
HAL Id: tel-03666690
https://theses.hal.science/tel-03666690

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Expressive Graph Neural Networks : Theory,
Algorithms, and Applications

Georgios Dasoulas

To cite this version:
Georgios Dasoulas. Towards Expressive Graph Neural Networks : Theory, Algorithms, and Applica-
tions. Artificial Intelligence [cs.AI]. Institut Polytechnique de Paris, 2022. English. �NNT : 2022IP-
PAX020�. �tel-03666690�

https://theses.hal.science/tel-03666690
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
2I

P
PA

X
02

0

Towards Expressive Graph Neural
Networks: Theory, Algorithms and

Applications
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Abstract
Towards Expressive Graph Neural Networks: Theory, Algorithms

and Applications

As the technological evolution of machine learning is accelerating nowa-
days, data plays a vital role in building intelligent models, being able
to simulate phenomena, predict values and make decisions. In an in-
creasing number of applications, data take the form of networks. The
inherent graph structure of network data motivated the evolution of
the graph representation learning field. Its scope includes generating
meaningful representations for graphs and their components, i.e., the
nodes and the edges. The research on graph representation learning was
accelerated with the success of message passing frameworks applied on
graphs, namely the Graph Neural Networks. Learning informative and
expressive representations on graphs plays a critical role in a wide range
of real-world applications, from telecommunication and social networks,
urban design, chemistry, and biology. In this thesis, we study various
aspects from which Graph Neural Networks can be more expressive,
and we propose novel approaches to improve their performance in
standard graph learning tasks. The main branches of the present thesis
include: the universality of graph representations, the increase of the
receptive field of graph neural networks, the design of stable deeper
graph learning models, and alternatives to the standard message-passing
framework. Performing both theoretical and experimental studies, we
show how the proposed approaches can become valuable and efficient
tools for designing more powerful graph learning models.

In the first part of the thesis, we study the quality of graph represen-
tations as a function of their discrimination power, i.e., how easily we
can differentiate graphs that are not isomorphic. Firstly, we show that
standard message-passing schemes are not universal due to the inabil-
ity of simple aggregators to separate nodes with ambiguities (similar
attribute vectors and neighborhood structures). Based on the found
limitations, we propose a simple coloring scheme that can provide
universal representations with theoretical guarantees and experimental
validations of the performance superiority. Secondly, moving beyond
the standard message-passing paradigm, we propose an approach for
treating a corpus of graphs as a whole instead of examining graph
pairs. To do so, we learn a soft permutation matrix for each graph,
and we project all graphs in a common vector space, achieving a solid
performance on graph classification tasks.

In the second part of the thesis, our primary focus is concentrated
around the receptive field of the graph neural networks, i.e., how much
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information a node has in order to update its representation. To begin
with, we study the spectral properties of standard operators that encode
adjacency information, namely the graph shift operators. We propose a
novel parametric family of operators that can adapt throughout training
and provide a flexible framework for data-dependent neighborhood
representations. We show that the incorporation of this approach has a
substantial impact on both node classification and graph classification
tasks. Next, we study how considering the k-hop neighborhood informa-
tion for a node representation can output more powerful graph neural
network models. The resulted models are proven capable of identifying
structural properties, such as connectivity and triangle-freeness.

In the third part of the thesis, we address the problem of long-range
interactions, where nodes that lie in distant parts of the graph can affect
each other. In such a problem, we either need the design of deeper
models or the reformulation of how proximity is defined in the graph.
Firstly, we study the design of deeper attention models, focusing on
graph attention. We calibrate the gradient flow of the model by introduc-
ing a novel normalization that enforces Lipschitz continuity. Next, we
propose a data augmentation method for enriching the node attributes
with information that encloses structural information based on local
entropy measures.
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Résumé en Français
Vers des Graph Neural Networks: théorie, algorithmes et

applications

L’évolution de l’apprentissage automatique s’accélérant, les donnés
jouent un role de plus en plus important dans la construction de modèles
intélligents, capables de simuler des phénomènes, de prédire des résul-
tats complexes et de prendre des décisions. Dans un nombre sans cesse
croissant d’applications, les données sont structurées et peuvent être
vues comme des graphes. L’exploitation de cette structure est le coeur du
domaine de l’apprentissage de représentations de graphes, qui consiste
à calculer des représentations suffisamment expressives des graphes et
de ses composants, c’est-à-dire les nœuds et les arêtes. Récemment, la
domaine de l’apprentissage de représentations de graphes a été accéléré
par le succès des algorithmes du type «message passing» (passation
de messages) appliqués aux graphes, à savoir les «Graphe Neural
Network» (réseaux de neurones sur les graphes). L’apprentissage de
représentations informatives et expressives sur les graphes joue un rôle
critique dans un large éventail d’applications du monde réel, depuis les
télécommunications et les réseaux sociaux jusqu’à la conception urbaine,
la chimie et la biologie. Dans cette thèse, nous étudions les différents
aspects à partir desquels les réseaux neuronaux graphiques peuvent
être plus expressifs, et nous proposons de nouvelles approches pour
améliorer leurs performances dans les tâches standard d’apprentissages.
Les principaux axes de la présente thèse sont : l’universalité des représen-
tations de graphes, l’augmentation du champ réceptif des réseaux de
neurones sur les graphes, la conception de modèles d’apprentissage de
graphes stables et profonds et enfin les alternatives au cadre standard
des algorithmes par passation de messages. En réalisant des études
théoriques et expérimentales, nous montrons comment les approches
proposées peuvent devenir des outils utiles et efficaces pour concevoir
des modèles d’apprentissage de graphes plus expressifs et plus puis-
sants.

Dans la première partie de la thèse, nous étudions la qualité des représen-
tations de graphes en fonction de leur pouvoir de discrimination, c’est-à-
dire la capacité à différencier des graphes qui ne sont pas isomorphes.
Tout d’abord, nous montrons que les schémas standards de passation de
messages ne sont pas universels, en raison de l’incapacité des agréga-
teurs simples à séparer les nœuds présentant des ambiguïtés (vecteurs
d’attributs et structures de voisinage similaires). Sur la base des limita-
tions constatées, nous proposons un schéma de coloration, qui bien que
simple peut fournir des représentations universelles avec des garanties
théoriques. Nous validons expérimentalement notre approche ainsi que
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la supériorité des performances que nous obtenons. Puis, au-delà du
paradigme standard de passation de messages, nous proposons une
approche pour traiter un corpus de graphes comme un tout, au lieu
d’examiner localement l’intégralité des paires de graphes. Pour ce faire,
nous apprenons une matrice de permutation relaxée pour chaque graphe
et nous projetons tous les graphes dans un espace vectoriel commun,
ce qui permet d’obtenir de solides performances dans les tâches de
classification de graphes.

Dans la deuxième partie de la thèse, nous nous concentrons sur le
champ réceptif des réseaux neuronaux de graphes, c’est-à-dire sur la
quantité d’informations dont dispose un nœud pour mettre à jour sa
représentation. Pour commencer, nous étudions les propriétés spec-
trales d’opérateurs standards, qui encodent l’information d’adjacence,
à savoir les opérateurs de déplacements. Nous proposons une nou-
velle famille paramétrique d’opérateurs qui peuvent s’adapter tout
au long de l’apprentissage afin de fournir un cadre flexible pour les
représentations de voisinage dépendant des données. Nous montrons
que l’incorporation de cette approche a un fort impact sur les tâches
de classification des nœuds et des graphes. Ensuite, nous étudions
comment la prise en compte des informations de voisinage k-hop pour
les représentations de nœuds peut produire des modèles de réseaux
neuronaux de graphes plus expressifs. Les modèles obtenus s’avèrent ca-
pables d’identifier des propriétés structurelles, telles que la connectivité
et l’absence de triangle.

Dans la troisième partie de la thèse, nous abordons le problème des
interactions à longue distance, où des nœuds situés dans des parties
éloignées du graphe peuvent s’influencer mutuellement. Dans ce type
de problème, nous avons besoin soit de concevoir des modèles plus
profonds, soit de reformuler la manière dont la proximité est définie
dans le graphe. Tout d’abord, nous étudions la conception de mod-
èles d’attention plus profonds, en nous concentrant sur les modèles
d’Attention de graphes. Nous calibrons le flux de gradient du modèle
en introduisant une nouvelle normalisation qui force le modèles à être
Lipschitz. Enfin, nous proposons une méthode d’augmentation des
données pour enrichir les attributs des nœuds avec des informations
qui contiennent des informations structurelles, basées sur des mesures
d’entropie locale.
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Chapter 1

Introduction

The world as we know it is a product of changes. Molecular, historical,
environmental, planetary transitions from one phase to another trigger a
set of consequences. All of these changes are characterised by a common
phenomenon, the interactions of entities, creating biomedical, communi-
cation or physical networks. A mathematical framework that accurately
describes a network is given by the field of graph theory, where graphs
are defined as structures that include sets of objects as the interactions
in-between.

1.1 Graphs are Everywhere

Contrary to the set formulation, graphs serve as a flexible framework to
encode interactions between elements of the same set. They also provide
a well-established mathematical formalization for such information.
Beginning in 1736, Leonard Euler initially set the foundations of graph
theory for the sake of an urgent real-life transportation problem [24].
Since then, graphs have been a significant subject of mathematics re-
search, as the number of applications was constantly increasing. Today,
we can meet graphs nearly everywhere from chemistry and biology to
social networks and politics [80, 135, 228], from physics to computer
science [207, 231].

1.2 Machine Learning on Graphs

As the data saved and processed daily become larger and more complex,
their network representations move beyond the standard formulation of
a graph by incorporating contextual information upon the nodes or the
edges (more technical information will be provided in Section 2.1). Such
a combination of contextual and structural information allow for more
complex problems to be defined, such as the prediction of node, edge
or graph labels, the classification of a node or a graph into a specified
class or the clustering of points inside a graph. Machine learning models
appear to be an appropriate class of solvers for such problems.
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Representation Learning In general, Machine Learning (ML) can be
summarized by the process of learning from data in order to solve partic-
ular tasks. However, the success of an ML model is tightly dependent on
the way that the data are represented, that is, the features we assume as
input of the model. Until recently, most of the effective ways to extract
valuable information from data for efficient ML models were based
on manual feature engineering [254, 202]. Due to the high variance of
the model performance and the unsafe human factor dependence (as
humans annotate and form the data given to a model) of the ML mod-
els, the approach of automatic feature extraction has been developed,
creating the idea for representations of the data. That is a way to project
the unprocessed (or lightly processed) data into a space that can provide
rich information to the user-end task. The process of generating such
projections (or embeddings or representations) is called representation
learning.

Representation learning has emerged as a prominent toolkit for graph-
structured data due to the wide variety of tasks and forms that networks
could express. The first, more traditional, approaches combined node-
level statistics, such as node degrees, clustering coefficients, and centrali-
ties, to extract node-level features [106]. Graph kernel methods [223, 168]
have been quite successful for generating graph-level features, where
the objective is the label extraction for a whole graph instead of a node
or edge individually.

The idea of considering neural networks as models over graphs has
been firstly introduced in Sperduti and Starita [213]. Later on, Gori,
Monfardini, and Scarselli [83] and Scarselli et al. [200] made the first
steps towards establishing a rigid framework of the so-called Graph
Neural Networks. The core idea of the utilization of deep learning to
the field of graphs lies in a simple iterative procedure: A node learns
a representation as a result of the information propagation from its
neighborhood.

1.3 Real-World Applications

Graph representation learning has been a topic of accelerating research
due to its broad applicability in various fields. Making inferences on
graph-structured data was proven successful in complex topics from
technological, societal, biomedical, and other areas. Next, we present
a brief list of such applications, where GNNs appear to be a dominant
approach.

1.3.1 Bioinformatics

Biomedical research is one of the most fruitful areas for graph learning
models [135, 251]. Their applications relate to drug discovery, disease
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FIGURE 1.1: Visualization of protein sequence modeling
into graph topology and inference of protein folding. The

figure is based on the work of [214].

prediction and reasoning, and medical imaging. Regarding the drug
discovery, GNNs have been utilized for the learning of protein structure
and functionality [104, 81, 214], the prediction of the interactions be-
tween proteins [142, 242] and the prediction of molecular properties [64,
112]. In particular, a whole protein structure database has been recently
constructed, based on AlphaFold [110], a prediction system that is built
upon graph-learning blocks and models protein structures as attributed
graphs. In Figure 1.1, a graph representation of protein sequences is
presented. For the disease prediction and reasoning, research has been
done for the association of diseases with RNA and the prediction of
interactions among cells [171, 185, 188]. Finally, in the area of medical
imaging, GNNs have been applied to the segmentation of images [148]
and graphical representation of brain networks [126].

1.3.2 Social networks

Graph representation learning approaches have also been widely used
in social network analysis [175, 86]. One of the most usual tasks in social
networks is the prediction of interactions between two or multiple nodes,
and we can meet this objective very often in recommender systems,
where the relationship encoding between entities is crucial [231]. Graph
learning models, such as Graph Auto-encoders [119] have been proven
a prominent approach for this task. Moreover, considering networks of
research collaboration as social networks, citation graphs [153, 79] are
common use-cases, where graph learning models have been utilized. In
such scenarios, the task is usually the node classification, where papers
or authors’ topics or other information needs to be predicted.

1.3.3 Physics

Recently, graph neural network models exhibited an impressive per-
formance in tasks related to physics simulations. In a wide range of
science and engineering areas, where the behavior of solids, fluids, or
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FIGURE 1.2: Graph representations can be utilized for
the modelling of dynamics for different physical systems,
from structural mechanics to fluid dynamics, such as a)
flag waving, b) plate deformation, c) cylinder flow and
d) air flow around an airwing. The mesh plots are taken

from Pfaff et al. [177]

deformable materials is studied, mesh-based simulations have been a
dominant approach for many years [207]. The core idea of mesh genera-
tion and modeling is the discretization of an object and its transformation
into an interactions network of atoms or molecules. Machine learning
methods have been proven successful in learning adaptive meshes with
regards to the needs of each task and solver [194, 177]. The interplay
between graph neural networks and mesh generation is visualized in
Figure 1.2 for the modeling of complex physical systems dynamics.

1.3.4 Transportation Systems

Another aspect on which GNNs appear to be successful is the intelligent
transportation systems, and, more specifically, the modeling of traffic
networks [109]. Problems such as traffic flow, traffic speed, traffic
accidents, and parking availability are a few that have been studied
in the related literature [234]. One recent real-world application was the
incorporation of a GNN model in a popular web mapping platform for
the more accurate prediction of the estimated time of arrival [61]. In
Figure 1.3, the approach of representing neighboring regions to adjacent
nodes is visualized.

1.3.5 Communication Networks

In the field of telecommunications, the network topology can appear
in abundant problems. Recently, there have been many approaches
that are modeling this network topology through graph-based deep
learning methods [108]. For the problem of optimal power allocation in
wireless networks, various methods are based on graph convolutional
networks [66, 44]. Moreover, regarding the paradigm of 5G network
slicing, where the physical network infrastructure is divided into virtu-
alized independent networks, architectures based on Graph Attention
Networks have exhibited competitive results [203, 226].
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FIGURE 1.3: Graph representation of a traffic network for
the prediction of the estimated time of arrival. Neighbor-
ing regions in a road network map appear as adjacent
nodes in the graph-level representation. The visualization

is taken from Derrow-Pinion et al. [61].

1.3.6 Neural Networks modeling

Considering a general neural network as a directed bipartite graph (and
acyclical), we can define its architecture under the graph representation
learning framework. Taking this into account, we can explore more
possibilities of model designs, such as the case of random wirings [235],
but, also, make inferences over the optimal configuration of model
parameters [140]. The idea of the neural network representation as a
graph has been recently studied in the field of Neural Architecture Search
and AutoML, where the objective is to explore optimal architectures for
given tasks in an automated manner [37, 130, 250, 134].

1.4 Contributions

In the context of the present thesis, our main focus is to build powerful
graph neural networks that are able to provide rich and expressive
representations for standard and more complex tasks. These tasks can
be related to the discrimination of non-isomorphic graphs, the need for
larger receptive fields, and the detection of long-range interactions in a
graph. In most cases, our pipeline of work includes the introduction of an
efficient approach, along with a theoretical validation and experimental
evaluation. Next, we present more precisely the contributions of the
present thesis, which are also visualized in Figure 1.4.

1.4.1 Discrimination Power

Universality One of the main questions that relate to learning graph
representations is whether we can learn an embedding that can ap-
proximate any filter applied on a graph. In this manuscript, we study
the problem of universality on graph representations, and we prove
that specific topological criteria suffice to provide models that are uni-
versal approximators [56]. Our introduced models, CLIP and k´CLIP,
can provide state-of-the-art results for real-world graph classification
tasks but also succeed in synthetic graphs that express the need for a
high discrimination power. Indeed, we show that CLIP achieves to
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FIGURE 1.4: A visual overview of the present thesis’ con-
tributions with the corresponding chapters.

discriminate graphs with respect to the graph properties of connectivity,
triangle-freeness, and bipartiteness.

Isometry Usually, by discrimination power, we refer to the ability of
the representations to distinguish pairs of graphs that are either non-
isomorphic or have different attribute information. Nevertheless, how
can we compare the difference of the representations with the structural
difference of the corresponding graphs? We show that standard GNNs
are not able to preserve isometry, and we propose a novel approach
that embeds a corpus of graphs into a common vector space [167]. To
do so, the models learn a series of soft permutations, imposing a soft
ordering over the graph nodes. We observe that our model can achieve
competitive results both in graph classification and graph regression
tasks.

1.4.2 Receptive Field

In convolutional networks, the receptive field is defined by the filter
size of a layer, showing the depth and extent of input information that a
neuron receives. Correspondingly, on graph neural networks, we can
see the receptive field as an indicator of how large neighborhoods we
take into account for the representation of a node.

Parametric Operators The neighborhood information of the graph
nodes are encoded through the message passing operators that we utilize,
such as the adjacency matrix or the Laplacian. For different tasks and
models, different operators have been proposed. Within this scope, we
propose a novel parametric family of operators that can adapt according
to the given task and input information, namely the Parametric Graph
Shift Operators (PGSO) [54]. We show that PGSO retains important
spectral properties of standard operators, and we focus on its positive
impact on a wide variety of graph learning tasks.
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Multiple hops Standard GNNs are based on 1-hop aggregation schemes,
where nodes that are not connected take into account one another im-
plicitly through the utilization of more depths. We show that this design
assumption limits the model expressivity in tasks, where the objective is
the detection of a graph structural property, such as connectivity [166].
We propose k´hop graph neural networks that update the node-level
representations based on an iterative scheme over k´hop neighborhoods,
overcoming the aforementioned limitation.

1.4.3 Beyond Local Interactions

In various real-world applications, we assume that the considered graph
structure respects the assortativity property, i.e., nodes that are sim-
ilar (e.g., have similar node attributes) prefer to attach to each other.
However, there are cases where either structural symmetries can affect
the behavior of distant nodes (e.g., in molecular networks [152]) or the
presence of structural noise can remove connections in a graph.

Stability and model depth Firstly, we study the efficient design of
graph attention models that are able to detect long-range interac-
tions [55]. We propose a novel normalization that enforces Lipschitz
continuity and enables the construction of stable deep attention models
with a significant impact on node classification tasks.

Structural symmetries Moreover, we propose an approach for aug-
menting node attribute vectors with structural information, based on
entropy measures, that are indicators of structural symmetries [57]. We
show that we can achieve similar performance to standard message
passing neural networks through such augmentation and simple neural
network models over the node attributes.

1.5 Thesis Structure

The present manuscript is organized as follows:

• Chapter 2 begins with a description of the main message passing
framework and taxonomy of the current state-of-the-art in the
field of graph representation learning. Then, it focuses on the
expressivity aspects of GNNs.

• Chapter 3 and Chapter 4 present the works related to the discrim-
ination power of GNNs. Specifically, Chapter 3 introduces CLIP,
a model that provides universal representations, and Chapter 4
introduces π´GNN, the approach that learns soft permutations
over graphs.

• Chapter 5 and Chapter 6 lie in the scope of the receptive field.
Chapter 5 introduces PGSO for learning parametrized graph shift
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operators, and Chapter 6 focuses on the iterative processing of
multiple hop neighborhood information at a single layer.

• Chapter 7 and Chapter 8 address questions that are beyond the
scope of local interactions. Chapter 7 presents LipschitzNorm,
the normalization for stable deeper attention models, and Chap-
ter 8 studies VNEstruct, the attribute augmentation method for
structural symmetries.

• Chapter 9 discusses the conclusions of the present thesis and future
directions that can be further examined.
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Chapter 2

Preliminaries

Before proceeding with the main contributions, we present the essen-
tial elements that are appropriate for the definition of graph learning
models and reveal a few aspects of how the expressivity of GNNs can
be significant.

2.1 Notation

Firstly, we describe the notations that we will follow for the rest of the
present manuscript. Specifically, we define what a graph is, how we
can encode it and what tasks we usually meet in graph representation
learning. We also present a categorization of the graph learning models,
depending on how the information is propagated in a graph.

2.1.1 Graphs, tuples, and sets

We let a graph G be defined as a tuple of two sets, a set of nodes V
and a set of edges E : G “ pV, Eq. Let |V| “ n be the number of nodes
or size of graph G and |gE| “ m be the number of edges. Also, E “

tpui, ujq|ui P V, uj P V, there is an edge from ui to uju. Given a node
u, its 1´hop neighborhood Nu is defined as the set of nodes that are
edgepoints of edges attached to node u: Nu “ tv : pu, vq P E or pu, vq P
Eu. The neighborhood definition is crucial for the mechanics graph
learning models, because it formalizes the paths through the information
propagates. In Figure 2.1 we show a simple example of the 1´hop
neighborhood. Nodes h, f , g are considered 2´hop neighbors, as starting
from node a we need two stops (or hops) to reach out these nodes.

Simple Graphs For the sake of simplicity, at many graph learning
models, we assume that there are no self-connections, i.e edges from
and to the same node, there is at most one edge between nodes and
that for every edge pui, ujq P gE, there exists, also, the puj, uiq P E , in
other words the graph is undirected. In many cases throughout the
present manuscript, these assumptions are not satisfied and explicitly
mentioned.
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FIGURE 2.1: Example of neighborhood in a graph. The
neighborhood of node a equals Na “ tb, c, d, eu. Nodes

h, f , g are considered as 2´hop neighbors of node a.

Attributes and Labels Many times, modeling a real-world network
with a graph is not sufficient due to the contextual information that the
network components carry. For example, in a social network, where
the nodes refer to users and edges refer to their connections, typical
information that needs to be processed can be posts, comments, or
reactions of a user. For the encoding of such information, we define
the attribute matrices Xv P Rnˆdv and Xe P Rmˆde , where dv, de are
the dimensionalities of the node attribute and edge attribute vectors
respectively. Depending on the user-end task, graph might contain, also,
node-level, edge-level or graph-level label information, that is vectors
Yv P Nn, Ye P Nm, YG P N. A typical example of an attributed graph is
visualized in Figure 2.2, where we have node attribute vectors and node
labels (they are encoded as the colors upon the attribute vectors).

2.1.2 Edge Encoding

The simplest encoding of an edge existence in a graph is the binary
one. This leads to the definition of the adjacency matrix A P t0, 1unˆn,
where Aij “ 1 if and only if pi, jq P E . The degrees of G can now be
represented by D “ DiagpA1nq, where 1n is a vector of all ones of size n.
In the case of an undirected graph, A is a symmetric matrix. Given A,
D, we can define the Laplacian matrix L “ D´ A and its normalization
variants: the symmetric normalized Laplacian Lsym “ In ´D´

1
2 AD´

1
2 and

the random-walk normalized Laplacian Lrw “ In ´D´1A. Since Lsym is a
real symmetric (and, also, positive semi-definite), we can decompose
it into its eigenvectors matrix U P Rnˆn and its eigenvalues matrix
Λ “ Diagpλ1, ..., λnq, where λ1, ..., λn are the ordered eigenvalues of
Lsym:

Lsym “ UΛUJ. (2.1)
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FIGURE 2.2: Example of an attributed graph. Each node
has an attribute vector and a label. The label is denoted by

the color of the attribute vector.

Given this decomposition of the adjacency information, we can formalize
the information propagation in a spectral framework, using the graph
convolution, as we will present in Section 2.2.2.

Invariance and equivariance A crucial structural characteristic of
graphs is there is no assumption over the order of their nodes. That means
any operation applied on a graph should not depend on or assume any
particular node order. This property is called permutation invariance
because regardless of any permutation of the nodes, the functions that
act on the graph should remain unchanged. More formally, let a nˆ n
matrix P, where each row and each column contain exactly one nonzero
element that is equal to one. P is called a permutation matrix because if
P is applied to another nˆ n matrix (e.g, adjacency A or the Laplacian L)
it will permute the rows and the columns (and, consequently, the node
labels of a graph). Also, a function f is called permutation invariant if
f pPXq “ f pXq for all permutation matrices P.

Although the property of permutation invariance is desired in the global
level of a graph (e.g., aggregating the information from the whole node-
set), the majority of graph learning models consist of learning node-level
representations, i.e., given a model M we learn representations H “

MpXq, where each row corresponds to the information of a node. As the
authors in [31] describe, the rows of H should be aligned with the rows of
X and, so, a permutation matrix P acting on X should act similarly, also,
on H. This observation creates the need for another property, namely
the permutation equivariance, that is: f pPXq “ P f pXq. In the standard
forms of Graph Neural Networks, the node representation is based on
neighborhood aggregation functions, and, in order to provide valid
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FIGURE 2.3: Message passing aspect of Graph Neural
Networks

representations, these aggregation functions need to be permutation
equivariant [150, 149].

2.2 Taxonomy of Graph Neural Networks

In the literature, there is a huge variety of formulations that define
graph neural network operators based on either iterative or spectral
terms [233, 92]. In every case, the core computational step of a GNN is the
aggregation of the neighborhood information and its incorporation into a
gradient-based optimization process [200]. In an effort to a summarizing
framework, Bronstein et al. [31] suggest a categorisation of almost
every previously suggested model on three categories: the message
passing, the attentional and the convolutional aspect. Next, we give a
description of each category with examples of representative models.

2.2.1 Message Passing aspect

According to the message-passing aspect, the information propagation
among neighbors corresponds to the computation of arbitrary vectors
across edges, called messages, as computed below:

hu “ φpxu, Aggptψpxu, xvq | v P N uqq, (2.2)

where φ, ψ are learnable functions such as MLPs. Specifically, ψ can be
seen as a message function that describes the vector information sent from
node u to node v. Moreover, Agg is an aggregation operator that can
be chosen among standard operators, i.e., the summation, the average,
the weighted average, the max-pooling. The Agg operator acts on the
messages that are sent from a node u to its neighborhood Nu. These types
of models are also called Message Passing Neural Networks (MPNNs). A
visualization of the message passing framework is depicted in Figure 2.3.

Typical examples of this class of models are:
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FIGURE 2.4: Convolutional aspect of Graph Neural Net-
works

• Graph Isomorphism Network [238], where the authors suggest the
utilization of summation as the Agg operator.

• GraphSAGE [90], in which the Agg is chosen to be an average,
while ψ is simply an identity function.

2.2.2 Convolutional aspect

According to the convolutional aspect, the neighborhood information is
propagated in a direct way, assuming a fixed relation between a node
u and its neighbor v. Specifically, the node representation is updated
according to:

hu “ φpxu, Aggptcuvψpxvq | v P N uqq, (2.3)

where φ, ψ are learnable functions such as MLPs. Similarly to the
message-passing aspect, Agg can be chosen among standard operators,
i.e., the summation, the average, the weighted average, the max-pooling.
We can have a visual description of the node representation computa-
tions is shown in Figure 2.4.

Representative models of this aspect are:

• Graph Convolutional Network [118]. It is one of the first works
that have proposed graph convolutional models for the task of
semi-supervised node classification.

• Simplified Graph Convolution [230], where in contrast to the GCN
model, the non-linearities are removed after the aggregation step in
order to allow the efficient design of deeper convolutional models.

Graph Convolutions The term convolutional networks derives from the
relationship of the aforementioned type of networks with notions from
graph signal processing [170]. In parallel with the research and design
of propagation models on graphs, there was a need for a mathematical
formulation of such models from a spectral aspect. Into this context, we
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FIGURE 2.5: Attentional aspect of Graph Neural Networks

assume the contextual information of the nodes of a graph as a graph
signal x P Rn (for the sake of simplicity, we assume a scalar signal for
each node). Let, also, a graph filter gφ P Rn that is parametrised by φ.
Then, a graph convolution can be considered as the multiplication in the
Fourier domain of the signal x with the filter gφ:

gφ ˚ x “ UgφUJx, (2.4)

where U P Rnˆn denotes the matrix of eigenvectors of the normalized
Laplacian Lsym. Given Equation 2.4, we can see UJx as the graph Fourier
transform of the input signal x and correspondingly Ux̃ as the inverse
graph Fourier transform, where x̃ is the result of the graph Fourier
transform. Simplifying the graph convolution of Equation 2.4 into an
aggregation scheme, we can obtain the update formula of Equation 2.3,
where the choice of gφ affects the values of φ, ψ and Agg functions.

2.2.3 Attentional aspect

In this formulation, the interactions between the nodes are expressed in
an implicit manner. Instead of defining fixed relational vectors between
nodes or assuming messages that have to be sent, in the attentional aspect,
we define a self-attention layer that computes the importance coefficients
of each edge. Specifically, the node representation is updated as below:

hu “ φpxu, Aggptαpxu, xvqψpxvq | v P N uqq, (2.5)

where αp¨, ¨q describes the self-attention layer. In contrast to the convo-
lutional aspect, the importance vectors are now feature-dependent. In
Figure 2.5, we can see the considered interactions in this class of models.

The notation of graph attention has been firstly introduced in Veličković
et al. [220]. The authors, based on previously introduced works on self-
attention for sequence-based tasks [219], suggest a similar strategy for
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the information exchange in a neighborhood.

2.3 Learning Tasks over Graphs

In learning scenarios over graphs, the main objective is the label predic-
tion of either nodes, edges, or a whole graph. Depending on the label
type, we can group the models and tasks to the following categories:

1. Node-level tasks: This class of tasks require node-level represen-
tations (H P Rnˆdv). We can meet node-level representations in
problems where the objective is a node-level prediction task, that
is either node classification or node regression. In such a scenario,
given a subset of labeled nodes, the model makes predictions over
the subset of unlabeled nodes. For example, in citation networks
as Cora and CiteSeer [153, 78], the nodes are scientific papers,
and their labels are their corresponding topics. Node classifica-
tion/regression are semi-supervised learning tasks [118, 220, 90],
where the node-set V is split into the unlabeled and the labeled
node sets: V “ Vu XVl. The objective is to predict the labels of the
nodes that belong to Vu, based on the information that they receive
from their neighborhoods. It is worth noting that the neighborhood
of an unlabeled node can contain both unlabeled and labeled nodes,
explaining the semi-supervised learning setup.

2. Edge-level tasks: Here, the domain of the required representa-
tions spans the space of V2, which describes the possible pairs
among graph nodes (H P Rmˆde). Similarly to node classifica-
tion/regression, in the edge-level prediction, we can meet the
task of edge classification/regression, where the goal is to predict
the label of an edge in a semi-supervised manner [116]. A task
that also requires edge-level representations and it has been very
popular in recommendation systems is the link prediction, where
the objective is the prediction of an edge existence between pairs
of nodes [248, 253]. The majority of the works that have been
successful in the task of the link prediction are based on Graph
Auto-encoders (GAE) [119, 93, 193, 192]. GAEs can be considered
as an extension of standard GNNs, as they consist of two parts:
an encoder module, which could be a GNN itself for encoding the
original graph representation, and a decoder module, that tries to
reconstruct the adjacency information of the original graph.

3. Graph-level tasks: Finally, there is the case where a single repre-
sentation for a whole graph (H P Rdg) is required. We can meet this
type of representations in graph-level tasks, such as graph classifica-
tion and graph regression, where the goal is the prediction of a graph
label. Real-world use-cases of graph classification and regression
often come from bioinformatics datasets, where provided a graph
structure of a molecule or a protein, the prediction of a chemical or
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Can different structures be discriminated? 
Can similar graphs have similar representations? 

Can long-range interactions be detected?

Can the receptive field be optimally used? Can non-local structural patterns be detected? 

Am I
Expressive?

FIGURE 2.6: Key questions for determining whether
a node/graph representation is expressive, including
the receptive field, the long-range interactions, the non-

assortativity and the universality.

molecular property is needed [80, 160, 102, 249]. In these scenarios,
a collection of graphs CG “ tG1, ..., Gpu is given that is partitioned
into two sets, the labeled and the unlabeled ones, and the objective
is to predict the labels of the unlabeled graphs.

2.4 Expressivity in GNNs

One of the main motivations of learning representations for graphs is the
projection of the graph connectivity from a non-Euclidean to a Euclidean
space, namely the d´dimensional real space Rd. Among the research
objectives in this field, the ability of the representations to maintain the
most information from the initial space seems to dominate the interest of
the research community. This ability is characterized by the term expres-
sivity or expressive power [238], and it becomes more and more important
due to the impact on user-end tasks, i.e., the accuracy of graph learning
models. The basic criterion for characterizing expressive representations
is their power to discriminate different graph structures [149, 9, 149, 163,
199].

In the recent past, the interest in learning rich and informative represen-
tations has been expanded in broader areas due to the arising of complex
graph structures. These areas include:
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a. the design of models that preserve the isometry, i.e., the difference
of the output embeddings should be bounded by the difference of
the input representations [98, 225].

b. the study of the receptive field of GNNs, i.e., the amount of infor-
mation that a node can process from its direct (1-hop) or indirect
(>1-hop) neighborhood [161, 1, 143].

c. the ability to capture long-range dependencies in graphs. In cases
of networks, where distant nodes can interact with each other or
in cases of structural noise, where edges appear as non-existent,
graph learning models should be able to memorize information
from larger neighborhoods. A lot of recent works focus on building
deeper GNN architectures [136, 133, 132] so that implicit informa-
tion from larger depths is propagated [152, 120]. Such a condi-
tion requires the reconsideration of the standard message-passing
scheme so that we can capture structural symmetries regardless of
the node proximity.

The four different aspects can be summarized into a graph of key ques-
tions as visualized in Figure 2.6. In this thesis, we consider all of these
aspects under the umbrella of expressivity for GNNs, because they all
help towards rich and expressive graph representations for different
network scenarios.
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Chapter 3

Universal Approximation on
Graphs

3.1 Introduction

Learning good representations is seen by many machine learning re-
searchers as the main reason behind the tremendous successes of the
field in recent years [21]. In image analysis [124], natural language
processing [219] or reinforcement learning [158], groundbreaking results
rely on efficient and flexible deep learning architectures that are capable
of transforming a complex input into a simple vector while retaining
most of its valuable features. The universal approximation theorem [51,
101, 100, 178] provides a theoretical framework to analyze the expressive
power of such architectures by proving that, under mild hypotheses,
multi-layer perceptrons (MLPs) can uniformly approximate any contin-
uous function on a compact set. This result provided a first theoretical
justification of the strong approximation capabilities of neural networks,
and was the starting point of more refined analyses providing valuable
insights into the generalization capabilities of these architectures [19, 77,
198, 18].

Despite a large literature and state-of-the-art performance on benchmark
graph classification datasets, graph neural networks need a similar
theoretical foundation [238]. The universality for these architectures
is either hinted at via equivalence with approximate graph isomorphism
tests (k-WL tests in [238, 149]) or proved under restrictive assumptions
(finite node attribute space in [164]). We introduce Colored Local Iter-
ative Procedure (CLIP), which tackles the limitations of current GNNs
under the message passing aspect, presented in Section 2.2.1. This type
of GNNs is also called Message Passing Neural Networks (MPNNs).
We show, both theoretically and experimentally, that adding a simple
coloring scheme can improve the flexibility and power of these graph
representations. More specifically, the contributions of this chapter are: 1)
we provide a precise mathematical definition for universal graph repre-
sentations, 2) we present a general mechanism to design universal neural
networks using separability, 3) we propose a novel node coloring scheme
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leading to CLIP, the first provably universal extension of MPNNs, 4) we
show that CLIP achieves state-of-the-art results on benchmark datasets
while significantly outperforming traditional MPNNs as well as recent
methods on graph property testing.

The rest of this chapter is organized as follows: Section 3.2 gives an
overview of the literature related to the universality arguments and
connections with graph representation learning. Section 3.3 provides
a precise definition for universal representations, as well as a generic
method to design them using separable neural networks. In Section 3.4,
we show that most state-of-the-art representations are not sufficiently
expressive to be universal. Then, using the analysis of Section 3.3,
Section 3.5 provides CLIP, a provably universal extension of MPNNs.
Finally, Section 3.7 shows that CLIP achieves state-of-the-art accuracies
on benchmark graph classification tasks, as well as outperforming its
competitors on graph property testing problems.

3.2 Advances on universality and graph repre-
sentation learning

As we have seen in Section 1.2, the first works investigating the use of
neural networks for graphs used recurrent neural networks to represent
directed acyclic graphs [213, 71]. More generic graph neural networks
were later introduced by [83, 200] without showing that universality
conditions can apply. Although a lot of spectral-based (the convolutional
aspect in Section 2.2.2) and attention-based (the attentional aspect in
Section 2.2.3) have been introduced [34, 94, 60, 118], here we focus in the
message passing-based models (MPNNs), that assume an aggregation
of neighborhood information through a local iterative process. This
category contains most state-of-the-art graph representation methods
such as [64, 86, 130, 244, 221, 72], DeepWalk [175], graphSAGE [90] or
GIN [238].

Recently, Xu et al. [238] showed that MPNNs were, at most, as expressive
as the Weisfeiler-Lehman (WL) test for graph isomorphism [229]. This
surprising result led to several works proposing MPNN extensions to
improve their expressivity, and ultimately tend towards universality [149,
150, 164, 42]. However, these graph representations are either as pow-
erful as the k-WL test [149], or provide universal graph representations
under the restrictive assumption of finite node attribute space [164].
Other recent approaches [150, 9] imply higher orders of tensors in the
size of the considered graphs. Some more powerful GNNs are studied
and benchmarked on real classical datasets and on graph property
testing [123, 164, 42]: a set of problems that classical MPNNs cannot
handle. Our work thus provides a more general and powerful result of
universality, matching the original definition of [51] for MLPs.
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3.3 Universal representations via separability

In this section we present the theoretical tools used to design our
universal graph representation. More specifically, we show that sep-
arable representations are sufficiently flexible to capture all relevant
information about a given object, and may be extended into universal
representations.

3.3.1 Notations and basic assumptions

Let X ,Y be two topological spaces, then F pX ,Yq (resp. CpX ,Yq) de-
notes the space of all functions (resp. continuous functions) from X to
Y . Moreover, for any group G acting on a set X , X {G denotes the set of
orbits of X under the action of G. Finally, } ¨ } is a norm on Rd, and Pn is
the set of all permutation matrices of size n. In what follows, we assume
that all the considered topological spaces are Hausdorff (see e.g. [29] for
an in-depth review): each pair of distinct points can be separated by two
disjoint open sets. This assumption is rather weak (e.g. all metric spaces
are Hausdorff) and is verified by most topological spaces commonly
encountered in the field of machine learning.

