
HAL Id: tel-03666673
https://theses.hal.science/tel-03666673

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical protocols for quantum communication
networks

Federico Centrone

To cite this version:
Federico Centrone. Practical protocols for quantum communication networks. Quantum Physics
[quant-ph]. Université Paris Cité, 2021. English. �NNT : 2021UNIP7085�. �tel-03666673�

https://theses.hal.science/tel-03666673
https://hal.archives-ouvertes.fr


Université de Paris
Institut de Recherche en Informatique Fondamental (IRIF)

Ecole doctorale ED 386

En affiliation avec:
Sorbonne Université

Laboratoire d’Informatique Paris 6 (LIP6)

Practical protocols for quantum
communication networks

Presenté par Federico Centrone

Thèse de doctorat de Informatiqe

Présentée et soutenue publiquement le 25 Novembre 2021

Devant un jury composé de:
Anthony Leverrier INRIA Paris Rapporteur
Norbert Lütkenhaus University of Waterloo Rapporteur
Pérola Milman CNRS, Université de Paris Examinatrice
Yasser Omar University of Lisbon Examinateur
Iordanis Kerenidis CNRS, Université de Paris and QC WARE Directeur de thèse
Eleni Diamanti CNRS, Sorbonne Université Co-directrice de thèse



2



Short summary
In this thesis, we study networks of entangled quantum optical systems at different degrees
of complexity, with a special regard to their application to quantum communication scenar-
ios. In quantum communication, we want to allow two or more distant parties to exploit the
properties of quantum systems to communicate in a certain way that would be unattain-
able with classical technology. The archetype of quantum communication is Quantum Key
Distribution (QKD), that allows two agents to share a secret random key to perform secure
communications, while preventing a third malicious agent from gaining knowledge about
their key. In this manuscript, however, we will explore quantum communication scenarios
that go beyond standard QKD in order to test the many possibilities offered by intercon-
nected networks of quantum devices, also known as quantum internet. Specifically, we
present three different types of quantum networks, that correspond to three levels of com-
plexity of the quantum internet. In each of these levels, we describe the communication
scenario, the physical requirements necessary to build the specific architecture and a novel
quantum protocol that cannot be reproduced without quantum resources. In this work, we
paid particular attention to the “practicality” of the protocols, namely the fact that it should
be possible to implement them in realistic conditions with current technology, at least as a
proof of principle.
The first concerns an interactive proof quantum protocol showing experimental evidence
of computational quantum advantage in the interactive setting for the first time. In this
scenario, we have a computationally unbounded quantum prover who wants to convince
an honest verifier of the existence of a certain solution to a complex mathematical prob-
lem, by sending part of the proof in the form of quantum states. Our quantum scheme lets
the verifier verify the prover’s assertion without actually receiving the whole solution. We
prove that if the agents were not allowed to use quantum resources, the verification pro-
tocol would require an exponential time in the size of the solution, leading to a quantum
advantage in computational time that we could demonstrate in our laboratory.
The second copes with an electronic-voting protocol that exploits an untrusted multipartite
entangled quantum source to carry on an election without relying on election authorities,
whose result is publicly verifiable without compromising the robustness of the scheme and
that can be readily implemented with state-of-the-art technology for a small number of vot-
ers. Unlike previous results, our scheme does not require simultaneous broadcasting and
works also in noisy scenarios, where the security is bounded by the fidelity of the quantum
state being used.
Last, we simulate many modes squeezed states as continuous variables Gaussian quan-
tum networks with complex topologies, characterizing their correlations and estimating
the scaling of their cost while the networks grow using a squeezing resource theory. We
prove a result that allows us to enhance the entanglement between two nodes in the net-
work by measuring the multiple paths linking them and we employ this effect to devise an
entanglement routing protocol, whose performance is particularly effective on large com-
plex networks.
Key-words: quantum networks, quantum optics, quantum information.
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Court résumé
Dans cette thèse, nous étudions les réseaux des états optiques quantiques intriqués avec
différents degrés de complexité, avec une attention particulière portée à leur application
dans des scénarios de communication quantique. Le but de la communication quantique
est de permettre à deux ou plusieurs parties de communiquer d’une façon qui serait im-
possible avec de la technologie classique. Spécifiquement, nous présentons trois types de
réseaux quantiques, qui correspondent à trois niveaux de complexité d’internet quantique.
Dans chaque niveau, nous décrivons le scénario de communication, les exigences physiques
nécessaires pour construire l’architecture spécifique et un nouveau protocole qui ne peut
pas être reproduit sans des ressources quantiques. Dans cette document, nous veillons par-
ticulièrement à la "praticité" des protocoles, notamment le fait que leur implémentation
doit être possible dans des conditions réalistes avec technologie existante, au moins comme
preuve du principe.
Le premier concerne un protocole quantique à preuves interactives qui montre pour la pre-
mière fois une preuve expérimentale d’un avantage quantique dans un cadre interactif.
Dans ce scénario, il y a un prouveur avec de la puissance calculatoire illimitée qui veut con-
vaincre un vérifieur honnête de l’existence d’une certaine solution d’un problème mathé-
matique complexe, en lui envoyant une partie de la preuve sous forme d’états quantiques.
Notre construction permet au vérifieur de vérifier l’assertion du prouveur sans recevoir
la solution entière. Nous prouvons que sans ressources quantiques, le protocole de véri-
fication exigerait un temps exponentiel en la taille de la solution, menant à un avantage
quantique en terme de temps de calcul, avantage que nous avons démontré dans notre lab-
oratoire.
Le deuxième porte sur un protocole de vote électronique qui exploite un état quantique
multipartite intriqué non fiable pour réaliser une élection sans s’appuyer sur des autorités
électorales, dont le résultat peut être vérifié publiquement sans compromettre la robustesse
de la construction et qui peut être implémenté aisément avec les technologies de pointe
existantes pour un petit nombre de votant. À l’invers des résultats précédents, notre pro-
tocole n’exige pas une émission simultanée et marche aussi dans des scénarios bruyants,
où la sécurité est limitée par la fidélité de l’état quantique utilisé.
Enfin, nous simulons des états comprimés de la lumière de nombreux modes comme des
réseaux quantique Gaussien à variables continues avec des topologies complexes, nous car-
actérisons leur corrélations et nous estimons l’intensification de leur coût pendant que les
réseaux grandissent avec une théorie de ressource de compression. Nous prouvons un ré-
sultat qui permet de renforcer l’intrication entre deux nœuds du réseau si on mesure les
chemins multiples qui les connectent et nous utilisons cet effet pour concevoir un proto-
cole de routage d’intrication dont les performance sont particulièrement efficace dans des
réseaux complexes grands.
Mots-clés: réseaux quantique, optique quantique, information quantique.
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Long résumé

La science est née d’une révolution, il n’est donc pas surprenant que les scientifiques soient
quelque peu habitués à des changements spectaculaires dans leur façon d’observer la na-
ture. La révolution scientifique, qui a eu lieu après la publication deDe revolutionibus orbium
coelestium par Copernic et a atteint son apogée avec Principia de Newton après être passée
par la formulation de la méthode scientifique par Galilée, a profondément modifié la vi-
sion de la société sur la Nature. Après avoir accepté l’héliocentrisme, la gravité, l’optique,
l’électricité et la chimie comme piliers du paradigme scientifique, les théories révolution-
naires suivantes telles que l’évolutionnisme, la génétique et la radioactivité sont passées
presque comme un jeu d’enfant. Les gens ont été témoins du pouvoir de la science dans la
description des phénomènes naturels et du formidable développement technologique qui a
suivi, remodelant la société humaine de manière inconcevable.

Au tournant du 20e siècle, lorsque les fleurs vaporeuses de la révolution industrielle se
sont transformées en fruits électriques juteux, l’idée positiviste selon laquelle l’Homo Sapi-
ens avait apprivoisé la nature grâce à la science et à la technologie était largement ancrée
dans l’esprit de nombreux universitaires. C’est ce qui ressort des propos d’un professeur
de physique de Munich qui déconseillait à Max Planck, pionnier de la théorie quantique,
de se lancer dans la physique, arguant que les choses les plus importantes avaient déjà
été découvertes et qu’il ne restait que "quelques trous" à combler. À cette époque, la mé-
canique newtonienne régissait toutes les explications physiques, on croyait que la lumière
se propageait dans l’éther et l’idée de l’existence des atomes et des molécules était en grande
partie rejetée par la communauté scientifique. En conséquence, la théorie de la mécanique
statistique de Ludwig Boltmann était probablement perçue de la même manière que nous
considérons aujourd’hui la théorie des cordes.

Tout a soudainement changé en une année, "annus mirabilis" 1905, au cours de laquelle un
employé du Bureau des brevets nommé Albert Einstein, avec l’aide tacite de sa femme Mil-
eva Marić, a publié quatre articles qui ont jeté les bases de toute la physique moderne. Dix
ans avant sa théorie la plus acclamée de la relativité générale, le génie emblématique avait
déjà écrit l’ouvrage digne du prix Nobel pour sa description de l’effet photoélectrique. Dans
cet article, Einstein a utilisé un concept mathématique précédemment développé par Planck
pour décrire le rayonnement du corps noir, mais lui a donné une interprétation physique
concrète : l’énergie d’un rayon de lumière n’est pas distribuée de manière continue, mais
consiste en des paquets discrets qui ne peuvent être absorbés et générés que comme des en-
tités entières localisées dans l’espace et le temps. La lumière est faite de quanta d’énergie!

Lorsque Einstein a baptisé le concept qui a donné son nom à la théorie la plus aboutie
de la physique, la mécanique quantique était loin d’être formulée correctement. Il lui a
fallu encore quelques décennies et les débats animés de dizaines de génies pour arriver à
sa version mature. Depuis lors, la théorie s’est développée en une myriade de branches
très distinctes, allant de la physique de l’état solide à la gravité quantique. Néanmoins,
certaines des questions fondamentales qui ont enflammé les discussions acharnées des pre-
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miers développements du domaine restent sans réponse. En particulier, la formulation de la
mécanique quantique d’Heisenberg, qui est effectivement la première, a permis de prédire
la probabilité d’observer une certaine quantité physique d’un système, sans tenir compte
de l’état du système lui-même. Toutefois, elle n’explique pas comment la nature "sait" que
nous observons un système. Aucune des reformulations et interprétations suivantes de la
théorie n’a été en mesure d’aborder ce problème d’une manière qui soit universellement
acceptée par la communauté scientifique et il s’agit toujours d’une question très risquée si
vous souhaitez avoir une conversation pacifique avec des physiciens quantiques.

La mécanique quantique est difficile à digérer: Einstein n’a jamais accepté sa nature prob-
abiliste, Schrödinger a formulé le fameux paradoxe du chat pour mettre en évidence les
problèmes apportés par son interprétation standard, tandis que Feynman était plus direct:
"Je pense pouvoir dire sans risque que personne ne comprend vraiment la mécanique quan-
tique". Et ainsi de suite, après un siècle entier, malgré toutes ses controverses, les problèmes
qui se posent à toutes les échelles, les polémiques qu’elle a suscitées et tous les efforts dé-
ployés pour trouver une nouvelle théorie ultime des particules et des interactions fonda-
mentales, la théorie des quanta n’a pourtant jamais échoué et a contribué aux résultats et
aux prédictions les plus remarquables de l’histoire de la science.

Outre l’enthousiasme qu’elle a suscité chez les physiciens et les chercheurs de toutes les
sciences en général, l’influence de la mécanique quantique a très vite transcendé les murs
de l’académie. Un groupe d’étudiants de vingt ans avait osé, de manière indépendante et
irrévérencieuse, défier la plus haute autorité de la physique imposée par la mécanique new-
tonienne, qui était restée incontestée pendant des siècles. Ce changement sensationnel du
paradigme de la conception des lois de la nature, provoqué dans tout le monde en 1900 par
les nouvelles théories de la relativité et de la mécanique quantique, élégantes descriptions
de deux mondes différents et inconciliables, a ébranlé de nombreux aspects de la société
humaine, de l’art à la technologie, de la philosophie à la culture populaire.

De nos jours, il n’est pas rare de voir quelqu’un porter un t-shirt avec le chat de Schrödinger
ou un tatouage avec l’équation de Dirac. Néanmoins, la renommée de la mécanique quan-
tique reste liée au charme de ses sombres mystères et paradoxes, alors que nous avons
tendance à oublier à quel point la société moderne a été façonnée par notre compréhension
des mécanismes du monde atomique. Elle nous a permis de comprendre et de manipuler les
propriétés des éléments chimiques, des métaux et des semi-conducteurs, permettant ainsi
de produire de nouveaux médicaments et matériaux, de construire et de miniaturiser des
transistors et de concevoir des supraconducteurs. Elle a libéré le pouvoir perturbateur des
noyaux atomiques, fourni de nouveaux dispositifs d’imagerie médicale et nous a donné les
lasers.

Notre société aurait un aspect très différent sans les technologies fournies par la physique
non classique. Pourtant, ce n’est que la partie émergée de l’iceberg par rapport aux promesses
offertes par la prochaine génération de technologies quantiques. Des dispositifs tels que les
diodes électroluminescentes (LED), les transistors à effet de champ à effet tunnel (TFET),
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les dispositifs d’interférence quantique supraconducteurs (SQUID), la résonance magné-
tique nucléaire (RMN) ou la tomographie par émission de positrons (TEP), nécessitent
tous une compréhension approfondie des principes de la mécanique quantique pour être
conçus, mais la description de leurs principes de fonctionnement et de leurs effets peut être
semi-classique ou entièrement classique. Une véritable machine quantique serait capable
de s’adresser à des systèmes quantiques individuels et d’exploiter largement la cohérence
quantique afin d’obtenir une fonctionnalité ou une performance qui serait autrement inac-
cessible.

Les tout premiers dispositifs issus de cette deuxième révolution quantique sont les capteurs
quantiques, qui sont également les premières machines quantiques à être largement util-
isées à des fins pratiques. La détection quantique utilise des phénomènes quantiques pour
effectuer des mesures de haute précision dépassant la sensibilité de tout dispositif classique.
Les photodiodes à avalanche qui mesurent des photons uniques et la nouvelle génération
de détecteurs d’ondes gravitationnelles en sont des exemples. Cependant, le Saint Graal des
technologies quantiques est souvent considéré comme la simulation quantique ou, dans un
sens plus large, l’informatique quantique. L’idée est que si nous pouvons contrôler une
grande machine quantique, nous pouvons l’utiliser pour simuler des processus quantiques
dynamiques complexes, tels que les réactions chimiques, le repliement des protéines et les
systèmes à plusieurs corps. De plus, il a été prouvé, théoriquement et récemment dans des
expériences, que certaines classes spécifiques de problèmes mathématiques peuvent être
résolues efficacement sur une machine quantique, alors que le meilleur superordinateur
existant prendrait un temps qui dépasse la durée de vie prévue de notre système solaire.

Le physicien théoricien Richard Feynman a été le premier à proposer l’idée d’utiliser une
machine quantique pour simuler des systèmes quantiques complexes. Cependant, c’est
l’informaticien Peter Shor qui a été le premier à fournir un algorithme quantique ayant
des applications cruciales pour une tâche de calcul considérée comme irréalisable par un
ordinateur standard. Le domaine de l’information quantique, qui étudie comment coder,
manipuler et extraire des informations dans les états quantiques, est né du chevauche-
ment de l’informatique et de la physique quantique. Cependant, le lien entre le concept
d’information et la physique est en réalité beaucoup plus profond.

La théorie mathématique de la communication, écrite par l’ingénieur et mathématicien
Claude Shannon, a fourni la première formulationmathématique de la théorie de l’information.
Dans son livre, Shannon avait proposé une façon de quantifier l’information contenue dans
un certain canal de communication et, sous la suggestion de Von Neumann, il l’a appelée
entropie, d’abord parce qu’elle partageait la même formule et ensuite parce que "personne
ne sait ce qu’est réellement l’entropie" [1]. Cette analogie mathématique avec une quantité
physique a permis l’utilisation de techniques issues de la mécanique statistique et a con-
tribué au développement de la théorie de l’information. Cependant, ce n’est qu’avec les
résultats remarquables de Szilard, Landauer et Bennett que l’on s’est rendu compte que l’on
pouvait interpréter l’information comme une ressource physique et l’utiliser pour extraire
le travail thermodynamique. Pour reprendre les mots de Charles Bennett : "Les ordinateurs
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peuvent être considérés comme des moteurs permettant de transformer l’énergie gratuite
en chaleur résiduelle et en travail mathématique" [2]. L’information est physique et nous
pouvons utiliser des outils de physique pour étudier la théorie de l’information et vice versa.
C’est l’une des raisons pour lesquelles l’information quantique semble être un domaine si
prometteur.

D’une part, le développement des techniques de la théorie de l’information a permis unema-
nipulation et une transmission efficaces de grandes quantités de données avec une sécurité
certifiable fournie par des protocoles cryptographiques. D’autre part, la mécanique quan-
tique a permis la maîtrise des semi-conducteurs et des matériaux à l’état solide et donc la
production en masse des puces électroniques et de toute l’électronique nécessaire à la con-
struction des systèmes de télécommunication modernes. Les progrès parallèles et indépen-
dants de ces deux domaines ont conduit l’humanité directement à l’ère de l’information
actuelle et à la construction de l’une des plus grandes architectures de notre histoire : In-
ternet.

Internet est le réseaumondial de télécommunication constitué d’ordinateurs interconnectés
qui utilisent une suite spécifique de protocoles Internet pour permettre la communication
entre les appareils. Internet a eu un impact radical sur notre monde, a permis des commu-
nications sécurisées à des distances arbitraires et joue un rôle crucial dans la plupart des ac-
tivités humaines actuelles. L’information quantique promet d’améliorer les caractéristiques
de l’internet et même de développer de nouvelles fonctionnalités qui sont tout simplement
irréalisables avec les technologies classiques [3]. Un tel Internet quantique fonctionnerait
parallèlement à l’Internet classique dont nous disposons aujourd’hui, permettant une com-
munication quantique entre des dispositifs arbitraires partout dans le monde. Plusieurs
applications fascinantes ont déjà été étudiées, notamment la cryptographie indépendante
des dispositifs, l’authentification sécurisée, la synchronisation des horloges, les économies
exponentielles en matière de communication, les réseaux de capteurs quantiques et le cal-
cul quantique délégué à l’aveugle [4]. Cependant, comme pour toute nouvelle technologie
révolutionnaire, les applications les plus importantes doivent encore être imaginées.

Nous sommes finalement arrivés au sujet principal de cette thèse. Les réseaux quantiques
sont une technologie très prometteuse et leur étude interpelle entre la recherche fonda-
mentale et les applications du monde réel [5]. De nombreux systèmes physiques, tels que
les matériaux à l’état solide et les grandes molécules comme les protéines, peuvent en ef-
fet être modélisés comme des réseaux quantiques. La structure sous-jacente de certains
systèmes quantiques peut profondément influencer leurs propriétés et l’étude théorique
des réseaux quantiques peut aider à comprendre de nombreux phénomènes importants tels
que la localisation d’excitations cohérentes [6], les transitions de phase [7], le condensat de
Bose-Einstein [8] et le transport quantique [9]. De plus, la compréhension de la distribu-
tion de l’intrication dans des structures quantiques complexes peut aider au développement
d’algorithmes quantiques efficaces pour le calcul distribué [10] et même jouer un rôle dans
l’étude des sous-espaces sans décohérence [11] et de la gravité quantique [12]. Enfin, le su-
jet principal de ce manuscrit sera les réseaux de communication quantiques, dans lesquels
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plusieurs dispositifs quantiques placés à différents endroits géographiques sont intercon-
nectés par des canaux quantiques. Il va sans dire que pour développer des communications
quantiques à grande échelle et construire un internet quantique, il est obligatoire de saisir
les potentialités des réseaux quantiques et d’exploiter toutes leurs caractéristiques excep-
tionnelles.

La route est encore longue avant le développement complet d’un internet quantique et le
scepticisme persiste quant à ses potentialités réelles, mais des réseaux quantiques à petite
échelle ont déjà été mis en œuvre et toutes les étapes préliminaires de l’internet quantique
semblent présenter des cas d’utilisation intéressants. En tout premier lieu, il devrait per-
mettre la réalisation de la distribution de clés quantiques (QKD) entre ses nœuds. Alors
que la cryptographie standard assure la sécurité des communications en se fondant sur des
hypothèses mathématiques ou sur les limites technologiques présumées des adversaires,
qui pourraient se révéler inexactes, la QKD repose sur des principes physiques testés ex-
périmentalement. Stephen Wiesner a été le premier à proposer l’idée d’un protocole de
cryptographie quantique qui pourrait être utilisé pour produire de la monnaie quantique
infalsifiable ; son article a toutefois été rejeté par la revue IEEE Information Theory. Son ap-
proche a ensuite été formalisée par Bennett et Brassard qui ont conçu le premier protocole
QKD nommé BB84 [13]. De nombreux développements ont suivi ces premières découvertes
et la cryptographie quantique est devenue l’un des domaines les plus actifs de l’information
quantique.

Le premier réseau de distribution de clés quantiques au monde était le DARPA Quantum
Network [14], qui est devenu pleinement fonctionnel en 2003, fonctionnant parmi 10 nœuds
optiques à travers Boston et Cambridge pendant trois ans. Depuis lors, plusieurs de ces
formes naissantes d’internet quantique ont été mises en œuvre et de nouvelles sont en
cours de déploiement, avec même quelques applications commerciales limitées. En 2017, le
premier QKD satellite-sol a finalement été mis en place [15], ce qui pourrait fortement stim-
uler la mise à l’échelle de ces réseaux, qui est actuellement sévèrement limitée par l’absence
de répéteurs quantiques efficaces. En outre, de nombreux laboratoires de recherche étudi-
ent et mettent en œuvre des réseaux quantiques avec de nouveaux attributs remarquables
qui vont au-delà du simple QKD [16].

Dans ce manuscrit, nous nous intéresserons à trois niveaux différents d’internet quantique,
avec des architectures distinctes et des stades de complexité croissants. Pour chacun de ces
niveaux, nous proposerons un protocole quantique qui réalise une fonctionnalité qui serait
impraticable ou impossible sur l’Internet classique actuel. Outre la rigueur mathématique,
le critère sera celui de l’aspect pratique, nous analyserons donc les propriétés des protocoles
dans des conditions réalistes et, pour le premier d’entre eux, nous présenterons une mise
en œuvre expérimentale.

Nous ne savons pas encore quelle sera l’architecture réelle de l’internet quantique, mais
nous savons que le substrat des porteurs d’informations quantiques sera constitué de pho-
tons ! Les ondes électromagnétiques ont en effet toujours été le support privilégié des
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télécommunications. Les photons peuvent parcourir de longues distances à la vitesse max-
imale autorisée par les lois de la physique sans perdre leur cohérence, ils interagissent très
peu avec les molécules de l’atmosphère, ils peuvent être transportés efficacement dans des
guides d’ondes et ils peuvent être distribués et manipulés facilement avec notre technologie
actuelle. De plus, la lumière a toujours eu une importance majeure en mécanique quan-
tique depuis sa toute première conception et le langage des quanta est en grande partie
emprunté à l’optique classique. Par conséquent, nous consacrerons une partie importante
de l’attention à l’étude de l’optique quantique et des propriétés des états quantiques de la
lumière.

Cette thèse est divisée en deux parties distinctes. La première partie est consacrée à l’examen
des outils et techniques mathématiques nécessaires à la compréhension des sujets de nos
travaux. Des sujets avancés de l’information quantique, de l’optique quantique, de l’informatique
et de la théorie des réseaux seront abordés, cependant le lecteur familier avec l’un ou l’autre
de ces arguments peut sauter les sections correspondantes sans aucune complication. Plus
précisément, le chapitre 1 sera consacré aux concepts concernant la mécanique quantique
et l’optique quantique, tandis que le chapitre 2 traite de l’informatique et des réseaux. Dans
la deuxième partie, nous explorerons les propriétés des réseaux quantiques et expliquerons
les protocoles que nous avons conçus. Notre voyage à travers les différentes étapes de
l’Internet quantique commence au chapitre 3 avec l’architecture de communication la plus
simple, un canal quantique de bout en bout entre deux agents. Nous montrerons un proto-
cole qui permet à un simple client quantique de vérifier la solution d’un problème mathé-
matique complexe fournie par un serveur non fiable sans avoir accès à la solution complète.
Nous présenterons l’infaisabilité d’un tel schéma sans ressources quantiques et la première
démonstration expérimentale d’un avantage quantique computationnel dans le cadre inter-
actif. Le chapitre 4 présente notre deuxième étape de l’Internet quantique, qui se déroule
sur un réseau quantique plus large dans lequel tous les agents sont connectés à un nœud
central qui distribue un état quantique. Le protocole que nous avons développé met en
œuvre un système de vote électronique qui exploite une source quantique multipartite in-
triquée non fiable pour effectuer une élection sans dépendre des autorités électorales, dont
le résultat est vérifiable publiquement sans compromettre la robustesse du système. et qui
peut être facilement mis en œuvre avec les technologies les plus récentes. Enfin, dans le
chapitre 5, nous présentons la dernière étape de l’internet quantique, où nous examinerons
des topologies complexes arbitraires de réseaux quantiques, en caractérisant leurs corréla-
tions, en estimant la mise à l’échelle de leur coût pendant la croissance des réseaux et en
évaluant les performances d’un protocole de routage.

Bien que cette thèse ait été consacrée au sujet principal du développement de protocoles
de communication pour l’internet quantique, une partie des efforts de ce doctorat a été
employée à un autre projet, présenté en annexe A. Dans ce travail, nous montrons comment
nous pouvons utiliser les états quantiques de la lumière comme des batteries, en testant
l’efficacité et la puissance de la procédure de charge lorsque la batterie est immergée dans
un environnement bruyant.

viii
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Introduction

“Aristotle said a bunch of stuff that was wrong. Galileo and Newton fixed things up. Then
Einstein broke everything again. Now, we’ve basically got it all worked out, except for small
stuff, big stuff, hot stuff, cold stuff, fast stuff, heavy stuff, dark stuff, turbulence, and the concept
of time.”
– Zach Weinersmith

Science was born from revolution, so it should not surprise us that scientists are somewhat
used to dramatic changes in the way they observe Nature. The scientific revolution, that
took place after the publication of De revolutionibus orbium coelestium by Copernicus and
touched its climax with Newton’s Principia after passing through the formulation of the
scientific method by Galilei, profoundly altered the view of society on Nature. After ac-
cepting heliocentrism, gravity, optics, electricity and chemistry as pillars of the scientific
paradigm, the succeeding groundbreaking theories such as evolutionism, genetics and ra-
dioactivity passed through almost like a piece of cake. People had witnessed the power of
Science in describing natural phenomena and the tremendous technological development
that followed, reshaping human society in inconceivable ways.

At the turn of 20th century, when the steamy flowers of Industrial Revolution turned into
juicy electrical fruits, the positivist idea that Homo Sapiens had tamed Nature through Sci-
ence and technology was largely rooted in the mind of many academics. This is apparent
from thewords of aMunich physics professor who advisedMax Planck, pioneer of quantum
theory, against going into physics, advocating that the most important things had already
been discovered and there were only “a few holes” to fill. At that time, Newtonian mechan-
ics ruled all physical explanations, light was believed to propagate in aether and the idea of
the existence of atoms andmolecules was in large part rejected by the scientific community.

That all suddenly changed in one year, “annus mirabilis” 1905, in which a Patent Office
employee namedAlbert Einstein, with the tacit help of hiswifeMilevaMarić, published four
papers that laid the foundation of all modern Physics. Ten years before his most acclaimed
theory of general relativity, the iconic genius had already written the Nobel prize worthy
work for his description of the photoelectric effect. In that paper, Einstein employed a
mathematical concept previously developed by Planck to describe the black body radiation,
but gave it a concrete physical interpretation: the energy of a ray of light is not continuously
distributed but consists of discrete packets that can only be absorbed and generated as
whole entities localized in space and time. Light is made of energy quanta!

When Einstein had baptized the concept that gave the name to themost successful theory of
physics, quantummechanics was quite far from being properly formulated. It needed a few
more decades and the heated debate of dozens of geniuses to arrive to its mature version.
Since then, the theory developed in a myriad of very distinct branches, ranging from solid
state physics to quantum gravity. Nonetheless, some of the fundamental questions that
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inflamed the fierce discussions of the early development of the field remain unanswered. In
particular, Heisenberg’s formulation of quantum mechanics, which is indeed the first, was
able to predict the probability of observing some physical quantity of a system, disregarding
the state of the system itself. However it did not explain how does Nature "know" that we
are observing a system. None of the following reformulations and interpretations of the
theory was able to tackle this problem in a way that is universally accepted by the scientific
community and it is still a very risky matter if you want to have a pacific conversation with
quantum physicists.

Quantum mechanics is hard to digest: Einstein never accepted its probabilistic nature,
Schrödinger formulated the famous cat paradox to put in evidence the problems brought by
its standard interpretation, while Feynman was more direct: “I think I can safely say that
nobody really understands quantum mechanics”. So on and so forth, after a whole century,
despite all its controversies, the problems arising at all scales, the polemics it generated
and all the efforts spent to find a new ultimate theory of fundamental particles and interac-
tions, the theory of quanta has yet never failed and has contributed to the most outstanding
results and predictions in the history of Science.

Alongside the enthusiasm it generated among physicists and scholars from all sciences in
general, the influence of quantummechanics very soon transcended the walls of Academia.
A group of twenty years old students had independently and irreverently dared to challenge
the highest authority of physics imposed by Newtonian Mechanics, that had been standing
undisputed for centuries. This sensational change of the paradigm of conceiving how the
laws of Nature act, brought throughout all of ’900 by the new theories of Relativity and
QuantumMechanics, elegant descriptions of two different and irreconcilable worlds, shook
the ground of many aspect of Human society, from art to technology, from philosophy to
popular culture.

Nowadays it is not rare to see someone wearing a Schrödinger’s cat t-shirt or a Dirac’s
equation tattoo. Nonetheless, the fame of quantum mechanics is still tied to the charm of
its dark mysteries and paradoxes, while we tend to forget how much modern society was
shaped by our comprehension of the mechanisms of the atomic world. It let us understand
and manipulate the properties of the chemical elements, of metals and semiconductors,
allowing to produce new medicines and materials, to build and miniaturize transistors and
engineer superconductors. It unleashed the disruptive power of the atomic nuclei, provided
new medical imaging devices and gave us lasers.

Our society would have a very different look without the technologies delivered by non-
classical physics. Yet, this is only the tip of the iceberg compared to the promises offered by
the forthcoming generation of quantum technologies. Devices like Light Emitting Diodes
(LED), Tunnel field-effect transistors (TFET), Superconducting Quantum Interference De-
vice (SQUID), Nuclear Magnetic Resonance (NMR) or Positron Emition Tomography (PET),
in fact all require a thorough comprehension of the principles of quantum mechanics to
be designed, however the description of their working principles and effects can be semi-
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classical or fully classical. An actual quantum machine would be able to address individual
quantum systems and extensively exploit quantum coherence in order to gain a function-
ality or performance which would otherwise be unattainable [17].

The very first devices arising from this second quantum revolution are quantum sensors,
which are also the first quantum machines to be broadly employed for practical purposes.
Quantum sensing employs quantum phenomena to perform high precision measurements
beyond the sensitivity of any classical device. Examples include Avalanche Photo-Diodes
that measures single photons and the new generation of GravitationalWave Detectors. The
Holy Grail of quantum technologies, however, is often considered to be quantum simula-
tion, or in a broader sense quantum computing. The idea is that if we can control a large
quantum machine, we can use it to simulate complex dynamical quantum processes, such
as chemical reactions, protein folding and many-body systems. Moreover, it was proven,
theoretically and only recently in experiments, that certain specific classes of mathemat-
ical problems can be efficiently solved on a quantum machine, whereas the best existing
supercomputer would take a time that exceeds the expectation life of our Solar system.

The first to propose the idea of using a quantummachine to simulate complex quantum sys-
tems was again the theoretical physicist Richard Feynman. However, the first to actually
provide a quantum algorithmwith crucial applications for a computational task that is con-
sidered unfeasible for a standard computer was the computer scientist Peter Shor. The field
of quantum information, that studies how to encode, manipulate and extract information in
quantum states, bloomed from the overlap of computer science and quantum physics. The
connection between the concept of information and physics, however, is actually much
deeper.

The Mathematical Theory of Communication written by the engineer and mathematician
Claude Shannon [18] , provided the first mathematical formulation for the Theory of Infor-
mation. In his book, Shannon had proposed a way to quantify the information contained in
some communication channel and, under suggestion of Von Neumann, he called it entropy,
firstly because it shared the same formula and secondly because "nobody knows what en-
tropy really is" [1]. This mathematical analogy with a physical quantity allowed the use
of techniques from statistical mechanics and helped the development of information the-
ory. However, it was not until the remarkable results of Szilard, Landauer and Bennett that
it was realized that we can interpret information as a physical resource and we can use
it to extract thermodynamical work. In the words of Charles Bennett: “Computers may
be thought of as engines for transforming free energy into waste heat and mathematical
work” [2]. Information is physical and we can employ physics tools to study information
theory and vice versa. This is one of the reasons why quantum information seems such a
promising field.

On the one hand, the development of information theoretic techniques allowed an efficient
manipulation and transmission of large amounts of data with a certifiable security provided
by cryptographic protocols. On the other hand, quantummechanics permitted the mastery
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of semiconductors and solid state materials and thus the mass production of the microchips
and all the electronics necessary to the construction of modern telecommunication systems.
The parallel and independent progress of these two fields led Humanity straight to the
current Information Age and the building of one of the greatest architectures of our History:
Internet.

Internet is the global telecommunication network of interconnected computers that uses a
specific Internet Protocol Suite to allow communication between the devices. Internet has
had a radical impact on our world, enabled secure communications at arbitrary distances
and it plays a crucial role in most of the current human activities. Quantum Information
promises to enhance the features of Internet and even develop new functionalities that are
simply unattainable with classical technologies [3]. Such a Quantum Internet would work
in parallel to the classical one that we have today, allowing quantum communication among
arbitrary devices around the globe. Several intriguing applications have already been stud-
ied, including device-independent cryptography, secure authentication, clock synchroniza-
tion, exponential savings in communication, quantum sensor networks and blind delegated
quantum computing [4]. However, as with any revolutionary new technology, the most im-
portant applications have yet to be imagined.

We finally arrived to the main topic of this thesis. Quantum networks are a very promis-
ing technology and their study interpolates between fundamental research and real-world
applications [5]. Many physical systems, such as solid state materials and large molecules
like proteins can indeed be modeled as quantum networks. The underlying structure of
some quantum systems can deeply influence their properties and the theoretical study of
quantum networks can help the understanding of many important phenomena such as lo-
calization of coherent excitations [6], phase transitions [7], Bose-Einstein condensate [8]
and quantum transport [9]. Moreover, understanding the distribution of entanglement in
complex quantum structures can assist the development of efficient quantum algorithms
for distributed computation [10] and even play a role in the study of decoherence free sub-
spaces [11] and quantum gravity [12]. Finally, the main subject of this manuscript will be
quantum communication networks, in which several quantum devices placed at different
geographical locations are interconnected by quantum channels. Needless to say, in order
to develop large scale quantum communications and build a quantum internet it is com-
pulsory to grasp the potentialities of quantum networks and exploit all their exceptional
features.

There is still a long road ahead before the full development of a quantum internet and still
there is skepticism about its actual potentialities, however small-scale quantum networks
have already been implemented [19] and all the preliminary stages of quantum internet
seem to have interesting use-cases. In the very first place, it should allow the performance
of Quantum Key Distribution (QKD) among its nodes. While standard cryptography pro-
vides secure communications based onmathematical assumptions or on the presumed tech-
nological limitations of the adversaries, that could reveal incorrect, QKD is based on phys-
ical experimentally tested principles. Stephen Wiesner was the first to propose the idea
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of a quantum cryptographic protocol that could be used to produce unforgeable quantum
money [20], although his paper was rejected by IEEE Information Theory journal. His ap-
proach was then formalized by Bennett and Brassard who devised the first QKD protocol
named BB84 [13]. Many developments followed these first discoveries and quantum cryp-
tography became one of the most active fields of quantum information.

The world’s first quantum key distribution network was the DARPA Quantum Network
[14], that became fully functional in 2003, operating among 10 optical nodes across Boston
and Cambridge for three years. Since then, several of these incipient forms of quantum in-
ternet have been implemented and new ones are currently being deployed even with some
limited commercial applications. In 2017, the first satellite-to-ground QKD was finally es-
tablished [15] which could acutely boost the scaling of these networks, that is currently
severely limited by the absence of efficient quantum repeaters. In addition, many research
laboratories are studying and implementing quantum networks with new remarkable at-
tributes that go beyond simple QKD [16].

In this manuscript, we will be interested in three different levels of quantum internet, with
distinct architectures and increasing stages of complexity. For each of these levels we will
propose a quantum protocol that achieves a functionality that would be impracticable or
impossible on the current classical Internet. Along with mathematical rigor, the criterion
will be that of practicality, we will thus analyse the properties of the protocols in realistic
conditions and, for the first of these, we will present an experimental implementation.

We do not know yet what will be the actual architecture of quantum internet, however we
do know that the substrate for the quantum information carriers will be photons! Electro-
magnetic waves have in fact always been the privileged medium for telecommunications.
Photons can travel long distances at the maximum speed allowed by the laws of physics
without losing coherence, they interact very little with the molecules of atmosphere, can
efficiently be transported in waveguides and they can be distributed and manipulated eas-
ily with our current technology. In addition, light has always been of major importance in
quantum mechanics since its very first conception and the language of quanta is in large
part borrowed from classical optics. As a consequence, we will dedicate a significant part of
the attention to the study of quantum optics and the properties of quantum states of light.

This thesis is divided in two distinct parts. The first part is devoted to the review of the
mathematical tools and techniques required to understand the subjects of our works. Ad-
vanced topics in quantum information, quantum optics, computer science and network
theory will be covered, however the reader with familiarity with any or all of these argu-
ments can skip the corresponding sections without any complication. Specifically, chapter
1 will be dedicated to the concepts concerning quantum mechanics and quantum optics,
whereas chapter 2 deals with Computer Science and Networks. In the second part, we will
explore the properties of quantum networks and explain the protocols we devised. Our
journey through the various stages of Quantum Internet begins in chapter 3 with the sim-
plest communication architecture, an end-to-end quantum channel between two agents.
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We will show a protocol that allows a simple quantum client to verify the solution of a
complex mathematical problem provided by an untrusted server without having access to
the full solution. We will present the infeasibility of such scheme without quantum re-
sources and the first experimental demonstration of a computational quantum advantage
in the interactive setting. Chapter 4 presents our second stage of quantum Internet, that is
set on a larger quantum network in which all the agents are connected to a central node
that distributes a quantum state. The protocol that we developed implements an electronic-
voting scheme that exploits an untrusted multipartite entangled quantum source to carry
on an election without relying on election authorities, whose result is publicly verifiable
without compromising the robustness of the scheme and that can be readily implemented
with state-of-the-art technology. Finally, in chapter 5 we show the last stage of quantum
internet, where we will examine arbitrary complex topologies of quantum networks, char-
acterizing their correlations, estimating the scaling of their cost while the networks grow
and evaluating the performances of a routing protocol.

Although this thesis was devoted to the main topic of developing communication protocols
for quantum internet, part of the efforts of this doctorate were employed to another project,
presented in appendix A. In this work, we show how we can use quantum states of light
as batteries, testing the efficiency and power of the charging procedure when the battery
is immersed in a noisy environment.

It is now time to stop shooting the breeze, so fasten your seat belt and get ready to begin
our road trip through quantum optical networks.
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Chapter 1

1.1 The principles of Quantum Mechanics
QuantumMechanics provides the most accurate description of the non-relativistic physical
properties of Nature at the atomic and subatomic scale. The first successful formalization
of the description of the atomic spectra was supplied by Heisenberg’s matrix mechanics,
which is the first formal theory of quantum mechanics. Later the same year, Schrödinger
created an equivalent formalism based on wave mechanics. We call the Heisenberg picture
the formulation in which operators carry the time dependence, whereas the Schrödinger
picture is the one in which the states are time dependent. Another important formula-
tion that we will use in this thesis is the Dirac picture (or interaction picture), in which
both the states and operators depend on time. The following axioms are formulated in the
Schrödinger picture, which has the most intuitive physical interpretation, however they
can be equivalently stated in all the possible representations of the quantum theory. The
following principles are in essence based on the standard Dirac-Von Neumann axioms, in-
troduced by Dirac [21] and Von Neumann [22], with a modern interpretation drawn from
[23].

