
HAL Id: tel-03667090
https://theses.hal.science/tel-03667090v1

Submitted on 13 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph clustering and semi-supervised learning of
non-binary, temporal and geometric networks

Maximilien Dreveton

To cite this version:
Maximilien Dreveton. Graph clustering and semi-supervised learning of non-binary, temporal and
geometric networks. Artificial Intelligence [cs.AI]. Université Côte d’Azur, 2022. English. �NNT :
2022COAZ4011�. �tel-03667090�

https://theses.hal.science/tel-03667090v1
https://hal.archives-ouvertes.fr


Détection de communautés et apprentissage
semi-supervisé dans des réseaux non-binaires,

temporels et géométriques

Maximilien DREVETON

Inria Sophia-Antipolis

Présentée en vue de l’obtention du grade
de docteur en informatique
de l’Université Côte d’Azur.
Dirigée par : Konstantin AVRACHENKOV
Soutenue le : 6 avril 2022

Devant le jury, composé de :
Konstantin Avrachenkov, DR, Inria
Gérard Burnside, Research scientist, Nokia Bell Labs
Frédéric Havet, DR, Inria
Varun Jog, Assistant Professor, University of Cambridge
Marc Lelarge, DR, ENS / Inria
Lasse Leskelä, Associate Professor, Aalto University
Catherine Matias, DR, CNRS / Sorbonne Université
Dieter Mitsche, Professor, Institut Camille Jordan



Graph clustering and semi-supervised learning of non-binary,
temporal and geometric networks

Détection de communautés et apprentissage semi-supervisé
dans des réseaux non-binaires, temporels et géométriques

Jury :

Directeur de thèse :
Konstantin Avrachenkov, Directeur de Recherche, Institut National de Recherche en In-
formatique et en Automatique (INRIA)

Rapporteurs :
CatherineMatias, Directrice de Recherche, Centre National de Recherche Scienti�que (CNRS);
Sorbonne Université, Université de Paris
Dieter Mitsche, Professor, Institut Camille Jordan

Président du Jury :
Frédéric Havet, Directeur de Recherche, Institut National de Recherche en Informatique et
en Automatique (INRIA)

Examinateurs :
Varun Jog, Assistant Professor, University of Cambridge
Marc Lelarge, Directeur de Recherche, Ecole Normale Supérieure (ENS) & Institut National
de Recherche en Informatique et en Automatique (INRIA)
Lasse Leskelä, Associate Professor, Aalto University

Invité :
Gérard Bunrside, Research scientist, Nokia Bell Labs

2



En mémoire de mon père.

i



ii



Résumé

La multiplication des données collectées a occasionné un intérêt multi-disciplinaire autour de
l’étude statistique de systèmes complexes où les individus interagissent en pairs. Dans de tels
réseaux, des individus similaires ont tendance à interagir similairement. Un important prob-
lème d’inférence statistique consiste donc à regrouper les individus similaires en communautés
(aussi appelées clusters) en se basant uniquement sur l’observation des interactions entre in-
dividus. Ce problème d’apprentissage non-supervisé qui consiste à placer chaque nœud dans
un groupe est appelé détection des communautés. Cette thèse a pour but d’étudier di�érents
aspects de la détection de communautés dans des systèmes complexes.

En particulier, nous étudions des modèles de graphes aléatoires où chaque nœud appar-
tient à une communauté (aussi appelé bloc) et où l’interaction entre deux nœuds dépend
uniquement des blocs dans lesquels ces deux nœuds appartiennent. Pour ces modèles, nous
établissons des résultats théoriques sur la possibilité et l’impossibilité de découverte des com-
munautés. Notre étude autorise des interactions quelconques (non nécessairement binaires),
ce qui rend le résultat applicable à de nombreuses situations (interaction pondérées, tem-
porelles, multi-couches, etc.).

Dans le cas particulier où les interactions entre les nœuds varient au cours du temps,
nous proposons plusieurs algorithmes. Plus précisément, nous présentons des méthodes spec-
trales utilisant les interactions persistantes ou des méthodes basées sur un calcul itératif de la
vraisemblance.

Nous examinons aussi le problème de la détection semi-supervisées des communautés.
Dans ce cas, un oracle nous renseigne sur la communauté d’un petit nombre de nœuds. Ces
renseignements s’ajoutent aux interactions observées entre les nœuds, et facilitent le prob-
lème initial (l’apprentissage des communautés des nœuds).

