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RÉSUMÉ EN FRANÇAIS

Motivations

Les systèmes temps-réel sont utilisés dans de nombreux domaines et comportent beaucoup
de composants. Il peut s’agir par exemple de moteurs de voitures, d’imprimantes, de
stimulateurs cardiaques ou de chaînes de montage. Il devient alors nécessaire de vérifier
formellement ces systèmes en amont pour plusieurs raisons. Premièrement, il peut s’agir de
systèmes critiques (comme les avions, les moteurs de voitures, les fusées ou les stimulateurs
cardiaques) : des erreurs peuvent alors coûter beaucoup de temps, mais aussi être fatales.
Deuxièmement, ils peuvent être fabriqués en grand nombre, comme les puces électroniques.
Vérifier formellement ces modèles nécessite de considérer un modèle formel, qui prend en
compte le temps et sur lequel on peut énoncer formellement ce que l’on veut vérifier.

Les automates temporisés sont un modèle mathématique très utile et efficace. In-
troduits en 1994 par Alur et Dill dans [AD94], ils fournissent une représentation abstraite
des aspects temporels et peuvent être généralisés à des modèles plus complexes pour
exprimer encore plus de types de systèmes temps-réel. Le principe est de considérer un
automate et d’ajouter un nombre fini d’horloges qui contraignent le passage des différentes
transitions.

Prenons l’exemple d’un système d’éclairage automatique pour illustrer la modélisa-
tion d’un système temps-réel en un automate temporisé. Ce système d’éclairage s’éteint
automatiquement après un certain temps afin d’économiser de l’électricité. Cet exemple
est modélisé par un automate temporisé, représenté en Figure 1, avec les deux états pos-
sibles (appelés localités) de la lampe : allumé (« On ») et éteint (« Off »), et les actions
possibles. On considère que la seule interaction avec la lampe est d’appuyer sur le bouton
(action « appuyer »), ce qui allume la lampe. Nous pouvons passer de « Off » à « On »
en effectuant l’action « appuyer ». Pour s’éteindre automatiquement, la lampe possède
un compteur, une horloge, qu’on appellera x, qui est remise à zéro à chaque fois que l’on
appuie sur le bouton (« appuyer »). La lampe s’éteint alors automatiquement au bout
d’une minute, c’est-à-dire lorsque x ≥ 1. Pour l’empêcher de s’éteindre, il faut appuyer
sur le bouton (« appuyer ») avant x = 1, cette action remettant les horloges à zéro.
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Résumé en français

Off On

0 ≤ x < 1

appuyer, x := 0 0 ≤ x < 1
appuyer
x := 0x ≥ 1

Figure 1 – Automate temporisé représentant un éclairage automatique.

Remarquons que les systèmes temps-réel peuvent nécéssiter l’usage de plusieurs hor-
loges. Considèrons un problème d’ordonnancement simple où trois tâches, a, b et c, doivent
être effectuées, telles que:

. a et b doivent être effectuées avant c (qu’importe l’ordre).

. L’attente entre les tâches a et b doit être comprise entre 2 et 3 secondes.

. c doit être effectuée au plus tard 5 secondes avant la fin de la tâche a, et au moins
3 secondes après la tâche b.

Ce système se représente à l’aide de l’automate temporisé de la Figure 2.

`0

`1

`2

`3

`f

a
x := 0

b
x ∈ [2, 3]
y := 0

c
x ≤ 5
y ≥ 3

b
y := 0

a
y ∈ [2, 3]
x := 0

Figure 2 – Automate temporisé représentant un ordonnancement de trois tâches.

L’horloge x (resp. y) représente le temps écoulé depuis que la tâche a (resp. b) a eu
lieu.

De nombreuses propriétés peuvent être vérifiées sur des automates temporisés. Dans
notre exemple d’éclairage automatique, la propriété que nous souhaitons vérifier est de
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Résumé en français

savoir si nous pouvons atteindre l’état « Off » à partir de n’importe quelle situation.
La réponse est : si on laisse passer le temps, sans appuyer infiniment souvent sur le
bouton « appuyer », la seule possibilité est d’atteindre l’état « Off ». Dans notre exemple
d’ordonnancement, la propriété que nous souhaitons vérifier est de savoir si nous pouvons
atteindre la localisation `f , à partir de la configuration initiale (`0, (0, 0)). Trouver une
bonne exécution indiquerait si les tâches a, b et c peuvent être exécutées. On peut aussi
se demander si, pour respecter les contraintes de temps, il faut donner un ordre entre les
tâches a et b : peut-on trouver une exécution où la tâche a est exécutée avant b, mais aussi
une où b est exécutée avant a ?

D’autres exemples d’objets du quotidien peuvent être représentés par des automates
temporisés afin d’être vérifiés formellement. Un exemple possible est un ascenseur, pour
lequel nous pouvons vouloir vérifier qu’il descendra finalement à notre étage si nous
l’appelons. Ces spécifications des localités sont appelées propriétés d’atteignabilité . Véri-
fier l’atteignabilité d’une localité (ou d’un ensemble de localités), étant donné une localité
initiale et une valeur initiale des horloges, dans l’automate temporisé, consiste à trouver
une exécution depuis la localité initiale et la valeur initiale des horloges, jusqu’à la localité
souhaitée. Dans cette thèse, nous étudierons l’atteignabilité.

Cette introduction est organisée comme suit : dans un premier temps, nous décrivons
comment les systèmes temps-réel, puis les propriétés temporelles, sont habituellement
modélisés. Dans un deuxième temps, nous présentons le principe de la vérification formelle.
Dans un troisième temps, nous décrivons comment nous modélisons les imperfections des
modèles formels. En quatrième et dernier lieu, nous décrivons l’objectif de cette thèse et
ses contributions.

Systèmes temporisés

Afin d’être formellement vérifiés, les systèmes temps-réel sont formellement modélisés.
Les principaux modèles utilisés dans la vérification formelle des systèmes temps-réel sont
le modèle des automates temporisés et certaines de ses variantes. Nous présentons dans
cette section quatre de ces modèles : les automates temporisés, les automates hybrides
temporisés, les automates temporisés pondérés et les jeux temporisés.

13



Résumé en français

Automates temporisés et automates hybrides temporisés

Un automate temporisé, introduit par Alur et Dill en 1994 dans [AD94], représente un
système où le passage d’une transition est contraint par la satisfaction de contraintes tem-
porelles. Selon la sémantique utilisée, les contraintes peuvent prendre plusieurs formes.
Chaque horloge peut être bornée indépendamment, comme dans la Figure 1, ou la différence
entre deux horloges peut être bornée (comme 0 ≤ x− y ≤ 1). Plus généralement, les con-
traintes sur les horloges peuvent être des inégalités linéaires.

Chaque horloge peut être remise à zéro après avoir franchi une transition. La transition
est représentée par une flèche entre deux localités, et la remise à zéro de l’horloge x est
représentée par le symbole « x := 0 ». Les horloges évoluent à la même vitesse et, pour
franchir une transition, on doit proposer un délai et une action. Les horloges sont alors
incrémentées de ce délai.

Les automates hybrides sont des systèmes à états infinis. Leur différence avec les
automates temporisés est que les valeurs des horloges sont décrites par des équations
différentielles ordinaires. Ils peuvent être très utiles pour les applications liées aux systèmes
cyber-physiques.

Automates temporisés pondérés

Les automates temporisés pondérés ont été introduits par [ATP01] et [BFH+01]. Ces
modèles peuvent être utilisés pour modéliser des embouteillages ou le choix entre différents
moyens de transport (avion vs train vs voiture par exemple). Dans ces modèles, rester à
un endroit ou prendre une transition peut avoir un coût. Nous additionnons le coût total
pendant une exécution, un run, et l’appelons la fonction de coût.

Considérons l’exemple du choix entre l’avion et le train pour se rendre dans une ville.
Dans la Figure 3, nous représentons deux manières possibles de rejoindre Londres depuis
Rennes. Nous modélisons ces possibilités avec leurs coûts associés (en euros) par un auto-
mate temporisé pondéré. Dans cet automate temporisé, les contraintes représentent les
horaires (en heures) imposés de chaque mode de transport.

Dans cet exemple, nous pouvons rejoindre Londres en avion, sans escale, ce qui coûte
120 e, ou en prenant deux trains, avec une correspondance à Lille, ce qui coûte un total
de 89 e. Les horloges représentent l’heure du jour et sont remises à zéro à minuit. Dans
cet exemple, voyager en train est moins cher que de voyager en avion, mais les horaires
des trains sont plus stricts dans notre exemple : le train de Lille à Londres doit être pris

14
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Rennes Lille Londres

0 ≤ x ≤ 24
train, c = 40

16 ≤ x ≤ 20
train, c = 49

x ≥ 24
c = 0
x := 0

x = 24
avion, c = 120

x ≥ 24
c = 0
x := 0

Figure 3 – Un automate temporisé pondéré pour représenter deux moyens de transport
possibles pour rejoindre Londres depuis Rennes.

entre 16 et 20 h. L’un des objectifs de ces modèles est d’atteindre le but en minimisant
(ou en maximisant) la fonction de coût.

Jeux temporisés

Les jeux temporisés généralisent les automates temporisés en ajoutant plusieurs joueurs
dans l’automate temporisé, pouvant prendre des décisions différentes (comme le contrôle
de certaines localités uniquement), avec des buts pouvant être différents : minimiser ou
maximiser une fonction de coût, atteindre ou ne pas atteindre un but, etc. Lorsque leurs
objectifs sont opposés, nous pouvons séparer ces joueurs en joueurs et opposants.

Il peut y avoir plusieurs sémantiques de jeux temporisés. Par exemple, les jeux où
les joueurs peuvent contrôler différentes localités sont une forme de jeux par tours. Cette
sémantique est détaillée dans la sous-section 5.2.3.

Conclusion

D’autres modèles sont possibles. Par exemple, lorsqu’il s’agit de systèmes temporisés dis-
tribués, on peut utiliser des automates temporisés distribués. Lorsque certaines décisions
(délais, actions...) ne sont pas prises par un joueur mais par une distribution aléatoire sur
toutes les possibilités, on peut utiliser des automates temporisés probabilistes.
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Propriétés temporelles

Ces modèles nous permettent de formaliser les propriétés que nous voulons vérifier. Il
existe plusieurs types de propriétés temporisées, telles que la vivacité et la sûreté . Elles
furent introduites par Alpern et Schneider dans [AS85] et par Alpern, Demers et Schneider
dans [ADS86].

Les propriétés de vivacité garantissent qu’un certain événement finira par se produire,
quelle que soit l’execution. Elles s’opposent aux propriétés de sûreté qui garantissent
qu’un certain événement ne se produira jamais, quelle que soient les exécutions. Les pro-
priétés de sûreté peuvent être utilisées pour de nombreuses applications, par exemple
pour éviter les obstacles pour les trains. Pour qu’une propriété de sûreté soit violée, il
faut trouver une exécution finie où cet événement se produit. Alpern et Schneider on dé-
montré dans [AS87] le résultat suivant : nous pouvons exprimer toute propriété temporelle
linéaire comme l’intersection de propriétés de vivacité et de sûreté.

La propriété que nous étudierons dans cette thèse est l’atteignabilité , qui correspond à
la négation d’une propriété de sûreté. Les propriétés d’atteignabilité garantissent qu’une
certaine localité est atteignable compte tenu d’une (ou plusieurs) configuration(s) ini-
tiale(s), i.e. qu’il existe une éxecution, depuis une configuration initiale, atteignant cette
localité. Considérons par exemple l’exemple de la Figure 3. La propriété d’atteignabilité
que nous pourrions vérifier est la suivante : « Peut-on atteindre Londres depuis Rennes si
l’horloge initiale est x = 8?3 ».

Vérification de systèmes temporisés

Expliquons à présent comment nous vérifions les systèmes temps-réel. Le but de la véri-
fication formelle est de considérer toutes les configurations possibles des systèmes et de
prouver que la propriété temporelle que nous considérons est toujours vérifiée, ou à défaut
de construire un contre-exemple où cette propriété n’est pas vérifiée. C’est le principe des
algorithmes de model-checking, introduits par Clarke, Emerson, Queille, Sifakis au début
des années 80. Leur travail fut récompensé par un prix Turing en 2007. Pour une intro-
duction au model-checking, on pourra se référer au livre [BK08].

Le principe d’un algorithme de model-checking est illustré dans la Figure 4 : étant
donné un modèle abstrait et une propriété temporelle, l’algorithme de model-checking

3i.e., si l’on quitte Rennes au plus tôt à 8 heures du matin.
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apporte soit la garantie que la propriété temporelle (par exemple, « La lumière finira-t-
elle par s’éteindre ? ») est vérifiée, soit un exemple d’exécution où elle n’est pas vérifiée.
Le principe du model-checking est d’abord de modéliser le système et la propriété que l’on
veut satisfaire, puis d’exécuter l’algorithme de model-checking. Si la propriété est vérifiée,
le processus s’arrête, sinon le contre-exemple doit être analysé afin de modifier le modèle
(ou la propriété), jusqu’à ce que la propriété soit vérifiée. La force du model-checking est

Modèle
formel

Propriéte
temporelle

algorithm
de model-
checking

3 7
Propriété satisfaie Contre-exemple

Figure 4 – Principe de la vérification formelle.

de vérifier formellement une propriété, pour un modèle général, individuellement (cela
signifie que nous pouvons vérifier chaque propriété indépendamment et voir laquelle n’est
pas vérifiée) et de fournir des contre-exemples pour expliquer pourquoi la propriété n’a
pas été satisfaite. Sa faiblesse est son coût élevé pour les systèmes complexes, tels que
les automates temporisés, en raison de l’explosion de l’espace d’états.

Plusieurs outils de model-checking, pour différents types de systèmes temporisés, ont
été implémentés, parmi lesquels on peut citer : Kronos4 ([BDM+98], [Yov97]), Uppaal5

([BDL+06]), TChecker6, IMITATOR7 ([And09], [And10], [AFK+12], [And21]), Roméo8

([GLM+05], [LRS+09]) at PAT9 ([SLD+09]).
4https://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
5https://uppaal.org/
6https://www.labri.fr/perso/herbrete/tchecker/
7https://www.imitator.fr/index.html
8http://romeo.rts-software.org/
9https://pat.comp.nus.edu.sg/
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Robustesse : prendre en compte les possibles impré-
cisions

La robustesse d’un objet fait référence, en général, à sa capacité à résister à de (petites)
perturbations. Lors de la modélisation de systèmes temporisés, on suppose qu’on peut
atteindre une précision parfaite sur tous les aspects de la modélisation. Dans ces modèles,
nous supposons que :

. Les horloges croissent exactement à la même vitesse, elles sont synchronisées.

. Les gardes des transitions seront exactement celles qui seront implémentées.

. Les délais proposés pour passer une transition seront parfaitement appliqués, avec
une précision infinie, sans latence.

Cependant, dans le monde réel, les horloges peuvent se désynchroniser et ainsi ne pas
évoluer à la même vitesse. Le délai proposé peut aussi être appliqué avec une légère
avance ou latence. Par exemple, dans le système d’éclairage automatique présenté dans
la Figure 1, si nous appuyons sur le bouton à x = 0.8, le délai peut en fait être appliqué
à 0.802, en raison d’une légère latence. Par conséquent, la vérification de la capacité à
résister aux perturbations est une question importante. La robustesse peut également être
appliquée à l’ordonnancement. L’ordonnancement est l’action d’ordonner des tâches pour
les réaliser (voir l’exemple illustré dans la Figure 2). Ses objectifs sont nombreux, l’un
d’eux est de minimiser le temps d’attente entre deux tâches. Il est facile de concevoir que
les latences sont inévitables. Ainsi, dans le monde réel, les actions ne se succèdent pas
sans imprécision quant au moment où elles ont été réalisées. La fiabilité du résultat final
vis-à-vis de diverses perturbations de l’environnement et d’un matériel perfectible est donc
une question cruciale si l’on veut exécuter cet ordonnancement dans le monde réel. Dans
l’exemple de la Figure 2, si la latence est supérieure à 1 seconde, cela est problématique
car le délai entre les deux tâches a et b doit être compris entre 2 et 3 secondes.

Il existe différentes façons de vérifier la robustesse. Nous en détaillons quatre dans
cette section. Considérons un système temps-réel S, modélisé par un modèleM. On veut
vérifier une propriété temporelle ϕ. Ce modèle M a été construit pour représenter S à
l’aide de spécifications.

Analyse du langage Cette première approche, qui ne transforme pas le modèle, con-
siste à analyser dans quelle mesure la perturbation peut changer ce que le modèle
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exprime. Considérons le modèleM et le langage L queM exprime. Considérons le
modèleM légèrement perturbé M̃. Le but d’une analyse du langage sera d’exprimer
le langage L̃ exprimé par le modèle M̃.

Analyse de la robustesse Cette autre approche vérifie si le modèle peut résister aux
perturbations, sans interférer. Supposons que le modèleM satisfasse ϕ , le but de
l’analyse de la robustesse est de vérifier si la propriété ϕ est toujours satisfaite pour
un modèle légèrement perturbé M̃.

Implémentation robuste Cette approche implémente le modèle robuste, en continu-
ant à respecter les spécification du système temps-réel. Le modèle M peut ne pas
satisfaire la propriété ϕ après certaines perturbations. L’implémentation robuste a
pour objectif de transformer le modèleM en un modèle robuste aux perturbations
, M̃, qui satisfait toujours les spécifications du système.

Synthèse robuste Enfin, la synthèse robuste consiste à construire un contrôleur qui
forcera le modèle à avoir un bon comportement par rapport à la propriété désirée
ϕ, malgré les perturbations. Cette approche utilise généralement la théorie des jeux
pour modéliser et construire la stratégie du contrôleur et de l’environnement.

Les perturbations sur les automates temporisés peuvent se produire à différents niveaux.
Pour énumérer les principales d’entre elles, il convient d’énumérer les composants qui
peuvent être perturbés sur un automate temporisé : gardes, horloges, délais, transitions,
etc. La plupart des travaux ont isolé chaque type de perturbation afin de définir différents
modèles de robustesse. Après tout, un automate peut satisfaire de manière robuste une
propriété temporelle malgré des imperfections d’horloges, mais ne pas être robuste face
à une perturbation sur les gardes. Le premier modèle de robustesse a été proposé par
[GHJ97], où ils cherchent à vérifier la robustesse topologique d’un run. Les runs sont re-
présentés comme des trajectoires et le but est de vérifier si les voisins de ces trajectoires
sont acceptés par l’automate temporisé. Dans cette thèse, nous nous concentrons sur les
perturbations sur les délais pour les automates temporisés et les jeux.

Plan de la thèse

Dans cette thèse, nous présentons des résultats sur la robustesse des automates temporisés
en considérant les perturbations sur les délais et la permissivité maximale autorisée. La
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permissivité a été étudiée par [BFM15] en 2015, pour des automates temporisés à une hor-
loge. Ils fournissent un algorithme en temps polynomial pour calculer la permissivité max-
imale autorisée. Les résultats de cette thèse visent à étendre les résultats de [BFM15] pour
plusieurs horloges en utilisant une fonction légèrement modifiée pour calculer la perturb-
ation d’un automate temporisé. En effet, dans [BFM15], l’imprécision d’une exécution est
la somme de l’inverse de chaque imprécision appliquée tout au long d’une exécution. Dans
notre cas, nous représentons l’imprécision d’une exécution comme la plus petite impré-
cision commise lors d’une exécution, afin de s’assurer que cette imprécision sera autorisée
à chaque transition. Nous appelons cette imprécision autorisée la permissivité . Notre
but est de calculer cette permissivité maximale pour les automates multi-horloges pour
toute configuration. Cette thèse est organisée comme suit. Les Chapitres 1 à 3 définissent
les notions de base et l’état de l’art :

Chapitre 1: Nous présentons les définitions mathématiques que nous utiliserons dans
cette thèse. Les deux principaux concepts mathématiques que nous utilisons sont les
polyèdres et les fonctions affines par morceaux. Ces fonctions affines par morceaux
sont considérées en dimensions supérieures à 1. Nous définissons leurs morceaux
comme des polyèdres et définissons les fonctions affines par morceaux avec la notion
de partition de polyèdres.

Chapitre 2: Nous donnons une introduction aux automates temporisés et à la vérific-
ation d’atteignabilité. Nous définissons également notre modèle de robustesse en
définissant la sémantique permissive, la permissivité d’une exécution ainsi que la
permissivité maximale permise par un automate, étant donné une configuration
fixe.

Chapitre 3: Ce chapitre donne un état de l’art des différents types de robustesse pro-
posés dans la littérature.

Cette thèse comporte quatre contributions principales, détaillées dans les Chapitres 4, 5,
6 et 7.

Chapitre 4: Nous définissons une suite de fonctions afin d’avoir une expression itérative
de la fonction de permissivité. Nous appelons cette suite de fonctions la suite de
fonctions permissives sous-optimales. En effet, l’expression de la fonction de per-
missivité fournie dans le Chapitre 2 n’est pas adaptée à un calcul effectif, car elle
considère tous les intervalles proposés en même temps. Afin d’avoir une approche
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plus itérative, nous approchons cette fonction par une suite de fonctions, calculant
une stratégie sous-optimale. Dans ce chapitre, nous prouvons que cette suite de fonc-
tions et la permissivité sont liées : nous montrons que la fonction de permissivité est
la limite de cette suite de fonctions. Nous fournissons de bonnes propriétés de cette
suite de fonctions et étendons certaines d’entre elles à la fonction de permissivité.
Le but de ces propriétés est d’aider au calcul de ces fonctions.

Chapitre 5: Nous présentons un algorithme pour calculer la suite de fonctions per-
missives sous-optimales et la fonction de permissivité, en temps au plus non-élémentaire
pour les automates temporisés acycliques et les jeux temporisés acycliques.

Chapitre 6: Nous présentons deux implémentations. Dans la Section 6.1, nous proposons
une approche numérique, avec un algorithme qui calcule en avant une valeur approx-
imative de la fonction de permissivité pour une configuration fixée numériquement.
Nous fournissons une implémentation de cet algorithme. De plus, afin de fournir
une preuve de concept et d’étudier les temps de calcul en pratique de l’algorithme
présenté au Chapitre 5, nous présentons son implémentation symbolique dans la Sec-
tion 6.2 et comparons ses résultats avec ceux de l’implémentation de notre approche
numérique.

Chapitre 7: Nous étudions des problèmes approximatifs pour calculer la permissivité
plus efficacement. L’objectif de ce chapitre est de calculer une permissivité par
niveaux , c’est-à-dire une fonction qui, étant donné une liste de seuils, décide si la
valeur de la fonction de permissivité d’une configuration se situe entre deux seuils.
Nous présentons dans ce chapitre un algorithme en temps doublement exponentiel,
pour les automates temporisés linéaires, qui, étant donné un seuil positif, détermine
si la permissivité est supérieure à ce seuil. Cet algorithme nous permet de présenter
un algorithme en temps doublement exponentiel pour calculer la permissivité par
niveaux pour les automates temporisés linéaires.
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INTRODUCTION

Motivations

Real-time systems are used in many areas and involve a large number of components.
That can be car engines, printers, pacemakers or assembly lines for instance. The need of
formally checking these systems before implementing them comes from several reasons.
First, they can be critical systems (such as planes, car engines, rockets or pacemakers),
for which errors can cost life or a lot of time. Secondly, they can be manufactured in
large numbers, such as telecommunications chips. Formally verifying these models requires
considering a formal model, which takes time into account and on which one can formally
state what one intends to verify.

Timed automata is a very useful and efficient mathematical model to provide an
abstract model of real-time systems. It was introduced in 1994 by Alur and Dill in [AD94].
They provide a very expressive representation of timing aspects and can be generalised
to more complex models to express even more types of real-time systems. The principle is
to consider an automaton and to add a finite number of clocks that constrain the passing
of the different transitions.

Let us describe how an automatic light system can be modelled as a timed automaton.
This light system automatically switches off after a certain period of time in order to save
electricity. We illustrate this simple example in Figure 5 with the two possible states
(called locations) of the lamp, on and off, and the possible actions. We consider that the
only interaction with the lamp is to press the button (‘press’ action), which turns on
the lamp. We can switch from ‘Off’ to ‘On’ by performing the ‘press’ action. In order to
switch off automatically, the lamp has a counter, a clock, denoted by x, which is reset to
zero each time the button (‘press’) is pressed. The lamp will then automatically switch off
after one minute10, i.e. when x ≥ 1. To prevent it from turning off, the button (‘press’)
must be pressed before x = 1, as this action resets the clocks.

Let us remark that real-time systems may need more than one clock to represent them.
Let us take a scheduling example, where we have to execute three tasks a, b and c, such

10where the time unit is the minute.
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Off On

0 ≤ x < 1

press, x := 0 0 ≤ x < 1
press
x := 0x ≥ 1

Figure 5 – A timed automaton that illustrates an automatic light system.

that:

. a and b need to be executed before c.

. The delay between tasks a and b should be between 2 and 3 seconds.

. Task c must be performed no later than 5 seconds before the end of task a, and at
least 3 seconds after task b.

This real-time system is represented by the timed automaton in Figure 2. The clock x
(resp. y) represents the time elapsed since task a (resp. b) took place.

`0

`1

`2

`3

`f

a
x := 0

b
x ∈ [2, 3]
y := 0

c
x ≤ 5
y ≥ 3

b
y := 0

a
y ∈ [2, 3]
x := 0

Figure 2 – A timed automaton that illustrates a scheduling example.

Many properties can be checked on timed automata. For instance on our lamp example,
the property we would like to verify is whether we can reach the ‘Off’ state from any
situation. The answer is: if we let time pass, without pressing the button ‘press’ infinitely
often, the only possibility is to reach the ‘Off’ state. In our scheduling example, the
property we would like to verify is whether we can reach location `f , from the initial
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location `0. Finding a good execution would indicate whether the tasks a, b and c can be
executed. One can also ask whether, in order to respect the time constraints, an order
must be fixed between a and b: can one find an execution where a is executed before
b, but also one where b is executed before a? Other examples of everyday objects can
be represented by timed automata in order to be formally checked. An example is a lift,
where we may want to check that it will eventually go down to our floor if we call it. These
specification of the locations are called reachability properties. Verifying the reachability
of a location (or a set of locations), given an initial location and value of clocks in the
timed automaton, consists in finding an execution from the initial location and value of
clocks, to the desired location. In this thesis, we focus on this particular timed property.

This introduction is organised as follows: first, we describe how real-time systems, and
then the properties to verify, are usually modelled. Secondly, we present the principle of
formal verification. Thirdly, we describe how we model the imperfections of the formal
models. Fourthly and finally, we describe the aim of this thesis and its contributions.

Timed systems

In order to be verified, real-time systems are formally modelled. The main used model in
formal verification of real-time systems is timed automata and some variants. We present
in this section four of these models: timed automata, weighted timed automata, timed
games and hybrid timed automata.

Timed and hybrid automata

A timed automaton, introduced by Alur and Dill in 1994 in [AD94], represents a system
where to pass a transition is constrained by the satisfaction of timing constraints of the
clocks. Depending on the used semantics, the constraints can take several forms. Each
clock can be bounded independently, as in Figure 5, or the difference of clocks can be
bounded (as 0 ≤ x−y ≤ 1). More generally, constraints on clocks can be linear inequalities.

Each clock can be reset after passing a transition. The transition is represented with
an edge between two locations, and the reset of the clock x is represented with the symbol
‘x := 0’. The clocks evolve at the same speed and each transition is passed by proposing
a delay and an action.

Hybrid automata are an infinite state systems whose difference with timed automata
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is that the values of the clocks are described by ordinary differential equations. They can
be quite useful for applications related to cyber physical systems.

Weighted timed automata

Weighted timed automata were introduced by [ATP01] and [BFH+01]. These models can
be used used for applications such as traffic jam or choosing different types of transport
(air-plane vs train vs car for instance). In these models, staying in a location, or taking a
transition may have a cost. We sum the total cost during an execution, a run, and call it
the cost-function.

Let us consider the example of choosing between air-plane and train to go to a city. In
Figure 6 we represent two possible ways to reach London from Rennes. We model these
possibilities with their associated costs (in euros) with a weighted timed automaton. In this
timed automaton, the constraints represent imposed schedules of each mode of transport.
In this example, we can reach London with a direct plane, that costs 120 e, or with two

Rennes Lille London

0 ≤ x ≤ 24
train, c = 40

16 ≤ x ≤ 20
train, c = 49

x ≥ 24
c = 0
x := 0

x = 24
plane, c = 120

x ≥ 24
c = 0
x := 0

Figure 6 – A weighted timed automaton representing the possible ways to reach London
from Rennes.

trains, that cost a total of 89 e. The clocks represent the time of the current day (in
hours) and are reset at midnight. In this example, the train travel is cheaper than the
plane travel, but the schedules of the trains are more constrained in our example: the
train from Lille to London should be taken between 4 and 8 pm. One of the aim of these
models is to reach the goal while minimising (or maximising) the cost function.
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Timed games

Timed games extend timed automata by adding several players that can have different
control (proposing delay or actions, proposing delay and action on only specific locations)
with different purposes: minimising, maximising a cost function, reaching or not reaching
a goal etc. When their purposes are opposite, we can separate the players into players
and opponents.

There can be several semantics of timed games. For instance, games where players
can control different locations is a form of turn-based games. This semantics is detailed in
Subsection 5.2.3.

Conclusion

Other models are possible. For instance, when tackling with distributed timed systems,
we can use distributed timed automata. When some decisions (delays, action...) are not
decided by a player but by a random distribution over all possibilities, we can use prob-
abilistic timed automata.

Timed properties

These models enable us to formalise the properties we want to verify. There are several
types of timed properties, such as liveness and safety, introduced by Alpern and Schneider
in [AS85] and by Alpern, Demers and Schneider in [ADS86]. Let us detail them.

Liveness properties ensure that some (good) event will eventually occur. They are
opposed to safety properties that ensure that some (bad) event will never occur. Safety
properties can be used for many application, for example to avoid obstacles for car engines
or trains. For a safety property to be violated, a finite execution should be found where
this bad event occurs. A useful and strong result was proved by Alpern and Schneider
in [AS87]: we can express every linear-time property as the intersection of liveness and
safety properties.

The property we will study in this thesis is reachability, which corresponds to the
negation of a safety property. Reachability properties ensure that a target location is
reachable given an (or several) initial configurations, i.e. that there exists a run from an
initial configuration to the target location. Let us consider for instance the example of
Figure 6. The reachability property we could verify can be ‘can we reach London from
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Rennes if the initial clock is x = 8?11’.

Principle of formal verification

Now that we have presented how real time systems are modelled, let us explain how
to verify them. The aim of formal verification is, considering all possible configurations
of our systems, and to either prove that the timed property we consider is verified, or
construct a counter-example where this property is not verified. This is the principle of
model-checking algorithms, introduced by Clarke, Emerson, Queille, Sifakis in the early
80s. Their work was rewarded by a Turing award in 2007. For an introduction to Model
Checking, one can refer to the book [BK08].

The principle of model-checking algorithm is illustrated in Figure 7: given an abstract
model and a timed property, the model-checking algorithm gives either the guarantee
that the timed property (for instance, ‘Will our system eventually finish ?’) holds in every
configuration, or an example of a execution where it was not verified. The principle a
model-checking is first to model the system and the property we want to satisfy, then to
run the model-checking algorithm. If the property is verified, the process stops, otherwise
the counter-example should be analysed in order to change the model (or the property),
until the property is verified.

The strength of model-checking is to formally verify a property, for a general
model, individually (meaning that we can check each property independently and see
which one is violated) and provide counter-examples to explain why the property was not
satisfied. The weakness of model-checking is its high cost for complex systems, such
as timed automata, because of state-space explosion.

Several model-checking tools, for different types of timed systems, have been de-
signed such as Kronos12([BDM+98], [Yov97]), Uppaal13 ([BDL+06]), TChecker14, IMIT-
ATOR15 ([And09], [And10], [AFK+12], [And21]), Roméo16 ([GLM+05], [LRS+09]) and
PAT17 ([SLD+09]).

11i.e. if we leave Rennes at least at 8 a.m.
12https://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
13https://uppaal.org/
14https://www.labri.fr/perso/herbrete/tchecker/
15https://www.imitator.fr/index.html
16http://romeo.rts-software.org/
17https://pat.comp.nus.edu.sg/
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An
abstract
model

A timed
property

model-
checking
algorithm

3 7
Satisfied Counter-example

Figure 7 – Principle of formal verification.

Robustness: Verifying timed systems despite perturb-
ations

The robustness of an object refers, in general, to its ability to resist to (small) perturb-
ations. When modelling timed systems, perfect precision is supposed in all aspects. In
these abstract models, we assume that:

. The clocks grow at exactly the same speed, they are synchronised.

. The guards of the transitions will be exactly those that will be implemented.

. The delays proposed to pass a transition will be exactly applied, with infinite pre-
cision.

However, in the real world, clocks can desynchronise, that is, evolve at different speeds.
The proposed delay may also be applied with a slight advance or latency. For instance, in
the automatic light system presented in Figure 5, if we press the button at x = 0.8, the
delay actually may be applied at 0.802, because of a slight latency. Therefore, checking
the ability to resist to perturbation is an important issue.

Robustness can also be applied on scheduling. Scheduling is the action of ordering
tasks to perform them (see the example from Figure 2). Its goals are numerous, one of
them is to minimise the waiting time between two tasks. It is easy to see that latencies
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are unavoidable, and that in the real world, actions will not follow each other without
imprecision as to when they were performed. In the example of Figure 2, if the latency is
greater than 1 second, it is an issue as the delay between tasks a and b should be between
2 and 3 seconds. The reliability of the final result with respect to various environmental
disturbances and perfectible hardware is therefore a crucial issue if one wants to execute
this scheduling in the real world.

There are different ways to check robustness. We detail four of them in this section. Let
us consider a real-time system S, modelled by an abstract modelM, to verify the timed
property ϕ. This modelM was built to represent S with the help of specifications.

Language analysis This first approach, which does not transform the model, consists in
analysing how much perturbation can change what the model expresses. Consider
model M and the language L that M expresses. The goal of a language analysis
will be to express the language L̃ that the perturbed model M̃ expresses.

Robust analysis This other approach checks if the model can resist to perturbations,
without interfering. Assuming that modelM satisfies ϕ, the aim of robust analysis
is to check whether property ϕ is still satisfied if the model is slightly perturbed.

Robust implementation This approach directly implements the robust model. The
model may not satisfy the property after certain perturbations. One of the object-
ives of robustness, called robust implementation, is to transform model M into a
robust (to perturbations) model, which always satisfies the system specifications.
We implement a robust model of the system, based on the ideal model, so that it is
robust to perturbations.

Robust synthesis Finally, robust synthesis asks whether one can build a controller that
will force the model to have a good behaviour with respect to the property ϕ,
despite perturbations. This approach usually uses game theory to model and build
the strategy of both the controller and the environment.

Perturbations on timed automata can occur at different levels. To enumerate the
main ones, we should list the components that could be perturbed on a timed automaton:
guards, clocks, delays, runs. Most works have isolated each type of perturbations to define
different robustness models. After all, an automaton may robustly satisfy a temporal
property despite clock imperfections, but not for perturbations on guards. The first model
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of robustness was proposed by [GHJ97]. Their goal is to verify the topological robustness
of a run. Runs are represented as trajectories and the goal is to check if the neighbours
of these trajectories are accepted by the timed automaton.

In this thesis, we focus on the perturbations on the delays for timed automata and
games.

The goal of this thesis is to construct a robust synthesis: we construct a strategy, for any
configuration, to satisfy the reachability on timed automata, despite the perturbations
of delays. On top of that, we want to compute the maximal perturbation allowed.
In other terms, we want to compute how much permissive the timed automaton is to
perturbations on the delays and build a controller that will maximise the permissiveness
of a timed automaton.

Content and organisation of this thesis

In this thesis, we present results on the robustness of timed automata considering delay
perturbations and the maximal allowed permissiveness. The permissiveness was studied by
[BFM15] in 2015, for one-clock timed automata. The authors provide a polynomial time
algorithm to compute the maximal allowed permissiveness. The results of this thesis aim
at extending the results of [BFM15] for several clocks using a slightly modified function
to compute the perturbation of a timed automaton. Indeed, in [BFM15], the imprecision
of a run is the sum of inverses of all imprecisions applied throughout a run. Our aim is to
represent the smallest imprecision, in order to ensure that this imprecision will be allowed
at each transition. We call this allowed imprecision the permissiveness. Our goal is to
compute this maximal permissiveness for multi-clock automata for any configuration.

This thesis is organised as follows. Chapter 1 to 3 define basic notions and state of the
art:

Chapter 1: We present the mathematical definitions we will use throughout this thesis.
The two principal mathematical concepts we use are polyhedra and piecewise affine
functions. These piecewise affine functions are considered in dimensions greater than
1. We define their cells as polyhedra and define piecewise affine functions with the
notion of partition of polyhedra.

Chapter 2: We give an introduction to timed automata and reachability verification.
We also define our model of robustness by defining the permissive semantics, the
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permissiveness of a run and the maximal permissiveness allowed by an automaton,
given a fixed configuration.

Chapter 3: This chapter reviews the state of the art for the different kinds of robustness
proposed in the literature.

There are four main contributions in this thesis, detailed in Chapters 4, 5, 6 and 7.

Chapter 4: We define a sequence of functions to provide an iterative expression of the
permissiveness function. We call this sequence the sequence of suboptimal permissive
functions. Indeed, the expression of the permissiveness function provided in Chapter
2 is not adapted to effective computation as it considers all the intervals proposed
at the same time. In order to obtain a more iterative approach, we approximate this
function with a sequence of functions. In this chapter, we prove the links between
this sequence of functions and the permissiveness: we show that the permissiveness
function is the limit of this sequence of functions. We provide good properties of
this sequence of functions and extend some of them to the permissiveness function.
The aim of these properties is to help computing these functions.

Chapter 5: We give an algorithm to compute the sequence of suboptimal permissive
functions and the permissiveness function in non-elementary time for acyclic timed
automata and games.

Chapter 6: We present two implementations. In Section 6.1, we provide another numer-
ical approach with a forward algorithm that computes an approximate value of the
permissiveness function for a fixed configuration. We provide an implementation of
this algorithm. To give a proof-of-concept of our algorithm presented in Chapter 5,
and to study its runtime, we present the symbolic implementation in Section 6.2
and compare it with the numeric implementation.

Chapter 7: We study approximate problems to compute permissiveness more efficiently.
The aim of this chapter is to compute a leveled permissiveness, i.e., a function that,
given a list of thresholds, decides whether the value of the permissiveness function
of a configuration lies between two thresholds.

In this chapter, we introduce an algorithm for linear timed automata, which, given
a positive threshold, computes whether the permissiveness is greater than this
threshold. This algorithm allows us to present a double exponential time algorithm
for computing permissiveness by levels for linear timed automata.
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NOTATIONS

Mathematical notations

We use standard Landau notations O,Ω,Θ, o, ω.

R The set of real numbers
Q The set of rational numbers
N The set of positive integers
K+ The set of positive elements of K, for K = R or Q

E The topological closure of the set E
E̊ The topological interior of the set E
|E| The size of the set E
[x · · · y] The interval of all integers between x and y
[x, y] The interval of all reals between x and y
]x, y] (resp. ]x, y] The interval of all reals between x and y, x (resp. y) excluded
]x, y[ The interval of all reals between x and y, x and y excluded
Mk,n (R) The set of k-by-n real matrices
−→x vector
xi i-th coordinate of a family/vector x
bxc floor function of x
fract (x) fractional function of x
‖x‖ The norm of an element
|I| The length of an interval
1E The indicator function over the set E∧

The logical conjunction

35
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Timed automaton notations
A A timed automaton
` A location of a timed automaton
`f A goal location of a timed automaton
g A guard
Σ The set of actions
a An action
E The set of transitions
e A transition
C The set of clocks
x (or y) A clock
c A constraint
v A valuation
v |= g The valuation v verifies the guard g
Cr A set of resets
ρ A run
σ A strategy
δ A delay
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Chapter 1

PRELIMINARIES

In this chapter, we develop the mathematical notions we need for this thesis. The main
mathematical concepts we use are polyhedra and piecewise affine functions, in dimensions
greater than one. Piecewise affine functions are a well-known type of functions in one
dimension. Our aim in this chapter is to extend this notion to an arbitrary dimension. An
example of this kind of functions in dimension 2 is shown in Figure 1.1.

x

y

0
0

1

1

2

1
2

1−
x

1−y

1+x−y
2

x−y

2−x

1−y

x
y

2−x 1−y

Figure 1.1 – An example of a 2-dimension piecewise affine function from [0, 2] × [0, 1] to
R.

We define piecewise affine functions in an arbitrary dimension. We first need to extend
the notions of affine function and cells to higher dimensions. First, we extend affine
functions to a higher dimension in Section 1.1. Next, we need to extend the notion of
cells. In dimension 1, they are represented as intervals. In dimension 2, they can be,
for instance in Figure 1.1, triangles. This depends on the number of edges. In higher
dimensions, we represent them with polyhedra. The partition of these cells is called
partition of polyhedra. We introduced these two notions in Section 1.2. Finally, we define
what a multidimensional piecewise-affine function is in Section 1.3.
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1.1 Multidimensional affine functions

Let us now formally define affine functions in higher dimension, which we call multidimen-
sional affine functions, or n-dimensional affine functions when specifying the dimension
used. We define these functions over R or Q. Therefore we denote K = R or Q for the rest
of this section. We extend affine functions in higher dimensions and with the possibility
to have infinite coefficients. More formally:
Definition 1.1: n-dimensional affine functions
Let n be an integer and E a subset of Kn. An n-dimensional affine function from E

to K ∪ {−∞,+∞} is a mapping f : E 7→ K ∪ {−∞,+∞} such that:

. Either there exists a vector (ai)0≤i≤n ∈ K
n such that:

∀x = (xi)1≤i≤n ∈ E, f(x) =
n∑
i=1

ai · xi + a0

. Or f(x) = −∞ (resp. +∞) for all x ∈ Kn, in that case we can still write

f(x) =
n∑
i=1

ai · xi + a0 by setting a0 = −∞ (resp. +∞) and ai = 0 for all

1 ≤ i ≤ n

Let us recall the terminology for these functions:

. f is called a multidimensional affine function when n is not specified.

. a0 is called the inhomogeneous term of f .

. a1, · · · , an are called the homogeneous terms of f .

. If a0 = 0, f is called an n-dimensional (or multidimensional) linear function.
In that case, f(0) = 0.

Example 1.1.1 Let us give a simple example in dimension 3:

f : (x, y, z) 7→ x− y + z + 10 , g = f − 10.

f and g are 3-dimensional affine functions. In particular, g is an 3-dimensional linear
function, f is not. The inhomogeneous term of f is a0 = 10, and the homogeneous terms
of f are a1 = 1, a2 = −1 and a3 = 1.
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Our goal in the next Sections 1.2 and 1.3 is to define piecewise affine functions over
Kn. The Figure 1.1 represents the piecewise affine functions f : [0, 2]× [0, 1] 7→ R such
that:

f : (x, y) 7→



1/2 if x ∈ [0, 1/2], y ≤ x
1 + x− y

2 if x ∈ [0, 1/2], y ≥ x, y ≤ 1− x

1− y if x ≤ 1, y ≥ 1− x, y ≥ x

1− x if y ≤ x, x ≥ 1/2, y ≥ −1 + 2x

x− y if y ≤ −1 + 2x, x ≤ 1

1− y if y ≥ −1 + x, x ≥ 1, y ≤ 1, x ≤ 2

2− x if y ≤ −1 + x, x ≤ 2, 1 ≤ x

In dimensions greater than 1, we represent the pieces of theses functions with polyhedra.
To do that, in the next section, we define polyhedra and the partition of polyhedra.

1.2 Polyhedra

General definitions

In this section, we define polyhedra and give some examples. First, let us recall what the
convexity property is.
Definition 1.2: Convexity

A set S is convex if and only if, for all x, y in S, the segment [x, y] is included in S,
i.e.:

∀x, y ∈ S,∀t ∈ [0, 1] , t · x+ (1− t) · y ∈ S

Half-spaces represent sets that cut Rn in half. They are specified by linear inequalities
(as a1x1 + a2x2 + · · · + anxn > b). In a one-dimension space, half-spaces define rays (ex:
x > 0). More formally:
Definition 1.3: Half-space

Let n ≥ 0 be an integer. A half-space of Rn is a set of the form {X ∈ Rn|f(X) ∼ 0}
where ∼∈ {≤,≥, <,>} and f is an affine, non-constant, function of Rn.
If ∼∈ {≤,≥} (resp. {<,>}), the half-space is called a closed (resp. open) half-space.
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We can remark that a half-space is convex. The Figure 1.2 represents examples of
half-spaces of R and R2.

x0
(a) Half-space {x | x ≤ 0} of R.

(0, 0) (1, 0)

(0, 1)

x

y

(b) Half-space {(x, y) | y − x ≥ 0} of R2.

(0, 0) (1, 0)

(0, 1)

x

y

(c) Half-space {(x, y) | 3− x
2 − y > 0} of

R2.

(0, 0) (1, 0)

(0, 1)

x

y

(d) Half-space {(x, y) | x ≥ −1} of R2.

Figure 1.2 – Examples of half-spaces of R and R2.

Definition 1.4: Polyhedra and closed polyhedra

A polyhedron of Rn is a finite intersection of half-spaces of Rn. A polyhedron is closed
if it is a finite intersection of closed half-space of Rn.

An immediate property, as the intersection of several convex set is a convex set, is the
convexity of polyhedron, stated in Proposition 1.5
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1.2. Polyhedra

Proposition 1.5

A polyhedron of Rn is a convex set.

Example 1.2.1 We represent the intersection of the three half-spaces of R2 of Figure 1.2
in Figure 1.3a and the first two half-spaces of R2 of Figure 1.2 in Figure 1.3b.

In Figure 1.3a, the polyhedron is the set {(x, y) ∈ R2 | y ≥ x,
3− x

2 > y}. In Figure

1.3b, the polyhedron is the set {(x, y) ∈ R2 | y ≥ x,
3− x

2 > y, x ≥ −1}. Both are not
closed because the half-space of Figure1.2c is open.

(0, 0) (1, 0)

(0, 1)

x

y

(a) Intersection of half-spaces of Figure 1.2b
and 1.2c.

(0, 0) (1, 0)

(0, 1)

x

y

(b) Intersection of half-spaces of Figure
1.2b, 1.2c and 1.2d.

Figure 1.3 – Two examples of polyhedra in R2.

A closed polyhedron can be represented with a so called H-representation:
Theorem 1.6: H-representation ([Sch86], p.87)

P ⊆ Rn is a closed polyhedron if and only if there exists some integer k, some
matrix A ∈Mk,n (R) and some vector b ∈ Rk such that P is defined as follows:

P = {x ∈ Rn | A · x ≤ b}

This representation is called a H-representation.

Let us finally remark that the intersection of polyhedra preserves the properties of
convexity, closeness, openness, while the union does not. More formally:
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Proposition 1.7: Intersection of polyhedra

The finite intersection of:

. polyhedra is a polyhedron.

. closed polyhedra is a closed polyhedron.

. open polyhedra is an open polyhedron.

Partition and tiling of polyhedra

The goal of this section is to define what a partition of polyhedra and a tiling of polyhedra
are. The intuition is to divide a space, as Rn+ or Rn, with a collection of disjoint polyhedra.
For instance let us take the four following polyhedra:

P0 =
{

(x, y) ∈ R2| | x ≥ 1, y ≥ 1
}

P1 =
{

(x, y) ∈ R2| | x < 1, y ≥ 1
}

P2 =
{

(x, y) ∈ R2| | x < 1, y < 1
}

P3 =
{

(x, y) ∈ R2| | x ≥ 1, y < 1
}

These polyhedra are all disjoints two by two and their union forms the space R2 (see
Figure 1.4). Let us define a partition of polyhedra in Definition 1.8

P0P1

P2P3

(0, 0) (1, 0)

(0, 1)

x

y

Figure 1.4 – Partition of R2 with the four polyhedra P0,P1,P2 and P3.
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Definition 1.8: Partition of polyhedra

Let P be a polyhedron of Rn. A partition of polyhedra T of the polyhedron P is a
finite family of m+ 1 polyhedra (Pi)0≤i≤m of Rn such that:

• For any i in [0 · · ·m], Pi 6= ∅.

• For any i, j in [0 · · ·m], Pi and Pj are disjoints.

•
m⋃
i=0
Pi = E.

The integer m+ 1 is called the number of cells of the partition of E. We say that
T is a m+ 1-cells partition of E.
Each Pi is a cell of the partition (Pi)0≤i≤m.

A polyhedron can also be represented using a tiling. Tiling of polyhedra is less restrict-
ive because it allows polyhedra to intersect at their frontiers. This definition will be used
in the case of a continuous piecewise affine function because the values of the functions
at the frontiers of the polyhedra will then be equal. Let us define the tiling formally in
Definition 1.9

Definition 1.9: Tiling of polyhedra

Let P be a polyhedron of Rn. A tiling of polyhedra of P is a finite family T of m+ 1
polyhedra (Pi)0≤i≤m of Rn such that:

• For any i in [0 · · ·m], Pi 6= ∅.

• For any i, j in [0 · · ·m], the interior of Pi and the interior of Pj are disjoints.

•
m⋃
i=0
Pi = E.

The integer m + 1 is called the number of cells of the tiling of E. We say that T
is a m+ 1-cells tiling of E.
Each Pi is a cell of the tiling (Pi)0≤i≤m

To represent R2 as a tiling of polyhedra, we can for instance consider the following
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family of polyhedra:

P ′0 =
{

(x, y) ∈ R2| | x ≥ 1, y ≥ 1
}

P ′1 =
{

(x, y) ∈ R2| | x ≤ 1, y ≥ 1
}

P ′2 =
{

(x, y) ∈ R2| | x ≤ 1, y ≤ 1
}

P ′3 =
{

(x, y) ∈ R2| | x ≥ 1, y ≤ 1
}

These polyhedra P ′0,P ′1,P ′2,P ′3 are respectively the closure of P0,P1,P2,P3.

1.3 Multidimensional piecewise-affine functions

In this subsection, we define the multidimensional piecewise affine functions in Definition
1.10. We also specify that, when the piecewise-affine function is continuous, we can use a
tiling of polyhedra instead of a partition to define it.
Definition 1.10: n-dimensional piecewise affine functions

Let P be a polyhedron of Rn. An n-dimensional affine function is a mapping f :
P → R ∪ {−∞,+∞} for which there exists a partition into polyhedra T =

(Pi)0≤i≤m of P and a family (fi)0≤i≤m of n-dimensional affine functions such that for
any X ∈ P , there is a unique index i in [0 · · ·m] such that X ∈ Pi and f (X) =
fi (X). Let us define some useful terminology:

. f is called a multidimensional piecewise affine functions when the dimension
n of f is not specified.

. T is called the partition of polyhedra of f and (fi)1≤i≤m is called the list of
affine functions of f .

