
HAL Id: tel-03666679
https://theses.hal.science/tel-03666679

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The interplay of machine learning and metaheuristics
Hojjat Rakhshani

To cite this version:
Hojjat Rakhshani. The interplay of machine learning and metaheuristics. Data Structures and Al-
gorithms [cs.DS]. Université de Haute Alsace - Mulhouse, 2020. English. �NNT : 2020MULH3361�.
�tel-03666679�

https://theses.hal.science/tel-03666679
https://hal.archives-ouvertes.fr


The Interplay of Machine Learning
and Metaheuristics

by

Hojjat Rakhshani

DOCTOR OF PHILOSOPHY

in

Computer Science
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Abstract

Optimization algorithms have seen unprecedented growth thanks to their successful

applications in fields including engineering and health sciences. Similarly, machine learning

has been popularly used in perceptual tasks by both academic and industrial researchers.

They are both designed to find solutions for some specific tasks and it is not straightforward

to apply an existing method to a new domain and still have superior results. Hence, experts

have to construct specialized methods for each given task. The extra degree of freedom

from the design space could make this process very time-consuming and has motivated

a demand for automated search methods that can be adopted easily without any expert

knowledge. In this thesis, we claim the mentioned contribution by porting existing methods

from machine learning to optimization domain and vice versa. The first part of this thesis

suggests many lines of investigation with possibilities related to the development of more

enhanced optimization algorithms using machine learning. The second part discusses a

modeling scheme to optimize the performance of machine learning tools with metaheuristic

algorithms.
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Résumé

Les algorithmes d’optimisation ont connu une croissance sans prcdent grce leurs appli-

cations russies dans de nombreux domaines notamment en ingnierie et en sant. De mme,

les algorithmes dapprentissage automatique ont t couramment utiliss sur des problmes de

perception par les chercheurs et les industriels. Les deux catgories dalgorithmes sont conus

pour trouver des meilleurs solutions certaines problmes spcifiques et leurs adaptations pour

un nouveau problme ne garantit pas lobtention de bons rsultats. Par consquent, les experts

doivent construire des mthodes spcialises pour chaque problme donn. Cela ajoute un degr

de libert supplmentaire dans la phase de conception qui pourrait rendre le processus de

dveloppement trs long. Cela a motiv une demande de mthodes de recherche qui peuvent

tre adoptes facilement sans aucune connaissance experte. Dans cette thse, nous proposons

des pistes dintgration des mthodes dapprentissage automatique dans les mtaheuristiques

et vice-versa. La premire partie de cette thse dcrit quelques pistes d’investigation avec

des possibilits lies au dveloppement d’algorithmes d’optimisation plus avancs utilisant le

machine learning. La deuxime partie prsente un schma de modlisation pour optimiser les

performances des outils d’apprentissage automatique tout en utilisant des algorithmes dop-

timisation bass sur des mtaheuristiques.
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dents at the Université de Haute-Alsace. Thank you for making the IRIMAS an enjoyable

and stimulating research institute: Soheila Ghambari, Hassan Ismail Fawaz, Mahmoud Go-

labi, Julien Kritter, Bastien Latard, Mokhtar Essaid, Mounir Bendali Braham, and Imene

Zaidi. I especially learned a great deal from working with Julien; thank you for being so

generous with your time when I was struggling with my GPU implementations. Last but

not the least, I would like to thank my family: my parents and to my brother and sister for

supporting me spiritually throughout writing this thesis and my life in general.

The author also would like to acknowledge the High Performance Computing center of

the University of Strasbourg for supporting this thesis by providing scientific support and

access to computing resources. Part of the computing resources were funded by the Equipex

Equip@Meso project (Programme Investissements d’Avenir) and the CPER Alsacalcul/Big

Data.



xxvi Acknowledgements



xxvii

Thesis Outline

This thesis provides a comprehensive account of metaheuristics and machine learning

interplay. We give an overview of the material and the proposed methodologies at the end

of all chapters (except the last) for the time-constrained readers. The thesis is organized

in two parts and in a hierarchical way. Part I, composed of Chapters 1 to 5, gives the

motivations for integrating machine learning techniques into the metaheuristics and intro-

duces the problem definitions, basic concepts and proposed methodologies that will be used

throughout this thesis. Part II, which comprises Chapters 6 to 7, describes the applica-

tion of metaheuristics for improving the accuracy of machine learning models. Part I is

likely of more immediate interest to practitioners with a background in global optimiza-

tion, while Part II is likely of more interest to researchers with a background in machine

learning. Part III puts the interplay of metaheuristics and machine learning models into

perspective.
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Chapter 1

Introduction

All science, however, commences by

being strange.

Victor Hugo

The metaheuristic algorithms are one of the most well-known techniques for stochas-

tic real-world optimization tasks. The traditional approaches face issues that limit their

convergence rate especially in dealing with the large-scale problems. To address this issue,

different hybrid algorithms were proposed. Through this chapter we show the ability of

the machine learning, when embedded to metaheuristic, to solve the optimization problems

efficiently.

The use of machine learning techniques for enhancing the performance of metaheuristics

has been studied by many researches over the past few decades. In [79], authors proposed to

study the interest of combining metaheuristics and data mining through a short survey that

enumerates the different opportunities of such combinations based on literature examples.

Accordingly, they distinguish the aim of the cooperation based on reducing the computa-

tional time, significantly reducing the search space, or improving the quality of the search

by introducing knowledge in operators or in other parts of the metaheuristic. This can

be achieved by integrating the machine learning techniques into population initialization,

fitness evaluation and selection, population reproduction and variation, algorithm adap-

tation, and local search components. Moreover, various machine learning techniques can

be used in metaheuristics to enhance the algorithm performance; including interpolation

and regression, clustering analysis, principle component analysis, orthogonal experimental

design, opposition-based learning, artificial neural networks, support vector machines, case-

based reasoning, reinforcement learning, competitive learning, and Bayesian network. We

refer the readers to several works [2, 11, 20, 30, 71, 73, 79, 96, 154, 160, 161, 181] which

provide comprehensive studies on the application of machine learning techniques to enhance

metaheuristics.

While the above-mentioned works can help the optimization algorithms search more

effectively, they also increase the computational burden. In recent years, the increasing

computation power and the availability of Big Data have redefined the value of such ap-

proaches by utilizing advanced computation power with GPU and massive-data process-

ing techniques. Better understanding and improving cooperation between recent machine

learning models and metaheuristics therefore will play a significant role in enhancing opti-

mization algorithms efficiently. In this direction, we propose and study the use of advanced

deep learning models for optimal guidance profile of an optimization mission. These models

are selected due to their efficient performance, high number of citations, their similarity to
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evolutionary components, interesting interaction mechanisms between components, number

of parameters, and stagnation prevention strategies. Interestingly, we also investigate the

direct application of the deep learning models for the optimization task. This could be a

very promising research direction which includes balancing the performance improvement

and computational burden caused by the direct application of machine learning. Further-

more, we also study the integration of the existing techniques in machine learning (e.g.

transfer learning [177]) into the metaheuristics so as to significantly reduce the computa-

tional burden. More importantly, we should note that the proposed algorithms are not

applied only on simple numerical optimization benchmarks, but also on complex real-world

applications. We do not claim to be superior to the other researchers, but hope to present

some interesting and relatively novel approaches.
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Chapter 2

Application I: Protein Structure

Prediction

If you wish to make an apple pie from

scratch, you must first invent the

universe.

Carl Sagan, Cosmos

Although powerful metaheuristics have been proven effective to tackle the non-linear

optimization problems, researchers are faced with the challenge of computationally ex-

pensive simulations for the protein structure prediction (PSP). This chapter introduces a

new modification of differential evolution (DE) which makes use of the computationally

cheap surrogate models and gene expression programming (GEP) in order to address the

aforementioned issue. The incorporated GEP is used to generate a diversified set of con-

figurations, while radial basis function (RBF) surrogate model helps DE to find the best

set of configurations. In addition to this, covariance matrixadaptation evolution strategy

(CMAES) is also adopted to explore the search space more efficiently. The experiments

show that the proposed SGDE performs better than the state-of-the-art algorithms on the

PSP problems in both terms of the convergence rate and accuracy. In the case of run

time complexity, SGDE significantly outperforms the other competitive algorithms for the

adopted all-atom model.

Metaheuristics give rise to a large number of studies for proposing more effective and

rapid algorithms. However, there is still room for further improvement duetothegrowing-

complexityofthe optimization problems. In [179], Zhang et al. presented a taxonomy of

the machine learning (ML) enhanced metaheuristics in order to study the interest of such

integration. The most important insight which has resulted from this research is that inser-

tion of ML techniques usually leads to: 1) speeding up the search process and 2) improving

the quality of the solutions. Accordingly, we would like to take a more detailed look on

the importance of the ML techniques for PSP problem. The implementation steps are

based on surrogate modeling, genetic programming [130] and the CMAES [115] algorithm

which are integrated into the DE [158]. The first component known as the approximation

model, meta-model or response surface model is a computationally cheap mathematical

model which has been successfully employed to replace expensive fitness function f in time-

demanding real-world applications. The Gaussian process/Kriging, polynomial regression

(PR), RBF, radial basis neural network (RBNN) and support vector regression (SVR) are

well-known meta-models which have been reported in literature [76]. They have exhibited
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superior performance in solving computationally expensive dynamic, multi-objective and

single-objective optimization problems. The advantages of the cheap surrogate models be-

come clear where they could be used to explore a large area of the configuration space using

far less computation time. This is due to the fact that conventional optimization algorithms

are highly sensitive to their search strategies and associated control parameters and it is

necessary to perform a trial-and-error search to find the best combination for the problem

at hand. Consequently, fitness functions need to be frequently evaluated which results in

costly computational expenses. Motivated by this aspect, we employed a surrogate model

based on RBF for online configuration of DE usingless fitness evaluations. As another novel

feature in DE, the second consideration replaces mutation strategies of DE by the generated

ones using a GP technique. The introduced GEP enables us to have a diversified pool of

mutation search operators for the individuals in the population. The GEP produces linear

and non-linear extrapolation of the individuals which results in different combinations of

solutions. This differs from previous studies that use a predefined set of configurations to

generate competitive trial vectors. Finally, the standard DE is equipped with the CMAES

algorithm in order to learn and takes into account dependencies of the optimization param-

eters [143]. On large scale problems with high dependencies, CMAES becomes a valuable

alternative and could reduce the number of required function evaluations.

2.1 Motivation

The PSP represents the optimization problem of how to determine the 3D structure of

proteins from their primary sequence. Generally speaking, it is characterized by arranging

a sequence of basic elements a-helix, b-strand and coil. Determining 3D structures of a

protein can affect its functions and is vitally important for rational drug design. The

early works on PSP subject, i.e., X-ray crystallography and Nuclear Magnetic Resonance

(NMR) were based on experimental techniques. The aforementioned methods are very

expensive and time-consuming. In the case of X-ray diffraction, not all proteins can be

successfully crystallized. Besides, most of the membrane proteins are difficult to crystallize

and they will not dissolve in normal solvents [36]. Moreover, the question arises as to

whether structure in single crystals adequately characterizes the protein conformation in

a complex and dynamic environment of living cells [159]. NMR is indeed a very powerful

tool in determining the 3D structures of membrane proteins, but the interpretation of

NMR spectra is very complex, and the assignment of interproton distances is not always

feasible. These practical limitations stimulate continual progress in the development of

various structural bioinformatics tools for the PSP. The problem becomes easier if similar

proteins (also referred to as templates) are found in the Protein data bank (PDB). In this

case, a database of known structures could be used to find high-resolution models by aligning

target sequences to the solved similar structures. Otherwise, we need to build a model

from scratch without the explicit use of templates (i.e.ab initioPSP). The 3D structure

obtained by homology modeling is very sensitive to the sequence alignment of the query

protein with the structure-known protein (template) [148]. In addition, not all proteins

with unknown structures have ideal templates. Furthermore, recent CASP10 experiment
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reveals the fact that the prediction process for the hard targets with unknown templates

has not been improved [95]. Up to September 2014, there had been only 100, 000 proteins

in PDB compared to 80 million unknown protein sequences in UniprotKB/TrEMBL [85].

This encourages the need for developing ab initio PSP methods.

A successful ab initio model depends on two components: a powerful search algorithm

and an accurate potential energy function. Thelater consideration is helpful to distinguish

between the native and non-native structures of the proteins. Despite significant advances in

computational capabilities, the simulation cost of such energy functions is still too expensive

(approximately 150 CPU days for a small protein < 100 residues) [43]. So, researchers

have adopted simplified models in order to develop and test their new search algorithms.

Thisincludesinstances of very simplified models [21], as well as for more complex all-atom

models where the energy functions is computed based on experiments inphysics, chemistry

and calculations inquantum mechanics [16, 110]. However, it should be noted that even the

simplest models are still too complex from the computational point of view.

2.2 Problem Definition

Protein structure prediction (PSP) plays an important role in the field of computational

molecular biology and is one of the most challenging problems; using both simplified 3D AB

off-lattice model and all-atom AMBERforce field models. The search for an appropriate

computational method for PSP and the protein-ligand docking has led to the development

of models which make use of interaction between the atoms in order to assessthe quality

of a given solution. This thesis compares performance of the SGDE and other methods

from the literature using two models. The first one is 3D AB off-lattice model which takes

less computational time and is useful to analyze and benchmark the behavior of the SGDE

during the development process. The second model is a more complicated all-atom model

under a classical force field energy function.

2.2.1 3D AB Off-lattice

This section explains how we can define three-dimensional structure of a protein by a

set of bond/ torsional angles, and unit-length bonds between two amino-acids. The AB

off-lattice model is among the most popular models for the PSP problem [74], according

to which monomers are linked up by unit-length chemical bonds to form a structural chain

in the three dimensional space. Conformation of such a chain with n amino acids will

be determined by horizontal bond angles θ = [θ1, θ2, · · · , θn−2] and torsional angles β =

[β1, β2, · · · , βn−3]. Here, θ is used to consider the angles between adjacent amino acids in

XOY plane, while β takes into account the angles for corresponding amino acids and XOY

plane. Thus, the position of amino acids is determined as follow [74]:
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(xi, yi, zi) =



(0, 0, 0) if i = 1

(0, 1, 0) if i = 2

(cos(θ1), sin(θ1) + 1, 0) if i = 3
xi−1 + cos(θi−2)× cos(βi−3),

yi−1 + sin(θi−2)× cos(βi−3),

zi−1 + sin(βi−3)

 if 4 6 i 6 n

(2.1)

After defining a unique structure with the above mentioned properties, the free energy of

a protein can be computed. To do so, the AB off-lattice model considers the intra-molecular

bending potential energy of the backbone and non-bonded interactions ; as given in Eq. 2.2.

E =

n−1∑
i=2

v1(θi) +

n−2∑
i=1

n∑
j=i+2

v2(ri,j , ξi, ξj) (2.2)

Here, v1 is defined as follow:

v1(θi) =
1

4
(1− cos(θi)) (2.3)

and the non-bonded interactions is computed using Eq. 2.4 and Eq. 2.5, which represent

the Euler distance between two residues i and j.

v2(ri,j , ξi, ξj) = 4× [r−12
i,j − ζ(ξi, ξj)× r−6

i,j ] (2.4)

ζ(ξi, ξj) =
1

8
(1 + ξi + ξj + 5× ξi × ξj) (2.5)

Thereby, the main task is to find parameter settings [θ1, θ2, · · · , θn−2,

β1, β2, · · · , βn−3] with a minimum free energy state.

2.2.2 AMBER Force Field

Force fields are a class of computational methods which measure the interaction energy

of the atoms with each other to determine whether a model is native or not. They do so

by means of the purely physics-based principles, quantum-based calculations or empirical-

based fitting approaches. As the energy value reduces, native conformation is more likely

to be detected. The force fields get coordinates of the atoms in 3D dimensional space and

output its energy value. The geometry of chemical bonds is fixed during the PSP process

and the coordinates of the proteins can be modified by changing the dihedral and torsion

angles. Thus, a solution representation approach commonly used by PSP methods is based

on backbone and side-chain angles. There are three backbone dihedral angles φ, ψ and

ω. As shown in Figure 2.1, φ is the angle of right-handed rotation around NCA bond, ψ

defined around CA-C bond and ω rotates about C-N bond. Depending on their amino acid

sequence, proteins also have different number of side-chain angles namely χ1, χ2, χ3 and

χ4. Having these in mind, solution representation for a conformation has been presented

in Figure 2.2.
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Figure 2.1: A representation of the dihedral angles φ(C-N-CA-C), ψ(N-CA-C-N) and ω(CA-
C-N-CA)
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Figure 2.2: The proposed encoding representation schema for a protein with n residues
using the backbone and side-chain dihedral angles

This study uses the well-known Assisted Model Building with Energy Refinement (AM-

BER) force field. More precisely, the amber force fields ff99SB is used to provide the protein

parameters. The functional form of the AMBER force field is as follows:

Etotal =
∑

bounds

Kr × (r − req)2 +
∑
angles

Kθ × (θ − θeq)2+

∑
dihedrals

Vn
2

[1 + cos(nφ− γ)] +
∑
i<j

[
Aij
R12
ij

− Bij
R6
ij

+
qi × qj
ε×Rij

]
(2.6)

In Eq. 2.6, req and θeq denote equilibration variables, Kr, Kq, Vn are force constants, A,

B, and q are the non-bonded potentials, n is multiplicity and φ is the phase angle. Indeed,

the first term computes the energy between covalently over bonded atoms. The second

term denotes the energy of electron orbitals involved in covalent bonding over the bond

angels. Also, the third term takes into the account the energy for twisting a bond over

torsion angles. Finally, the fourth term considers the non-bonded energy between all atom

pairs i and j, which can be decomposed into van der Waals and electrostatic energies. A

detailed study of the other parameters can be found in [110].

2.3 Related Works

It has been frequently shown that choosing appropriate parameter settings and muta-

tion strategy for differential evolution (DE) is not a trivial task [41, 173]. This is due to
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the complex interactions between the decision variables and characteristics of the problem

at hand. An inappropriate mutation strategy may lead to the so-called premature con-

vergence or stagnation problems which resultsinatime consuming and costly optimization

process.Therefore, DE variants based on parameter adaption and ensembles of mutation

strategies attract increasing attention. For example, SaDE [128] uses its previous success-

ful experiences for gradually self-adapting both trial vector generation strategies and their

associated parameter settings. Interestingly, jDE [24] adds F and CR at the individual

level and accordingly more promising solutions will propagate also better parameter set-

tings. In CoDE [170], trial vector generation is based on a pool of three control parameter

settings and mutation strategies. At each generation, this configuration pool is used to

create three trial vectors and the best solutions goes for the selection step. In a similar

way, EPSDE [117] employs an ensemble of mutations and parameter settings to improve

the results of the standard DE. In another study, JADE [180] introduces a new mutation

strategy based on an archive and a parameter adaption strategy. More precisely, the JADE

keeps recent successful crossover and amplification values for each individual in order to

generate new parameter settings. Similarly, SHADE [162] adopts a historical memory of

good settings to adjust F and CR values for each individual. Remarkably, L-SHADE [163]

further improves the SHADE by incorporating a linear population size reduction strategy.

The aforementioned algorithms share a common characteristic: they attempt to find

the best DE’s configurations for the problem at hand. Consequently, recent works tried to

further improve the results by applying cheap surrogate models to adapt the best parameters

using less evaluations. The SA-DE-DPS [51] incorporated the surrogates to dynamically

select the best set of the amplification factor, crossover rate and population size. In another

work [75], authors put forward LES-CDE which adopts an ensemble of several adjacent local

surrogates to have more promising trial vectors in the crowding DE (CDE). Mallipeddi et

al. [116] introduced ESMDE to enhance the performance of the EPSDE by means of a

Kriging model. To further continue the research in this direction, we developed a novel

approach by utilizing the surrogate models. As illustrated in Figure 2.3, the main point to

distinguish the proposed approach from the previously surrogate assisted works lies in the

aim of the integration.

2.4 Preliminaries

2.4.1 Radial Basis Function

In the optimization context, surrogate models (or meta-models) are a class of mathemat-

ical techniques that simulate the behavior of a computationally expensive fitness function.

Given solution vector x and exact fitness function f , a surrogate model is represented as

in 2.7, where ε is the approximation error.

f̂(x) = f(x) + ε (2.7)

For an m-dimensional problem, suppose we have n observations S and fs for a known
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• SGDE
• SA-DE-EPS

• LES-CDE
• ESMDE
• SGDE

• SGDE

• SA-DE-DPS 

Parameter
Adaptation

Population
Initialization

Local Search
Competitive

Offspring
Generation

• ESMDE

• SGDE

Figure 2.3: Comparing the aim of integrating surrogates into the DE algorithm based on
the SA-DE-DPS, ESMDE, LES-CDE and SGDE.

function f : Rm → R as follows:

S = [x1, · · · ,xn]> ∈ Rn×m,xi = [xi1, · · · , xim] ∈ Rm (2.8)

fs = [f(x1), · · · , f(xn)]> ∈ Rn (2.9)

In particular, a surrogate model tries to predict the fitness function f for any unseen

input vector x̂ according to the data sets (S,fs). Among different surrogate models, we

utilized the RBF which is a good model for high dimensional problems [30, 31]. The RBF

model is an interpolation method for scattered multivariate data which takes into account

all the sample points. To do so, it adopts linear combinations of a radial function h(x) to

approximate a response function f̂(x̂) as:

f̂(x̂) =

n∑
i=1

wi × h(|x̂− xi|) + b> × x+ a (2.10)

where wi represents the unknown weight coefficient, x̂ ∈ Rm is an unseen point, h

denotes a radial basis kernel and ε are independent errors with variance σ2. A function

h : Rm → R is called a radial function if it satisfies the property h(x) = h(‖x‖). Typical

radial basis functions are linear splines, thin-plate splines, cubic splines, cubic splines, cubic

splines, inverse multiquadric. Given a suitable kernel h; the unknown parameters a,b, and

w could be obtained by solving the following system of linear equations:

(
Φ P

PT 0

)
×

(
w

c

)
=

(
fs

0

)
(2.11)

In 2.11, Φ is a n× k matrix with Φi,j = h(
∥∥xi − xj∥∥

2
), c = (b>, a)> and
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P> =

(
x1 · · · xn

1 · · · 1

)
(2.12)

2.4.2 Differential Evolution

In evolutionary computation, DE finds a solution by iterative improvement of a can-

didate solution with regard to a given measure of quality. It is one of the most powerful

optimization tools that operate on the basis of the same developmental process in evolu-

tionary algorithms. Nevertheless, different from traditional evolutionary algorithms, DE

uses the scaled differences of vectors to produce new candidate solutions in the popula-

tion. Hence, no separate probability distribution should be used to perturb the population

members. The DE is also characterized by the advantages of having few parameters and

ease of implementation. The application of DE on engineering and biomedical studies has

attracted a high level of interest, concerning its potential [42].

Basically, DE algorithm works through a particular sequence of stages. First, it creates

an initial population sampled uniformly at random within the search bounds. Thereafter,

three components namely mutation, crossover and selection are adopted to evolve the initial

population. The mutation and crossover are used to create new solutions, while selection

determines the solutions that will breed a new generation. The algorithm remains inside a

loop until stopping criteria are met. In the following, we explain each stage separately in

details.

Like other optimization algorithms, DE starts with a randomly initialized population

of parameter vectors, the so-called individuals. Each such individual represents an m-

dimensional vector of decision variables. The ith individual of the population for a m-

dimensional optimization problem can be denoted as follows:

xi = [xi1, · · · , xim] ∈ Rm (2.13)

For each individual, the values of the decision variables should be restricted to their

lower bounds lb = [lb1, · · · , lbm] and upper bounds ub = [ub1, · · · , ubm]. Once initialization

search ranges have been determined, DE assigns each individual a value from within the

specified range as in Eq.2.14:

xij = lbj + r × (ubj − lbj); i = 1, · · · , n; j = 1, · · · ,m (2.14)

where r ∈ [0, 1] represents a uniformly distributed random number and n denotes the

population size. After initialization, mutation operator produces new solutions by forming

a mutant vector with respect to each parent individual (target vector). For each target

vector, its corresponding mutant vector can be generated by different mutation strategies.

Each strategy employs different approaches to make a balance between the exploration

and exploitation tendencies. For the ith target vector, the five most well-known mutation

strategies are presented as follows [158]:

vi = xr1 + F × (xr2 − xr3) (2.15)
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vi = xbest + F × (xr1 − xr2) (2.16)

vi = xi + F × (xbest − xi) + F × (xr1 − xr2) (2.17)

vi = xbest + F × (xr1 − xr2) + F × (xr3 − xr4) (2.18)

vi = xr1 + F × (xr2 − xr3) + F × (xr4 − xr5) (2.19)

Here, r1, r2, r3, r4, r5 ∈ [1, · · · , n] are five different randomly generated integer numbers.

Furthermore, F ∈ (0, 2] is a scaling factor affecting the difference vector and best ∈ [1, n]

is the index of the best individual. The presented strategies in Eqs. 2.15 to 2.19 are called

DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/best/2 and DE/rand/2, respectively.

In the next step, DE applies a discrete crossover approach to each pair of the target

vector and its corresponding mutant vector. The basic version of DE incorporates the

binomial crossover defined as follows [158]:

uij =

{
vij if rij 6 CR

xij otherwise
(2.20)

In Eq. 2.20, CR ∈ (0, 1] is the user-specified crossover rate which determines the prob-

ability of mixing between parent and mutant vectors. Also, rij is a randomly picked float

number ∈ (0, 1] that should be regenerated for each individual and each dimension.

Finally, DE adopts a selection mechanism to choose the best individuals according

to their fitness for producing the next generation of population. To this end, it compares

performance of the trial and target vectors and copies the best one into the next generation;

as presented in Eq. 2.21. Here, f is the objective function that should be minimized.

xi =

{
ui if f(ui) 6 f(xi)

xi otherwise
(2.21)

2.5 Methodology

Here, we provide a comprehensive discussion on the details of the implementation steps

in SGDE. In practice, there are two issues that should be addressed when designing a

surrogate-assisted algorithm like SGDE. The first one is how to combine both approximated

and original fitness values to prevent the algorithm from being misled by a false minimum

introduced by the surrogates (i.e., model management) [76]. Whether building a local or

global surrogate model is another issue to be addressed regarding the high dimension of the

search space. We tried to tackle the aforementioned problems by incorporating both the

local and global surrogate models in different stages of the evolution including population

initialization, offspring reproduction and parameter adaptation. A generic framework for

the surrogate-assisted SGDE algorithm includes some basic steps:



14 Chapter 2. Application I: Protein Structure Prediction

1. Initial sampling using design of experiments (DoE)

2. Population initialization using stochastic response surface (SRS)

3. Offspring reproduction by means of GEP

4. Configuration selection using local surrogate models

5. Parameter adjustment using a global surrogate model

6. Training set update for the surrogate model

7. DE termination if some stopping criteria are satisfied and going to Step 8; otherwise

going to Step 3

8. CMAES executing on the best found solution

The first step samples a population of individuals using the Latin hypercube sampling

(LHS) design method [156]. Next, the solutions are evaluated in terms of expensive objective

functions. These will be archived for training and building an initial surrogate model. The

model and a Stochastic Response Surface (SRS) method [139] are then used to initialize a

population for DE. Thereafter, the population is evolved using a new introduced offspring

reproduction strategy in SGDE, followed by a parameter adaptation strategy. Next, the

training set will be updated. In the next phase, CMAES is also applied to the best known

solution by DE. A detailed description of the above components is presented as follows.

2.5.1 Initial Sampling

Generally speaking, optimization algorithms are subjected to curse of dimensionality

which makes them unsuitable for high dimensional problems. To this fact, DoE methods

are used to maximize the amount of information across the design space. This enables us to

build a global model of fitness landscapes with a minimum number of samples. Currently,

orthogonal array design (OAD), uniform design (UD) and LHS are among the most widely

applied fractional factorial DoE methods. The proposed SGDE adopts LHS according to

which projections of the generated points onto each variable axis should be uniform. The

main advantage of the LHS is that it does not need more samples for more dimensions.

Researchers introduced different criteria for LHS to address poor space filling properties.

In this work, we adopt a Point-distance criterion. All the solutions obtained by LHS will

then be evaluated using the computationally expensive function. Next, these solutions and

their fitness values will be archived for training the surrogate model. This is necessary as

the RBF model needs to be trained before it can be used for the approximation purpose.

2.5.2 Population Initialization

As a novel and effective component, SGDE adopts the SRS optimization method for

population initialization. The obtained solutions by the SRS are then considered as the

initial population for the DE algorithm. The main idea is to put forward a computationally

cheap initialization method which is able to preserve diversity in more than one promising

region. By adopting SRS, only a small part of the computational budget is used to find the

promising regions and in most cases we employ the surrogate model. The SRS employs an
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optimal response for a surface (output variable) which is influenced by several explanatory

variables (input variables). To do so, it uses a collection of mathematical and statistical

information from surrogates and exact fitness function [139]. The SRS implementation

consists of several steps; as presented in Algorithm 1. Here, f is a continuous function

defined on a compact hypercube [lb,ub] ⊆ Rm, m is the number of decision variables, n0 is

the initial number of generated points and Λ contains the obtained solutions by the SRS.

Algorithm 1: Population initialization procedure

Result: n initialized solutions
τ ← [x1, · · · ,xn0 ]
t← n0

while t 6 n do
Λt ← {(xi, f(xi)) : i = 1, · · · , t}
train the surrogate model using Λt
∆ ← generate random solutions
use the surrogate model to evaluate ∆
xt+1 ← best approximated solution ∈ ∆
t← t+ 1

end

Considering the above explanations and Algorithm 1, a few remarks are presented as

follows. First, it should be noticed that the initial points come from the LHS. Second,

the surrogate model can be RBF, Kriging, RBNN, SVR or any other type of function

approximation models. Moreover, the meaning of the word ”random” is very specifically

related to the original study [139].

