trimer state appearance as the ground state of the system?
In Fig. (1.5) this would correspond to the limit of Re/a → −∞, and the question
is whether the shrinking trimer sector would still exist in this domain even in the
absence of fermionic Cooper pairing.
Answering this question is the main goal of this chapter, where we will present a
variational ansatz incorporating the physics of the polaron and trimer sectors in a
system of an ideal gas of spin 1/2 fermions and an impurity. We will see that the
type of coherence introduced by the presence of the superfluid in the previous case
is not present in our system which leads to a dramatic change in the nature of the
transition. The following work was reported in [118].
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5.1 Variational ansatz of the full problem
We consider a system composed of non-interacting N spin up particles with N spin
down particles of equal mass m and an impurity of mass mi interacting with each
component of the Fermi sea. An experimental setup to have in mind in this study is
that of [111] where a mixture of 6Li and 7Li was studied.
We use a two-channel model to write the hamiltonian which as we saw in Chapter 1
gives rise to Efimov trimers without requiring additional physical ingredients. In this
model the system is described as two scattering channels interacting with each other
via a contact interaction potential defined as Vk−k′ = Λδk,k′ . We also assume periodic
boundary conditions with quantization volume V . The system’s hamiltonian takes
the general form:

Ĥ = ∑
k,s

εka†
k,sak,s + ∑

k
Ekc†

kck + ∑
k

(E0 + Ek)b†
k,sbk,s

+
Λ√
V ∑

k,p,s
(b†

p+k,sckap,s + a†
p,sc

†
kbp+k,s)

(5.1)

where a†
k,s and ak,s are creation and annihilation operators for an open channel

fermion of momentum k and spin s, c†
k and ck are those of the open channel impu-

rity, b†
k,s and bk,s are those of the closed channel molecule made of a spin s fermion

and an impurity.
We also have εk = h̄2k2

2m , Ek = h̄2k2

2mi
, Ek = h̄2k2

2(m+mi)
. E0 is the binding energy of the

molecule.
For simplicity, inspired by the experimental setup in [111], we consider interactions
between the impurity and each spin component are the same and mi ' m. The cou-
pling Λ does not depend on momentum [303, 304], but a UV-cutoff kc is introduced
to match the scattering length a and the effective range Re of the true potential. We
remind the expressions in 1.22 and 1.26:

1
a

=
2kc

π
− 2πh̄2E0

m∗Λ2 , Re =
πh̄4

m∗2Λ2 (5.2)

where m∗ is the reduced mass of the impurity/fermion pair.
We search for the ground state energy within a variational space spanned by the
states depicted in Fig. (5.1). This space can be divided into two sectors. The po-
laron sector is spanned by state |0〉, which corresponds to the impurity sitting at
the center of the two unperturbed Fermi seas, and single particle-hole states |q1〉s
and |q1, k1〉s where a hole of spin s and momentum q1 is accompanied by either
a bound or unbound impurity-fermion pair. The Efimov sector is characterized by
states |q1, q2, k1〉s and |q1, q2, k1, k2〉 containing both one hole in each Fermi sea.
The general structure of a variational state is therefore

|ψ〉 = A|0〉 + ∑
q1,s

Bs(q1)|q1〉s + ∑
q1,k1 ,s

Cs(q1, k1)|q1, k1〉s + ∑
q1 ,q2 ,k1,s

Ds(q1, q2, k1)|q1, q2, k1〉s

+ ∑
q1,q2,k1 ,k2

E(q1, q2, k1, k2)|q1, q2, k1, k2〉. (5.3)
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with |qi|< kF and |ki|> kF and where kF is the norm of Fermi wavevector of the
background fermions.
Here, A is the wavefunction of the impurity alone, Bs is the wavefunction of the
molecule formed from an impurity and a fermion of spin s resulting from a particle-
hole excitation in the Fermi sea, Cs is the wavefunction of one particle hole excita-
tion of a fermion with spin s, when this molecule dissociates, Ds is the wavefunction
when another molecule is formed from a second particle hole excitation, E is the
wavefunction if this latter dissociates.

Figure 5.1: Structure of the variational Hilbert space. In the first two rows, the
polaronic state is created by the impurity and one particle hole excitations, in the
third row, a second particle hole excitation allows for the trimer to exist.

For spin balanced Fermi seas, the interactions of the impurity with the two spin
components are identical. We can thus assume that the amplitudes Bs, Cs and Ds

do not depend on s within this subspace, and we explore two families of variational
states.
The trial wavefunction can be used to know the ground-state energy of the system
in the subspace spanned by the wavefunction. To find this we perform a standard
variational calculation which we detail in Appendix C.

5.2 Polaron sector
The polaronic sector corresponds to D = E = 0. The corresponding ansatz general-
izes the approach succesfully used to describe the Fermi polaron problem, i.e. an
impurity immersed in a spin-polarized Fermi sea [191].
In particular this trial wavefunction recovers the exact perturbative expansion of the
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energy of the polaron up to second order in scattering length. In the following, we
will assume that the impurity has the same mass as the fermions: mi = m.
The minimization of the energy W with respect to A, B and C in the polaronic sector
can be reduced to a single scalar equation PW = 0 with:

PW = W − 2
V ∑

q<kF

1
∆q(W)

(5.4)

and

∆q(W) =
m

4πh̄2

{
a−1 − Re(λ2 − q2

4
)− 2

π
kF +

4π

V ∑
|k|>kF

1
λ2 + k2 − k · q −

1
k2

}
(5.5)

where W = −h̄2λ2/m, is the ground state energy.
Since in this sector the impurity is coupled to a single atom of the Fermi sea (Sea Fig.
(5.1), the zero-range limit does not suffer from any singularity and in this regime the
polaron energy is a universal function of the dimensionless parameter 1/(kFa) only
that we display in Fig. (5.2).
In the perturbative regime kFa→ 0−, the energy of the polaron can be expanded as

W =
8πh̄2a

m
nF

(
1 +

3
2π

kFa + ...
)

. (5.6)
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Figure 5.2: Energy of the purely polaronic ansatz for Re = 0. The dashed green
line corresponds to the second order perturbative expansion for 1/kFa → 0−. The
dotted line corresponds to the polaron energy in a single component Fermi sea. The
solid line corresponds to the polaron energy in a two component system described
in Eq.(5.4).

At this order, the variational result recovers the exact perturbative expansion and
amounts to twice the interaction energy with a single spin component. Because of
the dependence of ∆q with respect to the energy W, this coincidence does not extend
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beyond that order though.
For instance, at the unitary limit |a|= ∞, we know that for a single component Fermi
sea, the energy of the polaron is WFP ' −0.606 EF [191,215,216], where EF = h̄2k2

F/2m
is the Fermi energy of the background fermions, while for a two component system,
we find |W|' 1.026EF < 2|WFP|, meaning that, contrary to the perturbative expres-
sion, the interaction energy of the polaron with the two Fermi seas is not additive in
the strong coupling regime.

5.3 Efimov sector

We now consider the opposite limit A = B = C = 0 corresponding to the formation of
a ground state Efimov trimer above the Fermi surface. The trimer state dominates in
an interval where the interaction is strong and attractive, however not strong enough
to support a two-body bound state.

5.3.1 Trimer in vacuum

As a reference, we first consider the energy of the trimer in the absence of a Fermi
sea that is obtained as a solution of Skornyakov-Ter-Martirosyan’s equation [133]

[
1

4π

{
a−1 − Re(λ2 +

3
4

k2)
}

+
1
V ∑

k′
(

1
λ2 + k2 + k′2 + k · k′

− 1
k′2

)

]
D(k)

+
1
V ∑

k′

D(k′)
λ2 + k2 + k′2 + k · k′

= 0

(5.7)

This equation is derived in Appendix C with kF = 0, q1 = q2 = 0 and f = g = 0.
In this case, the only relevant dimensionless parameter is Re/a and we observe that
the trimer merges with the atomic continuum for a scattering length a− such that
Re/a− = −2× 10−4. The energy of this state is plotted in Fig. (5.3) (blue solid line).

It means that in our situation, where only the impurity-fermion interactions are
resonant, the three-body bound state essentially exists only in a regime where an
impurity-fermion bound-state is also stable. This is to be contrasted with the more
traditional three identical bosons problem shown in Chapter 1 for which all three
interactions are resonant and Efimov trimers are stable deep in the domain where
two-body bound states are unstable [131] (in that case we had Re/a− ' −0.1).