1.1.1 First Postulate: physical states

“Each physical system is associated with a complex Hilbert spaceH in which a scalar prod-
uct is defined. The state ψ of an isolated system at fixed time is described by a unit-norm
vector inH. ”

States in the Hilbert space can be conveniently represented through Dirac’s bra-ket nota-
tion. The state ψ can be expressed with a ket |ψ⟩, its dual vector is called a bra ⟨ψ|, while
the scalar product with state ϕ is ⟨ϕ|ψ⟩. The linearity of the Hilbert space implies that
any linear combination of states belonging to H is a physical state of the system. So for
example, if both |ψ⟩ , |ϕ⟩ ∈ H then

α |ψ⟩+ β |ϕ⟩ ∈ H,∀α, β s.t. |α|2 + |β|2 = 1. (1.1)

Furthermore, if two vectors only differ by a global phase factor they represent the same
physical state, e.g. |ψ⟩ and eiθ |ψ⟩ are the same state for all real θ.

The building block of digital information is the bit which takes one of the possible Boolean
values {0, 1}. Conversely, the unit digit of quantum information is the qubit, which de-
scribes the simplest non-trivial quantum system, that has a Hilbert space with dimension
2 and is spanned by any orthonormal basis with two vectors, such as {|0⟩ , |1⟩}. Such com-
putational basis is the basic element of quantum computation and it can be implemented
on a large number of physical systems.

10
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1.1.2 Second postulate: physical quantities

“Every physical quantity A is described by a linear self-adjoint operator Â acting on H.
The eigenvalues of Â form a basis for the Hilbert space.”

The operator Â is called an observable and represents some property of a physical system
that, in principle, can be measured. The fact that it is self-adjoint (or Hermitian) implies
that its eigenvalue spectrum is real. The eigenvalues of Â correspond to the possible values
of the dynamical variable associated to the physical quantityA. In many cases, the degrees
of freedom of a quantum system are quantized, meaning that the spectrum of the associated
observable is discrete. Discrete spectra are usually associated with systems that are bound
in some sense (mathematically, confined to a compact space). The position and momentum
operators have continuous spectra in an infinite domain, but a discrete (quantized) spectrum
in a compact domain [24] and the same properties of spectra hold for angular momentum,
Hamiltonians and other operators of quantum systems.

A self-adjoint operator with a discrete spectrum can be expressed in terms of its eigenval-
ues an and the corresponding orthogonal projection onto the space of eigenvectors with
eigenvalue an:

Â =
∑
n

an |an⟩ ⟨an| =
∑

anÂn, (1.2)

where Ân = |an⟩ ⟨an| are the projectors on the eigenstate |an⟩. For unbounded operators in
an infinite-dimensional space, the definition of self-adjoint and the statement of the spectral
theorem are more subtle and we refer to the book of Serafini [25] for a formal definition.

1.1.3 Third postulate: measurement

“The measurement of an observable Â on a quantum state |ψ⟩ yields an outcome an, that
is an eigenvalue of Â with corresponding eigenvector |An⟩, with a priori probability

P (an) = ⟨ψ|An⟩ ⟨An|ψ⟩ = ⟨ψ| Ân |ψ⟩ . (1.3)
If the outcome an is attained, then the normalized quantum state just after themeasurement
is Ân|ψ⟩

P (an)1/2
. ”

A measurement is some process in which information about the state of a physical system
is acquired by an observer. In quantum mechanics this process is intrinsically random
and the set of possible outcomes is given by the eigenvalues of the observable quantity,
while the probability of measuring that outcome is the square of the scalar product between
the state and the eigenvector associated to the outcome. Just after the measurement the
state collapses in the corresponding eigenstate and if a second measurement is immediately
repeated the same outcome is deterministically obtained. If many quantum systems are all
identically prepared in the state ψ, then the expectation value of the outcome will be

⟨Â⟩ = ⟨ψ| Â |ψ⟩ . (1.4)

11
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1.1.4 Fourth postulate: dynamics

“The equation of motion of a quantum system |ψ(t)⟩ evolving in time is governed by the
Schrödinger equation

iℏ
d

dt
|ψ⟩ = Ĥ(t) |ψ⟩ , (1.5)

where i is the imaginary unit, ℏ is the reduced Planck constant1 and Ĥ(t) is the time de-
pendent self-adjoint operator associated to the Hamiltonian of the system.”

If the system’s Hamiltonian does not depend on time the equation becomes an eigenvalue
equation

Ĥ |ψ⟩ = E |ψ⟩ , (1.6)

where E is the energy of the system and |ψ⟩ an eigenvector of Ĥ . In Schrödinger picture,
the state of a system at time t evolved from the initial state |ψ0⟩ at time t = 0 following
equation 1.5 is given by

|ψ(t)⟩ = Û(t) |ψ0⟩ , (1.7)

where Û(t) is a unitary operator, such that the product with its conjugate transpose is
the identity Û(t)Û †(t) = 1. In the case where Ĥ is time independent we can express
Û(t) = e−

i
ℏ tĤ .

1.1.5 Fifth postulate: composite systems

“The Hilbert space of a composite system is constituted by the tensor product ⊗ of the
Hilbert spaces of its components. ”

The composite state Ψ of ψ1 and ψ2 can be expressed in many ways:

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ = |ψ1⟩ |ψ2⟩ = |ψ1ψ2⟩ . (1.8)

An operator acting on |Ψ⟩ will be the tensor product of the operators acting on the Hilbert
spaces of the two systems

Ô12 |Ψ⟩ = Ô1 ⊗ Ô2 |Ψ⟩ = Ô1 |ψ1⟩ ⊗ Ô2 |ψ2⟩ . (1.9)

If a composite system can be expressed as a tensor product of the components, like in
equation 1.8, then it is called separable. The majority of the states in a composite Hilbert
space are not separable, for instance

1√
2
(|ψ⟩1 |ϕ⟩2 + |ϕ⟩1 |ψ⟩2), (1.10)

1ℏ = h
2π = 1.0545718× 10−34 m2kg/s, where h is the Planck constant.

12
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where the subscripts specify the subsystem. This is called an entangled state, which is a
superposition of two or more separable states, and plays a crucial role in many applications
of quantum theory.

Isolated quantum systems are called pure states and can be expressed with the ket notation.
However, real systems are never perfectly isolated and must interact with an environment
that decreases their purity and adds randomness to their description. In this case, the states
can be identified with the so-called density matrix

ρ̂ =
∑
i

pi |ψi⟩ ⟨ψi| , (1.11)

where pi is the classical probability of the system being prepared in the state |ψi⟩. If the
quantum state is pure, its density matrix reduces to ρ̂ = |ψ⟩ ⟨ψ|.

1.2 Quantum states of light
Historically, the first attempts to the description of quantum mechanics only dealt with the
motion of microscopic particles under the effect of classical fields. Despite its unintuitive
consequences, that defied the most brilliant minds of the past century and contributed to
its popularization, the resulting theory was indeed a prodigy of mathematical elegance, in
which from a set of simple axioms it was possible to derive some of the most spectacular
predictions of science, that laid down the foundations for the technological development
that we are enjoying nowadays.

Nonetheless, that tells only the first part of the story, the one that physicists like to call first
quantization. In order to go further ahead and understand all the recent progresses that
lead us to a deeper comprehension of the quantum world, we need to abandon the single
particle description and embrace the dynamical picture of interaction and forces among the
tiny constituents of our Universe. In other words, we need a quantum field theory.

In the following paragraphs we will bridge the gap between the physical radiation field, in
which information will be encoded, and its quantum representation. In order to do so, we
need to start from the equations that revealed the true essence of light and reach those that
showed its quantum traits. In literature we find a plethora of approaches to the quantiza-
tion of the electromagnetic field [21], [26]–[29], whereas for procedures akin to quantum
information processing we suggest [25], [30].

1.2.1 From Maxwell to Dirac

The Maxwell’s equations form the foundations for classical electromagnetism, optics and
electrical circuits. In vacuum they read:
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∇ ·E = 0,

∇ ·B = 0,

∇×E = −∂tB,
∇×B = 1

c2
∂tE.

(1.12)

The first striking consequence of these equations is that they can be cast in the form of a
wave equation for the electric and magnetic field, whose velocity matches the speed of light
c = (µ0ϵ0)

−1/2. This led Maxwell to propose that light and radio waves are propagating
waves of the electromagnetic field at different frequencies.

The energy of the free electromagnetic field in a region of space of volume V at time t is
given by

HR =
ϵ0
2

∫
V

[E2(r, t) + c2B2(r, t)]d3r. (1.13)

A suitable choice to describe the field of quantized radiation is to consider light confined in
a volume of finite size V with periodic boundary conditions. Under this condition the state
is described by a discrete succession of dynamical values rather than a continuum and is
represented mathematically, in the base of linearly polarized plane waves, by a particularly
simple expression:

fj(r, t) = ϵje
i(kj ·r−ωjt), (1.14)

where the wave vectors kj assume discrete values allowed by the boundary conditions,
ωj = ckj is the angular frequency of the wave and ϵj is a unit polarization vector per-
pendicular to the wave vector kj · ϵj = 0. For simplicity, a global index j was used for
wave vector and polarization. A normalized solution of the Maxwell’s equations, like the
one of equation 1.14, is called a mode of the electromagnetic field. The time independent
ortho-normality relation reads∫

V ′>V

f ∗
j (r, t) · fl(r, t) = V δjl. (1.15)

The linearity of equations 1.12 implies that any electric and magnetic fields that satisfy the
periodic boundary conditions can be expressed as a linear combination of the modes 1.14

E(r, t) = E+(r, t) +E−(r, t) =
∑
j

Aj(αjfj(r, t) + α∗
jf

∗
j (r, t)),

B(r, t) = B+(r, t) +B−(r, t) =
∑
j

Aj
c
(αjf̄j(r, t) + α∗

j f̄
∗
j (r, t)),

(1.16)

where the electric and magnetic fields were split in positive and negative frequency parts,
f̄l = kl × fl/kl denotes the modes of the magnetic field, An are real constants with the
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electric field physical dimension2 and α are dimensionless complex valued amplitudes de-
pending on the initial conditions. The absolute value of this complex amplitude represents
the intensity of the field and will in turn be proportional to the number of photons. Notice
that the discreteness of the field modes was explicitly imposed by the boundary condition
of finite volume. If we take the limit V → ∞ we recover the free propagating field with a
continuity of modes. A comprehensive discussion of the optical modes of quantum fields
can be found in Ref. [31].

We can now define two new dynamical variables

qn = 2An

√
ϵ0V
ωn

Re[αn] =
√
2Re[α̃n]

pn = 2An

√
ϵ0V
ωn

Im[αn] =
√
2Im[α̃n]

, (1.17)

where we redefined the complex amplitudes of the field as α̃n = An

√
ϵ0V
2ωn

αn. Now, if we
substitute 1.16 into equation 1.13 employing the ortho-normality relation 1.15, and rewrite
it as a function of the variables of eq. 1.17, the total energy of the electromagnetic field
becomes explicitely the hamiltonian of the harmonic oscillator:

HR =
1

2

∑
n

ωn(q
2
n + p2n). (1.18)

Everything we did so far resides in the domain of classical Electromagnetism. The standard
procedure to quantize a classical theory, the so-called canonical quantizationwas introduced
in 1926 by Paul Dirac in his doctoral thesis [32] and was employed by himself to develop
the theory of Quantum Electro-Dynamics [21], described by Richard Feynman as "the jewel
of physics" for its extremely accurate predictions of the interaction between radiation and
matter and for being the very first theory to achieve a full agreement between quantum
mechanics and special relativity [33].

We will now present a simplified derivation of the quantized electromagnetic field akin to
the one originally handed out by Dirac. It all starts with one simple assumption, the corre-
spondence principle formulated by Bohr, stating that the behavior of a quantum systemmust
reproduce classical mechanics in the limit of large quantum numbers [34]. Accordingly, we
begin with the hamiltonian equations of motion of the classical field:

df(q,p)

dt
= {f,H}PB +

∂f

∂t
, (1.19)

where we introduced the time independent hamiltonianH , which is the total energy of the
system, and a dynamical quantity of the system f function of the 2N canonical variables

2Of order 10−2[V ]/[m] for a mode in a typical laser-gas cavity [27].
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q = {qi}Ni=1 and p = {pi}Ni=1, for a system with N degrees of freedom, and the Poisson’s
bracket defined as

{f, g}PB =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (1.20)

The canonical coordinates describe in phase space the dynamics of the system governed by
the hamiltonian H and by definition satisfy the following relations:

{qi, qj}PB = 0, {pi, pj}PB = 0, {qi, pj}PB = δij, (1.21)

where δij is the Kronecker delta.

Overlooking some mathematical details that are unimportant for our purposes, we can
reduce the process of canonical quantization to two essential operations3:

1. All the dynamical quantities associated to the observables of the system are mapped
into hermitian operators: f(q,p) −→ f̂(q̂, p̂);

2. all the Poisson brackets are deformed and mapped into operator’s commutation rela-
tion: [f̂ , ĝ] = iℏ{f, g}PB , where i is the imaginary unit and ℏ is the reduced Planck
constant.

The commutator [f̂ , ĝ] = f̂ ĝ − ĝf̂ can be applied to the canonical variables to derive the
canonical commutation relation 4

[q̂i, p̂j] = iℏδij. (1.22)

From these equation, considering q̂ and p̂ as conjugated canonical variables, we can recover
the well-known Heisenberg uncertainty principle

∆q∆p ≥ ℏ
2

(1.23)

that gives a lower bound on the product of the standard deviations of complementary vari-
ables. The hermitianity of the quantum operators ensures that their eigenvalues, that corre-
spond to the possible values of a measurement, are real. The commutator of two hermitian
operators must be purely imaginary, which justify the necessity of the imaginary unit. In

3Although this is the naive approach initially proposed by Dirac, it was later noted by Hip Groenewold
that a general systematic correspondence between quantum commutators and Poisson brackets could not
hold consistently [35]. The consistent correspondence mechanism between the quantum commutator and the
deformation of the poissonian brackets (today called the Moyal bracket), and in general between quantum
operators and classical observables can be implemented through the Wigner-Weil transform.

4The uniqueness of the canonical commutation relation between the position and momentum operators
is guaranteed in its exponential form by the Stone-von Neumann theorem [36].
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addition, the presence of the reduced Planck constant lets us recover the classical case when
the quantum numbers associated aremuch larger than the Planck constant, such that ℏ ∼ 0.

We have now all the ingredients to quantize the free propagating electromagnetic field. It
can be easily verified that the variables 1.17 satisfy the Hamilton’s equations 1.19 and are
thus the canonical variables of our classical electromagnetic theory. We can thus map these
variables into hermitian quantum operators acting on the Hilbert space of the electromag-
netic field and representing its complementary observables. The hamiltonian governing
the dynamics of the field propagating in free space will hence become

ĤR =
ℏ
2

∑
n

ωn(Q̂
2
n + P̂ 2

n), (1.24)

where the dimensionless operators Q̂n := q̂n/
√
ℏ and P̂n := p̂n/

√
ℏ satisfy the canonical

commutation relation [Q̂i, P̂j] = iδij and are thus subject to the Heisenberg uncertainty
principle. As a consequence, the measurement outcome of the field will fluctuate even
when its expectation value is null. We will show in the following that these fluctuations
can be used to encode and process quantum information.

Quantum harmonic oscillator

It should not surprise us that equation 1.24 is the hamiltonian of the quantum harmonic
oscillator. Indeed, it is a well known fact that the harmonic oscillator is described by one
of the few dynamical equations that can be solved analytically and, in the words of the
physicist Sidney Coleman, “The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction”.

In order to characterize the properties of the quantum harmonic oscillator, we will make
use of the ladder operators method developed by Dirac, that allows the extraction of the en-
ergy eigenvalues without directly solving the differential equations of motion. From equa-
tion 1.17 we notice that the canonical variables are proportional to the real and imaginary
parts of the complex amplitudes of the electromagnetic field, whose modulus represents
the intensity of the light. These amplitudes become in turn quantum operators after the
quantization mapping and are related to the quadrature operators through a unitary trans-
formation: {

ân := Q̂n+iP̂n√
2

â†n := Q̂n−iP̂n√
2

. (1.25)

These operators are not hermitian, since ân and its adjoint â†n are not equal. If we evaluate
their commutator we get [ân, â†n] = 1, while if we cast them into the hamiltonian 1.24 we
end up with

ĤR =
∑
n

Ĥn =
∑
n

ℏωn(â†nân + 1/2) (1.26)

.
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1.2.2 Fock states
Let us now consider a single mode of the field by dropping the index n and evaluate their
commutator with the so called number operator N̂ := â†â

[N̂ , â†] = â†, [N̂ , â] = −â. (1.27)

If we take an eigenstate |m⟩ of the number operator such that N̂ |m⟩ = m |m⟩, the com-
mutation relation yields

N̂ â† |m⟩ = (â†N̂ + [N̂ , â†]) |m⟩ = (m+ 1)â† |m⟩ .

The state â† |m⟩ is still an eigenstate of the number operator, with eigenvalue increased by
1. Similarly

N̂ â |m⟩ = (m− 1)â |m⟩ .

Given the fact that the number operator commutes with the single mode hamiltonian op-
erator Ĥ = ℏω(N̂ + 1/2) this property has the following interesting consequence

Ĥâ† |m⟩ = (Em + ℏω)â† |m⟩ ,

where Ĥ |m⟩ = Em |m⟩ = ℏω(m + 1/2) |m⟩. In linear algebra â† and â are called ladder
operators because, as we have seen, they allow to increase or decrease the eigenvalue of the
number operator. In quantum field theory they are referred to as creation and annihilation
operators respectively and they represent the generation or absorption of particles, which
correspond to quanta of energy or to excitations in the particle field. Since the square of the
length of ket â |m⟩ is just ⟨m| N̂ |m⟩ ≥ 0 we have that the hamiltonian is lower bounded
Em ≥ ℏω

2
. Let |0⟩ be an eigenstate of Ĥ corresponding to the lowest eigenvalue ℏω

2
, so that

â |0⟩ = 0. (1.28)

Starting from this state, that we assume normalized, we can form a succession of states

|0⟩ , â† |0⟩ = |1⟩ , . . . 1√
m!
â†m |0⟩ = |m⟩ (1.29)

that are all eigenstates of the hamiltonian with eigenvalues Em = ℏω(m+1/2), extending
to infinity. The kets in eq. 1.29 are called Fock states and correspond to the stationary states
of the harmonic oscillator. They represent the number of excitations, or particles, in a given
mode. The normalization comes from the fact that

⟨0| âm(â†)m |0⟩ = m ⟨0| âm−1(â†)m−1 |0⟩ = m!. (1.30)

Since all the dynamical variables in our problem can be expressed in terms of the ladder
operators, these must form a complete set. Thus, any state in the Hilbert space of the
harmonic oscillator can be expressed as a linear combination of the Fock states:

|ψ⟩ =
∑
m

ψm |m⟩ =
∑
m

ψm√
m!

(â†)m |0⟩ . (1.31)
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In strike contrast with their simple theoretical description, the experimental production of
the Fock states is rather involved. The vacuum state |0⟩ of a mode of frequency ω is trivially
produced if we consider an optical system at temperature T ≪ ℏω/kB . The preparation of
the first excited state, or single photon state, |1⟩, on the other hand, is already challenging
to produce. Faint laser pulses can approximate single photons in some applications [37],
however they cannot show antibunching, namely the effect of producing a predictable (sub-
poissonian) statistics in the photon number distribution whose variance is smaller than its
mean [38], and other typical quantum signatures. On-demand single emitters, such as single
molecules, Rydberg atoms, diamond colour centres and quantum dots often suffer from low
emission efficiency. Finally, heralded single photons can be created by first generating a
photon pair and then using the detection of one of the photons to isolate the other one.
These sources rely on the non-linear optical process of parametric downconversion (PDC)
in bulk crystals and waveguides, and four-wave mixing (FWM) in optical fibers. To the
present day, these sources represent the workhorse of single photon production, although
their mechanism is inherently probabilistic. An extensive review of the subject of single
photons production and detection is found in Ref. [39].

1.2.3 Coherent states
As a consequence of the quantization procedure, one can describe in the interaction picture
or in the free-field Heisenberg picture the quantum field of a free propagating monochro-
matic wave satisfying Maxwell’s equations as

Ê(r, t) = E+(r, t) +E−(r, t) = fj(r, t)â+ f ∗
j (r, t)â

†. (1.32)

Glauber and Sudarshan, developing the quantum theory of optical coherence, remarked
that the eigenstates of the positive frequency part of the electric field operator are of crucial
importance in optics as they display the maximal degree of coherence [26]. They are called
coherent states and are eigenstates of the annihilation operator

â |α⟩ = α |α⟩ , (1.33)

with the eigenvalue α = |α|eiθ ∈ C. These states, that were originally formulated by
Schrödinger in his attempt to search for solutions to the Schrödinger equation that satisfy
the correspondence principle [40], represent the simplest and most common case of states
living in an infinite dimensional Hilbert space. They can be expressed in the Fock state
basis as a sum over all possible occupation numbers

|α⟩ = e−
|α|2
2

∞∑
n=0

αn√
n!

|n⟩ . (1.34)

The state |α⟩ can be obtained from the vacuum through the displacement operator

|α⟩ = D̂(α) |0⟩ = exp (αâ† − α∗â) |0⟩ . (1.35)
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The probability distribution of the number of photons in the state is Poissonian

P (n) = | ⟨n|α⟩ |2 = e−µµn√
n!

, (1.36)

with mean photon number µ = ⟨α|N̂ |α⟩ = |α|2 and variance (∆µ)2 = |α|2. This implies
that in the limit of large µwe recover the detection statistics of a classical stable wave. Fur-
thermore, the mean values of the operators Q̂ and P̂ follow the classical trajectory of the
harmonic oscillator and their standard deviations minimize the uncertainty principle. For
these reasons the coherent states are often dubbed as quasi-classical states. Nonetheless,
these states are broadly used in quantum information protocols, notably but not exclusively
in quantum key distribution experiments [41], for the ease of their preparation and manip-
ulation, for which classical techniques and technologies can be put to use. Their hidden
quantum nature can in fact be unveiled when examining the scalar product between two
coherent states, that reads

⟨α|β⟩ = e−|α−β|2 . (1.37)
This means that these states become approximately orthogonal only for |α− β| >> 1, e.g.
in the classical limit, while for low photon numbers they are never perfectly distinguishable.

From equation 1.25 we can derive the time-ordered square of the quadrature operators Q̂2

and P̂ 2 from which we can compute the quadrature variances of the coherent state:

(∆Q)2 = (∆P )2 =
1

2
. (1.38)

Hence, coherent states not only saturate the uncertainty principle, but their noise property
are perfectly balanced in the two quadratures. Coherent states will be the main subject
of chapter 3, while in the next section we will study a different class of quantum states
that, while minimizing the Heisenberg principle, have an unequal expectation value of the
variances of the quadrature operators.

1.2.4 Squeezed states
The quadrature of an electromagnetic field is said to be squeezed if it has a standard devia-
tion strictly smaller than that of a coherent state. In order to obey the uncertainty principle,
the other quadrature needs to have a standard deviation larger than that of a coherent state,
e.g. it is anti-squeezed. The single mode squeezed vacuum state is defined by

|ξ⟩ := Ŝ(ξ) |0⟩ = exp

[
1

2

(
ξâ2 − ξ∗(â†)2

)]
|0⟩ , (1.39)

where Ŝ(ξ) is the squeezing operator and ξ = seiϕ is the complex squeezing parameter.
The squeezed vacuum state is generated by the degenerate parametric down conversion
in an optical parametric oscillator, or via four-wave-mixing [42]. These non-linear optical
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processes implement an interaction that is quadratic in the ladder operators, effectively
transforming each photon |n⟩I of the input pump into indistinguishable photon pairs at
the output |2n⟩O. To see why this would imply a quadrature squeezing let us consider the
superposition state of a vacuum and a two photon number state,

|ψ⟩ = C

(
|0⟩ − s√

2
|2⟩
)
, (1.40)

where the normalization factor C = 1 + O(s2) for s ≪ 1. The mean value of the position
operator Q̂ = (â+ â†)/

√
2 is zero in this state, while its variance equals

(∆Q)2 = ⟨ψ| (â+ â†)2√
2

|ψ⟩ = 1

2
− s+O(s2). (1.41)

Hence the state |ψ⟩ is squeezed in position for positive s. If we write the state in 1.39 in
the Fock basis we can see that it can be expressed as a superposition of number states with
even photon number

|ξ⟩ = (sechs)1/2
∞∑
n=0

[
−1

2
eiϕtanhs

]n
[(2n)!]1/2

n!
|2n⟩ . (1.42)

We can use this expression to evaluate the expectation values of the various combinations
of ladder operators. In particular we have that the average photon number is

⟨N̂⟩ = ⟨ξ| â†â |ξ⟩ = sinh2s, (1.43)

which is independent of the phase ϕ. The mean photon number vanishes in the absence of
squeezing s = 0, reducing to the ordinary vacuum state, but increases sharply as the mag-
nitude of the squeezing parameter increases. The photon number variance is accordingly

(∆N)2 = 2⟨N̂⟩(⟨N̂⟩+ 1). (1.44)

The photon number statistics of a squeezed vacuum state is thus super-poissonian. On
the other hand, the expected value of the ladder operators on this state is null and as a
consequence the first moment of the quadratures is 0. Their variances, however, read

(∆Q)2 =
1

2

[
e2ssin2(ϕ/2) + e−2scos2(ϕ/2)

]
(1.45)

(∆P )2 =
1

2

[
e−2ssin2(ϕ/2) + e2scos2(ϕ/2)

]
(1.46)

If we fix ϕ = 0 we have (∆Q)2 = 1/(2∆P )2 = e−2s

2
, hence normally when we have a

positive squeezing parameter we are considering a state squeezed in the Q̂ quadrature and
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for small s we recover equation 1.41. In any case, the uncertainty principle is saturated for
all values of s and ϕ.

Another important class of quantum states is constituted by the coherent squeezed states,
which are simply displaced squeezed vacuum states:

|α, ξ⟩ = D̂(α)Ŝ(ξ) |0⟩ (1.47)

The squeezed coherent state retains the reduced noise of the squeezed vacuum but it also
acquires the non-zero signal of the coherent state and can give rise to a sub-Poissonian
photon statistics, which is a genuinely quantum effect [43]. Figure 1.1 resumes the attributes
of generalized coherent states in phase space, evidencing their noise features.

The reduced variance of squeezed light finds notable uses in many quantum information
processing applications [44] and in optical high-precision measurements, in which it helps
improving the signal-to-noise ratio without increasing the optical power. For example,
squeezing was employed to enhance the measurement sensitivity in spectroscopic mea-
surement of atomic cesium [45] and to improve the new generation of gravitational wave
detectors VIRGO in Italy [46] and LIGO in the United States [47].

1.2.5 Two modes squeezed light
We showed above one of the most common methods to produce squeezing. Spontaneous
parametric down-conversion (SPDC) is a nonlinear optical process in which a photon of a
powerful laser field propagating through a second-order non-linear optical medium may
split into two photons of lower energy. The frequencies, wave vectors and polarizations of
the generated photons are governed by phase-matching conditions. Single-mode squeez-
ing, such as that in the above example, is obtained when SPDC is degenerate and the two
generated photons are indistinguishable in all their parameters: frequency, direction, and
polarization. The quantum state of the optical mode into which the photon pairs are emit-
ted exhibits squeezing. If, on the other hand, we let the SPDC to be implemented in a
non-degenerate configuration , the output of the interaction with the non-linear medium
will be pairs of distinguishable photons. As a consequence of the conservation of the en-
ergy, the momentum and the angular momentum of the incident photons of the pump, the
output pairs will be correlated in frequency, wavevector and polarization. Essentially, all
the degrees of freedom of the photons share non-classical correlations and we refer to the
two electromagnetic modes as entangled. This state can be written in the Fock basis as

|ξAB⟩ := Ŝ2(ξ) |00⟩B = exp
[
−
(
ξâb̂− ξ∗â†b̂†

)]
|00⟩ = sechs

∞∑
n=0

[
−eiϕtanhs

]n |nn⟩ ,
(1.48)

where â is the annihilation operator acting on mode A and b̂ is the annihilation operator
acting on mode B, and we used the compact notation |nn⟩ = |n⟩A⊗ |n⟩B . If the individual
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Figure 1.1: Schematic representation in phase-space of the vacuum state (blue), the
squeezed vacuum (red), the coherent state (yellow) and the squeezed coherent state (green).

modes of this entangled state were considered separately and delivered at two different
position to two agents, Alice and Bob, they would appear as a classical statistical mixture.
This can be seen by tracing out the mode B from the overall state:

ρ̂A = TrB [|ξAB⟩ ⟨ξAB|] =
∑
nB

⟨nB|ξAB⟩ ⟨ξAB|nB⟩ = sech2s
∞∑

nA=0

[tanhs]2nA |nA⟩ ⟨nA| .

(1.49)
By symmetry, the state in the individual mode B will be identical. This is a thermal state
of light, where the diagonal density matrix indicates a classical statistical distribution of
the photon numbers with no quantum coherence. It represents a quantum description of
classical chaotic light, incapable of giving rise to interference and with stochastic fluctu-
ations in the amplitude following a Gaussian probability distribution. As a consequence
of the entanglement however, even though the outcome of a measurement performed by
Alice is completely random, the state of Bob after Alice’s detection is perfectly predictable.
Conversely, the variance of the quadratures in the individual mode is
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(∆QA)
2 = (∆QB)

2 = (∆PA)
2 = (∆PB)

2 =
1 +R4

4R2
, (1.50)

with R = es. Thus each mode of the overall state exceeds the vacuum fluctuations for all
s > 0. Nonetheless, if we consider the operator Q̂AB = Q̂A−Q̂B√

2
we have a variance of

(∆QAB)
2 =

e−2s

2
, (1.51)

which is below that of a vacuum state for all s > 0. Thus, even though each individual mode
presents a noise in the quadratures that grows with s, the fluctuations in the difference of
the quadratures are suppressed. The same thing happens for the sum of the momentum
quadratures.

For infinite squeezing s→ ∞ the positions of A and B are completely uncertain, but at the
same time precisely equal, whereas the momenta are uncertain but precisely opposite. This
state is the basis of the famous quantum non-locality paradox in its original formulation of
Einstein, Podolsky and Rosen [48]. The three scientists argued that by choosing to perform
either a position or momentum measurement on her portion of the state, Alice remotely
prepares either a state with a certain position or one with a certain momentum at Bob’s
location. But according to the uncertainty principle, certainty of position implies complete
uncertainty of momentum, and vice versa. In other words, by choosing the setting of her
measurement apparatus, Alice can instantly and remotely, without any interaction, prepare
at Bob’s station one of two mutually incompatible physical realities. The authors used this
argument to claim that the quantum particles must contain some hidden variables that
decide the outcome of their measurement. This apparent contradiction to basic principles
of causality has challenged quantum mechanics as complete description of physical reality
and triggered a debate that continues to this day [49].

In general, non-linear optical process have a particularlyweak coupling constant thatmakes
the probability of generating photon pairs very low, thus with a small squeezing parameter.
If we take s ≪ 1 we can neglect the higher order terms in the series of equation 1.48 and
the resulting two mode squeezed state will be approximately

|ξAB⟩ ≃
s≪1

1√
1 + s2

(|00⟩+ s |11⟩). (1.52)

This is a coherent superposition of both modes being in a vacuum state and in a single pho-
ton state. In particular, if we assume a Type-I SPDC process, the two single photons will be
in the same polarized state, that we can assume being a balanced superposition of vertical
and horizontal polarized states |d⟩ = |h⟩+ |v⟩. If we separate the two modes spatially and
measure the mode B with a single photon detector, a click in the detector would herald the
presence of a single photon in mode A, effectively post-selecting the states without a vac-
uum. Before doing that, we can prepare another two modes squeezed vacuum |ξCD⟩ with
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modes C and D diagonally polarized |d⟩, and make these two states interfere in a polarized
beam splitter. The bosonic nature of photons will make the indistinguishable states exit
from the same output of the beam splitter, preparing the whole state of the four modes in a
superposition of all modes being vertically polarized, all modes being horizontally polarized
and all modes being vacuum. If we measure modes B and D, disregarding the states that
have no photons and thus produce no clicks in a single photon detector, we can subtract
the vacuum from the state. The resulting state will be an entangled state of modes A and C

|ϕ+⟩ = 1√
2
(|hh⟩+ |vv⟩), (1.53)

which is a superposition of both photons being in the horizontal and vertical polarizations.
In photonic quantum information processing, the polarization of a single photon is often
used to encode a single bit {0, 1}, so we can express state |ϕ+⟩ in the computational basis
by setting |h⟩ → |0⟩ and |v⟩ → |1⟩. In this case, the kets |0⟩ and |1⟩ do not represent the
number of photons in the state, but exclusively the information thereby encoded, hence
state |ϕ+⟩ should not be confused with the state 1.52. From now on, to avoid ambiguity, we
will explicitly specify when a state is expressed in the Fock basis.

The state 1.53 is called a Bell pair and is the single photon version of the EPR pair. The Bell
states are four specific entangled states that constitute an orthonormal basis for the Hilbert
space of two qubits and can be expressed in the computational basis as

|ϕ±⟩ := 1√
2
(|00⟩ ± |11⟩),

|ψ±⟩ := 1√
2
(|01⟩ ± |10⟩). (1.54)

In literature, the EPR state and the Bell states are often regarded as the same thing. How-
ever, while Bell explicitly used the states 1.54 , hence exploiting the discrete degrees of
freedom of qubits, in the EPR article the authors refer to position and momentum of par-
ticles, thus continuous non-commuting variables. We will discuss in a dedicated section
the difference between the discrete and continuous variables formalisms and how to adress
them operationally.

If, likewith the EPR, the individual states of the Bell pair are given toAlice and Bob at distant
positions, the outcomes of their measurements are at the same time perfectly random and
perfectly correlated with each other. In a seminal paper from 1964 [50], John Bell used these
states together with simple probability theory as a counter argument against the EPR point
of view, showing that no local hidden variable theory can predict these correlations.

1.2.6 Multipartite entangled states
Similarly to the EPR pairs, Bell states find applications in a number of quantum commu-
nication scenarios, such as superdense coding [51] and quantum teleportation [52]. The
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working principle is the entanglement that enables the possibility to yield shared random-
ness at arbitrary distance among two agents. If we wish to extend this property to a greater
number of participants we need a multipartite quantum state. We can obtain such state by
letting quantum systems interact in some manner. The easiest way to do this with linear
optics is to use a beam splitter with two different quantum modes as input. For example,
the two modes squeezed state can be obtained by mixing two single modes coherent states
squeezed in position and momentum respectively in a balanced beam splitter.

A significant multipartite state that will be prominent in chapter 4 is the GHZ state, named
after Greenberger, Horne and Zeilinger, who studied its properties in 1989 [53]. A GHZ
state with N particles in a Hilbert space of dimension 2 is expressed in the computational
basis as

|GHZ⟩ = |0⟩⊗N + |1⟩⊗N√
2

. (1.55)

In simple words, it is a quantum superposition of all subsystems being in state 0 with all
of them being in state 1. This state is non bi-separable, meaning that every possible bi-
partition of this state is entangled. GHZ states are used in several protocols in quantum
communication and cryptography, for example, in secret sharing [54], for their capability
to distribute correlated randomness among many agents.

1.2.7 Measuring light: discrete vs. continuous variables
In the previous paragraphs we described light fields under different aspects, emphasizing
either the discrete degrees of freedom, such as polarization, or the continuous ones, such
as quadratures. Some quantum states, like the Bell states of equation 1.54, are naturally
described in terms of a finite discrete set of kets. These states are most suited to encode
quantum information in the form of qubits and are thus akin to yield digital quantum com-
putation and communication. The enormous advantages provided by the usage of digital
data, owing to the trailblazing discoveries of Shannon on coding and of Turing on compu-
tation and the following revolution in Information Technology, were naturally inherited by
Quantum Information science. The latter, in fact, is usually instructed in terms of qubits
and logic gates, whereas the first problems in a course of Quantum Mechanics typically
deal with the continuous time evolution of the position of a quantum state, in order to fa-
cilitate the transition from Classical Physics. The paradigm of digital Quantum Information
processing is commonly termed Discrete Variables (DV).

In Quantum Theory, the description of a state reflects the physical quantity we want to
study and thus the measurement apparatus used to estimate it. All observables define a
complete orthonormal basis for the Hilbert space of a quantum system, that can always be
described in terms of the eigenvectors of the associated Hermitian operator. In Quantum
Optics the DV formulation of Quantum Information operationally translates to the em-
ployment of Single Photon Detectors (SPD). In contrast to a normal photodetector, which
generates an analog signal proportional to the flux of photons, a single-photon detector
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emits a measurable electric pulse every time a photon is detected. Moreover, SPDs can
sharply increase the signal-to-noise ratio [55] and the time resolution of the optical signal
[56]. On the other hand, their functionality is intrinsically probabilistic and they are nor-
mally able only to detect the presence of "at least" one photon and not to actually resolve the
photon number. This is one of the limits to the scaling of Quantum computing with single
photons, also known as Linear Optical Quantum Computing. In this computing model, the
qubit is produced as a superposition of two modes of the electromagnetic field (typically
orthogonal polarizations), is processed with linear optics and then measured with SPDs.
The projective operator of such detectors is expressed in the Fock basis as:

D̂ = 1− |0⟩ ⟨0| =
∑
i≥1

|i⟩ ⟨i| , (1.56)

with degenerate eigenvalues 0 and 1. Thus, the probability of detecting a photon on a
coherent state will be

Pr(α) = ⟨α| D̂ |α⟩ = 1− e−|α|2 . (1.57)
This formula will be helpful in chapter 3. SPDs can be used, as we said, to herald single
photons and even to generate entangled states. However, when dealing with linear optical
quantum computing, it is necessary to process the states before the measurement and then
post-select only the instances in which the outcome revealed the presence of photons.

When we quantized the electromagnetic field we favoured as a natural choice the phase-
space description, in which the quadratures of the field can take any real value. This is the
typical case of bosonic particles such as photons. In modern telecommunications, infor-
mation (either digital or analog) is transmitted by modulating the amplitude and the phase
of the quadratures of the optical carrier. The technologies and techniques developed in
the years by electrical engineers could be employed to study and exploit the properties of
non-classical light. This is the standpoint of the Continuous Variables (CV) paradigm, that
aims at taking advantage of the continuity of the degrees of freedom of the quantum states
to perform analog quantum computation, notably exploiting the non-commutativity of the
quadratures of a single mode electromagnetic field. In practice, this is done by measuring
the states with homodyne detection. This is a technique that allows to extract information
encoded in the modulation of an oscillating signal by comparing it with a Local Oscillator
that would be identical to the signal if it carried null information. In Quantum Optics, ho-
modyne detection is used to measure a weak quantum signal fieldES by letting it interfere
with the strong classical local oscillator EL, in a balanced beam-splitter, whose action is:

(ES,EL) → (
ES +EL√

2
,
ES −EL√

2
). (1.58)

If we measure the two outputs of the beam-splitter with standard photodiodes (not SPD),
assuming perfect detection efficiency the difference between the measured photocurrents
will be:

N̂− = |αL|
(
âe−iθ + â†eiθ

)
∝ Q̂θ, (1.59)
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where the local oscillator is assumed to be a coherent state with complex amplitude αL =
|αL|eiθ and Q̂θ is the generalized quadrature, reducing to Q̂ for θ = 0 and to P̂ for θ = π/2.
For more details on homodyne detection in single and multi modes states of light and its
application to continuous variables quantum information consider the following review by
Lvovsky and Raymer [57].

Both these paradigms, DV and CV, are completely equivalent and each one can be described
in terms of the other. While in the DV formulation the building block for information pro-
cessing is the simplest non-trivial quantum state, the qubit which is formed by a coherent
superposition of two orthogonal modes, in CV the most elementary quantum state is a sin-
gle mode of the quantum harmonic oscillator, that we call qumode. Be that as it may, all
quantum objects have both discrete and continuous degrees of freedom and the neglect of
part of them at the end of the day inevitably results in decoherence and thus the loss of
quantum information. It is therefore crucial to bear this in mind when choosing one of the
two formalisms.

