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Crnac00 MOMM MECTHBIM APY3bSIM U OJM3KHM C KOTOPHIMHA MBI TOBOPHIIM HAa POAHOM
s3pike. Cracu0o 3a 3aayleBHBIC PasrOBOPbI M YACTUIy Yero-TO POJHOTO U OYEHb

HenocTtaromiero. Crmacu6o 3a MoAaepKKy, 0COOCHHO B TIOCTIEIHUE MECSIIHI.

Taxxe s xouy mo0IarogapuTh MOMX OJIECCKUX ApPYy3eH 3a Hally OpykOy, UX MOAEPKKY,
OT3bIBUMBOCTH U T'OTOBHOCTH IMOJMCHHUTL MCHA IOMa B TPYIAHBIC MHWHYTHI. Cmacubo 3a
MOIIHYI0 MOTHBAIMIO, MyCTh Jaxke He HamepeHHyw. Cmacub6o bopucy K. 3a

HeCTpaHI[apTHHﬁ He,Z[aFOFI/ILIeCKI/Iﬁ moaAXoa U YMCHHUEC HAIIPpaBUTh.

KoneuHo, st X094y BBIpa3UTh MPU3HATESILHOCTh MOCH ceMbe. B mepByto ouepenpb cracu6o
MOUM POIMTENAM 3a IPOSABICHHOE TEPIEHUE U YIOPCTBO BO BPEMA MOHUX «TPYIHBIX
MIEPUOJIOBY, CIAacK00 3a UX MOAJIEPKKY 3a Bce 3TU Tobpl. Criacubo 6abyikaM u Jeaynikam,
KOTOpBIE BCET/Ia )KeJalld MHE JIYYIIero ¥ MeuTaiu 00 ydeHOM BHyKe. [IycTh nake oHH He

MOMMYT M CTPOYKHU B 3TOU paboTe, ITOT MyTh OB MPOiiieH Oiarogaps UM U 7S HUX.
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Chapter 1

| ntroduction

Integration of high power and high performance el ectronic devicesin modern spacecraft
system with heat generation of hundreds of watts per square centimeter crucially increases
needs in high performance, low weight, energy efficient and reliable thermal management
systems. Due to these specific demands, two-phase heat rejection devices are preferable for
space applications. However, pumped cooling devices, despite their capability to remove
high heat fluxes, require supplemental equipment, as well pumping subsystem (usually
consisting in moving parts), extension reservoir etc., which lead to additiona energy
consumption, increase in weight and size and, as a consequence, reliability loose. Heat
pipes, as one of the most widely used passive two-phase thermal dissipation technology both
for terrestrial and aerospace applications, cannot manage with extra high heat fluxes and
long distance heat transportation despite their reliability and well developing [1.1]. Capillary
Pumped Loops (CPLs) and Loop Heat Pipes (LHPs) are devoid of these disadvantages (heat
removal capability could be at |east two orders magnitude higher than for conventional heat
pipes), but CPLs need exhaust and time-consuming starting process [1.2]. Despite the
existence of high efficient passive cooling solutions, engineering society is still in search of
simple, low cost, high performance and reliable heat transfer technol ogies.

During last few decades, research and engineering studies on a new passive two-phase
heat transfer device with simple structure, called Pulsating Heat Pipe (PHP) or Oscillating
Heat Pipe (OHP), have experienced a great development. Simple structure of the PHP is
represented by a single curved capillary tube or channel (to ensure domination of surface
tension forces on gravitational ones), which is folded back to make itself parallel and
partialy filled with liquid to reach saturation conditions [1.3]. Liquid distributes inside the
channels in chaotic form, forming aternating chains of liquid plugs and vapor slugs.
Evaporator and condenser are usually placed on the opposite sides of PHP (adiabatic zone

between them) which leads to differences in saturation conditions between two zones and
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pressure driving displacement of the liquid-vapor pairs aong the channels as a result.
Consequently, heat transfer process, related to PHP operation, consists of both latent and
sensible heat forms, which allow increasing thermal performance. Simple design without
any porous structures, moving parts and sub-systems coupled with high heat transfer
performance makes PHP avery promising technology for future exploitation onboard space

apparatuses.

However, considering available works in literature, complex mechanisms of thermo-
hydrodynamic processes inside PHP is not fully studied and any precise suitable design
recommendations are still not available, together with the contradictory believes of
researchers [1.4; 1.5]. Therefore, this technology needs further investigations related to the
understanding improvement of the phenomena inside the PHP.

This thesis has been realized in the context of two successive research projects funded
by European Space Agency — INWIP and TOPDESS - which are dedicated to the
development of the high efficient and passive therma management technologies for the
space applications.

The first project - Innovative Wickless Heat Pipe Systems for Ground and Space
Applications (INWIP) — aims at designing, manufacturing and testing innovative wickless
heat pipes with enhanced performances and rdiability for both space and ground
applications.

Based on the research consortium experience and fields of interests, research work is
focused on the numerical and experimental investigations of three two-phase heat transfer
devices. wickless hybrid thermosiphons, grooved heat pipes and pulsating heat pipes.
Parametric studies of these systems include the performance evaluations of the severa
working fluids, functionalized surfaces (hydrophobic and hydrophilic), gravity influence
(different orientations during on-ground tests and reduced gravity during parabolic flights).
This project is a first preparatory step for the further systematic experimentation on the
Therma Platforml TP1 onboard the International Space Station, investigating particul ar
grooved and pulsating heat pipes filled with ordinary and self- rewetting fluids.

The second project — Two-Phase Passive Thermal Devices for Deployable Space
Systems (TOPDESS), continues developing the research work started through the previous
ESA MAP INWIP project, but this time with the ambitious purpose of dealing with
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deployable and/or flexible two-phase wickless devices for developing the applicative
aspects. Nevertheless, the deployability or flexibility of such systems will not be studied in
thisthesis. We will mainly focuses on heat and mass transfer inside flat-pate pul sating heat
pipes. In particular, tests of the improved version of the Flat Plate PHP, developed during
the INWIP project, should be done in order to meet the following objectives:

e The high-speed grayscale and infrared visualizations of the entire channel array for an
accurate detection of the liquid-vapor interfaces and measurements the liquid bulk
temperature (to determine the local heat transfer coefficient);

e A parametric study concerning the wettability of the fluid/metal couple, by using
different surface coatings (oxidation, etc.) and/or fluid thermophysical properties by
adding specific substances such as alcohols (self-rewetting fluids) or surfactants.

Therefore, the main purposes of this thesis are to characterize the heat transfer
performance of theflat plate pulsating heat pipe operating under normal and reduced gravity,
understanding the two-phase flow behavior inside the FPPHP and increasing the heat
transfer characteristics using working fluids with different transport properties.
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Chapter 2
Two-Phase Cooling Systems for Ground and Space Applications

To better introduce the pul sating heat pipe and describe motivation of thiswork, ashort
overview of the existing thermal management devicesis presented in this chapter. Asshown
inFig. 2.1, recent cooling solutions can be classified in the four main categoriesasafunction

of the amount of rejected heat flux and surface superheat [2.1]:

e Natural convection;
e Gasforced convection;
e Liquid forced convection;

e Two-phase cooling.

It seems that two-phase cooling devices have several advantages compared to the

standard single-phase cooling systems:

e First, a fluid’s latent heat of vaporization can be a few orders of magnitude larger than
the specific sensible hedt;

e Second, the maximal rejected heat flux in regards to the surface superheat is aone order
of magnitude higher for two-phase systems compared to the liquid forced convection
and at least three orders of magnitude higher than gas forced convection;

e Finadly, recent electronic devices require thermal management systems (TMS) capable
to reject heat fluxes densities higher than 100 W/cm?.

Thus, this part will focus on two-phase cooling solutions and a main attention will be

paid to the high performances they represent.

Any cooling solution of a space electronic equipment is based on the design features
that determine compactness, low power consumption and weight, as well as a decrease in
the cost of the product. Thus, the choice by the designer of the thermal management system
type is guided by the applications they aim for. So, understanding not only the principles of

functioning of varioustypesof TMS, but also, moreimportantly, their functional limitations,
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as well as the necessary and sufficient conditions that determine the stable operation of the

TMSisof major interest.

Figure 2.1. Comparison of the various thermal management approaches [2.1].

Figure 2.2. Classification of the two-phase heat transfer devices[2.2; 2.3].

There are numerous different approaches of the TMS classification mainly caused by

the development of recent TMS solutions. For a general understanding of the types and
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location of the two-phase heat transfer systems, it is proposed to consider the classification
according to the principle of their functioning, shownin Fig. 2.2. Based on thisclassification,
latter devices will be described in this chapter.

2.1. Mechanical Pump Driving L oops
2.1.1. Microchannel Heat Snk

The microchannel heat sinks were initially proposed as single-phase systems by
Tuckerman and Peasein 1981 for the high-performance microprocessors cooling [2.4]. The
primary component of amicrochannel cooler (i.e. Microchannel Heat Sink) is shown in Fig.
2.3. Electronic devices are typically attached to the bottom side of the microchannel heat
sink under theribsin the central part. Open top sideis usually covered by a planar plate with
the inlet and outlet ports. With appropriate driving pressure, the fluid is driven through the
microchannels and heat is transferred from the electronic component through the

microchannels into the fluid.

Liquid

P 4

LR
Microchannels

Cover Plate

Two-phase

O Area for calculating wall heat flux

. Area for calculating base heat flux

Figure 2.3. Typical microchannel heat sink with parallel channels[2.5].
During two last decades, two-phase microchannel systems have attracted much
attention as a method for high-heat flux electronic cooling. It has been shown that flow

through large surface area (related to the device volume) microchannels boosts the heat

transfer coefficient in single-phase flow; additional gainsin the heat transfer coefficient can
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be obtained by alowing the liquid to vaporize along the walls of the microchannel [2.6].
These systems al so possess the advantages like compactness and minimal coolant usage that

make them attractive for electronics cooling applications.
2.1.2. Spray and Jet-Impingement Cooling Systems

The mechanism of the Spray Cooling could be seenin Fig. 2.4. Here, fluid isintroduced
to a nozzle located opposite to the heated surface. With appropriate driving pressure
(provided by a pump), the fluid leaving the nozzle breaks up into individual droplets that
deposit on the hot surface. The fluid forms a film on the surface and heat is transferred both
by sensible mode (at the moment of the droplets deposition) and latent mode (occurring

during the film evaporation).

Along with the other potential benefits of two-phase cooling, spray cooling can provide
auniform heat flux and temperature across the heating surface. Usually, spray coolers also
provide low flow rate requirements due to the precise fluid-delivery and heat removal
mechanism. Despite all these advantages, spray cooling is considered excessively complex

and unfeasible for many applications [2.7].

/ Droplet o \ Jet nozzle—»

Ill \o ° °
|

Fluid jet

— +—Fluid film
\

. 000eeeo0id

Heat Flux Heat source / electronics

TP -

Figure 2.4. Schematic view of the spray Figure 2.5. Schematic of the jet-

cooling process [2.9]. Impingement cooler [2.9].

Jet Impingement could be divided in the three following basic forms: free jet (liquid jet
in avapor or gaseous ambient), submerged jet (liquid jet in aliquid ambient), and confined
jet (liquid jet confined between the nozzle and heat source).
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A freejet-impingement cooling is usually used for two-phase applications. The primary
components of this approach can be seen in Fig. 2.5. A continuous jet of the fluid is forced
through a jet nozzle that impinges on the heated surface. With the applied heat, film
evaporation occurs on the surface removing heat from the surface. Previous research works
have shown that heat transfer coefficient is significantly higher near thejet flow than around
it [2.10]. Thus, the concentration of the heat transfer coefficient and associated heat removal
within the impingement zone could provoke significant temperature gradients within the
device. This non-uniformity of temperature can cause thermal stressin electronics and their

potential failure.
2.2. Passive Two-Phase Cooling Devices
2.2.1. The Thermosiphon

Thermosiphon is a high performance passive two-phase gravity-assisted heat transfer
device (Fig. 2.6), which was firstly proposed in 1838 by Perkin [2.11]. At the beginning of
the XX™ century, a thermosiphon, called the Perkin’s tube, was used as a heater in baking
ovens. After, during Second World War, high demand in such devices as cooling system for
gas turbine blades, significantly increased. In USSR thermosiphons were widely used in
Long's thermal piles during construction in permafrost regions. From 1980, thermosiphons
have been used in different applications, as well solar heating, construction, metallurgy,

power electronic cooling etc. due to their simple structure, low cost and high performance.

Usually, the thermosiphon is made of an evacuated sealed smooth or grooved tube,
closed from both sides and partialy filled with a working fluid at ~20% of filling ratio (an
optimal value) [2.12]. Conventional thermosi phon is composed of evaporation, adiabatic and
condensation sections (Fig. 2.6). As a gravity assisted device, the condenser should be
located above the evaporator to allow the return of liquid condensate from condenser to

evaporator.

The heat flux from the source, applied to the evaporator (located on the bottom side of
the tube), provokes boiling in the fluid volume. Generated vapor moves to the condensation
zone thanksto the density and pressure difference between the evaporation and condensation
zones. Condensed vapor flows back to the evaporator in the form of liquid film on the wall

of the thermosi phon thanks to gravity assistance.
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@ (b)

Figure 2.6. Thermosiphon schematic representation [2.13].

Thethermosiphon isaone of the most effective passive two-phase heat transfer devices,
but heat transfer rate strongly depends on the geometrical parameters, fluid properties and
filling ratio but also on the orientation. Performances of the thermosiphon are significantly
affected by the inclination angle — operation failure could be reached in the horizontal

position or in position with the evaporator located above the condenser.

Sometimes, high applied heat fluxes lead to reach the boiling crisis and dry-spots
generation on the evaporator wall resulting in heat transfer performances degradation. To
prevent this phenomenon, sintered wick deposition on the evaporator walls could be used to
homogenize the fluid distribution (Fig. 2.6b) [2.13].

Another way to improve performances of such two-phase heat transfer devices consists
in the use of the gravity assisted natural circulation two-phase loop, also called Closed Loop
Thermosiphon — a particular version of the thermosiphon, described above. As for
conventional thermosiphon, this system consists of the condenser located above the
evaporator and connected via two tubes, called “riser” and “down-comer”. Generally
speaking, the terms “riser”’ and “down-comer” describe the fluid flow direction through these
connection tubes. As shown in Fig. 2.7, in the bottom side of the closed loop thermosiphon,
boiling in the fluid volume occurs and vapor flows through the left tube (“riser”) to the
condenser. After condensation, the working fluid flows to the evaporator through the right

tube (“down-comer”).
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Figure 2.7. Schematic of athermosiphon loop [2.14].

The main difference of the Closed Loop Thermosiphon from the conventional
thermosiphon is the separation of the paths of the upward two-phase liquid/vapor flow and
the descending condensate flow. This modification of the thermosiphon alows to

significantly increase heat transfer performances of the device.
2.2.2. The Heat Pipe

The passive two-phase heat transfer device capable to work with different orientation
(even, for some cases, opposite to gravity vector) have been developed in the middle of the
XX™ century. First concept of the device, later called Heat Pipe, has been proposed by
Gaugler [2.15] in the context of the refrigeration machineswith the evaporator |ocated above
the condenser. Almost twenty years later, in the framework of the American Space Program,

Grover re-introduced the heat pipe as adevice very similar to the device of Gaugler [2.16].

Typica heat pipe (Fig. 2.8a) looks almost identical to thermosiphon — including
evacuated sealed tube with the same evaporation, adiabatic and condensation zones and
partialy filled with working fluid. However, amain difference between these two devicesis

in the way the liquid returns from the condenser to the evaporator — contrary to the
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thermosiphon, the heat pipe is not a gravity-assisted device and liquid returns to the
evaporator thanks to a capillary structure (also called the “wick”), usually deposited on the
walls aong the heat pipe. The capillary structure could be in aform of the sintered powder,
open grooves and mesh structure or their combinations, as presented in Fig. 2.8b. Thedriving
force, which movestheliquid from the condenser to the evaporator, is caused by the capillary
pressure difference between advancing and receding menisci at the opposite sides of the heat
pipe.

@ (b)

-«+— Condenser ——|«+—— Adiabatic section Evaporator«l
Vapor flow

Heat in

SINTERED 3 GROOVED

‘ Capillary structure

Tube
’ ' Liquid flow
Figure 2.8. (a) Heat pipe working principle [2.17] and (b) types of capillary structures
[2.18].

The heat pipe has awide range of applications due to its gravity independence and wide
range of the construction materials. Today, heat pipesare widely used in terrestrial and space
applications in the thermal management systems. Compatibility with awide range of fluids
allows operation from the cryogenic (using helium as a working fluid) to the extreme
temperatures (filled with liquid metals).

2.2.3. The Variable Conductance Heat Pipe

Some applications need to guarantee a constant temperature of the heat source whatever
the heat flux valueis. Obviously, evaporator temperature of the thermosiphon and heat pipe
strongly depends on the applied heat flux: for thisreason, aV ariable Conductance Heat Pipe,
presented in Fig. 2.9, has been devel oped.

Unlike the heat pipe, the variable conductance heat pipe uses areservoir, filled with a non-

condensable gas to modul ate the device conductance. The working principle of the VCHPis
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very similar to the conventional heat pipe, except the varying length (and effective heat

transfer surface) of the condenser.
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Figure 2.9. The working principle of avariable conductance heat pipe [2.19].

As seen in Fig. 2.9b, with low heat load (or without it), non-condensable gas fills a
significant part of the heat pipe, preventing an optimal heat transfer rate. But increase of the
temperature on the evaporator surface leads to the vapor pressure rise and moves the non-
condensable gas into the reservair, liberating alarger condenser surface areato interact with
the vapor, resulting in a higher condensation rate (see Fig. 2.9a). So, heet transfer rate could
be passively controlled to keep the cooling device at arelatively constant temperaturein the
range of +1 °C[2.20].

Despite an advantage of the variable conductance heat pipe in the temperature control,
the design and fabrication of such device is more difficult and costly comparing to the one

of conventional heat pipe.
2.2.4. The Micro Heat Pipe

The miniaturization of eectronic components and higher and higher heat generation
have led to the introduction of the concept of a Micro Heat Pipes by Cotter in 1984 [2.21].
Themicro heat pipeis defined as aheat pipe in which the mean curvature of the liquid vapor
interface is comparable in magnitude to the reciprocal of the hydraulic radius of the total

flow channel. Typically, micro heat pipes have convex but cusped cross sections to keep a
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capillary pumping in the corners, with hydraulic diameter in range of 10 to 500 um. The

typical micro heat pipe and its profiles are shown in Fig. 2.10.

Container Working fluid  Liquid block region
B Cc

Evaporator  Adiabatic section Condenser

c Micro heat pipe profiles

Figure 2.10. Cross-section geometries of the micro heat pipes[2.22].

In analogy with conventional heat pipes, micro heat pipes have aso evaporator,
adiabatic and condensation zones. Theworking principleisvery similar to the heat pipe with
the open grooves — central part of the micro heat pipe occupied by a vapor, but corners
(grooves) filled with liquid which flows from the condenser to the evaporator thanks to the

capillary pressure difference.

Micro heat pipes are able to transfer radial heat flux densities up to the 90 W/cm? in
horizontal inclination and up to 150 W/cm? for vertical orientation with the condenser
located above the evaporator [2.23]. But, due to the variation of theliquid cross section with
the decrease of the menisci radii along the capillary flow, the liquid pressure |osses become
very high and increase much faster than the driving capillary pressure (increasing with
decreasing radii). Thus, the remove heat and the transport distance of these systems remain

very low compared to the others (afew Watts and centimeters only).
2.2.5. The Loop Heat Pipe and Capillary Pumped Loop

Last few decades, the increase of the demands in the heat transfer devices capable to
work with long distances and under different gravity conditions have been observed. Despite

the capillary pumping effect inside the conventional heat pipe, the length increase leads to
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the augmentation of the pressure losses in the liquid flow, which provoke a significant heat
transfer degradation due to lower working fluid flow rate to the evaporator. Thus, a lot of
attention has been brought to the novel two-phase |oops, combining the benefits of the closed
looped thermosiphon and conventional heat pipe, as well high heat transfer rate, low
hydraulic resistance and ability to work under different gravity conditions. As aresult, two

types of two-phase loops have been devel oped in the second part of the X X' century.

First presented two-phase loop was a Capillary Pumped Loop, developed by Stenger in
1966 for NASA on-orbit spacecraft missions [2.24]. Later, in 1972, alittle different device,
called Loop Heat Pipe, has been developed in the former USSR [2.25].

Themain physical principle of operation isthe same as that of heat pipes, but the vapor
and liquid paths are here separated (Fig. 2.11). At the evaporator, a porous wick acts as a
capillary pump. The liquid evaporates by absorbing a heat flow from the evaporator. The
vapor flows to the condenser through the vapor line and condenses in the condenser. The
condensate returns to the evaporator through the liquid line. The control reservoir helps to
absorb fluctuations and fluid expansion that may occur during loop operation. The reservoir
also modulates the operating conditions of the loop, temperature and saturation pressure in
particular. It is the position of the reservoir relative to the evaporator that leads to the
distinction between the two types of two-phase loops:. Loop Heat Pipe (Fig. 2.11a) and
Capillary Pumped Loop (Fig. 2.11b).

Two-phase capillary pumped loops have severa advantages compared to the
conventional heat pipe. The porous wick provides thermal insulation and hydraulic
separation (hydraulic lock) between liquid and vapor phases, preventing phase change on
the vapor-liquid interface; they increase the design flexibility thanks to the separation of the
evaporator and condenser; the capillary structure is present just in the evaporator which
drastically reduces pressure losses and increases the capillary limit, and the separation of
liquid and vapor lines prevent shearing of liquid particles by vapor flow (entrainment limit).
Despite these advantages, capillary pumping loops are complicated to be systematically
implemented due to reservoir separation from the evaporator and necessarily presence of the

temperature control heater.
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Figure 2.11. Schematic working principle of the loop heat pipe (a) and capillary pumped
loop (b) [2.26].

2.2.6. The Pulsating Heat Pipe

The first concept of the Pulsating Heat Pipe has been proposed in 1971 by Smirnov
[2.27]. The proposed pulsating heat pipe, described in Fig. 2.12, consists of two reservoirs
(evaporator and condenser), connected by a capillary tube to ensure vapor liquid separation
in the slug form. The evaporator and connecting tube are initially filled with working fluid,
the condenser is partially filled with non-condensable gas and liquid, as shown in Fig. 2.12
(stage 1). Evaporation, caused by the applied heat load, leads to the pressure gradient
generation and following liquid pushed to the condenser by piston effect, provoking
compression of the passive gas (Fig. 2.12, stage 2). Then liquid evaporates and connection
tube is filled only with vapor. Simultaneously, when vapor gets in the condenser, it
condensates on the internal surface of this zone, provoking alocal decrease of pressure. At

the same moment, depending on the pressure distribution in the various sections of the
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device, the potential energy, stored in the volume of passive gas compressed in the

condenser, will push the liquid back to the evaporator — returning to the initial conditions.
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Figure 2.12. Single-channel pulsating heat pipe[2.27].

Degspite the singe-channel pulsating heat pipe introduction in 1971, this concept was not
used until the end of the XX century. In 1990, Akachi [2.28] introduced a new concept of
pulsating heat pipes. Relatively new, this type of heat pipe represents a unique serpentine
capillary tube bended in few/many turns from hot to cold sources, and partially filled with a
working fluid at liquid/vapor saturation state (Fig. 2.13). The fluid at saturation state is
aternately distributed in the form of liquid plugs and vapor bubbles inside the tube, due to

surface tension forces in the tube of capillary dimension.

The physical principle of the PHP is based on the phase change induced motions of
working fluid from evaporator to condenser. With heat power applied, the volume of the
vapor bubbles increases in the evaporation zone, generating outward forces. The opposite
phenomena occurs in the condensation zone — vapor bubble volume decreases with heat
rejection, generating inward forces. These two forces induce the motion of the al fluid from
the evaporator to the condenser. Due to the exploitation of both sensible and latent heat
transfer modes, PHP shows a high heat transfer capability, compared to classical heat pipes.
In addition, PHP has a simple structure and the ability to operate under different gravity
levels and different positions. However, the complexity of the physical phenomena inside

pulsating heat pipes creates a big challenge in applications design.
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Figure. 2.13. Basic construction of a closed looped pulsating heat pipe [2.29].

A detailed presentation and overview of this system will be drawn in Chapters 3 and 4
of this document.

2.3. Conclusions

A brief review of the most efficient two-phase thermal management approaches has
been donein this chapter. The comparison of these system regarding heat transfer capability
presented in table 2.1. Active cooling solutions (pump forced liquid circul ating loops) ensure
the high-performance heat rejection, uniform surface temperature and gravity independent
operation. Despite these advantages, complexity of physica phenomena involved in the
system and high power consumption for the fluid pumping represents a big challenge to use
such systems in space applications.

Passive two-phase systems could operate stably with high level of heat rejection without
supplementary energy consumption. Unfortunately, a more simple and stable device — the
thermosiphon - could not operate without gravity assistance, which makesthistype of device
not applicable for space application. Other passive two-phase systems are successfully used
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for the space missions during last few decades. However, new chalenges in the TMS for

space electronic cooling need the more efficient and simple devices.

Table 2.1. Comparison the two-phase cooling solutions.

Technology Maximum Heat Flux Total Power
[W.cm™?] [kW]
Two-Phase Microchannel [2.30] 250 -
Two-Phase Spray / Jet [2.30] 1820 -
Thermosiphon / Loop Thermosiphon [2.31] 100 10
Heat Pipe [2.32] 100 0.2
Loop Heat Pipe[2.33] 900 10
Capillary Pumped Loop [2.34] 100 10
Pulsating Heat Pipe [2.35] 30 5

The pulsating heat pipe stands out thanks to its high performance, simple structure and
ability to work under different gravity conditions. However, despite its advantages in terms
of smplicity and heat transfer, its large-scale development is not yet very relevant, unlike
other two-phase technol ogies such as the capillary pumped loops or the thermosiphon,
more mature from atechnological point of view. Certain aspects related to the operation of
the pulsating heat pipes are not yet fully understood due to relatively novel technology and
physical complexity. In further chapters, some experimentations will be led on given PHP
—in ground and space conditions — to try to better understand the physical phenomena and
the induced performances of such devices.
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Chapter 3

Fundamental M echanisms of the PHP Operation

In this chapter will be given a detailed description and analysis of the thermo-
hydrodynamic working principles of the pulsating heat pipe, their types and differences. Due
to the particular shape of the channels in the flat plate pulsating heat pipes studied in this
thesis, peculiarities of the flow in rectangular capillary channels will be aso discussed.

3.1. Pulsating heat pipeworking principles

Beyond the different geometries and dimensions, according to the arrangement of the
tube, pulsating heat pipes could be first categorized into the two principal configurations,
according to [3.1], presented in Fig. 3.1:

e Closed Loop Pulsating Heat Pipe (CLPHP), formed by the serpentine channel looping,
allowing the fluid oscillation and circulation operations;

e  Open Loop Pulsating Heat Pipe (OLPHP), where a serpentine channel is not looped (not
connected), keeping two ends closed.

@ (b)

Figure 3.1. Schematic representation of the different PHP configurations [3.1]: (a) Closed
Loop Pulsating Heat Pipe, (b) Open Loop Pulsating Heat Pipe.
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However, up to now, several other characteristics can be used to categorize the PHPs:
tubular or flat plate design, 2D or 3D structure, etc. The principal difference between tubular
and flat plate pulsating heat pipes requires to be specified due to the direct influence on the
device operation. If tubular PHP can be presented as a tube bended into a serpentine (Fig.
3.2d), theflat plate PHP can be defined as: aflat plate with engraved/machined (or obtained
by additive/etching manufacturing) single, generally square or rectangular channel forming
a serpentine between one or more hot sources and one or more cold sources (Fig. 3.2b). This

plate is sealed with a smooth plate cover to confine the channel.

(b)

Figure 3.2. Difference between (@) tubular [3.2] and (b) flat plate PHP.

The main parameter that distinguish flat plate device from tubular oneisthe geometrical
continuity between channels leading to very low transverse thermal resistance: thermal
spreading occurs and tends to strongly decrease the thermal gradients between channels.
This causes homogenization of the pressure differences in the channels, which are the main

drivers of oscillations under slug flow regime, particularly in horizontal inclination [3.3].