5.3.2 Cooper-like trimer

We consider next the effect of the Fermi sea on the energy of the trimer. In a first
approach we simply assume that its role is to prevent the fermions above the Fermi
surface from occupying states below kF, in a manner very similar to the celebrated
Cooper pairing problem for pairs of fermions in superconductors. The energy of the
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trimer state is then solution of:[
1

4π

{
a−1 − 2

π
kF − Re(λ2 − k2

F +
3
4

k2)
}

+
1
V ∑
|k′|>kF

(
1

λ2 − k2
F + k2 + k′2 + k · k′

− 1
k′2

)

]
D(k)

+
1
V ∑
|k′|>kF

D(k′)
λ2 − k2

F + k2 + k′2 + k · k′
= 0 (5.8)

This equation is very similar to Eq. (5.7), the main difference stemming from the
sums over momenta that are now restricted to |k|> kF and the shift of the energy
associated with the chemical potential of the two fermions that were removed from
the Fermi seas to create the trimer (the term λ2 − k2

F in the equation).
The corresponding ground state energy is plotted in Fig. (5.3) for an experimentally
relevant value kFRe ' 10−2 (kF ≈ 107 m−3 typically and we take Re on the order of
50 a0, where a0 is the Bohr radius, that corresponds to a typical Van Der Waals length
for alkali atoms [42]).
We observe that like for traditional Cooper pairing the presence of the Fermi sea
stabilizes the trimer. Numerical precision did not allow to conclude if like in vac-
uum Efimov trimers do not exist beyond a critical scattering length a− (see above),
whether the presence of the Fermi Sea stabilizes the trimer for arbitrarily weak at-
traction, albeit with an exponentially small binding energy or there is exists a finite
value for a−.
To enrich the discussion regarding the Cooper-like trimer, we study in Appendix E
the behavior of the energy curve with respect to kFRe.
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Figure 5.3: Variational energy for kFRe = 10−2 of the trimer states. The Cooper-
like trimer ground state energy (red, dotted) and polaron state (green, dashed), for
comparison, we draw the Efimov ground state in vacuum described in Eq. (5.7)
(solid, blue), and the trimer state considering a uniform hole distribution in the
Fermi sea (solid, yellow).
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5.3.3 General case
We can generalize this result by considering trimer amplitudes Ds and E of the form:

Ds(q1, q2, k1) = F(q1, q2)D̃(k1)

E(q1, q2, k1, k2) = F(q1, q2)Ẽ(k1, k2),
(5.9)

The Cooper-like trimer corresponds to F(q1, q2) = δq1 ,−q2 F̃(q1), where F̃ is peaked
near the Fermi surface. However, a restriction is present since we considered no
correlations are present between particles and holes within this ansatz.
We choose the following normalization for the function F(q1, q2): ∑q1,q2

|F(q1, q2)|2=
N2

F, where NF is the total number of fermions per spin state.
Once again, we can eliminate E (the details of the derivation are presented in

Appendix C). We see that at fixed F, D̃ is solution of a Skornyakov-Ter-Martirosyan
like equation: [

1
4π

{
a−1 − 2

π
kF − Re(λ2 +

3
4

k2 − 〈(q1 − q2)2〉
4

) +
}

+
1
V ∑
|k′|>kF

(
1

λ2 + 〈q1 · q2〉 + k2 + k′2 + k · k′
− 1

k′2
)

]
D̃(k)

+
1
V ∑
|k′|>kF

D̃(k′)
λ2 + 〈q1 · q2〉 + k2 + k′2 + k · k′

= 0

(5.10)

with 〈 f (q1, q2)〉 = ∑qi
|F(q1, q2)|2 f (q1, q2)/N2

F, and where we assumed that the distri-
bution |F|2 is an even function of q1 and q2.
Comparing Eq. (5.8) and Eq. (5.10) we see that their respective energies are simply
translated one with respect to the other since we have:

WF(Re/a) =WC(Re/a + R2
e 〈(q1 + q2)2〉/4)− h̄2

m
(
k2

F + 〈q1 · q2〉
)

. (5.11)

where WF is the energy of the trimer using the ansatz in Eq. (5.9), and WC is the en-
ergy of the Cooper-like trimer. This mapping corresponds to a translation of both the
argument and the value of WC and in practice we observe that the latter dominates.
Since q1 and q2 are bounded by the Fermi wavevector kF, we see that k2

F + 〈q1 · q2〉
is always positive and the Cooper-like ansatz is always the optimal choice. We il-
lustrate this property in Fig. (5.3) for a constant F corresponding to a uniform hole
distribution in the Fermi sea.

5.4 Polaron-trimeron coupling
We now study the hybridization of the polaronic and Efimov sectors by minimizing
the energy with respect to all five amplitudes A, B, C, D and E. From the previous
analysis, we would expect that the optimal choice would be to mix the polaron
wavefunction with the Cooper-like trimer. However, as we will show below, these
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two sectors are not coupled at the thermodynamic limit. Indeed, the normalization
of the state of a Cooper-like trimer requires that

|A|2 + 2 ∑
q1

|B(q1)|2+2 ∑
q1,k1

|C(q1, k1)|2+2 ∑
q1 ,k1

|D(q1,−q1, k1)|2

+ ∑
q1 ,k1,k2

|E(q1,−q1, k1, k2)|2= 1
(5.12)

For large quantization volumes, the sums are turned into integrals and in the nor-
malization each sum gives rise to a density of state prefactor V/(2π)3. To recover
results that do not depend on V , we see that A should not depend on V and B, C, D
and E should respectively scale like

B =
b(q1)√
V

, D(q1,−q1, k1) =
d(q1, k1)
V (5.13)

C =
c(q1, k1)
V , E(q1,−q1, k1, k2) =

e(q1, k1, k2)
V3/2

where b, c, d and e do not depend on the size of the system (For unrestricted hole
momenta q1 and q2, C and D would scale as 1/V3/2 and 1/V2 respectively). Under
this assumption, the expectation value of the interaction term of the Hamiltonian
can be recast as

〈Ĥint〉 =Λ
[ ∫ d3q1

(2π)3 A∗b(q1) +
∫ d3q1d3k1

(2π)6 b(q1)∗c(q1, k1)

+
∫ d3q1d3k1

(2π)6
√
V

c(q1, k1)∗d(q1, k1) +
∫ d3q1d3k1d3k2

(2π)9 d(q1, k1)∗e(q1, k1, k2)
]

+ c.c.
(5.14)

In this expression, we see that the energy does not depend on the quantization
volume, except for the term coupling the amplitudes c and d which vanishes as
1/
√
V for diverging V thus showing that in this limit, the polaron and Cooper-like

trimer sectors are decoupled.
This property was tested numerically using two ansatz wavefunctions reported in
the final part of Appendix C. We observed the energy values would jump from the
polaron branch to the Cooper-like trimer at the intersection point.

To explore a possible polaron-trimeron crossover we therefore need to relax the
constraint on the vanishing center of mass momentum characterizing the Cooper-
like trimer state. For this purpose we consider a trial wavefunction F(q1, q2) =
F0 e−q1·q2/2σ2

, where F0 is a normalization constant. Just like for the Cooper-like
trimer, this amplitude is maximum when q1 + q2 = 0 and when both momenta are
on the Fermi surface. The parameter σ allows us to tune continuously the width of
the hole wave-function between a uniform distribution and the Cooper-like trimer
configuration. The Cooper-like trimer corresponds to σ = 0 while the opposite limit
(σ = ∞) corresponds to a uniform distribution F.
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Figure 5.4: Variational ground state in the polaron-trimeron space for kFRe = 10−2.
We show the polaron energy for comparison (red dashed line). Cooper-like trimer
(σ = 0, blue empty dots), compared to the energy of an Efimov trimer in vacuum
(green, dash-dotted). The ground state associated with the optimal value of σ is
the solid yellow line. The purely yellow section of the line corresponds to finite
width hole pair wave functions F while the dotted section corresponds to Cooper-
like trimers (σ = 0).

The minimization of the energy with respect to the amplitudes A, B, C, D, E yields
the following set of coupled equations (See Appendix D for derivation) on Ã =
A/(
√
VNFΛ) and D̃ generalizing Eq. (5.4) and Eq. (5.10):

PW Ã =
2
V ∑

k
h(k)D̃(k) (5.15)

T [D̃](k) = h(k)Ã + f (k)D̃(k) +
1
V ∑

k′
g(k, k′)D̃(k′) (5.16)

where T is the operator from Eq. (5.10) (times m/h̄2), and the coupling functions
h, f , g are the following:

h(k) = − m
h̄2V ∑

q

β(q)
(λ2 + k2 − q · k)∆q

, f (k) = − m
h̄2V ∑

q

β(q)2

λ2 + k2 − q · k ,

g(k, k′) =
m2

h̄4V ∑
q

β(q)2

(λ2 + k2 − q · k)(λ2 + k′2 − q · k′)∆q
, β(q) =

1
NF

∑
q′

F(q, q′)
(5.17)

and where ∆q is defined in Eq. (5.5). Functions f , g and h describe the coupling
between the polaron and trimer sectors. If we set them equal to zero then Eq. (5.15)
and (5.16) simply yield the equations of the polaron and trimeron sectors obtained
earlier.