1.2.8 Gaussian States
Continuous variables quantum states are, in essence, states described by variables that obey
the canonical commutation relation in eq. 1.22 [25]. In quantum field theory, this is the typ-
ical case of bosonic systems like photons and is thus the privileged formalism to describe
quantum optics, whereas fermions would obey the anticommutation relation. It can be
easily shown that the algebra of canonical commutating variables does not allow a rep-
resentation through finite size matrices, unlike fermionic states such as electrons. As a
consequence CV states necessarily live in infinite dimensional Hilbert spaces even when
a finite set of modes is considered. Accordingly, the description of the dynamics or the
general properties of such states is often simply intractable. There is however a crucial
class of CV states, characterized by a Gaussian distribution in the phase-space and thus
called Gaussian states, that considerably simplifies the mathematical requirements to be
described.

Gaussian states are ordinarily produced in a vast number of experimental setups in quan-
tum optics [58], trapped ions [59], opto-mechanics [60], atomic ensembles [61] and certain
superconducting systems [62] and we have already encountered a few examples, such as
coherent and squeezed states. The restriction to Gaussian states severely limits the po-
tentialities allowed by an infinite dimensional Hilbert space and is often criticized on the
account of the fact that Gaussian states can be described by a classical probability distri-
bution and can be efficiently simulated on a classical computer [63]. Be that as it may,
Gaussian states possess many intriguing quantum properties and play a significant role in
the development of quantum technologies, for instance in continuous variables quantum
key distribution (CVQKD) [64] and in quantum metrology [65].

Any Hamiltonian that is at most quadratic in the canonical quadratures Q̂ and P̂ imple-
ments a Gaussian operation, hence preserving the Gaussian nature of the phase-space dis-
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tribution of the system [66]. If the input state is Gaussian, it will stay Gaussian during
the time evolution and it can be completely characterized by the first two moments of the
quadratures

r̄ = Tr[ρGr̂], (1.60)
σ = Tr[ρG{(r̂− r̄), (r̂− r̄)T}], (1.61)

where {A,B} = AB + BA is the anticommutator of the operators A and B, ρG is the
density matrix of the Gaussian state and r̂ = (Q̂1...Q̂N , P̂1...P̂N)

T (xp-ordering [25]).

Instead of analysing the evolution of the density matrix of an infinite dimensional Hilbert
space, we can focus on the dynamics of the first and second moments of the canonical
variables, satisfying the commutation relation

[̂r, r̂T ] = iΩ = i

(
0 1

−1 0,

)
(1.62)

where Ω is a 2N × 2N skew-symmetric matrix associated to the N dimensional Hilbert
space. Equivalently, one can write

σ + iΩ > 0, (1.63)

which is the phase-space formulation of Heisenberg uncertainty principle, also called
Robertson-Schrödinger uncertainty relation [67].

The most general second-order Hamiltonian can be written as

Ĥ =
1

2
r̂THmr̂+ r̂T r, (1.64)

where r without the hat is a 2N dimensional real vector and Hm is a symmetric 2N ×
2N matrix known as Hamiltonian matrix. Accordingly, the general Gaussian state density
matrix is

ρ̂G =
e−βĤ

Tr[e−βĤ ]
, (1.65)

where the parameter β = 1/kBT represents the inverse temperature up to the Boltzmann
constant and in the limit β → ∞ we recover the purity of the state.

The linear term in the Hamiltonian r̂T r implements a displacement in the mean values
of the quadratures, such as the displacement of the vacuum to obtain a coherent state in
eq. 1.35. On the other hand, the quadratic term r̂THmr̂ acts on the covariance matrix of
the state. The covariance matrix of a Gaussian state encodes the noise properties of the
system as well as the correlation among different modes. Given our definition of canonical
operators the covariance matrix of the vacuum is σ0 = 1

2
1, however there is not a coherent
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definition in the literature so it is always necessary to carefully check which notation was
adopted.

If we are interested exclusively in the noise properties and correlations of our system we
can neglect the linear terms in the Hamiltonian and consider a quadratic Hamiltonian of
the form Ĥ = r̂Hmr̂

T . The evolution in Heisenberg picture of the vector operators r̂ under
this Hamiltonian is given by

˙̂r = ΩHmr̂. (1.66)

Disregarding the first moments and considering solely the evolution of the covariance ma-
trix σ the evolution of the state from the vacuum after a time t is implemented by

SH = eΩHmt. (1.67)

The operator SH , naturally preserving the symplectic form under congruence SHΩSTH =
Ω in order to satisfy the commutation relations, is by definition a symplectic matrix of
the real symplectic group S2N,ℜ. A complete analysis of the real symplectic group and its
applications to optics and quantum mechanics can be found here [68].

We can obtain the most general pure Gaussian state covariance matrix by applying SH by
congruence to the vacuum covariance matrix

σ = SHσ0S
T
H =

SHS
T
H

2
. (1.68)

In quantum optics the physical process underlying the production of such states relies on
spontaneous parametric down conversion. We can consider, as a specific example, a mode-
locked femto-second laser that outputs ultra-short pulses, whose spectrum in the Fourier
space is a frequency comb constituted of several frequency components peaked in ωp0.
This pump is fed into a χ(2) non-linear crystal, spawning the parametric process that can
be approximated5 by the following interaction Hamiltonian

ĤI = iℏg
∑
jk

Ljk

(
â†j â

†
k − âj âk

)
, (1.69)

where â†j and âj are the ladder operators, respectively creating and destroying a photon
in the jth field mode, g is a squeezing parameter per unit time and the summation is over
all the possible modes. The joint spectral amplitude Ljk, which is the product of the laser
pump amplitude αp and the phase matching function fm,n, describes the probability that
a photon at frequency ωp is converted in two photons at frequencies ωj and ωk. From
energy conservation, ωp = ωj + ωk which gives rise to the correlation between the modes

5The actual Hamiltonian is an integral over all the possible frequencies for pump signal and idler. Since
we have a comb we can think about it as a sum, discretizing the frequencies.
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j and k. Moreover, the conservation of momentum and angular momentum correlate the
wavevector and the polarization as well.

Casting the definition of ladder operators 1.25 into equation 1.69 we obtain

ĤI = ℏg
∑
jk

Ljk

(
Q̂jP̂k + P̂jQ̂k

)
= ℏgQ̂LP̂+ P̂LQ̂. (1.70)

Singular value decomposition allows one to write the symplectic transformation in the so
called Bloch-Messiah decomposition [31] as a product of three matrices, an orthogonal, a
diagonal and an orthogonal SH = O∆O′, which can be interpreted as a basis rotation,
a squeezing in the diagonal basis and another rotation. The mode-basis in which the co-
variance matrix is diagonal and each component is independently squeezed is named the
supermode basis. In [69], [70] where the pump and the phase matching function can be de-
scribed by a Gaussian spectral profile, the supermode basis corresponds to Hermite-Gauss
spectral modes. 6. The squeezing values of ∆ can be derived from the eigenvalues of the
Hamiltonian ĤI , while the orthogonal matrixO can be interpreted as a measurement basis
change or, equivalently, as a passive linear optical transformation. The other orthogonal
matrix O′ is simplified in the product SHSTH and can be disregarded:

σ =
SHS

T
H

2
= 1

2
O∆2OT (1.71)

State-of-the-art ultrafast laser technology allows the possibility of shaping the spectral pro-
file of femto-second coherent pulses. Furthermore, one can engineer the dispersion proper-
ties of the crystal to get the quasi-phase matching conditions by creating a periodic struc-
ture in the nonlinear medium. These techniques permit an optimal control on the laser
pump amplitude αp and the phase matching function fjk respectively, therefore an excel-
lent manipulation of the joint spectral amplitude Ljk and consequently on the squeezing
matrix ∆ can be obtained.

The temporal modes in the pulse can then be addressed and measured through homodyne
detection. By pulse shaping the local oscillator spectral profile, one can change themeasure-
ment basis and select themode that will bemeasured at the same time, enabling the creation
of arbitrary connections between the qumodes of the state. Although we focused the at-
tention on a specific quantum optical implementation, there are many different techniques
that allows a practical manipulation of Gaussian states and the mathematical formalism
described above can be applied to all such cases.

6If they are not exactly Gaussian (the phasematching is a sinc function) they can also be considered
Hermite-Gauss for all practical purposes.
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We completed our first review chapter about the description of the quantum states of light
that will be employed in our protocols. We can now proceed to the second chapter that is
focused on Computer Science topics, notably on the formalization of algorithms and the
theory of networks.
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2.1 Algorithms
Several centuries ago, in the region of modern-day Iraq, an influential mathematical treatise
started to circulate. The book provided an exhaustive account of solving for the positive
roots of polynomial equations up to the second degree and it was entitled “The Compen-
dious Book on Calculation by Completion and Balancing”, also known as “Al-jabr”. It was
the first text to teach algebra as an independent discipline, in an elementary form and for
its own sake, and it was used until the sixteenth century as the principal mathematical
textbook of European universities. The author, who was a prominent polymath, bears a
prestige that overcomes his yet vast mathematical production. His name al-Khwarizmi,
formerly latinized to Algorithmi, baptized a foundational method in science and one of the
most impactful branches of modern mathematics and computer science [71].

An algorithm is an unambiguous finite set of instructions that are required to perform some
specific task, solve a general class of mathematical problems, or perform a computation. It
is an effective procedure that can be expressed in a well-defined formal language in a fi-
nite amount of space and time. In other words, whoever the agent executing the algorithm
is, they should be able to understand it and implement it in bounded time. For example,
if the agent is a person and the algorithm is a recipe written in English, they could use
it to prepare a delicious meal in time for dinner. Conversely, if the agent is a computer
and the algorithm is a program written in Python, they can compile the program and ex-
ecute it to recognize pictures of cats on the internet very efficiently. Ultimately, anything
a computer can do reduces to computing a mathematical function on some input values.
There is a humongous number of protocols that can estimate some remarkably complex
functions and deal with some of the most intractable mathematical problems. However,
the time required to perform these computations, although limited, is not necessarily small
and this is a crucial aspect both for the formal description and classification of the algo-
rithms and for their impact on society. Some of the most insightful problems would require
a time that exceeds the life expectation of the Sun to be accomplished on the finest exist-
ing super-computer. In spite of the fact that the average computer speed doubles every
18 months, as stated by Moore’s law, this trend will eventually stop before such problems
become tractable [72]. The recent theoretical and experimental progresses in the field of
quantum computation have shown that quantum mechanics can, in some measure, change
this paradigm. Nonetheless, to understand how to use it properly, we need to learn how to
classify algorithms based on the number of elementary computer operations.

The treatment of the theory of computational complexity of the following paragraphs is
based on these references [73]–[75], in particular the discussion of NP-completeness hinges
on [76].

34



Computer Science Toolbox

2.1.1 Computational time

According to the legend, the game of chess has its origin in India between 400 and 600
CE. The mythical brahmin Sissa would have invented the game to entertain and teach the
king who, in turn, gratefully questioned the wise priest what he would desire as a reward.
The old man requested that the monarch place one grain of rice on the first square of the
chessboard, two on the second and so on, doubling the number of grains for each square
up to the 64th. The naive ruler was delighted that he could so easily fulfil his mentor’s
request but he soon had to realize the impossibility of the test. Only on the last square of
the chessboard, there would be 263 = 9, 223, 372, 036, 854, 775, 808 grains of rice, enough
to overwhelm the whole surface of India and its inhabitants. The astute Sissa had tricked
the king and thought him a valuable lesson on exponential growth [77].

This myth is exemplary to showcase the importance of efficient algorithms. Imagine you
want to build a program that breaks a password expressed as a Boolean string of N vari-
ables. If you have absolutely no information, your best option is to brute force all the 2N
possible combinations. Notwithstanding, if you find out that the password has some struc-
ture you could employ this additional information to restrict the number of operations,
which might be, with some luck, a polynomial in N . In this case, we would say that the
algorithm is efficient regardless of the type of polynomial we are considering. In fact, any
polynomial, even if it has a huge exponent and a large constant, will always be smaller
than an exponential if we take N big enough. In practice, although for small N the inef-
ficient algorithm may be faster, its running time on any computer will be asymptotically
intractable.

Expressing running time in terms of basic computer operations is a big simplification. As
a matter of fact, the execution time of any of such steps depends crucially on the specific
details of the architecture on which it is performed and may change dramatically from one
execution to another and even from one step to the next one. It would be impossible to
take into account all these minutiae and, at the same time, provide a general result that
applies to any processor. This leads to yet another simplification, which is the neglect of
the smaller order terms of the polynomial and of the constant factor.

In order to formalize all this and provide an operational way to compute the computational
time of a protocol, we can introduce the Big O notation, also called Bachmann-Landau
notation, that characterizes functions according to their growth rates:

Definition 2.1.1. Let f(n) and g(n) be functions from positive intergers to positive reals. We
say f = O(g) (f is big Oh of g) if there is a constant c and a positive integer n′ such that
f(n) < cg(n) for all n > n′.

The functions f(n) and g(n) can be thought of as running times of two different algorithms
with input size n. Different functions with the same growth rate may be represented using
the same O notation. The letter O is used because the growth rate of a function is also
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referred to as the order. For instance, the function h(n) = 10n5 + 500n + 1000log(n) is
of the order n5, h = O(n5). The big O notation usually only provides an upper bound on
the growth rate of the function, thus it is sometimes necessary to refer to other symbols
to describe other types of bounds on asymptotic rates. The ones that will be used in this
manuscript are:

• f = Ω(g), when g = O(f);

• f = Θ(g), when f = O(g) and f = Ω(g).

2.1.2 NP complete problems

We now have a formal approach to analyze algorithms based on their efficiency. This
method can be used to classify mathematical problems in complexity classes depending on
their usage of time (or even memory and space) resources. The complexity of a problem
is the running time of the best algorithms that allow solving the problem as a function of
its input size, which is the number of variables n required to fully specify the instance of
the problem. The complexity of a class of problems, on the other hand, is the complexity
of the hardest instance of a set of problems. Hence, if we define A a specific set of math-
ematical problems that shares some general similarities and for which we know that the
best algorithm to solve them runs in polynomial time, then the computational complexity
of the class A is polynomial. However, if there is a set B in which even just one instance
of the problems that takes a number of operation that is greater than any polynomial, than
the computational complexity of B is not polynomial and it is generally referred to as ex-
ponential.

The existence of polynomial time algorithms is far from being meaningless. Most expo-
nential time algorithms are merely variations of a brute force search across all possible
solutions, whereas polynomial time algorithms are generally enabled only through some
deeper insight into the structure of a problem. These algorithms exemplify the power of
mathematical intuition, providing a general approach to solve some important problems
on a machine, whose performances strongly improve with the enhancement of computer
technology and whose running time does not explode for slightly larger instances of the
same problem. For all these reasons there is a widely accepted unspoken agreement that a
problem has not been “well-solved” until a polynomial time algorithm is known for it. The
set of problems for which an efficient algorithm is known is called P:

Definition 2.1.2. A problem is in P if its solution is a YES/NO answer (decision problem) that
can be found by an algorithm on a computer in polynomial time.

In the previous example we would have said that A ∈ P while B /∈ P. Conveniently, the
complexity class P contains a lot of helpful natural problems such as checking if a word is
a palindrome, sorting a dictionary in alphabetical order, testing if a number is prime and
multiplying matrices.
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Nonetheless, there are many problems with crucial applications for which a polynomial
time algorithm is not known. Among these, we have the coloring of a geographical map
using k colors (graph coloring), filling a backpack of limited capacity with themost valuable
items from a list (knapsack problem) and finding the shortest round trip to visit a list of cities
(traveling salesman problem). These problems may look simple if pictured on a small scale,
but becomes extremely complex when many variables are in play. Furthermore, they are
pivotal in many use-cases of scheduling, logistics and optimization.

Among all the possible formulations of mathematical instances, those that lie in P are rel-
atively few. An important complexity class, though, is constituted by the set of decision
problems, for which the answer is YES or NO, whose solution can be verified efficiently:

Definition 2.1.3. A problem is in NP if it is a decision problem for which, if we are given a
proof, a computer can verify in polynomial time if it is or not a solution.

While P clearly stands for polynomial, NP is the abbreviation of non-deterministic polyno-
mial, meaning that it can be efficiently solved on a non-deterministic Turing machine1. We
can safely assert that P is contained in NP, however deciding whether a problem is in NP
but not in P may sound a bit arbitrary. As a matter of fact, we claim that a problem is not
contained in P on the grounds that nobody could find an polynomial time algorithm to
solve it yet. It might be the case that one day we will find an efficient solution to all the
problems contained in NP, causing the so-called collapse of the polynomial hierarchy. In
spite of that, it is largely believed that this is not the case and that, ultimately

P ̸= NP (2.1)

Proving or disproving this conjecture is one the major problems of computer science and
of math in general. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute, each of which carries a 1,000,000 US $ prize for the first correct
solution.

There are a few examples of problems that were incorrectly believed not to be solvable in
efficient time, such as linear programming [78] and the primality test [79]. A huge break-
through in the field was caused by the discovery of an efficient quantum algorithm for
integer factorization by Peter Shor [80]. This finding yields outstanding direct implications
both for science and for our every-day life. In fact, the most widely used cryptographic
algorithm, the RSA, is based on the hardness of factoring a big number in primes [81]. In a
world where a quantum device is able to carry out Shor’s algorithm for an arbitrary input
size it will be necessary to switch several widely-used asymmetric cryptographic protocols
to post-quantum cryptographic schemes or to quantum key distribution [82].

1A non-deterministic Turing machine is a theoretical model of computation in which, at each elementary
step, more possible actions can be taken. In principle, it is as if during the computation each time the computer
needs to take a decision the number of machines is doubled, until one of the computers find the correct
solution. If the fastest of these theoretical computers finds the solution in polynomial time, then the problem
was in NP.
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On these grounds, what are the evidences that make us think that equation 2.1 is correct,
e.g. that some specific problems do not have efficient algorithms? Well, at the very least we
have the intuitive argument that in our everyday experience there are problems that are
hard to solve but for which the solutions are easy to verify. This is the position argued by
Scott Aaronson who stated [83]:

“If P = NP, then the world would be a profoundly different place than we usu-
ally assume it to be. There would be no special value in "creative leaps," no
fundamental gap between solving a problem and recognizing the solution once
it’s found.”

Equation 2.1 is a cornerstone of the theory of NP complete problems, which will be a key
topic in our discussion of chapter 3. However, overconfidence in an unprovenmathematical
assumption should never be advocated, and proofs ofP = NP are being explored aswell. A
few paragraphs above, before definingNP, we cited three special problems: graph coloring,
knapsack and traveling salesman. It can be proved that there is an efficient algorithm that
transforms each of these problems in any of the other two. This algorithm is called reduction
and it is a widely used instrument in computational complexity theory to show that some
problems are at least as difficult as some others. The pivotal result of NP completeness
theory is that all the hardest problems in NP can be reduced from one to any other, in fact
they can all be thought of as different representations of the same problem.

Definition 2.1.4. A problem is NP complete if it can be reduced to the hardest problem in
NP.

A direct consequence of NP completeness theory is that if one finds a polynomial time algo-
rithm for anNP complete problem, than equation 2.1 is obviously false! This is apparently
not believed to be the case, however it would be the right way to proceed if one wanted
to see the collapse of the polynomial hierarchy and, along with, in case equation 2.1 holds
and stands tall, we have a practical tool to bound the computational complexity of many
problems.

Which is, then, the hardest problem that can be efficiently verifiable? This question is
answered by a fundamental unproven assumption in computational complexity theory,
namely the exponential time hypothesis, formulated by Impagliazzo and Paturi [84], which
implies equation 2.1 but it is more general and has important consequences for computa-
tion, communication and structural complexity theories.

Conjecture 2.1.1. (The exponential time hypothesis) The 3-SAT problem cannot be solved in
subexponential time in the worst case.

The 3-SAT is a Boolean satisfiability problem, namely the problem of determining if there
exists a string of boolean variables that satisfies a given formula. The hardness of these
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Figure 2.1: Diagram of the complexity class relations.

types of problems is an immediate consequence of Cook-Levin theorem that reads

Theorem 2.1.1. (Cook-Levin theorem) The boolean satisfiability problem is NP-complete,
meaning that it is in NP and every problem in NP can be reduced to it in polynomial time.

In a 3-SAT, specifically, the boolean formula is a conjunction of clauses or propositions
composed by three variables out of theN different inputs describing the problem, and each
clause is satisfied if at least one of the three variables is True. The instance of the problem
is fulfilled if and only if one can find an assignment that gratifies every clause. If we choose
any instance withN/3 clauses in which every variable appear just once, the problem is triv-
ially solvable. However, when we increase the number of clauses and the variables appear
multiple times across different parts, the complexity of the problem manifestly explodes.
To the time when this thesis is being written, and to the knowledge of the author, the best-
known practical SAT solvers can provide a complexity ofO(1.307N) = O(20.4N) [85]. This
is the computational complexity of the hardest problem in NP. Inasmuch as every problem
in NP can be turned into a 3-Sat through a reduction algorithm with a polynomial over-
head, we can use this specific problem as a benchmark to draw conclusions for the whole
class. Importantly, for reasons that will turn out evident in the succeeding chapter, when
performing the reduction to the 3-Sat we can assure that the resulting instance is a balanced
formula, meaning that each of theN boolean variable appear in the same constant number
of clauses.

One last important class of problems is the set of NP hard problems, which contains all
the problems that are at least as hard as the 3-SAT, but are not necessarily contained in NP
and are not even necessarily decision problems. The relation among the complexity classes
is resumed in fig. 2.1.
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2.1.3 Interactive proof systems

So far, we describedNP as the class of mathematical problemswith a YES or NO answer that
can be foundwithout effort if one is given a proof. The proof of anymathematical statement,
e.g. whether a given system of coupled partial derivatives equations admits a real solution,
can always be provided as an ordered series of symbols that either supply a procedure
to simplify the problem, for example decoupling the equations, or a specific instance that
confirms or reject the assertion, such as a real solution of the equations. In all cases, we
can model the act of proving a mathematical declaration as the interaction of two agents:
a prover who wants to convince a verifier with incontrovertible logic of the solution to the
problem, providing some certificate, which is any string of symbols of bounded length. If
the above proposition seems overcrowded, the readers can easily convince themselves how
easy it is, sometimes, to convince oneself. In this circumstance, the verifier will always
accept the proof if provided with the correct witness and reject otherwise.

The example just described constitutes an Interactive proof system, which is a powerful
computational model and an extensively studied field of complexity theory. In general,
the form of the interaction is not necessarily required to be a unidirectional message from
the prover to the verifier, and can be as well a series of questions/answers between the two
agents. In addition, the restriction to the case in which the verifier deterministically accepts
or rejects the proof is awfully limiting, whereas allowing the interaction protocol to be a
randomized algorithm turns out to be a pretty powerful tool. A randomized algorithm is
an algorithm that uses a degree of randomness as part of its own logical execution. This
randomness is usually provided as ancillary aleatory bits that guide some of its actions with
the goal of finding the correct solution on average. Probabilistic algorithms revealed to be
crucial to effectively cope with many NP problems and, in some cases, they are the only
practical means of solving a problem.

In literature we find a fancy notation to describe probabilistic interactive proof systems.
The almighty malicious prover is called Merlin, who is computationally unbounded and
will employ every resource and every ace up the sleeve to convince the limited but honest
verifier, Arthur, through a probabilistic protocol, to be in possession of the solution of the
problem, regardless of the fact that the problem might not have a solution. In this scenario,
we require that two important properties are met:

• Completeness: if Merlin provides the correct certificate, Arthur will accept the proof
with probability larger than C, e.g. C = 2/3.

• Soundness: if Merlin cannot provide the right certificate or the instance is not satisfi-
able, then Arthur will accept the proof with probability smaller than S , e.g. S = 1/3.

Randomized algorithms let us define a generalized class of problems that can be probabilis-
tically verified using some random bits and a witness that is potentially smaller than the
input size of the problem N :
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Definition 2.1.5. The class of problemswith Probabilistically Checkable ProofsPCP[r(N), q(N)]

refers to the set of problems that can be verified, with completeness and soundness, through a
randomized algorithm by using at most r(N) random bits and by reading at most q(N) bits
of the complete N bits proof.

This class has a broad influence when studying the algorithmic complexity of approximate
optimization problems. Furthermore, the PCP theorem states that

NP = PCP[O(log(N)), O(1)] (2.2)

In other words, every decision problem in NP has probabilistically checkable proofs that
require at most a constant complexity of bits to be read and logarithmic randomness com-
plexity.

NP completeness theory and Interactive proof systems, upheld by Cook’s and PCP theorems
respectively, stand tall as pillars of the modern theory of algorithms. Their immersion in
the compass of quantum theory and the inclusion of its counter-intuitive logic is a long way
from being petty, nonetheless it is a necessary step for the full development of a quantum
computation theory.

In the following chapter, we will explore the quantum analog of the Merlin Arthur proof
system, which defines a brand new complexity class called QMA, as Quantum Merlin
Arthur.

Definition 2.1.6. A problem is in QMA(C,S) if there is a quantum verifier who receives a
proof in the form of a quantum state |ψ(x)⟩ with a number of qubits that is a polynomial of
the input size p(N) such that:

• if x is a solution of the problem, there is a state |ψ(x)⟩ such that Arthur accepts the proof
with probability at least C;

• if x is not a solution of the problem, Arthur accepts any proof with probability at most
S .

In plain English, the proofs have to be verifiable in polynomial time on a quantum computer,
such that if the answer is indeed YES, the verifier accepts a correct proof with probability
larger than C, and if the answer is NO, then there is no proof which convinces the verifier
to accept with probability larger than S . If a problem admits such proof system for some C
and S then it belongs to QMA.

This ends our discussion on algorithms. Our last topic to review deals with networks in
general and complex networks in particular, that will be an important subject of chapter 5.
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2.2 Networks
Broadly speaking, a network is a collection of points, which we call nodes or vertices, joined
in pairs by lines, which we call edges. Networks are studied in the form of a mathematical
graph theory, which is one of the primary cornerstones of discrete mathematics. Euler’s
celebrated 1735 solution of the Königsberg bridge problem [86] is often cited as the first
true proof in the theory of networks, and during the twentieth century graph theory has
developed into a substantial body of knowledge. In the following we will use the terms
networks and graphs to describe the same thing, however the first one is usually employed
to describe physical systems whereas the latter typically refers to mathematical objects.

Network theory aims at studying how the topology of the pattern of interactions between
different parts of a system affects the behavior of the system itself. For instance, the struc-
ture of the connections between computers on the Internet can strongly influence the routes
that data take over the network and hence the efficiency with which the network transports
those data. Unless we know something about the structure of these networks, we cannot
hope to understand fully how the corresponding systems work.

A graph simplifies the representation of a system by reducing it to an abstract structure
or topology that can capture the essence of the patterns of links, although the systems
studied in principle can have many other important aspects that are not captured by the
network. Some of these nuances can be enhanced by labeling the nodes or edges in order
to endow the network with some attributes, such as names or strengths of interactions.
However, the reduction of a full system to a network representation usually implies some
loss of information about the system itself. Thus, themost fundamental question in network
theory is perhaps the following: how does the structural feature of the network affect the
practical issue under exam?

Over the years, network analysts developed a cornucopia of mathematical and statistical
tools to simulate, analyze and visualize large networks. One of the simplest representations
of a finite graph is its adjacency matrix, whose elements indicate whether pairs of vertices
are adjacent or not in the graph. If the graph is undirected (i.e. all of its edges are bidi-
rectional), the adjacency matrix is symmetric. Its values can be boolean (0 or 1) if it only
indicates the presence of an edge, or real, if it denotes, for instance, its strength. We will see
that in some special cases, quantum networks can be represented with a complex valued
adjacency matrix.

Another significant notion in graph theory is the degree distribution. The degree of a vertex
in a network is the number of edges the node has to other vertices and the degree dis-
tribution P (k) is then defined to be the fraction of nodes in the network with degree k.
Thus if there are N nodes in total in a network and Nk of them have degree k, we have
P (k) = Nk

N
. The degree distribution is, in general, a probability distribution. In the long

run, in fact, the attention moved from regular networks, with deterministically generated
periodic structures, to a broader class of graphs with aleatory connections. The Random
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Figure 2.2: Example of a random network: simulation of a GER(N = 2000, p = 0.002). The size of each
node in the graph showed on the left is proportional to its degree. On the right we can see the poissonian
degree distribution typical of this topology.

Graphs are closely associated with the names of Paul Erdős and Alfréd Rényi, who formal-
ized the properties of the network topology that now goes under their names [87]. The
GER(N, p) is the ensemble of random graphs in which each pair of the N vertices has a
probability p of sharing a link, having on average ⟨k⟩ =

(
N
2

)
p edges. The degree distribu-

tion of the Erdős-Rényi graph is a binomial

P (k) =

(
N

2

)
pk(1− p)N−1−k, (2.3)

which becomes Poissonian in the limit of largeN if we keep ⟨k⟩ fixed. From amathematical
perspective, random graphs are used to answer questions about the properties of typical
graphs. Specifically, any graph g ∈ GER(N, p) appears with probability:

Pr[g] = p⟨k⟩(1− p)(
N
2 )−⟨k⟩. (2.4)

One instance of this topology is shown in figure 2.2, where we plotted the graph represen-
tation with nodes and edges and its degree distribution. Notice that all nodes are connected
and have a degree larger than 0, whereas no node has a degree larger than 22. The Erdős-
Rényi model is the simplest model that incorporates a statistical distribution in its defini-
tion. Its assumption, namely that the probability of each edge is uniform and independent,
is however not adequate to describe real complex networks.

2.2.1 Complex networks
The study of the random graph by mathematicians lead to the discovery and rigorous proof
of many important results, both approximate and exact. Yet, the most interesting features
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of real-world networks that have boosted the research of the last few years are not encoun-
tered in the Erdős-Rényi model and one of the main objectives of network theory is now
to show how real networks are not like random graphs. Real networks reveal some aspects
that are not shared by regular nor random networks. They are definitely not deterministic
but posses a number of very predictable non-trivial features that can be used to find both
the intrinsic mechanism that guided their formation and the possible ways in which their
infrastructure could be harnessed to achieve certain goals.

Most networks in the real world have a degree distribution very different from 2.3. Most
are highly right-skewed, meaning that a large majority of nodes have low degree but a
small number, known as hubs, have unusually high degree. Unlike the random graph of
figure 2.2, many networks are found to contain a small but significant number of hubs. For
instance, in the World Wide Web typically only a few websites have a very large number
of links. It is often found in social networks that a small fraction of individuals possess an
unusual number of acquaintances, way larger than the average. Inmostmetabolic processes
there is a small number of metabolites that are always present. Hubs, despite being scare in
number, can have an excessive impact on the behaviour and the performances of networked
systems, as shown by a broad selection of theoretical and experimental results, notably on
the resilience of the network and transport processes and the investigation of the effects of
hubs is a major topic of research in recent years [88].

Due to their degree distribution, random graphs do not show hubs which are instead typical
of scale-free networks. While the Erdős-Rényi graph has a vanishing ratio of nodes with a
large k, empirical data shows that real networks have fat-tailed degree distributions [89],
approximating a power-law for large values of k

P (k) ∼ k−γ, k ≫ 1, (2.5)

for some positive constant γ, whose value lies typically between 2 and 3, although values
a little outside this range are possible and are observed occasionally.

Another remarkable attribute of complex networks that plays a major role in our everyday
life is the so called small-world effect, which is the observation that most pairs of vertices
in naturally occurring networks seem to be connected by a short path. Such circumstance
was put into evidence by a famous sociological experiment conducted in 1967 by Milgram
[90] and popularized by a notorious play named “Six degrees of separation” written by
American playwright John Guare:

“I am bound, you are bound, to everyone on this planet by a trail of six people.”

The study and verification of the small-world effect has been performed in a large number
of different networks [88] and its impact has obvious implications for the dynamics of pro-
cesses taking place on networks. For example, although often students at a school mostly
know people from their own class, many of them have experienced how fast can a rumor
spread across the whole academy as a consequence of the small-world effect. In addition, it
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affects also the number of “hops” performed through the internet by a packet sent among
two distant computers, the time and the ease it takes for a virus to circulate throughout a
population, the number of journey legs necessary for a traveler to move by train or plane,
and so forth. In practice, the nearly instantaneous exchange of data from anywhere in the
globe is a capacity that we owe to the result of the small-world effect.

The notion of network is very general and abstract and some of the most different natural
systems and phenomena can be described in a similar fashion in terms of nodes and edges.
We can broadly organize complex networks into four broad categories: technological net-
works, information networks, social networks, and biological networks.

2.2.2 Technological networks
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Figure 2.3: Example of a technological network: simulation of a GAS(N = 2000). The size of each node
in the graph showed on the left is proportional to its degree. On the right we can see the power-law degree
distribution typical of this topology, where the y-axis is in log-scale.

The first type of networks we will consider are technological networks. These are arti-
ficial networks designed typically for distribution of some merchandise or resource, such
as electricity or information. Examples include telecommunication networks such as the
telephone network, streets, rail lines, or airline routes networks and resource distribution
networks such as water lines, oil or gas pipelines, or sewerage pipes and the electricity grid.
The archetype of this category is however the global scale network formed by data connec-
tions among computers, also known as the Internet. In spite of the fact that the Internet
is a fabricated and scrupulously engineered network, because the many different groups
that built it had almost no centralized supervision and only poor knowledge of each other’s
operations, it has been necessary to carry out experimental measurements in order to re-
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construct our best current data on its topology, in the absence of any common repository
of knowledge about its whole structure.

The Internet has the function of transferring data between computers (and other devices)
around the world, which is done by splitting the data into different packets and shipping
them across the network from node to node until they reach their designed target. It is
thus straightforward to remark that the structure of the internet plays a key part on the
performance of such distribution and that by knowing this structure we can address one of
the most relevant questions of this context: how should we choose the route by which data
are transported? This process is called routing and will be a subject of study in chapter 5.

Since the number of devices connected to the internet is humongous and subject to con-
tinuous change it is necessary to examine the structure of the network at a coarse-grained
level, which usually comprehends the level of routers, networking devices that perform
traffic directing functions on computer networks, or “autonomous systems” (AS), that are a
collection of computers whose networking is handled locally on behalf of a single adminis-
trative entity, exchanging data between other AS over the public Internet. Typical examples
of autonomous systems are the computers at a single company or university.

In figure 2.3 we show an example of the simulation of the AS internet topology based on the
work of Elmokashfi, Kvalbein, and Dovrolis [91]. Interestingly, they proposed a topology
simulator that uses only the total number of nodesN as parameter and generates a random
Internet graph GAS(N) accordingly. The plots show the appearance of a few large hubs
with more than hundred connections, whereas the great majority of vertices are end-nodes
with only one edge that links them to the network. In this way we have an intrinsic hierar-
chical structure that resembles that of the actual Internet, in which we have in a first level
the set of network backbone providers (NBPs), who are primarily national governments
and major telecommunications companies, then the second level composed of Internet ser-
vice providers (ISPs) commercial companies, governments, universities, and others who
contract with NBPs for connection to the backbone and then provide that connection to
end users, who form the third level. Another noteworthy quality of this model is that the
network’s average shortest path length, namely the mean number of hops necessary to go
from any node to any other node, is approximately constant (∼ 4 hops) with the size of the
network.

2.2.3 Information networks
Information networks are artificial networks of data. The emblem of this class is the World
WideWeb, accessible over the physical (but distinguished) network of the Internet, inwhich
vertices are web pages identifies by their Uniform Resource Locators (URLs) and edges are
the hyperlinks connecting them. Unlike the Internet, theWeb is a purely software construct
and there is no physical structure. However, its influence on our society is on no account
negligible and most people nowadays rely extensively on the Web, both for their work and
for their every-day life. As stated by Newman [92]:
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Figure 2.4: Example of an information network: simulation of a GBA(N = 2000,K = 3). The size of each
node in the graph showed on the left is proportional to its degree. On the right we can see the power-law
P (k) ∼ k−3 degree distribution typical of this topology, where the y-axis is in log-scale. There are 993 nodes
with degree of 2 and only one with degree 136.

“ Arguably, the structure of the Web could be said to reflect the structure of
human knowledge. What’s more, people tend to link more often to pages they
find useful than to those they do not, so that the number of links pointing to a
page can be used as a measure of its usefulness. ”

This consideration emphasizes one of the most important aspects of the Web structure,
namely the growth by preferential attachment. Preferential attachment means that the
more connected a node is, the more likely it is to receive new links, establishing a local
simple mechanism for the appearance of large hubs. Albert and Barabási [93] invented a
renowned algorithm, the Barabási-Albert model (BA), for the generation of scale-free ran-
dom networks using preferential attachment, purposely to mimic the structure of the web
and similar networks. The BA topology GBA(N,K) requires an additional parameter to the
number of nodes N . The network, shown in figure 2.4, begins with K nodes connected to
one vertex. Then we progressively add one node with K links, where the probability that
the new node is connected to node i is

p(i) =
ki∑
i ki

, (2.6)

where ki is the degree of node i. Thus the total number of edges in the network is simply
(N −K)K , however their distribution is random and nodes with larger degrees will have
the tendency to attract new links. Although this simple model fails at describing some
properties of theWeb (e.g. it produces an un-directed graph), it captures the salient features
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of the growth of many complex networks. Other types of information networks include
citations networks and words co-occurance.

2.2.4 Social networks
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Figure 2.5: Example of a social network: simulation of a GWS(N = 2000, Q = 4, β = 0.05). The size of
each node in the graph showed on the left is proportional to its degree. On the right we can see that unlike
other complex networks the degree distribution does not follow a power law.

Social networks are often considered as a subclass of Information networks, however it
is one of the largest categories and definitely the first that has been studied extensively.
Sociologists have, in fact, a long tradition of empirical study of these kind of networks, in
which the nodes are constituted by people or groups of people and edges can represent
friendship, communication, collaboration, or any sort of social connections. The spread
of online social networking companies has largely facilitated the analysis of networks of
people. Many of such companies, including Facebook, that at the time of writing has 2.85
billion users, exploit their vast data resources to do scientific research on social networks,
typically for commercial purposes.

A property typical of social networks is the clustering, which is the tendency of some nodes
in a graph to create tiny groups with a high density of edges. In order to include this
feature into the generation of a random network with the small-world property, Watts and
Strogatz [94] developed a model that interpolates between a randomized structure close to
ER graphs and a regular ring lattice. In the Watts-Strogatz model GWS(N,Q, β), shown
in figure 2.5, we first construct a graph with N nodes and NK

2
edges where each node

has exactly K neighbors, then with probability β we rewire each edge connecting it with
another node chosen uniformly at random while avoiding self loops and link duplications.
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The underlying ring structure of the WS produces a locally clustered network, whereas the
random rewiring of the links significantly reduces the average path lengths.

2.2.5 Biological networks
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Figure 2.6: Example of a biological network: simulation of a GPP (N = 2000, σ = 0.4). The size of each
node in the graph showed on the left is proportional to its degree. On the right we can see the power-law
degree distribution typical of this topology, where the y-axis is in log-scale.

So far we presented types of networks that are either built by humans or related to them.
The greatest majority of complex networks, however, are naturally generated by other liv-
ing forms. As a matter of fact, networks appear in range of different settings in biology.
We can account for physical networks, like the connections between neurons in a brain,
or more abstract networks, such as the “food web”, in which the nodes are animal species
that are linked if one of the species eats the other. Yet another class is formed by bio-
chemical networks, which includes metabolic networks, genetic regulatory networks and
protein-protein interactions networks. The latter (PP), also called interactome, represents
the physical association among proteins present in a living cell, where proteins are vertices,
and their interactions are undirected edges. PPs are fundamental to the cellular processes
and also the most thoroughly analyzed networks in biology, playing a crucial role in the
study of evolutionary dynamics. In figure 2.6 it is shown an example of an interactome,
based on the work of Ispolatov, Krapivsky, and Yuryev [95]. In this model GPP (N, σ) the
nodes are added by randomly choosing a target node and the replica is connected to each
neighbor of the target node. Then, each link emanating from the replica is activated with
probability σ. This model has a rich behavior based on the value of σ and correctly simulate
some properties of real PPs, e.g. the scale-freeness, when σ ∼ 0.4.
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Wehave now completed the review chapters and can proceed to the original research that is
the main focus of this thesis. As was explained before, we will look into the details of three
practical algorithms that occur on quantum networks at three different stages of complex-
ity. This will give us an insight on how we can employ the theory developed in these first
two chapters to derive new techniques in quantum communication scenarios with no clas-
sical equivalent, while probing the underlying properties of regular and complex networks
endowed with a quantum optical substrate.
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The Internet is a huge complex network of interconnected computers carrying a myriad
of digital information resources and services that are at the core of the current human
epoch, the information age. However, its building blocks are simple end-to-end connections
between two separated units. In this chapter, we will explore the first stage of the future
quantum Internet by looking at a quantum communication scheme between two agents
with very different qualities: one is a powerful but untrusted quantum server providing a
cloud service, whereas the other is a simple user who is accessing the data center online. In
this scenario, we will provide a protocol to efficiently verify the solution to an NP-complete
problem revealing only limited information about the proof. It will be shown that such a
simple architecture can already provide highly desirable potential applications, for example,
the users would be able to verify the dubious information they receive from the powerful
quantum server without ever having access to the full solution. Such proof systems could
then contribute to protocols like secure identification, authentication or even blockchain
[96] in a future quantum Internet. On the other hand, this result demonstrate a simple way
to empirically achieve computational quantum advantage, the first in an interactive setting,
a long-standing moonshot in the field, believed to be possible only with a considerable
technological leap.