3.3.2 Universal representations

Let X be a set of objects (e.g. vectors, images, graphs, or temporal data)
to be used as input information for a machine learning task (e.g. classi-
fication, regression or clustering). In what follows, we denote as vector
representation of X a function f : X Ñ Rd that maps each element x P X
to a d-dimensional vector f pxq P Rd. A standard setting for supervised
representation learning is to define a class of vector representations
Fd Ă F pX , Rdq (e.g. convolutional neural networks for images) and use
the target values (e.g. image classes) to learn a good vector representation
in light of the supervised learning task (i.e. one vector representation
f P Fd that leads to a good accuracy on the learning task). In order to
present more general results, we will consider neural network archi-
tectures that can output vectors of any size, i.e. F Ă YdPN˚F pX , Rdq,
and will denote Fd “ F X F pX , Rdq the set of d-dimensional vector
representations of F. A natural characteristic to ask from the class F is to
be generic enough to approximate any vector representation, a notion
that we will denote as universal representation [101].

Definition 1. A class of vector representations F Ă YdPN˚F pX , Rdq is
called a universal representation of X if for any compact subset K Ă X
and d P N˚, F is uniformly dense in CpK, Rdq.

In other words, F is a universal representation of a normed space X
if and only if, for any continuous function φ : X Ñ Rd, any compact
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K Ă X and any ε ą 0, there exists f P F such that

@x P K, }φpxq ´ f pxq} ď ε . (3.1)

One of the most fundamental theorems of neural network theory states
that one hidden layer MLPs are universal representations of the m-
dimensional vector space Rm.

Theorem 1 ([178, Theorem 3.1]). Let ϕ : R Ñ R be a continuous non
polynomial activation function. For any compact K Ă Rm and d P N˚,
two layers neural networks with activation ϕ are uniformly dense in the set
CpK, Rdq.

However, for graphs and structured objects, universal representations
are hard to obtain due to their complex structure and invariance to a
group of transformations (e.g. permutations of the node labels). We
show in this chapter that a key topological property, separability, may
lead to universal representations of those structures.

3.3.3 Separability is (almost) all you need

Loosely speaking, universal representations can approximate any vector-
valued function. It is thus natural to require that these representations
are expressive enough to separate each pair of dissimilar elements of X .

Definition 2 (Separability). A set of functions F Ă F pX ,Yq is said to
separate points of X if for every pair of distinct points x and y, there
exists f P F such that f pxq ‰ f pyq.

For a class of vector representations F Ă YdPN˚F pX , Rdq, we will say
that F is separable if its 1-dimensional representations F1 separates points
of X . Separability is rather weak, as we only require the existence of
different outputs for every pair of inputs. Unsurprisingly, we now show
that it is a necessary condition for universality.

Proposition 1. Let F be a universal representation of X , then F1 separates
points of X .

Proof of Proposition 1. Assume that there exists x, y P X s.t. @ f P F1,
f pxq “ f pyq. Then K “ tx, yu is a compact subset of X and let
φ P CpK, Rq be such that φpxq “ 1 and φpyq “ 0. Thus, for all f P F1,
maxzPtx,yu }φpzq ´ f pzq} ě 1{2 which contradicts universality (see Defini-
tion 1).

While separability is necessary for universal representations, it is also
key to designing neural network architectures that can be extended
into universal representations. More specifically, under technical as-
sumptions, separable representations can be composed with a universal
representation of Rd (such as MLPs) to become universal.
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input hidden output

f

g
p f , gq

a b

FIGURE 3.1: In Figure a, the concatenation of two MLPs f
and g is visualized. In Figure b, universal representations
can easily be created by combining a separable representa-

tion with an MLP.

Theorem 2. For all d ě 0, let Md be a universal approximation of Rd. Let F
be a class of vector representations of X such that:

1. Continuity: every f P F is continuous,

2. Stability by concatenation: for all f , g P F, x ÞÑ p f pxq, gpxqq P F,

3. Separability: F1 separates points of X .

Then tψ ˝ f : Dd ě 1 s.t. ψ PMd, f P Fu is a universal representation of X .

Stability by concatenation is verified by most neural networks architec-
tures, as illustrated for MLPs in Figure 3.1. The proof of Theorem 2 relies
on the Stone-Weierstrass theorem (see e.g. [190, Theorem 7.32]) whose
assumptions are continuity, separability, and the fact that the class of
functions is an algebra. Fortunately, composing a separable and con-
catenable representation with a universal representation automatically
leads to an algebra, and thus the applicability of the Stone-Weierstrass
theorem and the desired result. Next, a complete proof of Theorem 2 is
provided. First, a definition of the Stone-Weierstrass theorem is given.

Theorem 3 (Stone-Weierstrass). Let A be an algebra of real functions on a
compact Hausdorff set K. If A separates points of K and contains a non-zero
constant function, then A is uniformly dense in CpK, Rq.

We verify that under the assumptions of Theorem 2 the Stone-Weierstrass
theorem applies. In this setting, we first prove the theorem for m “ 1
and use induction for the general case.

Let K Ă X be a compact subset of X . We will denote

A0 “ tψ ˝ f : Dd ě 1 s.t. ψ P CpRd, Rq, f P Fu ,

and will proceed in two steps: we first show that A0 is uniformly dense
in CpK, Rq, then that A is dense in A0, hence proving Theorem 2.

Lemma 1. A0 is a subalgebra of CpK, Rq.
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Proof. The subset A0 contains zero and all constants. Let f , g P A0 so
that

f pxq “ ψ f ˝ ϕ f pxq , gpxq “ ψg ˝ ϕgpxq ,

with ψ f : Rd f Ñ R and ψg : Rdg Ñ R. Consider ψ : Rd f`dg Ñ R such
that ψpa, bq “ ψ f paq ` ψgpbq. We define ϕpxq “ pϕ f pxq, ϕgpxqq P Rd f`dg

and by assumption ϕ P F. We have

p f ` gqpxq “ ψpϕ f pxq, ϕgpxqq

“ ψ ˝ ϕpxq

so that f ` g P A0 and we conclude that A0 is a vectorial subspace of
CpK, Rq. We proceed similarly for the product in order to finish the proof
of the lemma.

Because F1 separates the points of X by assumption, A0 also separates
the points of X . Indeed, let x ‰ y two distinct points of X so that
D f P F such that f pxq ‰ f pyq. There exists g P CpRd, Rq such that
gp f pxqq ‰ gp f pyqq. From Theorem 3 we deduce that A0 is uniformly
dense in CpK, Rq for all compact subsets K Ă X .

Finally we state that:

Lemma 2. For any compact subset K Ă X , A is uniformly dense in A0.

Proof. Let ε ą 0 and h “ ψ0 ˝ f P A0 with f P F and ψ0 P CpRd, Rq.
Thanks to the continuity of f , the image K̃ “ f pKq is a compact of Rd.
By Theorem 1 there exists an MLP ψ such that }ψ´ ψ0}K̃,8 ď ε. We have
ψ ˝ f P A and }ψ0 ˝ f ´ ψ ˝ f }K,8 ď ε which concludes the proof.

This last lemma completes the proof in the case m “ 1. For m ě 2
consider A0 “ tψ ˝ f : Dd ě 1 s.t. ψ P CpRd, Rmq, f P Fu and proceed in
a similar manner than Lemma 2 by decomposing ψ P CpRd, Rmq as

ψpxq “

¨

˚

˚

˚

˝

ψ1pxq
ψ2pxq

...
ψmpxq

˛

‹

‹

‹

‚

,

and applying Lemma 1 for each coefficient function ψi P CpRd, Rq.

Since MLPs are universal representations of Rd, Theorem 2 implies a
convenient way to design universal representations of more complex
object spaces: create a separable representation and compose it with a
simple MLP (see Figure 3.1).

Corollary 1. A continuous, concatenable and separable representation of X
composed with an MLP is universal.
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Note that many neural networks of the deep learning literature have
this two steps structure, including classical image CNNs such as
AlexNet [124] or Inception [216]. Here, we use Corollary 1 to design
universal graph and neighborhood representations, although the method
is much more generic and may be applied to other objects.

3.4 Limitations of existing representations

In this section, we first provide a proper definition for graphs with node
attributes under the formulation of Hausdorff spaces, needed for the
proofs of universality, and then we show that message passing neural
networks are not sufficiently expressive to be universal.

3.4.1 Graphs with node attributes

Consider a dataset of n interacting objects (e.g. users of a social network)
in which each object i P J1, nK has a vector attribute vi P Rm and is a
node in an undirected graph G with adjacency matrix A P Rnˆn.

Definition 3. The space of graphs of size n with m-dimensional node
attributes is the quotient space

Graphm,n “
 

pv, Aq P Rnˆm
ˆRnˆn(

{Pn , (3.2)

where A is the adjacency matrix of the graph, v contains the m-
dimensional representation of each node in the graph and the set of
permutations matrices Pn is acting on pv, Aq by

@P P Pn, P ¨ pv, Aq “ pPv, PAPJq . (3.3)

Moreover, we limit ourselves to graphs of maximum size nmax, where
nmax is a large integer. This allows us to consider functions on graphs
of different sizes without obtaining infinite dimensional spaces and
infinitely complex functions that would be impossible to learn via a
finite number of samples. We thus define Graphm “

Ť

nďnmax
Graphm,n.

More details on the technical topological aspects of the definition are
available in Appendix B.1, as well as a proof that Graphm is Hausdorff.

3.4.2 Message passing neural networks

A common method for designing graph representations is to rely on local
iterative procedures. Following the notations of Xu et al. [238], a message
passing neural network (MPNN) [80] is made of three consecutive phases
that will create intermediate node representations xi,t for each node i P
J1, nK and a final graph representation xG as described by the following
procedure: 1) Initialization: All node representations are initialized
with their node attributes xi,0 “ vi. 2) Aggregation and combination: T
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FIGURE 3.2: With identical node attributes, an hexagone
and two triangles are indistinguishable using MPNNs.

local iterative steps are performed in order to capture larger and larger
structural characteristics of the graph. 3) Readout: This step combines
all final node representations into a single graph representation: xG “

READOUTptxi,TuiPJ1,nKq, where READOUT is permutation invariant.

Unfortunately, MPNNs are not expressive enough to separate all
graphs [238] and hence will not lead to universal representations. While
these representations can be as expressive as the Weisfeiler-Lehman algo-
rithm [229], they are not sufficiently expressive to construct isomorphism
tests. For example, MPNNs cannot distinguish k-regular graph without
or with identical node attributes. In order to prove this, we now show
that k-regular graphs of size n cannot be separated using MPNNs (see
Figure 3.2 for a simple example of such graphs).

Lemma 3. Let F be an MPNN and G1, G2 two k-regular graphs of size n and
identical node attributes v P Rd, then @ f P F, f pG1q “ f pG2q.

Proof. Since all nodes have the same attribute, the initial representation
of all nodes vi “ v is identical. After each local aggregation, all node
representations are equal to xi,t`1 “ ftp ft´1p... f2p f1pvqq...q, where ftpxq “
AGG&COMBptqpx, tx, ..., xuq. As a result, both representations are equal
and f pG1q “ f pG2q.

Using Proposition 1, this directly implies that MPNNs are not universal,
as they do not separate regular graphs.

Proposition 2. MPNNs are not universal.

Proof. Figure 3.2 shows two simple graphs that are undistinguishable
using MPNNs. More specifically, each neighborhood is the same, and
thus all aggregation steps will output the same value. In other words,
MPNNs do not separate the two graphs of Figure 3.2, and are thus not
universal using Proposition 1.

Proof. The proof consists in showing that two very simple graphs are
not separable using any MPNN. Let G1 be an undirected hexagon, G2
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FIGURE 3.3: Example of two valid colorings of the same
attributed graph. Note that each Vk contains nodes with

identical attributes.

two undirected triangles, and v1 “ v2 “ 0 (see Figure 3.2. Then, after
each local aggregation, all node representations are equal to

xi,t`1 “ ftp ft´1p... f2p f1p0qq...q , (3.4)

where f pxq “ AGG&COMBptqpx, tx, xuq. As a result, both representations
are equal xG1 “ xG2 and MPNNs are not separable.

3.5 Extending MPNNs using a simple coloring
scheme

In this section, we present Colored Local Iterative Procedure (CLIP),
an extension of MPNNs using colors to differentiate identical node
attributes, that is able to capture more complex structural graph charac-
teristics than traditional MPNNs. This is proved theoretically through
a universal approximation theorem in Section 3.6.1 and experimentally
in Section 3.7. CLIP is based on three consecutive steps: 1) graphs are
colored with several different colorings, 2) a neighborhood aggregation
scheme provides a vector representation for each colored graph, 3) all
vector representations are combined to provide a final output vector. We
now provide more information on the coloring scheme.

3.5.1 Colors to differentiate nodes

In order to distinguish non-isomorphic graphs, our approach consists
in coloring nodes of the graph with identical attributes. This idea is
inspired by classical graph isomorphism algorithms that use colors to
distinguish nodes [154], and may be viewed as an extension of one-hot
encodings used for graphs without node attributes [238].
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FIGURE 3.4: Schematic representation of CLIP.

For any k P N, let Ck be a finite set of k colors. These colors may be
represented as one-hot encodings (Ck is the natural basis of Rk) or more
generally any finite set of k elements. At initialization, we first partition
the nodes into groups of identical attributes V1, ..., VK Ă J1, nK. Then,
for a subset Vk of size |Vk|, we give to each of its nodes a distinct color
from Ck (hence a subset of size |Vk|). For example, Figure 3.3 shows two
colorings of the same graph, which is decomposed in three groups V1,
V2 and V3 containing nodes with attributes a, b and c respectively. Since
V1 contains only two nodes, a coloring of the graph will attribute two
colors (p1, 0q and p0, 1q, depicted as blue and red) to these nodes. More
precisely, the set of colorings Cpv, Aq of a graph G “ pv, Aq are defined
as

Cpv, Aq “
!

pc1, ..., cnq : @k P J1, KK, pciqiPVk is a permutation of C|Vk|

)

.
(3.5)

3.5.2 The CLIP algorithm

In the CLIP algorithm, we add a coloring scheme to an MPNN in order
to distinguish identical node attributes. This is achieved by modifying
the initialization and readout phases of MPNNs as follows.

1. Colored initialization: We first select a set Ck Ď Cpv, Aq of k dis-
tinct colorings uniformly at random (see Equation (3.5)). Then, for
each coloring c P Ck, node representations are initialized with their
node attributes concatenated with their color: xc

i,0 “ pvi, ciq.

2. Aggregation and combination: This step is performed for all color-
ings c P Ck using a universal set representation as the aggregation
function: xc

i,t`1 “ ψptq
`

xc
i,t,

ř

jPNi
ϕptqpxc

j,tq
˘

, where ψ and ϕ are
MLPs with continuous non-polynomial activation functions and
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ψpx, yq denotes the result of ψ applied to the concatenation of x
and y. The aggregation scheme we propose is closely related to
DeepSet [247], and a direct application of Corollary 1 proves the
universality of our architecture.

3. Colored readout: This step performs a maximum overall possible
colorings in order to obtain a final coloring-independent graph rep-
resentation. In order to keep the stability by concatenation, the
maximum is taken coefficient-wise

xG “ ψ

˜

max
cPCk

n
ÿ

i“1

xc
i,T

¸

, (3.6)

where ψ is an MLP with continuous non polynomial activation
functions.

We treat k as a hyper-parameter of the algorithm and call k-CLIP
(resp. 8-CLIP) the algorithm using k colorings (resp. all colorings,
i.e. k “ |Cpv, Aq|). Note that, while our focus is graphs with node
attributes, the approach used for CLIP is easily extendable to similar
data structures such as directed or weighted graphs with node attributes,
graphs with node labels, graphs with edge attributes or graphs with
additional attributes at the graph level. A visualization of CLIP is
presented in Figure 3.4.

3.6 Universality of the node aggregation scheme

We now provide more details on the aggregation and combination
scheme of CLIP and show that a simple application of Corollary 1 is
sufficient to prove its universality for node neighborhoods. Each local
aggregation step takes as input a couple pxi, txjujPNiq where xi P Rm is
the representation of node i, and txjujPNi is the set of vector representa-
tions of the neighbors of node i. In the following, we show how to use
Corollary 1 to design universal representations for node neighborhoods.

Definition 4. The set of node neighborhoods for m-dimensional node
attributes is defined as

Neighborhoodm “ Rm
ˆ

ď

nďnmax

`

Rnˆm
{Pn

˘

, (3.7)

where the set of permutation matrices Pn is acting on Rnˆm by P ¨ v “ Pv.

The main difficulty in designing universal neighborhood representations
is that the node neighborhoods of Definition 4 are permutation invari-
ant w.r.t. neighboring node attributes, and hence require permutation
invariant representations. The graph neural network literature already
contains several deep learning architectures for permutation invariant
sets [88, 181, 247, 238], among which PointNet and DeepSet have the
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FIGURE 3.5: Diagram for NODEAGGREGATION (here de-
noted as NeighborNet), where φ and ψ are MLPs.

notable advantage of being provably universal for sets. Following Corol-
lary 1, we compose a separable permutation invariant network with an
MLP that will aggregate both information from the node itself and its
neighborhood. While our final architecture is similar to Deepset [247],
this section emphasizes that the general universality theorems of Sec-
tion 3.3 are easily applicable in many settings including permutation
invariant networks. The permutation invariant set representation used
for the aggregation step of CLIP is as follows:

NODEAGGREGATIONpx, Sq “ ψ

¨

˝x,
ÿ

yPS

ϕpyq

˛

‚, (3.8)

where ψ and ϕ are MLPs with continuous non-polynomial activation
functions and ψpx, yq denotes the result of the MLP ψ applied to the
concatenation of x and y (see Figure 3.5).

Theorem 4. The set representation described in Equation (3.8) is a universal
representation of Neighborhoodm.

Proof. By construction, NODEAGGREGATION is a continuous and con-
catenable representation. Moreover, its final stage is an MLP, and we
thus only have to prove separability in order to use Corollary 1 and
prove universality. Let px1, S1q, px2, S2q P Neighborhoodm and suppose
that px1, S1q ‰ px2, S2q. First, if x1 ‰ x2, the final MLP ψ can separate x1

and x2. Otherwise, S1 ‰ S2, and let us assume that S1zS2 ‰ H (otherwise
S2zS1 ‰ H and the argument is identical). Since MLPs are universal
representations of Rm, there exists an MLP ϕ such that, @s P S1 Y S2,

ϕpsq ě 1 if s P S1
zS2 ,

|ϕpsq| ď ε otherwise ,
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Taking ψpx, yq “ y and ε “ 1{3 maxt|S1|, |S2|u, we have

NODEAGGREGATIONpx1, S1
q ě 2{3 ,

NODEAGGREGATIONpx2, S2
q ď 1{3 ,

which proves separability and, using Corollary 1, the universality of the
representation.

3.6.1 Universality of CLIP

As the colorings are chosen at random, the CLIP representation is itself
random as soon as k ă |Cpv, Aq|, and the number of colorings k will
impact the variance of the representation. However, the representations
provided by 8-CLIP are deterministic and permutation invariant, as
MPNNs are permutation invariant. The separability is less trivial and is
ensured by the coloring scheme.

Theorem 5. The 8-CLIP algorithm with one local iteration (T “ 1) is a
universal representation of the space Graphm of graphs with node attributes.

In order to prove Theorem 5, we will be based on Corollary 1. Specifically,
we need to prove the three conditions of continuity, concatenability and
separability of the representations, in order to provide universality. In
short, we will proceed in the proof by fixing a coloring on one graph
and identifying all nodes and edges of the second graph using the fact
that all pairs pvi, ciq are dissimilar in cases of different graphs. Next, the
detailed proof of Theorem 5 is provided.

Proof of Theorem 5. The first direct observation is that CLIP provides
continuous and concatenable representations. This is true, due to the
constitution of the MLPs that are used in the model, that are both
continuous and concatenable. So, we need to focus on the separability
condition, and more specifically, whether the final output representation
from CLIP can be different for any pair of different graphs. Proceed-
ing with investigating the separability condition, we firstly take into
account that the node aggregation step (denoted NODEAGGREGATION
below) is a universal set representation, it is capable of approximating
any continuous function. We will thus first replace this function by
a continuous function g, and then show that the result still holds for
NODEAGGREGATIONp1q by a simple density argument. We remind here
for the sake of clarity that:

NODEAGGREGATIONpx, Sq “ ψ

¨

˝x,
ÿ

yPS

ϕpyq

˛

‚,

thus finding proper instances of φ, ψ will help us towards the proof. Let
G1 “ pv1, A1q and G2 “ pv2, A2q be two distinct graphs of respective
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sizes n1 and n2 (up to a permutation). Our goal is to find appropriate
NODEAGGREGATIONp¨, ¨q functions, that will provide different results
for the two graphs. We can identify two cases:

• If n1 ‰ n2, then for the choice of NODEAGGREGATION parameters
we select: ψpxq “ x and φpxq “ 1. Thus, not caring about the
disambiguation scheme in this, the final graph representations
after the application of the readout function will be dependent on
the number of nodes n1 and n2 respectively, yielding xG1 ‰ xG2 .

• If n1 “ n2, we will assume a fixed coloring of graph G1, let the c1.
Let, also, V “ tvk

i uiPJ1,n1K,kPt1,2u be the set of node attributes of G1

and G2. Then, again for the choice a proper NODEAGGREGATION,
we select: ψpxq “ x and φ be a continuous function such that,
@x P V and S Ă V,

φpx, Sq “
n1
ÿ

i“1

1tx “ pv1
i , c1

i qu
ź

j‰i

1

!

A1
ij “ 1tpv1

j , c1
j q P Su

)

. (3.9)

This choice of NODEAGGREGATION parameters results in count-
ing the matching neighborhoods. Then, xG counts the maximum
number of matching neighborhoods for the best coloring, and we
have xG1 “ n1 and xG2 ď n1 ´ 1. Finally, taking ε ă 1{2n1 in the
definition of universal representation leads to the desired result,
as then, using an ε-approximation of φ as NODEAGGREGATIONp1q,
we have xG1 ą n1 ´ 1{2 ą xG2 .

In both cases, the existence of such g P CpRm, Rq is assured by Urysohn’s
lemma (see e.g. [190, lemma 2.12]). Thus, we found proper choices of
g function that separates any pair of different graphs, leading to the
conclusion of the proof.

Similar to the case of MLPs, only one local iteration is necessary to ensure
the universality of the representation. This rather counter-intuitive
result is due to the fact that all nodes can be identified by their color,
and the readout function can aggregate all the structural information
in a complex and non-trivial way. This means that any function over
graphs could be approximated by the present model, even if a function
(e.g. graph diameter) would require normally deeper models than a
single iteration. Such a claim falls into the trap that we need to take into
account the whole permutation set of colorings and choosing the best out
of all colorings, yielding to an overrview of the whole graph structure
in a single layer. As for MLPs, we should expect poor generalization
capabilities for CLIP with only one local iteration, and deeper networks
may allow for more complex representations and better generalization.
This point is addressed in the experiments of Section 3.7. Moreover,
8-CLIP may be slow in practice due to a large number of colorings, and
reducing k will speed up the computation. Fortunately, while k-CLIP



3.6. Universality of the node aggregation scheme 37

provides a random representation, a similar universality theorem still
holds even for k “ 1.

Theorem 6. The 1-CLIP algorithm with one local iteration (T “ 1) is a
random representation whose expectation is a universal representation of the
space Graphm of graphs with node attributes.

The proof of Theorem 6 relies on using8-CLIP on the augmented node
attribute vectors v1i “ pvi, ciq. As all node attributes are, by design,
different, the maximum overall colorings in Equation (3.6) disappears
and, for any possible coloring, 1-CLIP returns an ε-approximation of the
target function.

Proof of Theorem 6. Consider a continuous function ψ : Graphm Ñ Rd

and a compact K1 Ă Graphm. Let extend K1 with K “ K1 ˆ r0, 1snmax

and we define φ : Graphm`nmax
Ñ Rd with φppv, cq, Aq “ ψpv, Aq for all

c P Cpv, Aq. Since8-CLIP is universal there exists f P 8-CLIP such that,
for all ppv, cq, Aq P K,

}φppv, cq, Aq ´ f ppv, cq, Aq} ď ε , (3.10)

hence
}ψpv, Aq ´ f ppv, cq, Aq} ď ε . (3.11)

Moreover, observe that for any coloring c P Cpv, Aq,8-CLIP and 1-CLIP
applied to ppv, cq, Aq returns the same result, as all node attributes are
dissimilar (by definition of the colorings) and Cppv, cq, Aq “ H. Finally,
1-CLIP applied to pv, Aq is equivalent to applying 1-CLIP to ppv, Cq, Aq
where C is a random coloring in Cpv, Aq, and Equation (3.11) thus implies
that any random sample of 1-CLIP is within an ε error of the target
function ψ. As a result, its expectation is also within an ε error of the
target function ψ, which proves the universality of the expectation of
1-CLIP.

Remark 1. Note that the variance of the representation may be reduced by
averaging over multiple samples. Moreover, the proof of Theorem 6 shows that
the variance can be reduced to an arbitrary precision given enough training
epochs, although this may lead to very large training times in practice. This
is aligned with the intuition that using a larger number k of colorings should
approach the case of8´CLIP

Remark 2. In the scope of the proposed model, we considered discrete values
of colors as identifiers of node labels, based on their node attributes. A further
extension would be to consider continuous values of the colors. Such an
assumption requires though vigilance over the ordering of the nodes, because
a continuous relaxation would mean that there is a distance over the different
node labels. Such an assumption is avoided in the discrete disambiguators, as
we can use one-hot encoding for the identifiers.
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Remark 3. In the case of k-CLIP, the random choice of colorings makes the
model lose its permutation invariance property, as we do not take into account
the whole permutation set. That is quite natural, since imposing identifiers
into the node labels requires considering all the permutations of the identifiers.
However, as we will see in the experiments, such a relaxation can show a solid
behavior in graph classification tasks.

3.6.2 Computational complexity

As the local iterative steps are performed T times on each node, and
the complexity of the aggregation depends on the number of neighbors
of the considered node, the complexity is proportional to the number
of edges of the graph E and the number of steps T. Moreover, CLIP
performs this iterative aggregation for each coloring, and its complexity
is also proportional to the number of chosen colorings k “ |Ck|. Hence
the complexity of the algorithm is in OpkETq.

Note that the number of all possible colorings for a given graph depends
exponentially in the size of the groups V1, ..., VK,

|Cpv, Aq| “
K
ź

k“1

|Vk|! , (3.12)

and thus8-CLIP is practical only when most node attributes are dissim-
ilar. This worst-case exponential dependency in the number of nodes
can hardly be avoided for universal representations. Indeed, a universal
graph representation should also be able to solve the graph isomor-
phism problem. Despite the existence of polynomial-time algorithms
for a broad class of graphs [145, 25], graph isomorphism is still quasi-
polynomial in general [11]. As a result, creating a universal graph
representation with polynomial complexity for all possible graphs and
functions to approximate is highly unlikely, as it would also induce a
graph isomorphism test of polynomial complexity and thus solve a very
hard and long-standing open problem of theoretical computer science.

3.7 Experiments

In this section we empirically show the practical efficiency of CLIP and
its relaxation. We run two sets of experiments to compare CLIP w.r.t.
state-of-the-art methods in supervised learning settings: i) on five real-
world graph classification datasets and ii) on four synthetic datasets
to distinguish structural graph properties and isomorphism. Both ex-
periments follow the same experimental protocol as described in [238]:
10-fold cross-validation with grid search hyper-parameter optimization.
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3.7.1 Classical benchmark datasets

We performed experiments on five benchmark datasets extracted from
standard social networks (IMDBb and IMDBm) and bioinformatics
databases (MUTAG, PROTEINS, and PTC). All dataset characteristics
(e.g. size, classes) are available in Appendix A.1. Following standard
practices for graph classification on these datasets, we use one-hot en-
codings of node degrees as node attributes for IMDBb and IMDBm [238],
and perform single-label multi-class classification on all datasets. We
compared CLIP with six state-of-the-art baseline algorithms: 1) WL:
Weisfeiler-Lehman subtree kernel [205], 2) AWL: Anonymous Walk Em-
beddings [105], 3) DCNN: Diffusion-convolutional neural networks [7],
4) PS: PATCHY-SAN [165], 5) DGCNN: Deep Graph CNN [249] and 6)
GIN: Graph Isomorphism Network [238]. WL and AWL are represen-
tative of unsupervised methods coupled with an SVM classifier, while
DCNN, PS, DGCNN, and GIN are four deep learning architectures. As
the same experimental protocol as that of [238] was used, we present
their reported results on Table 3.1.

Experimentation protocol We optimized the CLIP hyperparameters
by grid search according to 10-fold cross-validated accuracy means. We
used 2-layer MLPs, an initial learning rate of 0.001 and decreased the
learning rate by 0.5 every 50 epochs for all possible settings. For all
datasets the hyperparameters we tested were the number of hidden
units within t32, 64u, the number of colorings c P t1, 2, 4, 8u, the number
of MPNN layers within t1, 3, 5u, the batch size within t32, 64u, and the
number of epochs, that means, we select a single epoch with the best
cross-validation accuracy averaged over the 10 folds. Note that standard
deviations are fairly high for all models due to the small size of these
classic datasets.

TABLE 3.1: Classification accuracies of the compared meth-
ods on benchmark datasets. The best performer w.r.t. the
mean is highlighted with an asterisk. We perform an un-
paired t-test with asymptotic significance of 0.1 w.r.t. the
best performer and highlight with boldface the ones for
which the difference is not statistically significant. 0-CLIP

is the CLIP architecture without any colorings.

Dataset PTC IMDBb IMDBm PROTEINS MUTAG

WL 59.9˘4.3 73.8˘3.9 50.9˘3.8 75.0˘3.1 90.4˘5.7
DCNN 56.6 49.1 33.5 61.3 67.0
PS 60.0˘4.8 71.0˘2.2 45.2˘2.8 75.9˘2.8 92.6˘4.2
DGCNN 58.6 70.0 47.8 75.5 85.8
AWL - 74.5˘5.9 51.5˘3.6 - 87.9˘9.8
GIN 64.6˘7.0 75.1˘5.1 52.3˘2.8 76.2˘2.8 89.4˘5.6

0-CLIP 65.9˘4.0 75.4˘2.0 52.5˘2.6˚ 77.0˘3.2 90.0˘5.1
CLIP 67.9˘7.1˚ 76.0˘2.7˚ 52.5˘3.0˚ 77.1˘4.4˚ 93.9˘4.0˚
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TABLE 3.2: Ablation study: classification accuracies of
k-CLIP on benchmark datasets w.r.t k.

Dataset PTC IMDBb IMDBm PROTEINS MUTAG

0-CLIP 65.9˘4.0 75.4˘2.0 52.5˘2.6 77.0˘3.2 90.0˘5.1

1-CLIP 65.3˘12.8 75.2˘3.9 52.2˘4.0 75.1˘4.5 91.1˘7.0
4-CLIP 65.9˘5.7 75.8˘5.0 51.8˘2.9 77.1˘4.4 92.2˘7.0
8-CLIP 67.9˘7.1 75.7˘3.8 52.5˘3.0 76.8˘4.8 93.9˘4.1
16-CLIP 66.5˘5.4 76.0˘2.7 52.5˘4.5 76.6˘2.8 91.7˘6.0

As Table 3.1 shows, CLIP can achieve state-of-the-art performance on
the five benchmark datasets. Moreover, CLIP is consistent across all
datasets, while all other competitors have at least one weak performance.
This is a good indicator of the robustness of the method to multiple
classification tasks and dataset types. Finally, the addition of colors does
not improve the accuracy for these graph classification tasks, except on
the MUTAG dataset. This may come from the small dataset sizes (leading
to high variances) or an inherent difficulty of these classification tasks
and contrasts with the clear improvements of the method for property
testing (see Section 3.7.2).

CLIP performances w.r.t. the number of colorings k

Table 3.2 summarizes the performances of CLIP while increasing the
number of colorings k. Overall we can see a small increase in perfor-
mances and a reduction of the variances when k is increasing. Neverthe-
less, we should not jump to any conclusions since none of the models
are statistically significantly better than the others.

We note that on the IMDBb and PROTEINS datasets, the difference
between using or not a coloring scheme does not have a big impact on
the performances. However, adding colors increases the performance
of the algorithm on three out of five real-world datasets. The property
testing section (Section 3.7.2) shows empirically that the color scheme
improves the expressiveness of CLIP.

Empirical result In three out of five datasets, none of the recent state-
of-the-art algorithms have statistically significantly better results than
older methods (e.g. WL). We argue that, considering the high variances of
all classification algorithms on classical graph datasets, graph property
testing may be better suited to measure the expressiveness of graph
representation learning algorithms in practice.



3.7. Experiments 41

3.7.2 Graph property testing

We now investigate the ability of CLIP to identify structural graph
properties, a task which was previously used to evaluate the expres-
sivity of graph kernels and on which the Weisfeiler-Lehman subtree
kernel has been shown to fail for bounded-degree graphs [123]. The
performance of our algorithm is evaluated for the binary classification
of four different structural properties: 1) connectivity, 2) bipartiteness,
3) triangle-freeness, 4) circular skip links [164] (the precise definitions
of these properties are given below) against three competitors: a) GIN,
a powerful and very efficient MPNN variant [238], b) Ring-GNN, a
permutation invariant network that uses the ring of matrix addition
and multiplication [42], c) RP-GIN, the Graph Isomorphism Network
combined with Relational Pooling, as described by [164], which is able
to distinguish certain cases of non-isomorphic regular graphs.

Our goal is to show that CLIP is able to distinguish basic graph prop-
erties, where classical MPNN cannot. We consider a binary classifica-
tion task and we construct balanced synthetic datasets for each of the
examined graph properties. The 20-node graphs are generated using
Erdös-Rényi model [67] (and its bipartite version for the bipartiteness)
with different probabilities p for edge creation. All nodes share the
same (scalar) attribute. We thus have uninformative feature vectors.
In particular, we generate datasets for different classical tasks [123]: 1)
connectivity, 2) bipartiteness, 3) triangle-freeness, and 4) circular skip
links [164]. Next, we present the generating protocol of the synthetic
datasets and the experimentation setup that was followed.

Synthetic datasets:
In every case of the synthetic datasets, we follow the same pattern:
we generate a set of random graphs using Erdös-Rényi model, which
contains a specific graph property and belongs to the same class, and by
proper edge addition, we remove this property, thus creating the second
class of graphs. In this way, we assure that we do not change different
structural characteristics other than the examined graph property.

1. Connectivity dataset: this dataset consists of 1000 (20-node)
graphs with 500 positive samples and 500 negative ones. The
positive samples correspond to disconnected graphs with two 10-
node connected components selected among randomly generated
graphs with an Erdös-Rényi model probability of p “ 0.5. We
constructed negative samples by adding to positive samples a
random edge between the two connected components.

2. Bipartiteness dataset: this dataset consists of 1000 (20-node)
graphs with 500 positive samples and 500 negative ones. The
positive samples correspond to bipartite graphs generated with
an Erdös-Rényi (bipartite) model probability of p “ 0.5. For the
negative samples (non-bipartite graphs) we chose the positive sam-
ples, and for each of them we added an edge between randomly



42 Chapter 3. Universal Approximation on Graphs

selected nodes from the same partition in order to form odd cycles
1.

3. Triangle-freeness dataset: this dataset consists of 1000 (20-node)
graphs with 500 positive samples and 500 negative ones. The
positive samples correspond to triangle-free graphs selected among
randomly generated graphs with an Erdös-Rényi model probability
of p “ 0.1. We constructed negative samples by randomly adding
new edges to positive samples until it creates at least one triangle.

4. Circular skip links: this dataset consists of 150 graphs of 41 nodes
as described in [164, 42]. The Circular Skip Links graphs are undi-
rected regular graphs with node degree 4. We denote a Circular
skip link graph by Gn,k an undirected graph of n nodes, where
pi, jq P E holds if and only if |i ´ j| ” 1 or kpmod nq This is a 10-
class multiclass classification task whose objective is to classify
each graph according to its isomorphism class.

Experimentation protocol: We evaluate the different configurations
of CLIP and its competitors GIN and RP-GIN based on their hyper-
parameters. For the architecture implementation of the GIN, we followed
the best performing architecture, presented in [238]. In particular, we
used the summation as the aggregation operator, MLPs as the combi-
nation level for the node embedding generation and the sum operator
for the readout function along with its refined version of concatenated
graph representations across all iterations/layers of GIN, as described
in [238].
In all the tested configurations for CLIP and its competitors (GIN, RP-
GIN) we fixed the number of layers of the MLPs and the learning rate:
we chose 2-layer MLPs and we used the Adam optimizer with initial
learning rate of 0.001 along with a scheduler decaying the learning rate
by 0.5 every 50 epochs. Concerning the other hyper-parameters, we
optimized: the number of hidden units within t16, 32, 64u (except for the
CSL task where we only use 16 hidden units to be fair w.r.t. RP-GIN and
Ring-GNN benchmarks), the number of MPNN layers within t1, 2, 3, 5u,
the batch size within t32, 64u, and ran the model over 400 epochs.
Regarding the RP-GIN architecture [164] we optimized the one-hot
encoding dimension of the first update within t5, 10, 15, 20, 25, 30u and
the number of inference permutations within t1, 5, 16u. Regarding the
CLIP algorithm, we optimized the number of colorings c P t1, 2, 4, 8, 16u.
We then performed 10-fold cross-validation with early stopping for the
hyper-parameter optimization and we reported the best 10-fold cross-
validated mean accuracy with its associated standard deviation.

Table 3.3 shows that CLIP is able to capture the structural information
of connectivity, bipartiteness, triangle-freeness and circular skip links,
while MPNN variants fail to identify these graph properties. Further-
more, we observe that CLIP outperforms RP-GIN, that was shown to

1Having an odd cycle in a graph makes the graph non-bipartite.
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TABLE 3.3: Classification accuracies of the synthetic
datasets. k-RP-GIN refers to a relational pooling averaged
over k random permutations. We report Ring-GNN results

from [42].

Property Connectivity Bipartiteness Triangle-freeness Circular skip links
mean ˘ std mean ˘ std mean ˘ std mean ˘ std max min

GIN 55.2 ˘ 4.4 53.1 ˘4.7 50.7˘6.1 10.0 ˘ 0.0 10.0 10.0
Ring-GNN - - - (?) ˘ 15.7 80.0 10.0
1-RP-GIN 66.1˘5.2 66.0˘5.1 63.0˘3.6 20.0 ˘ 7.0 28.6 10.0
16-RP-GIN 83.3˘7.9 64.9˘4.1 65.7˘3.3 37.6 ˘ 12.9 53.3 10.0

0-CLIP 56.5 ˘ 4.0 55.4 ˘ 5.7 59.6 ˘ 3.8 10.0 ˘ 0.0 10.0 10.0
1-CLIP 73.3 ˘ 2.2 63.3 ˘1.9 63.5 ˘7.3 61.9 ˘11.9 80.7 36.7
16-CLIP 99.7 ˘ 0.5 99.2 ˘ 0.9 94.2˘3.4 90.8 ˘ 6.8 98.7 76.0

provide very expressive representations for regular graphs [164], even
with a high number of permutations (the equivalent of colors in their
method is set to k “ 16).