. Each cell Pi is called a cell of f and is associated with the affine function fi.

. The entry domain such that f takes finite values, i.e. f−1(R), is denoted
Dfinite (f) and called the finite domain of an n-dimensional affine function f .

Example 1.3.1 Let us construct the example of the 2-dimensional affine function repres-
ented in Figure 1.5a.

This is a 4-cells partition of R2
+, that we will denote C1, C2, C3 and C4, where:

44



1.3. Multidimensional piecewise-affine functions

C1 = {(x, y) ∈ R2
+ | y ≤ 1, x− y ≤ 0}, C2 = {(x, y) ∈ R2

+ | y ≤ 1, 0 < x− y ≤ 1},
C3 = {(x, y) ∈ R2

+ | y ≤ 1, x− y > 1}, C4 = {(x, y) ∈ R2
+ | y ≥ 1, x ≥ 0}

Let us then describe f :

f =



f1 : (x, y) 7→ (x+ y)/2 over C1

f2 : (x, y) 7→ y over C2

f3 : (x, y) 7→ x− 1 over C3

f4 : (x, y) 7→ −∞ over C4

x 7→ x

C1

x+ y

2

x 7→ −1 + x

C2

y x− 1

C3

−∞ C4

x

y

1 2

1

2

(a) An 2-dimensional affine function f .

x 7→ x

C1

x+ y

2

x 7→ −1 + x

C2

y x− 1

C3

x

y

1 2

1

2

(b) Its (continuous) restriction over [0, 1]× R+.

Figure 1.5 – Two 2-dimensional affine functions, represented with partition of polyhedra
(Figure 1.5a) or tiling of polyhedra (Figure 1.5b).

In the case of continuous n-dimensional piecewise affine functions, we do not need to
split the polyhedron P into strictly disjoint cells: we can use tiling. The main advantage
is to consider only closed polyhedra with the H-representation as defined in Theorem
1.6. In that case, we can define f as a mapping P 7→ R ∪ {−∞,+∞} associated
with a tiling of polyhedra T := (Pi)0≤i≤m of P and a family (fi)0≤i≤m of n-dimension
affine functions s.t. for any X ∈ P , there is an index i in [1 · · ·m] such that X ∈ Pi and
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f (X) = fi (X). If X ∈ P̊i, the index i is unique. The rest of the definition can be extended
trivially from Definition 1.10. Indeed, as the function is continuous, if two cells Pi and Pj
are not disjoints, the affine function fi and fj will be equals on their common frontier.
We illustrate the representation with a tiling of polyhedra in Figure 1.5b: we consider the
restriction of the function f described in Example 1.3.1. Its restriction is continuous so we
can use the tiling of polyhedra

{
C1, C2, C3

}
. Let us recall that for any set E, E represents

its topological closure.
As most of our functions will be continuous piecewise affine functions (at least over

their finite domain), we will mainly use tilings instead of partitions in this thesis.
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Chapter 2

TIMED AUTOMATA AND ROBUSTNESS

In this chapter, we present the notions of the theory of timed automata that we will need
in order to define, quantify and compute robustness of timed automata. In Section 2.1,
we present timed automata, describe their syntax and semantics, from the constraints to
the runs. Then, we present two fundamental problems in the theory of timed automata:
reachability and robustness. The reachability problem asks whether a location of a timed
automaton can be visited, knowing the starting configuration. The robustness problem
asks whether properties will still be verified despite perturbations. As robustness is a very
general problem, we need to specify our perturbation model. In Section 2.2, we present
one model where perturbations affect delays. We call this model the permissiveness.

2.1 Timed automata

Timed automata are a very convenient way to model the behaviour of real-time systems.
Here we give the essential notions and results on timed automata. First, we introduce clock
valuations and constraints. Clock valuations represent the values of several clocks and time
constraints allow us to check whether the clock values are bounded by some expressions. In
a second step, we express the syntax and classical semantics of timed automata. In a third
step, we present the reachability problem and how it is solved. A classical construction on
timed automata is the representation of valuations with clock regions. This abstraction
provides a finite-state automaton which is time-abstract bisimilar to the original timed
automaton. This allows to prove that the reachability problem is in PSPACE. Finally, we
express the limitations of reachability. Indeed, when dealing with reachability properties,
the clocks are assumed to be perfectly accurate, which is not the case in the real world.
To model the imperfection of the model in the real world, we introduce the robustness
concept, which studies whether a property holds despite temporal imprecisions.
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2.1.1 Clock constraints

Clocks are objects that represent time with real values. Their values progress at the same
speed but can be reset independently. We denote the set of all clocks by C. A clock
valuation, is a function from C to R+. It can be represented as a point in R|C|+ . Given a
valuation v and a non-negative real δ, we denote by v + δ the valuation w such that for
any clock variable x ∈ C, w (x) = v (x) + δ. Let I ⊆ R+ be an interval, we write v + I

for the set of valuations {v + δ | δ ∈ I}. To denote the reset of clocks, given a valuation
v and a subset Cr ⊆ C, we denote by v [Cr ← 0] the valuation w such that w (x) = 0 if
x ∈ Cr and w (x) = v (x) if x 6∈ Cr.

To verify temporal properties, we first define how a valuation satisfies a timing
constraint. There are several types of clock constraints. In this thesis, we use classical
guards and polyhedral guards. Classical guards are a simple way to constrain clocks: all
clocks are bounded with constant values. For example, if we consider the set of clocks
{x, y}, the timing constraint 0 ≤ x ≤ 5 ∧ 5 ≤ y ≤ 10 is a guard. More formally:

Definition 2.1: Classical guards

The set of classical guards over C, denoted G (C), is defined as G (C) 3 g := x ∼ n |
g ∧ g where x ranges over C, n ranges over N and ∼∈ {<,≤,=,≥, >}. A constraint
x ∼ n is closed if ∼∈ {=,≤,≥}. A classical guard is closed if each of its constraints
is closed.
The fact that a valuation v satisfies a classical guard g, denoted v |= g is defined
inductively as:

1. (v |= x ∼ n) if and only if (v (x) ∼ n).

2. (v |= g0 ∧ g1) if and only if (v |= g0 and v |= g1).

If a valuation v does not satisfy a guard g, we denote it v 6|= g.

Another type of guards we will use in this thesis is polyhedral guards. We define it
formally in Definition 2.2. These guards are defined with a polyhedron P of Rn and a
valuation v satisfies this polyhedral guards if its belongs to P . This is a generalisation of
classical guards. For instance, the timing constraint x + 6y + 9 ≤ 0 ∧ x − y ≤ 0 is a
polyhedral guard.
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Definition 2.2: Polyhedral guards

A polyhedral guard is denoted gP, where P is a polyhedron (as defined in Definition
1.4) in RC. A clock valuation v satisfies a polyhedral guard gP, denoted v |= gP if
v ∈ P. The set of polyhedral guards is denoted Gp (C).
A polyhedral guard is a closed polyhedral constraint if its associated polyhedron is
closed.

Remark 2.1.1 Let g be a polyhedral (or classical) guard over C. Let v be a valuation in
R|C|+ and I ⊆ R+ be an interal. We say that v + I |= g if for any δ ∈ I, v + δ |= g.

Remark 2.1.2 Classical guards are a particular case of polyhedron constraints, where its

associated matrix A of its H-representation is of the form
A0

A1

, such that A0 and A1

are diagonal matrices ofMn,n (R).

Proposition 2.3: Guards are convex

Let gP be a polyhedral guard. Let v, v′ ∈ R|C|+ and λ ∈ [0, 1] such that v, v′ |= g. Then
λ · v + (1− λ) · v′ |= g.

Proof of Proposition 2.3. This is a direct consequence of the convexity of P. Let P be the
polyhedron associated with gP. As P is a convex set, λ · v + (1− λ) · v′ ∈ P.

2.1.2 Timed automata

In this subsection, we present the notion of timed automata. Timed automata were first
introduced by [AD94]. We first give their syntax in Definition 2.4 and some basic defini-
tions, such as acyclic timed automata, in Definition 2.5.
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Definition 2.4: Timed automata ([AD94])

A timed automaton is a tuple A = (Σ, Q,Q0, Qf , C, E) where:

. Σ is a finite set of actions,

. Q is a finite set of locations,

. Q0 ⊆ Q is the set of initial locations,

. Qf ⊆ Q is the set of goals,

. C is the finite set of clocks

. E ⊆ Q× Gp (C)× Σ× 2C ×Q is a finite set of transitions.

A transition is a tuple (`, g, a, Cr, `′) where ` ∈ Q, `′ ∈ Q, g ∈ Gp (C), Cr ⊆ C and
a ∈ Σ. A closed timed automaton is an automaton that uses only closed constraints.

Example 2.1.1 Let us consider the timed automaton A0 and A1 of Figures 2.1 and 2.2:

. The set of clocks is {x, y} and the set of locations is {`0, `1, `2, `f} in A0 and A1.
Likewise, the set of initial locations is {`0} and the set of goal locations is {`f}. In
these examples there is only one initial location and only one goal location.

An initial location is represented with an arrow, left to the state: `0 . A goal

location is double-circled:
`f

. Guards are represented as labels above the edges:
0 ≤ x ≤ 1
0 ≤ y ≤ 2

for instance for g :=

0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 2.

. Actions are represented as labels below the edges (a0 for instance).

. The set of resets, if it is not empty, is represented by y := 0 for Cr = {y}. In A0,
the set of resets is empty in all transitions. In A1, the set of resets is empty for all
transitions, except for the transition from `0 to `1 where Cr = {y}.

For simplification purposes, we now assume in the rest of this document (unless oth-
erwise stated) that a timed automaton is a closed timed automaton and that the set of
goal locations is a singleton.

50



2.1. Timed automata

`0

`1

`2

`f

0 ≤ x ≤ 1
0 ≤ y ≤ 2

a0

1 ≤ x ≤ 3
2 ≤ y

a1

0 ≤ x ≤ 1
y ≥ 1

a′0

1 ≤ x ≤ 2
0 ≤ y ≤ 2

a′1

Figure 2.1 – A two-clock timed automaton A0 with four transitions.

`0 `1 `2 `f

0 ≤ x ≤ 2
0 ≤ y ≤ 2
a0, y := 0

0 ≤ x ≤ 4
0 ≤ y ≤ 2

a1

0 ≤ y ≤ 1
a2

Figure 2.2 – A two-clock timed automaton A1 with three transitions.

Remark 2.1.3 Let A = (Σ, Q,Q0, Qf , C, E) be a timed automaton. We denote by G (A)
its associated directed graph, i.e. a directed graph G (A) = (Q,Q0, Qf , E

′) where the set of
transitions E ′ ⊆ Q×Q is defined by projecting away the guards and resets. More formally,
(`, g, a, Cr, `′) ∈ E if and only if (`, `′) ∈ E ′.

Example 2.1.2 Figure 2.3 represents the associated graph of the timed automaton A1 of
Figure 2.2.

`0 `1 `2 `f

Figure 2.3 – The associated graph of the timed automaton A1 of Figure 2.2.

A timed automaton can also contains cycles or a unique transition per location. We
define these types of timed automata in the following definition.
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Definition 2.5: Single action, acyclic, linear timed automaton

Let A = (Σ, Q,Q0, Qf , C, E) be a timed automaton.

. A is a single-action timed automaton if for any location ` ∈ Q and any action
a ∈ Σ, there exists at most one transition from ` labelled with a. In other
words, for any ` ∈ Q and a ∈ Σ, there exists at most one `′ ∈ Q, g ∈ Gp (C)
and Cr ⊆ C such that the transition (`, g, a, Cr, `′) ∈ E.

. A is an acyclic timed automaton if its associated directed graph G (A) is
acyclic.

. A is a linear timed automaton if it is acyclic and if, from any location ` ∈ Q,
there exists at most one transition from `.

More formally, for any location ` ∈ Q, there exists a unique 4-tuple (`′, a, Cr, g)
such that `′ ∈ Q, a ∈ Σ, Cr ⊆ C, g ∈ Gp (C) and

(`, g, a, Cr, `′) ∈ E.

For the rest of this thesis, we will consider only single-action timed automata.

Example 2.1.3 Let us again consider the two timed automata from Figures 2.1 and 2.2.
A0 and A1 are both acyclic and single-action, but only A1 is linear. Indeed, in A0, two
transitions are available from `0.

Definition 2.6: The largest constant

Let A = (Σ, Q,Q0, Qf , C, E) be a timed automaton. The largest constant of the
automaton A, denoted M (A), is the value of the largest constant that appears in
the guards of A.

Example 2.1.4 In the timed automaton from Figures 2.1 and 2.2, the largest constant
is 3 for A0 and 4 for A1. Indeed the constraints that contain the greatest constant are
respectively 1 ≤ x ≤ 3 ∧ 2 ≤ y and 0 ≤ x ≤ 4.

2.1.3 Classical semantics

A configuration of a timed automaton A is a pair (`, v) where ` ∈ Q is a location of the
automaton and v is a clock valuation. The semantics of a timed automaton is an infinite-
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state labelled transition system T = (S,S0,SF ,∆) composed with a set of states S, a set
of initial states S0, a set of final states Sf and a set of transitions ∆.

The set of states is the set of configurations, the set of initial states, S0 = Q0 × R|C|+

is the set of configurations (`, v) such that ` ∈ Q0. Such configurations are called initial
configurations. The set of final states, Sf := Qf × R|C|+ is the set of configurations (`, v)
such that ` ∈ Qf . Such configurations are called goal configurations.

The transitions are of two kinds:

. delay transitions model time elapsing: no transition of the timed automaton is taken,
but the values of all clocks are increased by the same value. For any configuration
(`, v) and any delay δ ∈ R+, there exists a transition (`, v) δ−→ (`, v + δ).

. action transitions represent the effect of taking a transition in the timed automaton.
For any configuration (`, v) and any transition e = (`, g, a, Cr, `′), if v |= g, then there
exists a transition (`, v) a−→ (`′, v [Cr ← 0]) .

Even if it means summing up the delays, we suppose that delay transitions and action
transitions alternate. Finally, we write (`, v) δ,a−→ (`′, v′) when there exists a configuration
(`′′, v′′) such that (`, v) δ−→ (`′′, v′′) and (`′′, v′′) a−→ (`′, v′).

In a timed automaton, we begin at an initial configuration (`0, v0) and propose pairs
of delays and actions to reach a successor of `0, then a successor of this successors, etc.
The trace obtained by proposing these pairs and reaching successive configurations is
called a run. It stores informations about the configurations reached and the sequence of
delays-actions proposed. More formally:
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Definition 2.7: Run
Let n ∈ N ∪ {+∞} and A be a timed automaton. A run of length n can be defined
as follows:

. If n = 0, the run is empty and is denoted, by convention (s0) where s0 is the
initial configuration of the run.

. ρ := (si, (δi, ai) , si+1)0≤i≤n−1 such that for any i ∈ [0 · · ·n− 1] , si
δi,ai−−→ si+1.

Let us introduce some additional definitions:

. The length of ρ is defined as follows: |ρ| = n.

. For any run ρ, ρ≤j is the finite prefix of ρ (si, (δi, ai) , si+1)0≤i≤j−1.

. ρ is a finite run if n ∈ N, otherwise the run ρ is called infinite.

. Let n 6= 0, a finite run ρ = (ρi)1≤i≤n is accepting from a given con-
figuration (`0, v0) if it visits a goal `f ∈ Qf , i.e. if, denoting ρi =
((`i, vi) , (δi, ai) , (`i+1, vi+1))0≤i≤n−1, there exists an integer j ∈ [1 · · ·n] and
a goal `f ∈ Qf such that `j = `f .

. An empty run ((`0, v0)) is accepting if `0 ∈ Qf .

For the sake of simplification, the run ρ can also be denoted as follows:

s0
δ0,a0−−−→ s1

δ1,a1−−−→ s2 −→ · · · −→ sn−1
δn−1,an−1−−−−−−→ sn.

Remark 2.1.4 Even if it means adding a sink state and corresponding transitions, we
assume that from any configuration, there always exists a transition δ,a−→ for some δ ∈ R+

and some a ∈ Σ. This way, any finite run can be extended into an infinite run (in terms
of its number of transitions).

Example 2.1.5 Let us consider again the examples of timed automata from Figures 2.1
and 2.2. We can propose a finite run of length 2 for the timed automaton A0 defined as
follows:

(`0, (0, 0)) 1,a0−−→ (`1, (1, 1)) 1,a2−−→ (`f , (2, 2))
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We can also propose a finite run of length 4 for the timed automaton A1

(`0, (0, 0)) 2,a0−−→ (`1, (2, 0)) 0.5,a2−−−→ (`2, (2.5, 0.5)) 0.5,a2−−−→ (`f , (3, 1))

Let us remark that, because of the reset on the second clock in the first transition, the
valuation of the second configuration is (2, 0).

2.1.4 Verification of timed properties

A fundamental problem in timed automata theory is the reachability of a location, i.e.
given a specific initial configuration, can we reach a goal location?
Definition 2.8: Reachability problem, [AD94]

Given a timed automaton A, an initial configuration (`0, v0) ∈ Q×R|C|+ , the reachab-
ility problem asks whether there exists an accepting run from (`0, v0) in the infinite-
state transition system defining the semantics of A.

Example 2.1.6 Let us consider again the examples of timed automata from Figures 2.1
and 2.2.

In A0, the goal can be reached from any initial configuration of the form (`0, (x0, y0))
such that 0 ≤ x0 ≤ 1 and 0 ≤ y ≤ 2.

In A1, the configuration (`0, (2.1, 0)) is not an initial configuration from which the goal
can be reached. A goal location can be reached from the initial configuration (`0, (0, 0)) or
(`0, (0, 2)), or more generally from any configuration of the form (`0, (0, t)) where t ∈ [0, 2].

The reachability problem was proved decidable and in PSPACE in [AD94], using
an abstraction called clock region. This abstraction allows us to solve the reachability
problem on a finite-state automaton by abstracting the notion of time. A clock region is
an equivalence class over the set of configurations. In this equivalent class, if two valuations
v and v′ are in the same region, then (`, v) and (`, v′) have the same successor region.
Therefore these two configurations will be able to reach the same future locations. Then,
when studying reachability, we only have to consider the classes of configurations that a
set of configurations can reach. We formally define clock region in Definition 2.9.

Let us first recall the definition of a fractional function. For any t ∈ R, fract (t) := t−btc
where btc is the integral part of t.
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Definition 2.9: Clock region, [AD94]

Let A = (Σ, Q,Q0, Qf , C, E) be a timed automaton. The set of valuations of C has
an equivalence relation that we denote ∼R. v ∼R v′ if the following conditions hold,
for any clocks x, x′ ∈ C:

1. (bv (x)c = bv′ (x)c) ∨ (bv (x)c ≥ M (A) ∧ bv′ (x)c ≥ M (A)).

2. If v (x) ≤ M (A) and v (x′) ≤ M (A), then fract (v (x)) ≤ fract (v (x′)) ⇔
fract (v′ (x)) ≤ fract (v′ (x′)).

3. If v (x) ≤M (A), then fract (v (x)) = 0⇔ fract (v′ (x)) = 0.

The equivalence class of v is called a clock region and is denoted rv. The set of clock
regions is denoted R|C|+ / ∼R.
Let r and r′ be two clock regions. r′ is a time-successor of r if the following condition
holds:

∀v ∈ r,∃t ∈ R+, v + t ∈ r′

Example 2.1.7 Let us consider a constraint 0 ≤ x, y ≤ 2. The largest constant is 2 and
there are three types of clock regions:

. Corner points: these are punctual regions. The corner point regions here are (0, 0) , (0, 1),
(0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2).

. Open-line segments: these are region represented with segments.

For instance {(x, y) | x = 0, 0 < y < 1} and {(x, y) | x = 1, 0 < y < 1}.

. Open regions: these are all the other regions described only with strict inequalities.

For instance {(x, y) | 0 < x < y < 1} and {(x, y) | 0 < y < x < 1}.

These clock regions from the first and the second constraints of the timed automaton A3

are illustrated in Figure 2.4.

Region automata are finite-state automata. We use them to solve the problem of
reachability of timed automata. The region automaton is a finite-state labelled transition
system where configurations are clock regions.[AD94] gives a bound on the number of
clock regions for a timed automaton A:
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x

y

0 1 2
0

1

2

Figure 2.4 – Clock regions of Example 2.1.7.

∣∣∣R|C|+ / ∼R
∣∣∣ ≤ [|C|! · 2|C| · ∏

x∈C
(2M (A) + 1)

]

We can now formally define region automata in Definition 2.10.
Definition 2.10: Region automata, [AD94]

Let A = (Σ, Q,Q0, Qf , C, E) be a timed automaton. The region automaton R (A) is
a finite automaton where:

. The set of locations is
{

(`, r) | r ∈ R|C|+ / ∼R
}

. The set of initial locations is
{

(`0, rv0) | `0 ∈ Q0, v0 ∈ R|C|+ ,∀x ∈ C, v0 (x) = 0
}

. e = ((`, r) , (`′, r′) , a) is a transition of R (A) if and only if there exists a
transition (`, `′, a, Cr, g) of A and a clock region r′ such that there exists r′′ a
time-successor of r such that r′′ |= g and r′ = r′′ [Cr ← 0].

Example 2.1.8 Let us build the region automaton associated to the timed automaton of
Figure 2.5 from the initial configuration x = 0. The clocks regions to consider at location
`1 are {0} , {1} and ]0, 1[. The one to consider at location `f are (0) , (1) , ]0, 1[ , (2) and
]1, 2[. We build the region automaton from the initial configuration x = 0 only, for the
sake of clarity, in Figure 2.6.

To prove that reachability is in PSPACE, [AD94] proved a correspondance between the
runs of a timed automaton A and the ones of the corresponding region automaton R (A).
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`0 `1 `f

0 ≤ x ≤ 1
a

0 ≤ x ≤ 2

b

Figure 2.5 – A simple timed automaton A3.

`0
x = 0

`1
0 < x < 1

`1
x = 1

`1
x = 0

`f
x = 1

`f
0 < x < 1

`f
x = 0

`f
1 < x < 2

`f
x = 2

a aa

b b b b bb b b b
b b b

Figure 2.6 – The region automaton of the timed automaton of Figure 2.5.
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Checking reachability for a timed automaton A reduces to checking the reachability in
the region automaton R (A).

The limits of this abstraction are timing perturbations. Indeed, the semantics of timed
automata and region automata assume that clocks are perfectly measured. In practice,
clock measures are imperfect. The ability to verify a property despite perturbations is
called robustness. This is a very general notion where we can consider several models.
In Section 2.2, we present a model of robustness based on verifying reachability with
perturbations on delays.

2.2 Robustness and permissiveness semantics

In this section, we present our approach to the robustness of timed automata. Our se-
mantics, called permissiveness semantics, models timing perturbations by affecting delays
of time-elapsing transitions. These perturbations can change the future delays and actions
that will be available. Our goal is to check whether one can preserve the reachability of
a goal location despite delay perturbations and to quantify the admissible perturbation.
Other approaches, such as guards perturbations, are possible and will be presented in
Chapter 3. In our model, we propose a game-based semantics to quantify how permissive
we can be. In this semantics, the player proposes a pair of interval of delays [α, β] and an
action. We call this pair a p-move. Then, the opponent chooses the delay in [α, β] that will
be applied in the time-elapsing transition. We extend the notion of run in this semantics
and call it p-run. To quantify how permissive the player has been in a p-run, we use a
permissiveness function that depends on the sizes of the proposed intervals.

In Subsection 2.2.1, we present our semantics and the permissiveness function. To do
so we explain how to compute the permissiveness of a p-move, of a p-run and finally of
a strategy and a configuration. Then we explain the goal of the player and the opponent
and present the permissiveness of timed automata. Then in Subsection 2.2.2 we present
examples of permissiveness function for some examples of timed automata. Finally, in
Subsection 2.2.3, we compare this notion of robustness to the one used in [BFM15] and
extend these notions to more general operators.
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2.2.1 Permissiveness semantics

Game

Let A be a timed automaton and Σ the alphabet of actions. Let us first explain how
the game semantics works to check reachability with the example of Figure 2.7. In the
classical semantics, the goal is to reach the location `f while proposing delays and
verifying the guards. Let us consider the initial configuration (`0, (0)). The player can
propose a delay1 to reach the location `1, for instance δ = 0.5. Then the game has
reached the configuration (`1, (0.5)). He can again propose the delay 0.5 and the clock
equals 1 and the goal is reached. In the permissive semantics, we use p-runs to extend
the notion of runs. A p-run proceeds as follows:

. At the initial configuration (`0, (0)), the player must propose an interval2,
[α, β] such that all delays in the interval satisfy the guard. In this example, the
interval must satisfy 0 ≤ α ≤ β ≤ 1. The player can propose [0, 0.6] for instance.

. After the player’s choice, the opponent chooses a delay in the interval [0, 0.6]
which will be applied, for instance 0.6.

. The game then has reached the configuration (`1, (0.6)). The player must then
propose an interval, e.g. [0, 0.4], such that each delay of this interval satisfies the
second guard.

. The opponent chooses a delay in [0, 0.4]. As each delay in this interval allows to
reach the goal, whatever delay he chooses, the run will finish and reach the goal.

`0 `1 `f

0 ≤ x ≤ 1
a0

0 ≤ x ≤ 1
a1

Figure 2.7 – A one-clock timed automaton.

Let us present more formally the permissive semantics. A p-run consists, for each
configuration (`, v), in the following steps:

1As only one action is available here for each location, we will only detail the proposed delay and not
the action.

2Possibly a singleton.
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. The player proposes an interval I = [α, β] and an action a such that there exists
a transition (`, g, a, Cr, `′) such that v + I |= g.

. The opponent proposes a delay δ which belongs to the interval I.

. The configuration (`′, v + δ [Cr ← 0]) is reached.

P-move

Each time the player proposes an interval instead of a delay, this represents the impre-
cision he will allow. For instance proposing [0, 1] instead of 0.5 means allowing the delay
to be greater or lower than 0.5, with a precision of 0.5. We can quantify this imprecision
and say that the player allows a delay of range 1. More formally, we say that proposing an
action and an interval of delays is a p-move (see Definition 2.11). The size of the interval
proposed is the permissiveness of this p-move (see Definition 2.13).
Definition 2.11: P-move and enabled p-move

Let (`, v) be an arbitrary configuration, a p-move of (`, v) is a pair (I, a), where
I ⊆ R+ is a closed interval, possibly right-unbounded, and a ∈ Σ.
We say that a p-move (I, a) is an enabled p-move if there is a transition
(`, g, a, Cr, `′) such that v + I |= g. The set of enabled p-moves of (`, v) is denoted
p-moves (`, v).

Remark 2.2.1 P-moves can be defined with open or half-open intervals too. Neverthe-
less, we will consider only closed intervals for the purpose of simplification. We denote I
the set of closed intervals of R+ and detail the extention to non-closed interval in Section
5.2.1.

Let us first remark that, given a location ` and two different valuations v and v′, the
p-moves of (`, v) can be mapped to those of (`, v′), with a shifted interval. Let us prove
this result formally in Lemma 2.12.
Lemma 2.12
Let v and v′ be two clock valuations and suppose p-moves (`, v) 6= ∅.
Then for any p-move ([α, β] , a) ∈ p-moves (`, v), for any sub-interval I ′ ⊆
[α + ‖v′ − v‖∞, β − ‖v′ − v‖∞], if β − α ≥ 2‖v′ − v‖∞, then (I ′, a) ∈ p-moves (`, v).
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Proof of Lemma 2.12. As guards are convex, if ([α + ‖v′ − v‖∞, β − ‖v′ − v‖∞] , a) ∈ p-moves (`, v),
then for any subinterval I ′ ⊆ [α + ‖v′ − v‖∞, β − ‖v′ − v‖∞], (I ′, a) ∈ p-moves (`, v).

Let us prove that ([α + ‖v′ − v‖∞, β − ‖v′ − v‖∞] , a) ∈ p-moves (`, v). First, [α + ‖v′ − v‖∞, β − ‖v′ − v‖∞]
is an interval as α+‖v′−v‖∞ ≤ β−‖v′−v‖∞. As ([α, β] , a) ∈ p-moves (`, v), there exists
a guard g of a transition from ` such that v + [α, β] |= g. On top of that, for any clock x:

v (x) + α ≤ v′ (x) + ‖v′ − v‖∞ + α

v (x) + β ≥ v′ (x)− ‖v′ − v‖∞ + β

This concludes the proof.

Let us now define the permissiveness of a p-move in Definition 2.13.
Definition 2.13: Permissiveness of a p-move

Let (I, a) be a p-move. The permissiveness of a p-move (I, a), denoted Perm (I, a),
is defined as follows:

Perm (I, a) = |I| .

Example 2.2.1 Let us consider the timed automaton of Figure 2.7. Let g : 0 ≤ x ≤ 1
be the guard of this timed automaton. Let (`0, (0.5)) be a configuration. ([0, 0.5] , a0) and
([0.3, 0.5] , a0) are two enabled p-moves. ([0.5, 1] , a0) is not because (1.5) 6|= g.

The permissiveness of the p-move ([0.3, 0.5] , a) is 0.5− 0.3 = 0.2, and the permissive-
ness of the p-move ([0.5, 1] , a) is 0.5.

P-run

As for the classical semantics in Section 2.1.3, we define the notion of p-run in the
permissiveness semantics. This definition naturally extends to our permissiveness se-
mantics by adding information about the chosen interval. In the classical semantics, we
store in a p-run the delay δi, the action ai and the successor si+1. In the permissive se-
mantics, we also take into account the chosen interval Ii. The other classical definitions
such as winning p-runs, length or prefix, naturally extend.
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Definition 2.14: p-Run

Let n ∈ N ∪ {+∞}.
A p-run of length n from an initial configuration s0 is defined as follows:

. If n = 0, the run is empty and is denoted, by convention, (s0) where s0 is the
initial configuration of the run.

. Otherwise, ρ(p) is an infinite sequence of 5−tuples ρ(p) =
(si, (Ii, ai) , δi, si+1)0≤i≤n−1 such that for any i ∈ [0 · · ·n− 1], si, sn ∈ Q× R|C|+ ,
Ii ∈ I, δi ∈ Ii, ai ∈ Σ, si

δi,ai−−→ si+1 and such that (Ii, ai) is an enabled p-move
from si.

As for a run in classical semantics, we can use the following notation:

s0
I0,a0,δ0−−−−→ s1 −→ · · · −→ sn−1

In−1,an−1,δn−1−−−−−−−−−→ sn

During a p-run, the player may have proposed several intervals of different lengths.
Our permissiveness quantifies the robustness of a timed automaton. Let us remark that
for each p-run ρ(p), there exists a unique run ρ = s0

δ0,a0−−−→ s1 · · · sn−1
δn−1,an−1−−−−−−→ sn.

Example 2.2.2 For example, let us consider the timed automaton of Figure 2.7. We can
propose two p-runs ρ(p)

0 , ρ
(p)
1 defined as follows:

ρ
(p)
0 := (`0, (0)) [0,1],a0,0.5−−−−−−→ (`1, (0.5)) [0,0.5],a1,0.5−−−−−−−→ (`f , (1))

and
ρ

(p)
1 := (`0, (0)) [0,1],a0,1−−−−−→ (`1, (1)) {0},a1,0−−−−→ (`f , (1))

In this example, the second p-run ρ(p)
1 has a less permissive second p-move than the first

p-run ρ(p)
0 .

To encourage the player to be permissive at each step of the p-run, our permissiveness
considers the smallest interval that the player has proposed. More formally:
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Definition 2.15: Permissiveness of a p-run

Let ρ(p) = (si, (Ii, ai) , δi, si+1)0≤i≤|ρ|−1 be a finite p-run, the permissiveness of the
p-run ρ(p) is denoted Perm

(
ρ(p)

)
and is defined as follows:

Perm
(
ρ(p)

)
= min

0≤i≤|ρ(p)|−1
(Perm (Ii, ai)) = min

0≤i≤|ρ(p)|−1
(|Ii|) .

Example 2.2.3 Let us consider again the Example 2.2.2 of p-runs ρ(p)
0 and ρ(p)

1 of the
timed automaton of Figure 2.7. The permissiveness of the first p-run is Perm

(
ρ

(p)
0

)
=

min (1, 0.5) = 0.5 and the permissiveness of the second p-run is Perm
(
ρ

(p)
1

)
= min (1, 0) =

0. The most permissive p-run is the first one.

Strategy

The permissiveness of the p-run is not sufficient to express the permissiveness of a timed
automaton, as the p-run depends on the choices of the player and the opponent. Maxim-
ising the proposed interval implies maximising it whatever the choice of the oppon-
ent is. To compute the optimal interval, we consider the worst-case where the opponent
chooses the delayminimising the permissiveness. To model this behaviour, we first define
what a permissive strategy is and express the permissiveness of the strategy of the player.
Definition 2.16: Permissive strategy

A permissive strategy is a (partial) function σ that maps finite p-runs ρ(p) =
(si, (Ii, ai) , δi, si+1)0≤i≤|ρ|−1 to p-moves in p-moves (sn). We can say that:

. A p-run ρ(p) = (si, (Ii, ai) , δi, si+1)0≤i≤|ρ|−1 is compatible with a permissive
strategy σ if for all its prefix ρ(p)

≤j such that j ≤ n, σ
(
ρ

(p)
≤j

)
= (Ij, aj). We say

that ρ(p) is an outcome from the initial configuration s0. The set of outcomes
from a configuration is denoted Out (s0, σ).

. A permissive strategy σ is winning from a given configuration s0 if any infinite
p-run originating from s0, that is compatible with σ, is winning.

Example 2.2.4 If we consider again the timed automaton A3 of Figure 2.7 and the
strategy σ defined as follows: For any p-run ρ(p) = (si, (Ii, ai) , δi, si+1)0≤i≤1, where si =
(`i, (xi)), σ

(
ρ

(p)
≤i

)
= ([0, 1− x] , ai) if 0 ≤ x ≤ 1, i ∈ {1, 2} (otherwise no p-move can be
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proposed). The p-runs ρ(p)
0 and ρ(p)

1 from Example 2.2.2 are compatible with σ and σ is a
winning strategy from any configuration (`, v) such that v (x) ∈ [0, 1].

The permissiveness of a strategy considers the outcome that minimises the permissive-
ness function of all p-runs. It corresponds to the optimal choice of the opponent. For a
non-winning strategy, the goal is not reachable and the permissiveness is −∞. When the
goal `f is already reached, there are no intervals to propose. By convention, the per-
missiveness is then +∞. More formally:

Definition 2.17: Permissiveness of a strategy

Let σ be a permissive strategy and (`, v) be a configuration. The permissiveness of
σ in (`, v), denoted Permσ (`, v), is defined as follows:

Permσ (`, v) =


+∞ if ` ∈ Qf

−∞ if σ is not winning from (`, v)

inf
ρ(p)∈Out((`,v),σ)

(
Perm

(
ρ(p)

))
otherwise

Example 2.2.5 Let us go back to the Example 2.2.4, the permissiveness of σ from (`, v)
is:

Permσ (`, v) =


+∞ if ` ∈ Qf

−∞ if σ is not winning from (`, v)

1− x otherwise

Permissiveness of a configuration

Our goal is to compute the maximally-permissive strategies among all the possible strategies
of the player. To do so, we first define the set of configurations where a winning strategy
can be computed, called winning configurations in Definition 2.18. We compare it with
the set of co-reachable configurations in Definition 2.19
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Definition 2.18: Winning configuration

A configuration (`, v) is winning if there exists a winning permissive strategy from
(`, v) (possibly proposing punctual intervals). Let ` be an arbitrary location, the set
of winning configurations from ` is denoted Win` and is defined as follows:

Win` :=
{
v ∈ R|C|+ | (`, v) is a winning configuration

}
We also define the set of all winning configurations, denoted Win as follows:

Win :=
⋃
`∈Q

Win`

Definition 2.19: Co-reachable configurations

A configuration s is co-reachable from a configuration s′ if there exists a p-run from
s to s′, i.e. if there exists a p-run ρ(p) = (si, (Ii, ai) , δi, si+1)0≤i≤n−1 where s0 = s and
sn = s′.
A configuration s is co-reachable from a location ` if there exists a valuation v

such that s is co-reachable from (`, v).
A configuration s is co-reachable from a set of configurations S ′ ⊆ S (resp locations
L′ ⊆ L) if there exists a configuration s ∈ S ′ (resp. location ` ∈ L′) such that s is
co-reachable from s (resp. `).
The set of co-reachable configurations from a set of configurations S ′ (resp. locations
L′) is denoted co-reach (S ′) (resp. co-reach (L′)).

Proposition 2.20

Let A be a timed automaton with a set of goals Qf , then the following equality
holds:

Win = co-reach (Qf ) .

Proof of Proposition 2.20. As a permissive strategy can propose punctual intervals, we
can propose a permissive strategy that is compatible with a unique p-run, from an initial
configuration. Then any configuration s is winning if and only if there exists a run from
s to a final state. As a result Win = co-reach (Qf )

Example 2.2.6 Let us go back to the timed automaton A3 of Figure 2.7. The set of
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2.2. Robustness and permissiveness semantics

winning configurations is:

Win =
⋃
i=0,1
{(`i, x) | 0 ≤ x ≤ 1} ∪ {(`f , x) | x ∈ R+}

We now can compute a maximally-permissive strategy by computing a strategy that
maximises the permissiveness of the player’s strategy. Such a value is called the per-
missiveness of a configuration and is denoted Perm. More formally:
Definition 2.21: Permissiveness of a configuration

Let (`, v) be a configuration. The permissiveness of (`, v) is denoted Perm (`, v) and
is defined as follows:

Perm (`, v) =


+∞ if ` ∈ Qf

−∞ if (`, v) is not a winning configuration

sup
σ

Permσ (`, v) otherwise

An example of computation of the permissiveness function of a configuration will be
detailled in Subsection 2.2.2. To sum up, let us consider the configuration (`, v) in Win`,
where ` 6= `f . Let us denote each p-run ρ(p) as ρ(p) =

(
sρ

(p)

i

(
Iρ

(p)

i , aρ
(p)

i

)
, δρ

(p)

i , sρ
(p)

i+1

)
0≤i≤n−1

.
The permissiveness of (`, v) is defined as follows:

Perm (`, v) = sup
σ

inf
ρ(p)∈Out((`,v),σ)

[
min

0≤i≤n−1

(∣∣∣∣Iρ(p)

i

∣∣∣∣)]

Our goal in this thesis is to answer the following problem:
Definition 2.22: The maximal-permissiveness problem

Given a timed automaton A, an initial configuration (`0, v0) and a goal location `f ,
the maximal-permissiveness problem asks to compute Perm (`0, v0).

We answer this problem in Chapter 5 first with a backward algorithm, where we
compute the function v 7→ Perm (`, v) over Win` for the successors ` of the location
`0. This function is called the permissiveness function. We present an algorithm that com-
putes this function in non-elementary time for acyclic timed automata and games in
Chapter 5. In the next section, we give two examples of computation of the permissiveness
function on timed automata.
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Chapter 2 – Timed automata and robustness

2.2.2 Examples of computation of permissiveness functions

We first present an intuitive way to compute the permissiveness of timed automata. We
compute step-by-step the permissiveness of the initial locations of the two following timed
automata (see Figures 2.2,2.10).

A first timed automaton

Our first example is a simple timed automaton with two identical transitions (see Figure
2.8). The two transitions have the same constraints on the guards: the clocks must be
between 0 and 1.

Let us look at different possible p-runs starting from an initial configuration (`0, (0, 0)).
For instance, if the player proposes the p-move ([0, 1] , a0), the opponent may prevent the
player from proposing a permissive interval by choosing the delay δ = 1. If the opponent
chooses delay 1, the configuration (`1, (1, 1)) is reached and the player has no choice but to
propose the p-move ({0} , a1). The permissiveness of this p-move is 0. As a consequence,
the player may have to propose a smaller interval. If he proposes an interval [0, β] such that
β < 1 and if the opponent chooses a delay δ ∈ [0, β], the configuration (`1, δ, δ) is reached.
The largest interval the player can then propose is [0, 1− δ] and the permissiveness of this
p-run is min (1− δ, β). In this p-run, the player should propose

[
0, 1

2

]
to maximise the

permissiveness, and the opponent should choose δ = 1
2 to minimise it. The intuition of the

best strategy for a more general configuration and choice of interval is to split equally the
intervals that the player proposes. Let us prove it formally. To compute the permissiveness
at `0, we first compute the future permissiveness for all the possible valuations at `f and
at `1. We denote g := (0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1) the guard of the transitions of the timed
automaton.

`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a0

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a1

Figure 2.8 – A timed automaton with 2 identical transitions.

Permissiveness at `f : for the goal location `f , the permissiveness is +∞ for every
valuation. As a result, the following equality holds:
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2.2. Robustness and permissiveness semantics

∀v ∈ R2
+,Perm (`f , v) = +∞

Permissiveness at `1: we first compute the set of winning valuations at `1, denoted
Win`1 . As every possible successor in `f is a winning configuration, the winning valuations
at `1 are the ones that satisfy the guard 0 ≤ x, y ≤ 1:

Win`1 = {v1 = (x1, y1) ∈ R2
+ | 0 ≤ x1 ≤ 1 ∧ 0 ≤ y1 ≤ 1}

Let v1 = (x1, y1) be an arbitrary valuation in Win`1 and (I1, a1) an enabled p-move
proposed by the player at `1. The permissiveness of the p-run is the minimum between
|I1| and the permissiveness of the successor. As the successor is a goal configuration, its
permissiveness is +∞. As a result the permissiveness of the p-run is |I1|.

According to the constraints of the guard, the largest interval that can be proposed
from (`1, v1) is [0,min(1− x1, 1− y1)]. As a result:

Perm (`1, ·) : (x1, y1) 7→

min(1− x1, 1− y1) if (x1, y1) ∈ Win`1
−∞ otherwise

The best strategy for the player at (`1, (x1, y1)), if (x1, y1) ∈ Win`1 is thus to propose
the p-move (I∗1 , a1) where I∗1 := [0,min(1− x1, 1− y1)] .

Permissiveness at `0: we compute the set of winning valuations at `0, Win`0 . The
winning valuations are the ones such that there exists an enabled delay that satisfies the
transition’s guard and reaches a winning configuration at `1. More formally:

Win`0 = {v0 = (x0, y0) ∈ R2
+ | ∃δ0 ≥ 0, v + δ0 |= g ∧ v + δ0 ∈ Win`1}

= {v0 = (x0, y0) ∈ R2
+ | ∃δ0 ≥ 0, 0 ≤ x+ δ0, y + δ0 ≤ 1}

We can easily eliminate δ0:

Win`0 = {v0 = (x0, y0) ∈ R2
+ | 0 ≤ x0 ≤ 1 ∧ 0 ≤ y0 ≤ 1}

Let v0 = (x0, y0) be an arbitrary valuation of Win`0 . The permissiveness at `0 is the
minimum of all the intervals that have been proposed during the p-run where the player
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maximises the permissiveness and where the opponent minimises it. As v0 ∈ Win`0 , we can
consider a p-run where the proposed p-moves are (I0, a0) and (I1, a1) and the proposed
delays are respectively δ0 and δ1. The permissiveness of such run is min (|I0| , |I1|).

Let us suppose that the interval I1 and the delay δ0 and δ1 are optimally chosen, then:

min (|I0| , |I1|) = min
(
|I0| , inf

δ0∈I0
Perm (`1, v0 + δ0)

)
= min

(
|I0| , inf

δ0∈I0
min (1− x0 − δ0, 1− y0 − δ0)

)

δ 7→ min (1− x0 − δ, 1− y0 − δ) is decreasing with respect to δ, so the opponent’s best
strategy is to choose the largest possible delay β0. As a result:

min (|I0| , |I1|) = min (β0 − α0, 1− x0 − β0, 1− y0 − β0)

The player’s best strategy is thus to choose the interval I0 = [α0, β0] that maximises
min (|I0| , |I1|). As min (|I0| , |I1|) is decreasing with respect to α0, the α0 that max-
imises min (|I0| , |I1|) is 0. On the other side, the β0 that maximises min (|I0| , |I1|) is
the β0 that is the closest to the β where β0 − α0 = 1 − y0 − β0, there two func-
tion are equals when β = min

(1− x0

2 ,
1− y0

2

)
. As the player can propose the p-move([

0,min
(1− x0

2 ,
1− y0

2

)]
, a0

]
if (x0, y0) ∈ Win`0 , the interval that maximises min (|I0| , |I1|)

is
[
0,min

(1− x0

2 ,
1− y0

2

)]
. As a result, we found an optimal p-move that the player can

propose at `0 To compute the optimal interval, we used the fact that we computed in the
previous paragraph its optimal strategy for the location `1, whatever the valuation was.
As a result, we found the optimal intervals I0 and I1 and the permissiveness function for
an arbitrary configuration (`0, v0) values:

Perm (`0, ·) : (x0, y0) 7→


min(1− x0

2 ,
1− y0

2 ) if (x0, y0) ∈ Win`0
−∞ otherwise

Figure 2.9 represents the permissiveness function Perm (`0, ·).
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−∞

1− x
2

1− y
2

x

y

0 1 2
0

1

2

Figure 2.9 – The permissiveness function at `0 for the timed automaton of Figure 2.8.
.

A two-transition timed automaton with a reset

We now consider the timed automaton in Figure 2.10. This timed automaton has a reset
and in this example, the opponent’s best strategy is not necessarily to choose the largest
possible delay. We denote g1 := (1 ≤ x ≤ 2 ∧ 0 ≤ y ≤ 1) and g0 := (0 ≤ x, y ≤ 1) the
guards of this timed automaton.

`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
y := 0
a0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a1

Figure 2.10 – A timed automaton with a reset.

Permissiveness at `f : As in the previous example:

∀v ∈ R2
+,Perm (`f , v) = +∞

Permissiveness function in `1: the set of winning valuations at `1 can easily be
computed:

Win`1 = {(x1, y1) ∈ R2
+ | ∃δ1 ≥ 0, (x1, y1) + δ1 |= g1}
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Let us eliminate the variable δ1:

∃δ1 ≥ 0,

0 ≤ 1− x1 ≤ δ1 ≤ 2− x1

0 ≤ δ1 ≤ 1− y1

⇔



0 ≤ 1− x1

1− x1 ≤ 1− y1

1− x1 ≤ 2− x1

0 ≤ 1− y1

⇔ (x1 ≤ 2, y1 ≤ x1, y1 ≤ 1)

Win`1 = {(x1, y1) ∈ R2
+ | x1 ≥ y1 ∧ y1 ≤ 1 ∧ x1 ≤ 2}

Let v1 = (x1, y1) be a valuation of Win`1 . The goal of the player at configuration (`1, v1)
is to propose an interval I1 := [α1, β1] that maximises the permissiveness of the p-run,
which is min (+∞, β1 − α1) = β1 − α1, while satisfying the guard g1. As α1 and β1 must
satisfy 1 ≤ x1 + α1 ≤ x1 + β1 ≤ 2 and 0 ≤ y1 + α1 ≤ y1 + β1 ≤ 1, the best strategy for
the player is to propose α1 = max(1− x1, 0) = 1− x1 and β1 = min(1− y1, 2− x1). As a
result:

Perm (`1, ·) : (x1, y1) 7→



x1 − y1 if 0 ≤ y1 ≤ x1 ≤ 1

1− y1 if 0 ≤ y1 ≤ 1, y1 ≥ −1 + x1

2− x1 if 1 ≤ x1 ≤ 2, y1 ≤ −1 + x1

−∞ otherwise

Figure 2.11a represents the permissiveness function Perm (`1, ·).

Permissiveness function in `0: with the same methods, we can easily compute the
set of winning valuations at `0:

Win`0 = {(x0, y0) ∈ R2
+ | ∃δ0, v0 + δ0 |= g0, v0 + δ0 [y ← 0] ∈ Win`1}

Win`0 = {(x0, y0) ∈ R2
+ | x0, y0 ∈ [0, 1]}

Let v0 = (x0, y0) be an arbitrary valuation of Win`0 . With the same arguments as in the
previous example, we can compute an optimal p-move. Let us suppose that this p-move
exists and denote it (I0, a0) where I0 = [α0, β0]. Then:

Perm (`0, v0) = min
(
β0 − α0, inf

δ0∈I0
Perm (`1, v0 + δ0 [y ← 0])

)
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After passing the first transition, clock y is reset. The next configuration (x0 + δ0, 0)
satifies 0 ≤ x0 + δ0 ≤ 1. According to the permissiveness function at location `1, the
permissiveness function of the successor is x0 + δ0.

Perm (`0, v0) = min
(
β0 − α0, inf

δ0∈I0
x0 + δ0

)

As δ0 7→ x0 + δ0 is an increasing function on [α0, β0], the best strategy of the opponent is
to propose the delay α0.

Perm (`0, v0) = min (β0 − α0, x0 + α0)

To maximise Perm (`0, v0), β0 has to be as large as possible, i.e. β0 = min (1− x0, 1− y0).
α maximises Perm (`0, v0) when α0 = β0 − x0

2 if 0 ≤ β0 − x0

2 ≤ β0 (if not, α0 = 0). As a
result:

Perm (`0, ·) : (x0, y0) 7→



1/2 if 0 ≤ x0 ≤
1
2 , y0 ≤ x0

1− y0 + x0

2 if 0 ≤ x0 ≤ y0, y0 ≤ 1− x0

1− y0 if y0 ≥ 1− x0, x0 ≤ y0 ≤ 1

1− x0 if 1
2 ≤ x0, 0 ≤ y0 ≤ x0 ≤ 1

−∞ Otherwise

Figure 2.11b represents the permissiveness function Perm (`0, ·).
These two examples gave us a first intuition of the computation of the permissiveness

function. To compute the permissiveness function, one should consider the full p-run and
optimise each interval in order to maximise the minimum of the sizes of all intervals
proposed during the p-run. To compute the optimal interval at each step of the p-run, we
can consider the minimum of all the sizes of the future intervals we will have to propose.
The future intervals we can propose on a configuration (`, v) depend on the previous
interval we had proposed, as v depends on the intervals and delays that have been proposed
during the p-run. To avoid this dependence, we compute the permissiveness for all the
possible valuations. Therefore, we can optimise step-by-step the future optimal intervals
in order to finally compute the permissiveness function of the initial configuration. We
will define in Chapter 4 a sequence of functions that tends to the permissiveness function,
in order to compute it iteratively.
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x

y

1 2

1

2

2− x

1− y

−∞

x− y

(a) The permissiveness function at `1.

x

y

1 2

1

2

−∞

1/2
1− x

1− y + x

2
1− y

(b) The permissiveness function at location `0.

Figure 2.11 – The permissiveness function in `0 and `1 for the timed automaton of Fig
2.10.

2.2.3 Possible extensions

Other approaches are possible to model and compute the robustness of timed automata.
In this subsection, we present the penalty, used in [BFM15] to quantify the robustness of
timed automata. We finally present a more general model of permissiveness.