En�n, nous étudions la situation où les nœuds sont positionnés dans un espace métrique.
Dans ce cas, nous montrons que les méthodes spectrales classiques (telles que Spectral Clus-
tering) peuvent totalement échouer, et nous analysons une parade basée sur la sélection de
vecteurs propres d’ordre supérieur.

Mots clés : détection de communautés, modèle des blocs stochasique, réseaux temporels,
réseaux géometriques, apprentissage semi-supervisé, spectral clustering.
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Abstract

The massive explosion of data collection led to a multi-disciplinary interest in the statistical
inference of complex systems. In these systems, agents interact by pairs. Since similar agents
tend to interact similarly, an important unsupervised learning problem consists of grouping
the agents into communities or clusters based on the pairwise interactions. This thesis explore
various aspects of this learning task.

In particular, we study random graph models in which each node belongs to a commu-
nity (also called block) and the interactions between node pairs depend on the community
structure. For those stochastic block models, we establish consistency thresholds for commu-
nity recovery. These results allow for non-binary interactions, such as weighted, temporal or
multiplex networks.

We propose several algorithms for clustering temporal networks, such as spectral methods
based on the persisting edges, or methods based on an online computation of the likelihood.

We also study graph clustering in a semi-supervised setting. In this setting, an oracle
provides the community memberships of a few nodes. This extra information helps to recover
the community labels of the rest of the nodes.

Finally, we investigate networks in which the nodes have a position in a metric space. In
such geometric networks, we show that standard spectral methods (such as Spectral Clus-
tering) fail at recovering the communities. We propose and analyse a spectral algorithm
based on a higher-order eigenvector.

Keywords: graph clustering, stochastic block model, temporal networks, geometric net-
works, semi-supervised learning, spectral clustering.
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Chapter 1

Introduction

1.1 Networks

A network is a collection of interconnected objects. This de�nition covers a lot of real-world
phenomena, as data sets in many application domains consist of pairwise interactions be-
tween objects. Examples include human interactions in sociology and epidemiology, brain
activity measurements in neuroscience, protein interactions in molecular biology and �nan-
cial interactions in economics.

When the pairwise interactions are binary, the network can mathematically be repre-
sented by a graph. A graph G is a pair (V,E) where V is the set of objects (called nodes
or vertices) and E is the set of pairs of nodes (called edges or links). This graph representa-
tion can easily be extended to non-binary networks. The following examples show that many
situations involve non-binary interactions as well.

Examples of networks

Binary networks The political blog data set [AG05] is a simple example of a network with
binary interactions. This data set represents the linking patterns of political bloggers during
the U.S. Presidential Election of 2004. The data set is composed of 1494 blogs, 759 liberals and
735 conservatives, and the interactions identify whether one blog references another blog. As
shown in Figure 1.1, the di�erence between liberal and conservative blogospheres is clear. In-
deed, 90% of the interactions occur between blogs belonging to the same political community.
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Chapter 1

Figure 1.1: Network of political blogs.

Weighted networks A binary interaction can be enriched by a weight, representing the
interaction strength. A weighted network is a network whose interactions are positive real
numbers. Examples encompass transportation network between cities, where the weights
correspond to the number of passengers going from one city to another.

Weighted networks can also be built directly from data. Indeed, in machine learning prob-
lems, data often comes as a collection x1, · · · , xn of n data points in an Euclidean space (e.g.,
xi ∈ Rm). A common way to de�ne a weight wij between two data points xi and xj is via a
threshold Gaussian kernel

wij =

{
exp

(
−‖xi−xj‖

2

τ2

)
, if ‖xi − xj‖2 ≤ κ,

0, otherwise,

where τ and κ are some parameters and ‖ · ‖ is a distance between the data points. The cuto�
parameter κ prevents having a dense network with many small weights. Another familiar
method is to connect each vertex to its k-nearest neighbours. We refer to [GP10, Chapter 4]
and [Sta+20] for the description of other methods.