2.5.3 Offspring Reproduction

It has been frequently testified that incorporating multiple search strategies can greatly

improve the performance of DE [32]. Depending on the characteristics of the problem, they

could perform better during different stages of evolution than a single strategy. Based on

this finding, SGDE generates competitive offspring for each individual in the population

by means of different mutations. Maintaining diversity can help DE to improve the per-

formance of its search operators. Hence, the SGDE is extended to the case of an arbitrary

number of mutation strategies. This differs from previous studies that use a predefined

set of search operators. The proposed diversification process begins with an initializing

step in which the SGDE generates a random population of the chromosomes using the

GEP for each individual. These chromosomes denote our mutation strategies and are

generated using heuristic information of the DE. Considering the search operators of DE

presented by Eqs. 2.15 to 2.19, the chromosomes are based on a mathematical combination

of xr1,xr2,xr3,xr4,xr5,xbest,xi and F . Indeed, the introduced diversification schema only

changes the way that search operators process information. The new generated chromo-

somes are then decoded into tree based programs and we perform a breadth-first search

method to obtain the mathematical formula. During this process, a specific part of each

chromosome might be useless (the useful part is called open reading frame and the other

part is referred to as non-coding region). An example of such schema is illustrated in
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Figure 2.4. The mentioned mutation strategies are then employed to generate trial vec-

tors for each individual. In this approach, efficiency of the generated configurations for

each individual is computed based on the approximated objective value for the generated

trial vectors. The GEP takes advantages of these cheap approximated values in order to

adaptively evolve mutation strategies.

Subsequently, an effective model management procedure is required to build the sur-

rogate models when the curse of dimensionality emerges. To alleviate this difficulty, we

involve local surrogate models which are capable of generating more accurate fitness values.

Furthermore, they are relatively fast and take into account the most important information

of the closest neighbors. To this fact, SGDE builds separate local surrogate models for each

trial vector. It builds the local surrogates on the basis of the idea that training set for each

trial vector should not lie too far from it. The SGDE selects k-nearest neighbors from the

archive in order to build the local surrogate models. The generated surrogate models are

then used to evaluate the corresponding trial vectors.

decoding

+

breadth-first search

+

xi ×

F −

xj xk

xi = xi + F × (xj − xk)

xi × F - xj xk 1 5 3 3

Figure 2.4: A schematic of the proposed GEP based search operators generation.

In SGDE, the estimated objective value is not the only one considered, and several other

criteria are used to find the best set of generated trial vectors for the individuals. The rules

of the SGDE scheme are given as follows: between any two generated trial vectors for an

individual, the solution with better approximated objective value which is evaluated with

more accurate surrogate model, and which is also closer to its corresponding individual, is

preferred. The accuracy of the models here is calculated using the cross-validation error,

while the Euclidean distance is used to measure the distance. To measure the accuracy,

the suggested training data set is randomly split into K equal subsets with n data points.

Then, each subset is removed in turn from the training data set and the surrogate model

is updated using the K − 1 remaining data. Each time, all the solutions in the removed
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subset are predicted using the model and the cross-validation error is calculated as in [166].

2.5.4 Parameter Adaptation

Besides the search operators, success rate of DE depends on appropriately tuning its

control parameters. Although using a trial-and-error scheme seems to be a good solution,

the main challenge lies in high computational costs. We use the feedback from the surro-

gate model to overcome such inconvenience and to guide the parameter adaptation. The

proposed approach adaptively optimizes the F and CR parameters by incorporating an

embedded standard DE algorithm. First, we train a global RBF kernel based on all the

collected data in the archive. Next, a population of solutions is directly optimized using

this surrogate for t generations without requiring any expensive function evaluations. Par-

ticularly, the optimization process runs multiple times with different configuration. We

consider different lower and upper bounds for each individual in the population. So, the

DE algorithm here tries to explore the search space around inside only a small interval.

More precisely, for each individual a confidence interval [−ϑ, ϑ] is adopted. The introduced

strategy tries to pre-screen the most promising configurations using a full factorial experi-

ment. Such an experiment allows us to take into account all possible combinations of the

parameters. We constructed a design table for a three-level full factorial in two factors (i.e.,

F and CR). The configuration which leads to the best results will survive.

The adapted parameters have a lifetime which represents the number of generation that

a configuration can survive. The lifetime property depends on the quality of the global

surrogate model; the higher the accuracy, the longer the parameter will be used. Similar to

the previous section, the accuracy here is computed by the cross-validation error. Whenever

the lifetime of the parameters ends, they will be re-configured. Accordingly, the lifetime

for a given configuration is determined as the multiplication of the cross-validation error

εcv and a constant γ > 1.

2.5.5 Updating the Surrogate Model

The SGDE use a training data set to archive the solutions evaluated by the exact fitness

function. This data set is supposed to be employed for both the global and local surrogate

models. For this reason, the training set must be properly updated to ensure that the

created models can cover a slightly larger region, but still be most relevant to the current

solutions. Furthermore, using all the evaluated solutions will increase the computational

time. To tackle this, we adopted a linear decreasing rule which reduces the archive size

linearly according to the number of fitness evaluations (i.e., FEs). After each generation t,

the archive size Λt+1 is updated as follows:

Λt+1 = (
min−max

FEs
)× t+max (2.22)

In Eq. 2.22, The min and max are the minimum and maximum values for the archive

size, respectively. Whenever Λt+1 < Λt, the worst-ranking individuals will be deleted from

the archive.



18 Chapter 2. Application I: Protein Structure Prediction

2.5.6 Applying CMAES

Considering SGDE, it should be remarked that the generated mutation strategies by

GEP focus on multimodal rugged search landscapes which is actually a limitation of the

reliability of the SGDE. So, we employed CMAES approach to make the SGDE also com-

putationally viable for large scale smooth problems. To do so, it is applied to the best

known solution provided by DE. If the solution found by CMAES is better than the solu-

tion obtained in the exploration phase by DE, then it replaces the old one; otherwise, it

is discarded. This algorithmic choice generalizes the behavior of the algorithm; regarding

properties of the fitness landscape.

2.6 Experiments

2.6.1 Benchmark Sets

In this section, performance of the SGDE on protein sequences from PDB using the

elaborated models is investigated. The detailed information about these proteins is pre-

sented in Table 2.1. To provide a fair comparison procedure, we select amino-acid sequences

which have been frequently used to benchmark new algorithms for the PSP. The free energy

state of the presented sequences should be minimized. For the AB off-lattice model, the

hydrophobic and hydrophilic characteristics of the amino-acids are denoted as follows: D,

E, F, H, K, N, Q, R, S, T, W, Y fall into B residues and I, V, L, P, C, M, A, G belong

to A residues. The SGDE is implemented in Matlab under Windows 7 operating system.

To implement the RBF, we used the SURROGATES toolbox which is a general-purpose

library for the surrogate models [119].

2.6.2 Baselines

First, the proposed algorithm is compared with the basic ABC [84], DE, PSO [86]

and CMAES optimization algorithms. Thereafter, a comparison study between the SGDE

and state-of-the-art algorithms from the literature is conducted. In this comparison, the

following algorithms are included: DEpfo, jDE (DE/best/1), L-SHADE, SaDE, CoDE,

JADE and EPSDE. The results for the DEpfo, jDE (DE/best/1) and L-SHADE are directly

taken from [11].

2.6.3 Experimental Settings

In DE, we set F to 0.5, population size to 100 and CR to 0.9. In PSO, population size is

100, C1 and C2 coefficients are 1.8, and inertia weight is 0.6. The parameter configurations

of ABC and CMAES are set according to [74, 100]. To reduce stochastic behavior of the

random population initialization, the results of the algorithms over 30 runs are considered.

The parameters of the other competitive algorithms are set according to their original works.

Moreover, the number of function evaluations for each conducted experiment is explicitly

reported. Furthermore, we adopt the same implementation and parameter configuration
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Table 2.1: The protein sequences used in this study along with their properties.

PDB ID m Protein sequence

1CB3 21 BABBBAABBAAAB
1BXL 27 ABAABBAAAAABBABB
1EDP 29 ABABBAABBBAABBABA
2H3S 45 AABBAABBBBBABBBABAABBBBBB
2KGU 63 ABAABBAABABBABAABAABABABA

BABAAABBB
1TZ4 69 BABBABBAABBAAABBAABBAABAB

BBABAABBBBBB
1TZ5 69 AAABAABAABBABABBAABBBBAAB

BBABAABBABBB
1AGT 71 AAAABABABABABAABAABBAAABB

ABAABBBABABAB
1CRN 87 BBAAABAAABBBBBAABAAABABAA

AABBBAAAAAAAABAAABBAB
1HVV 145 BAABBABBBBBBAABABBBABBABB

ABABAAAAABBBABAABBABBBABB
AABBABBAABBBBBAABBBBBABBB

1GK4 163 ABABAABABBBBABBBABBABBBBA
ABAABBBBBAABABBBABBABBBAA
BBABBBBBAABABAAABABAABBBB
AABABBBBA

1EWH 191 AABABAAAAAAABBBAAAAAABAAB
AABBAABABAAABBBAAAABABAAA
BABBAAABAAABAAABAABBAABAA
AAABAAABABBBABBAAABAABA

for the SRS and RBF as suggested in [139]. The rest of the parameters are tuned and

presented in Table 2.2.

2.6.4 Results and Discussion

First, we analyzed performance of the SGDE in order to give an insightful view for

the influence of the introduced GEP schema on the algorithm’s efficiency. To do so, we

conducted 30 runs based on 1CB3 and 1BXL amino-acid sequences using the AB off-lattice

model. The stopping condition is determined as 50,000 function evaluations. The con-

figurations of SGDE are equal to those in Table 2.2. The obtained results are shown in

Figures 2.5 and 2.6. In these figures, the SGDE∗ is a version of SGDE which only adopts

the mutation strategies of the DE presented in Eqs. 2.15 to 2.19, while SGDE uses a diver-

sified pool of mutation strategies for each individual. The depicted results show that SGDE

performs better and obtained more stable results. In contrast to SGDE∗, the introduced

algorithm evolves a pool of effective trial vector mutation strategies for individuals based

on their previous experience. Accordingly, unfavorable mutation strategies of less effective

results will be discarded in later generations.

Next, the performance of SGDE for PSP is compared with both the standard and

improved algorithms in the literature. The performance metrics are reported in Tables 2.3

and 2.4, while Table 2.5 presents the best solution vectors by SGDE for the problem at hand.

In these experiments, the number of function evaluations is set to 200, 000 for the standard

algorithms, improved versions and for the SGDE. In SGDE, 1% of the computational budget
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Table 2.2: The adopted parameters for the proposed SGDE algorithm.

Parameter Value

number of generated mutant vector by GEP 10
mutation rate in GEP 15
selection rate in GEP 0.8
head length in GEP 50
function set in GEP {×,+,-}
population size 100
min 100
max 200
n0 2× (m+ 1)
n 1000
k 15
K 4
γ 1.5

is used by SRS, 50% by the DE and 49% by CMAES. In Table 2.4, DE?pfo and SGDE†

denote the results with 100, 000 function evaluations for DEpfo and SGDE, respectively.

As previously mentioned, major contribution of the proposed SGDE approach is using the

GEP and surrogate modeling to replace in part the original computationally expensive

solver. To this fact, results after 100, 000 evaluations are also reported in Table 2.4 to

investigate whether SGDE algorithm is able to take advantages of the introduced surrogate-

based schema. We considered DEpfo and SGDE because they yield best performances in

terms of the solution accuracy and convergence rate.

The values of best, worst, mean, median and standard deviation of the energy functions

are presented for the purpose of the comparison. Furthermore, the percentage of improve-

ment (PI) for the SGDE in comparison to each of the other algorithms based on the mean

value is also collected. The corresponding results are given in Tables 2.3 and 2.4. In Ta-

ble 2.3, we considered ABC and PSO as two algorithms with different properties from that

of SGDE, and CMAES and DE as the basic components of the proposed algorithm. Regard-

less of SGDE, it can be seen that ABC provides better mean values for 1CB3, 1TZ4, 1HVV,

1GK4; CMAES for 2KGU, 1TZ5, 1AGT, 1CRN; and finally DE for 1BXL, 1EDP, 2H3S.

These results indicate how algorithm scalability affects their performances. For example, it

is clear that the performance of DE decreased by increasing the dimension of the problem

at hand. Conversely, CMAES shows a better performance in the case of high dimensional

problems. From Table 2.3, however, we can see that the enhanced algorithm outperforms

all the standard algorithms on both the low and high dimensional problems. The reported

PI values also confirm the superiority of the SGDE. It can be explained by the adopted sur-

rogate models and GEP technique which reduce the probability of the exploration around

already explored search areas.
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Table 2.3: Comparison of the results between the standard algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

Table 2.3: Comparison of the results between the standard algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

ABC -4.296455 0.439499 -5.268011 29.30%

DE -1.866129 0.845961 -4.659330 69.29%

1CB3 PSO -3.203742 2.084507 -5.776234 47.28%

CMAES -2.503826 2.056343 -7.778162 58.80%

SGDE -6.077217 1.754122 -8.369052

ABC -9.446039 0.655434 -11.268678 35.69%

DE -11.294667 1.028064 -12.648686 23.11%

1BXL PSO -9.710913 2.753267 -11.933259 33.89%

CMAES -7.734668 3.440012 -15.362006 47.35%

SGDE -14.689404 1.839411 -16.478776

ABC -6.121525 0.880439 -8.253825 32.59%

DE -7.233354 2.695314 -11.316626 20.34%

1EDP PSO -4.307987 1.113684 -5.711125 52.56%

CMAES -4.609754 2.726812 -9.337707 49.24%

SGDE -9.080840 1.857780 -13.145400

ABC -7.341647 0.893442 -10.199716 41.91%

DE -7.443750 1.227711 -9.292054 41.10%

2H3S PSO -4.618970 1.955581 -6.897306 63.45%

CMAES -7.368380 4.120026 -14.856206 41.70%

SGDE -12.637971 2.861910 -17.303680

ABC -19.223037 1.562318 -22.130853 50.38%

DE -18.511796 6.859623 -25.403276 52.21%

2KGU PSO -12.471775 5.963385 -21.131556 67.81%

CMAES -19.605122 8.453813 -29.880254 49.39%

SGDE -38.738349 4.606122 -46.091724

ABC -12.582645 1.410564 -15.867712 47.84%

DE -8.448939 2.895693 -11.970046 64.97%

1TZ4 PSO -5.843409 3.655283 -9.194886 75.78%

CMAES -11.486689 4.331165 -18.983567 52.38%

SGDE -24.122570 4.058022 -31.503100

ABC -15.313003 1.316238 -18.879996 48.56%

DE -12.045163 6.590958 -18.610951 59.53%

1TZ5 PSO -8.755463 4.135149 -14.293049 70.59%

CMAES -15.702593 5.638691 -29.306050 47.25%

SGDE -29.766762 4.581026 -39.053634
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Table 2.3: Comparison of the results between the standard algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

ABC -22.568844 1.942112 -25.652326 44.46%

DE -13.522272 5.734693 -21.687050 66.72%

1AGT PSO -18.835705 7.774478 -26.380818 53.65%

CMAES -23.411478 8.961818 -34.457463 42.39%

SGDE -40.634420 4.219346 -46.229500

ABC -38.261975 2.804349 -41.290523 40.46%

DE -18.963015 9.991839 -35.898240 70.49%

1CRN PSO -23.902511 3.355806 -27.545842 62.80%

CMAES -40.975829 13.444372 -60.939240 36.23%

SGDE -64.258945 7.687089 -78.245070

ABC -21.609320 2.569676 -27.353049 43.76%

DE -3.241457 13.398311 -11.795201 91.56%

1HVV PSO 4.497784 6.747108 -1.060249 111.71%

CMAES -18.988722 3.968934 -27.915393 50.58%

SGDE -38.422210 5.975514 -52.558824

ABC -27.836994 2.267989 -32.729077 40.75%

DE 11.778927 8.120520 -1.4981720 125.61%

1GK4 PSO -6.571952 9.798663 -20.691791 86.01%

CMAES -25.297559 3.207333 -41.108156 46.16%

SGDE -46.984386 3.969936 -57.965434

Thereafter, we collect the results of the recently proposed algorithms for the PSP in

order to provide a more comprehensive study. The best, mean and standard deviation

of the algorithms are presented for the purpose of the comparison. Table 2.4 shows the

performance of the algorithms for all the sequences over 30 runs. This table denotes the

superior accuracy of the SGDE for all the presented test sequences in terms of mean, stan-

dard deviation, and the best results. Interestingly, we can also see that SGDE† outperforms

other propositions for all the problems when considering the mean values. It is also evident

that the introduced cheap algorithms fairly provide comparable results when considering

the best obtained solutions. Surprisingly, SGDE† outperforms the other algorithms on the

2H3S, 1TZ4 and 1TZ5 protein sequences by considering the best obtained value. This is

due to the fact that the incorporated local and global surrogate models

Table 2.4: Comparison of the results between the improved algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

DEpfo -5.588400 1.960300 -8.369000 8.04%

DE?
pfo -4.539159 2.314210 -8.116150 25.31%

jDE(DE/best/1) -3.898800 2.443700 -8.198300 35.85%
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Table 2.4: Comparison of the results between the improved algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

L-SHADE -2.791600 2.106800 -8.115100 54.06%

1CB3 SaDE -3.487625 2.306001 -5.933400 42.61%

CoDE -5.585840 0.677920 -6.774100 8.09%

JADE -5.391650 0.423160 -6.394700 11.28%

EPSDE -4.918070 0.383574 -5.822700 19.07%

SGDE -6.077217 1.754122 -8.369052

SGDE† -5.765060 1.081309 -8.116200 5.14%

DEpfo -12.610400 2.530600 -16.344300 14.15%

DE?
pfo -11.862654 2.510254 -15.833700 19.24%

jDE(DE/best/1) -12.404700 2.491300 -16.010100 15.55%

L-SHADE -10.542800 2.871200 -14.201500 28.23%

1BXL SaDE -11.208780 0.809479 -12.345200 23.69%

CoDE -11.907830 2.605866 -15.447600 18.94%

JADE -11.384120 0.765585 -12.732600 22.50%

EPSDE -10.530370 0.877880 -12.178400 28.31%

SGDE -14.689404 1.839411 -16.478776

SGDE† -14.436030 1.174347 -16.223800 1.72%

DEpfo -8.666600 2.560300 -13.562000 13.03%

DE?
pfo -8.495471 3.339964 -13.428000 14.75%

jDE(DE/best/1) -7.466700 2.937600 -11.988000 25.07%

L-SHADE -4.590000 3.217800 -11.697700 53.94%

1EDP SaDE -5.392990 2.666704 -9.946400 45.88%

CoDE -8.087580 3.861207 -13.527000 18.84%

JADE -7.120270 0.892819 -8.673800 28.55%

EPSDE -6.200950 0.585151 -7.307400 37.77%

SGDE -9.964899 2.623943 -14.292856

SGDE† -9.080840 1.857780 -13.145400 8.87%

DEpfo -10.676700 2.751800 -16.503000 15.52%

DE?
pfo -12.111503 2.982058 -17.287400 4.17%

jDE(DE/best/1) -10.793100 2.786400 -16.692000 14.60%

L-SHADE -10.383000 2.627300 -15.668700 17.84%

1H3S SaDE -6.265260 1.385776 -8.454000 50.43%

CoDE -9.679260 2.438849 -14.432800 23.41%

JADE -8.240400 1.049730 -9.997900 34.80%

EPSDE -5.108480 0.924547 -6.755500 59.58%

SGDE -12.637971 2.861910 -17.303680

SGDE† -12.539310 2.823182 -17.046000 0.78%

DEpfo -35.385000 4.701300 -44.336900 8.66%

DE?
pfo -28.521353 4.771998 -37.74590 26.37%

jDE(DE/best/1) -29.551100 5.374000 -40.503500 23.72%

L-SHADE -26.628200 2.907100 -35.070700 31.26%
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Table 2.4: Comparison of the results between the improved algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

2KGU SaDE -13.514080 1.496921 -16.036900 65.11%

CoDE -24.925000 4.086078 -30.124600 35.66%

JADE 17.218310 0.993447 -19.218100 144.45%

EPSDE -8.360970 0.666336 -9.341700 78.42%

SGDE -38.738349 4.606122 -46.091724

SGDE† -38.201660 6.536553 -44.284300 1.39%

DEpfo -20.436100 5.279800 -30.921100 15.35%

DE?
pfo -19.293730 4.088801 -25.517600 20.09%

jDE(DE/best/1) -16.913500 3.885100 -24.300000 29.94%

L-SHADE -16.469300 2.896300 -20.221600 31.78%

1TZ4 SaDE -8.634780 1.771702 -11.188000 64.23%

CoDE -11.740680 4.679727 -18.023000 51.37%

JADE -10.376180 1.692243 -13.829800 57.02%

EPSDE -1.814920 0.893272 -3.3096000 92.48%

SGDE -24.142960 6.107640 -31.503100

SGDE† -24.122570 4.058022 -31.503100 0.08%

DEpfo -27.341200 4.084700 -38.186800 8.15%

DE?
pfo -23.652170 3.674546 -31.400700 20.54%

jDE(DE/best/1) -20.365500 3.837800 -30.127900 31.58%

L-SHADE 20.640300 3.116300 -34.311500 169.34%

1TZ5 SaDE -14.617780 2.796681 -19.886800 50.89%

CoDE -19.165230 3.451774 -24.744500 35.62%

JADE -13.169800 1.505524 -15.702900 55.76%

EPSDE -4.124440 0.638126 -5.020000 86.14%

SGDE -29.766762 4.581026 -39.053634

SGDE† -29.486118 4.296542 -38.626900 0.94%

DEpfo -39.026800 5.344600 -50.631100 5.78%

DE?
pfo -36.684787 6.323074 -48.854200 11.44%

jDE(DE/best/1) -30.777000 6.309000 -42.992600 25.70%

L-SHADE -29.356400 2.684600 -39.316800 29.13%

1AGT SaDE -14.187640 1.487899 -15.680800 65.75%

CoDE -28.921060 4.867545 -35.709000 30.18%

JADE -19.432300 0.622762 -20.246100 53.09%

EPSDE -8.914320 1.135966 -10.824500 78.48%

SGDE -41.422991 6.285417 -54.362306

SGDE† -40.634420 4.219346 -46.229500 1.90%

DEpfo -60.244400 7.577200 -74.406800 6.25%

DE?
pfo -53.743007 6.253436 -68.836100 16.36%

jDE(DE/best/1) -46.903000 7.424300 -63.713800 27.01%

L-SHADE -46.960400 3.768300 -60.237100 26.92%



2.6. Experiments 25

Table 2.4: Comparison of the results between the improved algorithms and the SGDE (Std.:
standard deviation).

PDB ID Algorithm Mean Std. Best PI

1CRN SaDE -22.044860 1.553122 -24.751700 65.69%

CoDE -44.234280 4.972664 -49.020300 31.16%

JADE -30.053940 1.572330 -32.762100 53.23%

EPSDE -9.730750 1.139082 -12.381900 84.86%

SGDE -64.258945 7.687089 -78.245070

SGDE† -60.634070 6.462495 -70.030400 5.64%

DEpfo -34.805900 5.292600 -44.726400 9.41%

DE?
pfo -32.351140 4.849457 -41.921100 15.80%

jDE(DE/best/1) -20.954100 7.642400 -31.587800 45.46%

L-SHADE -25.491000 1.709000 -28.778700 33.66%

1HVV SaDE -13.775810 6.625543 -21.356300 64.15%

CoDE -21.148700 4.558295 -26.106000 44.96%

JADE -8.771650 1.124914 -10.729700 77.17%

EPSDE 18.788040 1.614203 15.689900 148.90%

SGDE -38.422210 5.975514 -52.558824

SGDE† -38.201660 6.536553 -44.284300 0.57%

DEpfo -44.859100 4.722700 -52.065100 4.52%

DE?
pfo -40.455554 5.350739 -47.983600 13.90%

jDE(DE/best/1) -22.321800 7.416900 -35.677900 52.49%

L-SHADE -32.908200 2.210800 -40.265500 29.96%

1GK4 SaDE -19.701000 5.829114 -25.855100 58.07%

CoDE -27.696075 6.414348 -35.723300 41.05%

JADE -9.812420 1.007794 -11.348200 79.12%

EPSDE 12.030714 9.152999 1.614203 125.61%

SGDE -46.984386 3.969936 -57.965434

SGDE† -46.859100 5.142473 -52.024740 0.27%

help the SGDE to walk around the potentially promising regions and avoid unnecessary

computation cost in non-promising regions. Furthermore, the GEP algorithm enables the

SGDE to learn the utility of adopting the best mutation strategies which leads to a proper

balance between the exploration and exploitation.

In Table 2.4, PI of the different algorithms is also presented. From this table, we can

see that the introduced method needs less fitness evaluations to attain a similar or better

result. More precisely, if we compute the average improvement of the algorithms over 11

problems as depicted in Figure 2.7, we can see that the overall percentage improvement for

the SGDE is always positive.

To evaluate the stability between the algorithms, a rank based analysis is presented. This

procedure determines the most effective algorithm for each protein sequence by ranking

them from the best to the worst. The rank procedure assigns rank 1 to the algorithm
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Figure 2.5: The comparison results of SGDE∗ and SGDE over 30 runs on protein sequences
1CB3.

with the best fitness; rank 2 to the second best, and rank N to the Nth best. Given

this procedure, the average ranks based on the mean fitness values are calculated and

summarized in Figure 2.8. According to this figure, the algorithms can be sorted in the

following order: SGDE, SGDE†, DEpfo, DE?pfo, jDE, LSHADE, JADE, SaDE, CoDE and

EPSDE. From this figure, we can say that both the SGDE and SGDE† are less sensitive

to the dimensionality of the problem at hand and thus, have proved to be more scalable

compared to the competitive algorithms.

Table 2.5: The best obtained solution vectors using the SGDE.

PDB ID Solution

1CB3 −13.041, 20.817, −39.505, −14.249, 28.612, 3.133, −6.776, 6.401, 33.293,

−30.798, −10.004, −30.594, 204.909, 165.391, 183.932, 188.005, 101.259,

14.773, 2.565, 221.216, 190.832

1BXL −23.058, −101.926, −16.652, 46.170, 8.710, −0.418, 75.287, 24.366, 43.752,

1.303, −2.988, −2.432, −38.211, −0.777, 51.683, 98.770, 5.898, −76.227,

−63.225, 162.538, −148.684, −33.216, 278.209, −167.932, −255.219, −154.179,

−94.389
1EDP −22.739, 1.910, −104.101, 21.195, −125.910, 26.263, −3.295, 23.916, 25.536,

21.164, 9.161, −44.040, 31.740, −46.338, −4.520, 15.290, 49.322, −157.821,

−25.050, −189.757, −151.354, −49.747, 1.413, 20.335, −15.761, 55.586,

−187.339, −53.988, −176.481
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Table 2.5: The best obtained solution vectors using the SGDE.

PDB ID Solution

2H3S 59.655, −26.849, −113.330, 3.700, −56.051, −49.854, 71.446, −27.260, 1.044,

−123.514, −5.514, 90.039, −15.741, −26.559, 50.759, −23.017, 45.851, 48.831,

9.401, 50.956, −23.219, 3.534, 35.316, −0.199, −5.270, −124.885, −65.149,

−30.528, 192.078, −198.127, 63.566, 127.694, −39.422, 200.616, 71.077,

133.549, 45.635, 196.027, −159.076, 222.841, −108.331, −202.128, 369.663,

269.937, 13.612

2KGU −159.139, −71.147, −26.228, 5.416, −27.889, 37.277, 85.860, 29.850, 66.600,

−220.387, 73.223, 224.554, −81.451, 55.263, −3.473, 43.010, −46.396, 45.797,

−288.564, −20.181, −32.074, 14.577, 6.068, −151.986, −0.326, −79.239,

−11.343, −258.643, 35.753, −144.949, −5.784, 12.601, −53.979, −56.730,

212.901, 131.871, 96.724, 160.449, 17.666, −231.835, 20.939, −41.439, 125.357,

−131.312, −63.064, −55.975, −180.921, −182.716, −62.213, 182.275, −146.784,

−256.896, 148.335, 35.609, 51.117, −342.816, 168.226, −52.008, 197.307,

−124.738, −10.302, −164.867, −63.083

1TZ4 −165.334, 0.199, −308.832, −19.564, 57.088, −22.242, −33.621, 13.795, 54.533,

−181.066, 8.051, −74.348, −43.488, 2.648, −42.501, −236.707, −11.640,

−288.063, −13.457, −153.326, 2.644, −58.256, −155.085, 8.710, −24.551,

19.462, −59.251, 81.531, −3.096, −17.812, −255.897, 8.354, −69.865, −2.716,

48.152, 89.646, −2.270, −160.095, −39.007, 6.903, −28.411, −28.702, 50.580,

28.463, −226.413, −23.231, 17.755, −248.482, −170.342, 9.488, 197.418,

162.935, 28.759, −204.977, 5.143, −127.868, −190.456, 77.663, −177.556,

203.181, −242.256, −179.994, −126.389, −166.967, −40.466, 211.163, 7.530,

−92.841, 5.068

1TZ5 144.424, 54.747, 102.739, 92.689, −2.814, 94.396, 2.146, 21.189, 69.594, 13.985,

−66.838, 50.379, 48.012, 2.767, −126.631, 18.757, −11.099, 50.994, 31.931,

−27.937, 3.396, 35.722, −21.505, −63.870, 47.882, −33.406, 16.053, 99.876,

279.718, −19.088, −294.202, −27.874, 62.764, −24.135,−23.670, 126.114,

−127.681, −146.080, −52.368, 24.685, 4.347, 306.027, 23.096, 120.475, 203.812,

185.362, 283.888, 187.446, 66.357, −225.057, 126.390, −242.125, −146.168,

−16.040, 302.675, −56.468, −65.507, −23.753, −223.905, −216.439, 243.711,

21.638, −228.963, 141.464, −176.279, −22.492, −232.266, 100.986, 202.063

1AGT −156.030, −82.798, −95.070, −0.464, −112.604, −13.003, 36.340, −124.184,

−39.982, 229.694, −3.162, −267.961, −33.234, 2.010, −93.592, 81.454, 331.001,

32.176, −9.160, 35.237, −1.374, −25.395, −128.790, −10.705, −56.745,

−48.426, −12.472, 0.918, 66.112, −15.636, 12.279, 23.290, −76.885, −32.544,

184.096, −132.908, −47.248, −127.123, 33.011, 211.996, 59.836, 39.474,

26.187, 112.558, −21.629, 153.042, 223.658, 4.476, 33.030, −125.145, −74.598,

−45.447, −149.345, 139.283, 128.786, 5.417, −24.633, −46.156, −207.543,

33.837, 146.291, 96.303, 49.327, 32.750, −172.228,−126.106, 137.126, −43.327,

−147.187, 206.192, −35.189
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Table 2.5: The best obtained solution vectors using the SGDE.