Penalty

Penalty semantics was introduced in 2015 by [BFM15], which presents a type of robustness
with delay perturbations. In their model, they consider the sum of all inverses of the sizes
of all proposed intervals. They call this quantity the penalty. They give an algorithm to
compute the strategy of the player that minimises this quantity.
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2.2. Robustness and permissiveness semantics

Definition 2.23: Penalty, [BFM15]

We can define the penalty of a:

• p-move: let (I, a) be a p-move, then its penalty is 1
|I|

if |I| 6= 0, and +∞ when
I is punctual.

• finite p-run: let ρ(p) = (si, (Ii, ai) , δi, si+1)0≤i≤n−1 be a finite p-run, the pen-

alty of ρ(p) is defined as the sum of 1
|Ii|

if all Ii are non punctual, and +∞
otherwise.

• strategy: let σ be a permissive strategy and (`, v) a configuration, the penalty
of σ in (`, v) is defined as 0 if the location ` is the goal, +∞ if σ is not a
winning strategy and the supremum of the penalties of all the p-runs of the
set Out ((`, v), σ).

• configuration: let (`, v) be a configuration. Then the penalty is the infimum
of the penalties, among all strategies, in (`, v).

To sum up, if we consider the configuration (`, v), and if we write every p-run ρ(p) =
(si, (Ii, ai) , δi, si+1)0≤i≤n−1, the penalty of this configuration is defined as follows:

inf
σ

 sup
ρ(p)∈Out((`,v),σ)

∑
0≤i≤n−1

1
|Ii|



Example 2.2.7 Let us consider the timed automaton of Figure 2.2. Let us compute the
penalty over the set of winning configurations. As a result, the penalty at (`f , v) is 0
whatever the valuation v is. At (`1, v), the penalty is the inverse of the size of the greatest
interval the player can propose. As a result it is 1

1− x if 1 > x > y > 0, 1
1− y if

1 > y > x > 0, and +∞ otherwise. Then, at location `0, to compute the most-permissive
strategy, we have to find an interval [α, β] that minimises the following quantities:

1
β − α

+ sup
δ∈[α,β]

(
1

min (1− x− δ, 1− y − δ)

)
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As sup
δ∈[α,β]

(
1

min (1− x− δ, 1− y − δ)

)
= 1

min (1− x− β, 1− y − β) , this quantity can be

simplified as follows:

1
β − α

+
(

1
min (1− x− β, 1− y − β)

)

If x < y, then α should be as small as possible (i.e. 0) and β has to minimise 1
β

+ 1
1− y − β .

It is equivalent to maximising (β) (1− y − β). The optimal β is 1− y
2 .

With the same reasoning, we can prove that, if x ≥ y, the optimal α is 0 and optimal
β is 1− x

2 .
To sum up, the penalty at configuration (`0, x0, y0) is defined as follows:

penalty (`0, (x0, y0)) =



4
1− y0

if 0 < x0 < y0 < 1
4

1− x0
if 0 < y0 ≤ x0 < 1

+∞ otherwise

Let us illustrate the difference between penalty and permissiveness in the following
Example 2.2.8, where the player should choose the shortest path if he considers the penalty,
and the longest, but with larger guard, if he considers the permissiveness.

Example 2.2.8 Let us consider the timed automaton of Figure 2.12. The path with only
one transition has smaller guard than the one with two transitions. By considering the per-
missiveness and the penalty computed on the timed automaton of Figure 2.2, we can easily
compute the penalty and the permissiveness of (`0, (0, 0)). To compute the permissiveness
(resp penalty), at location `, we have to consider the path that maximises (resp minim-
ises) the permissiveness (resp the penalty). As a result we compute the maximum between
the permissiveness (resp penalty) of the two linear timed automata of Figure 2.13. At
(`0, (x, y)), if x ≥ y, the permissiveness is 8 ·max

(1− x
2 ,

(3
8 − x

)
· 1

2

)
, and the penalty

is min
( 1

3− 8 · x,
1

2− 2x

)
.

At configuration (`0, (0, 0)), the permissiveness is 4 and the player’s optimal strategy
is to choose the path with two transitions. On the contrary, the penalty is min

(1
3 ,

1
2

)
= 1

3
and the player’s optimal strategy is to choose the shortest path, even if the guard is smaller.
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`0 `1 `f

0 ≤ x ≤ 8
a0

0 ≤ x ≤ 8
a1

0 ≤ x ≤ 3
a′

Figure 2.12 – An acyclic timed automaton with a short and a long path.

`0 `f

0 ≤ x ≤ 3
a′ `0 `1 `f

0 ≤ x ≤ 8
a0

0 ≤ x ≤ 8
a1

Figure 2.13 – Decomposition of the timed automaton of Figure 2.12 into two linear timed
automata.

As for the permissiveness, we can formally define the problem of computing the penalty
of a configuration in Definition 2.24.

Definition 2.24: Problem of computing the penalty function ([BFM15])

Given a timed automaton A, a configuration (`0, v0), a goal location `f , the problem
of computing the penalty function asks to compute the penalty of the configuration
(`0, v0). The associated decision problem asks, given a threshold p, if the penalty is
less than p.

[BFM15] proved that this problem is in PTIME for one-clock timed automata.

General operator for permissiveness

To compute the optimal permissive strategy with multiple clocks, we chose the robust-
ness model of Subsection 2.2.1. In the present subsection, we present a more general per-
missiveness model. Penalty and permissiveness are particular cases of these functions. An
interesting future work would be to consider a more general operator than the minimum
of the sizes of the intervals. Let us define first a more general permissiveness function. Let
Op be a continuous operator from R2

+ to R+, f be a monotonic continuous function from
I to R+ and k− and k+ be two constants in R.
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Definition 2.25: Permissiveness for general operator

Let n ≥ 1 and let ρ(p) = (si, (Ii, ai) , δi, si+1)0≤i≤n−1 be a finite p-run and Op :
Rn+ → R+ and f : I → R+ where I = (Ii)0≤i≤n−1. The general permissive-
ness of a p-run, denoted PermOp,f

(
ρ(p)

)
is defined as follows:

PermOp,f
(
ρ(p)

)
= Op (f (Ii))i∈[0···n−1]

Let (`, v) be a configuration of a timed automaton A. The general permissiveness of
a configuration (`, v), denoted PermOp,f (`, v), is defined as follows:

. If (`, v) is not a winning configuration, PermOp,f (`, v) = k−

. If ` is a goal location, PermOp,f (`, v) = k+

. Otherwise, the general definition of the permissiveness function depends on the
monotonicity of f :

PermOp,f (`, v) =


sup
σ

[
inf

ρ(p)∈Out((`,v),σ)
PermOp,f

(
ρ(p)

)]
if f is non-decreasing

inf
σ

 sup
ρ(p)∈Out((`,v),σ)

PermOp,f
(
ρ(p)

) if f is decreasing

Let us give some specific examples of this general permissiveness function. First, if
(Op = min, f (I) = |I| , k+ = +∞, k− = −∞), then it corresponds to the permissiveness
function, defined in Subsection 2.2.1. Another model we can consider is the weighted sum,
with non-negative coefficients (bi). In this model f (I) = 1

|I|
, Op

(
(xi)0≤i≤n

)
=

n∑
i=0

xibi,

k+ = 0 and k− = +∞. The case where all bi are 1 corresponds to the penalty function
defined in [BFM15]. Finally, we can consider the average size of all intervals proposed
with f (I) = |I|, Op

(
(xi)0≤i≤n

)
=

∑
0≤i≤n

xi
n
, k− = −∞ and k+ = +∞. These models

represent different computational challenges and the optimal strategies can differs.

Conclusion

In this chapter, we presented different semantics to compute a type of robustness based on
delay perturbation. Other approaches are possible, such as guard perturbation. The next
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Chapter presents a state of the art of the different kinds of robustness and applications
of this problem in model-checking and formal methods.
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STATE OF THE ART: ROBUSTNESS IN

REAL-TIME SYSTEMS

In everyday life, being robust means being resistant to perturbations in our environment.
For example, a tool is robust to water if it is waterproof, i.e. if it functions despite a
significant exposure to water. The notion of robustness depends on the nature of the
perturbation (for example we could look at the robustness against water or the robustness
against fractures, called toughness). In the context of computer science, we have to specify
the nature of the perturbations, and what it means to be functional against perturbations.
The systems we consider are real-time systems, which are modelled by timed automata.
In these systems, perturbations can occur either on clocks, or on constraints, or on both,
and there are many models of them. In this chapter, we present a state of the art of the
different definitions of robustness and the obtained results. To go further, two surveys,
[Mar11] and [BMS13], on the robustness of timed automata are published. This chapter
is organised as follows:

. In Section 3.1, we consider the first model that has been proposed for robustness:
a topological viewpoint. It was proposed by [GHJ97], where trajectories of runs are
enlarged as tubes.

. In Section 3.2, we present a model where the clocks are allowed to evolved with
different speed was proposed. This approach was proposed by [Pur98].

. In Section 3.3, we consider a model of robustness in the context of time sampling.
This approach was first proposed by [CHR02] for safety properties.

. In Section 3.4, we present two models where guards are perturbed.

. In Section 3.5, we consider models where delays are perturbed.
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3.1 Topological approach

Tubes and metrics. [GHJ97] proposed a topological model of the robustness for timed
automata. This article studies the emptiness problem and the language inclusion prob-
lem. Intuitively, a timed automaton is robust if a neighbour of an accepted trajectory is
accepted too. Let us present more formally their model.

Let us consider an alphabet Σ, a trajectory is a (possibly infinite) sequence (ai, ti)i
where ai ∈ Σ and ti ∈ R+ represent respectively an event and a time gap, i.e. the duration
of time between two events ai and ai+1.

The metric between two trajectories can take different forms, but respect the common
following rules: consider two trajectories (ai, ti)i and (a′i, t′i)i, then:

. These two trajectories are at finite distance if and only if their sequence of events
are identical (i.e. if for any integer i, ai = a′i).

. If the previous conditions is verified, the metric between the two trajectories does
not depends on the events (ai)i and (a′i)i. It only depends on the time gaps (ti)i and
(t′i)i.

The tube of a trajectory τ , for a metric d and a real ε, is then the set of trajectories
at distance at most ε from τ for the distance d, denoted Td(τ, ε). This tube contains a
neighbourhood of the trajectory τ .

Tube acceptance. This model considers timed automata as defined in [AD94]. A tra-
jectory τ = (ai, ti)i is accepted if there exists a run such that the events ai correspond
to the actions taken during the transitions, and the delays ti to the time between two
transitions. The trace of an automaton is then said to be robust if there exists a tube of
this trajectory that is accepted.

Results. The paper focuses on checking emptiness and proved its decidability. [GHJ97]
reduces the tube acceptance problem for an automaton to this problem with specific auto-
mata (called interior automata). This paper gave hope to prove the decidability of the
language inclusion problem, that was unfortunately proven undecidable by [HR00] three
years later.

The interest of this model is to isolate the non-robust behaviour by traces, some may
not be robust but may also not be relevant. The limitation of this representation is that
it does not take into account the structure of the automaton.
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3.2 Clock drifting

Clock drifts is a model proposed by [Pur98]. It models the imprecision in the synchron-
icity of the clocks. In an abstract model, each clock evolves at the same speed and can
be reset independently. In the real world, imprecision can occur and clocks can get out of
sync. The purpose of the model of clock drifting is to verify the properties even when the
speeds of the clocks are not equal.

Model of clock drifts Clock drifts is a model where the perturbations affects the clock
speed. It consists of allowing the clock speed to be between 1−∆ and 1 + ∆ for a ∆ > 0,
instead of all being equal to 1. This model, called ∆-drifting semantics, was introduced
by [Pur98] and [Pur00].

The ∆-drifting semantics slightly changes a timed automaton A into a timed auto-
maton A∆ where each clock x does not necessarily evolve with the same speed. For each
clock x, its speed, denoted ẋ, is 1 in the classical semantics. In the ∆-drifting semantics,
ẋ is between 1−∆ and 1 + ∆.

Results [Pur98] and [Pur00] provide an algorithm that computes, given an automaton
A and an initial state s0, the reachable state from s0 of the drifted automaton Aε when
ε tends to 0, using region graph, while [DK06] proposes an algorithm using zone. The
argument of [DK06] is that, even if the worst-case complexity of their algorithm is the
same, a symbolic algorithm might be more efficient. The limit of these two works is that
they have to use the hypothesis for each cycle in the region graph, every clock must be
reset at least once. In 2007, [Dim07] extends [Pur98] and [Pur00]’s work by providing a
symbolic algorithm for non-necessary closed constraints.

In 2017, [RPV17] provides results for a model that considers both guard enlargement
(see Section 3.4) and clock drifting. On top of that, [RPV17] provides results for reach-
ability properties, as in [Pur98] and [Pur00], but removed the hypothesis on the reset
of clocks. [DDM+08] studies perturbations model with guard enlargement mixed with
clock drifting for safety properties. They enlarged guards by δ and drifted clocks by ∆.
[DDM+08] provides an algorithm to decide whether there exists ∆ > 0 and δ > 0 such
that the safety property is still verified despite clock drifts and guard enlargement.

Other work extended Puri’s model and work. For instance, [SFK08] considers Puri’s
model and the robustness for safety property. They used the UPPAAL tool to test safety
robustness for closed guards. The first result of [SFK08] does not bound the clock drifting,

83



Chapter 3 – State of the art

but supposes a finite number of iterations. Its second result does not suppose a finite
number of iterations but imposes that 0 < ∆ < 1.

Finally, other works used the model of clock drifting for different models of timed
automata. [JR11] studied the computation of the largest possible ∆, while verifying safety
properties. They prove the decidability of this problem for flat timed automata (each loca-
tion belongs to at most one cycle). [ATM05] considered timed systems that can be express
as the product of single-clock automata, with clock drifting ∆ perturbations. Their con-
tribution is to solve the inclusion problem. The space complexity of their algorithm is
polynomial in the size of the timed automata. Other types of timed automata have been
studied, as in [ABG+08] and [ABG+14] that studied clock drifting for distributed timed
automata.

3.3 Time sampling

Time sampling models. A second approach to robustness is to sample time in the
context of hybrid systems. In hybrid systems, continuous time and discrete time compon-
ents coexist. In this context, the environment is represented in continuous time, and the
controller in discrete time. This model is more realistic with respect to the implementation
if we take into account the fact that controllers are digital systems.

Discrete-time control problem. [CHR02] introduced time sampling models and then
raised the following question for the safety properties: can the controller avoid bad states
if it only looks at discrete times, at regular intervals, that we call sampling rate? They
formulate the Discrete-time control problem with unknown sampling rate: is there a β ∈ Q+

such that a property can be assured by a controller, if its sampling rate is β?
Indeed, let us consider an example (with a single clock system) where bad behaviour

occurs between x = 0.3 s and 0.4 s and is not detectable at another times. If the sampling
rate is β > 0.1 s, the controller may not detect it, but if β ≤ 0.1 s, it may.

Results. [CHR02] showed that this problem is undecidable for safety properties.
[AKY07] and [AKY10] proved the decidability of the existence of a sampling rate that
makes sampled and continuous semantics recognise the same untimed languages. [KP05]
used a slightly different semantics to prove two results: the decidability of this problem
for reachability of timed automata, but the undecidability, for timed automata that
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allow clocks to stop at some locations. Finally, [BLM+11] studied the implementability
of timed automata while being robust to clock drifting and samplable, which means being
able to construct an implementation that preserves the semantics even if time is sampled.

3.4 Perturbations on guards

Robustness can also be modelled as perturbations on guards. Two approaches have been
considered. The first approach considers that the implementation might not behave as
the idealized model. To model imprecisions, this approach uses guard enlargement on the
timed automaton, and then checks whether properties are verified even on this enlarged
timed automaton. The second approach, called shrinking, consists in respecting the initial
constraints despite the perturbations of the model we design. To do this, this approach
shrinks the guards of the timed automaton to give a more strict timed automaton. Then,
the goal is to satisfy the desired property even with timing imprecisions.

Guard enlargement

Guard enlarged timed automata. Guard enlargement has been proposed by [BMR06].
It consists in designing and implementing directly the original timed automaton A, which
models the idealised real-time system, but to verify the robustness of our desired prop-
erty ϕ on an enlarged timed automaton Aδ where δ > 0 is a fixed parameter. If this is
verified, we then say that A is δ-robust. The verification of this robustness is called robust
model-checking. Let us describe the enlarged timed automaton Aδ.

Let δ > 0 be a strictly positive real and A be a timed automaton with guards of the
form a ≤ x ≤ b. Aδ is the same timed automaton as A but each guard a ≤ x ≤ b of A is
transformed into a guard a− δ ≤ x ≤ b+ δ.

Robust model-checking problem. The robust model-checking problem asks the fol-
lowing question: given a linear-time property ϕ and a timed automata A, the robust
model-checking problem decides whether there exists a δ > 0 such that all runs of Aδ′
satisfy ϕ, for δ′ ∈ [0, δ]. If such δ exists, the automaton A is then δ-robust.

Results. This model was used in [BMR06], [DDM+08], [BMR08] and [BMS11] for timed
automata where, for each cycles, each clock is reset at least once. The results were the
following ones:

85



Chapter 3 – State of the art

. [BMR06] proved the PSPACE-completeness of the robust model-checking problem
for LTL and Büchi properties.

. [DDM+08] proved that the robust model-checking problem for safety properties is
PSPACE-complete.

. [BMR08] studied this problem for coFlatMTL and proved it is EXPSPACE-
complete.

. [BMS11] studied this problem for ω-regular properties and proved it was PSPACE-
complete.

Shrinking timed automata

Shrinking timed automata. The shrinking approach was first proposed in [SBM11]
and is opposed to guard enlargement. Instead of verifying if the property ϕ still holds
when the model is enlarged, the goal of the shrinking approach is to verify the idealized
model despite timing perturbations. To do so, every constraints lx ≤ x ≤ ux is shrunk by
δ. The resulting constraint is lx + δ ≤ x ≤ ux− δ. Then, if the timing imprecision is ∆ on
a valuation v, the goal is the following ones:

Considering a timing perturbation ∆ and a valuation v, if any perturbed valuation
v + t, where −∆ ≤ t ≤ ∆, satisfies a shrunk constraint lx + δ ≤ x ≤ ux − δ, then the
non-perturbed valuation v satisfies the constraint lx ≤ x ≤ ux. To do so, it is sufficient to
verify that [lx + δ + ∆, ux − δ −∆] ⊆ [lx, ux].

More formally, given a timed automaton A, its set of constraints I , a positive integer
vector k = (ki)i∈I and a parameter δ > 0, the shrunk timed automaton A−kδ is the
resulting timed automaton where all its constraints correspond to the shrunk constraint
lx ≤ x ≤ ux, by kiδ, of the timed automaton A. The goal is that the satisfaction of the
shrunk constraints despite perturbation implies the satisfaction of the constraints in the
abstract and idealised models. However, the shrinking can suppress some behaviours and
even block the timed automaton, i.e. we find a location in the timed automaton where
no transitions are enabled, even after time elapsing.

Shrinkability problems. [SBM11] proposed two types of robustness problems for the
shrinking model: shrinkability and non-blocking-shrinkability. The second problem is a
relaxed version of the shrinkability problem, where the second condition is not required.
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Definition 3.1: Shrinkability

Let A be a timed automaton. The shrinkability problem asks whether there exists
a strictly positive δ > 0 and a positive integer vector k such that, for any δ′ ∈ [0, δ]
the two following properties holds:

1. A−kδ′ is non-blocking

2. A−kδ′ time-abstract simulates A.

Results. In [SBM11] and [SBM14], the non-blocking-shrinkability problem is proved
to be in PSPACE and even in NP if, from each location, we can bound the number of
outgoing locations. The shrinkability problem was proven to be in EXPTIME. A tool is
also available in http://www.lsv.fr/Software/shrinktech and presented in [San13].

These two approaches model the robustness by modifying constraints, either by enlar-
ging or shrinking them. Another approach consists in modelling the perturbations on the
delays. The following section develops two approaches on delay perturbations.

3.5 Perturbations on delays

In timed automata, delays are proposed to pass a transition. The delay δ proposed must
verify the guard g of the transition, such that, given the current valuation v, v + δ |= g.
In the classic semantics, the applied delays are supposed to be infinitely precise and the
controller is supposed to react instantly. In reality, there might be imprecision on the
delays and the controller may have a delayed reaction time. We present in this section
several models that perturb the delays:

. The first one, called almost ASAP semantics models the time reaction of the con-
troller with a delay ∆ > 0. ∆ correspond of the time reaction the controller has
before proposing a delay to pass the transition.

. The second one models a turn-based game with two players, a controller and
the environment. The delay d proposed by the controller is perturbed by the
environment.

. The third one is also based on a turn-based game. In this semantics, called permissive
semantics, the controller chooses the degree of perturbations by proposing an
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interval of delays, instead of a single delay.

Almost ASAP semantics

The Almost-ASAP semantics was proposed by [DDR04] and [DDR05] in order to make
timed models implementable. In the abstract model, the controller is supposed to react
and to change its strategy instantaneously. In reality, it has a reaction time which [DDR04]
models by a delay ∆.

They propose a semantics, called the almost-ASAP semantics. Given a parameter ∆,
called a reaction delay, the controller reacts with an offset δ ∈ [0,∆]. In [DDR04] and
[DDR05], they propose an algorithm which computes the maximum possible delay ∆,
such that it is possible to check the correction of the hybrid systems. [DDM+04] extended
this work by proving the decidability of the following problem: given an automaton and a
property, does such a reaction delay ∆ exist, while verifying the automaton’s correctness?

Fixed delay perturbations

Conservative game semantics and excess game semantics. The first model, pro-
posed by [CHP11], is a parametrized model. The delay imprecision is modelled by a
turn-based game. In this model, the controller chooses a delay that is perturbed by the
environment. Therefore the controller must choose a delay that satisfies the guard even
if the delay is perturbed. To model it, the maximal perturbation is fixed by a parameter
δ > 0. The controller chooses an edge and a delay d such that the guard of the selected
edge is satisfied by any delay in [d− δ, d+ δ]. The delay that is applied to pass the trans-
ition is chosen by the environment in the interval [d− δ, d+ δ]. This semantics is called
the conservative game semantics.

Another semantics was proposed by [BMS12], called excess game semantics. In this
semantics, the controller does not have to ensure that any delay in [d− δ, d+ δ] satisfy
the guard. The controller only have to ensure that the chosen delay d does satisfy the
guard.

Parametrized robust controller synthesis problem. The Parametrized robust con-
troller synthesis problem can be defined for a property ϕ, and both of the semantics defined
in the previous paragraph, in Definition 3.2. We apply this definition for timed automata,
but also for timed games.
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Definition 3.2: Parametrized robust controller synthesis problem

Given a property ϕ, the parametrized robust controller synthesis problem asks
whether there exists δ > 0 such that the controller has a winning strategy such
that every outcome satisfies the property ϕ.

We can also define a robust controller synthesis problem for weighted timed automata.
Weighted timed automata are an extension of timed automata defined in [ATP01] and
[BFH+01]. In this extension, each location is associated to a cost and the global cost
function represents the sum of the time spent in each location, weighted by their associated
cost function. The interest on these objects is the cost-optimal reachability (reaching the
goal while minimising the global cost function). In the two semantics defined previously,
the global cost function depends on the perturbation δ, [BMS13] defined optimal limit-cost
decision problem and optimal limit-cost strong decision problem as follows:
Definition 3.3: Optimal limit-cost (resp. strong) decision problem

Given p ≥ 0, the optimal limit-cost (resp. strong) decision problem asks whether
there exists a winning strategy of the controller such that the limits when δ tends
to 0 of the global cost function is greater than (resp. strictly greater than) p.

Results. The parametrized robust controller synthesis problem has been studied
for timed games and timed automata for both semantics. For the conservative game
semantics, this problem has been solved in exponential time for timed games and
parity conditions by [CHP11]. [SBM+13] proved that this problem is in PSPACE for
timed automata and Büchi conditions. [BMR+19] extended [SBM+13]’s work by solving
the same problem for a given ‘lasso’ in polynomial time and showing that computing the
largest controllable perturbation is decidable. They provide a C++ implementation.

For the excess timed semantics, this problem has proven to be EXPTIME-complete
for turn-based timed games and reachability properties by [BMS12] and [BMS15].

The optimal limit-cost (resp. strong) decision problem has been studied for
both semantics too for weighted timed automata. It is proved to be PSPACE-complete
for the conservative game semantics, but undecidable for weighted timed games by
[BMS13]. It is also proved undecidable for weighted timed automata for the excess game
semantics by [BMS13],

Finally, [ORS14] provided results for a slightly changed semantics. In their model the
controller chooses the action a (and not an edge) and a delay d. The delay applied to
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pass the transition is chosen by the environment in [d− δ, d+ δ], but the environment
also chooses the a-labelled edge that is taken. Their contribution is to prove that, given
a timed automaton and a Büchi objective, deciding whether there exists such δ > 0
such that the controller has a winning strategy is an EXPTIME-complete problem.
They provide a result for probabilistic timed automata, where the environment choices
are randomised, that we detail in Subsection 3.5.

Robustness in probabilistic timed automata

Stochastic game and Markov decision process semantics. Probabilistic timed
automata were studied in [ORS14] on the same model detailed in Section 3.5. [ORS14]
proposed two probabilistic models. In the first one, the stochastic game semantics, the
environment does not choose the applied delay anymore. Each delay is chosen randomly
with the uniform distribution. In the second one, the Markov decision process semantics,
the delays are chosen randomly with the uniform distribution too, but the edges are also
chosen randomly with a uniform distribution. As a result, there is only one player, the
controller.

Results. With both semantics, [ORS14] proved that, for Büchi objective, deciding,
almost-surely, whether there exists such δ > 0 such that the controller has a winning
strategy is an EXPTIME problem.

Maximally-permissive strategy

Permissive semantics. Finally, delay perturbations can be modelled as a turn-based
game where the controller chooses, for each location, the amount of allowed perturba-
tion. This model was introduced by [BFM15] and is detailed in Section 2.2 and is called
the permissive semantics. The model is a turn-based game where the first player, the
controller, chooses an interval of delays I and an action a, such that there exists an
transition t such that every delay δ ∈ I satisfies the guard of t. The environment then
chooses a delay in the interval I.

An objective function, called the penalty function, sums the inverse of the size of all
proposed intervals. The controller’s objective is to minimise this function. The envir-
onment’s objective is to maximise it.
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Most-permissive strategy problem and results. Themost-permissive strategy prob-
lem, defined in [BFM15], asks, given a timed automaton A and a configuration s, to com-
pute the penalty of the configuration s. This problem was proven to be in PTIME for
single-clock timed automata. This approach is extended in this thesis for multiple-clock
timed automata.

Conclusion

Several approaches have been studied to model the robustness of timed automata. The first
reason is that the objective may be to make the implementation robust to perturbations, or
to force the implementation to respect the original idealised model despite perturbations
in the environment. The second reason is that perturbations do not occur in only one way.
As with the smartphone robustness example, where robustness can refer to resistance to
water, shock, deformation or heat, robustness can for instance refers to perturbations on
the timing of clocks (clock drifting), guards (enlargement, shrinking), or proposed delays.

The approach we focus on is the perturbation on delays, as proposed in [BFM15]. In
this thesis, we strive to propose models and algorithms to verify that the timed auto-
maton is robust to delay perturbations. Our goal is to compute, symbolically, the largest
perturbation that can occur while achieving reachability objectives. We slightly changed
the model of [BFM15] and presented it in the previous chapter, in Section 2.2.

The problem we study in this thesis can be seen as an optimisation problem on a turn-
based game: finding the optimal strategy of two players, where one wants to minimise
and the other one wants to maximise the permissive function of all possible runs. The
permissiveness function has been defined in Definition 2.21. Nevertheless, it is not defined
iteratively, which would be helpful in order to find the optimal strategies. To solve this
problem, in the next Chapter 4 we define a sequence that approximates and tends to our
permissiveness function, while being defined iteratively.
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THE SEQUENCE OF SUBOPTIMAL

PERMISSIVE FUNCTIONS

The permissiveness function, as defined in Definition 2.21, considers all intervals proposed
during a run at the same time. In the first examples of computation of permissiveness
functions in Section 2.2.2, the permissiveness of successors is used to compute the per-
missiveness of a location. This gave us a first intuition of how to compute the permissive-
ness function. In order to formalise this intuition, we present in this chapter the sequence
of suboptimal permissive functions. This sequence computes the minimum between the
permissiveness of the current p-move and the permissiveness of the successor, consid-
ering that the opponent has an optimal strategy. It is built as a backward algorithm.
This sequence of functions is related to the permissiveness function, and we show in this
chapter that it converges to the permissiveness function and has interesting properties.
This chapter is organised as follows:

. First, we present the formal definition of the sequence of suboptimal permissive
functions in Section 4.1 and its links with the game semantics presented in the
permissiveness semantics of Section 2.2.1.

. Secondly, we present the properties of the sequence of suboptimal permissive func-
tions in Section 4.2: its evolution, its link with the permissiveness function, its
analytic properties and finally its optimisation properties.

4.1 Definition

The sequence of suboptimal permissive functions, denoted (Pi)i∈N, depends on the pos-
sible successors of the current configuration. To define this sequence formally, let us first
introduce a notation for the successor of a configuration. Let (`, v) be an arbitrary con-
figuration such that p-moves (`, v) 6= ∅. Let (I, a) ∈ p-moves (`, v) be an arbitrary p-move
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and δ ∈ I. There exists a configuration (`′, v′) such that (`, v) δ,a−→ (`′, v′). We denote
this successor succ (`, v, δ, a) := (`′, v′). Let us now define the sequence of suboptimal
permissive functions in Definition 4.1.
Definition 4.1: The sequence of suboptimal permissive functions

Let A be an arbitrary timed automaton with n clocks and ` be an arbitrary location.
The sequence of suboptimal permissive functions is the sequence of functions, denoted
(Pi (`, ·))i, defined as follows:

. Initialisation: for any valuation v:

P0 (`, v) =

+∞ if ` ∈ Qf

−∞ otherwise

. Step i + 1: let v be an arbitrary valuation. If ` ∈ Qf , Pi+1 (`, v) = +∞,
otherwise:

Pi+1 (`, v) =



sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)
if p-moves (`, v) 6= ∅

−∞ otherwise

The sequence of suboptimal permissive functions considers the optimal strategy of the
player and the opponent, from the game described in the permissive semantics. In this
semantics, the player chooses a p-move (I, a) and the opponent chooses a delay δ ∈ I to
pass the transition and reach a successor (`′, v′):

. inf
δ∈I

(Pi (succ (`, v, δ, a))) is the permissiveness at (`′, v + δ [Cr ← 0]) if the opponent
chooses the delay δ ∈ I that minimises the permissiveness.

. Considering this optimal delay for each interval the player can propose, the player
chooses a p-move that maximises the minimum between the current interval the
player proposes and the permissiveness of the successors that will be reached. If an
optimal p-move (I∗, a∗) exists, then:

Pi+1 (`, v) = min
(
|I∗| , inf

δ∈I∗
Pi (succ (`, v, δ, a∗))

)
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In Figure 4.1, we describe the possible choices of delays and intervals for the guard 0 ≤
x ≤ 1 of the timed automaton in Figure 2.2. The player has an infinite number of choices
of intervals, for instance [0, 0.1] or [0.9, 1]. Each choice will give an interval I such that the
opponent can choose a delay δ ∈ I. For instance if I = [0, 0.1], the opponent can choose
any delay between 0 and 0.1 (for instance 0 or 0.1). Each delay corresponds to a future
configuration: for instance (`1, v + 0 [Cr ← 0]) or (`1, v + 0.1 [Cr ← 0]).

Our goal is to reduce the number of possible delays and intervals to a finite set of
possibilities, in which an infimum and a supremum can be found (they are in general not
unique).

(`0, v)

[0, 0.1]

[0.9, 1]

(`1, v + 0 [Cr ← 0])

(`1, v + 0.1 [Cr ← 0])

(`1, v + 0.9 [Cr ← 0])

... ...

Infinite choices

... ...

Infinite choices

...

Infinite choices

...

Pi (`1, v + 0 [Cr ← 0])

Pi (`1, v + 0.1 [Cr ← 0])

Pi (`1, v + 0.9 [Cr ← 0])

Figure 4.1 – The possible choices of intervals and delays with the guard 0 ≤ x ≤ 1 when
v = (0, 0).

Let us construct the sequence of suboptimal permissive functions on an example stud-
ied in Chapter 2.

Example 4.1.1 Let us consider the first example of timed automaton of Subsection 2.2.2,
described in Figure 2.2. Let us recall that the permissiveness function of this timed auto-
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maton is:

Perm (`j, ·) : (x, y) 7→


+∞ if `j = `f

min(1− x
2− j ,

1− y
2− j ) if (x, y) ∈ Win`j ∧ j ∈ {0, 1}

−∞ otherwise

We describe the sequence of suboptimal permissive functions of this timed automaton
for i = 0, 1 and 2 in Tables 4.1, 4.2 and 4.3 respectively.

Location sequence of suboptimal permissive functions
`0 P0 (`0) = −∞
`1 P0 (`1) = −∞
`f P0 (`1) = +∞

Table 4.1 – Computation of P0 for the timed automaton of Figure 2.2.

Location sequence of suboptimal permissive functions
`0 P1 (`0, (x, y)) = −∞

`1 P1 (`1, (x, y)) =
min(1− x, 1− y) if x, y ∈ [0, 1]
−∞ otherwise

`f P1 (`f , (x, y)) = +∞

Table 4.2 – Computation of P1 for the timed automaton of Figure 2.2.

Location sequence of suboptimal permissive function

`0 P2 (`0, (x, y)) =


min(1− x, 1− y)

2 if x, y ∈ [0, 1]
−∞ otherwise

`1 P2 (`1, (x, y)) =
min(1− x, 1− y) if x, y ∈ [0, 1]
−∞ otherwise

`f P2 (`f , (x, y)) = +∞

Table 4.3 – Computation of P2 for the timed automaton of Figure 2.2.

In Example 4.1.1, the sequence of suboptimal permissive functions is eventually con-
stant from rank 2. Lemma 4.5, in Section 4.2, gives a sufficient rank from which the
sequence is eventually constant, for acyclic timed automata. As we also prove that the
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sequence of suboptimal permissive functions converges to the permissiveness function, a
direct consequence is that the sequence of suboptimal permissive functions converges in
a finite number of steps to the permissiveness function, its fixed point, for acyclic timed
automata. It allows us to reduce the maximal-permissiveness problem to (for a sufficiently
high rank i) the sequence of suboptimal permissive functions problem, that we define in
the following definition.
Definition 4.2: Sequence of suboptimal permissive functions problem

Given a timed automaton A, an integer i ∈ N, an initial configuration (`0, v0) and
a goal location `f , the sequence of suboptimal permissive functions problem asks to
compute Pi (`0, v0).

4.2 Properties of the sequence of suboptimal per-
missive functions

In this section, we prove some basic properties of this sequence of functions, and in
particular its links with the permissiveness function. In Subsection 4.2.1, we study the
evolution of the sequence of suboptimal permissive functions. In Subsection 4.2.2, we
prove the link between the sequence of suboptimal permissive functions (Pi)i∈N and the
permissiveness function Perm. For instance, we give sufficient conditions where the limits
of the sequence equals the permissiveness function. In Subsection 4.2.3, we prove analytic
results such as continuity. Finally, in Subsection 4.2.4, we study optimisation results, such
as concavity.

4.2.1 Evolution properties

The goal of this subsection is to study the evolution of the sequence of suboptimal per-
missive functions, with respect to either the rank i (in Lemma 4.3 and 4.5) or the valuation
of the considered configuration in Lemma 4.6. In the first lemma, we state that the se-
quence is non-decreasing. We prove this property by induction.
Lemma 4.3
For any configuration (`, v), the sequence (Pi (`, v))i≥0 is non-decreasing with respect
to i.
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Proof of Lemma 4.3. For any configuration (`, v), by Definition 4.1 either P0 (`, v) =
P1 (`, v) = +∞ (if ` ∈ Qf ), or P0 (`, v) = −∞. In both cases, P0 (`, v) ≤ P1 (`, v).
Then, let i ∈ N and let us assume that Pi (`, v) ≤ Pi+1 (`, v) for all (`, v). Let us prove
that for all (`, v), Pi+1 (`, v) ≤ Pi+2 (`, v):

. Suppose that p-moves(`, v) = ∅. Then by definition, for any j ≥ 0 and any config-
uration (`, v), Pj (`, v) = −∞. As a result, Pi+1 (`, v) ≤ Pi+2 (`, v).

. On the contrary, suppose that p-moves(`, v) 6= ∅, then for all p-moves (I, a):

inf
δ∈I

(Pi (succ (`, v, δ, a))) ≤ inf
δ∈I

(Pi+1 (succ (`, v, δ, a)))

Then, the following inequality holds:

min
(
|I| , inf

δ∈I
(Pi (succ (`, v, δ, a)))

)
≤ min

(
|I| , inf

δ∈I
(Pi+1 (succ (`, v, δ, a)))

)

For all set of p-moves, in particular p-moves (`, v), the supremum operator preserves
the inequality:

Pi+1 (`, v) = sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)
≤ sup

(I,a)∈p-moves(`,v)
min

(
|I| , inf

δ∈I
Pi+1 (succ (`, v, δ, a))

)

The result follows by definition of Pi (`, v) when p-moves (`, v) 6= ∅.

Example 4.2.1 Let us consider the timed automaton used in Example 4.1.1 and the
configuration (`0, v). The sequence (Pi (`0, v))i≥0 is a non-decreasing sequence for the first
three indices, as it is −∞ for i = 0, 1.

If we consider `1, the sequence (Pi (`1, v))i≥0 is −∞ for i = 0, and then it is constant
for i = 1, 2.

We now identify the conditions and ranks from which the sequence of functions
(Pi (`, v))i≥0 is eventually constant. Let us first recall the definition of such sequence.
Definition 4.4: eventually constant sequence

A sequence (un)n≥0 is eventually constant if there exists a rank n0 ≥ 0 such that for
all n ≥ n0, un = un0 .
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The following Lemma 4.5 states that, for a fixed configuration (`, v), the sequence of
suboptimal permissive functions Pi (`, v) is eventually constant at a rank k that represents
the length of the longest path to a goal of the timed automaton. More formally, let ` and
`′ be two arbitrary locations. We denote Π (`, `′) the set of paths from ` to `′. For any
path π ∈ Π (`, `′), we denote |π| its number of transitions. We define the maximal distance
of ` to goals, denoted d`, as follows:

d` := max
`f∈Qf

max
π∈Π(`,`f)

(|π|)

Lemma 4.5
Let ` be an arbitrary location. Then (Pi (`, v))i≥0 is constant from rank d` (for any
valuation v), i.e., for any valuation v:

∀j ≥ 0,Pd`+j (`, v) = Pd` (`, v)

Proof of Lemma 4.5. We proceed with a simple induction on d`.
For d` = 0, only the locations that belong to Qf satisfy the condition, and the result

holds by definition of Pj for any `f ∈ Qf .
Now, let us assume that the result holds for some index i, and consider a location ` such

that d` ≤ i+ 1 and a valuation v. If p-moves (`, v) = ∅, the sequence (Pi (`, v))i∈N is con-
stant and is −∞, and the result follows immediately. Otherwise, let (I, a) ∈ p-moves (`, v)
be an arbitrary p-move. For any δ ∈ I, let us denote (`′δ, v′δ) := succ (`, v, δ, a). The loca-
tion of this successor `′δ verifies d`′δ ≤ i. Hence Pi (succ (`, v, δ, a)) = Pi+1 (succ (`, v, δ, a)).
As a result:

Pi+1 (`, v) := sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)
= sup

(I,a)∈p-moves(`,v)
min

(
|I| , inf

δ∈I
Pi+1 (succ (`, v, δ, a))

)
= Pi+2 (`, v)

It immediately follows that Pi+1 (`, v) = Pi+2 (`, v) for any valuation v.

Example 4.2.2 Let us go back to the Example 4.1.1. As the sequence of suboptimal per-
missive functions is always +∞ on `f , if we consider the configuration (`1, x, y), let us
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remark that d`1 = 1 and that its unique successor location is `f . Let i ≥ 1 be an index:

Pi (`1, (x, y)) = sup
(I,a)∈p-moves(`1,(x,y))

min (|I| ,+∞)

= P1 (`1, (x, y))

As a result, the sequence (Pi (`1, (x, y)))i≥0 is constant from rank 1.

Proving that the sequence of suboptimal permissive functions is eventually constant
gives us an important result to compute its limit. Indeed, the sequence then converges in
a finite number of steps. Let us fix a configuration (`, v). In Lemma 4.5, we state that, if
a rank k is greater than d`, the sequence (Pi (`, v))i≥k is constant. As this number is finite
for acyclic timed automata, the sequence (Pi (`, v))i≥0 converges in a finite number of
steps for acyclic timed automaton. In Subsection 4.2.2, we prove that the permissiveness
function corresponds to the limit of the sequence of suboptimal permissive functions. This
result enables us to reduce the maximal-sequence of permissiveness function (Definition
2.22) to the maximal-sequence of suboptimal permissive function problem (Definition 4.2),
for acyclic timed automata and for the rank d`.

Our last result provides a constant above which the exact value of the clocks no longer
affects the value of v 7→ Pi (`, v) . The intuition is that if the valuation v is greater
than the greatest constant of the automaton A, then the same p-moves can be proposed
and the valuation of the successor will be greater than v (except for the clocks that are
reset). This lemma is used to prove the correctness of our algorithm that computes Pi in
Section 5.1.
Lemma 4.6
Let A be a timed automaton, and let M (A) be its largest constanta. Let ` be a
location, and i ∈ N. Take two valuations v and v′ such that, for any clock x, we have
either v(x) = v′(x), or v(x) >M (A) and v′(x) >M (A). Then Pi (`, v) = Pi (`, v′).

asee Definition 2.6

Proof of Lemma 4.6. We proceed by induction on i: for i = 0, v 7→ Pi (`, v) is con-
stant with respect to the valuation, so the result holds.

Let us assume that the result holds for some index i ∈ N. We now prove that it holds
for i+ 1.

Let ` be an arbitrary location and v, v′ be two valuations such that for any clock,
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either v (x) = v′ (x), or v (x) > M (A) and v′ (x) > M (A). With this hypothesis, the
same p-moves can be proposed from (`, v) and (`, v′), as the guard constant are all lower
thanM (A), so p-moves (`, v) = p-moves (`, v′), then:

Pi+1 (`, v) = sup
(I,a)∈p-moves(`,v′)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)

Let (I, a) ∈ p-moves (`, v), Cr be the reset set of the corresponding transition and
δ ∈ I. Let us prove that Pi (succ (`, v, δ, a)) = Pi (succ (`, v′, δ, a)). Let `′ be the successor
of ` when choosing the p-move (I, a), then:

Pi (succ (`, v, δ, a)) = Pi (`′, v + δ [Cr ← 0]) and Pi (succ (`, v′, δ, a)) = Pi (`′, v′ + δ [Cr ← 0])

Let x be an arbitrary clock. Then either x ∈ Cr and v + δ [Cr ← 0] (x) = 0 = v′ +
δ [Cr ← 0] (x) or x 6∈ Cr and then (v + δ [Cr ← 0]) (x) > v (x) >M (A) and (v′ + δ [Cr ← 0]) (x) >
v′ (x) >M (A). Since these two successors satisfy the induction hypothesis, for any delay
δ ∈ I:

Pi (`′, v′ + δ [Cr ← 0]) = Pi (`′, v + δ [Cr ← 0])

As a result, Pi+1 (`, v) = Pi+1 (`, v′).

Example 4.2.3 Let us go back to the same example, with the timed automaton of Figure
2.2 and let us consider an arbitrary location ` such that ` 6= `f . The maximal constant of
this timed automaton is 1. As computed in Example 4.1.1, if any valuation v is greater
than 1 on x or y, then the sequence of suboptimal permissive functions on a configuration
(`, v) is always equal to −∞.

4.2.2 Link between (Pi)i≥0 and Perm

In this subsection, we state the links between the sequence of suboptimal permissive
functions (Pi)i∈N and the permissiveness function, Perm. Intuitively, the sequence (Pi)i≥0

is sequence of functions that are always smaller than the permissiveness function, and its
limit, if it exists, corresponds to the permissiveness of the timed automaton.
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Proposition 4.7

For any i ∈ N and for any configuration (`, v), it holds:

1. Pi (`, v) = −∞ if, and only if, there is no run of length at most i from (`, v) to
any location `f ∈ Qf ;

2. for any p ∈ R+, and any i ∈ N, it holds that Pi (`, v) ≥ p if, and only if, there
is a permissive strategy with permissiveness larger than (or equal to) p that is
winning from (`, v) within i steps.

Proof of Proposition 4.7. We will prove both claims by induction on i.

1. The result is trivial for i = 0: Pi (`, v) = −∞ if and only if ` 6∈ Qf . This is equivalent
to having no runs of length 0 from ` to any goal location `f ∈ Qf . Indeed, such
locations are the ones that already belong to Qf

Suppose now that the result holds for some index i ∈ N. The (equivalence) proof is
carried by double implication:

(⇒) Suppose that Pi+1 (`, v) = −∞, then either p-moves (`, v) is empty (and then
the result immediately follows). or it is not empty and the following equality
holds:

sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)
= −∞

Let (I, a) ∈ p-moves (`, v). As, for each δ ∈ I, ({δ} , a) is also a (punctual)
enabled p-move, then:

{({δ} , a) | ({δ} , a) is an enabled p-move} ⊆ p-moves (`, v)

As a result:

Pi+1 (`, v) = sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)

≥ sup
({δ},a)∈p-moves(`,v)

(
min

(
|{δ}| , inf

δ∈{δ}
Pi (succ (`, v, δ, a))

))

= sup
({δ},a)∈p-moves(`,v)

(min (0,Pi (succ (`, v, δ, a))))
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As Pi+1 (`, v) = −∞:

−∞ ≥ sup
({δ},a)∈p-moves(`,v)

(min (0,Pi (succ (`, v, δ, a))))

Then:
sup

({δ},a)∈p-moves(`,v)
Pi (succ (`, v, δ, a)) = −∞

Then for each punctual p-move ({δ, } a) ∈ p-moves (`, v), the successor (`′, v′)
such that `, v δ,a−→ `′, v′ is such that Pi (`′, v′) = −∞. From the induction
hypothesis, for any goal location `f ∈ Qf , there can be no path from those
(`′, v′) to `f within at most i steps. Hence, there are no paths from (`, v) to `f
within at most i+ 1 steps.

(⇐) Conversely, suppose that for each goal location `f ∈ Qf , there are no path hav-
ing at most i+1 steps from (`, v) to `f , then either this is because p-moves (`, v) =
∅, or this is because whatever enabled p-move (I, a) and δ ∈ I, there is no
path of length at most i from succ (`, v, δ, a) to `f . By induction hypothesis,
Pi (succ (`, v, δ, a)) = −∞, hence:

Pi+1 (`, v) = sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi (succ (`, v, δ, a))

)
Pi+1 (`, v) = sup

(I,a)∈p-moves(`,v)
min (|I| ,−∞)

Pi+1 (`, v) = −∞

2. Let p ∈ R+. The base case is again trivial. P0 (`, v) ≥ p if and only if P0 (`, v) =
+∞. This is equivalent to ` ∈ Qf . As a result, the equivalence is immediate. The
equivalence is also trivial if ` ∈ Qf . Suppose now that ` 6∈ Qf and that the result
holds to some index i. The (equivalence) proof is again carried by double implication:

(⇒) Suppose that Pi+1 (`, v) ≥ p. Then p-moves (`, v) 6= ∅, there exists a enabled
move (I, a) such that |I| ≥ p and Pi (succ (`, v, δ, a)) ≥ p for any δ ∈ I.
Applying the induction hypothesis, there is an i-step winning strategy with
permissiveness larger than, or equals to, p from each successor configuration
succ (`, v, δ, a). By concatenating with the p-move (I, a), there exists an i+ 1-
step winning strategy with permissiveness larger, or equals to, than p from
(`, v).
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(⇐) Let us pick an i + 1-step winning strategy σp from (`, v) with permissiveness
larger, or equals to, than p. Write σp (`, v) = (I0, a0). Then, for any δ ∈ I0 and
location (`′, v′) such that (`, v) δ,a0−−→ (`′, v′), strategy σp is an i-step winning
strategy with permissiveness larger than, or equals to, p, so that, following the
induction hypothesis, the Pi (`′, v′) ≥ p. As |I0| > p, it immediately follows
that:

Pi+1 (`, v) ≥ p

We can use this result to prove that the pointwise limit of the sequence of suboptimal
permissive functions tends to the permissiveness function.
Corollary 4.8

Let ` ∈ Q be a location. If lim
i→+∞

(
v 7→ Pi (`, v)

)
exists, then v 7→ Perm (`, v)

is the pointwise limit of (Pi (`, ·))i≥0.

Proof of Corollary 4.8. This is a basic result of Lemma 4.3 and Proposition 4.7. Let (`, v)
be an arbitrary configuration and suppose that its limit lim

i→+∞
Pi (`, v) exists. There are

three cases:

. The case where lim
i→+∞

Pi (`, v) = −∞ is trivial by the first claim of Proposition 4.7.

. The case where lim
i→+∞

Pi (`, v) = +∞ is trivial because by proposition 4.7, for any p ∈
R+, there exists a permissive strategy σ such that Permσ (`, v) ≥ p. So Perm (`, v) =
+∞.

. Otherwise, suppose that there exists p ∈ R+ such that lim
i→+∞

Pi (`, v) = p, then
by proposition 4.7 there exists a permissive strategy σ such that Permσ (`, v) ≥ p.
Suppose that there exists another winning strategy σ′ such that Permσ (`, v) ≥ p′ >

p in i steps. Then by Corollary 4.7, Pi (`, v) > p too. By Lemma 4.3, the sequence
is non-decreasing so p = lim

i→+∞
Pi (`, v) ≥ Pi (`, v) > p, which is absurd. As a result,

sup
σ

Permσ (`, v) = p so Perm (`, v) = p.

It enables us to prove some analytic properties of Perm in the next section.
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Corollary 4.9

Let A be an acyclic timed automaton, ` ∈ Q a location and i ≥ d`. The two
functions v 7→ Perm (`, v) and v 7→ Pi (`, v) are equal.

Proof of Corollary 4.9. Because of Lemma 4.5. For each location ` ∈ Q, the sequence
(Pi (`, v))i≥0 is eventually constant from rank d`. As a result, its limits exists and is reaches
from rank d`. Let i ≥ d`, by applying the Corollary 4.8, the functions v 7→ Perm (`, v)
and v 7→ Pi (`, v) are equal.

4.2.3 Analytic properties

The goal of this section is to state basic regularity properties of Pi and Perm. The strongest
property we were able to prove for Pi and Perm is that they are 2-Lipschitz.