Even with these construction differences, all PHP types have common characteristics,
in their genera structure and, more important, in their operation. These basic characteristics

can be summarized by:

¢ A unique channel bent in a serpentine with at least a few “U-turns”. This channel could
be with connected ends (CLPHP) or not (OLPHP). The channel surface remains smooth
—no additional treatment is necessary;
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e Channd is partialy filled with working fluid, which is compatible with pulsating heat
pipe material and corresponds to the necessary thermophysics demands;

e Presence of at least one evaporation zone (hot source - heat absorption) and one
condensation zone (cold source - heat rejection);

e Acceptable presence of the adiabatic zone between evaporator and condenser, but not
required.

In addition to previously mentioned criteriafor PHP performance, the correct operation
of the device is insured by the initial liquid distribution inside the PHP in the form of the
liquid plugs and vapor slugs chain. This distribution is insured by the capillary forces
domination on gravitational forces and leads to the complete transverse tube blocking by the
liquid plug which separates neighboring vapor slugs. The meniscus region exists on both
ends of each liquid plug, caused by the interaction forces at the solid/liquid/vapor interfaces.
Depending on the surface properties and vapor slug length, the meniscus can be surrounded
by thin liquid film. In case of isothermal conditions — no heat load and no heat rejection —
liquid and vapor phases exist at equilibrium at saturation pressure which corresponds to the
device temperature. With heat applied, the fluid flows in a capillary tube in the form of the
motion of both liquid plugs and vapor slugs (Taylor flow). This flow configuration with
forces affecting the fluid flow, and corresponding heat transfer mechanisms, are shown in
Fig. 3.3.

Figure 3.3. Taylor bubble chain in avertical tube (left), the forces acting on the liquid plug
and transfer processes in the single-cell scale (right) [3.4].
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But device performance and operation strongly depend on the continuous non-
equilibrium conditionsinside the system. So, pulsating heat pipe operation can be described
with the local thermodynamic states for different zones, as shownin Fig. 3.4.

Figure 3.4. Pressure-enthal py diagram of the PHP operation [3.6].

According to Khandekar et al. [3.6], initia temperature and vapor quality in the
evaporator and condenser zones are known (or can be assumed); consequently the state at
the outlets of the evaporator and condenser are known too. If “point A” can be considered
as a starting at the evaporator inlet, the following explanations can be given to the involved
thermodynamic transformations:

A—B: (outlet of evaporator): constant pressure heat input combined with an isentropic
compression due to bubble expansion;

B—D: isenthalpic pressure decrease in the adiabatic section;

D (inlet of condenser) —E (outlet of condenser): due to the complicated nature of the
thermodynamic process between the condenser inlet and outlet, it can be simplified to
constant pressure condensation with negative isentropic work;

E—A: an isenthalpic pressure drop in the adiabatic section completes the cycle;

Because of the numerous assumptions made in this description, thermodynamic
anaysisisinsufficient to study real PHP system, but it helps to abetter understanding of the
PHP operation.
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3.2. Physical phenomenain PHP.

Pulsating heat pipe is a high-performing device with a very simple design, as was
mentioned in previous chapter. Despite these advantages, understanding of PHP operation
isstill quite complex and requiresintensive investigations: many parameters (design, fluids,
filling ratio, inclination etc.) influence the device operation. In general, these parameters can

be classified in few groups:
e Design parameters

Open or closed loop configuration

Device material and type (tubular PHP or flat plate PHP)
Channel diameter and shape (aternate or not)

Number of turns

Length of the evaporation, adiabatic and condensation zones

o O O O o O

Presence of valves (check valves or Tedavalves)

e Working fluid properties

e Operationa parameters

o Filling ratio
o Inclination and/or gravity level
0 Heatload
0 Heat sink heat transfer coefficient and temperature

First of al, the main task of aheat transfer deviceis high efficient thermal transport and
stable operation. So, from this point of view, higher thermal conductivity of the PHP material
is always an advantage. On the other side, pulsating heat pipe exploits both sensible and
latent heat of the working fluid, which influences are greatly higher than material heat
conduction, especially in cases with long adiabatic zone. Vaue of effective thermal
conductivity (Aesr = QL/[A¢(Tey, — Teona)] With, respectively, Q the applied heat load, L a
characteristic length between hot and cold sources, At the PHP solid transverse cross section
and (T, — T.onq) the temperature difference between evaporator and condenser zones) for
conventional pulsating heat pipes classicaly goes up to 10 kW.m.K1[3.7] and up to 20
kw.m1.K1 for cryogenic PHPs[3.8].
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3.2.1. Diameter influence on the liquid distribution inside PHP

Dueto the strong dependency of the flow pattern from capillary forces, one of the main
parameters influencing the pulsating heat pipe operation is the channel diameter. Indeed,
surface tension forces become predominant when channel diameter becomes smaller and
two-phase flow changes into a slug-plug -or Taylor- flow pattern, defined as the basis of the
PHP operation.

The scientists and engineers who worked on mini- and microchannel heat transfer also
tried to classify the channels, based on their diameters and/or on the possibility of the
existence of a Taylor flow inside them. A few main classifications for the transition from
macroscal e to microscal e flows, based on the hydraulic diameter, have been proposed during
few last decades. First, Mehendal et a. [3.9] recommended a size-based classification as

follows:

e Microchannels (D = 1-100 pm)
e Mesochannels (D = 100 pm to 1 mm)
e Macrochannels (D = 1-6 mm)

e Conventional channels (D > 6 mm)

Later, Kandlikar [3.10] implemented the following classification, based on the channel
diameter range and more reliable:

e Microchannels (D = 50-600 pm),
e Minichannels (D = 600 pm to 3 mm)

e Conventional channels (D > 3mm)

Unfortunately, transition criteria based just on channel dimensions do not reflect the
influence of channel size on the physical mechanisms and do not take into account fluid
properties. A more genera definition should address to the interaction of different forces, as

well gravitational, interfacial and viscous ones.

If avapor slug isintroduced in avertical channel with asmall diameter (smaller than a
critical value defined below thanks to Eq. (3.1)-(3.3)), the bubble will not rise up by
buoyancy. This meansthat liquid plugs and vapor slugs can be formed without stratification.

Fig. 3.5 and 3.6 schematically present the fluid distribution inside vertically oriented

PHPs with different diameters under adiabatic and operating condition. Two cases in Fig.
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3.5 depict the fluid distribution for the device with channel diameter much higher (@) and
slightly higher (b) than critical one (from Eq. (3.1)). Initially, under adiabatic conditions, all
liquid phase is accumulated in the bottom part of the device due to stratification. During
operation, the effect of surface tension reduces, working fluid stratifies by gravity and the
device with higher channel diameter works in the thermosiphon mode (Fig. 3.5a) — liquid
boilsin the evaporation zone, vapor flowsto the condenser, where it condensates and returns
into the evaporator along the tube inner walls thanks to gravity forces. Unlike previous case,
if the channel diameter is decreased (Fig. 3.5b), the flow circulates with large liquid plugs
and most of the liquid sticks to the wall — the device operates as a bubble pump thanks to

buoyancy.

@

(b)

Figure 3.5. Effect of channel diameter on fluid distribution inside the circular tube under
adiabatic and operation conditions. diameter (a) much and dlightly (b) higher than critical
one[3.5].
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If channel diameter becomes lower than a critical value, the surface tension forces
dominate and stable slug/plug liquid-vapor distribution aong the channel is formed, as
shown in Fig.3.6a This type of flow ensures the continuous and effective heat and mass
transfer inside the PHP. On the other hand, if channel diameter becomes much lower than
critical value (Fig. 3.6b), the lug-plug flow is maintained, but the oscillations are limited by

the significant influence of the surface and viscous forces.

@ (b)

Figure 3.6. Effect of channel diameter on fluid distribution inside the circular tube under
adiabatic and operation conditions: diameter (a) slightly and (b) much lower than critical
one[3.6].

All these configurations have been classified thanks to dimensionless numbers
describing the ratio between capillary and other influences forces (gravity, inertial, viscous
forces). Originally, Hosoda et a. [3.11] proposed to use dimensionless Bond number (Bo =
(p1 — py)gD?/ o), representing the ratio between capillary and gravity forces, to identify the
diameter range, providing the transition to slug-plug flow. A critical dimeter based on Bond

number can be calculated as follows:

g
Derpo = 2\/ 9(P1—pv) (3-1)

It hasto be noted that this criterion has been widely used in theliterature for PHP design.
However, as discussed by Mameli et al. [3.12], this criterion is obviously not applicable for
conditionswhere gravity acceleration isno more relevant or applicablein such equation, like
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high accelerations or microgravity conditions. From the knowledge of velocity of the liquid
plugs and vapor slugs motions (around 0— 1 m.s* for PHPS), liquid inertia has been accepted
as a predominant force between the two phases due to the higher density of the liquid phase.
From this point, a new criterion based on the Weber number, based on the ratio between
inertial and capillary forces (We = p,UZD /o), has been proposed by Gu et a. [3.13] and

defines anew critical diameter from the critical value known as We,cr = 4:

40
p1Uf

Derwe = (3.2)

Initially related to the microchannel two-phase flow, and based on Garimella number

Ga (Ga = ReVBo), a more relevant criterion has been proposed later by Harichian and
Garimella[3.14] to define the diameter limitation for reduced gravity fields, from the found
critical value of Ga = 160:

160
Dcr,Ga = |——=— (3-3)

o
plUl\fg(pl—pv)

According to presented criteria, the above mentioned simplified explanation of the diameter

effect can be classified quantitatively.
3.2.2. Fluid flow and heat transfer in PHP

Considering the fluid distribution pattern inside the PHP, the motion of the liquid plug
could be described by momentum equation (Eg. (3.4)). The main forces acting on the slug-
plug flow system originate from the surface tension, viscosity, inertia, tangential shear
stresses and the force associated with the digoining pressure at the molecular level. So, the
integrated momentum equation for amoving liquid plug of length Ls over the channel with

cross-section area Sis given by:

d(mqu;)

dt = [(Pr - Pa) — AR, £ plgdh]S - (EL' + Fturns) (3-4)

where m represents the liquid plug mass (m = S-Ls) and u; the liquid slug velocity. AP¢ is
the capillary pressure drop arising from hysteresis between advancing (6a) and receding (6r)
contact angles during the motion of the plug (4Pc. = (20/R)-(-cos(#a) + cos(fr)). This

additional resistance is additive and gets amplified if several slugs are simultaneously

located in achannel (see Fig. 3.7). The cumulative pressure gradients damp oscillations and,
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when contact angle hysteresisis too large, an excessive number of liquid plugs may rapidly
block theflow, especially if thedriving forceisnot sufficient [ 3.4]. Theterm pigdh represents
gravity pressure drop, which can be positive, negative or equal to zero according to the
inclination of the tube and the direction of the liquid plug motion. F; represents the viscous
shear stress term (classically, Fr = A(LJ/D)S(piui?)/2 where 4 = 64/Re is the Poiseuille flow
friction factor for established laminar flow) and Frwrins is a supplementary force caused by the
singular pressure drop during plugs enters inside the curved part of the tubes [3.15]. For
liquid plugs of high length-to-diameter ratio (LD > 1), the viscous shear stress terms
becomes dominant compared to the capillary forces. Finaly, the term (Pr — Pa) means the
main driving agent of the liquid plug motion and presents the pressure difference between
vapor bubbles surrounding the liquid plug. Detailed description of the vapor thermodynamic
state and pressure evolution caused by heat and mass transfer can be found in [3.3] and
[3.15].

(b)

......

P

instantaneous L
pressure T

Pressure,

mean pressure—

Position along the pipe, x
Figure 3.7. Pressure drop in Taylor bubble flow assuming (a) no pressurein individual

bubbles and (b) liquid plug advancing angle lower than w/2 [3.4].

There are alot of contradictions in the heat transfer mechanismes inside pul sating hest
pipe: it was repeatedly established that liquid evaporation/condensation contributes mainly
as ameans to slug-plug flow motion and the main part of heat is transferred by the sensible
heat of the liquid plugs flowing from evaporator to condenser and vice-versa. Recently, the
predomination of the latent heat transfer in pulsating heat pipes has been experimentally
proven (between 55% and 80% of rate compared to sensible one) (Fig. 8.a) [3.16; 3.17].

Infrared measurements of the single vapor slug flow in a capillary channel heated by
Joule effect (Fig. 3.8b) showed that the external temperature of the tube wall cooled only by

classical convective cooling (single liquid liquid flow) increases transiently with time (Fig.
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3.8¢) [3.18]; in the region named “close to the meniscus”, experimental temperature slightly
decreases and separates from the numerical curve (after 3.6 s); the third zone corresponds to
the liquid thin film evaporation phase: a sudden drop of the wall temperature is observed,
followed by a plateau. The wall temperature in this area seemsto be amost constant in time
due to high heat transfer rate (the temperature minimal value is very close to the vapor

saturation temperature).

@
Sensible heat transfer  Sensible/latent heat transfer
via liquid slugs via vapor plugs

(b) (©)
Dried zone Thin film Liquid plug

[ 1
I

-
i L D':M
— i
¥=0 ¥=67mm

Heated section

Figure 3.8. Sensible and latent heat transfer near meniscus region: (a) schema[3.17]; (b)

evaporating thin film in heated copper tube and (c) infrared temperature profile [3.18].

The last zone corresponds to the sharp linear temperature increase (“dried zone”) due
to complete liquid film evaporation and sensible heat transfer with vapor. These results
confirm the above-mentioned assertion that latent heat transfer viathe liquid films accounts
for a considerable portion of the total heat transfer rate a very high efficiency of pulsating
heat pipes.
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3.2.3. Peculiarities of slug-plug flow in channels with rectangular shape

Due to specific production methods, the flat plate pulsating heat pipes are most of the
time manufactured with milled channel with sharp angles (rectangular, triangular,
trapezoidal etc.). These sharp angles induce capillary pressure imbalance between the edges
and the corners and, as follows, non-symmetrical cross-sectional fluid distribution. The
capillary pressure gradient induces the liquid flow along the channel even in dry-out
conditions or with non-moving bubbles (no liquid deposition on the walls). Such efficient
self-induced transport mechanism of liquid by the capillary effect is naturally absent in

circular tubes.

The schema of abulk meniscuswith thick capillary filmsin the corners and dried edges
of avertical square channel, during evaporation, isillustrated in Fig. 3.9. The experimental
comparison on the self-induced evaporation of n-hexane in capillary channels with square
and circular cross-section, open to stagnant ambient air, confirmed atendency indicating that
evaporation in a channel with corners can be several orders of magnitude faster than in a
circular channel with the same dimensions. From other side, prediction of the liquid film
length and thickness and following modelling of the heat transfer became avery complicated
task.

Figure 3.9. Liquid film distribution in a vertical rectangular square channel [3.19].
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3.2.4. Influence of orientation on the two-phase flow pattern inside FPPHP

The observations of the hydraulic behavior insideflat plate pulsating heat pipes are still
limited but enough for the qualitative comparison of the fluid flow regimes occuring in

different device orientations.

In vertical position (bottom heated mode, BHM), different modes can be observed
depending on the operating conditions. For example, with low filling ratios (below 20%),
the device can operate like an interconnected looped thermosiphon [3.20]. In this mode,
vapor rises through the center of the channel and the condensed liquid returns to evaporator
in aform of liquid film falling along the corners. Same effect was observed also with heat
load augmentation [3.5]. Such operation is aresult of the channel shape (with sharp angles)
and was not observed in previous studies with circular-shaped channels [3.21]. This trend
was confirmed even for a filling ratios close to 50% and could be caused by capillary

pressure inbalance in the channel corners[3.22, 3.23].

Sometimes, the annular flow was prevaent in the central and lateral channels and
distributed along the whole length of the FPPHP, and the excess liquid was trapped in
adjacent channels, without contributing in heat transfer (dotted yellow rectangles in Fig.
3.10a). Indicated by flashes waves, Fig. 7a shows some instabilities at the liquid/vapor
interfaces caused by liquid-vapor counter flow. This phenomena became more obvious with
channel diameter increase (related to the critical diameter).
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Figure 3.10. Visualization of the fluid flow in adiabatic section: (a) annular flow, Q =40
W and (b) semi-annular flow, Q = 100 W (copper FPPHP, 2x2 mm?, ethanol, FR = 50%,
BHM) [3.22].
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According to [3.20], higher filling ratios lead to the transition from thermosiphon mode
to pulsating slug-plug flow regime. The same effect was observed for heat load increase —
the flow pattern inside the FPPHP became a mix between classical thermosiphon annular
(counter-current) flow in some channels and capillary slug-plug flow in others. In this case,
liquid plugs are moving from the evaporator (Fig. 3.10b), with a random and rapid velocity
[3.22]. This flow pattern change leads to the thermal characteristics improvement by the
sensible heat contribution in overall heat transfer.

The flow pattern in horizontal position can be only slug-plug (if theinternal diameter is

small enough to prevent liquid stratification) due to absence of the gravity forces influence.

Despite the reported stable and efficient FPPHP operation in horizontal position [3.3],
sometimes unstable operation and low thermal performance, caused by intermittently long-
term stopover phenomena (momentary stops of flow oscillations) or even early dry-out of
the evaporator, was observed during device operation, tested in horizontal orientation [3.21,
3.24, 3.25, 3.26]. The insufficient pressure perturbations from one channel to another can

cause this operational stops.

Succesive photos of a FPPHP (8 turns, 2x2 mm?, water) tested in horizontal position at
30 W of heat load are presented in Fig. 3.11 [3.24]. Oscillations occur only for short time
periods and completely stopped at steady-state. Such operation can be explained by the
thermally linked neighboring channels — thermal equilibrium in the neighboring channel
leads to the driving pressure diminution, unlike tubular PHP with naturally separated

channels.

In dried-out configuration, long liquid slugs are accumulated in the cold edge of the
channels (condenser zone), forming U-shaped liquid columns of approximately the same
length, as shown in Fig. 3.11c. Due to liquid accumulation on one end of the device, the
channelsin the evaporator zone are totally occupied by vapor exposed to dried wall without
liquid film, resulting in vapor superheating. In this conditions heat transfer from evaporator
to condenser are done mainly by conduction with relatively poor therma performance
compared to the normal operation. When the fluid starts to flow, both ends of a U-shape
liquid column oscillate in opposite directions. If the amplitude of oscillations is sufficient,
liquid flow into the evaporator and vapor flow into the condenser occur, completing the

circulation cycle.
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Figure 3.11. High speed visualization of the FPPHP operating in horizontal position (a)
initial state; (b) after 1 min of heating; (c) steady-state operation (2x2 mm?, Q =30W,
water, FR = 70%) [3.24].

3.3. Conclusions

The fundamental operational principles of the pulsating heat pipes, aswell peculiarities
of the flat plate devices and their differences, and main influencing parameters, have been
discussed in this chapter. Despite the fact that physical mechanisms of conventional (tubular)
pul sating heat pipe operation are well known, particular and contradictory phenomena occur
in flat plate devices due to the thermal link between channels and their specific shape (sharp
angles presence leads to the liquid film distribution thanks to capillary pressure unbalance

between corners and edges of the transverse cross section).

The operation of an oscillating heat pipe depends on a complex combination between
different parameters, since they are all more or less coupled to each other. The current level
of knowledge (especialy on FPPHPs) does not yet alow to create an engineering
recommendations to be used in industrial level or create an adequate modelling tool.
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So, areview on the experimental and numerical studies, intended to shed light on the

different parameters influencing the pulsating heat pipe operation, will be presented in the

following section.
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Chapter 4

Parameter s Influencing on the PHP Ther mal Perfor mance

In previous chapter, the global mechanism of the PHP functioning was presented;
influence of some geometrical parameters (channel shape/diameter; tubular/flat plate) and
device orientation on flow and heat transfer behavior inside was discussed. Besides aready
discussed studiesin last part, the influence of the fluid thermophysical, operating conditions
and geometrical parameters on the pulsating heat pipe thermal transport characteristics is
required. The comparison of the parameters influence on the thermal performances (based
on the operational temperatures and thermal resistances) of tubular and flat plate pulsating

heat pipes will be done in following chapter.
4.1. Channel diameter and shape

Aspreviously mentioned, theinternal diameter of the PHP directly influencesthe device
operation due to the fluid distribution along channel, relating to the interfacial interaction
with the PHP channel walls and gravity viscous effect. Fig. 4.1 presents a comparison of the
thermal resistance of three PHPswith different channel diameters and with water and ethanol
as working fluids (filling ratio FR = 50%) from [4.1]. It is clear that the thermal resistance
decreases with increasing inner diameter for the water-charged PHPs (Fig. 4.1a). However,
the opposite trend is shown by the ethanol-filled PHP (Fig. 4.1b): thermal resistance
increasing with increase of the channel diameter. Authors [4.1] found similar results for the

same PHPs, filled with other filling ratios and operated with different evaporator lengths.

However, not only channel diameter influences pulsating heat pipes operation, but also
the channel shape does: it directly affects the menisci shape and fluid distribution around the
vapor slug. Fig. 4.2a shows a unitary cell of two similar flat plate PHPs with the same
channel diameters, but with different shapes (squareor circular) and fluid distribution around
the channels [4.2]. In the case of square channels, the liquid will tend to accumulate in the

corners, giving rise to capillary action generated due to sharp angle corners, and the menisci
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will recedeif thefilling ratio islower. Unlike square channel, theliquid uniformly distributes
along the perimeter of the circular channel. Moreover, the square channel has around 27%

larger perimeter length than circular one, which means a larger wall-to-fluid heat exchange

area.
1.0 T — T T T T T 1.2 S
09F 4 —a—D;=1.2mm 1.1 e —=—D;=1.2mm
E e~ D,=2mm 2 1.0—.A\ e—D;=2mm
(&) 08 —4—D,=2.4mm © 09l X —A—D,;=2.4mm
g o7t L=5cm 2 osl L;=5cm
§ \ water 50% filling ratio % o7l .\. ethanol 50% filling ratio 1
= °T N\ NS
7] ¢ o 06 N \A
o 05} \, . o o A,
= N R < 05} W el
S 04l NS ey \ o S —A
EY — TTm = E 04} . ~—e—¢
o A.\.\~\. é \. —e—o
0.3} A_O—0— 3l o
2 T o S e
0.2 1 1 {1 1 1 1 1 1 1 1 1 .
10 20 30 40 50 60 70 80 90 100 110 120 130 20 30 40 50 60 70 80 90 100 110 120 130
Heating power input (W) Heating power input (W)

Figure 4.1. Effect of channel diameter on the PHP thermal performances for different
working fluids: (a) water and (b) ethanol (FR = 50%, vertical BHM, Tconda = 25 °C) [4.1].
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Figure 4.2. (a) Scheme of the fluid distribution inside squire and circular channels at
FR=22%; temperatures histories at different heat power inputsfor: (a) circular cross-
section and (b) square cross-section (D = 3.18 mm, water, FR = 60%, vertica BHM, Tcond
=20°C) [4.2].
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Fig. 4.2b and 4.2c illustrate the temperatures behavior for both PHPs (circular and
square cross-sections) as functions of time for different heat power input levels. The start-
up (red flash in Fig. 4.2b) of the circular cross section PHP is observed since 200 W applied
heat power; but, for the square cross section PHP, it happens earlier at 80 W applied power
(red flash in Fig. 4.2c). A second activation was observed at 160 W, accompanied by the
evaporator and adiabatic temperatures decrease, and condenser temperature increase. From
this heating power level, the amplitude of the oscillations decreases. In addition, thermal
resistances of PHP with circular channel are quite higher than thermal resistances for square
channel PHP, starting from 80 W heat applied power (Fig. 4.3).

€Y (b)
0,6 = 0,6 = —
- o ilj‘i“;fd“w Zn;\-i‘; ‘.‘,mx]!'vv‘ﬁv Temp - 41 4‘—’,‘@\ :Z )
= 3 ¢ ' — R B B R A o
% ' - o : 20 % - 8\ . h
T 04—} . Power 140w S 04 = et : "
. k Letd o g T UANES B
= = FT 2 SR c . \ =
8 03 - ; A 8 034 \ .
7] X N " R 3
? 47 \ ik 2 2 :
X 02 — S, - X 02 — % * ' b
© 4 © - . s
E - <~ = ¥ hE PO
5 01 = [ § 01— }\;\\‘\”
= 41 a B8] ¢ = 48 |c| pT®ee T
0'0 L) ] L] l L ] L] I L L l L] l T ' 0’0 I ' 1 l I I I I 1 l ] I ] I ] I
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Power (W) Power (W)

Figure 4.3. Thermal resistance for (a) circular and (b) square cross section PHPs (D = 3.18
mm, Water, Tcond = 20 OC) [42] .

4.2. Orientation

Due to the PHP’s basic operational principles, device orientation is one of the most
important parameters influencing the performance and operation stability. It is known that
gravity assists the liquid reflow to the evaporator for device positioned in vertical or
favorably inclined orientation with condenser located above the evaporator. However, in
opposite orientation, with evaporator located above condenser, the gravity forces are directed
away from the evaporator, which means that the driving pressure forces should be high
enough to ensure the liquid flow. There is particular case on which the gravity amost not
influences the fluid flow: i/e in horizontal orientation. In this position gravity force is

directed perpendicular to the flow.
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In order to understand the orientation influence on PHP operation, many studies have
been done for PHPs tested with different geometrical parameters and different fluids.
According to previous studies [4.3; 4.4; 4.5], the PHP operates with best thermal
performancein vertical bottom heated mode (also called “favorable orientation’), but change
of inclination angle does not influence significantly the device operation, until the horizontal

position for which the heat transfer efficiency drastically decreases (Fig. 4.4).
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Figure 4.4. Effect of inclination angle on the PHP thermal resistance: (a) conventional PHP
(D =2 mm, ammonia, FR = 50%, Tcona= 28 °C) [4.4].

4.3. Lengths of the PHP respective zones

There are not alot of available literature on the influence of evaporator, condenser and
adiabatic lengths on pulsating heat pipes thermal transport characteristics. However, the
length of PHP does not affect just the working fluid amount, but also the fluid flow inside
the tubes, and so heat transfer performances. On one hand, it is clear that the length of each
section of the device (evaporation, adiabatic and condensation) affects pulsating heat pipe
operation in their own way. For example, decreasing evaporator and condenser lengths leads
to thelocal heat transfer efficiency diminution due to alower heat transfer area. On the other
hand, it is known that condensation heat transfer rate in pulsating heat pipes is lower than
evaporation ones. Due to the wickless structure, PHP is not subjected to the entrainment
[imit, but the boiling limit might occur and manifest itself by an unacceptable overheating
of the evaporator due to the lack of cooling working fluid, tending to an eventually dry-out.
Thus, heat transfer areaof the condenser needsto be high as much possible[4.6]. Concerning
adiabatic zone, its length mostly influences the flow behavior inside the channel — the longer
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the channel the higher flow resistance caused by viscous forces, which requires highest

driving pressureto overcome the flow resistance.

Qu et al. [4.1] havetested closed loop pulsating heat pipe to find an optimal evaporator-
to-condenser length rate. Fig. 4.5a shows the evolution of the thermal resistance of a
pulsating heat pipe formed of a seven centimeters long condenser (over atotal length of 22
cm) and filled with water and ethanol at FR = 50%. Evaporator lengths varies from 3 cm to
7 cm by step of 2 cm. Among all of the evaporator lengths, the largest thermal resistances of
the PHP appears for the lowest 3 cm length, indicating that the over-short evaporator length
makes the device work at alow efficiency. Thermal resistance curves clearly show the best
performances of both PHP (filled with water and ethanol) for the 7 cm-length evaporator.
Obtained results look very different from tests performed by Charoensawan and Terdtoon
[4.7], where authors found that lowering the evaporator length improved thermal
performances for al tested channel diameters, working fluids and filling ratios. This results
can possibly be caused by the comparison of the evaporator length among PHPs with

different total lengths, contrary to Qu’s tests carried out with constant PHPs length.

€ (b)
141 —— : : 120 r T T T T T R
1.0} L:‘\\ 50% filling ratio ] v
s water ethanol 100 | ]
2 osl" A, —a—L_=3cm —o—L_=3cm | 3 -
O r A\ N ¢ s 1 6
;— 0.8 \b‘\\ \ . Le=50m Le=5cm-. 6 80 Lol 6 ]
Q o\ \ \ —A—[ =Tem —4—L =Tcm )
c 07 \ \ \ e e C — a <o e
8 A\ T - ] T
£ sl W NoE | % 6o} va %4® |
L \» 0 1 o L=10
Sl NOL L e ] A OQQ & L=20mm
g oaf N e, 0] a0} L& A L=30mmf
E 0'3 | e .\‘;?:\7\'.*‘7"‘1% o4 vV L=40mm
. 0.2 ] PR TPUR BREPEE SR TPUR SRS TP .Ai"j—rlr‘.;rl\%\‘l. i ] 200 5‘0 160 150 2(‘)04 2Lé-050 ;gno
"0 20 30 40 50 60 70 80 90 100 110 120 130 =z
Heating power input (W) Q [VV]

Figure 4.5. Influence of the (a) evaporator (FR = 50%, vertical BHM, Tcond= 25 °C) [4.1]
and (b) condenser (1.5x1.5 mm?, acetone, FR = 50%, horizontal, Teona = 20 °C) [4.8]

lengths on the PHP thermal performance.