PDB ID Solution

1CRN 145.300, 36.488, −27.693, 165.534, 77.902, 354.837, 7.136, 48.594, −80.512,

−14.057, 99.159, 112.074, 46.753, 256.470, 90.789, 22.948, 85.355, 83.407,

−43.953, −96.154, 11.458, 128.099, 43.359, −72.034, 237.431, −33.780,

−47.403, −90.489, 19.382, 18.790, 337.112, 177.606, −106.985, −35.294,

171.970, 50.324, −52.184, 192.523, −188.396, 63.694, 29.464, −81.714, −31.965,

342.749, −181.666, −136.103, −133.733, 28.622, 112.944,155.587, 133.711,

34.217, −194.437, −6.297, −32.510, −59.951, −55.728, −180.195, −8.319,

23.287, 15.044, −165.647, −27.660, −94.603, 158.104, 21.053, 2.937, −46.729,

−59.605, −119.248, 151.592, 76.387, 36.969, 64.091, 23.301, 195.288, 50.213,

19.561, 180.144, 55.116, 224.443,202.698, 163.036, 128.596, 71.251, 137.036,

239.625
1HVV 82.557, −4.648, 49.800, −23.404, −28.628, 41.943, 7.134, −166.340, −56.528,

−337.274, −31.374, −93.214, 37.106, −117.152, 42.778, 100.133, −14.835,

76.012, −321.270, −72.339, 42.745, −37.322, 45.282, 37.796, −11.162, 54.482,

−117.711, −5.714, −143.808, −1.347, 79.931, −10.487, −11.978, −17.393,

44.289, 29.164, 15.536, 23.316, −24.147, 163.034, −1.999, −6.900, 40.658,

42.585, 1.649, −77.651, 26.304, −60.850, −43.554, 9.506, 358.792, 27.782,

−17.848, 13.687, 20.478, 6.313, −267.353, 2.239, 7.522, −78.233, −32.929,

−7.866, 16.250, 30.633, 2.260, −5.060, −75.798, 11.519, 2.689, 11.681, 13.585,

1.897, 27.862, −113.754, −16.753, 43.384, −66.091, −161.383, −96.891,

−187.561, 46.594, 114.072, 121.035, 138.510, 104.586, −37.781, 119.307, 40.934,

−132.005, −52.130, −159.752, −124.843, 15.955, 260.259, −5.885, 81.430,

6.415, 161.376, 124.015,193.957, 52.734, 235.418, 21.524, 278.142, −110.396,

−79.301, −184.381, −135.690, −213.179, −100.948, −26.899, −129.316,

−81.018, −81.180, −187.666, 108.727, 132.176, −201.880, −61.588, −176.929,

93.506, 21.892, −53.959, −106.365, −72.412, −181.517, −165.334, 197.385,

−128.767, −13.453, −323.226, −163.631, −59.022, 37.137, 43.509, −299.102,

90.037, 89.780, −14.997, 53.471, −203.178, 143.063, 40.360, −24.016, −16.890
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Table 2.5: The best obtained solution vectors using the SGDE.

PDB ID Solution

1GK4 −21.350, 7.289, −98.280, −44.417, −29.790, 32.793, −45.553, −6.752, 56.575,

−8.413, 10.111, −8.803, 14.148, 8.485, 3.998, −45.350, −24.909, −12.958,

1.046, −10.167, 33.426, 9.071, 13.890, −40.705, 69.725, 17.744, −20.340,

18.051, 16.650, −90.021, 7.510, −13.634, 32.259, −0.115, 19.477,−25.760,

3.567, −7.441, 4.887, −5.443, 2.298, −7.960, 8.788, −9.155, 9.726, 34.049,

−0.973, −17.697, −2.901, −0.428, 22.487, −52.917, 58.330, −19.208, −1.853,

−6.544, −17.736, −11.070, 5.067, 39.871, 89.058, 16.728, 80.819, 5.917,

−15.588, −26.382, −34.298, 1.734, −73.843, 12.014, −0.598,−44.611, −13.265,

−1.520, 0.664, 4.390, −9.704, 10.029, 3.965, −0.721, 0.382, −3.113, 85.934,

−19.991, −78.439, −7.090, 128.539, −9.184, −62.805,−12.132, 91.381, 35.076,

−68.442, −24.881, 72.582, 121.197, 6.538, 21.101, −43.487, −148.246,

−148.722, −40.254, 24.561, 47.359, 43.872,31.372, −78.728, −108.732,

−124.579, −154.733, 12.213, −26.988, 76.124, 58.749, 43.400, −17.033,

−145.120, −38.315, 22.566, −78.594, −16.745,85.985, −0.592, −85.335, 16.567,

76.919, −22.160, −24.485, 27.512, 63.799, 83.927, 63.474, −25.497, −187.504,

−126.813, −21.404, −123.582, −121.014, −180.669, −167.495, −46.515,

−159.078, 17.356, 16.533, −104.856, −41.776, 70.995, −11.817, 105.383,

162.064, 58.494, 79.789, −21.554,76.475, 35.576, 44.884, −15.714, −128.459,

−23.287, 35.668, 85.378, −16.573, −11.516

Besides the above mentioned performance measures in Tables 2.3 and 2.4, a nonpara-

metric test, called Friedman, followed by a Conover method, is also conducted to determine

whether the obtained results by SGDE are significantly different from the other approaches.

To do so, the mean values obtained from 12 algorithms over the 11 protein sequences are

subjected to this test with 0.05 as the level of significance. The results indicate that with

95% certainty SGDE provided significantly better results for these problems.

The convergence curves of the improved algorithm over 30 runs per sequence are pre-

sented in Figure 2.9. The x-axis presents the number of function evaluations ×20, 000, and

the y-axis is the logarithmic value of the mean energy value. Here, a bias value of 100 is

added to make the energy values positive. From this figure we can see the proposed SGDE

algorithm shows continuously fast convergence rate for the presented problems. The advan-

tage of combining machine learning techniques and DE is revealed in this convergence plot.

Take 1EDP as an example, all the algorithms are trapped in local optima while SGDE suc-

cessfully escaped from the local optima and found the global optimum. The main point is

that the introduced surrogate models provide a measure of uncertainty associated with the

DE configurations. This uncertainty can effectively be used to construct more promising

strategies during the optimization process.

Thereafter, we compared the results by the DEpfo, jDE and L-SHADE on the high di-

mensional sequence 2EWH after 800,000 function evaluations, and the best offered solution

by the SGDE after 400,000 evaluations to further validate its approximation strategy. Ac-

cording to our experiments, SGDE was capable of obtaining the best energy value compared
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Figure 2.6: The comparison results of SGDE∗ and SGDE over 30 runs on protein sequences
1BXL.

to the other competitive algorithms. The folding results are reported in Table 2.6.

Moreover, we benchmark the performance of the SGDE for the real-world protein se-

quences. The results for 3 runs each with 1,000,000 function evaluations are collected in

Table 2.7. The SGDE† uses only 500,000 evaluations. This simulation is computationally

expensive. In this experiment, the total energy value (kJ/mol) of the obtained structure

is used to assess the quality of the solutions from the optimization aspect, while the Root

Mean Square Deviation (RMSD) is adopted to measure the similarity between the equiva-

lent atoms in the obtained model and the native structure. We used the well-known BLAST

server to provide the secondary structure of the target protein.

Table 2.6: Comparison of the results between the improved algorithms and SGDE for high-
dimensional protein sequences 2EWH using simplified model (Std.: standard deviation).

Algorithm Mean Std. Best

DEpfo -144.90 12.84 -171.63
jDE (DE/best/1) -88.830 20.29 -129.88
L-SHADE -104.96 4.930 -118.15
SGDE -149.15 10.75 -201.05

This study investigates how approximation strategy of surrogate models can be used

to replace in part the original computationally expensive PSP solver which may take from

several minutes to several hours. For such problem, time overhead of training and building

the surrogate models is insignificant compared to evaluating the exact fitness function which
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Table 2.7: Comparison of the results between the improved algorithms and SGDE for high-
dimensional protein sequences 1GK4 using all-atom model (Std.: standard deviation).

Algorithm Run1 Run2 Run3 RMSD

DEpfo -769.36 -874.33 -657.32 0.05
jDE(DE/best/1) -468.36 -569.33 -496.32 0.07
L-SHADE -154.65 -256.32 -365.36 0.09
SaDE 150.14 130.15 94.31 0.18
JADE 21.63 12.36 -0.65 0.17
EPSDE 1001.12 987.65 698.78 0.23
SGDE -6036.14 -5964.15 -7973.82 0.03

SGDE† -2338.02 -1834.36 -1920.99 0.02

can happen when you are working on a new fold. In this case, a high proportion of the

processing time involved in running is spent in function evaluation and surrogate models

can be used to ease the computational burden. The surrogate models themselves are often

expensive and are not recommended for the simple problems. Hence, this section takes

a more detailed look on the importance of surrogate models for the PSP in regard to

execution time. Generally speaking, the main purpose of the surrogate based methods is to

find optimal solutions within very few expensive evaluations. So, we are interested in the

obtained computation times for the SGDE†.

The most direct of this section is to show that the surrogate models can successfully

reduce the computational costs for the PSP problems. Toward this goal, the execution

(CPU) times for the ab-initio and all-atom models are presented in Tables 2.8 and 2.9,

respectively. We did not report the results for the DEpfo because it uses different setup,

coding language, compiler and computational architecture. In Tables 2.8 and 2.9, the

self time value show the total time in seconds spent inside an algorithm, excluding time

spent for the fitness evaluations. In the case of ab-initio model, we record the time for

two low-dimension problems (1CB3,1AGT) and a high-dimension problem (1GK4). The

results of 1AGT using the all-atom model are also collected in Table 2.9. In this table,

the values are rounded down. The simulations performed under Windows 7 operating

system on an Intel(R) Core i7-6700HQ CPU and 8 GB of RAM. As can be seen from

the results in Table 2.8, SGDE† needs a huge computational time compared to the other

algorithms. However, it is not a big surprise due the fact that surrogate based methods such

as SGDE are not developed for computationally cheap problems. Having this in mind, one

can see that SGDE† significantly reduced the computational time for the 1GK4 problem.

The effectiveness of this approach is further demonstrated in Table 2.9, where SGDE†

convergence about 26h faster for the 1GK4. The results also reveal the fact that even by

considering SGDE, computational complexity of the algorithm become negligible compared

to time overhead resulting from the expensive evaluations.
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Figure 2.7: The percentage of improvement for SGDE over the competitive algorithms.
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Table 2.8: The reported computational times (in seconds) based on 3D AB off lattice model.

PDB ID Algorithm Evaluation time Self time Total time

jDE(DE/best/1) 0.72 8.58
L-SHADE 1.21 9.07
SaDE 8.04 15.90

1CB3 CoDE 7.86 0.88 8.74
JADE 0.71 8.57
EPSDE 4.37 12.23
SGDE 59.1 66.80

SGDE† 3.93 24.1 28.05

jDE(DE/best/1) 0.92 66,65
L-SHADE 1.56 67,29
SaDE 8.39 74,12

1AGT CoDE 65.73 0.86 66,59
JADE 0.91 66,64
EPSDE 4.92 70,65
SGDE 80.03 145,8

SGDE† 32.87 43.46 76.33

jDE(DE/best/1) 0.93 326,53
L-SHADE 3.61 329,21
SaDE 10.25 335,85

1GK4 CoDE 325.60 0.85 326,45
JADE 2.16 327,76
EPSDE 5.38 330,98
SGDE 100.76 426,36

SGDE† 162.8 74.16 236.96
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Figure 2.9: Illustration of the convergence results obtained for the used protein sequences.
We show the average objective value (y-axis) found by the competitive methods as a function
of evaluations ×20, 000 (x-axis).
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Table 2.9: The reported computational times (in minutes) based on the all-atom model for
3 runs.

Algorithm Evaluation time Self time Total time

jDE(DE/best/1) 219 3361
L-SHADE 234 3376
SaDE 281 3423
CoDE 3142 227 3369
JADE 221 3363
EPSDE 249 3391
SGDE 321 3463

SGDE† 1571 291 1862

2.6.5 When Surrogate Models Do Not Help

A lot of things can go wrong. But some of them are more likely to be broken than

others. First, notice that the main purpose of applying surrogate modeling is to replace

an expensive-to-evaluate function by a simple response surface model. Consequently, it

does not make any sense to apply surrogate models for a cheap-to-evaluate simulation

function. This is due to the fact that the computational demands of building and training

the surrogate models are also growing as their accuracy and complexity keeps increasing. In

addition, you should remember that a sensitivity analysis is a pre-requisite for the surrogate

modeling. Sensitivity, in this context, is a measure of the contribution of an independent

variable to the total variance of the dependent data. This provides a systematic approach

to identify how the variability in the computational model output is associated with the

model input parameters. Starting with a model before applying sensitive analysis might

provide more noise than useful information to the optimization process.

2.6.6 Implementation Notes

There is an overhead in model training phase which is implementation-specific and can

be reduced with better-engineered code. We used a Matlab implementation for the con-

ducted experiments which increases the required computational time compared to C, C++,

or MEX-C. This thesis discourages coding the surrogate models in slow programming lan-

guages like Matlab. Relatively, it should be noted that modern advances in computing

power increasingly rely on parallelization rather than faster processors. Hence, we recom-

mend to take advantages of parallelization in their surrogate based implementations [132].

2.7 Practical End Use of Algorithm

We tried to incorporate the surrogate models during the PSP process. The main direc-

tion was to investigate how surrogate models can be used to evaluate more conformational

search by means of cheap surrogate models. As a practical end use of algorithm, it would be

interesting to introduce the surrogate models into the well-known Rosetta [125] predication
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tools in order to provide more details on the use of surrogate models for the PSP. Further-

more, we would provide user-friendly web interfaces in order to generate reliable models

using the proposed approach. They allow non-expert users to generate 3D models without

the need to install and learn complex molecular modeling software and they have increasing

impacts on both basic research and drug development. As pointed out and demonstrated in

a series of recent publications [58], an established web-server gives a step-by-step guide on

how to use the proposed algorithms to get the desired results without the need to follow the

complicated mathematic equations. Particularly, it would be even more useful if the users

can testify their new proposition through this web interface. The fully automated server

for PSP problem has been continuously developed since 20 years ago [58]. Actually, many

practically useful web-servers have increasing impacts on medical science, driving medicinal

chemistry into an unprecedented revolution [36]. Hence, we would make efforts to provide

a web-server for the new structure prediction method presented in this chapter.

2.8 Chapter Summary

In this chapter, we proposed a new extension of DE to accelerate the convergence rate

of the standard algorithm for the computationally expensive PSP problem. The introduced

SGDE verifies convergence conditions by adopting the surrogate modeling and GEP tech-

niques. Moreover, it provides an improved search process which guides solutions by using

CMAES. We evaluate the performance of SGDE as a specific algorithm for solving high

dimensional real-world PSP problems using both ab-initio and an all-atom model. The

SGDE is compared with ABC, DE, PSO, CMAES, DEpfo, jDE (DE/best/1), L-SHADE,

SaDE, CoDE, JADE and EPSDE. In this regard, six performance metrics are used: best

fitness value, mean value of solutions, standard deviation, percentage of improvements,

convergence rate and runtime complexity of the algorithms. Tables 2.3 and 2.4 presented

the results of competitive algorithms based on the ab-initio model. These results clearly

showed that SGDE significantly outperformed other algorithms in terms of the solution

accuracy and robustness. The Friedman statistical test followed by a Conover method is in

agreement with previous observations. The results also suggest that SGDE is less sensitive

to the increases in dimensionality of the sequences and thus, has proved to be scalable.

Moreover, it has been illustrated that SGDE provides a high enhancement in terms of the

convergence speed. The same conclusions can be drawn for the all-atom model. Overall,

experimental results suggest that the adopted surrogate models lead to a high convergence

rate using a limited computational budget.
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Chapter 3

Application II: Offline

Algorithm Configuration

Your assumptions are your windows on

the world. Scrub them off every once

in a while, or the light won’t come in.

Isaac Asimov

State-of-the-art metaheuristics algorithms often expose many parameters that should

be configured to improve their empirical performance. Manual tuning of such parameters

is synonymous with tedious experiments which tend to lead to unsatisfactory outcomes.

Accordingly, researchers developed several frameworks to tune the parameters of a given

algorithm over a class of problems. Until very recently, however, these approaches are not

testified and applied to many-objective optimization problems. This study formulates a

multi-objective algorithm configuration (MAC) method. In MAC, we take into account

the importance of a given configuration by building a conditional probability graph. In

this light, the introduced algorithm aims to explore more important variables using an

undirected fully-connected graph. Experimental results reveal that MAC performs better

in comparison with state-of-the-art F-Race and SMAC algorithms.

3.1 Motivation

There is no doubt that metaheuristic algorithms have gained immense popularity in

recent years. The adoption of these algorithms to unseen NP-hard problems, however,

is severely hampered by choosing a set of optimal parameters associated with them. The

learning rate in stochastic gradient descent or the mutation rate in the genetic algorithm are

examples of these parameters. In particular, we can point out parameters of metaheuristics

whose configurations have a high impact on their overall performance on a given class of

instances. These configurations are correlated in non-intuitive ways which makes it difficult

and tedious to tune them manually.

Automatic algorithm configuration deals with optimizing parameters of an algorithm

so as to perform well across a broad range of instance types. In this regard, standard

optimization algorithms like metaheuristics may need hundreds of evaluations to locate

a near-optimal solution which is a major challenge to their successful application. This

is primarily due to the expensive computational cost associated with them, which often



38 Chapter 3. Application II: Offline Algorithm Configuration

consume many minutes to even days of CPU time. In this context, the advantages of so-

called model-based algorithms become clear [69]. They construct computationally cheap-to-

evaluate surrogate models in order to provide a fast approximation of the expensive fitness

evaluations during the search process. By leveraging surrogate models, the computational

cost can be greatly reduced since the time overhead of training and building surrogate

models is insignificant compared to evaluating the exact fitness function. To this fact,

state-of-the-art algorithms such as SMAC [69] and F-RACE [17] have focused on model-

based optimization.

To the best of our knowledge, automatic configuration methods have not been ap-

plied to many-objective problems and researchers were more interested on single-objective

and multi-objective cases. In contrast to conventional multi-objective approaches, many-

objective optimization poses a great challenge due to the ineffectiveness of Pareto domi-

nance, inefficiency of recombination operation, rapid increase of computational time and

parameter sensitivity.

3.2 Problem definition

A general definition of the algorithm configuration problem can be presented by a tuple

< I,Θ,Λ, ζ > as follows:

θ∗ = arg max
θ∈Θ

u(θ),where u(θ) = f(θ|I, PI , Pζ , t) (3.1)

where the parameters are:

— I: a set of problem instances which is given by a distribution PI over admissible

instances

— Θ: a set of all possible combinations of values of pi

— Λ: an algorithm which should solve the problem class I, with input configurations

θ = (p1, · · · , pk) ∈ Θ. Here, Λ(θ) is the instance of algorithm Λ configured with θ

— ζ(θ, i, t) = ζ(Λ(θ), i, t): assigns a cost value to each configuration θ when running

Λ(θ) on instance i ∈ I for time t. It could be modeled as ζ ∼ Pζ(ζ|θ, i, t)
The hyperparameter approach should then try to find configuration θ∗ ∈ Θ such that

Λ(θ) yields the best utility u. To sum up, workflow of the automatic algorithm configuration

problem is illustrated in Figure 3.1.

We introduce the hypervolume as the utility function u for formulating the many-

objective problem. Assume that f(x) = (f1(x), f2(x), ..., fM (x)) denotes all the measured

objectives on hyperparameter x. In this context, we are interested to find a set of promising

solutions so as to simultaneously minimize/maximize M objectives over the design space

D and objective space f(D) using the concept of Pareto optimality.

Definition 1 (Domination): We denote the induced domination relation: x � x′ iff

∃m ∈ {1, ...,M} : fm(x) < fm(x′) and ∀m ∈ {1, ...,M} : fm(x) ≤ fm(x′)

Definition 2 (Pareto optimal): A solution x ∈ D is called Pareto optimal (or effi-

cient), if it is non-dominated: @x′ ∈ D: x′ � x
The many-objective algorithms return a set of solutions and a key question is how
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new configuration θ

stastistics of θ on I

solver S algorithm Λ

instance 1

instance 2

....

instance k

problem instances I

ζ(θ, i, t)

configuration θ ∈ Θ

Figure 3.1: Workflow of automatic algorithm configuration

to compare the performance of the algorithms by their respective outputs. Indeed, this

has been an active subject of work leading to a set of quality indicators based on Pareto

front approximation. In this research, the well-known Hypervolume indicator is adopted to

compare the performance of the algorithms. To summarize, some basic concepts are also

depicted in Figure 3.2.

Definition 3 (Pareto front): The Pareto front associated with a MO problem is a set

of points in RM that are all Pareto optimal.

Definition 4 (Pareto front approximation): An approximation of the Pareto front

is a set A = {∀c, c′ ∈ A : c||c′} ∈ 2|f(D)|, where c||c′ is satisfied when neither c � c
′

nor c
′ � c. The set of all the aforementioned approximations are represented by Φf(D).

Definition 5 (Quality Indicator): We define a quality indicator as I : Φf(D) → R
which assigns a fitness value to each approximating set.

Definition 6 (Hypervolume indicator): Assume that r ∈ RM is a reference point,

A ∈ Φf(D) and B+(A, r) = {z ∈ RM |∃c ∈ A : c � z � r}. The hypervolume is

IH(A, r) = V (B+(A, r)), where V denotes the volume.

3.3 Related Works

Sequential Model-based Algorithm Configuration (SMAC) [69], Spearmint [152], F-

RACE [17] and Tree-structure Parzen Estimator (TPE) [14] are examples of well known

methods for automatic configuration task. A large class of such methods is characterized

by modeling a conditional probability p(y|ϕ) of a m−dimensional configuration ϕ, given

n observations s with the corresponding evaluation metrics y. SMAC adopted a random

forests model and Expected Improvement (EI) to compute p(y|ϕ). It applies a multi-start

local search and selects resulting configurations with locally maximal EI. The exploration

property of SMAC is enhanced by the fact that EI conditioned on points with large uncer-

tainty and low values of predictive mean. Similarly, TPE et al. [14] defined a configuration

algorithm based on tree-structure Parzen estimator and EI. To tackle the curse of dimen-
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Figure 3.2: An illustration of Pareto front, Pareto set and hypervolume indicator for M = 2,
with both objectives being minimized

sionality, TPE assigns particular values of other elements to the configurations which are

known to be irrelevant. Ilievski et al. [72] proposed a deterministic method which em-

ploys dynamic coordinate search and radial basis functions (RBFs) to find most promising

configurations. By using the RBFs [126] as surrogate model, they mitigated some of the

requirements for inner acquisition function optimization. In another work [153], the authors

put forward neural networks as an alternative to Gaussian process for modeling distributions

over functions. They show that their introduced method is competitive with state-of-the-art

GP-based approaches while it scales linearly with the data size rather than cubically. Blot

et al. [19] introduced a multi-objective extension of the well-known ParamILS configura-

tion framework and they demonstrate that it gives promising results on several challenging

bi-objective scenarios. Interestingly, Google introduced Google Vizier [59], an internal ser-

vice which incorporates Batched Gaussian Process Bandits along with the EI acquisition

function.

3.4 Methodology

This section discusses in detail the main components of the proposed MAC method. In

brief, MAC consists of two main phases:

— Exploration: The algorithm tries to learn probabilistically about the relevance of

configurations and the model’s performance during the optimization process. In

other word, it expects to find reasons why a collection of past solutions is superior

to others. To do so, MAC is equipped by a linkage learning component which

periodically acquires information about the problem at hand to find most informative

configurations. The aforementioned schema encodes the underlying dependencies

between variables using an undirected graph, where nodes denote configurations

and edges show the probability that two nodes are relevant. We adopted the idea of

Eigenvector centrality feature selection [142] to learn the factor graph.
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— Exploitation: The collected information from the previous step are then processed

and used to generate new solutions. The introduced informed component guides the

algorithm toward the search space that are likely to contain the promising solutions.

This orthogonal technique prevents MAC to uniformly consider all configurations

and bias the search process toward the good configurations.

We extend the idea of stochastic RBF [139] to be suitable for the algorithm configuration

task. It is a model-based algorithm that cycles from emphasis on the objective to emphasis

on the distance using a weighting strategy. Compared to the evolutionary algorithms like

genetic algorithm, stochastic RBF need less computational time by virtue of surrogate

modeling techniques. On the other hand, it mitigates some of the requirements for inner

acquisition function optimization in comparison with well-know efficient global optimization

(EGO) algorithm [78]. Hence, we focused on proposing a new algorithm configuration

approach based on stochastic RBF. A generic framework for MAC includes some basic

steps which can be stated as follows:

1. Generate a set of initial configurations θi (i = 1, 2, ..., n) using design of experiments

(DoE) and compute the cost value for each configuration

2. Build an initial surrogate model based on the sampled configurations θi in the first

step

3. Find the current best configuration confbest

4. Generate a set of random perturbations ρ based on exploration/exploitation modes

5. Generate a set of new configurations confsnew around confbest using ρ

6. Use the surrogate model to select the best configuration confnew

7. Evaluate confnew using exact cost function

8. Update the surrogate model based on confnew

9. Check the stopping criteria: if some stopping criteria are satisfied go to Step 10;

otherwise go to Step 3

10. Post-process the results

3.4.1 Initial Design

In MAC, the first step involves generating a set of random configurations θi (i =

1, 2, ..., n) (i.e., initial population). Here, the algorithm might possibly miss a consider-

able portion of the promising area due to the high dimensionality of the configuration space

(it should be noticed that we have a small and a fix computational budget and increas-

ing size of the initial population cannot remedy the issue). Furthermore, it is crucial for

a model-based algorithm to efficiently explore the search space so as to approximate the

nonlinear behavior of the objective function. For these reasons, as with many model-based

algorithms, MAC adopts DoE methods to partially mitigate high dimensionality of the

search space. Among them, MAC uses the Latin Hypercube Sampling (LHS) [124] to pro-

vide a uniform cover in the search space using a minimum number of individuals. The main

advantage of LHS is that it does not require an increased initial population size for more

dimensions.
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3.4.2 Build an Approximation Model

As the next step, we evaluate all the generated configurations θi (i = 1, 2, ..., n) to

build an approximate model of the cost function. This computationally cheap-to-evaluate

model can provide a fast approximation of the expensive fitness evaluations during the

search process. MAC tries to model conditional probability p(y|ϕ) of a d−dimensional

configuration ϕ given n observations S with the corresponding cost metrics y:

S =
[
θ(1), ..., θ(n)

]T
∈ Rn×d, θ = {θ1, ..., θd} ∈ Rd (3.2)

To do so, it offers surrogate models which are a set of mathematical tools for predicting

the output of an expensive objective function. Particularly, they are designed to predict

the fitness function value for any unseen configuration θ̂ according to computed data points

(θi, yi). Given a set of distinct configurations θ1, ..., θn ∈ Rd with known values yi, the

RBF interpolant form is then computed as below [139]:

f̃(θ̂) =

n∑
i=1

λiφ(
∥∥∥θ̂ − θi∥∥∥) + p(θ̂), θ̂ ∈ Rd (3.3)

In Eq. 3.3,
∥∥∥.∥∥∥ is the Euclidean norm, λi ∈ R for i = 1, ..., n, p ∈

∏d
m denotes the

linear space of polynomials in d variables of degree which is less than or equal to m, and

φ is a RBF with one of the surface splines (φ(r) = rk where k ∈ N is an odd number,

or φ(r) = rklog(r) where k is an even number), multiquadratic (φ(r) = (r2 + γ2)k where

k > 0 and k /∈ N), inverse multiquadratic(φ(r) = (r2 + γ2)k where k < 0 and k /∈ N) and

Gaussians (φ(r) = e−γr
2

) forms. Here, r ≥ 0 and γ > 0.