Moreover, both for k-RP-GIN and k-CLIP, the increase of permutations
and colorings respectively lead to higher accuracies. In particular, CLIP
can capture almost perfectly the different graph properties with as
little as k “ 16 colorings. Finally, note that using one-hot encodings
of (randomly chosen) node labels (which is equivalent to 1-CLIP as
graphs have no node attributes in this experiment) provides a notable
improvement over GIN, although far below the near-perfect accuracy of
16-CLIP.

3.7.3 3-regular graphs

Aligned with our theoretical observations in Section 3.4.2, we consider
now the synthetic task of predicting structural properties in k-regular
graphs. In particular, for this experiment we assume k “ 3 and the
task of detecting triangles, similar to the triangle-freeness property in
Section 3.7.2. According to our theoretical analysis in Section 3.4.2,
standard Message Passing Neural Networks are not capable of distin-
guishing nodes in 3-regular graphs, and thus should necessarily have a
classification accuracy of 50% for any well-balanced binary classification
task on these graph datasets.

For the visualization of such a claim, we constructed a synthetic dataset
composed of 200 random 3-regular graphs, half of which contain at
least one triangle (positive class). On this dataset, we performed a 10-
fold cross-validation with c-CLIP and we show the results in Figure 3.6.
For this toy example we fixed all hyperparameters but the number of
colorings of the relaxation c P t1, 16, 32, 128u and did not change the
learning rate during the learning phase. While MPNNs fail at learning
this task (see Lemma 3), Figure 3.6 shows that CLIP successfully iden-
tifies triangles, up to a perfect 100% test accuracy with 32 colorings in
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FIGURE 3.6: Classification accuracy for triangle detection
in 3-regular graphs w.r.t. number of epochs for CLIP with
increasing number of colorings. All MPNNs obtain a 50%

accuracy at this task.

less than 150 epochs. This result shows that CLIP is capable of capturing
structural information of 3-regular graphs that was not captured by
other state-of-the-art algorithms.

Note that, since the produced dataset is balanced, the considered base-
lines all achieve an accuracy of 50% (see Lemma. This means that all of
the baselines were not able to capture the triangle existence, an empirical
result that is aligned to 3).

Intuitively one might assume that 1-CLIP should be able to achieve 100%
accuracy. Indeed one can rethink the initial dataset as a much bigger one
considering as new elements all the possible colorings of the initial one.
In this case, the model should be able to detect perfectly the triangles
but will need much more epochs to go trough this augmented dataset.
That might be the reason why the learning slope w.r.t. the number of
epochs is lower. Moreover, the model is able to detect triangles even if
the number of colorings per graph (c “ 32) is extremely small compared
to the total number of possible colorings (20! « 2.4 ¨ 1018). This empirical
result illustrates the effectiveness of the proposed relaxation k´CLIP in
practical scenarios.

3.8 Conclusion

In this chapter, we showed that a simple coloring scheme can improve
the expressive power of MPNNs. Using such a coloring scheme, we
extended MPNNs to create CLIP, the first universal graph representation.
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Universality was proven using the concept of separable neural networks,
and our experiments showed that CLIP is state-of-the-art on both graph
classification datasets and property testing tasks.

The coloring scheme is especially well suited to hard classification tasks
that require complex structural information to learn. The framework is
general and simple enough to extend to other data structures such as di-
rected, weighted or labeled graphs. Future work includes more detailed
and quantitative approximation results depending on the parameters of
the architecture, such as the number of colors k, or a number of hops of
the iterative neighborhood aggregation.
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Chapter 4

Learning Soft Permutations for
Graph Representations

4.1 Introduction

In the previous chapter, we dealt with the problem of graph classification
and how we can build graph representations that can discriminate non-
isomorphic graphs using separability criteria. In real-world scenarios,
such as chemoinformatics, bioinformatics, and social networks, this
problem reflects in cases where we have a series of graphs on which
we would like to assign labels. For instance, in chemistry, molecules
can be modeled as graphs where vertices and edges represent atoms
and chemical bonds, respectively. A social network is usually repre-
sented as a graph where users are mapped to vertices and edges capture
friendship relationships. In such cases, we are not interested only in
finding representations that should be different for dissimilar graphs,
but, also, should preserve some form of isometry, i.e., they should reveal
information about "how much different" the graphs are.

Due to the recent growth in the amount of produced graph-structured
data, the field of graph representation learning has attracted much
attention in the past years with applications ranging from drug design
[112] to learning the dynamics of physical systems [177], where the
aforementioned isometric property is often crucial. Among the different
algorithms proposed in the field of graph representation learning, mes-
sage passing GNNs (or MPNNs as they have been defined in Chapter 3)
have recently shown significant success in solving real-world learning
problems on graphs. However, for the problem of graph classification,
MPNNs take into account each graph independently, omitting informa-
tion that can be obtained from treating a corpus of graphs as a whole.
With the exception of a few architectures [165, 149, 150, 169, 217], all
the remaining models belong to the family of standard MPNNs. For
a certain number of iterations, these models update the representation
of each vertex by aggregating information from its neighborhood. In
fact, there is a close connection between this update procedure and the
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Weisfeiler-Leman test of isomorphism [229] and, based on these obser-
vations, the expressive power of MPNNs has been studied, similarly to
Chapter 3 [238, 161, 159].

The need for representations that can capture information of some form
of distance between the graphs requires the development of novel archi-
tectures, which will allow researchers in the field to break away from
the message passing schemes. This chapter takes a step in this direction.
Specifically, we first highlight some general limitations of approaches
that project graphs into vector spaces. We consider a well-established
distance measure for graphs, and we show that in the general case, there
is no inner product space such that the distance induced by the norm
of the space matches exactly the considered distance function. We also
show that, for specific classes of graphs, such representations can be
generated by imposing an ordering on the vertices of each graph. The
above result motivates the design of a novel neural network model, so-
called π-GNN, which learns a “soft” permutation (i.e. doubly stochastic)
matrix for each graph and thus projects all graphs into a common vector
space. The learned matrices impose a “soft” ordering on the vertices of
the graphs, and the adjacency matrices are mapped into vectors based
on this ordering. These vectors can then be fed into fully-connected or
convolutional layers to deal with supervised learning tasks. To make
the model more efficient in terms of running time and memory, we
further relax the doubly stochastic matrices to row stochastic matrices.
We compare the performance of the proposed model to well-established
neural architectures on several benchmark datasets for graph classifi-
cation and graph regression. Results show that the proposed model
matches or outperforms competing methods. Our main contributions
are summarized as follows:

• We demonstrate that graph embedding algorithms such as GNNs,
cannot isometrically embed a metric space whose metric corre-
sponds to a widely accepted distance function for graphs into
a vector space. This is, however, possible for specific classes of
graphs.

• We propose a novel neural network model, π-GNN, which learns
a “soft” permutation matrix for each graph and uses this matrix
to project the graph into a vector space. The set of permutation
matrices induces an alignment of the input graphs, and thus graphs
are mapped into a common space.

• We evaluate the proposed model on several graph classification
and graph regression datasets where it achieves performance com-
parable and in some cases better than that of state-of-the-art GNNs.

The rest of this chapter is organized as follows. Section 4.2 provides an
overview of the related work. Section 4.3 highlights the limitations of
graph embedding approaches. Section 4.4 provides a detailed descrip-
tion of the proposed π-GNN model. Section 4.5 evaluates the proposed
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model in graph classification and graph regression tasks. Finally, Sec-
tion 4.6 concludes.

4.2 Standard MPNNs and Works Beyond Mes-
sage Passing

The architectures that helped to make the field of graph representation
learning active include modern variants of the old models [139] as well
as approaches that generalized the convolution operator to graphs based
on well-established graph signal processing concepts [34, 60, 118]. All of
the standard MPNN architectures take into account a sample of graphs
and perform a process of two phases, as we have seen in Chapter 3. First,
a message-passing phase where vertices iteratively update their feature
vectors by aggregating the feature vectors of their neighbors. Second, a
readout phase where a permutation invariant function is employed to
produce a feature vector for the entire graph.

Research has focused mainly on the message passing phase [249, 54], but
also on the readout phase though in a smaller extent [238, 215, 244]. The
family of MPNNs is closely related to the Weisfeiler-Lehman (WL) iso-
morphism test [229]. Specifically, these models generalize the relabeling
procedure of the WL test to the case where vertices are annotated with
continuous features. Standard MPNNs have been shown to be at most
as powerful as the WL test in distinguishing non-isomorphic graphs
[238, 161]. Some works aggregate other types of structures instead of
neighbors such as small subgraphs [129] or paths [38]. Considerable
efforts have also been devoted to building deeper MPNNs [133, 73]
and more powerful models [161, 159]. There have also been made
some efforts to develop GNN models that do not follow the design
paradigm of MPNNs. For instance, Niepert, Ahmed, and Kutzkov [165]
proposed a model that extracts neighborhood subgraphs for a subset of
vertices, imposes an ordering on each subgraph’s vertices, and applies a
convolutional neural network on the emerging matrices [165]. Maron
et al. [150] proposed k-order graph networks, a general form of neural
networks that consist of permutation equivariant and invariant tensor
operations. Instances of these models correspond to a composition
of functions, typically a number of equivariant linear layers and an
invariant linear layer which is followed by a multi-layer perceptron [149,
150]. Nikolentzos and Vazirgiannis proposed a model that generates
graph representations by comparing the input graphs against a number
of latent graphs using random walk kernels [169].

The works closest to the direction of this chapter are the ones reported
in [13] and in [14]. In these works, the authors map input graphs
into fixed-sized aligned grid structures. To achieve that, they align
the vertices of each graph to a set of prototype representations. To
obtain these prototype representations, the authors apply the k-means
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algorithm to the vertices of all graphs, and each emerging centroid is
considered as a prototype. They then compute for each input graph
a binary correspondence matrix by assigning each vertex of the graph
to its closest centroid. Based on this matrix, the authors produce a
new graph (i.e. a new adjacency matrix and a new matrix of features),
while they also impose an ordering on the vertices of the new graph
using some centrality measure. Finally, these matrices are fed into an
MPNN model, which is followed by a convolutional neural network to
generate the output. Unfortunately, these models are not end-to-end
trainable. Mapping input graphs into aligned grid structures involves
non-differentiable operations and is thus applied as a preprocessing
step. Furthermore, for large datasets, partitioning the vertices of all
graphs into clusters using the k-means algorithm can be computationally
expensive. On the other hand, the proposed model is better motivated
and is end-to-end trainable since it employs a differentiable layer to
compute a matrix of “soft” correspondences. Our work is also related to
neural network models that learn to compare graphs to each other [15,
16, 227, 196].

4.3 Can We Generate Expressive Graph Repre-
sentations?

As mentioned above, in several application areas, samples do not come
in the form of fixed-sized vectors but in the form of graphs. For instance,
in chemistry, molecules are typically represented as graphs, and in social
network analysis, collaboration patterns are also mapped into graph
structures. There exist several approaches that map graphs into vectors;
however, in most cases, the emerging vectors could be of low quality,
could be difficult to obtain, and may fail to capture the full complexity
of the underlying graph objects. However, vector representations are
very convenient since most well-established learning algorithms can
operate on this type of data. These are developed in inner product
spaces or normed spaces, in which the inner product or norm defines
the corresponding metric. Ideally, we would like to project a collection
of graphs into a Euclidean space such that some well-established notion
of distance between graphs is captured as accurately as possible from
the Euclidean norm of that space.

Before introducing the distance function, we present some key notation
for graphs. Let rns “ t1, . . . , nu Ă N for n ě 1. Let G “ pV, Eq be
an undirected graph, where V is the vertex set, and E is the edge set.
We will denote by n the number of vertices and by m the number of
edges. The adjacency matrix A P Rnˆn is a symmetric matrix used
to encode edge information in a graph. We say that two graphs G1
and G2 are isomorphic to each other, i.e. G1 » G2, if there exists an
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adjacency preserving bijection π : V1 Ñ V2, i.e. pu, vq is in E1 if and only
if pπpuq, πpvqq is in E2, call π an isomorphism from G1 to G2.

The distance function that we consider in this chapter is the Frobenius
distance [85], one of the most well-studied distance measures for graphs.
Let G1 “ pV1, E1q and G2 “ pV2, E2) be two graphs on n vertices with
respective nˆ n adjacency matrices A1 and A2. The Frobenius distance
is a function d : G ˆ G Ñ R where G is the space of graphs which quan-
tifies the distance of two graphs and can be expressed as the following
minimization problem:

dpG1, G2q “ min
PPΠ

||A1 ´ P A2 PJ||F , (4.1)

where Π denotes the set of n ˆ n permutation matrices, and || ¨ ||F is
the Frobenius matrix norm. For clarity of presentation, we assume n
to be fixed (i.e. both graphs consist of n vertices). In order to apply the
function to graphs of different cardinalities, one can append zero rows
and columns to the adjacency matrix of the smaller graph to make its
number of rows and columns equal to n. Therefore, the problem of
graph comparison can be reformulated as the problem of minimizing
the above function over the set of permutation matrices. A permutation
matrix P gives rise to a bijection π : V1 Ñ V2. The function defined
above seeks for a bijection such that the number of common edges
|tpu, vq P E1 :

`

πpuq, πpvq
˘

P E2u| is maximized. The above definition is
symmetric in G1 and G2. The two graphs are isomorphic to each other
if and only if there exists a permutation matrix P for which the above
function is equal to 0. Unfortunately, the above distance function is not
computable in polynomial time [85, 6]. Furthermore, computing the
distance remains hard even if both input graphs are trees [85]. Its high
computational cost prevents the above distance function from being used
in practical scenarios. An interesting question that we answer next is
how well graph embedding algorithms, i.e. approaches that map graphs
into vectors, can embed the space of graphs equipped with the above
function into a vector space. It turns out that for an arbitrary collection
of graphs, isometrically embedding the aforementioned metric space
into a vector space is not feasible.

Theorem 7. Let pG, dq be a metric space where G is the space of graphs and
d is the distance defined in Equation 4.1. The above metric space cannot be
embedded in any Euclidean space.

The proof of Theorem 7 can be found in Appendix B.2.

Unfortunately, most machine learning algorithms that operate on graphs
map graphs explicitly or implicitly into vectors (e.g. the readout function
of MPNNs). The above result suggests that these learning algorithms
cannot generate maximally expressive graph representations, i.e. vector
representations such that the Euclidean distances between the different
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graphs are arbitrarily close (or equal) to those produced by the distance
function defined in Equation 4.1.

The above result holds for the general case (i.e. arbitrary collections of
graphs). If we restrict our set to contain instances of only specific classes
of graphs, then, it might be possible to map graphs into vectors such
that the pairwise Euclidean distances are equal to those that emerge
from Equation 4.1. For instance, if our set consists only of paths or of
cycles, we can indeed project them into a vector space such that the
Euclidean norm induces the distance defined in Equation 4.1. To obtain
such representations, the trick is to impose an ordering on the vertices of
each graph such that those orderings are consistent across graphs. For
example, in the case of the path graphs, we can impose the following
ordering: the first vertex is one of the two terminal vertices. Let v denote
that vertex. Then, the i-th vertex is uniquely defined and corresponds
to the vertex u which satisifies sppv, uq “ i´ 1 where spp¨, ¨q denotes the
shortest path distance between two vertices. Let n denote the number
of vertices of the longest path in the input set of graphs. The adjacency
matrix of each graph Gi is then expanded by zero-padding such that
Ai P Rnˆn. For any pair of graphs G1, G2, we then have:

dpG1, G2q “ min
PPΠ

||A1 ´ P A2 PJ||F “ ||A1 ´ In A2 IJn ||F

“ ||A1 ´A2||F ,

where In denotes the nˆ n identity matrix. Clearly, these graphs can
be embedded into vectors in some Euclidean space as follows: vadj

i “

vecpAiq where vec denotes the vectorization operator which transforms
a matrix into a vector by stacking the columns of the matrix one after
another, and vadj

i P Rn2
. Then, the distance between two graphs is

computed as:

dpG1, G2q “ ||A1 ´A2||F “ ||v
adj
1 ´ vadj

2 ||2 ,

where || ¨ ||2 is the standard `2 norm of the input vector. The emerging
vectors can thus be thought of as the representations of the path graphs
in the Euclidean space Rn2

. However, still, as shown next, it turns out
that we cannot map these graphs into a vector space whose dimension
is smaller than the cardinality of the set itself.

Proposition 3. Let tP2, P3, . . . , Pn`1u be a collection of n path graphs, where
Pi denotes the path graph consisting of i vertices. Let also X P Rnˆpn`1q2 be
a matrix that contains the vector representations of the n graphs obtained as
discussed above (i.e. the i-th row of matrix X contains the representation of the
i-th graph). Then, the rank of the matrix X is equal to n.

Proof. Without loss of generality, assume that the path graphs are sorted
based on their order (i.e. number of vertices). Then, the i-th row of
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matrix X contains the vector representation of graph Pi`1. Notice that
given two consecutive path graphs Pi, Pj with j´ i “ 1, the first pi` 1qn2

elements of their representations are identical, while the last pn´ i´ 1qn2

and pn´ j´ 1qn2 “ pn´ i´ 2qn2 of the two representations are equal to
zero. Therefore, if we subtract the first vector from the second vector,
we end up with a vector that has some nonzero elements in the position
between pn´ i´ 1qn2 and pn´ i´ 2qn2. Then, we can start from the last
row of X and subtract from each row the immediately preceding row.
We obtain a set of n´ 1 orthogonal vectors, and therefore, the rank of
the matrix X is equal to n´ 1.

This is another negative result since it implies that even in cases where
we can impose an ordering on the vertices of the graphs, which can be
used to align the graphs, we cannot project them into a Euclidean space
of fixed dimension and retain all pairwise distances.

4.4 π-Graph Neural Networks

Graph-level machine learning problems are usually associated with finite
sets of graphs tG1, . . . , GNu Ă G. Given such a set of graphs, is it possible
to align them such that we can then project them into a Euclidean space?
The objective, in this case, would be to find a permutation matrix P˚i for
each graph Gi of the dataset where i P rNs such that the overall distance
between graphs is minimized. This gives rise to the following problem:

P˚1 , . . . , P˚N “ arg min
P1,...,PNPΠ

N
ÿ

i“1

N
ÿ

j“1

||Pi Ai PJi ´ Pj Aj PJj ||F . (4.2)

The above optimization problem imposes an ordering on the vertices of
all graphs of the input set and thus each graph Gi can then be embedded
into a common Euclidean space as vadj

i “ vecpP˚i Ai P˚Ji q. Unfortunately,
solving the above problem is hard. Note that the distance function
defined in Equation 4.1 is a special case of the above problem when the
number of samples is N “ 2. Furthermore, it is clear that for each pair
of graphs Gi, Gj with i, j P rNs, the distance function of Equation 4.1 is a
lower bound to the distances that emerge from the above permutation
matrices. Thus, for any two graphs Gi, Gj, we have:

dpGi, Gjq “ min
PPΠ

||Ai ´ P Aj PJ||F

ď ||P˚i Ai P˚Ji ´ P˚j Aj P˚Jj ||F .
(4.3)

Given two graphs Gi, Gj, Equation 4.3 implies that the permutation
matrices P˚i , P˚j embed the adjacency matrices Ai, Aj in a space at least
as separable as the one provided from the Frobenius distances. In
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Appendix B.3 we investigate an interesting connection between the
objective in Equation 4.2 and a cost sharing game.

4.4.1 Learning soft permutations

Inspired by the above alignment problem, in this chapter, we propose a
neural network model that performs an alignment of the input graphs
and embeds them into a Euclidean space. Specifically, we propose a
model that learns a unique permutation matrix for each graph Gi from
the collection of input graphs G1, . . . , GN. These permutation matrices
enable the model to project graphs into a common vector space.

In fact, the problem of learning permutation matrices P1, . . . , PN P Π
has a combinatorial nature and is not feasible in practice. Therefore, in
our formulation, we replace the space of permutations by the space of
doubly stochastic matrices. Such approximate relaxations are common in
graph matching algorithms [2, 107]. Let D denote the set of nˆ n doubly
stochastic matrices, i.e. nonnegative matrices with row and column
sums each equal to 1. The proposed model associates each graph Gi
with a doubly stochastic matrix Di P D and the vector representation
of each graph is now given by vadj

i “ vec
`

Di Ai DJ
i
˘

. Note that the
price to be paid for the above relaxation is that the emerging graph
representations are less expressive since two non-isomorphic graphs can
be mapped to the same vector. In other words, there exist pairs of graphs
Gi, Gj with Gi fi Gj and doubly stochastic matrices Di, Dj P D such that
Di AiDJ

i “ Dj AjDJ
j .

To compute these doubly stochastic matrices, we capitalize on ideas
from optimal transport [176]. Specifically, we design a neural network
that learns matrix Di from two sets of feature vectors, one that contains
some structural features of the vertices (and potentially their attributes)
of a graph Gi and one trainable matrix that is randomly initialized. Let
n denote the number of vertices of the largest graph in the input set
of graphs. We first generate a matrix Qi P Rnˆd for each graph Gi of
the collection, which contains a number of local vertex features that are
invariant to vertex renumbering (e.g. degree, number of triangles, etc.).
Note that for a graph Gi consisting of ni vertices, the last n´ ni rows of
matrix Qi are initialized to the zero vector. Let also W P Rnˆd denote
a matrix of trainable parameters. Note that we can think of matrix W
as a matrix whose rows correspond to some latent vertices and which
contain the features of those vertices. Then, the rows of matrix Qi are
compared against those of matrix W using some differentiable function
f . In our experiments, we have defined f as the inner product between
the two input vectors followed by the ReLU activation function. Thus
we have that Si “ ReLUpQi WJq P Rnˆn where Si is a matrix of scores or
similarities between the vertices of a graph Gi and the model’s trainable
parameters.
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Note that before computing matrix Si, we can first transform the vertex
features using a fully-connected layer, i.e. Q̃i “ gpQi H` bqwhere H P

Rdˆd̃ and b P Rd̃ is a weight matrix and bias vector, respectively, and g is
a non-linear activation function. We can also use an MPNN architecture
to produce new vertex representations, i.e. Q̃i “ MPNNpAi, Qiq. In
fact, the expressive power of the proposed model depends on how well
those features capture the structural properties of vertices in the graph.
Thus, highly expressive MPNNs could lead the proposed model into
generating more expressive representations.

For a graph Gi, matrix Di P r0, 1snˆn can then be obtained by solving the
following problem:

max
n
ÿ

j“1

n
ÿ

k“1

Sj,k
i Dj,k

i

s.t.

Di 1n “ 1n and DJ
i 1n “ 1n ,

(4.4)

where 1n is an n-element vector of ones, and Sj,k
i and Dj,k

i denote the
element of the j-th row and k-th column of matrices Si and Di. The
emerging matrix Di is a doubly stochastic matrix, while the above
formulation is equivalent to solving a linear assignment problem. The
solution of the above optimization problem corresponds to the optimal
transport [176] between two discrete distributions with scores Si. Its
entropy-regularized formulation naturally results in the desired soft
assignment and can be efficiently solved on GPU with the Sinkhorn
algorithm [49]. It is a differentiable version of the Hungarian algorithm
[162], classically used for bipartite matching, that consists in iteratively
normalizing exppSiq along rows and columns, similar to row and column
softmax.

By solving the above linear assignment problem, we obtain the doubly
stochastic matrix Di associated with graph Gi. Then, as described above
we get vadj

i “ vec
`

Di Ai DJ
i
˘

. This n2-dimensional vector can be used
as features for various machine learning tasks, e.g. graph regression or
graph classification. For instance, for a graph classification problem with
|C| classes, the output is computed as:

pi “ softmaxpWpcq vadj
i ` bpcqq ,

where Wpcq P R|C|ˆn2
is a matrix of trainable parameters and bpcq P R|C| is

the bias term. We can even create a deeper architecture by adding more
fully-connected layers. Since we have imposed some “soft” ordering on
the vertices of each graph, we could also treat the matrix Di Ai DJ

i as
an image and apply some standard convolution operation where filters
of dimension hˆ n (with h ă n) are applied to the representations of h
vertices to produce new features. The filters are applied to each possible
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sequence of vertices to produce feature maps of dimension n ´ h ` 1.
These feature maps can be fed to further convolution/pooling layers
and finally to a fully-connected layer.

4.4.2 Vertex attributes

In the case of graphs that contain vertex attributes, the graphs’ adjacency
matrices do not incorporate the vertex information provided by the
attributes. There is thus a need to take these attributes into account.
Let X P Rnˆd denote the matrix of node features where d is the feature
dimensionality. The feature of a given node vi corresponds to the i-
th row of X. To produce a representation of the graph that takes into
account both the structure and the vertex attributes, we can first compute
a second matrix of scores or similarities Satt

i between the attributes of
the vertices of graph Gi and some trainable parameters Watt P Rnˆd, as
follows: Satt

i “ ReLUpXi WattJq P Rnˆn. We can then solve a problem
similar to that of Equation 4.4 and obtain matrix Datt

i . Then, the “soft”
permutation matrix can be obtained as follows:

Di “ αDadj
i ` p1´ αqDatt

i , (4.5)

where α P r0, 1s. Thus, each element of Di is a convex combination of the
elements of the two matrices Dadj

i and Datt
i . We can then use the learned

doubly stochastic matrices to also explicitly map the vertex attributes
into a vector space. Therefore, for some graph Gi, we produce a second
vector as follows:

vatt
i “ vec

`

Di Xi
˘

,

where vatt
i P Rnd. If edge attributes are also available, the adjacency

matrix Ai can be represented as a three-dimensional tensor (i.e. Ai P

Rnˆnˆde where de is the dimension of edge attributes). We can then
apply the “soft” permutation to this tensor and then map the emerging
tensor into a vector.

4.4.3 Scaling to large graphs

A major limitation of the proposed model is that its complexity depends
on the vertex cardinality of the largest graph contained in the input set.
For instance, if there is a single very large graph (with cardinality n), and
the number of vertices of the remaining graphs is much smaller than n,
the model will learn nˆ n doubly stochastic matrices, and all the graphs
will be mapped to vectors in Rn2

even though they could have been
projected to a lower-dimensional space. This problem can be addressed
by shrinking the adjacency matrix of the largest graph (e.g. by removing
some vertices and their adjacent edges). However, this approach seems
problematic since it results in the loss of information.
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To deal with large graphs, we propose to reduce the number of rows
of matrix W from n to some value p ă n, i.e. W P Rpˆd. The above
will produce a rectangular (and not square) similarity matrix Si P Rnˆp

which will then lead to a rectangular doubly stochastic correspondence
matrix that fulfills the following constraints (instead of the ones of
Equation 4.4):

Di 1p “ 1n and DJ
i 1p “ pn{pq1n . (4.6)

To obtain matrix Di, the model applies the Sinkhorn algorithm. Ac-
cording to [49], for a general square cost matrix S of dimension nˆ n,
the worst-case complexity of solving an Optimal Transport problem
is Opn3 log nq. However, the employed Sinkhorn distances algorithm
[49] exhibits empirically a quadratic Opn2q complexity with respect to
the dimension n of the cost matrix. In our case, complexity is even
smaller since S is not a square matrix, but a rectangular matrix. Except
for the application of the Sinkhorn algorithm, π-GNN also maps the
adjacency matrix of Gi into a vector, by performing the following oper-
ation Di AiDJ

i which requires Opn2p` p2nq time, and since p ď n, this
corresponds to Opn2pq time. Moreover, to project the features (if any) of
Gi into a vector, the model performs the following matrix multiplication
Di Xi which takes Oppndq time where d is the dimension of the vertex
representations. These operations can be efficiently performed on a
GPU.

4.4.4 Dustbins

For some tasks, not all vertices of an input graph need to be taken
into account. For instance, in some cases, just the existence of a single
subgraph in a graph could be a good indicator of class membership.
Furthermore, some graphs may consist of fewer than p vertices (i.e. the
rows of matrix W). To let the model suppress some vertices of the input
graph and/or some latent vertices, we add to each set of vertices a
dustbin so that unmatched vertices are explicitly assigned to it. This
technique is common in graph matching and has been employed in
other models [197]. We expand matrix Si to obtain S̄i P Rpn`1qˆpp`1q

by appending a new row and column, the vertex-to-bin, bin-to-vertex
and bin-to-bin similarity scores, filled with a single learnable parameter
z P R:

S̄j,p`1
i “ S̄n`1,k

i “ S̄n`1,p`1
i “ z @j P rn` 1s, k P rp` 1s .

While vertices of the input graph (resp. latent vertices) will be assigned
to a single latent vertex (resp. vertex of the input graph) or the dustbin,
each dustbin has as many matches as there are vertices in the other
set. We denote as a “ r1Jn psJ and b “ r1Jp nsJ the number of expected
matches for each vertex and dustbin in the two sets of vertices (i.e. input
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TABLE 4.1: Summary of the synthetic dataset that we used
in our experiments.

Synthetic Dataset

Max # vertices 9
Min # vertices 2
Average # vertices 7.29
Max # edges 36
Min # edges 1
Average # edges 11.34
# graphs 191

vertices and latent vertices). The expanded matrix D̄i now has the
constraints:

D̄i 1p`1 “ a and D̄J
i 1n`1 “ b .

After the linear assignment problem has been solved, we can drop the
dustbins and recover Di. Thus we can retain the first n rows and first k
columns of matrix D̄i.

4.5 Experimental Evaluation

In this section, we evaluate the performance of the proposed π-GNN
model on a synthetic dataset, but also on real-world graph classification
and graph regression datasets. We also evaluate the runtime perfor-
mance and scalability of the proposed model.

4.5.1 Synthetic Dataset

To empirically verify that the proposed model can learn representations
of high quality, we generated a dataset that consists of 191 small graphs,
and for each pair of these graphs, we computed the Frobenius distance
by solving the problem of Equation 4.1. Since the Frobenius distance
function is intractable for large graphs, we generated graphs consisting
of at most 9 vertices. Furthermore, each graph is connected and contains
at least 1 edge. The dataset consists of different types of synthetic graphs.
These include simple structures such as cycle graphs, path graphs, grid
graphs, complete graphs, and star graphs, but also randomly-generated
graphs such as Erdős-Rényi graphs, Barabási-Albert graphs and Watts-
Strogatz graphs. Table 4.1 shows statistics of the synthetic dataset that
we used in our experiments.

There are 191˚192{2 “ 18, 336 pairs of graphs in total (including pairs
consisting of a graph and itself). Based on this dataset, we generated a
regression problem where the task is to predict the number of vertices of
the input graph. In other words, the target of a graph G that consists of
n vertices is y “ n.
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FIGURE 4.1: Mean Squared Error and Pearson Correlation
of the Frobenius distances with respect to the number of

latent nodes

We annotated the vertices of all graphs with two features (degree and
number of triangles in which a vertex participates), we split the dataset
into a training and a validation set, and we trained an instance of the
proposed π-GNN model on the dataset. We stored the model that
achieved the lowest validation loss in the disk, and we then retrieved
it and performed a forward pass to obtain the representations vadj

i , i P
t1, . . . , 191u of all the graphs that are contained in the dataset.

Given these representations, we computed the distance between each
pair of graphs Gi, Gj as dpGi, Gjq “ ||vadj

i ´ vadj
j ||2. We then compared

these distances against the Frobenius distances between all pairs of
graphs. We experimented with 6 different values for the number of
latent vertices, i.e. 5, 7, 9, 11, 13 and 15. Note that the largest graph in
our dataset consists of 9 vertices. To assess how well the proposed
model approximates the Frobenius distance function, we employed
two evaluation metrics: the mean squared error (MSE) and the Pearson
correlation coefficient. Figure 4.1 illustrates the achieved MSE values
and correlation coefficients for the different number of latent vertices.

Meta Parameters Selection We compared the proposed model against
the following two baselines: (1) random: this method randomly generates
a permutation matrix for each graph, and the permutation matrix is
applied to the graph’s adjacency matrix. Then, the distance between
two graphs is computed as the Frobenius norm of the difference of the
emerging matrices. (2) uniform: this baseline generates for all graphs a
uniform “soft” permutation matrix (i.e. all the elements are set equal to
1{9). Then, once again, the distance between two graphs is computed as
the Frobenius norm of the difference of the emerging matrices. Besides
these two baselines, we also compare the proposed model against GCN
[118] and GIN [238]. We treat the output of the readout function as the
vector representation of a graph. Then, the distance between two graphs
is defined as the Euclidean distance between the graphs’ representations.
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FIGURE 4.2: A heatmap of distances produced by the
function of Equation 4.1 and by the proposed model.

We observe that for a number of latent vertices equal to 7 and 9, the rep-
resentations produced by the proposed model achieve the lowest MSE
values (less than 1), which demonstrate that they can learn high-quality
representations that produce meaningful graph distances. On the other
hand, most of the baselines fail to generate graph representations that
can yield distances similar to those produced by the Frobenius distance
function (MSE greater than 4 for most of them). Furthermore, for all
considered number of latent vertices, the distances that emerge from the
representations learned by the proposed model are very correlated with
the ground-truth distances (correlation approximately equal to 0.9) and
more correlated than the distances produced by any other method.

In Figure 4.2, we also provide a heatmap that illustrates the 191ˆ 191
matrix of Frobenius distances (left) where the element in the i-th row and
the j-th column corresponds to the Frobenius distance between graphs
Gi and Gj, and the matrix of distances produced by the proposed model
(right). Clearly, the corresponding values in the two matrices are close
to each other, which demonstrates that on datasets that contain small
graphs, the proposed model can indeed accurately capture the distance
between them. Due to the prohibitive computational complexity of
Frobenius distance, we could not experimentally verify that this also
holds in the case of larger graphs.

4.5.2 Real-World Datasets

Datasets. We evaluated the proposed model on the following well-
established graph classification benchmark datasets: MUTAG, D&D,
NCI1, PROTEINS, ENZYMES, IMDB-BINARY, IMDB-MULTI, REDDIT-
BINARY, REDDIT-MULTI-5K, and COLLAB [160]. MUTAG contains 188
mutagenic aromatic and heteroaromatic nitro compounds, and the task
is to predict whether or not each chemical compound has a mutagenic
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effect on the Gram-negative bacterium Salmonella typhimurium [58].
D&D contains more than one thousand protein structures whose nodes
correspond to amino acids and edges to amino acids that are less than
6 Ångstroms apart. The task is to predict if a protein is an enzyme or
not [62]. NCI1 consists of several thousands of chemical compounds
screened for activity against non-small cell lung cancer and ovarian
cancer cell lines [224]. PROTEINS contains proteins, and again, the task
is to classify proteins into enzymes, and non-enzymes [28].

ENZYMES contains 600 tertiary protein structures represented as graphs
obtained from the BRENDA enzyme database, and the task is to assign
the enzymes to their classes (Enzyme Commission top-level enzyme
classes) [28]. IMDB-BINARY and IMDB-MULTI consist of graphs that
correspond to movie collaboration networks. Each graph is the ego-
network of an actor/actress, and the task is to predict which genre an
ego-network belongs to [239]. REDDIT-BINARY and REDDIT-MULTI-
5K contain graphs that model interactions between users of Reddit.
Each graph represents an online discussion thread, and the task is to
classify graphs into either communities or subreddits [239]. COLLAB
is a scientific collaboration dataset that consists of the ego-networks of
researchers from three subfields of Physics, and the task is to determine
the subfield of Physics to which the ego-network of each researcher
belongs [239].

We also assessed the proposed model’s effectiveness on two graph
classification datasets from the Open Graph Benchmark (OGB) [103],
a collection of challenging large-scale datasets. Specifically, we experi-
mented with two molecular property prediction datasets: ogbg-molhiv
and ogbg-molpcba. Ogbg-molhiv is a collection of graphs, that represent
molecules [232]. It contains 41, 127 graphs with an average number of
25.5 nodes per graph and an average number of 27.5 edges per graph.
Nodes are atoms, and the edges correspond to chemical bonds between
atoms. The graphs contain node features that are processed as in [103].
The evaluation metric is ROC-AUC. Ogbg-molpcba is another molecular
property prediction dataset from [103]. It contains 437, 929 graphs with
an average number of 26 nodes per graph and an average number of 28
edges per graph. Each graph corresponds to a molecule, where nodes
are atoms, and edges show the chemical bonds. The node features are
9-dimensional, and the end task contains 128 sub-tasks. The evaluation
metric is Average Precision due to the skewness of the class balance.

For the regression task, we conducted an experiment on the QM9 dataset
[184]. The QM9 dataset contains approximately 134k organic molecules
[184]. Each molecule consists of Hydrogen (H), Carbon (C), Oxygen (O),
Nitrogen (N), and Flourine (F) atoms and contains up to 9 heavy (non
Hydrogen) atoms. Furthermore, each molecule has 12 target properties
to predict.
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TABLE 4.2: Classification accuracy (˘ standard deviation)
of the proposed model and the baselines on the 10 bench-
mark datasets. OOR means Out of Resources, either time

(ą72 hours for a single training) or GPU memory.

MUTAG D&D NCI1 PROTEINS ENZYMES

DGCNN 84.0 (˘ 6.7) 76.6 (˘ 4.3) 76.4 (˘ 1.7) 72.9 (˘ 3.5) 38.9 (˘ 5.7)
DiffPool 79.8 (˘ 7.1) 75.0 (˘ 3.5) 76.9 (˘ 1.9) 73.7 (˘ 3.5) 59.5 (˘ 5.6)
ECC 75.4 (˘ 6.2) 72.6 (˘ 4.1) 76.2 (˘ 1.4) 72.3 (˘ 3.4) 29.5 (˘ 8.2)
GIN 84.7 (˘ 6.7) 75.3 (˘ 2.9) 80.0 (˘ 1.4) 73.3 (˘ 4.0) 59.6 (˘ 4.5)
GraphSAGE 83.6 (˘ 9.6) 72.9 (˘ 2.0) 76.0 (˘ 1.8) 73.0 (˘ 4.5) 58.2 (˘ 6.0)

π-GNN 86.3 (˘ 6.2) 77.6 (˘ 3.2) 76.9 (˘ 0.9) 72.2 (˘ 3.1) 57.5 (˘ 5.8)
π-GNN-d 86.4 (˘ 5.6) 76.1 (˘ 4.1) 77.6 (˘ 1.5) 71.7 (˘ 2.6) 56.1 (˘ 5.0)

IMDB-B IMDB-M REDDIT-B REDDIT-5K COLLAB

DGCNN 69.2 (˘ 3.0) 45.6 (˘ 3.4) 87.8 (˘ 2.5) 49.2 (˘ 1.2) 71.2 (˘ 1.9)
DiffPool 68.4 (˘ 3.3) 45.6 (˘ 3.4) 89.1 (˘ 1.6) 53.8 (˘ 1.4) 68.9 (˘ 2.0)
ECC 67.7 (˘ 2.8) 43.5 (˘ 3.1) OOR OOR OOR
GIN 71.2 (˘ 3.9) 48.5 (˘ 3.3) 89.9 (˘ 1.9) 56.1 (˘ 1.7) 75.6 (˘ 2.3)
GraphSAGE 68.8 (˘ 4.5) 47.6 (˘ 3.5) 84.3 (˘ 1.9) 50.0 (˘ 1.3) 73.9 (˘ 1.7)

π-GNN 69.7 (˘ 3.8) 48.3 (˘ 3.7) 90.0 (˘ 1.2) 53.2 (˘ 1.5) 73.1 (˘ 1.2)
π-GNN-d 70.8 (˘ 4.3) 48.9 (˘ 3.5) 87.9 (˘ 1.8) 49.1 (˘ 2.7) 75.7 (˘ 1.7)

Experimental Setup. In the first part of the graph classification exper-
iments, we compare π-GNN against the following five MPNNs: (1)
DGCNN [249], (2) DiffPool [244], (3) ECC [211], (4) GIN [238], and
(5) GraphSAGE [90]. To evaluate the different methods, we employ
the framework proposed in [68]. Therefore, we perform 10-fold cross-
validation, and within each fold, a model is selected based on a 90%{10%
split of the training set. Since we use the same splits as in [68], we
provide the results reported in that paper for all the common datasets.