The results of the minimization are displayed in Fig. (5.5) (See Appendix D for
details on the numerical calculation). For each value of Re/a we solve Eq. (5.15) and
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Eq. (5.16) for a fixed set of values of σ, here

σ ∈ {0, 0.1, 0.125, 0.2, 0.25, 0.4, 0.5, 0.625, 0.67, 0.71, 0.77, 0.83, 0.91, 1},

where σ = 0 corresponds to the Cooper-like trimer. For each value of Re/a we
search for the optimal value of σopt that minimizes the energy of the impurity. The
corresponding values of σopt are displayed in Fig. (5.5). For Re/a . 7.7× 10−3, we
observe that the optimum value decreases smoothly (in this regime the steps are just
due to the discrete values of σ) and drops to σopt = 0 (corresponding to the Cooper-
like trimer) at Re/a ' 7.7× 10−3 that suggests a sharp transition to the Cooper-like
trimer state.
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Figure 5.5: Optimal value of the width σ of the hole-pair wavefunction. Optimal
value of the width σ of the hole-pair wavefunction (blue solid line). σ was varied over
a finite set of values between between 0 and 1 (see text). For Re/a . 0.0077, each step
corresponds to a jump from one value of sigma to the next and is therefore an artefact
of the discretization of σ. The red-dashed line corresponds to a smooth interpolation.
For Re/a ' 0.0077, we observe a jump of the value of σ which straddles several
consecutive values of σ and thus marks a discontinuity between a Cooper-like trimer
and a polaron-trimeron crossover state.

The variational ground state energy corresponding to σ = σopt is displayed in Fig.
(5.4), as well as the energy of the polaron state, and of the Cooper-like trimer. On
this graph, we clearly see that for weak attractive interactions (Re/a → −∞), the
variational states converge to the polaron energy and that the ground state abruptly
jumps to the Cooper-like trimer state in the vicinity of Re/a ' 7.7 × 10−3. Note
that this critical value depends on kFRe and should converge to Re/a− for vanishing
fermionic density.
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5.5 Dimer energy
In the previous study we explored regions where the attractive interaction between
the impurity and the fermions cannot support a two-body bound state, an important
property for the formation of trimers due to their Borromean nature [133].
However, with increased attraction the trimer state will eventually merge into a
dimer state and in this section we will explore more this possibility in order to
complete our phase diagram.

The hamiltonian in Eq. (5.1) commutes with the spin operator, meaning that
starting from the variation ansatz in Eq. (5.3), states with different spin number are
not accessible in the Hilbert space. The polaron as well as the trimer have the spin
number of the impurity, since the two fermions cancel each other’s spin in the trimer
case. However, the dimer has the spin of the impurity plus the spin of a fermion.
This results in the exclusion of the dimer from the problem.

-0.5 0.0 0.5 1.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Re/a

W
/E
F

TrimerPolaron Dimer

Figure 5.6: Phase diagram for an impurity immersed in a spin 1/2 Fermi sea. We
distinguish three regimes depending on the ratio between the resonance range Re

and the interaction strength a. When the impurity is interacting weakly with the spin
components (a → 0−), a Fermi polaron state is the ground-state of the system, this
state is composed of the impurity dressed by the particle-hole excitations it creates
in the Fermi sea. For increased interactions (a → 0−), around Re/a = 0.0036, the
impurity binds to an existing Cooper pair and the polaronic branch connects to the
resonant Cooper-like trimer states. In the strongly attractive regime Re/a ≈ 0.7 the
Cooper pairing is overcome by the attraction between the impurity and the fermions
and a dimer is formed.

Hence, to add the dimer to our treatment, we will treat it separately. We start by
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writing a second variational ansatz that is written as follows

|ψ〉 = (β b†
0 + ∑

k
αk a†

k c†
−k)|0〉 (5.18)

where β is the wavefunction of the dimer and α is the wavefunction for free impurity
and a fermion both with momentum k.
Solving the Shrödinger equation (Ĥ − E)|ψ〉 = 0 with Ĥ from Eq. (5.1) leads to the
following set of coupled equations:

(E0 − E)β + 2
Λ√
V ∑

k
αk = 0,

Λ√
V

β + (2εk − E)αk = 0.
(5.19)

The energy of the dimer corresponds to the case E < 0. These equations can be
solved simultaneously for β to find an equation for E, reminding the expression of
E0 in Eq. (5.2) and putting m = mi = 1 and h̄ = 1 we find:

1
4πa
− kF

2π2 +
E

Λ2 − ∑
q>kF

(
1
q2 +

1
E− q2 ) = 0 (5.20)

Reminding that Re = πh̄4

m∗2Λ2 we solve the last equation for E with kFRe = 10−2 to find
the energy of the dimer in our system. The results are presented in Fig. (5.5) where
we see that for increased attractive interactions on the BEC side the dimer becomes
the ground state of the system.

Summary and future work
In this chapter we used a variational approach to study the ground state of an impu-
rity immersed in a non-interacting mixture of spin 1/2 fermions. We found that the
impurity undergoes a first-order transition between a polaronic and a trimer state.
This result differs from the case of an impurity immersed in a fermionic superfluid
where fermionic Cooper pairing allows for a smooth crossover between those two
states.
We explained our results by the absence of coupling between the two states in the
thermodynamic limit. A similar situation seems to occur in the Fermi polaron for
the transition between the polaron and dimer [305–308] and trimer [302] states.
Then to complete the phase diagram we followed a diagrammatic approach to cal-
culate the energy of the dimer in our system and this led to the complete phase
diagram. With increased interactions the trimer state is not stable anymore and it is
no longer the ground state of the system.

For future work, one unanswered question is how does the excitations of the
system play a role in the transition from a polaron state to a Cooper-like state in
the thermodynamic limit. A careful analysis of the Hilbert space should be able to
clearly see what is the main difference between the case of a superfluid, where Bo-
goliubov excitations help in creating a state of superposition between the impurity
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and many particle-hole pairs which cannot be neglected when the system is scaled
and the case of a Fermi gas in the normal phase where the impurity is the only
catalyst for such an excitation and thus such excitations become negligible in the
thermodynamic limit and therefore any coupling between the polaron and Efimov
trimer states is killed off.
Another extension would be to study also the same problem with long-range interac-
tions. This might have huge implications as the size of Efimov trimers could become
much larger and therefore coupling might survive the thermodynamic limit.



Conclusion

The subject of this thesis is the study of ultracold Fermi gases, it was divided into
two main parts. The first part focused on the experimental realization of fermionic
superfluidity with 6Li atoms. The design of the experimental setup is described with
a quantitative characterization of each cooling and trapping step starting from the
MOT to the science cell where the sample undergoes evaporative cooling to degener-
acy. Then a characterization of the fermionic cloud beyond degeneracy is presented
along with an overview of equation of state thermometry method and the interpola-
tion realized in order to obtain the temperature of the cloud. Moreover, an additional
step of directly observing superfluidity is presented where a spin imbalance is in-
duced and the difference in spin populations is measured. The clear plateau at the
center of the cloud is a signature of Cooper pairing and it shows a clear proof of
superfluidity in our cloud.
As for the second part, it focused on a theoretical treatment involving two problems
regarding an impurity in a two-component Fermi sea.
The first calculation showed that for an impurity immersed in an interacting super-
fluid, the divergent terms present in the perturbative expansion of the impurity’s
energy with respect to its interaction strength parameter with the bath can be traced
back to processes including, among others, the scattering of an impurity and the
creation of one particle hole pair and the subsequent interactions between this pair
and the bath.
The second calculation studies more generally the physics of an impurity immersed
in a two-component non-interacting Fermi sea. Using a variational ansatz, it was
shown that the impurity state transitions sharply from a polaron state in the weak
attractive limit to a trimer state of the impurity and two fermions lying close to the
Fermi surface with opposite momenta.

General outlook: A quantum gas microscope to study
impurity physics

With a high-resolution microscope and a box potential, the study of correlation func-
tions of physical quantities in the gas becomes accessible.
For instance, to obtain the density-density correlation functions, the atoms in each
region can be counted to establish a spatial distribution which, after being averaged,
can give a measurement of 〈n(r)n(r′)〉.
The addition of an impurity to the system could open up the possibility to see for

119



120 Conclusion

the first time the modifications in the density of the system caused by the impurity.
This addition can be done in our experiment either by using 7Li atoms, which are
present in the oven but are not being cooled for now, for a bosonic impurity, or by
using a third internal state of 6Li, state |3〉 for instance, for a fermionic impurity.
By stabilising the impurity we can study density-density correlations as a function
of the interaction strength between the impurity and background fermions. In order
to discern the nature of the impurity one can calculate the integral of the expectation
value of the density distortion ∆n(r) = n(r)− n0 caused by the impurity [309] which
will give, within statistical noise margins, an integer number q:

q =
∫
D

d3r[n(r)− n0]

where D is the region of space limited by the characteristics of the microscope, n(r)
is the density at position r after adding the impurity, where r = 0 corresponds to
the position of the impurity, and n0 is the density of the gas before its interaction
with the impurity. One condition to fullfill is to take the thermodynamic limit before
integrating for ∆n(r) to vanish when |r|→ ∞.
When q = 0, this corresponds to the case where the impurity is in the polaron sector,
q = 1 corresponds to the case of an impurity that has formed a dimer with one com-
ponent of the Fermi sea, and q = 3 corresponds to the case of an impurity which has
combined with two atoms from the fermionic background to form a trimer.
The basic idea behind this integer number is that for a big number of particles, the
fermion that combines with the impurity will not leave an effect on the number of
particles in the vicinity of the impurity, but it will be counted as an addition to the
impurity.
A more simplified picture is that to form a dimer we take one particle from +∞
and we glue it to the impurity making for a difference in the number of particles
captured by the microscope which is equal to 1, and 2 in the case of a trimer. As
for the polaron, no additional particles are needed so the number of particles stays
the same. The value q = 0 in the polaron case was calculated analytically using the
Chevy ansatz [191] by Trefzger and Castin [310].
Back to the experimental realization, methods to control the position of individual
atoms have been successfully realized experimentally using optical tweezers [311].
Using that we can stabilise the impurity with respect to the microscope focal plane.
The fact that a quantum gas microscope images a 2D sample only should not pose a
problem since the same logic can apply to 2D case.
This measurement would provide an insight on the impurity phase diagram dis-
cussed in Chapter 5, and though limited by the relative tuning of the scattering
length of the impurity-fermion and the fermion-fermion interaction, since both species
are subject to the same magnetic field, it is still a very interesting possible measure-
ment to observe the phase transition.