Following [139], MAC selected the surface splines form with k = 3 as the RBF. Having

this in mind, we can compute a matrix = ∈ Rn×n by =i,j = φ(
∥∥∥θi − θj∥∥∥); i, j = 1...n.

Assume that m̂ is the dimension of the linear space
∏d
m such thatm ≥= bk/2c. Accordingly,

we have another matrix P ∈ Rn×m̂ such that: Pij = p(i)(θ(i)), i = 1..n; j = 1..m̂. The

approximated model can then be obtained by solving the system as presented in Eq. 3.4,

where c = (c1, ..., cm̂)
T ∈ Rm̂. (

= P

P> 0

)(
γ

c

)
=

(
y

0m̂

)
(3.4)

3.4.3 Exploration

The original stochastic RBF method generates a set of candidate points by adding

random perturbations ρ to the best obtained solution (i.e., configuration) to guide the

search process. This trial-and-error procedure does not take into account the interactions

between the generated configurations and the obtained objective values. We note that the

performance of stochastic RBF depends on this random points and a more informed scheme

can be beneficial to enhance the robustness of the algorithm. Indeed, this is the same

desired property in optimal contraction theorem [31] which states an optimal optimizer

should dynamically considers useful information about the problem at hand. Motivated
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by this finding, MAC incorporates an adaptive control strategy which keeps a historical

memory of the ρ perturbations to guide the generation of future configurations. In the

exploration phase, MAC generates a diverse set of random perturbations ρ and tends to

increase global search to prevent algorithm from being trapped in a local minimum. We

adopted Student’s t-distribution to do so, which is a symmetric and bell-shaped family of

distributions like the normal distribution. In contrast, however, it has heavier tails which

let MAC explores the points that fall far from the distribution’s mean. At each iteration t,

MAC archives the generated perturbations for the exploitation phase.

3.4.4 Exploitation

After half of the iterations, MAC employs a feature selection algorithm method to

acquire information about the performance of each of those randomly generated perturba-

tions in the previous phase. It uses this information to dynamically make a balance between

exploration and exploitation. In other words, MAC transforms the task of learning the op-

timal feature in feature selection algorithms into the search for an efficient and adaptive

optimization behavior. This enables MAC to take into account the underlying correlations

between the generated perturbations and domain-specific search knowledge of the problem.

Following [141], MAC creates an undirected graph G =< V,E > according to which

nodes represent the generated random perturbation ρ(t) and edges denote relationships

among pairs of nodes. All the archived perturbation ρ(t) are ranked in descending order

according to their associated cost values: the first best 50% solutions are labeled as promis-

ing and the other solutions are labeled as non-promising. This consideration addresses the

imbalanced training set and prevent of biasing against the minority class.

Given the above-mentioned training set, an adjacency matrix A is associated with G

in order to define relationships between the nodes. The graph G is represented through

an adjacent matrix A, where each element ai,j shows pairwise relations among feature

distributions. The ai,j elements are defined as follows:

ai,j = ασi,j + (1− α)ci,j ; 1 6 i, j 6 t (3.5)

In Eq. 3.5, α is a scaling factor ∈ [0, 1], σi,j = max(σi, σj) where σi denotes the standard

deviation over the ρ and ci,j is a kernel. To compute the ci,j , first the Fisher criterion should

be applied [141]:

fi =
|µi,1 − µi,2|2

σ2
i,1 + σ2

i,2

(3.6)

In Eq. 3.6, discriminate classes promising and non-promising are labeled as 1 and 2,

respectively. Also, σ2
i,c and µi,c are the mean and standard deviation of the i -th feature for

class c. The k can be obtained as k = (f.m>) where the mutual information m is [141]:

mi =
∑
y∈Y

∑
z∈ρ(i)

p(z, y)log(
p(z, y)

p(z)p(y)
) (3.7)

In Eq. 3.7, Y shows class labels and p denotes the joint probability distribution. Now,
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MAC computes the eigenvalues υ and eigenvectors v of A. The obtained weigh for generat-

ing the new configurations is equal to the eigenvector associated to η0 = maxη∈υ(abs(η))).

3.5 Experiments

3.5.1 Benchmark Sets

We considered CEC’2018 benchmark [35] suite to compare the competitive configuration

algorithms. Accordingly, we investigate the performance of the introduced MAC method

using two different many-objective algorithm configuration scenarios. The first scenario

is designed to optimize the configuration space of NSGA-II [47] defined by three control

parameters, while the second one adopts MOPSO [37] which is defined by six control pa-

rameters. The adopted algorithms are introduced to measure search performance of the

MAC under different dimensions. The NSGA-II is a low dimensional configuration prob-

lem, while MOPSO is a medium dimension problem. The considered configurations are

presented in Tables 3.1 and 3.2.

Table 3.1: The considered configurations of NSGA-II for a D-dimensional problem

Name Type Range Default values [50]

population size integer [100,500] 100
crossover rate continuous [0.1,1] 1
mutation rate continuous [0.1,1] 1/D

Table 3.2: The considered configurations of MOPSO for a D-dimensional problem

Name Type Range Default values [150]

population size integer [100,500] 100
inertia weight continuous [0.1,1] 0.9
C1 continuous [0.1,2] 1.8
C2 continuous [0.1,2] 1.8
V continuous [0.1,1] 0.6
mutation rate continuous [0.1,1] 1/D

3.5.2 Baselines

Experiments are conducted based on random search, SMAC and F-RACE methods.

Empirical evidence reveals that random search can outperform Grid search within a small

fraction of the computation time. Furthermore, SMAC and F-RACE are two state-of-the-

art automatic configuration frameworks and to our best knowledge this is the first study

which reports their performance for many-objective problems.
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3.5.3 Experimental Settings

It should be mentioned that the number of objectives is set to M = 5. Our experimental

procedure follows two steps, namely training and test. In the training step, each evaluation

involves running the NSGA-II/MOPSO on the training problem instances MaF1, MaF2,

MaF5 and MaF6-10 (the size of training and test instances is small due to small number of

CEC’2018 benchmark problems) for 10 runs. After finishing the automatic configuration

step, the parameters obtained from the training step are applied to rest of the problems

in order to validate the performance of the optimized configurations on the unseen test

instances. In the case of NSGA-II and MOPSO, number of fitness evaluations is set to be

max(1.0e+5, d× 1.0e+4), where m is the default dimensionality of the problem.

For each algorithm, stopping criteria are satisfied if the algorithm exceeds 5 × 200

evaluations, or if the computational time reaches 5 × 24 hours. We used hypervolume

(HV) in order to compare the proximity and diversity of the obtained results. The HV

indicator should be maximized during the configuration process.

3.5.4 Results and Discussion

The obtained results are summarized in Tables 3.3- 3.4 and Figure 3.3. In these tables,

NSGA-II and MOPSO denote the obtained results by using the default configurations. The

best results are indicated in boldface.

Table 3.3: Average Hypervolume values for final test fronts of NSGA-II algorithm

Problem Random Search SMAC F-RACE NSGA-II MAC

MaF1 0.0132 0.0141 0.0109 0.0072 0.0135
MaF2 0.0440 0.0448 0.0407 0.0342 0.0449
MaF5 32400.0000 32759.7820 29971.3091 20900.0000 27200.0000
MaF6 0.0093 0.0093 0.0093 0.0092 0.0093
MaF7 1.8471 1.8914 1.7851 1.7035 1.9127
MaF8 4.7763 4.7708 1.5404 3.9464 4.7749
MaF9 7.5106 7.9908 7.4298 3.7968 8.0242
MaF10 2500.0000 2810.4974 2470.0709 2464.2300 2470.0000
MaF11 6080.0000 6102.3614 6070.2643 5970.0000 6100.0000
MaF12 3710.0000 3869.2988 3657.2979 2825.0000 3880.0000
MaF13 0.4376 0.4446 0.4470 0.2080 0.4547
MaF14 0.1464 0.1464 0.0732 0.1464 0.1513

Arguably, NSGA-II is one of the well-known methods which mimics the same develop-

mental process in the standard GA: Selection, reproduction and evaluation. It is worth

tuning the population size, mutation and crossover probabilities of the NSGA-II to find

reasonable settings for the problem at hand. A small population size will lead to the early

convergence problem, while using a large population increases the computational cost. The

configurations tuning of NSGA-II becomes even more challenging due to the fact that there

is a correlation between its control parameters. For example, mutation is more effective

on smaller population sizes while crossover is likely to benefit from large populations. All

the mentioned reasons make the NSGA-II a challenging algorithm for benchmarking the
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Table 3.4: Average Hypervolume values for final test fronts of MOPSO algorithm

Problem Random Search SMAC F-RACE MOPSO MAC

MaF1 0.0106 0.0116 0.0154 0.0030 0.0107
MaF2 0.0417 0.0396 0.0389 0.0315 0.0407
MaF5 29100.0000 33163.6115 32753.9500 16600.0000 32900.0000
MaF6 0.0093 0.0093 0.0093 0.0089 0.0093
MaF7 1.5039 1.7304 0.6107 1.0984 1.6691
MaF8 4.3301 4.5889 4.6987 4.3521 4.7207
MaF9 7.9267 8.7605 8.7001 2.5895 9.1728
MaF10 1440.0000 1513.8214 1485.7750 1465.0000 1570.0000
MaF11 5540.0000 5471.3664 5570.2050 4915.0000 5600.0000
MaF12 3190.0000 3143.7161 3181.9100 1440.0000 3450.0000
MaF13 0.0475 0.3558 0.3705 0.0219 0.3710
MaF14 0.1464 0.1464 0.1464 0.1369 0.1464

performance of the MAC. However, Table 3.3 shows the automatic algorithm configuration

methods enhanced the performance of the NSGA-II over the problems. Meanwhile, it is

worth mentioning that MAC exhibits more promising performance than other competitive

methods. The same situation could happen for the considered MOPSO algorithm. As it

can also be seen from Table 3.4, MAC finds considerably better configurations in terms of

HV indicator.

Figure 3.4 provides additional details by showing the behavior of the considered methods

over 4 different problems. This figure shows how the introduced methods adopt their tuning

behavior for NSGA-II and MOPSO algorithms. Altogether, with respect to the performed

experiments, we can say that MAC and other frameworks have achieved promising results.

From the illustrated correlation matrix (results are recorded by MAC) in Figure 3.3, it can

also be concluded that well-tuning the algorithms even with very small training instances

can enhance the search performance of the many-objective approaches.
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Figure 3.3: The obtained correlations between the configurations of different problems for
the NSGA-II (left) and MOPSO (right).
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Figure 3.4: HV values v.s. number of function evaluations (FEs) of different methods for
optimizing 6 parameters of MOPSO and 3 parameters of NSGA-II. One dot represents HV
value of an algorithm at the corresponding evaluation number

3.5.5 When Feature Selection Does Not Help

We did not notice a significant overhead in our experiments by applying feature selec-

tion. However, sometimes features selection might not be beneficial due to the low config-

urations/features correlations. In such a case, the feature selection strategies are likely to

introduce noise into your optimization process. We highly recommend to examining feature

selection strategies on your problem instead of blindly go with an approach; which might

save you plenty of time.

3.5.6 Implementation Notes

This study formulates a many-objective algorithm configuration method (MAC) which

is available for the Matlab and Python. MAC can be easily installed. It can be used
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to directly configure the algorithms in PlatEMO, Platypus and PyGMO packages. Also,

like SMAC and F-RACE it can be linked with other frameworks such as jMetal by means

of a Wrapper function. MAC supports automatic generation of LaTeX tables, applying

statistical pairwise comparison, and graphical visualization. The MAC can be executed in

parallel on multiple cores.

3.6 Practical End Use of Algorithm

We believe that MAC could be very useful in real-world applications due to the fact

that it is not easy for manually tuning the parameters of many-objective algorithms by

considering multiple performance criteria. We are intended in using many-objective versions

of model-based algorithms for parameter tuning tasks. It would be interesting to investigate

how many-objective methods can cover a range of trade-offs in comparison with single-

objective ones.

3.7 Chapter Summary

In this study, we present a framework for automatic algorithm configuration of many-

objective optimization methods. The introduced MAC incorporated the idea of feature

selection into the stochastic RBF method using an undirected graph. The MAC is proposed

in the interest of integrating the optimization methods and machine learning techniques.

The application of MAC to very recent CEC’2018 benchmarks compared to 3 state-of-the-

art competitors show efficient performance.
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Chapter 4

Application III: Numerical

Optimization

We are an impossibility in an

impossible universe.

Ray Bradbury

Metaheuristic algorithms have seen unprecedented growth thanks to their successful ap-

plications in fields including engineering and health sciences. In this work, we investigate

the use of a deep learning (DL) model as an alternative tool to do so. The proposed method,

called MaNet, is motivated by the fact that most of the DL models often need to solve mas-

sive nasty optimization problems consisting of millions of parameters. Feature selection is

the main adopted concepts in MaNet that helps the algorithm to skip irrelevant or par-

tially relevant evolutionary information and uses those which contribute most to the overall

performance. The introduced model is applied on several unimodal and multimodal contin-

uous problems. The experiments indicate that MaNet is able to yield competitive results

compared to one of the best hand-designed algorithms for the aforementioned problems, in

terms of the solution accuracy and scalability.

4.1 Motivation

The need for optimization has received a lot of attention in different application areas.

Metaheuristics are one of the fastest growing fields aimed at solving different complex and

highly non-linear real-world problems by inspiration from the process of natural evolution

or physical processes [82, 135]. In metaheuristics, we often have a population of candi-

date solutions that strive for survival and reproduction. In every iteration, different search

operators are applied to the candidate solutions and then the population will be updated

based on its success in achieving the goal. Over the last decade, there has been an ex-

plosion in the development of a variety of extensions to further enhance the performance

of metaheuristics. However, there are no clear guidelines on the strengths and weaknesses

of alternative methods such as the deep learning models for developing more enhanced

optimization algorithms.

The deep learning approaches use a hierarchy of features in conjunction with several

layers to learn complex non-linear mappings between the input and output layer. As op-

posite to traditional machine learning methods that use handmade features, the important

features are discovered automatically and are represented hierarchically. This is known
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to be the strong point of deep learning against traditional machine learning approaches.

Accordingly, these models have been described as universal learning approaches that are

not task specific and can be used to tackle different problems arise in different research

domains [4]. In this chapter, we propose a simple, yet effective approach for numerical opti-

mization based on the deep learning. The proposed MaNet adopts a Convolutional Neural

Network (CNN); which is a regularized version of fully-connected neural networks inspired

from biological visual systems [94]. The ”fully-connectedness” of CNNs enables them to

tackle the over-fitting problem and it is reasonable to postulate that they may outperform

classical neural networks for difficult optimization tasks.

Some of the recent works mainly aim at providing optimal solutions within a very limited

computational time [153], while others [6, 104] primarily focus on getting better heuristic

solutions. These success stories of DL motivated us to investigate the ability of a moderate

model so as to make a balance between the solution accuracy and computational time.

Altogether, these are the same desired properties in MAs and our work is a step towards

investigating the usefulness and strong potential of this research direction.

4.2 Problem Definition

Formally, optimization algorithms seek to find a parameter vector x∗ so as to minimize

a cost function f(x) : RD → R, i.e. f(x∗) ≤ f(x) for all x ∈ Ω, where Ω = RD is the search

domain and D is the dimension of the problem. There are no a prior hypothesis about f

and optimization algorithms should treat them as black-box functions. This motivated the

development of MAs which do not take advantages of problem structure.

4.3 Related Works

The idea of solving optimization problems using neural networks has an old history

which has seen a number of advances in recent years [5, 6, 87, 104, 153]. In [153], authors

developed a Bayesian optimization method, called as DNGO, based on deep neural net-

works for hyperparameter tuning of large scale problems with expensive evaluation. The

main idea is to combine large-scale parallelism with an optimization method to provide

an approximate model of the real cost function. They show that DNGO scales in a less

dramatic fashion compared to the Gaussian process, while maintains its desirable flexibility

and characterization of uncertainty. OptNet [5] is another method proposed for learn-

ing optimization tasks by the virtues of DL, sensitivity analysis, bilevel optimization, and

implicit differentiation. The authors highlighted the potential power of OptNet networks

against existing networks to play mini-Sudoku. In [6], researchers investigated automating

the design of an optimization algorithm by long short-term memory deep networks on a

number of tasks. Their results outperform hand-designed competitors for simple convex

problems, neural network training and styling images with neural art. Similarly, Li and

Malik [104] put forward a deep learning method for automating algorithm design process.

They formulate the problem as a reinforcement learning task according to which any can-
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didate algorithm is represented by a policy and the goal is to find an optimal policy. To

verify this finding, the authors conducted a set of experiments using different convex and

non-convex loss functions correspond to several machine learning models. The obtained

results clearly suggest that the automatically designed optimizer converges faster compared

to hand-engineered optimizer.

4.4 Methodology

This section presents a new optimization method, called MaNet, to explore the possibil-

ity of adopting a lightweight deep learning architecture for continuous optimization tasks.

In the following, it is assumed that the reader is familiar with the basic concepts of evolu-

tionary computation and deep neural networks. In case the reader needs a refresher on any

of those topics, author recommends Part II as well as [94].

The MaNet is designed to have the common properties of the MAs: providing a suf-

ficient good solution with incomplete or imperfect information. It starts the optimization

procedure with a set of randomly generated solutions as genotype. During training the

network, MaNet applies the network training components directly on the genotype, while

decodes a genotype into a phenotype (i.e., individuals in MAs) only in the last layer. It

finds an optimized solution by iteratively improving an initial solution with regard to its

cost function. Among different DL models, CNNs trained with an extension of stochastic

gradient descent is used to build the MaNet. The CNNs have been central to the largest

advances in computer vision [94] and speech processing [66]. A CNN is a DL method that

uses convolutional layers to filter redundant or even irrelevant input data to increase the

performance of the network [64]. This consideration also reduces the dimensionality of the

input data and speeds up the learning process in the CNNs. Besides, it allows CNNs to be

deeper networks with fewer parameters. Altogether, these properties could make CNNs a

potential tool for solving optimization problems; especially when we take into account the

history behind the application of feature selection [133] and problem scale reducing [149]

in the optimization domain.

The architecture of a CNN consists of an input and an output layer, as well as one or

more hidden layers. The hidden layers are typically composed of convolutional layers, fully

connected layers, normalization layers and pooling layers. The number of hidden layers

could be increased depending on the complexities in the input data, but at the cost of more

computational expensive simulations. From the mathematical perspective, convolution lay-

ers provide a way of mixing input data with a filter so as to form a transformed feature

map. Fully-Connected layers learn non-linear combinations of the high-level features by

connecting neurons in one layer to neurons in the previous layer, as seen in multi-layer per-

ceptrons neural networks (MLPs). Moreover, normalization layers are adopted to normalize

the data to a network and to speed up learning. This includes batch normalization [146],

weight normalization [145], and layer normalization [98] techniques. Batch normalization

is applied to the input data or to the activation of a prior layer, weight normalization is

applied to the weights of the layer and layer normalization is applied across the features.

The pooling layers are usually inserted in-between successive convolutional layers to further
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reduce the number of parameters in the network. A CNN network can have local or global

pooling layers that may compute a max or an average.

Inspired by the aforementioned components in CNNs, the MaNet is designed to train

a model so as to solve an optimization problem (Fig. 4.1). The existing feature selection

and dimensionality reduction policies in CNNs help MaNet to find complex dependencies

between the parameters. The MaNet starts optimization by generating a set of random

n ×m inputs for the model (i.e., the raw pixel values of the image). So, each individual

solution is represented by a matrix rather than a vector. During training the network,

convolutional layers transform the initial population layer by layer to a final feasible solution.

This large part genotype representation enables the optimizer to keep genetic information

that was necessary in the past as a source of exploration, as well as a playground for

extracting new features that can be advantageous in the exploitation.

The MaNet multiplies the initial population with a two-dimensional array of filters that

are connected to every disjoint region. The output of multiplying the filters with initial pop-

ulation forms a two-dimensional output array called as ”feature map”. They are obtained

by convolution process upon the initial population with a linear filter, without applying a

non-linear function or applying feature normalization methods. Similar to other DL mod-

els, the filters/kernels in MaNet are learned using the back-propagation algorithm for each

specific optimization task. This is the novel aspect of DL techniques that filter weights are

learned during the training of the network and are not hand designed. Accordingly, CNNs

are not limited to image data and could be used to extract a variety types of features.

Thank to this characteristic, MaNet will be forced to extract the features that are the

most important to minimize the loss function for the problem at hand the network is being

trained to solve. In each convolution layer, we have some predefined hyperparameters that

can be used to modify the behavior of the model: the filter size and the number of filters.

The first one simply denotes the dimensions of the filter when applying the convolution

process, while the second one determines the number of different convolution filters.

In MaNet, multiple convolution layers are stacked which allows convolution layers to be

applied to the output of the previous layer, results in a hierarchically set of more decom-

posed features. Finally, a Dense layer (or fully-connected) with linear activation function

will be used to form the final solution vector. As it can be seen from Fig. 4.1, MaNet has a

very simple structure and can benefit from the advantage of having a fast network training

process 1. Indeed, it has only 3,742 trainable parameters compared to state-of-the-art mod-

els [151] which have millions or billions of parameters. This could facilitate the application

of MaNet for optimization tasks where a small amount of data (i.e., population) is available.

1. Netron Visualizer is used to illustrate the model. The tool is available online at:
https://github.com/lutzroeder/netron
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Figure 4.1: An overview of the proposed optimization architecture. The MaNet is composed
of three convolution layers and one Dense layer (or fully connected layer). In each layer,
the number of filters and the filter size are 6 and 3, respectively. The activation function
for all the layers is proportional to their inputs.

As it can be seen, the MaNet is composed of two similar architectures which are sub-

jected to different optimization procedures. The first one uses a batch size of one and the

other uses 64 as its batch size. The batch size is a hyperparameter of gradient descent that

should be tuned for each optimization task. To do so, MaNet integrates a reinforcement
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strategy inspired from SDCS [135]. Technically speaking, SDCS is a simple metaheuristic

algorithm which toggles continually between two snap and drift modes to enhance rein-

forcement and stability. Based on this idea, MaNet introduces a self-adaptive strategy to

tune the batch size hyperparameter. More precisely, it is looking to see if the best cost

function stops improving after some number of epochs, and if so then it restarts the op-

timization process and continuous the search by the architecture which obtained a higher

overall performance so far. Finally, it is worth mentioning that the initial population will

remain unchanged during training the network and the algorithm will evolve a set of filters.

The goal of MaNet then, is to transfer the initial population on one end to evolved solutions

on the other hand. This is one of the main differences between MaNet and evolutionary

algorithms.

4.5 Experiments

4.5.1 Benchmark Sets

We use a set of 9 benchmark functions given in CEC 2017 [9] to evaluate the performance

of the proposed algorithm 2. The considered problems are widely used in the optimization

community and are challenging for any optimization approach. This work uses several

problems that can be classified into unimodal (F1 and F3) and multimodal (F4-10) min-

imization functions with different properties including separable, non-separable, rotated,

ill-condition and shifted 3. The aforementioned problems are adopted on the GPU so as to

be linked with machine learning libraries. We refer the reader to the detailed principle about

the definition of CEC2017 benchmark functions as defined in [9]. To verify the algorithm

scalability, 30-dimensional and 50-dimensional problems are used. All functions should be

minimized and have a global minimum at f(x) = 0. The results are reported according to

their distance from the optimum. We trained MaNet on each problem by using the parallel

power of 9 NVIDIA Tesla K20m GPU cards.

4.5.2 Baselines

It has been shown that various extensions of the differential evolution (DE) [158] al-

gorithm are always among the winners of the CEC competition. Having this is mind, we

used jSO [26] algorithm for the purpose of comparison which is the second ranked algo-

rithm in CEC2017 competitions for the single objective optimization track. The algorithm

is shown to outperform LSHADE [163] (the winner of the CEC2014) and its new extension

for CEC2016 (iL-SHADE [25]).

2. The codes for CEC problems and the jSO algorithm are publicly available at:
http://www.ntu.edu.sg/home/EPNSugan/index files/CEC2017/CEC2017.htm

3. F2 has been excluded by the organizers because it shows unstable behavior especially for higher
dimensions [9]
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4.5.3 Experimental Settings

All the results are taken from the original study. In order to make a fair comparison, all

the experiment conditions are the same. The number of function evaluations is 10, 000×D,

where D is the problem dimension [9]. To tackle the negative effects of the random initial

configurations, each algorithm were run 51 times [9]. The initial population is generated

randomly within the search bounds [−100, 100]. The parameters of the jSO are the same

as reported in the original study [26]. In MaNet, we have 3 convolution layers which are

sequentially connected to each other. In each layer, the number of filters and the filter size

are 6 and 3, respectively. The MaNet is a CNN model and needs a lot of input data to be

well trained and so the population size is fixed to n = 5, 000. Moreover, m is considered to

be 64 for all the problems. The MaNet will be optimized using the Adam algorithm [88].

4.5.4 Results and Discussion

Tables 4.1 and 4.2 present best, worst, mean and standard deviation (Std.) results

of the MaNet and jSO on 9 problems over 51 runs. Table 4.1 reports the results for 30

dimensional problems, while Table 4.2 shows the performance of the competitive algorithms

for 50 dimensional cases. In these tables, a statistical test is also presented to assess the

significance of performance between the results of the jSO and MaNet.

Table 4.1: The obtained results by MaNet and jSO for 30 dimensional problems over 51
runs [9]. The results for jSO are directly taken from the original paper [26].

Best Worst Mean Median Std.

F1
MaNet 3.71e+02 1.33e+03 7.94e+02 8.02e+02 2.03e+02

-
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F3
MaNet 3.69e+04 7.10e+04 5.85e+04 5.85e+04 6.46e+03

-
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F4
MaNet 1.46e-05 3.99e+00 5.88e-01 6.79e-04 1.41e+00

+
jSO 5.86e+01 6.41e+01 5.87e+01 5.86e+01 7.78e-01

F5
MaNet 0.00e+00 1.99e+00 5.85e-01 1.34e-07 6.59e-01

+
jSO 3.98e+00 1.32e+01 8.56e+00 8.02e+00 2.10e+00

F6
MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

=
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F7
MaNet 3.26e+01 3.41e+01 3.33e+01 3.33e+01 3.91e-01

+
jSO 3.61e+01 4.31e+01 3.89e+01 3.91e+01 1.46e+00

F8
MaNet 0.00e+00 4.97e+00 2.29e+00 1.99e+00 1.15e+00

+
jSO 4.97e+00 1.30e+01 9.09e+00 8.96e+00 1.84e+00

F9
MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

=
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F10
MaNet 1.09e+04 1.13e+04 1.11e+04 1.11e+04 1.19e+02

-
jSO 1.04e+03 2.04e+03 1.53e+03 1.49e+03 2.77e+02

The results of the Wilcoxon rank sum test are reported at the 95% confidence level. In

these tables, + shows that MaNet significantly outperforms the jSO with 95% certainty; -
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Table 4.2: The obtained results by MaNet and jSO for 50 dimensional problems over 51
runs [9]. The results for jSO are directly taken from the original paper [26].

Best Worst Mean Median Std.

F1
MaNet 3.67e+02 2.06e+03 1.39e+03 1.46e+03 3.71e+02

-
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F3
MaNet 9.80e+04 1.42e+05 1.23e+05 1.25e+05 8.88e+03

-
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F4
MaNet 3.10e-06 1.53e-03 8.22e-04 9.96e-04 4.46e-04

+
jSO 1.32e-04 1.42e+02 5.62e+01 2.85e+01 4.88e+01

F5
MaNet 1.99e+00 1.09e+01 6.15e+00 5.97e+00 2.20e+00

+
jSO 8.96e+00 2.39e+01 1.64e+01 1.62e+01 3.46e+00

F6
MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

=
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F7
MaNet 5.49e+01 5.65e+01 5.58e+01 5.59e+01 3.62e-01

+
jSO 5.75e+01 7.42e+01 6.65e+01 6.66e+01 3.47e+00

F8
MaNet 1.99e+00 8.95e+00 5.41e+00 5.97e+00 1.99e+00

+
jSO 9.95e+00 2.41e+01 1.70e+01 1.70e+01 3.14e+00

F9
MaNet 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

=
jSO 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

F10
MaNet 1.86e+04 1.88e+04 1.87e+04 1.87e+04 6.25e+01

-
jSO 2.40e+03 3.79e+03 3.14e+03 3.23e+03 3.67e+02

indicates that the jSO is significantly better than MaNet; and = shows there is no statistical

different between the two compared algorithms. The significant results are given in bold.

For further validation, convergence graphs of jSO and MaNet for 30 dimensional functions

F4 and F8 are given in Figure 4.2.

As can be seen from Tables 4.1 and 4.2, jSO gives more accurate solutions for the

unimodal benchmarks F1 and F3 for both 30-dimensional and 50-dimensional cases. More-

over, with the exceptions of F10, MaNet has equal or significantly better performance on all

the multimodal benchmark functions. In fact, the results indicate that MaNet significantly

outperforms the jSO on 4 functions (F4-F8), obtains an equal performance on 2 functions

(F6 and F9), and has worst results on 3 test cases (F1, F3 and F10). Furthermore, we can

see that MaNet is a robust algorithm according to the reported standard deviation results.

In addition, these experimental results have confirmed that MaNet is not very sensitive to

the increment of dimension and is scalable. Considering Figure 4.2, it can be seen also that

MaNet has a more rapid convergence rate than the jSO algorithm for function F4 and F8.

In MaNet, we assume that not selection, but rather the combination of different filters is the

main source of evolution and that is the reason for having unstable convergence behavior

on these functions.