We recall some basic definitions:
Definition 4.10: Lipschitz continuous functions

Let k > 0 be a strictly positive constant and E ⊆ Rn be a subset of (Rn, ‖ · ‖).
A function f : E 7→ R is said to be k-Lipschitz (or k-Lipschitz continuous) if the
following property holds:

∀x, y ∈ E, |f(x)− f(y)| ≤ k · ‖x− y‖E

Let us recall that, if F = R+, the k-Lipschitz continuity is stable with the
operator max. Indeed let us consider a strictly positive constant k > 0, an integer
m ∈ N and a sequence of functions (fi)0≤i≤m defined from E to R+, such that for any
i ∈ J0,mK, fi is k-lipschitz. Let us consider x, y ∈ E and let us denote i and j the index
of J0,mK such that max

0≤l≤m
fl (x) = fi (x) and max

0≤l≤m
fl (y) = fj (y). By definition of the

maximum:

fj (x)− fj (y) ≤ fi (x)− fj (y) ≤ fi (x)− fi (y)

Then, by the k-lipschitz property:

−k‖x− y‖E ≤ fi (x)− fj (y) ≤ k‖x− y‖E

As a result, max
0≤i≤m

(fi) is k-Lipschitz from E to R+.
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Our main result is the 2-Lipschitz continuity of the sequence of suboptimal permissive-
ness functions, that we prove in Proposition 4.11.
Proposition 4.11

For any integer i ∈ N and any location `, the function τ` : Win` → R+

v 7→ Pi (`, v)
is

2-Lipschitz.

A direct consequence on Perm is that Perm is 2-Lipschitz when the timed automaton
is acyclic:
Corollary 4.12

Let A be an acyclic timed automaton and ` ∈ Q a location, Perm : Win` → R+

is 2-Lipschitz.

Proof of Corollary 4.12. This is a direct consequence of Corollary 4.9. Indeed as A is an
acyclic timed automaton v 7→ Perm (`, v) is equal to Pd` (`, v). Therefore, because of
Proposition 4.11, Perm is 2-Lipschitz on Win`.

To prove Proposition 4.11, we use the Lemmas 2.12 and 4.13. The first one, stated
in Chapter 2, is an analytic result on the p-moves that enables us, for each p-move, to
consider a corresponding one with a shifted interval, in order to formally express the
continuity inequalities. The second one helps us when splitting the sequence into the two
terms. The first term corresponds to the size of the current interval and the second term
to the sequence of suboptimal permissiveness function of the successors. Lemma 4.13 gives
the 2-Lipschitz continuity of the first term.
Lemma 4.13

For any location `, the function ν` : v 7→ sup
(I,a)∈p-moves(`,v)

|I| is 2-Lipschitz on the

set
{
v ∈ R|C|+ | p-moves (`, v) 6= ∅

}
.

Proof of Lemma 4.13. As the number of possible actions is a finite set, we can write ν`
as follows:

ν` : v 7→ max
a∈Σ

sup
(I,a)∈p-moves(`,v)

|I|

Let us denote νa,` : v 7→ sup
(I,a)∈p-moves(`,v)

|I| . If each νa,` is 2-Lipschitz, so is ν`. Let us
prove, for a fixed a ∈ Σ, that νa,` is 2-Lipschitz.
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We can suppose that ` has a single transition (`, g, a, Cr, `′). Let v, v ∈ Win` be two
valuations. We prove that |ν` (v′)− ν` (v) | ≤ 2‖v′ − v‖∞.

First, if p-moves (`, v) contains no p-move (I, a) whose interval size is at least 2‖v′ −
v‖∞, then obviously:

ν`,a (v)− ν`,a (v′) ≤ 2‖v′ − v‖∞.

Now, assume that there exists an enabled p-move ([α, β] , a) ∈ p-moves (`, v) such that
β − α ≥ 2‖v′ − v‖∞. By Lemma 2.12, for any such interval,

([α + ‖v′ − v‖∞, β − ‖v′ − v‖∞], a) ∈ p-moves (`, v′) .

Fix ε > 0, as we can find an interval I = [α, β] such that (I, a) ∈ p-moves (`, v), |I| ≥
ν` (v)− ε and |I| ≥ 2‖v′ − v‖∞. Since [α + ‖v′ − v‖∞, β − ‖v′ − v‖∞] ∈ p-moves (`, v′), it
follows:

ν`,a (v′) ≥ β − ‖v′ − v‖∞ − α− ‖v′ − v‖∞
ν`,a (v′) ≥ β − α− 2‖v′ − v‖∞
ν`,a (v′) ≥ ν`,a (v)− 2‖v′ − v‖∞ − ε

ν`,a (v′)− ν`,a (v) ≥ −2‖v′ − v‖∞ − ε.

By symmetry of the role of v and v′, we also have:

ν`,a (v)− ν`,a (v′) ≥ −2‖v − v′‖∞ − ε
ν`,a (v′)− ν`,a (v) ≤ 2‖v′ − v‖∞ + ε

As a result:

−2‖v′ − v‖∞ − ε ≤ ν`,a (v′)− ν`,a (v) ≤ 2‖v′ − v‖∞ + ε

Since this holds for any ε > 0, we get the announced inequality and can conclude by the
stability of the max operator.

We can now prove the Proposition 4.11:

Proof of Proposition 4.11. The proof is again by induction on i. The case of i = 0 is
trivial, as v 7→ P0 (`, v) is constant from R|C|+ to R+. Let i ∈ N be an integer, and
suppose that the result holds for some index i. Let ` be a location and let us fix an outgoing
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transition (`, g, a, Cr, `′). As in the previous proof, the result for the general case directly
follows by stability. Let us pick two valuations v, v′ ∈ Win`. In particular, p-moves (`, v)
and p-moves (`, v′) are non-empty. We follow the same approach as in the proof of Corollary
4.13, proving that |τ` (v)− τ` (v′) | ≤ 2‖v′− v‖∞. Again, in case p-moves (`, v) contains no
move with an interval of size larger than or equal to ‖v′ − v‖∞, the result is immediate.
Otherwise, let us fix ε > 0, and take an interval I = [α, β] such that:

min
(
|I| , inf

δ∈I
(Pi−1 (`′, v + δ [Cr ← 0]))

)
≥ τ` (v)− ε.

Then |I| ≥ τ (v)− ε and for any δ ∈ I:

Pi−1 (`′, v + δ [Cr ← 0]) ≥ τ` (v)− ε.

Let I ′ = [α + ‖v′ − v‖∞, β − ‖v′ − v‖∞], then:

|I ′| ≥ |I| − 2‖v′ − v‖∞ ≥ τ` (v)− ε− 2‖v′ − v‖∞.

Moreover, since I ′ ⊆ I, when δ ∈ I ′ we have:

Pi−1 (`′, v + δ [Cr ← 0]) ≥ τ` (v)− ε.

Additionally, for any δ ∈ I ′, ‖v′ + δ [Cr ← 0]− v + δ [Cr ← 0] ‖∞ ≤ ‖v′ − v‖∞, so that:

Pi−1 (`′, v + δ [Cr ← 0]) ≤ Pi−1 (`′, v′ + δ′ [Cr ← 0]) + 2‖v′ + δ [Cr ← 0]− v + δ [Cr ← 0] ‖∞
≤ Pi−1 (`′, v′ + δ′ [Cr ← 0]) + 2‖v′ − v‖∞.

Thus for any δ ∈ I ′,

Pi−1 (`′, v′ + δ [Cr ← 0]) ≥ Pi−1 (`′, v + δ [Cr ← 0])− 2‖v′ − v‖∞
≥ τ` (v)− ε− 2‖v′ − v‖∞

Since |I ′| ≥ τ` (v)− ε−2‖v′− v‖∞, and τ` (v′) ≥ min
(
|I ′| , inf

δ∈I′
(Pi−1 (`′, v′ + δ [Cr ← 0]))

)
we have:

τ` (v′)− τ` (v) ≥ −ε− 2‖v′ − v‖∞.
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By symmetry of the role of v and v′, τ` (v)− τ` (v′) ≥ −ε− 2‖v − v′‖∞, so:

−ε− 2‖v′ − v‖∞ ≤ τ` (v′)− τ` (v) ≤ ε+ 2‖v′ − v‖∞.

This prove that τ` is 2-Lipschitz.

4.2.4 Optimisation properties

In this section, we prove properties about the optimisation of the opponent strategy.
The following lemma proves that Pi (`, v + δ) ≤ Pi (`, v). A direct consequence of this

lemma is that for any non-resetting transition, the optimal choice of the opponent
is the largest delay in the interval proposed by the player. As proved in [BFM15], this
choice is also optimal for any one-clock timed automaton, even with resets. Indeed, in
that case, the clock is reset and the new valuation does not depend on the delay chosen
by the opponent. This corresponds to the intuition that by playing later, the opponent
forces a faster reaction from the player at the next step. However this is not the optimal
strategy in general for multiple-clock timed automata (see Counter-example 5.1.1 in the
next section).
Lemma 4.14
Let (`, v) be a configuration, δ ∈ R+ such that (`, v + δ) is a configuration of the
automaton, and i ∈ N. Then Pi (`, v)− δ ≤ Pi (`, v + δ) ≤ Pi (`, v).

Proof of Lemma 4.14. First, let us prove that Pi (`, v + δ) ≤ Pi (`, v). For any enabled
p-move (I, a) from (`, v + δ), the p-move (I + δ, a) is an enabled p-move from (`, v).
Moreover, the set of valuations on which Pi−1 is minimised is the same in both cases,
namely {(v + δ [Cr ← 0]) | δ ∈ I}. It follows that Pi (`, v + δ) ≤ Pi (`, v).

Finally, let us prove that Pi (`, v) − δ ≤ Pi (`, v + δ). For any enabled p-move (I, a)
from (`, v) with |I| ≥ δ (if any), the p-move ((I − δ) ∩ R+, a) is an enabled p-move from
(`, v + δ). The set of valuation on which Pi−1 is minimised is {v + δ [Cr ← 0] | δ ∈ I} too.
As |(I − δ) ∩ R+| ≤ |I|, the second inequality follows.

In the following proposition, we state that the function v 7→ Pi (`, v) is a concave
function from Win` to R+ for any linear timed automaton. The direct corollary of this
property is that the opponent’s best choice is either the earliest or the latest delay (see
Corollary 5.1 in the next section) for linear timed automaton.
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Proposition 4.15

Let i ∈ N. Let ` be a location of a linear timed automaton A, the function Pi (`, ·) :
v 7→ Pi (`, v) is a concave function over Win`.

Let us recall briefly what a concave function is. Win` → R+

v 7→ Pi (`, v)
is concave if and

only if, for any v1, v2 ∈ Win`, for any λ ∈ [0; 1], and vλ = λ · v1 + (1− λ) · v2, the following
inequality holds:

Pi (`, vλ) ≥ λ · Pi (`, v1) + (1− λ) · Pi (`, v2) .

Proof of Proposition 4.15. We prove this proposition with an induction on i. For i = 0, it
is trivial since P0 (`, v) does not depend on v. Let i be an arbitrary positive integer and
let us assume that the result holds for Pi. Let us now prove that it still holds for Pi+1. Let
` be an arbitrary location of the automaton A, and (`, g, a, Cr, `′) be its unique outgoing
transition (as A is linear). Let (Ij, a) ∈ p-moves (`, vj) for j ∈ {1, 2}. By definition of
p-moves, for j ∈ {1, 2} we then have vj + δj |= g for any δj ∈ Ij. We can then define the
following set:

Iλ = {λ · δ1 + (1− λ) · δ2 | δ1 ∈ I1, I2 ∈ I2} .

Iλ is an interval. Let us pick any δλ ∈ Iλ: then, by definition of Iλ, there exists δ1 ∈
I1 and δ2 ∈ I2 such that δλ = λ · δ1 + (1− λ) · δ2. Then vλ + δλ can be written as
λ · (v1 + δ1) + (1− λ) · (v2 + δ2). Since both v1 + δ1 and v2 + δ2 satisfy the guard g

and since, by Proposition 2.3, g is convex, we have that vλ + δλ |= g. This proves that
(Iλ, a) ∈ p-moves (`, vλ). Moreover |Iλ| = λ · |I1|+ (1− λ) · |I2|. Let us fix ε > 0, and take
two intervals I1 and I2 such that:

∀j ∈ {1, 2} ,min
(
|Ij| , inf

{
Pi
(
`′, v′j

)
| ∃δ ∈ Ij. (`, vj)

δ,a−→
(
`′, v′j

)})
≥ Pi (`, vj)− ε.

We can define Iλ as above. Then:

Pi+1 (`, vλ) = sup
(I,a)∈p-moves(`,vλ)

min
(
|I| , inf

δ∈I
Pi (succ (`, vλ, δ, a))

)
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As the supremum over all p-moves of this minimum is larger than (or equal) to the
minimum for any particular p-move (Iλ, a):

Pi+1 (`, vλ) ≥ min
(
|Iλ| , inf

{
Pi (`′, v′λ) | ∃δ ∈ Iλ. (`, vλ)

δ,a−→ (`′, v′λ)
})

= min
(
|Iλ| , inf

δλ∈Iλ
(Pi (`′, vλ + δλ [Cr ← 0]))

)

As Iλ = λ · I1 + (1− λ) · I2:

Pi+1 (`, vλ) ≥ min
(
|Iλ| , inf

δ1∈I1,δ2∈I2
(Pi (`′, (λ · (v1 + δ1) + (1− λ) · (v2 + δ2)) [Cr ← 0]))

)

By linearity of the projection over the valuations:

= min
(
|Iλ| , inf

δ1∈I1,δ2∈I2
(Pi (`′, λ · v1 + δ1 [Cr ← 0] + (1− λ) · v2 + δ2 [Cr ← 0]))

)

We apply the induction hypothesis:

Pi+1 (`, vλ) ≥ min
(
|Iλ| , inf

δ1∈I1,δ2∈I2
(Pi (`′, λ · v1 + δ1 [Cr ← 0]) + (1− λ) · Pi (`′, v2 + δ2 [Cr ← 0]))

)
= min

(
λ · |I1|+ (1− λ) |I2| , λ · inf

δ1∈I1
(·Pi (`′, v1 + δ1 [Cr ← 0])

+ (1− λ) · inf
δ2∈I2
Pi (`′, v2 + δ2 [Cr ← 0])

))

As min (a+ b, a′ + b′) ≥ min (a, a′) + min (b, b′):

Pi+1 (`, vλ) ≥ λ ·min
(
|I1| , inf

δ1∈I1
Pi (`′, v1 + δ1 [Cr ← 0])

)
+ (1− λ) ·min

(
|I2| , inf

δ2∈I2
Pi (`′, v2 + δ2 [Cr ← 0])

)

As for all j ∈ {1, 2} ,min
(
|Ij| , inf

{
Pi
(
`′, v′j

)
| ∃δ ∈ Ij. (`, vj)

δ,a−→
(
`′, v′j

)})
≥ Pi (`, vj)−

ε, the following inequality holds:

Pi+1 (`, vλ) ≥ λ · Pi+1 (`, v1) + (1− λ) · Pi+1 (`, v2)− 2ε

As ε is arbitrary, we consider its limits to 0, then Pi+1 (`, vλ) ≥ λ · Pi+1 (`, v1) + (1− λ) ·
Pi+1 (`, v2) By induction, for all i ∈ N,
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Pi (`, vλ) ≥ λ · Pi (`, v1) + (1− λ) · Pi (`, v2)

Conclusion

In this section, we have exposed several properties of the sequence of suboptimal per-
missive function Pi. Its useful analytic and evolution properties and its link with the
permissiveness function give us a very useful tool to compute the permissiveness function.
Indeed, we proved that this sequence is eventually constant from a specific rank, and con-
verges to the permissiveness. We can then reduce the computation of the permissiveness
to the computation of Pi for the appropriate index i. This property holds if the timed
automaton is acyclic. We did not manage to prove that it still holds when tackling cycles.

In the next chapter, we expose an algorithm that computes with a symbolic approach
the sequence of suboptimal permissive functions, in order to solve the maximal-permissive
problem (Definition 2.22) and the maximal-sequence of suboptimal permissive functions
problem (Definition 4.2).
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Chapter 5

MAXIMAL-PERMISSIVENESS PROBLEM: A

SYMBOLIC BACKWARD ALGORITHM

The goal of this chapter is to provide a constructive proof of an upper bound of the com-
plexity of the maximal-permissiveness problem defined in Definition 2.22. More precisely,
we show that this problem can be computed in non-elementary time for acyclic timed
automata and games. The algorithm we propose computes the strategy of the player for
any location by computing the function v 7→ Perm (`, v). This is a symbolic approach.

However, the permissiveness function of a configuration is expressed with p-runs. We
defined in Chapter 4 a sequence of functions, called sequence of suboptimal per-
missive functions which depends on its possible direct successors1 and the current
proposed interval. We studied its link with the permissiveness function in Section 4.2.

We also stated that the sequence of functions Pi (`, v) is constant for acyclic timed
automata from a rank d` we computed. This sequence Pi (`, v) converges to the per-
missive function of (`, v). As a result, we only have to compute Pd` (`, v) to compute the
permissiveness function. Let us recall its form for a winning configuration (`, v) such that
` 6∈ Qf :

Pi (`, v) = sup
(I,a)∈p-moves(`,v)

min
(
|I| , inf

δ∈I
Pi−1 (succ (`, v, δ, a))

)

For the purpose of simplification, we first develop this algorithm for linear timed auto-
mata with closed polyhedral guards and then present possible extensions: non-necessary
closed p-moves, acyclic timed automata and acyclic timed games. Computing the per-
missiveness for linear timed automata is simpler, as Pi+1 (`, v) is concave over Win`. There-
fore, the best choice of the opponent is to choose one of the bounds of the interval I. As
a result the sequence of functions will be simplified as follows:

1that means the configurations that can be reached when taking only one transition.
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sup
([α,β],a)∈p-moves(`,v)

min (|β − α| ,Pi−1 (succ (`, v, α, a)) ,Pi−1 (succ (`, v, β, a)))

This chapter is organised as follows:

. First, we present the algorithm for linear timed automata in Section 5.1:

• In Subsection 5.1.1, we compute an optimal strategy for the opponent, which
is to choose one of the bounds of the proposed interval.

• In Subsection 5.1.2, we present an algorithm to compute the sequence Pi
and show that the maximal-permissiveness problem can be solved in non-
elementary time.

• Finally, we present an example of an execution of this algorithm in Subsection
5.1.3.

. Secondly, we extend this algorithm to more general models in Section 5.2. We extend
it for:

• Non necessarily closed p-moves in Subsection 5.2.1.

• Acyclic timed automata in Subsection 5.2.2.

• Acyclic timed games in Subsection 5.2.3.

. Thirdly and finally, this algorithm uses a powerful optimisation result that we
present in the dedicated Section 5.3.

5.1 A symbolic backward algorithm for linear timed
automata

The goal of this section is to compute, for any linear timed automaton, for any location
` and integer i, the function v 7→ Pi (`, v).

Remark 5.1.1 As only one action a will be possible for each location, we will sometimes
simplify the notation of a p-move (I, a) using only the interval I.

Firstly, we prove formally the optimal strategy of the opponent for linear automata.
It enables us to simplify a lot the expression of Pi (`, v). Secondly, we design an algorithm
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that computes the function Pi (`, v) for any integer i. Our main contribution in this section
is to prove that the maximal-permissiveness problem presented in Definition 2.22 can be
solved in non-elementary time for linear timed automata. To prove that, we show that,
considering the successor location `′ of ` and g the guard associated to the transition
between ` and `′, assuming that v 7→ Pi (`′, v) is a piecewise-affine function (with m cells,
represented with at most ci linear inequalities), v 7→ Pi+1 (`, v) can be computed in time
O
(
(ci + cg)4·m2)

, where cg is the number of linear inequalities that represent g

5.1.1 Optimal strategy for the opponent

Let us consider a configuration (`, v), a transition (`, g, Cr, `′), an enabled p-move (I, a)
proposed by the player and a step i > 0. The goal of the opponent is to propose the delay
δ ∈ I that minimises Pi−1 ((`′, v + δ [Cr ← 0])).

In the model of [BFM15], the best choice of the opponent is to choose the greatest
delay, but this model is restricted to one-clock timed automata. We extend this result to
our model for non-resetting transitions (see Lemma 4.14) where the best option for
the opponent is also to choose the greatest delay. Nevertheless, when a timed automaton
contains resets, the greatest delay is not always the best opponent’s choice. Let us develop
a counter-example in Example 5.1.1.

Example 5.1.1 Let us consider the timed automaton in Figure 5.1a. Let us analyse an
example of two different p-runs that both start in the configuration (`0, (0, 0)) and are
illustrated in Figure 5.1b. In these p-runs the player proposes the interval [0, 1]. Then,
let us show two responses by the opponent that illustrate that, in this case, choosing the
greatest delay is not his best strategy.

. In the first p-run, the opponent chooses the delay δ = 0.5. The future configuration
after the transition is then (`1, (0.5, 0)). The greatest interval that can be proposed
to pass the second transition is [0.5, 1]. The permissiveness of this p-run is then 0.5
(see the green p-run in Figure 5.1b)

. In the second p-run, the opponent chooses the delay δ = 0.75, and reaches the
future configuration (`1, (0.75, 0)). In this configuration, a greater interval is enabled:
[0.25, 1.75]. The permissiveness is then 0.75 (see the red p-run in Figure 5.1b).

. Finally, if the opponent chooses the delay δ = 0, the future configuration reached is
(`1, (0, 0)). In this configuration, the player have only one choice: propose a punctual
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interval {1}. The permissiveness is then 0.

In this example, the best strategy of the opponent is to propose the smallest possible delay,
δ = 0.

`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
a1, y := 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a2

(a) A timed automaton with a reset.

x

y

1 2

1

2

(b) Two possible p-runs when proposing
([0, 1] , a1) in configuration (`0, (0, 0)).

Figure 5.1 – An automaton with a reset and two of its possible p-runs.

This counter-example proves that we cannot extend for every timed automaton, linear
or not, the result of [BFM15]. Nevertheless, in the case of linear timed automata, we use
the concavity result of Subsection 4.2.4 to prove that an optimal strategy of the opponent
is to choose between the bounds of the interval of a proposed p-move. We state this result
in Corollary 5.1.
Corollary 5.1

Let ` be a location of a linear timed automaton. For any valuation v, and bounded
interval [α, β], and any transition (`, g, a, Cr, `′):

inf
δ∈[α,β]

(Pi (succ (`, v, δ, a))) = min (Pi (`′, vα) ,Pi (`′, vβ))

where vα := v + α [Cr ← 0] and vβ := v + β [Cr ← 0].

Proof of Corollary 5.1. Let v and v′ be two clock valuations, λ ∈ [0, 1], and vλ = λ · v +
(1− λ) · v′. Then for all i, because of Proposition 4.15:

Pi (`, vλ) ≥ min (Pi (`, v) ,Pi (`, v′))
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Additionally, we have:

inf
δ∈[α,β]

(Pi (succ (`, v, δ, a))) = inf
{
Pi (`′, v′) | ∃δ ∈ [α, β] . (`, v) δ,a−→ (`′, v′)

}

As (v + (λα + (1− λ) β)) [Cr → 0] = λ ((v + α) [Cr → 0]) + (1− λ) ((v + β) [Cr → 0]):

inf
δ∈[α,β]

(Pi (succ (`, v, δ, a))) = inf
{
Pi (`′, v′) | ∃λ ∈ [0, 1] . v′ = λ · v′α + (1− λ) · v′β

}
= min (Pi (`′, vα) ,Pi (`′, vβ)) .

This corollary only applies for linear timed automata. For acyclic timed automata, we
explain the best strategy of the opponent in the Subsection 5.2.2.

5.1.2 Description and proof of the algorithm

Now that we have a better understanding of the optimal strategy of the opponent, the
expression of Pi (`, ·) is simplified and we only have to compute the supremum of the
following expression for the set of valuations v such that p-moves (`, v) 6= ∅. Pi (`, ·) :
v 7→ sup

([α,β],a)∈p-moves(`,v)
min (β − α,Pi−1 (`′, v + α [Cr ← 0]) ,Pi−1 (`′, v + β [Cr ← 0]))

Our goal in this subsection is to compute the most-permissive strategy of the player
for reaching a goal `f ∈ Qf . We prove that for any integer i and any location `, the
function v 7→ Pi (`, v) is a continuous piecewise-affine function over Win`.

We provide an algorithm to compute this function. First notice that, following Lemma
4.5, for any location ` of a linear timed automaton, the sequence of functions Pi (`, ·)i
converges in at most d` steps (to Perm).

We state this result in Theorem 5.2. To prove that, we compute the permissiveness
function step by step with the sequence of suboptimal permissive function Pi in Lemma
5.3
Theorem 5.2
Let A be a linear timed automaton with n clocks and with polyhedral guards, rep-
resented with at most cg linear inequalities. For any location `, v 7→ Perm (`, v)
is a piecewise-affine function that can be computed in non-elementary time.

To compute the permissiveness function, we can apply the following Algorithm 1.
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Data: A linear timed automaton A, a location `0

Result: v 7→ Perm (`, v)
1 Compute v 7→ P0 (`f , v) ;
2 `← `f ;
3 for i← 1 to d` do
4 Compute v 7→ Pi (`, v) with the algorithm presented in the proof of

Lemma 5.3 and v 7→ Pi−1 (`′, v) , where `′ is the successor of `;
5 `← predecessor of `;
6 end
7 return v 7→ Pd`0 (`0, v)

Algorithm 1: Computation of v 7→ Perm (`, v).

Let us state the algorithm to compute the sequence of suboptimal permissive functions
in the proof of Lemma 5.3.
Lemma 5.3
Let A be a linear timed automaton with polyhedral guards, represented with at most
cg linear inequalities, with n clocks. Let (`, g, a, Cr, `′) be a transition of A.
Assume that v 7→ Pi (`′, v) is an n-dimensional piecewise-affine function over
Rn+, such that its restriction over Win`′ is continuous and can be represented with an
m-cells tiling of polyhedra, such that each polyhedron is represented with at most ci
linear inequalities.
Then v 7→ Pi+1 (`, v) is an n-dimensional piecewise-affine function, continuous
over Win`, represented with a tiling of polyhedra with at most O

(
(ci + cg)4·m2)

-cells,
such that each polyhedron can be represented with at most 3·m2 ((ci + cg) + 5) linear
inequalities.
It can be computed in time O

(
(ci + cg)4·m2)

.

5.1.2.1 Proof of Lemma 5.3.

There are some basic cases that can be solved trivially.

1. If v 7→ Pi (`′, v) is constantly −∞, then also is v 7→ Pi+1 (`, v).

2. Similarly, if p-moves (`, v) is empty for every valuation v, then v 7→ Pi+1 (`, v)
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is constantly −∞.

Let us now suppose that these previous conditions do not hold. Then, v 7→ Pi (`′, v)
is not constantly−∞ and there is some v such that p-moves (`, v) 6= ∅. Since v 7→ Pi (`′, v)
is a continuous n-dimensional piecewise-affine function over Win`, we can represent it with
a tiling of polyhedra T = (hi)1≤i≤ci associated with a set of affine functions (fi)1≤i≤ci . Let
us recall that for each polyhedron hj ∈ T , for any valuation v ∈ hj, Pi (`′, v) = fi (v).

Let us present the organisation of the proof in the following subsection.

Organisation of the proof Our procedure for computing Pi+1 in ` first consists in
listing all the possible pairs of cells (hα, hβ) of the tiling of polyhedra defining Pi in `′.
For each pair (hα, hβ) of such cells, we perform the following three steps (illustrated in
Figure 5.2):

Step 1 : We characterise the set S(hα,hβ) of all valuations from which those cells can be
reached, by proposing an enabled p-move ([α, β] , a] in order to take the transition
from ` to `′. We compute this polyhedron using quantifier elimination with the
Fourier-Motzkin algorithm.

Step 2 : Then, we compute which p-moves can be proposed. For any valuation v of
S(hα,hβ), we compute the smallest and the greatest lower (resp. upper) bound that
can be proposed as an interval [α, β]. We denote the set of possible lower (resp.
upper) bounds Ivα (resp. Ivβ). These are intervals and their bounds are expressed as
piecewise-affine functions in the coefficients of v. In order to apply the next step
of the procedure, our aim is to express these bounds as affine functions. To do so,
we may have to tile the polyhedron S(hα,hβ) such that in each cell of the tiling of
polyhedra, Ivα and Ivβ will be affine functions of v.

Step 3 : For each refined polyhedron, compute the optimal values for α and β: following
Corollary 5.1, this amounts to find values for α ∈ Ivα and β ∈ Ivβ that maximise the
following function:

µ : (α, β) 7→ min (β − α,Pi (`′, v + α [Cr ← 0]) ,Pi (`′, v + β [Cr ← 0])) .

This is performed by applying an optimisation result that we will develop in Sub-
section 5.3, for the sake of clarity. It may again require another refinement of the
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sub-polyhedra. Over the resulting sub-polyhedron, the supremum of µ is an affine
function with respect to v.

hβ

hα

S(hα,hβ)

(a) Step 1.

hβ

hα

v

Ivα

Ivβ

(b) Step 2.

hβ

hα

v

interval to
be played

(c) Step 3.

Figure 5.2 – The three steps of our algorithm. Step 1: compute S(hα,hβ). Step 2: compute
expressions for Ivα and Ivβ for any v. Notice that we consider a sub-polyhedron (hatched
zone) of S(hα,hβ) because we had to refine it. Indeed the expression of Ivβ would be different
for the lower part of S(hα,hβ), since it ends on a different facet of hβ. Step 3: select best
values for α and β.

For each pair (hα, hβ), we end up with a piecewise-affine function, defined on S(hα,hβ),
returning the optimal Pi that can be obtained when proposing the p-move ([α, β] , a) such
that taking the transition to `′ after delay α (resp. β) leads to hα (resp. hβ).

Our final step to compute Pi+1 in ` consists in taking the maximum of all these
functions; this may introduce one more refinement of our polyhedra.

Let us remark that we perform all these computations symbolically with respect to
the valuation v. Indeed our goal is to compute Pi+1 (`, v) for any valuation v. To do so,
we manipulate affine functions of v, on specific sets of valuations. For instance for each
pair of successor cells hα and hβ, we compute the polyhedron S(hα,hβ) to determine the
valuations v that can reach hα or hβ. That gives us conditions on v, used to define Ivα and
Ivβ with respect to v.

Let us now detail the first three steps. For this we fix two cells hα and hβ in T .

Step 1: Computing S(hα,hβ). The set S(hα,hβ) of valuations that can reach hα and hβ
with delays α ≤ β (and after taking the transition to `′) is defined as follows:
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S(hα,hβ) :=
v ∈ R

n

+ | ∃0 ≤ α ≤ β s.t.

v + α |= g, v + β |= g

v + α [Cr ← 0] ∈ hα, v + β [Cr ← 0] ∈ hβ

 .
Let us first introduce some notations:

Guards: We denote the inequalities of g as follows:
cg∧
j=1

ϕ
(g)
j (X) ≥ 0.

Cells hα, hβ: These are polyhedra, each defined with at most ci inequalities. Let us
denote these inequalities as follows:

hα :
ci∧
k=1

ϕ
(α)
k (X) ≥ 0, hβ :

ci∧
k=1

ϕ
(β)
k (X) ≥ 0

With these notations, we can re-write S(hα,hβ) as the set of valuations v such that there
exists 0 ≤ α ≤ β that satisfy the following enumerated inequalities:

α ≥ 0, α ≤ β (5.1)
v + α |= g :∀0 ≤ j ≤ cg : ϕ(g)

j (v + α) ≥ 0 (5.2)
v + β |= g :∀0 ≤ j ≤ cg : ϕ(g)

j (v + β) ≥ 0 (5.3)
v + α [Cr ← 0] ∈ hα :∀0 ≤ k ≤ ci : ϕ(α)

k (v + α [Cr ← 0]) ≥ 0 (5.4)
v + β [Cr ← 0] ∈ hβ :∀0 ≤ k ≤ ci : ϕ(β)

k (v + β [Cr ← 0]) ≥ 0 (5.5)

Let us eliminate α and β from these inequalities. Let j ∈ [0 · · · cg] and k ∈ [0 · · · ci]. Let
us express the n-dimensional affine function ϕ(g)

j with its coefficients:

ϕ
(g)
j (v + α) :=

n∑
i′=0

ϕ
(g)
j,i′ (vi′ + α) and ϕ(g)

j (v + β) :=
n∑

i′=0
ϕ

(g)
j,i′ (vi′ + β)

Let us denote S(g)
j =

n∑
i′=0

ϕ
(g)
j,i′ , then:

ϕ
(g)
j (v + α) = S

(g)
j · α + ϕ

(g)
j (v) and ϕ(g)

j (v + β) = S
(g)
j · β + ϕ

(g)
j (v)
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As previously:

ϕ
(α)
k (v + α [Cr ← 0]) :=

n∑
i′=0,i′ 6∈Cr

ϕ
(α)
k,i′ (vi′ + α)

Let us denote S(α)
k =

n∑
i′=0,i′ 6∈Cr

ϕ
(α)
k,i′ , then:

ϕ
(α)
k (v + α [Cr ← 0]) = S

(α)
k · α + ϕ

(α)
k (v [Cr ← 0])

As previously, let us denote S(β)
k =

n∑
i′=0,i′ 6∈Cr

ϕ
(β)
k,i′ , then:

ϕ
(β)
k (v + β [Cr ← 0]) = S

(β)
k · β + ϕ

(β)
k (v [Cr ← 0])

In order to isolate α and β in these inequalities, we divide our inequalities by S(g)
j (or

S
(α)
k or S(β)

k ). Therefore we have to distinguish the cases where S(g)
j (or S(α)

k or S(α)
k ) is

positive, negative, or equals to zero. Let us denote the following sets.

Posg =
{
j ∈ [1 · · ·n] | S(g)

j > 0
}
,Negg =

{
j ∈ [1 · · ·n] | S(g)

j < 0
}
,Zerog =

{
j ∈ [1 · · ·n] | S(g)

j = 0
}

Posα =
{
k ∈ [1 · · ·n] | S(α)

k > 0
}
,Negα=

{
k ∈ [1 · · ·n] | S(α)

k < 0
}
,Zeroα =

{
k ∈ [1 · · ·n] | S(α)

k = 0
}

Posβ =
{
k ∈ [1 · · ·n] | S(β)

k > 0
}
,Negβ=

{
k ∈ [1 · · ·n] | S(β)

k < 0
}
,Zeroβ =

{
k ∈ [1 · · ·n] | S(β)

k = 0
}

Let us denote, for γ ∈ {α, β, g}, the size of the previously defined sets as follows:

pγ := |Posγ| , nγ :=
∣∣∣Negγ∣∣∣ , zγ := |Zeroγ| .

As a result, we will obtain five forms of inequalities: A ≤ α, A′ ≥ α, B ≤ β, B′ ≥ β and
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C ≥ 0 that characterise S(hα,hβ). The inequalities 5.2 and 5.3 are equivalent to:

∀j ∈ Posg,
−ϕ(g)

j (v)
S

(g)
j

≤ α (5.6)

∀j ∈ Posg,
−ϕ(g)

j (v)
S

(g)
j

≤ β (5.7)

∀j ∈ Negg,
−ϕ(g)

j (v)
S

(g)
j

≥ α (5.8)

∀j ∈ Negg,
−ϕ(g)

j (v)
S

(g)
j

≥ β (5.9)

∀j ∈ Zerog, ϕ(g)
j (v) ≥ 0 (5.10)

The inequalities 5.1, 5.4 and 5.5 are equivalent to:

0 ≤ α, α ≤ β (5.11)

∀k ∈ Posα,
−ϕ(α)

k (v [Cr ← 0])
S

(α)
k

≤ α (5.12)

∀k ∈ Negα,
−ϕ(α)

k (v [Cr ← 0])
S

(α)
k

≥ α (5.13)

∀k ∈ Zeroα, ϕ(α)
k (v [Cr ← 0]) ≥ 0 (5.14)

∀k ∈ Posβ,
−ϕ(β)

k (v [Cr ← 0])
S

(β)
k

≤ β (5.15)

∀k ∈ Negβ,
−ϕ(β)

k (v [Cr ← 0])
S

(β)
k

≥ β (5.16)

∀k ∈ Zeroβ, ϕ(β)
k (v [Cr ← 0]) ≥ 0 (5.17)

We can eliminate α and β by writing, for every type of inequalities previously mentioned,
A ≤ A′, A ≤ B′, B ≤ B′ and C ≥ 0. By doing so, we obtain 2 (2ci + cg)2 linear in-
equalities. As a result, we can compute S(hα,hβ) as a polyhedron with at most 2 (2ci + cg)2

inequalities.

Step 2: Computing the range for the bounds α and β. In case S(hα,hβ) is non-
empty, we compute, for an arbitrary v of S(hα,hβ), all the possible values of α and β that
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indeed lead to hα and hβ. The sets of such α and β are respectively denoted Ivα and Ivβ
and are defined as follows:

Ivα := {α | α ≥ 0, v + α |= g, v + α [Cr ← 0] ∈ hα}

and
Ivβ := {β | ∃α ∈ Ivα, β ≥ α, v + β |= g, v + β [Cr ← 0] ∈ hβ}

Ivα and Ivβ are intervals. We compute them by computing the maximum and minimum of
affine functions. Let us denote Ivα (low) (resp. Ivβ (low)) the lower bound of Ivα (resp. Ivβ).
Let us also denote Ivα (up) (resp. Ivβ (up)) the upper bound of Ivα (resp. Ivβ). We can express
them as follows:

Ivα (low) = max
−ϕ

(g)
j (v)
S

(g)
j

| j ∈ Posg

 ∪
−ϕ

(α)
k (v [Cr ← 0])

S
(α)
k

| k ∈ Posα

 ∪ {0}


Ivα (up) = min
−ϕ

(g)
j (v)
S

(g)
j

| j ∈ Negg

 ∪
−ϕ

(α)
k (v [Cr ← 0])

S
(α)
k

| k ∈ Negα




Ivβ (low) = max
{Ivα (low)} ∪

−ϕ
(β)
k (v [Cr ← 0])

S
(β)
k

| k ∈ Posβ

 ∪
−ϕ

(g)
j (v)
S

(g)
j

| j ∈ Posg




Ivβ (up) = min
−ϕ

(g)
j (v)
S

(g)
j

| j ∈ Negg

 ∪
−ϕ

(β)
k (v [Cr ← 0])

S
(β)
k

| k ∈ Negβ




Let us explain how we compute Ivα (low): α is lower-bounded by the inequalities of the
form A ≤ α where A is an affine function, therefore we compute the maximum of all the
affine functions A. We can apply the same reasoning for Ivα (up) , Ivβ (low) and Ivβ (up).

As a result, Ivα (low), Ivα (up) , Ivβ (low), Ivβ (up) are n-dimensional piecewise-affine func-
tions, represented with a tiling of polyhedra with respectively at most pα+pg+1, nα+ng,
1+pα+pβ+2pg and nβ+ng cells. For each of these tilings of polyhedra, we can bound the
number of constraints of the polyhedra respectively by pα + pg, nα +ng− 1, pα + pβ + 2pg
and nβ + ng − 1.

In order to get affine expressions for the bounds of Ivα and Ivβ , we refine S(hα,hβ) into cells
on which one of the affine functions in the expressions of Ivα (low) (or Ivα (up) , Ivβ (low) or
Ivβ (up)) realises the maximum (resp.minimum). This refinement is obtained by expressing
the fact that the selected affine function is indeed larger than (resp. smaller than) all other
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functions. This may refine S(hα,hβ) into a tiling of polyhedra with at most 2 · (ci + cg)4

cells, defined with the affine functions previously enumerated. Each polyhedron of this
tiling of polyhedra is represented by at most 3 (ci + cg) linear inequalities.

Step 3: Computing the optimal values for α and β. Let us fix v in one of the
resulting refined polyhedra of S(hα,hβ), that we denote h, such that the bounds of Ivα and
Ivβ are affine functions with respect to v. We let D =

{
(α, β) | α ∈ Ivα, β ∈ Ivβ , α ≤ β

}
.

It remains to find the optimal choices for α and β, i.e., the values that maximise the
following function µ over D :

µ : (α, β) 7→ min (β − α,Pi (`′, v + α [Cr ← 0]) ,Pi (`′, v + β [Cr ← 0]))

over the set D. Let us express the last two terms of this expression in terms of α and β.
We denote these terms fhα and fhβ :

fhα : α 7→ Pi (`′, v + α [Cr ← 0]) ; fhβ : β 7→ Pi (`′, v + β [Cr ← 0])

fhα is constant with respect to β, and fhβ is constant with respect to α. As v 7→ Pi (`′, v)
and v 7→ Pi (`′, v) are multi-dimensional affine functions over h. Therefore fhα and fhβ
are affine functions respectively with respect to α and β. We can express them with
inhomogeneous and homogeneous terms as follows:

fhα (v + α [Cr ← 0]) = F Crhα · α + fhα (v [Cr ← 0])
fhβ (v + β [Cr ← 0]) = F Crhβ · β + fhβ (v [Cr ← 0])

F Crhα is the sum of the coefficients corresponding to clocks that are not reset in Cr:

F Crhα = fhα (1)− fhα (1Cr)

Similarly for F Crhβ . We then have the following equality.

µ (α, β) = min
(
β − α, F Crhα · α + fhα (v [Cr ← 0]) , F Crhβ · β + fhβ (v [Cr ← 0])

)

Our goal is to find the couple (α, β) in D that maximises µ (α, β). Let us recall that v
is fixed.
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To find these values, we will use a result that we will state in the Theorem 5.9,
presented in page 141, and prove in Subsection 5.3, for pedagogical purposes. The result
will not tackle the cases where Ivα and Ivβ are unbounded. Let us solve this optimisation
problem here for this particular case using a constructive proof similar to, but simpler
than, the proof of Theorem 5.9. To simplify the notations, let us denote for this special
case a = F Crhα , b = fhα (v [Cr ← 0]) , c = F Crhβ and d = fhβ (v [Cr ← 0]). Let us suppose
that Ivα or Ivβ are infinite. As their lower bounds are positive, that means the only
bound that can be infinite is the upper bound. Let us write the intervals with their lower
and upper bounds:

Ivα = [mα,Mα] , Ivβ = [mβ,Mβ]

We will describe the optimal α and β for the three possibles cases:

. If both Mα and Mβ are infinite, due to Lemma 4.6, fhα and fhβ are constant and
µ = β − α, the optimal choice is α = mα, β = Mβ.

. Otherwise, if Mα = +∞, then Mβ = +∞ too as α ≤ β for any (α, β) ∈ Ivα × Ivβ .
Due to Lemma 4.6, we can conclude that fhα and fhβ are constant. Thus:

µ (α, β) = min (β − α, a ·mα + b, c ·Mβ + d) .

The optimal choices for α and β are respectively α = mα and β = Mβ.

. Otherwise, if Mβ = +∞, due to Lemma 4.6, we can conclude that fhβ is constant
and that we can choose β = Mβ = +∞. Then:

µ (α,Mβ) = min (Mβ − α, a · α + b, c ·Mβ + d)
= a · α + b

The optimal choice of α is the smallest, i.e. α = mα.

Let us go back to the general cases where Ivα and Ivβ have no infinite bounds.
We apply Theorem 5.9 with the following parameters:

. [mα,Mα] = Ivα and [mβ,Mβ] = Ivβ ,

. a = F Crhα and b = fhα (v [Cr ← 0]),

. c = F Crhβ and d = fhβ (v [Cr ← 0]).
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This may again require refining the polyhedra being considered into at most 15 sub-
polyhedra, since there may be up to 13 different cases for maximising µ(α, β) (see the
summary of the technical Theorem 5.9, in Subsection 5.3.5, page 166). Each of these
polyhedra are represented with at most 3 (cg + ci) + 5 linear inequalities. We then get the
optimal values for α and β, as well as the value of µ at that maximal point, depending on
the signs of F Crhα and F Crhβ . We can check that both the optimal choices for α and β, as well
as the resulting permissiveness function, are affine functions of v. Indeed, in our instance
of the problem of Theorem 5.9, a and b are constants, while c and d, and mα, Mα, mβ

and Mβ are affine functions of v. The latter may only be multiplied by constants, and/or
added with one another.

The coefficients of those affine functions can be computed from those of fhα and fhβ ,
and from those of functions ϕ(g)

i , ϕ
(α)
j , ϕ

(β)
j defining the guard g and the tiling of polyhedra

of the piecewise-affine function v 7→ Pi+1 (`, v). In the worst case, the numerators are
multiplied by the sum of all coefficients, and the denominators may be multiplied by the
product of two sums of coefficients. In any case, the space needed to store one such function
(assuming binary encoding) is at most affine in the space needed to store v 7→ Pi (`′, v).
This concludes the third step of our computation.

Conclusion: Finalising the computation of v 7→ Pi+1 (`, v). Now, we have a collec-
tion of m2 piecewise affine functions, associated with a couple of polyhedra in which the
valuation may end up. Each function is a candidate expression for v 7→ Pi+1 (`, v). We
thus have to refine one last time the partition we obtained, by considering sub-polyhedra
where one of the m2 candidate functions is the maximal one. Our resulting function is
v 7→ Pi+1 (`, v). This proves that we can compute it as an n-dimensional piecewise affine
function, represented with a tiling of polyhedra of at most O

(
(ci + cg)4·m2)

cells, such
that each polyhedron can be represented with at most 3 ·m2 ((ci + cg) + 5) linear inequal-
ities. In the end, this proves that the function v 7→ Pi+1 (`, v) can be computed from
v 7→ Pi (`′, v) in timeO

(
(ci + cg)4·m2)

. The coefficients of the affine functions defining
Pi+1 (`, ·) are polynomial in the coefficients of the affine functions defining Pi (`′, ·).

For any location `, P0 (`, ·) can be computed in constant time. As a result, the function
v 7→ Pi+1 (`, v) can be computed in non-elementary time.
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Conclusion: Computation of the permissiveness function.

As stated in Algorithm 1, it follows that, we obtain the permissiveness function in location
` as a piecewise-affine function in non-elementary time which proves Theorem 5.2.

This complexity is quite high, but it is a rough approximation. To illustrate our al-
gorithm and have an example of the number of cells we can have, we develop in the next
subsection a complete computation of the sequence of suboptimal permissiveness func-
tion Pi on the linear timed automaton of Figure 5.3 (which only differs from the example
Figure 2.10 in the guard of the first transition). In this computation, we have many in-
termediary cases to handle, but the final function P2 in `0, depicted in Figure 5.4, has a
tiling of polyhedra with only four cells (in the winning zone).

5.1.3 An example

In this section, we develop step-by-step the algorithm of Subsection 5.1.2 in order to
compute v 7→ P2 (`0, v) of the timed automaton from Figure 5.3. This function cor-
responds to the permissiveness function for this automaton on location `0.

`0 `1 `f

0 ≤ y ≤ 1
y := 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

Figure 5.3 – Automaton of Figure 2.10 where the guard on the first transition has been
slightly extended.

As explained in Subsection 4.2.2, the following functions are equal:

Perm (`f , ·) = P0 (`f , ·) ,Perm (`1, ·) = P1 (`1, ·) ,Perm (`0, ·) = P2 (`0, ·)

Let us remember that P1 (`1, ·) and P0 (`0, ·) have already been computed in the ex-
ample of Subsection 2.2.2. See Figure 2.11a for the permissiveness function at `1. Here we
detail the computation of P2 (`0, ·). Following the proof of Lemma 5.3, we list the pairs
of possible cells where the automaton may enter `1 after delays α and β when the player
proposes the interval [α, β]: since the transition to `1 resets y, we have the two following
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possible cells2:

h0 = {(x, 0) | 0 ≤ x ≤ 1} and h1 = {(x, 0) | 1 ≤ x ≤ 2} .

Hence, the successors (`1, v + α [y ← 0]) and (`1, v + β [y ← 0]) can be in four possible
cases:

1. Both v + α [y ← 0] and v + β [y ← 0] in h0;

2. Both v + α [y ← 0] and v + β [y ← 0] in h1;

3. v + α [y ← 0] ∈ h0 and v + β [y ← 0] ∈ h1;

Indeed, v+α [y ← 0] ∈ h1 and v+β [y ← 0] ∈ h0 cannot happen since α should be smaller
than β.

Step 1: Computing the entry sets S(hα,hβ).

For each pair, we begin by computing the set of valuations v for which there are values
0 ≤ α ≤ β satisfying the conditions. We call the following set of valuations for hα, hβ ∈
{h0, h1}:

S(hα,hβ) = {v | ∃α, β, 0 ≤ α ≤ β, v + α, v + β |= g, v + α [y ← 0] ∈ hα, v + β [y ← 0] ∈ hβ}

1. Having v + α [y ← 0] and v + β [y ← 0] in h0 can be written as: there exist α ≤ β

such that :  0 ≤ v (y) + α ≤ 1, 0 ≤ v (y) + β ≤ 1

0 ≤ v (x) + α ≤ 1, 0 ≤ v (x) + β ≤ 1

The constraints on y come from the guard of the transition, while those on x cor-
respond to having the target valuations in h0. In this simple case, the quantifier
elimination returns:

S(h0,h0) = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1} .

2For convenience in this 2-clock example, we may write valuations either as v or as pairs (x, y),
depending on the situation.
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2. Having v+α [y ← 0] and v+ β [y ← 0] in h1 translates to: there exist α and β such
that α ≤ β and:

 0 ≤ v (y) + α ≤ 1, 0 ≤ v (y) + β ≤ 1

1 ≤ v (x) + α ≤ 2, 1 ≤ v (x) + β ≤ 2

This results in:

S(h1,h1) = {(x, y) | 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1 and y ≤ x}

3. The case where v + α [y ← 0] ∈ h0 and v + β [y ← 0] ∈ h1 translates to: there exist
α and β such that α ≤ β and:

 0 ≤ v (y) + α ≤ 1, 0 ≤ v (y) + β ≤ 1

0 ≤ v (x) + α ≤ 1, 1 ≤ v (x) + β ≤ 2

This results in:

S(h0,h1) = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and y ≤ x}

The next step of the algorithm consists in computing the set of possible α and β corres-
ponding to the cases where v belongs to either S(h0,h0),S(h1,h1) or S(h0,h1). For any valuation
v, this set of possible α (resp. β) is denoted Ivα (resp. Ivβ).

Step 2: Computing the range for the bounds α and β.

We now compute the intervals of possible values for α and β: this just amounts to writing
the conditions to have v+α satisfying the guard and v+α [y ← 0] belonging to the target
cell (the computation is identical for β):

. Having v + α [y ← 0] ending up in h0 requires α ∈ [0, 1− v (x)] ∩ [0, 1− v (y)];

. Having v+α [y ← 0] ending up in h1 requires α ∈ [1− v (x) , 2− v (x)]∩[0, 1− v (y)].