Appendix A

Calculation of χ
(1)
1 (q,−εq)

We want to calculate the following diagram:

χT,(1)
1 (q, t) = −i

g′0
V ∑

k,p,σ

∫
dt1G0,−σ(p, t1 − t)G0,−σ(p + q, t− t1)G0,σ(k− q,−t1)G0,σ(k, t1)

(A.1)

0
t1

t

k, σ

k− q, σ

p + q,−σ

p,−σ

We take the Fourrier transform as follows::∫ ∞

−∞

dω

2π
e−iωtχT,(1)

1 (q, ω) = −2i
g′0
V

∫
dt1 ∑

k,p,σ

∫ ∞

−∞

dω1

2π
e−iω1(t1−t)G0(p, ω1)

∫ ∞

−∞

dω2

2π
e−iω2(t−t1)G0(p + q, ω2)

∫ ∞

−∞

dω3

2π
eiω3(t1)G0(k− q, ω3)

∫ ∞

−∞

dω4

2π
e−iω4t1 G0(k, ω4)

(A.2)

The integration over t1 gives a delta function which simplifies the expression, then
we write the exponential in the RHS as

∫ ∞
−∞ dωe−iωtδ(ω = ω2 −ω1), we eliminate ω2

and with this we can write:

χT,(1)
1 (q, ω) = 2i

g′0
V ∑

k,p

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω3

2π
G0(p, ω1)G0(p + q, ω1 + ω)G0(k− q, ω3)G0(k, ω3 + ω)

(A.3)

We remind that:

G0(k, ω) =
θ(k > kF)

ω− Ek + iδ
+

θ(k < kF)
ω− Ek − iδ

(A.4)

With that we can write:

χT,(1)
1 (q, ω) = 2i

g′0
V ∑

k,p

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω3

2π

[ θ(p > kF)
ω1 − Ep + iδ

+
θ(p < kF)

ω1 − Ep − iδ

]
[ θ(p + q > kF)

ω1 + ω− Ep+q + iδ
+

θ(p + q < kF)
ω1 + ω− Ep+q − iδ

][ θ(k− q > kF)
ω3 − Ek−q + iδ

+
θ(k− q < kF)

ω3 − Ek−q − iδ

]
[ θ(k > kF)

ω3 + ω− Ek + iδ
+

θ(k < kF)
ω3 + ω− Ek − iδ

]
(A.5)
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122Appendix A. Calculation of the first contribution to the diagrammatic expansion

We keep terms where ω1 and ω3 have poles above and below the real axis simulta-
neously to avoid a zero integral, we write the sum over K = (k, ω1) and P = (p, ω3):

χT,(1)
1 (q, ω) = 2i

g′0
V ∑

K,P

[ θ(p > kF)
ω1 − Ep + iδ

θ(p + q < kF)
ω1 + ω− Ep+q − iδ

θ(k− q > kF)
ω3 − Ek−q + iδ

θ(k < kF)
ω3 + ω− Ek − iδ

+
θ(p > kF)

ω1 − Ep + iδ
θ(p + q < kF)

ω1 + ω− Ep+q − iδ
θ(k− q < kF)

ω3 − Ek−q − iδ
θ(k > kF)

ω3 + ω− Ek + iδ

+
θ(p < kF)

ω1 − Ep − iδ
θ(p + q > kF)

ω1 + ω− Ep+q + iδ
θ(k− q > kF)
ω3 − Ek−q + iδ

θ(k < kF)
ω3 + ω− Ek − iδ

+
θ(p < kF)

ω1 − Ep − iδ
θ(p + q > kF)

ω1 + ω− Ep+q + iδ
θ(k− q < kF)

ω3 − Ek−q − iδ
θ(k > kF)

ω3 + ω− Ek + iδ

]
We can now perform the integrals over ω1 and ω3 by closing the contour over the
half-plane which does not contain ω in its pole, for example we close it over the
lower half for both variables in the first term, resulting in residues at ω1 = Ep − iδ
and ω3 = Ek−q − iδ, we get the following:

χT,(1)
1 (q, ω) = −2i

g′0
V ∑

k,p

[ θ(p > kF)θ(p + q < kF)
ω + Ep − Ep+q − iδ

θ(k− q > kF)θ(k < kF)
ω + Ek−q − Ek − iδ

− θ(p > kF)θ(p + q < kF)
ω + Ep − Ep+q − iδ

θ(k− q < kF)θ(k > kF)
ω + Ek−q − Ek + iδ

− θ(p < kF)θ(p + q > kF)
ω + Ep − Ep+q + iδ

θ(k− q > kF)θ(k < kF)
ω + Ek−q − Ek − iδ

+
θ(p < kF)θ(p + q > kF)

ω + Ep − Ep+q + iδ
θ(k− q < kF)θ(k > kF)

ω + Ek−q − Ek + iδ

]
(A.6)

The minus sign results from the contour direction if the two poles are in different
half-planes, one of the contours will be anti-clockwise.
We try to separate the function χT,(1)

1 (q, ω) into an advanced and a retarded part with
respect to ω, clearly the first term is a purely advanced term, and the fourth term is
a purely retarded term, as for the second and third terms, they both have two poles
for ω in the upper and lower half-planes. So we separate them into retarded and
advanced terms:

χ(1)
1,r(q, ω) = −2i

g′0
V ∑

k,p

[ θ(p < kF)θ(p + q > kF)
ω + Ep − Ep+q + iδ

θ(k− q < kF)θ(k > kF)
ω + Ek−q − Ek + iδ

+
θ(p > kF)θ(p + q < kF)θ(k− q < kF)θ(k > kF)
(Ek−q − Ek − Ep + Ep+q)(ω + Ek−q − Ek + iδ)

− θ(p < kF)θ(p + q > kF)θ(k− q > kF)θ(k < kF)
(Ek−q − Ek − Ep + Ep+q)(ω + Ep − Ep+q + iδ)

]
(A.7)

We take the limit of χT,(1)
1,r (q,−εq) at q→ ∞:

χT,(1)
1,r (q,−εq) = −2i

g′0
V ∑

k,p

[ θ(p < kF)θ(p + q > kF)θ(k− q < kF)θ(k > kF)
(q2/2m∗ + p.q/m)((1/mi − 1/m)q2/2 + k.q/m)

+ m
θ(p > kF)θ(p + q < kF)θ(k− q < kF)θ(k > kF)
(q2 + p.q− k.q)((1/m− 1/mi)q2/2− k.q/m)

+ m
θ(p < kF)θ(p + q > kF)θ(k− q > kF)θ(k < kF)

(q2 + p.q− k.q)(q2/2m∗ + p.q/m)

]
(A.8)
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In the first term p is limited by kF but k is not, which gives a contribution in 1/q4,
since the scalar product in the first multiplicant in the denominator is negligible but
not in the second, with the same reasoning we treat the following terms and we find
again a contribution of the order of 1/q4. This gives:

χT,(1)
1 (q,−εq) ∝

|q|→∞

1
q4 + O(

1
q5 )

For a curious reader, can also verify the behavior of the advanced term.

χT,(1)
1,a (q, ω) = −2i

g′0
V ∑

k,p

[ θ(p > kF)θ(p + q < kF)
ω + Ep − Ep+q − iδ

θ(k− q > kF)θ(k < kF)
ω + Ek−q − Ek − iδ

− θ(p > kF)θ(p + q < kF)θ(k− q < kF)θ(k > kF)
(Ek−q − Ek − Ep + Ep+q)(ω + Ep − Ep+q − iδ)

+
θ(p < kF)θ(p + q > kF)θ(k− q > kF)θ(k < kF)
(Ek−q − Ek − Ep + Ep+q)(ω + Ek−q − Ek − iδ)

]
(A.9)

We take the limit of χT,(1)
1,a (q,−εq) at q→ ∞:

χT,(1)
1,a (q,−εq) = −2i

g′0
V ∑

k,p

[ θ(p < kF)θ(p + q > kF)θ(k− q < kF)θ(k > kF)
(q2/2m∗ + p.q/m)((1/mi − 1/m)q2/2 + k.q/m)

−m
θ(p > kF)θ(p + q < kF)θ(k− q < kF)θ(k > kF)

(q2 + p.q− k.q)(q2/2m∗ + p.q/m)
+ m

θ(p < kF)θ(p + q > kF)θ(k− q > kF)θ(k < kF)
(q2 + p.q− k.q)(1/m− 1/mi)q2/2− k.q/m)

]
∝

1
(q2/2m∗)(q2/2m∗)