Altogether, these promising results have confirmed that MaNet has a competitive results

in comparison with one of the best designed algorithm for the CEC2017 problems. This is

quite interesting because MaNet doesn’t borrow any search strategy or components from

the previously proposed methods for the CEC problems; including CMAES [114], DE,
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jADE [180], SADE [129], SHADE [162], L-SHADE [163], i-LSHADE [25] and jSO.
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Figure 4.2: Convergence graphs of the jSO and MaNet for 30 dimensional functions F4 and
F8 over 51 runs

As a future work, we are intended to apply the proposed MaNet to all the problems

over all the dimensions. Besides, we have to find a way in order to adjust the learning rate

hyperparameter for each problem. From Fig. 4.2 one can see that a high learning rate in

Adam causes the network to generate large numbers for F8 and the updates are going to

be just as large. After that, we would like to apply the proposed methodology to more

complicated real-world optimization problems.

4.5.5 When Convolutional Neural Networks Does Not Help

The CNN models need to make numerous decisions about how the network is configured,

connected, initialized and optimized. For example, a large value for learning rate will

cause the training to diverge, while too small will allow the noise inherent in training to

overwhelm the gradient estimates. In some way, they are suffering from the same problems

in metaheuristics.

4.5.6 Implementation Notes

We used the Keras Open Source Neural Network library that supports most TensorFlow

features. Going forward, we recommend that users consider switching to Pytorch. Keras

doesn’t handle low-level computation. Instead, it uses another library to do it, called the

”Backend”. So Keras is a high-level API wrapper for the low-level API. Pytorch, on the

other hand, is a lower-level API focused on direct work with array expressions. It has gained

immense interest in the last year, becoming a preferred solution for academic research, and

applications of deep learning requiring optimizing custom expressions. Moreover, Pytorch

has better debugging capabilities as compared to the Keras. We found it very difficult to

implement the CEC2017 benchmarks and to customize the layers in Keras.
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4.6 Practical End Use of Algorithm

The presented idea of directly solving difficult optimization problems using CNN neural

networks can be easily applied to discrete and even multi-objective optimization. Moreover,

we encourage to use the CNN models for automated algorithm design so as to help to develop

and implement better algorithms. This can be very useful in situations where what have

been learned on primary problem instances are exploited to improve generalization on the

other similar problem instances; by virtue of further accelerating convergence rate.

4.7 Chapter Summary

This chapter introduced a new optimization algorithm based on the deep learning models

in order to provide an improved search process. The proposed method verifies convergence

conditions by using a convolutional neural network. The simple structure of the MaNet

along with feature selection and dimension reduction strategies result in an architecture

at a relatively low computational cost. The MaNet optimizer is evaluated using unimodal

and multimodal optimization benchmarks from CEC2017 test suite. The obtained results

are statistically analyzed and compared with state-of-the-art jSO algorithm. Evaluations

confirm that the introduced MaNet optimization model has a competitive performance in

terms of the final solution accuracy and scalability compared to one of the best designed

algorithms for the problem at hand.
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Chapter 5

Application IV: Automated

Algorithm Design

If I have seen further it is by standing

on the shoulders of Giants.

Isaac Newton

Neural architecture search (NAS) has recently drawn considerable attention to auto-

matically build and evaluate low-latency networks for perceptual tasks. Here, we present

a study on the performance of NAS for automated algorithm design. The space of net-

work architectures is represented using a directed acyclic graph (DAG) and the goal is to

find the best architecture so as to optimize the objective function for a new, previously un-

known task. Different from proposing very large networks with GPU computational burden

and long training time, we focus on searching for lightweight implementations to find the

best architecture. The experiments reveal that NAS can achieve competitive results when

compared to hand-designed algorithms; given enough computational budget.

The proposed method has several moving parts including convolution neural networks

(CNN’s) search space, search strategy, and search acceleration. We show how these different

components could be adopted to achieve a better performance within a limited computa-

tional time. Finally, we claim that NAS can be used in other research fields and encourage

further works in this domain. Our contributions can be summarized as follows:

— The NAS is formally defined tailored to global optimization. On top of that, a

search strategy is used to perform NAS over a cell-based search space. We show

that the well-known NAS approaches can be further enhanced by considering the

key properties of the optimization problems.

— A set of experiments are conducted to investigate the performance of the proposed

method. Our contribution achieves competitive performances for CEC 2017 [172]

benchmarks and also protein structure optimization [134] compared to the state-of-

the-art handcrafted algorithms.

— The transfer learning [111] and ensemble learning [48] concepts are used to show how

the optimization process can be accelerated.

5.1 Motivation

Optimization algorithms have witnessed prevailing success in different application ar-

eas [134, 135, 167, 182]. Formally, they help to find a parameter vector x∗ in order to
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minimize an objective function f(x) : RD → R, i.e. f(x∗) ≤ f(x) for all x ∈ RD, where D

denotes the dimensionality of the problem. There is no a priori hypothesis about f and it

should be treated as a black-box entity.

Heuristic algorithms offering guidance based on the problem-domain knowledge for op-

timizing function f . In order to design a new heuristic algorithm, having a team of human

experts with a longstanding experience within the specific domain is necessary. Usually,

this is a very complex process performed with trial and error. As a consequence, the

development of hyper-heuristics which do not take advantages of the problem structure

accelerated [22, 144]. They are high-level methods that operate on the search space of

heuristics rather than of solutions. Over the last decade, a variety of hyper-heuristic ap-

proaches have been proposed to automate the development of optimization methodologies

on their own without having to rely on researchers’ expertise [27].

The majority of popular hyper-heuristics are deployed according to the basic components

of the hand-designed evolutionary algorithms [122]. We often have a population of candidate

solutions that strive for survival and reproduction. However, there are no clear guidelines

on the strengths and weaknesses of the proposed components arise in other research filed

such as machine learning; for developing more enhanced optimization algorithms. In this

study, we claim the mentioned contribution by porting existing NAS methods from image

classification to optimization domain.

NAS is currently one of the fastest growing topics in machine learning aims to automate

the neural network architecture design for various tasks such as semantic segmentation [121],

object detection [169], and image classification [112]. This optimization process has focused

on discovering better modeling accuracy, building architectures with lower computational

complexity, or both of them. Search space, search strategy (or policy), and search speed-up

methods are three main components in NAS approaches [53]. Already by now, outstanding

results have been achieved using NAS that are superior to the expert-designed architec-

tures [188].

Motivated by the recent successes of NAS, we propose to extend NAS studies to the

global optimization domain. That is, we build and train neural networks to efficiently

and adaptively solve optimization problems. The critical contribution of this study is to

tackle two major challenges that are known to the direct application of NAS for stochastic

optimization. First and foremost, the widely-used search speed-up methods in NAS such as

parameter sharing [113] might not be suitable for the optimization problems. Although the

parameter sharing avoids training each architecture from scratch, it would lead to unstable

and suboptimal solutions as discussed in [102]. In some cases, this could end up with

solutions with worse performance compared to the conventional methods in the literature;

considering the complex and highly non-linear real-world optimization problems. Second,

the existing NAS methods introduce a domain-specific bias with search spaces tailored

to particular applications [53, 183]. For example in computer vision, NAS is defined to

search for the convolutional and fully connected layers in CNNs; without fine-tuning the

hyperparameters in the learning algorithm. However, this may prevent finding superior

architectures that go beyond the classification tasks. Integrating prior knowledge about

typical properties of optimization problems can characterize the complexity of the search
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space more properly and simplify the search. Even so, the search space is huge and may

contain more than 1015 different architectures [188].

Particularly, we are interested to adopt the proposed NAS methods from the computer

vision domain. These deep neural models use a hierarchy of features in conjunction with

several layers to learn complex non-linear mappings between the input and output layers.

As opposite to traditional methods which use handmade features, the important features

are discovered automatically and are represented hierarchically. This is known to be the

strong point of CNNs against traditional approaches. Accordingly, these models have been

described as universal learning approaches that are not task specific and can be used to

tackle different problems arise in different research domains [4, 131]. They are regularized

version of fully-connected neural networks inspired from biological visual systems [94]. The

”fully-connectedness” of CNNs enables them to tackle the over-fitting problem and it is

reasonable to postulate that they may outperform classical neural networks for difficult

optimization tasks [131].

5.2 Problem Definition

We aim to find a topology that minimizes a considered objective function f(x) over

a neural search space D with the available computational budget T . Formally, this is

equivalent to search for a superior neural architecture A∗ ∈ D :

A∗ = arg min
A∈D

cost(A, f, w, T ) + ξ (5.1)

where w is the learned weights of A and ξ is a penalty function. The measure of violation

in ξ is nonzero when the number of edges ϑ in the DAG graph is > 9 or when there is no

path from the input to the output layer; and is zero in the other cases. The mathematical

function associated with ξ is:

ξ =

{
(ϑ− 9)× η1 if ϑ > 9

κ× η2 otherwise
(5.2)

In Eq. 5.2, κ denotes the number of single nodes and η2, η1 are the penalty coefficients.

Before applying any search regime, the representative DAG graph for arbitrary A network

should be encoded in its genotype form. We adopt a very general encoding: the first 21

binary genes ∈ {0, 1} are used to represent the edges in the graph, while other 5 genes

∈ {0, 1, 2} are used to represent the type of the operation. Also, the last gene denotes the

batch size hyperparameter.

5.3 Related Works

Several works introduced deep neural networks to find optimum solution for the opti-

mization tasks. DNGO [153] uses deep neural networks for hyperparameter optimization of

large scale problems with expensive evaluations. The key point is to take the advantages of

large-scale parallelism to provide an approximate model of the real objective function. The
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scalability of DNGO is successfully verified against Gaussian process. Moreover, OptNet [5]

proposed to learn optimization tasks by incorporating the deep networks, bi-level optimiza-

tion, and sensitivity analysis. In another study, researchers put forward MaNet optimization

algorithm based on the CNN models [131]. MaNet uses feature selection to skip irrelevant

or partially relevant information and uses those which contribute most to the overall perfor-

mance. The experiments indicate that MaNet is able to yield competitive results compared

to one of the best hand-designed algorithms for the CEC 2017 problems [172], in terms of

the solution accuracy and scalability.

Overall, all these studies make it likely that an optimization algorithm based on neural

networks can find solutions that substantially outperform the state-of-the-art optimization

methods. We thus found it important to go beyond hand-designed algorithms for optimiza-

tion tasks by applying NAS to this less explored domain. Among different models, NAS

equipped with CNN models is used in this research. A CNN is a deep learning model that

interleaves convolutional layers to filter redundant or even irrelevant input data to increase

the performance of the network [64]. This consideration also reduces the dimensionality of

the input data and speeds up the learning process in the CNNs. Besides, it allows CNNs

to be deeper networks with fewer parameters.

5.4 Methodology

Our immediate aim is to examine properties of the NAS on optimization problems. Such

an implementation involves search space definition, search strategy, and search speed-up

in parallel on GPUs; as illustrated in Figure 5.1. We combine the efficiency of multi-GPU

systems with NAS to balance computational efficiency and the solution quality. Due to

its distributed nature, we are able to deploy large-scale number of deep networks while

learning different problems. Empirically, we show that the introduced method obtains

better results with reductions in search complexity. The proposed methodology is related

to several prior works, mainly including DARTS [113], NAS-Bench-101 [176], ASHA [109],

randomNAS [105] and [175]. The performance of the introduced method confirms concerns

raised in this study that state-of-the-art results can be obtained by using the NAS. In the

following, it is assumed that the reader is familiar with the basic concepts of optimization

algorithms, CNNs, and artificial neural networks.

5.4.1 Preliminaries

The state-of-the-art NAS methods can be parametrized by: (i) search space; (ii) search

strategy; and (iii) search speed-up methods [53]. For simplicity, we review some ubiquitous

approaches regarding each aspect. Note that we are interested in CNN models, and so

approaches about recurrent neural networks are out of the scope of this work.

Search space aims to define the feasible neural architectures based on the applications

and computation requirements. In linear-structured NAS [28], search space is defined as a

sequence of m layers, so as the input of the Li layer is fed by previous layer Li−1 (Figure 5.2

top). Accordingly, the number of layers, type and hyperparameters associated with each
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layer will form the possible architectures search space. Multi-branch methods, on the other

side, allow the researchers to build the complex architectures with significantly more degrees

of freedom. These methods are motivated by the Residual networks [64] and DenseNets

models [68] which introduced skip connections (Figure 5.2 bottom).

Computational Budget T Search space D Objective f(x)

Reinforcement Learning Random Search MAC

Architecture A ∈ D The performance of A

Figure 5.1: Illustration of the abstract layers for the NAS and the optimization phases.
First, the computational budget, search space, and the objective function f should be
specified. Thereafter, we will generate and train neural architectures in parallel on several
GPUs so as to solve the problem at hand. In this study, reinforcement learning, random
search, and MAC search strategies are applied.

In the same direction, cell -based approaches aim to formulate the search space by stack-

ing several copies of the discovered cells, which significantly reduced the size of the search

space since cells have less layers than final architectures. In micro search, the whole archi-

tecture is built by stacking the cells in a predefined manner [178], while in macro search

they can be combined arbitrarily [29].

Search strategy is then used to explore the above-mentioned space of neural archi-

tectures. Typical NAS approaches apply reinforcement learning [187], evolutionary algo-

rithms [52], Bayesian optimization [80] and random search [137] to reduce the computational

costs, improve the performance, or obtain a trade-off.

Search speed-up strategies lead to accelerated NAS methods for training the neural

architectures, which sometimes need thousands of GPU days for NAS [187]. The lower
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fidelity [137], learning curve [10], weight inheritance [52], and weight sharing [174] are

among the most recent approaches.

0

L_{i-1} 1

2

3

L_{i-2}

L_{i}

L_{i}L_{i-10} L_{i-9} L_{i-1}.....

(a)

(b)

Figure 5.2: Illustration of the linear-structured (a) and multi-branch (b) architecture search
spaces. In the first case, NAS only allows data to flow in one direction: from a lower-
numbered layer Li to a higher numbered layer Li+1. The multi-branch methods, however,
allow to use multiple branches and skip connections. Note colors are used to represent
different kind of operations at each layer.

5.4.2 Search Space

The input layer, intermediate layers (e.g., convolution layer, a pooling layer, a Dense

layer, etc.), and output layer are the basic building blocks of the CNN models. The inputs

to intermediate layers are fed by a previous layer, thus forming a network. It is necessary

to define the topology of this network before deploying a CNN model in the context of

the optimization problem we are trying to solve. Some network structures might lead to

the final networks that are highly memory demanding and time-consuming [61]. The key

point so is to define a search space that makes optimal use of computational resources and

reduces the probability of generating sub-optimal network architectures.

Following [113], we limit the NAS search space by factorizing each architecture into

multi-branch cells. This representation is characterized by the number of layers m, choice

of operation O = [o1, o2, ..., on] for each layer L, and θLo which denotes the associated

hyperparameters for the operation o at the L-th layer. At a higher level, the entire network

is defined by m cells connected sequentially, which can be seen in Figure 5.3. A cell is

composed of one input layer, several intermediate nodes, and one output layer. Specifically,

the input layer is connected to the output of the previous cell layer. Moreover, the output

layer aggregates the representations from all the intermediate nodes. The layouts of the
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intermediate nodes can be defined using a directed acyclic graph (DAG), where a node

contains the results from a previous operation and an edge eij shows some operation o that

transforms the feature map from node Ii to Ij . Thus we have intermediate nodes:

Ij =
∑
i<j

oi,j(Ii) (5.3)

where oi,j denotes the selected operation from lower indexed node i to higher node j. At

each layer L, one of three possible operations convolution, max pooling and average pooling

from CNN models can be chosen. In the following, each of these layers are characterized so

as to fully parameterize the neural architecture space.

A typical CNN network is composed of a series of convolutional and pooling layers.

Generally speaking, convolutional layers provide a way of capturing the dependencies in

their input by applying different filters. For a given filter and the input data, the convolution

operation takes entries with size p× p of the input and multiplies by the filter. The sum of

the entries is then the first entry of the so-called feature map. The weights of the filters are

adopted during the training process, while the number of filters and their size should be

configured. Given the filter weights, we create a sliding window p× p that goes by step size

s through the vertical and horizontal dimensions of the input data. The hyperparameters

of convolutional layers are: a) the number of filters n ≥ 1, b) size of the slide window

p × p ≥ 1, and c) the stride step size s ≥ 1. For each filter, a fixed weight will be used

across the entire input. A one layered CNN with n = 10 filters of size 5× 5 and 10 biases

has 5× 5× 10 + 10 = 260 parameters, while a fully connected network for a K = (P ×M)

image with 250 neurons has (250×K+1) parameters. This is the main advantage of CNNs

which makes them more efficient in terms of memory and complexity; compared to fully

connected neural networks.

...
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Figure 5.3: An overview of the cell -based search schema: (a) The adjacency matrix used
to represent the DAG. Here, 1 and 7 indexes belong to the input and output layers of
the defined cell, followed by the intermediate nodes 2-6, (b) The obtained cell structure,
where operations at each vertex are denoted by a different color, and (c) The derived final
architecture with m cells.

Similar to convolutional layers, pooling provides another way to reduce the dimension of
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a layer. Although they can be replaced by the convolutional layers, they provide a simpler

way by summarizing a p × p area of the input with certain fixed weights. For an average

pooling layer with n feature maps, we should have a convolutional layer with n filters of

size p× p and stride s. The ith filter has the values as in Eq. 5.4 for the dimension i, and

zero for the other dimensions i ∈ [1, n].
1
p2 · · · 1

p2

...
. . .

...
1
p2 · · · 1

p2

 (5.4)

The same thing can be considered in max pooling, where the maximum value within the

window is taken with filter weights 1. It is not necessary to pool over the whole input and

we can pool over a window with stride step size s. So, we have only two hyperparameters

p and s for the pooling layer. To sum up, the functionality of a simple convolution layer

and max pooling layer is depicted in Figure 5.4.

Besides the mentioned operations, the CNN learning algorithm itself contains a set of

hyperparameters. The batch size is a hyperparameter of the learning algorithm that controls

the number of data that will be propagated through the network. An appropriate batch size

can increase the accuracy of the learning algorithm when training a neural architecture. We

found that fine-tuning this hyperparameter can have a significant impact on the performance

of the NAS (we will show that this consideration is preferred over traditional NAS methods

that use a fixed value). So, two typical choices of batch size ∈ {1, 32} are used in this study.

We now quantify the size of our search space to determine the magnitude of the pro-

posed NAS method. A comparison of the search space complexity for state-of-the-art NAS

methods is given in Table 5.1. The space of the cell networks contains all DAG graphs on

v nodes, where each node denotes one operation with p = 3 and s = 1. In this work, the

number of operations is limited to: a) one convolutional layer, b) one max pooling layer,

and c) one average pooling layer. Moreover, the maximum number of nodes in each cell is

supposed to be ≤ 7. Also, the maximum number of edges is limited to 9. Considering 21

possible edges in DAG adjacency matrix, 3 operations for each intermediate node, and 2

different values for batch size, 221 × 35 × 2 ≈ 1.0× 109 total models exist in this search

space. The created models do not apply ReLU activation function or batch normalization

between depthwise and pointwise layers. To match shapes in convolutional layers, strided

1 × 1 convolution projections are applied as necessary. Furthermore, the output of the

intermediate blocks are concatenated.

5.4.3 Search Strategy

Up to our best knowledge, this chapter describes the first attempt to extend NAS for

optimization domain. Accordingly, 1) random search, 2) reinforcement learning, and 3)

Bayesian optimization strategies are used to leverage the observations of previous studies,

respectively. As shown in Algorithm 2, they all operate in a similar fashion: in each iteration

i a step vector ∆A is computed by means of an update formula $. Thereafter, this formula

is updated using Φ to guide the search process more effectively. For the reinforcement
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Figure 5.4: Application of a single max pooling layer (a) and a convolutional layer (b) with
1 filter of size 2×2 with stride s = 1 to input data of size 5×5. In (a), the maximum value
after element-wise multiplication is taken, while in (b) the summation is computed. This
figure also shows how the max pooling layer can be replaced by a convolutional one.

learning and Bayesian methods, Φ utilizes some history of the generated architectures and

their associated performance evaluated at the current and past iterations. For example,

the update formula is based on recurrent neural networks in the second method, while

reinforcement learning is used to update the aforementioned network according to the past

information.

1-Random search is the most simple yet effective [105] baseline in this study. We

used our implementation according to which the generated candidates are drawn from a

uniform probability distribution and are independent of the samples that come before it.

This property makes it well suited to highly parallel systems. Moreover, random methods

are flexible in that they can be applied to both the continuous and discrete search space;

in contrast to Bayesian approaches based on Gaussian processes [90] and gradient-based

approaches [113].

2-Reinforcement learning is another approach that is proposed to search for good

architectures. Following [187], a recurrent network trained by reinforcement learning is

used to generate better architectures; as times goes on.

The recurrent networks are able to use information learned from prior steps while gen-

erating new architectures. Let’s suppose we would like to search for a cell topology, the

agents action is to generate new architecture, while its reward is based on the performance
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Table 5.1: Comparisons of the search space complexity between the introduced and state-
of-the-art NAS methods.

Search Method Number of Layers Search complexity

EDNAS [97] 6 1.04× 109

PNAS [112] 5 1012

NASNet [188] 5 1028

RENAS [33] 5 3.1× 1013

EPNAS [127] 5 5× 1014

STACNAS [102] 4 1018

current study 5 1.0× 109

Algorithm 2: General structure of the NAS methods

Input: NumIterations, SearchSpace, objective f
Output: BestCost
A1 ← RandomSolution(SearchSpace)
for i ∈ {2, ..NumIterations} do

Costi−1 ← BestSolution(Ai−1, f)

∆A← $({Aj , f}i−1
j=1) $(.) =

1-random distribution
2-recurrent network
3-feature selection

Ai ← Ai−1 + ∆A

$ ← Φ($,Ai, f) Φ(.) =

1-not applicable
2-reinforcement learning
3-surrogate model

end
BestCost ← min(Cost)

of the trained architecture on our optimization problem. In Figure 5.5, it is shown how a

recurrent network can be used to sample new architectures as a sequence of tokens. The

list of the predicted actions a1:T by the controller will be used to generate a new architec-

ture. This is the key feature of recurrent nets which allows us to operate over sequences of

vectors in the input, the output, or both. 1. Hence, the controller should only maximize its

expected reward J(θc) which directly depends on the parameters of the recurrent net θ; as

presented in [171]. We can use reinforcement learning as follows:

5θc J(θc) =
1

M

M∑
k=1

T∑
t=1

5θc logP (at|at−1:1; θc)Rk (5.5)

In Eq. 5.5, M denotes the number of sampled architectures in one batch, T is the

dimension of the problem, and Rk is the performance of the k-th neural network architecture

after being trained.

3-Bayesian methods are widely used for hyperparameter optimization, but their ap-

plication to NAS has been limited due to the fact that they mainly employ Gaussian process

and they are not appropriate for high dimensional NAS [53]. In this work, we adopt a single-

1. For more details please see: http://karpathy.github.io/2015/05/21/rnn-effectiveness

http://karpathy.github.io/2015/05/21/rnn-effectiveness
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objective version of MAC [132] as the Bayesian search strategy for NAS. Accordingly, we

generate a set of random architectures in the early iterations in parallel, while we adopt

a feature selection strategy to generate more promising candidates in the later stages of

development. This is a key property in MAC that helps us to make a balance between the

solution quality and the computational time. 2

genotype

layer nlayer n‐1 layer n+1

1 0 0 ... 2 11

...

...

Figure 5.5: Application of a recurrent neural network for sampling a new cell topology [187].
The generated networks in the next time steps are influenced by what the network has
learned from the past.

After half of the iterations, a response surface model is created to provide a fast ap-

proximation of the expensive evaluations for the later stages of evolution. Given a set of

configurations A1, ...,AN ∈ RD with known performance y, the radial basis function (RBF)

interpolant for Â is then computed as below [140]:

ỹ(Â) =

N∑
i=1

λiφ(
∥∥∥Â− Ai

∥∥∥) + p(Â), Â ∈ D (5.6)

Here, Ai is the associated solution representation for i-th architecture model. Also,
∥∥∥.∥∥∥ is

the Euclidean norm, λi ∈ R for i = 1, ..., N , p ∈
∏d
m denotes the linear space of polynomials

in d variables of degree which is less than or equal to m, and φ is a RBF kernel. Following

[140], MAC selected the surface splines φ(r) = rk form with k = 3 as the RBF. Having

this in mind, we can compute a matrix = ∈ RN×N by =i,j = φ(
∥∥∥Ai − Aj

∥∥∥); i, j = 1, ..., N .

Assume that m̂ is the dimension of the linear space
∏d
m such thatm ≥= bk/2c. Accordingly,

we have another matrix P ∈ Rn×m̂ such that: Pij = p(i)(A(i)), i = 1, ..., N ; j = 1, ..., m̂. The

approximated model can then be obtained by solving the system as presented in Eq. (5.7),

where c = (c1, ..., cm̂)
T ∈ Rm̂. (

= P

P> 0

)(
γ

c

)
=

(
y

0m̂

)
(5.7)

After half of the iterations, the randomly generated perturbations ρ are also ranked in

descending order according to their contribution to the validation accuracy: the top 50%

2. The application of MAC to very recent benchmarks against Random search, SMAC and F-RACE
state-of-the-art competitors, at most contributes to top performances. These results encourage us to utilize
MAC in this study.
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with promising label and the others with non-promising label. Given this training set, MAC

applies a feature selection strategy to obtain weight for generating the new configurations;

as elaborated in [132].

5.4.4 Search Speed-up

The above mentioned architecture Ai should be trained on each function f which can

take a very long time. However, we would like to solve our optimization task with roughly

the same wall-clock time needed for an evolutionary algorithm. To tackle this challenge, we

help ground the used methods by introducing two considerations: 1) early-stopping and 2)

identifying isomorphic computational graphs. In the first case, we stop training the model

once its performance stops improving on the fitness function f . Accordingly, we define a

threshold ψ to whether consider a function value at some epoch as improvement or not.

If the difference of improvement compared to the previous training epoch is below ψ, it is

quantified as no improvement. This very simple paradigm can prevent the architecture to

spend the computational time on sampling in non-optimal regions. Moreover, it only needs

a few modifications and is easy to implement. In particular, the idea is to 1) assign a small

computational budget r to the sampled architecture, 2) train the architecture, 3) increase

the budget for architecture by a factor of η, and repeat until the maximum budget of ι for

the architecture is reached or its performance stops improving.

The second consideration is inspired by [175, 176] according to which we check isomor-

phic computational cells before evaluating the generated model. Of course, there is no

guarantee to perfectly find all pairs of non-isomorphic cells, but this will work in many

cases. The key point is to reduce the size of the search space by detecting the cells which

have different genotype but encode the same computation. This strategy could significantly

reduce the size of our defined search space. Moreover, it can help the RL and MAC from

being misled to a false optimum by using the information from the model.

5.4.5 Putting It All Together

Already by now, we described how NAS can be applied to generate different architectures

within the defined search space. In this subsection, we would like to put all of the details

together to show how such encoded architecture A can be employed to solve an optimization

problem. Since we assume that not all readers are fully familiar with machine learning, we

used the optimization terminologies as a common language to describe all the aspects.

The first principle is that in CNNs you present your input image and train your model

to make predictions on unseen data. This implies that our population is represented by a

set of NumSol random n×n inputs for the model (i.e., the raw pixel values of the image).

So, as opposite to evolutionary algorithms, each individual solution x ∈ RD is represented

by a matrix with any arbitrary size n × n ≥ D rather than a vector. During the training

of the network, the defined convolutional operations transform this n× n matrix, layer by

layer, to a final feasible solution x ∈ RD. This large part genotype representation enables

the optimizer to keep genetic information that was necessary in the past as a source of

exploration, as well as a playground for extracting new features that can be advantageous
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in the exploitation. The second important point to note is that CNNs only modify their

weights and the input data are kept fixed, while evolutionary algorithms modify their

initial population. They adopt gradient descent to update these weights based on the

backpropagation of error algorithm. Here, the distance from optimal f(x∗) − f(x) is used

to calculate the model error.

The training process of a neural network using Adam optimizer [89] for an objective

function f(x) is summarized in Algorithm 3. These steps are simplified and we just tried

to provide intuition into the training process. In Algorithm 3, ∆wEt(wt−1) denotes the

partial derivatives of Et with respect to w at time step t, α is the learning rate, and β1,

β2 hyper-parameters are the exponential decay rates of the mt and vt moving averages,

respectively [89].

Algorithm 3: Optimizing objective f using Adam

Input: NumSol, n, f , α, β1, β2, A
Output: Best
m0 ← 0, v0 ← 0, t← 0
wt ← RandomWeights(A)
Best← inf
repeat

x← A(wt, NumSol, n)
Best← min(Best, f(xi)); i = 1, ...,NumSol
t← t+ 1
Et(wt−1) = 1

NumSol

∑NumSol
i=1 f(xi)− f(x∗)

gt ← ∆wEt(wt−1)
mt ← β1 ×mt−1 + (1− β1)× gt
vt ← β2 × vt−1 + (1− β2)× g2

t

m̂t ← mt

(1−βt
1)

v̂t ← vt
(1−βt

2)

wt ← wt−1 − α×m̂t

(
√
v̂t+ε)

until stopping criteria are met ;

Let’s see how forward propagation step can be used to generate a 9-dimensional solution

vector x. Suppose that we have a model with input matrix n × n = 5 × 5, NumSol = 1,

one convolution layer, and one max pooling layer. If we use a k × k = 2 × 2 filter with

stride size s = 1 and padding size p = 0, the output of the first layer will be of size

o(A, conv) = n−k+2p
s + 1 = 5−2+2×0

1 + 1 = 4. Thereafter, we apply the max pooling

with the same hyperparameters and we have o(A,max) = o(A,conv)−k
s + 1 = 4−2

1 + 1 = 3.