We end up with the following situations:

. Having both v + α [y ← 0] and v + β [y ← 0] in h0 can be performed from S(h0,h0).
From that zone:
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1. If x ≤ y, we have Ivα = Ivβ = [0, 1− y] (case 1),

2. If x ≥ y, we have Ivα = Ivβ = [0, 1− x] (case 2).

. Having both v+α [y ← 0] and v+β [y ← 0] in h1 can be performed from V1,1. From
that zone:

1. If x ≤ 1 and y ≤ x, we have Ivα = Ivβ = [1− x, 1− y] (case 3),

2. If 1 ≤ x ≤ 1 + y, we have Ivα = Ivβ = [0, 1− y] (case 4),

3. If 1 + y ≤ x ≤ 2, we have Ivα = Ivβ = [0, 2− x] (case 5).

. Having v + α [y ← 0] ∈ h0 and v + β [y ← 0] ∈ h1 can be performed from S(h0,h1).
We then have Ivα = [0, 1− x] and Ivβ = [1− x, 1− y] (case 6).

Step 3: Computing the optimal values of α and β.

In the last subsection, we have enumerated six different cases. In this section, we will
compute the optimal interval to propose for each case. To do so, we will use the result of
Section 5.3. In this section, we compute the optimal α and β that maximise the quantity
min (β − α, a · α + b, c · β + d) when a, b, c, d do not depend on α and β.

1. In case 1, we have to maximise (α, β) 7→ min (β − α, x+ α, x+ β) over {(α, β) |
α, β ∈ [0, 1− y] , α ≤ β}. This corresponds to the case ‘a ≥ 0 and c ≥ 0’ of Theorem
5.9. We get:

. If 1− y − x
2 ≤ 0, the optimal interval for the player is [0, 1− y], yielding

permissiveness 1− y.

. If 0 ≤ 1− y − x
2 , the optimal interval is

[1− y − x
2 , 1− y

]
, with permissiveness

1− y + x

2 .

2. In case 2, we maximise the same function over {(α, β) | α, β ∈ [0, 1− x] , α ≤ β}.
The situation is the same as above, and we get:

. If 1
2 − x ≤ 0, the optimal interval for the player is [0, 1− x], yielding per-

missiveness 1− x.

. If 0 ≤ 1
2 − x, the optimal interval is

[1
2 − x, 1− x

]
, with permissiveness 1

2 .
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3. In case 3, we maximise (α, β) 7→ min (β − α, 2− (x+ α) , 2− (x+ β)) over
{(α, β) | α, β ∈ [1− x, 1− y] , α ≤ β}. We apply Theorem 5.9, with a ≤ 0 and
c ≤ 0:

. The first condition corresponds to x ≤ 1
2 + y; then the maximal point is

min (x− y, 1), i.e. x− y, and is reached at (1− x, 1− y).

. The second condition is x ≥ 1
2 +y, for which the maximal value is 1

2 is reached

at
(

1− x, 3
2 − x

)
.

4. In case 4, we maximise the same function over {(α, β) | α, β ∈ [0, 1− y] , α ≤ β}
over the zone (1 ≤ x ≤ 1 + y ≤ 2):

. The first condition is y ≥ x

2 : in that zone, the maximal point is 1− y, reached
for (0, 1− y);

. The second condition is y ≤ x

2 , and the maximal value 1 − x

2 is reached at(
0, 1− x

2

)
.

5. In case 5 we maximise the same function over {(α, β) | α, β ∈ [0, 2− x] , α ≤ β}.
Again, the second condition holds, and the maximal value is 1 − x

2 , reached at(
0, 1− x

2

)
.

6. Finally, in case 6, we have to maximise (α, β) 7→ min (β − α, x+ α, 2− x− β)
over {(α, β) | α ∈ [0, 1− x] , β ∈ [1− x, 1− y] , α ≤ β}. Hence we are in the case
a > 0 and c < 0 of Theorem 5.9. This case is divided into 11 cases (see Table 5.5
in page 169). Among them, the only cases whose conditions can hold are cases 1, 4
and 5. Then:

. When y ≥ 1−x and y ≥ x

2 , then the condition of case 1 holds, and the maximal
value 1− y is reached at (0, 1− y).

. The conditions of case 4 rewrites as y ≥ x− 1
3 and y ≤ 1−x. For those points,

the maximal value is 1 + x− y
2 , reached at

(1− x− y
2 , 1− y

)
.

. The conditions of case 5 are x ≥ 2
3 and y ≤ x

2 . Thus the maximal point 1− x

2
is reached for

(
0, 1− x

2

)
.
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The permissiveness function at `0

By superimposing those results and taking the maxima on cells where several solutions
have been computed, we get the global permissiveness function depicted on Figure 5.4.

x

y

0
0

1

1

2

2

2
3

1− x

2

1− y

1 + x− y
2

−∞

−∞

Figure 5.4 – A linear timed automaton and its permissiveness at `0.

5.2 Extensions

In this section, we explain how to extend our algorithm to more general timed automata.

5.2.1 Non-necessarily closed p-moves or guards

Our algorithm currently only applies to closed guards (classical or polyhedral) and closed
p-moves, as defined in Definitions 2.11 and 2.1 end 2.2, where non-necessary closed guards
and p-moves have also been defined in the definition or in remarks (see Remark 2.2.1). For
the purpose of simplification, we have restricted our permissive semantics and algorithm
to closed guard and p-moves. Nevertheless the permissiveness can be defined for non-
necessary closed guards and p-moves, since the size of the intervals ]α, β[, [α, β[ and
[α, β] are equal. We detail here whether non-necessary closed p-moves and guards can be
considered in our algorithm and what changes it requires.

Non-necessary closed intervals

As the size of the closed or open intervals is the same, the only step where a non-necessary
closed interval changes the algorithm is for the computation of the strategy of the
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opponent. If the player proposes the interval ]α, β[, the opponent cannot choose the
delay α or β, and this might be its optimal choice.

To tackle this issue, let us recall that by Definition 2.21, the permissiveness corresponds
to the size of one of the proposed intervals during a run.

. If the permissiveness of a fixed configuration is equal to 0, then no open interval
could have been proposed and the optimal choice of the player is to propose a closed
one.

. Otherwise, if the optimal delay of the opponent is α or β, for a closed interval, and
if an open interval ]α, β[ is proposed, we can approach the optimal delay with α+ε

or β− ε for a sufficiently small ε, as the permissiveness is continuous. The resulting
(approached) permissiveness is equal to |I| − 2ε, if the optimal interval was open.
We then can obtain the permissiveness by tending ε to 0.

Let us remark that, if the guards are closed, the player can propose a closed or an
open interval without changing the permissiveness. It is then useless to propose a closed
interval for the player, unless the guards are not closed guards.

Non-necessary closed guards

For any timed automaton A that contains open guards, we denote C (A) its associated
timed automaton where all guards become closed (i.e. all < are replaced by ≤ and all >
are replace by ≥).

If non-necessary closed guards are allowed, guards can admit constraints of the form
lx < v (x) ≤ ux, or lx ≤ v (x) < ux, or lx < v (x) < ux for classical guards, or non
necessarily closed polyhedra for polyhedral guards. These are still polyhedra (but non-
necessary closed ones). This can constrain the player to propose an open interval instead
of a closed interval. The steps of the algorithm will not be affected, as explained in the
previous subsection.

Nevertheless, for any configuration (`, v) such that the permissiveness of (`, v) is 0, a
punctual interval had to be proposed. Therefore there might be issues on the corresponding
guard of this punctual interval.

Therefore, accepting non-necessary closed guards might be an issue on these points,
that we consider as future work for this algorithm.
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5.2.2 Acyclic timed automata

We extend the previous study to the case of acyclic timed automata (with branching). In
that case, we can still apply our inductive approach, with a few changes: at each step, we
would compute the optimal p-move of the player for each single action, and then select
the optimal action by ‘superimposing’ the resulting permissiveness functions and selecting
the action that maximises permissiveness. This however breaks the result of Proposition
4.15: the maximum of two concave functions need not be concave. Example 5.2.1 displays
an example where the permissiveness function is not concave.

Example 5.2.1 Consider the automaton of Figure 5.5. The transition from `0 to `f has
the same constraints as that from `1 to `f . Hence the permissiveness offered by that action
is the same as the one from `1, which we already computed. Hence the global permissiveness
from `0 is the (pointwise) maximal of the two piecewise-linear functions displayed on
Figure 5.6. On this diagram, the blue area corresponds to points from where it is better
(or only possible) to go via `1, while the red area corresponds to valuations from where it
is better (or only possible) to take the bottom transition.

`0 `1 `f
0≤x≤1∧0≤y≤1

y:=0

1≤x≤2∧0≤y≤1

1≤x≤2∧0≤y≤1

Figure 5.5 – An acyclic timed automaton.

x

y

0
0

1

1

2

1
2

1−
x

1−y

1+x−y
2

x−y

2−x

1−y

x
y

2−x 1−y

Figure 5.6 – Permissiveness function for location `0 of the timed automaton of Figure 5.5.

We prove by induction that the permissiveness functions still are piecewise-linear in
that setting. Hence all four steps of our proof of Lemma 5.3 still apply, with some adapt-
ations:
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. For the first step, we again consider two cells hα and hβ, together with a set H
of cells that may be visited between hα and hβ. Again applying Fourier-Motzkin,
we get a polyhedron S(hα,hβ ,H) of valuations from which those cells can indeed be
visited.

. The computation of the intervals Ivα and Ivβ is unchanged.

. For each cell h ∈ H, we can compute the values din
h and dout

h for which v+din
h [Cr ← 0]

enters h and v + dout
h [Cr ← 0] leaves h (notice that this may require further refine-

ment of the polyhedron being considered). Since Pi is linear on cell h, it reaches its
maximum on this cell either at v+ din

h [Cr ← 0] or at v+ dout
h [Cr ← 0]. The function

we need to maximise now looks like:

µ′ : (α, β) 7→ min({β − α,Pi (`′, v + α [Cr ← 0]) ,Pi (`′, v + β [Cr ← 0])∪
Pi
(
`′, v + din

h [Cr ← 0]
)
,Pi

(
`′, v + dout

h [Cr ← 0]
)
, | h ∈ H}).

Now, we notice that all values in the second set are constant, not depending on α
and β. We can thus still apply Theorem 5.9 in order to maximise µ(α, β), and then
take the above constants into account (which may again refine the polyhedra).

. The above three steps have to be performed for all outgoing transitions from the
location ` being considered. The last step still consists in selecting the maximum of
all the resulting functions. This step may refine again the polyhedra.

The complexity of our procedure is much higher than that of linear automata: because
we consider sets of cells already at the first step, we may end up with Pi+1 having more
than 2m cells, wherem is the number of cells of Pi. Hence our procedure is non-elementary
in the worst case. In the end:

Theorem 5.4
The permissiveness function for acyclic timed automata is piecewise-linear. It can
be computed in non-elementary time.
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5.2.3 Acyclic timed games

5.2.3.1 Timed games

Timed games extend the notion of timed automata with a player, denoted C, and an
opponent, denoted U . We present the definition of two-player turn-based timed games. In
this model, some locations are controlled by a player, denoted C, and the others by an
opponent, denoted U . We define timed games and their semantics in this subsection.
Definition 5.5: Timed games

A timed game is a tuple GC,U = (Σ, Q,Q0, Qf , QC, QU , C, E) where:

. A = (Σ, Q,Q0, Qf , C, E) is a timed automaton.

. The set of locations Q is partitioned into QC and QU where:

• QC is the subset of player-controlled locations.

• QU is the subset of opponent-controlled locations.

. For each location controlled by the opponent, a guard, called invariant is ad-
deda.

The definitions of transitions and closed timed games naturally extend from the ones
in Definition 2.4.

athat prevents the opponent to stay in a location forever.

As in timed automata, a configuration of a timed game GC,U is also a pair (`, v) where
` ∈ Q is a location and v is a clock valuation. The permissive semantics of turn-based
timed games is defined as follows, for each configuration (`, v):

. if ` ∈ QC, then the player must propose a pair (I, a) such that there exists a transition
e = (`, g, a, Cr, `′) such that for any delay δ in I, v + δ |= g. Then, the opponent
proposes a delay δ in I and we reach the configuration (`′, v + δ [Cr ← 0]).

. If ` ∈ QU , the player cannot propose any interval, delay or action and it is the
opponent’s turn to propose a pair (δ, a) under the same conditions. In that case, we
reach the configuration (`′, v + δ [Cr ← 0]) too.

As in timed automata semantics, we can define a transition (`, v) δ,a−→ (`′, v′) with a delay-
elapsing transition and an action transition. The definition of p-run does not change, as
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we can write p-run as ρ(p) = ((`i, vi) , (Ii, ai) , δi, (`i+1, vi+1))0≤i≤n−1 by writing Ii = {δi}
when `i ∈ QU . The permissiveness of a run is then only considering p-moves proposed by
the player.

The definition of the strategy of the player slightly change. Let us formally define it
in Definition 5.6.
Definition 5.6: Strategy, winning strategy

A permissive strategy is a (partial) function σ that maps finite p-runs
ρ(p) = ((`i, vi) , (Ii, ai) , δi, (`i+1, vi+1))0≤i≤n−1 such that `n ∈ QC to p-moves in
p-moves (`n, vn). We can say that:

. A p-run ρ(p) = ((`i, vi) , (Ii, ai) , δi, (`i+1, vi+1))0≤i≤n−1 is compatible with a
permissive strategy σ if for all its prefixes ρ(p)

≤j such that j ≤ n and `j ∈ QC,
σ
(
ρ

(p)
≤j

)
= (Ij, aj). We say that ρ(p) is an outcome from the initial configuration

s0. The set of outcomes from a configuration is denoted Out (s0, σ).

. A permissive strategy σ is winning from a given configuration s0 if any infinite
p-run originating from s0, that is compatible with σ, is winning.

Example 5.2.2 Let us consider the timed game of Figure 5.7. The state controlled by the
player are represented with a circle state and the states controlled by the opponent with
squares. In this example, the locations controlled by the player are {`0, `1, `f} and the one
controlled by the opponent is {`2}.

If we consider the next example, in Figure 5.8, the set of locations controlled by the op-
ponent is {`1}. In this example, the player can propose, from the configuration (`0, (0, 0)),
the following winning strategy: proposing (a0, [1.5, 2]). In that case, whatever the opponent
chooses, the player reaches a configuration (`1, (δ, 0)), where δ ∈ [1.5, 2]. The opponent
has to choose a delay between 0 and 0.5, because of the constraints on x. Then, the reached
configuration is (`2, (δ + δ′, δ′)) where δ′ ∈ [0, 0.5], and the player can propose the p-move
(a2, [0, 0.5]).

5.2.3.2 Extension of our algorithm

We finally extend our approach to (acyclic) two-player turn-based timed games as defined
in Subsection 5.2.3.1. This setting is easily seen to preserve piecewise-affine character of
the permissiveness function. Indeed, in order to compute Pi+1 in a location ` belonging to
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`0

`1

`2

`f

0 ≤ x ≤ 1
0 ≤ y ≤ 2

a0

1 ≤ x ≤ 3
2 ≤ y

a1

0 ≤ x ≤ 1
y ≥ 1

a′0

1 ≤ x ≤ 2
0 ≤ y ≤ 2

a′1

Figure 5.7 – A two-clock acyclic timed games.

`0 `1 `2 `f

0 ≤ x ≤ 2
0 ≤ y ≤ 2
a0, y := 0

0 ≤ x ≤ 4
0 ≤ y ≤ 2

a1

0 ≤ y ≤ 1
a2

Figure 5.8 – A two-clock linear timed games.

the opponent, it suffices to first compute the functions P`→`′i for all outgoing transitions
from ` to some `′. This follows the same procedure as above, and results in a piecewise-
linear function, assuming (inductively) that Pi is piecewise-linear. We then compute the
(still piecewise-linear) minimumMi+1(`, v) of all those functions, and finally:

Pi+1(`, v) = min
d s.t.

v+d|=Inv(`)

Mi+1(`, v + d)

which is easily computed and remains piecewise-linear. It follows:
Theorem 5.7
The permissiveness function for acyclic turn-based timed games is piecewise-linear,
and can be computed in non-elementary time.

5.3 Optimisation of the minimum of affine functions

In Subsection 5.1.2, we presented an algorithm that computes the permissiveness func-
tion and the sequence of suboptimal permissive functions. This algorithm uses in step
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3 an optimisation result that we will develop in this section. The optimisation problem
asks to maximise the minimum of three 2-dimensional affine functions. Let us recall this
problem more formally. Let us fix a valuation v. Let us consider two intervals, Ivα and
Ivβ , with positive lower bounds, a location `′ and a set of resets Cr. Let us consider a do-
mainD =

{
(α, β) | α ∈ Ivα, β ∈ Ivβ , α ≤ β

}
. Let us assume that v 7→ Pi (`′, v [Cr ← 0])

(resp. v, 7→ Pi (`′, v [Cr ← 0]) ) is an affine function when v ∈ hα (resp. v ∈ hβ). The
optimisation problem asks to find the values of α and β in D that maximise the following
function:

(α, β) 7→ min (β − α,Pi (`′, v + α [Cr ← 0]) ,Pi (`′, v + β [Cr ← 0])) .

We can consider in this section that Ivα and Ivβ are bounded closed intervals. Indeed,
the unbounded case was treated in our algorithm in Subsection 5.1.2.

To solve this optimisation problem, we consider here a more general optimisation
problem. Instead of considering the minimum of an interval and future sequence of
suboptimal permissive functions, we consider here the minimum, denoted µ, of β−α and
two arbitrary affine functions (in one dimension), one with the variable α and one with
the variable β. The minimum of these three functions is a 2-dimensional piecewise-affine
functions. The domain D of this function µ will keep as a condition that α ≤ β.

The section is organised as follows:

. In Subsection 5.3.1, we present the general optimisation problem and its resolution.
We then split the proof of this resolution on three subsections. There can be three
cases: either one of the function has infinite coefficients, or µ is, or is not, monotonic
with at least one variables.

. In Subsection 5.3.2, we detail the proof when µ is monotonic with respect to at least
one variable.

. In Subsection 5.3.3, we detail the proof when one of the two generic affine functions
has infinite coefficients.

. In Subsection 5.3.4, we detail the proof when µ is not monotonic in any variable.
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5.3.1 Optimisation problem and results

Let us consider four reals a, c, b, d and three 2-dimensional linear functions:

f : (α, β) 7→ a · α + b ; g : (α, β) 7→ c · β + d ;h : (α, β) 7→ β − α

µ = min(h, f, g) is the pointwise minimum between these three functions over R2. The
goal is to compute a couple (α, β) that maximises µ, under linear constraints over α and
β.
Definition 5.8: Optimisation problem

Given four reals mα,Mα,mβ,Mβ from R such that mα ≤ mβ, mα ≤ Mα, mβ ≤ Mβ,
Mα ≤Mβ, the optimisation problem asks to compute an argsup of µ over the domain
D =

{
(α, β) ∈ R2|α ≤ β,mα ≤ α ≤Mα,mβ ≤ β ≤Mβ

}
and the value of µ on this

point.

Example 5.3.1 Let f : (α, β) 7→ −α + 1 and g : (α, β) 7→ β + 1
2

and D =

[0, 5] × [4, 6]. Then µ (α, β) = min
(
β − α,−α + 1, β + 1

2

)
is a monotonic function. µ

is non-decreasing with respect to β and decreasing with respect to α. As a result µ is
maximised at (0, 6).

In the following Theorem 5.9, we give the general result for this optimisation prob-
lem: the maximum of µ can take four different forms. The proof we provide in the next
subsection is a constructive proof and the value of the maximum and the coordinate of
a maximal point are given in Subsection 5.3.5.
Theorem 5.9
Let mα ≤ Mα, mβ ≤ Mβ, Mα ≤ Mβ and mα ≤ mβ be reals from R. Let D ={

(α, β) ∈ R2|α ≤ β,mα ≤ α ≤Mα,mβ ≤ β ≤Mβ

}
be the domain of the variables α

and β. The maximum of µ over D exists and may take one of the four following
forms:

Mβ −mα, λ · f(ν), λ · g(ν) and b · c− d · a
c− a

where λ ∈
{

1, 1
1− c,

1
1 + a

}
and ν ∈ {mα,Mα,mβ,Mβ}.
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Description of the domain D

The domain D can be drawn as a 2−dimensional polyhedron in Figure 5.9 where A =
(mα,Mβ), B = (Mα,Mβ), C = (mα,mβ), D = (min(Mα,mβ),mβ), E = (Mα,max(Mα,mβ)).
Let us remark that B,C,D and E are not necessarily all distinct. For instance ifMα ≤ mβ,
then D = E.

β ≥ α β = α

α

β

0 mα Mα

0

mβ

Mβ
A B

E

DC

• •

• •

•

β < α

Figure 5.9 – The definition set D when C,D,E and B are all distinct.

Applications for the computation of the permissiveness function

This theorem and the results of its constructive proof in Subsection 5.3.5 are used in the al-
gorithm presented in Subsection 5.1. In this algorithm, the constraintsmα,Mα andmβ,Mβ

correspond to the lower and upper bounds of the possible values of α and β when the
player proposes an interval [α, β]. f and g correspond respectively to Pi (`′, v + α [Cr ← 0])
and Pi (`′, v + β [Cr ← 0]).

Existence of the maximum

First, let us prove that D is not empty and that the arg sup of µ over D exists. As
mα ≤Mα ≤Mβ, D is non-empty and compact. µ is a continuous piecewise affine function
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over a compact, so arg sup
(α,β)∈D

µ (α, β) exists.

Let us recall that the notation µ|D denotes the restriction of the function µ on D, while
µ is defined on R2.

Organisation of the proof

There are two possible cases for f and g. Either f or g has infinite coefficients and we must
then consider that f = ±∞ (resp. g = ±∞). Or f and g are both finite affine functions
and they can then be expressed using real coefficients b, a, d, c ∈ R. Depending on the sign
of their homogeneous terms a and c, µ can be monotonic in at least one variable, in which
case its optimisation can be reduced to the optimisation of a one-variable affine function.
Therefore, we treat the case where µ is monotonic separately from the case where µ is a
non-monotonic function. We thus divide the proof into three cases:

1. In Subsection 5.3.2, we detail the proof when µ is monotonic with respect to at
least one variable and when f and g are finite affine functions. This is the case
when a ≤ 0 ∧ c ≥ 0 or a ≥ 0 ∧ c ≥ 0, or a ≤ 0 ∧ c ≤ 0.

2. In Subsection 5.3.3, we detail the proof when f or g has infinite coefficients.
These cases can be solved using the results of Subsection 5.3.2

3. Finally, in Subsection 5.3.4, we detail the proof when f and g are finite affine
function and when µ is not monotonic in any variable. This is the case when
a ≥ 0 ∧ c ≤ 0.

5.3.2 Proof for the monotonic case with finite multidimensional
affine functions

Let us consider that f and g have only finite coefficients. µ is the minimum of three
functions, h, f and g. h is non-decreasing with respect to β and decreasing with respect
to α. Let us recall that f is decreasing if and only if a ≤ 0 and g is non-decreasing is and
only if c ≥ 0. If one of these two conditions is satisfied, µ is monotonic with respect to at
least one variable. Let us detail each of these cases.
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Case a ≤ 0 and c ≥ 0

In that case, f and h are decreasing with respect to α and g and h are non-decreasing
with respect to β, as h. The variations of f, g and h are illustrated on Figure 5.10. As a

β ≥ α β = α

α

β

0 mα Mα

0

mβ

Mβ
A B

E

DC

• •

• •

•

•

β < α

g

h
f

Figure 5.10 – Variations of f, g and h in the definition set D. The double arrows of f, g
and h indicate the directions of variation of each function. For example the double arrow
of f goes from left to right, because f is increasing with respect to α. It is perpendicular
to β because it is constant with respect to β. A maximises µ over D.

result, µ is non-decreasing with respect to β and decreasing with respect to α. Then, µ is
maximised when:

α = mα and β = Mβ.

It follows that (α∗, β∗) = (mα,Mβ) is an argsup of µ|D.

Case a ≥ 0 and c ≥ 0

In that case, f is non-decreasing and h is decreasing with respect to α, while g and h

are non-decreasing with respect to β. As a result, µ is monotonic, and non decreasing,
with respect to β. Hence µ is maximised over D at a point where β = Mβ. It remains to
maximise α 7→ µ (α,Mβ) over {α ∈ R | (α,Mβ) ∈ D}.
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As µ (α,Mβ) = min (Mβ − α, a · α + b, c ·Mβ + d), this function is maximised over R

when α satisfies Mβ − α = a · α + b, i.e. for α = Mβ − b
a+ 1 .

If
(
Mβ − b
a+ 1 ,Mβ

)
∈ D, this is the maximum of µ over D, otherwise the maximum is

reached on the border of {α ∈ R | (α,Mβ) ∈ D}, i.e. for α = mα or α = min (Mβ,Mα) =
Mα. Examples are illustrated in Figure 5.11. As a result:

. If Mβ − b
a+ 1 ≤ mα, then (α∗, β∗) = (mα,Mβ) is an argsup of µ|D.

. If mα ≤
Mβ − b
a+ 1 ≤Mα, then (α∗, β∗) =

(
Mβ − b
a+ 1

,Mβ

)
is an argsup of µ|D.

. If Mα ≤
Mβ − b
a+ 1 , then (α∗, β∗) = (Mα,Mβ) is an argsup of µ|D.

α
mα Mα Mβ

0

b

Mβ
h

f

•

(a) Case Mβ − b
a+ 1 ≤ mα.

α
mα Mα Mβ

0

b

Mβ
h

f

•

(b) Case mα ≤
Mβ − b
a+ 1 ≤Mα.

α
mαMα Mβ

0
b

Mβ
h

f

•

(c) Case Mα ≤
Mβ − b
a+ 1 .

Figure 5.11 – Variations of f and α 7→ h (α,Mβ) when a ≥ 0 and c ≥ 0.

Case a ≤ 0 and c ≤ 0

In that case, a ≤ 0 and c ≤ 0. Then by letting α′ = −β and β′ = −α, the problem
becomes the one of maximising the following quantity:

µ′ (α′, β′) = min (β′ − α′,−aβ′ + b,−cα′ + d)
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over the set D′ defined as follows:

D′ = {(α′, β′) | −Mα ≤ β′ ≤ −mα,−Mβ ≤ α′ ≤ −mβ, α
′ ≤ β′} .

Now −c ≥ 0 and −a ≥ 0, and we have reduced this case to the case where a ≥ 0 and
c ≥ 0.

5.3.3 Proof for infinite multidimensional affine functions

In this case, we suppose that f or g have infinite coefficient, i.e when f (α, β) = ±∞ or
g (α, β) = ±∞ for every (α, β) ∈ D.

Proof when f = −∞ or g = −∞

As µ = min(f, g, h) equals −∞ over D, µ is constant over D and any point of D reaches
the maximum of µ.

Proof when f = +∞ or g = +∞

. If g = +∞ over D, then for any (α, β) ∈ D, µ (α, β) = min (a · α + b, β − α). µ is
then non-decreasing with respect to β and is maximised when β = Mβ. Maximising
µ for the variable α now amounts to maximise α 7→ µ (α,Mβ) . We can apply
the same methods and results of the case where f and g are non-infinite functions
and where a ≥ 0. These cases are summed up in Table 5.2 in Subsection 5.3.5.

. If f = +∞, then for any (α, β) ∈ D, µ (α, β) = min (c · β + d, β − α). µ is maximised
when α = mα. It now remains to maximise β 7→ µ (mα, β) . We can apply the
results of the cases when a ≤ 0 and f and g are non-infinite functions. Theses cases
are summed up in Table 5.1 in Subsection 5.3.5.

5.3.4 Proof for the non-monotonic case with finite multidimen-
sional affine functions

This case corresponds to the case a > 0, c < 0. Let us describe first the variation of µ
with respect to α and β in Subsection 5.3.4.1. Then we enumerate all the possible cases
in Subsection 5.3.4.2 with a coverage lemma. Finally, we describe an argsup for each of
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theses cases in Subsection 5.3.4.3. All theses cases were illustrated in Subsection 5.3.4.4,
in Figure 5.14, 5.15 and 5.16.

5.3.4.1 Description of µ

The function µ is no longer monotonic with respect to α or β, but each of the functions
f, g and h is monotonic. We then split R2 into three convex polyhedra, depending on
which of h, f, g is minimal, and look at the position of D with respect to these polyhedra.
The domain of µ, D, was described previously in Subsection 5.3.1.

R2 is split into the three sets of (α, β), depending whether min (f, g, h) equals f , g or
h. Let us consider P(f) = {P ∈ R2 | µ(P ) = f(P )}, P(g) = {P ∈ R2 | µ(P ) = g(P )},
P(h) = {P ∈ R2 | µ(P ) = h(P )} the sets of points of R2 such that f (resp. g or h) is
minimal. Theses sets are polyhedra of R2

+ and P(f) ∪ P(g) ∪ P(h) = R2.
We represent these sets in the Figure 5.12. We can determine the three sets as follows:

µ (f, g, h) = f ⇔ a · α + b ≤ β − α ∧ a · α + b ≤ c · β + d

⇔ β ≥ (a+ 1)α + b ∧ β ≤ a

c
α + b− d

c

µ (f, g, h) = g ⇔ c · β + d ≤ β − α ∧ c · β + d ≤ a · α + b

⇔ β ≥ 1
1− c(α + d) ∧ β ≥ a

c
α + b− d

c

µ (f, g, h) = h⇔ β − α ≤ a · α + b ∧ β − α ≤ c · β + d

⇔ β ≤ (a+ 1)α + b ∧ β ≤ 1
1− c(α + d)

The point where f = g = h is denoted T = (Tα, Tβ) and is defined as follows:

T =
(
d− b(1− c)
ac+ c− a

,
−b+ d(1 + a)
ac+ c− a

)

T is well defined as a > 0 and c < 0.
As a, c 6= 0, the half-lines d1, d2, d3 are defined by the equations:

d1 : β = (a+ 1)α + b ∧ β ≤ Tβ

d2 : β = 1
1− c(α + d) ∧ β ≥ Tβ

d3 : β = a

c
α + b− d

c
∧ β ≥ Tβ

147



Chapter 5 – Maximal-permissiveness problem: a symbolic backward algorithm

On d1, f is equal to h, on d2, g is equal to h and on d3, f is equal to g. Therefore, T is
the intersection point of d1, d2 and d3.

On top of that, the slopes of d1 and d2 are strictly positive (as a+1 > 0, 1/(1−c) > 0)
and the slope of d3 is strictly negative as a/c < 0. The slope of d1 is higher than the slope
of d2, as a + 1 > 1 > 1/(1 − c) > 0. The only possibility for the relative positions of the
half-lines is then the one described in Figure 5.12.

Moreover, f is an increasing function with respect to α, g is a non-increasing function
with respect to β and h is an increasing function with respect to β − α. µ reaches its
maximal value over R2 at T . We need to compute (one of) the argsup of µ over D. The
argsup depends on the position of D, as T is, in general, not necessarily in D (see the
examples in Figure 5.14 and 5.16).

gP(g)

h

P(h)

f

P(f) T

d3

d1

d2

β

α
mα Tα

0

b

Tβ

Figure 5.12 – Values of µ in R2. The double arrows of f, g and h indicate the directions
of variation of each function.

5.3.4.2 Coverage theorem

In the previous subsection, we show that the argsup of µ|D depends on the position of D.
There are several cases but the signs of the homogeneous terms of f and g restrict the
possibilities. In this subsection, we enumerate 11 cases and in this next paragraph we will
provide an argsup for each of these cases.
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Intuition. The intuition is the following one: D can either intersect none, one, two or
three of the half-lines d1, d2, d3. A first attempt to find the argsup of µ|D was to consider the
case where µ|D intersects none, one, two or three of these half-lines, and enumerate which
one it intersects precisely. The goal, in the algorithm of Section 5.1, is to characterise the
set of valuations v such that we can find an argsup of µ|D. As the coefficients that depend
on the valuation are b and d, an ideal solution would be to characterise these sets using
linear conditions in b and d. The issue is that the set of valuations such that ‘D intersects
d1’ cannot be directly characterised by linear conditions. We characterise these conditions
with expressions of the form X ∈ P where X is a point with constant coordinates and P
is a polyhedron. Indeed, as P(f), P(g), P(h) are polyhedra, the membership of a vertex
of D (or T ) to P(f),P(g), P(h) or D is translated by linear inequalities. We also allow
linear inequalities.

Basic notations of geometry. First, let us introduce some geometric notions. To
denote the number of edges of D that a half-line d ∈ {d1, d2, d3} intersects, we use the
following notation defined in Definition 5.10.
Definition 5.10: Number of intersections
Let n be an integer and E be a set edges. Let d be a line, half-line or ray of Rn. We
denote N (d, E) the number of elements of E that d intersects.

Example 5.3.2 For instance, if a half-line d intersects [AB] but not [AC] then d intersects
only one element in the set {[AB] , [AC]} and the following equality holds:

N (d, {[AB] , [AC]}) = 1

We also use in the next proofs vocabulary to describe the relative position of a edges.
Let us consider two edges s1, s2 in R2 We say that:

. s1 is a top left edge of s2 if for any point p1 = (x1, y1) of s1 and for any point
p2 = (x2, y2) of s2: x1 ≤ x2 and y1 ≥ y2.

. s1 is a top right edge of s2 if for any point p1 = (x1, y1) of s1 and for any point
p2 = (x2, y2) of s2: x1 ≥ x2 and y1 ≥ y2

. s1 is a bottom left edge of s2 if for any point p1 = (x1, y1) of s1 and for any point
p2 = (x2, y2) of s2: x1 ≤ x2 and y1 ≤ y2
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. s1 is a bottom right edge of s2 if for any point p1 = (x1, y1) of s1 and for any point
p2 = (x2, y2) of s2: x1 ≥ x2 and y1 ≤ y2

Examples in Figure 5.13 describe these four configurations.
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(a) All edges in the dashed zone Z are top
left edges of s.
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(b) All edges in the dashed zone Z are top
right edges of s.
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(c) All edges in the dashed zone Z are bot-
tom left edges of s.

0 1 2
0

1

2

s

Z

x

y

(d) All edges in the dashed zone Z are bot-
tom right edges of s.

Figure 5.13 – Relative positions of edges.

Coverage theorem. The result is the following Theorem 5.11
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Theorem 5.11
If a > 0 and c < 0, then are 11 different relative positions of D with respect to the
polyhedra P(f),P(g) and P(h). These relative positions can be characterised by the
11 following configurations:

1. A ∈ P(h) (see Figure 5.14a).

2. B ∈ P(f) (see Figure 5.14b).

3. C ∈ P(g) (see Figure 5.14c).

4. Mβ ≤ Tβ, A ∈ P(f) and B ∈ P(h) (see Figure 5.14d).

5. mα ≥ Tα, A ∈ P(g) and C ∈ P(h) (see Figure 5.15a).

6. C ∈ P(f) and D ∈ P(g) (see Figure 5.15b).

7. B ∈ P(g) and E ∈ P(f) (see Figure 5.15c).

8. D ∈ P(f) and E ∈ P(g) (see Figure 5.15d).

9. Mα ≤ Tα, B ∈ P(g) and E ∈ P(h) (see Figure 5.16a).

10. mβ ≥ Tβ, C ∈ P(f) and D ∈ P(h) (see Figure 5.16b).

11. T ∈ D (see Figure 5.16c).

These cases are described in Figures 5.14, 5.15 and 5.16.

Organisation of the proof of Theorem 5.11. The proof of this theorem uses several
lemmas (Lemma 5.12, 5.14, 5.18, 5.19 and 5.20) that we will state and prove in this
subsection. Lemma 5.12 enumerates which half-lines D can intersect at the same time.
Then, we detail in Lemmas 5.14, 5.18, 5.19, 5.20 the cases when D intersects respectively
no half-lines, one half-lines, d1 and d3, d2 and d3. Finally, we will detail the case when D
intersects the three half-lines d1, d2 and d3.

The next lemmas are organised as follows:

. We consider the three half-lines d1, d2 and d3 and we enumerate how many of these
half-lines can intersect the domain set D (see Lemma 5.12). We are then able to
study cases with respect to the number of half-lines that can intersect D.
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. We first study the case where no half-line intersects D (see Lemma 5.14).

. Secondly, we consider the set of edges of D, {[AB] , [AC] , [BE] , [CD] , [DE]}. We
state for each half-line d1, d2 and d3 which edges of D is crossed when one of these
half-lines intersects D (see Lemmas 5.15, 5.16 and 5.17).

. Thirdly, we study the case where exactly one of the half-lines intersects D (see
Lemma 5.18).

. Fourthly, we study the cases where exactly two of the half-lines intersect D. It can
be either d1 and d3 (see Lemma 5.19) or d2 and d3 (see Lemma 5.20).

. Fifthly and finally, we study the unique case where the three half-lines intersect D.

Which half-lines can D intersects? As each half-line has a fixed sign of slope, D
cannot intersect some half-lines at the same time. For instance, it is impossible that D
intersects d1 and d2 without intersecting d3. We detail which half-lines D can intersect at
the same time in Lemma 5.12.
Lemma 5.12
The domain D can intersect:

1. Either one of the half-lines d1, d2, d3.

2. Or none of them.

3. Or d1 and d3.

4. Or d2 and d3.

5. Or the three half-lines.

Proof. Let us prove two facts. First let us prove that if the set D intersects d1 and d2,
then D intersects d3. If there exists a common point of d1 and d2, (α0, β0) ∈ d1 ∩ d2,
then β0 = Tβ. On top of that, as (α0, β0) belongs to d1, its second coordinate satisfies the
following equalities:

β0 = (a+ 1)α0 + b, β0 = 1
1− c(α0 + d).

As a result, α0 = Tα and T ∈ D. D then intersects d3 too. In all cases, it has been shown
that D intersects the three half-lines if it intersects d1 and d2. Therefore if it intersects
only two half-lines, it can only intersect d1 and d3, or d2 and d3.
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The following Lemma 5.13 states an important geometric result for the next lemmas
of this subsection: it shows that the exact number of edges a half-line intersects when
intersecting D. It will be very useful when detailing each half-line, because it will reduce
the number of edge combinations to be enumerated.
Lemma 5.13
If a half-line d ∈ {d1, d2, d3} intersects D and if T 6∈ D, then it intersects exactly
two edges of D (that are [AB] , [BE] , [AC] , [CD] and [DE]).

Proof. Let us consider a half-line d such that d intersects D and T is the initial point of d.
d intersects at least one edge of D and at most two edges. Let us suppose that d intersects
only one vertex, then T ∈ D. As T does not belong to D, d intersects exactly two edges
of D.

In the next paragraphs, we will study the intersection of D for each possible combin-
ation and translate the intersection of D with half-lines into the membership of vertices
to P(f),P(g) or P(h).

Cases where D intersects none of the half-lines. Let us first consider in Lemma
5.14 the case where D intersects none of the half-lines.
Lemma 5.14
If the domain D intersects no half-lines, then either B ∈ P(f), or C ∈ P(g), or
A ∈ P(h).

The cases when B ∈ P(f) and C ∈ P(g) are illustrated in Figures 5.14b and 5.14c.

Proof. If D intersects no half-lines, then either µ|D = f , or µ|D = g or µ|D = h over D.
This directly proves that if µ|D = f then D ⊆ P(f) and then B ∈ P(f). For the other
cases we can respectively prove that C ∈ P(g) if µ|D = g and A ∈ P(h) if µ|D = h.

Cases where D intersects at least one half-line. In this paragraph, we detail for
each half-line the combination of vertices that a half-line cannot intersect. We can prove
the contradiction of some combination because of the informations on the slope of the
half-lines, and the relative position of the edges on D. Examples of intersections of half-
lines with D are given in Figure 5.14, 5.15 and 5.16 to illustrate our proof. We study the
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case where d1 intersects D in Lemma 5.15 (case illustrated in Figures 5.14b 5.14d), where
d2 intersects D in Lemma 5.16 (case illustrated in Figures 5.14c and 5.15a) and where d3

intersects D in Lemma 5.17 (case illustrated in Figures 5.15b, 5.15c and 5.15d).
Lemma 5.15
If d1 intersects D, if T 6∈ D and if B,C,D 6∈ d3 then:

N (d1, {[AB] , [BE]}) = 1

and
N (d1, {[CD] , [AC] , [DE]}) = 1

Proof. We exclude the cases here d1 intersects the edges on B,C or D. For instance, if d1

intersects [CD] exactly on C, the half-line trivially intersects [AC].
As d1’s slope is strictly greater than 1:

. d1 cannot intersect both [CD] and [DE] (or [AC]).

Let us suppose that d1 intersects [CD].

As [DE] is an edge that starts from [CD] at D, and has a slope of exactly 1, d1

cannot intersect both edges without crossing D.

As [AC] is an edge that starts from [CD] at C and has a infinite slope, it cannot
cross d1, which has a finite slope.

. With the same arguments, d1 cannot intersect both [AC] and [DE].

Let us suppose that d1 intersects [AC] and let us prove that it cannot intersect
[DE]. Indeed, vertex D is on the right, at the same height as vertex C. As the slope
of d1 is strictly greater than 1 and the slope of [DE] is exactly 1, these half-line and
edge cannot cross.

As a result, if d1 intersects [CD] (resp. [AC], or [DE]), d1 intersects either [AB] or
[BE]
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Lemma 5.16
If d2 intersects D, if T 6∈ D and if C,B,E 6∈ D, then:

N (d2, {[CD] , [AC]}) = 1

and
N (d2, {[AB] , [BE] , [DE]}) = 1

Proof. As the slope of d2 is strictly positive, if it intersects a edge s, it cannot intersect a
top left, or a bottom right, edge of s. As a result:

. if d2 intersects [CD], it cannot intersect [AC].

. if d2 intersects [AB], it cannot cross [AE], except on A.

Let us now suppose that d2 intersects [DE], it cannot cross [AB] (or [AE], except on
E) because the slope of d2 is smaller than 1.

Lemma 5.17
If d3 intersects D, if T 6∈ D and if A,D,E 6∈ D, then:

N (d3, {[AB] , [AC]}) = 1

and
N (d3, {[CD] , [BE] , [DE]}) = 1

Proof. The slope of d3 is strictly negative, therefore:

. if d3 intersects [AB], it cannot intersect a bottom left edge. As a result, it cannot
intersect [AC] (except on A).

. if d3 intersects [CD], it cannot intersect an top right edge. As a result it cannot
intersect [BE] or [DE] (except on D resp. E).

. if d3 intersects [BE], it cannot intersect a bottom left edge. As a result it cannot
intersect [DE] (except on E).
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Cases where D intersects only one half-line. Now that we study which edge was
crossed when each half-line among d1, d2 and d3 intersects D, we can use this result to
translate the fact that only one half-line intersects D into a membership of a vertex to
a polyhedron. To do so, we will use lemmas 5.15, 5.16 and 5.17 for each half-line. For
instance, for half-line d1, if it intersects D, then it necessarily intersects either [AB] or
[BE], but not both. As d1 is a separation between P(f) and P(h), we can deduce the
position of A,B or E. Let us state formally these results in Lemma 5.18.
Lemma 5.18
If the domain D intersects only one half-line, then:

. If only d1 intersects D, then either (B ∈ P(f) and E ∈ P(h)) or (Mβ ≤ Tβ,
A ∈ P(f) and B ∈ P(h)).

These cases are illustrated respectively in Figures 5.14b and 5.14d.

. If only d2 intersects D, then either C ∈ P(g) or (mα ≥ Tα, A ∈ P(g) and
C ∈ P(h)).

Theses cases are illustrated respectively in Figures 5.14c and 5.15a.

. If only d3 intersects D, then either (C ∈ P(f) and D ∈ P(g)) or ( B ∈ P(g)
and E ∈ P(f) ) or (D ∈ P(f) and E ∈ P(g)).

Theses cases are illustrated respectively in Figures 5.15b, 5.15c and 5.15d.

Proof. Let us detail the edges that are crossed for each half-lines.

. If d1 intersects D then, thanks to Lemma 5.15:

• Either d1 intersects [AB], then A ∈ P(f) and B ∈ P(h). In that case, as D
does not intersect other half-lines, Mβ ≤ Tβ.

• Or d1 intersects [BE], then B ∈ P(f) and E ∈ P(h).

As a result (A ∈ P(f) and B ∈ P(h)) or (B ∈ P(f) and E ∈ P(h)).

. If d2 intersects D and then, thanks to Lemma 5.16:

• Either d2 intersects [CD], then C ∈ P(g).

• Or d2 intersects [AC]. In that case, as D does not intersect other half-lines,
mα ≤ Tα, on top of that A ∈ P(g) and C ∈ P(h).
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As a result, either C ∈ P(g) or (mα ≤ Tα, A ∈ P(g) and C ∈ P(h))

. If d3 intersects D and then, thanks to Lemma 5.17:

• Either d3 intersects [CD], then C ∈ P(f) and D ∈ P(g).

• Or d3 intersects [BE], then B ∈ P(g) and E ∈ P(f).

• Or d3 intersects [DE], then D ∈ P(f) and E ∈ P(g).

As a result, either ( C ∈ P(f) and D ∈ P(g)) or ( B ∈ P(g) and E ∈ P(f) ) or
(D ∈ P(f) and E ∈ P(g)).

Cases where D intersects exactly two half-lines. Now, let us study the cases where
D intersects exactly two half-lines. Thanks to Lemma 5.12, we know that if D intersects
exactly two half-lines, it is d1 and d3, or d2 and d3 (otherwise it intersects more than two
half-lines). Lemmas 5.19 studies the case where d1 and d3 intersect D, and Lemma 5.20
studies the case where d2 and d3.
Lemma 5.19
If the domain D intersects d1 and d3, then Tα ≥Mα, B ∈ P(g) and E ∈ P(h).

This case is illustrated in Figure 5.16a.

Proof. Considering Lemmas 5.15 and 5.17, we know that:

N (d1, {[AB] , [BE]}) = 1
N (d1, {[CD] , [AC] , [DE]}) = 1

N (d3, {[AB] , [AC]}) = 1
N (d3, {[CD] , [BE] , [DE]}) = 1

In addition:

. d1 and d3 cannot intersect both [CD] and [DE], otherwise we would have T ∈ D.

. Suppose that d1 and d3 intersect D and d1 intersects [AB] then Tβ ≥ Mβ. d3 does
not intersect D or T ∈ D (which is a contradiction). As a result, d1 cannot intersect
[AB].
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Therefore, d1 intersects [BE], then d3 cannot intersect [CD] and [DE] (its initial (and
lowest) point is above all points of d1). d3 then intersects [BE] too. To conclude, if only d1

and d3 intersect D, then they intersect [BE] and N (d3, {[AC] , [DE]}) = 1. In conclusion,
B ∈ P(g), E ∈ P(h) and Tβ ≥Mβ.

Lemma 5.20
If the domain D intersects exactly d3 and d2, thenmβ ≥ Tβ, C ∈ P(f) andD ∈ P(h).

This case is illustrated in Figure 5.16b.

Proof. If d3 and d2 intersect D, then by Lemmas 5.16 and 5.17:

N (d2, {[CD] , [AC]}) = 1
N (d2, {[AB] , [BE] , [DE]}) = 1

N (d3, {[AB] , [AC]}) = 1
N (d3, {[CD] , [BE] , [DE]}) = 1

The goal of this proof is to prove that necessarily, d2 and d3 intersect [CD]. First, we
prove that d2 intersects [CD]. d2 must intersect either [CD] or [AC]. If d2 intersects [AC]
then Tα ≤ mα and d3 cannot intersect D, which is absurd. As a result d2 intersects [CD].

Secondly, we prove that necessarily d3 intersects [CD]:

. d3 cannot intersect [DE]: if d3 intersects [DE], T is below right of the edge [DE].
d2, which slope is between 0 and 1 cannot intersect D. This leads to a contradiction.

. d3 cannot intersect [BE]: indeed if d3 intersects [BE], Tα ≥Mα and d2 then cannot
intersect D. This leads to a contradiction.

Necessarily d3 and d2 intersect [CD], then C ∈ P(f) andD ∈ P(h). Finally, if D intersects
d3 and d2 but not d1, then mβ ≥ Tβ.

Cases where D intersects the three half-lines. Finally, the domain D can intersect
the three half-lines d1, d2 and d3 at the same time. If these three half-lines intersects the
domain D, then their intersection point T belongs to D. As this point is the argsup of
µ in R2, it is a sufficient condition to characterise an optimal point over D. This case is
illustrated in Figure 5.16c.
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Proof of the final Theorem 5.11. In this paragraph, we prove the Theorem 5.11 that
summarises all the possible configurations. The intuition is the following one: the domain
D can either intersect none, one, two or three half-lines among the three half-lines that we
consider. With the previous lemmas, we stated which half-lines this domain can intersect
at the same time, and considering each of the configurations, we translated it in term of
membership of T or the vertex of D to the polyhedra P(f),P(g) or P(h).

Proof of Theorem 5.11. By Lemma 5.12, we know which half-lines D can intersect among
d1, d2 and d3: D can either intersect one of the half-lines d1, d2, d3, or none of them, or d1

and d3, or d2 and d3, or the three half-lines. Then:

. Lemma 5.14 provides the possible configuration ifD intersects none of the half-lines.
These cases are covered by the case 1, 2 and 3 enumerated in the Theorem.

. Lemma 5.14 provides the possible configuration if D intersects exactly one of the
half-lines. These cases are covered by the case 2, 3, 4, 5, 6, 7 and 8 enumerated in
the Theorem.

. Lemma 5.19 and 5.20 provide the possible configuration if D intersects exactly two
of the half-lines. These cases are covered by the case 4 and 10 enumerated in the
Theorem.

. By definition, T ∈ D if and only if D intersects all the half-lines. These cases are
covered by the case 11, enumerated in the Theorem.

5.3.4.3 Optimisation for every cases

Now that we have described the different configurations in Theorem 5.11 in the previous
Subsection 5.3.4.2, we now find the different possible argsup of µ|D, depending on the
position of D.

Let us recall the different possible configurations when a > 0 and c < 0:

1. A ∈ P(h)

2. B ∈ P(f)

3. C ∈ P(g)
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4. Mβ ≤ Tβ, A ∈ P(f) and B ∈ P(h)

5. mα ≥ Tα, A ∈ P(g) and C ∈ P(h)

6. C ∈ P(f) and D ∈ P(g)

7. B ∈ P(g) and E ∈ P(f)

8. D ∈ P(f) and E ∈ P(g)

9. Mα ≤ Tα, B ∈ P(g) and E ∈ P(h)

10. mβ ≥ Tβ, C ∈ P(f) and D ∈ P(h).

11. T ∈ D.

Let us now detail, for each of these cases, the argsup of µ|D. All these cases are
illustrated in the Figures 5.14 and 5.16. The gray zones represent zones that do not
intersect D. The value of the found argsup will be summed up in Tables 5.3, 5.4 and 5.5.

Case 1: A ∈ P(h). If A ∈ P(h), then D does not cross any half-line and D ⊆
P(h). Therefore, µ|D = h : α, β 7→ β − α . This function reaches its maximal on A=
(mα,Mβ), α is minimum and β maximal. As a result, if A ∈ P(h), then (α∗, β∗) = A

is an argsup of µ|D.