− 1
(q2/m)q2(1/2m∗ − 1/m)

+
1

(q2/m)(1/m− 1/mi)q2/2

(A.10)

We note that the square of the momentum’s amplitude in the summation (p2 and
k2) does not count in the power counting since the volume of the integral sphere
dk k2 dΩ has to remain finite, for example in the second term p is larger than kF but
the sum of the two vectors p + q has to stay finite, so when p → ∞ the solid angle
Ω→ 0 and the product remains finite.
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Ladder diagram terms

We remind the following expression:

χ(1)
1 (q, ω) =

2i
V ∑

P,p

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dΩ
2π

G0,↓(p, ω1)G0,↓(p + q, ω1 + ω)G0,↑(P− p− q, ω−ω−ω1)

G0,↑(P− p, Ω−ω1)γ↑,↓(P) (B.1)

We develop the Green’s functions as follows:

G0,↓(p, ω1)G0,↑(P− p, Ω−ω1)G0,↑(P− p− q, ω−ω−ω1)G0,↓(p + q, ω1 + ω)

=
[ θ(|p|> kF)

ω1 − Ep + iη
+

θ(|p|< kF)
ω1 − Ep − iη

][ θ(|P− p|> kF)
Ω−ω1 − EP−p + iη

+
θ(|P− p|< kF)

Ω−ω1 − EP−p − iη

]
[ θ(|P− p− q|> kF)

Ω−ω−ω1 − EP−p−q + iη
+

θ(|P− p− q|< kF)
Ω−ω−ω1 − EP−p−q − iη

]
[ θ(|p + q|> kF)

ω + ω1 − Ep+q + iη
+

θ(|p + q|< kF)
ω + ω1 − Ep+q − iη

]
We call the retarded terms respectively A1, B1, C1, D1 and the advanced terms re-
spectively A2, B2, C2, D2 and we write their poles with respect to different variables
in the following table:

ω1 ω Ω
A1 −iη X X
B1 +iη X −iη
C1 +iη +iη −iη
D1 −iη −iη X
A2 +iη X X
B2 −iη X +iη
C2 −iη −iη +iη
D2 +iη +iη X

where X means that no poles are present in the function with respect to this variable.
We remind that we only accept terms with poles ω = −iη for the the function
χ(1)

1 (q, ω) to be retarded with respect to ω. We can detail the 16 resulting terms
as follows:
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• A1B1C1D1 ∝
|q|→∞

1
q3 as shown in chapter 4.

• A1B1C1D2 = 0 since all poles of ω are in the upper half of the complex plane
i.e. advanced with respect to ω.

• A1B2C1D2 = 0 since all poles of ω are in the upper half of the complex plane
i.e. advanced with respect to ω.

• A1B2C2D1 = 0 since all poles of ω1 are on one side of the complex plane leading
to a zero integral over this variable.

• A2B1C1D2 = 0 since all poles of ω1 are on one side of the complex plane leading
to a zero integral over this variable.

• A2B2C1D2 = 0 since all poles of ω are in the upper half of the complex plane
i.e. advanced with respect to ω.

• A2B1C2D2 = A1B1C2D2 = A1B2C2D2 = A2B2C2D2 = 0 since the product θ(|p +
q|< kF)θ(|p|< kF) is zero since for the first Heaviside function to be verified |p|
should be comparable to |q| when |q|→ ∞. However |p| is limited to kF.

• A2B2C2D1 = 0 similarly to the last expression with the product θ(|P − p|<
kF)θ(|P− p− q|< kF) if we take k = p− P we recover the same product above.

For the remaining terms A2B1C1D1, A2B1C2D1, A2B2C1D1, A1B1C2D1, A1B2C1D1 we
treat one of them in the following:

A2B1C1D1 =
2i
V ∑

P,p

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dΩ
2π

θ(|p|< kF)
ω1 − Ep − iη

θ(|P− p|> kF)
Ω−ω1 − EP−p + iη

θ(|P− p− q|> kF)
Ω−ω−ω1 − EP−p−q + iη

θ(|p + q|> kF)
ω + ω1 − Ep+q + iη

γ↑,↓(P)

=
2i
V ∑

P,p

∫ ∞

−∞

dΩ
2π

θ(|p|< kF)
−ω + Ep+q − Ep − iη

θ(|P− p|> kF)
Ω + ω− Ep+q − EP−p + iη

θ(|P− p− q|> kF)θ(|p + q|> kF)
Ω− Ep+q − EP−p−q + iη

γ↑,↓(P)

(B.2)

with ω = −εq. We see that the first term in the product in the limit |q|→ ∞ behaves
as 1/q2 because with |p|< kF we can make the change of variable |p + q|' |q| in this
limit.
We note the Ω has poles only in the lower half of the complex plane, γ↑,↓(P) has to
have its poles in the upper half of the complex plane for the integral over Ω not to
be zero.
From Eq. (4.52) we see that the second sum which constitutes the advanced part of
the function is zero for |P|> 2kF. This restricts the values of P and the second and
third terms in Eq. (B.2) behave as 1/(Ω− q2/(2m) + o(q2) + iη) so we can write the
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term as:

A2B1C1D1 '
|q|→∞

2i
V ∑

P,|p|<kF

∫ ∞

−∞

dΩ
2π

1
q2

θ(|P− p|> kF)θ(|P− p− q|> kF)
Ω− Aq2/(2m) + o(q2) + iη

γA
↑,↓(P, Ω)

Ω− Bq2/(2m) + o(q2) + iη

(B.3)

where θ(|p + q|> kF) = 1 in the limit of a large impurity momentum.
The function γA

↑,↓(P, Ω) behaves as 1/
√

Ω for Ω → ∞. Then by doing a change of
variables Ω = q2Ω̃ we can write finally:

A2B1C1D1 '
|q|→∞

2i
V ∑

P,|p|<kF

∫ ∞

−∞

dΩ
2π

1√
Ω

1
q2

θ(|P− p|> kF)θ(|P− p− q|> kF)
(Ω− Aq2/(2m) + o(q2) + iη)(Ω− Bq2/(2m) + o(q2) + iη)

∝
|q|→∞

1
|q|5

(B.4)

which does not contribute to the divergent term in χ(q,−εq).
In a similar manner we prove that the other terms in the expansion do not con-

tribute to the divergent term, leaving only the term treated in Chapter 4.



Appendix C

Derivation of polaron-trimeron
coupled equations

Variational solution

We minimize 〈ψ|Ĥ|ψ〉 with the condition that we keep 〈ψ|ψ〉 constant, and for that
we use a Lagrange multiplier which is the energy W in this case. We write this
formally:

δ〈ψ|Ĥ|ψ〉 −Wδ〈ψ|ψ〉 = 0 (C.1)

Since we have a wavefunction with five variables A, B, C, D, E, we need to solve a
system of five equations resulting from deriving Eq. (C.1) with respect to each of the
parameters. In the following we take h̄ = 1, we take also the masses of the impurity
and the fermions to be equal to 1.
We remind the following form for the functions D and E:

Ds(q1, q2, k1) = F(q1, q2)D̃(k1)

E(q1, q2, k1, k2) = F(q1, q2)Ẽ(k1, k2),
(C.2)

with ∑q1 ,q2
|F(q1, q2)|2= N2

F and where we assumed that the distribution |F|2 is an
even function of q1 and q2.
• With respect to E∗(k1, k2)

(W − k2
1 − k2

2 − k1.k2 − 〈q1.q2〉)E(k1, k2) =
Λ√
Ω

(D(k1) + D(k2)) (C.3)

with 〈 f (q1, q2)〉 = ∑qi
|F(q1, q2)|2 f (q1, q2)/N2

F.
• With respect to D∗(k1)

(
W − E0 −

3k2
1

4
+

1
4
〈(q1 − q2)2〉

)
D(k1) =

Λ√
ΩNF

∑
q1

β(q1)C(q1, k1)

+
Λ√
Ω

∑
k2

E(k1, k2)
(C.4)

127



128 Appendix C. Derivation of polaron-trimeron coupled equations

with β(q) = 1
NF

∑q′ F(q, q′).
We can plug the expression of E(k1, k2) from Eq. (C.3) to have a single expression
for C and D:(

W − E0 −
3k2

1
4

+
1
4
〈(q1 − q2)2〉 − Λ2

Ω ∑
k2

1
W − k2

1 − k2
2 − k1.k2 − 〈q1.q2〉

)
D(k1)

− Λ2

Ω ∑
k2

D(k2)
W − k2

1 − k2
2 − k1.k2 − 〈q1.q2〉

=
Λ

NF
√

Ω
∑
q1

β(q1)C(q1, k1)
(C.5)

When C = 0 this equation describes three particles with zero centre of mass momen-
tum, which represents the trimer (Efimov problem).
• With respect to C∗(q1, k1)

C(q1, k1) =
Λ√
Ω

B(q1) + NFβ(q1)D(k1)
W − k2

1 + q1.k1
(C.6)

• With respect to B∗(q1)

B(q1) =
Λ√
Ω

A + ∑k1
C(q1, k1)

W − E0 + q2
1

4

(C.7)

We can substitute the expression of C from Eq. (C.6):