We can see how the neural network A is used to reduce the dimensionality of the input;

A : R5×5 → R3×3. The output of the max pooling layer which is x ∈ R9 vector then forms

our genotype for computing the error value.

5.5 Experiments

In this section, we conduct a pipeline of experiments to answer the following questions:

– How effective is the optimization with neural networks?
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– What are the influences of the different NAS search strategies?

– Is the proposed methodology is scalable?

– How much efficiency is gained from using a trained network to solve another similar

problem?

– How much efficiency is gained from using an ensemble network to solve another

similar problem?

– What are the influences of transferring the learned knowledge for solving several

problems; to a new similar task.

To provide a fair comparison, same settings, computational resources and budgets are

adopted for all the results. The experiments are performed by using the parallel power of

graphics cards 3.

5.5.1 Benchmark Sets

The elaborated NAS methodology is applied to learn architecture for two different op-

timization problems. We conduct experiments based on CEC 2017 benchmarks to assess

the performance of the RS, RL and MAC strategies. In the same section, the results are

compared against the progressive neural architecture search (PNAS) [112]. We used a set

of 9 particularly challenging unimodal (F1 and F3) and multimodal (F4−F10) functions 4.

These problems are first implemented on GPU and are then linked with Tensorflow machine

learning library 5. All CEC test functions should be minimized within the search ranges

[−100, 100]D.

Next, the introduced method is compared with state-of-the-art hand-designed algo-

rithms for real-world PSP sequences from protein data bank 6; given in Table 5.2. The AB

off-lattice model is used to define the problem in continuous search space according to which

we can predict the secondary structure of a protein using its amino acids sequence. This

secondary conformation is characterized by the bond angles [θ2, θ3, θ4, · · · , θn−1], where n

is the number of bonds and θi ∈ (−180, 180]. The optimization task then is to minimize

the free energy of a protein sequence as:

n−2∑
i=1

1− cosθi
4

+

n−2∑
i=1

n∑
j=i+2

[
r−12
ij − C(ζi, ζj)× r−6

ij

]
(5.8)

where rij denotes the distance between i-th and j-th monomer; as given in [157].

5.5.2 Baselines

First, the performance of NAS for automated algorithm design on numerical benchmarks

CEC 2017 are evaluated. The experimental results for 50 and 100 dimensional problems are

3. Operating system: GNU Linux, CPU: Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, Tesla K40c ,
Main memory: 16 GB, GPU memory, 12 GB, Programming language: Python

4. Function F2 has been excluded by the organizers because it shows unstable behavior especially for
higher dimensions [172].

5. https://www.tensorflow.org

6. https://www.rcsb.org

https://www.tensorflow.org
https://www.rcsb.org


5.5. Experiments 73

Table 5.2: The details of protein sequences used in experiments

No. Length PDB ID Sequence

1 13 1BXP ABBBBBBABBBAB
2 13 1CB3 BABBBAABBAAAB
3 16 1BXL ABAABBAAAAABBABB
4 17 1EDP ABABBAABBBAABBABA
5 18 2ZNF ABABBAABBABAABBABA
6 21 1EDN ABABBAABBBAABBABABAAB
7 21 1DSQ BAAAABBAABBABABBBABBB
8 24 1SP7 AAAAAAAABAAABAABBAAAABBB
9 25 2H3S AABBAABBBBBABBBABAABBBBBB
10 25 1FYG ABAAABAABBAABBAABABABBABA
11 25 1T2Y ABAAABAABBABAABAABABBAABB
12 26 2KPA ABABABBBAAAABBBBABABBBBBBA
13 29 1ARE BBBAABAABBABABBBAABBBBBBBBBBB
14 29 1K48 BAAAAAABBAAAABABBAAABABBAAABB
15 29 1N1U AABBAAAABABBAAABABBAAABBBAAAA
16 29 1PT4 AABBABAABABBAAABABBAAABBBAAAA

reported. The results are evaluated against the state-of-the-art jSO algorithm. The exten-

sions of the differential evolution are always among the winners of the CEC competition.

The algorithm is shown to outperform LSHADE [163] (the winner of the CEC 2014) and

its new extension for CEC 2016 (iL-SHADE [25]) which motivated us to consider jSO [23]

algorithm for the purpose of comparison.

Next, we shift our focus to investigate the performance of NAS for PSP. All the exper-

iments are repeated for 30 independent runs using the AB off-lattice model. The human-

designed IFABC [101], LSHADE [163] and SGDE [134] algorithms for protein structure

optimization are considered. The best, worst, mean and standard deviation of the results

are reported. To provide a fair comparison, the parameters of the competitive methods are

set according to the original works.

5.5.3 Experimental Settings

All the experiments are performed using T = 100, 000 ×D fitness evaluations. As it

is explained before, the generated neural architectures should be trained so as to solve the

problem at hand. In NAS, gradient-based Adam optimizer is used to update the networks’

weights with a learning rate of 0.001, η = 0.01. The other hyperparameters are set according

to [89]. For PNAS, we followed the training procedure used in [112]. However, all the

normalization layers are removed and the activation functions are set to None; which is the

same consideration that we applied to our methodology. The parameter details of PNAS

are presented in Table 5.3, while the operation space is given as follows [112]: a) 3 × 3,

5×5, and 7×7 depthwise-separable convolutions, b) 1×7 followed by 7×1 convolution, c)

identity, d) 3×3 average pooling, e) 3×3 max pooling, and finally 3×3 dilated convolution.

Regarding the search methods, the maximum number of epochs to train the model is

set to 200 epochs. We used the original settings for both the RL and MAC methods.

In RL, a two-layer RNN controller with 35 hidden units is presented. The Adam with a
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learning rate of 0.1, weight decay of 1.0e − 04, and momentum of 0.9 is adopted [187].

The reward used for updating the controller is the mean error value that is propagated

in a single batch. In MAC, the number of generated trial samples at pre-evaluation step

is 10, 000. Accordingly, MAC builds and trains a surrogate to find the most promising

architecture using the surrogate modeling to replace in part the original computationally

expensive solver; which is training the neural network for each candidate.

Table 5.3: The parameter configuration of PNAS

Description Configuration

Maximum number of epochs to train the model 200
Dimension of the embeddings for each state 20
Number of epochs to train the controller 30
Number of children networks to train 8
Learning rate for the child models 0.001
Number of cells in RNN controller 100
Batch size of the child models 32
Number of blocks in each cell 3
Activation function None

5.5.4 Results and Discussion

This section reports the empirical evaluation of the NAS search methodology on 9

standard benchmark functions from the global optimization literature. In this section, we

aim to assess the approach’s exploration performance and so the comparisons are based

on the best obtained results over 15 runs. The upper and lower bounds for all the test

functions are the same and the input data to the neural networks are 500 randomly sampled

n × n = 32 × 32 matrix. We refer the reader to the original material for a description of

the test functions and their properties [172].

Table 5.4: The performance of different search methods for NAS on CEC 2017 30 dimen-
sional test cases. A pair-wise comparison between the MAC search strategy and the other
competitive methods is also presented using Wilcoxon signed-rank test with α = 0.05.

No MAC RS RL PNAS

F1 1.13118e− 02 1.40977e− 02 1.94292e− 03 1.47442e+ 05
F3 1.27183e− 03 1.78565e+ 04 1.02218e− 01 5.95693e+ 04
F4 2.62499e− 06 1.06736e− 05 7.37121e− 06 3.03500e+ 00
F5 3.98197e+ 00 3.97984e+ 00 9.94979e− 01 1.68726e+ 02
F6 2.05215e− 01 1.26378e− 01 1.07848e+ 00 5.29290e+ 01
F7 3.40319e+ 01 3.42406e+ 01 3.41101e+ 01 2.13789e+ 02
F8 4.97486e+ 00 9.98603e− 01 6.97262e+ 00 1.46752e+ 02
F9 1.70125e− 11 2.80843e− 11 4.41499e+ 00 6.62968e+ 02
F10 1.39714e+ 03 2.05124e+ 03 1.97163e+ 03 3.27547e+ 03

+\ = \− 5 \ 2 \ 2 5 \ 2 \ 2 9 \ 0 \ 0

In Table 5.4, the results for 30 dimensions are shown. We can see that the MAC search

strategy preforms well for most of the problems, suggesting that a substantial speed up can
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be provided by the value of the additional information available from its surrogate model.

Meanwhile, we can see that RS performs surprisingly well on F8 ,whereas RL outperformed

the other algorithms on F5. Compared to PNAS, all the extensions of the introduced

methodology show competitive results with nearly an order of magnitude reduction in the

objective function value. We argue that the incorporated batch size hyperparameter is the

main reason for this performance improvement. We further analyze this performance by

conducting a Wilcoxon signed-rank test between the MAC and the other search methods.

In Table 5.4, symbol ’+’ denotes that the null hypothesis is rejected and MAC obtained

a superior performance, symbol ’−’ shows an inferior performance, and ’=’ suggests no

statistical difference between the pair-wised algorithms.

In Figure 5.6, convergence rate of the MAC, RS and RL search methods are shown,

where the horizontal axis indicates the average objective value found by the competitive

methods as a function of evaluations. We can see that MAC surpasses the performance

of the RS beyond the first stages of evolution for both F4 and F10 functions. Regarding

the final results, however, RS results in faster learning and eventually converges to a better

NAS settings for F4. Moreover, the advantage of RL can be seen on F10, although it

does not perform as well on the other test functions. This undesirable performance could

be alleviated if the hyperparameters of RL is chosen to be configured properly for each

problem; in which case the advantage of MAC and RS parameter-free methods can be

better manifested. Having this in mind, all the following experiments will be done using

the MAC search strategy.
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Figure 5.6: Illustration of the convergence results obtained for minimizing F4 (left) and
F10 (right) 30 dimensional functions. We show the average objective value found by the
competitive methods as a function of evaluations.

In Table 5.5, the experimental results for 50 and 100 dimensional problems are re-

ported. The results are evaluated against the state-of-the-art jSO algorithm 7. The exten-

sions of the differential evolution are always among the winners of the CEC competition.

The algorithm is shown to outperform LSHADE [163] (the winner of the CEC 2014) and its

new extension for CEC 2016 (iL-SHADE [25]) which motivated us to consider jSO [23] algo-

7. The code for jSO is publicly available at: https://github.com/P-N-Suganthan/CEC2017-
BoundContrained.git
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rithm for the purpose of comparison. In order to make a fair comparison, all the experiment

conditions are the same as mentioned before. The obtained performance for the unimodal

function F1 indicates that jSO gives a more accurate range for 50 and 100 dimensional cases,

although NAS has a more reasonable performance on 100 dimension. Conversely, it can be

clearly observed that NAS has provided better results for F4 test problems. Furthermore,

it can be seen that jSO converges closer to global optimum for 50 and 100 dimensional

function F6. Concerning the other functions, the introduced NAS methodology achieved

the lowest minimum values. The results also indicate that the NAS method can be also less

sensitive to the increases in dimension as well as jSO evolutionary algorithm.

Table 5.5: The performance of NAS and jSO on CEC 2017 for 50 and 100 set cases using
Wilcoxon signed-rank with α = 0.05.

No NAS (50) jSO (50) NAS (100) jSO (100)

F1 1.27460e+ 01 0.00000e+ 00 3.63306e− 03 0.00000e+ 00
F3 1.66479e+ 04 0.00000e+ 00 1.79154e+ 04 0.00000e+ 00
F4 0.00000e+ 00 2.85127e+ 01 5.72086e− 02 1.97357e+ 02
F5 4.63491e+ 00 1.19395e+ 01 1.76348e+ 01 2.48740e+ 01
F6 3.39670e− 02 0.00000e+ 00 4.73965e− 02 0.00000e+ 00
F7 4.69719e+ 00 6.10567e+ 01 1.04077e+ 01 1.28151e+ 02
F8 5.86165e+ 00 1.19395e+ 01 9.17544e+ 00 2.68639e+ 01
F9 0.00000e+ 00 0.00000e+ 00 0.00000e+ 00 0.00000e+ 00
F10 6.19778e+ 02 2.32882e+ 03 1.34090e+ 03 7.23914e+ 03

+\ = \− 5 \ 3 \ 1 5 \ 3 \ 1

Altogether, these promising results: (1) provide evidence for applying the neural net-

works on high dimensional optimization problems; and (2) show that the performance of

modern machine learning components for designing new optimization algorithms can be

highly significant. For example, the obtained results on F7, F9, and F10 functions are

reported for the first time in this study. This is quite interesting because the NAS doesn’t

borrow any search components from the previously proposed methods for the CEC prob-

lems.

In Figure 5.7, the radar chart of the obtained solutions using NAS for 30 dimensional

data in the form of a plot is presented. We can see that the best found solutions for the CEC

problems are rather different or disparate from each other in the search space. However, it

can be seen that the generated neural networks are able to learn the correlation between

the decision variables. Accordingly, we can say that the introduced NAS methodology is

not a simple biased search method that generates solutions only around a specific area in

the search space.

In Tables 5.6 and 5.7, we presented the obtained results by transferring information

from previous runs on the higher dimension problems. We show how the trained neural

architectures for 30 dimensional problems can generalize well on higher dimensions 50 and

100. Our task is to take the best pre-trained architecture for each problem and transfer its

weights to a higher dimension problems; rather than searching and training a model from
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Figure 5.7: Radar chart comparing the variation of the best obtained solutions by NAS on
F1, F3-F10 for 30 dimensional problems. Each axis represents a quantity for a different
dimension. This chart shows how the designed neural architectures for different problems
found the solutions that are rather different or disparate from each other in the search
space.

scratch. In the following experiment, batch size will default to 1. To have a fair compar-

ison, five different scenarios are considered in this study. In NAS-1, we freeze the weights

of the trained layers of the network so as to use previously learned weights that are hidden

throughout all the layers. Thereafter, we change and re-train the last fully-connected Dense

layer according to the new dimension. For NAS-2, however, all the weights are re-initialized

randomly and architecture should learn everything from scratch. In jSO-2, the solution vec-

tors are initialized with the best found solution for the 30 dimensions, while the algorithm

is still able to change the initialized parameters. Alternatively, we freeze these parameters

in jSO-3, which reduces the dimensionality of the problem and helps the algorithm to have

a better search efficiency 8. We would like to explore the possibility of speeding up the

search process so as to avoid the computational overhead of re-optimizing for large scale

computationally expensive problems. To answer this, we repeat the experiments with a

cutoff of 1000 evaluations over 15 different runs. In Table 5.6, we can see that the proposed

NAS-1 significantly outperformed the randomly initialized architectures NAS-2 and also all

the extensions of the jSO; by switching the roles of the classical evolutionary algorithms

and learning distributions of the good solutions. The results for NAS-1 and NAS-2 suggest

that not only the architecture, but also the learned weights of the network are crucial to

the success of accelerating the optimization process. Notably, NAS-1 yielded more scalable

performance for the 100 dimensional problems. Overall, we can say the neural architectures

addressed the practical limitation of learning from previous similar problems with different

dimensions; compared to evolutionary and surrogate-assisted algorithms. Under this set-

ting, we will be able to transfer the parameters of a neural network from a cheap-to-evaluate

problem to another similar one in order to accelerate the search process. We will show that

8. Note that the jSO has a population reduction schema and it is not possible to transfer the final
population to a new optimization task. More importantly, we notice that the population converges to the
best found solution for all the CEC problems.
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these results can similarly generalized to the protein problems.

Table 5.6: Performance of NAS and jSO on 50-dimension CEC 2017 test set. The results
are obtained by exploiting performance of NAS and jSO on 30-dimension benchmarks.

No NAS-1 NAS-2 jSO jSO-2 jSO-3

F1 2.96902e+ 03 2.41835e+ 11 1.62804e+ 11 4.66952e+ 10 1.734390e+ 10
F3 1.81075e+ 05 2.31981e+ 05 2.35311e+ 05 8.10353e+ 04 7.270594e+ 04
F4 1.48287e+ 02 4.51499e+ 02 4.74709e+ 04 6.82198e+ 03 2.358366e+ 03
F5 2.90176e+ 02 1.95285e+ 03 9.00615e+ 02 5.13882e+ 02 4.671343e+ 02
F6 6.30965e+ 01 1.40318e+ 02 1.25437e+ 02 1.32398e+ 01 8.421186e+ 00
F7 8.26953e+ 02 6.28353e+ 03 3.49137e+ 03 9.54540e+ 02 8.665667e+ 02
F8 4.08987e+ 02 1.21316e+ 03 8.77639e+ 02 5.41581e+ 02 3.926943e+ 02
F9 1.14396e+ 04 6.78905e+ 04 6.81788e+ 04 1.34382e+ 04 4.873473e+ 03
F10 6.74823e+ 03 1.43720e+ 04 1.43100e+ 04 1.46106e+ 04 1.470171e+ 04

+\ = \− 9 \ 0 \ 0 9 \ 0 \ 0 7 \ 2 \ 0 6 \ 3 \ 0

Table 5.7: Performance of NAS and jSO on 100dimension CEC 2017 test set. The results
are obtained by exploiting performance of NAS and jSO on 30-dimension benchmarks.

No NAS-1 NAS-2 jSO jSO-2 jSO-3

F1 1.28832e+ 04 5.47524e+ 11 4.99146e+ 11 2.62497e+ 11 2.85013e+ 11
F3 3.49607e+ 05 5.29566e+ 05 7.70880e+ 05 5.80964e+ 05 5.45895e+ 05
F4 1.71629e+ 02 5.51000e+ 02 1.77581e+ 05 8.21492e+ 04 5.60870e+ 04
F5 6.55163e+ 02 4.59244e+ 03 2.27627e+ 03 1.72975e+ 03 1.69408e+ 03
F6 6.10705e+ 01 1.60571e+ 02 1.52327e+ 02 6.19906e+ 01 6.60414e+ 01
F7 1.36100e+ 03 1.52395e+ 04 1.10122e+ 04 7.34962e+ 03 7.27311e+ 03
F8 1.07242e+ 03 2.80098e+ 03 2.24957e+ 03 1.88354e+ 03 1.88620e+ 03
F9 2.23360e+ 04 1.34184e+ 05 1.79658e+ 05 1.13661e+ 05 9.97511e+ 04
F10 1.46885e+ 04 2.76060e+ 04 3.23123e+ 04 3.25155e+ 04 3.16535e+ 04

+\ = \− 9 \ 0 \ 0 9 \ 0 \ 0 9 \ 0 \ 0 9 \ 0 \ 0

In Figure 5.8, three different ensemble learning strategies are illustrated 9. Accord-

ingly, we conduct experiments to show the performance of multiple models instead of a

single one for obtaining the best possible results to solve the 50 and 100 problems under

a limited budget. In machine learning, this is called ensemble learning and tends to yield

better performance by averaging the results over multiple models. In Figure 5.8a, the main

principle is to fit a set of weak learners in parallel and to combine them following determinis-

tic averaging. The term bagging is used to describe a family of such ensemble methods [48].

Figure 5.8b illustrates ensemble stacking model where the extracted information from the

models are combined. This blending process can be defined using one or more additional

layers. In this study, we only going to use one Dense layer for simplicity. Figure 5.8c shows

a new hybrid ensemble method that we proposed specifically for optimization tasks. In this

strategy, we build and train an ensemble model based on the average value of the outputs

(i.e., objective function values) in homogeneous learners.

The already elaborated methods are used to investigate whether we can improve the

results in Tables 5.6 and 5.7. The main hypothesis is to combine the weak learners so

9. Netron Visualizer is used to illustrate the model. The tools is available online at: https://github.

com/lutzroeder/netron

https://github.com/lutzroeder/netron
https://github.com/lutzroeder/netron
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Figure 5.8: Easy visualization of different ensemble learning methods using weak learners.
In this particular case, the results of three models are aggregated to yield a better perfor-
mance. The bagged ensemble model is constructed by averaging the final results from each
leaner, while the idea of stacking model is to mix different weak learners by training a meta-
model. Besides these two, hybrid model is a new approach we introduced for optimization
tasks.

as to improve the results returned by the base models. The ensemble learning is applied

to the obtained models for 30 dimensional problems for solving 50 and 100 dimensions.

Similar to the previous experiment, batch size will default to 1 for all the weak learners.

We applied the Bagging, Stacking, and Hybrid schemes on the pre-trained architectures

for 30 dimensional problems over 15 runs; rather than using and re-training only the best

model. The weights of the trained layers for all the models are frozen. Moreover, we change

and re-train the last fully-connected Dense layer according to the new dimension. For the

Bagging and Stacking methods, we repeat the experiments with a cutoff of 1000 evaluations

over 15 different runs, while the hybrid model needs 15× 1000 evaluations.

From Tables 5.6 and 5.8 we can see that the Bagging method outperforms the NAS-1

on functions F1, F4, and F6-F8. Furthermore, the Stacking model gives better results on

F4, F7-F8, and F10. Needless to say, the results illustrate the significant improvement of

the hybrid model.

In Tables 5.7 and 5.9, the similar results for 100 dimensions are recorded which offer

the flexibility of the ensemble methods in proportion to the new higher scale. Overall, the

obtained results demonstrate the usefulness of the three ensemble methods in the context

of the optimization.

Figure 5.9 gives an intuitive understanding of how the number of models for the

Bagging and Stacking methods is related to the accuracy of the generated ensemble model.

We can see that there is an improvement in the accuracy when the number of employed

models increases. However, sometimes the performance drops to a lower value compared to

the one with fewer models. This is a very important factor to be kept in mind that there

is no evidence of having more models necessary means a higher ensemble performance.



80 Chapter 5. Application IV: Automated Algorithm Design

Table 5.8: Performance of NAS on 50-dimension CEC 2017 test set using ensemble learning.
The results are obtained by aggregating the trained models over 15 runs on 30-dimension
benchmarks.

No Bagging Stacking Hybrid

F1 1.63821e+ 03 4.78148e+ 03 4.37989e+ 02
F3 1.11977e+ 06 1.42817e+ 06 1.66900e+ 05
F4 7.74409e+ 01 1.09783e+ 02 3.35049e+ 01
F5 3.14418e+ 02 5.67149e+ 02 1.01177e+ 02
F6 6.19302e+ 01 1.26289e+ 02 4.60574e+ 01
F7 2.97057e+ 02 4.99652e+ 02 2.63861e+ 02
F8 1.86261e+ 02 2.37593e+ 02 1.52186e+ 02
F9 1.22938e+ 04 1.31054e+ 04 1.06279e+ 04
F10 7.02342e+ 03 5.72794e+ 03 4.99745e+ 03

Table 5.9: Performance of NAS on 100-dimension CEC 2017 test set using ensemble
learning. The results are obtained by aggregating the trained models over 15 runs on
30-dimension benchmarks.

No Bagging Stacking Hybrid

F1 5.59750e+ 03 6.52806e+ 03 1.52856e+ 02
F3 2.76794e+ 10 1.09759e+ 11 3.46635e+ 05
F4 1.71032e+ 02 1.89967e+ 02 1.69293e+ 02
F5 3.00000e+ 02 9.05549e+ 02 2.05242e+ 02
F6 6.04775e+ 01 1.25322e+ 02 4.90530e+ 01
F7 2.30870e+ 03 1.21078e+ 03 6.59674e+ 02
F8 9.06463e+ 02 3.11334e+ 02 4.35899e+ 02
F9 2.08151e+ 04 4.37464e+ 04 1.82395e+ 04
F10 1.51215e+ 04 1.27997e+ 04 1.19021e+ 04

5.5.5 Results on Protein Structure Prediction

In Table 5.10, we shift our focus to investigate the performance of NAS for PSP. Inter-

estingly, NAS achieves superior results compared to state-of-the-art algorithms designed by

human experts. These results show the versatility and robustness of the search-generated

neural architectures. Overall, Table 5.10 suggests that NAS strikes better trade-off in every

metrics.
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Figure 5.9: This figure illustrates and compares performance of the (a) Bagging and (b)
Stacking ensemble methods using different number of models. In most cases, we can say
that the larger is the number of models, the more enhanced are the results.

Table 5.10: Performance comparison of NAS and state-of-the-art algorithms for real-world
protein sequences. The best, worst, mean, and standard deviation (Std) are reported over
30 runs.

Protein Algorithm Best Worst Mean Std

IFABC −2.00830e+ 00 −1.53750e+ 00 −1.73486e+ 00 9.16579e− 02
LSHADE −2.37310e+ 00 −1.71710e+ 00 −2.10369e+ 00 2.61914e− 01

1BXP SGDE −2.30300e+ 00 −1.26950e+ 00 −2.18265e+ 00 2.59131e− 01
NAS −2.49023e+ 00 −2.07551e+ 00 −2.35068e+ 00 1.44632e− 01

IFABC −3.01540e+ 00 −2.41200e+ 00 −2.65486e+ 00 1.42985e− 01
LSHADE −4.17940e+ 00 −3.88990e− 01 −3.10716e+ 00 8.44159e− 01

1CB3 SGDE −5.09030e− 01 −3.88990e− 01 −4.77019e− 01 5.30837e− 02
NAS −4.19828e+ 00 −3.40068e+ 00 −3.85454e+ 00 2.80526e− 01

IFABC −6.81900e+ 00 −5.27940e+ 00 −6.07831e+ 00 2.97476e− 01
LSHADE −8.34140e+ 00 −6.01370e+ 00 −7.8585e+ 00 6.67609e− 01

1BXL SGDE −8.11630e+ 00 −5.93430e+ 00 −6.65916e+ 00 5.86852e− 01
NAS −8.61305e+ 00 −7.18074e+ 00 −8.19518e+ 00 4.44214e− 01

IFABC −4.77300e+ 00 −3.36490e+ 00 −3.78407e+ 00 2.70870e− 01
LSHADE −6.95040e+ 00 −2.99190e+ 00 −4.78441e+ 00 1.24773e+ 00

1EDP SGDE −6.23270e+ 00 −4.53410e− 01 −1.28434e+ 00 1.21523e+ 00
NAS −6.95038e+ 00 −1.23753e+ 00 −5.37093e+ 00 1.52153e+ 00

IFABC −5.82240e+ 00 −4.49080e+ 00 −5.06992e+ 00 3.44016e− 01
LSHADE −7.08230e+ 00 −4.15840e+ 00 −5.37076e+ 00 6.01159e− 01

2ZNF SGDE −7.13800e+ 00 −4.65980e+ 00 −5.42427e+ 00 7.59187e− 01
NAS −7.41105e+ 00 −3.45382e+ 00 −5.93711e+ 00 9.51282e− 01

IFABC −7.26590e+ 00 −4.35930e+ 00 −5.06827e+ 00 5.00148e− 01
LSHADE −8.81030e+ 00 −2.47920e+ 00 −4.80588e+ 00 1.71807e+ 00

1EDN SGDE −8.81030e+ 00 −3.54610e+ 00 −5.84384e+ 00 1.26685e+ 00
NAS −8.14153e+ 00 −3.76380e+ 00 −6.04727e+ 00 7.84394e− 01

IFABC −5.98690e+ 00 −4.22690e+ 00 −4.78016e+ 00 4.24072e− 01
LSHADE −7.43270e+ 00 −4.39070e+ 00 −5.41422e+ 00 1.02956e+ 00

1DSQ SGDE −7.43270e+ 00 −3.60300e+ 00 −6.18808e+ 00 1.32262e+ 00
NAS −7.43270e+ 00 −5.31426e+ 00 −6.85287e+ 00 8.35519e− 01

IFABC −1.67640e+ 01 −1.42670e+ 01 −1.51513e+ 01 6.53529e− 01
LSHADE −2.17800e+ 01 −1.61490e+ 01 −1.91514e+ 01 1.17516e+ 00

1SP7 SGDE −2.17790e+ 01 −1.64290e+ 01 −1.92621e+ 01 1.70078e+ 00
NAS −2.17526e+ 01 −1.69024e+ 01 −1.98864e+ 01 1.40123e+ 00

IFABC −6.04400e+ 00 −4.64080e+ 00 −5.23771e+ 00 3.16578e− 01
LSHADE −6.31350e+ 00 −4.15670e+ 00 −4.45938e+ 00 6.03639e− 01

2H3S SGDE −6.42170e+ 00 −4.15670e+ 00 −4.45630e+ 00 6.36553e− 01
NAS −7.56085e+ 00 −3.42569e+ 00 −4.96418e+ 00 1.08122e+ 00

IFABC −1.01220e+ 01 −8.94270e+ 00 −9.44181e+ 00 2.62877e− 01
LSHADE −1.29300e+ 01 −7.46260e+ 00 −1.00965e+ 01 1.71148e+ 00

1FYG SGDE −1.38600e+ 01 −1.01240e+ 01 −1.19298e+ 01 1.08118e+ 00
NAS −1.40123e+ 01 −7.08564e+ 00 −1.19396e+ 01 1.51319e+ 00
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Figure 5.10: This figure illustrates the convergence results of SGDE obtained for 1T2Y,
2KPA, 1ARE, 1K48, 1N1U, and 1PT4 protein sequences with and without warm-start
population initialization. We can see that the transferred information using pre-trained
ensemble models enhanced the convergence performance of SGDE.

In Figure 5.10, we demonstrate the usefulness of NAS for evolutionary algorithms.