Case 2: B ∈ P(f). If B ∈ P(f), then µ|D crosses at most d1. As a result, µ|D =
min(f, h). As f and h are non-decreasing functions with respect to β, µ|D reaches its
maximal when β is maximal. Then, if D ∈ P(h) µ|D reaches its maximal over d1 and
[BE], so in (Mα, d1(Mα)) ∈ D. Otherwise, if E 6∈ P(h) then E ∈ P(f), then µ|D reaches
its maximal in B = (Mα,Mβ). As f is constant with respect to β and d1 ⊆ P(f),
µ(B) = µ(Mα, d1(Mα)) when D ∈ P(h). As a result, in any case, µ|D reaches it maximal
value in B when B ∈ D.

As a result, if B ∈ P(f), then (α∗, β∗) = B is an argsup of µ|D.

Case 3: C ∈ P(g). For the same reasons, if C ∈ P(g), µ|D reaches its maximal
value at C. Indeed in that case, µ|D = min(g, h) because D crosses at most d2. In P(g),
µ reaches its maximal value when β is minimum, and does not depend on α. In P(h),

160



5.3. Optimisation of the minimum of affine functions

µ reaches its minimal value over the half-line d3, but over this half-line, g ≡ h, so the
maximum is reached on C = (mα,mβ).

As a result, if C ∈ P(g), then (α∗, β∗) = C is an argsup of µ|D.

Case 4: Mβ ≤ Tβ,A ∈ P(f) and B ∈ P(h). As Tβ ≥ Mβ, D is below T and
does not intersect P(g)\{T}, µ|D = min(f, h). µ|D is then increasing with respect to β.
As [AB] intersects d1, (d−1

1 (Mβ),Mβ) ∈ D and µ|D reaches its maximal over d1 on this
point. The condition A ∈ P(f) and B ∈ P(h) can be characterised with f (A) ≤ h (A)
and h (B) ≤ f (B) because µ|D = min(f, h).

As a result, if Tβ ≥ Mβ, f (A) ≤ h (A) and h (B) ≤ f (B), then (α∗, β∗) =(
Mβ − b
a+ 1

,Mβ

)
is an argsup of µ|D.

Case 5: mα ≥ Tα,A ∈ P(g) and C ∈ P(h). If Tα ≤ mα, A ∈ P(g), C ∈ P(h).
As D is on the right-hand side of the intersection point, it does not intersect P(f)\d1,

so µ|D ≡ min (g, h). As µ is non-increasing with respect to α, µ reaches its maximal value
when α is minimum (i.e where α = mα). Then if g (A) ≤ h (A)∧h (C) ≤ g (C), µ reaches
its maximal value when β = mα + d

1− c .
As a result, if Tα ≤ mα, g (A) ≤ h (A) and h (C) ≤ g (C), then (α∗, β∗) =(

mα,
mα + d

1− c

)
is an argsup of µ|D.

Case 6: C ∈ P(f) and D ∈ P(g). If C ∈ P(f) and D ∈ P(g), then D only
intersects the half-line d3 and µ|D = min (f, g). As a result, µ|D reaches it maximal point
over d3, when α is minimum, so at the intersection with the edge [CD].

As a result, if C ∈ P(f) and D ∈ P(g), then (α∗, β∗) = (((1− c) ·mβ − d,mβ)
is an argsup of µ|D.

Case 7: B ∈ P(g) and E ∈ P(f). With the same argument, the edge [BD]
crosses d3, then either D is a rectangle and µ|D = min (f, g), or D is a convex pentagon
and a triangle and the slope of [BE] is 1, which is strictly smaller than a+1. So D does not
intersect P(h)\d1, and µ|D = min (f, g) too. In any case, µ|D reaches its maximal value
over d3 and [BE]. As a result, if g (B) ≤ f (B) , g (B) ≤ h (B) , f (E) ≤ g (E) , f (E) ≤
h (E), then (α∗, β∗) = (Mα,max(Mα,mβ)) is an argsup of µ|D.
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Case 8: D ∈ P(f) and E ∈ P(g). In this case, µ|D = (f, g) and D intersects only
the half-line d3, in particular with [DE].The maximal value of µ|D is then reached over d3

and [DE], i.e. when α = β and β = a

c
α + b− d

c
.

As a result, if D ∈ P(f) and E ∈ P(g), then
(
b− d
c− a

,
b− d
c− a

)
is an argsup of

µ|D.

Case 9: Mα ≤ Tα,B ∈ P(g) and E ∈ P(h). As Mα ≤ Tα, D is left to T and
does not intersects d2. As B ∈ P(g) and E ∈ P(h), D necessarily intersects d1 and d3.
The maximal value of µ|D is reached on its intersection with d1 or d3. As on these two
half-line, µ|D is equals to f , the [BE]∩d1 and [BE]∩d3 have the same value with respect
to α, µ|D has the same value on these two points.

As a result, if Mα ≤ Tα, B ∈ P(g) and E ∈ P(h), then (Mα, (a+ 1) ·Mα + b) is
an argsup of µ|D.

Case 10: mβ ≥ Tβ,C ∈ P(f) and D ∈ P(h). As mβ ≥ Tβ, D crosses only d2

and d3, and not d1. D is then split in the three polyhedra P(f),P(g) and P(h). Over
P(f), µ|D is maximised on the point where α is the greater, so on the intersection with d3

and [CD], where µ|D is also equal to g. Over P(h), µ|D is maximised on the intersection
with d2, where β − α is maximal, i.e. on [CD] ∩ d2. Both [CD] ∩ d3 and [CD] ∩ d3 are
in P(g) so µ|D have the same value on both of these points, as µ|D does not depend on α
over P(g).

As a result, if C ∈ P(f) and D ∈ P(h),
(
c

a
mβ + d− b

c
,mβ

)
is an argsup of µ|D

Case 11: T ∈ D. finally, we can characterise the fact that T belongs to D by:
Tβ ≥ Tα, Tβ ≤ mβ, Tα ≤ Mα and Tα ≥ mα. If these conditions hold, then µ reaches its
maximal at T .

5.3.4.4 Appendix: Figures

In this subsection, we describe with Figures the different cases that were enumerated in
Subsections 5.3.4.2 and 5.3.4.3. Theses cases are represented in Figures 5.14, 5.15 and
5.16. Each cases of Theorem 5.11 is represented in these Figures. Let us recall that the
double-arrows represent the variation of µ in P(f),P(g) and P(h). The gray zones
represent zones, among P(f),P(g) and P(h), that D does not intersect.
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(d) Case 4: A ∈ P(f), B ∈ P(h) and Tβ ≥
Mβ.

Figure 5.14 – Summary of the first fourth cases.
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(a) Case 5: A ∈ P(g), C ∈ P(h) and Tα ≤
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(b) Case 6: C ∈ P(f) and D ∈ P(g).
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(c) Case 7: B ∈ P(g) and E ∈ P(f).
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(d) Case 8: D ∈ P(f), and E ∈ P(g).

Figure 5.15 – Summary of cases 5, 6, 7 and 8.
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(a) Case 9: Mα ≤ Tα, B ∈ P(g) and E ∈
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(b) Case 10: mβ ≥ Tβ, C ∈ P(f) and D ∈
P(h).
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(c) Case 11: T ∈ D.

Figure 5.16 – Summary of cases 9, 10 and 11.
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5.3.5 Conclusion and result in general cases

In this section, we sum up every found argsup of µ|D depending whether f or g has
infinite coefficients, or depending on the signs of a and c. Tables 5.1, 5.2, 5.3, 5.4 and 5.5
are composed of three columns. The first one gives the conditions of the relative position
of D, the second one gives the value of a maximal point of µ|D and the third one gives
the value of µ|D on these points.

. When f or g have infinite coefficients

• when f = +∞ and c ≥ 0 (or g = +∞):

coordinates of a maximal point value of a maximal point
(mα,Mβ) min{Mβ −mα, c ·Mβ + d}

• when f = +∞ and c ≤ 0:

Conditions coordinates of a maximal point value of a maximal point

Mβ ≤
mα + d

1− c (mα,Mβ) min{Mβ −mα, c ·Mβ + d}

mβ ≤
mα + d

1− c ≤Mβ (mα,
mα + d

1− c ) min{c ·mα + d

1− c , c · mα + d

1− c + d}
mα + d

1− c ≤ mβ (mα,mβ) min{mβ −mα, c ·mβ + d}

Table 5.1 – All solutions where f = +∞.
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• when g = +∞ and a ≤ 0:

Coordinates of a maximal point value of a maximal point
(mα,Mβ) min{Mβ −mα, a ·mα + b}

• when g = +∞ and a ≥ 0:

Conditions coordinates of a maximal point value of a maximal point
Mβ − b
a+ 1 ≤ mα (mα,Mβ) min{Mβ −mα, a ·mα + b}

mα ≤
Mβ − b
a+ 1 ≤Mα (Mβ − b

a+ 1 ,Mβ) min{a ·Mβ + b

a+ 1 , a · Mβ − b
a+ 1 + b}

Mα ≤
Mβ − b
a+ 1 (Mα,Mβ) min{a ·Mα + b,Mβ −Mα}

Table 5.2 – All other solutions where g = +∞.

. When f and g are non-infinite functions

• When a ≥ 0 and c ≥ 0:

Conditions coordinates of a maximal point value of a maximal point
Mβ − b
a+ 1 ≤ mα (mα,Mβ) min{Mβ −mα, cMβ + d}

mα ≤
Mβ − b
a+ 1 ≤Mα (Mβ − b

a+ 1 ,Mβ) min{a ·Mβ + b

a+ 1 , c ·Mβ + d}

Mα ≤
Mβ − b
a+ 1 (Mα,Mβ) min{a ·Mα + b, c ·Mβ + d}

Table 5.3 – All solutions when f and g are non-infinite functions and when a ≥ 0 and
c ≥ 0.
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• when a ≤ 0 and c ≥ 0:

Coordinates of a maximal point value of a maximal point
(mα,Mβ) min{Mβ −mα, a ·mα + b, c ·Mβ + d}

• when a ≤ 0 and c ≤ 0:

Conditions coordinates of a maximal point value of a maximal point

Mβ ≤
mα + d

1− c (mα,Mβ) min{Mβ −mα, a ·mα + b}

mβ ≤
mα + d

1− c ≤Mβ (mα,
mα + d

1− c ) min{c ·mα + d

1− c , a ·mα + b}
mα + d

1− c ≤ mβ (mα,mβ) min{a ·mα + b, c ·mβ + d}

Table 5.4 – All solutions when f and g are non-infinite functions and when a ≤ 0.
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• when a > 0 and c < 0:

Case conditions coordinates of a maximal point its evaluation on µ
1 h ≤ f, g at A (mα,Mβ) Mβ −mα

2 f ≤ g, h at B (Mα,Mβ) a ·Mα + b

3 g ≤ f, h at C (mα,mβ) c ·mβ + d

4
Tβ ≥Mβ

f ≤ g, h at A
h ≤ f, g at (B)

(
Mβ − b
a+ 1 ,Mβ

)
a ·Mβ + b

a+ 1

5
mα ≥ Tα

g ≤ f, h at A
h ≤ f, g at C

(
mα,

mα + d

1− c

)
c ·mα + d

1− c

6 f ≤ g, h at C
g ≤ f, h at D

((1− c) ·mβ − d,mβ) c ·mβ + d

7 g ≤ h, f at B
f ≤ h, g at E

(Mα,max(Mα,mβ)) a ·Mα + b

8 f ≤ g, h at D
g ≤ f, h at E

(
b− d
c− a

,
b− d
c− a

)
b · c− d · a
c− a

9
Mα ≤ Tα

g ≤ f, h at B
h ≤ f, g at E

(Mα, (a+ 1) ·Mα + b) a ·Mα + b

10
mβ ≥ Tβ

f ≤ g, h at C
h ≤ f, g at D

(
c ·mβ + d− b

a
,mβ

)
c ·mβ + d

11 Tβ ≥ Tα, Tβ ≤ mα

Tα ≤Mα, Tα ≥ mα

T Tβ − Tα

Table 5.5 – All solutions when f and g are non-infinite functions and when a > 0 and
c < 0.
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Conclusion

In this chapter, we provided an algorithm that computes the permissiveness function in
time at most non-elementary for acyclic timed automata. We are facing a high worst-
case complexity that depends on the number of cells used to represent the permissiveness
function of the successors when computing the optimal strategy of the player. Despite
this, we implement our algorithm, to observe its runtime on small examples. We also
want to find other approaches where fewer cells are used to represent the permissiveness
function. Therefore in the following chapters, we will present an implementation of the
algorithm of this chapter for linear timed automata and two different approaches that
compute approximate values of the permissiveness function.
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Chapter 6

ROBUSTNESS TOOLS: FORWARD AND

BACKWARD IMPLEMENTATIONS.

In this chapter, two implementations are presented, whose common goal is to compute
permissiveness.

The algorithm of the first implementation consists in exploring forward the timed
automaton with a depth-search with no a priori knowledge of the strategy of the player
and the opponent. Its goal is to compute an approximate value of the permissiveness of
a fixed configuration. The motivation for this implementation is to provide a tool that
computes, even approximately, a permissiveness of a configuration, for more general
timed automata. This tool, implemented in Python, under GPL Licence, is available
in the following github page: merce-fra/ECL-pyrobustness1. This forward algorithm ex-
plores the possibilities of choices for the player and the opponent, and then compares the
different p-runs in order to deduce which one is the optimal one (for the player as well as
for the opponent). The strategies of the player and the opponent are not known a priori
and their choices are explored with brute-force methods.

The second implementation computes the exact value of the permissiveness func-
tion for all locations of the timed automaton with a backward exploration. This
approach is the symbolic algorithm that we presented in Chapter 5 where we use the
knowledge of the permissiveness function of each successor to compute the best current
strategy. We have provided prototypes for this approach in Python, under the GPL Li-
cence, available in the following github page: merce-fra/ECL-Symbolic-Implementation2.

These two tools are now maintained on the respective following gitlab pages:

. https://gitlab.inria.fr/emclemen/numpyrobustness for the numerical implementa-
tion.

1full link: https://github.com/merce-fra/ECL-pyrobustness
2full link: https://github.com/merce-fra/ECL-Symbolic-Implementation
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Chapter 6 – Robustness tools: forward and backward implementations.

. https://gitlab.inria.fr/emclemen/formats-symbolic-tools for the symbolic implement-
ation.

In this chapter, we present these implementations, their results and then compare their
differences. In Section 6.1, we present our forward algorithm and its implementation in
Python. In Section 6.2, we present the symbolic implementation of the algorithm proposed
in Chapter 5, for linear automata, and compare it with our forward approach.

6.1 Numerical forward approach

In our first implementation, we want to compute an approximate value of the permissive-
ness of a fixed configuration. To do so, we want to explore all the p-runs. Nevertheless,
there are an infinite number of possible p-runs so we sample all the possibles p-moves and
delays that the player and the opponent can propose respectively.

For the sampling, we fix two strictly positive integers p and q and use a sampling
step sI = 1/p for the p-moves sampling and a sampling step sδ = 1/(p · q) for the delay
sampling. In order to optimise which p-run is the optimal one, we use a backtracking
algorithm. Let us present the main steps of this algorithm, illustrated in Figure 6.1:

1. We explore the timed automaton with a simple first trace (see Figure 6.1a), with
simple (non-necessary optimal) choices and it will be our ‘best current trace’ where
we choose the greatest intervals and the first possible delays.

2. We sample the set of possible intervals and possible delays. As we have a forward
approach our main issue is that we do not know the future permissiveness of our
successors when proposing a p-move. Therefore we do not have the optimal strategy
of the player and the opponent. To tackle this problem, we would like to consider
all the possible intervals and delays. As we cannot explore infinite sets, we sample
them with a fixed precision s.

For example, if we consider a step sI = 1/2 and we sample all the possible sub-
intervals of [0, 1], we propose the intervals [0, 1/2], [0, 1] and [1/2, 1]. If we sample
the delays, with a sampling step sδ = 1/2, all the elements on [0, 1], we consider the
delays 0, 1/2 and 1.

In general, we proceed to a delay sampling because for general timed automata, the
bound of the interval may not be the optimal choices for the opponent. In the case
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I1,1, · · · , I1,m.

Figure 6.1 – Steps of our algorithm.
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of linear timed automata, we optimise our algorithm by choosing the bounds of the
proposed interval instead of doing a sampling of all possible delays.

3. We backtrack on delays and intervals (see Figure 6.1b), with a different objective in
each case. In the case of intervals, we will try to select the one that maximises its
permissiveness compared to our ‘best current trace’. In the case of delays, we will
try to find a trace whose permissiveness is lower.

4. We compute, for each exploration, a trace. If during the backtrack, we find a better
trace, i.e. a choice of delays that minimise its permissiveness, or a choice of intervals
that maximises it, then we will consider that trace as our new ‘best current trace’.

In this section, we will present our algorithm more formally and the tool we provide in the
github page merce-fra/ECL-pyrobustness in Python 3.8, as an object-oriented program.
We proceed as follows:

. In Subsection 6.1.1 we present more formally our backtracking algorithm. We first
explain how to sample the set of possible intervals and delays, then how to backtrack
on the intervals and on the delays, and then our main function to compute the
optimal trace.

Then, we focus on our concrete implementation in Python. We explain our choices of data
structures and the optimisations we could apply so far.

. In Subsection 6.1.2, we present the classes implementing the following objects: timed
automata, guards, and intervals.

. In Subsection 6.1.3, we present the classes allowing to apply the player and the
opponent choices: p-moves and opponent strategies.

. In Subsection 6.1.4, we will present the core of our implementation: the Backtrack-
ing module. It contains the Trace class, which is used to model the trace in our
algorithm, and the Backtracking class, which is used for backtracking.

. In Subsection 6.1.5, we compute an upper bound of the worst-case complexity of
this algorithm

. In Subsection 6.1.6, we present our experimental results.

. In Subsection 6.1.7 we present a graphical interface designed to visualise the explor-
ation and ease its understanding.
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6.1.1 Algorithm

In this subsection, we describe our algorithm. We build a function that takes as input a
timed automaton A, a fixed start configuration (`, v), an interval sampling step sI = 1/p
and a delay sampling step sδ = 1/(p · q) and returns a trace of a run, such that its
permissiveness is an approximate value of permissiveness function (for A) from (`, v). We
decompose our algorithm into five functions:

. Two functions, named moves_sampling and delay_sampling, generate the set of
possibles p-moves and delays.

. One function, named compare_trace, compares two traces by their permissiveness.

. Two mutually recursive functions, named backtrack_interval and backtrack_delay,
explore the possible intervals and delays.

Sampling the set of possible intervals

For each available action a, let us denote Ia the set of all possible intervals. We cannot
explore all the intervals of Ia3. Indeed, this set contains, in general, an infinite number of
possible intervals. In practice, we look at a finite subset Sf,a ⊆ Ia.

To do so, we consider the greatest possible interval the player can propose, defined as
follows:

Imax (a) := [α, β] .

Let us consider a sampling step sI . The set of sub-intervals we then use is denoted Sf,a
and is defined as follows:

Sf,a = [α, β] ∪ {[α′, β′] | ∃kα, kβ ∈ N, α′ = α + kα · sI , β′ = α + kβ · sI , α′ ≤ β′ ≤ β}

The pseudo-code of the sampling of such p-moves is described in Algorithm 2.

3Except when Ia contains only a punctual interval.
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Data: A timed automaton A, a configuration (`, v), a sampling step sI
Result: A list of p-moves (Ii, a)i,a

1 p-moves = [ ];
2 for every possible action a do
3 Compute the greatest possible interval Imax (a);
4 p-moves += [(I ′, a) | I ′ ∈ Sf,a];
5 end
6 return p-moves

Algorithm 2: moves_sampling.

Therefore, the set of intervals that have been considered in this function is not exactly
the set of all possible intervals, but a sampling of intervals. However, we know the size of
the proposed intervals. Therefore the imprecision of the size of the proposed intervals is
sI for each sampling.

Sampling the delays

The same problem arises when we want to explore the whole range of possible delays.
If we consider a proposed interval I, all the elements δ ∈ I are possible. Our sampling
method, called delay_sampling consists in sampling the interval I with a sampling step
sδ in order to obtain a finite set of delays to consider, again with imprecision.

Order relation between traces

The information from the different p-runs explored, which allows the permissiveness to
be compared, is stored in traces. A trace is either:

. A sequence of tuples of the form (s, I, δ), where s is a configuration, I an interval,
and δ a delay. The permissiveness of such trace is the size of the smallest intervals of
this sequence. The permissiveness of a trace where this sequence is empty is infinite.

. An object called Empty trace, which corresponds to an initial trace.

The comparison function, called compare_trace applies to a current trace, denoted current_trace,
and compares it with another trace, denoted another_trace and returns:

. A positive value if another_trace is the empty trace.
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. 1 if (resp. −1) if the permissiveness of current_trace is greater (resp. smaller) than
the one of another_trace. Therefore it returns a negative value if another_trace
is the empty list [ ].

This establishes a simple way to compare traces. We will say that current_trace if greater
(resp. smaller) than another_trace if this function returns a positive (resp. negative)
value. Intuitively, the role of the empty trace is a placeholder to be replaced as soon as it
is compared.

Backtracking on the intervals

Our main function is the interval backtrack, called backtrack_interval, which explores the
sampled intervals and then calls the delay backtrack function, called backtrack_delay, on
each interval. Here we present the pseudo code of the backtrack_interval in Algorithm 3.

Data: A fixed configuration (`, v), a timed automaton A, an interval
sampling step sI , a delay sampling step sδ and a trace Tc

Result: A trace such that its permissiveness is an approximate value of the
permissiveness of the initial configurationa

1 if ` ∈ Qf then
2 return Tc

3 end
4 best_trace ← Empty trace;
5 next_possibilities ← moves_sampling(A, (`, v) , sI);
6 for p-move (I, a) in next_possibilities do
7 minimal_trace ← backtrack_delay((`, v) ,A, (I, a) , sI , sδ, Tc);
8 if minimal_trace.compare_trace(best_trace ) > 0 then
9 best_trace ← minimal_trace

10 end
11 end
12 return best_trace

Algorithm 3: backtrack_interval.
aSee Subsection 6.1.6 for details.
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Backtracking on the delays

The role of the function backtrack_delay is to consider all the delays in a sampled set of
delays. It explores those delays to find one delay that minimises the permissiveness among
the selected choices of delays. We present the backtrack_delay in Algorithm 4

Data: A configuration (`, v), a timed automaton A, a p-move (I, a), an
interval sampling step sI , a delay sampling step sδ and a trace Tc

Result: The trace that minimises the permissiveness among the selected
choices of delays for the p-move (I, a)

1 minimal_trace ← Empty trace;
2 for δ in delay_sampling((I, a) , `, sδ) do
3 next_config ← succ(`, a, δ, v);
4 T ′c ← Tc + (next_config, I, δ) ;
5 new_trace ← backtrack_interval (next_config, A, sI , sδ, T ′c);
6 if new_trace.compare_trace(minimal_trace) < 0 then
7 minimal_trace ← new_trace
8 end
9 end

10 return minimal_trace
Algorithm 4: backtrack_delay.

Main algorithm

Our final algorithm computes an optimal p-run and its approximate permissiveness. It
simply applies the function backtrack_interval for the automaton A, the initial configura-
tion (`, v), the interval sampling step sI , the delay sampling step sδ and the trace Tc = [ ].
It makes our first backtrack over the intervals begin, then it calls the backtrack of the
delays ... until it founds the approximate optimal trace.

The choice to initialise the trace to [ ] can be explained easily: if the initial location
is in the set of goal locations, the returned trace is an empty list, which permissiveness
values +∞ by convention.

Let us now discuss the concrete implementation of our algorithm. Our algorithm has
been implemented as an Object-Oriented program in Python 3.8. It is decomposed into
four main modules that we detail in the following subsections, using simplified UML
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class diagrams:

. A TimedAutomaton class for the implementation of timed automata.

. A data structure for p-moves, proposed by the player, and the delays that the
opponent chooses.

. A Trace class that stores the trace informations.

. A Backtracking class that implements the backtracking algorithm.

More detailed UML graphs for the methods are presented in the Appendix A.1.

6.1.2 Timed automata, guards and intervals

Timed automata

The class TimedAutomaton, Guard and Intervals are illustrated in the UML graph on
Figure 6.2.

Timed automata are modelled by the class TimedAutomaton, sub-classed from
directed graphs of ‘networkx’ library. It also uses the Edge class. TheTimedAutomaton
class handles the logic of timed automata, such as initial and goal locations, transitions
and associated guards and the dimension of the clocks space. This class can be exported
and imported as a JSON file for easier tests and use. This implementation allows more
general timed automata than single action timed automata, but requires them to be
deterministic.

Guards

The guards used in this algorithm are classical guards. The implementation of timed
automata relies on the Guard class to deal with the guard constraints of its transitions.
In particular, the Guard class provides a method that computes, for each action, the
maximal enabled interval, required in the backtracking algorithm when sampling the
intervals. It also provides a method that verifies, for a given valuation v and delay δ, if
v + δ satisfies the guard.
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DiGraph

TimedAutomaton
init_location : Location
goal_location: Location
transitions: List[Edge]
number_clock: int

Edge
start_location: Location
end_location: Location
guard: Guard
reset: List[int]

Guard
constraints: List[Constraint]

Constraint
interval: Interval
clock_index: int

Interval
lower_bound: Delay
upper_bound: Delay
closed: ‘both’, ‘none’,
‘left’, ‘right’

Figure 6.2 – UML graph of TimedAutomaton.
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Intervals

These intervals are built by giving the lower and upper bounds as rational or infinite
numbers, to avoid floating point imprecision. The type of interval is indicating if the
interval is open, closed or half-open (at right or left). For the same reason of avoiding
imprecision, the values of the clocks can only be integers, rationals or the infinite.

6.1.3 P-moves and opponent strategy

P-move

The P-Move class, illustrated in the UML graph in Figure 6.3a, represents the proposed
intervals and actions. The P-Move class can decompose the interval into sub-intervals
to associate each sub-interval to a unique next location in the case of non single action
timed automata.

The role of the P-Move class is to provide methods to compute the next configuration,
given a p-move, an opponent strategy and an initial configuration.

Opponent strategies

We implemented several opponent strategies as functions that given a p-move and possibly
a step sampling returns a list of enabled moves4. Indeed we provided two main methods.
The first one, used for linear timed automata, chooses the bound of the intervals as the best
delays and therefore returns two moves. In other cases, the best strategy of the opponent
is not known so we provide a sampling of all possible delays and the strategy of the
opponent returns a finite list of moves to test. Again, to avoid floating point imprecision,
the step sampling should be rational.

6.1.4 Backtracking and Trace

Trace

The aim of the classes Trace and TraceList is to represent traces, which contain the
informations of a p-run. The trace is modelled as an object of the class TraceList, as
a list of objects of the class Trace. Each object of the class Trace is represented by a

4these moves are implemented as p-move with punctual intervals

181



Chapter 6 – Robustness tools: forward and backward implementations.

triplet (configuration, p-move, delay). As a result, the class TraceList depends on
the class Trace, as illustrated in the UML class diagram in Figure 6.3b.

P-Move

Step
target_location: Location
interval: Interval

Location Interval

(a) UML class graph of P-Moves.

TraceList
list_trace: List[Trace]

Trace
configuration : Configuration
p-move: P-Move
delay: Delay

P-Move

(b) UML graph of the trace objects.

Figure 6.3 – UML graphs of P-moves and trace objects.

Backtracking

The Backtracking class, illustrated in the UML class diagram in Figure 6.4, is used
to implement our main algorithm of backtracking. An object of the class Backtracking
stores the timed automaton, the starting configuration and the samplings steps to apply
to the player and the opponent strategies. The attribute strategy_opponent is a function
that takes as input a p-move proposed by the player and a sampling delay step, step and
returns a list of moves.

The Backtracking class provides the methods that implement backtrack_delay and
backtrack_interval, the backtrack on delays and the backtrack on the intervals, and the
main method that can apply the main algorithm of backtracking on any object of the
class Backtracking.

Cycles handling

In the symbolic algorithms we have no proof that the sequence of suboptimal permissive
functions tends to the permissiveness function in a finite number of steps. In our numeric
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Backtracking
ta : TimedAutomaton
start: Configuration
strategy_opponent: p-move:P-Move, step: Union[int, Fraction] → moves:List[P-Move]
interval_sampling_step: Union[Fraction, int]

TimedAutomaton P-Move

Figure 6.4 – UML graph of Backtracking.

approach, we have no guarantee either that our algorithm will finish in a finite number of
step if our timed automaton contains cycles. What we do in our implementation, to have
approximates results, is to bound the number of time loops that can be taken. To do
that, we can bound the number of loops taken and the maximal length of the trace in the
parameters of the backtracking methods.

Our aim is to propose different increasing bounds and observe if the result seems to
stabilise or not when the number of rounds grows. The goal could be to find a property,
as a pattern where the number of needed rounds to stabilise seems to be linked on the
values of constraints, or a counter-example where the timed automaton seems to have
a sequence of suboptimal permissive functions that does not reach its limit. Then if a
counter-example is found, it could be formally studied.

Optimisations on the sampling of intervals

When sampling all possible p-moves, the result is ordered with respect to the decreasing
size of the intervals. Therefore we begin by proposing the largest possible interval. Then,
when we choose one of the intervals, we check if its size is smaller than the permissiveness
of our current best trace. If it is, it is useless to explore this trace because it will not lead
to a better permissiveness. We then stop the exploration. Having sorted the intervals by
size allows us to save computation time by avoiding unnecessary explorations.

Optimisations on the sampling of delays

We implement an optimisation when sampling the delays. If we found a delay that leads
to a trace that has a negative permissiveness value, we choose this delay. Indeed, that
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means that if the opponent chooses this delay, we reach a successor from which a target
location cannot be reached. Therefore there is no reason to explore more delays for the
opponent.

6.1.5 Worst-case complexity

Let us compute an upper bound of the complexity of our algorithm that computes an
trace that, approximately, optimises the permissiveness.

Let us consider a timed automatonA and the largest interval Imax that can be proposed
in A. We count the number of intervals and delays explored at each step of the algorithm.
Let us suppose that we use the sampling interval step sI and the sampling delay step sδ.

Computing the greatest interval

Before sampling the set of all possible intervals, we have to compute the greatest interval
that can be proposed. Let us consider a classical guard, computing the greatest interval
can be computed in O (n) where n is the number of clocks.

Exploring the intervals

For each transition, we explore at most
(
|Imax|

sI

)2

intervals.

Exploring the delays

For each interval I that is proposed, we explore at most |I|sδ
delays. We can bound this

quantity as follows:
|I|
sδ
≤ |Imax|sδ

.

Let us remark that for linear timed automata, we do not sample the delays with a
sampling step but we just consider the bounds of the proposed interval.

Final worst-case complexity of the algorithm

To bound the size of the largest interval with a parameter of the timed automaton A, we
can consider the largest constant, defined in Definition 2.6, denotedM (A).
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Let us denote T the maximal number of transitions in the timed automaton, n the

number of clocks, and s := min (sδ, sI) and B := max
(M (A)

s

)2

, n

. B represents the

complexity of computing the greatest interval and then sampling intervals.

Our algorithm can be executed in O
(B · M (A)

s

)T for acyclic timed automata

and O
(
(2 ·B)T

)
for linear timed automata.

6.1.6 Experimental results

In this subsection, we provide the runtime results we had by executing our algorithm on
examples of timed automata given in this thesis and with a linear timed automaton with n
transitions. All the experiments were run in a computer with the following specifications:
Intel i7-9700 CPU at 3.00 GHz, 8Go of RAM, under Ubuntu 20.04. For the sake of
simplification, we chose the same interval sampling step 1/p and delay sampling step 1/p,
that we denote here s.

When possible, we compute the error ε = Permε−Perm of our algorithm, where Perm
is the exact permissiveness and Permε is the approximate permissiveness computed by
our numerical algorithm.

We run our algorithm on three examples, two are linear timed automata and one is
an acyclic timed automaton. The first one is a simple linear timed automaton where we
can vary the number of transition, in order to observe the runtime for a large number of
transitions. An example for two transitions is illustrated in Figure 2.8. The second one is
a linear timed automaton studied in this thesis, represented in Figure 2.10. We wanted
to study the precision of our algorithm and its runtime with a timed automaton with
reset. The third and last one is an acyclic timed automaton, represented in Figure 5.5,
where we computed the permissiveness in Figure 5.6. We chose to study an acyclic timed
automaton to provide some precision results when both strategies (player and opponent)
were not necessarily optimal.

A first timed automaton with identical guards

The first timed automaton we use is a generalisation of the following timed automaton,
studied in Chapter 2, illustrated in Figure 2.8 that we show again below for convenience.

We generalise this timed automaton with m transitions, by taking a timed automaton
with a starting location `0, a target location `f , and m transitions, that contain the guard
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`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a0

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a1

Figure 2.8 – A timed automaton with 2 identical transitions presented in Subsection 2.2.2.

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and no resets. We run this example with sampling step s varying
from s = 1

1 to 1
7 and the number of transitions varying from m = 1 to 7. We have plotted

the runtime and accuracy results in two separate graphs, in Figures 6.5a and 6.5b. We
ran the algorithm for the configuration (`0, (0, 0)). It can be observed on the graph that
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(a) Runtime results.
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m = 3
m = 4
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(b) Precision results.

Configuration used: (`0, (0, 0)) , exact permissiveness: 1
m

Figure 6.5 – Experimental results (Numeric approach) for the generalisation of the timed
automaton of Figure 2.8 with m transitions.

the larger the number of transitions, the faster the algorithm grows exponentially with p,
the inverse of the sampling step.

In terms of precision, we observe that on our examples, for all six timed automata
tested, the algorithm returns an exact value of the permissiveness when the sampling
step is a divisor of the permissiveness value. The error is always negative, so it means
the algorithm made an under-approximation of the permissiveness. For example, for the
two-transition timed automaton (m = 2), the permissiveness in (`0, (0, 0)) is 1/2. It can
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be seen that the algorithm returns an exact value for 1/2, 1/4 and 1/6 (and only for these
values). We can also note that the error decreases on these examples when the sampling
step decreases.

We will observe whether we find these same observations for the other following ex-
amples: an exponential runtime with respect to the precision, and an exact precision when
calculated with a sampling step that divides the permissiveness.

Two timed automata with resets

The timed automaton we use in our next runtime examples was studied in Chapter 2. We
represent it in Figure 2.10 that we re-show below for convenience. We run this example for

`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
y := 0
a0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a1

Figure 2.10 – A timed automaton with a reset presented in Subsection 2.2.2.

the configuration (`0, (0, 0)), on which the permissiveness function values 1/2. We run this
examples for the sampling step that ranges from 1 to 1/200 and present the runtime and
the error results in graphs in Figures 6.6a and 6.6b. The same results as in the previous
example can be observed: the runtime grows when the sampling step decreases and the
error, always negative, decreases with respect to the sampling step. The error is cancelled
out for the sampling steps 1

2 · q where 1 ≤ q ≤ 100. The sign of the error can be explained
by the fact that the opponent strategy is optimal for linear timed automata. The only
non-optimal strategy is the one of the player, whose goal is to maximise permissiveness.
It encourages us to study conditions to find a sampling step that give an accurate result,
when the sampling step is not accurate. In the next example, we run a non-linear timed
automaton. Thus the strategies of the opponent and the player are not optimal.

An acyclic example

Our last example is an acyclic timed automaton, represented in Figure 5.5. We computed
its permissiveness and represented it in Figure 5.6.
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(b) Precision results.

Configuration used: (`0, (0, 0)) , exact permissiveness: 1
2

Figure 6.6 – Experimental results (Numeric approach) for the timed automaton of Figure
2.10.

`0 `1 `f
0≤x≤1∧0≤y≤1

y:=0

1≤x≤2∧0≤y≤1

1≤x≤2∧0≤y≤1

Figure 5.5 – An acyclic timed automaton.

x

y

0
0

1

1

2

1
2

1−
x

1−y

1+x−y
2

x−y

2−x

1−y

x
y
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Figure 5.6 – Permissiveness function for location `0 of the timed automaton of Figure 5.5.
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We run this example for the configuration
(
`,
(1

4 ,
7
10

))
, with a sampling step s varying

from 1 to 1
130 . We show the runtime and precision results on Figures 6.7a and 6.7b.
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(b) Precision results.

Configuration used :
(
`,
(1

4 ,
7
10

))
, exact permissiveness: 1/40.

Figure 6.7 – Experimental results (Numeric approach) for the timed automaton of Figure
5.5.

The delays proposed by the opponent are sampled in acyclic timed automata. The
error in our example is still negative here and seems to tend to 0. The runtime is higher
than in linear cases. This is expected as there are more possible paths and therefore more
intervals and delays to sample, and therefore more p-runs to explore and compare. As in
previous example, when the step sampling is a divisor of the exact permissiveness, here
1/40, the computation of the approximate permissiveness is accurate.

To conclude these examples among all the examples we run, we can observe common
behaviours:

. The runtime results are represented with scatter plots. The line that could be de-
duced forms exponential function, which corresponds to the theoretical complexity
we computed.

. The precision results are represented with scatter plots too. The resulting curves
have the same shape, with oscillations, around a value which seems to converge
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towards 0, whose amplitude decreases. In our examples and among the sampling
steps tested, the exact permissiveness is reached for the sampling steps that divide
the exact value of the permissiveness.

Let us now look at what can be concluded from the accuracy results and compare
them with the theoretical aspects of the algorithm.

Precision of our algorithm

The computed permissiveness in our algorithm is approximated because we do not neces-
sarily compute the optimal strategy. Indeed, we do not explore all the possible intervals
and all the possible delays, but only a finite number of them.

An important issue is whether we compute an over-approximation (an approxim-
ation which is higher than the exact permissiveness) or an under-approximation (an
approximation which is smaller than the exact permissiveness). In the case of linear
timed automata, we have an optimal strategy for the choice of the delays and this ap-
proximation only affects the choice of the intervals. The permissiveness of the p-run we
compute is therefore smaller than the permissiveness and our algorithm then provides an
under-approximation of the permissiveness function.

In the general case, the permissiveness of the p-run we compute can be smaller
or greater, because the strategy of the player and of the opponent may not be optimal.
Indeed, giving a non-optimal strategy of the player (and an optimal one for the opponent)
provide an under-approximation, and giving a non-optimal strategy of the opponent
(and an optimal one for the player) provides an over-approximation. If both are non-
optimal, we do not know if the computed permissiveness is under or over-approximated. At
present, all experimental results give an under-approximation of the permissiveness, but
more benchmarks could give us examples where the permissiveness is over-approximated.

We have not yet been able to study the stability of our algorithm in order to control
its precision. Nevertheless, the experimental results give us some possibilities to explore.

1. The value where the error curve is cancelled out in our examples suggests that the
sampling step to provide an accurate result could be a divisor of the exact value
of the permissiveness (with a possible shift). Indeed, we sample the interval with a
sampling step sI . Let us recall the set of the sampled intervals.
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Sf,a = [α, β] ∪ {[α′, β′] | ∃kα, kβ ∈ N, α′ = α + kα · sI , β′ = α + kβ · sI , α′ ≤ β′ ≤ β}

The size of these intervals are either β − α, where [α, β] is the greatest possible
interval, or a multiple of the sampling step sI . If the interval [α, β] is not the optimal
interval, in order to provide an interval of the size of the permissiveness, the sampling
step has to divide the permissiveness.

2. In the experimental results of the previous paragraph, the error graph oscillates
around 0, and the amplitude of these oscillations decreases. For linear timed auto-
mata, as it is an under-approximation, a good practice could be to compute the
approximate permissiveness for several decreasing sampling step and take the upper-
bound, in order to get a more accurate permissiveness. It can be explained for linear
timed automata. If the sampling step s′ is a divisor of s, we explore more intervals
than with s, but we explore all the intervals we explore when choosing s. It is also
observed in one of our examples of acyclic timed automata (see 6.7b). Nevertheless
we are not able to explain it yet, as the choice of the delay is approximated too.

To conclude, our experimental results suggest, in order to decrease the error ε, to
fix an strictly positive integer p and run the examples for a finite list of sampling steps of
the form 1

q · p
where q is a strictly positive integer.

In order to provide formal results, we could adapt some theoretical results of the
permissiveness function to the permissiveness function of p-runs and strategies. In
Chapter 4, we proved that the permissiveness function is 2-Lipschitz on Win`. We cannot
apply them directly as we do not compute the permissiveness, but an approximation of
it, but we could try to extend this result to the permissiveness of p-runs. Another idea we
could explore is to bound the error knowing that the coefficients of the affine functions of
the permissiveness function, a piecewise-affine function, are constant.

Studying the precision of our algorithm is an important future work, as it could bound
the error made by computing the approximation of the permissiveness.

6.1.7 Logging interface

Finally, in order to provide a graphical view of the trace, a logging interface has been
implemented. It aims to visualise exploration and ease the understanding of the choices of
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the players and opponent. We present the logger interface when running the backtracking
algorithm for the timed automaton presented in Figure 2.10 for the initial configuration
(`0, (0, 0)) and the sampling step s = 1

2 . The aim of the logger is to show the traces of
the paths that have been explored by the backtracking algorithms. The logger interface
allows to reveal traces that interested us.

The logger is presented as a table, containing sub-tables in each lines. The button
‘Hide filtered out’ hides or reveals the non-taken paths that were avoided thanks to the
optimisations on intervals and delays.

The main table, presented in Figure 6.8a, represents the logger when we do not reveal
any sub-tables. It represents the first terms of all traces, with additional informations.
The first lines indicates, from left to right, the current location (0)5, valuations ((0, 0))
and the permissiveness of the current best trace (+∞). It also indicates all the possibles
p-moves (”a”, [0, 1]) ,

(
”a”,

[
0, 1

2

])
and

(
”a”,

[1
2 , 1

])
and the final permissiveness we will

obtain if we choose this interval: here respectively 0, 0 and 1
2 .

In the Figure 6.8b, we reveal the first sub-tables when choosing the first proposed
p-move, (”a”, [0, 1]). The first sub-table revealed is a sub-table that lists the proposed
delays in the first row (0 and 1) and the future permissivenesses if we choose each delays
in the second rows: respectively 0 and 1. ‘min delay = 0’ indicates that the trace that
minimises the permissiveness for the delays has a permissiveness that values 0.

In the Figure 6.8c, we reveal the sub-table that is contained in the first line (0, | 0).
It reveal a table that gives the informations, from left to right, of the current location
(1), valuation (

(0
1 , 0

)
), and the permissiveness of our current best trace (here 1, as we

have chosen the interval [0, 1]). The only line of this sub-table contains again the possible
p-move, here (”b”, [1, 1]) and the value of the permissiveness when choosing such interval
(here 0). The ‘max interval = 0’ indicates the permissiveness of the trace that maximises
the permissiveness among all the possible p-moves.

We can continue in this logger to reveal sub-tables to go further in the trace, until the
goal location is reached (which is indicated). Non-taken p-moves are not shown, unless
we click on ‘Hide filtered out’.

5For the sake of simplification, `i is denoted as i, a0 is denoted as a and a1 is denoted as b in the
logger.
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(a) Step 1: three p-moves are possible.

(b) Step 2: revealing trace when choosing the p-move (a, [0, 1]).

(c) Step 3: choosing the delay 1 and then the p-move (b, [1, 1]).

Figure 6.8 – Screenshots of the logging interface of the exploration of timed automaton
of Figure 2.10.
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Conclusion and future work

In this subsection, we presented a forward algorithm that, given a fixed configuration,
computes a trace whose permissiveness is an approximative value of the permissiveness
of the configuration. It optimises the strategies of the player and the opponent, up to a

precision. This algorithm runs in time O
(B · M (A)

s

)T for acyclic timed automata,

where T is the maximal number of transitions in the timed automaton, n the number
of clocks, s := min (sδ, sI) the minimum of the two sampling steps used for respectively

intervals and delays and B := max
(M (A)

s

)2

, n

.
We then presented its Python implementation, explained our choices and our runtime

and precision results for some examples. The main difference with our symbolic algorithm
presented in Chapter 5 is that we do not have an a priori knowledge of the strategy of
the player and the opponent, except for the strategy of the opponent for linear timed
automata. We also compute the permissiveness for a fixed configuration, whereas the
symbolic algorithm presented in Chapter 5 computes it for an arbitrary configuration.
As our forward algorithm can be run with no a priori knowledge on the strategy of the
players or of the opponent, it can be extended to timed automata where we have no
knowledge on the player or the opponent optimal strategies. The disadvantages of this
approach is that only an approximate value is obtained. A major future work is studying
the precision of our algorithm.

Other future works on this implementation could first focus to extend the models
of timed automata supported by our tool. For example, we can extend the guards im-
plementation, currently implemented as classical guards, to polyhedral guards, using a
polyhedral library as Parma Polyhedral Library. Second future work could be to study
the behaviour of cycles.

In the next section, we will present our implementation of the symbolic approach and
compare the runtime results with the one of the forward numerical approach, for linear
timed automata.

6.2 Symbolic backward approach

We now present the implementation of the backward approach to compute permissiveness.
The algorithm of this approach was presented in Chapter 5 and here we describe its
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implementations, provided in the github page merce-fra/ECL-Symbolic-Implementation,
in Python 3.8, using the pplpy Python Binding to the C++ Parma Polyhedra Library. This
implementation currently covers the cases of linear timed automata with polyhedral
guards.

In this section, we explain our choices of implementation, the results we obtain and
the future works that could be done to improve our implementation. We organised this
section as follows:

1. First, we present Parma Polyhedra Library in Subsection 6.2.1.

2. Secondly, we recall the main steps of the algorithm in Subsection 6.2.2.

3. Thirdly, we discuss in Subsection 6.2.3 the technical aspects and the problems we
had to solve to complete this implementation.

4. Fourthly and finally, we present in Subsection 6.2.4 some results and compare them
to the forward approach presented in Section 6.1.

6.2.1 Parma Polyhedra Library

Parma Polyhedra Library6 is a C++ library enabling the manipulation of polyhedra and
linear expressions with coefficients in Z. This library has been developped since 2001
by the University of Parma and BugSeng. The main current contributors are Roberto
Bagnara, Patricia M. Hill, Enea Zaffanella and Abramo Bagnara. Numerous bindings are
available in other languages, as Ocaml or Python. We use the Python binding named
pplpy7 (0.8.6 version) provided by Vincent Delecroix.

We use this library to represent the piecewise affine functions and the affine func-
tions in our implementation. Indeed this library enables us to manipulate and represent
affine functions and polyhedra with the respective pplpy classes Linear Expression and
Polyhedron. Polyhedron class enables to represent a polyhedron with generators or linear
constraints, themselves represented with the class Linear Expression. We use the repres-
entation with linear constraints. It also provides many operations with polyhedra. The
main operations we use are checking membership to a polyhedron, the emptyness of a
polyhedron and whether a polyhedron is included in another polyhedron, adding con-
straints to a polyhedron and computing intersections (with other polyhedra).

6https://www.bugseng.com/parma-polyhedra-library
7https://gitlab.com/videlec/pplpy
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Chapter 6 – Robustness tools: forward and backward implementations.

6.2.2 Principle of the algorithm

The goal of the algorithm, presented in Chapter 5, is to compute the exact value of
the permissiveness function for any location in an acyclic timed automaton. We recall
in this subsection the main steps of this algorithm, the full version being presented in
Section 5.1. Our implementation only supports linear timed automata with polyhedral
guards, but one of the main future works is to extend it to acyclic timed automata, as
the algorithm in Chapter 5 can tackle them.

The main steps of the algorithm are summarised in Figure 5.2. The algorithm computes
the permissiveness function with a backward explorer: the permissiveness of the goal
locations is first computed by computing P0, then the permissiveness of its successors by
computing P1, ...

When computing Pi of location `, v 7→ Pi−1 (`′, v) is a continuous piecewise affine
function, where `′ is the successor of `. Let us consider the tiling of polyhedra (hi)i of
v 7→ Pi−1 (`′, v). Let hα, hβ be two arbitrary polyhedra of (hi)i. Then, we compute:

1. The set of valuations v such that there exists an enabled p-move ([α, β] , a) where
v+α [Cr ← 0] ∈ hα and v+β [Cr ← 0] ∈ hβ (see Figure 5.2a). We denote it S(hα,hβ).

2. The set of enabled delays Ivα and Ivβ as function of v (see Figure 5.2b).

3. Finally, the optimal bounds of the intervals to choose in these sets of enabled delays
(see Figure 5.2c).

After having computed the optimal α and β for each couple (hα, hβ), we compute the
resulting permissiveness for each couple (hα, hβ) and compute the maximum of all these
permissiveness among all the possible couples. The resulting function is the permissiveness
function.

6.2.3 Issues and implementation choices

In this subsection, we develop the implementation choices we did. In terms of technical
aspects, the implementation uses:

. A representation of timed automata with polyhedral guards.

. A representation of piecewise affine functions with coefficients in Q ∪ {+∞}.

. The minimisation, maximisation of piecewise affine functions.
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hβ

hα

S(hα,hβ)

(a) Step 1.

hβ

hα

v

Ivα

Ivβ

(b) Step 2.

hβ

hα

v

interval to
be played

(c) Step 3.

Figure 5.2 – The three steps of our algorithm. Step 1: compute S(hα,hβ). Step 2: compute
expressions for Ivα and Ivβ for any v. Notice that we consider a subpolyhedron (hatched
zone) of S(hα,hβ) because we had to refine it. Indeed the expression of Ivβ would be different
for the lower part of S(hα,hβ), since it ends up in a different facet of hβ. Step 3: select best
values for α and β.

. The comparison of piecewise affine functions.

As for the numerical implementation, all UML graphs are simplified and more detailed
UML graphs are presented in the Appendix A.2.

Let us detail these aspects in the following subsections. A final subsection will explain
how to merge more than two polyhedra. This method is not yet implemented.

The representation of timed automata

Timed automata objects are used in our implementation to store the information about
the timed automaton we will explore when applying our algorithm. The representation of
the TimedAutomaton class does not differ from the one of the numeric implementation
presented in Subsection 6.1.2, except the guards are polyhedral guards. Thanks to the
pplpy library, the data structure of timed automata is simplified as we can see in the
UML graph of TimedAutomaton class in Figure 6.9. Indeed, instead of implementing
intervals and constraints, a guard is just defined as a polyhedron. As in the numeric
implementation, we provide a JSON format to write the timed automaton in a more
readable and convenient way.
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DiGraph

TimedAutomaton
init_location : Location
goal_location: Location
transitions: List[Edge]
nb_clock: int

Edge
start_location: Location
end_location: Location
guard: Polyhedron (PPLPY)
resets: List[int]

Figure 6.9 – UML class graph of TimedAutomaton.

The representation of piecewise affine functions

Piecewise affine functions are used in almost every step of our algorithm: the permissive-
ness function and every function of the sequence of suboptimal permissive functions are
piecewise affine functions over R|C|+ , the bounds to the intervals of enabled delays Ivα and
Ivβ are piecewise affine functions, etc. We represent piecewise affine functions with the
class Spline. Piecewise affine functions used here are continuous so we can use tiling of
polyhedra to represent them. We represent them as a list of pairs of affine functions and
cells of the form (f,P). The affine function f is defined over the polyhedron P and is built
with the class SubSpline. We represent these classes in the UML graph in Figure 6.10. In
our model, affine function can have infinite coefficients, therefore these functions can have
two forms:

. Either some coefficients of the affine function are infinite, then the affine function
is implemented with the class InfiniteExpression. This class represents functions
that are either −∞ or +∞. The sign of the function is decided with the boolean
is_positive.