In the case of the OGB datasets, we compare π-GNN against the follow-
ing models that have achieved top places on the OGB graph classification
leaderboard: GCN [118], GIN [238], PNA [46], DGN [20], and PHC-GNN
[127]. All these baselines belong to the family of MPNNs. Both datasets
are already split into training, validation, and test sets, while all reported
results are averaged over 10 runs.

In the graph regression task, we compare the proposed model against
the following five models: (1) DTNN [232], (2) MPNN [232], (3) 1-2-GNN
[161], (4) 1-2-3-GNN [161], and (5) PPGN [150]. The dataset is randomly
split into 80% train, 10% validation, and 10% test. We trained a different
network for each quantity. For the baselines, we use the results reported
in the respective papers.
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TABLE 4.3: Performance on the ogbg-molhiv and ogbg-
molpcba datasets.

ogbg-molhiv ogbg-molpcba
ROC-AUC Avg. Precision

DGN 79.70˘ 0.97 28.85˘ 0.30
PNA 79.02˘ 1.32 28.38˘ 0.35
PHC-GNN 79.34˘ 1.16 29.47˘ 0.26
GCN 76.06˘ 0.97 20.20˘ 0.24
GIN 75.58˘ 1.40 22.66˘ 0.28
π-GNN 79.12˘ 1.50 28.11˘ 0.32
π-GNN-d 79.09˘ 1.31 28.22˘ 0.41

Meta Parameters Selection For the proposed π-GNN, we provide
results for two different instances: π-GNN, and π-GNN-d that cor-
respond to models without and with dustbins, respectively. In all our
experiments, we annotate each vertex with two structural features: (i)
its degree and (ii) the number of triangles in which it participates. If
vertices are already annotated with attributes, we set the value of α in
Equation 4.5 to 0.5. In case vertices are annotated with discrete labels,
we first map these labels to one-hot vectors.

For all standard graph classification datasets, we set the batch size to 64
and the number of epochs to 300. We use the Adam optimizer with a
learning rate equal to 10´3. Layer normalization [10] is applied on the
vadj

i and vatt
i vector representations of graphs, and the two outputs are

fed to two separate two layer MLPs with hidden-dimension sizes of 256
and 128. The two emerging vectors are then concatenated and further
fed to a final two-layer MLP.

Hyper-parameter Tuning The hyperparameters we tune for each
dataset and model are the number of latent vertices P t20, 30u, and
the hidden-dimension size of the fully-connected layer we employ to
transform the vertex features P t32, 64u. For the experimentation on
the OGB datasets, we set the batch size to 128 for ogbg-molhiv, and we
choose the batch size from t128, 256u for the ogbg-molpcba. Moreover,
we choose the number of latent vertices from t20, 30, 40u, while we set
the hidden-dimension size of the fully-connected layer that transforms
the vertex features to 128. All the other experimental settings are the
same as above. For the QM9 dataset, we set the batch size to 128, the
number of latent vertices to 40, the hidden-dimension size of the vertex
features to 128, and we use an adaptive learning rate decay based on
validation performance. All the other experimental settings are the same
as above.

Graph classification results. For the standard graph classification
datasets, we report in Table 4.2 average prediction accuracies and stan-
dard deviations. We observe that the proposed model achieves the
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TABLE 4.4: Mean absolute errors of the proposed model
and the baselines on the QM9 dataset.

Target
Method

DTNN MPNN 1-2-GNN 1-2-3-GNN PPGN π-GNN π-GNN-d

µ 0.244 0.358 0.493 0.476 0.0934 0.536 0.538
α 0.95 0.89 0.27 0.27 0.318 0.374 0.372
εHOMO 0.00388 0.00541 0.00331 0.00337 0.00174 0.00394 0.00394
εLUMO 0.00512 0.00623 0.00350 0.00351 0.0021 0.00419 0.00421
∆ε 0.0112 0.0066 0.0047 0.0048 0.0029 0.0055 0.0055
xR2y 17.0 28.5 21.5 22.9 3.78 26.34 26.16
ZPVE 0.00172 0.00216 0.00018 0.00019 0.000399 0.000235 0.000262
U0 2.43 2.05 0.0357 0.0427 0.022 0.0210 0.0210
U 2.43 2.00 0.107 0.111 0.0504 0.0255 0.0244
H 2.43 2.02 0.070 0.0419 0.0294 0.0216 0.0202
G 2.43 2.02 0.140 0.0469 0.024 0.0211 0.0203
Cv 0.27 0.42 0.0989 0.0944 0.144 0.162 0.165

highest classification accuracy on 5 out of 10 datasets. Furthermore, it
yields the second-best accuracy on 3 out of the remaining 5 datasets.
GIN also achieves high performance since it outperforms all the other
models on 4 datasets. On the PROTEINS dataset, π-GNN is the worst
performing model, while on ENZYMES, it fails to achieve accuracy
similar to that of GIN. The vertices of those two datasets are annotated
with continuous attributes, and as discussed below, these attributes
probably provide more information than the graph structure itself since
we found that π-GNN can even outperform GIN on those two datasets if
we take into account only the vatt

i vectors and ignore the ones that emerge
from the adjacency matrices. Between the two variants of the proposed
model, none of them consistently outperforms the other. Interestingly,
it appears that their performance depends on the type of graphs and
the associated task. For example, π-GNN-d outperforms π-GNN on the
two IMDB datasets, while the latter outperforms the former on the two
REDDIT datasets.

Table 4.3 summarizes the test scores of the proposed model and the
baselines on the two OGB graph property prediction datasets. On both
datasets, the two π-GNN instances achieve high levels of performance,
while they also achieve very similar performance to each other. More
specifically, on ogbg-molhiv, the two models outperform 3 out of the 5
baselines and achieve a test ROC-AUC score very close to that of the best
performing model. On ogbg-molpcba, they beat 2 out of the 5 baselines,
and again, they reach similar levels of performance to that of the model
that performed the best.

Graph regression results. Table 4.4 illustrates mean absolute errors
achieved by the different models on the QM9 dataset. On 4 out of 12
targets, both variants of the proposed model outperform the baselines
providing evidence that π-GNN can also be very competitive in graph
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TABLE 4.5: Classification accuracy (˘ standard devia-
tion) of the proposed model and the baselines on the 5

chemo/bio-informatics datasets.

MUTAG D&D NCI1 PROTEINS ENZYMES

π-GNN 86.3 (˘ 6.2) 77.6 (˘ 3.2) 76.9 (˘ 0.9) 72.2 (˘ 3.1) 57.5 (˘ 5.8)
π-GNN (α “ 1) 88.1 (˘ 5.8) 76.1 (˘ 3.7) 77.0 (˘ 1.7) 72.5 (˘ 2.9) 54.3 (˘ 4.1)
π-GNN (α “ 0) 86.1 (˘ 6.3) 77.6 (˘ 3.2) 75.2 (˘ 1.7) 73.7 (˘ 2.5) 61.3 (˘ 5.9)
π-GNN-d 86.4 (˘ 5.6) 76.1 (˘ 4.1) 77.6 (˘ 1.5) 71.7 (˘ 2.6) 56.1 (˘ 5.0)
π-GNN-d (α “ 1) 88.3 (˘ 6.1) 75.0 (˘ 3.6) 77.0 (˘ 1.4) 71.0 (˘ 3.2) 55.8 (˘ 5.3)
π-GNN-d (α “ 0) 84.0 (˘ 8.1) 76.2 (˘ 3.9) 74.0 (˘ 1.4) 73.3 (˘ 3.5) 59.3 (˘ 5.7)

regression tasks. On most of the remaining targets, the proposed model
yields mean absolute errors slightly smaller than those of the best-
performing methods. However, on two targets (µ and xR2y), it is largely
outperformed by PPGN. Overall, even though the proposed model
utilizes two simple structural features, in most cases, its performance is
on par with very expressive models (e.g. 1-2-3-GNN, PPGN), which are
equivalent to higher-dimensional variants of the WL algorithm in terms
of distinguishing between non-isomorphic graphs.

4.5.3 Runtime Analysis

We next study how the empirical running time of the model varies with
respect to the values of n (i.e. number of vertices of input graphs) and p
(i.e. number of latent vertices). We generated a dataset consisting of 200
graphs. All graphs are instances of the Erdős-Rényi graph model and
consist of n vertices, while they are divided into two classes (of equal
size) where the graphs that belong to the first class are sparser than the
ones that belong to the second. In the first experiment, we set p “ 10,
and we increase the number of vertices n of the 200 input graphs from
10 vertices to 100 vertices. In the second experiment, we set n “ 50, and
we increase the number of latent vertices p from 10 to 100. We set the
batch size to 64 and train the model for 100 epochs. In both cases, we
measure the average running time per epoch. The results are illustrated
in Figure 4.3. The running time of the model seems to be independent
of both the size of the input graphs and the number of latent vertices.
We hypothesize that this has to do with the fact that the model mainly
performs standard matrix operations that can be efficiently parallelized
on a GPU.

4.5.4 Graph Structure vs. Vertex Attributes

In our experiments, when vertex attributes, or vertex labels are available,
besides the representation vadj

i that emerges from the adjacency matrix,
we also generate a representation vatt

i that is associated with the matrix
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FIGURE 4.3: Average running time per epoch with respect
to the number of vertices of the input graphs n (top), and

to the number of latent vertices p (bottom).

of vertex features, and we combine the two representations to produce
the output.

In this set of experiments, for the 5 datasets that contain either vertex
labels or vertex attributes, we investigate whether utilizing solely vadj

i
or vatt

i can lead to some improvement in performance (i.e. α “ 1 in
Equation 4.5 and ignore vatt

i or α “ 0 in Equation 4.5 and ignore vadj
i ).

The results are reported in Table 4.5 and suggest that on some datasets,
the adjacency matrices are more important than the vertex features,
while on other datasets, the vertex features outweigh the adjacency
matrices in terms of importance. For instance, on MUTAG, taking only
the adjacency matrices into account yields an absolute improvement of
at least 1.8% in accuracy over the standard π-GNN architecture, while
on NCI1, the model’s performance significantly drops if the adjacency
matrices are ignored, and only the vertex features are taken into account.
On the other hand, on the ENZYMES and PROTEINS datasets, using
solely the vatt

i vector as a graph’s representation results in a significant
increase in performance (an absolute improvement in accuracy of at least
3.2% and 1.2%, respectively). Note that the vertices of these two datasets
are annotated with continuous attributes, and these attributes might be
better indicators of class membership than the graph structure itself.
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4.6 Conclusion

In this chapter, we first identified some limitations of graph embedding
approaches, and we then proposed π-GNN, a novel GNN architecture
which learns a “soft” permutation matrix for each input graph and
uses this matrix to map the graph into a vector. The ability of π-GNN
to approximate the ground-truth graph distances was demonstrated
through a synthetic experimental study. Finally, the proposed model
was evaluated on several graph classification and graph regression tasks,
where it performed on par with state-of-the-art models.
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Chapter 5

Learning Graph Shift Operators

5.1 Introduction

The topology of the observations plays a central role when perform-
ing machine learning tasks on graph structured data. A variety of
supervised, semi-supervised or unsupervised graph learning algorithms
employ different forms of operators that encode the topology of these
observations. The most commonly used operators are either the adja-
cency matrix, the Laplacian matrix or their normalised variants. All of
these matrices belong to a general set of linear operators, the Graph Shift
Operators (GSOs) [195, 151].

Graph Neural Networks (GNNs) are representative cases of algorithms
that use chosen GSOs to encode the graph structure, i.e., to encode
neighbourhoods used in the aggregation operators. Several GNN vari-
ants [118, 90, 238] choose different variants of normalised adjacency
matrices as GSOs. Interestingly, in a variety of tasks and datasets, the
authors suggest the incorporation of explicit structural information of
neighborhoods into the model, in order to provide a more expressive
representation of the data topology and observe improved results [174,
248, 245]. In most of these approaches, the GSO is chosen without
an analysis of the impact of this choice of representation. From this
observation arise our two research questions.

Question 1: Is there a single optimal representation to encode graph structures
or is the optimal representation task- and data-dependent?

On different tasks and datasets, the choice between the different rep-
resentations encoded by the different graph shift operator matrices
has shown to be a consequential decision. Due to the past successful
approaches that use different GSOs for different tasks and datasets, it
is natural to assume that there is no single optimal representation for
all scenarios. Finding an optimal representation of network data could
contribute positively to a range of learning tasks such as node and graph
classification or community detection. Fundamental to this search is
an answer to Question 1. In addition, we pose the following second
research question.
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Question 2: Can we learn such an optimal representation to encode graph
structure in a numerically stable and computationally efficient way?

The utilisation of a GSO as a topology representation is currently a
hand-engineered choice of normalised variants of the adjacency matrix.
Thus, the learnable representation of node interactions is transferred into
either convolutional filters [118, 90] or attention weights [220], keeping
the used GSO constant. In this work, we suggest a parametrisation of
the GSO. Specific parameter values in our proposed parametrised (and
differentiable) GSO result in the most commonly used GSOs, namely
the adjacency, unnormalised Laplacian and both normalised Laplacian
matrices, and GNN aggregation functions, e.g., the averaging and sum-
mation message passing operations. The beauty of this innovation is that
it can be seamlessly included in both message passing and convolutional
GNN architectures. Optimising the operator parameters will allow us to
find answers to our two research questions.

The remainder of this chapter is organised as follows. In Section 5.2 we
give an overview of related work in the literature. Then in Section 5.3 we
define our parametrised graph shift operator (PGSO) and discuss how it
can be incorporated into many state-of-the-art GNN architectures. This
is followed by a spectral analysis of our PGSO in Section 5.4, where we
observe good numerical stability in practice. In Section 5.5 we analyse
the performance of GNN architectures augmented by the PGSO in a
node classification task on a set of stochastic blockmodel graphs with
varying sparsity and on learning tasks performed on several real-world
datasets.

5.2 Related Work

Graph shift operators emerge in different research fields in physics,
network science, computer science and mathematics, taking usually
the form of either graph Laplacian normalisations or variants of the
adjacency matrix. An abundant number of machine learning applica-
tions exploit the expressivity of Laplacian operators, including unsuper-
vised learning [147, 114], semi-supervised node classification on graph-
structured data [118, 201] and supervised learning on computer vision
tasks [36]. The majority of these works assumes a specified normalised
version of the Laplacian that maintains the structural information of the
problem and usually these versions differ depending on the dataset spec-
ifications and the end-user task. Recently, new findings on the impact
of the chosen Laplacian representation have emerged that highlight the
contribution of Laplacian regularisation [52, 191, 53]. The different GSO
choices in different tasks indicate a data-dependent relation between
the structure of the data and its optimal GSO representation. This
observation motivates us to investigate how beneficial a well-chosen
GSO can be for a learning task on structured data.



5.3. Parametrised Graph Shift Operators 73

GNNs use a variety of GSOs to encode neighbourhood topologies, either
normalizations of the adjacency matrix [238, 90] or normalisations of
the graph Laplacian [118, 230]. Due to the efficiency and the predictive
performance of GNNs, a research interest has recently emerged in their
expressive power. One of the examined aspects is that of the equivalence
of the GNNs expressive power with that of the Weisfeiler-Lehman graph
isomorphism test [56, 150, 161, 238]. Another research direction is that of
analysing the depth and the width of GNNs, moving one step forward
to the design of deep GNNs [144, 136, 141, 3]. In this analysis, the au-
thors study phenomena of Laplacian oversmoothing and combinatorial
oversquashing, that harm the expressiveness of GNNs. In most of these
approaches, however, the used GSO is fixed without a motivation of
the choice. We hope that the parametrised GSO that is presented in this
work can contribute positively to the expressivity analysis of GNNs.

Klicpera, Weißenberger, and Günnemann [121] demonstrate that vary-
ing the choice of the GSO in the message passing step of GNNs can
lead to significant performance gains. In Klicpera, Weißenberger, and
Günnemann [121] two fixed diffusion operators with a much larger
receptive field than the 1-hop neighbourhood convolutions, are inserted
into the architectures, leading to a significant improvement of the GNNs’
performance. In our work here we replace the GSOs in GNN frame-
works with the PGSO, which has a receptive field equal to the 1-hop
neighbourhood of the nodes. We find that parameter values of our PGSO
can be trained in a numerically stable fashion, which allows us to chose
a parametric form unifying the most common GSOs and aggregation
functions. As with standard GNN architectures the receptive field of
the convolutions is increased in our architectures by stacking additional
layers. Klicpera, Weißenberger, and Günnemann [121] increase the
size of the receptive field and keep the neighbourhood representation
fixed, while we keep the size of the receptive field fixed and learn the
neighbourhood representation.

5.3 Parametrised Graph Shift Operators

We define notation and fundamental concepts in Section 5.3.1 and
introduce our proposed parametrised graph shift operator γpA,Sq in
Section 5.3.2. In Section 5.3.3 we provide a detailed discussion of how
γpA,Sq can be applied to the message-passing operation in GNNs and
we demonstrate use cases of the incorporation of γpA,Sq in different
GNN architectures.

5.3.1 Preliminaries

Let a graph G be a tuple, G “ pV, Eq, where V and E are the sets of
nodes and edges and let |V| “ n. We assume the graph G to be attributed
with attribute matrix X P Rnˆd, where the ith row of X contains the
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d-dimensional attribute vector corresponding to node vi. We denote the
nˆ n identity matrix by In and the n-dimensional column vector of all
ones by 1n. Given the node and edge sets, one can define the adjacency
matrix, denoted A P r0, 1snˆn, where Aij ‰ 0 if and only if pi, jq P E, and
the degree matrix of A as D “ DiagpA1nq.

Recently the notion of a GSO has been defined as a general family of
operators which enable propagation of signals over graph structures
[195, 208].

Definition 5. Graph Shift Operator A matrix S P Rnˆn is called a Graph
Shift Operator (GSO) if it satisfies Sij “ 0 for i ‰ j and pi, jq R E [151, 74].

This general definition includes the adjacency and Laplacian matrices as
instances of its class.

Remark 4. According to Definition 5, the existence of an edge pi, jq P E does
not imply a nonzero entry in the GSO, Sij ‰ 0. Hence, the correspondence
between a GSO and a graph is not bijective in general.

5.3.2 Parametrised GSO

We begin by defining our parametrised graph shift operator.

Definition 6. We define the parametrised graph shift operator (PGSO),
denoted by γpA,Sq , as

γpA,Sq “ m1De1
a `m2De2

a AaDe3
a `m3 In, (5.1)

where Aa “ A ` aIn and Da “ DiagpAa1nq is the degree matrix
of Aa. We denote the parameter tuple corresponding the γpA,Sq by
S “ pm1, m2, m3, e1, e2, e3, aq consisting of scalar multiplicative parame-
ters m1, m2, m3, scalar exponential parameters e1, e2, e3 and an additive
parameter a.

The main motivation of the parametrised form in Equation (5.1) is to
span the space of commonly used GSOs and indeed we are able to
generate a wide range of different graph shift operators by choosing
different values for the parameter set S . In Table 5.1, we give examples
of parameter values in γpA,Sq which result in the most commonly used
GSOs and message-passing operators in GNNs. Unlike the GSO, the
PGSO uniquely identifies the graph it corresponds to, i.e., the GSO and
PGSO do not share the property discussed in Remark 4.
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Although we base the definition of γpA,Sq on the adjacency matrix, we
can define the PGSO using other graph representation matrices, such
as the non-backtracking operator B, γpB,Sq, [125, 26] or the diffusion
matrix S, γpS,Sq [121].

5.3.3 Suggested method: GNN-PGSO and GNN-mPGSO

Next, we formally discuss how γpA,Sq is incorporated in GNN models.
Let a GNN model be denoted by MpφpAq, Xq, taking as input a non-
parametrised function of the adjacency matrix φpAq : r0, 1snˆn Ñ Rnˆn

and an attribute matrix (in case of an attributed graph) X P Rnˆd. Fur-
ther, let K denote the number of aggregation layers that M consists of.
The Parametrised Graph Shift Operator (PGSO) formulation transforms the
GNN model MpφpAq, Xq into the GNN-PGSO model M1pγpA,Sq, Xq.
Moreover, we define the GNN-mPGSO model M2pγrKspA,S rKsq, Xq,
where γrKspA,S rKsq “ rγpA,S1q, ..., γpA,SKqs, i.e., we assign each GNN
layer a different parameter tuple S l for l P t1, . . . , Ku.

PGSO and multiple layers Given the definitions of the GNN-PGSO
and the GNN-mPGSO models, we note that the former model is making
use of a single parameter set for all GNN layers, while the latter uses
different parameters for each model layer. Thus, for the GNN-PGSO, the
model shares the parameter weights throughout the model layers.

Message-passing steps and convolutions In a spectral-based GNN
formulation [233], where the GSO is explicitly multiplied by the model
parameters, it is straightforward to replace the GSO with γpA,Sq. How-
ever, with some further analysis γpA,Sq can also be incorporated in
spatial-based GNNs, where the node update equation is defined as a
message-passing step. Here we illustrate the required analysis on the
sum-based aggregation operator, where we sum the feature vectors
hj P Rd in the neighborhood of a given node vi, denoted N pviq. The
sum operator of the neighborhood representations can be reexpressed
as:

ř

j:vjPN pviq
hj “

řn
j“1 Aijhj. Using this observation we can derive the

application of γpA,Sq in a message-passing step to be,

pγpA,Sqhqi “ m1 pDaq
e1
i hi `m2

n
ÿ

j“1

pDaq
e2
i pAaqij pDaq

e3
j hj `m3hi. (5.2)

Examples The following examples highlight the usage of the γpA,Sq
operator:

1. In the standard GCN [118] the propagation rule of the node repre-
sentation Hplq P Rnˆd in a computation layer l is,

Hpl`1q
“ σ

`

D´
1
2

1 A1D´
1
2

1 HplqWplq˘,
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where Wplq is the trainable weight matrix and σ denotes a non-
linear activation function. The GCN-PGSO and GCN-mPGSO
models, respectively, perform the following propagation rules,

Hpl`1q
“ σ

`

γpA,SqHplqWplq˘ and Hpl`1q
“ σ

`

γpA,S l
qHplqWplq˘.

2. The Graph Isomorphism Network (GIN) [238] consists of the fol-
lowing propagation rule for a node representation hplqi P Rd of
node vi in the computation layer l,

hpl`1q
i “ σ

´

hplqi Wplq
`

ÿ

j:vjPN pviq

hplqj Wplq
¯

.

Using the Equation (5.2) the propagation rule is transformed into
the GIN-PGSO formulation as,

hpl`1q
i “ σ

´

`

m1 pDaq
e1
i `m3

˘

hplqi Wplq
`m2

ÿ

j:vjPN pviq

εijh
plq
j Wplq

¯

,

where εuv are edge weights defined as εij “ pDaq
e2
i pDaq

e3
j . Analo-

gously, we can construct the GIN-mPGSO formulation by super-
scripting every parameter in S by plq.

Computational Cost Since in (5.1) the exponential parameters are ap-
plied only to diagonal matrices the PGSO and mPGSO are efficiently
computable and optimisable. γpA,Sq can be extended by using vector
instead of scalar parameters. Although this extension leads to better
expressivity, the computational cost is increased, as the number of pa-
rameters then depends on the size of the graph.

5.4 Spectral analysis of γpA,Sq
In this section we study spectral properties of γpA,Sq in theoretical
analysis in Section 5.4.1 and through empirical observation in Section
5.4.2. The obtained theoretical results provide a foundation for further
analysis of methodology involving the PGSO and allow an efficient
observation of spectral support bounds of commonly used GSOs, that
are instances of γpA,Sq.

5.4.1 Theoretical Analysis

Here we investigate the spectral properties of our γpA,Sq. Throughout
this section we assume that we work on undirected graphs. In Theorem 8
we show that γpA,Sq has a real spectrum and eigenvectors independent
of the parameters S . In Theorem 9 we study the spectral support of
γpA,Sq.
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Theorem 8. γpA,Sq has real eigenvalues and a set of real eigenvectors.

The proof of Theorem 8 follows directly from noticing that γpA,Sq,
which is not symmetric in general, is similar to a symmetric matrix and
therefore shares eigenvalues with this symmetric matrix [99, pp. 45, 60];
for the full proof the definition of similar matrices is fundamental.

Definition 7. Two matrices Φ, Ψ P Cnˆn are similar via a nonsingular
similarity matrix S P Cnˆn if

Ψ “ S´1ΦS. C

Next we note that the proposed operator γpA,Sq is similar to the sym-
metric matrix D´pe2´e3q{2

a γpA,SqDpe2´e3q{2
a .

Real, symmetric matrices have a set of real eigenvalues and furthermore,
possess a set of real eigenvectors. It is a known property of similar
matrices that they share eigenvalues and that for a given eigenvector
w of Φ, Sw is an eigenvector of Ψ [99, pp. 45, 60]. Therefore, by the
similarity relationship to a real symmetric matrix via a real similarity
matrix, γpA,Sq has real eigenvalues and a set of real eigenvectors.

Being able to guarantee real eigenvalues and eigenvectors for all parame-
ter values of γpA,Sq enables practitioners to deploy our PGSO in spectral
network analysis without having to replace elements of the algorithms
which assume a real spectrum. As a result of Theorem 8 eigenvalue
computations can be stabilised by working with the symmetric, similar
PGSO used in the proof of Theorem 8.

Especially the theoretical analysis of the PGSO and algorithms involv-
ing the PGSO is aided by Theorem 8. There are several publications,
where the complications and lack of results for complex valued graph
spectra are discussed in the case of directed graphs [87, 33, 137]. To
remain within the real domain independent of the parameter choice (for
undirected graphs) enables analysts to access a wide variety of spectral
results, which only hold for real symmetric matrices. An example of
such a theorem is Cauchy’s interlacing theorem [22, p. 709], which can be
used to relate the adjacency matrix spectra of a graph and its subgraphs.
Hall, Patel, and Stewart [89] and Porto and Allem [179] have been able to
prove interlacing theorems for unnormalised, signless and normalised
Laplacians. The fact that the PGSO has a real spectrum presents a first
step to extend their work to potentially apply to the PGSO independent
of the parameter values. However, this is only one example of a powerful
theoretical result, which relies on a real spectrum and is accessible to our
PGSO formulation due to the result shown in Theorem 8.

Now that the spectrum of γpA,Sq has been shown to be real we study
the spectral support of γpA,Sq. A common way to prove bounds on the
spectral support of a matrix is via direct application of the Gershgorin
Theorem [22, p. 293] as done in Theorem 9.
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Theorem 9. Let Ci “ m1pdi ` aqe1 ` m2pdi ` aqe2`e3 a ` m3 and Ri “

|m2|pdi ` aqe2`e3di, where di denotes the degree of node vi. Furthermore,
we denote eigenvalues of γpA,Sq by λ1 ď λ2 ď . . . ď λn. Then, for all
j P t1, . . . , nu,

λj P

„

min
iPt1,...,nu

pCi ´ Riq , max
iPt1,...,nu

pCi ` Riq



. (5.3)

The proof of 9 follows. We will again be utilising the property that similar
matrices share eigenvalues by considering the matrix De3

a γpA,SqD´e3
a ,

which is similar to γpA,Sq . The Gershgorin Theorem states that all
eigenvalues of a matrix are contained in circles centred at the matrix’s
diagonal elements with radii equal to the corresponding off-diagonal
row-sums of the matrix elements in absolute value [22, p. 293]. In
Theorem 8 we showed that γpA,Sq has a real spectrum and therefore
the circles in the Gershgorin Theorem are in fact intervals on the real line
in the case of γpA,Sq . The parametrised form of De3

a γpA,SqD´e3
a is as

follows,

De3
a γpA,SqD´e3

a “ m1De1
a `m2De2`e3

a Aa `m3 In. (5.4)

From 5.4 we can simply read off that the diagonal elements, denoted
Ci, and off-diagonal row-sums of the matrix elements in absolute value,
denoted Ri, of De3

a γpA,SqD´e3
a take the following form,

Ri “ m1pdi ` aqe1 `m2pdi ` aqe2`e3 a`m3,

Ci “ |m2|pdi ` aqe2`e3di.

Hence, via the similarity relationship of De3
a γpA,SqD´e3

a and γpA,Sq and
a direct application of the Gershgorin Theorem applied to De3

a γpA,SqD´e3
a

we obtain the required result.

Examples For the parametrisation of γpA,Sq corresponding to the
adjacency matrix, we obtain Ci “ 0 and Ri “ di. Ri is clearly maximised
by the maximum degree and therefore, from (5.3) the spectral support of
A is equal to r´dmax, dmaxs, as required. Similarly, the spectral supports
of L, Lsym and Lrw, can be deduced by plugging in the corresponding
parameters into the result in (5.3). For the operator used in the message
passing of the GCN [118] a Gershgorin bound such as the one in Theorem
9 has not been calculated yet as far as we are aware. We obtain Ci “

1{pdi ` 1q and Ri “ di{pdi ` 1q. Therefore, from (5.3) the spectral support
of the Kipf and Welling operator is restricted to lie within r´pdmax ´

1q{pdmax` 1q, 1s, the lower bound of this interval tends to -1 as dmax Ñ 8.
So only in the limit is their spectral support symmetric around 0.
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FIGURE 5.1: (a) bounds on the spectral support and (b)
parameter values of γpA,Sq plotted against the training
epochs of a GCN-PGSO applied to a node classification
task on the Cora graph. Note that the optimal values of e2
and e3 lie close together and hence appear as a single line

in (b).

The bounds proven in Theorem 9 allow the observation of the spectral
bounds for the many GSOs which can be obtained via specific parameter
choices made in our PGSO formulation. In the context of GNNs such
bounds are of value since they allow statements about numerical stability
and vanishing/exploding gradients to be made. For example in Kipf
and Welling [118] the observation that the spectrum of the symmetric
normalised Laplacian is contained in the interval r0, 2smotivated them
to make use of the “renormalisation trick” to stabilise their computa-
tions. Since the PGSO is learned its spectral support varies throughout
training. The bounds in Theorem 9 enable us to monitor bounds on
the spectral support in a numerically efficient manner, avoiding the
computation of eigenvalues at each iteration, as is showcased in the
empirical observation in Section 5.4.2.

Since the majority of the commonly used graph shift operators corre-
spond to specific parametrisations of γpA,Sq the spectral properties of
γpA,Sq are general themselves, in the sense that we cannot establish
spectral results for γpA,Sq, which have already been shown to not be
present for one of its parametrisations. This generality and lack of
specific spectral features, which hold for all parametrisations is precisely
one of the strengths of utilising γpA,Sq, since it allows the graph shift
operator to manifest different spectral properties in different tasks, when
they are of benefit.

5.4.2 Empirical Observation

In this section we observe bounds on the spectral support, proven in
Theorem 9 (Figure 5.1(a)) and optimal parameters (Figure 5.1(b)) of the
PGSO incorporated in the GCN during training on a node-classification
task on the Cora dataset. More details on the task will be provided in
Section 5.5.3.
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Surprisingly, the spectral support of the PGSO remains centered at 0
throughout training in Figure 5.1(a) without this being enforced by
the design of the PGSO. Recall that the centre of the spectral support
intervals has the following parametric form Ci “ m1pdi ` aqe1 `m2pdi `

aqe2`e3 a ` m3. It is nice to observe that this desirable property of the
“renormalised” operator used by Kipf and Welling [118] is preserved
throughout training. We also observe that the spectral bounds smoothly
increase throughout training. The increasing support is a direct result of
the learned PGSO parameters.

As we expected from our analysis of Figure 5.1(a), we observe the
parameters of the PGSO to be smoothly varying throughout training
in Figure 5.1(b). The parameters in Figure 5.1(b) can be seen to have
been initialised at the values corresponding to the chosen GSO in the
GCN and from there they smoothly vary towards new optimal values
within the first 40 training epochs, which are then stable throughout
the remainder of the training, ruling out exploding gradients. It is nice
to note that in Section 5.5 Figure 5.6(b) we observe the accuracy of the
GCN using the trained PGSO parameters, displayed in Figure 5.1(b), to
slightly outperform the standard GCN.

5.5 Experiments

We are evaluating the performance of the PGSO for a synthetic dataset
and 8 real-world datasets. In Section 5.5.1, we show the ability of γpA,Sq
to adapt to varying sparsity scenarios through a stochastic blockmodel
study, in Section 5.5.2 we study the sensitivity of the GNN-PGSO’s
performance to different γpA,Sq initialisations and in Section 5.5.3 we
evaluate the contribution of PGSO and mPGSO to the GNN performance
in real-world datasets.

5.5.1 Sparsity interpretation of γpA,Sq
The choice of a graph shift operator depends on the structural informa-
tion of a dataset and on the end task. For example, in graph classification
tasks the datasets usually contain small and sparse graphs [232], while in
node classification tasks the graphs are larger and denser. In this section,
we highlight the ability of γpA,Sq to adapt to different sparsity regimes.

Stochastic Blockmodels In order to simulate graphs with varying
sparsity levels, we utilise the parametrisation of stochastic blockmodel
generation. Stochastic blockmodels (SBMs) are well-studied generative
models for random graphs, that tend to contain community, i.e., block,
structure [97, 111]. Let k be the number of communities, tC1, ..., Cku

be the k disjoint communities and pij be the probability of an edge
occuring between a node u P Ci and a node v P Cj. SBMs offer a flexible
tool for random graph generation with specific properties, such as the
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FIGURE 5.2: List of adjacency matrices generated by
stochastic blockmodels for varying sparsity by decreasing
the probability tuple pp, qq. The format of this adjacency
matrix visualisation is taken from [65]. The ordering of
the node labels in Figure 5.2 corresponds to their block
membership in order to highlight the block structure in

the adjacency matrix plots.

detectability of the community structure [59] and the sparsity level of the
graph by choosing appropriate edge probabilities pij. Here, we focus on a
restricted stochastic blockmodel parametrisation where the probabilities
of an edge occurring between nodes within the same community are
all equal to p, i.e., pii “ p @i P t1, ..., ku, and the probabilities of an
edge between nodes in different communities are all equal to q, i.e.,
pij “ q @i ‰ j, i, j P t1, ..., ku.
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FIGURE 5.3: Mean and standard
deviation of the PGSO parame-

ters on SBM

Dataset and experimentation setup
In this experiment, we consider 15
p, q parameter combinations pp, qq P

tp0.5, 0.25q, p0.48, 0.24q, ..., p0.22, 0.11qu,
where by decreasing the parameters p
and q we increase the sparsity of the sam-
pled networks. In Figure 5.2 we present
a visualization of the generated graphs
by displaying their corresponding adja-
cency matrices. For each parameter set
we sample 25 graphs with 3 communi-
ties containing 200 nodes each. Figure
5.2 contains plots of adjacency matrices
sampled from these 15 parameter com-
binations. The learning task performed by a GCN will be to assign
community membership labels to each node. For all parameter choices
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the ratio p{q, i.e., the community detectability, is equal to 2, so that the
theoretical difficulty the task remains constant across the different spar-
sity levels. As in Dwivedi et al. [65], all of the nodes have uninformative
attributes, except for one node per community that carries its community
membership as its node attribute. We set the train/validation/test splits
equal to 80%, 10%, 10% of nodes, respectively, for each community. We
use a 3-layer Graph Convolutional Network [118] with hidden size 64
and with our PGSO incorporated as the message passing operator and
initialised to the GCN configuration. We, then, observe the learned
parameter values of γpA,Sq after 200 epochs.

Parameter Values Figure 5.3 shows the average optimal parameter
values of γpA,Sq found for each one of the 15 node classification datasets.
We observe that all parameters remain close to constant as the sparsity of
the SBM samples increases, except for the additive parameter a, which
can be observed to clearly increase with increasing sparsity levels. The
parameter a in the PGSO parametrisation plays a very similar role to the
regularisation parameter of the normalised adjacency matrix, which is
observed to significantly improve the performance of the spectral clus-
tering algorithm in the task of community detection in the challenging
sparse case in Dall’Amico, Couillet, and Tremblay [52] and Qin and
Rohe [182]. It is very nice to see that the PGSO automatically varies
this regularisation parameter, replicating the beneficial regularisation
observed in the literature, without this behaviour being incentivised in
any way by the model design or the parametrisation. In Figure 5.3 we
can furthermore observe that the e2 and e3 values are closely aligned
for all sparsity levels indicating that a symmetric normalisation of the
adjacency matrix seems to be beneficial in this task.

5.5.2 Sensitivity Analysis of γpA,Sq to different initiali-
sations

In Section 5.5.1, we initialised a 3-layer GCN-PGSO model with the
original GCN parameter configuration, as shown in Table 5.1. In this
section we observe how sensitive the optimal parameters of γpA,Sq and
the final model accuracy are to different GSO initialisations.

Experimentation setup: We use the GCN-PGSO model, described in
Section 5.3.3, for the node classification task on the Cora dataset [153].
We consider 5 different initialisations of γpA,Sq that correspond to 1)
the GCN operator D´1{2

1 A1D´1{2
1 , 2) the Adjacency matrix A, 3) the

Random-Walk normalised Laplacian Lrw “ I ´D´1A, 4) the Symmetric
normalised Laplacian Lsym “ I ´D´1{2AD´1{2 and 5) a naive all-zeros
initialisation, where all γpA,Sq parameters are set to 0.

In Figure 5.4, we observe the parameter evolution of γpA,Sq over 150
epochs for the different initialisations. The parameter values obtained
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FIGURE 5.4: Parameter evolution of γpA,Sq for 150
epochs, when applied on GCN-PGSO model for the node

classification task on Cora.

from the GCN, Adjacency matrix and all-zeros initialisations exhibit a
great amount of similarity; while the normalised Laplacian initilisations
lead to similar optimal values for five of the seven parameters. For all
initialisations we observe that parameters m1, m3, e1, e2, e3 monotonically
increase until they converge. Parameters m2 and a initially increase for
the GCN, Adjacency and all-zeros initialisations, while they initially
decrease for the two normalised Laplacians. The achieved accuracy of
the five initialisations is plotted in Figure 5.5, where it can be observed
that the resulting accuracy from the two normalised Laplacian initiali-
sations is slightly lower than the one achieved by the remaining three
initialisations. Overall, the accuracy is not very sensitive to the different
initialisations.
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FIGURE 5.5: Train and Validation Accuracy on Cora using
5 different initialisation configurations for PGSO

5.5.3 Real-World scenarios

In this section, we evaluate the contribution of the parametrised GSO,
when we apply it to a variety of graph learning tasks. In order to
highlight the flexibility of γpA,Sq, we perform both node classification
and graph classification tasks.