Accordingly, the best found architectures for solving the protein sequences 1− 10 are used

to accelerate the convergence rate of SGDE on unseen protein sequences 11− 16. To do so,

the ensemble model of the best architectures is first adopted to the dimensionality of the



5.6. Practical End Use of Algorithm 83

new problem; as we described before in the previous subsection. Then, we re-trained the

ensemble model to generate the initial solutions for the SGDE population. The limited bud-

get with a cutoff of 500, 500, and 5000 function evaluations are used for Bagging, Stacking

and Hybrid ensemble models, respectively. In SGDE, the experiments are conducted with

limited budget 10, 000 × D function evaluations over 30 runs. From Figure 5.10, one can

see how this transfer learning strategy can replace in part the computationally expensive

evaluations by generalizing well from just learning on smaller protein sequences.

5.5.6 When Neural Architecture Search Does Not Help

The authors would like to discuss two major takeaways. First, the application of the

existing NAS methods without considering the early stopping strategy decreases the ac-

curacy of the reported results. Relatedly, it is difficult to quantify the performance gains

without fine-tuning against leading bath size hyperparameter. In a sense, it is actually an

abstract away of optimizing the behavior of the Adam. Second, unlike related approaches,

NAS needs more computational time when the computational resources are limited.

5.5.7 Implementation Notes

The obtained results for CEC 2017 and PSP show that NAS is comparable in perfor-

mance to the traditional evolutionary algorithms which call into question the necessity of

incorporating the convolutional operations in hyper-heuristic methods. The comprehensive

experimental evaluation of transfer learning and ensemble learning allows us to pinpoint the

performance gains associated with the NAS evaluation scheme. We conjecture that even

better results could be attained if NAS optimizes multiple PSP sequences to learn the joint

distribution of all the instances, and then transfers the learned weights to a new protein

sequence.

5.6 Practical End Use of Algorithm

We conclude that neural architecture search can provide an advantage over standard

evolutionary algorithms when transferring is enabled. Accordingly, the trained networks

can be employed to deliver useful information on unseen optimization problem instances

without further training. This makes them suitable alternative for solving low dimensional

instances of a problem and using the learned distribution for high dimensional and compu-

tational expensive instances. Furthermore, we think that the proposed search strategy can

be adopted for multi-objective and binary search spaces.

5.7 Chapter Summary

In this chapter, we revisit the common application of the neural architecture search

and reformulates it for optimization tasks. The introduced hyper-heuristic perspective fa-

cilitates the process of generating efficient solvers by leveraging a mixture of convolution
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components from convolutional neural network. We conducted some experiments regarding

to two aspects: (1) using neural architecture search for tackling standard CEC 2017 func-

tions and PSP instances, (2) exploring search acceleration possibilities by means of transfer

learning and ensemble learning techniques. Empirical results suggest the superiority of

neural architecture search for both problems regarding solution accuracy metrics.
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Part II

Metaheuristics for Machine

Learning
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Chapter 6

Introduction

Science is not only a disciple of reason

but also one of romance and passion.

Stephen Hawking

There is no doubt that CNNs have gained immense popularity for processing visual

patterns. The adoption of these techniques to unseen data, however, is severely hampered

by choosing a set of optimal hyperparameters associated with them [65, 118]. The learning

rate in stochastic gradient descent or number of layers in CNNs are examples of these

parameters.

Automated hyperparameter tuning (AHT) addresses the resulting pitfalls by applying

optimization search techniques. In recent years, different search strategies [12, 15, 49,

56, 67, 70, 106, 107, 168] have emerged to enhance the performance of CNNs. Although

they may come in contact or overlap in some aspects, they can be mainly categorized into

random and informed methods. The random search methods are embarrassingly parallel

and could be used for low dimensional problems. They do not take into account the useful

information about the fitness landscape of the problem at hand which may lead to slow

convergence rate. In this context, the advantages of informed search algorithms become

clear which build and train computationally cheap-to-evaluate learning models in order

to perform an effective search during the optimization process. By leveraging learning

models, the computational cost can be greatly reduced since the time overhead of building

and training such learning models is insignificant compared to evaluating the CNN models.

These methods are not easily parallelizable which is a major challenge to their successful

application. Furthermore, they are well suited for single-objective cases. Until very recently,

they are mainly designed for optimizing the accuracy of the predictions which make their

applications difficult in low-power mobile and embedded areas [1, 3, 164] where there are two

conflicting objectives: model complexity and model accuracy. This scenario can also be seen

in online visual tracking [49] where some approaches focus on accuracy while several others

aim at faster computational speeds. There are some works [40] that adopts a scalarized

objective function, but it has been shown that Pareto-based optimization performs better

than scalarized methods by providing more generalization ability, and using a scalarized

objective function cannot remedy this issue [77].

In this part, we tried to solve the hyperparameter optimization problem using the stan-

dard metaheuristics with the hope of exploring more promising leads for CNN models on

both single-objective and multi-objective scenarios like FPGAs [1]. Automated tuning pro-

cess of CNNs is synonymous with computationally expensive simulations, which poses a

challenge to the algorithm development and optimization teams. To the best of our knowl-
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edge, there is no work that introduce the reader to the efficiency of different state-of-the-art

metaheuristics for the single-objective and multi-objective cases.
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Chapter 7

Application V: Automated

Machine Learning

Science and everyday life cannot and

should not be separated.

Rosalind Franklin

In this chapter, hyperparameter selection and neural architecture search of convolutional

neural networks (CNNs) is viewed as single-objective and multi-objective optimization prob-

lems. We propose to compare the performance of the conventional metaheuristics with

state-of-the-art automated machine learning methods in the literature. The algorithms are

testified using HPOBench for joint hyperparameter and architecture optimization of feed

forward neural networks on regression problem; and also NASBench101 for the architecture

optimization of CNNs. Experimental results demonstrate that metaheuristics can closely

optimize the characteristics of the considered problems compared to the recent propositions

in the literature; even within a limited computational budget.

7.1 Motivation

The hyperparameter tuning domain is dominated by algorithms that are believed to

be more time consuming compared to the model-free methods and accordingly we used

metaheuristics to cast some light on how such methods may reduce computation time. The

main reason is inherently-sequential features of the model-based algorithms which prevent

them from being efficiently parallelized. More worrying is the prospect that this may

get worse when tuning methods are exposed to compute several objectives. The parallel

random search methods like Hyperband [108] are not able to exploit the search space as

efficient as possible. However, incorporating the common-sense knowledge from previous

iterations can substantially speed up the search process. There are several works that tried

to introduce the Bayesian optimization into the Hyperband [15, 56, 168], but none of them

is compared with metaheuristics. In this regard, we also embrace NAS which achieved great

success in different computer vision tasks such as object detection and image recognition.

The NAS methods are developed in order to automatically search for architecture and

hyperparameters of a machine learning model. They already obtain superior results over

manually designed architectures on some tasks such as image classification.
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7.2 Problem Definition

In the context of automated machine learning, the main focus is on building a high

quality pipeline. This is due to the fact that there is no universal approach and new

machine learning pipelines have to be constructed for each new data set [186]. Here, a

pipeline is a linear sequence of CNN’s components that transforms an input vector x ∈ X
into a target value y ∈ Y. This task can be based on the structure of the pipeline (i.e., neural

architecture search) and the choice of the learning algorithms and their hyperparameters

(i.e., hyperparameter search).

Definition 1 (Pipeline Creation Problem): Given a set of CNN layers A and

their associated hyperparameters Λ, a training set Dtrain and a validation set Dvalid such

that Dtrain ∩ Dvalid = ∅, the pipeline creation problem (PCP) can be defined as a joint

algorithm and hyperparameter selection minimization problem using a loss function L [186]:

θ∗ = arg max
θ∈Θ

u(θ),where u(θ) = f(θ|I, PI , Pζ , t) (7.1)

Here, g is a directed acyclic graph (DAG) that denotes the structure of the pipeline P
g,A,λ

.

In g, the nodes (consisting of the selected algorithm A and its associated hyperparameters

λ) represent an arbitrary machine learning process and edges represent the flow of an input.

The performance of the configuration (g,A, λ) should be evaluated using the validation set

Dvalid.

In hyperparameter optimization, the pipeline structure g is supposed to have a fixed

shape which eliminates the complexity of creating a DAG graph. In neural architecture

search, however, the hyperparameters are fixed and optimization techniques are used to

automatically build a superior model by only finding the best possible architecture.

7.2.1 Methodology

It would be unfair to compare a model with the best hyperparameters/architectures

against another one which has not been optimized. Automated machine learning has been

emerged to avoid this pitfall. In this subsection, we will walk through the state-of-the-art

methods in the literature and also not-yet applied algorithms. In the following, both the

single-objective and multi-objective approaches are introduced.

7.2.2 Single-objective Competitive Algorithms

ABC: Artificial bee colony (ABC) [83] mimics the foraging behavior of honey bees for

solving optimization problems. In ABC, a colony of artificial forager bees (agents) search for

rich artificial food sources (good solutions for a given problem). The algorithm randomly

discovers a population of initial solution vectors and then iteratively improve them by

employing the strategies: moving towards better solutions by means of a neighbour search

mechanism while abandoning poor solutions. The algorithm is shown to perform well on a

wide range of complicated real-world problems has the advantage of having less parameters.

However, its application to automated machine learning domain has been neglected which
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motivated us to consider this algorithm in this chapter.

BOHAMIANN: Bayesian optimization with Hamiltonian Monte Carlo artificial neural

networks (BOHAMIANN) [155] is another method which proposed to use neural networks

as a powerful and scalable parametric model, while staying as close to a truly Bayesian

treatment as possible. Crucially, it aims to keep the well-calibrated uncertainty estimates

of GPs since Bayesian optimization relies on them to accurately determine promising hy-

perparameters. To this end, BOHAMIANN derives a more robust variant of the recent

stochastic gradient Hamiltonian Monte Carlo method [32].

BOHB:The bandit-based configuration evaluation approaches based on random search

(like HB) lack guidance and do not converge to the best configurations as quickly. So,

BOHB [57] proposed to combine the benefits of both Bayesian optimization and bandit-

based methods, in order to achieve the best of both worlds: strong anytime performance and

fast convergence to optimal configurations. BOHB introduces a new practical state-of-the-

art hyperparameter optimization method, which consistently outperforms both Bayesian

optimization and HB on a wide range of problem types, including high-dimensional toy

functions, support vector machines, feed-forward neural networks,Bayesian neural networks,

deep reinforcement learning, and convolutional neural networks.

CMAES: Covariance matrix adaptation evolution strategy (CMAES) [63] is a derivative-

free evolutionary algorithm for non-linear and non-convex optimization problems. It gen-

erates new candidate solutions according to a multivariate normal distribution. Recombi-

nation amounts to selecting a new mean value for the distribution. Mutation amounts to

adding a random vector, a perturbation with zero mean. Pairwise dependencies between

the variables in the distribution are represented by a covariance matrix. The covariance

matrix adaptation is a method to update the covariance matrix of this distribution. The

algorithm is shown to perform well with very limited computational budget which makes

it a highly competitive method for automated machine learning domain.

DE: The differential evolution (DE) came up with the idea of using vector differences for

perturbing the vector population. DE and its extensions are among highly successful meta-

heuristics algorithms. A full description of the algorithm can be found in Subsection 2.4.2.

DF: Dragonfly (DF) [81] is an open source Python library for scalable and robust

hyperparameter optimization. It incorporates multiple recently developed methods that

allow hyperparameter optimization to be applied in challenging real-world settings; these

include better methods for handling higher dimensional domains, methods for handling

multi-fidelity evaluations when cheap approximations of an expensive function are available,

methods for optimizing over structured combinatorial spaces, such as the space of neural

network architectures, and methods for handling parallel evaluations. Additionally, the

DF develops new methodological improvements in Bayesian optimization for selecting the

Bayesian model, selecting the acquisition function, and optimizing over complex domains

with different variable types and additional constraints. DF is compared against a suite

of other packages and algorithms for global optimization and demonstrate that when the

above methods are integrated, they enable significant performance improvements.

DNGO: DNGO [153] explores the use of neural networks as an alternative to Gaussian

processes (GPs) to model distributions over functions. The original study shows that per-
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forming adaptive basis function regression with a neural network as the parametric form

performs competitively with state-of-the-art GP-based approaches, but scales linearly with

the number of data rather than cubically. This allows us to achieve a previously intractable

degree of parallelism, which we apply to large scale hyperparameter optimization, rapidly

finding competitive models on benchmark object recognition tasks using convolutional net-

works, and image caption generation using neural language models.

HB: Hyperband (HB) [108] is a novel configuration evaluation approach which for-

mulates hyperparameter optimization as a pure-exploration adaptive resource allocation

problem addressing how to allocate resources among randomly sampled hyperparameter

configurations. The HB’s procedure relies on a principled early-stopping strategy to allo-

cate resources, allowing it to evaluate orders-of-magnitude more configurations than black-

box procedures like surrogate optimization methods. It is a general-purpose technique that

makes minimal assumptions unlike model based configuration evaluation approaches. The

theoretical analysis demonstrates the ability of HB adapt to unknown convergence rates

and to the behavior of validation losses as a function of the hyperparameters. The theoret-

ical contribution of HB is the introduction of the pure-exploration, infinite-armed bandit

problem in the non-stochastic setting, for which HB is one solution. It has been shown 5×
to 30× faster than popular Bayesian optimization algorithms on a variety of deep-learning

and kernel-based learning problems [108].

HO: HyperOpt (HO) [13] is a hyperparameter optimization library for serial and paral-

lel optimization over awkward search spaces, which may include real-valued, discrete, and

conditional dimensions. In HO, the authors propose a meta-modeling approach to sup-

port automated hyperparameter optimization, with the goal of providing practical tools

that replace hand-tuning with a reproducible and unbiased optimization process. The HO

approach is to expose the underlying expression graph of how a performance metric (e.g.

classification accuracy on validation examples) is computed from hyperparameters that gov-

ern not only how individual processing steps are applied, but even which processing steps

are included. A hyperparameter optimization algorithm transforms this graph into a pro-

gram for optimizing that performance metric. HO yields state of the art results on three

disparate computer vision problems and so is considered in this thesis: a face-matching

verification task, a face identification task and an object recognition task , using a single

broad class of feed-forward vision architectures.

MAC: In this chapter, we adopt a single-objective version of MAC 3.4 as the Bayesian

search strategy for automated machine learning. Accordingly, we generate a set of random

architectures in the early iterations in parallel, while we adopt a feature selection strategy

to generate more promising candidates in the later stages of development. This is a key

property in MAC that helps us to make a balance between the solution quality and the

computational time. After half of the iterations, a response surface model is created to

provide a fast approximation of the expensive evaluations for the later stages of evolution.

Moreover, the randomly generated perturbations are also ranked in descending order ac-

cording to their contribution to the validation accuracy: the top 50% with promising label

and the others with non-promising label. Given this training set, MAC applies a feature

selection strategy to obtain weight for generating the new configurations; as elaborated
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in 3.4.

IMAC: IMAC is the more enhanced version of the above mentioned modified MAC

algorithm in which the parameters of Radial basis function are tuned using a DE meta-

heuristic algorithm. IMAC is an example of inter-playing the machine learning and meta-

heuristic algorithms. We proposed an optimization algorithm by virtue of machine learning

model for automated machine learning. Meanwhile, the adopted machine learning inside

the optimization process itself is tuned using a metaheuristics algorithm.

PSO: In particle swarm optimization (PSO) [86], a population of particles starts to move

in search space by following the current optimum particles and changing the positions in

order to find out the optima. In every iteration, each particle is updated by following the

best solution of current particle achieved so far and the best of the population. When

a particle takes part of the population as its topological neighbours, the best value is a

local best. The particles tend to move to good areas in the search space by the information

spreading to the swarm. PSO is known to be one the most successful metaheuristics for real-

world optimization problems and is a challenging competitive for random search, surrogate-

base, and metaheuristic algorithms.

RE: Regularized evolution (RE) [138] genetic algorithm presents a novel variant of

tournament selection by which genotypes die according to their age, favoring the young.

This improved upon standard tournament selection while still allowing for efficiency at scale

through asynchronous population updating. In RE, an age is assigned to the individuals

(not the genes) and is only used to track which is the oldest individual in the population.

This permits removing such oldest individual at each cycle (keeping a constant population

size). Meanwhile, this approach keeps the algorithm as simple as possible. In particular,

RE remains similar to nature (where the young are less likely to die than the very old) and

it requires no additional meta-parameters. It has been shown that RE has somewhat faster

search speed and stood out in the regime of scarcer resources/early stopping; compared to

RS, RL.

RL: The reinforcement learning (RL) tuning method [104] approaches the problem using

a machine learning perspective and represent any particular hyperparameter optimization

procedure as a reinforcement learning problem. Under this assumption, any particular

hyperparameter simply corresponds to a policy. The algorithm rewards hyperparameters

that converge quickly and penalize those that do not. Learning good hyperparameters then

reduces to find an optimal policy, which can be solved using any reinforcement learning

method. The algorithm uses an off-the-shelf reinforcement learning algorithm known as

guided policy search [99], which has demonstrated success in a variety of robotic control

settings.

RS: Random search (RS) is the most simple yet effective [105] baseline in this study.

We used our implementation according to which the generated candidates are drawn from

a uniform probability distribution and are independent of the samples that come before it.

This property makes it well suited to highly parallel systems. Moreover, random methods

are flexible in that they can be applied to both the continuous and discrete search space;

in contrast to Bayesian approaches based on Gaussian processes [90] and gradient-based

approaches [113].
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SRS: Stochastic Response Surface(SRS) [139] is a surrogate-based algorithm that uti-

lizes a response surface model to approximate the expensive function and identifies a promis-

ing point for function evaluation from a set of randomly generated points, called candidate

points. Assuming some mild technical conditions, SRS converges to the global minimum in

a probabilistic sense. The best candidate point in SRS is chosen according to two criteria:

the estimated function value obtained from the response surface model, and the minimum

distance from previously evaluated points. It is worth mentioning that MAC and IMAC

propositions are inspired by SRS.

SMAC: SMAC (sequential model-based algorithm configuration) [69] is another versa-

tile tool for hyperparameter optimizing. SMAC has helped us speed up both local search and

tree search algorithms by orders of magnitude on certain instance distributions. Recently, it

has also been found it to be very effective for the hyperparameter optimization of machine

learning algorithms, scaling better to high dimensions and discrete input dimensions. The

main contribution of SMAC is to make sequential model-based optimization applicable to

general algorithm configuration problems with many categorical parameters. Specifically,

it generalizes four components of the sequential model-based optimization framework and-

based on themdefine two novel instantiations capable of general algorithm configuration:

the simple model-free Random Online Adaptive Racing (ROAR) procedure and the more

sophisticated Sequential Model-based Algorithm Configuration (SMAC) method. SMAC

can be understood as an extension of ROAR that selects configurations based on a surro-

gate model rather than uniformly at random. We refer the reader to the original study [69]

for more details.

TPE: The Tree-structured Parzen Estimator (TPE) [14] is a sequential model-based

optimization algorithm which has been successfully applied to computationally expensive

optimization tasks. TPE sequentially builds and trains a surrogate model to approximate

the performance of hyperparameters based on historical measurements, and then subse-

quently choose new hyperparameters to test based on the surrogate model. Mathemati-

cally speaking, it models P (x|y) and P (y) where x represents hyperparameters and y the

associated quality score. Here, P (x|y) is modeled by transforming the generative process of

hyperparameters, replacing the distributions of the configuration prior with non-parametric

densities. Using different observations x(1), · · · , x(k) in the non-parametric densities, these

substitutions represent a learning algorithm that can produce a variety of densities over the

configuration space X. The TPE defines p(x|y) using two such densities:

{
ι(x) ify < y?

g(x) ify ≥ y?
(7.2)

where ι(x) is the density formed by using the observations x(i) such that corresponding

loss function f(x(i)) was less than y? and g(x) is the density formed by using the remaining

observations. Whereas the GP-based approach favored quite an aggressive y? (typically

less than the best observed loss), the TPE algorithm depends on a y? that is larger than

the best observed f(x) so that some points can be used to form ι(x). The TPE algorithm

chooses y? to be some quantile γ of the observed y values, so that p(y < y?) = γ, but no
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specific model for p(y) is necessary. By maintaining sorted lists of observed variables in H,

the runtime of each iteration of the TPE algorithm can scale linearly in |H| and linearly in

the number of variables (dimensions) being optimized. We refer the reader to [14] for more

details.

7.2.3 Multi-objective Competitive Algorithms

DBEA: DBEA [7] is a decomposition based evolutionary algorithm, wherein, uniformly

distributed reference points are generated via systematic sampling, balance between con-

vergence and diversity is maintained using two independent distance measures and a simple

preemptive distance comparison scheme is used for association. In order to deal with con-

straints, an adaptive epsilon formulation is used. The reference directions are generated

using systematic sampling, where in the points are systematically generated on a hyper-

plane with unit intercepts in each objective axis. The association of solutions to reference

directions are based on two independent distance measures. The distance along the refer-

ence direction controls convergence, whereas the perpendicular distance from the solution

to the reference direction controls the diversity. The proposed algorithm utilizes a simple

prioritized distance comparison scheme to maintain this balance and control association.

In order to improve the efficiency of the algorithm, a steady state form is adopted.

DENSEA: Duplicate elimination non-dominated sorting evolutionary algorithm, called

as DENSEA, emphasizes the creation and maintenance of population diversity and is con-

ceived as an improvement medium for the previously explained difficulties of having a non-

dominated solution reduced set in functional space with respect to the population size [123].

DENSEA is based on the non-domination sorting criterion selection and has incorporated

some elitism, but it is characterized by offering population diversity maintenance based on

various characteristics: 1) Deletion of duplicate solutions; 2) Replacement of these dupli-

cate solutions; 3) Replacement selection of population of next generation. The population

is ordered by the non-domination criterion, with the distribution operator along the front

(secondary criterion when solutions belong to the same front) explained later. After this

sorting, each individual has a linear selection probability by Roulette Wheel Selection, which

determines the individuals that are selected for crossover and mutation. These constitute

the offspring population. This population is also ordered by the non-domination criterion

after evaluation. DENSEA has specifically a deletion operator for duplicate solutions: the

algorithm deletes the accumulated duplicate solutions due to the reduced non-dominated

solutions quantity in the functional space. The replacement of each deleted solution is

performed by inserting the individual that has the same ordering in the second half of the

population until the completion of 50% of the population size (N/2). In that way, the inclu-

sion of diverse solutions replacing duplicates is fostered, helping to maintain the population

diversity. This filtering process is implemented both in the parent and offspring population.

ε-MOEA: In ε-MOEA [46], a steady-state multi-objective evolutionary algorithms

(MOEA) based on the ε-dominance concept [14] and efficient parent and archive update

strategies has been proposed. The goal is to introduce a compromised algorithm for achiev-

ing a well-distributed set of solutions quickly. It has been observed that the proposed
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steady-state MOEA is a good compromise in terms of convergence near to the Pareto-

optimal front, diversity of solutions, and computational time.The ε-MOEA is a step closer

towards making MOEAs pragmatic, particularly allowing a decision-maker to control the

achievable accuracy in the obtained Pareto-optimal solutions.

ε-NSGAII: The ε-NSGAII [93] incorporates prior competent evolutionary algorithm de-

sign concepts and epsilon-dominance archiving to improve the original NSGAII’s efficiency,

reliability, and ease-of-use. This algorithm eliminates much of the traditional trial-and-

error parameterization associated with evolutionary multi-objective optimization through

epsilon-dominance archiving, dynamic population sizing, and automatic termination. The

effectiveness and reliability of the algorithm is successfully compared against the original

NSGAII.

FastPGA: Fast Pareto genetic algorithm (FastPGA) [55] uses a new fitness assignment

and ranking strategy for the simultaneous optimization of multiple objectives where each

solution evaluation is computationally and/or financially expensive. This is often the case

when there are time or resource constraints involved in finding a solution. A population

regulation operator is introduced to dynamically adapt the population size as needed up

to a user-specified maximum population size. The purpose of this is to propose a multi-

objective optimization methodology that finds evenly-distributed Pareto optimal solutions

in a computationally-efficient manner.

IBEA: Indicator-based evolutionary algorithm (IBEA) [184] discusses how preference

information of the decision maker can in general be integrated into multi-objective search.

The main idea is to first define the optimization goal in terms of a binary performance

measure (indicator) and then to directly use this measure in the selection process. In

contrast to existing algorithms, IBEA can be adapted to the preferences of the user and

moreover does not require any additional diversity preservation mechanism such as fitness

sharing to be used. It has been shown that IBEA can substantially improve on the results

with respect to different performance measures.

MOCell: Multi-objective cellular genetic algorithm (MOCell) [120] is a cellular ge-

netic algorithm for solving multi-objective continuous optimization problems. MOCell is

characterized by using an external archive to store non-dominated solutions and a feedback

mechanism in which solutions from this archive randomly replace existing individuals in the

population after each iteration. MOCell is a superior algorithm concerning the diversity of

the solutions along the Pareto front [120].

MOEAD: MOEAD [103] is a recent algorithm which simultaneously optimizes a num-

ber of single objective optimization subproblems. The objective in each of these problems

is an aggregation of all the objectives. Neighborhood relations among these subproblems

are defined based on the distances between their aggregation coefficient vectors. Each sub-

problem (i.e., scalar aggregation function) is optimized by using information mainly from

its neighboring subproblems.

NSGAII: NSGA-II(Non-dominated Sorting Genetic Algorithm II) [45] suggests a non-

dominated sorting-based evolutionary algorithm with a fast non-dominated sorting ap-

proach with O(MN/sup 2/) computational complexity. Also, a selection operator is pre-

sented that creates a mating pool by combining the parent and offspring populations and
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selecting the best N solutions (with respect to fitness and spread). It has been shown that

NSGA-II is able to find a much better spread of solutions and better convergence near the

true Pareto-optimal front.

NSGAIII: NSGAIII [44] is a recent effort for developing a potential algorithm for

solving many-objective optimization problems. It suggests a reference-point-based many-

objective evolutionary algorithm following NSGA-II framework that emphasizes population

members that are non-dominated, yet close to a set of supplied reference points.

PAES: Pareto archived evolution strategy (PAES) [92] introduces a simple non-trivial

evolution scheme capable of generating diverse solutions in the Pareto optimal set. The

algorithm is identified as being a (1 + 1) evolution strategy, using local search from a

population of one but using a reference archive of previously found solutions in order to

identify the approximate dominance ranking of the cur-rent and candidate solution vectors.

PESA2: PESA2 [39] describes a new selection technique for evolutionary multi-objective

optimization algorithms in which the unit of selection is a hyperbox in objective space. In

this technique, instead of assigning a selective fitness to an individual, selective fitness is

assigned to the hyperboxes in objective space which are currently occupied by at least one

individual in the current approximation to the Pareto frontier. A hyperbox is thereby se-

lected, and the resulting selected individual is randomly chosen from this hyperbox. This

method of selection is shown [39] to be more sensitive to ensuring a good spread of devel-

opment along the Pareto frontier than individual-based selection.

RVEA: RVEA [34] proposes a reference vector-guided evolutionary algorithm for many-

objective optimization. The reference vectors can be used not only to decompose the original

multi-objective optimization problem into a number of single-objective subproblems, but

also to elucidate user preferences to target a preferred subset of the whole Pareto front.

In the proposed algorithm, a scalarization approach, termed angle-penalized distance, is

adopted to balance convergence and diversity of the solutions in the high-dimensional ob-

jective space. An adaptation strategy is also proposed to dynamically adjust the distribution

of the reference vectors according to the scales of the objective functions.

SMSEMOA: SMSEMOA [54] is a promising algorithm for Pareto optimization, espe-

cially if a small, limited number of solutions is desired and areas with balanced trade-offs

shall be emphasized. The selection and variation procedures do not interfere with an extra

archive and the number of strategy parameters is very low(population size and reference

point). Instead of specifying a reference point the SMS-EMOA can also work with an in-

finite reference point. SMSEMOA is of special elegance, since its implementation is quite

simple and the update of the population can be computed efficiently.

SPEA2: The Strength Pareto Evolutionary Algorithm (SPEA) is a relatively recent

technique for finding or approximating the Pareto optimal set for multi-objective optimiza-

tion problems. SPEA2 [185] is an improved version which incorporates in contrast to its

predecessor a fine-grained fitness assignment strategy, a density estimation technique, and

an enhanced archive truncation method. The main differences of SPEA2 in comparison to

SPEA are: 1) An improved fitness assignment scheme is used, which takes for each individ-

ual into account how many individuals it dominates and it is dominated by, 2) A nearest

neighbor density estimation technique is incorporated which allows a more precise guidance
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of the search process, 3) A new archive truncation methods guarantees the preservation of

boundary solutions.

VEGA: A Vector Evaluated Genetic Algorithm (VEGA) [147] uses a fitness function

that returns a vector. The VEGA splits the population into sub-populations, and each

sub-population optimizes toward a different part of the vector (or different vector). Then

there is an additional comparison to produce the best result. What VEGA suggests is a

simple customization in the selection step. Since you now have multiple objective functions,

you could loop over them and for each objective function, you select the fittest individuals.

This way, you end up with the fittest individual in the current generation regarding the

various objectives in your problem. By allowing those to reproduce, you are spreading their

characteristics in your population.

7.3 Experiments

7.3.1 Benchmark Sets

We facilitate a better empirical evaluation of optimization methods for automated ma-

chine learning by using benchmarks that are cheap to evaluate, but still represent realistic

use cases. These benchmarks are easy and computational efficient ways to conduct re-

producible experiments. The hyperparamter optimization part includes a large grid of

configurations of a feed forward neural network on four different regression datasets includ-

ing architectural hyperparameters and hyperparameters. For neural architecture search

part, we aim to do the same by introducing NAS-Bench-101, the first public architecture

dataset for architecture search research. The dataset is carefully constructed by consider-

ing a compact, yet expressive, search space, exploiting graph isomorphisms to identify 423k

unique convolutional architectures. These architectures are trained and evaluated multiple

times on CIFAR-10 and compiled the results into a large dataset of over 5 million trained

models. Based on these two dataset, we conducted an in-depth experiment to gain a better

understanding of the properties of different optimization methods from the literature in

terms of performance and robustness.