. Or the coefficients are rational and finite. We implement these functions with the
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6.2. Symbolic backward approach

class RationalLinearExpression by associating a pplpy linear expression l with a di-
visor d. Indeed, the Linear_Expression class of pplpy only covers integer coefficients.
Our implementation simplifies the coefficients of l and the divisor used d such that
d is the least common multiple of all denominators of the rational coefficients of the
affine function. This simplification is done in order to have a unique representation,
and therefore compare easily two rational linear expressions.

These two classes are linked through an abstract class that we will not detail in Figure 6.10,
for the sake of simplification. We implemented an optimisation to decrease the number

SubSpline
function: Union[InfiniteExpression, RationalLinearExpression]
polyhedron: Polyhedron (PPLPY)

Spline
sub_splines: List[SubSpline]

RationalLinearExpression
linear_Expression: Linear_expression (PPLPY)
least_common_multiple: int

InfiniteExpression
is_positive: bool

Figure 6.10 – UML class graph of Piecewise affine functions.

of polyhedra used to representing the tiling of polyhedra of piecewise affine functions.
Indeed, the complexity of our algorithm depends on this number of cells of the tiling of
polyhedra of the permissiveness functions. The optimisation consists in choosing a fixed
value of affine functions that we will not represent. Our choice was to not represent affine
functions that are −∞. Indeed, the set of valuations such that the permissiveness is −∞
is not necessarily convex (see Figure 6.11). To represent this set as polyhedra, we need
as least three polyhedra (see Figure 6.12a). The piecewise affine function of Figure 6.11 is
therefore implemented as the one in Figure 6.12b. This optimisation has to be taken into
account, for instance, when computing the maximum or the minimum of several piecewise
affine functions, as explained in the next subsection.
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x

y

1 2

1

2

f0

f1

−∞

f2

Figure 6.11 – An example of piecewise affine function.
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−∞−∞

−∞
f0

f1

f2

(a) Its representation if we represent the
affine functions that values −∞.

x

y

1 2

1

2

f0

f1

f2

(b) Its representation without −∞ func-
tions.

Figure 6.12 – Two representations of the piecewise affine function of Figure 6.11.

200



6.2. Symbolic backward approach

Minimising and maximising several piecewise affine functions

For the sake of simplification, we will explain here how we compute the maximum of two
piecewise affine functions. Considering more than two functions, or the minimum of them
can be extended trivially through pairwise comparison. Let us consider two piecewise
affine functions F and G, defined over R|C|+ . Indeed in our context the piecewise affine
functions are defined over that set. Our goal is to compute max (F,G) over R|C|+ .

Minimisation and maximisation of piecewise affine functions are used in several steps
of our implementation:

1. When computing the bounds of the intervals of enabled delays Ivα and Ivβ , these
bounds are maximum and minimum of piecewise affine functions.

2. When implementing the optimisation results of Tables ??, 5.1, 5.2, 5.3, 5.4 and 5.5
presented in Section 5.3.

3. After computing an optimal interval to propose for each couple of cells (hα, hβ), we
compute the minimum of three affine functions, that are the size of the interval, and
the future permissiveness of the successors, when choosing for the delay the bounds
of the interval. The result is then a piecewise affine function. In order to compute
the permissiveness function, we have to compute the maximum of these piecewise
affine functions for all cells (hα, hβ).

4. When considering acyclic timed automata, several successors may have to be con-
sidered. We should compute the permissiveness functions of the successors and com-
pute the maximum of all these permissiveness functions to choose the transition to
choose. This application is an ongoing work.

Let us explain the issues of implementing these two methods. First, let us pick an example
of two piecewise affine functions f and g described in Figure 6.13a and 6.13b. Let us denote
respectively the couple of cell-affine functions of the piecewise affine functions f and g

by ((P0, f0) , (P1, f1) , (P2, f2)) and ((P3, g0) , (P4, g1)). We recall that the cells where the
affine function is −∞ are not represented.

At first sight, one might want to look at the intersection of each cells, and split each
cells whether the first affine function is greater then the second one. More formally:

1. For each piece Pi among P := [P0, · · · ,P5], we look if there exists another polyhed-
ron Pj ∈ P\ {Pi} such that Pi ∩ Pj 6= ∅.
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x

y

1 2

1

2

f1

f2

f3

(a) Function f where f0 (x, y) = 2 − x,
f1 (x, y) = 1− y and f2 (x, y) = x− y.

x

y

1 2

1

2

g0

g1

(b) Function g where g0 (x, y) =
1− x

2 , g1 (x, y) = 1− y.

Figure 6.13 – Example of two piecewise affine functions.

2. If the intersection of two polyhedra Pi and Pj is not empty, consider the associ-
ate affine functions f ′ and g′ and split the intersection of Pi ∩ Pj with the linear
constraint f ′ ≥ g′ and f ′ ≤ g′.

If we applied this procedure, we would end up with a wrong result. Indeed, if the first
function intersects zones where the other function is −∞, their intersection will not be
taken into account. For instance, we represented in Figure 6.15a the result if not taking
these cells into account.

We have a wrong result for two reasons. First, we did not take into account the cells
where the affine function is −∞. That can be solved by considering that if a cell does not
intersect another cell, it is because it intersects a cell where the affine function is −∞.
Secondly, the tiling of polyhedra is not the same therefore, the cell associated to g0 will
intersect another cell, the one associated with f3 and we will only compare it over P3∩P0.

To tackle this issue, we combine the two tiling of polyhedra of each piecewise affine
function, in order to have the same tiling of polyhedra in both piecewise affine functions.
For instance the functions of Figure 6.13 will be represented by the functions described
in Figure 6.14a and 6.14b.

Then, when considering the same tiling of polyhedra, we can proceed as follows:

. If two cells intersect, we consider their associated affine functions, for example f3

and g0 and we split the intersections of the cells into two cells by adding a linear
constraint. For the first one we add the constraint f3 ≥ g0 and associate this cell
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6.2. Symbolic backward approach

to the affine function f3. For the second one we add the constraint g0 ≥ f3 and
associate this cell to the affine function g0.

. If a cell does not intersect any cell, we directly add it with its associated affine
function. Indeed it means that this cell intersects a cell associated with an affine
function that is −∞.

x

y

1 2

1

2

f0

f1

f2

(a) New overtiling of f .

x

y

1 2

1

2

g0

g0

g1

(b) New overtiling of g.

Figure 6.14 – Over-tiling of f and g in order to apply our maximisation algorithm.

This solution over-tiles the cells of each piecewise affine function. Thus it may increase
the number of cells. Let us consider the previous examples of Figure 6.13. The maximum
max (f, g) is a piecewise-affine function described in Figure 6.15b. We can see that the
polyhedron associated if g0 could be merged. Merging as much polyhedra as possible could
be a great optimisation to speed up our implementation.

Comparing several piecewise affine functions

As we have seen in the previous subsection, the representation in terms of list of tuples
of polyhedra and affine functions is not unique in general. The piecewise affine functions
in Figure 6.13b and 6.14b are the same, but their tiling of polyhedra are not the same.

Having a unique representation would be useful to easily check in unit tests if the
obtained piecewise affine function is the one we expected. On top of that, having a unique
representation would help extending the implementation for acyclic timed automata by
checking is the sequence of suboptimal permissive functions has reached its fix point, by
checking equalities between two piecewise affine functions.
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g0 f2

(a) Wrong result when applying the naive
procedure.

x

y

1 2

1

2

g1

g0

g0
f0

f1

f2

(b) Correct result with over-tiling.

Figure 6.15 – Maximisation of the two piecewise affine functions f and g of Figure 6.13:
wrong method (Figure 6.15a) and correct method with over-tiling (Figure 6.15b).

Let us remark that the current method that checks equalities between two piecewise
affine functions is sensible to the tiling: for two piecewise affine functions to be checked
as equal, they need to have the same tiling of polyhedra. At first sight, to check the
equality between two piecewise affine functions, one would be tempted to look at the
pairs whose affine functions are equal, and compute the union of the associated polyhedra
together. However, the union of several polyhedra is not necessarily a polyhedron.

[BFT01] provides an algorithm for computing the convex hull of polyhedra and for
checking that the union of two polyhedra is indeed convex and therefore corresponds to
their convex hull. However, it does not provide an algorithm for more than two polyhedra.

This problem is not trivial and one cannot apply the algorithm of [BFT01] pairwise.
Consider a simple example in Figure 6.16, where we divide the space into 4 square poly-
hedra, and associate them with the same affine functions. Depending on which polyhedra
we start with, their union will not correspond to their convex hull. If we begin with the
two left polyhedra, when these are merged, if we then check if the union with any right
polyhedra is a polyhedron, the answer is no. We did not tackle the problem of checking if
the union of n ≥ 3 polyhedra is a polyhedron.

Checking efficiently the equalities between two piecewise affine functions is an ongoing
future work. A first possibility given two piecewise affine functions (Pi, fi) and (Qi, gi)
would be:

1. To compute a representation taking into account the two tilings as in Figure 6.14
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f

f

f

f

Figure 6.16 – A piecewise function where all polyhedra could be merged.

such that the two functions have the same polyhedra partition.

2. Then, to check if the two resulting over-cut piecewise affine functions are equal.

We could also try other methods, such as comparing the values of the permissiveness
function on edges of each polyhedra.

Merging (some) polyhedra

As explained earlier, one way to speed up our computation is to reduce the number of
cells. Indeed, the complexity of the algorithm grows with the number of polyhedra used
to represent our piecewise affine functions.

The first optimisation described above consisted of removing the polyhedra associated
with the −∞ function. The second improvement would be to merge polyhedra associated
with the same affine functions and whose union is a polyhedron. As stated in
the previous subsection, if there are only two polyhedra, the algorithm is presented in
[BFT01] and can be performed in polynomial time. If there are more than two polyhedra,
we could not provide an algorithm. However, we can propose a heuristic to solve this issue,
but does not guarantee to systematically succeed in merging our polyhedra.

This heuristic would first list all the polyhedra that are assigned with the same affine
function and then compute, for each list of polyhedra, the convex hull of these polyhedra.
Then, the resulting piecewise affine function is the function that associates the convex
hull to the associated affine functions. We compare this function to the original one with
the procedure described previously. If the two functions are equals, it means that for
each affine function the union of their associated polyhedra formed a polyhedron. If not,
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there exists a set of polyhedra whose union was not a polyhedra and we keep the overcut
representation of the function.

We can compute the convex hull and compare immediately the result for each asso-
ciated function. We should evaluate the respective performance of the two procedures
because comparing piecewise affine functions can be costly.

In the next section, we present our experimental results. First we present the results
of our graphical tool, written in Python, that provides a graphical representation of the
results of our algorithm. It encourages us to use the previous procedure to merge polyhedra
as for each affine function the union of their associated polyhedra forms a polyhedron.
Secondly, we present our runtime results.

6.2.4 Experimental results

In this section, we present our results. All the experiments were run in a computer with
the following specifications: Intel i7-9700 CPU at 3.00 GHz, 8Go of RAM, under Ubuntu
20.04.

First we present in Subsection 6.2.4.1 the permissiveness function that our implement-
ation computes and compare the over-tiling to the theoretical and optimized computation.
Secondly, we present in Subsection 6.2.4.2 the runtime results and compare some to the
one obtained in the numeric implementation.

6.2.4.1 Qualitative results

We implemented a Python tool to provide a graphical view (in .tex format) of our obtained
permissiveness function for two-clocks timed automata with only bounded cells. We
restricted to two-clocks timed automata to stay in 2D-representation and we can only
managed bounded polyhedra yet because we use the coordinate of the edge of polyhedra
to represent them, therefore unbounded polyhedra cannot be tackled yet, as they are
represented with point and rays in pplpy.

The examples we present in this section are the permissiveness of the timed automata
of Figure 2.8, 2.10, 5.3, that we re-show below for convenience.

Our graphical tool provides a picture and a table for each permissiveness function. The
picture represents the cells of the piecewise affine function and the bottom table links the
cells to an affine function. Let us remark that, as before in the implementation, we do
not represent the cells associated with a function −∞. For instance, in Figure 6.17a, the
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`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a0

0 ≤ x ≤ 1
0 ≤ y ≤ 1

a1

Figure 2.8 – A timed automaton with two identical transitions presented in Subsection
2.2.2.

`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
y := 0
a0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a1

Figure 2.10 – A timed automaton with a reset presented in Subsection 2.2.2.

`0 `1 `f

0 ≤ y ≤ 1
y := 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

Figure 5.3 – A timed automaton similar as the one of Figure 2.10 where the guard on the
first transition has been slightly extended.
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permissiveness function is defined as follows:

[0, 1]× [0, 1] → R+

(x, y) 7→ min (1− x, 1− y)

This permissiveness function is represented with 2 cells. We represent in the following Fig-
ures 6.17, 6.18 and 6.19 the graphical results obtained when computing the permissiveness
of the timed automaton of Figures 2.8, 2.10, 5.3.

We can compare these results in Figure 6.17a, 6.18 and 6.19 with the theoretical
permissiveness. The obtained permissiveness functions are accurate and we can observe
an over-tiling in Figure 6.18b and 6.19b. For each associated affine function, we can
observe that the union of the cells corresponds to the convex hull of these cells. These
results encourage us to study ways to reduce the over-tiling of our algorithm and of our
implementation.

x

y

0 1
0

1

0
1

Permissiveness Associated cells
(−y + 1) /1 1
(−x+ 1) /1 0

(a) Permissiveness at location `1 of the timed
automaton of Figure 2.8.

x

y

0 1
0

1

0
1

Permissiveness Associated cells
(−x+ 1) /2 0
(−y + 1) /2 1

(b) Permissiveness at location `0 of the timed
automaton of Figure 2.8.

Figure 6.17 – Permissiveness functions of the timed automaton of Figure 2.8.

6.2.4.2 Runtime results for timed automaton studied in this thesis

Here we present in Table 6.1 the runtime results of the computation of the permissiveness
function for several examples. We restricted in the previous section to simple examples,
in order to keep the graphic representation readable. In this section, we will provide the
runtime for the examples of the previous section and for additional timed automata (more
transitions, three-clocks...).
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x

y

0 1 2
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1
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1

2

Permissiveness Associated cells
(x− y) /1 2
(−x+ 2) /1 0
(−y + 1) /1 1

(a) Permissiveness at location `1 of the timed
automaton of Figure 2.10.

x

y

0 1
0

1

0
1
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5

Permissiveness Associated cells
(x− y + 1) /2 5
(−y + 1) /1 2, 3
(1) /2 4
(−x+ 1) /1 0, 1

(b) Permissiveness at location `0 of the timed
automaton of Figure 2.10.

Figure 6.18 – Permissiveness functions of the timed automaton of Figure 2.10.
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(x− y) /1 2
(−x+ 2) /1 0
(−y + 1) /1 1

(a) Permissiveness at location `1
of the timed automaton of Figure
5.3.
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23

24

Permissiveness Associated cells
(−x+ 2) /2 0, · · · , 5
(−y + 1) /1 6, · · · , 15
(x− y + 1) /2 20, · · · , 24
(2) /3 16, · · · , 19

(b) Permissiveness at location `0 of the timed automaton
of Figure 5.3.

Figure 6.19 – Permissiveness function of the timed automaton of Figure 5.3.
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First, let us present the runtime for the examples of the previous section and for the
additional timed automata presented in Figure 6.20a, 6.20b and 6.20c. Let us compare

`0 `1 `2 `f

0 ≤ x ≤ 1
a0

0 ≤ y ≤ 1
a1, y := 0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a2

(a) A three transitions timed automaton.

`0 `1 `2 `3 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1

a0

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1
a1, y := 0

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1

a2

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1
a3, z := 0

(b) A three clock timed automaton.

`0 `1 `2 `3 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1
a0, z := 0

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1
a1, y := 0

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1

a2

0 ≤ x ≤ 1
0 ≤ y ≤ 1
0 ≤ z ≤ 1

a3

(c) Another three clock timed automaton.

Figure 6.20 – Three timed automata studied in the symbolic implementation.

the runtime of the symbolic implementation with the one of the numeric implementation,
for two interval sampling steps: 1

2 and 1
15 in Tables 6.1 and 6.2. We can observe that the

runtime grows with respect to the number of cells. The symbolic runtime is higher than
the numeric ones, except for our examples with three clocks and four transitions, for a
step sampling equal to 1

15 .
As for the numerical implementation, we tested our implementation on an example

which allows us to vary the number of transitions. As a reminder, this is an m transition
automaton, linear, with two clocks, whose guards are identical: no reset and the constraints
are always 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1. The result is presented in Figure 6.21a. This
example has the particularity to be always represented with two cells, as in Figure 6.17.
When considering m transitions, the result is a slightly modified result where the tiling
of polyhedra stays the same and the associated function becomes (x, y) 7→ 1− x

m
and

(x, y) 7→ 1− y
m

. In the obtained results in Figure 6.21a, we represented the runtime in
seconds on the y axis and the number of transition on the x axis. The number of transitions
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Timed automaton Runtime for `0 Runtime for `1 Runtime for `2 Runtime for `3
Figure 2.8 0.82 (2 cells) 0.059 (2 cells) - -
Figure 2.10 0.071 (6 cells) 0.062 (3 cells) - -
Figure 5.3 0.73 (24 cells) 0.034 (3 cells) - -
Figure 6.20a 38.16 (582 cells) 1.01 (25 cells) 0.09 (3 cells) -
Figure 6.20b 19.95 (234 cells) 0.41 (12 cells) 0.56 (6 cells) 0.14 (6 cells)
Figure 6.20c 143.48 (1825 cells) 0.39 (12 cells) 0.59 (6 cells) 0.14 (6 cells)

Table 6.1 – Runtime results (in sec.) of our symbolic implementation when computing the
permissiveness function on `0, `1 and `2 and `3.

Timed automaton Runtime (numeric) for s = 1
2 Runtime (numeric) for s = 1

15
Figure 2.8 0.0016 0.15
Figure 2.10 0.021 0.22
Figure 5.3 0.021 0.022
Figure 6.20a 0, 0078 7, 98
Figure 6.20b 0.026 330.87
Figure 6.20c 0.025 329.69

Table 6.2 – Runtime results (in sec.) of our numeric implementation for two different
interval sampling steps for configuration (`0, (0, 0)).
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(a) Runtime result for symbolic approach
for the location `0.
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(b) Runtime result for numeric ap-
proach,for the configuration (`0, (0, 0)).

Figure 6.21 – Comparison of numeric and symbolic approaches for a two-clocks-automaton
with m transitions, with the same guards 0 ≤ x ≤ 1∧ 0 ≤ y ≤ 1 on each transitions (and
no reset).
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should be multiplied by 105 as indicated in bottom left. The scatter plot almost forms a
straight line. Its slope has an order of magnitude of 10−6, which is an encouraging result
compared to the worst case complexity we computed in Section 5.1 and to the numeric
implementation runtime result, that we recall in Figure 6.21b. Nevertheless, this is a
very specific case where the number of cells and the number of inequalities defining the
polyhedra remain constant as the number of transitions increases. This result encourages
us to control the number of cells when computing the permissiveness function with a
symbolic algorithm.

Conclusion and future work

We have presented the symbolic implementation, in the framework of linear timed auto-
mata, of the algorithm proposed in Chapter 5. The runtime results are high, compared to
the numeric implementation, because of the over-tiling. We saw in an example that when
the number of cells is controlled, the runtime of our symbolic implementation are very
encouraging, despite the theoretical upper bound of our complexity computed in Section
5.1.

Furthermore, this implementation highlights the direction to take in order to reduce
the complexity of our algorithms: reduce the number of polyhedra used to represent
a piecewise affine function. Therefore, in the next chapter, Chapter 7, we will discuss
a second approach to compute an approximate symbolic version of the permissiveness
function, which controls both the number of cells and the precision obtained. However,
the complexity will then be on the number of constraints used to represent polyhedra.

Regarding the feasible improvements on our implementation, the results that we
provided confirm the presence of an over-tiling of the polyhedron partition. We pro-
pose several directions for future work to address this issue. First, we should extend this
implementation to more general timed automata, as acyclic timed automata. We could
also extend to timed automata with cycles, but we would have no guarantee that our al-
gorithm terminates. Nevertheless it could be a direction to explore some examples to find
heuristic about this class of timed automata we could not study formally in Chapter 5.
Second, we could improve the efficiency of our implementation. We propose several ways
to do it. Among these tracks, we propose an algorithm that allows to check the equality
between two piecewise affine functions and an algorithm that allows to compute the union
of polyhedra if we know that the result is a polyhedron. We also propose a heuristic, that
is not guaranteed to always reduce the number of cells, but which computes the convex
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6.2. Symbolic backward approach

hull of polyhedra for a piecewise affine functions, considering only the polyhedra associ-
ated to the same affine functions. The goal of this heuristic is to reduce the number of
cells by merging the one that could be merged and still be a polyhedron. To ensure we
did compute exactly the union of polyhedra, this algorithm checks for equality with the
original piecewise affine function.
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Chapter 7

LEVELLED AND BINARY

PERMISSIVENESS: COMPUTING THE

PERMISSIVENESS WITH THRESHOLD(S)

The algorithm we presented in Chapter 5 gives an exact computation of the permissive-
ness function. It enables us to compute the strategy of the player for any location and
for any valuation. However, we proved that this algorithm can be executed in at most
in non-elementary time for acyclic timed automata. This might be an very pessimistic
upper-bound but we implemented this algorithm for linear timed automata and the ex-
perimental results presented in Chapter 6 show a fairly long runtime. The complexity of
our algorithm depends in the number of cells of the computed permissiveness functions.
Therefore, our goal to improve our approach is to reduce the number of cells that have to
be considered.

Let us first remark that our implementation, presented in Chapter 6, suffers from
over-tiling, which significantly increases the runtime. However, our methods for reducing
this over-tiling are costly, as they require the computation of the convex hull of the union
of several polyhedra. Our best way to reduce the complexity of our algorithm is to reduce
this number of cells.

To reduce the number of cells, our first attempt was to consider a numerical approach,
that computes an approximate value of the permissiveness function of a fixed configur-
ation. We presented its algorithm and implementation in Section 6.1. The issue of this
algorithm is the lack of proof of its precision. We did not manage to compute a bound of
the error we make by approximating the permissiveness function.

Therefore, in this chapter, we propose an approximate approach that controls, by
definition, the precision of our permissiveness computation. It will also have the advantage,
unlike the numerical approach, of computing the approximate permissiveness value for any
configuration, as did the symbolic approach in Chapter 5.
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The idea of our approach in this chapter is to compute permissiveness by thresholds: we
compute a function that indicates, given a finite ordered number of thresholds, whether the
permissiveness function lies between two thresholds, see Figure 7.2 for an example. We call
this function the levelled permissiveness function. Our method to compute whether per-
missiveness is between two thresholds is to compute whether it is greater than a threshold.
We call the function that computes whether a permissiveness function is greater than a
threshold the binary permissiveness function. In this chapter, we present an algorithm to
compute the binary and levelled permissiveness functions for linear timed automata.

This chapter is organised as follows:

. First, we present the binary permissiveness and we propose an algorithm to compute
this function in Section 7.1.

. Secondly, we present the levelled permissiveness and formally show how to compute
it by computing the binary permissiveness in Section 7.2.

7.1 Binary permissiveness

In this section, we present the binary permissiveness function, which returns whether
the permissiveness is greater than a fixed threshold. We first give a formal definition
and examples in Subsection 7.1.1, then provide a sequence that computes iteratively this
function in Subsection 7.1.2 and a Fourier-Motzkin-based algorithm that computes the
binary permissiveness function in Subsection 7.1.3.

7.1.1 Definitions and examples

Let us start by defining the binary permissiveness function in Definition 7.1. Given a
timed automaton A, this function returns 1 if the permissiveness of the configuration
(`, v) is greater than a fixed threshold and 0 otherwise.
Definition 7.1: Binary permissiveness function

Let us consider a timed automaton A and a threshold p and �∈ {>,≥}. The binary
permissiveness function is denoted Binp,� and is defined as follows:

Binp,� : (`, v) 7→

1 if Perm (`, v) � p

0 otherwise

216



7.1. Binary permissiveness

Binary permissiveness function can only take two values, 0 or 1. An advantage is the
ability to express this function in terms of sets instead of a function. We can reduce its
representation to the set of valuations where the function is equal to 1, that we denote
S (p, `) and define as follows:

S (p, `) := Bin−1
p,� (1) .

Indeed, the set Bin−1
p,� (0) can be deduced using only Bin−1

p,� (1). This representation
will be preferred in order to give a geometric point of view.

Remark 7.1.1 In the general case, we suppose that � is ≥, as our algorithm and proof
will not change using >. Unless otherwise stated, throughout the rest of the chapter we
will always suppose that � is ≥. The binary permissiveness Binp,≥ will be denoted,
by abuse, Binp.

The goal of this section is to provide an algorithm to solve the following problem
defined in Definition 7.2.
Definition 7.2: Binary-permissiveness problem

Given a timed automaton A, a threshold p ≥ 0 and an initial configuration (`0, v0),
the binary-permissiveness problem asks to compute Binp (`0, v0).

Let us represent in Figure 7.1 an example of binary permissiveness functions for several
thresholds. We consider the timed automaton of Figure 2.10, studied in Chapter 2, that
we show again below for the sake of convenience.

`0 `1 `f

0 ≤ x ≤ 1
0 ≤ y ≤ 1
y := 0
a0

1 ≤ x ≤ 2
0 ≤ y ≤ 1

a1

Figure 2.10 – An example of timed automaton.

Let us compare the permissiveness function and the binary permissiveness represented
in Figure 7.1a. To represent the permissiveness function, we had to use three polyhedra,
whereas only one is sufficient for the binary permissiveness function.

7.1.2 Sequence of binary suboptimal permissive functions

As with the permissiveness function, the binary permissiveness function is not directly
iterative. This is why we define a sequence of functions, called a sequence of binary func-
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x

y

1 2

1

2

2− x

1− y

−∞

x− y

(a) The permissiveness function on `1 of the
timed automaton of Figure 2.10.

x

y

1 2

1

2
0

1

(b) Representation of Bin0 (`1, ·): Bin0 (`1, v1) is
1 if and only if Perm (`1, v1) ≥ 0.

0

1
x

y

1 2

1

2

(c) Representation of Bin 1
2

(`1, ·): Bin1/2 (`1, v1)
is 1 if and only if Perm (`1, v1) ≥ 1/2.

0

1

x

y

1 2

1

2

(d) Representation of Bin1 (`1, ·): Bin1 (`1, v1) is
1 if and only if Perm (`1, v1) ≥ 1.

Figure 7.1 – An example of binary permissiveness functions Bin1 (`1, ·) of the timed auto-
maton of Figure 2.10 for different thresholds 0, 1

2 , 1.
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tions, in definition 7.3, which will approximate this binary permissiveness function and
tends to it.
Definition 7.3: Sequence of binary suboptimal permissive functions

Let A be an arbitrary timed automaton, p be a positive threshold, and ` an ar-
bitrary location. The sequence of p-binary suboptimal permissive functions, denoted
(Bini,p (`, ·))i≥0 , is a sequence of functions that only take values 0 or 1 and is defined
as follows:

. For i = 0,

Bini,p (`, v) =

1 if ` ∈ Qf

0 otherwise
.

. For i > 0, if p-moves (`, v) 6= ∅,

Bini,p (`, v) = sup
(I,a)∈p-moves(`,v)

min
[
1{|I|≥p} (I) , inf

δ∈I
Bini−1,p (succ (`, v, δ, a))

]

. For i > 0, if p-moves (`, v) = ∅, Bini,p (`, v) = 0.

As for the binary permissiveness function, we denote S i (p, `) := Bini,p (`, ·)−1 (1).

The Proposition 7.4 gives the link between the sequence of suboptimal permissive
functions and the sequence of suboptimal binary permissive functions. It will be a very
useful tool to extend some properties already proven in Section 4.2.
Proposition 7.4

Let A be an acyclic timed automaton, p be a threshold, (`, v) an arbitrary configur-
ation and i ∈ N an integer.
Bini,p (`, v) = 1 if and only if Pi (`, v) ≥ p.

Proof of Proposition 7.4. Let us prove this proposition by a simple induction.
If i = 0, this case is trivial by definition. Let us now consider an integer i ∈ N and let

us suppose that Bini,p (`, v) = 1 if and only if Pi (`, v) ≥ p.

⇒ Let us suppose that Pi+1 (`, v) ≥ p, then there exits a p-move (I0, a0) ∈ p-moves (`, v)
such that |I0| ≥ p and for any delay δ ∈ I0:

Pi (succ (`, v, δ, a0)) ≥ p.
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As a result, by the induction hypothesis, Bini,p succ (`, v, δ, a0) = 1 and then:

min
(

1{|I0|≥p} (I0) , inf
δ∈I0

Bini,p (succ (`, v, δ, a0))
)

= 1 ≤ Bini+1,p (`, v) .

As Bini+1,p (`, ·) can only be equal to 0 or 1:

Bini+1,p (`, v) = 1.

⇐ Suppose that Bini,p (`, v) = 1, then there exists a p-move (I0, a0) ∈ p-moves (`, v) such
that |I0| ≥ p and for any delay δ ∈ I0, inf

δ∈I0
Bini,p succ (`, v, δ, a0) = 1. Then, with the

same arguments as previously, Pi+1 (`, v) ≥ p.

Thanks to Proposition 7.4, several properties of Pi, presented in Section 4.2, can be
extended or adapted to Bini,p, by simple inductions:

. Lemma 4.3: for a fixed configuration (`, v), the sequence (Bini p (`, v))i≥0 is non-
decreasing.

. Lemma 4.5: the sequence (Bini,p (`, v))i≥0 is eventually constant from rank d` for
acyclic timed automata.

. Proposition 4.7 and its Corollaries 4.8 and 4.9:

Bini,p (`, v) = 1 if and only if there exists a permissive strategy with permissiveness
larger than (or equal to) p that is winning from (`, v) within i steps.

The main consequences that can be deduced are:

1. lim
i→+∞

Bini,p (`, v), if it exists, has for limits Binp (`, v).

2. This limits exists and is reached within d` steps for acyclic timed automata.

The properties that cannot be adapted or extended are, of course, the continuity prop-
erties. Nevertheless, the Proposition 4.15 will help us proving a major property for linear
timed automata. Indeed, as the permissiveness function and the sequence of suboptimal
permissive functions are continuous and concave over Win` for any location `, we can
easily prove in Proposition 7.5 that S i (p, `) forms a unique polyhedron when A is a linear
timed automaton.
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Proposition 7.5

Let A be a timed automaton, ` be an arbitrary location and p be a positive threshold.
S i (p, `) and S (p, `) can be represented as finite union of closed polyhedra of R|C|+ .
In particular, if A is a linear timed automaton, S i (p, `) and S (p, `) are closed poly-
hedra of R|C|+ .

Proof of Proposition 7.5. By definition, S i (p, `) = Pi (`, ·)−1 ([p,+∞]). As Pi (`, ·) is a
piecewise affine function over Win`, S i (p, `) is a finite set of polyhedra.

Let us now suppose that A is linear and let us prove that S i (p, `) is a convex set.
Let v1, v2 ∈ S i (p, `) and λ ∈ [0, 1]. Let us prove that vλ := λ·v1+(1− λ)·v2 ∈ S i (p, `).
As Pi (`, ·) is a concave function, thanks to Proposition 4.15, if Pi (`, v1) ≥ p and

Pi (`, v2) ≥ p, then:
Pi (`, λv1 + (1− λ) v2) ≥ p.

As a result vλ ∈ S i (p, `). Therefore, S i (p, `) is a convex polyhedron of R|C|+ .
As this sequence tends in a finite number of steps to the binary permissiveness, this

result also holds for S (p, `).

7.1.3 Binary permissiveness algorithm

Let us now present an algorithm that computes the binary function sequence for linear
automata. We will use the geometric point of view in order to compute this sequence of
function. Indeed it will be sufficient to compute S i (p, `) for i = d`.

Our algorithm, given a linear timed automaton A with n clocks, a location ` and its
successor `′, a threshold p and S i−1 (p, `′) (if i > 0), computes the set S i (p, `).

7.1.3.1 Computation for i = 0

The computation of S i (p, `) is trivial for i = 0 as it is sufficient to check whether ` belongs
to the set of target locations.

7.1.3.2 Computation for i > 0

For i > 0, we will prove the following lemma that simplifies the expression of S i (p, `):
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Lemma 7.6
Let A be a linear timed automaton with n clocks, i > 0, ` 6∈ Qf be a location, `′ its
successors and p be a threshold. Then:

S i (p, `) =
v ∈ Rn+ | ∃α ≥ 0 s.t.

([α, α + p] , a) is an enabled p-move
v + α [Cr ← 0] , v + α + p [Cr ← 0] ∈ S i−1 (p, `′)

 .

Proof of Lemma 7.6. Suppose now that i > 0. p-moves (`, v) 6= ∅ if there exists an enabled
move (δ, a) to reach the configuration (`′, v + δ [Cr ← 0]). If such move exists, then:

Bini,p (`, v) = sup
(I,a)∈p-moves(`,v)

min
[
1{|I|≥p} (I) , inf

δ∈I
Bini−1,p (succ (`, v, δ, a))

]

Therefore, to compute S i (p, `) :=
{
v ∈ Rn+ | Bini,p (`, v) = 1

}
, we have to compute the

set of configurations (`, v) such that there exists a p-move ([α, β] , a) such that:

1. |β − α| ≥ p

2. For any delay δ ∈ [α, β], Bini−1,p (`′, v + δ [Cr ← 0]) = 1

The second proposition is equivalent to: for any δ ∈ [α, β], δ ∈ S i−1 (p, `′). As a result
we can simplify the expression of S i (p, `) as follows:

S i (p, `) =

v ∈ Rn+ | ∃0 ≤ α ≤ β s.t.


([α, β] , a) is an enabled p-move
β − α ≥ p

∀δ ∈ [α, β] , v + δ [Cr ← 0] ∈ S i−1 (p, `′)


As S i−1 (p, `′) is a polyhedron, it is a convex set so we only have to check the membership
of v + α [Cr ← 0] and v + β [Cr ← 0]:

S i (p, `) =

v ∈ Rn+ | ∃0 ≤ α ≤ β s.t.


([α, β] , a) is an enabled p-move
β − α ≥ p

v + α [Cr ← 0] , v + β [Cr ← 0] ∈ S i−1 (p, `′)


Let g be the polyhedral guard of the transition between ` and `′. A valuation satisfies g
if it belong to its associated polyhedron, which is a convex set. Similarly S i−1 (p, `′) is a
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convex polyhedron. Therefore, the smallest β that satisfies such conditions is α + p. We
can then simplify S i (p, `) as follows:

S i (p, `) =
v ∈ Rn+ | ∃α ≥ 0 s.t.

([α, α + p] , a) is an enabled p-move
v + α [Cr ← 0] , v + α + p [Cr ← 0] ∈ S i−1 (p, `′)

 .

Thanks to Lemma 7.6, if ` 6∈ Qf (if so, computing Bini,p ` is trivial), it is sufficient
to find an enabled p-move (α, α + p) such that v + α [Cr ← 0] and v + α + p [Cr ← 0]
belong to S i−1 (p, `′). To compute the valuations that satisfies these conditions, we use
the Fourier-Motzkin algorithm in order to eliminate the variable α.

Let us first denote some notations:

Guards: Let g be the polyhedral guard between the location ` and `′ defined by the

following inequalities:
cg∧
j=1

ϕ
(g)
j (X) ≥ 0.

S i−1 (p, `′): This set is a polyhedron, let us define its inequalities:
ci∧
k=1

ϕk (X) ≥ 0.

With these notations, we can re-write S i (p, `) as the set of valuations v such that
there exists α ≥ 0 that satisfies the following inequalities, enumerated in 1., 2., 3. and 4.:

1. v + α |= g: ∀0 ≤ j ≤ cg: ϕ(g)
j (v + α) ≥ 0

2. v + α + p |= g: ∀0 ≤ j ≤ cg: ϕ(g)
j (v + α + p) ≥ 0

3. v + α [Cr ← 0] ∈ S i−1 (p, `′): ∀0 ≤ k ≤ ci: ϕk (v + α [Cr ← 0]) ≥ 0

4. v + α + p [Cr ← 0] ∈ S i−1 (p, `′): ∀0 ≤ k ≤ ci: ϕk (v + α + p [Cr ← 0]) ≥ 0

Let us eliminate α in these inequalities:

ϕ
(g)
j (v + α) :=

n∑
i′=0

ϕ
(g)
j,i′ (vi′ + α)

223



Chapter 7 – Levelled and binary permissiveness

Let us denote S(g)
j =

n∑
i′=0

ϕ
(g)
j,i′ , then:

ϕ
(g)
j (v + α) = S

(g)
j · α + ϕ

(g)
j (v)

ϕ
(g)
j (v + α + p) = S

(g)
j · α + ϕ

(g)
j (v + p)

As previously:

ϕk (v + α [Cr ← 0]) :=
n∑

i′=0,i′ 6∈Cr
ϕk,i′ (vi′ + α)

Let us denote Sk =
n∑

i′=0,i′ 6∈Cr
ϕk,i′ , then:

ϕk (v + α [Cr ← 0]) = Sk · α + ϕk (v [Cr ← 0])
ϕk (v + α + p [Cr ← 0]) = Sk · α + ϕk (v + p [Cr ← 0])

In order to isolate α in these inequalities, we divide our inequalities by S
(g)
j or Sk.

Therefore we have to distinguish the cases where S(g)
j and Sk are positive, negative, or

equal to zero. Let us denote the following sets:

Posg =
{
j ∈ J1, nK | S(g)

j > 0
}
,Negg =

{
j ∈ J1, nK | S(g)

j < 0
}
,Zerog =

{
j ∈ J1, nK | S(g)

j = 0
}

and

Posi = {k ∈ J1, nK | Sk > 0} ,Negi = {k ∈ J1, nK | Sk < 0} ,Zeroi = {k ∈ J1, nK | Sk = 0}

Let us denote, for γ ∈ {i, g}, the size of the previously defined sets as follows:

pγ := |Posγ| , nγ :=
∣∣∣Negγ∣∣∣ , zγ := |Zeroγ| .

As a result, we will obtain three forms of inequalities: Ak′ ≤ α, Bj′ ≥ α and C ≥ 0 that
characterise the valuations of S i (p, v):

. ∀j ∈ Posg,
−ϕ(g)

j (v)
S

(g)
j

≤ α and
−ϕ(g)

j (v + p)
S

(g)
j

≤ α
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. ∀j ∈ Negg,
−ϕ(g)

j (v)
S

(g)
j

≥ α and
−ϕ(g)

j (v + p)
S

(g)
j

≥ α

. ∀j ∈ Zerog, ϕ(g)
j (v) ≥ 0 and ϕ(g)

j (v + p) ≥ 0

. ∀k ∈ Posi,
−ϕk (v [Cr ← 0])

Sk
≤ α and −ϕk (v + p [Cr ← 0])

Sk
≤ α

. ∀k ∈ Negi,
−ϕk (v [Cr ← 0])

Sk
≥ α and −ϕk (v + p [Cr ← 0])

Sk
≥ α

. ∀k ∈ Zeroi, ϕk (v [Cr ← 0]) ≥ 0 and ϕk (v + p [Cr ← 0]) ≥ 0

We can eliminate α by writing for every j′, k′: Ak′ ≤ Bj′ and C ≥ 0. We obtain
2 (zg + zi) + 4 (pg + pi) (ng + ni) inequalities. As a result, we can compute S i (p, `) with
at most 2 (zg + zi) + 4 (pg + pi) (ng + ni) inequalities.

Then, the binary permissiveness function can be computed by the Algorithm 5.

Data: A timed automaton A, a location `0, a target location `f and a
threshold p

Result: S (p, `0)
1 Compute S0 (p, `f ) ;
2 `← predecessor of `f ;
3 for i← 1 to d`0 do
4 Compute S i (p, `) with the algorithm presented in subsection 7.1.3.2 ;
5 `← predecessor of `;
6 end
7 return Sd`0 (p, `)

Algorithm 5: Computation of S (p, `0).

As a result, the binary permissiveness can be computed in double-exponential time.
We state the exact complexity in Theorem 7.7
Theorem 7.7
LetA be a linear timed automaton with n clocks, ` be a location and p be a threshold.
Let us denote cg the maximal number of inequalities defining any guard of A.
The polyhedron Sd`0 (p, `) can be computed in time O

(
(4cg)2d`

)
time and be rep-

resented with at most O
(
(4cg)2d`

)
linear inequalities.
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7.2 Levelled permissiveness

Now, let us present the levelled permissiveness function. The aim of this function is to
state to which interval the permissiveness function of a given configuration belongs among
these intervals: ]−∞, p0[, [p0, p1[ , · · · , [pm,+∞[. Therefore, the levelled permissiveness
function provides an approximate value of the permissiveness function but its precisions is
known and controlled by definition. Let us first present formally the levelled permissiveness
function in Definition 7.8.
Definition 7.8: Levelled permissiveness function

Let us consider a timed automaton A and a finite set of m + 1 positive thresholds
P = (pi)0≤i≤m where m ∈ N and for any i ∈ J0,m − 1K, pi < pi+1. The levelled
permissiveness function of a configuration (`, v) is denoted Permlvl,P and is defined
as follows:

. Permlvl,P (`, v) = −∞ if Perm (`, v) < p0

. For any integer i ∈ J0,m− 1K, Permlvl,P (`, v) = pi if Perm (`, v) ∈ [pi, pi+1[.

. Permlvl,P (`, v) = pm if Perm (`, v) ≥ pm.

Let us give an example of a levelled permissiveness function of the timed automaton
presented in Figure 2.10 in Figure 7.2 for the set of thresholds

(
0, 1

2 , 1
)
. This example

can be computed easily with the binary permissiveness function presented in Figure 7.1.

x

y

1 2

1

2
−∞

0

1/2
1

Figure 7.2 – The levelled permissiveness of the timed automaton of Figure 2.10, with the
thresholds 0, 1

2 and 1.

In order to have a exact control of the precision, and to compute the set of winning
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configurations, we usually set p0 to 0. An obvious intuition is that we can compute the
levelled permissiveness by checking if the binary permissiveness of all the thresholds are
equal to 0 or 1. We can directly link the binary and permissiveness function.

As with the binary permissiveness function, let us formally state the problem of com-
puting the levelled permissiveness function in Definition 7.9.
Definition 7.9: Maximal-levelled-permissiveness problem

Given a timed automatonA, a set of thresholds P and an initial configuration (`0, v0),
the maximal-levelled-permissiveness problem asks to compute Permlvl,P (`0, v0).

Thanks to the Algorithm 5 presented in Section 7.1.3, we can conclude on the com-
plexity of the problem stated in Definition 7.9 for linear timed automata:
Theorem 7.10
Let A be a linear timed automaton with n clocks, ` be a location and P = (pi)0≤i≤m

be a set of m+1 thresholds. The maximal-levelled-permissiveness problem of Defini-
tion 7.9 can be solved in O

(
(m+ 1) · (4cg)2d`

)
time where cg is the maximal number

of inequalities defining any guards of A

Proof of Theorem 7.10. By definition, the three following statements hold:

1. Permlvl,P (`, v) = −∞ if and only if Binp0 (`, v) = 0.

2. For i ∈ J0,m−1K, Permlvl,P (`, v) = pi if and only if Binpi (`, v) = 1 and Binpi+1 (`, v) =
0.

3. Permlvl,P (`, v) = pm if and only if Binpm (`, v) = 1.

That gives us an immediate algorithm to compute the levelled permissiveness function
thanks to the Algorithm 5 that computes the binary permissiveness functions. Indeed,
for every threshold p, in a increasing order, we compute S (p, `) in order to compute the
levelled permissiveness function.

Conclusion

In this chapter, we presented a new approach where we compute an approximate value
of the permissiveness function with a more efficient algorithm than the symbolic one
proposed in Chapter 5. We presented two algorithms, both symbolic (i.e. they compute the
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function for any arbitrary valuation). The first one computes the binary permissiveness
function, that values 1 with the permissiveness function is greater than a threshold. The
algorithm we proposed can be executed in double exponential time (in O

(
(4cg)2d`

)
time).

The second one computes the levelled permissiveness function: this function is a
step function with m+ 1 thresholds and it computes between which couple of thresholds
the permissiveness function is. The main advantage of this approach is its control of the
precision and the complexity of its algorithm. Indeed, when stating that the permissiveness
is between two threshold pi and pi+1, the approximation we make is at most pi+1 − pi.
In addition, our algorithm to compute the levelled function is linear with respect to the
number of thresholds so adding precision is not the most costly part of the algorithm.
The algorithm to compute the levelled function can be executed in double exponential
time too (in O

(
(m+ 1) · (4cg)2d`

)
time).

Nevertheless, we could only propose an algorithm for linear timed automata. Inter-
esting future works would be to extend our approach to acyclic and more general timed
automata, and to implement our work in Python with pplpy.
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CONCLUSION

In this thesis, we studied the robustness of reachability of timed automata under per-
turbations of delays. The timed automata we studied take two forms: one with classical
guards and one with polyhedral guards, a more general case. The aim of this thesis is
to compute the permissiveness of a timed automaton for arbitrary or fixed configuration.
The permissiveness computes the maximal imprecision on delays that can be admitted
while reaching a goal location of the timed automaton. We define our semantics with a
turn-based game with a player that aims to maximise the enabled imprecision and an
opponent that aims to minimise it.

We had several approaches in this thesis, that we will detail further in the following
paragraphs. We first symbolically compute the exact permissiveness of any location and
valuation of a timed automaton. Faced with fairly high time complexity results, we looked
at ways to simplify our problem and the algorithms used. We proposed two approaches.
The first one was to compute an approximate value of the permissiveness function, for a
fixed configuration. The second one was to simplify the computed function, in order to
minimise the size of the parameters which make our complexity grow. This conclusion
chapter is organised as follows: we first summarise the contributions we have made and
then expose the current and future works that can improve our current work.

Contributions

A first exact algorithm: permissiveness algorithm

The first algorithm we propose is a backward symbolic algorithm that computes the
permissiveness function. The principle is to compute optimal strategies for the player
and the opponent. The algorithm we proposed covers the cases of linear and acyclic
timed automata and games. Nevertheless, the worst-case complexity we provided was
non-elementary time for acyclic timed automata. The complexity depends on the maximal
number of inequalities of guards and grows with the number of cells used to represent
our permissiveness as piecewise affine functions. In order to give a proof-of-concept and
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to study its runtime on several examples, we implemented this algorithm in Python for
linear timed automata. The results we obtain were that our implementation suffers from
over-tilling and the runtime can grow exponentially when dealing with more than two
clocks.

To tackle these issues, we proposed two other approaches.

A forward approximate approach: numerical algorithm

Our second approach is a numeric approach, that numerically computes an approximate
value of the permissiveness by sampling the intervals and delays. Our algorithm com-
putes an approximate value of the permissiveness function of a timed automaton A in at

most O
(B · M (A)

s

)d`
 for acyclic timed automata and O

(
(2 ·B)d`

)
for linear timed

automata, where B := max
(M (A)

s

)2

, n

 and n is the number of clocks,M (A) is the

maximal constraint of the timed automaton, s is the minimum between the sampling step
of the delays and the sampling step of the intervals and d` is the maximal distance to `.

This approach was implemented in Python and provided quite accurate results, where
the error seems to decrease as the sampling step decreases. Nevertheless, its stability is not
proven and we did not manage to bound the error made by computing the approximate
value of the permissiveness.

Despite the error made by the algorithm, the strength of this forward numerical ap-
proach is that no a priori knowledge of the strategy of the player and the opponent is
needed to run this algorithm. Therefore it can be an interesting tool to study robustness
for other models of timed automata.

A symbolic approximate approach: levelled algorithm

Our third approach is a symbolic one. Our goal was to reduce the number of cells used to
represent our functions, as the complexity of the symbolic computation depends on the
number of cells that represent the permissiveness functions.

We presented two functions that give an approximate value of the permissiveness
function. The first one, the binary permissiveness function, checks if the permissiveness
function is greater than a fixed threshold. The levelled permissiveness is a step function
that partitions R+ into a partition of m+1 left-closed right-open intervals ([si, si+1[)0≤i≤m
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with sm+1 = +∞, and takes the value si when the permissiveness function takes values
in the interval [si, si+1[. The main advantage of levelled permissiveness is to provide an
approximate symbolic value of the permissiveness with a controlled precision.

We give an algorithm to compute the binary and the levelled permissiveness functions
for linear timed automata and show that it can be computed in time respectively at most
O
(
(4cg)2d`

)
and O

(
(m+ 1) · (4cg)2d`

)
where cg is the maximal number of inequalities

used to describe any guard of the timed automaton and d` is the maximal distance of `.
The complexity of these problems depends on many parameters. The main advantage

of this algorithm is that, for linear timed automata, the binary permissiveness function
can be represented by a unique polyhedron and that the computation of the levelled
permissiveness function is linear with respect to the number of thresholds used. Neverthe-
less, theses algorithms currently only cover the case of linear timed automata. Indeed, the
ability to represent the binary permissiveness with only one polyhedron does not holds in
general for acyclic timed automata and our algorithm relies on this property.

Conclusion and comparison

These three approaches cover different types of timed automata. The implementations
provided only cover linear timed automata. They are summed up in the Table 7.1. The
second column specifies if our algorithm computes the permissiveness for a fixed configura-
tion (‘Numeric’) or for all possible configurations (‘Symbolic’). The third column specifies
if the result is an exact result or an approximation. The fourth and sixth columns specify
respectively if the algorithm covers the case of linear or acyclic timed automaton, and the
fifth and seventh columns indicate if these cases were implemented.

Algorithm Type Exact Linear Impl. Acyclic Impl.
Permissiveness algorithm Symbolic Yes Yes Yes Yes No
Numerical algorithm Numeric No Yes Yes Yes Yes
Levelled algorithm Symbolic No Yes No No No

Table 7.1 – Comparison of our contributions.

Ongoing and future work

Our current work can be extended in several ways. We will explain in this section what
are our ongoing and future works for each contribution.
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Permissiveness algorithm

Regarding our algorithm presented in Chapter 5, it covers the cases of acyclic timed auto-
mata and games, but our implementation only covers the case of linear timed automata.
Our first ongoing work is to extend its implementation to acyclic timed automata. To
do that, we need to implement a way to check the equality between two piecewise affine
functions, independently of the tiling of polyhedra of each piecewise affine functions. Our
second ongoing work is to optimise the representation of piecewise affine functions by mer-
ging the cells that are associated with the same affine functions. Indeed, our algorithm
provides a representation with an over-tiling of the cells of the permissiveness function.
To tackle this issue, our goal is to gather all the cells associated with the same affine
function and to state whether the union of their polyhedra is a polyhedron. This is a
non-trivial question as the union of several polyhedra is not convex in general. We plan to
compute, for each group of cells, the convex hull of these polyhedra and associate this set
to the affine function. Then, we want to compare the obtained piecewise affine function to
the original computed permissiveness function, to check whether they are equal. If they
do, the number of cells can be reduced. These steps are illustrated in Figure 7.3. If not,
we keep the over-tiling representation. For instance in Figure 7.4, the computation of the
convex hull for the affine function (x, y) 7→ −x+ 1

2 is not the union of the cell 0, 1, 2, 3, 4, 5
and 13.