3.1 What is quantum advantage
In 1981, during one of his acclaimed lectures, Richard Feynman pointed out the intractabil-
ity of simulating some quantum phenomena. The memorable quote [97]

“Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.”

had a prominent influence on the following generations and is largely retained to have
been the kickoff for the field of Quantum Computation and Information. Since then, the
rush towards the Holy Grail of showing a quantum advantage has only intensified and
many proposals have been taking turns on stage. At the time of writing these lines, the
race has culminated with two major breakthroughs.

In October 2019 a collaboration of Google and NASA scientists claimed to have reached
quantum supremacy with an array of 54 superconducting qubits [98]. The quantum pro-
cessor, called Sycamore, would have completed a task in 200 seconds that, Google claims,
would take a state-of-the-art supercomputer 10,000 years to finish. In December 2020, the
Chinese photon-based Jiuzhang processor, developed by theUniversity of Science and Tech-
nology of China, achieved a processing power of 76 qubits using 50 input single-mode
squeezed states and was 10 billion times faster than Sycamore, making it the second com-
puter to attain quantum supremacy [99]. The USTC group estimated that it would take 2.5
billion years for the Sunway TaihuLight supercomputer to perform the same calculation.
If the claims upheld the diffused skepticism, these results would constitute a milestone for
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the field of Quantum Information.

At this point, someone may be confused by the terminology with good reasons. There are,
in fact, several terms, such as superiority, supremacy or advantage, that ultimately all refer
to the same thing. In this book, we will favor the use of quantum advantage, on account of
the fact that a quantum supremacy would imply the obsolescence of classical information
processing devices. Anyway, what is exactly quantum advantage? The idea was coined by
John Preskill in a seminal article [100] and is defined as the following:

Definition 3.1.1. Quantum advantage is the empirical act of demonstrating that a pro-
grammable quantum device can solve a problem that no classical computer can solve in any
feasible amount of time.

In the practice, it is about finding a task that is easy for a quantum machine and hard for a
classical one. However, this statement has many subtleties that require deeper discussion.
In the first place, the demonstration must be empirical, id est experimental. If this may
sound completely obvious to a physicist, it is groundbreaking for a computer scientist. It
is somewhat like asking to experimentally prove a mathematical assertion, or even using a
physics experiment to probe the ultimate computational capacity of the Universe. Be that
as it may, the gap between the ultimate theoretical ideas in quantum computing and their
factual implementation is gargantuan and has only recently started to be bridged. Another
relevant aspect to comment is the programmability of the quantum device. In other words,
we should be able to write-in some arbitrary input and read-out the desired output. If this
was not so, then we could claim that any sort of naturally occurring chemical reaction could
be seen as a kind of computational quantum advantage. As a consequence, we require that
the quantum device is in large measure controllable and, in addition, the task it is trying
to perform should be impractical, in the computational complexity terms described in the
previous chapter, for any machine that does not require a quantum description.

There have been many proposals for schemes that should be impossible to simulate on a
classical computer and easily implemented on a quantum system, however there are three
in particular that seemed to be the most promising candidates.

Sampling random quantum circuits is the task performed by the Sycamore quantum proces-
sor to harness quantum advantage. Essentially, it consists in applying random logic gates to
a set of qubits and measuring the outcome in the computational basis. The vastness of the
Hilbert space is such that it is very hard for a classical machine to predict the output state if
the circuit depth and the number of quibits is large enough, while sampling the probability
distribution of the outcomes is straightforward if we directly use a quantum system. Boson
sampling is the problem solved by the Jiuzhang processor. It was introduced by Aaronson
and Arkipov [101] who found a correspondance between the problems of sampling from
the probability distribution of identical bosons scattered by a linear interferometer and that
of evaluating expectation values of permanents of matrices. This task is naturally suited
for photonic platforms thanks to the bosonic nature of light particles, however the specific
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choice of the physical information carriers is irrelevant and any type of boson, e.g. Cooper
pairs in a superconducting circuit, would do the job. Another interesting candidate is quan-
tum annealing, that is a quantum method to solve combinatorial optimization problems by
finding the global minimum of a complex function. The process is based on encoding the
function’s information in a quantum system energy eigenstates and then letting it thermal-
ize in order to reach the global minimum state of its Hamiltonian. Quantum annealers are
currently being implemented by D-Wave system and looks like a promising way to imple-
ment quantum computing task with useful applications, however no claims on quantum
speedup have been announced yet.

These results are by all means precious contributions to the field of Quantum Information,
boosting the development of sophisticated quantum technologies and paving the way for
a complete implementation of a Universal Quantum Computer. Nonetheless they all suffer
from some major drawbacks that must be taken into account. Primarily, the benchmark
against classical computing is unquestionably not a bed of roses and, at its heart, there
is the difficult task of correctly choosing the appropriate mathematical assumptions, e.g.
what is the classical complexity of the problem at hand and how much time would the best
existing supercomputer take to implement it. These assumptions can be bulky and delicate
to deal with and can lead to serious fallacies in the claims, like in the case of the IBM’s
researchers response to Google’s quantum advantage experiment [102]. Another aspect
that turns out to be crucial when dealing with theoretical models of quantum computation
is that even though in the ideal scenario the asymptotic gap between the computational time
of the quantum and classical cases is apparent, in a realistic implementation with noise and
limited input sizes it may be very equivocal. In addition, even if all these problems were
properly tackled, there is still the crucial hurdle of the certification of the claim of quantum
advantage. Strictly speaking, if the problem under consideration belongs to NP, e.g. we
want to factorize large numbers, then it should be easy to verify the correctness of the
output from the quantum hardware. However, this is certainly not the case for the sampling
of an exponential size probability distribution, like Boson and Random circuit samplings. In
those cases, when the instance is such that the simulation on a classical machine is simply
intractable, we do not have a clear way to certify the legitimacy of the solution. Finally, the
lack of useful applications even in perspective for these new technologies is an evident hot
potato. Obviously, science is for science’s sake and these results are fundamental for the
progress of quantum information, having disrupted the last doubts on the possibility that a
quantum device can outperform all classical technologies for some task. However, we need
to be able to step on these landmarks and turn over a new leaf otherwise their influence on
the future of the field will stop here.

In this chapter, we study the power of quantum technologies to provide a computational
advantage in an interactive setting, where first we allow two parties to interact in a prede-
fined manner, and then we look at the time it takes for one of them to resolve a specific
computational task when they can use quantum or classical resources. Specifically, we
study the task of verifying NP-complete problems, in particular whether a set of boolean
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constraints have a satisfying assignment to them or not, when an untrusted party provides
some limited information about the solution of the problem. For this task, we show that we
can achieve a quantum advantage exploiting experimental techniques involving coherent
states, linear optics and single-photon detection.

Before explaining this further let us remark a few properties of our result: first, the quan-
tum hardware we use is simple and the demonstration can be readily reproduced in well-
equipped quantum photonics labs; second, our task is inherently verifiable since the output
is a YES/NO answer and not a sample from an exponential size distribution (we emphasize
here that the quantum machine in our scenario is certainly not solving NP-complete prob-
lems but merely verifies whether a solution exists or not with limited information about the
possible solution); third, the benchmarking against the best classical methods is based only
on the assumption that NP-complete problems do not have sub-exponential algorithms, a
well-known and widely accepted computational assumption [103], that we revised in chap-
ter 2; and finally, while previously experimentally demonstrated computational tasks are
typically tailor-made for showing quantum advantage with no direct connection to useful
applications, the fast verification of NP-complete problems with bounded information leak-
age could potentially lead to interesting applications, including in server-client quantum
computing, authentication systems, ethical behaviour enforcement and blockchain tech-
nologies [96]. At the same time, we stress that the computational advantage we achieve is
not in the standard computational model where a single classical or quantum machine re-
ceives an input and computes an output, but in the interactive setting, where we first allow
interaction with a second party before trying to resolve the computational task at hand.

3.2 Coping with NP-completness
Before going through the details of our results on the demonstration of a quantum compu-
tational advantage in this interactive setting, let us revise some of the fundamental concepts
of NP verification and take a deeper look at the past literature.

3.2.1 2-out-of-4 Sat

In the previous chapter we discussed the importance of the class of NP-complete problems,
which contains some of the most interesting problems both from a theoretical point of view
and in practice. Such problems include the Traveling Salesman Problem, Satisfiability, and
many problems related to combinatorial optimization, scheduling, networks, etc. As we
said earlier, the main characteristic of these problems is that while it is very difficult to find
a solution, and in many cases even approximate the optimal solution, it is easy to verify a
solution if someone provides one to us, even if this is an untrusted party. Moreover, the
theory of NP-completeness shows that all these different problems are related to each other
through reductions, meaning that it suffices to study one of them in order to say something
interesting about the entire class of problems.
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Let us then focus on 2-out-of-4 SAT, which can be obtained through a reduction of a 3-SAT,
the canonical NP-complete problem. The 2-out-of-4 SAT problem consists of a formula of
N boolean variables in a conjunction of clauses, where each clause is satisfied if and only if
exactly two of the four variables forming the clause are True. The task is to decide whether
there exists an assignment to the variables (x1, x2, . . . , xN), which satisfies all clauses of
the formula, in other words for every clause two variables must be True and the other
two must be False. We assume without loss of generality that our 2-out-of-4 SAT instance
meets the following two conditions. First, it is a balanced formula, meaning that every
variable occurs in the same constant number of clauses, and second, it is a Probabilistically
Checkable Proof (PCP), i.e., either the formula is satisfiable, or for any assignment at least
δ fraction of the clauses is unsatisfiable, for some constant δ > 0. These conditions can
always be guaranteed using a polynomial overhead in N and the theory of PCPs. Thus
any NP-complete problem can be reduced to a balanced 2-out-of-4 SAT instance that is
probabilistically checkable.

For the verification of such a 2-out-of-4 SAT instance, we would like the verifier, Arthur,
to accept a correct proof (a truth assignment of the variables that satisfies the formula)
given by a prover, Merlin, with high probability, say C ⩾ 2/3. We formerly called this the
completeness property of the verification scheme. If, on the other hand, the formula is not
satisfiable, then for any potential proof he receives, Arthur must accept the proof with low
probability, say S ⩽ 1/3. This is the soundness property of the verification scheme. For
a 2-out-of-4 SAT problem of size N , the best algorithms for finding a solution run in time
exponential inN (using some sort of clever brute force search for a solution) [85], while the
verification of a potential solution takes time linear in N . One important property of NP-
complete problems is that if we accept that the best algorithms for solving an NP-complete
problem are exponential in N , then if one has found or has been provided with part of a
solution, for example the truth assignment to a subset of the variables of size t < N , then
in the worst case the remaining time to complete the solution is still exponential in (N − t)
[103].

3.2.2 Previous work

The use of quantum protocols for verification in this so-called interactive proof setting was
first employed in [104], which introduced the concept of Quantum Merlin Arthur. Since
then, QMAproblems have been intensively studied [105]–[109]. As we have seen in chapter
2, they are the quantum analog to NP problems in computational complexity theory and
have the same completeness and soundness properties as the ones described above with
the proofs encoded in quantum states.

By the results of [109], we know that quantumMerlin Arthur interactive proof systems can
be used to verify NP-complete problems more efficiently than the classical ones. In par-
ticular, it was shown that a quantum verifier who receives O(

√
N) unentangled copies of

a quantum proof can verify efficiently the 2-out-of-4 SAT instance by performing a num-
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ber of tests/measurements on these states. Note that the assumption that the proofs are
unentangled is crucial. Here, the quantum proof is the state 1√

N

∑N
i=1(−1)xi |i⟩, i.e., the

quantum state on log2N qubits encoding the values of the assignment (x1, . . . , xN) as am-
plitudes. The information Arthur receives about the classical solution cannot be more than
O(

√
N log2N) bits of information, since this is the number of qubits he receives, never-

theless, the verification becomes efficient in the quantum case: for the same amount of
revealed information a classical verification protocol would require exponential time while
it takes polynomial time for the quantum protocol to perform the task. We remark that one
can see the quantum advantage either as a computational advantage, as we do in our work,
where we ask how long the verification will take in the quantum and classical case if we fix
the size of the message sent by the prover, or as an information advantage, where we ask
what size of quantum or classical message is needed if we fix the time of the verification
to be polynomial in the input size. We stress again that, in both cases, the advantage is not
about solving NP-complete problems, but about verifying them with limited information.
In Ref.[110], it was first shown that in theory it is possible to implement such a verification
protocol with single photons and linear optics, albeit a practical implementation is and will
probably continue to be out of reach for photonics technology due to the extremely large
number of elements in the proposed scheme shown in figure 3.1.

Here, we overcome this limitation by proposing a quantum verification test that maintains
the properties of the original one and at the same time uses new conceptual tools that
make it practical. This allows us to provide the first experimental demonstration of an
efficient quantum verification scheme for NP-complete problems, and hence a strong prov-
able quantum advantage for this task based on the assumption that finding a solution to
NP-complete problems takes exponential time on a classical computer. More precisely, we
experimentally demonstrate how a quantum Arthur who receives an unentangled quan-
tum proof of size Õ(N3/4) (where Õ denotes the order up to logarithmic terms) can verify
2-out-of-4 SAT instances in time linear in N , while a well-known assumption is that any
known classical algorithm takes time exponential in (N − Õ(N3/4)). The core idea of our
protocol that enables us to perform the verification with coherent states and a simple lin-
ear optics scheme is based on the Sampling Matching problem defined and implemented in
[111]. This is particularly appealing from a practical point of view because of the relative
ease of preparation and manipulation of coherent states, which combined with linear optics
transformations have made them attractive candidates for proving quantum advantage in
communication complexity and security [112]–[118]. The use of the Sampling Matching
is also one of the main conceptual differences of our current protocol with respect to the
work of [110], which provided a verification protocol with single photons andwhich cannot
readily be made to work simply by mapping the single photons into coherent states.
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Figure 3.1: Complete setup for the 2-out-of-4 SAT verification with linear optics (figure taken from Ref.
[110]). The prover, Merlin, prepares three copies of a single photon state in equal superposition. The satisfy-
ing assignment x is encoded in the optical modes with the phase shifters (green). The verifier, Arthur, after
deciding which of the three tests they are going to perform and which proofs they randomly picked, then
applies a permutation Π on the set of modes. After the permutation, they attach either four-mode interfer-
ometers for the satisfiability test (blue), or 50:50 beamsplitters to each pair of modes (red) for the other two
tests. Depending on the pattern of clicks observed in the detector they decide whether to accept or reject
depending on the pattern of clicks observed. The number of optical elements increases with the input size of
the problem.

3.2.3 Sketch of the scheme

In order to explain the importance of our result let us first go back to the classical case
and describe a possible scheme for verification. Since we know that in case the formula
is not satisfiable then for any assignment at least a constant δ fraction of the clauses are
not satisfied, then for verification it suffices for Arthur to pick a random clause, obtain the
values of the four variables and check whether the clause is satisfied or not. By repeating
this for a small constant number of clauses, Arthur can verify with high probability whether
the instance is satisfiable or not, and moreover, the information Arthur receives about the
solution is very small (just the value of the variables in a few clauses). We can also see this
protocol in a slightly modified version, which will be closer to our quantum verification
protocol based on Sampling Matching. Instead of having Arthur pick uniformly at random
a small number of clauses out of all possible clauses to verify, we can assume that Arthur
picks each clause with some probability so in the end the expected number of clauses he
picks is the same number as in the initial protocol.

There is of course a well-known issue in these schemes. Once Merlin knows which clause
Arthur wants to test, he can easily adapt the values of the variables to make this clause

60



Quantum verification of NP problems

satisfiable. Arthur cannot force Merlin to be consistent across the different clauses, namely
to keep the same value for each variable in the different clauses. One way to remedy this
would be by having Merlin send the entire assignment to Arthur (which is the usual verifi-
cation protocol), but in this case Arthur gets all the information about the classical solution.
Another solution is through interactive computational zero-knowledge proofs, where one
uses cryptographic primitives, i.e., bit commitment, in order to force the behaviour of Mer-
lin, but such schemes necessitate communication between Arthur andMerlin and only offer
computational security [119]. Thus in the classical world, it is impossible to have a protocol
with a single message from Merlin to Arthur that performs verification while at the same
time Arthur does not learn the entire classical solution.

In the quantum world, using coherent states and a new efficient linear optics scheme based
on the Sampling Matching, we can experimentally demonstrate exactly that: a quantum
Arthur can efficiently verify instances of NP-complete problems (in time linear in the size
N ) while at the same time receiving only a small amount of information about the solution
(theoretically of order Õ(N3/4)). To show this advantage experimentally it was sufficient to
use sequences of a few thousand coherent pulses, corresponding to a proof sizeN from 5000
to 15000, with an average mean photon number per pulse on the order of 1, and standard
InGaAs single-photon detectors.

We are now ready to give the details of our quantum verification protocol, analyze its com-
pleteness and soundness, and provide the results of our experimental demonstration.

3.3 The verification protocol

3.3.1 Quantum proofs encoded in coherent states

In the first step of our verification protocol, Merlin sends the quantum proof to Arthur. We
consider here that if the instance is satisfiable then an honest Merlin will use coherent states
to encode the proof, exploiting the coherent state mapping introduced in [112], [113]. More
precisely, he encodes his proof x = (x1, x2, ..., xN) in a time sequence of N weak coherent
states. He does this by applying the displacement operator D̂x(α) = exp(αâ†x − α∗âx)
to the vacuum state, where âx = 1√

N

∑N
k=1(−1)xk âk is the annihilation operator of the

entire coherent state mode, and âk is the photon annihilation operator of the kth time mode.
Hence,

|αx⟩ = D̂x(α) |0⟩ =
N⊗
k=1

|(−1)xkα⟩k , (3.1)

where |(−1)xkα⟩k is a coherent state with mean photon number µ = |α|2 occupying the
kth time mode. Thus, the state |αx⟩ has a mean photon number |αx|2 = N |α|2, with the
photons distributed over the entire sequence ofN modes. As formerly explained in chapter
1, varying the parameter α controls how many photons are expected to be in the state; for
example for α = 1, every coherent state in the sequence has on average one photon, while
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if we take α = 1/
√
N , then on average only one photon will be present in the entire

sequence.

In the single-photon version of the original protocol [109], [110], Merlin prepares O(
√
N)

unentangled copies of a state that consists of a single photon in N modes, i.e., a state in
an N -dimensional Hilbert space. This implies that during the protocol the information
revealed to Arthur is at most O(

√
N log2N) bits of information. Then, a number of tests

are performed on these states to check that they are equal, uniform, and that they satisfy
the boolean formula. For the equality, a SWAP test is performed between different copies
of the proofs; for testing that the amplitudes of the states are roughly uniform, a test based
on the Hidden Matching problem is performed; for satisfiability, the parity of four variables
that belong to the same clause is measured in order to check whether the specific clause
is satisfied. Each test is performed with some probability and if the test is successful, then
Arthur accepts the instance as satisfiable.

An important feature of our protocol is that by using the SamplingMatchingmethodwe are
able to combine the above tests into a single test and all copies of the proofs into a higher
mean photon number sequence of N coherent states, which we also assume to be unen-
tangled. By sending coherent states with a higher mean photon number |α|2 we essentially
increase the probability of measuring each variable and thus the information conveyed by
Merlin; this is important for the uniformity and satisfiability parts of our verification test
as we will see later. Increasing |α|2 instead of sending multiple copies of the same state also
allows us to avoid the necessity of applying the equality test that was ensuring that the
copies are the same. On the other hand, the unentanglement assumption for the sequence
of coherent pulses is necessary as it was in [Refs.[108], [109]], since otherwise Merlin could
potentially try to correlate the detections of specific parts of the proof that are satisfiable,
although the whole proof is not.

We prove in the following that theoretically the average photon number for each of the N
coherent states that the honest Merlin sends when the instance is satisfiable is of the order
of |α|2 = O(N−1/4), which makes the information Arthur gets about the classical solution
to be Õ(N3/4). In high level, this also implies that any classical verification algorithm
with the same amount of information will take time exponential in (N − Õ(N3/4)), which
becomes large enough for practical sizes ofN . This is because Arthur can always enumerate
over all possible proofs Merlin sends and perform the verification for each one of them. It
will take him time exponential in Õ(N3/4) to enumerate over all possible proofs (since the
information in them is less than Õ(N3/4)) and thus if the verification for each of them takes
time less than exponential in (N− Õ(N3/4)) then this would imply a fast algorithm for NP.

Once Arthur receives the quantum proof as a sequence of unentangled coherent states from
Merlin, he performs the verification by applying a verification test. We assume that Merlin
can behave dishonestly in any way possible, apart from having to send unentangled states.
Let us now describe this verification test and how it can be performed in a linear optical
setting.
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3.3.2 The verification test
As we discussed previously, the original verification test [109] consists in first testing that
the copies of the proofs are the same (which we have avoided by sending a single sequence
of coherent states), and then that the amplitudes of each of these states are close to uniform.
This test is necessary in order to show that Arthur can actually check all possible clauses
with roughly uniform probability. Otherwise, Merlin can just force Arthur to always mea-
sure some specific subset of variables (the ones that can satisfy some corresponding subset
of clauses) and thus convince Arthur of the validity of the assignment, even though no
assignment exists that satisfies all clauses.

Here, we deal with this in a different way. Again, we want to ensure that Arthur will
measure each clause with some probability, meaning that Merlin cannot force Arthur to
measure only a specific subset of variables and clauses. This is where we use the idea of
Sampling Matching [ [111]], which was introduced as a practical version of Hidden Match-
ing, the problem performed in the original uniformity test. Instead of interfering Merlin’s
coherent states with themselves, we in fact input in an interferometer Merlin’s sequence of
coherent states in one arm, and a new sequence of coherent states prepared by Arthur in the
other arm. This is also the main difference with the single-photon protocol in [Ref. [110]].

More specifically, the test as depicted in Fig. 3.2 is the following. When Arthur receives
the state |αx⟩ from Merlin with the mean photon number |αx|2 predefined by the protocol,
he generates his local state in the form of a sequence of uniform coherent pulses, with the
same mean photon number. In particular, Arthur creates the state

|α0⟩ =
N⊗
k=1

|α⟩k , (3.2)

such that |α0|2 = |αx|2. He then sequentially interferes each of honest Merlin’s coherent
states with his local coherent states in a balanced beam splitter (BS) and collects the outputs
in the two single-photon detectors, D0 and D1. At each time step k, the input state in the
beam splitter is |(−1)xkα⟩k ⊗ |α⟩k, while at the output modes we have,

|((−1)xk + 1)α√
2

⟩
D0,k

⊗ |((−1)xk − 1)α√
2

⟩
D1,k

. (3.3)

Then, the probability of getting a click on each of the single-photon detectors at the kth
time step of the verification protocol is:

P
(k)
det =

{
1− e−|α|2((−1)xk+1)2/2 on D0

1− e−|α|2((−1)xk−1)2/2 on D1.
(3.4)

One way of understanding the above test is to note that it is guaranteed that Arthur re-
ceives a value for each variable with at least some probability, due to the photons in his
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Figure 3.2: The Sampling Matching scheme (SM). Merlin creates his coherent state quantum proof by
sequentially encoding his proof x into the coherent pulses. Under the SM scheme, Arthur interferes Merlin’s
coherent state quantum proof with his local state consisting of a sequence ofN pulses. He observes the clicks
in two single-photon threshold detectors D0 and D1 to decide whether Merlin’s proof state is correct.

own state. This way, Merlin cannot choose exactly for what variables Arthur will obtain a
value. Thus, Arthur will end up obtaining the values of a subset of variables that is random
enough (meaning Merlin cannot deterministically choose it) so that when he considers the
clauses whose variables are in this subset, then either all of them will be satisfied in the
YES-instance, or sufficiently many of them will not be satisfied in the NO-instance.

Now, if Merlin wants to send a value for a specific variable xk to Arthur, then he can do it
perfectly, since by constructing an honest coherent state of the form |(−1)xkα⟩k, only one
of the two detectors of Arthur has non-zero probability of clicking. On the other hand, if
Merlin sends any state |β⟩, then after the interaction with Arthur’s coherent state |α⟩ one
important thing is true: no matter what Merlin’s state is, there is still a probability of a
detector click, which is at least 1− e−|α|2 due to the photons in Arthur’s coherent state and
the fact that we only perform linear optics operations that preserve the number of photons.
In other words, Arthur obtains a value for each variable with some probability independent
of Merlin’s message, and this value can be fixed by Merlin if he honestly sends a state that
encodes a value.

After recording the results of his measurements, Arthur assigns values to the variables in
the following way: if the detectorD0 clicked, then the value is 0, if the detectorD1 clicked
then the value is 1, while he leaves the variables unassigned if no click was observed. Then,
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Arthur checks for each clause for which he has assigned a value to all four variables whether
it is satisfied or not, namely if exactly two out of the four variables in the clause have value 1.
In the ideal case where there are no errors, Arthur will accept if all clauses are satisfied and
reject if any clause is not satisfied. In the presence of non-ideal experimental conditions,
we will see that Arthur will use a threshold and accept if at least that fraction of clauses are
satisfied or else he will reject.

We are now ready to analyze the completeness of the protocol, namely the probability
Arthur accepts assuming that the 2-out-of-4 SAT instance is a satisfiable instance, in which
case Merlin prepares a proof state in the form |αx⟩ for a satisfying assignment x. Then,
we discuss the soundness of the protocol, namely the case in which the instance has no
satisfying assignment and where Merlin still wants Arthur to accept his proof and acts
dishonestly. He will then try to send some general quantum state to trick Arthur, while, as
we said, here we make the same type of assumption as in the original work of Aaronson et
al.[ [109]], namely that Merlin still sends a sequence of unentangled states. Later, we will
complete the analysis by looking at the protocol under non-ideal experimental conditions
and see what level of noise the interferometric setup can tolerate in order to maintain a
positive gap between the completeness and soundness probabilities.

The completeness corresponds to the probability that Arthur accepts the proof of Merlin
in the case of a satisfiable instance, where Merlin sends the correct quantum state. As we
have described, Arthur will retrieve the values of a number of variables that are encoded in
the phases of Merlin’s sequence of coherent states by using his own local coherent states
and the interferometric setup shown in Fig. 3.2. As long as Merlin honestly encodes the
satisfying assignment into his coherent states then only one detector has non-zero proba-
bility of clicking and thus Arthur will never get a wrong value. Thus the only probability
of rejecting comes from Arthur not obtaining the values of the four variables of any clause.

To estimate this probability, and hence the completeness, we remark again that the unen-
tanglement promise guarantees that the probability of detecting a photon in each of the
pulses in the sequence is independent of the remaining pulses of the sequence, since the
pulses are unentangled between them. Furthermore, the probability of measuring a partic-
ular variable is independent of which clause Arthur is going to verify later on. If we now
denote as ph ≥ 1 − e−2|α|2 the probability that a detector clicks during a time step in an
honest run (see Eq. (3.4)), then the probability that a specific clause is measured (mean-
ing all four variables in the clause are measured) is at least p4h (where we have used the
independence remarks above).

We have also assumed that the instance is balanced and each variable appears in a constant
number of clauses, which implies that the number of clauses in an instance of the problem
is O(N).

Taking into account the above, we see that the probability that Arthur does not obtain the
values of the four variables for any clause in an instance is at most (1− p4h)

O(N). This can
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be made arbitrarily small, and therefore the completeness arbitrarily close to 1, as long as
p4h = O(N−1) for a large enough constant, which in turn implies that it suffices to take |α|2
on the order of O(N−1/4) with a large enough constant. Note that by taking |α|2 on the
order of O(N−1/4), the verifier is expected to receive Õ(N3/4) clicks in the detectors. This
is higher than theO(

√
N) bits in the original protocol of [Ref. [109]], where one can choose

a specific measurement (depending on the clauses) to always get the value of a clause and
hence check satisfiability. In fact theO(

√
N) is needed to prove the uniformity of the state.

In our case, the way we achieve a good probability of measuring all variables in a clause
of the instance is by increasing the |α|2 to ensure we are measuring enough variables, and
that number needs to be now Õ(N3/4) to make the probabilities work out. We will see later
that experimentally we will pick specific values for N and |α|2 that keep the completeness
higher than 0.9.

We are going to show now that if the 2-out-of-4 SAT is a NO instance, then the soundness of
the protocol, namely the probability of Arthur accepting the proof, is small enough no mat-
ter the strategy of the prover as long as the promise of unentanglement holds. For this, we
highlight again two important features of our test and the properties of the SAT instances
we are dealing with. First, at least a δ fraction of the clauses are unsatisfiable for any assign-
ment of variables, and second, the probability of measuring a particular variable is lower
bounded by the fact that Arthur inputs an honest coherent state into the interferometer,
even if Merlin sends no photon in his corresponding state.

We can then bound the probability that Arthur measures the values of some variables and
finds a clause that contains them and is not satisfied. We have already seen that the mini-
mum probability of Arthur obtaining a value for any variable, no matter what Merlin sends,
is pd ≥ 1− e−|α|2 . Then, following the same rationale as before, since a constant δ fraction
of clauses are unsatisfied for any assignment, we can conclude that the probability of mea-
suring the values of four variables that make a clause unsatisfied is at least δp4d. Assuming
again that there are O(N) clauses in an instance, the probability that Arthur does not find
any unsatisfied clause is at most (1 − δp4d)

O(N). So again we just need to pick |α|2 large
enough in order to make the soundness small enough. In particular, since δ is a constant,
we can pick as before |α|2 = O((δN)−1/4) = O(N−1/4) and make soundness arbitrarily
small. We will see later that experimentally we will pick values for N and |α|2 that keep
the soundness lower than 0.6.

3.3.3 Classical complexity of verification

Our quantum verification test takes time O(N) to implement, since Arthur receives a se-
quence of N pulses that he interferes with his own coherent states and then he simply
calculates the number of satisfied clauses (from the O(N) of them) before accepting or re-
jecting. To compare our test with classical resources in terms of complexity, we are making
here a well founded assumption that any classical algorithm for solving 2-out-of-4 SAT
runs in time exponential in the instance size N , e.g. the exponential time hypothesis.

66



Quantum verification of NP problems

In particular, we consider the classical complexity to be of the form 2γN for some con-
stant γ ≤ 1. Shöning’s algorithm for 3-SAT takes time (4/3)n on average for instances
of size n [120], while the best-known practical SAT solvers can provide a complexity of
O(1.307N) = O(20.4N) [85]. We have also discussed previously that if the information
that Arthur gets about the proof is t bits, then the running time of the classical algorithm
remains exponential in (N − t).

The value of t, namely the bits of information Arthur obtains about the proof during the
verification of a YES instance, can be easily upper bounded for our test by the number of
detector clicks during the verification procedure. Wewant to remark here that in our setting
we have an honest Arthur who tries to verify the instance and we do not have to consider
a cheating Arthur as in the case of standard cryptographic settings. The expected number
of clicks in Arthur’s detectors depends on the parameter |α|2, namely the average number
of photons per pulse. In particular we have that the number of clicks is O(N(1− e−|2α|2))
and for our value of |α|2 = O(N−1/4) we have that the information obtained by Arthur
is at most Õ(N3/4). Thus, by picking large enough N it is easy to make the difference
(N − Õ(N3/4)) also large enough.

We will see later that experimentally we will keep this difference larger than 1000. This
is an arbitrary choice that nonetheless is more than sufficient to confirm that the classical
computation would be unfeasible. For example, given a difference of 150, we can calculate
that we would need a 45-digit number of operations to verify the SAT instance: even with
processors working at 10 GHz and operated by 10 billion people, and repeating the oper-
ation in 10 billion planet Earth copies, parallelizing somehow the whole process, it would
be necessary to wait around the age of the Universe to be able to classically verify such
instances.

To summarize the above, in the setting that we have described we define the notion of quan-
tum advantage for verifying NP-complete problems of size N with bounded information
when three conditions are fulfilled:

1. The verification of the proof by a quantum Arthur takes time linear in N ;

2. The obtained completeness is high enough and soundness low enough, where in our
case we have set C > 0.9 and S < 0.6;

3. The number of bits of information on the proof that Arthur obtains is much smaller
than N , in our case at least 1000 bits smaller, so that the classical complexity of per-
forming the same task is such that it is effectively unfeasible.

3.3.4 Dealing with practical imperfections.
Let us now consider how we can take into account practical imperfections in our verifica-
tion test in view of its experimental implementation for demonstrating a quantum advan-
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tage as we have defined it above.

Up till now we have assumed that Arthur measures the values of the variables perfectly
when Merlin is honest. In a practical setting, however, this may not be the case due to
errors coming mainly from the imperfect visibility of the interferometric setup and the
finite quantum efficiency and dark counts of the single-photon detectors.

There is a simple way to remedy the verification test in order to deal with such imperfec-
tions. Arthur performs the same measurements and assigns values to the variables in the
following way: when only one detector clicks then he assigns the corresponding value to
the variable, i.e., he assigns the value 0 if he registers a click in detector D0 and nothing
in D1 and vice versa; when both detectors click (which can occur in practice due to the
imperfections) then he assigns a uniformly random value to the variable; when no detector
clicks then the variable remains unassigned. Note that the fact of picking a random value
for a variable in case of double clicks, instead of ignoring this variable, helps avoiding the
case where Merlin would input a large number of photons to force double clicks for the
variables that he would not want Arthur to measure. Once Arthur assigns the values to the
variables, he looks at the clauses for which all four variables have been assigned a value and
checks if the clause is satisfied, namely if exactly two out of four variables have the value 1.
Knowing the experimental parameters, we can calculate the expected fraction of satisfied
clauses in the YES instance (which should be only slightly less than 1 for photonic systems
with low loss and errors) and the one in the NO instance (which should be much less than
1 for instances with large enough δ and small enough errors). Arthur can now define an
appropriate threshold for the number of satisfied clauses above which he accepts and below
which he rejects, and assuming an appropriate gap between the number of satisfied clauses
in the YES and NO instances we can then guarantee a large gap between completeness and
soundness using simple Chernoff bound calculations.

We will try now to find an experimental parameter regime where we can show quantum
advantage. For this, we first make one more assumption about the dishonest Merlin, which
is that he always sends states that have the correct mean photon number µ = |α|2 specified
by the protocol, while he can freely choose the assignment values in order to trick Arthur
to accept. Note that here we are not trying to define a general interactive proof (Arthur-
Merlin) system; we are trying to construct a specific computational task for experimentally
demonstrating quantum advantage. Thus, we add on top of the unentanglement assump-
tion the assumption of states with the appropriate mean photon number so as to make the
implementation of this task simpler. This essentially corresponds to a dishonest Merlin who
can only cheat “classically”, in the sense that he can choose whatever assignment he wants
for the variables encoded in the quantum states and then send states of the form in Eq. (3.1)
(see also Fig. 3.2). This is an assumption that is only needed in order to perform our proof
of principle experiment but it is not needed for any of the previous analysis of the protocol,
including about completeness and soundness. In fact, even without this assumption we
can find a parameter regime where the experimental demonstration is possible, albeit these
parameters were just out of reach with our photonics setup but can very well be achieved
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in the near future. We will also discuss later how Arthur may in fact be able to force this
behaviour of Merlin, namely instead of assuming that dishonest Merlin sends states with
the correct mean photon number, Arthur can verify this himself by slightly changing the
protocol itself. In any case, we emphasize again that our goal here is to define a specific
theoretical scenario and a concrete computational task for which we can show a quantum
advantage.

We denote the imperfect visibility of Arthur’s interferometer by ν (with ν = 1 in the ideal
case) and the dark count probability of the single-photon detectors by pdark. As we will jus-
tify later, the effect of the random detection events due to the dark counts can be neglected.
To understand the effect of the imperfect visibility, we see that, for example, for an input
state in the beam splitter at the kth time step |α⟩k ⊗ |α⟩k (corresponding to xk = 0), the
output state will be |

√
2να⟩D0,k

⊗ |
√

2(1− ν)α⟩
D1,k

, hence there is a non-zero probability
of a click in the wrong detector (D1 in this case). We can then calculate the probability of
detecting a photon in the correct and wrong detector (and nothing in the other) as follows,

pc = (1− e−2ν|α2|)e−2(1−ν)|α2|,

pw = (1− e−2(1−ν)|α2|)e−2ν|α2|. (3.5)

Moreover, we calculate the probability of a click in both detectors as,

pdc = (1− e−2ν|α2|)(1− e−2(1−ν)|α2|). (3.6)

These double clicks do not contain any information but, as we have explained, they will be
used by Arthur to pick a random value for the variable, so they play a role in the verification
test. Note that the average number of expected detector clicks is given by (pc+pw+pdc)N ≈
phN (with an equality for negligible pdark as in our case). Note also that all quantities depend
on |α|2 and ν, but we have neglected the effect of the losses in the system, as we will also
justify later.

Let us now calculate, taking into account the above, the expected number of satisfied mea-
sured clauses Arthur should obtain in the YES and NO instances. In the YES instance, all
clauses are satisfied by the assignment, and the probability that Arthur measures a satisfied
clause will be the sum of three terms,

pY = (pc + pdc/2)
4 + (pw + pdc/2)

4 + 4(pc + pdc/2)
2(pw + pdc/2)

2. (3.7)

The first term is the probability of getting four correct values for the four variables; the
second of getting four wrong values; and the third is the sum of the probabilities of two
correct and two wrong values in a way that the 2-out-of-4 clause remains satisfied.

In the NO instance, we upper bound the probability of measuring a satisfied clause as fol-
lows,

pN ≤ p4h − δpY − (1− δ)(p4h − pY ). (3.8)
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This is the probability of measuring a clause (for negligible pdark) minus the probability of
measuring an unsatisfied clause. To provide a bound on the latter we note that, for any
assignment, there is at least a δ fraction of unsatisfiable clauses that will not be satisfied if
measured correctly, namely with probability pY , and a fraction 1 − δ of satisfiable clauses
that will be unsatisfied if measured incorrectly, namely with probability p4h − pY .

It is then straightforward to find the expected number of measured satisfied clauses TC in
the YES instance and TS in the NO instance, by multiplying the above probabilities with
the number of clauses that we assume is some constant (greater than 1) times N . Thus, we
have TC − TS ≥ (pY − pN)N . Our experimental values will be such that TC − TS is a large
enough number to allow us to use Chernoff bounds to guarantee a sufficiently large gap
between completeness and soundness.

More specifically, we define a threshold for Arthur’s verification as T = (TC + TS)/2, in
other words Arthur accepts if and only if at least T measured clauses are satisfied. By a
simple Chernoff bound we can then see that the completeness can go arbitrarily close to 1
and the soundness arbitrarily close to 0 by properly tuning the value of |α|2, and again as
|α|2 = O(N−1/4). More precisely, we use the following inequalities for completeness and
soundness,

C = Pr[correct measured clauses ≥ T ] ≥ 1− e
− (TC−TS )2

4TC (3.9)

S = Pr[correct measured clauses ≥ T ] ≤ e
− (TC−TS )2

4TS . (3.10)

To illustrate how this analysis allows us to identify an experimental parameter regime
where it is possible to demonstrate a quantum advantage for our verification task, we show
in Fig. 3.3 theoretical bounds for the fraction of measured satisfied clauses in the YES and
NO instances, as well as the gap between the completeness and soundness, as a function
of the mean photon number µ = |α|2, for N = 10000, ν = 0.91, δ = 0.15, and negligible
dark counts. We can see that for our aforementioned target gap, where we want to keep the
completeness above 0.9 and the soundness below 0.6, there is a region of µ where quantum
advantage can be shown for the chosen parameters.

Let us now discuss the more general scenario where the dishonest Merlin may send any
unentangled state (including with no or many more photons). This is a more complicated
case to analyze, but we do know that whatever Merlin does, Arthur will still receive a value
for a variable from the photons he inputs himself in the interferometer, which is at least
pd = 1− e−|α|2 . If we drop the assumption that Merlin will only send coherent states with
the correct mean photon number, we can still find a region with a positive gap between
completeness and soundness, albeit with more stringent experimental conditions that were
not fulfilled in our setup, in particular with respect to the required visibility, but that we
believe can be fulfilled in the near future.