Datasets: For node classification, we have used the well-examined
datasets Cora and CiteSeer [153, 79] and ogbn-arxiv, that is a citation
network from a recently popular collection of graph benchmarks, the
Open Graph Benchmark [102]. For graph classification, we have used
the extensively-studied TU datasets MUTAG, PTC-MR, IMDB-BINARY
and IMDB-MULTI [113] and OGBG-MOLHIV dataset from OGB [102].
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FIGURE 5.6: Classification accuracy results for both node
and graph classification tasks (Validation ROC-AUC for
OGBG-MOLHIV). Lower case letters denote a node clas-
sification task, while capital letters a graph classification

task.

Details and statistics of the datasets can be found in Appendix A.1 and
in Appendix A.2.

Experimentation Setup: For the node classification datasets Cora and
CiteSeer, we performed cross validation with the train/validation/test
splits being the same as in Kipf and Welling [118], while for Ogbn-arxiv,
we used the same splitting method used in Hu et al. [102], according
to the publication dates. For the TU datasets, we performed 10-fold
cross validation with grid search hyper-parameter optimisation and for
OGBG-MOLHIV, following Hu et al. [102] we used a scaffold splitting
approach and measured the validation ROC-AUC. We compared the
contribution of PGSO and mPGSO on 4 standard GNN baselines: 1)
GCN: Graph Convolutional Network [118], 2) GAT: Graph Attention
Network [220], 3) SGC: Simplified Graph Convolution [230] and 4)
GIN: Graph Isomorphism Network [238]. A full description of the
experimentation details for each task can be found in Appendix C.1.

In Figure 5.6, we show the contribution of the PGSO and the mPGSO
methods, when applied to standard GNNs. For all datasets and GNN
architectures, the inclusion of the PGSO or the mPGSO improves the
model performance. In the graph classification tasks the performance
improvement is higher than the node classification tasks. Specifically,
on MUTAG, PTC-MR and IMDB-BINARY, we observe a significant
improvement of the classification accuracy for all GNNs. In the com-
parison between PGSO and mPGSO we do not find a clear winner.
For this reason, we prefer the PGSO variant, as it is more efficient and
never harms the model’s performance. In Appendix C.2 we study the
convergence of optimal accuracy and loss values of the GNN-PGSO
model in a node-classification and a graph classifcation dataset. In both
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experiments we observe the PGSO model to converge slightly faster and
to better accuracy and loss values than its conventional counterpart.

5.6 Conclusion

In this chapter, we proposed a parametrised graph shift operator (PGSO),
that encodes graph structures and can be included in any graph repre-
sentation learning scenario. Focusing on graph neural networks (GNNs),
we demonstrate that the PGSO can be integrated in the GNN model
training. We proved that the PGSO has real eigenvalues and a set of real
eigenvectors and derived its spectral bounds, which when observed in
practice show that our learned PGSO leads to numerical stable computa-
tions. A study on stochastic blockmodel graphs demonstrated the ability
of the PGSO to automatically adapt to networks with varying sparsity,
independently confirming the positive impact of GSO regularisation
which was found in the literature. Experiments on 8 real-world datasets,
where both node and graph classification was performed, demonstrate
that the accuracy of a representative sample of the current state-of-the-art
GNNs can be improved by the incorporation of our PGSO. In answer to
our two research questions posed in Section 5.1, our experimental results
have shown that the optimal representation of graph structures is task
and data dependent. We have furthermore found that PGSO parameters
can be incorporated in the training of GNNs and lead to numerically
stable learning and message passing operators.
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Chapter 6

Increasing the receptive field
with multiple hops

6.1 Introduction

In Chapter 5, we introduced the PGSO as a way to parametrize graph
shift operators, in order to incorporate the neighborhood encoding
into the learning process. However, even with this type of parametric
operators, the information that is propagated through a GNN layer
corresponds to the direct 1-hop neighborhood. In the recent years, the
graph-structured data that are subject of the machine learning focus are
more complex and the detection of higher order patterns is necessary.
For example, in social network analysis, one might be interested in pre-
dicting the interests of users represented by the nodes of a network [240].
In biology, an issue of high interest is the prediction of the functions of
proteins modeled as graphs [28]. These applications typically involve
tasks, where the required information can be acquired from larger than
1-hop neighborhoods.

The majority of standard GNN variants that address both node-related
and graph-related tasks share the same basic ideas [83, 200, 138, 60, 112,
130, 90, 118, 220, 249, 72]. They are based on the aggregation of the
representations from the direct 1-hop neighborhood. Thus, information
from larger neighborhoods is implicitly expressed. Specifically, after
k iterations of the message passing procedure, each node obtains a
feature vector which captures the structural information within its k-hop
neighborhood. These representations can be used as features for node-
related tasks. For graph-related tasks, GNNs compute a feature vector
for the entire graph using some permutation invariant readout function
such as summing the feature vectors of all the nodes of the graph.

The studies that have made attempts to formally characterize the expres-
sive power of GNNs [161, 238] take into account an aggregation from
1-hop neighborhoods for a single iteration. These studies have compared
the expressiveness of GNNs with that of the WL test, and have shown
that GNNs do not have more power in terms of distinguishing between
non-isomorphic graphs than the WL algorithm. To make matters worse,



88 Chapter 6. Increasing the receptive field with multiple hops

it was recently shown that the WL subtree kernel (which capitalizes on
the WL test) has insufficient expressive power for identifying funda-
mental graph properties [123]. It remains though unclear how GNNs
encode subgraph/graph information into their learned representations,
and whether they can identify such properties, when we make the
assumption that they update the node representations based on the
interactions with the direct neighbors.

Present Work. In this chapter, we further analyze the representational
power of GNNs, with respect to the neighborhood depth. Specifically,
we study if GNNs that aggregate information explicitly from 1-hop
neighborhoods can identify specific properties of graphs. We say that
a GNN identifies a property if no two graphs are mapped to the same
feature vector unless they both have or both do not have the property. We
demonstrate that the standard GNN fails to identify fundamental graph
properties such as connectivity, bipartiteness and triangle-freeness. We
show that this limitation of GNNs stems from the myopic nature of the
message-passing procedure which only considers the direct neighbors of
each node. To account for that, we propose a novel architecture, called k-
hop-GNNs, which takes into account not only the immediate neighbors
of each node, but its whole k-hop neighborhood. By updating node
features using not only the direct neighbors, but taking into account the
entire k-hop neighborhood, we can capture structural information that
is not visible when aggregating only the 1-hop neighborhood. The
proposed model is strictly more powerful than the standard GNN
architecture. Furthermore, in contrast to the GNN framework, the
proposed architecture is capable of distinguishing global properties
such as connectivity. We demonstrate the proposed architecture in a
variety of node and graph classification tasks. The results show that the
proposed k-hop-GNNs are able to consistently outperform traditional
GNNs on most datasets. Our main contributions are summarized as
follows:

• We show that standard GNNs with a 1-hop aggregator cannot iden-
tify essential graph properties such as connectivity, bipartiteness
and triangle-freeness.

• We propose k-hop-GNNs, a novel architecture for performing ma-
chine learning on graphs which is more powerful than traditional
GNNs.

• We evaluate the proposed architecture on several node classifica-
tion and graph classification datasets, and achieve performance
better or comparable to standard GNNs and to state-of-the-art
algorithms.

The rest of this chapter is organized as follows. Section 6.2 presents the
standard graph neural network model as a 1-hop aggregator procedure.
Section 6.3 analyzes the expressive power of the graph neural network
model highlighting its limitations. Section 6.4 presents the proposed
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model for performing machine learning tasks on graph-structured data,
and shows that it is theoretically more powerful than the standard
graph neural network architecture. Section 6.5 evaluates the proposed
architecture on several standard datasets. Finally, Section 6.6 concludes.

6.2 GNNs as 1-hop Aggregators

In order to highlight the limitations of the standard GNNs regarding the
utilization of the direct neighborhood, we present a formulation of the
message passing framework as a 1-hop aggregator process. For the sake
of clarity, we redefine the notions of the k-hop neighborhood and the
subgraph.

Let G “ pV, Eq be a graph. Suppose each vertex v P V is annotated
with a feature vector hp0qv P Rd. The neighborhood of radius k (or k-hop
neighborhood) of a node v P V is the set of nodes at a distance less than
or equal to k from v and is denoted by Nkpvq. Given a set of nodes S Ď V,
the subgraph induced by S is a graph that has S as its node set and it
contains every edge of G whose endpoints are in S. The neighborhood
subgraph of radius k of a node v P V is the subgraph induced by the
neighborhood of radius k of v and v itself, and is denoted by Gk

v.

Suppose we have a GNN model that contains T neighborhood aggrega-
tion layers. In the tth neighborhood aggregation layer (t ą 0), the hidden
state hptqv of a node v is updated as follows:

aptqv “ AGGREGATEptq
´!

hpt´1q
u |u P N1pvq

)¯

hptqv “ MERGEptq
´

hpt´1q
v , aptqv

¯ (6.1)

By defining different AGGREGATEptq and MERGEptq functions, we ob-
tain a different GNN variant. For the GNN to be end-to-end trainable,
both functions need to be differentiable. Furthermore, since there is
no natural ordering of the neighbors of a node, the AGGREGATEptq

function must be permutation invariant. There are numerous concrete
implementations of the above GNN framework. Some of them integrate
the AGGREGATEptq and MERGEptq steps into a single function [118, 249]
as follows:

hptqv “
1

|N1pvq| ` 1

ÿ

uPN1pvqYtvu

MLPptq
`

hpt´1q
u

˘

where MLPptq is a multi-layer perceptron of the tth neighborhood ag-
gregation layer. Note that the majority of the proposed models use
1-layer perceptrons instead of MLPs. Another widely-used GNN model
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is implemented as follows [130]:

aptqv “
1

|N1pvq|

ÿ

uPN1pvq

MLPptq1

`

hpt´1q
u

˘

hptqv “ MLPptq2
`

hpt´1q
v ` aptqv

˘

(6.2)

where again MLPptq1 and MLPptq2 are multi-layer perceptrons of the tth

neighborhood aggregation layer.

For node-level tasks, the node feature vectors hpTqv of the final neighbor-
hood aggregation layer are usually passed on to a fully-connected neural
network. For graph-level tasks, GNNs apply a READOUT function to
node representations generated by the final neighborhood aggregation
layer to obtain a vector representation over the whole graph:

hG “ READOUT
´!

hpTqv |v P G
)¯

(6.3)

Similarly to the AGGREGATEptq function, the READOUT function is
necessary to be differentiable and permutation invariant. A common
READOUT function computes the mean of the representations of the
nodes:

hG “
1
|V|

ÿ

vPV

hpTqv

However, there have also been proposed more sophisticated functions
based on sorting [249], on concatenation across the iterations/layers
[238] and on clustering [215, 244]. Based on the definitions of Equa-
tions 6.1, 6.2 and 6.3, we can formulate the limitations of the GNNs that
derive from the assumption of the 1-hop neighborhood and build our
suggested model.

6.3 Limitations of the Standard GNN Model

To gain theoretical understanding of the properties and weaknesses of
GNNs, whose aggregators take into account the 1-hop neighborhood, we
capitalize on concepts introduced by Goldreich in the context of property
testing [82], and further refined by Kriege et al. for investigating the
expressive power of graph kernels [123]. The graph property testing
was examined, also, in Chapter 3 in the experimental level. Here, we are
going to show how the connectivity, bipartiteness and triangle-freeness
are theoretically difficult prediction targets for standard GNNs.

Let Gn be the set of graphs on n vertices, where n P N. A graph property
is a set P of graphs that is closed under isomorphism. We denote the set
of graphs in P on n vertices by Pn. In this paper we study the following
three fundamental graph properties: (1) connectivity, (2) bipartiteness,
and (3) triangle-freeness. A graph is connected if there is a path from any
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vertex to any other vertex in the graph. A graph G “ pV, Eq is bipartite
if its set of vertices V can be decomposed into two disjoint sets V1 and
V2, i.e. V “ V1 YV2, such that every edge e P E connects a vertex in V1
to a vertex in V2. Finally, a graph is triangle-free if it does not contain a
triangle (i.e. a cycle of three vertices). Following the work from Kriege
et al. [123], we say that a GNN can identify a property if no two graphs
obtain the same representation unless they both have or both do not
have the property.

Definition 8. Let P be a graph property. If for each n P N, a GNN
produces different representations for every G1 P Pn and G2 R Pn, i.e. it
holds that hG1 ‰ hG2 , then we say that P can be identified by the GNN.

We next study if the standard GNN architecture can identify the above
three graph properties. We assume that either all nodes or nodes with
the same degree are annotated with the same feature vector. We first
show that the standard GNN produces exactly the same representation
for the nodes of all regular graphs of a specific degree in Gn for some
n P N.

Lemma 4. The standard GNN maps the nodes of two regular graphs of the
same size and degree to the same feature vector.

Proof. Let G1 “ pV1, E1q and G2 “ pV2, E2q be two non-isomorphic regu-
lar graphs of the same degree with the same number of vertices. We show
for an arbitrary iteration t ě 1 and nodes v1 P V1, v2 P V2 that hptqv1 “ hptqv2 .
All nodes have the same initial representation, hence, in iteration 0,
it holds that hp0qv1 “ hp0qv2 . Assume for induction that hpt´1q

v1 “ hpt´1q
v2 .

Let Mv1 “ thpt´1q
u1 : u1 P N1pv1qu and Mv2 “ thpt´1q

u2 : u2 P N1pv2qu

be the multisets of feature vectors of the neighbors of v1 and v2, re-
spectively. By the induction hypothesis, we know that Mv1 “ Mv2

and that hpt´1q
v1 “ hpt´1q

v2 such that independent of the choice of the
AGGREGATEptq and MERGEptq functions in Equation (6.1), we get
hptqv1 “ hptqv2 . This holds as the input to both functions AGGREGATEptq

and MERGEptq is identical. This proves that hptqv1 “ hptqv2 , and thereby the
lemma.

Note that the Lemma implies that two regular graphs with the same
node degree and the same size also have the same graph representation
because the READOUT function receives the same input. We next show
that the GNN architecture cannot identify the three graph properties
defined above since for each one of these properties, there exists one
regular graph in Pn and another regular graph of the same degree in
GnzPn.

Theorem 10. The standard GNN cannot identify connectivity, bipartiteness
or triangle freeness.
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G1 G2

FIGURE 6.1: Two 2-regular graphs on 6 vertices. The
two graphs serve as a counterexample for the proof of

Theorem 10.

G3 G4

FIGURE 6.2: Two 3-regular graphs on 6 vertices. The
two graphs serve as a counterexample for the proof of

Theorem 10.

Proof. Consider a cycle with six vertices (graph G2) and two triangles
with three vertices (graph G1) as illustrated in Figure 6.1. Both G1 and
G2 are regular graphs of the same degree with the same number of ver-
tices. Hence, according to Lemma 4, after T neighborhood aggregation
steps, the nodes of both graphs have obtained identical representations,
i.e. hpTqv “ hpTqu , @v, u P V1 Y V2. Therefore, independent of the choice
of the READOUT function in Equation 6.3, the two graphs will have
identical representations, hG1 “ hG2 , since the input to the READOUT
function is identical. Clearly, G1 is disconnected, while G2 is connected.
Hence, these two graphs correspond to a counterexample to the distin-
guishability of connectivity. Furthermore, consider the graphs G3 and
G4 as illustrated in Figure 6.2. Note that G3 contains triangles, but is
not bipartite, whereas G4 is bipartite, and triangle-free. Both G3 and
G4 are regular graphs of the same degree with the same number of
vertices. Therefore, they obtain identical representations hG3 “ hG4 , and
correspond thus to a counterexample to the distinguishability of the
above two properties.

We should note here that there exist complex network measures which
have served as features for node classification tasks in previous studies
and which can capture some of these graph properties [210, 35, 48].
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6.4 k-hop Graph Neural Networks

In this section, we propose a generalization of GNNs, so-called k-hop
Graph Neural Networks (k-hop GNNs). This new model consists of
neighborhood aggregation layers that do not take into account only
the direct neighbors of the nodes, but their entire k-hop neighborhood.
Hence, instead of the neighborhood aggregation layer shown in Equa-
tion 6.1, the proposed model updates the hidden state hptqv of a node v as
follows:

aptqv “ AGGREGATEptq
´!

hpt´1q
u |u P Nkpvq

)¯

hptqv “ MERGEptq
´

hpt´1q
v , aptqv

¯ (6.4)

We next present an instance of the proposed architecture which is strictly
stronger than standard GNNs in terms of distinguishing non-isomorphic
graphs, and is capable of identifying graph properties which are not
captured by the standard GNN architecture.

6.4.1 Proposed Architecture

Let G “ pV, Eq be a graph. In what follows, we will focus on a single
node v P V, and we will present how the representation of this node
is updated during the neighborhood aggregation phase. Node v will
also be referred as the root of the k-hop neighborhood subgraph Gk

v.
For a given iteration/layer t, and a root node v, we define an inner
representation xu of each node u P Nkpvq and we initialize it as xu “

hpt´1q
u . We will next describe how the hidden state hptqv of the root v is

computed. Let UPDATEpw, Sq denote a module which takes as input a
node w and a set of nodes S, and is defined as follows:

UPDATEpw, Sq “ MLP
´

MLP1
`

xwq `
ÿ

uPS

MLP2
`

xu
˘

¯

where MLP, MLP1, MLP2 are multi-layer perceptrons and xw, xu are the
inner representations of nodes w and u, respectively. The proposed ap-
proach uses a series of UPDATE modules to update the representations
of the nodes that belong to the k-hop neighborhood of v, following a
sequential procedure from the most distant ones to the direct neighbors
of v. Although the neural network learns a new vector representation for
some of the nodes u P Nkpvq, these feature vectors are only calculated
in the context of updating the root node’s representation. Hence, after
computing the new representation hptqv of v, these representations are not
useful any more. These inner representations should not be confused
with the hptqu representation that the network learns for each of these
nodes by taking into account their own k-hop neighborhoods.
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Let Rdpvq denote the set of nodes at distance (hop count) exactly d ą 0
from v. Hence, R1pvq “ N1pvq is the set of direct neighbors of v, while
Rdpvq denotes the ring of nodes at distance d, which we refer to as the
nodes at level d. Note that the neighbors of a node u P Rdpvq belong
to one of the next three sets: Rd´1pvq, Rdpvq or Rd`1pvq. Specifically,
u cannot be connected with nodes at levels l ą d ` 1 because then
these nodes would belong to level d ` 1 instead of l. Furthermore, u
cannot be connected with nodes at levels l ă d ´ 1 because then u
would belong to some level smaller than d. Given a node u P Nkpvq, the
inner representation xu of u is updated at most twice. The two updates
aggregate information from the neighbors of u that are located at the
immediately higher and at the same level of the neighborhood subgraph,
respectively. Hence, the proposed model performs the following two
types of updates of inner representations: (1) updates across rings of
nodes, and (2) updates within a ring of nodes. We next present these
two updates in detail:

• Updates across rings of nodes: Let u P Rdpvq be a node that belongs
to the k-hop neighborhood of v and whose shortest path distance
from v is equal to d. Let also B “ N1puq X Rd`1pvq denote the
neighbors of u that belong to level d ` 1 of Gk

v. Note that B is
empty if k “ d or if all the neighbors of u belong to levels d´ 1 and
d of Gk

v. If B is not empty, the representation xu of u is updated as
follows:

xu “ UPDATEptqd,across

`

u,B
˘

Otherwise, if u has no neighbors at the next higher level (i.e. N1puqY
Rd`1pvq is empty), then its representation is not updated.

• Updates within a ring of nodes: If u has one or more neighbors at
the same level of Gk

v, and hence D “ N1puq X Rdpvq is not empty,
the representation xu of u is re-updated as follows:

xu “ UPDATEptqd,within

`

u,D
˘

Otherwise, if D “ H, its representation is not updated.

The proposed approach starts from the most distant nodes and follows
a sequential procedure updating the feature vectors of nodes that are
gradually closer to the root. The first type of update (across rings) pre-
cedes the second (within a ring). After all its direct neighbors u P N1pvq
have been processed, the hidden state of the root node v is computed as
follows:

hptqv “ UPDATEptq0,across
`

v,N1pvq
˘

As mentioned above, although the model learns a new inner repre-
sentation xu for some of the nodes in Nkpvq, these representations are
only learned for the purpose of updating the root node’s hidden state.
Furthermore, it is clear that for a single neighborhood aggregation layer,
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Algorithm 1: k-hop GNN
Input: Graph G “ pV, Eq, node features thv : v P Vu, number of
neighborhood aggregation layers T, number of hops k

Output: Node features thpTqv : v P Vu
1: for t P t1, . . . , Tu do
2: for v P V do
3: for u P Rkpvq do
4: D ÐÝ N1puq X Rkpvq
5: xu ÐÝ UPDATEptqk,within

`

u,D
˘

6: end for
7: for i P tk´ 1, . . . , 1u do
8: for u P Ripvq do
9: B ÐÝ N1puq X Ri`1pvq

10: xu ÐÝ UPDATEptqi,across

`

u,B
˘

11: D ÐÝ N1puq X Ripvq
12: xu ÐÝ UPDATEptqi,within

`

u,D
˘

13: end for
14: end for
15: hptqv “ UPDATEptq0,across

`

v,N1pvq
˘

16: end for
17: end for

the proposed model needs at most 2k UPDATE modules. As we will
show next, the proposed model can capture the structural information
within the root node’s k-hop neighborhood even if it comprises of a
single neighborhood aggregation layer. Hence, instead of using multi-
ple neighborhood aggregation layers/iterations, it is more suitable to
increase the value of k. The various steps of the proposed model are
illustrated in Algorithm 1. We provide in the supplementary material a
simple example that illustrates the update procedure that was presented
above.

After T iterations (i.e. T neighborhood aggregation layers), the emerging
node feature vectors hpTqv can be used in any node-related task. For graph-
level tasks, the proposed model can compute a vector representation
over the whole graph by applying a READOUT function similar to the
one shown in Equation 6.3.

6.4.2 Example

We next provide a simple example that illustrates the update procedure
that is presented above. Specifically, Figure 6.3 shows the 2-hop neighbor-
hood graph G2

v1
of a node v1 P V. As mentioned above, we first consider

the most distant nodes (i.e. nodes v4 and v5 since v4, v5 P R2pv1q). The
representations of nodes v4 and v5 are not updated since these two nodes
are at the frontier of G2

v1
. Furthermore, there is no edge between the
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d = 2

d = 1

d = 0
v1

v2 v3

v4 v5

FIGURE 6.3: The 2-hop neighborhood graph G2
v1

of a node
v1 of graph G.

two nodes. However, these two nodes contribute to the update of the
representation of node v2. Specifically, the inner representation of node
v2 is updated as follows:

xv2 “ UPDATEptq1,across
`

v2, tv4, v5u
˘

Then, we update the inner representations of nodes whose shortest path
distance from the root is 1 and which are connected with other nodes
with the same distance from the root. There is one such pair of nodes
(i.e. nodes v2 and v3) which are updated as:

xv2 “ UPDATEptq1,within

`

v2, tv3u
˘

xv3 “ UPDATEptq1,within

`

v3, tv2u
˘

Finally, we update the root by aggregating information from its direct
neighbors:

hptqv1 “ UPDATEptq0,across
`

v1, tv2, v3u
˘

6.4.3 Expressive Power

We next study the identifiability of the proposed k-hop GNN. The fol-
lowing Theorem comprises the main results about graph properties that
can be identified by the proposed model.

Theorem 11. For the k-hop GNN, there exists a sequence of modules
UPDATEp0q0,across, UPDATEp0q1,within, UPDATEp0q1,across, . . . . . . , UPDATEpTqk´1,across,

UPDATEpTqk,within such that

1. it can identify triangle-freeness for k ě 1

2. connectivity for k ą δmin where δmin is the minimum of the diameters of
the connected components
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3. bipartiteness for k ě l´1
2 where l is the length of the smallest odd cycle in

the graph (if any)

Proof. We assume that the feature vectors of the nodes come from a
countable set. This set may correspond to a subset of an uncountable
set such as Rd. Furthermore, the feature vectors of a set of nodes form a
multiset (i.e. since some nodes may have identical feature vectors).

We will show that if a graph has one of the three considered properties
(i.e. triangle-freeness, bipartiteness, and connectivity), some of its nodes
can be mapped to different feature vectors compared to the nodes of a
graph that does not have the property. Then, by applying an injective
readout function, the two graphs can also be mapped to different feature
vectors.

For simplicity of presentation, we will assume that the proposed model
consists of a single neighborhood aggregation layer. The same results
also hold for multiple neighborhood aggregation layers. We first show
that the aggregation scheme that our model employs can represent
universal functions over the pairs of a node and the multiset of its
neighors. The following Lemma generalizes the setting in Xu et al. [238].

Lemma 5. Assume X is countable, and let r P N. There exist functions
f : X Ñ Rd and f 1 : X Ñ Rd, such that hipc, Xq “ f pcq `

ř

xPX f 1pxq is
unique for each i P t0, . . . , ru and each pair pc, Xq, where c P X and X Ă X is
a finite multiset. Moreover, any function gi over such pairs can be decomposed
as gipc, Xq “ φ

`

f pcq `
ř

xPX f 1pxq
˘

for some function φ.

The proof of Lemma 5 is in Appendix B.4.

In our setting, the UPDATE modules correspond to gipc, Xq functions.
These modules use multi-layer perceptrons (MLPs) to model and learn
f , f 1 and φ in the above Lemma, thanks to the universal approximation
theorem [101]. Note that given two nodes v, v1, if a node u P Nkpvq
obtains a representation that is never obtained by any node u1 P Nkpv1q,
then based on the above Lemma, there exist UPDATE modules such
that the root nodes v, v1 are assigned different representations. Hence,
for all three properties, it is sufficient to show that at some point of the
algorithm, a node of the graph that satisfies the property can obtain a
representation that is never obtained by any node of a graph that does
not satisfy the property.

Triangle-freeness If a graph is not triangle-free, then there exist at least
three nodes whose 1-hop neighborhoods contain a triangle. Let v be
such a node. Then, clearly there are at least two nodes u P R1pvqwhich
are connected to each other by an edge. The representations of these
nodes are updated as follows: xu “ UPDATEp0q1,within

`

u,D
˘

. On the other
hand, no such update takes place in the case of triangle-free graphs since
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D “ H. Hence, based on Lemma 5, the above UPDATEp0q1,within module
can generate different representations for the nodes that participate in
a triangle from the representations of the nodes of the neighborhood
subgraph of each node of a triangle-free graph.

Connectivity Let G be a disconnected graph and C its component
which has the minimum diameter δmin. Then, for an arbitrary node v of
component C, it holds that Ripvq “ H for all i ą δmin. On the other hand,
if the graph is connected, for some node v, it holds that |Ripvq| ą 0 for all
i ď δ where δ ą δmin is the diameter of the connected graph. Hence, the
representations of the nodes u P Ripvq and u1 P Ri´1pvq are updated as
xu “ UPDATEp0qi,within

`

u,D
˘

and xu1 “ UPDATEp0qi´1,across

`

u1,D1
˘

, respec-
tively. Based on Lemma 5, the above two UPDATE modules can generate
different representations for the nodes of a neighborhood subgraph of a
disconnected graph compared to those of the nodes of the neighborhood
subgraph of a connected graph.

Bipartiteness It is well-known that a graph is bipartite if and only if it
does not contain an odd cycle. If G is bipartite and l is the length of the
smallest odd cycle in G, then the k-hop neighborhood subgraphs (k ě
l´1

2 ) of more than one nodes contain a cycle of odd length. According to
Lemma 6 (below), the k-hop neighborhood subgraph of a node v contains
a cycle of odd length if and only if the shortest path lengths from two
adjacent nodes u, w P Nkpvq to v are identical. In other words, there exist
two nodes both at the same level i of the k-hop neighborhood subgraph
of node v that are connected to each other with an edge. During the
process of updating the representation of the root v, the feature vectors
of these nodes are also updated as follows: xu “ UPDATEp0qi,within

`

u,D
˘

.
This update does not take place in the case of a non-bipartite graph
since D “ H for all nodes of all neighborhood subgraphs. Based on
Lemma 5, these nodes can obtain different representations from all the
representations of the nodes of a neighborhood subgraph extracted from
a bipartite graph.

Lemma 6. Let Gk
v be the k-hop neighborhood subgraph of a node v. Then, Gk

v
contains a cycle of odd length if and only if the shortest path lengths from two
adjacent nodes u, w P Nkpvq to v are identical.

The proof of Lemma 6 is in Appendix B.5.

It should be mentioned that there have already been proposed GNNs
that update the representations of the nodes based on their k-hop neigh-
borhoods. Such GNNs employ polynomials of order k [60] or auto-
regressive moving average (ARMA) filters [23] to approximate a transfer
function that acts on the eigenvalues of the normalized Laplacian matrix,
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and can be shown that they utilize information from the nodes’ k-hop
neighborhoods. However, in our experimental evaluation, these models
fail to consistently capture the above three properties. Furthermore,
other methods take into account higher-order neighborhoods by com-
puting powers of the adjacency matrix [1].

6.4.4 Computational Complexity

The increase of expressiveness provided by the k-hop GNN model does
not come without a price. Clearly the time complexity of the proposed
model is higher than that of the standard GNN. The computational steps
of the proposed method consist of two parts:

1. Preprocessing step: In this phase, the model extracts the neighbor-
hood subgraphs of all nodes. For each node, the neighborhood
subgraph can be extracted in linear time in the number of edges of
the neighborhood. Hence, the complexity of the preprocessing step
is Opnmq in the worst case (i.e. for a complete graph). For sparse
graphs, it can become significantly lower, i.e. Opn d̄kq where d̄ is
the average degree of the nodes. We should note that this step is
computed only once.

2. Message passing procedure: To compute the representation of
each node, for each edge of its neighborhood subgraph, a message
needs to be sent from some node to another node. Therefore, the
complexity of one message passing iteration (i.e. one epoch in our
implementation) is Opnmq in the worst case and Opn d̄kq for sparse
graphs. Note however, that the proposed message passing layer
allows a GPU-friendly implementation. Therefore, in practice, as
verified by our experiments, the running time is not prohibitive.

To sum up, the total computational complexity of k-hop Graph Neural
Network is Opnmq, while for sparse graphs is Opn d̄kq. On the other
hand, the complexity of the standard GNN model is Opkmq where k
is the number of message passing iterations. For sparse graphs, and
when the number of hops k is set to a small value, the complexity of the
proposed model is comparable to the complexity of the standard GNNs.

6.5 Experimental Evaluation

In this Section, we evaluate the performance of the proposed k-hop GNN
in two tasks: (1) node classification, (2) graph classification.

6.5.1 Node Classification

The main objective of node classification is to assign class labels to
unlabeled nodes. We evaluate the proposed model on synthetic graphs
with planted structural equivalences. Each node vi P V has an associated
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class label yi and the goal is to learn a representation vector hpTqvi of vi

such that vi’s label can be predicted as yi “ f phpTqvi q.

Synthetic Datasets

Datasets. To generate the graphs, we follow the same procedure as in
[63]. Structurally equivalent nodes are assigned the same class labels.

All the generated graphs consist of a cycle of length 40 and some basic
shapes (“house”, “fan”, “star”) which are regularly placed along the
cycle. In the “basic” setup, 10 instances of only one of the three types
(randomly chosen with uniform probability) are placed along the cycle.
In the “varied” setup, 10 instances of each one of the three shapes are
randomly placed along the cycle. The use of multiple shapes increases
the number and complexity of the structural role patterns, posing a chal-
lenge to the learning algorithms. To assess how the algorithms perform
in noisy scenarios, we introduce two additional configurations (“basic
perturbed” and “varied perturbed”) where we add edges uniformly at
random on the generated graphs. The number of edges that are added is
equal to 10% of the edges of the graph. The shapes that are placed along
the cycle graph in the different setups are illustrated in Table 6.1.

Baselines. We compare the proposed model against 3 recent state-of-the-
art techniques for learning structural node representations: (1) RolX [95],
(2) struc2vec [186], and (3) GraphWave [63]. Note that these 3 algorithms
are unsupervised, in the sense that they only take a graph as input and
not any class labels of the nodes. We also compare the k-hop GNN model
against the standard GNN architecture as described in Equation 6.1,
and the ChebNet [60] and ARMA [23] models which also aggregate
information from the nodes’ k-hop neighborhoods. The ChebNet and
ARMA models were implemented using the Pytorch Geometric library
[70].

Experimental setup. For each configuration, we generate 20 graphs
using the procedure described above. For each graph, we perform 10-
fold cross validation. We repeat the whole process 25 times. We measure
the performance of the different algorithms using the following two
evaluation metrics: (1) average accuracy and (2) average F1-score.

For the unsupervised algorithms, we learn an embedding for each node,
and we predict the class label of each node in the test set using a 4-nearest
neighbors classifier. For the proposed k-hop GNN model, the standard
GNN model, ChebNet and ARMA, we train the models on the training
set of each fold and use the models to classify the nodes of the test set.

For all the unsupervised algorithms, we use the default parameter values.
Specifically, for struc2vec, we set the probability that the random walks
stays in current layer to 0.3, the dimensionality of the embeddings to 128,
the number of epochs to 5, the number of walks per node to 10, the walk
length to 80 and the context window size to 10. Furthermore, we make
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Configuration Shapes placed along a cycle graph

basic OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

basic
perturbed

OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

varied AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

varied
perturbed

AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

TABLE 6.1: Example of synthetically generated structures
for each configuration. The different colors denote struc-
turally equivalent nodes. Dashed lines denote perturbed

graphs (obtained by randomly adding edges).

use of all approximations OPT1, OPT2, and OPT3. For GraphWave, we
use the multiscale version, set d “ 50 and use evenly spaced sampling
points ti in range r0, 100s. Finally, for RolX, we did not use any approach
for automatically detecting the number of different roles, but we directly
provided the algorithm with the correct number of roles. As mentioned
above, the representations learned by the unsupervised algorithms are
fed into an MLP. We tune the number of hidden units and the dropout
rate of the MLP. Specifically, we tune the number of hidden units from
t8, 16, 32u and the dropout rate from t0.0, 0.2u. We use 2 and 3 neighbor-
hood aggregation layers for the standard GNN, and 1 layer for ChebNet,
ARMA and the proposed 2-hop and 3-hop GNNs. For ChebNet, we use
polynomials of order 2 and 3, and for ARMA, we set the number of stacks
K to 2 and the depth T to 2 and 3. The neighborhood aggregation layers
of the k-hop GNN models and of the standard GNN models consist of
MLPs with 2 layers. Batch normalization is applied to the output of
every neighborhood aggregation layer. The hidden-dimension size of
the MLPs is chosen from t8, 16, 32u and the dropout rate from t0.0, 0.2u.
To train all neural networks, we use the Adam optimizer with initial
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Configuration
basic basic perturbed varied varied perturbed

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

RolX 1.000 1.000 0.928 0.886 0.998 0.996 0.856 0.768
struc2vec 0.784 0.708 0.703 0.632 0.738 0.592 0.573 0.412
GraphWave 0.995 0.993 0.906 0.861 0.982 0.965 0.793 0.682
2-GNN 0.997 0.994 0.920 0.876 0.990 0.979 0.852 0.753
3-GNN 0.997 0.994 0.911 0.859 0.993 0.985 0.866 0.775
ChebNet (K=2) 0.988 0.979 0.866 0.787 0.852 0.732 0.624 0.471
ChebNet (K=3) 0.992 0.987 0.904 0.850 0.958 0.917 0.758 0.612
ARMA (T=2) 0.996 0.992 0.914 0.861 0.982 0.961 0.839 0.728
ARMA (T=3) 0.997 0.996 0.919 0.872 0.993 0.987 0.850 0.747
2-hop GNN 1.000 1.000 0.961 0.934 0.999 0.999 0.948 0.910
3-hop GNN 1.000 1.000 0.962 0.934 0.996 0.993 0.952 0.916

TABLE 6.2: Performance of the baselines and the proposed
k-hop GNN models for learning structural embeddings
averaged over 20 synthetically generated graphs for each

configuration.

learning rate 0.01 and decay the learning rate by 0.5 every 50 epochs. We
set the number of epochs to 200. We store the model that achieved the
best validation accuracy into disk. At the end of training, the model is
retrieved from the disk, and we use it to classify the test instances.

Results. Table 6.2 shows that the instances of the proposed k-hop GNN
architecture outperform all the baselines in the node classification task.
Interestingly, struc2vec is the worst-performing method in all config-
urations. Specifically, in the least challenging configuration (“basic”),
the k-hop GNN models, and RolX perform the best. All these meth-
ods yield perfect performance, while the standard GNN models, the
ChebNet and ARMA models, and GraphWave exhibit slightly worse
performance. In the presence of noise (“basic perturbed” configuration),
the performance of all methods degrades a lot. The 3-hop GNN model
is the best-performing method followed by the 2-hop GNN model, RolX,
and the 2-GNN model, in that order. The remaining models achieve
slightly lower accuracies and F1-scores than the above 4 methods. In
the “varied” configuration, the k-hop GNN models are once again the
best-performing methods along with RolX. In the “varied perturbed”
configuration, the 3-hop GNN model yields the best performance. The
2-hop GNN model achieves slightly worse performance, while the per-
formance of the remaining methods is much lower. From the two noisy
configurations, it is clear that the baseline methods are more prone to
noise compared to the k-hop GNN model. Furthermore, with regards
to the two instances of the k-hop GNN model, the 3-hop GNN model
outperforms the 2-hop GNN model in two configurations (i.e. “basic
perturbed” and “varied perturbed”), is outperformed by the 2-hop GNN
model in one confuguration (i.e. “varied”), while the two models achieve
the same performance in the “basic” configuration. Finally, the proposed
k-hop GNN models outperform the two standard GNN models in all
experiments, thereby validating our theoretical results. Overall, the
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proposed k-hop GNN model is robust and achieves good performance,
demonstrating that it can learn high-quality node representations.

Real-World Dataset

Datasets. We study the Enron dataset, an e-mail network encoding
communication between employees in a company. We expect struc-
tural equivalences in job titles due to corporate organizational hierarchy.
Nodes of the network represent Enron employees and edges correspond
to e-mail communication between the employees. There are 143 nodes
and 2, 583 edges in the emerging network. An employee has one of seven
functions in the company (e.g. CEO, manager, etc.). These functions
provide ground-truth information about roles of the corresponding
nodes in the network.

Baselines. We compare the proposed model against the 9 baseline
algorithms which were presented above: (1) RolX, (2) struc2vec, (3)
GraphWave, (4) 2-GNN, (5) 3-GNN, (6) ChebNet (K “ 2), (7) ChebNet
(K “ 3), (8) ARMA (T “ 2), and (9) ARMA (T “ 3).