HPOBench: HPOBench [91] contains a large grid four popular UCI [8] regression

datasets: protein structure [136], slice localization [60], naval propulsion [38] and parkinsons

telemonitoring [165]. For each dataset, 60% are used for training, 20% for validation and

20% for testing [91]. A two layer feed forward neural network followed by a linear output

layer on top has been used. The obtained neural architecture are trained with Adam [88]

for 100 epochs. The configuration space includes number of units and activation functions

for both layers, dropout rates per layer, batch size, initial learning rate and learning rate

schedule. More details are given in Table 7.1.

NAS-Bench-101: The NAS-Bench-101 dataset [176] maps a generated neural archi-

tecture to its training and evaluation metrics on the CIFAR-10 classification set. In NAS-

Bench-101, the search space of neural architectures is defined by considering the cells(please

see 5.4.1). Accordingly, the variation in the neural architectures comes directly from vari-

ation in the cells. In the final architecture, each cell in stacked for 3 times, followed by
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Table 7.1: The configuration space of the HPOBench benchmarks

Hyperparameters Values

Initial LR {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}
Batch Size {8, 16, 32, 64}
LR Schedule {cosine, fix}
Activation/Layer 1 {relu, tanh}
Activation/Layer 2 {relu, tanh}
Layer 1 Size {8, 16, 32, 64, 128, 256, 512}
Layer 2 Size {8, 16, 32, 64, 128, 256, 512}
Dropout/Layer 1 {0.0, 0.3, 0.6}
Dropout/Layer 2 {0.0, 0.3, 0.6}

a down sampling layer. This pattern is also repeated 3 times, followed by global average

pooling and a final dense softmax layer [176]. The space of cell architectures consists of

all possible directed acyclic graphs on V nodes, where each possible node has one of L

labels, representing the corresponding operation. In order to limit the size of the space,

NAS-Bench-101 imposes some constraints as follows: 1) L = 3 and only 3× 3 convolution,

1× 1 convolution, 3× 3 max-pool; 2) V ≤ 7 and the maximum number of edges is limited

to 9. In all the experiment the following encoding schema is used to represent the solution

vector: a 7-vertex directed acyclic graph, represented by a 7 × 7 upper-triangular binary

matrix, and a list of 5 labels, one for each of the 5 intermediate vertices [176].

7.3.2 Experimental Settings

For each algorithm, the initial population is randomly generated. The metaheuristics

are criticized in the machine learning domain due to the fact that tuning and adjusting

the control parameters of these algorithms is itself an optimization problem. We set the

parameters for the metaheuristics to their default values in order to address the aforemen-

tioned issue and to have a fair comparison against the parameter free methods. We fol-

lowed the same procedure for some Bayesian optimization methods. For the single-objective

metaheuristics, their default parameters are clearly reported in their original studies. For

the multi-objective algorithms, we followed the default parameters which are defined in

MOEA [62], PISA [18] and jMetal [50] frameworks. The two objectives are the accuracy,

and the complexity of the model during the training process. We used hypervolume (HV)

in order to compare the proximity and diversity of the obtained results. The HV indicator

should be maximized during the configuration process.

7.3.3 Results and Discussion

Single-objective: The simple, but still step toward comparing different hyperparame-

ter optimization algorithms is considering single-objective algorithms. To do so, we report

the test regret for naval propulsion, protein structure, slice localization, and parkinsons

telemonitoring datasets in Tables 7.2 − 7.5, respectively. The test regret for Âi is com-

puted as r(Âi) = f(Âi)− f(Â∗), where A∗ is the model with the best mean test accuracy

in the entire dataset. For all the algorithms, stopping criteria is 200 evaluations and the

experiments are repeated 500 times. The results are sorted according to the mean criterion

that makes it easier to read and understand. In addition, these results are also visualized

in Figures 7.1 and 7.4.
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From Tables 7.2 and 7.3, TPE is more successful than other algorithms in terms of solu-

tion quality and standard deviation. Conversely, MAC shows better performance according

to the results in Tables 7.4 and 7.5. Meanwhile, the best reported result for RL, BOHB,

PSO and DE indicate that better performance is probably available, but the configuration

space should be explored more efficiently.

Table 7.2: The reported test regret for single-objective naval propulsion hyperparameter
optimization dataset. The results show the performance of 500 independent runs over 200
function evaluations. The results are sorted according to the mean criterion that makes it
easier to read and understand.

Algorithm Best Worst Mean Std.

TPE 0.000e+00 8.221e-05 1.39e-05 1.512e-05
MAC 0.000e+00 1.014e-04 1.701e-05 1.857e-05
RE 0.000e+00 1.226e-04 2.067e-05 1.925e-05
BOHAMIANN 9.343e-06 5.990e-05 3.081e-05 1.413e-05
DNGO 2.592e-05 9.142e-05 5.259e-05 2.030e-05
HO 4.715e-05 7.965e-05 5.579e-05 6.380e-06
DF 4.833e-05 9.142e-05 6.300e-05 1.531e-05
DE 1.287e-05 1.394e-04 6.434e-05 1.902e-05
PSO 7.169e-06 2.891e-04 6.710e-05 2.347e-05
ABC 7.169e-06 2.021e-04 7.033e-05 2.317e-05
SMAC 6.694e-05 1.174e-04 8.948e-05 1.754e-05
BOHB 0.000e+00 2.507e-01 5.838e-04 1.120e-02
RS 0.000e+00 3.355e-01 1.761e-03 2.038e-02
HB 0.000e+00 5.013e-01 2.425e-03 2.986e-02
RL 0.000e+00 7.519e-01 2.578e-03 3.709e-02
CMAES 3.874e-06 7.519e-01 9.471e-03 6.184e-02

Table 7.3: The reported test regret for single-objective protein structure hyperparameter
optimization dataset. The results show the performance of 500 independent runs over 200
function evaluations. The results are sorted according to the mean criterion that makes it
easier to read and understand.

Algorithm Best Worst Mean Std.

TPE 0.000e+00 3.604e-02 4.87e-03 5.931e-03
RE 0.000e+00 4.258e-02 8.138e-03 6.768e-03
MAC 0.000e+00 5.335e-02 1.246e-02 1.185e-02
BOHB 0.000e+00 5.575e-02 1.651e-02 9.680e-03
RL 4.658e-04 6.264e-02 2.062e-02 1.034e-02
RS 0.000e+00 6.211e-02 2.207e-02 1.076e-02
HB 4.658e-04 7.979e-02 2.680e-02 1.347e-02
BOHAMIANN 7.650e-03 6.292e-02 2.723e-02 1.628e-02
DNGO 5.002e-03 5.884e-02 3.562e-02 1.547e-02
PSO 9.836e-03 8.938e-02 6.467e-02 1.409e-02
HO 6.300e-02 8.316e-02 6.744e-02 3.941e-03
DF 6.517e-02 7.469e-02 7.064e-02 4.475e-03
DE 4.461e-02 1.000e-01 7.365e-02 7.962e-03
ABC 4.837e-02 3.408e-01 7.612e-02 1.503e-02
CMAES 1.272e-02 3.438e-01 9.435e-02 4.263e-02
SMAC 2.848e-01 3.087e-01 3.021e-01 8.080e-03
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Table 7.4: The reported test regret for single-objective slice localization hyperparameter
optimization dataset. The results show the mean performance of 500 independent runs over
200 function evaluations. The results are sorted according to the mean criterion that makes
it easier to read and understand.

Algorithm Best Worst Mean Std.

MAC 0.000e+00 1.180e-04 2.98e-05 2.913e-05
TPE 0.000e+00 3.222e-04 4.744e-05 4.027e-05
RE 0.000e+00 1.718e-03 6.212e-05 8.443e-05
HO 6.893e-05 1.141e-04 7.523e-05 1.151e-05
BOHAMIANN 4.183e-05 1.593e-04 7.754e-05 3.382e-05
DNGO 7.403e-06 1.593e-04 7.791e-05 4.174e-05
BOHB 0.000e+00 2.071e-03 1.111e-04 1.137e-04
DF 9.718e-05 2.048e-04 1.387e-04 4.725e-05
DE 4.183e-05 3.948e-04 1.404e-04 6.043e-05
RL 0.000e+00 1.945e-03 1.522e-04 1.163e-04
ABC 5.002e-05 6.050e-04 1.738e-04 8.050e-05
PSO 4.508e-05 6.979e-04 1.748e-04 8.643e-05
RS 0.000e+00 2.138e-03 1.769e-04 1.541e-04
HB 0.000e+00 2.582e-03 2.244e-04 1.860e-04
SMAC 2.594e-04 3.230e-04 2.928e-04 1.964e-05
CMAES 2.044e-05 2.911e-02 2.552e-03 3.257e-03

Table 7.5: The reported test regret for single-objective parkinsons telemonitoring hyperpa-
rameter optimization dataset. The results show the mean performance of 500 independent
runs over 200 function evaluations. The results are sorted according to the mean criterion
that makes it easier to read and understand.

Algorithm Best Worst Mean Std.

MAC 0.000e+00 1.139e-02 3.89e-03 2.265e-03
HO 2.015e-03 1.139e-02 4.332e-03 1.999e-03
DNGO 0.000e+00 1.016e-02 4.480e-03 2.628e-03
BOHAMIANN 2.015e-03 8.969e-03 5.108e-03 2.122e-03
RE 0.000e+00 1.077e-01 5.594e-03 7.125e-03
DE 0.000e+00 1.888e-02 5.730e-03 2.986e-03
DF 2.400e-03 9.745e-03 6.381e-03 3.020e-03
PSO 0.000e+00 2.196e-02 6.870e-03 3.270e-03
TPE 0.000e+00 1.289e-01 6.952e-03 1.420e-02
ABC 9.081e-04 2.464e-02 6.966e-03 3.441e-03
RL 0.000e+00 1.077e-01 7.870e-03 6.204e-03
RS 0.000e+00 3.788e-02 8.755e-03 4.323e-03
BOHB 9.081e-04 1.077e-01 9.504e-03 7.139e-03
SMAC 7.948e-03 1.047e-02 9.851e-03 4.920e-04
HB 9.081e-04 1.289e-01 1.208e-02 9.921e-03
CMAES 1.468e-03 5.036e-01 3.646e-02 4.803e-02

The obtained results show that the hyperparameter optimization task is harder for some

datasets. We believe that this is related to the uncertainly around the trained models which

is a key point for TPE. In naval propulsion and protein structure datasets, the number of

features is small and the model is able to predict the output with a low uncertainly of

training process. This helps TPE to be a superior algorithm compared to MAC. On the

other hand, MAC performs better on the two other datasets which have a higher number
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of feature because it does not take into account the uncertainly of the model. To show this,

we present Figure 7.2 which tell us how sensitive an optimizer is to the randomness during

the search and the training process.
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Figure 7.1: The ranking results for the single-objective hyperparameter optimization algo-
rithms. The plot uses the mean performance of 500 independent runs over 200 function
evaluations.

In Figure 7.3, the convergence rate of the best three algorithms are reported. This is of

practical importance when working with computationally expensive evaluations, as then we

can see which of the iterative methods needs fewer iterations. From this figure, we can see

that MAC algorithms performs better in early step of the evolution. It seems that MAC can

perform well when we have a very small computational budget. For the protein structure

dataset, TPE and RE performs better than MAC and have more rapid convergence rate.
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Figure 7.2: The obtained cumulative distribution function of the best algorithms for single-
objective hyperparameter optimization. The plot is based on the performance of 500 inde-
pendent runs over 200 function evaluations.
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Figure 7.3: The converges rate for the best single-objective hyperparameter optimization
algorithms. The plot is based on the mean performance of 500 independent runs over 200
function evaluations on CIFAR-10 dataset.
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Similarly, we reported the results for single-objective neural architecture search in Ta-

ble 7.6 and Figure 7.4. In this case, we have a large search space and so the number of

function evaluations are increased to 1000. We should note that the considered algorithms

here are the superior models for hyperparameter optimization, while some Bayesian opti-

mization algorithms with very high computational complexity are ignored. These methods

rely on querying a distribution over the surrogate model. We know that an accurate model

is critical to the effectiveness of the approach and they are mainly using Gaussian processes.

The problem arises due to the fact that Gaussian processes scale cubically with the number

of observations and this is a challenge to our problem whose optimization requires many

evaluations. Meanwhile, metaheuristics like DE and PSO can be easily parallelized and so

will need less computation hours.

Table 7.6: The reported test regret for single-objective neural architecture search. The
results show the performance of 500 independent runs over 1000 function evaluations on
CIFAR-10 dataset. The results are sorted according to the mean criterion that makes it
easier to read and understand.

Algorithm Best Worst Mean Std.

PSO 8.347e-04 7.378e-03 2.53e-03 1.866e-03
IMAC 8.347e-04 7.378e-03 3.507e-03 2.553e-03
CMAES 8.347e-04 8.647e-03 3.978e-03 2.508e-03
MAC 8.347e-04 7.378e-03 4.480e-03 2.249e-03
SLS 8.347e-04 7.378e-03 4.633e-03 2.334e-03
RE 8.347e-04 1.042e-02 4.974e-03 2.944e-03
DE 8.347e-04 9.282e-03 5.363e-03 2.008e-03
ABC 1.169e-03 1.018e-02 6.561e-03 1.727e-03
BOHB 8.347e-04 1.252e-02 6.805e-03 2.297e-03
RL 9.682e-04 1.202e-02 6.945e-03 1.928e-03
TPE 8.347e-04 1.199e-02 7.175e-03 2.305e-03
HB 9.682e-04 1.272e-02 7.256e-03 1.918e-03

From the results in Table 7.6, one can say that PSO and IMAC have obtained the

best overall performance. Interestingly, we can see that TPE and RL are among the worst

performed algorithms. In TPE, We argue that this contradictory performance is due to

the fact the algorithms is very sensitive to the increase of the problem dimension. In the

case of RL, unlike supervised learning where feedback provided to the agent is correct set

of actions for performing a task, it uses rewards and punishment as signals for positive

and negative behavior. To do so, we require more data to train the RL in such high

dimensional search space (i.e., more function evaluations). Also for multi-fidelity methods

like BOHB and HB, there is no hope to beat metaheuristics by substantial amount in this

highly structured search space. We can see that MAC suffers from the same problem; curse

of dimensionality where the number of function evaluations needed to support the result

often grows exponentially with the dimensionality. This motivated us to propose the IMAC

which use a DE algorithm to generate the candidate points for its response surface model.

From the results, we can see that IMAC have more enhanced results compared to MAC.

Interestingly, we can see that in very early stage of evolution IMAC obtained a more rapid

convergence speed in comparison with PSO and CMAES; as illustrated in Figure 7.6. The
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same conclusion can be drawn regarding the cumulative distribution function in Figure 7.5.
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Figure 7.4: The ranking results for the single-objective neural architecture search algorithms
based on the mean criterion. The plot uses the performance of 500 independent runs over
1000 function evaluations on CIFAR-10 dataset.
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Figure 7.6: The converges rate for the best single-objective neural architecture search al-
gorithms. The plot is based on the mean performance of 500 independent runs over 1000
function evaluations on CIFAR-10 dataset.

Multi-objective: We presented the results for multi-objective hyperparameter opti-

mization and neural architecture search. The best, worst, mean, and standard deviation

of the hypervolume are reported in Tables 7.7-7.11. Moreover, the corresponding ranking,

CDF and convergence plots are depicted in Figures 7.7-7.12. All the considered algorithms

are metaheuristics and so the number of function evaluations is considered to be 1000.

The experiments are repeated for 500 different runs. To compute the hypervolume, all

the algorithms are executed for 15 runs and the reference point is selected to be a slightly

worse point than the nadir point. We used this reference point specification method for fair

performance comparison of the multi-objective algorithms.

The results in Tables 7.7-7.10 indicates that SPEA2 performs better on Naval Propul-

sion and Slice Localization, NSGAII on Protein Structure, and SMSEMOA on Parkinsons

Telemonitoring datasets. Form Figure 7.9, however, one can say that SPEA2 obtains the

best convergence rate compared to the other competitive algorithms. For neural architec-

ture search, PESA2 performs better on this high dimensional task according to the results

in Tables 7.11 and Figure 7.12. This is in contradiction with the existing proposed methods

in the literature which are are mainly use NSGAII as their basis algorithm. We would like

to strongly encourage the researchers to adopt and apply other superior multi-objective al-

gorithms in their research studies. These results reveal the fact that optimizing the machine

learning pipe lines according to several objectives needs more comprehensive experiments

and applying only the NSGAII algorithm might lead to inferior results.
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Table 7.7: The reported hypervolume results for multi-objective hyperparameter optimiza-
tion on Naval Propulsion dataset. The results show the performance of 500 independent
runs over 1000 function evaluations. The results are sorted according to the mean criterion
that makes it easier to read and understand.

Algorithm Best Worst Mean Std.

SPEA2 9.863e-01 9.391e-01 9.74e-01 5.453e-03
SMSEMOA 9.866e-01 9.182e-01 9.735e-01 8.668e-03
NSGAII 9.867e-01 9.504e-01 9.733e-01 5.718e-03
eNSGAII 9.858e-01 9.512e-01 9.732e-01 5.496e-03
FastPGA 9.856e-01 8.802e-01 9.682e-01 1.232e-02
NSGAIII 9.857e-01 9.262e-01 9.668e-01 8.588e-03
PESA2 9.855e-01 5.033e-01 9.623e-01 3.692e-02
eMOEA 9.829e-01 7.720e-01 9.610e-01 2.257e-02
IBEA 9.821e-01 8.917e-01 9.565e-01 1.563e-02
MOCell 9.852e-01 2.692e-01 9.562e-01 4.639e-02
DBEA 9.763e-01 7.745e-01 9.430e-01 2.079e-02
VEGA 9.751e-01 7.448e-01 9.422e-01 2.234e-02
MOEAD 9.617e-01 0.000e+00 7.984e-01 1.314e-01
RVEA 9.290e-01 1.273e-01 7.274e-01 1.349e-01
DENSEA 9.054e-01 0.000e+00 3.144e-01 2.757e-01
PAES 9.547e-01 0.000e+00 1.892e-01 2.924e-01

Table 7.8: The reported hypervolume results for multi-objective hyperparameter optimiza-
tion on Protein Structure dataset. The results show the performance of 500 independent
runs over 1000 function evaluations. The results are sorted according to the mean criterion
that makes it easier to read and understand.

Algorithm Best Worst Mean Std.

NSGAII 9.729e-01 8.562e-01 9.47e-01 1.974e-02
eNSGAII 9.731e-01 8.449e-01 9.467e-01 2.009e-02
SPEA2 9.739e-01 8.542e-01 9.447e-01 2.291e-02
SMSEMOA 9.731e-01 7.470e-01 9.324e-01 3.137e-02
FastPGA 9.739e-01 7.606e-01 9.287e-01 3.602e-02
NSGAIII 9.702e-01 7.725e-01 9.197e-01 3.136e-02
IBEA 9.727e-01 7.354e-01 9.191e-01 3.783e-02
PESA2 9.741e-01 6.565e-01 9.163e-01 5.264e-02
eMOEA 9.731e-01 7.354e-01 9.127e-01 4.872e-02
DBEA 9.647e-01 7.342e-01 8.883e-01 4.163e-02
MOCell 9.727e-01 5.970e-01 8.826e-01 7.322e-02
VEGA 9.629e-01 7.370e-01 8.656e-01 4.565e-02
MOEAD 9.000e-01 3.854e-01 6.953e-01 9.112e-02
RVEA 9.050e-01 3.938e-01 6.630e-01 9.214e-02
DENSEA 8.795e-01 3.473e-03 4.886e-01 1.659e-01
PAES 9.440e-01 0.000e+00 3.670e-01 2.479e-01
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Table 7.9: The reported hypervolume results for multi-objective hyperparameter optimiza-
tion on Slice Localization dataset. The results show the performance of 500 independent
runs over 1000 function evaluations. The results are sorted according to the mean criterion
that makes it easier to read and understand.

Algorithm Best Worst Mean Std.

SPEA2 9.553e-01 9.111e-01 9.45e-01 6.861e-03
SMSEMOA 9.557e-01 7.728e-01 9.433e-01 1.275e-02
eNSGAII 9.537e-01 9.102e-01 9.414e-01 8.766e-03
NSGAII 9.542e-01 9.031e-01 9.404e-01 9.043e-03
FastPGA 9.549e-01 8.485e-01 9.381e-01 1.637e-02
PESA2 9.558e-01 7.482e-01 9.365e-01 2.131e-02
MOCell 9.559e-01 5.862e-01 9.296e-01 3.064e-02
NSGAIII 9.521e-01 8.693e-01 9.289e-01 1.304e-02
eMOEA 9.532e-01 8.432e-01 9.282e-01 1.922e-02
IBEA 9.513e-01 7.927e-01 9.132e-01 2.484e-02
DBEA 9.413e-01 8.169e-01 8.992e-01 2.138e-02
VEGA 9.422e-01 6.924e-01 8.881e-01 2.829e-02
MOEAD 8.804e-01 2.489e-01 6.814e-01 1.091e-01
RVEA 8.436e-01 1.858e-01 6.074e-01 1.188e-01
PAES 9.305e-01 0.000e+00 2.962e-01 2.873e-01
DENSEA 8.076e-01 0.000e+00 2.511e-01 2.512e-01

Table 7.10: The reported hypervolume results for multi-objective hyperparameter opti-
mization on Parkinsons Telemonitoring dataset. The results show the performance of 500
independent runs over 1000 function evaluations. The results are sorted according to the
mean criterion that makes it easier to read and understand.

Algorithm Best Worst Mean Std.

SMSEMOA 6.992e-01 2.004e-01 5.16e-01 6.552e-02
SPEA2 6.989e-01 2.040e-01 5.143e-01 6.349e-02
NSGAII 6.999e-01 1.633e-01 5.115e-01 7.627e-02
eNSGAII 6.989e-01 1.653e-01 5.087e-01 7.060e-02
IBEA 6.999e-01 2.212e-01 5.012e-01 7.307e-02
PESA2 6.995e-01 1.483e-03 4.837e-01 1.052e-01
FastPGA 6.985e-01 6.498e-02 4.801e-01 8.938e-02
eMOEA 6.995e-01 5.241e-02 4.683e-01 9.817e-02
NSGAIII 6.937e-01 1.438e-01 4.521e-01 7.784e-02
MOCell 6.995e-01 0.000e+00 4.480e-01 1.256e-01
VEGA 6.729e-01 0.000e+00 3.678e-01 1.043e-01
RVEA 6.662e-01 0.000e+00 3.164e-01 1.487e-01
DBEA 6.858e-01 0.000e+00 3.013e-01 1.435e-01
MOEAD 6.751e-01 0.000e+00 1.922e-01 1.801e-01
PAES 5.574e-01 0.000e+00 2.626e-02 9.090e-02
DENSEA 4.563e-01 0.000e+00 1.057e-02 5.063e-02
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Figure 7.7: The ranking results for the multi-objective hyperparameter optimization. The
plot uses the mean hypervolume performance of 500 independent runs over 1000 function
evaluations.
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Figure 7.8: The obtained cumulative distribution function of the best algorithms for multi-
objective hyperparameter optimization. The plot is based on the hypervolume of 500 inde-
pendent runs over 1000 function evaluations.



7.3. Experiments 111

200 400 600 800 1000
Function Evaluations

0.6

0.7

0.8

0.9

H
yp
er
vo
lu
m
e

Naval Propulsion

eNSGAII

NSGAII

SPEA2

(a)

200 400 600 800 1000
Function Evaluations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

H
yp
er
vo
lu
m
e

Protein Structure

eNSGAII

NSGAII

SPEA2

(b)

200 400 600 800 1000
Function Evaluations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

H
yp
er
vo
lu
m
e

Slice Localization

eNSGAII

NSGAII

SPEA2

(c)

200 400 600 800 1000
Function Evaluations

0.0

0.1

0.2

0.3

0.4

0.5

H
yp
er
vo
lu
m
e

Parkinsons Telemonitoring

eNSGAII

NSGAII

SPEA2

(d)

Figure 7.9: The converges rate for the best multi-objective hyperparameter optimization
algorithms. The plot is based on the mean hypervolume performance of 500 independent
runs over 1000 function evaluations.

Table 7.11: The reported hypervolume results for multi-objective neural architecture search.
The results show the performance of 500 independent runs over 1000 function evaluations
on CIFAR-10 dataset. The results are sorted according to the mean criterion that makes
it easier to read and understand.

Algorithm Best Worst Mean Std.

PESA2 8.319e-01 7.593e-01 8.07e-01 1.282e-02
eMOEA 8.291e-01 7.634e-01 8.057e-01 1.217e-02
NSGAII 8.277e-01 7.575e-01 8.054e-01 1.067e-02
eNSGAII 8.236e-01 7.644e-01 8.041e-01 1.123e-02
IBEA 8.237e-01 7.693e-01 8.026e-01 8.931e-03
RVEA 8.305e-01 7.612e-01 8.012e-01 9.352e-03
SPEA2 8.327e-01 7.549e-01 8.011e-01 1.213e-02
FastPGA 8.236e-01 7.542e-01 7.977e-01 1.379e-02
DBEA 8.190e-01 7.524e-01 7.951e-01 1.280e-02
SMSEMOA 8.207e-01 7.519e-01 7.934e-01 1.437e-02
MOCell 8.297e-01 0.000e+00 7.883e-01 6.416e-02
NSGAIII 8.174e-01 7.439e-01 7.872e-01 1.481e-02
VEGA 8.153e-01 7.228e-01 7.802e-01 1.421e-02
MOEAD 8.128e-01 7.024e-01 7.664e-01 1.885e-02
DENSEA 7.384e-01 0.000e+00 3.831e-01 2.002e-01
PAES 7.815e-01 0.000e+00 2.535e-01 3.028e-01
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Figure 7.10: The ranking results for the multi-objective neural architecture search algo-
rithms on CIFAR-10 dataset. The plot uses the mean hypervolume performance of 500
independent runs over 1000 function evaluations.
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Figure 7.11: The obtained cumulative distribution function of the best algorithms for multi-
objective neural architecture search. The plot is based on the hypervolume of 500 indepen-
dent runs over 1000 function evaluations on CIFAR-10 dataset.
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7.3.4 Implementation Notes

For this study, we use Socket programming for communication between the MOEA

framework in Java and the AutoML benchmarks in Python. One socket (i.e., fitness func-

tion) listens on a particular port at an IP so that the TCP layer can identify the application

that data is destined to be sent to (i.e., he MOEA framework). Compared to the latency

of the shell/file exchange, the general cost of creating a new connection and all other costs

such as kernel setup times are insignificant. This gives us the opportunity to use all the

designed sate-of-the-art multi-objective approaches inside the MOEA framework. For the

single-objective Bayesian algorithms, we used the standard Python implementations of the

authors from their GitHub repository. The PSO, ABC, DE, and CS are carefully imple-

mented according to the original study, while for CMAES we used the ’cmaes’ Python

library. The considered metaheuristics algorithms for both the single-objective and multi-

objective cases encode the categorical variables as integer identities.

7.4 Practical End Use of Research

The results in this chapter can be mainly used by the researchers in the machine learning

field so as to have an idea about the possible application of metaheuristics for having

superior models. As we showed for the MAC, the metaheuristics can be easily applied to

tune the parameters of the Bayesian algorithms which can significantly improve the results.

This study also could help the researcher who would like to apply multi-objective algorithms

by giving extensive results on a broad range of state-of-the-art methods.

7.5 Chapter Summary

In this chapter, we investigate the application of sing-objective and multi-objective cases

to enhance the performance of the machine learning techniques. The obtained results are

compared against the most recent Bayesian optimization models in the literature. The

simulation results show that the metaheuristics have advantages of being used for both

the single-objective and multi-objective cases. Moreover, these algorithms can be easily

parallelized, while the Bayesian methods are mainly based on sequential models. We also

notice that more enhanced results can be obtained by incorporating the metaheuristics for

optimizing the parameters of the Bayesian methods.
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Part III

Conclusion and Perspectives
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This thesis started with the vision to investigate the possible synergies between machine

learning and met-heuristics. In Part I, we proposed and trained different machine learning

techniques that are capable of enhancing both the solution quality and the convergence

rate. It was our clear mission not to focus on reproducing competitive results but to

come up with an optimization approach that takes advantage of the machine learning

properties. Accordingly, the first perspective draws attention to recent transfer learning

and ensemble learning techniques. Thereby, an optimization algorithm can benefit from

warm-star population initialization to reduce the required computational resources. In the

same direction, it has shown that storing knowledge gained while solving one problem and

applying it to a different but related problem can be also effective. We believe that this

consideration should be investigated on the other instance-based optimization problems like

TSP. Moreover, the application of such techniques for multi-objective problems can be even

more interesting. Whether single-objective or multi-objective, effective machine learning

techniques are central in the development of fast heuristic algorithms for computationally

expensive problems.

In Part II, we place the application of meta-heuristics for enhancing the performance of

machine learning in a wider perspective. The results verify that a simple PSO algorithm

could outperform all the recent propositions which are specifically designed for improving

the machine learning models. We would like to offer to consider meta-heuristics as strong

competitive baselines in the machine learning community. Moreover, we believe that the

application of multi-objective algorithms should not be limited to NSGA-II algorithm. Fi-

nally, this thesis point to a need to refocus on heuristic and meta-heuristics methods for

the other machine learning models like RNN.
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