Note also that Arthur could potentially try to force Merlin to send states with the correct
mean photon number by creating the pulses himself, sending them over to Merlin who
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Figure 3.3: Numerical results. (Top) Gap between completeness and soundness as a function of the mean
photon number µ = |α|2, for N = 10000, δ = 0.15, ν = 0.91. The two vertical lines correspond to the
minimum and maximum µ in order to have at the same time completeness C > 0.9 and soundness S < 0.6.
(Bottom) Fraction of measured satisfied clauses as a function of µ. As the mean photon number increases the
number of satisfied clauses in the NO instance overcomes the one in the YES instance.

prepares the state with the setup of Fig. 3.2 and returns it. Arthur can use random timings
for his pulses impeding Merlin from injecting more photons and also use part of the pulses
in order to count the number of clicks and convince himself that Merlin is not sending
fewer photons over. Again, we do not need to do any of this for our demonstration of a
quantum advantage, since we are free to define the computational task ourselves, namely
verification of NP problems for a specific type of interactive proof systems, without having
to deal with general cryptographic considerations and dishonest behaviours. Nevertheless,
this would provide a simple solution in case one might want to use our protocol in practical
scenarios, for example for server-client verification.

Last, we claim that losses are not important in our setting. Again, this is a verification sce-
nario where an honest Arthur tries to efficiently verify an NP instance with the “small” help
of an untrustful Merlin. Hence, Arthur and Merlin can jointly measure the potential losses
during a calibration phase before the actual verification starts and increase the power of
their pulses by the factor 1/η, where η includes the channel and detection efficiency. Thus,
we do not have to worry here about an Arthur that can use the losses to his benefit.
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To summarize the above and in preparation for the description of our experimental imple-
mentation, we provide below a step-by-step outline of the protocol:

Protocol NP Verification
Input: Instance of the NP-complete problem and all its relevant parameters: N , δ, etc., after
the reduction to a 2-out-of-4 SAT;
Goal: Verification of the solution;

1. Merlin and Arthur jointly perform a pre-calibration of the optical setup, finding the
values of the visibility νN and the transmittivity η;

2. Arthur computes the minimum value of the mean photon number number µN in order
to satisfy the quantum advantage conditions 1-3 and communicates it to Merlin in or-
der to tune the amplitude of his pulses; he also computes the threshold T for accepting
a proof;

3. Arthur sends a signal to Merlin to trigger the protocol;
4. Merlin encodes his proof in the phases of the pulses which are then sent to Arthur;
5. Arthur interferes Merlin’s pulses with his own and assigns a value xk each time he

registers a measurement in the kth pulse:
• xk = 0 for a click in detector D0 and no click in D1;
• xk = 1 for a click in detector D1 and no click in D0;
• xk is randomly assigned if both detectors click.

6. For all the measured bits that form a clause, Arthur checks the satisfiability;
7. If the number of satisfied clauses is greater than T , Arthur accepts the proof, otherwise

he rejects.

3.3.5 Experimental results

We now have all the ingredients to describe the experimental implementation of our ver-
ification test and the assessment of the quantum advantage for this task. As we defined
previously, we need to satisfy three conditions to show quantum advantage. We need the
verification procedure to take time linear in N , to have completeness and soundness such
that C > 0.9 and S < 0.6, and that the number of clicks Arthur registers is much smaller
than the input size N .

First, as we will see, in our experiment we use indeed a train of coherent pulses of size N
and some simple classical post-processing of the measurement results, so our test satisfies
condition 1. In fact, the real time to run the verification procedure for N between 5000
and 14000 was a fraction of a second for the quantum part, a few seconds for the classical
post-processing and a couple of minutes for the calibration procedure for each run.
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Second, we will show that our verification procedure has high completeness, i.e., when
the instance is satisfiable and Merlin sends to Arthur a satisfying assignment encoded in
the coherent states, then Arthur accepts with high probability. For the same experimen-
tal parameters we will then use our theoretical analysis that upper bounds the maximum
soundness of our protocol for any strategy of Merlin, and ensure that the soundness is
much lower than the experimentally demonstrated completeness, thus proving condition 2
of quantum advantage.

In fact, to simplify the classical pre- and post-processing, we experimentally perform amod-
ified version of the test, where we do not sample balanced and probabilistically checkable
YES instances with planted satisfying assignments (this is far from being straightforward),
but we generate uniformly random N -bit strings (for several values of N ) that correspond
to satisfying assignments. Note that a uniform distribution of the satisfying assignments
is the hardest case for the problem, since with any other distribution, Arthur would al-
ready have some information about the possible solutions to the problem. After that, we
check the number of the variables for which Arthur obtains the correct value, the number
of wrong values, and the number of undefined variables. From these numbers we compute
the expected number of satisfied and unsatisfied clauses Arthur will get on a random YES
instance, and using the threshold that has been defined in the calibration phase of the ex-
periment described below, we conclude whether Arthur would accept or reject the instance,
thus estimating the completeness of our protocol.

Finally, the measurements events of Arthur are also used to ensure that condition 3 for
quantum advantage is satisfied.

Let us now provide more details on our experiments. The experimental setup is shown
in Fig. 3.4. The coherent light pulses are generated using a continuous wave laser source
emitting light at 1560 nm followed by an amplitude modulator (AM), at a rate of 50 kHz and
with a pulse duration of 10 ns. An unbalanced beam splitter is used to monitor the pulse
power and a variable optical attenuator (VOA) to set themean photon number at the desired
level. We then use a balanced beam splitter (S) to direct the coherent pulses to Arthur and
Merlin. Following the scheme for the verification test shown in Fig. 3.2, Merlin impinges
his proof on the phase of the pulses using a phase modulator (PM). Arthur and Merlin then
both use a set of variable optical attenuators to finely tune and equalize the power of the
signals entering the output balanced beam splitter of the interferometer (I). The pulses are
finally detected by two InGaAs single-photon detectors (D0 andD1) and the measurement
results are collected by Arthur. The experiment is controlled by a data acquisition card and
the data is analyzed with dedicated software.

We perform several preliminary measurements and calibrations before moving on with the
verification test. In particular, we calibrate the voltage level needed to induce a π-phase
shift, Vπ, with the phase modulator off line. Phase drifts may occur during the experi-
ment and affect the obtained visibility, hence requiring real-time phase correction tech-
niques [111]. In our case the time scale of the drift (on the order of 5 s) was much longer
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Figure 3.4: Experimental setup. A coherent light source operating at a wavelength of 1560 nm (Pure
Photonics) together with an amplitude modulator (AM) are used to generate coherent pulses at a 50 kHz
repetition rate and with a 10 ns pulse duration. Using a beam splitter with 1/99 ratio, we monitor the pulse
power with a photodiode and send the small fraction of the beam to the rest of the setup. The beam is further
attenuated before being split with a balanced beam splitter (BS) and sent to Merlin and Arthur. The former
encodes the proof in the phases of his pulses using a phase modulator (PM). They both use attenuators to fine
tune and equalize the photon number in their paths and the pulses are then interfered on the output beam
splitter (I) before been detected by InGaAs avalanche photodiode single-photon detectors (IDQuantique). The
measurement outcomes are collected using a National Instruments data acquisition card and analyzed with
dedicated software.

than the duration of each run of the protocol (around a fraction of a second) and it was
therefore not necessary to use such feedback loops. Arthur and Merlin also need to care-
fully equalize the power of their pulses before interfering them, as required by our test. To
do this, Arthur calibrates the losses in Merlin’s path by first removing his signal, measuring
detection events due to Merlin’s signal only, for several values of the mean photon number,
and then minimizing the clicks on one of the detectors with his signal reconnected. This
procedure also allows Arthur and Merlin to determine the losses in their setup, and hence
the efficiency η, which includes the channel efficiency ηchannel ≈ 38%, and the quantum ef-
ficiency of the single-photon detectors, ηdet ≈ 25%. As we have explained, this parameter
does not play a direct role in our verification test.

Importantly, the above calibration procedure allows Arthur to evaluate the visibility of the
interferometer, which is central to the assessment of the performance of our test. Indeed,
we use this estimation as benchmark for the expected number of satisfied clauses in the YES
and NO instances, and correspondingly define a threshold for accepting a proof, as we have
detailed previously. A low visibility will increase the number of errors so that we will need
to increase δ in order to verify the solution with sufficient completeness and soundness.

In our experiment, we use the nominal value νN = 0.93, as well as µN = 1.31, and set
correspondingly δ = 0.15. These values are chosen such that in our theoretical estimations
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N ν µ sclk cclk dclk N− tclk T Scl

5000 0,87 1,29 3657 3505 964 1343 2254 2227
6000 0,93 1,30 4834 4741 719 1166 2717 3231
7000 0,94 1,34 5670 5582 848 1330 3232 3904
8000 0,92 1,29 6203 6062 1195 1797 3613 4030
9000 0,92 1,30 6974 6813 1363 2026 4088 4546
10000 0,95 1,15 8045 7929 947 1955 4111 5082
11000 0,93 1,30 8675 8524 1515 2325 4996 5789
12000 0,93 1,30 9632 9466 1476 2368 5437 6471
13000 0,95 1,30 10636 10496 1405 2364 5902 7320
14000 0,94 1,29 11135 10950 1807 2865 6801 7437

Table 3.1: Summary of experimental data. In each run we increase the input size N by 1000. The
table shows: the actual visibility ν in each run; the average number of photons per pulse µ; the number
of measured single clicks sclk and those that were in the correct detector cclk; number of double clicks dclk,
which correspond to randomly assigned variables; the missing bits to complete the solution; the threshold of
correct measured clauses for accepting a proof T ; the number of satisfied clauses in the experiment Scl. The
parameters δ = 0.15, νN = 0.93 and µN = 1.31 are kept fixed in the theoretical analysis of the experiment.

(see Fig. 3.3) the conditions C > 0.9 and S < 0.6 are satisfied at the same time for all the
values of N that we will be using. The value of δ will be fixed for all the runs; however,
we experimentally measure the actual visibility in each case. We remark that here we are
using a single laser to generate the pulse sequences of Arthur and Merlin, which is optimal
for obtaining high visibility values. Nevertheless, it is still possible to use this setup for
assessing the performance of our test for demonstrating a quantum advantage since all
actions required by the test, as shown in Fig. 3.2, are performed independently.

We finally remark that the dark count probability in our setup is pdark ∼ 10−3, and hence
the effect of dark counts can safely be considered negligible for our values of ν and µ. In
fact, for our choice of parameters, we have pc, pw, pdc ≳ 10−2 as can be easily seen from
Eqs. (3.5).

We are now ready to analyze our verification test enabling Arthur to verify efficiently that
a given 2-out-of-4 SAT instance is satisfiable. As we have explained, we assume that Merlin
acts honestly and only the environment will lead to errors that will make Arthur reject a
correct proof. After performing the preliminary calibrations, Merlin starts the test by en-
coding his proof on his coherent pulse sequence. Here, as a proof, we generated a random
Boolean string of N variables (for several values of N ). Arthur records all clicks tclk in-
cluding single and double clicks on both detectors. We denote the single clicks as sclk. He
assigns a bit 0 or 1 to variable xk if the pulse at time step k resulted in a single click in de-
tectorD0 or in a single click in detectorD1, respectively. For the double clicks, he assigns a
random value to the corresponding variable, while we leave all other variables undefined.

75



Chapter 3

For computing the completeness of the verification, we need to decide if Arthur would have
accepted or rejected the specific run of the verification test. Had we fixed a specific instance
then Arthur would just check with the values of the variables that he has obtained, how
many clauses are satisfied and how many clauses are not, and depending on the threshold
T he would accept or reject. Note that Arthur can indeed compute the value of T given the
experimental values of µ and ν.

As we said, in order to avoid the complications of sampling such classical instances in a fair
way, we decide whether Arthur accepts or rejects the instance using the same threshold T ,
but estimating the number of clauses Arthur would have found satisfied or not, through
the number of correct variable values he really obtained through the experiment. Since the
instances are assumed to be balanced, this is equal on expectation over random instances
to the corresponding calculations on the clauses.

In other words, from the number of all single clicks sclk, the number of single clicks that cor-
respond to the correct variable value cclk, and the number of double clicks that are randomly
assigned dcclk, we can infer the probabilities pdcexp = tclk

N
, pcexp = cclk

N
and pwexp = sclk−cclk

N
,

from which we can compute the expected number of satisfied clauses in the YES and NO
instances using Eqs. (3.7) and (3.8). Note that the expected numbers are sufficiently far from
the threshold so that we do not expect the variance of the number of satisfied clauses (for
each specific instance) to affect the completeness. For these experimental parameters we
also compute the soundness, which is in fact very close to 0, see Fig. 3.5.

In order to prove the third condition for the quantum advantage, if the proof is accepted,
we count the number of variables for which Arthur has no information, i.e.,N−sclk, which
is the information that Arthur is missing to complete the solution. We remark again that
a double click in both detectors does not provide any information to Arthur and we also
assume that all single clicks reveal the true variable value. With only classical resources,
Arthur would need a computational time of 2γ(N−sclk), for some prefactor γ (for SAT solvers
around 0.4). As we have explained, here we claim quantum advantage if N − sclk is larger
than 1000, but it is clear that for any given threshold one can reach quantum advantage by
increasing N and improving ν.

In Table 3.1 we summarize our experimental data for fixed δ, slightly varying µ, and ν
evaluated for every input size N . We include the number of single clicks, correct clicks,
double clicks, missing bits, as well as the threshold T and the number of computed satisfied
clauses in each case. As we can see, the number of bits Arthur still misses at the end of
the protocol increases with N , which means that the problem is becoming more and more
difficult for classical computation as N increases. Moreover, starting from N = 6000, we
see that the computed number of satisfied clauses is much bigger than the threshold, hence
the completeness is very close to one.

Finally, in Fig. 3.5 we compare the simulations with a typical run of the experiment for
various N fixing the nominal photon number µN , visibility νN and the constant δ. Notice
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Figure 3.5: Experimental data. (Top) Plot of the gap as a function of N when simulating the protocol
with the nominal parameters of νN = 0.93, µN = 1.31 and δ = 0.15. The vertical line bounds the region for
quantum advantage. (Bottom) Number of clicks as a function of N . The correct bits are clicks in the correct
detector or in both detectors with half probability and total clicks is the total number of measured pulses.
Each square corresponds to one run of the protocol whereas the dots with error bars are numerical. Because
each pulse gives a poissonian probability distribution in the number of photons, the error bar is given by
2
√
#clks which is twice the root mean square of the poissonian.

how the gap between completeness and soundness increases withN and very fast becomes
almost 1. In the experimental runs shown in the figure, the only point for which we cannot
show quantum advantage is the one atN = 5000, since the gap between completeness and
soundness is not large enough. This is due to a low level of visibility that induced a too
large number of incorrect detections in this case.
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3.4 Discussion
The result of this chapter is an experimental demonstration of a computational quantum
advantage in the interactive setting with linear optics. The simplicity of our experimental
implementation, in addition to the powerful algorithmic idea of the Sampling Matching,
exemplifies the power of linear optics, and in particular of coherent state mappings, not
only for communication but also for computational tasks. Differently from the other forms
of computational quantum advantage, that are tailor-made to challenge the capacities of
traditional computing beyond their capabilities and to promote the progress of quantum
platforms, this work enhances the efficacy of the already existing quantum photonics to
harness quantum advantage.

It will be interesting to investigate further applications of linear optics, in particular in the
frame of near-term quantum technologies. Moreover, we would like to argue that our com-
putational task, that of efficiently verifying NP-complete problems with limited leakage of
knowledge about the proof, is a step closer to useful applications, even though it remains
for the time being a theoretical scenario. In fact, one can start imagining applications in a
near-term quantum cloud, where a powerful quantum server might have the ability to per-
form some difficult computation, and the much less powerful client can verify the validity
of the computation, without the server needing to reveal all the information to the client.
Such limited-knowledge proof systems could also have applications in a future quantum
internet, similarly to classical zero-knowledge proofs that can be used for identification,
authentication or blockchain. In addition, we could picture the same scenario in which, al-
though, the client is not interested in getting to know the whole solution but only to know
if there is one, in order to proceed with some computation. In this case, Merlin (or the
quantum server) does not need to care about the privacy of the solution and only wants
to perform the verification scheme with the least amount of energy, therefore the lowest
average photon number per pulse, similarly to [121]. Even though the advantage would be
only polynomial its relevance could be fundamental for a society that is clashing with the
reality of the energetic unsustainability of the internet.

It still remains an open question to find the first concrete real-world application of quan-
tum computers and our results show that linear optics might provide an alternative route
towards that goal.
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The simplest possible quantum connection already revealed some significant features that
are unmatchable with classical techniques. Nonetheless, one link is hardly a network and,
although the preparation andmeasurement of a single quantum state already provides non-
trivial crucial qualities, some of the most important properties of quantum systems arise
only when we drop the assumption of unentanglement and we unveil the nature of multi-
partite quantum states.

When two physical systems interact, they can end up being correlated. Entanglement, is
a quantum superposition of correlations that occurs when quantum systems interact in
some specific manner. When a subsystem of a multipartite quantum state is measured, it
will yield an outcome that is at the same time perfectly random and perfectly correlated
with the outcomes produced by the measurement of the other parts of the whole entangled
state, regardless of the distance between these parts. This outstanding trait of inseparable
many bodies quantum states can be engineered to produce shared randomness on-demand
among distant users who can employ this resource to perform multipartite communication
and computation.

Some of the most ambitious quantum protocols that are allowed by the presence of dis-
tributed entanglement are anonymous transmission [122], which enables two nodes to com-
municate amessage in an untrusted network anonymously, byzantine agreement [123], that
allows a network of n agents, who could in part be faulty or malicious, to reach agreement
on a single bit of data and secret sharing [124], that allows to transfer a quantum state (or
a classical message encoded as quantum state) only with the consent of a certain fraction
of the agents. One of the most desirable technologies that quantum information promises
to revolutionize is, however, electronic voting.

Electronic voting is a useful but challenging internet-based protocol that despitemany theo-
retical approaches and various implementations with different degrees of success, remains a
contentious topic due to issues in reliability and security. In fact, the very definition of secu-
rity in electronic voting is ambiguous, which explains why almost all the proposed schemes
were subsequently declared insecure. All the different implementations performed by the
governments of different countries in the last years attired the critics of specialists [125]
and the 2006 American documentary Hacking democracy revealed how easily an electronic
voting system can be exploited to manipulate the result of a public election.

Here we present a quantum protocol that exploits an untrusted source of multipartite en-
tanglement to carry out an election without relying on election authorities, simultaneous
broadcast or computational assumptions, and whose result is publicly verifiable without
compromising the robustness of the scheme. The level of security depends directly on the
fidelity of the shared multipartite entangled quantum state, and the protocol can be readily
implemented for a few voters with state-of-the-art photonic technology.

80



Quantum electronic voting

4.1 Why electronic voting is still a bad idea
Electronic voting, or e-voting, is a functionality built on top of the Internet or any dis-
tributed network that allows performing large-scale elections in a secure and verified way,
even in the presence of distrusted authorities or dishonest agents. The benefits of such a
functionality include a faster and simpler way to carry out elections resulting in higher
public participation (i.e., a higher number of voters), reduction of election costs, and acces-
sibility for people with disabilities. Furthermore, e-voting offering information-theoretic
security guarantees in principle the security and honesty of the elections even in the case
of corrupted officials or a coalition of dishonest agents. However, the adoption of a pro-
tocol that uses a public network to accomplish elections also increases the possibilities for
fraud by manipulating the results or violating privacy [126]. Moreover, even though it may
not be possible for such a protocol to be infringed, the agents would need to trust devices
and programs they did not author and, most likely, not even understand [127]. Finally, it is
also necessary to take into account the cost of implementing the elections with advanced
technology.

Classical e-voting systems are based on computational assumptions andmight not be secure
against quantum or other adversaries. Moreover, there have been serious criticisms against
commercial e-voting systems due to insecurities [128]. In recent years, several quantum
e-voting protocols have been proposed, announcing perfect security also in dishonest sce-
narios. However, none of these was able to provide a rigorous mathematical definition of
the properties required, such as privacy, verifiability, and correctness, as well as to identify
proper corruption models suitable for this scenario. As a matter of fact, in [129], the au-
thors discovered vulnerabilities in all previously proposed quantum e-voting schemes. Let
us also mention the work in [130], where a lattice based post-quantum cryptographic pro-
tocol achieving computational security was suggested. This may however be undesirable
for e-voting because privacy cannot be guaranteed in the long term. For these reasons it
is paramount to find schemes based on information-theoretic security, rather than compu-
tational assumptions, in order to ensure honest elections also in the presence of dishonest
authorities with unbounded (or much bigger than publicly known) computational power.
This level of security for an e-voting scheme was announced in [131], which proposed a
protocol exploiting only classical resources. However, the requirement of a simultaneous
broadcasting channel makes it impractical even for a small number of voters, or turns the
security back to computational if the simultaneous broadcasting channel is simulated via
usual channels.

Here we describe and formalize several properties required by an electronic voting system
to be secure and propose a quantum protocol that satisfies these properties even in the
presence of computationally unbounded adversaries and without necessarily trusting the
devices that execute the elections. Another benchmark is that of practicality, in the sense
that we want the protocol to be implementable with technology that is already or soon-
to-be available and hence that it is possible to carry out a demonstration at least for a
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few voters. Our protocol fulfils the above requirements, at the expense on relying on the
generation and manipulation of a Greenberger-Horne-Zeilinger (GHZ) state with as many
particles as voters, which is the major limitation to its scalability. We note, however, that
here the number of voters can refer not to the total number of voters in the election, but the
number of voters within each polling station, since, as in the classical case, we can aspire
to provide privacy of each vote within each such polling station.

Our protocol utilises a multipartite entanglement verification scheme [132]–[134] as a sub-
routine as well as classical subroutines useful for anonymous transmission in communi-
cation networks. It is inspired by the self tallying quantum anonymous voting protocol
proposed in [135], the particularity of which resides in the absence of a tallier and any
election authority. Although this protocol was proven insecure in [129], by employing
the multipartite entanglement verification scheme of [132] and simplifying the quantum
resource requirements using ideas of [131], we devise an efficient quantum protocol and
rigorously prove its security. Furthermore, even though sharing an N -party GHZ state for
big N needed for large-scale elections is today still technologically out of reach, we note
that applications for small number of voters are already feasible and important, and so are
applications where one can use multiple small-scale GHZ states to mimic an election with
a large number of polling stations. Similarly to the proposal of [135], such a protocol can
also be used as an anonymous chat board, where one party can write a message visible to
anyone but no one can deduce who sent it (similar to one party being able to vote without
anyone being able to deducewhose vote that is), or even as a form of anonymous distributed
computation.

4.2 Quantum e-voting protocol

In the general setting of our protocol, a source ofN -qubit GHZ states, |GHZ⟩ = 1√
2
(|0⟩⊗N+

|1⟩⊗N), is situated at the central node of a star-graph quantum network, whose edges are
the communication links needed for the distribution of the entangled qubits to N agents.
Even though voters do not have to trust the multipartite entangled photon source, it should
be capable of producing high fidelity quantum states to pass the verification test at the heart
of the protocol in the honest case, and with a high enough rate to ensure the elections can
be performed in an efficient way. Each agent only needs to be able to receive, perform uni-
tary operations, store for a short time, and measure single photons. A particular feature
of our protocol is that it does not require talliers or other election authorities, as all the
votes are announced publicly and anonymously and so each voter can verify that the tally
is correct. However, as we will see later, if a voter detects malicious behaviour, they can
abort the protocol using the appropriate subroutine at the end of the election.

4.2.1 Notation

Before describing the protocol, let us lay out some useful notation.
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• N : the total number of participants to the election;

• W = {1, 2, . . . , N}: the set of all the voters. WH and WD the sets of honest and
dishonest voters respectively;

• V = {vk}k∈W : the set of votes. Each voter vk’s value is the index of the candidate for
which they want to vote;

• K : the number of eligible candidates;

• C = {0, 1, . . . , K − 1}: the set of candidates. We first assume C = {0, 1}; the
generalization to more candidates is shown in the dedicated section.

• B = {bjk}: the bulletin board encodes all the anonymous votes to be tallied.

• E =
∑

kB is the set of votes resulting by summing the rows of the bulletin board.
Errors or dishonest players may induce some bk to be different from vk.

• T = {ti}i∈C the tally, a vector whose elements represent the number of votes for the
corresponding candidate. It can always be computed as a vector valued function of
the bulletin board f(B) = T.

• R = {ri}i∈C is the result of the elections with the actual set of voters V. It is the
histogram of the real voters preferences.

4.2.2 High level protocol description

Let us now describe the protocol, referring to a number of classical and quantum subrou-
tines when it is necessary. The pseudo-code of each of the subroutines is provided in 4.2.3,
while in 4.2.4 we show in detail the pseudo code of the whole quantum e-voting proto-
col and Fig. 4.1 we provide a simple instance of the voting procedure. We will assume in
the following that the election admits only two possible candidates, ‘0’ and ‘1’, while the
generalization to additional candidates is described later.

In the first phase of the protocol, each agent k ∈ [N ] needs to obtain a secret, unique index
ωk ∈ [N ] that indicates the round the agent becomes the voting agent. To do this, the
agents perform the UniqueIndex subroutine.

Subsequently, the second phase consists of as many rounds as the voters and at each round
one agent votes according to the order based on the secret indices shared in the first phase
of the protocol.

Each voting round ℓ ∈ [N ] starts with the voting agent (namely the agent k who has
received the unique index ωk = ℓ) deciding repeatedly to perform one of two actions ac-
cording to some random coins they flip locally: Verification of the source or Voting. The
probability of this decision is guided by a parameterM , which equals the number of coins,
so that the probability the coins return ‘all heads’ (which corresponds to Voting) is 2−M .

83



Chapter 4

In order to notify everyone anonymously of the outcome of the coin flip, all agents then
perform a LogicalOr subroutine with input 0 except the voting agent whose input depends
on the result of the coin flip: if the result was not ‘all heads’ the agent inputs 1, announcing
anonymously Verification to the other agents, otherwise the agent inputs 0 announcing
Voting. For the LogicalOr protocol performed in this phase, we will assume for simplicity
that if the voting agent inputs 1, then the probability that the outcome is 1 is equal to 1,
which corresponds to the choice of a very small security parameter for this subroutine (see
Lemma 2 in 4.2.3).

When Verification is announced, following the corresponding protocol the voting agent
first performs the RandomAgent subroutine in order to choose a verifier anonymously;
this is necessary because the verifier needs to communicate publicly with the other agents
so if their identity is the same as the one of the voting agent, the voter’s privacy would be
violated. Then, they all proceed with the Verification test of the multipartite quantum state
distributed by the untrusted (or just faulty) source. In the ideal case, where the quantum
state is created and distributed with no errors and all the operations are perfect, if the state
does not pass the Verification test the protocol is aborted. In any realistic implementation,
however, the protocol cannot abort as soon as there is any error. In practice, at each voting
round, during the verification tests before Voting, each honest agent k counts the number
of trials and rejections when they are the verifier, computes the practical parameter δk =
rejectionsk
trialsk

, and if this is larger than a predetermined threshold δ, the entire protocol is aborted.

When Voting is announced, the agents proceed with the corresponding subrtoutine, which
returns an N -dimensional binary vector encoding the voting agent’s preference. The un-
derlying idea here is that if all qubits of the shared GHZ state are measured in the Hadamard
basis, the sum of the outcomes dk modulo 2 of all agents is always zero. Then, at this round,
all agents will just perform a Hadamard measurement on their qubit, while the voting agent
k will XOR the outcome of the Hadamard measurement with their vote intention vk. This
implies that when everyone follows the protocol, the parity of all announced outcomes in
the round is equal to the vote intention vk.

Then, a new round starts, the (ℓ + 1)-th round, where it is the turn of agent k′ with index
ωk′ = ℓ + 1 to be the voting agent. After all voting rounds have completed and everyone
has proceeded with Voting, all agents publicly broadcast their own updated vectors and
all together will form an N × N bulletin board B. By computing the parity of each row
(corresponding to each round) we get the vote vector E (since as we said the parity of
each row is equal to the vote of the voting agent) from which the tally T can be calculated
easily by everybody. Since the indices are unique and secret, each agent can verify that
their vote is correct without revealing their choice. If an agent wants to abort the protocol
because of suspected fraud (e.g., the tally does not agree with their vote intention) they can
input their objection anonymously during the LogicalOr procedure that follows, where the
security parameter defines how many agents on average should raise an objection before
the election is actually aborted.
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Figure 4.1: Example of the voting procedure according to our e-voting scheme with 4 voters who vote in
the order (4, 2, 1, 3). At the end of all rounds each voter has a list of 4 Hadamard measurement outcomes dk ,
and for each round the four outcomes sum to 0 modulo 2. The voters express their vote by adding their vote
(0 or 1) to the row corresponding to their secret index (in bold), then broadcast the resulting vector and all
together they form the bulletin board B. Here the votes where (0, 1, 1, 1). Then they sum each row of B to
compute the election vote set E, from which is computed the tally T. In this example candidate ‘1’ won the
election.

4.2.3 Subroutines

Let un now take a look at the specific subroutines employed in theQuantum e-voting pro-
tocol. The LogicalOr, RandomBit and RandomAgent subroutines are classical anonymous
protocols taken from [131] and used in [122]. In particular, the last two are based on the
first one, which performs the logical OR of all the agents’ inputs. It will thus output 1 with
high probability if and only if at least one agent had input 1. The RandomBit subroutine
employs the LogicalOr to produce shared randomness, i.e., a random bit publicly announced
according to some probability distribution. This can be used a number of times in order to
draw an agent at random among the voters through RandomAgent.

Protocol LogicalOr

Input: N agents,N boolean variables xi, security parameter S = (1−2−Γ)Σ ∈ (0, 1).
Output: y =

∨N
i xi.

Resources: Classical communication and random numbers.

Description:
1: Decide N random orderings, such that each voter is the last once. For each

ordering repeat Σ times the following.
2: Each voter k gives an input xk.
3: If xk = 0 set pk = 0, otherwise toss Γ coins and set pk to 1 if the result is ‘all

heads’ and to 0 otherwise.
4: Then each voter generates uniformly at random an N -bit string rk = r1kr

2
k...r

N
k ,

such that
⊕N

i=1 r
i
k = pk.

5: Voter k sends rik to voter i for all i, keeping rkk for themselves.
6: Each voter sums the received bits and broadcasts the parity zi =

⊕N
k=1 r

i
k ac-

cording to the ordering.
7: Compute the parity of the original bits y =

⊕
i zi.
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8: From this everyone can also compute the parity of all other inputs except their
own wk =

⊕N
i=1(zi ⊗ rik).

9: Repeat Σ times from step 4: each time repeat with pk as new inputs.
10: If at least once in the Σ repetitions for the various orderings y = 1, this is the

output of the protocol, otherwise it is y = 0.

The LogicalOr functionality is implemented probabilistically by assigning a random value
pk to all inputs xk = 1, while pk = 0 if xk = 0. Then the parity of the pk is computed
anonymously for various orderings, such that each voter is last once, and for repetitions
for each ordering. Since the inputs of the parity are random, if at least one voter has input 1,
the output of the parity will be 1 at least once through all the repetitions. The orderings are
necessary for the voters to broadcast their computation asynchronously, while at the same
time avoiding that the last agent changes their output to corrupt the result. This subroutine
has two additional parameters as input Σ and Γ that in turn define the security parameter
S. Σ indicates the number of times the protocol needs to be repeated for each ordering,
while Γ specifies the number of coins that each voter has to toss to assign the value pk,
which will be 1 only if the result is ‘all heads’. As a consequence, the security parameter
S = (1−2−Γ)Σ can take any value in the open interval (0, 1) and represents the probability
of the protocol giving the incorrect answer.

The following lemmas are taken from Ref. [131].

Lemma 1. (Reliability) No one can abort the LogicalOr protocol.

If someone refuses to broadcast, it is assumed that the output of the protocol is 1.

Lemma 2. (Correctness) If all the inputs are xi = 0, the LogicalOr protocol outputs y = 0

with probability 1. IfM agents input 1 in the protocol then we will have y = 1with probability
at least P = 1− SM .

Lemma 3. (Privacy) The most an adversary can know in the protocol is the logical Or of the
other participants.

These properties are also guaranteed in the following subroutines that are based on Log-
icalOr.

Protocol RandomBit

Input: Security parameter S to be used in LogicalOR.
Output: The voting agent anonymously announces a random bit uniformly at ran-
dom.
Resources: Classical communication and random numbers.
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Description: Perform the LogicalOr with security parameter S where the voting
agent inputs a random bit according to D and the other agents input 0.

Protocol RandomAgent

Input: Security parameter S to be used in RandomBit.
Output: The voting agent anonymously chooses an agent uniformly at random.
Resources: Classical communication and random numbers.

Description: Repeat RandomBit log2N times.

UniqueIndex is used to anonymously distribute a secret random index to each voter. Note
that here it is a classical protocol while in [135] it was necessary to use another entangled
quantum state to achieve the same goal. This protocol is polynomial in the number of the
operations and completely guarantees the privacy. In order to achieve this functionality
we proceed in the following way. The protocol is composed of N rounds.In the first step
of each round all agents perform the LogicalOr protocol with inputs 0 if they already have
an index, otherwise they will input 1 with probability 1/t and 0 with probability 1 − 1/t,
where t is the number of agents that do not have an index yet. If there is any agent with
input 1 the output of LogicalOr will be y = 1. Each agent with input xk = 1 can verify
at this point if there is a collision by tracking the parity of all other inputs wk. If for any
of the Σ repetitions in every ordering wk ̸= 0, then they know that there is someone
else with input 1. At the end of each LogicalOr everybody performs another LogicalOr
protocol that acts as an anonymous notification, in which they input 0, unless no collision
was detected. Everyone then repeats the first LogicalOr; this time those who previously had
input 0 will stay the same, while the others toss a coin and decide their inputs accordingly.
This is repeated until there is only one agent j with input 1, while wj = 0 throughout all
repetitions of LogicalOr. When the notification LogicalOr is performed, agent j will be
the only with input 1, announcing that the index ωj was assigned and the round is over.
Then this is repeated from the first step, the agents who already have an index always set
their input to 0 and the protocol terminates when the last notification LogicalOr output is
0, announcing that all indices have been assigned. If at any time y = 0, then there is no one
with input 1, and the protocol should be repeated from the beginning of the last LogicalOr,
with the same inputs until someone gets an index.

Protocol UniqueIndex

Input: Security parameter S to be used in LogicalOR, N random boolean variables
xi.
Output: Each agent k has a secret unique index ωk.
Resources: Classical communication and random numbers.
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Description:
1: Beginning of round R = 1.
2: Perform LogicalOr with inputs xk = 0 if they already have an index, otherwise

they input xk = 0 with probability 1− 1/(N − R) and xk = 1 with probability
1/(N −R).

3: If y = 0 repeat from step 2.
4: If an agent k has a bit xk = 1 and wk = 0 they know they are the only one

and has been assigned the secret index corresponding to the round ωk = R,
otherwise there is a collision.

5: [notification] Everybody performs a LogicalOrwith input 0, unless they received
the index in this round, in which case they input 1.

6: If the output of LogicalOr is 0, no index was assigned and we repeat from step 2.
7: If the output of LogicalOr is 1, the index was assigned and we repeat from step

2 with R+ = 1.
8: Repeat from step 2 until all indices have been assigned.

Wherewk (not to be confusedwithωk) was defined in the LogicalOr protocol and represents
the parity of all the inputs except the one with index k.

Verification is the same protocol as in [132], where a test is performed by all the agents and
the quantum state will pass it with a probability that grows with the fidelity between the
input state and an ideal GHZ state.

Protocol Verification

Input: A quantum state distributed and shared by N parties, security parameter S
for RandomAgent.
Output: If the state is a GHZ state→ YES.
Resources: Classical communication, random numbers, quantum state source, quan-
tum channels.

Description:
1: Everyone executes RandomAgent to choose uniformly at random one of the vot-

ers to be the verifier.
2: The verifier generates random angles θj ∈ [0, π) for all agents including them-

selves, such that the sum is a multiple of π. The angles are then sent out to all
the agents.

3: Agent j measures in the basis
[
|+θj⟩ , |−θj⟩

]
=[

1√
2

(
|0⟩+ eiθj |1⟩

)
, 1√

2

(
|0⟩ − eiθj |1⟩

)]
and publicly broadcasts the result

Yj = {0, 1}.
4: The state passes the verification test when the following condition is satisfied:
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if the sum of the randomly chosen angles is an even multiple of π, there must
be an even number of 1 outcomes for Yj , and if the sum is an odd multiple of π,
there must be an odd number of 1 outcomes for Yj :

⊕
j Yj =

1
π

∑
i θi.

With Voting a voter can express their preferred candidate. The state that will be used for
voting is equivalent to a GHZ state up to a local Hadamard transform applied by each
agent to their own particle. Once the GHZ state is measured in the Hadamard basis, the
outcomes will always sum up to 0 mod 2. This can be seen by direct application of the
N -dimensional Hadamard H⊗N

= H1 ⊗H2 ⊗ ...⊗HN , where each of the transforms Hj

acting on the 2-dimensional Hilbert space of the j-th voter’s particle is expressed in the
computational basis as

Hj =
1√
2

[
(|0⟩j + |1⟩j) ⟨0|j + (|0⟩j − |1⟩j) ⟨1|j

]
.

It is easy to show that if we apply the Hadamard to the GHZ state we obtain:

H⊗N

|GHZ⟩ = 2−N

[
N⊗
i=1

(|0⟩i + |1⟩i) +
N⊗
i=1

(|0⟩i − |1⟩i)

]
=

= 2−N

 ∑
{ki=0,1}N

i=1

|ki⟩⊗
N
i +

∑
{ki=0,1}N

i=1

(−1)
∑

ki |ki⟩⊗
N
i

 =

= 2−N/2
∑

∑
ki=0mod2

|ki⟩⊗
N
i .

So, by measuring each particle in the Hadamard basis, we are assured that the sum of the
outcomes will be 0 modulo 2.

Protocol Voting

Input: Voting agent preference vk.
Output: All agents get one row of the bulletin board.
Resources: Classical communication, GHZ source, quantum channels.

Description:
1: Each agent measures the state they received in the Hadamard basis and records

the outcome.
2: The outcomes of the measurement of each voter k is dk. Then we know that∑

k dk = 0 mod 2.
3: The voting agent performs an XOR between the outcome dk and their vote vk:
dk → Bk = dk ⊕ vk. However, this alone will still appear as a random string.

4: Every agent publicly broadcasts dk which gives one line bk of the bulletin board
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B = {bk}.

4.2.4 Quantum e-voting pseudo code
The pseudo code for the entire protocol is given below.

ProtocolQuantum e-voting

Input: N agent votes V = {vk}k∈[N ], security parameter S used in Phase 3, ϵ: ac-
cepted distance from the perfect GHZ, δ: threshold for verification, η: probability of
failure of verification.
Output: The candidate with majority votes or Abort.
Resources: Classical communication, random numbers, N -qubit GHZ source, quan-
tum channels.

Description:
1. Phase 1 [getting unique secret indices]:

• The agents performUniqueIndex until each agent receives a secret unique
random index ωk.

2. Phase 2 [casting votes]:
For ℓ = 1 to N [voting round ℓ]:
(a) The voting agent is the agent k with ωk = ℓ.
(b) Repeat

(i) The source distributes to each of the N agents one qubit of the GHZ
state.

(ii) All agents j ∈ [N ] set rejectionsj = trialsj = 0;
(iii) The voting agent tosses log2

[
16Nϵ2

(ϵ2−4δ)2
ln
(

1
η

)]
coins;

(iv) The agents perform LogicalOr, where output 1 indicates Verification
and output 0 indicates Voting, and where everyone except the voting
agent inputs 0; if the coin toss is ‘all heads’ the voting agent also
inputs 0, otherwise the voting agent inputs 1;

(v) If Verification is chosen, the agents perform RandomAgent and the
voting agent picks anonymously an agent j ∈ [N ] to be the veri-
fier. Agent j increment trialsj by 1 and if Verification outputs reject:
agent j increment rejectionsj by 1.

until Voting is announced.
(c) If for any j ∈ [N ] δj =

rejectionsj
trialsj > δ, the protocol Aborts.

(d) Perform Voting. The outcome is one row of the bulletin board B.
3. Phase 3 [verification of results]:
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• All agents perform LogicalOr with security parameter S, and with input
1 if their vote is not the same as the vote in the tally T for the round in
which they were the voting agent, else with input 0.