Experimental setup. We perform 10-fold cross validation, and repeat
the whole process 20 times. For each algorithm, we report (1) its average
accuracy, and (2) its average F1-score.

For the unsupervised algorithms, we first learn an embedding for each
node, and then, for each fold, we use a 4-nearest neighbors classifier to
predict the job titles of the nodes of the test set. For the proposed k-hop
GNN model, the standard GNN model, ChebNet and ARMA, we train
the models on the training set of each fold and use the models to classify
the nodes of the test set.

For all algorithms, we set/optimize their hyperparameters as described
in subsection 6.5.1 above.

Results. We can see in Table 6.3 that the supervised neural network
models outperformed the unsupervised algorithms on this dataset. From
the unsupervised algorithms, only struc2vec achieved performance com-
parable to that of the supervised models. In terms of accuracy, ARMA is
the best-performing method. Both ARMA (T “ 2) and ARMA (T “ 3)
outperform all the other methods on the Enron dataset. On the other
hand, in terms of F1-score, 2-hop GNN achieves the best performance
among the different methods, followed by 3-GNN and ARMA (T “ 2).
Surprisingly, the 3-hop GNN model performs much worse than the 2-
hop GNN model. We hypothesize that this is related to the structure of
the e-mail network.
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Accuracy F1-score

RolX 0.264 0.154
struc2vec 0.323 0.190
GraphWave 0.257 0.149
2-GNN 0.357 0.183
3-GNN 0.366 0.195
ChebNet (K=2) 0.342 0.179
ChebNet (K=3) 0.360 0.191
ARMA (T=2) 0.374 0.192
ARMA (T=3) 0.376 0.190
2-hop GNN 0.366 0.198
3-hop GNN 0.327 0.171

TABLE 6.3: Performance of the baselines and the proposed
k-hop GNN models for learning structural embeddings

on the Enron dataset.

6.5.2 Graph Classification

We next apply the proposed model to the problem of graph classification.,
i.e. the supervised learning task of assigning a graph to a set of prede-
fined categories. Specifically, given a set of graphs tG1, . . . , GNu Ď G and
their class labels ty1, . . . , yNu, the goal is to learn a representation vector
hGi such that the class label of every graph of the test set can be predicted
as yi “ f phGiq. For this task, we are going to evaluate the performance
of the proposed model in two different types of datasets: (1) synthetic
datasets containing graphs that satisfy or do not satisfy the considered
graph properties, and (2) standard widely-used datasets from real-world
scenarios.

Synthetic Datasets

Datasets. In order to investigate if the proposed model can distinguish
triangle-freeness, bipartiteness and connectivity, we created three syn-
thetic datasets. Each one consists of 800 4-regular graphs of 60 nodes
each and is assigned a class label which denotes whether it satisfies
the corresponding property or not (i.e. binary classification task). All
the nodes are assigned identical labels. Furthermore, all three datasets
are balanced, i.e. half of the graphs (400 graphs) satisfy the examined
graph property, while the rest of the graphs (400 graphs) do not satisfy
it. Further details about the synthetic datasets are presented in the
supplementary material.

Baselines. We compare our model against the standard GNN architec-
ture of Equations 6.1 and 6.3, and against the ChebNet [60] and ARMA
[23] models. Based on our theoretical results, we expect the standard
GNN model to perform worse than the proposed model on these 3
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Connectivity Bipartiteness
Triangle
freeness

2-GNN 55.00 ˘ 5.30 53.78 ˘ 2.61 51.87 ˘ 7.43
3-GNN 56.20 ˘ 2.28 58.13 ˘ 2.10 55.90 ˘ 4.44
ChebNet (K=2) 56.37 ˘ 7.76 50.33 ˘ 1.20 53.12 ˘ 6.35
Chebnet (K=3) 57.62 ˘ 3.84 51.98 ˘ 3.56 54.75 ˘ 7.14
ARMA (T=2) 55.55 ˘ 5.59 54.50 ˘ 4.61 53.00 ˘ 3.18
ARMA (T=3) 55.63 ˘ 5.69 53.92 ˘ 3.22 54.25 ˘ 5.80
2-hop GNN 81.24 ˘ 5.22 84.69 ˘ 1.74 84.06 ˘ 2.12
3-hop GNN 94.77 ˘ 3.41 91.12 ˘ 2.76 82.53 ˘ 5.33

TABLE 6.4: Average classification accuracy of the proposed
k-hop GNN models and the baselines on the 3 synthetic

datasets.

datasets. On the other hand, since the ChebNet and ARMA models
aggregate information based on the k-hop neighborhood of each node,
these models may be able to capture these properties.

Results. We report in Table 6.4 average prediction accuracies across
the 10 folds. It is clear that the standard GNN architectures are unable
to distinguish the 3 graph properties. Specifically, they all achieve an
average accuracy slightly greater than 50% on all three datasets.The
ChebNet and ARMA models, even though they aggregate information
from each node’s k-hop neighborhood, they are also unable to distin-
guish the 3 properties. On the other hand, the proposed k-hop GNN
architectures achieved much higher average accuracies, indicating that
the proposed architecture can distinguish the 3 properties in regular
graphs. In the case of bipartiteness and connectivity, the 3-hop GNN
model achieved very high accuracy. The performance of the 2-hop GNN
model was slightly worse than that of the 3-hop GNN model. However,
the former managed to better distinguish triangle-free graphs than the
latter. Overall, we can conclude that in contrast to the GNN, ChebNet
and ARMA architectures, the proposed model leads to more expressive
node representations.

Real-World Datasets

We also evaluate the proposed k-hop GNN model on standard graph
classification datasets derived from bio/chemoinformatics, and from
social networks.

Datasets. We use the following 3 datasets from bioinformatics and
chemoinformatics: (1) MUTAG, (2) PROTEINS, (3) NCI1. We also
use the following 2 social interaction datasets: (1) IMDB-BINARY, (2)
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IMDB-MULTI. In Appendix A.1, we provide details about the examined
datasets 1.

Baselines. We compare our methods against four graph kernels: (1)
the graphlet kernel (GK) [204], (2) the shortest-path kernel (SP) [27], (3)
the Weisfeiler-Lehman subtree kernel (WL) [205], and (4) the Weisfeiler-
Lehman Optimal Assignment kernel (WL-OA) [122]. The first three
kernels are available in the GraKeL library [209], while for WL-OA
we used the code provided by the authors. Besides graph kernels, we
also compare the proposed model against the basic GNN architecture
of Equations 6.1 and 6.3, against GS-SVM [75] which makes use of
geometric scattering features, and against the following state-of-the-
art deep learning architectures: (1) ChebNet [60], (2) ARMA [23], (3)
PatchySan [165], (4) Deep Graph CNN (DGCNN) [249], (5) CapsGNN
[236], and (6) 1-2-3-GNN [161]. For ChebNet and ARMA, we use the
implementations contained in the PyTorch Geometric library [70]. For
GS-SVM and the rest of the deep learning methods, we compare against
the accuracies reported in the original papers.

Experimental Setup. We performed 10-fold cross-validation where 10%
of the graphs of each training fold was used as a validation set. The
whole process was repeated 10 times for each dataset and each approach.

We chose parameters for the graph kernels as follows. For the Weisfeiler-
Lehman subtree kernel and for the Weisfeiler-Lehman optimal assign-
ment kernel, we chose the number of iterations from h “ t4, 5, 6, 7u,
while the graphlet kernel that we implemented samples 500 graphlets
of size up to 6 from each graph. For the proposed k-hop GNN models
(2-hop GNN and 3-hop GNN), we used a single neighborhood aggre-
gation layer, while for the standard GNN, we used 2 and 3 layers. The
parameters of the neighborhood aggregation layers correspond to MLPs
with 2 layers. Batch normalization is applied to the output of every
neighborhood aggregation layer. The hidden-dimension size of the
MLPs was chosen from t16, 32, 64u. To generate graph representations,
we employed a readout function that sums the vector representations
of the nodes. The generated graph representations are then fed into
a two layer MLP, with a softmax output. We used the ReLU activation
function, and we chose the batch size from t32, 64, 128u. We used the
Adam optimizer with an initial learning rate of 10´3 and decay the
learning rate by 0.5 every 50 epochs.

For ChebNet, ARMA and the proposed k-hop GNN models (2-hop
GNN and 3-hop GNN), we used a single neighborhood aggregation
layer, while for the standard GNN, we used 2 and 3 layers. The hidden-
dimension size of these layers was chosen from t16, 32, 64u. For ChebNet,
we used polynomials of order 2 and 3, and for ARMA, we set the
number of stacks K to 2 and the depth T to 2 and 3. To generate graph

1The datasets, further references and statistics are available at https://ls11-www.
cs.tu-dortmund.de/staff/morris/graphkerneldatasets

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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MUTAG PROTEINS NCI1
IMDB IMDB Average

BINARY MULTI Rank

GK 69.97 (˘ 2.22) 71.23 (˘ 0.38) 65.47 (˘ 0.14) 60.33 (˘ 0.25) 36.53 (˘ 0.93) 16.8
SP 84.03 (˘ 1.49) 75.36 (˘ 0.61) 72.85 (˘ 0.24) 60.21 (˘ 0.58) 39.62 (˘ 0.57) 12.8
WL 83.63 (˘ 1.57) 73.12 (˘ 0.52) 84.42 (˘ 0.25) 73.36 (˘ 0.38) 51.06 (˘ 0.47) 6.8
WL-OA 86.63 (˘ 1.49) 75.35 (˘ 0.45) 85.74 (˘ 0.37) 73.61 (˘ 0.60) 50.48 (˘ 0.33) 3.0
GS-SVM 83.57 (˘ 6.75) 74.11 (˘ 4.02) 79.14 (˘ 1.28) 71.20 (˘ 3.25) 48.73 (˘ 2.32) 10.8
2-GNN 85.92 (˘ 2.19) 75.24 (˘ 0.45) 76.32 (˘ 0.41) 71.40 (˘ 0.74) 47.73 (˘ 0.86) 8.8
3-GNN 85.74 (˘ 1.48) 74.59 (˘ 0.71) 79.62 (˘ 0.45) 71.60 (˘ 0.84) 47.33 (˘ 1.01) 9.4
ChebyNet (K=2) 85.33 (˘ 1.42) 74.72 (˘ 0.97) 78.97 (˘ 0.35) 71.08 (˘ 0.51) 47.08 (˘ 0.60) 10.6
ChebyNet (K=3) 82.49 (˘ 1.52) 74.81 (˘ 0.82) 81.01 (˘ 0.39) 70.90 (˘ 0.73) 46.66 (˘ 0.59) 10.8
ARMA (T=2) 82.98 (˘ 1.90) 74.84 (˘ 0.59) 80.83 (˘ 0.42) 70.62 (˘ 0.95) 46.10 (˘ 0.82) 11.2
ARMA (T=3) 81.52 (˘ 1.22) 74.74 (˘ 0.67) 81.34 (˘ 0.38) 70.52 (˘ 0.71) 46.12 (˘ 0.98) 11.6
PatchySan (k “ 10) 88.95 (˘ 4.37) 75.00 (˘ 2.51) 76.34 (˘ 1.68) 71.00 (˘ 2.29) 45.23 (˘ 2.84) 9.6
DGCNN 85.83 (˘ 1.66) 75.54 (˘ 0.94) 74.44 (˘ 0.47) 70.03 (˘ 0.86) 47.83 (˘ 0.85) 9.6
CapsGNN 86.67 (˘ 6.88) 76.28 (˘ 3.63) 78.35 (˘ 1.55) 73.10 (˘ 4.83) 50.27 (˘ 2.65) 5.0
1-2-3-GNN 86.1 75.5 76.2 74.2 49.5 6.0
2-hop GNN 87.93 (˘ 1.22) 75.03 (˘ 0.42) 79.31 (˘ 0.57) 73.33 (˘ 0.30) 49.79 (˘ 0.25) 5.4
3-hop GNN 87.56 (˘ 0.72) 75.28 (˘ 0.36) 80.61 (˘ 0.34) - - 4.8

TABLE 6.5: Average classification accuracy (˘ standard
deviation) of the baselines and the proposed k-hop GNN
models on the 5 graph classification benchmark datasets.
The “Average Rank” column illustrates the average rank
of each method. The lower the average rank, the better the

overall performance of the method.

representations, we employed a readout function that sums the vector
representations of the nodes. The generated graph representations are
then fed into a two layer MLP, with a softmax output. We used the ReLU
activation function, and we chose the batch size from t32, 64, 128u. We
used the Adam optimizer with a learning rate of 10´2, while we set the
number of epochs to 100. We set the number of epochs to 500, and we
select the epoch with the best validation accuracy.

Results. We report in Table 6.5 average prediction accuracies and stan-
dard deviations across the 10 repetitions. Note that the graphs contained
in the IMDB-BINARY and IMDB-MULTI datasets correspond to the
ego-networks of actors/actresses. The diameter of these graphs is at
most equal to 2, and therefore, the 3-hop neighborhoods of the nodes are
identical to their 2-hop neighborhoods. This is why we do not report the
performance of the 3-hop GNN on these datasets.

In general, we observe that the variants of the proposed model achieve
high levels of performance. Specifically, they achieve the second best
performance on MUTAG, the fourth best performance on IMDB-BINARY
and IMDB-MULTI, and the sixth best performance on the NCI1 and
PROTEINS datasets. On most datasets, the proposed model yields only
slightly worse accuracies compared to the best performing method,
the WL-OA kernel. Interestingly, the two k-hop GNN models perform
equally well in general. More specifically, the 3-hop GNN achieves
slightly better accuracy than the 2-hop GNN on most datasets. However,
the difference in performance is not very large. Furthermore, it should
be mentioned that the proposed k-hop GNN models outperform the two
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MUTAG PROTEINS NCI1
IMDB IMDB

BINARY MULTI

2-GNN 0.01 0.08 0.29 0.07 0.10
3-GNN 0.02 0.12 0.38 0.09 0.13
2-hop GNN 0.03 0.18 0.59 0.18 0.22
3-hop GNN 0.04 0.27 0.82 0.18 0.22

TABLE 6.6: Average running time per epoch (in seconds) of
the proposed k-hop GNN models and the standard GNN
models on the 5 graph classification benchmark datasets.

MUTAG PROTEINS NCI1
IMDB IMDB

BINARY MULTI

2-GNN 2.72 3.36 4.78 3.20 3.35
3-GNN 2.72 3.38 4.79 3.21 3.33
2-hop GNN 3.11 13.02 19.63 31.38 28.36
3-hop GNN 3.28 19.00 27.50 31.37 28.37

TABLE 6.7: Preprocessing time (in seconds) of the pro-
posed k-hop GNN models and the standard GNN models

on the 5 graph classification benchmark datasets.

standard GNN models on all datasets, demonstrating their superiority.
Overall, the proposed architecture yields good performance, demon-
strating that it can learn not only high-quality node representations, but
also graph representations.

Runtime Analysis. We also compare the running time of the proposed
model against that of the standard GNN model on the five real-world
datasets. We report in Table 6.6 the average time per epoch, and in
Table 6.7 the preprocessing time (both in seconds). The hyperparameters
of all models are set to the same values. The obtained results are given
below.

As expected, the standard GNN is faster than the proposed model both in
terms of time per epoch and in terms of the preprocessing time. However,
the running time of the proposed model is by no means prohibitive. In
general, the average time per epoch of the proposed models is twice as
high as that of the corresponding standard GNN models. Furthermore,
we should note that the preprocessing time of the standard GNN is
independent of the value of k, while for the proposed model, it increases
as k increases (since larger neighborhoods need to be processed).

6.6 Conclusion

In this chapter, we analyzed the expressive power of GNNs with respect
to their receptive field, showing that a wide class of GNN architectures
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cannot identify fundamental properties of graphs, due to the limited
information obtained from the 1-hop neighborhoods. We also proposed
the k-hop GNN model which aggregates information from the nodes’
k-hop neighborhoods, and is capable of identifying graph properties that
are not captured by standard GNNs. We evaluated the proposed model
on node and graph classification datasets, where it achieved results
competitive with state-of-the-art algorithms.
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Part III

Beyond local interactions
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Chapter 7

Lipschitz Continuity of Graph
Attention

7.1 Introduction

So far, we have studied approaches that can improve the discrimination
power or better exploit the receptive field of GNNs. However, a very
crucial success parameter of a neural network model is its ability to scale
efficiently into larger depths, maintaining its predicting capabilities. In
the case of graph neural networks (GNNs) [92], the model depth is
directly related to the neighborhood size on which the model aggregates
information. In such a case (visualized in Figure 7.1), shallow neural
networks are fundamentally unable to capture long-range characteristics.
However, many instances of real-world networks contain information
that is shared through distant nodes (e.g., structural patterns [152] or
structural noise presence). Thus, designing deep graph neural networks
is a subject of extensive research [136, 133, 132, 144]. Recent studies [252,
136, 3] showed that deeper GNNs fail to their prediction tasks, while
attention-based GNNs show a better behavior with respect to larger
depths.

Over the last few years, attention models became extremely popular
in a wide variety of deep learning applications. These architectures
made their first appearance in natural language processing and neu-
ral machine translation [12, 76, 219], and gradually became state-of-
the-art in multiple machine learning tasks, including sequential data
learning [183, 146, 241], graph classification [220, 139] and computer
vision [237]. Notably, Vaswani et al. [219] showed that efficient deep
learning models could be created using attention layers only, leading
to the Transformer architecture. Compared to convolutional or linear
layers, attention layers have the advantage of allowing the selection of
key features in the data while being amenable to backpropagation and
gradient descent schemes.

Unfortunately, attention models tend to suffer from poor performance
when their depth increases, and most applications have a relatively small
number of layers (e.g. 6 for the Transformers in [219]). While depth is
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FIGURE 7.1: Long-range dependencies can occur in
graphs. GNNs with local aggregation schemes need to
be deep enough to capture such interaction. The grey
leveled neighborhoods show the three consecutive layers

of a GNN.

not necessarily synonymous with increased performance, deep architec-
tures showed extremely good performance in many difficult tasks (e.g.
image classification) that exhibit complex structural information [212].
Although there are cases of NLP models, such as GPT-3 [32], that can
scale to very deep architectures (up to 96 layers), for graph attention
models state-of-the-art architectures remain shallow and building deep
architectures remains an open problem.

In this chapter, we show that enforcing Lipschitz continuity by normal-
izing the attention scores can significantly improve the performance of
deep attention models. To do so, we present LipschitzNorm, a normaliza-
tion scheme for self-attention layers that enforces Lipschitz continuity,
and apply this normalization to attention-based GNNs, including graph
attention networks (GAT) [220], and graph transformers (GT) [246, 206].
Moreover, we show that, without normalization, gradient explosion
appears in these architectures due to a lack of Lipschitz continuity of
the original attention mechanism [115]. Finally, we show that such a
normalization allows to build deeper graph neural networks that show
good performance for node label prediction tasks that exhibit long-range
dependencies.

Gradient Explosion and Deeper GNNs As we can see from Figure 7.1,
the long-range interactions create the need for deeper GNNs and as we
will see in the next sections such a design requires a smooth gradient
flow. However, as previous research showed, there are other problems
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that can occur in long-range dependencies, such as: the oversmooth-
ing phenomenon, a result of the multiple applications of Laplacian
operators [252, 136] and the oversquashing, that happens due to the
exponential increase of the neighborhood information creating a huge
hypothesis space and thus a bottleneck in the node’s representation [3].
In this chapter, we focus on how to mitigate the gradient explosion issue,
without taking into account whether oversmoothing or oversquashing
occur. However, we show empirically, that handling the gradient flow,
the models can behave well in situations, where such issues appear,
showing a possible interchanging relation between the different issues
on deeper GNNs.

The remainder of this chapter is structured as follows: in Section 7.2,
we provide an overview of the related work on attention mechanisms
and graph learning models. Then, in Section 7.3, we provide precise
definitions for Lipschitz continuity and attention models. In Section 7.4,
we present our theoretical analysis and in Section 7.5 we introduce our
normalization layer, called LipschitzNorm. Then, we empirically show
in Section 7.6 the connection between Lipschitz continuity and gradient
explosion during training. These are followed by the experimental
evaluation in Section 7.7.

7.2 Related Work

Initially designed to extend the capabilities of recurrent neural net-
works [12], attention models rapidly became a highly efficient and versa-
tile model for machine learning tasks in natural language processing [183,
241], computer vision [237] and recommender systems [243]. Recently,
novel attention models have been introduced in graph-based systems
showing state-of-the-art performance on graph classification [128], node
classification [220, 206] and link prediction [253] tasks.

Attention and Lipschitz Continuity: Although the attention models
gain more attraction, little progress has been made in the theoretical
study of the attention. Pérez, Marinković, and Barceló [180] showed
how attention-based models can be Turing complete and Cordonnier,
Loukas, and Jaggi [45] studied the relationship of self-attention layers
and the convolutional networks for image processing. One important
direction that can help towards the expressivity of attention models is
the analysis of Lipschitz continuity. Even though the computation of
tight Lipschitz bounds of neural networks has been proven to be a hard
task [222], a few approaches suggested Lipschitz-based normalization
methods for neural networks [157, 84]. Kim, Papamakarios, and Mnih
[115] showed that the standard dot-product self-attention is not Lipschitz
continuous, proposing an alternative attention layer that satisfies the
Lipschitz continuity. The latter work assumes that the input and output
dimensions of the transformer are equal. Such an assumption is only
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applicable to Transformer-based models, while for example in graph
attention it does not hold, since the inputs are taken neighbor-wise and,
thus, with variable length.

Attention and Graph Neural Networks: In this chapter, we study
Lipschitz properties of the general form of self-attention from the op-
timization perspective. We propose a normalization that enforces the
attention layer to be Lipschitz and prevents the model from gradient
explosion phenomena. Graph Neural Networks (GNNs) is a class of
models that suffer from gradient explosion and vanishing as the model
depth increases and, thus enforcing the Lipschitz continuity of deep
attention-based GNNs can enhance their expressivity. Due to the recent
success of GNNs in various real-world applications, there is a growing
interest in their expressive power, either investigating how GNNs can
be universal approximators [238, 56, 149] or studying the impact of the
depth and width of the models [136, 144]. The second aspect of the
depth analysis still has a few unanswered questions, as the majority of
the current state-of-the-art models employ shallow GNNs.

Depth in GNNs: Zhao and Akoglu [252] related the expressivity of
graph convolutional networks with the laplacian oversmoothing effect
and proposed a normalization layer as a way to alleviate it. More re-
cently, Rong et al. [187] proposed an edge dropping framework on node
classification tasks, in order to tackle over-fitting and over-smoothing
phenomena and have shown empirically a constant improvement on
the original datasets. Li et al. [133] and Li et al. [132] introduced
frameworks of adaptive residual connections and generalized message-
passing aggregators that allow for the training of very deep GCNs.
Finally, Loukas [144] studied the effect of the depth and the width of
a graph neural network model and Alon and Yahav [3] introduced the
oversquashing phenomenon as a deterioration factor to the performance
of the GNNs. However, to our knowledge, no study on the explicit
relationship between the gradient explosion and the GNNs has yet been
made.

7.3 Notations and Definitions

In this section, we recall the definitions of attention models as well as
Lipschitz continuity. This notion will be central in our analysis and help
us understand why gradient explosion appears when training attention
models (see Section 7.6).

7.3.1 Basic Notations

For any matrix M P Rnˆm, we will denote as spectral norm }M}˚ its
largest singular value, p8, 2q-norm }M}p8,2q “ maxip

ř

j M2
ijq

1{2, and
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Frobenius norm }M}F “ p
ř

i,j M2
ijq

1{2. Moreover, for X (resp. Y) a
vector space equipped with the norm } ¨ }X (resp. } ¨ }Y), the opera-
tor norm of a linear operator f : X Ñ Y will denote the quantity
~ f~X,Y “ maxxPX } f pxq}Y{}x}X and ~ f~X “ ~ f~X,X. Finally, the
(Fréchet) derivative of a function f : X Ñ Y at x P X will denote
(when such a function exists) the linear function D fx : X Ñ Y such that,
@h P X, f px` hq ´ f pxq “ D fxphq ` op}h}q.

7.3.2 Lipschitz Continuity

A function f : X Ñ Y is said to be Lipschitz continuous if there exists
a constant L such that, for any x, y P X, } f pxq ´ f pyq}X ď L}x ´ y}Y.
The Lipschitz constant LX,Yp f q will denote the smallest of such con-
stants. Moreover, a Lipschitz continuous function f is derivable almost
everywhere and (see Federer [69, Thm 3.1.6])

LX,Yp f q “ sup
XPX

~D fX~X,Y . (7.1)

The Lipschitz constant controls the perturbation of the output given a
bounded input perturbation, and is a direct extension of the gradient
norm to the multi-dimensional case. Indeed, when f is scalar-valued
and differentiable, we have D fxphq “ ∇ f pxqJh and ~D fx~F “ }∇ f pxq}2.
In our analysis, we will only consider the Lipschitz constant of attention
layers for the Frobenius norm (i.e. the L2-norm of the flattened input and
output matrices), and derive upper bounds from the previous formula
(see Section 7.4).

7.3.3 Attention Models

An attention layer is a soft selection procedure that uses scores to choose
which input vectors to focus on. Before presenting attention layers in
their most general form, we first focus on the more simple case with a
single vector output in order to provide more intuition to the reader.

Single Output Case: Let x1, . . . , xn P Rd be a set of input vectors, and
g : Rd Ñ R a score function. Each vector is assigned a score gpxiq that
measures the impact of the input vector on the output through a softmax
function:

Attpxq “
n
ÿ

i“1

egpxiq

řn
j“1 egpxjq

xi . (7.2)

In most applications, the score function is linear gpxq “ qJx where q P Rd

is a query vector that indicates the direction favored by the attention
model.
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General Case: In many applications, the output is not a single vector,
but a collection of vectors. We thus switch to a matrix notation in
order to simplify the definitions. Let X P Rdˆn be an input matrix
whose rows are the input vectors x1, . . . , xn P Rd. A score function
g : Rdˆn Ñ Rmˆn takes the input matrix and returns scores for each
output vector i P t1, . . . , mu and each input vector j P t1, . . . , nu. This
score is usually linear or quadratic ; however, we will see in Section 7.4
that such a generalisation allows to consider more advanced score
functions, including overall normalization by a scalar. The probabil-
ity weights are then computed using a (row-wise) softmax operator
softmax : Rmˆn Ñ Rnˆm taking as input a score matrix M P Rmˆn,

softmaxpMqij “
eMij

řn
k“1 eMik

. (7.3)

Note that all rows sum to one, and all coordinates are between 0 and 1.
Each row can thus be interpreted as a probability distribution over the n
input vectors. Finally, the overall attention module Att : Rdˆn Ñ Rdˆm

returns a matrix whose columns are weighted averages of the inputs:

AttpXq “ X softmaxpgpXqqJ . (7.4)

Multi-Head Attention: In order to augment the power of attention
models, a common trick consists in concatenating multiple independent
attention models. These multi-head models can thus focus on multiple
directions of the input space at the same time, and are generally more
powerful in practice. A standard procedure consists in first projecting
the input vectors into multiple low-dimensional spaces, and combining
the results of all attention layers using a linear function. Let dI (resp.
dO) be the input (resp. output) dimension, h the number of heads, and
W1, . . . , Wh P RdIˆd and WO P RdOˆdh be h` 1 matrices, then

MultAttpXq “ WO

ˆ

AttpW1Xq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. . .
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

AttpWhXq
˙

, (7.5)

where the || operator denotes row-wise concatenation. In this chapter,
we will consider each attention head separately, using the fact that the
Lipschitz constant of multi-head attention can be bounded by that of
each attention head.

Theorem 12. If each attention head is Lipschitz continuous, then multi-head
attention as defined in Equation (7.5) is Lipschitz continuous and

LFpMultAttq ď LFpAttq}WO}˚

g

f

f

e

h
ÿ

k“1

}Wk}
2
˚ . (7.6)
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Proof. As MultAttpXq “ WO

ˆ

AttpW1Xq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. . .
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

AttpWhXq
˙

, we have, for

any matrix H P Rdˆn,

DMultAttXpHq “ WO

ˆ

DAttW1XpW1Hq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. . .
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

DAttWhXpWhHq
˙

. (7.7)

First, note that, for any matrices A P Rnˆm and B P Rmˆl, we have
}AB}2F “

ř

i }ABi}
2
2 ď

ř

i }A}
2
˚}Bi}

2
2 “ }A}2˚}B}2F by definition of the

spectral norm }A}˚. Hence, we have, for any matrices X, H P Rdˆn,

}DMultAttXpHq}2F ď }WO}
2
˚

›

›

›

›

ˆ

DAttW1XpW1Hq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

. . .
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

DAttWhXpWhHq
˙›

›

›

›

2

F

“ }WO}
2
˚

h
ÿ

k“1

}DAttWkXpWkHq}2F

ď }WO}
2
˚

h
ÿ

k“1

~DAttWkX~
2
F}WkH}2F

ď }WO}
2
˚

h
ÿ

k“1

LFpAttq2}Wk}
2
˚}H}

2
F ,

which leads to the desired result, as: LFp f q “ maxX ~D fX~F “

maxX,H }D fXpHq}F{}H}F.

Transformer Case: For Transformers, m “ n and the input matrix
is decomposed as X “ pQ||K||Vq, where Q, K, V P Rdˆn represent,
respectively, queries, keys and values. The attention model is then

AttpXq “ Vsoftmax
ˆ

QJK
?

d

˙J

. (7.8)

Note that the softmax is not multiplied by the whole input vector X, but
only the values V. This is equivalent to projecting the output vectors
on a subspace, and thus does not lead to an increase in the Lipschitz
constant.

7.4 The Lipschitz Constant of Attention

As their name suggest, the purpose of attention layers is to select a small
number of input vectors (softmax probabilities tend to focus most of
their mass on the largest score). Unfortunately, large scores also tend to
create large gradients. In order to show this behavior, we first provide a
computation of the norm of the derivative of attention layers.
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Derivative of Attention Models: A direct computation using the defi-
nition of Equation (7.4) and the chain rule gives

DAttXpHq “ HsoftmaxpgpXqqJ ` XDsoftmaxgpXqpDgXpHqqJ , (7.9)

where H P Rdˆn is an input perturbation. We handle both terms sepa-
rately, leading to the following upper bound on the Lipschitz constant.

Lemma 7. For any X P Rdˆn, the norm of the derivative of attention models
(see Equation (7.4)) is upper bounded by:

~DAttX~F ď }softmaxpgpXqq}F `
?

2}XJ}p8,2q~DgX~F,p2,8q . (7.10)

Equation (7.10) shows that the Lipschitz constant is controlled by two
terms: the first one is related to the uniformity of the softmax probabilities,
while the second one is related to the size of the input and gradient of
the score function. In what follows, we will examine these two terms
and show that normalizing the scores by a well-chosen scalar allows to
control both simultaneously.

Proof. Using the chain rule on the derivative of AttpXq “ XsoftmaxpgpXqqJ,
we immediately obtain, for any H P Rdˆn,

DAttXpHq “ HsoftmaxpgpXqqJ ` XDsoftmaxgpXqpDgXpHqqJ , (7.11)

and thus

}DAttXpHq}F ď }HsoftmaxpgpXqqJ}F ` }XDsoftmaxgpXqpDgXpHqqJ}F .
(7.12)

First, we have }HsoftmaxpgpXqqJ}F ď }H}F}softmaxpgpXqq}F by multi-
plicativity of the Frobenius norm. The second term follows from the
bound, for any matrices A P Rdˆn and B P Rmˆn,

}ADXsoftmaxpBqJ}F ď
?

2}AJ}p8,2q}B}p2,8q , (7.13)

that we will prove below. Assuming that Equation (7.13) holds, we have,
for any H P Rdˆn,

}DAttXpHq}F ď
´

}softmaxpgpXqq}F `
?

2}XJ}p8,2q~DgX~F,p2,8q

¯

}H}F ,
(7.14)

and the desired result. Equation (7.13) is proven as follows: the deriva-
tive of the softmax is given by

DXsoftmaxpBqij “
ÿ

k

softmaxpXqijsoftmaxpXqikpBij ´ Bikq , (7.15)
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and thus

pADXsoftmaxpBqJqij “
ÿ

k

AikDXsoftmaxpBqjk

“
ÿ

k,l

AiksoftmaxpXqjksoftmaxpXqjlpBjk ´ Bjlq

“
ÿ

k

AiksoftmaxpXqjkBjk

´
ÿ

l

˜

ÿ

k

AiksoftmaxpXqjk

¸

softmaxpXqjlBjl

“
ÿ

k

AiksoftmaxpXqjkBjk

´
ÿ

l

pAsoftmaxpBqJqijsoftmaxpXqjlBjl

“
ÿ

k

softmaxpXqjkBjk

´

Aik ´ pAsoftmaxpBqJqij
¯

.

Inserting this last equality within the Frobenius norm, we get

}ApDXsoftmaxpBqqJ}2F “
ÿ

i,j

˜

ÿ

k

softmaxpXqjkBjkpAik ´ pAsoftmaxpBqJqijq

¸2

ď
ÿ

i,j,k

softmaxpXqjkB2
jk

´

Aik ´ pAsoftmaxpBqJqij
¯2

“
ÿ

j,k

softmaxpXqjkB2
jk}A

J
k ´ pAsoftmaxpBqJqJj }

2
2 ,

where the inequality comes from Jensen’s inequality applied to the
square function (i.e. ErZs2 ď ErZ2s for any r.v. Z) and the fact that
softmaxpXqj is a probability distribution. Finally, as pAsoftmaxpBqJqJj is
a weighted average of the vectors AJk , and is thus in their convex hull,
we have }AJk ´ pAsoftmaxpBqJqJj }

2
2 ď 2 maxk }AJk }

2
2, and thus

}ApDXsoftmaxpBqqJ}2F ď 2
ÿ

j,k

softmaxpXqjkB2
jk}A

J
}

2
p8,2q

ď 2
ÿ

j

}softmaxpXqJj }1}B
J
j }

2
8}A

J
}

2
p8,2q

“ 2}B}2p2,8q}A
J
}

2
p8,2q ,

where the second inequality uses the Hölder inequality and the last line
is due to }softmaxpXqJj }1 “ 1. This finishes the proof and leads to the
desired inequality.
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Uniformity of the Softmax Probabilities: The first term in Equa-
tion (7.10) is directly related to how far the softmax probabilities are
from being uniform. More precisely, we have

}softmaxpgpXqq}F “

d

m`
řm

i“1 dχ2pSi, Unq

n
, (7.16)

where Si is the i-th row of softmaxpgpXqq, Un is the uniform distribution
over n elements, and dχ2pp, qq “

ř

i qippi{qi ´ 1q2 is the χ2-divergence
between p and q [47]. Hence, if all attention heads have uniform
probabilities, then dχ2pSi, Unq “ 0 and }softmaxpgpXqq}F “

a

m{n. On
the contrary, the distances are maximum when the whole mass of the
probabilities is on one element, and in such a case dχ2pSi, Unq “ n´ 1
and }softmaxpgpXqq}F “

?
m.

Lemma 8. For any M P Rmˆn, we have
a

m{n ď }softmaxpMq}F ď
?

m . (7.17)

When m " 1 (e.g. m “ n for Transformers), this implies that the gradients
of attention models can be large and lead to the explosive phenomena
observed in Section 7.6. Fortunately, controlling the scale of the scores is
sufficient to control the uniformity of the probabilities.

Lemma 9. If all the scores are bounded by α ě 0, i.e. for all i P t1, . . . , mu and
j P t1, . . . , nu, |gpxqij| ď α, then

}softmaxpgpXqq}F ď eα

c

m
n

. (7.18)

Hence, the first objective of the normalization is to scale the scores to
avoid softmax probabilities to put their entire mass on a single vector.

Impact of a Scalar Normalization: Without any additional control,
Lemma 7 does not prove the Lipschitz continuity of attention models, as
the second term is proportional to the norm of the input matrix }XJ}p8,2q.
For example, if the scores are linear, then their derivative is constant,
and the second term in Equation (7.10) is not bounded. In order to
address this issue, we propose to normalize the score function by a
scalar function c : Rdˆn Ñ R`:

gpXq “
g̃pXq
cpXq

, (7.19)

where g̃ is the original score function, and g the normalized one. When
cpXq is chosen wisely, this simple normalization is sufficient to obtain a
tight bound on the Lipschitz constant of the attention (see Section 7.5).
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Theorem 13. Let α ě 0. If, for all X P Rdˆn, we have

(1) }g̃pXq}8 ď αcpXq,

(2) }XJ}p8,2q~Dg̃X~F,p2,8q ď αcpXq,

(3) }XJ}p8,2q~DcX~F,1}g̃pXq}p2,8q ď αcpXq2,

then attention models (see Equation (7.4)) with score function gpXq “
g̃pXq{cpXq are Lipschitz continuous and

LFpAttq ď eα

c

m
n
` α
?

8 . (7.20)

Proof. Using Lemma 1 and Lemma 3 and the assumptions (1), we have,

~DAttX~F ď }softmaxpgpXqq}F `
?

2}XJ}p8,2q~DgX~F,p2,8q

ď eα

c

m
n
`
?

2}XJ}p8,2q~DgX~F,p2,8q ,

where the first inequality is due to Lemma 1 and the second inequality
is due to Lemma 3 and assumption (1) (as then }gpXq}8 ď α). Moreover,
the derivative of the score function gpXq “ g̃pXq{cpXq gives

DgXpHq “
Dg̃XpHq

cpXq
´

DcXpHqg̃pXq
cpXq2

, (7.21)

and thus,

~DgX~F,p2,8q ď
~Dg̃X~F,p2,8q

cpXq
`
~DcX~F,1}g̃pXq}p2,8q

cpXq2
. (7.22)

Finally, using this equation and assumption (2) and (3), we have

~DAttX~F ď eα

c

m
n
`

?
2}XJ}p8,2q~Dg̃X~F,p2,8q

cpXq
`

`

?
2}XJ}p8,2q~DcX~F,1}g̃pXq}p2,8q

cpXq2

ď eα

c

m
n
`
?

2α`
?

2α

ď eα

c

m
n
` α
?

8 ,

and the desired result.

Remark 5. Note that Theorem 2 still holds if AttpXq “ hpXq softmaxpgpXqqJ

and LFphq ď 1 (i.e. the function h is contractive). In such a case, the
assumptions become:

(1) }g̃pXq}8 ď αcpXq,
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FIGURE 7.2: Pipeline of an attention mechanism along
with the proposed normalization. For clarity, we assume
a linear score function gpxq “ WJX, expressed as a dot

product operator.

(2) }hpXqJ}p8,2q~Dg̃X~F,p2,8q ď αcpXq,

(3) }hpXqJ}p8,2q~DcX~F,1}g̃pXq}p2,8q ď αcpXq2.

First, note that α controls the scale of all the scores, as assumption (1)
implies }gpXq}8 ď α. Thus, when the scores are allowed to reach values
of order « 1, and when m ď n, Theorem 13 implies that the Lipschitz
bound is also of order « 1. The assumptions (1)-(3) of Theorem 13 are
rather restrictive, and finding a proper normalization cpXq in the general
case is a difficult problem. However, we will see in the next section that
a solution can be found in most practical cases of interest.