Winkler et a. [4.8] evaluated influence of the condenser plate length on the PHP
thermal behavior in the context of dry-out probability decreasing. As shown in Fig. 4.5b,
increasing the condenser plate width delayed the occurrence of dry-out for PHP tested in
horizontal position. Moreover, the larger condenser area leads to evaporator temperature

decrease, probably dueto higher condensation rate and closer to evaporator liquid formation.
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The question that rises from these last two results is whether the increasing performances
come from the increase of the evaporator length, the condenser length or from the decreasing
adiabatic length.

Figure 4.6. Adiabatic length influence on the PHP thermal resistance (1.6x1.7 mm?,
ethanol, FR = 50%, Tcona= 20 °C) [4.9].

To answer to such question, Pagnoni et a. [4.9] have studied the adiabatic section length
influence on PHP operation. Authors changed adiabatic length making the condenser move
into the evaporator direction (Fig. 4.6) and found that adiabatic length plays an important
role on the PHP behavior and performances. thermal resistance decreases with decreasing
adiabatic length. Moreover, with the minimal distance (green curves), thermal resistance is
almost similar for horizontal and vertical positions — gravity does not seem to significantly
affect thermal performances.

The influence of the length of each PHP section on its operation and heat transfer
performance is obvious, but almost unstudied. The absence of relevant studies on this topic

creates a huge interest for future works.
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4.4. Number of turns

By default, pulsating heat pipeisaclosed or coupled tube with several numbers of turns.
Parallel channels quantity increase leads to the increase the PHP volume capacity and heat
transfer area in evaporation and condensation zones. Moreover, thermal performances

becomes almost independent from orientation with higher numbers of turns [4.10].
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Figure 4.7. Influence of the number of turns on PHP performance (water, horizontal, Tcond
=25°C) [4.7].

Charoensawan and Terdtoon [4.7] tested PHPs with different channel diameters (1 mm
and 2 mm) and evaporator lengths (50 mm and 150 mm), water with filling ratio of 50% was
used asworking fluid (Fig. 4.7). Tests have been performed for the PHPswith 5, 11, 16 and
26 turns. For a50 mm long evaporator with number of turns up to 26, the thermal resistance
slightly decreased. So, the thermal resistance significantly reduces as the number of turns
increased and so heat performances are enhanced. However, the best performance of all
PHPs was obtained for the maximum number of 26 turns, which enhances the fluid motion.
On the opposite, operation failed for al tested PHPs with the smallest number of turns (5

turns).
4.5. Filling ratio
Since the pulsating heat pipe operation is based on the oscillatory movement of the

liguid-vapor pairs (plugs and slugs), the necessary condition is to have enough liquid inside
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the PHP that allows this two-phase distribution. The ratio between the volume of liquid
phase, being inside the PHP, and the total inner volume of the channel is called “filling ratio”
(FR). Considering thefollowing two extreme cases: 0% and 100% of filling ratio, it becomes
obvious that, in thefirst case (FR = 0), if thereisno fluid inside PHP, the latter will operate
in dry mode which means pure conduction heat transfer; but if PHP is filled with 100% of
liquid, and knowing that the liquid is incompressible, there will be no place for bubbles
formation, so the PHP operates in the single-phase thermosiphon mode. Thus, the filling
ratio range from 10% to 90% is considered as a true range for the PHP operating as a
pulsating device [4.11].

Despite numerous studies on the filling ratio influence, it remainsimpossible to clearly
define the optimal value because the optimal filling ratio strongly depends on operating
conditions, such as orientation, working fluid properties, distance between evaporator and
condenser, their respective lengths, etc. Most of the time, a FR value close to 50% has been
found by researchers, but with avariation in range depending on every operating conditions.
At the same time, an optimal charge ratio exists for each PHP setup; for many typical
experiments (circular cross-section in a planar array with lessthan 20 paralel channels), the

optimum filling ratio has been found of around 40% [4.12].

Fig. 4.8 describes the effective thermal resistances of a PHP (1 mm diameter, 150 mm
length, 20 turns) charged with ethanol (Fig. 4.8a, FR =50, 70, 85%) and acetone (Fig. 4.8b,
FR =10, 35, 50, 70, 85%), and tested in vertical position (BHM). There are different lowest
thermal resistances with different heat inputs and filling ratios. For the PHP charged with
ethanol, the lowest thermal resistance at low heat load has been found for FR = 50% and the
highest for FR = 85%; but for higher heat loads, PHP charged at FR = 70% has shown the
best thermal performances. Similarly to the case with ethanol, PHP charged with acetone
operates better at lower heat loads with filling ratio of 35% and presents worst thermal
performances for FR=85%. But at higher heat loads, the PHP has shown better
performances at FR = 70%.

Yang et a. [4.13] evaluated filling ratio influence on the thermal performance of two
PHPs (1 mm, and 2 mm, internal diameters) operated in vertical (BHM and THM), and
horizontal orientations and filled with ethanol asworking fluid (see Fig. 4.9a). For horizonta
and vertical THM orientations, the optimum filling ratio was of about 50% — 65%. In vertical
BHM position, the optimum filling ratio was of about 40-70%, and 15 % was found for
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lower heat load, corresponding to a minimum thermal resistance. This is attributed to the
gravity assisted thermosiphon mode of operation, i.e. the device does not act asaPHPinthis
situation, but as an interconnected array of closed two phase thermosiphons. However, with
heat load increase, filling ratio has to be increased and the device starts to perform in self-
excited thermally driven oscillating/pulsating mode. In this case, the maximum thermal

performance is not very sensitive to FR in the range between 40% and 70%.
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Figure 4.8. Thermal resistance for PHP tested in vertical position and filled at different
ratios with (a) ethanol and (b) acetone (1x1 mm?, BHM, Teona = 11 °C) [4.14].
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Figure 4.9. Influence of thefilling ratio on the PHP thermal performance with () 2 mm
(ethanol, Teond= 20 °C) [4.13] and (b) 0,35 mm (FC-72, BHM, Tcond = 20 °C) [4.15] of
interna diameters.

Finally, Kamijima et al. [4.15] evauated the filling ratio influence on micro-FPPHP
with channel internal diameter of 0.35 mm and filled with Fluorinert FC-72. For low heat
input (up to 10 W), the thermal conductivity of micro-PHP increases with the filling ratio
increase (Fig. 4.9b) but, the effective thermal conductivities for FR = 39%, 44%, and 63%
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decrease when heat load exceeds 10 W, indicating the occurrence of the dry-out. The micro-
FPPHP filled at FR = 48% and 54% can operate till almost 25 W with continuous effective
thermal conductivity increase. The optimal FR in this case tends to increase the heat power

range of operation.

However, filling ratio is also related to the liquid plugs and vapor plugs proportions: on
one hand, with low filling ratios, the liquid plugs are shorter and wall friction forceis smaller
leading to easier oscillations. But continuous channel wall rewetting in the evaporator
becomes more difficult and dry-out appears more frequently. On the other hand, high filling
ratio leads to higher friction forces, that means the necessity in higher pressure difference
between neighboring vapor slugs to drive the flow [4.16]. It can be concluded that the
optimal filling ratio is the result between liquid and vapor plugs distribution and respective

lengths in the device, depending on operating conditions.
4.6. Working fluid

First of al, the working fluid should correspond to all design, project and safety
demands, i.e. satisfy the requirements related to the material — fluid compatibility, PHP
channel diameter, working temperatures, pressure etc. But from the operationa point of
view, the fluid should have high value of the slope of vapor-liquid saturation line ((dp/dT)sat)
[4.17] to ensure stable liquid-vapor pairs oscillationsinside PHP. Kearney et al. [4.18] tested
PHPs filled with ethanol, Novec 649 and Novec 7200 (their liquid/vapor saturation slopes
are shown in Fig. 4.10a in comparison with water). Based on the (dp/dT)szt values and
experimental results, it seemsthat Novec 649 isthe best working fluid (from the three tested)
to ensure stable operation of PHP (Fig. 4.10b). To confirm this, the temperature differences
between evaporator and condenser are presented in Fig. 4.10b for PHPs filled with ethanol
and Novec 649 (FR=30%). It is clearly shown that, in horizontal inclination, the PHP filled
with ethanol showed worse performance than with Novec 649; moreover, PHP filled with
Novec 649 continued its operation till 0.8 W.cm? of heat flux, while PHPfilled with ethanol
failed at 0.6 W.cm. In vertical orientation, PHP filled with Novec 649 again showed better
thermal performances than with ethanol.

Later, based on previous investigations and numerous assumptions, Kim and Kim.
[4.19], proposed a figure of merit for the working fluid selection related to their micro
FPPHP (80x35x1.7 mm?, D=0.67 mm).
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@ (b)

Figure 4.10. (a) (dp/dT)sa as function of temperature for various working fluids and (b)
temperature difference between evaporator and condenser (1.55x1.9 mm? FC-72, FR =
30%, Teond= 18 °C) [4.18].

Assuming that a thin liquid film surrounds each vapor bubble, vapor is in saturation
state, and pressure can be expressed using the Clapeyron equation and the ideal gas law
corrected with compressibility factor Z:

P, = (a_P) ZRTga (4.1

oT sat hw

Previoudly, it was noted that pressure difference between two vapor slugs surrounded a
liquid plug (Pr - Pa) isamain driver for oscillation motion in PHP. Asthe experimental time-
average temperature difference between two vapor slugsis less than 2 °C [4.19], the terms
of Eg. (4.1) can be assumed to be equal to the values corresponding to the average saturation
temperature of the two vapor plugs and can be evaluated at Tsat = (Tsatr + Tsata)/2. Then, the

driving pressure for the fluid motion (from Eq. (3.4)) can be simplified asfollows:

oP ZRTsq
AP, = (Pr - Pa) ~ 2 (_) —t (Tsat,r - Tsat,a) (4-2)

or sat hw

Assuming that slug-plug motion in PHP is afully developed laminar flow, the viscous
friction of vapor is negligible and fluid velocity is related to the sensible heat transfer rate
due to the motion of liquid Slug (U = Qsens/PICITev — Tcond) Where Qsens=ysensQ 1S
experimentally obtained with sensible heat transfer rate, related to total heat transfer), the

frictional pressure drop is determined as follows:

LS sens
APT=32ul(§)ul( YoensQ ) (4.3)

PlelS(Tev_Tcond)
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Since the figure of merit is proportional to the ratio of driving pressure 4Py on the
frictional pressure drop 4P (see Eqg. (4.5)), the latter has to be calculated::

P
AP, (ﬁ)satZRTsat(Tsat,r_Tsat,a) (Plcpls) (Tev_Tcond)

- Q

4.4
APy 16hlvﬂl(g_§) (4.4)

Vsens

Based on the juxtaposition of curves for inversed pressure ratios and thermal resistance
values (Fig. 4.114), the figure of merit can be extracted from the pressure ratio. The thermal
resistance of a PHP can be estimated by assuming that the driving pressure for the fluid
motion (EQ. (4.2)) isthe same with the frictional pressure drop of the liquid slug (Eq. (4.3))

asfollows:

Rth — (Tev_Tcond) — lplel(g—I;)satZRTsatl ( 16LsYsens ) (45)

Q hypp SDZ(Tsat,r_Tsat,a)

wherethefirst term of right-hand side combines all fluid thermophysical properties from the
pressure ratio, while the second term corresponds to the residual term. The term inside the

brackets representing the figure of merit:

op
c (—) ZRT.
Picpl\ 57 sat sat

hpu

(4.6)

Mpyp =

Variation of the proposed figure of merit as a function of operation temperature is
presented in Fig. 4.11b for different working fluids. It qualitatively predicts the thermal
performance of PHPs filled with different working fluids. Based on the graphics Fig. 4.11a-
b, R-134ais the best working fluid, studied by Kim and Kim.

€Y (b)

Figure 4.11. (a) Comparison of the thermal resistance of the MPHPs with the inverse of the
pressure ratio (Eq. (4.4)) at various operating temperatures; and (b) change in the values of
the proposed figure of merit (Eq. 4.6) for micro-FPPHP with operating temperature and
working fluid (1x0.5 mm?, FR = 50%, BHM) [4.19].
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However, if anaysis provided by authors is suitable for their PHP under tested
parameters and has a good agreement with experimental results, the best thermal
performance for larger pulsating heat pipes was obtained with water as a working fluid.
Therefore, it can be concluded that the figure of merit can finally be proposed as an initial
qualitative guideline for working fluid selection to be used in micro PHP. Anyway,
validation of proposed approach needs much more approbations with different geometries.

4.6.1 Binary mixtures

Passive heat transfer enhancement, based on fluid modification, is one of the more
practical techniques thanksto its easily implementation and low cost. As mentioned above,
the PHPs operation behavior and performance are greatly influenced by the working fluid
properties. Some of them directly affect both flow behavior and thermal performances.
However, it is possible to change the properties of the different fluids by mixing them in
various volume ratios to improve the performances of PHPs. During the last decade, authors
studied PHPs operation with classical binary mixturesin different proportions, aswell water-
acetone, water-ethanol, ethanol-acetone [4.20; 4.21; 4.16], and even immiscible water-
HFE7100 mixtures [4.22] and pentane/heptane/methanol mixtures [4.23]. Authors reported
the positive influence of some mixtures on their PHP start-up and dry-out delay. However,
authors also concluded on the dominating importance of the filling ratio, mixing ratio and
binary mixture type on the PHP operation. A more detailed information can be found in the

review paper of Ayel et al. [4.24].

Results for a PHP with channel diameter of 2 mm tested with water, methanol, acetone
and their mixtures, at FR = 50%, obtained by Pachghare and Mahalle [4.25], are presented
in Fig. 4.12. It can be seen that the PHP filled with water-methanol mixture (Fig. 4.12a)
gives better thermal performance than both pure working fluids, especially water. It is aso
clear that, during starting at low heat loads (from 10 W to 30 W), the thermal resistance of
the pure working fluid drastically varies and, with heat load augmentation, the thermal
resistance curves converge for all fluids. However, after 80 W of heat load, water-methanol

binary mixture filled PHP dries out.

In the case of water-acetone mixture (Fig. 4.12b), the PHP presents lower thermal

resistance than with pure water, but higher than with pure acetone. Heat load augmentation
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does not provokethe dry-out at high heat fluxes. This configuration does not seem interesting

inthat it only leads to intermediate thermal performances between both pure fluids.
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Figure 4.12. The binary mixture influence on the PHP performance: (a) methanol-water
and (b) acetone-water mixtures (D = 2 mm, FR = 50%, BHM) [4.25].

4.6.2. Self-Rewetting Fluids

Heat transfer degradation of PHPs often happens due to partial or full dry-out of the
evaporator zone, particularly when using water as working fluid: while very performing
through itsthermophysical properties, its bad wettability, compared to other fluids, generaly
plays a negative role on heat and mass transfer in such systems. In order to overcome this
problem, binary agueous mixtures, based on the addition of alow quantity of high-weight
alcohols, aso called Self-Rewetting Fluid (SRWF), could improve wettability and rewet the
heat transfer surface. Abe et al. [4.26] measured the surface tension of acohols and their
agueous mixtures and concluded that SRWFs surface tension decreases with increasing
concentration and become more hydrophilic. Moreover, above a certain threshold
temperature, the surface tension increases when temperature rises (Fig. 4.13): it would be
conducive for the colder fluid moving spontaneously toward the heated side. Therefore, as
shown in Fig. 3.16a, the self-rewetting fluid can flow from colder region towards the higher

temperature one on the channel inner surface thanks to the Marangoni effect.

It is known that, in confined two-phase flows, the long vapor slugs are not always
surrounded by liquid films, leading to the generation of a dry patch on the heated surface.
But, with SRWF, this phenomenon can be prevented and the evaporation heat transfer can

be improved in the PHP, as schematically shown in Fig. 4.14b. This phenomenon causes a
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rapid increase in vapor pressure in the heating section due to high concentration of
evaporated heavy acohol within.
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Figure 4.13. Definition of self-rewetting fluid [4.27].
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[4.28].

Fumoto et al. [4.29] tested an aluminum flat plate pulsating heat pipefilled with butanol
and pentanol water-based mixtures. Their experiments showed that the self-rewetting fluid
generally improves the heat transfer characteristics of the PHP: the temperature difference
between the heater and evaporator section of the pulsating heat pipe was reduced, resulting
in lower thermal resistance of the device compared with the water-filled PHP.

Cecere et al. [4.30] compared the flow behavior inside copper flat plate pulsating heat
pipe filled with water and water-butan-2-ol solution (SRWF). For the same operating
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conditions, in the FPPHP filled with water, the channel walls surrounded by vapor slugs
were dried (Fig. 4.15a). But, in the case of SRWF, the thin liquid film along the channel
walls are clearly visible, as shown in Fig. 4.15b. Despite this, the thermal performance of
the PHP tested in vertical BHM orientation and filled with SRWF was a little worse than

with pure water.

@ (b)

Figure 4.15. Flow regime inside flat plate pulsating heat pipe filled with water and 4%-
butan-2-ol/water mixture (SRWF) [4.30].

On the other hand, under microgravity, the PHP filled with SRWF operated much better
than with pure water: the maximum evaporator temperature rise during transient
microgravity phases for SRWF-filled PHP was of around 11 K at 200 W of applied power,
whereas but this temperature difference was of around 30 K for water. This happened due to
stopover phenomena for water-filled PHP, during which all liquid phase was accumul ated
in the condenser section and the absence of gravity forces did not push the liquid phase
towards the evaporator. Almost the same trends in thermal performance were obtained in
[4.31]: in vertical BHM mode, PHP filled with water operated better than with butan-2-ol-
water solution, especialy for low heat loads. With heat load augmentation, the thermal
resistances became almost equal. But, in horizontal orientation, the PHP filled with water
and tested at 20 °C of condenser temperature did not operate at heat loads higher than 100
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W, and SRWF-filled device operated in al heat loads range (from 50 W to 200 W).
Moreover, the thermal resistances for pure water were at least three times higher than for
SRWEF.

Based on this literature survey, an attempt will be made to clarify some questions,
related to the different parameter influence on the flat plate pul sating heat pipe, especially in
the microgravity conditions.

4.6.3. Qurfactants

The positive effect of the fluid modification has been described above, but zeotropic
binary mixtures are characterized by significant changes in boiling temperatures and
transport properties. So, it isamost impossible to selectively change specific propertieslike,
for example, surface tension, which directly influences liquid/surface wettability — very

important feature influencing boiling and evaporation heat transfer.

In pharmaceutic and cosmetic industries, particular substances, called “surfactants”, are
widely used to stabilize creams, foams etc. and prevent fluids segregation by the interfacial
tension reduction on the interface between two immiscible liquids.

Borrowing this approach, a very little rate of surfactant added to a working fluid can
significantly decrease the total surface tension (Fig. 4.15a) and improve the channel walls
wetting of the working fluid while keeping other thermophysical properties constant, aswell
density, saturation temperature, viscosity (Fig. 4.15b), latent heat of vaporization etc.

In literature, using of the surfactant aqueous solutions as working fluids generally lead
to better PHP operation and al so prevent from dry spots formation [4.32]. Wang et a. [4.33]
used sodium stearate surfactant solutions with concentrations of 10, 20 and 40 ppm, and
found that the thermal resistance values of the PHP with 40 ppm of surfactant has
significantly been decreased compared to pure water. Bastakoti et al. [4.34] tested the PHP
filled with cetyltrimethyl ammonium chloride (CTAC) surfactant solution and found alower
thermal resistance compared to the one obtained with pure water. Bao et al. [4.35] observed
that the presence of surfactant had a positive effect on lower start-up, higher dry-out and heat
fluxes compared to pure water. Should be noted that all these tests were done for the PHP
operated in BHM.
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@ (b)

Figure 4.16. (a) Surfactant concentration influence on the measured equilibrium surface

tension and (b) variation of the measured dynamic viscosity versus temperature [4.36].

Despite the positive influence of the surfactants on the PHP thermal performances, rare
periods of foam generation inside the tube occur (Fig. 4.17a). The foam temporally blocks
the channel, impedes the fluid circulation and decreases device performances. Later, bubbles

present in the foam collapse into vapor bubbles, as shown in Fig. 4.17b [4.37].
@ (b)

Figure 4.17. Bubble distribution inside transparent PHP filled with water — surfactant
solution [4.37]

However, testing their devicein horizontal orientation, Ayel et al. [4.38] found unstable
PHP operation with water/Tween 20 and water/Tween 40 solutions: the device operated
quite better than one filled with water, but often sudden and great evaporator temperature
rises happened (up to 50 K higher than average operational temperature). The foam

generation and temporary channel blockage can also explain this phenomenon.
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4.7. Microgravity experimentson pulsating heat pipes

The gravity directly influences the two-phase fluid dynamics (during pool boiling, flow
boiling and boiling in confined space) and, as a consequence, on the device thermal
performance and, finally, makes existed prediction tools unusable for space applications

[4.39]. Therefore, it isnecessary to perform experiments directly in microgravity conditions.

As discussed in the Chapter 2, heat pipes with capillary structure are widely used in
space applications since the second part of 20" century. Despite their proven operation, the
thermal performance of conventional heat pipes is severely degraded in weightless

environment [4.40] compared with ground conditions.
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Figure 4.18. Temperature histories for FPPHP (1x1 mm?, R-114, FR = 50-70%, Tcond = 10
°C) tested by Gu et a. [4.41].

First microgravity tests of pulsating heat pipes have been performed by Kawaji et al.
[4.42; 4.41; 4.43] by conducting the experiments during parabolic flights trajectories. They
have tested two similar auminum flat plate pulsating heat pipes with inner channe,
consisting of asingle continuous channel with 1x1 mm? cross section, laid out in aserpentine
with 48 turns at both ends. The heat pipes were charged with refrigerant R-114. These two
PHP differed in the evaporation zone configuration: the first with evaporator placed in the
center and condenser on the edge of device; and the second with evaporator and condenser
located on the opposite sides of PHP. The authors found that the optimal PHP operation
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performance occurred during microgravity conditions (Fig. 4.18) and concluded that the

PHPs can operate satisfactory under long-term microgravity.

Later (during last decade), Mameli et al. [4.3] tested a PHP consisting in a copper tube
(D = 1.1 mm) bent into a planar serpentine of 32 paralel channels. The dielectric fluid FC-
72 was used as working fluid. The ground-based and parabolic flight tests were performed
to validate the orientation and gravity influence on PHP operation. Orientation change from
vertical to horizontal led to the evaporator temperature increase and its oscillation amplitude
augmentation. Onset of the microgravity periods are characterized by the evaporator
temperature increase until end of parabola (Fig. 4.19, left). End of parabola and gravity
restoration led to the temperature drop, caused by the gravity assistance of the fluid flow.
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Figure 4.19. (a) Flight testsin vertical position compared with (b) ground dynamic tests (D
= 1.1 mm, FC-72, FR = 50%, Tcond = 30 °C) [4.3].

In addition, authors simulated the absence of the gravitational force influence on the
fluid flow inside the PHP by the device rotation from vertical to horizontal position and from
horizontal to vertical with timeinterval of 20 seconds (duration of one parabola). Resulting
these operations, temperature behavior for microgravity looks very similar to the ground-
based one.

In the work of Mangini et al. [4.44], authors tested an aluminum tubular pulsating heat
pipe (D = 3 mm) consisting in aplanar serpentine with five turns at the evaporator zone. The
device was a so filled with FC-72 (50% of filling ratio). On ground, in vertical position, the
PHP operateslike a closed |oop two-phase multi-evaporator thermosyphon (i.e. withinternal
diameter higher than critical one for FC-72 (at temperature range 20 — 80 °C), calculated
thanks to Bond number). Tests in horizontal orientation showed that the device works as a
pure conductive medium: no fluid motion was observed. On the other hand, parabolic flight
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tests revea that the device operated in a complete different mode during microgravity
phases: theimages recorded in the condenser zone, together with the pressure signal, showed
atransition from thermosyphon mode to slug flow pattern. In some cases the hyper-gravity
period led to the elimination of partia dry-outs restoring the correct operation until the

occurrence of the next microgravity period.

Recently, Mameli et a. [4.45] designed a closed loop pulsating heat pipe with 3D
configuration for tests to be performed onboard of International Space Station. This PHP
consists in annealed aluminum tube (D = 3 mm) bent in 14 U-turns in the evaporation zone
and filled with FC-72 at filling ratio of 50%. Authors performed microgravity tests
(parabolic flights) to characterize PHP operation and demonstrated the ability of the device
to operate satisfactorily in space. Firstly, absence of stop-over periods during microgravity
phases have been found, contrary to previous experiments conducted for PHP with lower
number of turns [4.44]. After, authors proposed to use wavelet analysis of the pressure
signals for flow velocity prediction [4.46]. This is an important step towards the
characterization of PHP behavior and towards the validation of analytical and numerical
PHP models. Moreover, in some cases, developed method could eliminate the necessity in

visualization and relating equipment.

Figure 4.20. Cross-sectional view of the PHP with separating grooves [4.5].

In parallel to researches form previous authors on tubular pulsating heat pipes tested
under microgravity conditions, Ayel et al. [4.5] performed an experimental campaign for a
flat plate pulsating heat pipe onboard Novespace Zero-G aircraft. This FPPHP consisted a
copper plate (200x120x2 mmq) in which a rectangular serpentine groove (1.6x1.7 mm?) is
milled, forming 12 U-turnsin the evaporation zone (24 parallel channels). To form the closed
channel, milled plate was covered with a second thin copper plate. Separating grooves were
engraved on the backside of the FPPHP (“thermal gaps™) to minimize transverse conduction
between adjacent channels (Fig. 4.20).
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This PHP have been tested during ESA 62" parabolic flight campaign with FC-72
(FR =50%) in two initial positions: vertical and horizontal. During normal gravity periods,
PHP operation corresponding to ground conditions and transition to microgravity allowed to

find the operational difference.
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Figure 4.21. Transient temperatures response of the FPPHP subjected to the two successive
parabolic trgectories: (a) vertical and (b) horizontal orientations (1.6x1.7mm, FC-72, FR =
50%) [4.5].

As shown in Fig. 4.21, during normal gravity, the FPPHP works more efficiently in
vertical orientation than in horizontal. The thermal behavior of the pulsating heat pipe tested
in vertical orientation is greatly influenced by the change of gravity levels, due to distinct
thermal performances markedly varying from one case to the other. The occurrence of
annular flow patterns in vertica BHM is (most) probably the cause of such behaviour,
compared to slug flow pattern in horizontal orientation or under microgravity conditions.
Note that, on Fig. 4.21b, the FPPHP tested in horizontal inclination doesn’t seem to be
influenced by changes of gravity levels, proving that such a system can be an efficient

candidate for thermal control in different space applications.

Theinfluence of the channel diameter on the thermal behavior and fluid flow inside flat
plate pul sating heat pipes have been studied for four semi-transparent devices by Ayel et a.
[4.47; 4.48; 4.49] during ESA 64" PFC. Each tested FPPHP was made of copper plate with
engraved square channels with diameters range from 1.5 to 3 mm, and 11 U-turns in the
evaporator zone. A borosilicate glass was glued on the grooved side of the copper plate to
allow visualizations. The refrigerant FC-72 was used as working fluid (FR = 50%). Initially,
FPPHPs were installed in vertical position (BHM). During normal gravity periods, the
FPPHP with highest channel diameter showed the best thermal performance. Microgravity
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onset led to the flow regime changeinto slug-plug for all channel diameters. Dry-out periods
were observed with following overall fluid motion reactivations phases. PHPs with 2.5 mm
and 3 mm channel diameters showed almost the same thermal performance, but PHPs with

lower diameters operated with less efficiency.

Recently, Ando et a. [4.50; 4.51] performed on-orbit tests of aflat plate pulsating heat
pipe with check valves and filled with HFC-134a at filling ratio of 45%. They found
successful operation of their PHP with hesat transfer performance matching to preliminary
ground tests. No failure or performance degradation were observed for almost four years of
operation. However, some start-up difficulties were seen under certain initial conditions.
Further analysis indicated that there is arisk of start-up with most check valves positioned
close to the evaporation zone. However, if all check valves are located near the condenser
section, liquid slugs could be supplied to the evaporator section even if the liquid was
localized in the condenser section, and the start-up is successful. Later, Taft and Irick [4.52]
showed stable operation of their PHP filled with butane during six weeks of space flight.