• If LogicalOr outputs 1, Abort the protocol, else the candidate with the
majority votes according to the tally wins the elections.

4.3 E-voting protocol Analysis
We now analyze our quantum e-voting scheme and show that it possesses a number of
desired properties even in the non-ideal case where the quantum source is imperfect or can
be manipulated by colluding adversaries.

If the quantum states being used in the protocol are perfect GHZ states and the agents
behave honestly, all the operations are anonymous and hence the e-voting scheme is per-
fectly correct and private. In any realistic scenario, however, the state used will have some
imperfections, due to the source itself, the photon distribution, storage and measurement
that may result in some errors in the tally, for example the sum of the outcomes of a round
will not be 0 mod 2. We account for all the possible imperfections assuming that the fi-
delity between the state used in the protocol |ψ⟩ and the perfect GHZ state |GHZ⟩ is
F (|ψ⟩ , |GHZ⟩) =

√
1− ϵ2 for some ϵ > 0. Note that the state produced by the source

could be a mixed state, but as discussed in [122], for the security it suffices to upper bound
the cheating probability of any pure state, since this would also bound the cheating prob-
ability for any mixed state. For this reason we analyze below the case where the state
produced by the source is a pure state.

Since the source or the state itself can further be intercepted and modified by an adver-
sary in order to gain advantage over the privacy of the honest voters, we need to imple-
ment a mechanism that allows anyone to check the legitimacy of the state being used with
high probability. An efficient multipartite entangled state verification protocol was devised
in [132], [133] and applied to an anonymous transmission protocol in [122]. This is the
Verification subroutine used in the protocol (see 4.2.3 for details). While in the ideal case
we would abort the protocol as soon as the test failed once, in a realistic implementation
we need to keep track of the number of failures and at the end check if the failures are too
many with respect to what was expected, which would imply that there was a malicious
manipulation of the source. This is what is performed in Phase 2 of the protocol.

In [132], the authors prove that the probability of a state |ψ⟩, whose trace distance with the
GHZ state isD(|ψ⟩ , |GHZ⟩) = ϵ, to pass the verification test when an honest verifier is in
the presence of dishonest agents who can perform local unitaries and communicate with
each other is P (|ψ⟩) ≤ 1 − ϵ2/4. The main idea of our practical e-voting protocol is that
the states produced by the source and potentially manipulated by the dishonest agents will
be verified a large number of times in order to ensure that the state that will be eventually
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used for the voting part will be very close to the GHZ state. Then we will prove that states
close to the GHZ state offer almost perfect privacy for the e-voting scheme.

We start by proving the following theorem that in high level states that with high proba-
bility if the verification procedure succeeds, then the state used for the e-voting part must
be close to the GHZ state:

Theorem 1. Let Cϵ be the event that the protocol does not abort and the state used for Voting
is such that F (|ψ⟩ , |GHZ⟩) ≤

√
1− ϵ2, for some ϵ > 0. Then,

P (Cϵ) ≤ e−
2M (ϵ2−4δ)2

16Nϵ2 , (4.1)

where δ is the threshold for the ratio of rejections over trials above which the protocol is aborted,
M is the number of coins the agent has to toss to choose between Verification and Voting and
N is the number of agents.

The proof of Theorem 1 is provided in section 4.3.8, at the end of the chapter. Note that
the honest voters do not know how many corrupt agents there are and that if a dishonest
agent is the verifier, the test always passes. We can make the probability of using a state
that is ϵ-far in trace distance from the ideal one arbitrarily small by increasing the number
of repetitions, as long as we have δ = (1 − α)ϵ2/4 for an α ∈ (0, 1); more precisely, by
taking M = log2

[
16N
α2ϵ2

ln
(

1
η

)]
we can make P (Cϵ) ≤ η for any small parameter η > 0.

Moreover, we see that for the same choices of δ andM , we also have the property that the
protocol accepts with high probability states that are a bit closer to the perfect GHZ state,
which is important so that the protocol will not always abort. Indeed, it is easy to see with
Chernoff bounds that states that are ϵ

√
1−α
1+α

-away from the GHZ state have probability
almost 1 to pass the verification test.

Hence, we can assume for the remaining of the discussion thatwith high probabilityF (|ψ⟩ , |GHZ⟩) ≥√
1− ϵ2. In this case, we prove that for each round of the protocol, the identity of the voting

agent remains almost secret:

Theorem 2. At any round ℓ ∈ [N ] with voting agent k (who has unique index ωk = ℓ), if
the agents use a state |ψ⟩ such that F (|ψ⟩ , |GHZ⟩) ≥

√
1− ϵ2 to perform Voting, then for

the optimal strategy that any subset of malicious agents D can use to guess the identity of the
voting agent k correctly, we have

∀j ∈ WH , Pr[D guess j] =
{

1
H
+ ϵ̃ for j = k

1−ϵ̃
H

for j ̸= k,
(4.2)

where ϵ̃ =
√
ϵ2 + ϵ4,WH is the set and H the number of honest agents.

This theorem is simply based on Theorem 2 of [122]. The difference is that, instead of
a sender who anonymously chooses between Verification and Anonymous Transmission,
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we have a voting agent who anonymously chooses between Verification and Voting. The
probabilities for the other agents come from the fact that all the agents that are not voting
perform exactly the same transformation on the state, so it is impossible for the dishonest
parties to distinguish between them, hence the probability of guessing their identity is the
same. The proof of Theorem 2 is provided in 4.3.9.

The last property we prove shows that if the agents are all honest and use a state close to
the GHZ state for voting, then the probability there is an error in the tally is small:

Theorem3. If at round ℓ the agents are honest and use a state |ψ⟩ such thatF (|ψ⟩ , |GHZ⟩) ≥√
1− ϵ2 to perform Voting, then the probability that there is an error in the tally in the ℓ-th

round is upper bounded by ϵ,
P er
ℓ ≤ ϵ. (4.3)

The proof of Theorem 3 is provided in 4.3.10. The above three theorems allow us to for-
malize and prove a number of important properties for our e-voting scheme, namely cor-
rectness, privacy, authentication, no double voting, verifiability, and receipt freeness. Note
that in [136], the authors show that there exist sets of properties that are incompatible in
any voting system, meaning that not all of them can be fulfilled simultaneously by any pro-
tocol. However, one can remove the incompatibility by defining approximate versions for
the properties or making computational assumptions about the voters’ behaviour. Indeed,
here, given that we want to allow for imperfect sources of quantum states in order to have
a practical protocol that is robust to some level of noise, we define approximate versions of
some of these properties for our e-voting protocol, as we explain in the following.

4.3.1 (σH , σD, γ)-Correctness
The correctness of a protocol implies that when no adversary interferes, the election should
be carried out correctly, and that in the presence of adversaries, if the election tally is far
from the real votes, then the election is rejected with high probability. These two require-
ments can be expressed as two properties of the voting scheme:

• σH-completeness: if all agents are honest, the election result is accepted with proba-
bility more than σH ,

Pr[election accepted] ≥ σH . (4.4)

• (σD, γ)-soundness: the probability that the election result is accepted, given that the
set of the votes E computed from the bulletin board B resulting from the election is
more than γ-away from the real votesV, is smaller that σD,

Pr[election accepted | 1
N
||V − E||1 ≥ γ] ≤ σD. (4.5)

The use of an imperfect statemay result in some errors in the final tally (see Theorem 3), and
this is why we define a notion of approximate correctness. In particular, the probability that
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the e-voting is validated is the probability that the LogicalOr subroutine in Phase 3 outputs
0 despite some voters announcing a wrong entry in the tally. Note that Theorem 3 ensures
that at each round we can have an error with probability at most ϵ, while it can also be
proven (see Lemma 2 in 4.2.3) that during LogicalOr, if j agents input 1 (which corresponds
to their vote being tallied wrongly) the probability that LogicalOr outputs 0 is Sj , for the
parameter S defined by the e-voting protocol. Summing over all the combinations we get:

Pr[election accepted] =
N∑
j=0

Pr[j inputs 1] Pr[ LogicalOr outputs 0|j inputs 1] =

N∑
j=0

(
N

j

)
ϵj(1− ϵ)N−jSj = [1− ϵ(1− S)]N .

We can then define the σH parameter for our e-voting protocol as

σH = [1− ϵ(1− S)]N , (4.6)

and we can see that by choosing S = 1− χ/(ϵN) for some small constant χ we can make
σH close to 1.

Consider now the events A = {The protocol produced more than Nγ errors} for 0 ≤ γ ≤
1 andB = {The elections are validated}. Then we have P (B|A) ≤ SNγ and we can define
the σD parameter of our protocol as

σD = SNγ. (4.7)

If we assume that γ is a small fraction λ greater than the expected number of errors, namely
γ = (1 + λ)[ϵ(1− η) + η], we can make σD close to 0.

In conclusion, our e-voting protocol with inputs S, ϵ, δ, η,N and for a small constant λ > 0,
is ([1− ϵ(1− S)]N , SN(1+λ)[ϵ(1−η)+η], (1+λ)[ϵ(1− η)+ η])-correct, where the first param-
eter tends to 1 and the second to 0 for an appropriate parameter S.

4.3.2 ζ-Privacy
The privacy of the election scheme implies that each vote must remain secret with high
probability. More precisely, with high probability, for any voter k, the probability that any
subset of malicious parties D that deviates from the honest protocol can guess the vote vk
of the voter is at most ζ more than in the case they just have access to the bulletin board
and to their own votes. In other words,

∀k, Pr[vk|D]− Pr[vk|B, vj ∈ VD] ≤ ζ. (4.8)
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Theorems 1 and 2 ensure that by repeating theVerification test a significant number of times
at each voting round, the voting only happens with a shared state that is close to a GHZ
state, which guarantees almost perfect anonymity. In practice, by having each agent record
the frequency of failures of the test, they can deduce the practical parameter δk = rejectionsk

trialsk
and in case this is above the predetermined threshold δ, which is an input of the protocol,
the protocol is aborted. Otherwise, the rounds proceed normally and all agents vote. Note
that δ is linked to the expected fidelity of the state produced by the GHZ source, as explained
earlier.

We have also seen that by taking the appropriate parameters, we can have that with prob-
ability at least (1 − η), Eq. (4.2) from Theorem 2 holds. This is the case the event Cϵ (see
Theorem 1) is false. In case Cϵ is true, which happens with probability at most η, we can
assume that the anonymity is totally violated.

One needs to be careful here because the definition of privacy is not the same as the one
of anonymity. More specifically, anonymity ensures that the honest voters’ secret indices,
or the round in which they voted, remain secret, whereas privacy implies that their vote
remains a secret. Of course, the violation of anonymity implies the disclosure of privacy,
however a malicious agent can gather information about someone’s vote also by looking at
the distribution of the other votes and the anonymity of the other voters. Taking Eq. (4.2)
into account and considering that among the H honest voters, H0 voted for candidate ‘0’
and the others H1 voted for candidate ‘1’, such that H = H0 + H1, we have that the
probability of a subset of dishonest agents guessing correctly the vote of agent k that is ‘0’
(same for ‘1’) is the probability that they can guess that agent k is part of the subset H0, in
other words that agent k voted in one of the rounds where the vote was cast as ‘0’. Theorem
2 tells us how much the dishonest agents can guess if a particular agent was the voter in
a particular round, depending on whether the agent was actually the voter or not. Hence,
assuming that the event Cϵ does not hold for any round, we have

Pr[D guesses vk = 0] = 1
H
+ ϵ̃+ (H0 − 1)1−ϵ̃

H
=

= H0

H
+ H+1−H0

H
ϵ̃ ≤ P [vk = 0|B] + ϵ̃,

where we used the fact that H0

H
is the distribution of the votes given by the public bulletin

board and that H0 ≥ 1. Given that the event Cϵ happens for each round with probability
at most η we have that for the final privacy,

Pr[D guesses vk = 0] ≤ (4.9)
≤ P [vk = 0|B] + (1− η)N ϵ̃+ (1− (1− η)N), (4.10)

which proves Eq. (4.8) in the non-ideal case.

In conclusion, our e-voting protocol with inputs S, ϵ, δ, η,N is ζ-private with ζ-private with
ζ = (1− η)Nϵ

√
1 + ϵ2 + (1− (1− η)N), which tends to 0 for small enough η and ϵ.
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4.3.3 Authentication
Only eligible voters are allowed to vote. Our e-voting protocol as described here does not
provide authentication, which should be taken care by the physical implementation of the
protocol. For electronic voting machines authentication might be provided by an official ID,
whereas for voting directly through the internet authentication would require some digital
signature scheme.

4.3.4 Double voting
Each voter can vote at most once. Double voting is taken care of easily if the number of
voters is known in advance, which in fact is necessary in our scheme in order to prepare
the shared quantum state. If N agents declare they want to vote, we will have an N × N
bulletin board, each row of which corresponds to one vote. A null vote can be treated
as an additional candidate and will be discussed below. A dishonest voter might try to
intercept all the transcripts, modify the bulletin board by adding a column and a row with
another vote without changing the sum of each row, but this would result in a evident
(N + 1) × (N + 1) matrix that will be rejected by the honest voters. At the same time, if
a dishonest voter keeps the same number of rows and columns but tries to vote at a round
where they are not supposed to be voting, then either the vote will not change or if the vote
in the ballot changes from the intended vote of the honest voting agent, then this will be
captured by the LogicalOr subroutine protocol in Phase 3 of the protocol.

4.3.5 Verifiability
Each voter can verify that their vote has been counted correctly. More precisely, a protocol
is called verifiable if there exists a function g specified by the protocol, such that every
voter can apply the function g on the bulletin board and a private witness wk (the witness
corresponds to the vote and the secret voting index of the voter) and get back 1 if and only
if their vote was counted correctly. In other words,

∃g s.t. ∀k ∃wk s.t. ∀B : g(B, wk) = 1 ⇐⇒ vk was counted in the tally (4.11)

The verifiability, thus, demands the existence of a function that, given the bulletin boardB
and the voter’s secret index ωk returns 1 if vk was counted in the tally and 0 otherwise.

The verifiability is inherent in the protocol, as the tally is performed by the voters them-
selves. The bulletin board produced as an output of the protocol is public and can always be
checked by everyone, however it appears as a random set of votes. Each row j corresponds
to the vote vk of agent k whose secret unique index is ωk = j, and thus each agent can
easily verify their own vote and only that one. If the vote in the bulletin board differs from
the actual intended vote vk, as a consequence of a dishonest behaviour or an imperfection
in the quantum state, the agent can reject the result through the LogicalOr subroutine in
Phase 3.
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4.3.6 Receipt freeness
A voter cannot prove how they voted, in order to avoid vote selling. A receipt is a witness
wk defined as:

∃g s.t. ∀k ∃vk ∃!wk s.t. ∀B g(B, k, vk, wk) = 1 (4.12)
If there is no receipt, then the protocol is called receipt-free. As long as their index stays
secret all the agents can always deterministically verify their votes, without getting their
privacy violated, and without producing any receipt of their vote which could be used for
vote selling.

4.3.7 Additional candidates

So far we assumed that there were only two candidates, ‘0’ or ‘1’, which is suitable for
referendum type of elections.

If there areK candidates, each candidate identifier will have log2K digits and each election
can provide the preference for at most 1 digit of each voter. If we repeat the whole protocol
log2K times, keeping the same secret index for each voter at all times, we end up with a
greater election votes vector E = E(1)E(2)...E(log2K) formed by the election vote vector
of each election by summing the row of the corresponding bulletin board E(i) =

∑
kB

(i).
So the sub-election 1 will result in a vector E(1) = e

(1)
ω1 e

(1)
ω2 ...e

(1)
ωN , where e

(1)
ωk is the value of

the first digit of the preference of voter k, with secret index ωk, and so on for all the other
sub-elections. If we want to perform an election with 3 candidates and 7 voters, allowing
also the possibility of a null vote, which will be candidate (0, 0), we need to carry out 2
sub-elections, and result in the following table:

E =



0 0
1 0
1 1
0 0
0 0
1 1
0 1


,

where two agents voted for candidate 3, candidates 1 and 2 received one vote each and the
rest of the voters decided not to express a preference.

The only properties that are affected by the additional candidates are correctness and pri-
vacy. This is because they are the only ones that are probabilistic and that actually depend
on the use of an imperfect state in the different rounds. Authentication, double voting, ver-
ifiability and receipt freeness will thus remain unchanged even in the scenario with many
candidates. In particular, the correctness is affected because repeating the elections multi-
ple times increases the probability of having an error at some point. We can assume that the
agents perform the LogicalOr protocol with security parameter S to notify an error only
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at the end of all the repetitions of the elections. By Theorem 3, the probability that for any
agent at least one bit of the final tally will be incorrect is ϵ∗ = 1− (1− ϵ)log2K and thus the
probability that the election is accepted after multiple rounds will be

Pr[election accepted] = [1− ϵ∗(1− S)]N = σ∗
H . (4.13)

The soundness, on the other hand, is not affected. In fact, if any voter notices more than
one incorrect bit in their vote it will count as a single error.

The privacy of the protocol is affected as well. From one point of view, since the num-
ber of bits that the dishonest agents need to guess is larger, the probability of violating
the anonymity, and thus the privacy, is actually smaller. If, however, we want that each
individual bit of the vote remains private, the privacy is decreased by the fact of hav-
ing multiple rounds of elections. In this case, let us consider the probability of the event
X that at some round the malicious agent guesses the preference of the voter k and let
us assume that this probability is upper bounded as P (X) ≤ ζ . If we repeat the elec-
tions log2K times, the probability that event X is true at least once will thus be at most
ζ∗ = 1− (1− ζ)log2K . Hence, when dealing with multiple candidates our e-voting protocol
with inputs S, ϵ, δ, η,N is ζ∗-private with ζ∗ = 1− (1− (1− η)Nϵ+ [1− (1− η)N)]log2K ,
which tends to 0 for small enough η and ϵ.

Example.– Let us consider a 4-photons GHZ source that has been calibrated to produce
states with fidelity ∼ 0.85, which can be produced with current quantum photonics. This
corresponds to an expected fraction of rejections δ ∼ 0.05. If we now set ϵ = 0.6, it
implies that we will never accept states with fidelity lower than∼ 0.8. Although we would
like ϵ to be very small, there is not much more we can do with currently available GHZ
sources. In any case, this is not a big deal for the correctness of the protocol. If we fix
the non aborting probability η = 0.001, eq. 4.1 implies that M=12, and thus we will need
around 4000 GHZ states to accomplish each voting. Since the production rate of currently
available GHZ source is ∼ 8KHz, the protocol can be carried out in just a few seconds.
The actual problem is the privacy, which would be violated with a probability of ζ ∼ 0.7. A
way to tackle this issue is to amplify the privacy by repeatingQ rounds of the e-voting and
encoding the vote intention of each voter in the parity of theQ outcomes. In this way, each
round of the election would encode no information and the malicious agents would require
to succeed in each of the rounds, reducing the total probability of violating the privacy to
ζ̃ = ζQ. If Q = 15, with the previous parameters this would reduce the privacy parameter
to ζ̃ ∼ 0.005, to the price of repeating more rounds of the elections. Notice that the privacy
amplification would have the consequence of increasing the potential number of errors in
the outcome of the election. This and other details of the protocol will be tackled in the
experimental implementation.
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4.3.8 Proof of Theorem 1
Here we prove the soundness of the Verification protocol. For simplicity of the proof, re-
call that we denote the ideal state by |Φn

0 ⟩, which can be obtained from the GHZ state by
applying a Hadamard and a phase shift

√
Z to each qubit.

Theorem 1. Let Cϵ be the event that the protocol does not abort and the state used for Voting
is such that F (|ψ⟩ , |GHZ⟩) ≤

√
1− ϵ2, for some ϵ > 0. Then,

P (Cϵ) ≤ e−
2M (ϵ2−4δ)2

16Nϵ2 ,

where δ is the threshold for the ratio of rejections over trials above which the protocol is aborted,
M is the number of coins the agent has to toss to choose between Verification and Voting and
N is the number of agents.

Proof. During the protocol, each voter can trust only themselves as they do not know who
could be a colluding agent. Thus, although at each round of Verification a verifier is chosen
at random and could be an honest voter, we will perform the following analysis assuming
we are in the worst case scenario in which the voting agent is the only honest voter and
cannot trust anybody else. Thus the average number of rounds of the Verification will
be ⟨D⟩ = 2M/N . In addition, if we take M large enough, we can make the probability
of having at least D = 2M/2N rounds of Verification, arbitrarily close to 1. Thus, in
the following we will assume that D ≥ 2M/2N . In any practical implementation of the
protocol, however, the other honest agents will also assist the verification and if they count
a ratio of rejections larger than δ they can abort the elections, increasing the soundness of
the protocol.

Although we allow the malicious source to create any state in any round and even entangle
the states between rounds, the optimal cheating strategy, which maximizes the probability
of the eventCϵ, is to create in each round some pure state |Ψ⟩ such that F ′(|Ψ⟩) =

√
1− ϵ2,

as proven in [132]. In high level, one can first see that an entangled strategy does not help,
as it can be replaced by a strategy sending unentangled states as follows. Given some
entangled state, for a given round, the probability of passing the test and the fidelity of
the state depend only on the reduced state, conditioned on passing previous rounds. The
same effect is achieved by sending these mixed reduced states corresponding to each round,
without any entanglement.

Next, one sees that by providing a mixed state, the source does not gain any advantage, as a
mixed state is a probabilistic mixture of pure states, and the overall cheating probability of
this mixed strategy is just a weighted combination of the cheating probabilities of each of
the pure states. Then, obviously this mixed strategy is worse than the strategy that always
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sends the pure state that has the maximum cheating probability of all states in the mixture.
Hence, one can continue the proof by only considering strategies with pure states.

Moreover, since the adversary is just trying to maximize the probability the state |Ψ⟩ used
for voting hasF ′(|Ψ⟩) =

√
1− ϵ2, it is clear that there is no need to send any statewith even

smaller F ′(|Ψ⟩), since then the probability of failing the test (and therefore the protocol
aborting) would just increase. Last, if in any round the source created a state with higher
F ′(|Ψ⟩), then this certainly does not contribute to the event Cϵ, and in fact it may also
cause the protocol to abort. Thus, to upper-bound the probability of event Cϵ with respect
to the best attack a malicious source can perform, we only need to consider the case where
in each round the malicious source creates some state |Ψ⟩ such that F ′(|Ψ⟩) =

√
1− ϵ2.

The protocol takes as input a threshold parameter δ, such that if during their round the
voting agent rejects the state more than a δ fraction, then they abort the elections because
the source is corrupted. In the limit, the ratio of rejections will tend to the probability of a
single state ϵ-far in trace distance from a GHZ to fail the Verification test in the presence
of dishonest adversaries, which is [132]:

P (ϵ) ≥ ϵ2

4
. (4.14)

Thus, we can use a Chernoff inequality to bound the probability that in D rounds of Veri-
fication with a state ϵ-far the ratio of rejections of the voting agent δk is smaller than δ, in
which case the event Cϵ is true. In particular, given that the expected number of rejections
is at least Dϵ2/4, the Chernoff bound gives the following inequality

P (Cϵ) = P (δk ≤ δ) ≤ e−
D(ϵ2−4δ)2

8ϵ2 . (4.15)

If we substitute D ≥ 2M−1/N , we obtain the expression of Theorem 1.

4.3.9 Proof of Theorem 2
Next, we prove the anonymity of the protocol as in [122]. Once again, recall that we denote
the ideal state by |Φn

0 ⟩, which can be obtained from the GHZ state by applying a Hadamard
and a phase shift

√
Z to each qubit. The voter’s transformation now becomes σxσz . Further,

we also define the state:

|Φn
1 ⟩ =

1√
2n−1

[ ∑
∆(y)=1 (mod 4)

|y⟩ −
∑

∆(y)=3 (mod 4)

|y⟩
]
, (4.16)
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and note that σxσz |Φn
0 ⟩ = |Φn

1 ⟩ , σxσz |Φn
1 ⟩ = − |Φn

0 ⟩.

We consider two cases here: first, when all the agents are honest (Lemma 4), and second,
when we have malicious agents who could apply some operation on their part of the state
(Lemma 5).

Lemma 4. If all the agents are honest, and they share a state |Ψ⟩ such that F (|Ψ⟩ , |Φn
0 ⟩) =√

1− ϵ2, then for every honest agent i, j who could be the voter, we have that F (|Ψi⟩ , |Ψj⟩) ≥
1− ϵ2, where |Ψi⟩ is the state after agent i has applied the voter’s transformation.

Proof. If we have F (|Ψ⟩ , |Φn
0 ⟩) = |⟨Ψ| |Φn

0 ⟩|2 =
√
1− ϵ2, then similarly to [132] we can

write the state shared by all the agents as:

|Ψ⟩ = (1− ϵ2)1/4 |Φn
0 ⟩+ ϵ1 |Φn

1 ⟩+
2n−1∑
i=2

ϵi |Φn
i ⟩ , (4.17)

where
∑2n−1

i=1 ϵ2i = 1−
√
1− ϵ2. If agent i is the voter, then they apply σxσz , and the state

becomes:

|Ψi⟩ = (1− ϵ2)1/4 |Φn
1 ⟩ − ϵ1 |Φn

0 ⟩+
2n−1∑
i=2

ϵ′i |Φn
i ⟩ . (4.18)

Instead, if agent j is the voter and they apply σxσz , the state becomes:

|Ψj⟩ = (1− ϵ2)1/4 |Φn
1 ⟩ − ϵ1 |Φn

0 ⟩+
2n−1∑
i=2

ϵ′′i |Φn
i ⟩ . (4.19)

The fidelity is then given by:

F (|Ψi⟩ , |Ψj⟩) = |⟨Ψi| |Ψj⟩|2

= |
√
1− ϵ2 + ϵ21 +

2n−1∑
i=2

ϵ′iϵ
′′
i |2 (4.20)

≥ 1− ϵ2.

Lemma 5. If some of the agents are malicious, and they share a state |Ψ⟩ such that F ′(|Ψ⟩) ≥√
1− ϵ2, then for every honest agent i, j who could be the voter, we have that F (|Ψi⟩ , |Ψj⟩) ≥

1− ϵ2, where |Ψi⟩ is the state after agent i has applied the voter’s transformation.
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Proof. Recall that our fidelity measure is given by F ′(|Ψ⟩) = max
U

F (U |Ψ⟩ , |Φn
0 ⟩). Let us

now denote by |Ψ′⟩ = U |Ψ⟩ the state after the operation U which maximizes this fidelity
has been applied. As in [132], we can write this state in the most general form as:

|Ψ′⟩ = |Φk
0⟩ |ψ0⟩+ |Φk

1⟩ |ψ1⟩+ |χ⟩ , (4.21)

where note that |χ⟩ contains both honest and malicious parts, of which the honest part is
orthogonal to both |Φk

0⟩ and |Φk
1⟩.

We want to find the closeness of the states |Ψi⟩ , |Ψj⟩, which are the states after the σxσz
operation is applied to |Ψ′⟩ by either agent i or j who is the voter. These states are given
by:

|Ψi⟩ = |Φk
1⟩ |ψ0⟩ − |Φk

0⟩ |ψ1⟩+ |χ′⟩ , (4.22)
|Ψj⟩ = |Φk

1⟩ |ψ0⟩ − |Φk
0⟩ |ψ1⟩+ |χ′′⟩ .

The fidelity is then given by:

F (|Ψi⟩ , |Ψj⟩) = |⟨Ψi| |Ψj⟩|2

= |⟨ψ0| |ψ0⟩+ ⟨ψ1| |ψ1⟩+ ⟨χ′| |χ′′⟩|2. (4.23)

However, although the overall state |Ψ′⟩ is normalized, the malicious agents’ part of the
state is not. Thus, we need to determine a bound on ⟨ψ0| |ψ0⟩ and ⟨ψ1| |ψ1⟩. We have:

F (|Ψ′⟩ , |Φn
0 ⟩) = |⟨Φn

0 | |Ψ′⟩|2 ≥
√
1− ϵ2. (4.24)

It was shown in [132] that we can write for any k, n:

|Φn
0 ⟩ =

1√
2

[
|Φk

0⟩ |Φn−k
0 ⟩ − |Φk

1⟩ |Φn−k
1 ⟩

]
, (4.25)

and using this, we get:

1

2
|(⟨Φn−k

0 | |ψ0⟩)2 + (⟨Φn−k
1 | |ψ1⟩)2

− 2 ⟨Φn−k
0 | |ψ0⟩ ⟨Φn−k

1 | |ψ1⟩ | ≥
√
1− ϵ2. (4.26)

Using the triangle inequality, we have:

1

2

[
|⟨Φn−k

0 | |ψ0⟩|2 + |⟨Φn−k
1 | |ψ1⟩|2

]
≥

√
1− ϵ2. (4.27)

Using the Cauchy-Schwarz inequality, we have:

⟨ψ0| |ψ0⟩+ ⟨ψ1| |ψ1⟩ ≥ |⟨Φn−k
0 | |ψ0⟩|2 + |⟨Φn−k

1 | |ψ1⟩|2

≥
√
1− ϵ2. (4.28)
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Since the overall state |Ψ′⟩ is normalized, we have ⟨χ′| |χ′′⟩ ≤ 1 −
√
1− ϵ2. Thus, we get

our expression for fidelity as:

F (|Ψi⟩ , |Ψj⟩) = |⟨ψ0| |ψ0⟩+ ⟨ψ1| |ψ1⟩+ ⟨χ′| |χ′′⟩|2

= (|⟨ψ0| |ψ0⟩ | − | ⟨ψ1| |ψ1⟩+ ⟨χ′| |χ′′⟩|)2

≥ 1− ϵ2 − ϵ4 = 1− ϵ̃2, (4.29)

where ϵ̃ =
√
ϵ2 + ϵ4.

We are now ready to prove Theorem 2.

Theorem 2. At any round ℓ ∈ [N ] with voting agent k (who has unique index ωk = ℓ), if
the agents use a state |ψ⟩ such that F (|ψ⟩ , |GHZ⟩) ≥

√
1− ϵ2 to perform Voting, then for

the optimal strategy that any subset of malicious agents D can use to guess the identity of the
voting agent k correctly, we have

∀j ∈ WH , Pr[D guess j] =
{

1
H
+ ϵ̃ for j = k

1−ϵ̃
H

for j ̸= k,
(4.30)

whereWH is the set and H the number of honest agents.

Proof. We will now show that if the agents share close to the GHZ state, then the voter
remains anonymous. From Theorem 1, we saw that the probability that the state used for
voting satisfies F ′(|Ψ⟩) ≤

√
1− ϵ2 is given by Pr[Cϵ] ≤ η for the honest agents, where η

depends on the number of runs of the verification protocol. Thus, by doing enough runs,
we can make this very small, and so we have that the state used for voting will be close to
the GHZ state, as given by F ′(|Ψ⟩) ≥

√
1− ϵ2.

From the previous proof, we see that if F ′(|Ψ⟩) ≥
√
1− ϵ2, the distance between the states

if agent i or j was the voter is D(|Ψi⟩ , |Ψj⟩) ≤ ϵ̃. A malicious agent who wishes to guess
the identity of the voter would make some sort of measurement to do so. Thus, we wish
to find the maximum success probability of a measurement that could distinguish between
theH states that are the result of the voter (who can only be an honest agent) applying the
σxσz transformation.

The success probability of discriminating between H states is given by
∑H

i=1 piTr(Πiρi).
From Lemma 5, we know that the distance between any two states after the voter’s trans-
formation is upper-bounded by ϵ̃. Thus, if we take |α⟩ = |Ψj⟩, then we know that any of
these H states is of distance ϵ̃ away from this same state |α⟩.

For any POVM element P , we can write the trace distance between two states ρ, σ as
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Tr
[
P (ρ− σ)

]
≤ D(ρ, σ). Thus, we have for a POVM element Πi and for states |Ψi⟩ , |α⟩:

Tr(Πi |Ψi⟩ ⟨Ψi|)− Tr(Πi |α⟩ ⟨α|) ≤ ϵ̃. (4.31)

Assuming that each honest agent has an equal chance of becoming the voter, the probability
that the malicious agents can guess the identity of the voter is bounded by:

Pr[guess] =
H∑
i=1

1

H
Tr(Πi |Ψi⟩ ⟨Ψi|) (4.32)

≤ 1

H

H∑
i=1

[
Tr(Πi |α⟩ ⟨α|) + ϵ̃

]
(4.33)

=
1

H
Tr
[ H∑
i=1

Πi |α⟩ ⟨α|
]
+

1

H
Hϵ̃ (4.34)

=
1

H
Tr(|α⟩ ⟨α|) + ϵ̃ (4.35)

=
1

H
+ ϵ̃. (4.36)

As we said, the probabilities for the other agents come from the fact that all the agents that
are not voting perform exactly the same transformation on the state, so it is impossible for
the dishonest parties to distinguish between them, hence the probability of guessing their
identity is the same.

4.3.10 Proof of Theorem 3

Theorem3. If at round ℓ the agents are honest and use a state |ψ⟩ such thatF (|ψ⟩ , |GHZ⟩) ≥√
1− ϵ2 to perform Voting, then the probability that there is an error in the tally in the ℓ-th

round is upper bounded by ϵ,
P er
ℓ ≤ ϵ.

Proof. At each round, only one vote is declared. The state |ψ⟩ maximizing this probability
can be at most ϵ-far in trace distance. Knowing that Tr[Π(ρ−τ)] ≤ D(ρ, τ) for any POVM
Π, the probability of having one error using the state ρ = |ψ⟩ ⟨ψ|, instead of the correct
state τ = |GHZ⟩ ⟨GHZ| is

P er
ℓ = Tr[ΠℓH⊗N

ρ] ≤ Tr[ΠℓH⊗N

τ ] +D(ρ, τ) = ϵ,

where Πℓ is some operator that evaluates the distance from the correct ℓ-th output of the
state measured in the Hadamard basis, H⊗N is the product of local Hadamard applied by
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each voter and we used the fact that if we measure the correct state it is impossible to have
an error.

4.4 Discussion
We have described and analyzed a practical quantum e-voting scheme and provided ap-
proximate definitions of correctness and privacy, which make it appropriate for realis-
tic non-ideal scenarios. The quantum e-voting protocol that we have described achieves
information-theoretic security without requiring trust in the quantum source or in any
election authority. Previously proposed classical schemes, such as the one in Ref. [131], also
achieve information-theoretic security, however the requirement of trusting authorities and
simultaneous broadcasting could make it impractical. A small-scale election demonstration
of our protocol can be implemented with currently available quantum photonic platforms
and with the improvement of these technologies a voting scheme for board meetings and
similar scenarios may be attainable in the near future. When GHZ states of a thousand pho-
tons, with high fidelity and a reasonable repetition rate, become available and can be well
controlled, it will be possible to implement the protocol at a metropolitan level and then as
a consequence, with a subdivision into regular elections, at a national level. Although this
is certainly challenging, all the future applications of quantum information protocols will
have to meet similar obstacles and this protocol might be one of the first practical use cases
of quantum technologies to meet realization.

105



Chapter 4

106



Chapter 5

Quantum Complex Networks

5.1 What is a CV network . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Arbitrary Gaussian Network . . . . . . . . . . . . . . . . . . . . . 110

5.2.1 Gaussian quantum states . . . . . . . . . . . . . . . . . . . 110
5.2.2 Graph states as quantum networks . . . . . . . . . . . . . 111

5.3 Interplay between squeezing and symplectic spectra . . . . . . . . 113
5.4 A resource theory of Squeezing . . . . . . . . . . . . . . . . . . . 114
5.5 Squeezing cost for network generation . . . . . . . . . . . . . . . 115

5.5.1 Regular Networks . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.2 Complex Networks . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Quantum teleportation Gaussian Networks . . . . . . . . . . . . . 122
5.7 Multi-path entanglement . . . . . . . . . . . . . . . . . . . . . . . 124

5.7.1 Graphical Calculus . . . . . . . . . . . . . . . . . . . . . . 124
5.7.2 Parallel enhancement of entanglement . . . . . . . . . . . 125

5.8 Routing protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

107



Chapter 5

So far we explored two important use-cases of photonic quantum communication channels,
one involving two users with different attributes and one that engages an arbitrary number
of agents without a central authority. In those cases, the protocols themselves required a
pre-established specific structure of the quantum connections that is far from the complex
shape of modern day internet. In the third and last stage of our study on quantum networks
we will investigate the capabilities provided by highly multimode entangled quantum sys-
tems with arbitrary shapes, evaluate their cost and the limitations of their experimental
realization and set up a protocol able to distribute entanglement among any two nodes in
the network to allow quantum communications.

As we have seen there are several ways to supply quantum communication channels, in-
cluding simple optical fibers and entangled photons. An appealing approach to study pho-
tonic quantum networks is given by continuous variables graph states, an interesting class
of Gaussian quantum states that, under certain condition, can provide a substrate for uni-
versal quantum computation [137]. This type of quantum states can readily be produced in
some well equipped photonic labs, however their ideal version requires an infinite amount
of squeezing, which is unphysical as it would imply infinite energy.

In this chapter we study continuous-variable graph states as quantum communication net-
works, exploring graphs with regular and complex networks shape distributed among dif-
ferent agents, simulating a CV based quantum internet. Since, as we said, the main limi-
tation to construct these optical systems is finite squeezing, we show their cost as a global
measure of squeezing and number of squeezed modes that are necessary to build the net-
work. We show that the trend of the squeezing cost presents a non-trivial scaling with
the size of the network strictly depending on its topology. Notice that for these states the
amount of squeezing is directly linked with the energy of the system, thus the squeezing
cost can provide a lower bound on the intrinsic energetic cost necessary to produce this
type of quantum network.

Finally, we devise a routing protocol based on local quadrature measurements for reshap-
ing the network in order to perform teleportation protocol between two arbitrary nodes of
the networks. The Routing protocol, which is based on wire-shortening over parallel paths
among the nodes, improves the final entanglement between the two nodes in a consider-
able amount of cases, and it is particularly efficient in running-time for complex sparse
networks.

5.1 What is a CV network
Photonics quantum networks are essential resources for quantum communication and in-
formation protocols, they represent an essential part of the future quantum internet where
quantum states of light will allow for the efficient distribution and manipulation of infor-
mation [138]–[140]. In this chapter we explore continuous-variable (CV) entangled states
with regular and complex network topologies, that are distributed among different agents.
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Continuous-variable quantum states span on infinite dimensional Hilbert spaces, so allow-
ing for the encoding of larger amount of information when compared to Discrete Variables
(DV). Moreover, generation and measurement of CV states requires only coherent control
on classical laser source and weakly non-linear materials, along with coherent (homodyne)
detection which, differently from photon counting detectors, can be highly efficient at room
temperature and easily integrated in classical communication networks. However, CV en-
coding in quantum networking/routing protocols has not been extensively studied yet.

Our model aims at reproducing the existing photonic platforms with realistic experimental
constraints, such as limited amount of squeezing, but without taking into account propaga-
tion losses 1. At the same time we probe their capabilities while the scaling of the network
increases beyond the capacities allowed by the state-of-the-art technology. In particular we
explore the cost of different networks topologies in term of number of needed squeezers at
fixed number of nodes in the networks and of the global amount of squeezing.

We then explore their potentialities to perform efficient quantum communications between
two arbitrary nodes when assisted with a given class of Gaussian Local Operations and
Classical Communication (GLOCC) by all the agents in the network. A typical approach
of quantum networking and routing consists in distributing photonics states like single-
photons, Bell pair or Gaussian state and then use synchronous local operations that build
the wanted entanglement structure between the agent [139], [141]–[144]. We rather con-
sider the case where a preexisting CV multipartite entangled state is distributed among
the players and then local operations reconfigure the entanglement connections, similarly
to some protocol in the DV case [145]. The choice is motivated by the fact that multi-
mode entangled states can be directly generated via optical platform [70], [146]–[149] and
their shape can be easily manipulated [69], [150]. The chapter is structured as it follows. In
section 5.2 we briefly revise Gaussian quantum states, their generation by quadratic Hamil-
tonian and their decomposition, that we already discussed in section 1.2.8 of chapter 1. We
then introduce the Gaussian quantum networks studied in this chapter. In section 5.4 we
revise a resource theory of squeezing and in section 5.5 we will adopt it in order to estimate
the cost of expanding the network. Although in entangled qubits networks the resource us-
age is always proportional to the number of links, we show that in CV Gaussian networks
the trend of the squeezing cost is vastly richer, presenting non-trivial scaling with the size
of the network strictly depending on its topology. We present as well a few instances of the
full squeezing spectra — i.e. the needed amount of squeezers with the required squeezing
values — of regular and complex networks, showing that some topologies are equivalent
up to a linear optical transformation.