7.5 The LipschitzNorm normalization

In this section, we present our proposed normalization, the Lips-
chitzNorm in three different settings: Lipschitz, linear and quadratic
score functions. These settings cover most of the practical applications,
including Transformers, GAT and GT models. All settings are particular
instances of a common idea: impose assumptions (1)-(3) of Theorem 13
by dividing by the maximum of input values. A visualization of how Lip-
schitzNorm is applied to an attention model with linear score function
is shown in Figure 7.2.

Lipschitz scores: When the score function is Lipschitz, the assump-
tions in Theorem 13 can be met, for α ě 0, by

gpXq “
α g̃pXq

max
 

}g̃pXq}p2,8q, }XJ}p8,2qLF,p2,8qpg̃q
( . (7.23)

The denominator is composed of two terms: the first ensures that all the
scores are bounded (by α), while the second ensures that the gradient of
the normalized scores remains low compared to the scale of the input
vector. Note that }XJ}p8,2q is the maximum of the norm of input vectors.

Theorem 14. If the score function g̃ is Lipschitz continuous, then the attention
layer with score function as defined in Equation (7.23) is Lipschitz continuous
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FIGURE 7.3: Gradient evolution of attention weights of a
20-layer GAT model for each layer throughout training.
Each cell i, j represents the norm of the gradients of the
attention weights in the i-th layer and trained until j-th
epoch. The left heat map corresponds to the standard
GAT without any normalization, where the phenomenon
of gradient explosion occurs. The right heat map cor-
responds to the GAT model using LipschitzNorm. The
proposed normalization restrains the attention weights

from explosion.

and

LFpAttq ď eα

c

m
n
` α
?

8 . (7.24)

The proof can be found in Appendix B.5.1. Note that α “ 0 leads to a
uniform distribution and gradient vanishing when m ! n (for example
m “ 1 when the output is a single vector). On the contrary, a large α " 1
will lead to very large gradients that may destabilize training. In our
experiments, we show that α “ 1 is a good trade-off that allows to create
relatively peaked attention weights, while maintaining a low Lipschitz
constant (see Section 7.7).

Linear Score Function: The initial definition of attention layers con-
siders a linear score function g̃pXq “ QJX for Q P Rdˆm. As this score
function is Lipschitz continuous, Theorem 14 is directly applicable and
leads to the following normalization, called LipschitzNorm,

gpXq “
QJX

}Q}F}XJ}p8,2q
. (7.25)

Note that, contrary to Transformers, the query matrix Q is assumed to
be a parameter of the model instead of an input.
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Corollary 2. The attention layer with score function as defined in Equa-
tion (7.25) is Lipschitz continuous and

LFpAttq ď e1
c

m
n
`
?

8 . (7.26)

Transformer Case: For Transformers, the query matrix Q is an input
of the model, and the score function is thus quadratic. As quadratic
functions are not Lipschitz, Theorem 14 is not applicable. Fortunately,
we can adapt the same idea to this setting. As defined in Section 7.3.3,
let X “ pQ||K||Vq be a concatenation of queries, keys and values. Then,
the assumptions in Theorem 13 are met by

gpXq “
QJK

max tuv, uw, vwu
, (7.27)

where u “ }Q}F, v “ }KJ}p8,2q, and w “ }VJ}p8,2q. Compared to the
linear case of Equation (7.25), we decompose the input matrix norm
}XJ}p8,2q into }KJ}p8,2q and }VJ}p8,2q and return the product between
the maximum and second maximum of }Q}F, }KJ}p8,2q, and }VJ}p8,2q.

Corollary 3. The attention layer with score function as defined in Equa-
tion (7.27) is Lipschitz continuous and

LFpAttq ď e
?

3
c

m
n
` 2
?

6 . (7.28)

Finally, as discussed in Section 7.3.3, we normalize multi-head attention
by normalizing each attention head separately. Theorem 12 then directly
implies the following bound on the Lipschitz constant of the whole
multi-head attention layer:

LFpMultAttq ď 11}WO}˚

g

f

f

e

h
ÿ

k“1

}Wk}
2
˚ , (7.29)

where W1, . . . , Wh (resp. WO) represent the input (resp. output) projec-
tion matrices (see Equation (7.5)), and m “ n.

Implementation details: Given an attention model M with score func-
tion g, we define M-Lip as the updated attention model with the appli-
cation of LipschitzNorm. This normalization requires three steps, that
we now provide for the linear and Transformer settings:

1. Frobenius norm of the queries: First, we compute the Frobenius

norm of Q: u “
b

ř

i }qi}
2
2.
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2. Input norms: Then, we compute the maximum 2-norm of the
input vectors v “ maxi }xi}2 (or v “ maxi }ki}2 and w “ maxi }vi}2
for Transformers).

3. Scaling: Finally, we divide the score function by the product uv
(or maxtuv, uw, vwu for Transformers).

Each attention head is treated separately, and thus all the norms and
maximums are taken per head. Moreover, in the case of graph attention,
the norms and maximums are computed neighbor-wise, i.e. for each node,
we compute the maximum of the 2-norms of its neighbors.

Complexity: The overcost of the proposed method is based on the row-
wise and column-wise norm computations. Given that n is the number
of input vectors, d is the representation dimensionality and h the number
of heads, the complexity of LipschitzNorm Ophndq. It remains negligible
w.r.t. the overall cost of attention that is Ophnd2q.

7.6 Gradient Explosion and Vanishing

Similar to the deep neural networks, the design and efficient training
of deep attention models has a tight connection with their Lipschitz
continuity. In fact, given M Lipschitz continuous attention layers Attmp¨q

with Lipschitz constants lm “ LFpAttmq , their composition f “ Att1 ˝

Att2 ˝ ... ˝Attm´1 ˝Attm is Lipschitz continuous with Lipschitz constant
upper-bounded by

LFp f q ď
M
ź

m“1

LFpAttmq. (7.30)

Equation (7.30) implies that there is a multiplicative effect on the gradient
flow of an M-layered attention model. Thus, enforcing the attention layer
to be Lipschitz continuous with tight Lipschitz bounds can alleviate
gradient explosion and allow for the design of deeper attention-based
models.

Figure 7.3 (left picture) shows that gradient explosion occurs in a deep
(20 layers) Graph Attention Network (GAT) [220] applied to a node
classification task on Cora dataset [153]. Throughout 100 epochs of
training, the gradients of the attention weights in each GAT layer exhibit
a steep increase, reaching extremely large value of the order of 108.
However, Figure 7.3 (right picture) shows that LipschitzNorm is able
to prevent gradient explosion, and throughout training, the gradients
of the attention weights remain stable. Figure 7.4 shows that gradient
explosion also comes with poor performance, and even a total lack of im-
provement in training accuracy for a GAT model with 30 layers. Again,
LipschitzNorm avoids this behavior and allows for proper training in all
regimes, showing that enforcing the Lipschitz continuity of the attention
layer can help towards the design of deeper architectures.
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FIGURE 7.4: Convergence of train accuracy for a GAT
model on node classification task using no normalization

(left) and using LipschitzNorm (right).

7.7 Experimental Evaluation

We now examine the practical contribution of our normalization Lips-
chitzNorm in real-world and synthetic benchmarks. In Section 7.7.1, we
evaluate LipschitzNorm in real-world datasets that require the design of
deeper GNN models. In Section 7.7.2, we perform a synthetic study
of increasing data and model depth and in Section 7.7.3, we apply
LipschitzNorm to attention-based GNNs of increasing model depth
in real-world node classification tasks.

7.7.1 Node Classification with Missing Information

In most standard node classification benchmarks, the nodes present
short-range dependencies, thus, making the fair evaluation of deeper
models a difficult task. Towards a more solid comparison of deep GNNs,
Zhao and Akoglu [252] presented a realistic framework that requires
the design of deeper models by introducing an information noise of
missing feature vectors. In particular, for a node classification task let
a node attributed graph D “ pVu Y Vl, E, X, Uq, where Vu, Vl are the
node sets of the unlabeled and the labeled nodes respectively, E is the
edge set, X P Rnˆd is the node attribute matrix and U P Nnˆm is the
label matrix. For an unlabeled node subset M Ď Vu we remove its
node attributes: tXj|j PMu and we call this framework missing-vector
setting with fraction p “ |M|

|Vu|
. This setting can represent cases of graph-

based classification tasks with the cold-start phenomenon (i.e there is no
history/feature information of the entities/nodes).

Dataset and Model Setup: We used three standard node classification
datasets Cora, CiteSeer and PubMed [153, 78]. More details on the
datasets can be found in Appendix A.2. The train/validation/test
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TABLE 7.1: Classification accuracies for the missing-vector
setting. In parentheses we denote the number of layers of
the best model chosen for the highlighted accuracy. We
denote by ’-Pn’ the application of PairNorm and by ’-Lip’

the application of the proposed LipschitzNorm.

Cora CiteSeer Pubmed
0% 100% 0% 100% 0% 100%

GCN 82.5˘ 1.2 (2) 58.8 ˘ 3.5 (2) 69.5 ˘ 2.1 (2) 31.3 ˘ 2.7 (2) 77.9 ˘ 1.4 (2) 44.9 ˘ 4.4 (2)
GGNN 81.8 ˘ 2.0 (2) 68.2 ˘ 2.5 (6) 68.5 ˘ 1.9 (3) 40.5 ˘ 1.4 (5) 78.4 ˘ 2.1 (4) 56.6 ˘ 1.9 (4)

GAT 82.3 ˘ 2.3 (2) 65.3 ˘ 2.1 (4) 69.3 ˘ 1.6 (2) 42.8 ˘ 1.6 (4) 77.4 ˘ 0.5 (6) 63.1 ˘ 0.7 (4)
GAT-Pn 78.8 ˘ 0.6 (4) 73.8 ˘ 1.2 (12) 67.2 ˘ 0.8 (4) 51.7 ˘ 1.1 (10) 77.6 ˘ 1.6 (8) 70.4 ˘ 1.1 (12)
GAT-Lip 83.1˘ 0.5 (5) 75.3˘ 0.9 (11) 69.1 ˘ 1.5 (3) 50.9 ˘ 1.9 (9) 78.9 ˘ 1.3 (5) 73.3 ˘ 1.4 (15)

splits were the same as in [118]. Following Zhao and Akoglu [252],
for each dataset we had 2 node feature setups: the 0% setup, where no
attribute were removed and the 100% setup, where all attributes of the
unlabeled nodes were removed. We experimented with 3 models: 1)
GCN: Graph Convolutional Network [118], 2) GGNN: Gated Graph
Neural Network [139] and 3) GAT: Graph Attention Network [220].

Model Selection: For all three GNN models, i.e GCN, GGNN, GAT
and the normalization scenarios we performed cross-validation with
predefined train/validation/test splits. For a fair comparison we used
the same splits for all three datasets (Cora, CiteSeer and PubMed) as
reported and used in [118].

Hyper-parameter tuning: We performed grid-search to tune the hyper
parameters. The hyper-parameters that were tuned are the following:

• Number of GNN layers: For all models and datasets, we used l
GNN layers where l P t1, 2, 3, .., 20u.

• Hidden units size: The dimensionality of the hidden units in all
models was in t8, 16, 32, 64, 128u.

• Attention heads: In the case of the GAT model, the attention heads
that we used were in t1, 2, 4, 8u.

• Dropout ratio: The dropout ratio was set in t0, 0.5u.

Results: Table 7.1 shows the average classification accuracy achieved
in the standard and the missing-vector setting. LipschitzNorm enables
the training of deeper GAT layers, as in the missing-vector setting with
p “ 100%, GAT-Lip (i.e. the GAT model with LipschitzNorm) achieves
state-of-the-art classification accuracies in four out of the six setups.
Moreover, it is noteworthy that GAT-Lip exhibits a solid performance
for both the 0% and the 100% scenarios, outperforming PairNorm.

The need for a deeper GNN model is clear in Fig. 7.5. We visualize
the performance of a GAT model with and without LipschitzNorm
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FIGURE 7.5: Classification accuracy of Graph Attention
Network (GAT) with and without LipschitzNorm for the

100% setting of PubMed.

TABLE 7.2: Comparison of GAT-Lip, GCNII for Ogbn-
arxiv in 0% setting and Cora/PubMed in 100%. Asterisk
denotes the reported result in the public OGB leaderboard.

Ogbn-arxiv (0%) Cora (100%) PubMed (100%)
GCNII 72.74 (-)˚ 74.9 ˘ 0.4 (14) 73.9 ˘ 0.3 (16)

GAT-Lip 74.62 ˘ 1.1 (8) 75.3˘ 0.9 (11) 73.3 ˘ 1.4 (15)

in the 100% setting of the PubMed dataset. Specifically, the GAT-Lip
model exhibits an increasing accuracy as the number of layers is higher,
showing that a larger depth is required for the inference in the case of
the missing feature information. Also, it is clear that LipschitzNorm has
a crucial impact on the model training, as GAT without LipschitzNorm
fails to learn the task.

Deep Attention vs Deep Convolution: LipschitzNorm is a normaliza-
tion that can be included in any attention model to establish Lipschitz
bounds and build deeper architectures. It is interesting to see how a deep
attention-based graph model is compared to a deep convolution-based
one. Thus, we compare the GAT-Lip model with the GCNII [39] in Cora,
PubMed (100% setting) and in Ogbn-arxiv (0% setting) dataset [102].

Table 7.2 shows that GAT-Lip can outperform GCNII in the 0% setting of
Ogbn-arxiv with a margin of ą 1.5%. Furthermore, on the 100% settings



7.7. Experimental Evaluation 131

of Cora and PubMed GAT-Lip and GCNII using a number of layers ą 10
achieve similar accuracies without a clear lead.

7.7.2 Model Depth in Synthetic Trees

An intuitive way to show the ability of a deeper GNN model to capture
long-range interactions is to generate synthetic graphs with nodes that
are distant and have the same behavior. Thus, following Alon and Yahav
[3], we create the TREES dataset. That is a set of directed trees (from the
root to the leaves) of labeled nodes with increasing depth d P t2, ..., 10u,
where the leaves of the tree are colored blue, the root of the tree and the
predecessors of the leaves are colored green and the rest of the nodes
remain uncolored. The task is to predict the label of the tree’s root green
node, according to the label of the other green nodes. In other words,
the label of the root node is affected by the information from the leaves.

TREES Dataset: The generated tree structure simulate the exponential
growth of the receptive field of the nodes, so that the information passes
between two distant nodes. For this goal, we created for every tree
depth 5000 binary trees and we run each experiment 10 times. Following
Alon and Yahav [3], we did not use explicitly extra blue neighbors, but,
instead, we encoded their existence with 1-hot vectors of their cardinality
as node attributes of the green nodes.

Model Setup: We compared the performance of Graph Convolutional
Network [118], Graph Isomorphism Network [238], Gated Graph Neural
Network [139] and Graph Attention Network [220]. Each model was im-
plemented with d` 1 graph layers, where d “ tree depth and the hidden
units size is set to 32. Moreover, we used either no normalization (None
case in Figure 7.6), PairNorm [252], or our proposed LipschitzNorm.

Discussion: Figure 7.6 shows the train accuracy of the GNN models
as the tree depth increases. Aligned with the previously found results,
GAT and GGNN exhibit a better behavior with respect to the model
depth. Moreover, the application of normalization methods has a sig-
nificant impact on the performance of deeper models. GAT using the
proposed normalization clearly outperforms the other architectures (for
tree depth=10, GAT-Lip achieves 68.3% training accuracy, while GAT-Pn
achieves 47.8% and all other variants achieve ă 25%), showcasing the
contribution of LipschitzNorm to the design of deeper architectures.

7.7.3 Model Depth in Real-World Datasets

In this section, we measure the behavior of LipschitzNorm with respect
to an increasing number of layers in real-world datasets. We apply the
proposed normalization to two types of attention-based GNNs. We use
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FIGURE 7.6: Train accuracies of four GNN models on the
TREES dataset. We compare the model performance us-
ing: no normalization (circular dots), PairNorm (triangular

dots) and the proposed LipschitzNorm (square dots).

the well-examined datasets Cora and PubMed [153] and two datasets from
Open Graph Benchmark [102]: Ogbn-arxiv and Ogbn-proteins. Details
and statistics of the datasets are provided in Appendix A.2.

Experimentation Setup: We used two attention-based graph neural
networks, as described in Section 7.5: Graph Attention Network [220]
and Graph Transformer [206]. For the two models, we compared the
contribution of LipschitzNorm with two other normalization methods:
the PairNorm [252] and the LayerNorm [10]. The number of attention
layers was l P t2, 5, 10, 15, 20, 25, 30u. We performed cross validation,
where the train/validation/test splits in Cora and PubMed were the
same as in Kipf and Welling [118], and for Ogbn-arxiv and Ogbn-
proteins we used the same splitting methods as used in Hu et al. [102].
We used the Adam optimizer [117] with a weight decay L “ 5 ˚ 10´4 and
the initial learning rate was set in t0.1, 0.01, 0.005, 0.001u.

Model Selection: We performed for all models and datasets cross-
validation with predefined train, validation and test splits and reported
the best achieved validation accuracy. For Cora and PubMed, as in
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FIGURE 7.7: Test accuracies of a Graph Attention Network
(GAT) and a Graph Transformer (GT). By ’-Lip’ we denote
the application of LipschitzNorm, by ’-Ln’ the LayerNorm
and by ’-Pn’ the PairNorm. In Ogbn-proteins dataset, the

observed metric is ROC-AUC instead.

Section 7.1, we used the same splits as in [118]. For the other two
datasets we have:

1. Ogbn-arxiv: We used the same splitting method as used in [102].
Specifically, the train split corresponds to the papers published
until 2017, the validation split to the ones published in 2018 and
the test split to the ones published in 2019. We used a full-batch
training.

2. Ogbn-proteins For this dataset, we used, also, the same splitting
method as in [102]. That is we split the nodes according to the node
labels and in particular grouping according to the protein species.
Similar to [206], we used neighbor sampling [90] as a sampling
method, due to the size of the graph.

Model Depth: In order to examine the model behavior under the depth
increase, for each architecture we used models consisting of l GNN
layers, where l P t2, 5, 10, 15, 20, 25, 30u. We run each experiment 5 times
and we keep the configuration with the best average accuracy.

Hyper-parameter tuning: For each model depth and GNN model,
we performed grid-search for hyper-parameter tuning. The hyper-
parameters that were tuned are the following:

1. Graph Attention Network [220]: The dimensionality of the hidden
units was set in t8, 16, 64, 128u. The number of attention heads
was selected between t1, 2, 4, 8u and we experimented over two
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TABLE 7.3: Classification accuracies of deep GAT models
(15 and 30 layers) with/without residual connections and

with/without LipschitzNorm.

Cora PubMed
Num. of layers 15 30 15 30

GAT 38.2 ˘ 1.7 29.5˘ 3.6 68.9˘ 1.5 28.2 ˘ 3.1
GAT-res 76.1 ˘ 1.2 63.5 ˘ 2.1 76.2 ˘ 1.1 63.8 ˘ 3.3
GAT-Lip 79.4 ˘ 0.7 69.3 ˘ 4.1 76.4˘ 1.5 67.2 ˘ 2.1

GAT-Lip-res 80.2 ˘ 1.1 69.4 ˘ 2.8 77.3 ˘ 1.0 68.7 ˘ 1.8

standard aggregators of the attention heads: a) concatenation and
b) averaging of the attention heads. The dropout of the attention
weights was set in t0, 0.2, 0.5u.

2. Graph Transformer from the UNIMP framework [206]: The hid-
den dimensionality was selected from t8, 16, 64, 128u and the num-
ber of attentions heads from t1, 2, 4u. We tested concatenation and
averaging of the attention heads and the dropout of the attention
weights was set in t0, 0.5u.

Discussion: In Figure 7.7, we highlight the impact of LipschitzNorm
on graph neural networks with respect to the model depth. For all
four datasets LipschitzNorm enables both GAT and GT to learn and
maintain information throughout layers. Even for a large number of
layers pl ą 15q, where the models without any normalization fail to
converge, the variants using the LipschitzNorm achieve comparable
to the state-of-the-art results in the node classification tasks. More
importantly, LipschitzNorm outperforms PairNorm and LayerNorm, as
it enhances the performance of shallow architectures and maintains it to
deeper architectures.

Residual Connections: Residual connections have been proven to be
useful towards the design of deeper GNN models [133, 39]. Therefore,
a comparison with LipschitzNorm and an evaluation how they can be
combined is necessary. Table 7.3 suggests that residual connections
with GAT layers enhance the performance of deep GNNs. However,
LipschitzNorm significantly outperforms GAT-res in deep scenarios
(`6% improvement on Cora with 30 layers). Moreover, combining
LipschitzNorm with residual connections slightly improves the perfor-
mance, showing the ability of our method to be smoothly incorporated
in various models.

7.8 Conclusion

In this chapter, we introduced a novel normalization layer, called Lips-
chitzNorm, for attention-based neural networks with a particular focus
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on the design of attention-based GNNs. We proved that the application
of LipschitzNorm enforces the Lipschitz continuity of self-attention
layers. In an empirical study, we showed that Lipschitz continuous
modules can prevent from gradient explosion phenomena and, thus, can
improve the performance of deep attention models.

Focusing on Graph Neural Networks (GNNs), where designing deep
models is still a challenging task, we applied LipschitzNorm to standard
attention-based GNNs. We showed that LipschitzNorm allows to build
deep GNN architectures with strong performance on node classification
tasks that exhibit long-range interactions.
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Chapter 8

Structural Symmetries in Graphs

8.1 Introduction

So far, we have studied models that learn representations over graphs,
where the nodes are affected by their close neighbors. The property
of node homophily or assortativity (i.e., similar nodes tend to interact
with each other) is not always the case, as long-range dependencies,
structural noise, or a misinformed network representation of the data
can occur [152, 132, 133]. In Chapter 7, we investigated how attention-
based GNNs can be extended into larger depths in order to capture more
implicit information from larger neighborhoods through a normalization
scheme.

Building deeper GNNs provides a solution for detecting information
that is not expressed by close nodes. However, when the graph structure
itself does not include such proximal relationships, deeper models do
not seem to be an appropriate choice. However, some tasks require
assigning similar representations to nodes that can be distant in the
graph, but structurally equivalent, that is, nodes whose neighborhoods
share similar structural characteristics. Figure 8.1 shows a visualization
of the structural equivalence that can occur in a large network. For
example, in chemistry, the properties of a molecule often depend on the
interaction of the atoms at its opposite sides and their neighborhood
topology [152].

These tasks require structural representations, i.e., embeddings that can
identify structural properties of a node’s neighborhood. There is a grow-
ing literature that addresses this problem through different approaches.
RolX [96] extracts features for each node and performs non-negative
matrix factorization to automatically discover node roles. Struc2vec [186]
performs random walks on a constructed multi-layer graph to learn
structural representations. GraphWave [63] and DRNE [218] employ
diffusion wavelets and LSTM aggregation operators, respectively, to gen-
erate structural node embeddings. However, most of these approaches
suffer from high time or space complexity.
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Large 
Network

FIGURE 8.1: Nodes with similar roles can lie in distant
parts of the same network.

In this chapter, we propose a novel and simple structural node represen-
tation algorithm, VNEstruct, that capitalizes on information-theoretic
tools. The algorithm employs the Von Neumann entropy to construct
node representations related to the structural identity of the neighbor-
hood of each node. These representations capture the structural sym-
metries of the neighborhoods of the increasing radius of each node. We
show empirically the ability of VNEstruct to identify structural roles and
its robustness to graph perturbations through a node classification and
node clustering study on highly symmetrical synthetic graphs. More-
over, we introduce a method of combining the generated representations
by VNEstruct with the node attributes of a graph in order to avoid the
incorporation of the graph topology in the optimization, contrary to the
workflow of a GNN. Evaluated on real-world graph classification tasks,
VNEstruct achieves state-of-the-art performance while maintaining a
high efficiency compared to standard GNN models.

8.2 Structural Representations based on Von
Neumann Entropy

Next, we present VNEstruct for generating structural node representa-
tions, employing the Von Neumann entropy, a model-agnostic measure
that quantifies the structural complexity of a graph. The Von Neumann
graph entropy (VNE) has been shown to have a linear correlation with
other graph entropy measures [4]. Graph entropy methods have been
recently proved successful for computing graph similarity [131].

8.2.1 Von Neumann Entropy on Graphs

In quantum mechanics, the state of a quantum mechanical system is
described by a density matrix ρ, i.e., a positive semidefinite, hermitian
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FIGURE 8.2: VNEstruct extracts ego-networks for a series
of defined radii and computes the VNE for every radius.
On the left, the two parts of the network may have a large
distance through the network. The 1-hop ego-networks
are highlighted with dark yellow, while the remaining
nodes of the 2-hop ego-networks are highlighted with
light yellow. The nodes u, v have structurally equivalent
1-hop neighborhoods G1

u and G1
v, though their 2-hop neigh-

borhoods G2
u, G2

v do not.

matrix with unit trace [30]. The Von Neumann entropy of the quantum
system is defined as:

Hpρq “ ´Trpρ log ρq “ ´
n
ÿ

i“1

λi log λi, (8.1)

where Trp¨q is the trace of a matrix, and λi’s are the eigenvalues of ρ.
Correspondingly, connecting it to graphs, given a graph G “ pV, Eq and
its Laplacian LG “ D ´ A, the VNE denoted by HpGq , is defined as
in Equation 8.1, by replacing ρ with ρpLGq “

LG
TrpLGq

“
LG

2|E| [30]. Note

that λi “
1

TrpLGq
vi where λi, vi are the i-th eigenvalue of ρpLGq and LG,

respectively. Therefore, 0 ď λi ď 1 holds for all i P t0, 1, . . . , nu [173].
This indicates that Equation 8.1 is equivalent to the Shannon entropy of
the probability distribution tλiu

n
i“1. Hence, HpGq serves as a skewness

metric of the eigenvalue distribution, and it has been shown that it
provides information on the structural complexity of a graph [173].

Efficient approximation scheme. The computation of VNE requires the
eigenvalue decomposition of the density matrix which can be done in
Opn3q time. Recent works [40, 43] have proposed an efficient approxima-
tion of HpGq. Starting from Equation 8.1 and following [155], we obtain:

HpGq « Tr
`

ρpLGqpIn ´ ρpLGqq
˘

“ Q, (8.2)



140 Chapter 8. Structural Symmetries in Graphs

where In is the nˆ n identity matrix, and

Q “
TrpLGq

2m
´

TrpL2
Gq

4m2 “ 1´
1

2m
´

1
4m2

n
ÿ

i“1

d2
i , (8.3)

where m “ |E| and di is the ith-node degree. Finally, as [40] suggests, we
obtain a tighter approximation of HpGq:

Ĥ “ ´Q ln λmax , (8.4)

where λmax is the largest eigenvalue of ρpLpGqq. It can be shown that
for any graph G, we have HpGq ě ĤpGq where the equality holds if and
only if λmax “ 1 [43].

8.2.2 The VNEstruct Algorithm

Based on the VNE and its approximation, we introduce our proposed
approach to construct structural representations. The VNEstruct algo-
rithm extracts ego-networks of increasing radius and computes their
VNE. Then, the representation of a node comprises of the Von Neumann
entropies that emerged from the node’s ego-networks. Therefore, the set
of entropies of the ego-networks of a node serves as a “signature” of the
structural identity of its neighborhood.

Let R be the maximum considered radius. For each r P t1, .., Ru and each
node v P V, the algorithm extracts the r-hop neighborhood Gr

v “ pV1, E1q,
where V1 “ tu P V|dpu, vq ď ru and E1 “ tpu, vq|u, v P V1, pu, vq P Eu.
Next, HpGr

vq of the r-hop neighborhood of v is computed using Equa-
tion 8.4. Finally, the R entropies are arranged into a single vector hv P RR.
As shown in Figure 8.2, VNEstruct identifies structural equivalences of
nodes that are distant from each other. Specifically, nodes u and v share
structurally identical 1-hop neighborhoods. Therefore, the entropies of
their 1-hop neighborhoods are equal to each other.

Computational Complexity. The algorithm consists of: (1) the extrac-
tion of the ego-networks and (2) the computation of VNEs per subgraph.
The first step is linear in the number of edges of the node’s neighborhood.
In the worst case, the complexity is Opnmq, but for sparse graphs, the
complexity is constant in practice. For the second step, following the
approximation scheme in subsection 2.1, λmax is computed through the
power iteration method [156], which requires Opn`mq operations, as the
Laplacian matrix has n`m nonzero entries. Hence, the whole method
exhibits linear complexity Opn `mq, while for very sparse graphs, it
becomes Opnq.

Robustness over "small" perturbations. We will next show that uti-
lizing the VNE, we can acquire robust structural representations over
possible perturbations on the graph structure. Clearly, if two graphs
are isomorphic to each other, then their entropies will be equal to each
other. It is important, though, for structurally similar graphs to have
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similar entropies, too. So, let ρ, ρ1 P Rnˆn be the density matrices of two
graph laplacians LG, LG1 , as described above. Let also ρ “ Pρ1PJ ` ε
where P is an nˆ n permutation matrix equal to arg minP ||ρ´ Pρ1PJ||F
and ε is an nˆ n symmetric matrix. If G, G1 are nearly-isomorphic, then
the Frobenius norm of ε is small. By applying the Fannes-Audenaert
inequality [8], we have that:

|Hpρ̃q ´ Hpρq| ď
1
2

T lnpn´ 1q ` SpTq,

where T “ ||ρ̃ ´ ρ||1 is the trace distance between ρ, ρ̃ and SpTq “
´T log T ´ p1´ Tq logp1´ Tq. However, ||ρ̃´ ρ||1 “

ř

i |λ
ρ̃´ρ
i | ď n||ρ̃´

ρ||op, where || ¨ ||op is the operator norm. Therefore, |Hpρ̃q ´ Hpρq| ď
n
2 lnpn´ 1q||ε||op ` SpTq, leading thus to a size-dependent upper bound
of the difference between the entropies of structurally similar graphs.

8.2.3 Graph-level Representations

Next, we propose how the structural representations generated by
VNEstruct can be combined with node attributes to perform graph
classifications tasks. The majority of the state-of-the-art methods learn
node representations using message-passing schemes [91, 238], where
each node updates its representation according to its neighbors’ repre-
sentations, utilizing the graph structure information.

In this work, we do not use any message-passing scheme, and we ignore
the graph structure. Instead, we augment the node attribute vectors of a
graph with the structural representations generated by VNEstruct. Thus,
information about the graph structure is implictly incorporated into the
augmented node attributes. Given a matrix of node attributes X P Rnˆd,
the approach performs the following steps:

• Computation of Hv P RnˆR.

• Concatenation of node attribute vectors with structural node rep-
resentations: X1 “ rX||Hs P Rnˆpd`Rq.

• Aggregation of node vectors X1 into:
HG “ ψp

ř

vPVG
φpX1vqq, where φ and ψ are MLPs.

This approach is on par with recent studies that propose to augment
the node attributes with structural characteristics to avoid performing
message-passing steps [41]. In comparison to a GNN, this procedure
reduces the computational complexity of the training procedure since
each graph is represented as a set of node representations.

8.3 Experiments

Next, we empirically show the robustness that VNEstruct exhibits to
graph perturbations in subsection 3.1, and we evaluate its graph classifi-
cation performance in subsection 3.2.
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FIGURE 8.3: The barbell graph (right) and the 2-
dimensional representations of its nodes produced by

applying PCA to the VNEstruct embeddings (left).

8.3.1 Structural Role Identification

In order to evaluate the robustness of the structural representations
generated by our method, we measure its performance on two cases
of synthetic datasets, where the task of structural role identification is
highlighted.

Toy example: Barbell Graph

This toy graph consists of two cliques of size 10 that are connected
through a path of length 7. The graph is shown in Figure 8.3 (right). The
different colors indicate the roles of the nodes in the graph. Figure 8.3
(left) illustrates the 2-dimensional representations of the 27 nodes of
the graph. These representations were generated by the VNEstruct
algorithm (we set R “ 3 and then applied PCA to project them to the
2-dimensional space). We should mention that the proposed algorithm
can identify the structural role of the nodes in the barbell graph and
produce similar/identical embeddings for structurally similar/identical
nodes.

Highly-symmetrical synthetic networks

The second case of the synthetic experiment consists of a collection of
perturbed synthetic datasets, which were also introduced in Chapter 6,
and it follows the experimental setup of Donnat et al. [63]. We perform
both classification and clustering tasks with the same experimental setup
as in [63].
Dataset setup. Similarly to Chapter 6, the generated synthetic datasets
are identical to those used in [63]. They consist of basic symmetrical
shapes, as shown in Table 8.1, that are regularly placed along a cycle of
length 30. The basic setups use ten instances of only one of the shapes
of Table 8.1 while the varied setups use ten instances of each shape,
randomly placed along the cycle. The perturbed instances are formed by
randomly rewiring edges. The colors in the shapes indicate the different
classes.
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Configuration Shapes Algorithm Homogeneity Completeness Silhouette Accuracy F1-score

Basic OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.178 0.115 0.163 0.442 0.295
RolX 0.983 0.976 0.846 1.000 1.000
struc2vec 0.803 0.595 0.402 0.784 0.708
GraphWave 0.868 0.797 0.730 0.995 0.993
VNEstruct 0.986 0.983 0.891 0.920 0.901

Basic
Perturbed

OR OR

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.172 0.124 0.171 0.488 0.327
RolX 0.764 0.458 0.429 0.928 0.886
struc2vec 0.625 0.543 0.424 0.703 0.632
GraphWave 0.714 0.326 0.287 0.906 0.861
VNEstruct 0.882 0.701 0.478 0.940 0.881

Varied AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.327 0.220 0.216 0.329 0.139
RolX 0.984 0.939 0.748 0.998 0.996
struc2vec 0.805 0.626 0.422 0.738 0.592
GraphWave 0.941 0.843 0.756 0.982 0.965
VNEstruct 0.950 0.945 0.730 0.988 0.95

Varied
Perturbed

AND AND

21 1

11

1

1

1 1

1

1
1

1

2

22

2 2 2

DeepWalk 0.300 0.231 0.221 0.313 0.128
RolX 0.682 0.239 0.062 0.856 0.768
struc2vec 0.643 0.524 0.433 0.573 0.412
GraphWave 0.670 0.198 0.005 0.793 0.682
VNEstruct 0.722 0.678 0.399 0.899 0.878

TABLE 8.1: Performance of the baselines and the
VNEstruct method for learning structural embeddings
averaged over 20 synthetically generated graphs. Dashed

lines denote perturbed graphs.

Evaluation. For the classification task, we measure the accuracy and the
F1-score. For the clustering task, we report the 3 evaluation metrics that
were also calculated in [63]: the Homogeneity evaluates the conditional
entropy of the structural roles in the produced clustering result, the
Completeness evaluates how many nodes with equivalent structural roles
are assigned to the same cluster, and the Silhouette measures the intra-
cluster distance vs. the inter-cluster distance.

In Table 8.1, VNEstruct outperforms the competitors on the perturbed
instances of the synthetic graphs. On the basic and varied configurations,
VNEstruct outperforms the competitors in the node clustering evaluation
and achieves comparable performance with RolX in node classification.
On the perturbed configurations, VNEstruct exhibits stronger perfor-
mance than its competitors. The results in Table 8.1 suggest a comparison
of VNEstruct, RolX, and GraphWave in noisy scenarios. This comparison
is provided in Figure 8.4, where we report the performance with respect
to the number of rewired edges (from 0 to 20). We see that VNEstruct is
more robust than GraphWave and Rolx in the presence of noise.

8.3.2 Graph Classification

Next, we evaluate VNEstruct and the baselines in the task of graph clas-
sification. We compare our proposed algorithm against well-established
message-passing algorithms for learning graph representations. Note
that in contrast to most of the baselines, we pre-compute the entropy-
based structural representations, and then we represent each graph
as a set of vectors that encode structural characteristics. We used
four common graph classification datasets (three from bioinformatics:
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FIGURE 8.4: Classification and clustering performance of
VNEstruct and the baselines with respect to noise.

MUTAG, PROTEINS, PTC-MR and one from social-networks: IMDB-
BINARY [238]).

Baselines. The goal of the comparison is to show that by decomposing
the graph structure and the attribute space, we can achieve comparable
results to the state-of-the-art algorithms. Thus, we use as baselines
graph neural network variants and specifically: DGCNN [249], Capsule
GNN [236], GIN [238], GCN [118], GAT [220]. Moreover, GFN [41]
augments the attributes with structural features and ignores the graph
structure during the learning procedure.

Model setup. For the baselines, we followed the same experimental
setup, as described in [41] and, thus, we report the achieved accuracies.
For GAT, we used a summation operator as an aggregator of the node
vectors into a graph-level representation. Regarding the VNEstruct,
we performed 10-fold cross-validation with Adam optimizer, and a 0.3
learning rate decay every 50 epochs. In all experiments, we set the
number of epochs to 300. We choose the radius of the ego-networks
from r P t1, 2, 3, 4u and the number of hidden layers of the MLPs from
d P t8, 16, 32u.

Table 8.2 illustrates the average classification accuracies of the proposed
approach and the baselines on the 5 graph classification datasets. Inter-
estingly, the proposed approach achieves accuracies comparable to those
of the state-of-the-art message-passing models. VNEstruct outperformed
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FIGURE 8.5: Training time per epoch (in sec) of VNEstruct
and competitors for the graph classification tasks.

MUTAG IMDB-BINARY PTC-MR PROTEINS
DGCNN 85.83 ˘ 1.66 70.03 ˘ 0.86 58.62˘2.34 75.54 ˘ 0.94

CapsGNN 86.67 ˘ 6.88 73.10 ˘ 4.83 - 76.28 ˘ 3.63
GAT 88.90 ˘ 3.21 75.39 ˘ 1.30 63.87 ˘ 5.31 76.1 ˘ 2.89
GIN 89.40 ˘ 5.60 75.10 ˘ 5.10 64.6 ˘ 7.03 76.20 ˘ 2.60
GCN 87.20 ˘ 5.11 73.30 ˘ 5.29 64.20 ˘ 4.30 75.65 ˘ 3.24
GFN 90.84 ˘ 7.22 73.00 ˘ 4.29 - 77.44 ˘ 3.77

VNEstruct 91.08 ˘ 5.65 75.40 ˘ 3.33 65.39 ˘ 8.57 77.41 ˘ 3.47

TABLE 8.2: Average classification accuracy (˘ standard
deviation) of the baselines and the proposed VNEstruct.

all the baselines on 3 out of 4 datasets while achieving the second-best
accuracy on the remaining dataset (i.e., PROTEINS).

Figure 8.5 illustrates the average training time per epoch of VNEstruct
and the baselines that apply message-passing schemes. The proposed
approach is generally more efficient than the baselines. Specifically,
it is 0.31 times faster than GIN and 0.60 times faster than GCN on
average. This improvement in efficiency is mainly because the graph
structural features are computed in a preprocessing step and are then
concatenated with the node attributes. However, the computational cost
of the preprocessing step is negligible, as it is performed only once in
the experimental setup. Furthermore, we should mention that due to the
low dimensionality of the generated embeddings (d ď 4), our method
does not have any significant requirements in terms of memory.