B(q1) =
1

Λ
√

Ω
A

∆(q1)
+

1
Ω

NF

∆(q1) ∑
k1

β(q1)D(k1)
W − k2

1 + q1.k1
(C.8)

• With respect to A∗

WA = 2
Λ√
Ω

∑
q1

B(q1) (C.9)

We insert the expression B from Eq. (C.8):

(W − 2
1
Ω ∑

q1

1
∆(q1)

)︸ ︷︷ ︸
PW

A = 2
ΛNF

Ω3/2 ∑
q1 ,k1

1
∆(q1)

β(q1)D(k1)
W − k2

1 + q1.k1 (C.10)

If D = 0 this would be the equation of the polaron. We can define:

Ã =
A

Λ
√

ΩNF
, h(k1) =

1
Ω ∑

q1

β(q1)
∆(q1)(W − k2

1 + q1.k1)

Then we can write Eq. (C.10) as:

PW Ã =
2
Ω ∑

k1

h(k1)D(k1) (C.11)

Which is Eq. (5.15) in the main text.
Now that we have an expression which relates A with D, we will try to have another
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one from Eq. (C.5), we write the RHS of Eq. (C.5) in the goal of writing it in terms
of A and we obtain after writing:

f (k1) =
1
Ω ∑

q1

β(q1)2

W − k2
1 + q1.k1

g(k1, k2) =
1
Ω ∑

q1

β(q1)2

∆(q1)(W − k2
1 + q1.k1)(W − k2

2 + q1.k2)

I(k1) =
1

Λ2

(
W − E0 −

3k2
1

4
+

1
4
〈(q1 − q2)2〉 − Λ2

Ω ∑
k2

1
W − k2

1 − k2
2 − k1.k2 − 〈q1.q2〉

)
With this Eq. (C.5) becomes:

I(k1)D(k1)− 1
Ω ∑

k2

D(k2)
W − k2

1 − k2
2 − k1.k2 − 〈q1.q2〉

= h(k1)Ã +
1
Ω ∑

k2

g(k1, k2)D(k2) + f (k1)D(k1),
(C.12)

which corresponds to Eq. (5.16) from the main text.

Examples of F(q1, q2)
In order to verify numerically the problem with the vanishing coupling in the ther-
modynamic limit we choose two functions which introduce an explicit coupling be-
tween the case of a uniform hole distribution in the Fermi sea (the polaron state) and
the case of holes localized at the Fermi surface (the Cooper-trimer state).

F(q1, q2) as a linear superposition of uniformly distributed holes
and localized holes at the Fermi surface
We take :

F(q1, q2) = α + Nβ(q1)δq1,−q2 (C.13)

With β(q1) a function peaked at q1 = kF. The value of N could be calculated from the
normalization condition:

∑
q1,q2

|F(q1, q2)|2= N2
F ⇒ N2 = N2

F(1− α2) ∑
q1

, β2(q1)

<~q1.~q2 >= −(1− α2)k2
F,< q2

1 >= 2α2 UF

NF
+ (1− α2)k2

F

(C.14)

All cross terms disappear at the thermodynamic limit since we have a delta Dirac
function in the second term.
This leads to the following changes in the function above:

h(k1), f (k1), g(k1, k2)→ α2h(k1), α2 f (k1), α2g(k1, k2), ω → ω + (1− α2)k2
F,

UF

NF
→ α2 UF

NF
(C.15)
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By plugging these expressions and recalculating the energies we see that our ansatz
did not improve the Cooper trimer, which means that our trial wave function simply
move from the wave function we studied with uniform holes distribution and the
wave function of the Cooper trimer without any underlying coupling between them
which might lower the energy.

F(q1, q2) as an exponential distribution of holes
To improve on the previous ansatz, we try a hole distribution which is not attenuated
when taking the thermodynamic limit:

F(q1, q2) = Ne−
~q1.~q2
2σ2 (C.16)

We normalize the expression, and we divide the final equation by N2
F:

∑
q1 ,q2

|F(q1, q2)|2= N2
F ⇒ N2 =

4π4

σ6(sinh( k2
F

σ2 )− shi( k2
F

σ2 ))
, where shi(x) =

∫ x

0

sinh(t)
t

dt

(C.17)

Then we calculate the term involved in f , g, h functions:

β(q1) =
1

NF
∑
q2

F(q1, q2) =
4σ

q3
1

kFq1 cosh( kFq1
2σ2 )− 2σ2 sinh( kFq1

2σ2 )√
sinh( k2

F
σ2 )− shi( k2

F
σ2 ))

(C.18)

Now we have:

h(k1) =
1
Ω ∑

q1

β(q1)

∆(q1)(ω− k2
1 +~q1~k1)

, g(k1, k2) =
1
Ω ∑

q1

β(q1)2

∆(q1)(ω− k2
1 +~q1~k1)(ω− k2

2 +~q1~k2)

f (k1) =
1
Ω ∑

q1

β(q1)2

ω− k2
1 +~q1~k1

=
1

(2π)2

∫ kF

0
dq1

q1

k1
β(q1)2 ln(

ω− k2
1 + q1k1

ω− k2
1 − q1k1

)

(C.19)

We calculate the moments involved in our full equation:

<~q1.~q2 >=
1

N2
F

∑
q1,q2

~q1.~q2|F(q1, q2)|2=
4σ2 sinh( k2

F
σ2 )− k2

F cosh( k2
F

σ2 )− 3σ2shi( k2
F

σ2 )

sinh( k2
F

σ2 )− shi( k2
F

σ2 )

< q2
1 >=< q2

2 >=
1

N2
F

∑
q1 ,q2

q2
1|F(q1, q2)|2=

−3σ2k2
F cosh( k2

F
σ2 ) + (3σ4 + k4

F) sinh( k2
F

σ2 )

k2
F(sinh( k2

F
σ2 )− shi( k2

F
σ2 ))

(C.20)

Also we find by carefully calculating the energy that a first-order transition is still
present.



Appendix D

Numercial solution of
Skornyakov-Ter-Martirosyan’s
equation

Efimov part
Going back to the STM equation in the Cooper-like trimer state:[

1
4π

{
a−1 − 2

π
kF − Re(λ2 − k2

F +
3
4

k2)
}

+
1
Ω ∑

K>kF

(
1

λ2 − k2
F + q2 + K2 +~q · ~K

− 1
K2 )

]
D(q)

+
1
Ω ∑

K>kF

D(K)
λ2 − k2

F + q2 + K2 +~q · ~K
= 0 (D.1)

We start by calculating the integral in the second term:

I2 = ∑
q>kF

1
λ2 − k2

F + K2 + q2 −~q.~K
=

1
4π2

∫ kc

kF

dq
q
K

ln
( K2 + q2 + qK + λ2 − k2

F
K2 + q2 − qK + λ2 − k2

F

)
We perform a variable change p = q/kF:

I2 =
kF

8π2A

∫ kc

1
dp p ln

( p2 + 2Ap + B
p2 − 2Ap + B

)
With A = K

2kF
and B = K2+λ2

k2
F
− 1.

We integrate the last expression by parts putting: u′ = p and v = ln
(

p2+2Ap+B
p2−2Ap+B

)
:

I2 =
kF

8π2A
k2

c
2

ln
( k2

c + 2Akc + B
k2

c − 2Akc + B

)
− kF

16π2A
ln
( 1 + 2A + B

1− 2A + B

)
− kF

8π2 I3

where:

I3 = [−2p]kc
1 + (A− B

2A
)
[

ln
( p2 + 2Ap + B

p2 − 2Ap + B

)]kc

1

+ 2(B− A2)
∫ kc

1
dp
( 1

(p + A)2 + B− A2 +
1

(p− A)2 + B− A2

)
︸ ︷︷ ︸

I4
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We calculate I4 separately and we distinguish two cases:
1. B− A2 > 0:

I4 =
1√

B− A2

(
arctan(

kc + A√
B− A2

) + arctan(
kc − A√
B− A2

)

− arctan(
1 + A√
B− A2

)− arctan(
1− A√
B− A2

)
)

1. B− A2 < 0:

I4 = − 1√
A2 − B

(
arctanh(

kc + A√
A2 − B

) + arctanh(
kc − A√
A2 − B

)

− arctanh(
1 + A√
A2 − B

)− arctanh(
1− A√
A2 − B

)
)

We inject the last expression in I3 and then in I2. The first term in I2 gives a
contribution of 2kc + O(1/kc), which adds to the first term in I3 to give 4kc. The
second term in I3 when evaluated at kc goes to zero and we get the following:
1. B− A2 > 0:

I2 =
kF

2π2 kc −
kF

4π2 +
kF

8π2 (A− B
2A
− 1

2A
) ln
( 1 + 2A + B

1− 2A + B

)
+

kF

4π2

√
B− A2(arctan(

1 + A√
B− A2

) + arctan(
1− A√
B− A2

)− π)
(D.2)

2. B− A2 < 0:

I2 =
kF

2π2 kc −
kF

4π2 +
mkF

8π2 (A− B
2A
− 1

2A
) ln
( 1 + 2A + B

1− 2A + B

)
+

kF

8π2

√
A2 − B ln

( 1− B + 2
√

A2 − B
1− B− 2

√
A2 − B

) (D.3)

Remember for the terms linear in kc that it should be scaled back to kc/kF before
comparing it to kc in E0.