In section 5.6 we propose a CV architecture for the quantum internet based on the Gaussian

1This work is focused on the capabilities of pure CV quantum states to act as quantum networks and the
resources needed for their generation. Of course propagation losses can be included in the model in future
works. Also generation losses can be very low, so that the hypothesis of pure states is a realistic one, and
propagation losses can be mitigated by considering local ( short distances) networks.
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network previously described. We simulate quantum communication protocols through the
network by letting the spatially separated agents present at each node perform a homodyne
measurement on their optical mode and look for the optimal measurement strategy to max-
imize the negativity of the entangled pair shared by the two users who want communicate,
Alice and Bob. We prove a compelling result that could have potential applications, notably
that whenmultiple entangled paths connect Alice to Bob the optimal measurement strategy
allows to increase the negativity in the final pair. This parallel enhancement of entanglement
can be used to increase the quality of quantum communications in some selected network
topologies.

Lastly, in section 5.8, we employ our previous findings to implement an heuristic routing
protocol for distributing and boosting the entanglement between two arbitrary agents. The
algorithm we provide, on the one hand, is much more efficient than directly checking all
possible combinations of quadrature measurements and, on the other hand, it always pro-
vides higher negativity than the classical scheme, which is directly employing the shortest
path between Alice and Bob and neglect the parallel channels.

5.2 Arbitrary Gaussian Network

5.2.1 Gaussian quantum states
The generation of continuous variables multimode entangled states has been demonstrated
in several optical setups. In such experiments we recover networks structures as naturally
appearing entanglement correlations [70], reconfigurable Gaussian interactions [150], or
imprinted cluster states [69], [146], [149], [151].

These quantum states produced via parametric processes and linear optical transformation
are characterized by Gaussian statistical distribution of the quadratures of the involved
optical modes [31]. The quadratures Q̂j and P̂j of the jth mode are canonical conjugate
variables, such that [Q̂j, P̂k] = iℏδj,k, associated to the quantum harmonic oscillator de-
scribing the light mode. In this work we adopt the following relation with creation and
annihilation operators â† = (Q̂ − iP̂)/

√
2 and â = (Q̂ + iP̂)/

√
2, such that the variance

of the vacuum quadratures is normalized to 1/2.

The produced states can then be completely characterized by the first two moments of the
quadratures r̄ = Tr[ρr̂] and σ = Tr[ρ{(r̂− r̄), (r̂− r̄)T}], where ρ is the density matrix of
the Gaussian state and r̂ = (Q̂1...Q̂N , P̂1...P̂N).

Parametric processes are described by quadratic Hamiltonians ĤI = r̂H r̂T , whose dynam-
ics is implemented on the quadratures by SH = eΩHt, as

r′ = SHr0 (5.1)

where Ω = ( 0 1
−1 0 ), r0 are quadratures of the initial state and r′ are the quadratures of the
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final state. Since any pure Gaussian state can be obtained by the application of a quadratic
Hamiltonian H to the vacuum, the most general pure Gaussian state covariance matrix is
given by applying SH by congruence to the vacuum covariance matrix σ0 = 1/2:

σ = SHσ0S
T
H =

SHS
T
H

2
. (5.2)

In section 1.2.8, we showed how to adopt the Bloch-Messiah decomposition to express the
covariance matrix as a product composed by an orthogonal matrixO and a diagonal matrix
∆:

σ =
SHS

T
H

2
= 1

2
O∆2OT . (5.3)

The diagonal matrix ∆ contains the information on the minimum number of squeezed
modes in the system and their value of squeezing, which will later be used in the chosen
resource theory. If we consider a single mode field, the squeezing operation is defined as
a Gaussian transformation that reduces the variance of P̂ by a factor 10−s/10, where s,
measured in dB throughout this article, is called squeezing factor. Squeezing is represented
by the local symplectic matrix

Ssq(s) =

(
10s/20 0
0 10−s/20

)
.

The multimode ∆ matrix can then be written as

∆ = diag{10s1/20, 10s2/20, ...10sN/20, 10−s1/20, 10−s2/20, ...10−sN/20}. (5.4)

This formalism can be used to visualize and manipulate Gaussian quantum states, that are
readily available in most well-equipped photonics laboratories and, although the number
of modes and their connections is still in large part limited, many efforts are employed to
improve the capacities of these systems.

Targeted Gaussian quantum states, including the quantumnetworks of the next section, can
be generated via the two following strategies: i) by tailoring Hamiltonians ĤI of multimode
parametric processes in order to get the decomposition of Eq. 5.3 corresponding to the
desired covariance matrix; ii) by getting a number of single-mode squeezers equal to the
the number of elements with sj ̸= 0 of ∆ in Eq. 5.3 and producing the corresponding sj
squeezed states, that are injected in a linear optic intereferometer corresponding to the
orthogonal matrix O in Eq. 5.3.

5.2.2 Graph states as quantum networks
The above formalism can be employed to describe Gaussian graph states, that can be used
as CV quantum networks. We at first recall that a network is mathematically described

111



Chapter 5

by a graph G(V,E), which is a set of vertices V (or nodes) connected by a set of edges
E. Labeling the nodes of the graph in some arbitrary order, we can define a symmetric
adjacencymatrixA = AT whose (j, k)th entryAjk is equal to the weight of the edge linking
node j to node k (with no edge corresponding to a weight of 0). Typically, the adjacency
matrix is enough to completely characterize a graph, however we will see that in our case
there are other degrees of freedom such as the squeezing of a node and its angle.

We can now describe the quantum networks we use in this work that are called graph-states
[152]–[154]. Theoretically, they can be built by entangling a number of squeezed modes of
light via CZ-gates, which is a Gaussian operation implementing a correlation of strength g
between the Q̂ and the P̂ of the two modes on which it acts. The corresponding symplectic
matrix is

SCZ
(g) =


1 0 0 0
0 1 0 0
0 g 1 0
g 0 0 1

 .

The graph associated to the graph states identify edges as CZ-gates applied between nodes,
that are the squeezed modes, weighted with g.

In order to simplify the many degrees of freedom present in our networks, for the moment
we shall assume that all the nodes will be squeezed in P̂ by s and all the edges have a
correlation strength of g. If we apply a CZ-gate network with adjacency matrix A to a
multimode squeezed vacuum σs, with squeezing factor s we obtain a Gaussian network
with covariance matrix [155]

σ =

(
σqq σqp
σpq σpp

)
=

(
1 0
A 1

)
σs

(
1 A
0 1

)
=

(
R1 RA
RA RA2 + 1/R

)
, (5.5)

where R = 10s/10. The 2N × 2N covariance matrix σ is divided in four N × N blocks,
where the blocks σqq and σpp represent the correlations among the different nodes’ Q-
and P -quadratures, respectively, whereas the blocks σqp = σpq describe the correlations
between Q- and P -quadratures.

Bear in mind that the CZ-gate operations that theoretically identify the edges of the net-
works are seldom realized in any laboratory being very challenging to accomplish. What
is commonly done, as explained in the previous subsubsection, is the reduction of the co-
variance matrix of the graph state in 5.5 to the form of Eq. 5.3, that is also a receipt for
bulding the graph states from a certain number of squeezed modes (∆) and linear optics
transformations (O).

In this chapter we will focus on the squeezing cost of employing highly multimodes Gaus-
sian systems as quantum networks and discuss some strategies to increase the quality of
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quantum communication on these networks in some selected (but realistically relevant) sce-
narios. Our platform offers a wide range of applications for simulating complex structured
quantum systems or implementing quantum information protocols in realistic networks.

5.3 Interplay between squeezing and symplectic spectra
Consider a N -dimensional graph with adjacency matrix A. If we apply a set of CZ-gate to
theN modes of a vacuum state according to the structure of A, we end up with a Gaussian
graph state with the following 2N -dimensional covariance matrix:

σ =
1

2

(
1 A
A 1+ A2

)
, (5.6)

where we assumed that the vacuum state is normalized to 1/2. Since A is symmetric, it is
always diagonalizable

V AV T = D = diag({Di}), (5.7)
for some orthogonal matrix V , where {Di}Ni=1 is the set of the real eigenvalues of A. It
follows that V A2V T = V AV TV AV T = D2. Let us consider the following matrix

W =
1√
2

(
V V
V −V

)
. (5.8)

We can verify easily that WW T = 1, hence W is an orthogonal matrix implementing a
basis change that would not change the spectrum of the matrix to which it is applied. If we
apply it to σ we get

σ′ = WσW T =
1

2

(
1+D +D2/2 −D2/4

−D2/4 1−D +D2/2

)
, (5.9)

which is a block matrix composed of diagonal matrices. We can permute the rows and
columns of the matrix to get a diagonal block matrix

Πσ′ΠT =
N⊕
i=1

Mi, (5.10)

where Π is a permutation operator, while

Mi =

(
1+Di +D2

i /2 −D2
i /4

−D2
i /4 1−Di +D2

i /2

)
. (5.11)

In this basis, each block Mi represents a single mode covariance matrix of a pure unen-
tangled Gaussian state. We can hence diagonalize each block independently. In particular,
notice that det(Mi) =

1
4
, thus the eigenvalues of σ are given by

λ±i =
1

2

(
Tr(Mi)±

√
Tr(Mi)2 − 4 det(Mi)

)
=

1

2

(
1 +D2

i /2±
√
D2
i +D4

i /4

)
. (5.12)
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This equation shows the interplay between the physical resources necessary to experimen-
tally implement a CV graph state and the spectrum of the underlying graph. This implies
that we can use spectral graph theory to characterize analytically the physical requirements
of building Gaussian networks and thus predict which one will be easier to realize. A first
crucial consequence is that different graph states whose underlying graphs are co-spectral,
e.g. their adjacencymatrices have the same eigenvalues, can be transformed into each other
applying passive linear optics. We will see later that the star and diamond networks have
this property, making them a relevant class of Gaussian networks for applications. Further
results of this relation will be analysed in future works.

Notice that there is as well a simple relation between the adjacency matrix of the graph
state and the internal energy difference between the state and the vacuum:

∆E = E − E0 = Tr(σ − σ0) =
1

2
Tr(A2). (5.13)

This represents a fundamental lower bound on the energy necessary to implement such
states.

5.4 A resource theory of Squeezing
The Gaussian bosonic states of subsection 5.2.1 are of particular significance in the theory
of continuous variable quantum information, in particular in their quantum optical imple-
mentations. They are in fact resources for measurement based quantum computing [152],
[154], quantum simulations [150], multi-party quantum communication [69], [156], and
quantum metrology [157], [158].

Being interested in the nature of the correlations between such states, the first moments
become irrelevant. In any practical realization of a quantum communication protocol with
Gaussian states, first moments do play a role, but these are normally managed in the post-
processing and do not interfere with the dynamics of the second moments. We can thus
assume that our quantum states are fully described by their covariance matrix.

We have seen in the previous section that the squeezing is the essential resource for build-
ing Gaussian entangled states. A natural question is thus: what is the squeezing cost of
producing a quantum state?

A general resource theory for Gaussian states is provided in [159]. The specific case of
squeezing is described in [160] where they show an operational squeezing measure for any
symplectic transformations S:

F : R2N×2N → R, F (S) =
N∑
i=1

20 log10(
↓
si(S)), (5.14)

where ↓
si are the decreasingly ordered singular values of S, while log10 and the factor 20
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ensures that the outcome is measured in dB. Using Eq. 1.71, we can then define a squeezing
measure for covariance matrices

G : R2N×2N → R, G(σ) =
N∑
i=1

10 log10(λ
(+)
i (σ)), (5.15)

where λ(+)
i (σ) are the the largest eigenvalues of the covariance matrix σ of equation 5.12

and, once again, the factor 10 guarantees that the outcome is measured in dB. This defini-
tion can be generalized for arbitrary quantum states, but assumes this particularly simple
form for pure Gaussian ones and it works for any number of modes. We will employ it to
classify networks topologies, basing on how their squeezing cost scales with the dimension
of the network. As we said previously, the implementation of the CZ-gate is not trivial,
however in our analysis the actual transformations used to implement the state are irrele-
vant because the Eq. 5.15 only depends on the final state to which it is applied and not on
the single symplectic maps used to implement it.

5.5 Squeezing cost for network generation
In this section we apply the results presented above to various topologies of Gaussian net-
works, to study how their squeezing requirement scales with the size of the network de-
pending on its own structure. As stated in the first section, a node in the network is a a
pure continuous variables Gaussian state, that will be called a qumode, and is completely
defined by its own covariance matrix.

5.5.1 Regular Networks
Let us first discuss some regular network structures. We shall consider the following topolo-
gies:

• The linear graph LN , withN nodes andN − 1 edges, is accomplished by connecting
each node in series to the next.

• The ring graph RN , with N nodes and N edges, is a linear graph with a closed loop.

• In the star graph topology SN , withN nodes andN −1 edges, every peripheral node
is linked to a central node called hub.
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• The diamond graph DN , with N nodes and 2(N − 2) edges, has 2 hubs, each linked
to all the N − 2 central nodes of the network.

• In the complete (or fully connected) graph FN , with N nodes and N(N−1)
2

edges, all
nodes are interconnected.

We use the linear graph as a benchmark to see how the squeezing cost scales with the
number of nodes and links. In fact, single mode squeezing and the CZ-gate both require a
fixed amount of squeezing to be implemented, so we would expect G(σ) to scale linearly
with the number of links and nodes. This is indeed the case of the graphs in Fig. 5.1. In
figure (a), we create a multimode squeezed vacuum with no connections (g = 0). We can
see how the effect of the squeezing s on each node is that of shifting the average cost. In
figure (b) we set the initial squeezing to be null (s = 0) and only apply the CZ-gates. It is
shown that for large values of N the average cost is constant, hence the total cost is linear
in N . We can always set s = 0 which would only contribute as a constant shift and see
how the effect of the connections influence the squeezing requirement for the network. Let
us now see how the total squeezing cost G(σ) scales with the number of nodes N for each
of the network topologies presented above.

In Fig. 5.2 we can see how the linear graph in blue and the ring graph in orange are super-
posed, sharing the same squeezing cost, as well as the star graph in green and the diamond
in red. The latter two graphs present much less squeezing than the others and do not grow
linearly with N .

Fig. 5.3 shows the average cost for each node and each edge respectively. It results that
the constant behaviour of the linear and ring topologies is rather an exception and that in
general the squeezing required to generate a determined Gaussian network is not simply
proportional to the number of nodes or edges but sublinear. The intrinsic connection be-
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Figure 5.1: Trend of the average squeezing cost for the linear graph LN up toN = 100: (a) we increase the
squeezing s keeping the correlations null g = 0 and (b) we increase the correlations g keeping the squeezing
null s = 0.

tween the squeezing of a Gaussian network and its topology was already put in evidence
by Gu et al. [154], by proving a relation between the squeezing required to produce a CV
graph state and the singular value decomposition of the associated adjacency matrix. As
we said, the linear and ring graphs have a constant average cost per edge with the growth
of the network, whereas the complete graph seems to be the one with lowest average cost
per edge, having also the highest degree of edges.

An objection one could make at this point is that our cost functional G(σ) does not fully
characterize our Gaussian networks. In fact, two states that have the same squeezing cost
are not necessarily equivalent up to an orthogonal transformation. For example, a 10dB
single mode squeezed vacuum and a two mode squeezed vacuum with 5dB of squeezing
eachwould have the same cost but cannot be transformed into each other using only passive
optics. As amatter of fact, resource theories can seldom give a complete view of the problem
in exam, notably in the light of an experimental implementation.

Although the squeezing cost is indeed themost insightful figure of merit to investigate what
happens as the size of the Gaussian networks grows, the most complete picture of number
of the amount of needed experimental resources is given by the decomposition defined in
Eq. 1.71, which gives us theminimumnumber of squeezedmodes and their squeezing value.

In Fig. 5.4 we then show the distribution of the logs of the singular values of the covariance
matrix of the regular topologies studied above, for N = 100.

Notice that the diamond and the star graphs only have two intrinsic squeezed modes. In
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Figure 5.2: (a) Trend of the squeezing cost G(σ) for the regular topologies with s = 0 and g = 1: linear
LN , ring RN , star SN , diamond DN , full FN networks up to N = 100 nodes. (b) Detail of the diamond and
star graphs. These networks do not scale linearly unlike the others.

the specific, the number of squeezers in all the networks grows linearly with N , except
the star and diamond, that are built by squeezing only two modes and mixing them with
N − 2 vacuum modes with passive optics interferometry. A straight consequence, is that
these two very different types of networks are completely equivalent up to an orthogonal
transformation, which means that they can be exactly reshaped one into the other using
linear optics 2. Interestingly, the first mode of theF network has the majority of squeezing,
while the rest is shared equally among all other nodes.

5.5.2 Complex Networks
So far we described graphs that are built through a deterministic algorithm, though we can
also construct a graph based on statistical models [161], [162]. In this subsection we will
shortly review the main feautures of random and complex networks explained in section
2.2.1 of chapter 2. The exemplary standard for random networks is the Erdős–Rényi model
GER(N, p), in which each pair of theN nodes have a probability p to be linked; the network
thus has

(
N
2

)
p edges on average [87].

Most of the network properties observed in nature, however, simply cannot be described
by regular or random graphs. For this reason, a youthful branch of scientific research is
committed to the study of complex networks. In the field of network theory, complex net-
works are a type of graph with non trivial topological features, that are shared by neither

2In general any CV graph can be reshaped in any other graph via a symplectic transformation, in this case
the symplectic involves only linear optics without any supplementary squeezing.
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Figure 5.3: Trend of the average squeezing cost for regular topologies with s = 0 and g = 1: linear LN ,
ringRN , star SN , diamond DN , full FN networks up toN = 100 nodes. (a) Average cost per node G(σ)
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Figure 5.4: Squeezing cost distribution for regular networks: linear LN , ring RN , star SN , diamond DN ,
full FN networks in the N = 100 supermodes, s = 0, g = 1. All the networks present some squeezing in
each mode except the S and D that have an equal amount of squeezing only in the first two modes. The F
network has a large peak of squeezing in the first mode, while the remaining amount of squeezing is equally
distributed in the other modes.

regular nor random graphs, but are rather akin to networks modeling real systems [88].

As we have seen in chapter 2, an important class of complex networks is characterized by
the small world property. These networks exhibit the peculiarity of having a low average
path length, which is the mean distance between two arbitrary nodes, and a high clustering,
which is a measure of the degree to which nodes in a graph tend to cluster together. The
emblematic network presenting this feature is the the Watts–Strogatz model GWS(N, κ, β)
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Figure 5.5: Some complex networks and their degree distribution. In the distributions of
the BA, AS and PP the y-axis is in log-scale.

200 400
N

0

1000

2000

3000

4000

5000

G
(

)

ER

BA

WS

AS

PP

200 400
N

2

4

6

8

10

G
(

)/N

ER

BA

WS

AS

PP

200 400
N

1

2

3

4
G

(
)/n

ed
g

ER

BA

WS

AS

PP

(a) (b) (c)

Figure 5.6: (a) Trend of the squeezing cost for complex topologies: Erdős–Rényi GER, Barabasi–Albert GBA,
Watts–Strogatz GWS , AS internet GAS and Protein–Protein interaction GPP networks up toN = 500 nodes.
(b) Average squeezing per node, (c) average squeezing per edge.

[94]. In this model, we first construct a graph withN nodes and Nκ
2

edges where each node
has exactly κ neighbors, then with probability β we rewire each edge with another node
chosen uniformly at random while avoiding self loops and link duplications.

Another relevant class of complex networks that we previously studied presents the typical
aspect of being scale-free and having long-tailed structures. Scale-free networks show a
power law in the degree distribution P (k) ∝ k−γ for some γ > 0, which is self-similar at
all values of k in the tail of the distribution, unlike the ER and WS models that go to zero
very quickly and have no tails. This fractal like attribute is well modeled by the Barabasi–
Albert model GBA(N,K), which can also reproduce growth and preferential attachment in
networks [93]. This type of graph is the canonical example to reproduce some properties
of the World Wide Web.

120



Quantum Complex Networks

0 20 40 60 80
Mode

0
10
20
30

Sq
ue

ez
in

g 
co

st

ER

BA

WS

AS

PP

Figure 5.7: Squeezing cost distribution for complex topologies: Erdős–Rényi GER, Barabasi–Albert GBA,
Watts–Strogatz GWS , AS internet GAS and Protein–Protein interaction GPP networks in the N = 100 su-
permodes. The trend of the number of modes for each of these networks is shown in Fig. 5.8

Two different classes of complex networks that often present scale-free distributions are
constituted by technological networks and biological networks, that we also revised in chap-
ter 2. As an example of technological network we will consider the Internet Autonomous
System (AS) GAS(N), basing on the work put forward in ref. [91], whereas for the study of
a biological network we will examine specifically the protein–protein interaction network
model GPP (N, σ) developed in ref. [95].

In Fig. 5.6 we report the trend of the total squeezing cost, average cost per node and average
cost per edge as a function of the number of nodes for each of the above complex topologies.

From the plots we notice that the most expensive growth belongs to the ER topology, while
the AS seems to be the cheapest, which is a relevant quality in prospect of an actual im-
plementation of the quantum internet. Another interesting feature, that did not emerge for
regular networks, is the fact that for the ER the average cost of squeezing per node increases
with the size of the graph. It is in part surprising that the complete graph behaves so dif-
ferently from the ER graph. In fact, even though they are topologically very different, the
scaling of the number of edges is similar so one could have expected a similar trend. On the
other hand, the cost per node in the BA, WS and PP is approximately constant whereas it
slowly decreases for the AS topology. Moreover, we observe that the average price per edge
is decreasing for all but the WS topology. The fact that a high connectivity does not imply
a high resource usage is a particularly inviting property of Gaussian networks, especially
for their applications in quantum communications.

In Fig. 5.7 we show the squeezing cost distribution for the various topologies of complex
networks by showing the squeezing cost of all the principal modes. We deduce that the
AS is not only the cheapest, but is also the one that has the least number of squeezed
modes, turning to a tremendous advantage for experimental applications. This feature is
further emphasized in Fig. 5.8, in which we plot the trend of the number of squeezed modes
necessary to build the network as a function of N . In this plot we see that the ER, BA and
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Figure 5.8: Trend of the number of squeezed modes necessary to build the networks versus the number of
nodes in the network for complex topologies: Erdős–Rényi GER, Barabasi–Albert GBA, Watts–Strogatz GWS ,
AS internet GAS and Protein–Protein interaction GPP networks up to N = 500 nodes.

WS networks have a similar trend, unlike the PP and AS.

Now that we have characterized the cost of implementing Gaussian quantum networks, we
will describe how to use them as a substrate to perform quantum communications.

5.6 Quantum teleportation Gaussian Networks
Quantum entanglement is a paramount resource for quantum information purposes. In
particular, bipartite entanglement represents the fundamental requirement that a shared
quantum channel should have in order to enable a truly quantum teleportation. In the
framework of Quantum Communications, the networks previously described can be seen
as distributed Gaussian quantum teleportation networks [163], where each pair of nodes
can employ the pre-established quantum correlations together with Local Operations and
Classical Communications LOCC to teleport a Gaussian quantum state from one node to the
other.

In a naive strategy, the teleportation between two arbitrary nodes can be implemented
simply by ignoring all the other nodes and exploiting the residual bipartite entanglement
together with classical communications. This strategy is a direct extension of the standard
teleportation protocol from two to more stations and is called non-assisted protocol [164].

Another set of strategies is based upon a cooperative behavior, where all the other nodes
assist the teleportation between the chosen pair (Alice and Bob) by means of LOCC. In fact,
if the external nodes perform suitable localmeasurements and then classically communicate
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their outcomes to Bob, the latter can use this additional classical information to improve
the process via modified conditional displacements. These strategies are called assisted
protocols and are the ones that determine what we call networking/routing protocol in this
chapter.

According to Gu et al. [154] quadrature measurement on a mode of a Gaussian network
like the ones we considered so far can be described by two simple rules:

• Vertex Removal: a Q̂-measurement on a qumode removes it from the network, along
with all the edges that connect it.

• Wire Shortening: a P̂ -measurement on a qumode is just a Q̂-measurement after a
Fourier Transform, which corresponds to a phase rotation of π/2: SF = SR(θ =

π
2
).

The node will thus be removed but the phase shift will induce correlations between
the neighbouring edges. Thus, measurements in the momentum basis allow us to
effectively “shorten” linear graph states.

If two nodes A and B need to teleport a quantum state, they can be helped by the other
nodes in the network who will perform these operations in order to increase the strength
of the entanglement in the final pair. A typical measure of entanglement is the negativity

N = −2 log2 ν−, (5.16)

where ν− is the smallest symplectic eigenvalue of the partially transposed covariance ma-
trix of the pair. Partial transposition is a necessary operation for the PPT criterion [165]
and is easily implemented in Gaussian states by changing the sign of the momentum of one
of the two subsystems. The negativity is simply connected to another measure of entangle-
ment, which is the fidelity of teleporting a coherent state through that quantum channel

Fcoh =
1

1 + ν−
. (5.17)

Simple classical communication attains at most Fcoh = 1
2
so a bipartite system presents

truly quantum correlations only if Fcoh >
1
2
, or equivalently ν− < 1 and N > 0.

The symplectic eigenvalues ν± of a two-mode system can be computed through the in-
variants of the covariance matrix [166]. More specifically, we can define the seralian ∆ =
detσA + detσB + 2det σAB , where σA and σB are the local covariance matrices of the
single-mode sub-systems A and B, and σAB represents their correlations. From this we can
compute the symplectic eigenvalues as:

ν2± =
∆±

√
∆2 − 4 detσ

2
. (5.18)

In Fig. 5.9 we compare the effect of different regular topologies of quantum networks with
the purpose of distributing entanglement between two of the furthest nodes inside the
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Figure 5.9: Negativity in the final two modes states after that all the other agents have locally measured
their node for the regular topologies: linear LN , ring RN , star SN , diamond DN , full FN networks up to
N = 100 nodes.

network. The simplest cases are the star and complete networks. In the first case the
best assisted strategy is to let everyone perform a Q̂-measurement on their node except the
central one who will make a wire shortening to link the final pair. In the complete network
A and B are already linked by an edge so it is sufficient to measure the position in all the
other qumodes (notice that this strategy outperforms the non-assisted protocol). In both
these cases the entanglement is constant with the number of nodes in the network as we
would expect, and the wire shortening of the central node in the star graph decreases the
negativity with respect to the complete graph [167]. In the linear graph all the nodes have
to wire shorten from A to B. Here the negativity quickly decreases with the number of
nodes. The decrease of entanglement with the wire shortening seem to be typical in all
configurations except the diamond graph, where all the central nodes are P̂ -measured.

5.7 Multi-path entanglement

5.7.1 Graphical Calculus

In ref. [153] it is provided a unified graphical calculus for all Gaussian pure states that is
particularly suited for describing highly multimode Gaussian networks.

In this framework, a N mode Gaussian state is completely described, up to displacements,
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by a N ×N complex valued adjacency matrix:

Z = V + iU, (5.19)

where the real and imaginary part of Z , V and U respectively, are related to the covariance
matrix through the following unique decomposition

σ =
1

2

(
U−1 U−1V
V U−1 U + V U−1V

)
. (5.20)

Gaussian graph states have a particular simple graphical representation, being

Z = A+ iD, (5.21)

where A is the weighted adjacency matrix of the graph and D is a diagonal matrix that
represents momentum squeezing, i.e. forD = 10−2s1 the momentum variance of all modes
is reduced by 2s dB.

All symplectic operations can be reproduced in this language, however, since we already
know how to represents the resource graph states, we only need to implement the quadra-
ture measurements in Q̂ and P̂ . We can express the state as

Z =

(
t RT

R W

)
, (5.22)

where t is the target mode we want to measure,W is the subgraph of the untouched modes
and R their correlations with the target mode. We have the following two rules:

• Z −→ ZQ = W after a Q̂ measurement.

• Z −→ ZP = W − RRT

t
after a P̂ measurement.

Thus, for a measurement in Q̂we remove the node and its link from the graph, whereas for
a measurement in P̂ we apply a π/2 phase rotation and then measure Q̂.

5.7.2 Parallel enhancement of entanglement
The behaviour of the diamond graph is quite counter-intuitive and might be expected to in-
crease the fidelity of quantum communications. It can be shown that the lowest symplectic
eigenvalue for this system goes like

(
ν
(DN )
−

)2
=

1

1 + 2NRg2
, (5.23)

where R = 10s/10 is the inverse of the squeezing in P̂ , with squeezing factor s in dB.
Hence, the two modes become perfectly correlated in the limit of either infinite squeezing,
infinite strength CZ-gate or infinite parallel measurements on P̂ .
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Figure 5.10: Graphical representation of the diamond graph and its parallel enhancement of entanglement.

We can use the rules described in the previous sections to prove Eq. 5.23, that expresses
analytically the power of parallel enhancement of entanglement in the diamond network
when measuring the central nodes in P̂ . Let us assume that the nodes A and B are squeezed
by a factor SA and SB respectively, there areN central nodes and the kth mode has squeez-
ing Sk and is correlated with A and B through a CZ-gate with strength gAk and gBk. It can
then be easily showed that the final pair will have a purely imaginary adjacency matrix of
the form

ZAB = i

(
ΣA Γ
Γ ΣB

)
, (5.24)

whereΣA = SA+
∑

k

g2Ak

Sk
, ΣB = SB+

∑
k

g2Bk

Sk
and Γ =

∑
k
gAkgBk

Sk
. These result can be de-

rived by direct application of the rule for measuring P̂ in the graphical calculus formalism,
schematized in figure 5.10.

Employing Eq. 5.19 and 5.20 and noticing that V = 0, we can reconstruct the covariance
matrix of the final pair:

σf =


ΣB

ΣAΣB−Γ2 − Γ
ΣAΣB−Γ2 0 0

− Γ
ΣAΣB−Γ2

ΣA

ΣAΣB−Γ2 0 0

0 0 ΣA Γ
0 0 Γ ΣB

 . (5.25)

Notice that this state differs from a graph state up to a local phase.

By computing the seralian∆ of the partially transpose covariance matrix of the pair σ̃f and
applying formula 5.18, we can derive the general lowest symplectic eigenvalue of the state

ν2− =
(
√
ΣAΣB − Γ)2

ΣAΣB − Γ2
. (5.26)
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Figure 5.11: Different measurement strategies for two types of diamond network: the standard DN we
have seen so far and the D̃N , in which the central nodes are connected to their neighbors. We apply two
different strategies to D̃N : one is to measure all the central nodes in P and the other is to alternate a P and a
Qmeasurement. We can see that measuring always in P is not necessarily the optimal strategy. On the right
side you can see a scheme of the D̃ network and the two different measurement strategies.

Finally, if we assume that all the modes are equally squeezed in P̂ of a factor R−1 = 102s

and all the CZ-gate correlations have a strength g, we arrive to formula 5.23.

This property of the Diamond network, however, is not easily generalized to all graphs that
present parallel connections and the quest for the optimal measurement strategy in order to
improve the final entanglement is by no means trivial. This is the case, for example, of the
D̃ graph shown in Fig. 5.11, generated by taking the diamond network and add a CZ-gate
link between adjacent central nodes. We can see that for N > 9 measuring always P̂ in
this network is not the optimal strategy, whereas a better strategy is to alternate a P̂ and
Q̂ measurement in order to restore a (smaller) diamond network.

Another important figure of merit is the entanglement per squeezing cost, shown in Fig.
5.12 (a). We see that the diamond is the only one that gives the a ratio of entanglement
per cost of the network that becomes constant for large N . However, the linear graph is
the one that links two nodes that are the furthest away from each other. Conversely, figure
5.12 (b) shows the negativity in the final pair divided by the number of modes in the initial
state. Once again, the diamond structure is particularly convenient, yielding the highest
negativity while keeping a constant number of independent squeezers.

In order to give a fair comparison between the capacity of the linear network to bridge dis-
tant nodes and that of the diamond to increase the final entanglement we need to generalize
the diamond graph to a diamond chain graph, DCK,N , where K is the number of parallel
branches linking the two hubs that want to perform quantum communications as in figure
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Figure 5.12: Trend of the ratio between the negativity of the final state and (a) the squeezing cost of the
initial state or (b) the total numer of modes in the initial state for regular topologies: linear LN , ringRN , star
SN , diamond DN , full FN networks up to N = 100 nodes.

5.13 (c).

We can then compare the entanglement concentrated using multiple path strategies to link
two nodes far away from each other. We can see in figure 5.13 (a) and (b) that the presence
of parallel links has indeed the desired effect, despite the quality of the final pair, which still
decreases exponentially with the distance. On the other hand, notice that the parallel links
can help concentrating more entanglement until the system reaches a plateau and even the
additional channels will not allow to increase the negativity. Moreover, the quality-price of
this networks, specifically the ratio between the entanglement of the pair after the protocol
and the squeezing cost before the protocol, is maximized by the linear graph.

Another important class of networks, notably for measurement based quantum computa-
tion, is constituted by grid cluster states that belong to graph shapes that allow for universal
quantum computation [168]. Similarly to the diamond network, the presence of ancillary
nodes between the emitter and the receiver can improve the quality of the quantum link
with respect to the linear network. This, however, is not a general rule and sometimes
the presence of additional links can be detrimental. This is the case of the triangular lattice,
generated from the square lattice by adding a link between the nodes in the diagonal. There
are two ways of generating the triangular and only one of the two decreases effectively the
distance between Alice and Bob T̃ . In both cases the result is detrimental, however T is
slightly better than T̃ , while the square latticeQ seems to be the most effective. This result
is shown in figure 5.14.
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Figure 5.13: (a) Trend of the negativity of the output state for the diamond chain network, for various values
of the number of branches K (K=1 is the linear network). (b) Trend of the ratio between the negativity of the
final state and the squeezing cost of the initial state for the diamond chains. (c) Scheme of an entanglement
routing protocol in a diamond chain with K=3. All the central nodes are measured in P in order to concentrate
entanglement between Alice and Bob.

5.8 Routing protocol
In this section we aim at employing the abstract notions on Gaussian graphs developed
so far for a specific application: the routing of entanglement. In this scenario, the highly
multimode entangled Gaussian state corresponds to a distributed teleportation network,
described in the previous section, where each node of the network is supplied with a mode
of an electromagnetic harmonic oscillator and is linked to some other nodes in different
geographical locations through quadrature correlations, e.g. quantum entanglement. We
remark that this type of communication quantum networks is inherently different from the
typical qubit networks that are currently being deployed in different metropolitan areas
[19]. In those cases, for example, each entanglement link is pairwise between two qubits
and as a consequence each node of the network will have to receive, store and measure
as many quantum states as neighbors it has. Conversely, in a Gaussian quantum network
the same qumode can be entangled with an arbitrary number of other nodes. Moreover,
the production of such states, their manipulation to increase the entanglement among two
nodes and their measurement to perform quantum teleportation can be achieved deter-
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Figure 5.14: Comparison between the entanglement capacity between two nodes at the same distance of
three lattices graphs, the square latticeQN×N and the two triangles TN×N , formed from the square by adding
edges on the diagonals in such a way that the distance between A and B is the same, T̃N×N formed by adding
edges to the diagonals so that the distance is the same as the linear graph, and the linear graph LN . In order
to compare the networks with the same distance we doubled the size of the T̃ and the L graphs.

ministically, unlike the discrete variables case. Nonetheless, qubits networks have been
extensively studied over the last years, whereas Gaussian teleportation networks is a very
recent emerging field. Our purpose is, thus, not to prove the superiority of the latter, but
rather to explore its properties and the differences from the DV schemes in order to get the
best of both worlds.

The results of the previous sections highlighted some outstanding properties of Gaussian
networks. The most important is the parallel enhancement of entanglement in the diamond
graph. If properly used, this feature canmost certainly improve the routing of entanglement
in regular and complex shaped network. On these grounds, the search for an optimal pro-
tocol that exploits all the qualities of these Gaussian networks is very desirable yet arduous,
and will be subject of future investigations. Alternatively, we present a naive entanglement
routing protocol that takes into account some of these properties and we will apply it to
complex topologies, to show that the enhancement of the entanglement with respect to the
trivial protocol is, in principle, easily achievable. Imagine we have a distributed network of
entangled harmonic oscillators, where each node is honest and can perform classical com-
munication and local homodyne measurement, and we want to establish an entangled pair
between two nodes, Alice and Bob, that want to teleport a quantum state or perform QKD.
The trivial protocol would be to find the shortest path between them and measure in P all
the qumodes along this path and in Q all the others. A careful look at the inner structure of
the network, however, might help us increase the strength of the correlation. For example if
at any point, two nodes on the path are linked by multiple parallel routes, we can measure
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Figure 5.15: Scheme of the three protocols for the entanglement distribution: (a) the Routing protocol takes
a list of the shortest paths connecting A and B and measures in P those that increase the negativity while the
rest is measured in Q; (b) the Shortest protocol only consider one of the shortest paths to be measured in P
and the rest in measured in Q; (c) the All P measures the nodes with only one connection in Q and all the rest
in P.

these in P to exploit the parallel enhancement.

In order to show this in practice, we will test the performances of three different routing
protocols (shown in figure 5.15 on various complex networks) with the purpose of establish-
ing a highly entangled pair. We choose Alice to be one of the hubs of the graph and evaluate
the efficiency of the protocol in delivering entanglement to all the other nodes. The quan-
tum protocol that we propose to exploit the parallel enhancement of entanglement will be
simply called Routing.

• Routing: it takes as input the target node, Bob, lists all the shortest paths connecting
it to Alice and measures all the nodes that are not in these paths in the Q quadrature,
so that they will not influence the protocol. Among the list of paths it checks one by
one those to be measured in P in order to maximize the negativityN of the final pair,
while the rest will be measured in Q.

In the Routing protocol, in principle, we could have considered as well parallel paths of
longer lengths that might have contributed to improve the negativity. However, in practice
it had the only effect of slowing down the performances while not increasing the entan-
glement for all the cases we considered. The effect of the parallel paths can be appreciated
when comparing the negativity produced by Routing with that produced by Shortest.

• Shortest: the difference of the latter is that it only exploits one of the shortest parallel
paths, directly measuring everything else in Q.

In some cases the two protocols do not give a substantial difference, either because there are
not parallel routes or because these do not help increasing the entanglement, however in
many instances the effects of parallel routing are significant. The last protocol we compare
with is All P.

• All P : it measures all the terminal nodes with degree 1 in Q and the rest in P.
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This protocol is less effective than the first two but is always the quickest, whereas Routing
can be computationally very slow on regular networks, which are characterized by long
distances and many parallel paths, but becomes very efficient on complex sparse networks.

One instance of this program is given in figure 5.16 that shows the negativity provided by
the three different protocols for each node of a GAS(N = 1000) network. At the beginning
of the protocol, we pick Alice as the node, or one of the nodes, with the highest degree.
The nodes are then sorted by their distance from Alice and, for the same distance, by the
number of all the shortest paths connecting them to Alice. Additionally, the grey column
represents the ratio of parallel paths that were useful to increase the entanglement. Notice
that nodes at distance 1 cannot show a difference between the Routing and the Shortest
protocols, however many nodes at distance 2 present a greater negativity than those at
shorter distance after the Routing. This non-trivial effect of improving a channel capacity
at larger distances has no classical equivalent.

0 100 200 300 400 500 600 700 800 900 1000
Node

0.0

0.2
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[
p]

 Routing
 shortest
 All P

 Routing
 shortest
 All P

Figure 5.16: Negativity produced by the three different protocols applied to each node of the the GAS(N =

1000) network. The nodes are labeled in order of distance and of number of paths connecting to Alice. The
blue, orange and green stems represent the negativity of the final pair after the Routing, Shortest and All P
protocols respectively, while the dashed lines represent the mean value for all the nodes. The color of the
marker indicates the distance of the node from A and the grey columns represent the ratio of paths that
improved the entanglement in Routing. We invite the reader to zoom in the figures in electronic version to
appreciate all the details.

In figure 5.17 we show the graph of the network, where the nodes are again sorted by
distance and number of parallel paths and the size of each node is proportional to its degree.
In this figure Alice is ‘0’ and has a thick red contour. The node with highest negativity and
all the paths that improved its entanglement are highlighted with red thick lines.