8.4 Conclusion

In this chapter, we proposed VNEstruct to generate structural node
representations based on the entropies of ego-networks. We showed
the robustness of VNEstruct empirically under the presence of noise
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in the graph. We also proposed an approach for performing graph
classification that combines the representations of VNEstruct with the
nodes’ attributes, avoiding the computational cost of message passing
schemes. The proposed approach exhibited a strong performance in
real-world datasets, maintaining high efficiency.
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Chapter 9

Conclusions and outlook

Graph neural networks have been a subject of accelerating research
in the last years, mainly due to their broad applicability and astonish-
ing results in diverse applications. Chemistry, bioinformatics, social
networks, telecommunications, and meta-research are a few fields that
have been affected by the emergence of graph representation learning.
The ability of graph learning models to provide accurate predictions,
build expressive representations and remain robust in deep scenarios is
crucial.

9.1 Concluding remarks

The present thesis studied various conditions under which graph learn-
ing models can be expressive. Using both a theoretical study and an
experimental evaluation, we focused on three different aspects: the
discrimination power of graph representations, the receptive field of the
used operators, and the non-local interactions that can occur in a network.

Discrimination power of graph representations

In Chapter 3 we studied separability, as the key topological criterion for
building powerful graph neural networks. Moreover, we highlighted
a set of graph classes (such as k-regular graphs) that standard message
passing neural networks fail to express. Driven by the examined GNN
limitations, we proposed CLIP, as an efficient approach, based on the
Weisfeiler-Lehman test of graph isomorphism that can provide universal
graph representations. Except for the theoretical guarantee of universal-
ity, CLIP was able to output state-of-the-art graph classification results
in social and molecular networks.

In Chapter 4 investigating isometry properties of graph representation,
we moved beyond the standard message-passing framework. In particu-
lar, we firstly showed that standard graph embedding models could not
provide representations that preserve the isometry. We also suggested
a new model, π´GNN, that learns soft permutation matrices in order
to embed a corpus of graphs into a common space. π´GNN achieved
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comparable to state-of-the-art results to both graph classification and
graph regression tasks.

Receptive field of GNNs

In Chapter 5 we studied graph shift operators (GSOs). GSOs are matrices
that most GNNs are using to encode the adjacency information, such as
the adjacency matrix, the Laplacian matrix, or their normalized variants.
Considering that different models and tasks require different operators,
GNNs have limited expressivity over the neighborhood encoding. Study-
ing the spectral properties of the graph shift operators, we introduced
PGSO as a novel parametric family of operators that can adapt through-
out training. PGSO showed great applicability and effectiveness over
the training of numerous GNNs and had a critical impact on standard
node classification and graph classification tasks.

In Chapter 6 we investigated whether standard aggregation schemes
of GNNs can identify specific graph properties, such as connectivity,
bipartiteness, and triangle-freeness. We showed that the latter failed
to identify the wanted properties. We proposed k´hop graph neural
networks as an alternative that considers the k´hop neighborhood at
a single aggregation layer. Based on this scheme, our model was able
to detect structural information that was not detectable in using only
the 1´hop neighborhoods. k´hop GNN achieved to distinguish graph
properties that standard GNNs could not and demonstrated strong
results in node and graph classification tasks.

Non-local interactions and neural networks

In Chapter 7 we studied the inability of standard GNN models to scale
to deeper layers due to their local nature. In many networks, long-
range interactions appear to be crucial, and, thus, the building of deeper
architectures is needed. However, in graph neural networks, phenomena
such as oversmoothing and oversquashing are limiting their ability to
converge. Driven by these observations, we investigated how the gra-
dient flow of graph learning models is affected by an increasing model
depth. In particular, we developed a theoretical study of the Lipschitz
constant of a specific class of GNNs, the attention-based ones. This study
introduced a new type of normalization, namely LipschitzNorm, that
allowed the design of deeper attention models and showed great success
in real-world node classification problems.

In Chapter 8 we addressed questions in the area of structural node repre-
sentations. The main difference between standard node representations
and structural ones is that the latter depends on structural patterns
and symmetries that can occur in a neighborhood. That being said, two
nodes can have similar embeddings if they have a structurally equivalent
neighborhood, regardless of their proximity. This type of interaction can
be seen in real-world scenarios, such as molecular graphs, where the
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structural symmetries play an essential role. We proposed VNEstruct,
a simple structural node embedding algorithm that takes into account
ego-based entropy measures of the neighborhoods, showing a solid
performance on graph classification tasks.

9.2 Outlook and future directions

Next, we make a brief discussion on possible directions that the works
of the present thesis can be extended.

Knowledge graphs and multi-modality Our arguments over the ex-
pressivity of graph neural networks make assumptions over the proper-
ties that the examined graphs satisfy. As discussed in Chapter 2, simple
graphs are assumed, where a pair of edges can be connected by at
most one link. However, in many cases of real-world networks, graphs
present complex structures with multiple links per pair of nodes, forming
sub-structures with various interaction types. This is the result of multi-
modal learning scenarios, where different sources of information can be
combined, forming network structures. Hyper-networks and Knowledge
graphs are two approaches of formulating various types of graphs, where
the edges correspond to relations between nodes and various relation
types can occur in the same network [5, 17]. The extension of our work
on the receptive field of graph neural networks over more complex
forms of graphs can be studied. For example, the distance of two
graphs can be defined using the permutation set of the adjacency matrix.
Defining adjacency operators in hyper-networks seems a non-trivial task.
Learning representations using a rich receptive field on such networks
can offer new insights and unlock discoveries.

Non-locality and heterophily Most of the graphs modeling real-world
problems are characterized by locality and homophily, which means the
necessary amount of information for a node representation is concen-
trated in its direct neighborhood. Many standard inference methods are
designed under these assumptions. There is limited research work in
non-local or heterophilous networks, where nodes that affect each other
do not interact immediately. Such cases of networks occur in molecular
analyses and brain research, where structural symmetries can play a
vital role [152]. Our works on structural node embeddings and building
robust deeper graph learning models can be applied to such networks.

Dynamic Networks The majority of the current literature that studies
graph representation learning models represents networks as static
graphs, i.e., graphs that do not change over time. However, a robust
and expressive framework for temporal graph learning models needs
to be established to capture the dynamics and behavioral patterns of
networks through time. Progress towards this direction has been made
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by introducing models for discrete-time and continuous-time temporal
graphs [189, 172]. Learning, however expressive representations in such
dynamic scenarios, though, is far from optimal, and arguments over
the discrimination power of dynamic graph learning models shall be
expressed.

Applications Networks provide a flexible and formal framework to
model complex interactions between components. A rapidly accelerating
research focuses on extracting knowledge from graph structures that
provide representations for diverse fields ranging from technological
areas (e.g., communication networks, logistics) to socioeconomic areas,
such as biomedical graphs, political networks, and social networks.
Learning expressive representations can provide accurate predictions to
such fields and, consequently, yield a high societal impact.
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theory of graphs based on the signless Laplacian, II”. In: Linear
Algebra and its Applications (2010), pp. 2257 –2272.

[51] George Cybenko. “Approximation by superpositions of a sig-
moidal function”. In: Mathematics of control, signals and systems 2.4
(1989), pp. 303–314.

[52] Lorenzo Dall’Amico, Romain Couillet, and Nicolas Tremblay.
“Optimal Laplacian regularization for sparse spectral community
detection”. In: IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2020, pp. 3237 –3241.

[53] Lorenzo Dall’Amico, Romain Couillet, and Nicolas Tremblay.
“Optimized Deformed Laplacian for Spectrum-based Community
Detection in Sparse Heterogeneous Graphs”. In: arXiv:1901.09715
(2019).

[54] George Dasoulas, Johannes F. Lutzeyer, and Michalis Vazirgian-
nis. “Learning Parametrised Graph Shift Operators”. In: Inter-
national Conference on Learning Representations. 2021. URL: https:
//openreview.net/forum?id=0OlrLvrsHwQ.

https://arxiv.org/abs/1905.04579
http://arxiv.org/abs/1905.04579
http://arxiv.org/abs/1905.04579
http://arxiv.org/abs/1905.12560
http://arxiv.org/abs/1905.12560
https://arxiv.org/abs/1811.11087
https://arxiv.org/abs/1811.11087
https://doi.org/10.1109/ICASSP39728.2021.9415106
https://openreview.net/forum?id=0OlrLvrsHwQ
https://openreview.net/forum?id=0OlrLvrsHwQ


Bibliography 155

[55] George Dasoulas, Kevin Scaman, and Aladin Virmaux. “Lipschitz
normalization for self-attention layers with application to graph
neural networks”. In: Proceedings of the 38th International Confer-
ence on Machine Learning. Ed. by Marina Meila and Tong Zhang.
Vol. 139. Proceedings of Machine Learning Research. PMLR, 2021,
pp. 2456–2466. URL: https://proceedings.mlr.press/v139/
dasoulas21a.html.

[56] George Dasoulas et al. “Coloring Graph Neural Networks for
Node Disambiguation”. In: Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-20. Ed. by
Christian Bessiere. Main track. International Joint Conferences on
Artificial Intelligence Organization, July 2020, pp. 2126–2132. DOI:
10.24963/ijcai.2020/294. URL: https://doi.org/10.24963/
ijcai.2020/294.

[57] George Dasoulas et al. “Ego-based Entropy Measures for Struc-
tural Representations”. In: CoRR abs/2003.00553 (2020). arXiv:
2003.00553. URL: https://arxiv.org/abs/2003.00553.

[58] A. Debnath et al. “Structure-Activity Relationship of Mutagenic
Aromatic and Heteroaromatic Nitro Compounds. Correlation
with Molecular Orbital Energies and Hydrophobicity”. In: Journal
of Medicinal Chemistry 34.2 (1991), pp. 786–797.

[59] Aurelien Decelle et al. “Asymptotic analysis of the stochastic
block model for modular networks and its algorithmic applica-
tions”. In: Physical Review E (2011), p. 066106.

[60] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst.
“Convolutional neural networks on graphs with fast localized
spectral filtering”. In: Advances in Neural Information Processing
Systems. 2016, pp. 3844–3852.

[61] Austin Derrow-Pinion et al. “ETA Prediction with Graph Neural
Networks in Google Maps”. In: CoRR abs/2108.11482 (2021).
arXiv: 2108.11482. URL: https://arxiv.org/abs/2108.11482.

[62] P. Dobson and A. Doig. “Distinguishing Enzyme Structures from
Non-enzymes Without Alignments”. In: Journal of Molecular Biol-
ogy 330.4 (2003), pp. 771–783.

[63] Claire Donnat et al. “Learning Structural Node Embeddings via
Diffusion Wavelets”. In: Proceedings of the 24rd International Confer-
ence on Knowledge Discovery and Data Mining. 2018, pp. 1320–1329.

[64] David K Duvenaud et al. “Convolutional networks on graphs for
learning molecular fingerprints”. In: Advances in neural informa-
tion processing systems. 2015, pp. 2224–2232.

[65] Vijay Prakash Dwivedi et al. “Benchmarking Graph Neural Net-
works”. In: arXiv:2003.00982 (2020).

[66] Mark Eisen and Alejandro Ribeiro. “Large Scale Wireless Power
Allocation with Graph Neural Networks”. In: 2019 IEEE 20th
International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). 2019, pp. 1–5. DOI: 10.1109/SPAWC.
2019.8815526.

https://proceedings.mlr.press/v139/dasoulas21a.html
https://proceedings.mlr.press/v139/dasoulas21a.html
https://doi.org/10.24963/ijcai.2020/294
https://doi.org/10.24963/ijcai.2020/294
https://doi.org/10.24963/ijcai.2020/294
https://arxiv.org/abs/2003.00553
https://arxiv.org/abs/2003.00553
https://arxiv.org/abs/2108.11482
https://arxiv.org/abs/2108.11482
https://doi.org/10.1109/SPAWC.2019.8815526
https://doi.org/10.1109/SPAWC.2019.8815526


156 Bibliography

[67] P. Erdös and A. Rényi. “On Random Graphs I”. In: Publicationes
Mathematicae Debrecen 6 (1959), p. 290.

[68] Federico Errica et al. “A fair comparison of graph neural net-
works for graph classification”. In: 8th International Conference on
Learning Representations. 2020.

[69] Herbert Federer. Geometric measure theory. eng. Grundlehren der
mathematischen Wissenschaften (Springer) ; 153. Berlin: Springer-
Verlag Berlin Heidelberg, 1996.

[70] Matthias Fey and Jan Eric Lenssen. “Fast Graph Represen-
tation Learning with PyTorch Geometric”. In: arXiv preprint
arXiv:1903.02428 (2019).

[71] Paolo Frasconi, Marco Gori, and Alessandro Sperduti. “A general
framework for adaptive processing of data structures”. In: IEEE
transactions on Neural Networks 9.5 (1998), pp. 768–786.

[72] Alexis Galland and Marc Lelarge. “Invariant embedding for
graph classification”. In: ICML 2019 Workshop on Learning and
Reasoning with Graph-Structured Data. Long Beach, United States,
June 2019. URL: https://hal.archives- ouvertes.fr/hal-
02947290.

[73] Claudio Gallicchio and Alessio Micheli. “Fast and Deep Graph
Neural Networks”. In: Proceedings of the 34th AAAI Conference on
Artificial Intelligence. 2020, pp. 3898–3905.

[74] Fernando Gama, Alejandro Ribeiro, and Joan Bruna. “Stability
of Graph Neural Networks to Relative Perturbations”. In: In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP). IEEE, 2020, pp. 9070 –9074.

[75] Feng Gao, Guy Wolf, and Matthew Hirn. “Geometric Scattering
for Graph Data Analysis”. In: Proceedings of the 36th International
Conference on Machine Learning. 2019, pp. 2122–2131.

[76] Jonas Gehring et al. “A Convolutional Encoder Model for Neural
Machine Translation”. In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers).
2017, pp. 123–135.

[77] Stuart Geman, Elie Bienenstock, and René Doursat. “Neural net-
works and the bias/variance dilemma”. In: Neural computation
4.1 (1992), pp. 1–58.

[78] C. L. Giles, K. D. Bollacker, and S. Lawrence. “CiteSeer: an auto-
matic citation indexing system”. English (US). In: Proceedings of
the ACM International Conference on Digital Libraries. 1998, pp. 89–
98.

[79] C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. “Citeseer: an
automatic citation indexing system”. In: International Conference
on Digital Libraries. ACM Press, 1998, pp. 89 –98.

[80] Justin Gilmer et al. “Neural Message Passing for Quantum Chem-
istry”. In: Proceedings of the 34th International Conference on Machine
Learning. 2017, pp. 1263–1272.

https://hal.archives-ouvertes.fr/hal-02947290
https://hal.archives-ouvertes.fr/hal-02947290


Bibliography 157
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Appendix A

Datasets

A.1 Graph Classification Benchmarks

In this section, we present the details and statitics of the benchmark
graph classification datasets. Table A.1 summarized the graph property
characteristics of the datasets and, next, we provide complementary
information on these datasets.

Social Network Datasets (IMDB-binary, IMDB-multi): These datasets
refer to collaborations between actors/actresses, where each graph is
an ego-graph of every actor and the edges occur when the connected
nodes/actors are playing in the same movie. The task is to classify the
genre of the movie that the graph derives from. IMDBb is a single-
class classification dataset, while IMDBm is multi-class. For both social
network datasets, we used one-hot encodings of node degrees as node
attribute vectors.

Bio-informatics Datasets (MUTAG, PROTEINS, PTC-MR): MUTAG
consists of mutagenic aromatic and heteroaromatic nitrocompounds
with 7 discrete labels. PROTEINS consists of nodes, which correspond
to secondary structureelements and the edges occur when the connected
nodes are neighbors in the amino-acidsequence or in 3D space. It has
3 discrete labels. PTC consists of chemical compounds that reports the
carcinogenicity for male and female rats and it has 19 discrete labels. For
all bio-informatics datasets we used the node labels as node attribute
vectors.

OGBG-MOLHIV: This dataset is a collection of graphs, that represent
molecular networks [232]. Nodes are atoms and the edges correspond to
chemical bonds between atoms. The graphs contain node features, that
are processed as in Hu et al. [102].

A.2 Node Classification Benchmarks

In the next section, we similarly present the details of the benchmark
node classification datasets. Table A.2 introduces the graph property



174 Appendix A. Datasets

TABLE A.1: Graph Classification Datasets Statistics

Dataset # graphs # avg.|V|/graph # avg.|E|/graph # classes
MUTAG 188 17.93 19.81 2

PROTEINS 1113 39.06 72.65 2
PTC-MR 344 14.29 14.32 2

IMDB-BINARY 1000 19.77 96.52 2
IMDB-MULTI 1500 13.00 76.34 3

OGBG-MOLHIV 41,127 25.5 27.50 2

characteristics of the datasets and, next, we provide complementary
information on these datasets.

Cora and CiteSeer are citation networks [118], where nodes correspond
to documents and edges encode citation links. Both datasets contain
node attributes, that are sparse bag-of-words representations of the
documents.

Ogbn-arxiv is a citation network with directed edges, where each node
corresponds to an arXiv paper and the edges denote citations from one
paper to another [102]. The dataset contains node attributes, that are
averaged word embeddings of the titles and the abstracts of dimension-
ality 128. The label of each node is the subject area of the paper and can
take 40 values.

TABLE A.2: Node Clasification Datasets Statistics

Dataset # graphs # avg.|V|/graph # avg.|E|/graph # classes
Cora 1 2,708 5,429 2

CiteSeer 1 3,327 4,732 2
Ogbn-arxiv 1 169,343 1,166,243 40
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Appendix B

Propositions and Proofs

B.1 Group action on Hausdorff spaces

In what follows, X is always a topological set and G a group of transfor-
mations acting on X . The orbits of X under the action of G are the sets
Gx “ tg ¨ x : g P Gu. Moreover, we denote as X {G the quotient space
of orbits, also defined by the equivalence relation: x „ y ðñ Dg P G
s.t. x “ g ¨ y. As stated in Section 3.5, graphs with node attributes can be
defined using invariance by permutation of the labels. We prove here
that the resulting spaces are Hausdorff.

Definition 9 (Group invariance). Let G a group, a function f : X Ñ Y is
G-invariant if

@x P X , @g P G, f pxq “ f pg ¨ xq . (B.1)

Lemma 10 ([29, I, §8.3]). Let X be a Hausdorff space and R an equivalence re-
lation of X . Then X {R is Hausdorff if and only if any two distinct equivalence
classes in X are contained in disjoints saturated open subsets of X .

Thanks to this lemma we prove the following proposition.

Proposition 4. Let G a finite group acting on an Hausdorff space X , then the
orbit space X {G is Hausdorff.

Proof. Let Gx and Gy two distinct classes with disjoint open neighbour-
hood U and V. By finiteness of G, the application π : X Ñ X {G is open,
hence the saturated sets Ũ “ π´1rπpUqs and Ṽ “ π´1rπpVqs are open.
Suppose that there exists z P Ũ X Ṽ, then πpzq P πpUq X πpVq and we
finally get that Gz Ă U XV “ H. Therefore Ũ X Ṽ is empty and X {G is
Hausdorff by Lemma 10.

Proposition 4 directly implies that the spaces Graphm and Neighborhoodm
are Hausdorff.

B.2 Proof of Theorem 7

For convenience we restate the Theorem.
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Theorem 15. Let pG, dq be a metric space where G is the space of graphs and
d is the distance defined above. The above metric space cannot be embedded in
any Euclidean space.

Proof. The N ˆ N Euclidean distance matrix ∆2 contains pairwise dis-
tances between all N data points in a dataset. Suppose a dataset consists
of the 5 graphs shown in Figure B.1 below.

C3 P3 C4 S3 Gd

FIGURE B.1: A set of 5 graph which serve as a counterex-
ample for the proof of Theorem 1.

Then, we obtain the following matrix of squared distances:

∆2
“

»

—

—

—

—

–

d2
11 d2

12 d2
13 d2

14 d2
15

d2
21 d2

22 d2
23 d2

24 d2
25

d2
31 d2

32 d2
33 d2

34 d2
35

d2
41 d2

42 d2
43 d2

44 d2
45

d2
51 d2

52 d2
53 d2

54 d2
55

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

0 2 6 4 4
2 0 4 2 6
6 4 0 6 2
4 2 6 0 4
4 6 2 4 0

fi

ffi

ffi

ffi

ffi

fl

The matrix of squared distances ∆2 can be transformed into a matrix of
similarities as follows:

K “ ´
1
2

J ∆2 J

where J is the centering matrix J “ I´ 1
5 1 1J P R5ˆ5 and I is the 5ˆ 5

identity matrix. Matrix K is not positive definite or positive semidef-
inite since it has a negative eigenvalue, i.e. mintλ1, . . . , λ5u “ ´0.366.
Therefore, it cannot be decomposed as the following product:

K “ X XJ

and it cannot be the Gram matrix of any vector representations of the
graphs x1, . . . , x5. Hence, the 5 graphs cannot be embedded in any
Euclidean space.

B.3 Cost Sharing Games

For convenience we restate the equation that provides the soft permuta-
tion matrices:

P˚1 , . . . , P˚N “ arg min
P1,...,PNPΠ

N
ÿ

i“1

N
ÿ

j“1

||Pi Ai PJi ´ Pj Aj PJj ||F (B.2)

We show that there is a connection between optimal alignment of the
graph corpus with congestion games. In particular, we transform the
objective in Equation B.2 to a cost sharing game. Let we have N players,
where their initial states are defined by the adjacency matrices si :“
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Ai @rNs. The strategy profile ÝÑP “ rP1 ... PNs corresponds to the set of
permutation matrices that apply to ÝÑA “ rA1 ... ANs. Given that the cost
for each player is cip

ÝÑP q “
řN

j“1 ||Pi Ai PJi ´ Pj Aj PJj ||F, the social cost is

defined by CpÝÑP q “
řN

i“1 cip
ÝÑP q. Thus, the social optimum pP˚1, ..., P˚Nq is

identical to the output of Equation B.2. This transformation can provide
insights on the bounds of the distances of the transformed adjacencies
provided by π´GNNs (socially optimal difference) with respect to the
Frobenius distance (single optimal difference). We know that the Price
of Anarchy (PoA) in a cost sharing game is bounded by the number of
the graphs: PoA ď n. Thus, having a NE strategy profile ÝÑP with a cost
ci, we have ci ď n ¨ c˚i for each player i with adjacency Ai.

B.4 Proof of Lemma 5

Lemma 11. Assume X is countable, and let r P N. There exist functions
f : X Ñ Rd and f 1 : X Ñ Rd, such that hipc, Xq “ f pcq `

ř

xPX f 1pxq is
unique for each i P t0, . . . , ru and each pair pc, Xq, where c P X and X Ă X is
a finite multiset. Moreover, any function gi over such pairs can be decomposed
as gipc, Xq “ φ

`

f pcq `
ř

xPX f 1pxq
˘

for some function φ.

Proof. We first show that there exists a mapping f 1 such that
ř

xPX f 1pxq
is unique for each finite multiset X. Because X is countable, there exists
a mapping Z : X Ñ N from x P X to natural numbers. Because the
multisets X are finite, there exists a number N P N such that |X| ă N
for all X. Then, an example of such f 1 is f 1pxq “ N´Zpxq. The sum of
the above function for all finite multisets X takes values less than 1,
i.e.

ř

xPX f 1pxq ă 1. Hence, if we also set f pxq “ Zpxq ` pr´ iq|X |, then it
holds that hipc, Xq “ f pcq `

ř

xPX f 1pxq is an injective function over pairs
of elements and multisets, and is also unique for each i P t0, . . . , ru.

For any function gi over the pairs pc, Xq, we can construct such φ for
the desired decomposition by letting gipc, Xq “ φ

`

f pcq `
ř

xPX f 1pxq
˘

.
Note that such φ is well-defined because hipc, Xq “ f pcq `

ř

xPX f 1pxq is
injective.

B.5 Proof of Lemma 6

Lemma 12. Let Gk
v be the k-hop neighborhood subgraph of a node v. Then, Gk

v
contains a cycle of odd length if and only if the shortest path lengths from two
adjacent nodes u, w P Nkpvq to v are identical.

Proof. Let u, w be two vertices such that u, w P Nkpvq. Assume that the
shortest path lengths between each of these two vertices and the root
v are identical and equal to d P N such that d ď k. If u and w are
connected by an edge, then Gk

v contains a cycle of length 2d` 1 which is
clearly an odd number. This proves the first statement. For the second
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statement, assume that Gk
v contains a cycle of odd length and there is no

edge between two vertices whose shortest path lengths from the root
v are identical. Then, from all the nodes of the cycle, there is a single
node u such that the shortest path distance d P N from the root v to u
is maximum. Since this is a cycle, there are two paths from v to u of
length d. Hence, the length of the cycle is 2d which is an even number,
contradicting the assumption.

B.5.1 Proof of Theorem 14

For the sake of reading convenience, we restate the theorem:

Theorem 16. If the score function g̃ is Lipschitz continuous, then the attention
layer with score function as defined in Equation (7.23) of the paper is Lipschitz
continuous and

LFpAttq ď eα

c

m
n
` α
?

8 . (B.3)

Proof. First, as cpXq “ max
 

}g̃pXq}p2,8q, }XJ}p8,2qLF,p2,8qpg̃q
(

{α, we
have αcpXq ě }g̃pXq}p2,8q ě }g̃pXq}8 and assumption (1) of Theo-
rem 2 is verified. Second, we have αcpXq ě }XJ}p8,2qLF,p2,8qpg̃q ě
}XJ}p8,2q~Dg̃X~F,p2,8q and assumption (2) of Theorem 2 is also verified.
Finally, we have

α|DcXpHq| ď max
!
ˇ

ˇ

ˇ
D}g̃p¨q}p2,8qXpHq

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
D} ¨J }p8,2qXpHq

ˇ

ˇ

ˇ
LF,p2,8qpg̃q

)

ď max
!

}Dg̃XpHq}p2,8q, }H
J
}p8,2qLF,p2,8qpg̃q

)

ď max
 

~Dg̃X~F,p2,8q}H}F, }H}FLF,p2,8qpg̃q
(

ď LF,p2,8qpg̃q}H}F ,
where the second inequality follows from the triangle inequality

ˇ

ˇ}X ` H}p8,2q ´ }X}p8,2q
ˇ

ˇ ď }H}p8,2q,
implying that |D} ¨ }p8,2qXpHq| ď }H}p8,2q. As a result, we have
}XJ}p8,2q~DcX~F,1}g̃pXq}p2,8q ď }XJ}p8,2qLF,p2,8qpg̃q}g̃pXq}p2,8q{α ď

αcpXq2 (using assumption (1) and (2)) and assumption (3) of Theorem 13
is also verified. We can thus apply Theorem 13 and obtain the desired
result.

B.5.2 Proof of Corollary 2

Next, we give the proof of Corollary 2 (Lipschitz continuity of attention
with linear score functions).

Proof. First, note that replacing LF,p2,8qpg̃q in Theorem 13 by any upper
bound M ě LF,p2,8qpg̃q does not change the result and, as LF,p2,8qpg̃q “
}Q}˚ is hard to compute, we instead prefer the upper bound }Q}F ě

}Q}˚ that is simple and fast to compute. As g̃pXq “ QJX is Lip-
schitz, we can directly apply Theorem 14 with α “ 1 and cpXq “
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max
 

}QJX}p2,8q, }XJ}p8,2q}Q}F
(

to get the desired result. Moreover,
the normalization simplifies to cpXq “ }Q}F}XJ}p8,2q, as }QJX}p2,8q ď

}Q}F}XJ}p8,2q.

B.5.3 Proof of Corollary 3

Next, we give the proof of Corollary 3 (Lipschitz continuity of attention
with quadratic score functions).

Proof. Let X “ pQ||K||Vq be a concatenation of queries, keys and
values, and AttpXq “ Vsoftmax pgpXqqJ. First, note that AttpXq “
hpXq softmax pgpXqqJ, where h : X “ pQ||K||Vq ÞÑ V is a projection.
As projections are contractive, Remark 5 implies that Theorem 13 can be
used in such a case if we replace }XJ}p8,2q by }VJ}p8,2q in assumptions
(1)-(3). As proposed in Equation (7.27) of the paper, let gpXq “ g̃pXq{cpXq
where g̃pXq “ QJK, cpXq “ max tuv, uw, vwu, u “ }Q}F, v “ }KJ}p8,2q,
and w “ }VJ}p8,2q. Then, we have

}QJK}8 ď }QJK}p2,8q ď }Q}F}KJ}p8,2q “ uv ď cpXq ,
and assumption (1) is verified (with α “ 1). Moreover, for any pertur-
bation H “ pHQ||HK||HVq, where HQ, HK and HV are the perturbations
associated to, respectively, Q, K and V, we have

}Dg̃XpHq}p2,8q ď }Q
JHK}p2,8q ` }H

J
QK}p2,8q

ď }Q}F}HJ
K }p8,2q ` }HQ}F}KJ}p8,2q

ď u}HK}F ` v}HQ}F

ď

a

u2 ` v2}H}F ,
where the last inequality is due to the Cauchy-Schwarz inequality. Hence,
we have

}VJ}p8,2q~Dg̃X~F,p2,8q ď w
a

u2 ` v2 ď
?

2cpXq ,
and assumption (2) is verified (with α “

?
2). Finally, we have

|DcXpHq| ď maxtv, wu}HQ}F `maxtu, wu}HJ
K }p8,2q `maxtu, vu}HJ

V}p8,2q

ď maxtv, wu}HQ}F `maxtu, wu}HK}F `maxtu, vu}HV}F

ď

b

maxtv, wu2 `maxtu, wu2 `maxtu, vu2}H}F ,
where the last inequality is due to the Cauchy-Schwarz inequality, and
thus
}g̃pXq}p2,8q}V

J
}p8,2q~DcX~F,1 ď uvw

b

maxtv, wu2 `maxtu, wu2 `maxtu, vu2

ď
?

3uvw maxtu, v, wu ď
?

3cpXq2 ,
and assumption (3) is verified (with α “

?
3). Hence, Theorem 2 with

α “
?

3 is applicable and immediately provides the desired result.
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Appendix C

Experimental Details

C.1 Experimental Details for Real-World Bench-
marks

In this section, we initially report the experimental setting that is com-
mon to all experiments and, then, separately provide the details which
are specific to the different tasks (node classification and graph classifi-
cation).

In our experiments, we use the Adam optimizer [117] with a weight
decay on the parameters of 5 ˚10´4 and an initial learning rate of 0.005 for
the exponential parameters and an initial learning rate of 0.01 for all other
model parameters. The differentiation between the two learning rates
is crucial for the model training, as the fluctuation of the exponential
parameters has a higher impact on the model behavior than the rest
of the model parameters. We, also, used a learning rate scheduler that
decayed both the learning rates by 0.5 every 50 epochs.

Node Classification Tasks We report below the experimental details
used in the node classification datasets, regarding model selection, met-
rics and model design. The Cora and CiteSeer datasets are formulated as
binary class classification problems, while the Ogbn-arxiv is formulated
as a 40-class classification problem.

• Model Selection: We perform cross-validation for all GNN, GNN-
PGSO and GNN-mPGSO models with predefined dataset splits.
For Cora and CiteSeer, we use the same train/validation/test splits
as in Kipf and Welling [118] for the sake of comparison with other
methods that use the same splits. For Ogbn-arxiv, we use the
splitting method, described in Hu et al. [102], that splits the data
into the train split, containing all papers until 2017, the validation
split, containing all papers published in 2018 and test split with
the published papers since 2019.

• Hyper-parameter Tuning: We use grid search to tune the hyper-
parameters of the models (dimensionality of hidden units, number
of GNN layers, number of epochs and the batch size).
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• Evaluation Metric: For all node classification datasets (Cora, Cite-
Seer, Ogbn-arxiv), we use as evaluation metric the validation
accuracy.

• Model Design: The number of hidden units that was grid-
searched was within t16, 32, 64u. The number of GNN layers that
were used were within t1, 2, 3, 4u.

• Experiment Design: The number of epochs for the model training
was t50, 100, 200u, batch size within t16, 32, 64u and a dropout ratio
of 0.5.

Graph Classification Tasks In the same fashion we report below the
details of the experimentation setup of the graph classification tasks. The
MUTAG, PTC-MR, IMDB-BINARY and OGBG-MOLHIV are formulated
as binary class classification problems, while IMDB-MULTI is formulated
as a 3-class classification problem.

• Model Selection: We perform 10-fold cross-validation for all
GNN,GNN-PGSO, GNN-mPGSO models. For MUTAG, PTC-
MR, IMDB-BINARY and IMDB-MULTI, we have used k random
and stratified splits to provide balanced train/validation/test sets.
For OGBG-MOLHIV we use the scaffold splitting as in Hu et
al. [102], that seperates the graphs based on their 2D structural
representations.

• Hyper-parameter Tuning: We use grid search to tune the hyper-
parameters of the models (dimensionality of hidden units, number
of GNN layers, number of epochs and the batch size).

• Evaluation Metric: For the MUTAG, PTC-MR, IMDB-BINARY,
IMDB-MULTI datasets, we use as evaluation metric the standard
classification accuracy, while for the OGBG-MOLHIV we use as Hu
et al. [102] the validation ROC-AUC.

• Model Design: The number of hidden units that was grid-
searched was within t16, 32, 64u. The number of GNN layers that
were used were t1, 2, 3, 4, 5u.

• Experiment Design: The number of epochs for the model train-
ing was t100, 200, 300u, the batch size within t16, 32, 64u and the
dropout ratio of 0.5.

C.2 Convergence study

In this appendix, we empirically analyse the contribution of the PGSO
in a node classification and a graph classification task regarding the
accuracy and loss convergence. For the node classification task, we
have used the Cora dataset and a GCN model. Both for the standard
GCN and the GCN-PGSO models, we used the same experimentation
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configuration for a fair comparison. For the graph classification task,
we have used PTC-MR dataset and a GIN model. Both for the standard
GIN and the GIN-PGSO models, we used the same configuration for
a fair comparison. In Figures C.1 and C.2, we show the accuracy and
loss convergence using the standard model and the PGSO model. As
we can see, for both the node classification and graph classification
task, the PGSO incorporation into the model has a positive impact on
the achieved accuracy and the loss minimization throughout training.
Specifically, we observe a slightly faster convergence of accuracy and
loss in better values using the GCN-PGSO and GIN-PGSO models.
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FIGURE C.1: Accuracy and Loss convergence for the node
classification task on Cora
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FIGURE C.2: Accuracy and Loss convergence for the graph
classification task on PTC-MR
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Résumé : L’évolution technologique de l’apprentissage au-
tomatique s’accélèrant, les données jouent un rôle de plus
en plus important dans la construction de modèles intel-
ligents, capables de simuler des phénomènes, de prédire
des résultats et de prendre des décisions. Dans un nombre
sans cesse croissant d’applications, les données sont struc-
turées et peuvent être vues comme des graphes. L’exploi-
tation de cette structure est le coeur du domaine de l’ap-
prentissage de représentations de graphes, qui consiste
à calculer des représentations suffisamment expressives
des graphes et de ses composants, c’est-à-dire les nœuds
et les arêtes. Récemment, la domaine de l’apprentis-
sage de représentations de graphes a été accéléré par le
succès des algorithmes du type �message passing� (pas-
sation de messages) appliqués aux graphes, à savoir
les �Graphe Neural Network� (réseaux de neurones sur
les graphes). L’apprentissage de représentations informa-
tives et expressives sur les graphes joue un rôle critique
dans un large éventail d’applications du monde réel, de-
puis les télécommunications et les réseaux sociaux jus-
qu’à la conception urbaine, la chimie et la biologie. Dans
cette thèse, nous étudions les différents aspects à partir
desquels les réseaux neuronaux graphiques peuvent être
plus expressifs, et nous proposons de nouvelles approches
pour améliorer leurs performances dans les tâches stan-
dard d’apprentissages. Les principaux axes de la présente
thèse sont : l’universalité des représentations de graphes,

l’augmentation du champ réceptif des réseaux de neu-
rones sur les graphes, la conception de modèles d’ap-
prentissage de graphes stables et profonds et enfin les
alternatives au cadre standard des algorithmes par pas-
sation de messages. En réalisant des études théoriques
et expérimentales, nous montrons comment les approches
proposées peuvent devenir des outils utiles et efficaces
pour concevoir des modèles d’apprentissage de graphes
plus expressifs et plus puissants.
Dans la première partie de la thèse, nous étudions la qua-
lité des représentations de graphes en fonction de leur pou-
voir de discrimination. Cette partie se concentre sur l’ap-
proximation universelle et les propriétés d’isométrie des
représentations graphiques.
Dans la deuxième partie de la thèse, notre objectif princi-
pal est concentré autour du champ réceptif des réseaux
de neurones des graphes, c’est-à-dire la quantité d’informa-
tions dont dispose un nœud. Nous étudions des approches
qui peuvent augmenter le champ réceptif, en paramétrant
les encodages des graphes et en considérant des sous-
graphes plus grands pour l’agrégation d’informations.
Dans la dernière partie de la thèse, nous étudions les in-
teractions non locales dans les graphes. Cela inclut les
dépendances à longue portée, où les nœuds qui se trouvent
dans des parties éloignées du graphe peuvent s’affecter
les uns les autres et les dépendances structurelles, où les
modèles de voisinage symétriques sont cruciaux.

Title : Towards Expressive Graph Neural Networks: Theory, Algorithms and Applications
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Abstract : As the technological evolution of machine lear-
ning is accelerating, data plays an important role in building
intelligent models, being able to simulate phenomena, pre-
dict values and make decisions. In an increasing number of
applications, data take the form of networks. The inherent
graph structure of network data motivated the evolution of
the graph representation learning. Its scope includes gene-
rating meaningful representations for graphs and their com-
ponents. The research on graph representation learning
was accelerated with the success of message passing fra-
meworks applied on graphs, namely the Graph Neural Net-
works. Learning informative and expressive representations
on graphs plays a critical role in a wide range of real-world
applications, from telecommunication and social networks,
urban design, chemistry, and biology. In this thesis, we study
various aspects from which Graph Neural Networks can be
more expressive, and we propose novel approaches to im-
prove their performance in standard graph learning tasks.
The main branches of the present thesis include the discri-
mination power of graph representations, the receptive field
of the models and, the study of long-range interactions. Per-

forming both theoretical and experimental studies, we show
how the proposed approaches can become efficient tools
for designing powerful graph learning models.
In the first part of the thesis, we study the quality of graph
representations as a function of their discrimination power,
i.e how easily we can differentiate graphs that are not iso-
morphic. This part is focused into universal approximation
and isometry properties of graph representations.
In the second part of the thesis, our main focus is concentra-
ted around the receptive field of the graph neural networks,
i.e how much information a node has, in order to update
its representation. We investigate approaches that can in-
crease the receptive field, by parametrizing the encodings
of the graph structures and by considering larger subgraphs
for the information aggregation.
In the last part of the thesis, we study non-local interac-
tions in graphs. This includes the long-range dependencies,
where nodes that lie in distant parts of the graph can affect
each other and structural dependencies, where symmetrical
neighborhood patterns are crucial for the graph nodes.
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