4.8. Conclusions

Review of the basic research studies on pulsating heat pipes operation under different
conditions, i.e. geometrical parameters, orientations, working fluids, and gravity, concerning
the device thermal behavior has been donein present chapter. Currently, pulsating heat pipes
are considered as a very promising thermal management technology. Since first device
introduction by Akachi [4.10], numerous experimental and theoretical studies have focused
on the influence of different parameters on pulsating heat pipe operation and performance:
channel shape and diameter, number of turns, device orientation, filling ratio, working fluid
thermophysical properties and even microgravity. Some authors focused on the fluid motion
inside the PHP to better understand the physics of the liquid-vapor pair motions.

Nevertheless, the influence of many other parameters is still not clear or sometimes
contradictory. Numerous studies on space applications of pulsating heat pipes have been

done, but still with no any precise design recommendation.

Based on this literature survey, an attempt will be made to clarify some questions,
related to the different parameters influence on the flat plate pulsating heat pipe, especially

operating under microgravity conditions.
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Chapter 5

Experimental Set-up for Ground and Parabolic Flight Tests

As mentioned in the previous chapter, gravity significantly affects the two-phase flow
inside pulsating heat pipes, especialy during conditions with gravity field absence.
Furthermore, gravity absence makes difficult (and sometimes impossible) to use ground-
devel oped models and correlations to precisely predict the flow regime inside the channels
and, as a consequence, heat transfer performances. Therefore, there is a strong demand on
experimental validation of developed models in microgravity conditions. So, for these
reasons an experimental rack has been devel oped to alow flat plate pulsating heat pipe tests

under normal and microgravity condition.

In this chapter, detailed description of the experimental system and tests sections used
for the flat plate pulsating heat pipes investigation during on-ground and several parabolic
flight testswill be reported. Likewise, architectural differences between tested FPPHPs, the
cooling systems for on ground and parabolic flight tests will be described. Then, the main

measurement technigques and data treatments, as well uncertainty analysis will be presented.
5.1. The Parabolic Flight

Nowadays, severa approaches are available for microgravity environment simulation
and scientific tests performing, as well drop tower, parabolic flights, sounding rockets or
experiments on-board satellites and the International Space Station (I1SS). The comparison

of these approaches in the context of the gravity level vs. duration isresumed in Fig. 5.1.

The parabolic flights have been chosen as a compromise between duration (around 20
seconds per parabola), accessibility (few campaigns per year) and opportunity to perform
controlled experiments: researchers are able to interact with the experimental system and
change parameters during experiments if necessary. Furthermore, in comparison with other

“ground-based” microgravity simulation environment (drop tower and sounding rocket),
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parabolic flights do not impose very strong limitations related to the device mass and

volume, so experiments could be more flexible.
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Figure 5.1. Available reduced gravity platforms for scientific approaches [5.1].

Asshown in Fig. 5.2, an aircraft (Airbus A310 ZERO-G) flies from steady horizontal

flight to following maneuvers:

e Theaircraft climbsupto 50° (pull-up phase) for about 20 seconds and, during this phase,
acceleration levels (perpendicular to the aircraft floor) is almost two times higher than
Earth gravity: between 1.6g and 2g;

e Powers of all engines are reduced for about 20 seconds just for air drag compensation
and aircraft follows a free fall ballistic trgjectory (a parabola), that corresponds to the
microgravity phase;

e The aircraft dives down to 42° (pull-out phase) during around 20 seconds with
acceleration rises between 1.8g and 2g (same as for the pull-up phase);

e Theaircraft returns to a steady horizontal flight.

All these maneuvers are combined in sequences of five parabolas with intervals of
around two minutes between two consecutive parabolas. The interval between the parabola’s

groups is about five minutes, depending of the flight itinerary.

One day of flight alows to reach thirty parabolas plus one for adjustment in six

sequences of five successive parabolas. The residua accelerations sensed by experimental
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set-ups attached to the aircraft floor structure are typically in the order of 0.01g during the

microgravity phases.
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Figure 5.2. Parabalic flight trajectory [5.2].
5.2. The Experimental set-up

Based on the technical requirements of the Zero-G Flights operator (Novespace) and on
the scientific demands, the experimental system has been developed and built in order to
respond to flat pul sating heat pipe investigations during on-ground and parabolic flight tests.
Used experimental set-up consisted of two main parts. command and test racks (Fig. 5.3).
The test rack has been designed in order to allow thermohydraulic investigations of the
FPPHPs which could be easily removed from the base and replaced by others between flight
days. Besides test section, the experimental rack consists of data acquisition module, high-
speed camera with externa LED module, infrared camera, synchronization module and
hydraulic loop (cooling subsystem).

(@

Synchronization

IR camera LED E-—

High-speed camera NI-cRio controller  Test section

Figure 5.3. Paraboalic flight experimental system: (a) top view of the test rack and (b)
command rack.
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Since the experimental rack mostly consists in data acquisition equipment and test
section, the command rack is used for test manipulations and includes all control, security
and power equipment: three PCs (one for Labview® Software data acquisition management,
and the two othersfor high speed -and IR- cameras control), two DC power sources assuring
the FPPHP evaporator heating, two DC power sources for DAQ system and synchronization
module, accelerometer, gear pump controller and security box.

5.2.1. The Test Section

The data obtained during 64", 69", 71% and 74" ESA Parabolic Flight Campaigns are
used for the analysis in the present work, as well from ground tests for the FPPHPs used in
71% and 74" ESA PFCs. Because FPPHPs used during al these tests have different
geometrical and fluid/solid thermophysical properties, it seems necessary to present each

test section in chronological order.
5.2.1.1. 64" ESA Parabolic Flight Campaign

Despite the fact of anayzing videos of two-phase flows inside only two out of four
tested FPPHPs, an experimental investigation on four one-side transparent flat plate
pulsating heat pipes with different channel diameters (1.5, 2, 2.5 and 3 mm) was performed
during 64" ESA PFC (only data for the FPPHPs with channel diameters of 1.5 mm and 3
mm will be analyzed in chapter 7). All four tested PHPs were made from a copper substrate
with alength of 204 mm and varying plate width/thickness (corresponding to the channel
diameter). A unique groove with a rectangular shape was machined in this plate forming a
serpentine with 11 U-turns on one side (evaporator zone) or 22 paralel channels. Copper
plate was covered by aborosilicate cover plate on the grooved side, forming the entire device
(Fig. 5.4). The sealing of the grooved copper plate with borosilicate plate was realized thanks
to glue deposition between them (with thickness of 0.5 mm). An elastic silicon glue
(NUSIL® CV7 2289 1P) was used to overcome the possible deformation caused by the
thermal expansion differences between copper and borosilicate (3.3x10°% K™ for
borosilicate and 17x10°° K for copper). Unfortunately, this kind of glue is porous and air
permeation inside the PHP from ambient is possible, due to very low internal pressure,
compared to atmospheric one. Since the presence of non-condensable gases strongly

influences the PHP operation, a containment channel connected to a high-volume vacuumed
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reservoir was provided (“Extension vacuum reservoir”’, Fig. 5.4). This kind of test cell
modification keeps the functioning area of the device “protected” from ambient air

permeation.

Condenser Containment/
Filling valves
Synchronization PHP Channel Cooling water
LED Inlet/Outlet
Extension Thermocouple/
Containment Vacuum Power Wires

Channel Reservoir

Pressure

Evaporator Sensor

Figure 5.4. Copper-Borosilicate FPPHP used for 64" ESA Parabolic Flight Campaign.

A heating wire with diameter of 1 mm was embedded in a copper plate (height of 10
mm and width egual to evaporation zone of each PHP) which was brazed on the back side
of the PHP to provide heat supply to evaporator.

A second massive copper plate (10 mm thickness, 100 mm height and width equal to
the device one) with machined serpentine channel through which the cooling liquid
circulates, was soldered on the back top-side of the PHP and used as a cold source for heat

rejection (condenser).
5.2.1.2. 69" ESA Parabolic Flight Campaign

Later, in the context of the ESA project INWIP and preparation of the forecast FPPHP
tests onboard the ISS, the dimensions of the test cell have been modified respecting
installation requirements — 200 mm high and 80 mm wide — provided at the time by ESA
specifications for integration in ISS Heat Transfer Host 1.

Based on the previous experience, and in the purpose of having a thermal expansion
coefficient as close as possible to borosilicate — or sapphire — ones, together with a high
value of thermal conductivity, molybdenum was chosen as material for pulsating heat pipe
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metallic plate and sapphire glass as a cover plate (thermal expansion coefficients: 3.2x10°°
K1 for sapphire and 5x10°° K™ for molybdenum; and thermal conductivity of 138 W.m K-
1 for molybdenum). In analogy with copper-based flat plate pulsating heat pipes, tested
during 64" ESA PFC, a unique serpentine groove of rectangular shape (depth of 2.5 mm and
width of 3 mm) was milled in the molybdenum plate (200x80x3 mm?q). Regarding the
changesin width of the device (restricted to 80 mm), the number of U-turnsin the evaporator
was also reduced down to seven (or 14 parallel channels).

Grooved molybdenum plate was covered with a sapphire plate (80x200x5 mm?®) using
rigid epoxy glue to guarantee perfect sealing at the plate boards, and between adjacent
channels relative to one-another. The thickness of the glue layer was set at 0.5 mm (same
than for the previous case), providing a depth of the channel of 3 mm, giving them square
shape which corresponds to the chosen hydraulic diameter of 3 mm. Epoxy glue could be
used here thanksto the same levels of thermal expansion of both materials: indeed, although
rigid, compared to elastic —silicon-type- glues, thistype of glueturnsout to be perfectly leak-
proof, particularly to air permeation. Photograph and scheme of the developed FPPHP can

beseenin Fig. 5.5.
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Figure 5.5. Molybdenum-Sapphire FPPHP for 69th ESA Parabolic Flight Campaign.
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Heating of the evaporator zone was provided via engraved molybdenum plate
(80x40x3 mm?) glued on the bottom back side of the FPPHP with a serpentine groove of
1.5x1.5 mm?. Stainless still coated Ni-Chrome heating wire (Thermocoax® Type NcAc15)
was crimped into the groove of the heating plate. Heat rejection from the condenser was
realized via molybdenum block (100x80x10 mm?3), also glued on the top back side of
FPPHP, with milled rectangular shape serpentine channel through which cooling water
circulates.

5.2.1.3. 71% and 74" ESA Parabolic Flight Campaigns

Theflat plate pulsating heat pipes tested during 71% and 74" ESA PFCs are very similar
to the previous one tested during ESA 69" PFC. The new FPPHP is composed of a
rectangular copper plate (80x200x3.5 mm?) in which a unique groove with square shape (3
mm deep and 3 mm wide) is milled. This groove forms a closed loop serpentine with 8 U-
turns in the evaporator zone. The plate with milled channels (Fig.5.6, right) was covered
with a thin copper plate (80x200x1 mmq) using solder with silver addition to guarantee
perfect sealing at the plate boards, and between adjacent channels relative to one-another.
The filling / evacuation and pressure ports were also welded on the opposite sides of the
FPPHP. Assuming the thickness of the soldering junction as negligible, the depth of the
channel remains equal to 3 mm.

Filling port

Condenser plate Cover

Cooling water

inlet/outlet
Welding layer

Thermocouples By .
- < Serpentine
s —t channel
plate i

Heating

Heating
wire

Pressure sensor port

Figure 5.6. Copper-Copper FPPHP for 71% and 74" ESA Parabolic Flight Campaigns.
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A cross-section cut of a manufactured copper sample can be seenin Fig. 5.7: it clearly
shows almost invisible interface between grooved and cover plates. Moreover, any change
in channel shape or their blockage due to solder occurrence inside them have not been
observed. Note that a cleaning process was systematically done after welding in order to

eliminate al the solder flux residue used during brazing.

Figure 5.7. Cross-section cut of awelded flat plate PHP sample.

Evaporator heater is composed of a copper plate (80x40x1.5 mmq) with milled
serpentine channel in which isinserted a heating wire (Thermocoax® Type NcAcl5, 1 mm
external diameter). This plate was soldered on the bottom-back side of the FPPHP. The
condenser cooling plate (80 mm high and 100 mm wide), cooled by a cooling liquid which
circulates inside the serpentine channel milled inside, was soldered on the top-back face of
the FPPHP plate.

Temperature measurements in the evaporator zone were provided by T-type
thermocouples installed in grooves (milled on the back side of the FPPHPs, on the ribs
between adjustment channels). Pressure values inside the FPPHP were acquired thanks to
the pressure sensor connected to the port at bottom rib of the device. These means of the data
extracting are the same for all tested PHPs.

5.2.2. Thefilling Procedure

After test cell manufacturing, the system needsto be partialy filled with liquid with the
required quantity. The latter is determined by the filling ratio (FR), corresponding to the
volume of fluid injected into the device compared to the total internal volume of the channel
(see chapter 4). Previous literature survey and past |aboratory work have shown that the
optimal value of the PHP filling ratio has been generally found close to 50%. On this basis,
afirst step consists in preparing the filling reservoir with the required quantity of the fluid.
As al procedures have been performed at room temperature (Troom = 20 °C), the required

mass of fluid can be calculated as follows:
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FR

my rint = Pi (Troom)Vtot X 100 (5-1)

where Viot, and p, are respectively the internal volume of the PHP (defined during device
conception) and the fluid density at Troom. After fluid mass calculation, the filling reservoir
isvacuumed down to less than 0.03 mbar with a molecular pump of a Axiden® ASM 142
leaks detector. After evacuation, the filling reservoir was weighed and filled with the
previously prepared liquid (with a small higher amount than calculated). For water as
working fluid, the following steps are: measuring the liquid mass inside the reservoir;
heating the reservoir above 125 °C to ensure continuous liquid boiling inside and to dissolve
gases separation; after boiling (and external wall temperature verification to be sure that the
internal pressure becomes above atmospheric one), afirst degassing is done by opening the
valve under an extractor hood; then, the reservoir isimmersed into acryostat bath and cooled
at -20 °C; once turned into solid phase, a vacuum pump is connected to the reservoir for 30
second to evacuate al residual vapor and non-condensable gases (NCG). This set of
procedures (heating-cooling-evacuating) is repeated three times before pulsating heat pipe
filling. For other working fluids, the solidification process was not performed, but only
cooling the reservoir before heating it again. The last action in reservoir preparation is the
liquid saturation pressure verification — a pressure sensor is connected to the reservoir set
into the thermostat bath, which alows to control temperature inside the reservoir. If the
saturation pressure curve is equal to the theoretical one (Fig. 5.8), then it is assumed that

there are no NCGs inside the reservoir or with negligible quantity.

After saturation pressure verification, the pulsating heat pipes can befilled: the FPPHP
is connected to the filling sub-system, consisting in a rotary vacuum pump, aleak detector
and a filling reservoir, schematically presented in Fig. 5.9. All three components are
connected by a Swagel ok® valveto a T-connection and are used respecting the manipulation
priority. Thefirst step isto evacuate residual liquid and/or gases from the device, and create
the vacuum inside it with the rotary vacuum pump, connected to the FPPHP (opening valves
V0 and V1). Once the device empty and vacuumed (the valves VO and V1 are closed), leaks
tests of al connections and PHP interfaces (both glued and soldered) have been performed
thanks to Pfeiffer Adixen ASM 142 helium-sensible leaks detector (opening valves VO and
V2). If the value of the helium permeation in the system is lower than 10° mbar.ls* for the
glued PHP and 107%° mbar.Is™ for the soldered one, the device can be filled with earlier
predefined working fluid.
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Figure 5.8. Vaidation of thefilling fluid saturation pressure (ethanol).
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Figure 5.9. (a) Filling scheme of the pulsating heat pipe and (b) modified scheme for filling
with NCG.

Before final step of filling procedure (fluid introduction inside the FPPHP), all valves
are closed, the device condenser temperature is set at 5 °C and the filling reservoir is heated
up to 100-130 °C (depending on the fluid saturation pressure) to reach internal pressure
higher than 2 bars. All fitting and tubing are also heated to prevent condensation of the fluid
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inside them. Finally, the two valves between reservoir (V 3) and the FPPHP (V0) are opened,
then the fluid penetrates into the PHP thanks to gravity assistance (reservoir installed above
FPPHP) and pressure difference between reservoir and FPPHP.

To fill PHP for tests with non-condensabl e gases presence, the rotary pump needsto be
replaces by the NCG reservoir (500 cm? of volume) connected to the ambient through needle
valve (valve V1isclosed) after residual liquid evacuation and before leaks detection. Then,
vacuum pump of leaks detector used for NCG reservoir vacuuming (needle valve, vaves
VO, V2 are closed). After this, previously, described procedure of leaks detection can be
done. If system is|leaks-free, FPPHP can befilled with NCG (valves V2 and V3 are closed),
the needle valve opens slightly to fill predefined quantity of gases (controlled with pressure
sensor). Then pressureisreached necessary value, needlevalve and valve V1 closed. Finally,

previously explained last step of filling procedure can be done.
5.2.3. The cooling loop

Since the developed FPPHPs were tested in two operating conditions. on ground and
during parabolic flights, two different cooling sub-systems were used to ensure stable and

efficient heat rejection from the condenser cooling plate.
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Figure 5.10. Parabolic flight cooling system description.
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During ground-based tests, the condenser was directly connected to the open glycol-
water mixture flow loop of the laboratory cryothermostat (Huber® CC 240wl, becoming a
part of the cooling loop), insuring a constant temperature regulation in range of -20 °C to

80 °C (here, the condenser temperature ranges between 20 °C and 40 °C).

Due to security and electricity consumption limitation imposed for the tests inside
aircraft, the thermostat-based cooling system cannot be used. So, it has been replaced by a
water-based closed cooling loop. The parabolic flight configuration of the cooling system,
described in Fig. 5.10, consists in an external massive auminum plate with 15 embedded
heat sinks (microprocessor heat sinks with equipped fans), a gear pump (Ismatec®
Micropump) and an expansion tank. Connections have been realized viapol ypropylene tubes
(8 mm of internal diameter) and quick connectors (Legris®).

Water has been used as secondary cooling fluid to transfer heat from the condenser to
ambient (aircraft cabin). Initially heated in the condenser cooling plates of both FPPHPs,
water flows in a copper tube crimped inside the massive aluminum plate (Fig. 5.11) by the
gear pump and is cooled down thanks to the fifteen copper heat sinks with fans used to

extract heat to external ambient air (at temperature around 20-25 °C).

Figure 5.11. Aluminum cooling plate with fans.

Temperature variations causes pressure fluctuations and changes in fluid volume that
are compensated by the expansion tank. Two thermocouples have been installed on the fluid
line before and after condenser cooling plates to monitor the inlet and outlet cooling fluid
temperatures (Tin and Tou, See Fig. 5.10).
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5.2.4. Data acquisition and control

On one hand, temperature measurements play akey rolein the analysis of heat transfer
devices. Due to some design differences, the number and positions of the thermal sensors
varies from each tested pulsating heat pipe. Despite this, the quantity of thermocouples for
each device (four in evaporation zone as minimum) is assumed to be sufficient for thermal
performance characterization. As mentioned above, T-type thermocouples with accuracy of
+0.7 °C have been used for the temperature measurements (their installation schemafor each
FPPHP presented in Fig. 5.12). A CompactRIO NI-9213 module have been used to record

temperatures.

On the other hand, one of the most important PHP operational parameter is the absolute
pressure and fluctuations. First, internal pressure monitoring makes possible to control the
leaks and non-condensable gas presence inside the PHP by comparing it to the saturation
pressure function of temperature. Then, pressure measurements allow to have an idea of the
fluid flow behavior inside the PHP. A GE® PTX5076 pressure sensor (+200 Pa accuracy) is
connected to connected to (or to one of) the central U-turn(s) of the evaporator zone (except
for the 64" ESA PFC FPPHP where the pressure sensor was connected to the central
surrounding U-turn of the condenser zone) (see figure 5.12 for positions). The sensor
membrane was centered relatively to the middle of the device to prevent the liquid column
pressure influence. Grabbing of the pressure values from the transducers were realized
thanks to CompactRIO NI-9215 voltage measurement module.

Due to flight trajectory, the gravity levels are not permanent during whole tests, so
measurements of the gravity accel eration become necessary to provide the adequate analysis
of the obtained data. The measurements of the accelerations in three orthogonal directions
are realized thank to a“homemade” accelerometer.

The heat load applied to the evaporators were ensured by two ELC® ALR3220
electrical power sources (DC, 0-30 V, 0-20 A; dV=0.03%, dI=0.05%). Measurement of the
output electrical tension was done at both ends of the electrical heating resistant wire,

whereas current was directly by the power source.

To improve the understanding of the two-phase flow inside flat plate pulsating heat
pipes, visualization studies have been redlized via a standard photo camera (Canon® EOS
100D and 550D, 50 fps) for ESA 64" and 69™" PFCs and a high-speed camera (Mikrotron®
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EoSens 4 CXP, 4 Mpx, 400 fps) for ESA 71% and74"" PFCs, installed in front of the semi-
transparent FPPHPs. Videos were directly transfered in the internal memory of the high-
performance PC to ensure stable data collecting without any losses. Moreother, an infrared
camera is used for IR thermography (FLIR® SC7200, wavelength band 1.5-5.1 pm, +1K
accuracy and 25 mK thermal sensitivity) during 69" and 71% PFCs. The synchronization
module (trigger) was used in pair with N1-9402 output signal module to make the video
registration in parallel with other parameters: data acquisition from all sensors, power

sources and camera starts at the same time.
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Figure 5.12. Temperature and pressure sensors placements in the FPPHPs tested during (a)
64", (b) 69" and (c) 71% and 74™ PFCs (blue and red lines correspond to condenser and
evaporation sections, respectively).

All sensors described in the previous paragraphs are connected to a CompactRIO NI-
cRIO 9074 controller via NI modules. This control unit scans all signals from each sensor
(temperature and pressure) at regular time intervals (1 Hz for thermocouples and 50 Hz for
pressure) and also sends the triggering signal to the camera. Accelerometer, power sources
and controller are directly connected to the PC (vias USB and Ethernet connectors). All data
manipulations (collecting, recording and processing) and device controlling (electrical

heater power regulation and cameratriggering) were ensured by a communication interface
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provided by LabView® software, which also alowsreal-time visualization of the monitored

parameters.

Moreover, this program interface ensures the system security provoking electrical
heater shutdown if one or several measured temperatures reach a value higher than 115 °C.
This threshold value has been chosen to prevent from thermal stresses and deterioration of
all the elements constituting the experimental bench and prevent from significant pressure
augmentation inside PHPs (related to the design). According to Novespace's specifications,
the experimental bench was aso equipped by a redundant physical security box with

maximum temperature set at 125 °C.
5.3. Working fluid

The importance of the working fluid selection on the pulsating heat pipe operation has
been mentioned in the previous chapter. This step is based on various parameters as well
chemical compatibility with the device material, good thermal (high sensible and latent heat)
and hydraulic (low viscosity and surface tension) properties ensuring high heat transfer rate
and stable oscillatory flow. Also, dueto peculiarities of thiswork related to the microgravity

tests, low toxicity as well relatively low operational temperature and pressure are required.

According to the Merit number proposed by [4.19] and shownin Fig. 4.11b (see Chapter
4), the best fluids for PHPs are toxic and/or have a high saturation pressure in the tested
temperature range (20-100 °C) aswell ammonia, R22 and R134a. These choicesin thiswork
have been made in favor of water, FC72, ethanol and methanol. Despite their low “ranking”
related to other fluids, most of them correspond to the necessary requirements of design
parameters, non-toxicity (except for methanol) and low pressure in the specified temperature
interval. Moreover, these fluids have been widely used for eectronic cooling (FC72),
experimental studies (water and ethanol — classical fluids) and for space applications
(methanol).

Additional attempt to improve heat transfer characteristics of the FPPHPs has been
done, using different solutions of water and alcohol, and also with surfactant additives. The
changes in the device heat transfer capability are expected mostly due to wettability

improvement and rewetting phenomena (for self-rewetting fluids).
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5.4. Experimental procedure
5.4.1. Ground tests

Before every experimentations, the PHP had to be positioned in apredefined orientation
— vertical or horizontal. Temperature of the secondary cooling fluid had also to be fixed
thanksto the cryothermostat controller. Then, once the device temperature stabilized, a 50W-
heat |oad level was applied. After awhile (thermal regime establishment between 30 minutes
and 1 hour), heat load was increased by steps of 50 W. Same procedure was repeated until
200 W. By the end of the test period with heat load of 200 W, it was then reduced down to
100 W to ensure repeatability tests.

Once the first test sequence is over, the condenser temperature or orientation could be
changed for the following test.

5.4.2. Parabolic flight tests

During parabolic flight campaigns, FPPHP have been tested with different heat loads
for each series of parabolas. Beforefirst set of parabolas, al systems need to be verified and
previously determined heat load should be applied to reach the stable PHP operation. After
announcement of the pull-up phase (beginning of the parabolic maneuver), data acquisition
was started — temperature, pressure and heat |oad values recording, as well video from high-
speed camera. Due to lack of time between parabola’s sets to save recorded video on hard
drive, the video registration was stopped just after the fourth parabola and saving procedure
started. All other data continued to be registered until the end of the series of fifth parabolas.
Immediately after flight stabilization, the acquisition was stopped and new values of heat
load were set.

5.5. Data reduction and uncertainty analysis

Usually, experimental studies are accompanied by numerous measurements of different
parameters, which can be difficult in the term of the widescale representation and thermal
efficiency comparison. However, thermal resistance, as an important parameter indicating
the device capability to thermal transport, and can be used for the FPPHP efficiency analysis.
It is defined as follows:
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Tev—Tcool
Rth = TI (52)

where T,,, T.,,; and Q=UxI are, respectively, evaporator and cooling mean wall
temperatures (T,,, = Y.;=1 Ter,i/N; N being the number of thermocouples in the evaporator
zone, and Tpo; = (T, + T.5)/2) both of them time-averaged over the successive

recordings selected for the purposes of steady-state characterization, heat load, tension and
current measured on the heater ends. As experimental measurements were conducted with
certain accuracy and knowing the absol ute error of each kind of measurements, uncertainties

can be expressed as follows [5.3]:
R CRCE 59
Q U I .

a_R:\/( 6Ty )2+( 8T cool )2+(6_Q)2 (54)
R Tev—Tcool Tev=Tcool Q

Resulting uncertainty of the heat load varies in the range of 0.08% to 0.15%. The

uncertainty for the thermal resistance has been found for the highest heat loads (with higher
temperature differences between evaporator and cooling water) and was equal to 1.7%,
whereas it reached values up to 26.7% for the lowest heat |oads and temperature differences

(compl ete range of uncertainties can be found in Appendix C).
5.6. Results presentation and test repeatability

To facilitate the understanding of the graphics on the temperature behavior presented in
the next chapter, first resultsfor the water-filled FPPHP tested on ground in vertical position
(BHM) will be here described as an example. The temperature and pressure responses as
functions of time and related to the heat |oad are shown in Fig. 5.13. Evaporator temperatures
are plotted in different shades of red, adiabatic ones are in orange, the pressure curve is
plotted in grey and heat load is represented by the dashed green line. Left ordinate-axes for
temperature curves have the same scale for every graphs (0-120 °C), while right one can vary

depending on the pressure values (hPa or kPa) in order to improve graphics readability.

It seems that Fig. 5.13 can represent the main FPPHP operation conditions for major
number of tested cases. For low heat |oad applied (50 W), the FPPHP filled with pure water
operates in dry mode (liquid accumulates in the condenser zone). In these conditions, the
FPPHP transfers heat mostly thanks to the device thermal conduction (discussed in the
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previous chapter). With heat load augmentation, evaporator (and adiabatic) temperatures
increases with significant pressure fluctuations, which means short-term “out” from stopover
operational mode. Sometimes this phenomenon is observed for the FPPHP tested with other
fluids, in different position and heat load.
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Figure 5.13. Transient temperature and pressure responses of the copper FPPHP (also ESA
71" PFC) related to the heat |oad increase (water, FR=50%, Tcoo = 20°C, vertical BHM).

The following increase of applied heat power (150 and 200 W) lead to the temperature
and pressure stabilization. The amplitudes of these oscillations are significantly lower than
for 100 W of heat load, which means a regular and frequent liquid flow fluctuations inside
the FPPHP.