The same analysis was done in several networks with different sizes and topologies with
very different results that we report in figures 5.18, 5.19, 5.20 and 5.21. A property that is
not apparent in Fig. 5.17, is that the node with the highest enhancement of entanglement
due to the multiple paths is not necessarily the one with the highest negativity in absolute.
This is the case of the ER network of Fig. 5.18, in which the node with the highest entangle-
ment, highlighted in green in the graph representation, is at distance 1 while the node with
the highest difference in negativity between the Routing and the Shortest protocols, high-

132



Quantum Complex Networks

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15 16 17 18 19 20 21 22
23

24

25
26

27 28 29 30
31

32

33

34

35

36

37

38

39

40

41

42
43

44
45

46

47

48

49

50

51

52

53

54
55

56
57

58

59

60
61
62
63
64
65
66

67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155
156

157

158

159

160

161

162

163164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386
387

388

389
390

391

392

393

394

395
396

397

398

399

400

401

402

403

404

405

406

407
408

409

410

411

412

413

414
415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444
445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670671

672

673674

675

676

677678679680

681

682

683

684

685

686

687

688

689

690

691

692
693

694

695

696

697
698

699

700
701

702

703

704

705

706
707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758
759

760
761

762

763

764 765 766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784 785 786

787

788

789

790791

792 793

794

795

796

797

798

799

800

801

802

803 804 805

806

807

808

809

810

811

812

813

814

815 816 817

818

819 820

821

822

823 824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874
875

876

877

878
879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910
911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

0

0

1131137

17

22

26

30

36

39

53

57

Figure 5.17: Scheme of the GAS(N = 1000) network on which we performed the protocol and subgraph
of the paths connecting to the node with highest negativity. The nodes are set in circles according to their
distance from Alice and their size is proportional to the degree. We invite the reader to zoom in the figures
in electronic version to appreciate all the details.

lighted in red, is at distance 3. In this case, the structure of the subgraph used throughout
the Routing is not a diamond chain and the intercorrelations among the parallel branches
have limited the increase of the entanglement,as for the D̃N network in Fig. 5.11. In any
case, in this network the nodes at greater distances are the ones that are most affected by
our protocol and, although in some cases many parallel paths have been disregarded, as
shown by the height of the grey column, all the nodes at distance 4 received a substantial
enhancement.

The results of the simulation on the BA topology of Fig. 5.19 are similar to the AS, although
the first only reaches a distance of 3. The nodes with the highest absolute negativity and the
highest negativity difference produced by the Routing protocol coincide and are at distance
2 from Alice, whereas this time its subgraph is a diamond with no interconnections. Also
in this case distance 2 is favorable to perform quantum communications.

The WS structure of Fig. 5.20, on the other hand, is the worst to apply the Routing protocol.
Only a few nodes, in fact, were poorly enhanced and mostly at large distances, while the
negativity averaged over all the nodes for Routing and Shortest is comparable. The node 44
at distance 3 is the one that received the greatest boost from our protocol, whereas node 1
(like all the other nodes at distance 1) has the highest negativity.
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Finally, the biological network of Fig. 5.21 produced the most interesting results. Once
again, many nodes at distance 2 end up having more negativity than those at distance 1,
and at this distance the nodes with the same degree have the same negativity that decreases
exponentially with their degree. The nodes with highest negativity and highest difference
coincide with node 139, which is linked to Alice through 33 intermediate nodes, forming a
diamond network with no interconnections.

5.9 Discussion
We have studied Gaussian multimode quantum networks with regular and complex topolo-
gies for quantum communication protocols. In particular: i) we have studied their cost
in terms of amount of squeezing and number of necessary squeezed modes to build the
network; ii) we have established a multi-path routing protocol distributing entanglement
between two arbitrary nodes. In details:

• We have shown that the cost of the networks is not always linear with the num-
ber of edges and nodes and there are particular (regular and complex) graph shapes
that optimize the cost and the number of squeezers over number of nodes/edges in
the networks. Among regular networks the diamond and the star graphs need only
two squeezed nodes to be built, independently from their number of nodes. Among
the complex networks shapes, the Internet Autonomous System model is the most
convenient in number of needed squeezed states.

• We have studied the assisted teleportation protocol in Gaussian entangled networks,
where a couple of nodes are assisted in the teleportation by local measurements in
all the other nodes. This naturally defines a routing protocol in Gaussian networks.
In particular we have consideredQ and P homodyne quadrature measurements that
allow respectively for vertex-removal and wire-shortening.

• The routing is optimized by different measurement schemes in regular networks. In
the linear and the diamond networks the best strategy consists in the wire shortening,
but the diamond network shows the largest ratio in reached entanglement over cost.

• Inspired by the behaviour of the diamond networkwe have devised a routing protocol
that exploits wire shortening in parallels paths and we have applied it to complex
networks graphs. The protocol named Routing is compared with Shortest, where wire
shortening is done only in the shortest path, andAll P, which removes all the terminal
nodes while it wire-shorten all the others. In most cases, the Routing improves the
entanglement compared with Shortest. Also, in terms of computational complexity,
the Routing is much slower than All P in regular networks, where there are long
distances between nodes and several parallel paths, but it is very efficient in complex
sparse networks.

The devised Routing protocol is very general so that it can be applied to arbitrary networks,

134



Quantum Complex Networks

and it is particularly efficient for sparse not regular networks. Our simple graph exploration
approach would be improved in computational efficiency by real graph-based algorithms,
especially if we allow for approximate solutions. Also it would be interesting to allow for
non uniform distributions of squeezing s and CZ gate strength g ormore general homodyne
measurements, i.e. going beyond the two P and Q cases and considering measurements
alongQθ = cos(θ)Q+sin(θ)P . In addition, it could be interesting to examine a scenario in
which the intermediate nodes are dishonest and do not cooperate to perform the routing.
Moreover, in order to consider practical implementations, realistic parameters for losses and
noise should be included in themodel. Finally the routing protocol has been implemented to
solve the particular task of creating a perfect EPR pair between two nodes; future protocols
will consider general reshaping in arbitrary multiparty states.
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Figure 5.18: Negativity produced by the three different protocols applied to each node of the the GER(N =

1000, p = 0.4) network.
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Figure 5.19: Negativity produced by the three different protocols applied to each node of the the GER(N =

1000, p = 0.4) network.
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Figure 5.20: Negativity produced by the three different protocols applied to each node of the the GER(N =

1000, p = 0.4) network.
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Figure 5.21: Negativity produced by the three different protocols applied to each node of the the GER(N =

1000, p = 0.4) network.
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This thesis focused on the investigation of selected techniques from quantum optics and
their applications to quantum information processing and beyond, with a special regard
to their impact on the future quantum internet. The availability of concrete technological
resources and the possibility to compare our findings with experiments in realistic scenar-
ios have been the Ariadne’s thread guiding our theoretical inquiry through a vast maze of
abstract research. In addition, the applicability in the short or mid term of our research in
contexts of societal value has been a vital motivation to the pursuit of our studies. Above
all, the unsustainable footprint of civilization has become a matter of major concern for a
large part of the population. Recent studies [169] estimated that by 2025, Internet and all
the Information and Communication Technology industry in general, might use 20% of all
electricity generated and emit up to 5.5% of the world’s carbon emissions. That amounts to
more than the total emissions of many countries, such as US, China and India. As a conse-
quence the improvement of the efficiency of communication and computation promised by
quantum technologies could play a crucial role to face the challenge placed by the energetic
emergency. Moreover, the progress of photonic technologies offers an alternative way to
boost the performances of supercomputers even in the classical paradigm. Nonetheless,
throughout this thesis we explored topics that divert from purely applied science, examin-
ing some fundamental aspects of computer science and quantum theory, e.g. the effects of
topology and measurement on networks of quantum harmonic oscillators.

The first part of the thesis was devoted to the introduction of some preliminary notions and
concepts necessary to grasp the main results presented in the second part, that revolved
around advanced topics in quantum optics and computer science. In particular, in chapter
1 we described some of the most common quantum states encountered in quantum optics,
we showed their theoretical representation and discussed their experimental production.
We stressed the difference between the Discrete and Continuous Variables formalisms, re-
vealed their advantages and drawbacks and displayed how to address them operationally.
In chapter 2 we introduced the concept of algorithmic complexity and used it to classify
protocols based on their efficiency. We presented as well some recent results in the theory
of NP completeness, Interactive Proof systems and complex networks.

The second part of this thesis contains the original contributions produced during the doc-
torate. The works are presented as three different stages of complexity of quantum internet,
ranging from a simple connection among two distant nodes, to a regular star-shaped net-
work with an arbitrary number of users, to general complex quantum networks of any
shape and dimension. For each of these stages we provide a description of the architec-
ture, the scenario and the physical requirements to implement it, as well as an innovative
protocol that can serve for quantum communication purposes in that stage. The actual im-
plications of these results, however, transcend the field of quantum communications and
further studies will be necessary in order to fully seize their potentialities.
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In chapter 3 we introduced the first of these stages, where we illustrated the results and
methodology presented in the paper [170]. In this work we experimentally implemented a
Quantum Merlin Arthur Interactive Proof system with linear optics, demonstrating a pro-
tocol in which a simple agent can efficiently verify the solution to an NP-complete problem,
supplied by the untrusted Merlin, having access to only a fraction of the whole proof. As-
suming the exponential time hypothesis, we rigorously proved that in order to perform
the same task without quantum resources it would take an exponential time in the in-
put size of the problem. As a consequence, we demonstrated experimentally for the first
time a computational quantum advantage in the interactive setting. This type of quan-
tum advantage, unlike the standard proposals of computational advantage, can be certified
straightforwardly, requires a number of optical elements that are easily found in most well-
equipped photonic laboratories and that is constant in the size of the problem and might
bring us a step closer to interesting applications. Although this work is an experimental
implementation, the theoretical contribution was fundamental to its development. In fact,
the original scheme proposed in [110] could not be implemented with current technology
and the necessary simplifications required to rethink the protocol from scratches.

A crucial limit to the applicability of this protocol is the presence of the unentanglement
hypothesis, namely the fact that the quantum proofs provided by Merlin need to be isolated
separable states, otherwise the completeness and soundness of the verification procedure
cannot be guaranteed in a dishonest scenario. It should be noted, however, that coherent
states cannot be entangled, thus the only way to induce quantum correlations among the
different parts of the proof is to deviate from the coherent regime, for example by adding
squeezing. Such deviations, though, would be detected by Arthur during the protocol and it
is thus not clear whether the presence of entanglement actually invalidates the correctness
of the protocol. An interesting prosecution of this work could be to investigate if the unen-
tanglement promise is indeed not necessary, which would make the verification protocol
applicable in a more general cryptographic scenario. Furthermore, as pointed out in [171],
the existence of a test that can efficiently distinguish between a product of n quantum states
and states which are far from product, given only one copy of the state, is an open question
that has many interesting implications in quantum information and computer science. Our
work could thus provide an advance in this direction as well.

The second stage of the quantum internet is displayed in chapter 4, where we discussed the
results shown in [172]. In this work, we present a quantum photonic architecture that is
capable to implement a secure voting system in the presence of realistic noisy conditions
and dishonest agents, without requiring a centralized authority that governs the elections
or computes the tally. This highly desirable functionality has received the attention of a
large part of the classical and quantum community, with many interesting proposals. All of
those, however, suffered from somemajor security flawswhen applied to realistic scenarios,
or had theoretical requirements out of reach for our current technological disposals. In
order to devise a protocol that could guarantee security also in a non-ideal scenario it was
necessary to drop the notions of perfect correctness and privacy and define approximate
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versions of these properties, in such a way that the probability of fulfilling the properties
was directly linked to some measurable experimental parameters.

Although this is a theoretical protocol and the implementation for an actual election might
require severe modifications to circumvent the need of a large multipartite entangled state,
an experimental execution for a small number of voters can be readily performed with
state-of-art photonics. The main challenges to this purpose would be the generation and
distribution of a high fidelity GHZ state, with a high production rate. Realistically, a proof-
of-principle experiment would require a 4 particles GHZ state with a fidelity larger than
0.9. Further investigations and modifications to the scheme could reduce these require-
ments. Single photon memories with long enough storage times, in order to allow the com-
plete distribution and the announcement of the verification or voting subroutines, might
be another bottleneck for the scaling of the protocol and it could be interesting to devise
a prepare-and-measure version that could avoid this problem. Finally, the same scheme
could be employed to perform anonymous multipartite computation and there are many
other important functionalities that could be based on electronic voting, e.g. byzantine
agreement.

The last stage of quantum internet is examined in chapter 5, that reports the results of [173].
We revised the CV formalism and used it to describe Gaussian graph states that will be em-
ployed as quantum communication networks. We analyzed the scaling of the squeezing
cost and number of squeezers required to implement a selection of regular and complex
topologies, showing that building certain structures is more convenient than others. We
discovered an interesting feature of CV quantum networks, namely the parallel enhance-
ment of entanglement, that allows to increase the quantum correlations among two nodes
of the network by exploiting the measurement of their multiple connections. This allowed
to devise a routing protocol to distribute entanglement among two arbitrary nodes of the
networks, that shown to be particularly effective for sparse complex networks. We bench-
marked this protocol against a simpler scheme that only considers one of the links among
the nodes, showing the superiority of the first in many cases, especially for nodes at large
distances.

The field of CV quantum networks is largely unexplored and offers a wide range of lines of
research. A possible extension of our model could include the effect of general homodyne
measurements, with arbitrary phases among the quadratures. This would allow the possi-
bility to train a gradient descent algorithm to find the optimal angle tomeasure sets of nodes
given the global structure. In particular, the existence of an optimal measurement strategy
that only depends on the local details of each node, e.g. position and connections, would be
particularly appealing for applications. Another possibility might be to endow the nodes
with local non-gaussian measurements, that in certain cases could boost the performance
of the routing.
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In this appendix we study a topic that slips away from the main context of this thesis,
namely quantum communication networks, however we hope that a curious reader may
find it intriguing. Although the applications proposed for this study may differ a lot from
those proposed in the previous chapters, the physical system under exam is once again a
multimode CV quantum state undergoing a Gaussian evolution, to which the theory devel-
oped in chapter 1 applies perfectly. Specifically, we present a scheme for the charging of a
quantum battery based on the dynamics of an open quantum system undergoing coherent
quantum squeezing and affected by an incoherent squeezed thermal bath. We show that
quantum coherence, as instigated by the application of coherent squeezing, are key in the
determination of the performance of the charging process, which is efficiency-enhanced at
low environmental temperature and under a strong squeezed driving.

A.1 Why we need a quantum battery
Quantum physics proved to have an edge for outstanding applications in computation and
cryptography. Whether quantum technologies can help us facing the forthcoming energetic
crisis remains however an open question. The efficient storage and distribution of energy
far from its production centers is rapidly becoming one of the economic market drivers
and a key technological challenge for the grounding of a sustainable green powered soci-
ety. Batteries have consequently become a vital technology in modern society and many
efforts are being dedicated to improving their performances in terms of capacity, energy
density, power and life-time [174]. The boost of nanotechnologies has made the miniatur-
ization of these “work reservoirs” a primary matter. As the size of these devices approaches
the sub-molecular scale, it becomes reasonable – and indeed appropriate – to formulate a
quantum mechanical description of their working principles. One of the core questions in
this regard is whether non-classical effects can play a useful role in the improvement of
the capabilities of energy-storing systems. This has triggered the drawing of theoretical
models able to characterize and quantify quantum advantages in terms of non-equilibrium
thermodynamical quantities [175].

Interesting case-studies of quantum batteries leveraging on discrete [176]–[178] and con-
tinuous [179] degrees of freedom have been put forward. Needless to say, limiting the study
to a unitary charging process severely reduces the application of the models to realistic sce-
narios. Moreover, the analysis of quantum batteries in the context of open quantum systems
may provide additional ways to improve the potentialities of the batteries. In Ref. [180] it
was proven for instance that a squeezed thermal reservoir can improve the power and effi-
ciency of a quantum heat engine. Quantum squeezing, which is the effect of reducing the
variance of one quadrature below the uncertainty of the vacuum state, has found many ap-
plications in many domains, from quantum optics to quantum technologies [43] and grants
the possibility of increasing the energy of a bosonic Gaussian system while keeping a null
mean value of the fields.

In this work we study the effects of squeezing, both as a coherent charging potential and
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as an incoherent squeezed bath, in the charging of a battery initially prepared in a vacuum
state. Our findings reveal that both forms of squeezing efficiently charge the quantum
battery, however their simultaneous usage requires to accurately tune the parameters of
the potential and the bath in order to enhance the performance of the system and avoid
that their effects cancel out.

The remainder of the chapter is organized as follows: in Sec. A.2 we introduce the notation,
formalize the description of the system and characterize the charging scheme; in Sec. A.2.1
we give details on the open dynamics in terms of its master equation describing the evolu-
tion of the system coupled to the environment; in Sec. A.2.2 we discuss the thermodynamic
quantities of interest and the operational way to measure them, while Sec. A.2.3 is dedi-
cated to the simulation of the charging cycle. We identify the range of parameters of the
Hamiltonian and the bath that allow for an improvement of the efficiency of the battery.
Finally in Sec. A.2.4 we bound the quantum speed limit of the charging process to compute
the power of the storage device. The investigation reported in this chapter sheds some
light on the role that the quantum coherences enforced by the use of squeezing have in
the charging process of a quantum battery, thus taking the investigation on the potential
quantum advantage for the management of energy-storing devices a step closer to a full
grasp.

A.2 The system and charging cycle
In what follows, we consider the battery as a single-mode harmonic oscillator that is ini-
tially prepared in a thermal state. Such initial state is completely passive, meaning that it is
impossible to extract useful work from it through unitaries. Completely passive states can
also be found in literature as Gibbs states or KMS states [181].

We shall consider a fully Gaussian framework where the state of the battery evolves ac-
cording to a quadratic Hamiltonian in the quadrature operators x̂ = â† + â and p̂ =
i(â† − â) [25], [182]. Since the system is Gaussian, we can translate its description in the
phase space: its first moments ⟨r̂⟩ = 0, and its covariance matrix is σij = ⟨{ri, rj}⟩, with
r̂ = (x̂, p̂)T .We will consider a thermal state whose first moments are null x̄τ = ⟨x̂⟩τ =
p̄τ = ⟨p̂⟩τ = 0, whereas the covariance matrix of second moments is στ = coth(βµ/2)1
with β the inverse temperature of the system and µ = ℏω, where ω is the frequency of the
oscillator. The thermal factor coth(βµ/2) is linked to the average number of excitation in
the bath as N = 1

2
[coth(βµ/2)− 1] = (eβµ − 1)−1 .

First, we aim at implementing a charging operation for a completely passive state ρa pre-
pared by letting the battery thermalize with a reservoir at inverse temperature βA, whose
density matrix can be described by ρA = e−βAH0/ZA. The covariance matrix associated to
ρA is σA = 1(1 + 2NA), where NA is the number of excitations within the thermal bath.

The stroke AB is used to charge the battery. In this stroke, the Hamiltonian of the system
is modified by the presence of a charging potential as (from this point on, we assume units
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such that ℏ = 1)

ĤAB = Ĥ0 + V̂c(t), (A.1)

where Ĥ0 = µ(x̂2 + p̂2)/2 is the Hamiltonian of the oscillator and the charging potential
takes the form

V̂c(t) = −λ
2
Σ(τA, τB)(x̂p̂+ p̂x̂) (A.2)

with Σ(τA, τB) = Θ(t − τA)Θ(τB − t) resulting from the composition of two Heaviside
step functions, Θ(t − τA) and Θ(τB − t) with τB > τA, so as to result in a constant in the
interval τAB = [τA, τB]. The charging potential is thus a constant parametric potential of
strength λ within τAB , and is null otherwise.

Figure A.1: Scheme of the charging process proposed in this work. Firstly, the discharged
battery is prepared by letting the system thermalize with a thermal reservoir having an
average number of excitation of NA. At time t = τA we turn on the interaction with the
charging potential V̂c(t) and with the squeezed thermal bath that has mean excitation NB ,
squeezing parameter rB and squeezing angle θB . At time t = τB we turn off the charging
potential and the battery is fully charged.
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A.2.1 The open dynamics of the quantum battery
In the following, we aim at characterising the dynamics of an open quantum battery. We
assume the system to be weakly coupled to a large environment, whose correlation times
are much shorter than the system dynamical time scale and we can always consider them
to be uncorrelated, thus allowing us to invoke the validity of the Born-Markov conditions.
In such a regime, the dynamics can be described with a Lindblad master equation of the
form

dρ̂

dt
= −i[ĤAB, ρ̂] +

m∑
k=1

(
L̂kρL̂

†
k − 1

2
{L̂†

kL̂k, ρ̂}
)

(A.3)

Where L̂k are the Lindbladian (or jump) operators associated to the non-unitary dynamics.

Let us introduce a bosonic bath B with quadratures r̂bath(t) satisfying the quantum white
noise condition

[̂rbath(t), r̂bath(t
′)] = iΩNδ(t− t′), (A.4)

where ΩN = Ω⊕N with Ω = iσy is the symplectic form (here σy is the y-Pauli matrix).
Eq. (A.4) entails the memoryless Markovian dynamics, neglecting the correlation of the
bath modes at different times. In order to maintain the Gaussian evolution, we can assume a
quadratic coupling Hamiltonian ĤC = r̂TC r̂Tbath between system and bath. In this situation,
the covariance matrix σ and the first moments r̄ of the system obey the following diffusive
equations {

˙̄r = Ar̄,

σ̇ = Aσ + σAT +D,
(A.5)

where the drift matrixA and the diffusion matrixDmay be derived from the system hamil-
tonian ĤAB and its coupling C with the environment.

A key ingredient of our proposal is the squeezed nature of the bath being considered. In
this case, we can use the linear response theory as developed in [183]. The master equation
of a system interacting with a squeezed thermal bath is [180]

dρ̂
dt

= − i
ℏ [ĤAB, ρ̂] + {L̂+L̂

†
+, ρ̂}+ L̂−ρ̂L̂

†
− − 1

2
{L̂−L̂

†
−, ρ̂}+ L̂+ρ̂L̂

†
+, (A.6)

where the jump operators L̂± read

L̂+ =
√

Γ
2
(NB + 1)(â cosh rB + â† sinh rBe

iθB),

L̂− =
√

Γ
2
NB(â

† cosh rB + â sinh rBe
iθB).

Here, Γ is the damping rate, andNB = (eβBωB−1)−1 is the mean number of excitations of a
thermal reservoir at frequency ωB and inverse temperature βB . and frequency ωB , rB ≥ 0
is the degree of squeezing of the bath and θB ∈ [0, 2π] is its phase.

147



Appendix A

Since the system’s hamiltonian is quadratic in the quadratures, we can rewrite it as ĤAB =
1
2
r̂THsr̂, being careful to distinguish the hamiltonian operator ĤAB , acting on the Hilbert

space of the system, and its hamiltonian matrix Hs, mixing the quadratures. The Lindbla-
dian operators, conversely, can be written in the form L̂k = bTk r̂. Now, given a master
equation such as Eq. (A.6), we can write the drift and diffusion matrix as [183]

A = ΩHs − 1
2
Im
(
BB†) , D = −ΩRe

(
BB†)Ω (A.7)

with B = (bT1 , b
T
2 , ..., b

T
m) ∈ C2N×m taken from the Lindblad operator described above.

We can then deduce the form for the matrix B and use it to obtain the drift and diffusion
matrices A and D. Plugging these into Eq. (A.5) gives us the dynamical equation for the
evolution of the first two moments of our Gaussian system. In what follows, we will focus
our study only on vacuum states with null first moments, neglecting the driving of the
average value of the quadratures and thus assuming that the quantum state is always fully
described by its covariance matrix.

Before describing the dynamics ensuing from Eq. (A.7), we shall identify the conditions
under which a steady state satisfying the stationary equation

Aσ∞ + σ∞A
T +D = 0 (A.8)

exists. Criteria for the existence of such a state are provided by the Routh–Hurwitz sta-
bility conditions [184], [185], which affirms that if A is diagonalizable and the real part of
its eigenvalues is negative, then the steady state is stable. When applied to the situation
described above, this results in the condition

µ2 − λ2 − Γ2/4 > 0. (A.9)

This is the condition for the stability of the steady state. Now we want to find a condition
on the matrix D in order to enforce the physicality of the dynamics. Imposing the validity
of the uncertainty principle for the bath state covariance matrix σbath we get a bona fide
diffusive dynamics condition for D, which in the single mode case can be reduced as

Det[D] ≥ Det[ΩTA− ATΩ], (A.10)

which is always satisfied in our case.

A.2.2 Energetic considerations
The internal energy at time t of a quantum system can be computed as the expectation
value of its HamiltonianE = ⟨Ĥ⟩ = tr[ρ̂Ĥ]. As mentioned in Sec. A.2, during the charging
phase, the Hamiltonian must depend on time in order to change the energy of the system.
However, just outside of the charging period, we have ĤAB(τ

−
A ) = ĤAB(τ

+
B ) = Ĥ0, so that

E = ⟨Ĥ0⟩ =
µ

2

(
⟨x̂2⟩+ ⟨p̂2⟩

)
=
µ

4
tr[σ] (A.11)
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This expression allows us to derive the internal energy difference between the charged
battery at τB and the initial state

∆EAB = EB − EA =
µ

4
(Tr[σB − σA]) , (A.12)

where σj is the covariance matrix of the system at time τj .

The first law of thermodynamics implies that, for our open quantum system, such energy
change is due to two contributions: the work ∆W done on the system, and the heat ∆Q
exchanged with the environment. These contributions take the form

∆Q =

∫ τB

τA

Tr
[
˙̂ρ(t)Ĥ(t)

]
dt, ∆W =

∫ τB

τA

Tr[ρ̂(t)
˙̂
H(t)]dt, (A.13)

which characterize the work∆W spent in order to change the energy of the system of∆E
and the amount of heat dissipated to accomplish such result [186]. For our choice of the
Hamiltonian we have

∆WAB = −λ
2
(σB12 − σA12),

∆QAB =
µ

4
Tr[σB − σA] +

λ

2
(σB12 − σA12) .

(A.14)

The process under consideration is thus not unitary: the thermal bath keeps draining ir-
reversibly quantum information from the system, increasing its entropy and decreasing its
purity until it reaches a non-equilibrium steady state.

None of these quantities, however, represents the energy available in the battery to perform
useful work. This is due to the second principle of thermodynamics which tells us that in
a spontaneous process part of the energy is used for increasing the entropy of the system.
Therefore we need to consider the Helmoltz free energy defined as

∆F = ∆E − T∆S, (A.15)

where ∆S is the change of the von Neumann entropy S = −Tr[ρ ln ρ]. For Gaussian
systems, this can be cast in the form

S =
N∑
i=1

[
νi + 1

2
log

(
νi + 1

2

)
− νi − 1

2
log

(
νi − 1

2

)]
, (A.16)

where νi is the ith symplectic eigenvalue of the covariance matrix σ. The maximum amount
of work that the system can perform in a thermodynamic process is given by −∆F . We
will thus use∆FBA to characterize the storage capacity of the battery during the discharg-
ing process, and the internal energy difference ∆EAB to quantify the energy required to
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(a) (b)

Figure A.2: In panel (a)we report the trend followed by the efficiency η with the temperature of the thermal
bath NA = NB , studied against the charging squeezing λ. We have taken Γ = µ = 1 and no squeezing of
the bath (i.e. rB = 0). Panel (b) shows η against λ and NA.

charge the battery. For the second law, in a thermodynamic cycle we will always have some
irreversible energetic waste so we expect in general ∆EAB ≥ −∆FBA.

In the following we assume τA = 0 and τB = +∞, so that the charged state of the battery is
reached when the system is in the non-equilibrium steady state of the dynamics, and thus
σB = σ∞. We will go back to study the dynamical evolution in time when we will discuss
the charging power and the quantum speed limits.

A.2.3 Efficient charging process
The free energy is a function of state that equals zero at thermal equilibrium. As such, it
only depends on the initial covariance matrix of the discharged battery σA and the final
state of the charged battery σB and as a consequence we have that the free energy in the
charging stroke equals the free energy in the discharging stroke ∆FAB = ∆FBA. This
means that we do not need to implement the dynamics in the discharging phase in order
to characterize the extraction of energy, because this is fully defined by the initial and final
state of the charging phase.

In order to compare the performances of the quantum battery in different dynamical situ-
ations, we define the following figure of merit for efficiency

η =
∆FAB
∆EAB

= 1− ∆SAB
∆EAB

. (A.17)

This corresponds to the ratio between the extractable energy from the battery and the cor-
responding total internal energy stored in the charged system.
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(a) (b)

Figure A.3: Trend of the efficiency η with the temperature of the thermal bathNB and the charging squeez-
ing λ. NA = Γ = µ = 1 and the squeezing bath is switched off rB = 0.

One of the key results of our study is that quantum coherence is a resource for single-mode
Gaussian batteries: by increasing the thermal bath temperature NA, and thus decreasing
the initial purity of the system, we also decrease its efficiency, despite the fact that the over-
all available energy is larger. This is shown in Fig. A.2, where we report the performance of
a single-mode quantum battery system coupled to a single-mode thermal reservoir, setting
the squeezing parameter of the bath at rb = 0, and takingNB = NA. Although the dynam-
ical process is non-unitary and the system evolves towards the charged steady-state σB , on
average there will be no net heat exchange (∆QAB = 0) and thus∆EAB = ∆WAB . Notice
that, although both ∆FAB and ∆EAB disappear in the limit λ → 0, the efficiency tends to
η = 1/2, in this limit. This asymptotic behaviour changes non-trivially if we increase the
temperature of the bath B, as shown in Fig. A.3.

We now turn on the interaction with the squeezed bath by setting the parameter rb to a
non-null value. The influence of this type of environment is complex and the interplay
between the various parameters rich. One would expect that, as we increase the squeezing
parameters, λ and rB , the energy would correspondingly grow. Surprisingly, this is not the
case. In fact, the squeezing phase θB of the bath plays a crucial role, and in order to properly
charge the battery and improve its efficiency, such parameter should be finely tuned, as it
can be appreciated from Fig. A.4.

A.2.4 Assessment of charging power and temporal considerations
We now aim at showing the performance of the average power when charging the battery.
We define the average power as

P =
∆FAB
∆tAB

, (A.18)
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(a) (b) (c)

Figure A.4: (a) Density plot of the efficiency η plotted against the charging squeezing λ and the phase of
the squeezing for the bath θB for rB = 0.5. The optimal angle to obtain the maximal efficiency is θB ∼ 3π/2.
(b) Trend of the efficiency η with the the bath squeezing rB for various values of the charging squeezing λ.
The phase of the bath squeezing is set to its optimal value, while all the other parameters are as in panel (a).
(c) Density plot of the efficiency η with the charging squeezing λ and the bath squeezing rB with the optimal
choice of phase for the bath squeezing. In all panels we have taken NA = NB = Γ = µ.

where∆tAB is the average time employed to charge the battery. Although by definition it is
required an infinite time for the battery to reach the steady charged state, in the first stages
of the dynamics the system evolves much quicker and then it slows down until it asymp-
totically reaches the final state, thus ∆tAB ̸= τB − τA = ∞. In order to bound the time
required to perform the charging we will employ the quantum speed limits geometric for-
malism. The quantum speed limits bound the minimum velocity vQSL of a system to evolve
between a state ρ and a state infinitesimally close ρ+dρ on the Riemannianmanifold formed
by the set of density matrices of the Hilbert space of a quantum state. The infinitesimal dis-
tance between these states is defined through the Bures metric ds2 = 2[1− F(ρ, ρ+ dρ)],
where F is the Ulhmann fidelity.

The problem of bounding the minimal Riemannian speed of an infinite dimensional Hilbert
space can be challenging [187]. However, the limitation to a Gaussian dynamics leads to
a critical simplification that allows us to efficiently solve the issue. In Ref. [188] some of
us showed that, for Gaussian states evolving under Gaussian generators, the instantaneous
speed of quantum evolution on the Riemannian manifold is

v2(t) =
1

4

∑
j

∂tνj
ν2j − 1

. (A.19)

The integral velocity of the system between τA and τB is thus

VAB =

∫ ∞

0

v(t)dt. (A.20)

This dimensionless quantity embodies the product of the interaction time∆τAB and the av-
erage velocity, which allows us to estimate a lower-bound to the ratio between the average
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time of the evolution and the interaction time as

∆tAB
∆τAB

=
∆sAB
VAB

. (A.21)

Here, ∆sAB = 2[1 − F(ρA, ρB)] is the Bures distance between the passive and charged
states. Ref. [189] has provided a closed formula for the evaluation of the Ulhmann fidelity
between generic Gaussian states as

F2
1 (σA, σB) =

1
√
∆+ Λ−

√
Λ
, (A.22)

where∆=det[(σA+σB)/2] and Λ=4Πj=A,B det[(σj+ iΩ)/2]. This gives us all the tools to
compute the average power of our single mode Gaussian battery. Once again, we are going

(a) (b)

Figure A.5: In panel (a) we show the density plot of power P against the mean occupation number NA =

NB and squeezing λ. In this simulation, we have taken Γ = µ and a thermal bath with rB = 0. Panel (b)
shows the results of a similar study but for NB ≥ NA = Γ = µ.

to consider the influence of a simple thermal bath, setting the squeezing parameter of the
bath rB = 0. We are then going to turn on the charging potential V̂c(t) with a squeezing
strength of λ. The situation where the two baths A and B have the same temperature
NA = NB is shown in Fig. A.5 (a).

Differently from the case of the efficiency, the higher temperature, and thus a lower quan-
tum coherence, increases the power of the system. While the increment of λ raises the
charging power only linearly, the dependence from the initial temperature NA is actually
exponential. Nonetheless, in the limit of λ → 0 there would be no charging potential and
thus no charging power, whereas a pure quantum state at zero temperature can still store
energy if λ > 0.
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In Fig. A.5 (b), we takeNA = 1 and let the bath temperature vary to charge the battery with
thermal energy. Even though, the dependence of the charging power from the temperature
NB and the squeezing parameter λ is similar to the previous case, the operations performed
on the system is conceptually different. In this case, in fact, the energy stored in the battery
will increase even if λ = 0.

Once again, the situation becomes more complex when we turn on the interaction with the
squeezing bath rB > 0. In this case, the dynamics strongly depend on the phase of the bath
θB and there is an interplay between the two squeezing factors that can be optimized in
order to increase the power. Interestingly, the optimal value of θB to maximise the charging
power, as shown in Fig. A.6, is different from the optimal value to maximise the efficiency
of the discharging (cf. Fig. A.4).

(a) (b)

Figure A.6: (a) Density plot of power P vs λ and θB . NA = NB = Γ = µ = 1 and the
squeezing bath is set to rB = 0.5. In this case the optimal value of the angle is θB ∼ π/2.
(b) Trend of the power P with λ for various values of rB . NA = NB = Γ = µ = 1 and the
squeezing bath angle is set to its optimal value θB = π/2.

This optimal value of θB is used in Fig. A.6 (b), where it is shown the trend of the power
P with λ for various rB > 0. The behaviour of the system is far from being trivial and
while we would expect that the power always increases with λ and rB , it is not the case of
Fig. A.6 (b).

A.3 Closed-system dynamics

A.3.1 Channel picture

We describe the dynamics through a discrete evolution, applying quantum maps to states
rather than solving the associated equations of motion in continuous time. In a closed Gaus-
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sian system, the evolution of the covariance matrix is described by σC = Sσ0S
T , where

S ∈ Sp2,ℜ (single-mode Gaussian state) is a real symplectic matrix. We will assume that
our Gaussian battery has an internal Hamiltonian Ĥ0 and that S represents the charging
process induced by an external potential applied for some time. Note that we are not con-
sidering first moments, which do play a role in the energy of the system, by neglecting
linear terms in the charging potential. Without loss of generality, we can apply an Euler (or
Bloch-Messiah) decomposition S = OK , where O is an orthogonal matrix representing a
quadrature rotation,K is diagonal representing single mode squeezing and we disregarded
the last orthogonal matrix because it commutes with the identity of the thermal state [25],
[182].

We can parametrize as O = cos θ1 + i sin θσy and K = exp[−rσz] with σz the z−Pauli
matrix. With this at hand, the most general covariance matrix of a Gaussian state reads

σC = (1 + 2NA)

(
e−2r cos2 θ + e2r sin2 θ sin(2θ) sinh(2r)

sin(2θ) sinh(2r) e2r cos2 θ + e−2r sin2 θ

)
(A.23)

This provides information on the charged battery. We can now ‘unplug’ the charger and
let the system be driven by its own internal Hamiltonian Ĥ0. The energy difference is thus
given by Eq. (A.11)

∆EAB =
µ

2
(1 + 2NA) sinh (x)

2 (A.24)

and its trend against r and NA is shown in Fig. A.7. Notice that the parameter θ does not
contribute to the energy as rotations are passive transformations.

The calculation of the ergotropy of the battery would require an optimization of the charg-
ing symplectic transformation. However, fixing the bath parameters, the energy difference
always grows with the squeezing, so we can assume that there is a finite amount of energy
or time to charge the battery. In this case, the workW coincides with ∆E.

A.3.2 Continuous time evolution
In order to describe the dynamics in time we need to write explicitly the quadratic Hamil-
tonian of the system, which will be of the form Ĥ = Ĥ0 + V̂ (t), where V̂ (t) = µ(â†â +
1
2
)− iλ(â†â† − ââ) is applied for a time t and then becomes null. By using the definition of

canonical conjugate variables, as described previously, we can write the full Hamiltonian
from time 0 to t as

Ĥ(t) =
µ

2
(x̂2 + p̂2)− λ

2
(x̂p̂+ p̂x̂) (A.25)

We can see that this Hamiltonian is the sum of a harmonic oscillator part, which implements
rotations, and a parametric oscillator part, implementing squeezing through a parametric
amplification [25].

Using a bold symbol for the vectorial notation we can write the quadratures as r̂ = (x̂, p̂)T ,
so that we canwrite any quadratic Hamiltonian as Ĥ = 1

2
r̂THsr̂. In our caseHs = µ1−λσx
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(a) (b)

Figure A.7: Trend of the energy difference (in units of µ) for a battery undergoing closed
dynamics. (a): Energy difference∆E as a function of the squeezing parameter r. From top
to bottom curve, we have β = 0.5, 1 and 1.5, respectively. (b): Energy difference against
the inverse temperature β for r = 0.25, 0.5 and 1 (bottom to top curve, respectively).

with σx the x−Pauli matrix. Generally speaking, this matrix should satisfy the condition
Hs > 0 in order to have a bounded spectrum. When this condition is not satisfied, the
system cannot have a steady state andwill keep gaining energy indefinitely, which is clearly
unphysical. The Hs > 0 condition implies that µ > λ.

Figure A.8: Trend of energy in time

The continuous-time dynamics of a Gaussian system can be described by the Lyapunov
equation

∂tσ = Aσ + σAT (A.26)

with the drift matrixA = ΩH . As we are considering a closed evolution we can takeC = 0.
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Solving the Lyapunov and computing the energy through Eq. (A.11) we find

∆E(t) =
µλ2(1 + 2NA) sinh

2
(
t
√
λ2 − µ2

)
λ2 − µ2

. (A.27)

At first sight, this result appear in contradiction with the stability condition µ > λ. How-
ever we can verify that the solution exists and is continuous for all real values of λ and µ.
In fact

∆E(t) =

µλ2(1+2NA) sin2
(
t
√
µ2−λ2

)
µ2−λ2 for µ > λ,

µλ2 (1 + 2NA) t
2 for µ ∼ λ.

(A.28)

The last expression has been found using the Taylor expansion of sin(t
√
λ2 − µ2).

In particular we can see how the energy is bounded only inside the stability condition, as
predicted by the theory.

A.4 Multimode system
The study on single-mode Gaussian batteries can be readily extended to the multimode case
with little differences. Eq. (A.22) for the fidelity of single mode Gaussian states, needs to be
generalized to the multimode case using the expression [189]

F2(σA, σB) =
Ftot

4
√
det(σA + σB)

(A.29)

with

F 4
tot = det

[
2

(√
1+

(σauxΩ)−2

4
+ 1

)
σaux

]
(A.30)

and σaux = ΩT (σA/2 + σB/2)
−1(Ω/4 + σAΩσB/4).

All the quantities of interest can now be computed following the analysis of the previous
section. One can prove, however, that the multimode case can be reduced to the analysis
of a product of single modes system and environments. This result comes from the fact
that the we only need the symplectic decomposition of the system and environment joint
covariance matrix to derive the thermodynamically relevant quantities of our study, and
all passive elements that can mix modes, although they can deeply influence the dynamics,
would not affect the thermodynamics.

A.5 Discussion
We have illustrated a scheme for the charging of a quantum battery based on the dynam-
ics of an open harmonic system subjected to the effects of a coherent squeezing charging
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mechanism, and an incoherent squeezed thermal bath. We have characterized the charging
process by tracking its efficiency defined in therm of the fraction of extractable energy over
the total energy that can be accommodated in the battery itself. We have demonstrated the
key role played by quantum coherence in the charging process, whose efficiency is boosted
for a low-temperature environment and strong-coherent squeezing driving.
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