The MNIST database [LCB98] is a database of 70,000 images of handwritten digits com-
monly used as a benchmark in machine learning. Figure 1.2 represents a network built from
300 images of digits 0, 1, 2 using a Gaussian kernel as weight function. More precisely, we
�rst compute a k-nearest neighbour graph (k = 8) with weights

wij =

{
exp

(
−4‖xi−xj‖2

τi

)
if xj is in the k-th nearest neighbour of xi,

0 otherwise,

where τi represents the distance between xi and its k-th nearest neighbour. The weight matrix
is �nally symmetrised by replacing W with 1

2
(W +W T ).

2
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Digit
0
1
2

Figure 1.2: Network constructed from 300 images of digits 0, 1 and 2 taken from the MNIST
database.

Edge-labelled andmultiplex networks Complex relational databases and networks often
include interactions of di�erent types. For example, chemical reactions may be exothermic
or endothermic, movie-user associations in collaborative �ltering typically come with user
ratings; communication between individuals may be cold, formal, or familiar. Such networks
are called edge-labelled networks, where the interaction is an element of the set {0, 1, · · · , L},
the type 0 denoting no interaction.

Alternatively, an edge-labelled network can be represented by a multiplex network. Mul-
tiplex networks refer to networks with several layers in which all the layers share the same
node-set, and each layer corresponds to an interaction type. This view is sometimes more
convenient. For example, two social networks users might be connected through Facebook,
Twitter, or LinkedIn, where each social network creates one layer of a user-user interaction
network.

Temporal networks Interactions between node pairs might vary with time. For example,
the high school data sets represent close proximity encounters between students in a French
high school. Students-to-students interactions are recorded every 20 seconds through wear-
able sensors, and the experiment span several school days. The same experiment was per-
formed three consecutive years [FB14; MFB15], and the dimension of each data set is given
in Table 1.1. We also plot in Figure 1.3 the weighted network for the year 2013, where the
weights correspond to the number of interactions recorded between two students.

We notice that this time-aggregation can lose important temporal information. For exam-
ple, Figure 1.4 shows snapshot per snapshot the average number of interactions per student
on a given day. The peaks observed coincide with the starting and ending times of the breaks
between courses since students leave the classrooms.

3



Chapter 1
Year n K T

2011 118 3 5609
2012 180 5 11273
2013 327 9 7375

Table 1.1: Dimensions of three data sets of interacting high school students: number of stu-
dents n, number of classes K and number of snapshots T .

Class
2BIO1
2BIO2
2BIO3
MP*1
MP*2

MP
PC
PC*
PSI*

Figure 1.3: Time-aggregated network obtained from the high-school interaction network (year
2013).

8 10 12 14 16
Hour

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Av
er
ag

e 
de

gr
ee

Figure 1.4: Average degree on Thursday. The hashed regions show the breaks between classes.

1.2 Clustered random graph models

Numerous random graph models have been proposed to describe real-world networks. In this
thesis, we will focus on clustered random graphs. A cluster (also called community or block) is
a group of nodes that share common properties, and thus play a similar role in the network.
The previous examples of networks showed that clusters are naturally present in real work
networks: political a�liation of blogs, digits in handwritten images, classes of high school
students, etc.

4



Introduction
Stochastic Block Model

The Stochastic Block Model is one of the oldest and simplest random graph models with com-
munity structure. Although this model was originally de�ned for multiplex graphs [HLL83],
it has been later on restricted to binary interactions. We de�ne here the general setting where
the interactions belong to a measurable space S .

In this model, the node-set V = [N ] is partitioned into K disjoints sets, called blocks.
This partition is conveniently represented by a node labelling σ : [N ] → [K] so that σ(i)
indicates the block which contains node i. The model is further parametrized by a collection
f = (fk`)k,`∈[K] of probability distributions over S , such that fk` = f`k. These parameters
specify the probability distribution

P (A |σ) =
∏

1≤i<j≤N

fσ(i)σ(j) (Aij)

of the interaction tensor A ∈ SN×N , verifying Aij = Aji for all i, j. Our main focus is
on homogeneous models in which the probability distribution fk` equals f if k = `, and g
otherwise and the node labels are chosen uniformly at random.

In this framework, a mutliplex network can be represented by choosing S = {0, 1}M
where M is the number of layers, while a temporal network with T snapshots correspond
to S = {0, 1}T . Other important possible choices for the interaction space are S = R+

(weighted SBMs), S = {0, 1 . . . , L} (edge-labelled SBM) or S = Z+.