The test repeatability is a key factor of the experimental system reliability: if during
repeated tests the same (or very similar) results are obtained, experimentation can continue
to test other parameters. Fig. 5.14 represents the evaporator and adiabatic (one sensor in the
center) temperatures and pressure for ethanol-filled FPPHP tested with a applied heat power
of 100 W — left image represents test period before following heat load increasing step until
150 W; right image shows parameters after heat |oad decrease from 200 W to 100 W. It can
clearly be seen that temperature and pressure oscillations amplitudes are a most the same for

both cases, even the temperature average values are al'so equal.
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Figure 5.14. Temperature and pressure histories for FPPHP: (Ieft) original and (right)
repeated tests (ethanol, FR=50%, Tcoo =20 °C, vertical BHM)

The modifiable parameter during ground tests is the heat load, but for parabolic flight
it is the gravity acceleration. So, results representation will be dightly different. Fig. 5.15
depicts the typical temperature, pressure and gravity profiles during one set of five
consecutive parabolas. In analogy with Fig. 5.13, curves colored in shades of red, orange
and grey are respectively representing evaporator, adiabatic temperatures and pressure. All
parabola’s set test are performed with the same heat load, so the curve of heat power is not
necessary in the graphs, but the blue line, representing cooling water mean temperature, has
been added due to the absence of precise cooling liquid temperature regul ation (provided by
thermostat during ground tests). The dashed grey curve shows the gravity variation during

the five consecutive parabolas and allows to recognize all transitions caused by the gravity.

At the beginning of the parabola set, the FPPHP operates in vertical position (BHM)
due to normal gravity onboard of aircraft. In Fig. 5.15, just after parabola starts, when
microgravity conditions are reached, the evaporator temperatures drastically increase due to
channel wall dry-out in the evaporator zone and liquid accumulation in the condenser zone
(as dready mentioned in section 3.2.4). This phenomena was observed for al pure fluids,
tested during this work. Adiabatic temperatures smoothly increase in the microgravity phase
beginning — and heat is transferred mostly by conduction. Similarly to the adiabatic
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temperatures, pressure sightly increases probably due to evaporation of the residual liquid
in the evaporator and vapor superheating. Sometimes, the evaporator temperature drops
during parabola. At the same time, pressure and adiabatic temperature surges can be
observed, which illustrates the sudden change of the FPPHP operational mode — transition

from stopover to oscillations, due to the two-phase fluid flow “re-activation”.
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Figure 5.15. Transient temperature and pressure responses of the molybdenum FPPHP

(used for ESA 69" PFC) related to the gravity acceleration changes (ethanol, FR=40%, Q

=100 W, vertical BHM during normal gravity).

5.7. Conclusions

The experimental system for ground and microgravity experiments, allowing both,
gualitative and quantitative characterization of the flat plate pulsating heat pipe have been
described in this chapter. The prototypes have been devel oped for the tests during four ESA
Parabolic Flight Campaigns, based on the security requirements and zone of scientific

interests — coupled thermal and hydraulic studies of the FPPHPs under different gravity

conditions.
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The uncertainty analysis also have been provided. The figures, used in following
chapter are described during analysis of the first experimental results. Repeatability analysis
provided, which also prove the system reliability.
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Chapter 6

Ground Based and Parabolic Flight Tests Analyses

The data obtained during on-ground tests and parabolic flight campaigns (ESA 69th,

71st and 74th Parabolic Flight Campaigns) on flat plate pul sating heat pipe will be presented

and analyzed in this chapter.

6.1.

This chapter will be devised in two main parts:

inthefirst one, resultswill be described for FPPHP tested on ground in order to evaluate
the influences of orientation, operating conditions (condenser temperature, input heat
load and filling ratio) and fluid thermophysical properties on both FPPHP behavior and
thermal performance under normal gravity conditions;

the second part will describe results for the FPPHP tested onboard of aircraft during
parabolic flights under microgravity conditions (~0.01g) and filled with different fluids.
In addition, results from specific ESA 74th PF campaign, for Lunar (~0.18g) and
Martian (~0.38g) gravity conditions, will be briefly presented. Influence of non-
condensable gases on FPPHP operation during normal gravity and microgravity periods
will aso be discussed.

Ground tests

As mentioned above (sections 3.2.4 and 4.2), the influence of gravity on the operation

of a pulsating heat pipe is a crucial step in determining prospective applications for this

device, especialy for aerospace applications. This issue has been intensively studied to

demonstrate gravity effects on PHP performances and overall operational behavior.

Previous studies on pulsating heat pipes have shown great influence of orientation

(inclination) on both thermal transfer characteristics and operation behavior [6.1; 6.2; 6.3;

6.4; 6.5]: gravity assistance during vertical operation for bottom heated mode (BHM), as

well as over inclinations of PHP (respecting BHM) [6.6], leads to significant decrease of
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thermal resistance compared to horizontal FPPHP operation — in vertical orientation, gravity

vector helps the liquid plugs to flow back to the evaporator zone.

In this section, ground based experimental results for the copper flat plate pul sating heat
pipe, devel oped and described in Chapter 5, and tested in both BHM vertical and horizontal

orientations are presented. Operating conditions, used working fluids and filling ratios are
shown intable 6.1.

Table 6.1. Test operating conditions for ground tests.

Orientation  Fluid F|II_|ng Applied power Condenser
ratio temperature
Vertica Water 50% 0-200W 20°C; 40°C
59%
Ethanol 50% 0-200W
Methanol 50% 0-200W
59%
Water — 20% ethanol 50% 0-200W
Water — 28% methanol ~ 50% 0-200W
Water — 5% butanol 50% 0-200W
Water — 0.5% Tween 40 50% 0-200W
Horizontal Water 50% 0-100W 20°C; 40°C
59% 0-150W
Ethanol 50% 0-200W
Methanol 50% 0-200W 20°C
0-150W 40°C
59% 0-200W 20°C; 40°C
Water - 20% ethanol 50% 0-200W
Water — 28% methanol ~ 50% 0-200W
Water — 5% butanol 50% 0-200W
Water — 0.5% Tween 40 50% 0-150W 20°C
0-200 W 40°C

6.1.1. Results for the FPPHP tested in vertical BHM

6.1.1.1. Qualitative analysis of the FPPHP filled with pure fluids

Here, in this first subsection, evolution of temperatures and pressure curves for the
FPPHP varying heat load level will be studied. All tests were carried out for the heat load

range from 50 W up to 200 W (if there is no system failure during tests) with 50 W-steps.

Typica temperature and pressure responses as functions of time for the FPPHP filled with
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pure water, ethanol and methanol in saturation state are presented in Fig. 6.1 — 6.3,

respectivelly.
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Figure 6.1. Temperature and pressure responses for FPPHP filled with water (FR=50%;
Teool = 20 °C, vertical BHM).

As shown in Fig. 6.1, at the beginning of heating period (50 W of applied power),
temperaturesin evaporator zone of FPPHP filled with water (FR = 50%) drastically increase
up to avalue about equal to 32 °C (~12 °C higher than cooling water temperature, at t = 700
s). Smooth evaporator temperatures increase (until ~42 °C) is observed during amost all test
period (~30 min) under this heat load. Following heat load increases up to 100 W leads to
the short-term sharp evaporator temperaturesrisetill ~70 °C. After temperature valuesreach
their maximum (at t = 2850 s), temperatures and pressure drops were observed with
succeeding temperature high amplitude oscillations (peaks temperatures from 30 °C to 50
°C), corresponding to the beginning of fluid flow circulation in the separate form of liquid
slugs and vapor bubbles. Next heat |oad increases of 150 W and 200 W lead to temperatures
and pressure oscillations stabilization — frequency increase and amplitude decrease -
accompanied with a maximum evaporator temperature value about 40 °C. It is noticeable
that temperature oscillation amplitudes for 150 W and 200 W of applied power are almost
the same.
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Fig. 6.2 presents temperatures and pressure evolutions as functions of time for the
FPPHP filled with pure ethanol (FR=50%) under saturation state. Period for 50 W of applied
power is characterized by the presence of temperature peaks of ~37°C and ~50°C with
following temperature decrease down to ~25°C, accompanied by pressure drops. These
periodical temperature variations report about dry-out occurrence during temperature
increase with following start-up. This behavior is very similar to the one obtained for the
case with water at 100 W of applied power.
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Figure 6.2. Temperature and pressure responses for FPPHP filled with ethanol (FR=50%;
Teoo = 20 OC, vertical BHM).

Next augmentation of heat load up to 100 W leads to low temperatures (at the level of
~28°C) and higher pressure amplitude oscillations during total period before next heat load
step. Absence of significant temperature oscillationsis dueto gravitational forces dominance
on surfacetension forces and ensuing FPPHP operational changes— from slug/plug pul sating
flow to annular, as previously observed and reported by [6.2]. FPPHP operationa behavior
for 150 W and 200 W of hesat load is very similar to the case at 100 W of applied power with
average evaporator temperature augmentations till ~33°C and ~37°C, respectively. One can
argue that, at these operating conditions, the FPPHP operates very efficiently.
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Figure 6.3. Temperature and pressure responses for FPPHP filled with methanol (FR=50%;
Teoo = 20 °C, vertica BHM).

For methanol-filled FPPHP (FR=50%), the temperature and pressure responses are
presented in Fig. 6.3. Temperature behavior seems to be similar to the case of water-filled
FPPHP for 50 W of applied power but with higher evaporator temperature increasement
(temperature increase up to ~55°C). At the beginning of the period for 100 W, evaporator
temperatures rise till ~70°C with following drop and temperature quasi-stabilization (with
rare temperature leaps) on the level of ~28°C. Consequent heat loads of 150 W and 200 W
lead to establishment of thermohydraulic behavior similar to the case of ethanol and
temperatures of ~32°C and ~35°C (150 W and 200 W, respectively), which gives thermal
performances slightly better than for the previous one.

6.1.1.2. Influence of the condenser cooling fluid temperature

Fig. 6.4 represents a comparison of thermal resistances as functions of applied heat
power for FPPHP filled with water, ethanol and methanol, with filling ratio of FR = 50% at
range of heat loads of 50 W — 200 W and condenser temperatures of 20 °C and 40 °C (Fig.
A.1.6-A.1.8). Here, higher values of thermal resistance mean lower thermal performances

and, so, lower values correspond to better heat transfer characteristics of FPPHP.
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From Fig. 6.4, it seems that thermal resistance for methanol-filled device at 50 W of
heat load and Tcoo = 20 °C is two times higher than for water-filled and three times higher
than for ethanol-filled FPPHP, which seems to be in good accordance with evaporator
superheats observed for thisinitial heat load in Fig. 6.3. Lower thermal resistance value at
50 W of heat load is observed for FPPHP filled with ethanol. Following heat load increase
leads to thermal resistances decrease for all tested fluids at Teoo = 20 °C. Then, their
convergence almost at the same point (R = 0.07 K/W) for 200 W of applied power is

observed.
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Figure 6.4. Thermal resistances for FPPHP tested at Tcool = 20 °C and Teool = 40 °C of
cooling water temperature (FR = 50 %, vertical BHM).

The overdl values of thermal resistances for the same device filled with same fluids
and tested at Teool = 40°C of cooling temperature are quite lower for al fluids in the entire
range of heat loads, except cases with ethanol for 50 W and methanol in the power range
between 100 W and 200 W. Thermal resistance values for water are varying from 0.15 K/W
at 50 W to 0.07 K/W for 200 W; from 0.57 K/W at 50 W to 0,05 K/W at 200 W of applied
power for ethanol; and from 0.31 K/W at 50 W to 0.15 K/W at 200 W of heat load for

methanol.
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6.1.1.3. Influence of the filling ratio

Some authors [6.7; 6.8] previously reported that filling ratio has significant influence
on both pulsating heat pipe thermal performance and operation behavior. Usually, during the
tests, flat plate pulsating heat pipe is filled with a filling ratio of FR=50%. Knowing that
tested FPPHP is not symmetric (condenser is two time larger than evaporator) and that,
during dry-out periods, liquid collects in the condensation zone, studied FPPHP with filling
ratio of FR=59% allows to reach halfway between the condenser and the evaporator (Fig.

6.5), have been carried out.

100 mm

40 mm

FR=59%

=l
o v
—

40 mm

Evaporator

Figure 6.5. Schematic representation of the liquid level inside FPPHP (from the top
condenser) for filling ratio of FR = 50% and FR = 59%.

Fig. 6.6 shows the comparison of thermal resistances for flat plate pulsating heat pipe
filled with water at filling ratios of 50%, and 59%, respectively. First of al, in analogy with
resultsfor filling ratio of 50%, thermal resistances decrease with heat load augmentation for
both cooling temperatures at filling ratio of 59%.

Therma resistance of FPPHP filled with water for FR=50% and tested at condenser
temperature of 20 °C (solid blue line, Fig. 6.6) and heat load of 50 W is amost two times
higher than for the case at FR=59% (dashed blue line, Fig, 6.6). Following increase of heat
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load leadsto the values alignment until almost fully coincidence of thermal resistance values
at 150 W and 200 W of hest loads.

Condenser temperature rise shows opposite effect (for heat load equal to 50 W) —
thermal resistance for higher filling ratio (dashed red line, Fig. 6.6) at 50 W of applied power
isalmost four time higher than value for FPPHP filled with lower amount of fluid. However,
with heat load augmentation (in the range of 100 W to 200 W), any influence of filling ratio
on FPPHP thermal performances has been noticed.
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Figure 6.6. Effect of filling ratio on thermal resistances of FPPHP filled with water
(vertica BHM).

These disagreements with thermal resistances at 50 W of hesat load could be provoked
by FPPHP unstable operation, but with heat load augmentation thermal responses seem to

become more stable and reproducible.
6.1.1.4. Influence of the binary mixtures

Nowadays, many studies on enhancement of heat transfer performances of the pulsating
heat pipesare carried out. Based on PHP working principles concerning liquid plug motions,

wettability and surface forces can significantly affect the two-phase transfer characteristics
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due to their high influence on flow resistance in mini- and microchannels. In addition,
wettability has influence on liquid film formation close to the liquid plugs and can affect
heat transfer performances.

Due to these facts, improvement of wetting properties relating to pulsating heat pipes
becomes an interesting approach. Nowadays, many techniques are used to change wetting
properties as well both solid surfaces and/or fluids modifications. Indeed, using fluids
mixtures in the context of wetting and interfacial properties seems to be an interesting
approach. This subsection will briefly present results for FPPHP tested with al cohol agqueous
solutions, self-rewetting fluids and water-surfactant solutions. Thermal behaviors will be

analyzed and compared with the ones obtained with pure water.

Fluids modification |eads to changes of many thermo-physical parameters (thermal and
transport properties) so, in this study, fluids with relatively close values of surface tension
have been selected. Table 6.2 presents main thermophysical properties of tested fluids
(density, viscosity and thermal conductivity of water - 0.5% Tween 40° solution assumed
equal to pure water due to small amount of surfactant).

Table 6.2. Main thermophysical properties of the tested fluidsat T= 20 °C [6.9 — 6.11].

P i ol Al OPsa/OT
(kgm?)  (kgmis?) (Nm?) (WmiK?) (PaK?)
Water 988 5x10* 0.068 0.604 609
Water — 5% 1-butanol 978 5.1x10* 0.034 0.595 605
Water — 5% 2-butanol 979 5.5x10* 0.032 0.564 619-639
Water — 20% Ethanol 943 5.2x10* 0.035 0.478 680
Water — 28% M ethanol 943 4.9x10* 0.044 0.515 —
Water — 0.5% Tween 40° 088 5.4x10* 0.035 0.604 —

Results for FPPHP tested with water, water/ethanol and water/methanol mixtures as
working fluids, are shown in Fig. 6.7 in the form of thermal resistances. Asit could be seen,
the thermal performances for FPPHP tested at Tcoo = 20 °C are very similar for al tested
fluids. Moreover, thermal resistances for water and water/ethanol cases are almost matching
in the range of heat load from 50 W to 150 W. Despite this apparent similarity, real thermal
behavior is very different - case with pure water as a working fluid accompanied with high
temperature oscillations, contrary to water/ethanol and water/methanol cases, where very
frequent and low amplitude temperature oscillations were observed (that could be seen in
Fig. A.11,A.1.2,A16, A.19and A.1.10).
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Figure 6.7. Thermal resistances for FPPHP filled with ethanol and methanol agueous
solutions a Teool = 20 °C and Teool = 40 °C (FR = 50%, vertical BHM).

It seems that FPPHP filled with pure water is amost two times more performant than
the FPPHP filled with alcohol agueous mixtures for tests at condenser cooling fluid
temperature of Teoo = 40°C. Condenser temperature increase provokes a thermal behavior
change for the FPPHP filled with pure water from rare high amplitude temperature
oscillations to frequent and low amplitude temperature oscillations, which means the same
two-phase flow behavior inside of the FPPHP. This fact, coupled with better transport

characteristics of water, leads to overall thermal performance improvement.

Thermal resistances of FPPHPs filled with self-rewetting fluids and tested at condenser
temperature of Teoo = 20 °C and 50 W of heat load (Fig. 6.8) are amost two times|lower than
thermal resistance for the FPPHP filled with pure water and tested at same conditions. With
subsequent heat power augmentations, thermal resistances slightly decrease (more visible

changes for case with water).

With augmentation of condenser temperature until Tcool = 40 °C, thermal resistances

for al fluids dlightly decrease, comparing to the case with condenser temperature of Tcool
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=20 °C. No significant difference in thermal performance of FPPHP between the fluids was

observed.

1,0 T | :

09 | T =20°C | Ty =40°C|
' Water —0O— —A—
0,8 F |Water - 5% 2-Butanol - O- - A- _

O7F " T TTTTTT oo eT s st T T T

=
X Empty FPPHP

306 4
o
w05 -
8
X 04 | 4

£
= 03
<
=02

01

0,0

50 100 150 200
Heat Load [W]

Figure 6.8. Thermal resistances for FPPHP filled with SRWFs at Tcool = 20 °C and Teool =
40 °C (FR = 50%, vertical BHM).

Comparison of therma performances for the FPPHPs filled with water and water
surfactant solution (0.5% Tween 40°) is presented in Fig. 6.9. Thermal resistances for tests
conducted at Teoo = 20 °C of cooling water showed a lower thermal performance of
water/surfactant solution than for pure water at the initia level of heat load (50 W).
Following overall thermal performance changes accompanied with heat load augmentation

have been observed.

Test case with Teoo = 40 °C showed the same: higher thermal resistance value for water-
filled FPPHP at initial heat load of 50 W. This can be explained by the temperature
augmentation during non-oscillating device operation, which could be seen also for water-
surfactant solution, but with much less temperature augmentation (temperature pesk in Fig.
A.1.13). Temperature high frequent and low amplitude oscillations take place with applied
heat power increase (almost similar for two cases) which leads to the aignment of thermal

resistance values.

131



Chapter 6 — Ground Based and Parabolic Flight Tests Analyses

1,0 —

Ty =20°C | T, y=40°C
09 F |water —0— - O- .

—08} Water - 0.5% Tween40 ~ —A— - A- |
= "
< 07 Empty FPPHP

0,6 |
S

BO5} .
X 04}

£
5 03 F
L
=02
01

0,0

50 100 150 200
Heat Load [W]

Figure 6.9. Thermal resistances for FPPHP filled with Tween 40° aqueous solution at
condenser temperature of Teoo = 20 °C and Teoa = 40 °C (FR = 50%, vertical BHM).

6.1.1.5. Influence of the non-condensable gas presence

Generation of non-condensable gas inside two-phase heat transfer devices often occurs
in a unpredictable way; it is mainly due to chemical reactionsin liquid-solid interface, or to
some some leaks through the soldered connections, etc. Non-condensable gas (NCG)
presence inside two-phase heat transfer devices can become a crucial issue influencing the
system operation and reliability [6.12]. NCG generation is one of the most important reasons
of heat pipe heat transfer capability degradation and failure [6.13; 6.14]. However, not many
papers exist concerning NCG influence on PHP operation. NCG amount directly influences
the slug/plug flow dynamics and leads to a remarkable decrease of hest transfer capability
with large amount of NCG [6.15; 6.16]. Injection of NCG in PHP does not prevent their
operation, but produces arise of overal system pressure, operational temperature resulting
to thermal resistance increase [6.17]. Resulting system pressure and saturation temperature
can be expressed as follow [6.18]:

Psys =PF, + Rgas (6.1)
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where Pv and Pgas are the partial pressures of vapor (corresponds to the saturation pressure)

and NCG gases, respectively. Finaly, the real saturation temperature of the system
consisting NCG will be:

Tsat,sys = lsat [Psys] (6.2)
From Eq. (6.1) and Eq. (6.2) clearly seen, that internal pressure of the system increases

with NCG presence, leading to the saturation temperature augmentation.

In this section will be discussed the effect of NCG on the flat plate PHP operation in

vertical orientation (BHM). The system pressure with NCG addition corresponds to 15 kPa
at 20 °C, contrary 2.3 kPafor pure water.
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Figure 6.10. Temperature and pressure responses for FPPHP filled with water and NCG
(FR = 50%; Psys = 15 kPa; Teool = 20 °C, vertical BHM).

Fig. 6.10 presents temperature and pressure behavior for FPPHP filled with NCG
presence. The regular and high amplitude temperature oscillations can be seen starting from
100 W of heat load (low amplitude oscillations present at 50 W also), contrary case with
pure water (Fig. 6.1), where temperature increases significantly during period for 50 W of
applied power. Moreover, great oscillations of pressure valuestestifiesthe aternate presence

of liquid and gaseous phases in the evaporation zone (near to the pressure sensor probe),
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which can be caused by the liquid plugs separation with the NCG dugs. It should be noted
that overall evaporator superheat (related to the case with pure water) is: ~18 °C at 50 W;
~30°C at 100 W; ~38 °C at 150 W and ~45 °C at 200 W of heat |oad.

No significant changes in temperature and pressure behavior have not been found with
liquid cooling temperature augmentation till Teoo = 40 °C (Fig. A1.16 — appendix A.1).
However, average evaporator temperature increase have been found around ~10 °C for heat

loads in the range of 50 W — 150 W.
6.1.2. Resultsfor FPPHP tested in horizontal position.

The fact that, as previously mentioned, gravity effect on the FPPHP operation is
minimal in horizontal orientation (gravity vector perpendicular to the flow direction) makes
the tests in such position closer to the space conditions than tests in vertical BHM.

As mentioned in section 3.2.4, the fluid flow pattern in horizontal orientation can be
only slug flow, and the motor of the fluid flow comes from the pressure instabilities in the
various vapor bubbles. In such configuration, surface tension forces become significant in
the momentum balance, and wettability also plays arolein heat and fluid flow behavior of
PHPs.

In analogy with section 6.1.1, in this section results will be presented in form of
temperature histories to evaluate a thermal transient behavior of the FPPHP and in form of
thermal resistance curves to compare influence of different parameters (condenser cooling
temperature, filling ratio, fluid properties etc.) on the FPPHP thermal transport efficiency.

6.1.2.1. Qualitative analysis of the FPPHP filled with pure fluids

Typical transient long-time test run results for the same working fluids tested under the
same conditions presented in section 6.1.1.1, are presented in Fig. 6.11 — 6.13 in the forms
of temperature and pressure histories. All data of this section can be found in appendix A.2
(Fig. A.2.1t0 A.2.16).

For reported operating conditions, except for some oscillations noticed at the beginning
of heat power level of 50 W, FPPHP filled with pure water operates “dry” after 800 s (Fig.
6.11), what can be provoked by liquid accumulation in the condensation zone (see Fig.
3.11c). During the beginning of heat power step of 150 W, evaporator temperature exceeds

100 °C (highest possible operation temperature due to security reasons) and following tests
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have been stopped. Anyway, presented cases could characterize an overal behavior of

FPPHP operating with water in horizontal position.
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Figure 6.11. Temperature and pressure responses for FPPHP filled with water (FR = 50%;
Teoo = 20 °C, horizontal).

Temperatures and pressure behavior of ethanol-filled FPPHP are presented in Fig. 6.12.
Asfor the case with water, some oscillations with following dry-out are noticed for first heat
power load (50 W). Regular high amplitude and high frequency temperature oscillations can
be observed for higher heat loads. It isinteresting that sometimes high amplitude (~40-50°C)
temperature oscillations aternate with lower ones (20-25°C) but with higher frequency. In
such configuration, one can assess that the FPPHP filled with water operates at 40°C cooling
temperature but in a degraded mode. Such high temperature oscillations are detrimental to
prolongated and durable use of FPPHPs as heat transfer device.

Operation behavior for the FPPHP filled with methanol (Fig. 6.13) looks quite similar
to the case of ethanol, except period for applied power of 50 W — if, for ethanol, dry-out has
occurred, stable and low amplitude temperature oscillations have been observed for
methanol, showing very good thermal operation in such conditions. Test periods for higher
heat loads characterized by regular high frequency temperature oscillations and overall
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evaporator temperature augmentation can be observed. Sometimes (especially for highest
heat |oads) higher temperature rises with following drops have been registered — this means
a short-term periods of flow oscillations stopover.
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Figure 6.12. Temperature and pressure responses for FPPHP filled with ethanol (FR =
50%; Tcool = 20 °C, horizontal).

In comparison with the FPPHP tested in verticad BHM (section 6.1.1), tests of the
FPPHP in horizontal orientation showed completely different operational behavior. Indeed,
in vertical position, with water as working fluid, the optimal operation mode has been
reached for 150 W and 200 W of applied power but, in horizontal position operation of the
FPPHP havefailed (start-up not reached in the accepted temperature range); high amplitude
temperature oscillations have been noticed for two other fluidsin horizontal position, unlike
almost smooth profilesin vertical position due to the gravity forces predominance compared

to surface tension forces, helping the liquid plugs to flow back into the evaporator.

Comparing pressure curves for two tested positions (vertical and horizontal) and two
tested liquids (ethanol and methanol), can be seen a significant difference in the amplitude
and frequency of values oscillations. In vertical position, FPPHP filled with water show very

rare pressure oscillations only at 100 W of applied power (from 3000 s to 4000 s) and
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methanol-filled device show more frequent oscillations starting from 100 W (from 4000 s).
These values mean the presence of the alternate slug-plug flow through pressure sensor in
the center of evaporator. No significant pressure oscillation for FPPHP filled with ethanol
and operated in vertical position was found — can be concluded that device working in
thermosiphon mode. However, FPPHPs tested in horizontal orientation and filled with
ethanol and methanol operated in clear oscillation mode starting from 100 W of heat |oad
for both devices (high amplitude pressure oscillations can be found in Fig. 6.12 (starting
from 1800 s) for ethanol and Fig. 6.13 (starting from 2200 s)).
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Figure 6.13. Temperature and pressure responses for FPPHP filled with methanol (FR =
50%; Teool = 20 °C, horizontal).

6.1.2.2. Influence of the condenser cooling fluid temperature

As shown in Fig. 6.11, FPPHP filled with water and tested at Tcoo = 20 °C of cooling
water temperature operates in the “dry evaporator” mode and results have been obtained
only for 50 W and 100 W of heat load. Thermal resistances for these two heat power are
presented in Fig. 6.14 (blue solid line), where thermal performance of water-filled FPPHP

slightly degrades with heat load augmentation, in contrast with case of ethanol and methanol
filled devices.
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If the thermal resistance for ethanol at the lowest heat load (50 W) is a bit higher than
for water (0.55 K/W vs. 0.49 K/W), it significantly decreases with heat power augmentation.
This is due to the transition from “dry” operating mode to “oscillatory” one which has not
been reached for pure water.
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Figure 6.14. Thermal resistances for FPPHP tested at Tcool = 20 °C and Teool = 40 °C of
cooling water temperature (FR=50%, horizontal).

Due to presence of stable oscillations from the test beginning, i.e. for lowest heat |oad
of 50 W, thermal resistance evolution for methanol -filled device for the same test conditions

showed minor decrease in values, being the lowest ones compared to water and ethanol.

Very rare temperature drops could be seenin Fig. A.2.6 (Appendix A.2) for water at 50
W of heat load and cooling fluid temperature of 40°C which means a presence of occasional
flow oscillations between dried evaporator periods. Despite these very rare reactivations, the
thermal resistance value (Fig. 6.14 (red solid line)) is amost the same compared to the case
with cooling fluid temperature of Tcoo = 20 °C. With heat load increase, thermal resistance

significantly decreases due to “oscillatory” mode establishment.

Overdl vaues of thermal resistance for methanol-filled FPPHP dlightly decrease
without any significant changes into operation behavior, confirming the best operating mode
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for this fluid. For ethanol-filled device, any significant changes in operation have not been

observed.

Better device performance for FPPHPs tested at Teool = 40 °C can be explained by the
higher value of driving pressure in Eq. (3.4) due augmentation of value of the vapor-liquid
saturation line slope (dPs/dT) with operation temperature increase (Fig. 4.10a), and due to
diminution of the capillary pressure drop and viscous friction caused by surface tension and
viscosity decrease with higher temperature.