Final expressions

In case B− A2 > 0

KβK

(
Re(3K2/4 + λ2 − k2

F) +
kF

π
− 1

λa
+
√

3K2/4 + λ2 − k2
F

[
1− 1

π

(
arctan(

kF − K/2√
3K2/4 + λ2 − k2

F

)

+ arctan(
kF + K/2√

3K2/4 + λ2 − k2
F

)
)]

+
K

2π
(
λ2

K2 +
1
2

) ln
( K2 + λ2 + Kk f

K2 + λ2 − Kk f

)

=
1
π

∫ kc

kF

dK′ ln
( K′2 + K2 + K.K′ + λ2 − k2

F

K′2 + K2 − K.K′ + λ2 − k2
F

)
K′βK′

(D.4)

We recall that in this equation both |K| and |K′| have to be larger than kF. We first
check that if kF = 0 we regain the expression for 3 particles in vacuum, which is
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indeed the case. We map the equation using K = 2λ√
3

sinh(ξ).
Then we try to write the equation in terms of variables which can help simplify
the numerical solution, for that we divide by λ and we make the following variable
changes: x = Reλ, y = kF/λ, writing equation Eq. (D.4) with the new variables :

φ(ξ)

(
x(cosh2(ξ)− y2) +

y
π
− 1

λa
+
√

cosh2(ξ)− y2
[
1− 1

π

(
arctan

( y− 1√
3

sinh(ξ)√
cosh2(ξ)− y2

)

+ arctan
( y + 1√

3
sinh(ξ)√

cosh2(ξ)− y2

))]
+

1
4
√

3π

1 + 2 cosh2(ξ)
sinh(ξ)

ln
( 4/3 sinh(ξ)2 + 2/

√
3y sinh(ξ) + 1

4/3 sinh(ξ)2 − 2/
√

3y sinh(ξ) + 1

))

=
2√
3π

∫ kc

arcsinh(
√

3y/2)
dξ ′ cosh(ξ ′) ln

( sinh(ξ ′)2 + sinh(ξ)2 + sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

sinh(ξ ′)2 + sinh(ξ)2 − sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

)
φ(ξ ′)

(D.5)

In case B− A2 < 0

KβK

(
Re(3K2/4 + λ2 − k2

F) +
kF

π
− 1

λa
+

K
2π

(
λ2

K2 +
1
2

) ln
( K2 + λ2 + Kk f

K2 + λ2 − Kk f

)

− 1
2π

√
k2

F − λ2 − 3K2/4 ln
( 2k2

F − λ2 − K2 + 2kF

√
k2

F − λ2 − 3K2/4

2k2
F − λ2 − K2 − 2kF

√
k2

F − λ2 − 3K2/4

))

=
1
π

∫ kc

kF

dK′ ln
( K′2 + K2 + K.K′ + λ2 − k2

F

K′2 + K2 − K.K′ + λ2 − k2
F

)
K′βK′

(D.6)

We recall that in this equation both |K| and |K′| have to be larger than kF. We first
check that if kF = 0 we regain the expression for 3 particles in vacuum, which is
indeed the case. We map the equation using K = 2λ√

3
sinh(ξ).

Then we try to write the equation in terms of variables which can help simplify
the numerical solution, for that we divide by λ and we make the following variable
changes: x = Reλ, y = kF/λ, writing equation (D.6) with the new variables :

φ(ξ)

(
x(cosh2(ξ)− y2) +

y
π
− 1

λa
+

1
4
√

3π

1 + 2 cosh2(ξ)
sinh(ξ)

ln
( 4/3 sinh2(ξ) + 2/

√
3y sinh(ξ) + 1

4/3 sinh2(ξ)− 2/
√

3y sinh(ξ) + 1

)

− 1
2π

√
y2 − cosh2(ξ) ln

(
2y2 − 1− 4/3 sinh2(ξ) + 2y

√
y2 − cosh2(ξ)

2y2 − 1− 4/3 sinh2(ξ)− 2y
√

y2 − cosh2(ξ)

))

=
2√
3π

∫ kc

arcsinh(
√

3y/2)
dξ ′ cosh(ξ ′) ln

( sinh(ξ ′)2 + sinh(ξ)2 + sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

sinh(ξ ′)2 + sinh(ξ)2 − sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

)
φ(ξ ′)

(D.7)
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Numerical implementation
We write a code to solve the last equation using the eigenvalues method. For that
we need to write the equations in the following way:∫ ξc

arcsinh(
√

3y/2)
dξ ′T(ξ , ξ ′)φ(ξ ′) =

1
λa

φ(ξ) (D.8)

With the kernel T(ξ , ξ ′) which is written as:
1. In case cosh2(ξ)− y2 > 0

T(ξ, ξ ′) = δ(ξ − ξ ′)

[
x(cosh2(ξ ′)− y2) +

y
π

+
√

cosh2(ξ ′)− y2

[
1− 1

π

(
arctan

( y− 1√
3

sinh(ξ ′)√
cosh2(ξ ′)− y2

)
+ arctan

( y + 1√
3

sinh(ξ ′)√
cosh2(ξ ′)− y2

))]

+
1

4
√

3π

1 + 2 cosh2(ξ ′)
sinh(ξ ′)

ln
( 4/3 sinh(ξ ′)2 + 2/

√
3y sinh(ξ ′) + 1

4/3 sinh(ξ ′)2 − 2/
√

3y sinh(ξ ′) + 1

)]

− 2√
3π

ln
( sinh(ξ ′)2 + sinh(ξ)2 + sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

sinh(ξ ′)2 + sinh(ξ)2 − sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

))
cosh(ξ ′)

(D.9)

In case cosh2(ξ)− y2 < 0

T(ξ, ξ ′) = δ(ξ − ξ ′)

[
x(cosh2(ξ ′)− y2) +

y
π

+
1

4
√

3π

1 + 2 cosh2(ξ ′)
sinh(ξ ′)

ln
( 4/3 sinh2(ξ ′) + 2/

√
3y sinh(ξ ′) + 1

4/3 sinh2(ξ ′)− 2/
√

3y sinh(ξ ′) + 1

)

− 1
2π

√
y2 − cosh2(ξ ′) ln

(
2y2 − 1− 4/3 sinh2(ξ ′) + 2y

√
y2 − cosh2(ξ ′)

2y2 − 1− 4/3 sinh2(ξ)− 2y
√

y2 − cosh2(ξ)

)]

− 2√
3π

ln
( sinh(ξ ′)2 + sinh(ξ)2 + sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

sinh(ξ ′)2 + sinh(ξ)2 − sinh(ξ) sinh(ξ ′) + 3/4− 3/4y2

))
cosh(ξ ′)

(D.10)

For the numerical implementation, we calculate 1/λa for different values of xy =
kFRe, since in a given experimental setup, the species has a given channel coupling
(constant resonance width so Re is constant) and kF is constant a priori.

Numerical solution of the coupled equations
The energy spectrum of Eq. (5.16) can be obtained numerically. In the following we
put h̄ and m to unity for simplicity. We use the following parameters:

x = λRe, y = kF/λ

k = λ sinh(ξ), φ(ξ) = λ sinh(ξ)D(λ sinh(ξ))
(D.11)
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With this we can write Eq. (5.16) as follows:

M(x, y, a)φ̃ = 0 (D.12)

WhereM is a non-symmetric square matrix. Its elements have the following form:

Mi(ξ , ξ ′, x, y, a) = δ(ξ − ξ ′)MD(ξ , x, y, a)

+ ε
∫ 2π

0
dφ
∫ π

0
dθ sin(θ) cosh(ξ ′) sinh2(ξ ′)MN(ξ, ξ ′, x, y, a)

(D.13)

Where ε is a discretization step we choose in order to have a convergent value of the
unknown variable. We note that ε = ξ ′max/Np where ξ ′ is the cutoff of the integral
over ξ ′ and Np is the number of points per row. Note also that ξ , ξ ′ > asinh(y). We
define the two functionsMD andMN as follows:

MN(ξ , ξ ′, x, y, a) =
1

λ2 I(ξ , ξ ′)
+

2h(ξ)h(ξ ′)
PW

+ g(ξ, ξ ′) (D.14)

and

MD(ξ ′, x, y, a) = f (ξ)− λ

4π

{(
1 +

3
4

sinh(ξ)2 − 〈(q1 − q2)2〉/(4λ2)
)

λRe −
1

λa
+

2kF

πλ

}
− 1

λ2Ω ∑
ξ ′>asinh(y)

1
I(ξ , ξ ′)

(D.15)

Where:

I(ξ, ξ ′) = 1 + 〈q1 · q2〉/λ2 + sinh2(ξ) + sinh2(ξ ′) + sinh(ξ) sinh(ξ ′) cos(θ) (D.16)

and g and h are functions defined in Eq. (5.17) , after the proper variable change.
If f = g = 0 the operators M and T are equal and the solution follows the reasoning
in the previous section.
By fixing the value of kFRe and for each value of x = xc, we search the smallest value
of 1/λa which verifies the equation:

det[M(xc, yc, a)] = 0 (D.17)

Note that the results in the Fig. (5.4) are obtained using a total number of points
Np = 350 and ξ ′max = 10.