An important future work is also to refine the complexity of our algorithm. We proved
that it runs in non-elementary time but we may have not exploited all the properties of
our constraints for instance. These following possibilities should be considered for future
works.

. Look for an example where the computation time is non-elementary.

. Improve our algorithm when computing the maximum of piecewise affine functions,
when iterating of the couple of cells or refining the tiling of polyhedra.

Other future works for this algorithm would be to tackle the case of cycles. We were not
able to prove that the sequence of suboptimal functions converges in a finite number of step
to the permissiveness function when the timed automaton contains cycles. Our goal would
be to find a counter-example timed automaton where this sequence does not converge and
to find conditions where it converges in a finite number of steps. To study these conditions,
we want to run our implementation by tackling cycles as in the numerical implementation,
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(a) Permissiveness function computed by our algorithm in Section 6.2.4.1.

x

y

0 1 2
0

1

0

1

3

2

Permissiveness Associated cells
(−x+ 2) /2 0
(−y + 1) /1 1
(x− y + 1) /2 2
(2) /3 3

(b) Obtained piecewise affine function if computing the convex hull for each affine functions.

Figure 7.3 – Convex hull computation results.
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Figure 7.4 – Example where the computation of convex hull will not work.

to observe the behaviour of the sequence of suboptimal permissive functions when we
increase the number of allowed cycles.

Numerical algorithm

Regarding our numerical approach, our major future work is to bound the obtained error
when computing our permissiveness function, since it is an approximation. Our experi-
mental result on the precision were encouraging and for each example (for both linear
and acyclic timed automata) the value of the error curve was cancelled periodically. In
all our examples, the error curves have the same shape, with decreasing oscillations. We
would study the shape of the oscillations in order to find how to bound the value of the
obtained error when computing our permissiveness function.

Another future work would be to extend this implementation to more general models.
For instance the guards used were classical guards. Extending it to polyhedral guards
would enable us to provide the same JSON formats to run all our implements on the
same timed automaton, for the sake of uniformity.
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Levelled algorithm

Finally, regarding the binary and levelled permissiveness, our main future work are the
following ones. First, we would like to extend our algorithm to acyclic timed automata, and
possibly timed automata containing cycles. Secondly, we aim to implement our algorithm
with the pplpy library. Implementing our current binary and levelled algorithms will
be easy for linear timed automata, as these algorithms use the same procedures as the
implementation of the permissiveness algorithm, presented in Section 6.2. The main issue
of these future works is to extend it to acyclic timed automata. Indeed, a very useful
property does not hold in the general case and we were unable to tackle this issue yet.

Other approaches

Our future work also consists in proposing new approaches to compute the permissiveness
of timed automata.

First, we could study other ways to approximate and reduce the number of cells
that represent the permissiveness function. An interesting approach would be to avoid
computing cells when they could be neglected: we aim to quantify the size of each cells,
fix a step ε and neglect the cells whose size is smaller than ε (by merging them with
another cell). Indeed, given a location `, as the permissiveness function is 2-Lipschitz, if
the distance between two valuations v and v′ is smaller than ε, the difference between
the permissiveness of (`, v) and (`, v′) is smaller than 2ε. This approach would enable
us to bound the number of used cells and maybe control the approximation made when
computing the permissiveness. A main issue would be to decide how to quantify the size
of a cell, how to neglect a cell, and how to bound the approximation made at each step.

We illustrate in Figure 7.5 how we would neglect a cell in a simple example. Let us
consider the function in Figure 7.5a is 2-Lipschitz and suppose that the size of the cell
associated to f is smaller than ε, in our example merging the cell associated to x − y

and to f gives us an approximation of the piecewise affine function where the error made
is smaller than 2ε. Nevertheless the general case might be complicated in order to keep
polyhedra sets to represent cells.

Indeed, if we bound the error made by computing the ‘ε-approximation’ of a piecewise-
affine function, an important issue is to compute the error made by considering an ap-
proximation of the permissiveness function for the possible successors of a configuration
when computing the strategies of the player and of the opponent.
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(a) An example of a piecewise-affine func-
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(b) Supressing the cell associated to f .

Figure 7.5 – An intuition of the ‘ε-approximation’.

Secondly, we could study different ways to compute the permissiveness functions by
considering the functions presented in Section 2.2.3: associate a weight to each transition
for instance could give more importance to specific transitions.

236



BIBLIOGRAPHY

[ABG+08] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund and K. Narayan
Kumar. Distributed timed automata with independently evolving clocks, in
Franck van Breugel and Marsha Chechik, editors, Concurrency Theory, 19th
International Conference, (CONCUR 2008) Toronto, Canada. Volume 5201
of Lecture Notes in Computer Science, pages 82–97, Springer, August 2008,
doi: 10.1007/978-3-540-85361-9\_10, url: https://doi.org/10.1007/
978-3-540-85361-9%5C_10.

[ABG+14] S. Akshay, Benedikt Bollig, Paul Gastin, Madhavan Mukund and K. Narayan
Kumar. Distributed timed automata with independently evolving clocks,
Fundamenta Informaticae, 130(4):377–407, 2014, doi: 10.3233/FI-2014-
996, url: https://doi.org/10.3233/FI-2014-996.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata, Theoretical Com-
puter Science, 126(2):183–235, April 1994, doi: 10.1016/0304-3975(94)
90010-8, url: https://doi.org/10.1016/0304-3975(94)90010-8.

[ADS86] Bowen Alpern, Alan J. Demers and Fred B. Schneider. Safety without stut-
tering, Information Processing Letters, 23(4):177–180, November 1986, doi:
10.1016/0020-0190(86)90132-8, url: https://doi.org/10.1016/0020-
0190(86)90132-8.

[AFK+12] Étienne André, Laurent Fribourg, Ulrich Kühne and Romain Soulat. IMIT-
ATOR 2.5: A tool for analyzing robustness in scheduling problems, in Di-
mitra Giannakopoulou and Dominique Méry, editors, Formal Methods - 18th
International Symposium, (FM 2012), Paris, France. Volume 7436 of Lec-
ture Notes in Computer Science, pages 33–36, Springer, August 2012, doi:
10.1007/978-3-642-32759-9\_6, url: https://doi.org/10.1007/978-
3-642-32759-9%5C_6.

[AKY07] Parosh Aziz Abdulla, Pavel Krcál and Wang Yi. Sampled universality of
timed automata, in Helmut Seidl, editor, Foundations of Software Science
and Computational Structures, 10th International Conference, (FOSSACS

237

https://doi.org/10.1007/978-3-540-85361-9\_10
https://doi.org/10.1007/978-3-540-85361-9%5C_10
https://doi.org/10.1007/978-3-540-85361-9%5C_10
https://doi.org/10.3233/FI-2014-996
https://doi.org/10.3233/FI-2014-996
https://doi.org/10.3233/FI-2014-996
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0020-0190(86)90132-8
https://doi.org/10.1016/0020-0190(86)90132-8
https://doi.org/10.1016/0020-0190(86)90132-8
https://doi.org/10.1007/978-3-642-32759-9\_6
https://doi.org/10.1007/978-3-642-32759-9%5C_6
https://doi.org/10.1007/978-3-642-32759-9%5C_6


2007), Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software (ETAPS 2007), Braga, Portugal. Volume 4423 of Lecture
Notes in Computer Science, pages 2–16, Springer, March 2007, doi: 10.
1007/978-3-540-71389-0\_2, url: https://doi.org/10.1007/978-3-
540-71389-0%5C_2.

[AKY10] Parosh Aziz Abdulla, Pavel Krcál and Wang Yi. Sampled semantics of timed
automata, Logical Methods in Computer Science, 6(3), September 2010, url:
http://arxiv.org/abs/1007.2783.

[And09] Étienne André. IMITATOR: A tool for synthesizing constraints on timing
bounds of timed automata, in Martin Leucker and Carroll Morgan, editors,
Theoretical Aspects of Computing - 6th International Colloquium (ICTAC
2009), Kuala Lumpur, Malaysia. Volume 5684 of Lecture Notes in Computer
Science, pages 336–342, Springer, August 2009, doi: 10.1007/978-3-642-
03466- 4\_22, url: https://doi.org/10.1007/978- 3- 642- 03466-
4%5C_22.

[And10] Étienne André. IMITATOR II: A tool for solving the good parameters prob-
lem in timed automata, in Yu-Fang Chen and Ahmed Rezine, editors, 12th
International Workshop on Verification of Infinite-State Systems (INFINITY
2010), Singapore, Singapore. Volume 39 of EPTCS, pages 91–99, September
2010, doi: 10.4204/EPTCS.39.7, url: https://doi.org/10.4204/EPTCS.
39.7.

[And21] Étienne André. IMITATOR 3: synthesis of timing parameters beyond decid-
ability, in Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided
Verification - 33rd International Conference (CAV 2021), Virtual Event,
Part I, volume 12759 of Lecture Notes in Computer Science, pages 552–
565, Springer, July 2021, doi: 10.1007/978-3-030-81685-8\_26, url:
https://doi.org/10.1007/978-3-030-81685-8%5C_26.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness, Information Pro-
cessing Letters, 21(4):181–185, October 1985, doi: 10.1016/0020-0190(85)
90056-0, url: https://doi.org/10.1016/0020-0190(85)90056-0.

[AS87] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness, Dis-
tributed Computing, 2(3):117–126, September 1987, doi: 10.1007/BF01782772,
url: https://doi.org/10.1007/BF01782772.

238

https://doi.org/10.1007/978-3-540-71389-0\_2
https://doi.org/10.1007/978-3-540-71389-0\_2
https://doi.org/10.1007/978-3-540-71389-0%5C_2
https://doi.org/10.1007/978-3-540-71389-0%5C_2
http://arxiv.org/abs/1007.2783
https://doi.org/10.1007/978-3-642-03466-4\_22
https://doi.org/10.1007/978-3-642-03466-4\_22
https://doi.org/10.1007/978-3-642-03466-4%5C_22
https://doi.org/10.1007/978-3-642-03466-4%5C_22
https://doi.org/10.4204/EPTCS.39.7
https://doi.org/10.4204/EPTCS.39.7
https://doi.org/10.4204/EPTCS.39.7
https://doi.org/10.1007/978-3-030-81685-8\_26
https://doi.org/10.1007/978-3-030-81685-8%5C_26
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772


[ATM05] Rajeev Alur, Salvatore La Torre and P. Madhusudan. Perturbed timed auto-
mata, in Manfred Morari and Lothar Thiele, editors, Hybrid Systems: Com-
putation and Control, 8th International Workshop (HSCC 2005), Zurich,
Switzerland. Volume 3414 of Lecture Notes in Computer Science, pages 70–
85, Springer, March 2005, doi: 10.1007/978-3-540-31954-2\_5, url:
https://doi.org/10.1007/978-3-540-31954-2%5C_5.

[ATP01] Rajeev Alur, Salvatore La Torre and George J. Pappas. Optimal paths in
weighted timed automata, in Maria Domenica Di Benedetto and Alberto L.
Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control,
4th International Workshop (HSCC 2001), Rome, Italy. Volume 2034 of Lec-
ture Notes in Computer Science, pages 49–62, Springer, March 2001, doi:
10.1007/3-540-45351-2\_8, url: https://doi.org/10.1007/3-540-
45351-2%5C_8.

[BDL+06] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkans-
son, Paul Pettersson, Wang Yi and Martijn Hendriks. UPPAAL 4.0, in Third
International Conference on the Quantitative Evaluation of Systems (QEST
2006), Riverside, California, USA, pages 125–126, IEEE Computer Society,
September 2006, doi: 10.1109/QEST.2006.59, url: https://doi.org/10.
1109/QEST.2006.59.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis
and Sergio Yovine. Kronos: A model-checking tool for real-time systems, in
Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, 10th
International Conference, (CAV ’98), Vancouver, BC, Canada. Volume 1427
of Lecture Notes in Computer Science, pages 546–550, Springer, June 1998,
doi: 10.1007/BFb0028779, url: https://doi.org/10.1007/BFb0028779.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand Larsen,
Paul Pettersson, Judi Romijn and Frits W. Vaandrager. Minimum-cost reach-
ability for priced timed automata, in Maria Domenica Di Benedetto and Al-
berto L. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and
Control, 4th International Workshop, (HSCC 2001), Rome, Italy.Volume 2034
of Lecture Notes in Computer Science, pages 147–161, Springer, March 2001,
doi: 10.1007/3-540-45351-2\_15, url: https://doi.org/10.1007/3-
540-45351-2%5C_15.

239

https://doi.org/10.1007/978-3-540-31954-2\_5
https://doi.org/10.1007/978-3-540-31954-2%5C_5
https://doi.org/10.1007/3-540-45351-2\_8
https://doi.org/10.1007/3-540-45351-2%5C_8
https://doi.org/10.1007/3-540-45351-2%5C_8
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1109/QEST.2006.59
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1007/BFb0028779
https://doi.org/10.1007/3-540-45351-2\_15
https://doi.org/10.1007/3-540-45351-2%5C_15
https://doi.org/10.1007/3-540-45351-2%5C_15


[BFM15] Patricia Bouyer, Erwin Fang and Nicolas Markey. Permissive strategies in
timed automata and games, in Gudmund Grov and Andrew Ireland, editors,
Proceedings of the 15th International Workshop on Automated Verification
of Critical Systems (AVOCS’15), Edimburgh, UK. Volume 72 of Electronic
Communications of the EASST, European Association of Software Science
and Technology, September 2015, doi: 10.14279/tuj.eceasst.72.1015.

[BFT01] Alberto Bemporad, Komei Fukuda and Fabio Danilo Torrisi. Convexity re-
cognition of the union of polyhedra, Computational Geometry, 18(3):141–
154, April 2001, doi: 10.1016/S0925- 7721(01)00004- 9, url: https:
//doi.org/10.1016/S0925-7721(01)00004-9.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking, MIT
Press, 2008, isbn: 978-0-262-02649-9.

[BLM+11] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, Ocan Sankur and Claus R.
Thrane. Timed automata can always be made implementable, in Joost-Pieter
Katoen and Barbara König, editors, Concurrency Theory - 22nd Interna-
tional Conference (CONCUR 2011), Aachen, Germany. Volume 6901 of Lec-
ture Notes in Computer Science, pages 76–91, Springer, September 2011, doi:
10.1007/978-3-642-23217-6\_6, url: https://doi.org/10.1007/978-
3-642-23217-6%5C_6.

[BMR+19] Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier and Ocan
Sankur. Robust controller synthesis in timed büchi automata: a symbolic
approach, in Işil Dillig and Serdar Taşiran, editors, 31st International Con-
ference on Computer Aided Verification (CAV’19), New York City, NY,
USA. Volume 11561 of Lecture Notes in Computer Science, pages 572–590,
Springer-Verlag, July 2019, doi: 10.1007/978-3-030-25540-4_33.

[BMR06] Patricia Bouyer, Nicolas Markey and Pierre-Alain Reynier. Robust model-
checking of linear-time properties in timed automata, in José R. Correa,
Alejandro Hevia and Marcos A. Kiwi, editors, Theoretical Informatics, 7th
Latin American Symposium (LATIN 2006), Valdivia, Chile. Volume 3887 of
Lecture Notes in Computer Science, pages 238–249, Springer, March 2006,
doi: 10.1007/11682462\_25, url: https://doi.org/10.1007/11682462%
5C_25.

240

https://doi.org/10.14279/tuj.eceasst.72.1015
https://doi.org/10.1016/S0925-7721(01)00004-9
https://doi.org/10.1016/S0925-7721(01)00004-9
https://doi.org/10.1016/S0925-7721(01)00004-9
https://doi.org/10.1007/978-3-642-23217-6\_6
https://doi.org/10.1007/978-3-642-23217-6%5C_6
https://doi.org/10.1007/978-3-642-23217-6%5C_6
https://doi.org/10.1007/978-3-030-25540-4_33
https://doi.org/10.1007/11682462\_25
https://doi.org/10.1007/11682462%5C_25
https://doi.org/10.1007/11682462%5C_25


[BMR08] Patricia Bouyer, Nicolas Markey and Pierre-Alain Reynier. Robust analysis
of timed automata via channel machines, in Roberto M. Amadio, editor,
Foundations of Software Science and Computational Structures, 11th Inter-
national Conference (FOSSACS 2008), Held as Part of the Joint European
Conferences on Theory and Practice of Software (ETAPS 2008), Budapest,
Hungary. Volume 4962 of Lecture Notes in Computer Science, pages 157–
171, Springer, March 2008, doi: 10.1007/978-3-540-78499-9\_12, url:
https://doi.org/10.1007/978-3-540-78499-9%5C_12.

[BMS11] Patricia Bouyer, Nicolas Markey and Ocan Sankur. Robust model-checking
of timed automata via pumping in channel machines, in Uli Fahrenberg
and Stavros Tripakis, editors, Formal Modeling and Analysis of Timed Sys-
tems - 9th International Conference (FORMATS 2011), Aalborg, Denmark.
Volume 6919 of Lecture Notes in Computer Science, pages 97–112, Springer,
September 2011, doi: 10.1007/978- 3- 642- 24310- 3\_8, url: https:
//doi.org/10.1007/978-3-642-24310-3%5C_8.

[BMS12] Patricia Bouyer, Nicolas Markey and Ocan Sankur. Robust reachability in
timed automata: A game-based approach, in Artur Czumaj, Kurt Mehlhorn,
Andrew M. Pitts and Roger Wattenhofer, editors, Automata, Languages, and
Programming - 39th International Colloquium (ICALP 2012), Warwick, UK,
Part II, volume 7392 of Lecture Notes in Computer Science, pages 128–140,
Springer, July 2012, doi: 10.1007/978-3-642-31585-5\_15, url: https:
//doi.org/10.1007/978-3-642-31585-5%5C_15.

[BMS13] Patricia Bouyer, Nicolas Markey and Ocan Sankur. Robustness in timed
automata, in Parosh Aziz Abdulla and Igor Potapov, editors, Proceedings
of the 7th Workshop on Reachability Problems in Computational Models
(RP’13), Uppsala, Sweden. Volume 8169 of Lecture Notes in Computer Sci-
ence, pages 1–18, Springer-Verlag, September 2013, doi: 10.1007/978-3-
642-41036-9_1.

[BMS15] Patricia Bouyer, Nicolas Markey and Ocan Sankur. Robust reachability in
timed automata and games: A game-based approach, Theoretical Computer
Science, 563:43–74, January 2015, doi: 10.1016/j.tcs.2014.08.014, url:
https://doi.org/10.1016/j.tcs.2014.08.014.

241

https://doi.org/10.1007/978-3-540-78499-9\_12
https://doi.org/10.1007/978-3-540-78499-9%5C_12
https://doi.org/10.1007/978-3-642-24310-3\_8
https://doi.org/10.1007/978-3-642-24310-3%5C_8
https://doi.org/10.1007/978-3-642-24310-3%5C_8
https://doi.org/10.1007/978-3-642-31585-5\_15
https://doi.org/10.1007/978-3-642-31585-5%5C_15
https://doi.org/10.1007/978-3-642-31585-5%5C_15
https://doi.org/10.1007/978-3-642-41036-9_1
https://doi.org/10.1007/978-3-642-41036-9_1
https://doi.org/10.1016/j.tcs.2014.08.014
https://doi.org/10.1016/j.tcs.2014.08.014


[CHP11] Krishnendu Chatterjee, Thomas A. Henzinger and Vinayak S. Prabhu. Timed
parity games: complexity and robustness, Logical Methods in Computer Sci-
ence, 7(4), December 2011, doi: 10.2168/LMCS-7(4:8)2011, url: https:
//doi.org/10.2168/LMCS-7(4:8)2011.

[CHR02] Franck Cassez, Thomas A. Henzinger and Jean-François Raskin. A compar-
ison of control problems for timed and hybrid systems, in Claire J. Tom-
lin and Mark R. Greenstreet, editors, Hybrid Systems: Computation and
Control, 5th International Workshop (HSCC 2002), Stanford, CA, USA.
Volume 2289 of Lecture Notes in Computer Science, pages 134–148, Springer,
March 2002, doi: 10.1007/3-540-45873-5\_13, url: https://doi.org/
10.1007/3-540-45873-5%5C_13.

[CJM+20] Emily Clement, Thierry Jéron, Nicolas Markey and David Mentré. Comput-
ing maximally-permissive strategies in acyclic timed automata, in Nathalie
Bertrand and Nils Jansen, editors, Formal Modeling and Analysis of Timed
Systems - 18th International Conference (FORMATS 2020), Vienna, Aus-
tria. Volume 12288 of Lecture Notes in Computer Science, pages 111–126,
Springer, September 2020, doi: 10.1007/978-3-030-57628-8\_7, url:
https://doi.org/10.1007/978-3-030-57628-8%5C_7.

[DDM+04] Martin De Wulf, Laurent Doyen, Nicolas Markey and Jean-François Raskin.
Robustness and implementability of timed automata, in Yassine Lakhnech
and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems, Joint International Conferences on Formal
Modelling and Analysis of Timed Systems, (FORMATS 2004) and Formal
Techniques in Real-Time and Fault-Tolerant Systems, (FTRTFT 2004), Gren-
oble, France. Volume 3253 of Lecture Notes in Computer Science, pages 118–
133, Springer, September 2004, doi: 10.1007/978-3-540-30206-3\_10,
url: https://doi.org/10.1007/978-3-540-30206-3%5C_10.

[DDM+08] Martin De Wulf, Laurent Doyen, Nicolas Markey and Jean-François Raskin.
Robust safety of timed automata, Formal Methods in System Design, 33(1-
3):45–84, September 2008, doi: 10.1007/s10703-008-0056-7, url: https:
//doi.org/10.1007/s10703-008-0056-7.

[DDR04] Martin De Wulf, Laurent Doyen and Jean-François Raskin. Almost ASAP
semantics: from timed models to timed implementations, in Rajeev Alur and

242

https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.2168/LMCS-7(4:8)2011
https://doi.org/10.1007/3-540-45873-5\_13
https://doi.org/10.1007/3-540-45873-5%5C_13
https://doi.org/10.1007/3-540-45873-5%5C_13
https://doi.org/10.1007/978-3-030-57628-8\_7
https://doi.org/10.1007/978-3-030-57628-8%5C_7
https://doi.org/10.1007/978-3-540-30206-3\_10
https://doi.org/10.1007/978-3-540-30206-3%5C_10
https://doi.org/10.1007/s10703-008-0056-7
https://doi.org/10.1007/s10703-008-0056-7
https://doi.org/10.1007/s10703-008-0056-7


George J. Pappas, editors, Hybrid Systems: Computation and Control, 7th
International Workshop (HSCC 2004), Philadelphia, PA, USA. Volume 2993
of Lecture Notes in Computer Science, pages 296–310, Springer, March 2004,
doi: 10.1007/978-3-540-24743-2\_20, url: https://doi.org/10.1007/
978-3-540-24743-2%5C_20.

[DDR05] Martin De Wulf, Laurent Doyen and Jean-François Raskin. Almost ASAP
semantics: from timed models to timed implementations, Formal Aspects of
Computating, 17(3):319–341, August 2005, doi: 10 . 1007 / s00165 - 005 -
0067-8, url: https://doi.org/10.1007/s00165-005-0067-8.

[Dim07] Catalin Dima. Dynamical properties of timed automata revisited, in Jean-
François Raskin and P. S. Thiagarajan, editors, Formal Modeling and Ana-
lysis of Timed Systems, 5th International Conference (FORMATS 2007),
Salzburg, Austria.Volume 4763 of Lecture Notes in Computer Science, pages 130–
146, Springer, October 2007, doi: 10.1007/978-3-540-75454-1\_11, url:
https://doi.org/10.1007/978-3-540-75454-1%5C_11.

[DK06] Conrado Daws and Piotr Kordy. Symbolic robustness analysis of timed auto-
mata, in Eugene Asarin and Patricia Bouyer, editors, Formal Modeling and
Analysis of Timed Systems, 4th International Conference (FORMATS 2006),
Paris, France.Volume 4202 of Lecture Notes in Computer Science, pages 143–
155, Springer, September 2006, doi: 10.1007/11867340\_11, url: https:
//doi.org/10.1007/11867340%5C_11.

[GHJ97] Vineet Gupta, Thomas A. Henzinger and Radha Jagadeesan. Robust timed
automata, in Oded Maler, editor, The 1997 International Workshop on Hy-
brid and Real-Time Systems (HART’97), volume 1201 of Lecture Notes in
Computer Science, pages 331–345, Springer-Verlag, March 1997.

[GLM+05] Guillaume Gardey, Didier Lime, Morgan Magnin and Olivier H. Roux. Romeo:
A tool for analyzing time petri nets, in Kousha Etessami and Sriram K.
Rajamani, editors, Computer Aided Verification, 17th International Confer-
ence (CAV 2005), Edinburgh, Scotland, UK. Volume 3576 of Lecture Notes
in Computer Science, pages 418–423, Springer, July 2005, doi: 10.1007/
11513988\_41, url: https://doi.org/10.1007/11513988%5C_41.

243

https://doi.org/10.1007/978-3-540-24743-2\_20
https://doi.org/10.1007/978-3-540-24743-2%5C_20
https://doi.org/10.1007/978-3-540-24743-2%5C_20
https://doi.org/10.1007/s00165-005-0067-8
https://doi.org/10.1007/s00165-005-0067-8
https://doi.org/10.1007/s00165-005-0067-8
https://doi.org/10.1007/978-3-540-75454-1\_11
https://doi.org/10.1007/978-3-540-75454-1%5C_11
https://doi.org/10.1007/11867340\_11
https://doi.org/10.1007/11867340%5C_11
https://doi.org/10.1007/11867340%5C_11
https://doi.org/10.1007/11513988\_41
https://doi.org/10.1007/11513988\_41
https://doi.org/10.1007/11513988%5C_41


[HR00] Thomas A. Henzinger and Jean-François Raskin. Robust undecidability of
timed and hybrid systems, in Nancy A. Lynch and Bruce H. Krogh, editors,
Hybrid Systems: Computation and Control, Third International Workshop
(HSCC 2000), Pittsburgh, PA, USA. Volume 1790 of Lecture Notes in Com-
puter Science, pages 145–159, Springer, March 2000, doi: 10.1007/3-540-
46430-1\_15, url: https://doi.org/10.1007/3-540-46430-1%5C_15.

[JR11] Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis
of flat timed automata, in Martin Hofmann, editor, Foundations of Soft-
ware Science and Computational Structures - 14th International Confer-
ence (FOSSACS 2011), Held as Part of the Joint European Conferences
on Theory and Practice of Software (ETAPS 2011), Saarbrücken, Germany.
Volume 6604 of Lecture Notes in Computer Science, pages 229–244, Springer,
March 2011, doi: 10.1007/978-3-642-19805-2\_16, url: https://doi.
org/10.1007/978-3-642-19805-2%5C_16.

[KP05] Pavel Krcál and Radek Pelánek. On sampled semantics of timed systems, in
Ramaswamy Ramanujam and Sandeep Sen, editors, Foundations of Software
Technology and Theoretical Computer Science, 25th International Confer-
ence, (FSTTCS 2005), Hyderabad, India. Volume 3821 of Lecture Notes in
Computer Science, pages 310–321, Springer, December 2005, doi: 10.1007/
11590156\_25, url: https://doi.org/10.1007/11590156%5C_25.

[LRS+09] Didier Lime, Olivier H. Roux, Charlotte Seidner and Louis-Marie Traonouez.
Romeo: A parametric model-checker for petri nets with stopwatches, in
Stefan Kowalewski and Anna Philippou, editors, Tools and Algorithms for
the Construction and Analysis of Systems, 15th International Conference
(TACAS 2009), Held as Part of the Joint European Conferences on Theory
and Practice of Software (ETAPS 2009), York, UK. Volume 5505 of Lec-
ture Notes in Computer Science, pages 54–57, Springer, March 2009, doi:
10.1007/978-3-642-00768-2\_6, url: https://doi.org/10.1007/978-
3-642-00768-2%5C_6.

[Mar11] Nicolas Markey. Robustness in real-time systems, in 6th IEEE International
Symposium on Industrial and Embedded Systems (SIES 2011). Vasteras,
Sweden. Pages 28–34, IEEE, June 2011, doi: 10.1109/SIES.2011.5953652,
url: https://doi.org/10.1109/SIES.2011.5953652.

244

https://doi.org/10.1007/3-540-46430-1\_15
https://doi.org/10.1007/3-540-46430-1\_15
https://doi.org/10.1007/3-540-46430-1%5C_15
https://doi.org/10.1007/978-3-642-19805-2\_16
https://doi.org/10.1007/978-3-642-19805-2%5C_16
https://doi.org/10.1007/978-3-642-19805-2%5C_16
https://doi.org/10.1007/11590156\_25
https://doi.org/10.1007/11590156\_25
https://doi.org/10.1007/11590156%5C_25
https://doi.org/10.1007/978-3-642-00768-2\_6
https://doi.org/10.1007/978-3-642-00768-2%5C_6
https://doi.org/10.1007/978-3-642-00768-2%5C_6
https://doi.org/10.1109/SIES.2011.5953652
https://doi.org/10.1109/SIES.2011.5953652


[ORS14] Youssouf Oualhadj, Pierre-Alain Reynier and Ocan Sankur. Probabilistic
robust timed games, in Paolo Baldan and Daniele Gorla, editors, Concur-
rency Theory - 25th International Conference (CONCUR 2014), Rome, Italy,
September 2-5, 2014. Volume 8704 of Lecture Notes in Computer Science,
pages 203–217, Springer, September 2014, doi: 10.1007/978-3-662-44584-
6\_15, url: https://doi.org/10.1007/978-3-662-44584-6%5C_15.

[Pur00] Anuj Puri. Dynamical properties of timed automata,Discrete Event Dynamic
Systems, 10(1-2):87–113, January 2000, doi: 10.1023/A:1008387132377,
url: https://doi.org/10.1023/A:1008387132377.

[Pur98] Anuj Puri. Dynamical properties of timed automata, in Anders P. Ravn and
Hans Rischel, editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, 5th International Symposium, (FTRTFT’98), Lyngby, Denmark.
Volume 1486 of Lecture Notes in Computer Science, pages 210–227, Springer,
September 1998, doi: 10.1007/BFb0055349, url: https://doi.org/10.
1007/BFb0055349.

[RPV17] Nima Roohi, Pavithra Prabhakar and Mahesh Viswanathan. Robust model
checking of timed automata under clock drifts, in Goran Frehse and Sayan
Mitra, editors, 20th International Conference on Hybrid Systems: Computa-
tion and Control (HSCC 2017), Pittsburgh, PA, USA. Pages 153–162, ACM,
April 2017, doi: 10.1145/3049797.3049821, url: https://doi.org/10.
1145/3049797.3049821.

[San13] Ocan Sankur. Shrinktech: A tool for the robustness analysis of timed auto-
mata, in Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification - 25th International Conference (CAV 2013), Saint Petersburg,
Russia. Volume 8044 of Lecture Notes in Computer Science, pages 1006–
1012, Springer, July 2013, doi: 10.1007/978-3-642-39799-8\_72, url:
https://doi.org/10.1007/978-3-642-39799-8%5C_72.

[SBM+13] Ocan Sankur, Patricia Bouyer, Nicolas Markey and Pierre-Alain Reynier.
Robust controller synthesis in timed automata, in Pedro R. D’Argenio and
Hernán C. Melgratti, editors, Concurrency Theory - 24th International Con-
ference, (CONCUR 2013), Buenos Aires, Argentina. Volume 8052 of Lec-
ture Notes in Computer Science, pages 546–560, Springer, August 2013, doi:

245

https://doi.org/10.1007/978-3-662-44584-6\_15
https://doi.org/10.1007/978-3-662-44584-6\_15
https://doi.org/10.1007/978-3-662-44584-6%5C_15
https://doi.org/10.1023/A:1008387132377
https://doi.org/10.1023/A:1008387132377
https://doi.org/10.1007/BFb0055349
https://doi.org/10.1007/BFb0055349
https://doi.org/10.1007/BFb0055349
https://doi.org/10.1145/3049797.3049821
https://doi.org/10.1145/3049797.3049821
https://doi.org/10.1145/3049797.3049821
https://doi.org/10.1007/978-3-642-39799-8\_72
https://doi.org/10.1007/978-3-642-39799-8%5C_72


10.1007/978-3-642-40184-8\_38, url: https://doi.org/10.1007/978-
3-642-40184-8%5C_38.

[SBM11] Ocan Sankur, Patricia Bouyer and Nicolas Markey. Shrinking timed auto-
mata, in Supratik Chakraborty and Amit Kumar, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2011), Mumbai, India, volume 13 of LIPIcs, pages 90–
102, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, December 2011, doi:
10.4230/LIPIcs.FSTTCS.2011.90, url: https://doi.org/10.4230/
LIPIcs.FSTTCS.2011.90.

[SBM14] Ocan Sankur, Patricia Bouyer and Nicolas Markey. Shrinking timed auto-
mata, Information and Computation, 234:107–132, February 2014, doi: 10.
1016/j.ic.2014.01.002, url: https://doi.org/10.1016/j.ic.2014.
01.002.

[Sch86] Alexander Schrijver. Theory of linear and integer programming, Wiley, New
York, NY, USA, June 1986.

[SFK08] Mani Swaminathan, Martin Fränzle and Joost-Pieter Katoen. The surpris-
ing robustness of (closed) timed automata against clock-drift, in Giorgio
Ausiello, Juhani Karhumäki, Giancarlo Mauri and C.-H. Luke Ong, edit-
ors, Fifth IFIP International Conference On Theoretical Computer Science
- (TCS 2008), IFIP 20th World Computer Congress, TC 1, Foundations
of Computer Science, Milano, Italy, volume 273 of IFIP, pages 537–553,
Springer, September 2008, doi: 10.1007/978-0-387-09680-3\_36, url:
https://doi.org/10.1007/978-0-387-09680-3%5C_36.

[SLD+09] Jun Sun, Yang Liu, Jin Song Dong and Jun Pang. PAT: towards flexible veri-
fication under fairness, in Ahmed Bouajjani and Oded Maler, editors, Com-
puter Aided Verification, 21st International Conference (CAV 2009), Gren-
oble, France. Volume 5643 of Lecture Notes in Computer Science, pages 709–
714, Springer, June 2009, doi: 10.1007/978-3-642-02658-4\_59, url:
https://doi.org/10.1007/978-3-642-02658-4%5C_59.

[Yov97] Sergio Yovine. KRONOS: A verification tool for real-time systems, Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):123–133,
January 1997, doi: 10.1007/s100090050009, url: https://doi.org/10.
1007/s100090050009.

246

https://doi.org/10.1007/978-3-642-40184-8\_38
https://doi.org/10.1007/978-3-642-40184-8%5C_38
https://doi.org/10.1007/978-3-642-40184-8%5C_38
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.90
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.90
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.90
https://doi.org/10.1016/j.ic.2014.01.002
https://doi.org/10.1016/j.ic.2014.01.002
https://doi.org/10.1016/j.ic.2014.01.002
https://doi.org/10.1016/j.ic.2014.01.002
https://doi.org/10.1007/978-0-387-09680-3\_36
https://doi.org/10.1007/978-0-387-09680-3%5C_36
https://doi.org/10.1007/978-3-642-02658-4\_59
https://doi.org/10.1007/978-3-642-02658-4%5C_59
https://doi.org/10.1007/s100090050009
https://doi.org/10.1007/s100090050009
https://doi.org/10.1007/s100090050009


LIST OF TABLES

4.1 Computation of P0 for the timed automaton of Figure 2.2. . . . . . . . . . 96
4.2 Computation of P1 for the timed automaton of Figure 2.2. . . . . . . . . . 96
4.3 Computation of P2 for the timed automaton of Figure 2.2. . . . . . . . . . 96

5.1 All solutions where f = +∞. . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2 All other solutions where g = +∞. . . . . . . . . . . . . . . . . . . . . . . 167
5.3 All solutions when f and g are non-infinite functions and when a ≥ 0 and

c ≥ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
5.4 All solutions when f and g are non-infinite functions and when a ≤ 0. . . . 168
5.5 All solutions when f and g are non-infinite functions and when a > 0 and

c < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.1 Runtime results (in sec.) of our symbolic implementation when computing
the permissiveness function on `0, `1 and `2 and `3. . . . . . . . . . . . . . 211

6.2 Runtime results (in sec.) of our numeric implementation for two different
interval sampling steps for configuration (`0, (0, 0)). . . . . . . . . . . . . . 211

7.1 Comparison of our contributions. . . . . . . . . . . . . . . . . . . . . . . . 231

247



248



LIST OF FIGURES

1 Automate temporisé représentant un éclairage automatique. . . . . . . . . 12
2 Automate temporisé représentant un ordonnancement de trois tâches. . . . 12
3 Un automate temporisé pondéré pour représenter deux moyens de transport

possibles pour rejoindre Londres depuis Rennes. . . . . . . . . . . . . . . . 15
4 Principe de la vérification formelle. . . . . . . . . . . . . . . . . . . . . . . 17
5 A timed automaton that illustrates an automatic light system. . . . . . . . 24
6 A weighted timed automaton representing the possible ways to reach Lon-

don from Rennes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Principle of formal verification. . . . . . . . . . . . . . . . . . . . . . . . . 29

1.1 An example of a 2-dimension piecewise affine function from [0, 2]× [0, 1] to
R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2 Examples of half-spaces of R and R2. . . . . . . . . . . . . . . . . . . . . . 40
1.3 Two examples of polyhedra in R2. . . . . . . . . . . . . . . . . . . . . . . . 41
1.4 Partition of R2 with the four polyhedra P0,P1,P2 and P3. . . . . . . . . . 42
1.5 Two 2-dimensional affine functions, represented with partition of polyhedra

(Figure 1.5a) or tiling of polyhedra (Figure 1.5b). . . . . . . . . . . . . . . 45

2.1 A two-clock timed automaton A0 with four transitions. . . . . . . . . . . . 51
2.2 A two-clock timed automaton A1 with three transitions. . . . . . . . . . . 51
2.3 The associated graph of the timed automaton A1 of Figure 2.2. . . . . . . 51
2.4 Clock regions of Example 2.1.7. . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 A simple timed automaton A3. . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 The region automaton of the timed automaton of Figure 2.5. . . . . . . . . 58
2.7 A one-clock timed automaton. . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.8 A timed automaton with 2 identical transitions. . . . . . . . . . . . . . . . 68
2.9 The permissiveness function at `0 for the timed automaton of Figure 2.8. . 71
2.10 A timed automaton with a reset. . . . . . . . . . . . . . . . . . . . . . . . 71
2.11 The permissiveness function in `0 and `1 for the timed automaton of Fig

2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

249



2.12 An acyclic timed automaton with a short and a long path. . . . . . . . . . 77
2.13 Decomposition of the timed automaton of Figure 2.12 into two linear timed

automata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 The possible choices of intervals and delays with the guard 0 ≤ x ≤ 1 when
v = (0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 An automaton with a reset and two of its possible p-runs. . . . . . . . . . 116
5.2 The three steps of our algorithm. Step 1: compute S(hα,hβ). Step 2: com-

pute expressions for Ivα and Ivβ for any v. Notice that we consider a sub-
polyhedron (hatched zone) of S(hα,hβ) because we had to refine it. Indeed
the expression of Ivβ would be different for the lower part of S(hα,hβ), since
it ends on a different facet of hβ. Step 3: select best values for α and β. . . 120

5.3 Automaton of Figure 2.10 where the guard on the first transition has been
slightly extended. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 A linear timed automaton and its permissiveness at `0. . . . . . . . . . . . 133
5.5 An acyclic timed automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6 Permissiveness function for location `0 of the timed automaton of Figure 5.5.135
5.7 A two-clock acyclic timed games. . . . . . . . . . . . . . . . . . . . . . . . 139
5.8 A two-clock linear timed games. . . . . . . . . . . . . . . . . . . . . . . . . 139
5.9 The definition set D when C,D,E and B are all distinct. . . . . . . . . . . 142
5.10 Variations of f, g and h in the definition set D. The double arrows of f, g

and h indicate the directions of variation of each function. For example
the double arrow of f goes from left to right, because f is increasing with
respect to α. It is perpendicular to β because it is constant with respect to
β. A maximises µ over D. . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.11 Variations of f and α 7→ h (α,Mβ) when a ≥ 0 and c ≥ 0. . . . . . . . . . . 145
5.12 Values of µ in R2. The double arrows of f, g and h indicate the directions

of variation of each function. . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.13 Relative positions of edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.14 Summary of the first fourth cases. . . . . . . . . . . . . . . . . . . . . . . . 163
5.15 Summary of cases 5, 6, 7 and 8. . . . . . . . . . . . . . . . . . . . . . . . . 164
5.16 Summary of cases 9, 10 and 11. . . . . . . . . . . . . . . . . . . . . . . . . 165

6.1 Steps of our algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

250



6.2 UML graph of TimedAutomaton. . . . . . . . . . . . . . . . . . . . . . . . 180
6.3 UML graphs of P-moves and trace objects. . . . . . . . . . . . . . . . . . . 182
6.4 UML graph of Backtracking. . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.5 Experimental results (Numeric approach) for the generalisation of the timed

automaton of Figure 2.8 with m transitions. . . . . . . . . . . . . . . . . . 186
6.6 Experimental results (Numeric approach) for the timed automaton of Fig-

ure 2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.7 Experimental results (Numeric approach) for the timed automaton of Fig-

ure 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.8 Screenshots of the logging interface of the exploration of timed automaton

of Figure 2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.9 UML class graph of TimedAutomaton. . . . . . . . . . . . . . . . . . . . . 198
6.10 UML class graph of Piecewise affine functions. . . . . . . . . . . . . . . . . 199
6.11 An example of piecewise affine function. . . . . . . . . . . . . . . . . . . . 200
6.12 Two representations of the piecewise affine function of Figure 6.11. . . . . . 200
6.13 Example of two piecewise affine functions. . . . . . . . . . . . . . . . . . . 202
6.14 Over-tiling of f and g in order to apply our maximisation algorithm. . . . 203
6.15 Maximisation of the two piecewise affine functions f and g of Figure 6.13:

wrong method (Figure 6.15a) and correct method with over-tiling (Figure
6.15b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.16 A piecewise function where all polyhedra could be merged. . . . . . . . . . 205
6.17 Permissiveness functions of the timed automaton of Figure 2.8. . . . . . . . 208
6.18 Permissiveness functions of the timed automaton of Figure 2.10. . . . . . . 209
6.19 Permissiveness function of the timed automaton of Figure 5.3. . . . . . . . 209
6.20 Three timed automata studied in the symbolic implementation. . . . . . . 210
6.21 Comparison of numeric and symbolic approaches for a two-clocks-automaton

with m transitions, with the same guards 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1 on each
transitions (and no reset). . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.1 An example of binary permissiveness functions Bin1 (`1, ·) of the timed
automaton of Figure 2.10 for different thresholds 0, 1

2 , 1. . . . . . . . . . . 218
7.2 The levelled permissiveness of the timed automaton of Figure 2.10, with

the thresholds 0, 1
2 and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

7.3 Convex hull computation results. . . . . . . . . . . . . . . . . . . . . . . . 233

251



7.4 Example where the computation of convex hull will not work. . . . . . . . 234
7.5 An intuition of the ‘ε-approximation’. . . . . . . . . . . . . . . . . . . . . . 236

A.1 UML graph of the class TimedAutomaton. . . . . . . . . . . . . . . . . . . 253
A.2 UML graph of the class Guard. . . . . . . . . . . . . . . . . . . . . . . . . 254
A.3 UML graph of the class Constraint. . . . . . . . . . . . . . . . . . . . . . . 254
A.4 UML graph of the class Interval. . . . . . . . . . . . . . . . . . . . . . . . . 254
A.5 UML graph of the class P-move. . . . . . . . . . . . . . . . . . . . . . . . . 255
A.6 UML graph of the class Trace. . . . . . . . . . . . . . . . . . . . . . . . . . 255
A.7 UML graph of the class Backtracking. . . . . . . . . . . . . . . . . . . . . . 255
A.8 UML graph of the class TimedAutomaton. . . . . . . . . . . . . . . . . . . 256
A.9 UML graph of the class RationalLinearExpression. . . . . . . . . . . . . . . 256
A.10 UML graph of the class InfiniteExpression. . . . . . . . . . . . . . . . . . . 256
A.11 UML graph of the class SubSpline. . . . . . . . . . . . . . . . . . . . . . . 257
A.12 UML graph of the class Spline. . . . . . . . . . . . . . . . . . . . . . . . . 257

252



Appendix A

UML GRAPHS

In this appendix, we represent the UML graphs of the methods of each classes used in the
implementations presented in Chapter 6. In section A.1 and A.2 we respectively present
the methods of the classes used in the numerical implementation, presented in Section
6.1, and the symbolic implementation, presented in Section 6.2.

A.1 UML graphs of the numerical implementation

TimedAutomaton
init_location : Location
goal_location: Location
transitions: List[Edge]
number_clock: int
maximum_upper_bound()
minimum_lower_bound()
existence_infinite_weighted_path(location: Location)

Figure A.1 – UML graph of the class TimedAutomaton.
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Guard
constraints : List[Constraint]
guard_check(valuation: Valuation, delay: Delay)
guard_check_interval(valuation: Valuation, interval:
Interval)
valuation_after_passing_guard(valuation: Valuation,
delay: Delay)
enabled_delay_set(valuation: Valuation)
disjoint(other_guard: Guard)

Figure A.2 – UML graph of the class Guard.

Constraint
interval: Interval
clock_index: int
constraint_check(valuation: Valuation, delay: Delay)
constraint_check_interval(valuation: Valuation, inter-
val: Interval)
enabled_delay_set(valuation: Valuation)

Figure A.3 – UML graph of the class Constraint.

Interval
lower_bound: Delay
upper_bound: Delay
closed: ‘both’, ‘none’, ‘left’, ‘right’
is_empty()
overlaps(other_interval: Interval)
is_disjoint_and_mergeable()
include(other_interval: Interval)
merge(other_interval: Interval)
sub_interval(left: Delay, right: Delay)
semi_sorted_sampling(step: Union[int, Fraction],
bound: Optional[Union[int, Fraction]])

Figure A.4 – UML graph of the class Interval.
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P-Move
action: Str
step: List[Step]
global_interval: Interval
get_as_interval()
restricted_interval(restricted_interval: Interval)

Figure A.5 – UML graph of the class P-move.

Trace
configuration : Configuration
p-move: P-Move
delay: Delay
compute_trace_permissiveness()
compare_trace(other_trace: Trace)

Figure A.6 – UML graph of the class Trace.

Backtracking
ta : TimedAutomaton
start: Configuration
strategy_opponent: p-move:P-Move, step: Union[int, Fraction] → moves:List[P-Move]
interval_sampling_step: Union[Fraction, int]
backtracking()

Figure A.7 – UML graph of the class Backtracking.
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A.2 UML graphs of the symbolic implementation

TimedAutomaton
init_location : Location
goal_location: Location
transitions: List[Edge]
number_clock: int
add_transition()

Figure A.8 – UML graph of the class TimedAutomaton.

RationalLinearExpression
linear_Expression: Linear_expression (PPLPY)
least_common_multiple: int
is_equal_to(other: RationalLinearExpression)
coefficients()
inhomogeneous_term()
all_homogeneous_terms_are_zero()
is_zero()
partial_evaluation(variable: Variable (PPLPY), value:
Union(Fraction, int, RationalLinearExpression))

Figure A.9 – UML graph of the class RationalLinearExpression.

InfiniteExpression
is_positive: bool
inhomogeneous_term()
is_zero()
is_equal_to()

Figure A.10 – UML graph of the class InfiniteExpression.
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SubSpline
function: Union[InfiniteExpression, Ration-
alLinearExpression]
polyhedron: Polyhedron (PPLPY)
minimum(other_spline: SubSpline)
maximum(other_spline: SubSpline)
is_equal_to(other_spline: SubSpline)

Figure A.11 – UML graph of the class SubSpline.

Spline
sub_splines: List[SubSpline]
add_sub_spline(sub_spline: SubSpline)
pop_sub_spline(index: int)
is_equal_to(other_spline: Spline)
fusion(other_spline: Spline)
partition(other_spline: Spline)
maxmimum(other_spline: Spline)
maximum_list(other: Iterable[Spline])
minimum(other_spline: Spline)
minimum_list(other: Iterable[Spline])

Figure A.12 – UML graph of the class Spline.
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Titre : Robustesse des automates temporisés : calculer les stratégies les plus permissives

Mot clés : Vérification de modèle, Optimisation, robustesse, automates temporisés

Résumé : Les systèmes temps-réels né-
cessitent parfois d’être prouvés formelle-
ment, en particulier les systèmes temps-réels
contenant des parties critiques, comme les
avions, les voitures... Les automates tempo-
risés constituent un modèle mathématique
commode pour cela. Cependant, même s’ils
fournissent une représentation des aspects
temporels de ces systèmes, les automates
temporisés supposent une précision arbitraire
et des actions immédiates. C’est pourquoi
même si un état est déclaré atteignable dans
un automate temporisé, il est parfois impos-

sible de l’atteindre dans le système physique
qu’il modélise.

Le but de cette thèse est de modéliser un
type de perturbations, sur des délais, pour les
automates temporisés et de calculer les stra-
tégies les plus permissives afin de régler ce
problème d’imprécision. Ces stratégies élargi-
ront les délais uniques habituellement propo-
sés en des intervalles de délais et chercheront
à atteindre un des états finaux de l’automate
quel que soit le délai dans l’intervalle proposé
qui a eu lieu.

Title: Robustness of timed automata: computing the maximally-permissive strategies

Keywords: Model verification, optimisation, robustness, timed automaton

Abstract: Real-time systems sometimes
need to be formally proven, especially real-
time systems containing critical component,
as planes, cars etc. Timed automata pro-
vide a convenient mathematical model for this.
However, although they provide a represen-
tation of the temporal aspects of these sys-
tems, timed automata assume arbitrary preci-
sion and zero-delays actions. Therefore, even
if a state is declared reachable in a timed au-
tomaton, it is sometimes impossible to reach

it in the physical system it models. The aim of
this thesis is to model a type of perturbation,
on delays, for timed automata and to compute
the most permissive strategies to solve this im-
precision problem. These strategies propose
intervals of delays instead of the usually pro-
posed single delays. These strategies seek to
reach one of the final states of the automaton
regardless of the delay, in the proposed inter-
val, that has occurred.
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