It is noticeabl e that thermal resistance almost converge until the same value for all three
cases at highest heat loads (150 W and 200 W).

6.1.2.3. Influence of the filling ratio

Filling ratio influence on thermal resistance of the FPPHP filled with water and tested in
horizontal position is presented in Fig. 6.15. Augmentation of filling ratio from 50% to 59%
at cooling liquid temperature of 20 °C leads to startup at 100 W of applied power with stable
but high amplitude temperature oscillations up to ~70 °C (Fig. A.2.14-Appendix A.2). From
Fig. 6.15, it is clearly seen that thermal resistance for higher filling ratio decreases with heat

load augmentation.

Also, higher filling ratio leads to temperature oscillations stabilization for higher
cooling temperature (Tecoo = 40 °C) which leads to higher thermal resistance decrease
compared with FR = 50%. For Teoo = 40 °C, influence of filling ratio on thermal resistance
is not as significant as for Teoo = 20 °C but stabilization of temperature oscillation has been
observed (Fig. A.2.15 -Appendix A.2).

6.1.2.4. Influence of the binary mixtures

If for FPPHP tested in vertical orientation any significant effect of fluid thermophysical
properties modification on thermal performance was not noticed (even for some cases
FPPHP filled with water operated quite better than water-based mixtures), ethanol and
methanol additives positively affected FPPHP operation in horizontal conditions.

FPPHP filled with alcohol agueous mixtures operates stable with frequent and low
amplitude temperature oscillations for both fluids and both cooling fluid temperatures, even
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better than FPPHP filled with pure ethanol and methanol (Fig. A.2.1,A.2.2, A.2.9, A.2.10 -
Appendix A.2).
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Figure 6.15. Effect of filling ratio on thermal resistances of FPPHP filled with water
(horizontal).

Asseenon Fig. 6.16, there are amost no difference in thermal performancesfor device
filled with water/ethanol and water/methanol mixtures, especially for Teoo = 40 °C, which
can be explained by very close values of surface tension (table 6.2). Thermal resistance of
water-filled device decreases down to values obtained for alcohol aqueous solutions with

heat load augmentation (temperature of cooling fluid Teoo = 20 °C).

Exactly same thermal resistance behavior with approximately the same values has been
obtained for FPPHP tested with self-rewetting fluids (Fig. 6.17). Despite very close values
of thermal resistances, 1-butanol based SRWF operates unstable in comparison with 2-
butanol based aqueous solution. Device filled with 5% 2-butanol/water solution stably
operates for al levels of applied power with low superheat and dlight temperature
oscillations during periods of 50 W of heat |oad.
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Figure 6.16. Thermal resistances for FPPHP filled with water, ethanol and methanol
aqueous solutions at condenser temperature of Teool = 20 °C and Teool = 40 °C (FR = 50%,

horizontal).
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Figure 6.17. Thermal resistances for FPPHP filled with SRWFs at condenser temperature
of Teool = 20 °C and Teon = 40 °C (FR=50%, horizontal).

141



Chapter 6 — Ground Based and Parabolic Flight Tests Analyses

In Fig. A2.4 and A.2.12 — Appendix A.2 — could be seen that, in horizontal position,
FPPHP filled with self-rewetting fluid (2-butanol) operates in optimal mode with high
frequent and low amplitude oscillations for both temperature levels of condenser cooling
fluid. Heat load augmentation provokes overall non-significant evaporator temperature rise
keeping the same operational mode. These evaporator temperature increases lead to smooth

decrease of thermal resistance values.

Operation behavior and evaporator temperature evolution for the FPPHP filled with
water/surfactant solution are almost the same as the case with pure water at 50 W of heat
load and at cooling fluid temperature of 20°C (Fig. A.2.5 - Appendix A.2). But, contrary to
the case of water-filled device, where heat |oad augmentation leads to total operation failure,
startup is reached at 50 W of applied power for water/surfactant solution. Moreover, stable
temperature oscillations have been observed only for 100 W of heat load (Fig. A.2.13 —
Appendix A.2). Heat load increase up to 150 W led to temperature increase exceeding 100
°C.
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Figure 6.18. Thermal resistances for FPPHP filled with Tween 40° agueous solution at
condenser temperature of Teoo = 20 °C and Teool = 40 °C (FR = 50%, horizontal).
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With condenser cooling temperature of 40 °C, the thermal resistance decreases (Fig.
6.18) with heat load increase for both fluids. But, if for water the FPPHP startup and stable
“oscillatory” operation occurs at 100 W of applied power, for water/surfactant case,
operation is not stable— with rare high temperature peaks and almost smooth —dried- periods,
which could be provoked by foam generation (see section 4.6.3) and augmentation of flow

resistance inside the channel.
6.1.2.5. Influence of the non-condensable gases presence

The temperature and pressure histories for water-filled FPPHP with non-condensable
gases presence and tested at Teool = 20 °C are presented in Fig. 6.19. Period for 50 W of heat
load characterized by almost horizontal (500 — 800 s) pressure and temperature curves with
values of ~30 kPa and ~72 °C, respectively. Same behavior have been observed for the
devicefilled without NCG presence (1100 — 3000 sin Fig. 6.11) but with lower pressure and
evaporator temperature values (~6.5 kPa and ~50 °C, respectively). However, with heat load
augmentation till 100 W, start-up is reached and device operates with high amplitude and
frequent pressure oscillations, contrary the case with pure water, where any oscillatory

operation was not found.
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Figure 6.19. Temperature and pressure responses for FPPHP filled with water and NCG

(FR=50%; Pgs = 15 kPa; Tcoo = 20 °C, horizontal).
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Augmentation of the cooling temperature have not change significantly device
operational behavior, except few temperature drops during period for 50 W of heat 1oad (500
—1100sin Fig. A.2.16 — Appendix A.2) and overall system temperature increase.

6.1.3. Conclusions on ground tests

During ground tests, the parametric study of the FPPHP filled with different fluids was
provided. In vertical position, PHP operates almost all time as an interconnected
thermosiphon. Device, operated in horizontal conditions operated in the oscillatory mode
then star-up is reached (usualy at 100 W of applied power), except water-filled FPPHP
tested at Teoo = 20 °C, which has worse thermal performance in these conditions. Alcohol
agueous mixtures using as a working fluids lead to the thermal performance improvement,
comparing to pure liquids (especially water). Condenser fluid cooling temperature
augmentation also leads to FPPHP heat performance improvement. Device, filled with
water-surfactant solutions shown very unstable operation despite lower thermal resistances
compared with pure water. Non-condensable gases presence leadsto overall system thermal
performance degradation, but provokes stable oscillatory operation of tested FPPHP.

6.2. Parabolic flight tests

Characterization of the FPPHP for different gravity levels has been done during 69",
71% and 74" ESA Parabolic Flight Campaigns (PFC). Present section is focused on
temperature and pressure signals analyses obtained during parabolic flight tests in the
context of various gravity levels, heat load and working fluid thermodynamic properties
influence on the FPPHP operation.

6.2.1. Experimental procedure

Molybdenum FPPHP (N = 7) covered with sapphire transparent plate and filled with
ethanol has been tested during ESA 69" PFC. Severa devices filled with water, water/5%
1-butanol mixture and water with presence of non-condensable gas (NCG) have been tested
during ESA 71% PFC. Test parameters are presented in table 6.3. Note that only tests cases
that could be exploited in this part are presented in this table.
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Finally, FPPHP filled with water, water with 16% of ethanol and with 28% of methanol
(in weight) solutions have been tested under Lunar, Martian and micro-gravity conditions
(all parameters are presented in table 6.4) during ESA 74th PFC.

Table 6.3. Experimental matrix for microgravity tests (69th and 71st PFCs)

Ne Parabola PHPtype  Workingfluid Heat L oad

Parabolic flight campaign 69"

16-20 Mo/Sa Ethanol FR =40 % 100 W

26-30 150 W

Parabolic flight campaign 71% (day 1)

6-10 Co/Sa Water + NCG FR = 50% 50 W

10-15 Co/Sa Water + NCG FR = 50% 100 W

16-20 Co/Sa Water + NCG FR = 50% 150 W

Parabolic flight campaign 71% (day 3)

6-10 Co/Co Water — 5% 1-butanol FR = 50% 50 W
Co/Sa Water FR = 50%

10-15 Co/Co Water — 5% 1-butanol FR = 50% 100w
Co/Sa Water FR = 50%

16-20 Co/Co Water — 5% 1-butanol FR = 50% 150 W
Co/Sa Water FR = 50%

Tables with experimental parameters provide following information about tested
FPPHP and test conditions. metal-base plate material (Mo — molybdenum and Co — copper)
in which channels are engraved and materia of covering plate (sapphire — Sa, and copper —
Co, for example); working fluid and filling ratio; applied hest |oads, and gravity acceleration

levels.

The FPPHP has initially been installed in a vertical position related to the floor of the
aircraft. Asit was previously discussed, in vertical position gravity vector assists the liquid
plugs to flow back to the evaporator zone (in bottom heating mode) but, for parabolic flight
tests, gravity level influences liquid plugs movements just during the periods between
parabolas — during microgravity periods position of deviceisirrelevant. During this study,
tests have been performed for FPPHPs in bottom heated mode (BHM) under different
heating configurations.

After parabola “0” of each test day, power has been provided to the heaters. After the
end of each set of five parabolas, value of heat load has been changed to planned one for
next parabolas set (or kept the same if necessary) to reach quasi -established thermal regime.
The detailed description of the parabolic flights and test procedure are presented in sections
5.1and 5.4.2.

145



Chapter 6 — Ground Based and Parabolic Flight Tests Analyses

Table 6.4. Experimental matrix for 74th PFC tests (copper-copper FPPHP)

Ne Parabola  Working fluid Heat Load Gravity level
Dayl

0-5 Water FR=50% 50 W Martian (0.380)
6-10 Lunar (0.18g)
10-15 u-gravity (0.019)
16-20 150w u-gravity (0.019)
21-25 Lunar (0.18g)
26-30 Martian (0.38g)
Day 2

0-5 Water — 16% Ethanol FR = 50% 50 W u-gravity (0.019)
26-30 150 W u-gravity (0.019)
Day 3

6-10 Water — 28% Methanol FR=50% 50W u-gravity (0.019)
21-25 150 W p-gravity (0.01g)

6.2.2. Overall thermal behavior of the FPPHP tested during PFCs

During the short periods of microgravity (~20 s), both thermal and hydraulic regimes
are not established due to high thermal inertia of the FPPHPs. Fig. 6.20 presents typical
temperature and pressure behavior for the FPPHP tested during five subsequent parabolas
for the molybdenum-sapphire FPPHP filled with ethanol (ESA PFC 69). Although only one
case is presented, the main behavior observed for microgravity conditions are representative
of al other levels of heat power applied and all other tested fluids. Figuresfor al other tests
conditions could befound in Appendix B (Fig. B.1.1to B.3.3). Herewill be presented mostly
qualitative analysis of the FPPHP behavior for tests conducted during parabolic flights with

explanation of the main related phenomena.

First of al, Fig. 6.20 represents temperature and pressure variations for the molybdenum
device covered with sapphire plate, during a set of five consecutive parabolas inducing
normal, hyper- and micro- gravity conditions, for 100 W of applied heat power. Evaporator
temperature curves are colored in the shadows of red, adiabatic zone temperatureisin orange
and cooling one in blue. Gray curve represents values of the system pressure and dashed
grey onelevel of gravity acceleration. First, it should be noted that hypergravity phases have
practically not significant influence except a slight decrease of the temperature and pressure
profiles compared to normal gravity conditions. A little difference between the evaporator
temperatures can be observed for normal and hypergravity conditions. But, with the onset of
microgravity, a decrease of this gap and a homogenization of the temperature profile occur,
and is maintained until the gravity level normalization. Then, atemperature riseis observed
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for the evaporator temperatures during each microgravity phases. The latter is due to all
liquid collection in the condensation zone and so to evaporator dry-out (Fig. 6.21) — heat
being transferred from evaporator to condensed only by FPPHP heat conduction through the
metallic and sapphire plates.
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Figure 6.20. Transient temperatures, pressure and accel eration responses during a series of
5 successive parabolas for molybdenum-sapphire (Mo/Sa) FPPHP at heat load of 100 W
(ethanol, FR = 40%, Tcool = ~25 °C).

As could be seen in Fig. 6.21a, during norma gravity, semi-annular/annular flow
patterns are predominant for ethanol-filled FPPHP, but during almost all parabolas (without
temperature drops) liquid remains accumulated in the condenser zone in the form of liquid
plugs. At the same time, without liquid re-flow into evaporator, dry-out occurs with low

amplitude liquid plug oscillations.

Sometimes, evaporator temperatures suddenly and arbitrarily drops during microgravity
periods, as well observable instantaneous pressure rise which corresponds to some changes
in flow regime and fluid entering in the evaporator causing sensible and latent heat transfer

between superheated walls and subcooled liquid also called “re-activation” phases (Fig.
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6.20, parabola 3, indicated by ared circle). The mechanism of reactivations and fluid flow

behavior during microgravity will be discussed in detailsin Chapter 7.

@ (b)

Figure 6.21. Flow pattern for FPPHP for (a) normal gravity and (b) microgravity.

6.2.3. Influence of fluid thermodynamic properties on FPPHP behavior during parabolic
flight campaign.

Results for FPPHP filled with water, water/16% ethanol, water/28% methanol and
water/5% 1-butanol solutions and obtained during 71% and 74" ESA Parabolic Flight
Campaigns will be presented in this section. Note that only copper/copper FPPHPs have
been used for these tests campaigns, so visualizations were obviously impossible. Thus,
following analyses and explanations will be drawn based on our experience of previous

visualization campaigns on such device. Fig. 6.22 — 6.25 represent temperatures and pressure
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behaviors for al four tested cases at 50 W of applied power (figures for 150 W of applied
power are available in Appendix B). In analogy with previous sections, curves, representing
evaporator temperatures, are colored in the shadows of red, adiabatic — yellow and blue for

secondary cooling liquid. Pressure is represented by grey curves and gravity acceleration by

grey dashed curves.
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Figure 6.22. Temperature behavior of FPPHP filled with water (Co/Co, Q=50 W, Tcool =
~25°C, ESA PFC 74).

During normal gravity periods, FPPHP filled with water operates stably with low
temperature oscillations (in the range of the measurements uncertainty). Some temperature
changes have been observed due to changes of secondary cooling fluid temperature. Should
be noted, that secondary fluid temperature is not constant, but slightly increases with time,
dueto heat sink direct link with ambient air in the aircraft — so, cooling temperature depends
not only on heat load, but aso on temperature of surrounding air. That said, hypergravity
periods are accompanied with small temperature drops and pressure augmentation.
Temperature augmentation, provoked by liquid accumulation in the condenser zone and by
evaporator dry-out (explained in the beginning of this section), have been observed for all

parabolas. Device operation reactivation phases, followed by temperature sudden decrease
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and pressure drops, have been observed for first, fourth and fifth parabolas. Higher heat |oad
does not amost influence temperature behavior during norma gravity (but with
augmentation of overall evaporator temperature) and microgravity period are characterized
by higher temperature peaks and rare reactivations (parabolas 1, 2 and 5 in Fig. 6.30).
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Figure 6.23. Temperature behavior of FPPHP filled with water/16% ethanol (Co/Co, Q =
50 W, Teool = ~25 °C, ESA PFC 74).

Temperature histories for device filled with water/ethanol mixture are presented in Fig.
6.23. Because it wasthefirst test for the second day of flights and heat 1oad has been applied
just before end of parabola “zero”, temperature increases in a similar way than the one
observed in vertical on-ground tests — without oscillations, showing that the start-up did not
really occurred. It seemsthat temperature level becomes stable just before first parabola, and
the transition between microgravity and beginning of hypergravity phases provokes the
change of device operation mode accompanied with temperature drop and following
stabilization with lower temperature level and low temperature oscillations amplitude. Then,
microgravity periods, are characterized by evaporator temperature augmentation but this
time with more frequent temperature fluctuations, attributed to reactivations phases, than
with water case. Probably, for this case, liquid was not accumulated in the condenser zone

and dry-out was not reached, but FPPHP operates in the pulsating mode with reduced
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oscillation frequency. Also, pressure oscillations during microgravity phases seem to

confirm these trends.

Higher heat load level of 150 W leads to small temperature oscillations amplitude
augmentation and overall evaporator temperature rise (as it is the case with water) during
normal gravity. Note that despite significant evaporator temperature augmentation (normally
states about dry-out) during microgravity periods, regular reactivation have been observed
for al parabolas (Fig. B.3.3 — Appendix B.3) — it could be clearly seen with pressure

oscillations, which mean oscillatory flow inside FPPHP.
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Figure 6.24. Temperature behavior of FPPHP filled water/28% methanol (Co/Co, Q=50 W,
Teoo= ~25 °C, ESA PFC 74).

From Fig. 6.24 it could be seen that for FPPHP filled with water/methanol mixture, high
amplitude fluctuations are present for normal gravity periods. However, and unfortunately,
any temperature or pressure drops have not been observed for microgravity phases. Thisfact
indicatesthat for thisfluid at 50 W of applied power, dry-out without any flow reactivations

takes place during each parabola.

Finally, last tested fluid is 5% 1-butanol agueous solution, being a self-rewetting fluid.
During ground tests, water/1-butanol filled FPPHP have shown pretty good performances
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(Fig. 6.25), especidly in horizontal orientation. Thermal behavior for the FPPHP filled with
this solution and tested during parabolic flight at 50 W of applied heat power isvery similar
to the case with pure water - during normal gravity period any significant temperature and
pressure oscillations were not observed. Moreover, during all five parabolas any fluid flow

reactivation accompanied with temperature drop have not been registered.
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Figure 6.25 Temperature behavior of FPPHP filled water — 5% 1-Butanol (Co/Co, Q=50
W, Teool = ~25 °C, ESA PFC 71).

Nevertheless, despite similarities in behavior, the overall evaporator temperature is
almost 10 °C lower for 1-butanol solution than for pure water. Better channel walls wetting
and higher thin-film evaporation rate could have caused this. Heat load augmentation up to
150 W leadsto overall evaporator temperature increase and provoke oscillations with higher
amplitude during normal gravity periods. Note that for the other cases, temperatures peaks
are almost equal for all parabolas (during one set), but for water/1-butanol solution, the peak

temperature values varies from one parabolato another.
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6.2.4. Influence of the non-condensable gases presence on FPPHP operations under

microgravity conditions

All results obtained for copper — sapphire (Co/Sa) FPPHP during ESA 71% Parabolic
Flight Campaign are presented in the form of temperatures and pressure evolutions, as well
as differences between average evaporator temperature during normal gravity periods and
peaks during parabolas, to explain FPPHP operating behavior for different gravity levels
with and without non-condensable gas injection.

Temperatures, pressure and accel eration profilesfor the FPPHP tested at 100 W applied
heat load on a set of five subsequent parabolas are shown in Fig. 6.26 for the PHP filled with
deionized water, and Fig. 6.27 for the PHP with water with NCG, respectively.
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Figure 6.26. Test results for the FPPHP filled with deionized water (Co/Sa, Q = 100 W,
Teool = ~27 °C, ESA 71% PFC).

Microgravity periods are characterized by significant temperature rises in the
evaporation and adiabatic zones. they are due to a transition from nucleate boiling/annular
flow pattern, under normal/hypergravity, to slug-plug flow pattern under microgravity. All
microgravity phases are accompanied by a fast dry-out of the evaporator and the liquid

accumulation in the condensation zone. Unfortunately, durations of such phases aretoo low
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to reach fluid flow reactivation process, thus amost al parabolas are accompanied by
smooth temperature peak curves. Nevertheless, some spontaneous hydraulic instabilities
sometimes occur and following temperature drop could be observed due to initia fluid
distribution in the beginning of microgravity phases and possibility on liquid plugs motions
under influence of small pressure fluctuations. Temperature and pressure characterization of
reached instabilities can be observed in Fig. 6.26(4th parabola) and in Fig. 6.29a.
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Figure 6.27. Test results for the FPPHP filled with water and NCG (Co/Sa, 100 W, Teool =
~28 °C, ESA 71% PFC).

On the other hand, under low heat load (50 W, Fig. B.2.5 — Appendix B.2), the FPPHP
with presence of NCG seems to operate quite similarly to PHP with pure water, except that
the overall system pressure remains higher and the following evaporator temperatures
increase up to ~25 °C compared to the case with pure water (Fig. B.2.3 — Appendix B.2),
leading to an overall system efficiency degradation. The temperature distribution along the
adiabatic zone is quite close to a heat conduction profile. Several factors influence such
thermal performances degradation: according to O’Connor et al. [6.18], NCG injection to
the close equilibrium two-phase systems leads to total system subcooling, which means that

boiling will start with higher surface superheat than for pure water. Gas presence in slug
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form, in the evaporation and condensation zones, a so reduces heat transfer effectiveness due

to heat transfer surface occupation and liquid/vapor contact prevent with it.

For higher heat loads (100 W and 150 W, Fig. 6.27 and B.2.6), the presence of NCG
seems to provoke regular temperature and pressure fluctuations, whatever the gravity levels,
which means alternate movements of liquid and gaseous (vapor/air) phases in form of

slug/plug flow, unlike the case with pure water (Fig. 6.26).
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Figure 6.28. Temperature overshoots during parabolas.

Values of evaporator temperature differences (“47”°) between average temperatures
during normal gravity and maximum temperatures during microgravity periods are presented
in Fig. 6.28 as functions of parabola’s number. Tests for low heat loads show almost the
same values, with and without NCG, which can be explained by short microgravity periods
and high PHP thermal inertia. Following power increase shows progressive and noticeable
rise of temperature peaks for pure water (almost 7 times higher at 150 W than at 50 W); but
these rises are much higher than those with NCG. Note that for the 4" parabola with
instabilities, at 100 W, overshoot value is lower than for other peaks, but still higher than
with NCG. On one hand, the curves of AT do not ailmost vary (horizontal line) for PHP with
pure water, which demonstrates a certain regularity. On the other hand, for PHP with NCG,
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the curves of AT show an unstable behavior but with much smaller values and distribution

(somevaues at 100 W or 150 W are lower than at 50 W).

Fig. 6.29 presents pressure and temperature curves in the evaporator near pressure
transducer location. Fig. 6.29a represents two consecutive parabolas (3 and 4™ for pure
water at 100 W applied of heat power. During the first one, smooth temperature peak and
evaporator dry-out have been observed, while, during the second one, instabilities have been
noticed. During normal gravity periods, pressure oscillations are relatively low (note that
oscillations here correspond to the pressure transducer uncertainty range). Some pressure
fluctuations are however noticeable just as temperature ones, due to some spontaneous
fluctuations in gravity levels (see dotted grey curve). During microgravity periods (see first
parabola), pressure reaches peak value with following sharp drop, but on the second parabola

short pressure stabilization with subsequent increase until parabola’s end can be noticed.
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Figure 6.29. Pressure and temperature instabilities during two successive parabolas at 100
W for FPPHP filled with (a) DI water and (b) water - NCG.

Fig. 6.29b presents pressure and temperature oscillations for water and NCG during the
same 3% and 4" parabolas. No significant changes in temperature and pressure are noticeable
for the three gravity levels during first parabola, which means continuous slug/plug flow
motion. Temperature rise, such as pressure increase, can be observed during the second
parabola. However, unlike case with pure water, a significant pressure surge happens before

end of parabola, corresponding to a change of flow pattern.
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6.2.5. Results comparison for micro(l), Lunar and Martian gravity levels.

This subsection will present discussion on gravity level influence on water filled FPPHP
operation behavior for 150 W of applied power, as amore representative case. All testshave
been performed during the ESA 74" Parabolic Flight Campaign.

Therma behavior of water-filled FPPHP tested under microgravity conditions
(presented in Fig. 6.30) have been casually discussed in previous sub-section. As shown in
Fig. 6.30, normal gravity conditions are characterized by evaporator temperature smooth
oscillations. In the same way, during microgravity periods, FPPHP mostly operate in “dried”
mode, accompanied with high temperature rise, with short-term reactivations (parabolas 2,
3and5).
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Figure 6.30. Transient temperatures, pressure and accel eration responses during a series of
5 successive parabolas for copper FPPHP at heat load of 150 W (water, microgravity, ESA
PFC 74).

For lunar gravity conditions, evaporator temperature increases (~2-3 °C) are observed
(Fig. 6.31). Themaximum peak temperatureis about three times|ower than for microgravity.

High and very frequent temperature oscillations, as well pressure oscillations, have been
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registered during al parabolas and, probably, can be explained by absence of full stopover
— present gravity force assists the liquid reflows back to evaporator.
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Figure 6.31. Transient temperatures, pressure and accel eration responses during a series of
5 successive parabolas for copper FPPHP at heat |oad of 150 W (water, Lunar gravity,
ESA PFC 74).

Fig. 6.32 represents temperature thermal behavior of device tested under Martian
gravity conditions. It is clearly seen that there are not any significant temperature or pressure
changes caused by martian gravity. It seems that the level of gravity does not influence that
much the operation of the FPPHP, at least on arange from the Martian (0.38 g) to the hyper
(1.8 g) gravity levels. Unfortunately, this point has not been treated in the frame of thiswork,
and would require further study.

6.2.6. Conclusion on parabolic flight tests

Experimental results obtained for FPPHPs filled with different fluids and tested during
parabolic flights have been analyzed in this section. During microgravity periods,
temperature augmentation of evaporator temperature was observed for al tested cases.

During most of parabolas, evaporator temperature augmentation was accompanied by a
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smooth increase of the system pressure caused but evaporator dry-out and vapor
superheating. However, some microgravity periods were accompanied with sudden
temperature and pressure drops, which mean flow changesinside the PHP (will be analyzed
in next chapter). For the device filled with water-ethanol mixture, these flow re-activations

were observed much often than for other tested fluids.
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Figure 6.32. Transient temperatures, pressure and accel eration responses during a series of
5 successive parabolas for copper FPPHP at heat load of 150 W (water, Martian gravity,
ESA PFC 74).

Presence of the NCG provokes not only the overall temperature augmentation, but also
induces stable oscillatory operation of the device during both norma and microgravity
phases with temperature increase (during microgravity) quite lower than for pure water

(similarly to behavior observed and explained in section 6.1.2.5).

Finally, tests for three different levels of gravity (micro, Lunar and Martian) shown
evaporator temperature increase during lunar gravity phases, but with frequent flow
reactivations (unlike microgravity); and any difference for FPPHP operating behavior for

Martian gravity, compared to the terrestrial.
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6.3. Conclusions

In this chapter, influence of parameters on FPPHP operation, aswell as orientation, cold
source temperature, filling ratio, fluid thermodynamic properties and microgravity level,
have been studied.

Main conclusions are the following:

Concerning ground tests in vertical position, any significant difference in operation
behavior of FPPHP for all tested pure fluids has not been found (except different operational
temperature ranges, and observed instabilities for device filled with 1-butanol and Tween 40
aqueous solutions). If for 50 W of applied power, thermal resistances greatly differ, no
significant changes have not been observed for higher heat loads. Filling ratio augmentation
has not a significant effect on FPPHP thermal performances.

Operation behavior of water-filled FPPHP in horizontal position is very different from
vertical orientation, especially for low cold source temperature. If for vertical position, no
start-up has been reached just for 50 W of applied power, FPPHP in horizontal position
operates in “dry” mode for 50 W and 100 W of heat loads. Total system failure has been
observed with heat load augmentation. On the contrary, other tested fluids show high
amplitude and frequent evaporator temperature oscillations. Condenser temperature
augmentation leads to start-up for water-filled FPPHP and temperature oscillations
homogenization for heat |oad range from 100 W to 200 W for mixtures. Higher filling ratio
also leads to stable oscillatory regime establishment for FPPHP tested at both temperatures

of cooling liquid.

Concerning Parabolic Flight Campaigns, during microgravity periods, significant
increase of evaporator temperature has been observed for all tested fluids. This could be a
result of liquid accumulation in the condenser zone and of evaporator dry-out — heat being
transferred just viathermal conduction through the FPPHP solid material plate.

Interesting results have been found for FPPHP filled with water when non-condensable
gases are present- despite the overall thermal performances degradation (caused by system
sub-cooling), pulsating heat pipe with NCG injection shows steady oscillatory operation
with stable slug/plug flow pattern even during microgravity periods, unlike cases with pure

liquids, with means absence of the stopover phenomena.
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Using water/alcohol mixtures leads to more frequent fluid flow reactivations,

accompanied with temperature drops, during microgravity phases, especialy for higher
values of heat load (150 W).