Appendix E

Cooper-like trimer for different
values of kFRe

The question of generalizing the previous calculation for the Cooper-like trimer to
other values of kFRe arises in order to see the limits of its stability with respect to the
polaron.
To understand more this question we expand the STM equation (5.8) as in Appendix
D and develop the resulting operator T(ξ , ξ ′, y) with respect to y = kFRe:

First order correction
We write equation (D.8) in the following way:∫ ∞

g(y)
dξ ′T(ξ, ξ ′, y) φ(ξ ′) = U(y) φ(ξ) (E.1)

The following expansions exist in case (y � 1), we choose to keep only linear terms
in y:

φ(ξ) = φ0(ξ) + yφ1(ξ) , U(y) = U0 + yU1 (E.2)

Using (E.2) we can write (E.1) as:∫ ∞

g(y)
dξ ′T(ξ , ξ ′, y) φ0(ξ ′) + y

∫ ∞

g(y)
dξ ′T(ξ , ξ ′, y) φ1(ξ ′) = U0φ0(ξ) + yU0 φ1(ξ) + yU1φ0(ξ)

(E.3)

Symmetrization of T(ξ , ξ ′, y)

The operator T(ξ , ξ ′, y) is not symmetric with respect to the variable change ξ → ξ ′

because of the cosh(ξ ′) term in the non-diagonal part. In order for the operator to be
symmetric we do the following:

∫ ∞

g(y)
dξ ′ T(ξ, ξ ′, y)

√
cosh(ξ)√
cosh(ξ ′)︸ ︷︷ ︸

TS(ξ ,ξ ′ ,y)

√
cosh(ξ ′) φ0(ξ ′)︸ ︷︷ ︸

φ̃(ξ ′)

= U(y)
√

cosh(ξ)φ(ξ)︸ ︷︷ ︸
φ̃(ξ)

(E.4)
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Back to equation (E.3), we project it on φ̃0(ξ), we find:

U1 =
∫ ∞

0
dξφ̃∗0 (ξ)

[ ∂

∂y

∫ ∞

g(y)
dξ ′TS(ξ , ξ ′, y) φ̃0(ξ ′)︸ ︷︷ ︸

G(y)

]
y=0 (E.5)

We can do the derivation using the Leibniz integral rule, we set:

G(y) =
∫ ∞

g(y)
dξ ′

∂

∂y
TS(ξ , ξ ′, y) φ̃0(ξ ′)− TS(ξ , g(y), y)g′(y)φ̃0(g(y)) (E.6)

The partial derivative of the kernel with respect to y is linear in y so it cancels out
when taking y = 0. With this we write, recalling that g(y) = arcsinh(

√
3y/2):

U1 = −
∫ ∞

0
dξφ̃∗0 (ξ)TS(ξ , g(0), 0)g′(0)φ̃0(g(0)) = −

√
3

2

∫ ∞

0
dξφ̃∗0 (ξ)TS(ξ, 0, 0)φ̃0(0)

= −
√

3
2

∫ ∞

0
dξφ̃∗0 (ξ)δ(ξ)(1 + λRe)φ̃0(0) = −

√
3

2
(1 + λRe)|φ̃0(0)|2

(E.7)

Since φ̃0(ξ) is an odd function, φ̃0(0) = 0 which gives U1 = 0.

Second order correction
Abusing the notation we can write equation (E.1) after symmetrizing T̂ and then
develop all terms with respect to y:

(T̂S0 + yT̂S1 + y2T̂S2/2)(|φ̃0〉 + y|φ̃1〉 + y2/2|φ̃2〉)
= (U0 + yU1 + y2U2/2)(|φ̃0〉 + y|φ̃1〉 + y2/2|φ̃2〉)

(E.8)

We project the equation on |φ̃0〉 to get:

U2 = 〈φ̃0|T̂S2|φ̃0〉 (E.9)

Where TS2 is the second order perturbation term of the symmetrized T̂ operator. We
can write equation (E.9) like :

U2 =
∫ ∞

0
dξφ̃∗0 (ξ)

[ ∂2

∂y2

∫ ∞

g(y)
dξ ′TS(ξ , ξ ′, y) φ̃0(ξ ′)︸ ︷︷ ︸

H(y)

]
y=0 (E.10)

We calculate H(y) seperately and then put y = 0:

H(y) =
∫ ∞

g(y)

∂2

∂y2 TS(ξ , ξ ′, y)φ̃0(ξ ′) dξ ′ − φ̃0(g(y))g′(y)
(

g′(y)
∂

∂y
TS(ξ , g(y), y) + 2

∂

∂y
TS(ξ , g(y), y)

)
− TS(ξ , g(y), y)

(
φ̃0(g(y))g′′(y) + g′(y)2φ̃′0(g(y))

)
(E.11)

The next step after calculating H(y) is to put y = 0 in (E.10), which leads to the second
term cancelling since φ̃0(0) = 0, the same for the first part of the third term, but for
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the last part of the third term, we have only a diagonal term in T(ξ, 0, 0) which leads
to φ̃∗(0) = 0 with the integral in (E.10) which is also 0, after all of that we get:

H(y) =
∫ ∞

g(y)
dξ ′

∂2

∂y2 TS(ξ , ξ ′, y) φ̃0(ξ ′) (E.12)

We calculate the derivative and we put y = 0:

H(0) = −
∫ ∞

0
dξ ′
√

cosh(ξ)√
cosh(ξ ′)

δ(ξ, ξ ′)(
1

cosh(ξ)
+ 2x)

−
∫ ∞

0
dξ ′
√

cosh(ξ)√
cosh(ξ ′)

16
√

3 sinh(ξ) sinh(ξ ′) cosh(ξ ′)
π(2 cosh(2ξ) cosh(2ξ ′) + cosh(4ξ) + cosh(4ξ ′) + 1/2)

φ̃0(ξ ′)

(E.13)

Plugging this back in (E.10) and showing the explicit dependence on x we find:

U2(x) =
∫ ∞

0
dξφ̃∗0 (ξ)H(0) (E.14)

The kernel (without the minus sign) is an all positive matrix leading to a positive
eigenvalue, and that leaves the integration of the norm of φ̃0 which is also positive.
We conclude from this quick analysis that U2(x) is an all negative function.
We can contrast this result to a fit function of the following type:

Re

λa
=

Reλ

λ0a
+

U2

2λRe
k2

FR∗
2

(E.15)

with U2 as the fit parameter for different values of x = Reλ. The results are shown in
Fig.(E.1).
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-1.6
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Figure E.1: Second order perturbation correction of the Cooper-like trimer energy
with respect to y = kFRe. In red, data points from curves calculated using Eq. (5.8)
for different values of y and fitted with a parabola of the form in Eq. (E.15) to extract
U2. In blue, actual U2 points calculated from Eq. (E.14).

We see a pretty good match. The discrepancy in small λ0Re values is due to the high
sensitivity of the data on the precision in this region since we approach lower values
of δξ ′ (here it is 0.02).
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Gas de Fermi, Superfluide, Impureté, Polaron, Efimov, Trimer, Atomes froids.

RÉSUMÉ

Une partie de la thèse porte sur la description d’une expérience de nouvelle génération construite au sein de l’équipe des
gaz de fermions ultra-froids au laboratoire Kastler Brossel.
Les étapes expérimentales qui mènent à la réalisation et la caractérisation d’un superfluide fermionique sont décrite ainsi
que les principes physiques derrière ces méthodes qui sont bien établies dans le domaine.
La deuxième partie porte sur deux études théoriques concernant la physique d’une impureté. Lorsqu’une impureté
s’introduit dans un milieu en interaction, son énergie présente des divergences logarithmiques dans son développement
perturbatif. Nous utilisons la méthode des fonctions de Green pour comprendre les processus fondamentaux à l’origine
de ces divergences.
Pour le deuxième projet, on étudie le diagramme de phase d’une impureté immergée dans une double mer de Fermi
sans interactions. Nous utilisons une méthode variationelle pour montrer qu’il existe une transition de phase du premier
degré entre la limite de faible interaction impureté-fermion où une quasi-particule appelée le polaron est présente, et la
limite des interaction plus forte où existe un état lié de trois particules, appelé un trimer, proche de la surface de Fermi.

ABSTRACT

Part of the thesis concerns the description of a new generation experiment built within the ultra-cold fermion gas team at
the Kastler Brossel laboratory.
The experimental steps that lead to the realization and characterization of a fermionic superfluid are described along with
the physical principles behind these methods which are well established in the field.
The second part deals with two theoretical studies concerning the physics of an impurity. When an impurity enters an
interacting medium, its energy exhibits logarithmic divergences in its perturbative development. We use the method of
Green’s functions to understand the fundamental processes at the origin of these divergences.
For the second project, we study the phase diagram of an impurity submerged in a double Fermi sea without interactions.
We use a variational method to show that there is a first degree phase transition between the limit of weak impurity-
fermion interaction where a quasi-particle called the polaron is present, and the limit of stronger interaction where there
is a bound state of three particles, called a trimer, close to the Fermi surface.

KEYWORDS

Fermi gases, Superfluid, Impurity, Polaron, Efimov, Trimer, Cold atoms.
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