Brief analysis of the gravity level influence (tests for Lunar and Martian gravity levels)

has shown that minor gravity values (0.18g) is enough to maintain continuous oscillation

mode of FPPHP operation with some evaporator temperature augmentation (quite less than

for microgravity periods) during reduced gravity phases. Almost any changes for FPPHP

operation during Martian gravity phases, compared to normal gravity conditions, have not

been observed.
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Chapter 7

Definition of Flow Transition in Microgravity via High-Speed

Visualization

The visua analysis of the two-phase flow inside the PHP could give some answers on
the questions related to the flow behavior, the influence of sensible heat transfer on the
overdl performance of PHP, which is still contradictory [7.1; 7.2; 7.3; 7.4; 7.5; 7.6], the

driving and flow transition mechanisms.

Complex mechanisms of thermo-hydrodynamic processes inside PHP are not yet fully
studied, any general and suitable design recommendations are no available, together with
some contradictory assessments from researchers [7.7; 7.8] and absence of universal flow
transition criteria. Misunderstandings of the relation between velocity and flow pattern need

regular experimental investigations to be carried out.

The visual investigations of the different flat plate pulsating heat pipes filled with
different fluids have been performed during 64", 69" and 71% ESA PFCs. Note that the
attempt to post-process the 71% parabolic flight data has been unsuccessful because the
software could not recognize the menisci in the FPPHP channels due to the high contrast
images from the IR cameraand low quality of the high-speed cameravideo: interfaces were
too thin to be captured by the trackers. Thus, only results obtained from 64" PFC for FPPHPs
with two different channel diameters (1.5 mm and 3 mm) and filled with FC72, and from
69" PFC for the device with 3 mm channel diameter and filled with ethanol, respectively,

are presented in this chapter.

Obtained images resulting from the recorded video during microgravity periods have
been post-processed for the purpose of liquid/vapor interfaces tracking, particularly at the

transition between dry-out and re-activation phases.
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7.1. Two-phase flow deter mination inside the FPPHP during microgravity

The presence of the whole menisci in every channels and liquid accumulation in the
condenser zone are clearly visible in Fig. 7.1b (left). Due to accumulation in the condenser
zone, the fluid is separated separates in the form of liquid plugs and vapor bubbles by the
menisci, and the vapor phase, remaining in the adiabatic and evaporation zones, provokes
dry-out and failure operation of the FPPHP. In such a configuration, evaporator wall
temperatures continuously rise due to aweak heat transfer with the non-moving fluid (until
t = 6221 sin Fig. 7.1a). Unlike the dry-out case, flow re-activation leads to a spontaneous
rise of menisci oscillating amplitude, menisci deformation and a uniform fluid distribution
inside the FPPHP in the form of a semi-annular/annular flow pattern. Flow pattern during
this period is very similar to that observed for a FPPHP tested in the bottom heating mode

under normal gravity conditions with ethanol [7.9].
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Figure 7.1. Transient operation during microgravity phase (ethanol; 3 mm; 69" ESA PFC):
(a) temperatures profiles of flow reactivation during the 5" parabola of Fig. B.1.1; and (b)
flow patterns one second before (left) and one second after fluid flow reactivation (right).

Synchronization of videos with temperature and pressure profiles have confirmed that

the reactivation of fluid flow inside the PHP is at the origin of the observed evaporator
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temperature decrease. Menisci movements and re-activation mechanisms, as well stopover

mechanism, will be explained in the next sections.
7.2. Video post-processing tool

The genera idea of the image post-processing in current work is the determination of
the liquid-vapor interfaces position at each frame and other motion parameters extraction
(velocity and acceleration) as derivatives. Knowing these values for each meniscus, the
length, mass, velocity and acceleration of the liquid plugs can be easily found and will be
used to establish the momentum equation of the liquid plugs (Eg. (7.7).

Particleimage velocimetry (PIV) isacommonly used method for the flow direction and
velocity determination from high-speed videos. Basically, fluid is seeded with tracer
particles which are assumed to faithfully follow the flow dynamics. The laser-based
illumination of the fluid with entrained particles is used to make the particles visible. As a
result, the motion of the seeding particles is used to calculate speed and direction (the
velocity field) of theflow. It is possible to use this method with the videos of the flow inside
FPPHP without any tracer particles and illumination, replacing it by the visible reflection of
the liquid-vapor interfaces. However, the overall fluid velocity for both liquid and vapor
phases can be evaluated with this method and noise presence recognized as a “particle” to

be traced that makes PIVV unsuitable for the isolated menisci tracking.

A first attempt of the liquid-vapor interfaces detection in the channels has been done
based on the infrared measurements [ 7.10]. Infrared image analysisis based on the different
emissivity/transmissivity values between liquid and vapor phases: indeed, ethanol in vapor
phase is transparent for the infrared wavelengths (between 1.5 pm and 5 pum), whereas in
liquid phase the emissivity has been measured close to 1 for thicknesses above 2 mm
thickness[7.11]. An exampleisgivenin Fig. 7.2 where darker linesin the left part represent
part of the channels filled by vapor. This leads to the possibility to clearly distinguish the
phase separation alowing to precisely define menisci positions. On the right-hand side of
Fig. 7.2 are shown the temperature profile along a single channel (corresponding to the
yellow line) on which the significant temperature drop, corresponding to the vapor-liquid
interface, can easily be detected.

Astheinfrared data can be exported in numerical format (matrix of temperature values),

the temperature drop can easily be recognized and position can be extracted in the form of
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pixel’s number. This procedure, repeated for every pictures in the matrix, allows to define
the positions of menisci for the specified period in every channels.
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Figure 7.2. Infrared post-processing procedure on FlirlR software® (darker lines, and
lighter lines on the left image correspond to the vapor and the liquid phase, respectively)
[7.10Q].

Because the purpose was to visualize the whole channel s of the entire FPPHP, the main
disadvantage of this method is a very low resolution of the infrared camera (resulting
resolution is 2-3 pixels for a 3 mm channel’s width) which did not allow to provide the
analysis for most of registered videos due to vibrations occuring during parabolic flights —
sometimes zone of interests being displaced to the channel wall resulting in numerous
parasitic interfaces detection.

On the basis of this observation, very similar approach has then been developed for
visua images from high speed camera. Asshownin fig. 7.3, the menisci are contrasting with
channel (greyscale image with light intensity between 0-255) - interfaces exist as some
changeinintensity across the channel and their position can be extracted using the horizontal
gradient filter.

The filtered image now contains interfaces, but other horizontal gradients caused by
changes in lighting and general camera noise can aso be observed. These have lower
intensities than the interfaces and are mostly one or two pixels in thickness (smilarly to
some interfaces).

Finally, an approach based on the OpenCV [7.12] library has been implemented to track
the menisci aong the channels. OpenCV (Open Source Computer Vision Library) isalibrary

of programming functions mainly aimed at real-time computer vision and consisting most
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of basic image manipulation tools. The library is cross-platform and free for use under the

open-source license.

Figure 7.3. A cropped greyscale image of channel with vapor-liquid interfaces.

Figure 7.4. Definition of the menisci position: channel with menisci (images from [7.13]).

To process rough images, first, they have been extracted from raw videos in the form
of image frames sequences and then converted to black and white. After that, feature
definition and object tracking tools, available in the OpenCV® tool-set, have been used for
the menisci tracking. The main purpose of these tools is the manual definition of the
vapor/liquid interfaces and their following automatic tracking through time. One of the
advantages of this approach is the possibility to define the flow transition from slug flow to

annular flow pattern - or another one — if interface cannot be defined anymore (due to highly
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deformed menisci). Therefore, in the following, critical velocities/accel eration values can be
defined as the last values obtained before menisci “disappearance” or their deformation,

corresponding to transitional flow patterns.

To validate the above developed approach, available images from previous studies of
tubular pulsating heat pipe [7.13] have been used for the generation of the composite image
(Fig. 7.4). Then, the image of menisci isisolated and placed over an extracted backdrop of
the fluid regions in the image. The menisci are then moved with a given velocity profile
(sinusoidal). The devel oped framework, used to determine menisci velocities from synthetic
images, allowed comparing the latter with programmed velocity profile and showed great
consistency in the results (see Fig. 7.5).
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Figure 7.5. Devel oped tracking approach validation.

Despite the good agreement of the obtained velocity values with the programmed data,
the maximum found deviation is 3 pix/frame, which corresponds to 20 mm/s (or 0.02 m/s),

considering camera resol ution and sampling frequency.

Unfortunately, it must be said that, during normal and hyper gravity conditions, anaysis
is impossible via all methods above due to the absence of menisci in such annular flow
patterns. Thus, analysis could be done just for stopover and flow re-activation during

microgravity periods.
7.3. Mation of liquid plugs

For better readability of the acquired data, an extra focus will be done on the
examination of two nearby liquid plugs: LP67 and LP89, which are located in the center of
the FPPHP. Fig. 7.6 depicts these two liquid plugs, as well as the channel numbers.
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Figure 7.6. Representing liquid plugs and channels numbering (ethanol; 3 mm; 69" ESA
PFC).

As the flow dynamics directly influence the re-activation phenomena, a study of the
liquid/vapor interfaces displacements is presented in the following section. Menisci
displacements of the two neighboring liquid plugs in the central zone of the FPPHP, for two
tested cases (afirst onefor 100 W and a second for 150 W applied heat powers, respectively)
are presented in Fig. 7.7. Microgravity phase turns fluid into slugs and plugs form and, once
dried-out, the liquid plugs, accumulated in the condenser zone, are accompanied by low
displacement interfaces movements (Fig. 7.7 (yellow section)) after flow stabilization due
to influence of small pressure variations in the evaporator caused by vapor superheating,
which was already observed and described in previous studies [7.14]. Note that the mirror
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effect between the displacement of the left-hand side meniscusis well reproduced by that of
the right-hand side one, corresponding to the same liquid plug, the latter being
incompressible (asmall difference can be attributed to measurement error and avery slightly
higher velocity for the receding meniscus compared to the advancing one due to the
downstream deposition of the thin liquid film which causes a local low loss of mass).
However, at the beginning of microgravity phases, interfaces oscillations amplitudes are
quite high due to influence of inertia forces and, after stabilization, surface tension became
dominant.

Despite the rise of the interfaces motion amplitude during re-activation periods (Fig.
7.7, red field), liquid sSlugs do not attain the evaporator zone (due to the low filling ratio, i.e.
40%), which is not represented in the y-axis of Fig. 7.7 (situated between 0 cm and 4 cm
positions). This means that the fluid flow transition is probably not triggered by evaporation
in the evaporator but in the superheated adiabatic zone. On the other hand, high menisci
motion amplitudes lead to the liberation of the wall surfaces in the condenser (located
between 12 cm and 20 cmin y-axis of Fig. 7.7) and, asaresult, to ahigher condensation rate
local pressure drop near liquid plug. Unlike case for 150 W of applied heat power, no
frequent high amplitude movements of the central liquid plugs have been observed for 100
W.
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Figure 7.7. Displacement of the vapor/liquid menisci for two central liquid plugs during
microgravity period from dry-out to re-activation phase (ethanol; 3 mm; 69" ESA PFC):
(a) Fig. 6.20, third parabola (100 W); (b) Fig B.1.1, first parabola (150W).
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Figure 7.8. Transient velocities of two Figure 7.9. Channel distribution of Virans.

following liquid plugs menisci (Fig 6.20, (65" and 69" ESA PFCs)
parabola 1) (ethanol; 3 mm; 69" ESA

PFC).

Values of velocities measured just before the flow pattern transitions (Virans, See Fig.
7.8) during reactivation phases, are plotted in Fig. 7.9. In most cases, maximum oscillation
velocities correspond to the transition velocities just before the flow pattern
transition/menisci deformation. The average transition velocity for al presented conditions
isequal to 0.15 m/s, which is one and half times higher than the commonly known operating
velocity of 0.1 m/sin the literature [7.15]. It is aso higher for ethanol compared ot the ones
obtained with FC72. It must be noted that, sometimes “transition velocity” corresponds to
the menisci deformation, but not to their total “disappearance”. However, reaching these

velocities gives us aflow pattern transition represented in Fig. 7.1b (right part).
7.4. Non-dimensional analysis of flow pattern transition

The obtained transition velocities alow evauation of commonly used criteria for
confined flow prediction: Weber (We = p,UZD /o) and Garimella(Ga = Rev/Bo) numbers,
as functions of the channel number are presented in Fig. 7.10 and Fig. 7.11, respectively.
First observations show a distribution of Weber number ranging from 1 to 25, but most of
the points (about 80%) for ethanol-filled FPPHP are gathered in the zone between 2 and 5,
very close to the reference value of 4. The average value is 3. Value of the Weber number
for FPPHP filled with FC72 and channel diameter of 1.5 mm variesintherange of 0.1to 11
with concentration of the points majority between the values of 1.5 and 2.5 (with an average
value of 2). For the device filled with FC72 and channel diameter of 3 mm, Weber number

values are mostly in the range of 4-8 withan average value of 6. All these values are quite
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different, but not very far from the reference value. Note that any dependencies with applied

power have not been founded.
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Figure 7.10. Weber number based on the Figure 7.11. Garimella number based on
transition velocity (65" and 69" ESA the transition velocity (65" and 69" ESA
PFCs). PFCs).

The plot of the vise-channel Weber number does not show sharp breakdow associated
with the different working fluids or diameters, finally distributed along the range starting
from 1 to 6 (majority of values). Thus, a sharp transition criterion, based on Weber number,
cannot be observed.

Almost the same behavior, as shown for Weber number, is observed for Garimella
number (Fig. 7.11), but with much more higher values (up to two orders of magnitude) than
thereference value of 160 mentioned in literature[7.16]. Most values are located in the range
between 15x10° and 23x10° (average value of 18x10%) for FPPHP filled with ethanol and
channel diameter of 3 mm, then range from 11x103 to 17x10° (average value of 13x103) for
FPPHP with same channel diameter filled with FC72. Finally, Garimellanumbersvalues are
found between 3x103 and 9x10° (average value of 6x10%) for 1.5 mm diameter device filled
with FC72. If, for Weber number, any val uable dependencies have not been found, Garimella
number plot clearly shows separation in valuesfor FPPHP with different diametersand slight
difference in values for device with channel diameter of 3 mm and filled with FC72 and
ethanol. However, these extremely high values (comparing to reference) and their great
spreading make this criteria useless for flow mapping.

Earlier, modified non-dimensional numbers, based on operation limit map to quantify
the effect of interface disturbance propagation and surface tension to actual flow conditions

such as velocity and accel eration, have been proposed by [7.18]. This operation limit map is
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based on following experimentally developed transitional correlations, found for a 3 mm
tubular PHP (filled with ethanol and FC72):

Upper limit (coalescence):

Frr025Wwe 025 = 12.42(B0o**%)~0%° (7.1)
Slug-plug dominant to transitional regime:

Fr*0-25)y¢*025 = 0,0059(B0*05)245 (7.2)
And transitional regime to annular dominant:

Frr023We*02% = 0.0009(B0**%)?0? (7.3)

where terms (in conventional non-dimensional numbers) related to the gravity acceleration
term g have been replaced by the acceleration term of liquid plugs (du/dt). The modified
numbers are calculated as follows:

* up
Fr* = (ﬂ)-n (7.4)
dt
We* = 242 (7.5)
P (dw), p2
Bo T (dt) b (7.6)

On placing the non-dimensiona numbers obtained through previous post-processing in
the operation limit map and verifying with flow pattern correlations, all the pointsfrom post-
processing are most likely to fall nearly to the upper coal escence and transition regions (Fig.
7.12) irrespective of the working fluid or channel diameter. This discrepancy may arise due
to that estimated modified non-dimensional numbers did not account the bubble length to channel
diameter ratio (used in [7.18]). However, more test points are necessary to determine their

location in the flow map and to validate this approach.
7.5. Flow influencing for ces analysis

The following momentum equation [7.19] could be used to calculate the magnitude of
the driving pressure as well as the impact of the influencing forces on the motion of liquid
plugs (Fig. 7.14):

dul

L qe = Fariv — Fois (7-7)
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where F.is and Fqriv are viscous, and driving forces, respectively. These forces are calculated
with eq. (7.8). Gravity forces are not taken into account in this calculation due to the
microgravity conditions.

10*
L 10°
R
=
&
i
10 S
S ;£ g
0 Ethanol D=3 mm 4 \‘ggs
4 FC72  D=15mm S
& FCT72 D=3mm
10—2 ]
10* 10° 10t

BOO.5
Figure 7.12. Flow map from [7.18] and adapted for the flow transition under microgravity
for FPPHP with rectangular channels.
@
Lat
L 1
Fois = AcsA - (ﬁ) ’ (Eplulz) (7.8)
Fariy = Acs. (AR, — AF,) -

Faee =m

wherem, Lp, u arerespectively liquid plug mass, length and vel ocity; pistheliquid density;
Acs and R are respectively the channel cross-section area and hydraulic radius; 4Py and 4P
are respectively the vapour pressure difference between two sides of each liquid plug, and
the capillary pressure; and 41=64/Re is the Darcy coefficient for viscous pressure losses for
laminar flow (here, the flow is assumed to be developed laminar flow). Liquid plug massis
caculated as:

my = piAcsLy (7.9)
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As shown in Fig. 7.13, the length of liquid plug is defined from the knowledge of the
positions (from top of each channel) of the two menisci located at both ends of liquid plug
(%0 and Xn+1):

Lp = Lbend + X, + Xpn41 (710)

where Lpend represents the length of the U-turn. Vapor pressure difference between two ends
of liquid plug is given by:

AP, = Py — Pyg (7.11)
N
=
oy
=
U &
a; —

Vapor slug

Figure 7.13. Schematic diagram of liquid plug movement.

Finally, from the knowledge of every post-processed parameters for every liquid plugs,
it becomes possible to evaluate the driving force, Fariv, from Eq. (7.7) and (7.8).

Due to specific interest in flow transition and aimost similar motion amplitudes and
frequencies for all liquids plugs, calculated forces magnitudes just for one “surrounding”
and two central liquid plugs (for channels 1-14, 6-7 and 8-9, see Fig. 7.6) are presented in
Fig. 7.14.

Left-hand side of Fig. 7.14 represents forces magnitudes, obtained from Eg. (7.7) and
(7.8), for a period, representing one second before transition, for 100 W (Fig. 6.20., third
parabola), and right-hand side for 150 W (Fig. B.1.1, firth parabola) of applied powers,
respectively. Fig. 7.14d, where forces are negative due to the opposite direction of the liquid
plug movement, is presented with reversed y-axisfor better comparison. Re-activation zones

characterized by the significant amplitude rise of all forces oscillations for high heat |oads,
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which was also reported for the transition from the stopover period to a large-amplitude
oscillations for horizontal micro FPPHP [7.20], but with quite higher values (which could
be caused by the microscale channel dimensions, i.e. of 1x0.5 mm?). Fluctuations for lower

heat powers are |ess noticeable.

It is important to note that the viscous forces are the weakest ones, while not being
negligible for both cases during dry-out phases; but this influence comes out just before
transition (as can be seenin Fig. 7.14d, eand f). Comparing presented cases, the acceleration
and driving forces values on the transition line are very close from case to case. The low
influence of the frictional part on the force balance and very close (almost equal) behavior

of the accelerating and driving forces corresponding well to the results obtained in [7.21].

Interesting fact is that the transition takes place not at the same time for each liquid
plugs, but with short time delay, that may be due to the vapor compressibility (dash line in
Fig. 7.14).

Knowing the driving forces, the resulting values of the driving pressures APy, (€g.
7.12) are plotted in Fig. 7.15. Note that the capillary pressure drop, AP,, isdirectly included
inthedriving pressuretermin eqg. (7.12) dueto the fact that its value is not estimablein these
measurements. In analogy with the previous figures, driving pressures are plotted for the
liquid plugs 6-7, and 8-9, in Fig. 7.15 for the periods from start of microgravity (att = 0S)
until the re-activation phase with applied power of 100 W (Fig. 7.15a) and 150 W (Fig.
7.15b), respectively. In pardlel, the experimental absolute pressure (Pexp), in the evaporator
zone between these two liquid plugs, is also plotted in the same graphs. One can see that the
absolute pressure shows increased instabilities during the re-activation phases,
synchronously with the calculated driving pressure fluctuations from the post-processing of

the image analysis.

Fariv
APy = j— = AP, — AP. (7.12)
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Figure 7.14. Forces influencing the liquid plugs motion during period prior to
reactivation phases (ethanol; 3 mm; 69" ESA PFC): for 100 W (&) channels 1-14;
(b) channels 6-7; (c) channels 8-9; and for 150 W (d) channels 1-14 ; () channels

6-7; (f) channels 8-9.
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Figure 7.15. Comparison of driving forces values for two central liquid plugs (from Fig. 7,
ethanol; 3 mm; 69" ESA PFC): (a) 100 W and (b) 150 W.

Hereit can be seen that during total period until re-activation, values of driving pressure
for the two liquid plugs seems to be almost similar with a dlight time lag, due to the vapor
compressibility (as shown previously). Amplitudes of pressure oscillations increase up to
the value attained at the re-activation time and do correspond to significant absol ute pressure
surge between two liquid plugs. Interesting to note, that the final values of driving pressure
(Pexp) (corresponding to the flow pattern transition) are amost similar for both values of
applied heat power and are of about 350-380 Pa. Note that this pressure difference is one
order of magnitude higher than the maximum capillary pressure drop, from minimum
receding contact angle to maximum advancing contact angle (AP, ;. = 20/R), of about
20-28 Pawhen calculated in the temperature range of Fig. 6.20. This means that the driving
pressure difference is largely counterbalanced by the inertial and viscous forces before the

rupture of the menisci at the transition between slug flow and annular flow.
7.6. Conclusions

The object tracking based visual analysis methodology for liquid-vapor interfaces
position determination has been developed, validated and implemented to study the flow
behavior during stopover and re-activation periods under microgravity conditions.
Experimental investigation of these phenomena inside flat plate pulsating heat pipes filled
with ethanol (3 mm diameter) and FC72 (1.5 mm and 3 mm diameters) and operating under

microgravity is aso performed.

Microgravity periods, as previously reported [7.14], are accompanied by the stopover
phenomenaand evaporator dry-out that |leadsto overall thermal transport degradation. It was
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found that, during some parabolas, stop-over periods occur and are sometimes interrupted
by aflow pattern transition from slug flow to annular flow with uniform liquid distribution
inside pulsating heat pipe, aso called re-activation phases.

The motion of liquid/vapor interfaces, as well as the force influence on fluid flow and
flow pattern change, have been analyzed. Despite the different amplitude and oscillation
frequencies during microgravity start and stopover periods, the values of transition velocities
appear to be very close to each other.

Frequently used non-dimensional criteria, based on Weber and Garimella numbers,
have been evaluated for tested FPPHP under microgravity conditions. Experimentally
obtained average values of We number for flow transition are very close to the reference
critical value, whereas average values of Ga number are one-two orders of magnitude higher

than reference critical value.

Adaptation of the flow map correlations (based on modified Bond, Weber and Froude
numbers including the actual fluid acceleration than a constant gravity acceleration value)
developed in [7.18] placed experimentally obtained in this work transitional points in the
zone of slug-plug dominant flow pattern, nearly to the coalescence limit and zone of slug-

plug to annular transition.

This work refers to few specific cases, and future complex studies are necessary to
enhance the characterization of flow behavior and flow transition inside of PHP under both
ground and microgravity conditions. The quantitative analysis of the flow transition
mechanisms and forces influencing them can help in design of the stable functioning
pulsating heat pipe without stopover phenomena and give the necessary data for the

modelling.
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Chapter 8

Conclusions and Per spectives

8.1. Conclusions

The work presented here can be divided in two main parts respectively describing the

parametric studies on the FPPHP and the analytical analysis of the hydraulic behavior of the

FPPHP during stopover and flow re-activation periods. The parametric studies has consisted

in the evaluation of the device orientation, gravity, working fluid, filling ratio, condenser

temperature and non-condensabl e gases presence influence on the FPPHP operation. For the

analytical part, only the videos obtained during 64" and 69" parabolic flight campaigns for
three different FPPHPs filled with ethanol and FC72 have been used for analysis.

Related to the parametric studies, the following conclusions can be presented:

The FPPHP tested in vertical orientation (bottom heating mode) mostly operates as an
interconnected lopped thermosiphon (except water-filled device) due to relatively low
surfacetension and liquid stratification (hydraulic diameter is higher than static capillary
limit, linked to the Bond number). Condenser temperature increase leads to significant
temperature rise in evaporator zone. Higher filling ratio almost has no effect on the
device performance. Non-condensable gases addition into the system leads to the total
thermal performance degradation but also to the high-amplitude temperature and
pressure oscillations appearances.

Water-filled device tested in horizontal orientation at low cooling temperature has not
reached start-up and operated in “dry” mode. Heat load increase leadsto the total system
failure. Other tested fluids show high amplitude and frequent evaporator temperature
oscillations. Performance improvement and earlier start-up observed with condenser
temperature increase as well for the case with higher filling ratio. Non-condensable gas
presence provoked stable oscillatory operation for water-filled PHP, which was failed

with pure water.
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e Microgravity periods during parabolic flights are characterized by the significant
increase of evaporator temperature for all tested fluids, which could be explained by
dry-out and insufficient parabola duration for start-up (like temperature augmentation
before start-up for horizontal orientation). The non-condensable gas addition leads to
the continuous oscillatory operation, without significant difference in temperature and

pressure amplitudes, comparing to the normal gravity periods.

In the last part of thisthesis, post-processing of the video obtained during microgravity
periods and its analysis has been presented. Evaporator dry-out starting at the beginning of
parabola has been confirmed. However, during some parabolas, stop-over periods are
interrupted by a flow pattern transition from slug flow to annular flow with uniform liquid
distribution inside pulsating heat pipe. This flow pattern change is of particular interest to
evaluate conventional criteria of flow transition regarding microgravity conditions. As a
consequence, analyses performed for this particular case can be summarized as follows:

e Anaysisof theliquid-vapor interfaces motions has shown very close values of the flow
transition velocities for each studied PHP/fluid pair. No dependence of velocity on
applied heat load has been found.

e Non-dimensional criteria, based on Weber and Garimellanumbers, have been evaluated
using experimentally determined velocities. Obtained We numbers are very close to the
reference critical value but average values of Ga number are one-two orders of
magnitude higher than critical one.

e Findly, proposed in [8.1] new flow pattern map with modified Bond and Froude
numbers, including the actual fluid acceleration instead of a constant gravity
acceleration value has been used to analyze the transitional points obtained in actual
work. Their placement in this fluid properties independent map marks the distribution
of the pointsin the zone of slug-plug flow dominant, nearly to the coal escence limit and

zone of slug-plug to annular flow transition.

Generally speaking, thiswork gave some answer related, in particular, to the operational
performances of theflat plate pulsating heat pipe under different working conditions, aswell
influence of filling liquid properties. Moreover, the visua analysis of the two-phase fluid
flow and its transition can be used in future modelling tools development resulting to the
engineering design approaches. Finaly, presented results and analysis shed the light on

further researches, proposed in the next section.
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8.2. Per spectives

First, the accurate infrared measurements of the liquid bulk temperature should be
realized in the context of the local heat transfer coefficient determination and liquid-vapor
phase’s separation detection (coupled with high-speed visualization).

Working on inverse heat conduction problem has aready started in collaboration with
partners from University of Parma. Knowing that external side of the FPPHP is affected by
the flow temperatureinside the device, it became possible to determine the wall-to-fluid heat
fluxes using inverse heat conduction problem resolution approach, previously validated by
numerical simulations. This methodology can provide a better insight into the oscillatory

typical flow for such heat transfer devices (Fig. 8.1).

Figure 8.1. The evaluated heat flux adiabatic zone (ethanol, FR = 50 %, horizontal, 200 W)
[8.2].

Finally, due to the significant prototype modification during experimental system
development to be tested on-board of International Space Station, new ground-based
experiments on new geometry are required to validate aready selected working fluids and
define the test conditions (heat load, condenser temperature etc.). Supplementary parabolic
flight tests are also necessary to validate new device in microgravity conditions.
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Appendix A

Ground teststemperature and pressure responses
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Figure A.1.1. Temperature and pressure responses for FPPHP filled with 20 %
ethanol/water solution (FR = 50%, Tcoo = 20 °C, vertical BHM).
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Figure A.1.2. Temperature and pressure responses for FPPHP filled with 28 %
methanol/water solution (FR = 50%, Tcoa = 20 °C, vertica BHM).
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Figure A.1.3. Temperature and pressure responses for FPPHP filled with 5 % 1-
butanol/water solution (FR = 50%, Tcool = 20 °C, vertical BHM).
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Figure A.1.4. Temperature and pressure responses for FPPHP filled with 5 % 2-
butanol/water solution (FR = 50%, Tcool = 20 °C, vertical BHM).
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Figure A.1.5. Temperature and pressure responses for FPPHP filled with 0.5 % Tween
40/water solution (FR = 50%, Teool = 20 °C, vertical BHM).
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Figure A.1.6. Temperature and pressure responses for FPPHP filled with water (FR = 50%,
Teool = 40 °C, vertical BHM).
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Figure A.1.7. Temperature and pressure responses for FPPHP filled with ethanol (FR =

50%, Teoo =40 °C, vertica BHM).
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Figure A.1.8. Temperature and pressure responses for FPPHP filled with methanol (FR =
50%, Tcool =40 °C, vertica BHM).
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Figure A.1.9. Temperature and pressure responses for FPPHP filled with 20 %
ethanol/water solution (FR = 50%, Tcoo = 40 °C, vertical BHM).
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Figure A.1.10. Temperature and pressure responses for FPPHP filled with 28%
methanol/water solution (FR =50 %, Tcoa = 40 °C, vertica BHM).
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Figure A.1.11. Temperature and pressure responses for FPPHP filled with 5 % 1-
butanol/water solution (FR = 50%, Tceool = 40 °C, vertical BHM).
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Figure A.1.12. Temperature and pressure responses for FPPHP filled with 5 % 2-

butanol/water solution (FR = 50%, Tcool = 40 °C, BHM).
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Figure A.1.13. Temperature and pressure responses for FPPHP filled with 0.5 % Tween
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Figure A.1.15. Temperature and pressure responses for FPPHP filled with water (FR =
59%, Teoo =40 °C, vertica BHM).
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Figure A.1.16. Temperature and pressure responses for FPPHP filled with water + NCG
(FR =50%, Tcool = 40 °C, vertical BHM).
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A.2. Horizontal position
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Figure A.2.1. Temperature and pressure responses for FPPHP filled with 20 %
ethanol/water solution (FR = 50%, Tcoo = 20 °C, horizontal).
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Figure A.2.2. Temperature and pressure responses for FPPHP filled with 28 %
methanol/water solution (FR = 50%, Tcool = 20 °C, horizontal).
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Figure A.2.3. Temperature and pressure responses for FPPHP filled with 5 % 1-
butanol/water solution (FR = 50%, Tcool = 20 °C, horizontal).
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Figure A.2.4. Temperature and pressure responses for FPPHP filled with 5 % 2-
butanol/water solution (FR = 50%, Tcool = 20 °C, horizontal).

200



Appendix A — Ground tests temperature and pressure responses

120

100

[0}
o

Temperature [°C]
D
o

N
o
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Figure A.2.6. Temperature and pressure responses for FPPHP filled with water (FR =50 %,

Teoo =40 °C, horizontal).
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Figure A.2.7. Temperature and pressure responses for FPPHP filled with ethanol (FR =
50%, Teoo =40 °C, horizontal).
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Figure A.2.78 Temperature and pressure responses for FPPHP filled with methanol (FR =
50%, Teool =40 °C, horizontal).
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Figure A.2.9. Temperature and pressure responses for FPPHP filled with 20 %
ethanol/water solution (FR=50%, Tcool = 40 °C, horizontdl).
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Figure A.2.10. Temperature and pressure responses for FPPHP filled with 28 %
methanol/water solution (FR=50%, Tcoo = 40 °C, horizontal).
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Figure A.2.11. Temperature and pressure responses for FPPHP filled with 5 % 1-
butanol/water solution (FR=50%, Tcoo = 40 °C, horizontal).
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Figure A.2.12. Temperature and pressure responses for FPPHP filled with 5 % 2-
butanol/water solution (FR=50%, Tcoo = 40 °C, horizontal).
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Figure A.2.13. Temperature and pressure responses for FPPHP filled with 0.5 % Tween
40/water solution (FR=50%, Tcool = 40 °C, horizontal).
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Figure A.2.14. Temperature and pressure responses for FPPHP filled with water (FR =
59%, Teool = 20 °C, horizontal).
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Figure A.2.15. Temperature and pressure responses for FPPHP filled with water (FR =
59%, Teoo = 40 °C, horizontal).
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Figure A.2.16. Temperature and pressure responses for FPPHP filled with water + NCG
(FR=59%, Tcool = 40 °C, horizontal).
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Parabolic flight teststemperature and pressureresponses

B.1. Resultsfor 69th PFC
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Figure B.1.1. Temperature and pressure responses for FPPHP filled with ethanol (Mo/Sa,
FR = 40%, Q = 150 W, microgravity).
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B.2. Resultsfor 71st PFC”
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Figure B.2.1. Temperature and pressure responses for FPPHP filled with 5% 1-
butanol/water solution (Co/Co, FR = 50%, Q = 100 W, microgravity).
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Figure B.2.2. Temperature and pressure responses for FPPHP filled with 5% 1-
butanol/water solution (Co/Co, FR = 50%, Q = 150 W, microgravity).
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Figure B.2.3. Temperature and pressure responses for FPPHP filled with water (Co/Sa, FR
= 50%, Q = 50 W, microgravity).
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Figure B.2.4. Temperature and pressure responses for FPPHP filled with water (Co/Sa, FR
= 50%, Q = 150 W, microgravity).

209



Appendix B — Parabalic flight tests temperature and pressure responses

'—\
o1
1
1
IS

90 — 24
Tevl TevZ Tev3 Tev4

T 0l Tagm —Press. - Acc &
"
75+ 420 E
i % LI
s — N o
oo 1°5
s | | 8
& 45F 112<
g | | 7
5. | X
~ 30F 18 ©
g
o

0 1 5 1 1 L L 0
0 150 300 450 600 750
Time[s|

Figure B.2.5. Temperature and pressure responses for FPPHP filled with water + NCG
(Co/Sa, FR=50%, Q = 50 W, microgravity).
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Figure B.2.6. Temperature and pressure responses for FPPHP filled with water +
NCG(Co/Sa, FR = 50%, Q = 150 W, microgravity).
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B.3. Resaultsfor 74th PFC
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Figure B.3.1. Temperature and pressure responses for FPPHP filled with water (Co/Co, FR
= 50%, Q =50 W, Lunar gravity).
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Figure B.3.2. Temperature and pressure responses for FPPHP filled with water (Co/Co, FR
= 50%, Q = 50 W, Martian gravity).
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Figure B.3.3. Temperature and pressure responses for FPPHP filled with 20%
ethanol/water solution (Co/Co, FR = 50%, Q = 150 W, microgravity).
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Figure B.3.3. Temperature and pressure responses for FPPHP filled with 28%
methanol/water solution (Co/Co, FR = 50%, Q = 150 W, microgravity).
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Appendix C

Thermal resistancerelative uncertainties

Table C.1. Therma resistance uncertainties for FPPHP tested in vertical
orientation (BHM).

R Condenser Error (%)
Fluid ) temperature Heat Load (W)
0
((®) 50 100 150 200
5 20 6.4 7.1 6.6 7.1
40 13.2 141 22 11
Water
- 20 11.6 55 8.2 8.2
40 29 15.2 24.4 17.7
20 104 14.1 9.4 7.1
Ethanol
40 35 16.5 9.4 9
20 6.4 4.7 39 34
Methanol
40 24.1 16 10.5 8.2
20% 20 6.4 7.6 5.6 4.6
ethanol /
40 7.2 6 5.6 6.6
water
28% 20 5.1 10.3 8 6.5
methanol /
40 8 5 8.8 7.7
water
5% 20 11.8 8.7 7.8 5.6
butanol /
40 12.8 10.7 9.7 94
water
0.5% 20 53 11.9 10.4 4.9
Tween 40
40 26.7 14.6 13.6 9.6
| Water
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Table C.1. Therma resistance uncertainties for FPPHP tested in horizontal

orientation.
R Condenser Error (%)
Fluid ) temperature Heat Load (W)
0
(cC) 50 100 150 200
20 4 1.7 - -
50
40 4.4 6.2 89 9.7
Water
20 3 54 5.3 49
59
40 34 13.2 12 9.9
20 3.6 45 5 45
Ethanol
40 3.6 6.6 10 84
20 17.4 9.7 9 8
M ethanol
40 24.1 16 10.5 82
20% 20 6.1 5.6 51 4.8
ethanol /
40 7.2 6 5.6 6.6
water
28% 50 20 6.5 4.6 37 4
methanol /
40 11.9 10.9 8.7 7
water
5% 20 8.8 49 4.3 4
butanol /
40 14 10.7 9.2 82
water
0.5% 20 34 55 4.7 -
Tween 40
40 5.6 18 83 10.5
[ Water
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Appendix D

Résume entendu

Chapitre 1l

La premiere partie de la these décrit la motivation de 1’étude des caloducs oscillants
pour des applications spatiales parmi les autres systemes de contréle thermique diphasiques

dans le cadre de deux projets MAP de I’ Agence Spatiale Européenne (ESA).

Dans le cadre de projet ESA MAP INWIP, les travaux de recherche se concentrent sur
les investigations numériques et expérimentales de trois dispositifs de transfert de chaleur
diphasiques : les thermosiphons hybrides sans meche poreuse, les caloducs rainurés et les
caloducs oscillants. Les éudes paramétriques de ces systemes incluent les évaluations des
performances des différents fluides de travail, des surfaces fonctionnalisées (hydrophobes et
hydrophiles), de I'influence de la gravité (différentes orientations lors des essais au sol et
microgravité lors des vols paraboliques). Ce projet est une premiére étape préparatoire pour
la poursuite d’expérimentation systématique sur la plateforme thermique TP1 a bord de la
Station Spatiae Internationale, en éudiant notamment les caloducs rainurés et pulsés
remplis de fluides ordinaires (FC72) et remouillant (mélange eau/butan-2-ol).

Ensuite, le projet MAP ESA TOPDESS vise apoursuivre le dével oppement des travaux
de recherche entamés dans | e cadre du précédent projet INWIP, mais cette fois avec I'objectif
ambitieux de traiter des systémes diphasiques déployables et/ou flexibles pour dével opper
les aspects applicatifs. Néanmoins, ladéployabilité ou laflexibilité detel s systemes ne seront

pas étudiées dans |e cadre de cette thése.

Par conséquent, les principaux objectifs de cette these sont de caractériser les
performances de transfert de chaleur de caloducs oscillants plats fonctionnant sous gravité
normale et réduite, de comprendre le comportement des écoulements diphasiques a
I'intérieur de ces systémes et d’améliorer les performances de transfert de chaleur en utilisant

des fluides caloporteurs ayant différentes propriétés.
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Chapitre 2

L e deuxieme chapitre présente une revue des différents systémes de refroidissement. 1l
n’existe pas de classification universelle des systemes de contr6le thermique du fait de la
complexité des différents principes de fonctionnement ainsi que de leur grand nombre. C’est
pourquoi ici seuls les systémes diphasiques sont présentés en tant que solutions de controle
thermique parmi les plus efficaces et largement utilisées pour les applications terrestres et

Spatiales.

L es systémes diphasiques peuvent étre diviseés entre systemes actifs et passifs. Dans les
systemes actifs, I’utilisation d’une pompe est nécessaire pour forcer le mouvement du fluide
caloporteur dans laboucle. En revanche, |e mouvement du liquide dans |es systémes passifs
est assuré par la gravité ou la capillarité. Dans les systemes actifs, la pompe doit étre
complétée par un vase d’expansion permettant I’amortissement des instabilités éventuelles
liées aux dilatations thermiques du fluide. Magré un fonctionnement efficace, les
composants supplémentaires et la consommation d'énergie entrainent une baisse de la

fiabilité de ces systemes.

En revanche, les sous-systemes visant |a fiabilité globale sont exclus dans les systemes
de refroidissement passifs, mais un autre moyen de mouvement de fluide est nécessaire — le
fonctionnement des caloducs, LHP et CPL est permis gréace a la présence d’une structure
capillaire; lesthermosi phons fonctionnant quant a eux grace alagravité (donc pas utilisables

pour les applications spatiales malgré son efficacité).

Les caloducs présentent un avantage certain de par leur simplicité par rapport aux
boucles diphasiques mais leur utilisation reste limitée a cause de leurs basses performances
en termes de transfert thermique, elles-mémes liées aux limites de transport du fluide par la
structure capillaire. Une autre technol ogie récente dans lafamille des caloducs est le caloduc
oscillant. Dans ces systémes, le transfert de chaleur par voies latente et sensible couplé aux
transferts de masse provoqueé par une différence de pressions entre | es zones de condensation
et celles d’évaporation, ce qui entraine la mise en mouvement global du fluide caloporteur.
Bien qu’offrant des performances limitées en termes de densité de flux par rapport a d’autres
technologies, les caloducs oscillants ont I’avantage d’étre des systémes simples a réaliser et

pouvant fonctionner sous différentes conditions de gravité.
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Chapitre 3

Les principes de fonctionnement fondamentaux des caloducs oscillants, les
particularités de ces dispositifs lorsqu’ils sont fabriqués a partir de plaques planes usinées,
et leurs différences ains que les principaux paramétres dinfluence sont abordés dans le
troisieme chapitre. Malgré différentes géométries, le point commun de 1I’ensemble de ces
caloducs est la présence d’une zone d’évaporation au contact d’une source chaude, d’une

zone de condensation (source froide) et d’une partie adiabatique entre ces deux zones.

Malgrélefait que les mécanismes physiques du fonctionnement des cal oducs oscillants
conventionnels (tubulaires) sont bien connus mais encore peu maitrisés, des phénomeénes
particuliers et contradictoires se produisent dans les dispositifs a plagues planes (caloducs
oscillants plats) en raison du lien thermique entre les canaux et de leur forme spécifique (la
présence d'angles vifs conduit a une distribution non uniforme du film liquide lié au

déséquilibre de pressions capillaires entre les coins et |es bords de la section transversale).

Le fonctionnement d'un caloduc oscillant dépend d'une combinaison complexe entre
différents paramétres, majoritairement couplés les uns aux autres. Un bon fonctionnement
est obtenu lorsqu’un écoulement dit bulles/bouchons (slug flow) parcourt les différentes
boucles du caloduc. Les transferts de chaleur se font alafois par chaleur sensible dans les
bouchons de liquide et par chaleur latente au niveau de 1’évaporation ou de la condensation
des films de liquide entourant les bulles de vapeur. Ces transferts sont sensiblement
différents dans les caloducs plats avec une section carrée ou rectangulaire a cause de la
présence des films liquides plus épais dans les coins et des liens thermiques entre les
différents canaux. Aussi, le faible niveau de connaissance de ces systémes ne permet pas

encore de faire un dimensionnement pour un prototype industriel.
Chapitre4

Une analyse bibliographique des différentes expériences réalisées sur les caloducs
oscillantstubulaires et plats est détaillée afin d’évaluer I’influence des différents paramétres
dans le quatriéme chapitre. Pour des puissances moyennes a élevées, les performances des
caloducs oscillants plats ayant des canaux a section carrée sont meilleures que pour ceux a
section circulaire. L’orientation joue également un role important. La configuration verticale

ou inclinée avec évaporateur en bas est plus favorable que la configuration horizontale. Une
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faible longueur adiabatique entre 1’évaporateur et 1e condenseur tend adiminuer larésistance
thermique. Il en est de méme avec I’augmentation du nombre de boucles. Le taux de
remplissage doit aussi étre optimisé pour favoriser les oscillations, éviter des frottements
trop importants, mais aussi 1’assechement de 1’évaporateur en cas de quantitétrop faible. Les
performances thermiques dépendent également des propriétés thermophysiques des fluidse
et sont inversement proportionnelles a la pente de la courbe pression/température de
saturation. Les mélanges binaires ont aussi largement été utilisés et certains comme le
mélange eau-méthanol permettent d’améliorer les performances. L’amélioration de la
mouillabilité des fluides en mélangeant 1’eau a des alcools ou en utilisant des surfactants
permet de réduire la formation de zones séches au niveau de I’évaporateur. Plusieurs études
ont été menées sur des caloducs dans des conditions de microgravité. Généralement les
performances sont similaires en gravité normale ou microgravité en position horizontale si
la taille des canaux est inférieure a la longueur capillaire. Les performances sont un peu

réduites en microgravité par comparaison ala gravité normale en configuration verticale.
Chapitre5

Le systeme expérimental, destiné aux expériences au sol et en microgravité, et
permettant alafoisla caractérisation qualitative et quantitative des caloducs oscillants plats,
est décrit dans |e cinquiéme chapitre. Les prototypes ont été dével oppés pour les expériences
au sol et au cours de quatre campagnes de vols paraboliques de I'Agence Spatiae
Européenne, sur la base des exigences de sécurité et de lazone d'intérét scientifique - études
couplées thermiques et hydrauliques des caloducs oscillants plats testés sous différentes
conditions de gravité. Les caloducs testés sont soit ren cuivre, soit en molybdene et certains
sont recouvert d’une plaque en saphir permettant les visualisations complétes de
I”écoulement dans les canaux et des mesures de température par thermographie infrarouge.

Le systéme expérimental est équipé de thermocouples detype T permettant de mesurer
les températures au niveau de 1’évaporateur, de la zone adiabatique et du fluide de
refroidissement secondaire. Un capteur de pression est également positionné soit en partie

basse au niveau de 1’évaporateur, soit en partie haute au niveau du condenseur.

Une estimation des incertitudes des mesures est présentée, ainsi que 1’analyse de

répétabilité, qui démontre également lafiabilité du systéme
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Chapitre 6

Les résultats obtenus par les éudes expérimentales, s’intéressant a I’influence des
différents parametres (comme par exemple, la nature du fluide, le taux de remplissage, la
présence de gaz incondensables, |la température de la source froide, le positionnement du
caloduc et le niveau de gravite) sont présentés dans le chapitre 6. Pour la plupart des essais,
les évolutions temporelles des températures au niveau de 1’évaporateur, de la zone
adiabatique, du condenseur et de la pression sont présentées. Enfin, une notion importante
est mise en évidence et représente un critére pour 1’évaluation de performance des
caloducs : la résistance thermique globale. Donc chague configuration de caloduc a été
évaluée et comparée grace aux calculs de ces résistances thermiques en plus des évolutions
temporelles des températures et pression.

Lors d'essais au sol, une étude paramétrique du caloduc oscillant rempli par des fluides
de différentes natures a éé menée. En position verticale, le caloduc oscillant fonctionne
presgue tout le temps comme un réseau de thermosiphons interconnectés. En orientation
horizontale, le systeme fonctionne en mode pulsé puisle démarrage est atteint (généralement
a 100 W de puissance appliquée), sauf lorsqu’il est rempli d’eau et testé a 20 °C de source
froide: il présente de moins bonnes performances thermiques dans ces conditions. Les
méanges aqueux d'alcool utilisés comme fluides de travail conduisent & une tres nette
amélioration des performances thermiques, par rapport aux fluides purs (en particulier I'eau).
L'augmentation de la température de condenseur entraine également une amélioration des
performances thermiques du FPPHP, en raison d’un glissement des propriétés
thermophysiques dans le bon sens pour la plupart. Le systéme, rempli avec des solutions
eau-surfactant, a montré un fonctionnement tres instable malgré des résistances thermiques

plus faibles comparées al'eau pure.

En revanche, il est aussi démontré gue la présence des gaz non condensables dans le
systéme, bien qu’entrainant une dégradation globale des performances thermiques du
systeme, provoque un fonctionnement oscillatoire plus stable du fluide dans le caloduc testé.
En effet, la présence de gaz incondensabl es provoque non seulement |'augmentation globale
de latempérature du systéme en fonctionnement, mais induit également un fonctionnement
oscillatoire stable du fluide aussi bien pendant les phases de gravité normales que de
microgravité, avec une augmentation de température (en microgravité) bien inférieureacelle

observée avec |'eau pure.
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Pour finir, une campagne de vols paraboliques a permis d’effectuer une série de tests
sur trois niveaux de gravité différents (microgravité, gravités lunaire et martienne). Les
résultats ont montré une augmentation de latempérature de |'évaporateur pendant les phases
degravitélunaire, maisavec desréactivations de fluide fréquentes (contrairement aux phases
de microgravité). En revanche, pour la gravité martienne, les performances obtenues restent
tout & fait similaires a celles observées sous gravité terrestre, démontrant un niveau seuil
d’influence de la gravité sur le fonctionnement des caloducs oscillants lorsqu’ils sont en

position verticale favorable.
Chapitre 7

L e septiéme chapitre est dédié aux visualisations des écoulement réalisées en phases de
microgravité, afin d’analyser plus spécifiquement les conditions de redémarrage du régime
bulles/lbouchons observé pendant certaines paraboles (phases de microgravité). La
méthodologie d'analyse de visualisation, basée sur la technique de suivi d'objets pour la
détermination de la position des interfaces liquide-vapeur (ménisques) a été développée,
validée et mise en ceuvre pour étudier le comportement de I'écoulement pendant les périodes
de « stop-over » et de réactivations du fluide dans des conditions de microgravité. L'éude
expé&rimentale de ces phénomenes a l'intérieur prototypes remplis avec de 1’éthanol
(diameétre des canaux : 3 mm) et FC72 (diameétres des canaux : 1,5 mm et 3 mm) et
fonctionnant en microgravité est également présentée.

Les périodes de microgravité saccompagnent de phénoménes d'asséchement de
I'évaporateur qui entrainent une dégradation globale des performances thermiques. Il a é&é
constaté que, pendant certaines paraboles, des périodes d'arrét se produisent et sont parfois
interrompues par une transition du mode d'écoulement bulles/bouchons a un écoulement de
type annulaire, avec une distribution uniforme du liquide a l'intérieur du caloduc oscillant,

également appel ées « phases de réactivation ».

Le mouvement desinterfaces liquide/vapeur, ainsi qu’un bilan des forces s’exergant sur
les bouchons liquides, et |e changement de mode d'écoulement, ont été analyses. Malgré les
différentes fréquences d'amplitude et d'oscillations pendant les périodes de « stop-over » et
« startup » pendant |es phases de microgravité, les valeurs des vitesses de transition semblent

étre trés proches les unes des autres.
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Des criteres basés sur des nombres adimensionnels fréguemment utilisés pour ce type
d’écoulement, les nombres de Weber et de Garimella, ont été évalués pour les caloducs
oscillants testés lors des phases de microgravité. Les valeurs moyennes obtenues
expérimentalement du nombre de Weber pour la transition d'écoulement sont tres proches
de lavaleur critique de référence (We,crit = 4), tandis que les valeurs moyennes du nombre
de Garimella sont supérieures d'un adeux ordres de grandeur alavaleur critique de référence
(Gaycrit = 160).

L’adaptation des corrélations pour une tentative de cartographie d'écoulement (basée
sur les nombres de Bond, de Weber et de Froude modifiés, incluant I'accélération réelle du
fluide plutdt que 1’accél ération gravitationnelle constante), initialement développée par nos
collegues de I’Université de Brighton, a permis de positionner les points de transition
obtenus expérimentalement lors de ce travail dans la zone d'écoulement a dominante slug-
plug, presque alalimite des zones detransition par coal escence et detransition d’écoulement

slug-plug aannulaire.

Un bilan des forces entre 1’accélération des bouchons liquides, les forces visgueuses et
les forces motrices dues a la différence de pression entre deux bulles vapeurs de part et
d’autre de ces bouchons a été effectué. La force visqueuse est estimée a 1’aide d’une loi de
Poiseuille en écoulement stationnaire, et |aforce motrice est ainsi identifiée apartir du bilan
de quantité de mouvement par déduction des autres termes. La force visqueuse s’avére plus
faible que la force de pression motrice calculée, cette derniére étant aussi supérieure d’un

ordre de grandeur aux forces capillaires.
Chapitre 8

Cette thése a été menée dans le cadre de deux projets successifs ESA MAP INWIP et
ESA MAP TOPDESS, dédiés au développement des systémes des transferts thermiques
diphasiques et s’intéressant a la gestion thermique systemes dissipatifs de haute puissance
par caloducs oscillants, appliqués pour les vols hors gravité. Ce travail concerne les études
expé&rimentales menés sur differents caloducs oscillant dit plats testés sous différentes
conditions opératoires incluant 1’orientation, le taux de remplissage, la température de

refroidissement, la nature du fluide, le niveau de puissance appliqué et |e niveau de gravité.

Notons que de nouvelles expériences au sol sont programmées sur une nouvelle
géométrie de prototype destiné a étre testé a bord de I’ISS a I’horizon 2024-2026. De
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nouveaux s lors de campagnes de vols paraboliques seront également nécessaires pour

valider le nouveau dispositif dans des conditions de microgravité.
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Résume

L'intégration de dispositifs électroniques de haute puissance et dissipant descentaines de watts par centimétre
carré al sein des systémes spatiaux provoque une hausse significative des besoins en systémes de refroidissement
de haute performance, 1égers et efficaces. En raison de ces exigences spécifiques, 1’utilisation des systémes de
refroidissement diphasiques représentent un grand intérét pour ces applications spatiales. Les caloducs oscillants,
dispositifs passifs et simples de transfert de chaleur diphasique sont devenus une excellente solution pour les
systémes de management thermique spatiaux. Actuellement, le fonctionnement de ce type d'échangeurs de chaleur
n'est pas entierement étudié, notamment en conditions de microgravité. C'est pourquoi, dans le cadre des projets
successifs INWIP et TOPDESS de I'ESA, 1'évaluation des performances des caloducs oscillants plats et des
spécificités opérationnelles sous différentes conditions de gravité a été défini comme principal objectif du présent
travail de thése.

Les études expérimentales menées au cours de ce travail ont porté sur la caractérisation thermique des
différents caloducs oscillants testés au sol et au cours de quatre campagnes de vols paraboliques de I'ESA. Des
études paramétriques des performances de ces systémes ont été effectuées en configuration verticale et horizontale,
en utilisant différents fluides de travail (mélanges alcool-eau, fluides remouillants ou solutions de surfactant),
différentes températures de condenseur, plusieurs concentrations de gaz non condensables et différents niveaux de
gravité (terrestre, martien, lunaire, hyper et microgravité). L'amélioration des performances, parfois inattendues,
ont été observées sous certaines conditions opératoires. Les études analytiques de 1'écoulement diphasique dans le
caloduc oscillant, concernant notamment le passage de l'arrét de fonctionnement aux oscillations de forte
amplitude (« phases de réactivation ») ont été réalisées grace a des visualisations haute fréquence. Pour finir, les
critéres de transition d'écoulement du régime bulles/bouchons au régime semi-annulaire/annulaire a été étudiée
dans le cadre d’une |'analyse non-dimensionnelle des principaux paramétres de 1’écoulement.

Mots-clés: Caloducs, Composants électroniques--Systémes de refroidissement, Ecoulement diphasique, Gravité
réduite, Transfert de chaleur, Caloduc oscillant, Ecoulement bulles/bouchons, Ecoulement annulaire

Abstract

Integration of high power and performance electronic devices in modern spacecraft systems with heat
generation of hundreds of watts per square centimeter crucially increases needs in high performance, low weight,
energy efficient and reliable thermal management systems. Due to these specific demands, two-phase heat
rejection devices are of major interest for space applications. The Pulsating Heat Pipes, as simple passive two-
phase heat transfer devices, have become an excellent solution for space cooling systems. Today, operation of this
kind of heat transfer devicesisnot fully studied, especially in microgravity. So, in the context of ESA consecutive
projects INWIP and TOPDESS, evaluation of the flat plate pulsating heat pipe performances and operational
peculiarities under different gravity conditions has been defined as the main aim of the present PhD work.

Experimental studies conducted during this work concerned the thermal characterization of different flat
plate pulsating heat pipes tested on ground and during four ESA Parabolic Flight Campaigns. Parametric
investigations have been carried out for vertical and horizontal orientations of the device using different working
fluids (including alcohol agueous solutions, self-rewetting fluids and surfactant solutions), condenser
temperatures, non-condensable gases concentrations and gravity levels (Earth, Martian, Lunar, hyper and
microgravity). Obvious, and sometimes unexpected, performances improvement has been observed under certain
conditions. Analytical studies of the two-phase flow inside the FPPHP, especially concerning the transition from
stopover to high-amplitude oscillations (fluid flow “re-activation phases”) have been done thanks to high-
frequency visualizations. Finaly, the flow transition criterion, from the slug-plug flow regime to semi-
annular/annular flow, was studied thanks to dimensionless analyzes considering the main parameters of the flow.

Keywords: Heat pipes, Electronic apparatus and appliances— Cooling systems, Two-phase flow, Reduced gravity
environments, Heat—Transmission, Pulsating heat pipe, Slug flow, Annular flow