The inference problem consists in the recovery of the node labelling σ given the interac-
tion tensor A, and possibly the number of blocks and the interaction probabilities f, g. The
recovery of the blocks by an estimator is consistent if the fraction of mis-clustered nodes goes
to zero when the number of nodes N goes to in�nity, and strongly consistent if the number
of mis-clustered nodes goes to zero. Intuitively, this task becomes harder when f and g be-
come too similar and is even trivially impossible when f = g. This implies the existence of
fundamental limits, that is conditions under which the blocks can or cannot be recovered. For
example, consistent recovery can be impossible (in the sense that no algorithm can attain it) if
some condition is not veri�ed, and possible (there exists an algorithm achieving it) if another
condition is veri�ed.

When S = {0, 1} existing work on community recovery in the binary homogeneous
SBM provides a strong information-theoretic foundation [ZZ16; Gao+17; ABH16; MNS16].
In particular, many sharp fundamental limits (or phase transitions) have been derived. De-
noting by D1/2(f, g) the Rényi divergence between f and g, consistent recovery is possible
if N D1/2(f, g) � 1 and is impossible otherwise. Similarly, strong consistency is possible if
D1/2(f, g) ≥ (1 + Ω(1)) K logN

N
, and impossible if D1/2(f, g) ≤ (1− Ω(1)) K logN

N
.

Analogous results have been obtained, sometimes with additional technical conditions on
the connectivity functions f, g, for multiplex SBMs with independent layers [PC16], edge-
labelled SBMs [YP16; JL15], and weighted SBMs [XJL20]. One contribution of this thesis is to
extend these information-theoretic results to S-valued SBM, where S is any measurable space
and might depend on the scale parameter. One possible application is temporal networks with
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T dependent layers, where the number of nodes N and the number of layers T both grow
unbounded.

Clustered geometric graphs

In many situations, nodes have geometric attributes in addition to community labelling. These
geometric attributes are represented by a position in a metric space. The interaction between
a pair of nodes, therefore, depends not only on the community labelling but also on the dis-
tance between the two nodes. We can model this by assigning to each node a position, chosen
in a metric space. Then, the probability of an edge appearance between two nodes will de-
pend both on the community labelling and on the positions of these nodes. Recent proposals
of random geometric graphs with community structure include the Geometric Block Model
(GBM) [Gal+18] and Euclidean random geometric graphs [ABS17].

In the GBM, two nodes i, j in the same community are interacting if they are at a distance
dij less than rin, while two nodes in di�erent communities are interacting if their distance
is less than rout, where 0 ≤ rout < rin are two parameters. In Euclidean random geometric
graphs, the probability of connection between two nodes i, j in the same community equals
f (dij) where dij denotes the distance between the two nodes. Furthermore, the probability of
interaction between two nodes i, j in di�erent communities is g(dij) (here f, g : R+ → [0, 1]
are two functions). We obtain the GBM as a particular case (by letting f(x) = 1(|x| ≤ rin) and
g(x) = 1(|x| ≤ rout)), as well as the binary SBM (by simply letting f(x) = pin and g(x) = pout

where pin, pout ∈ [0, 1]).

The nodes’ interactions in geometric models are no longer independent: two interacting
nodes are likely to have many common neighbours. While this is more realistic ("friends of
my friends are my friends"), this also renders the theoretical study more challenging.

1.3 Graph clustering

Many powerful clustering methods exist for binary or weighted networks, such as spec-
tral methods [Von07], modularity maximisation [BC09; Blo+08; GN02], belief propagation
[MM09; Moo17], Bayesian methods [HW08; Pei19], likelihood-based methods [WB17]). We
refer to [For10] for an overview of such methods.

Spectral clustering

Motivation

Spectral clustering is one of the simplest clustering algorithms. We will give it here a quick
overview, and we refer to [Von07] for a more detailed presentation. Let A be the graph adja-
cency matrix and di =

∑N
j=1Aij be the degree of node i. We denote byD = diag(d1, · · · , dn)

the degree matrix, and de�ne the standard Laplacian L = D − A and the normalized Lapla-
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cian L = I − D−1/2AD−1/2. In the following, V1, . . . , VK denote a partition of the node-set
V = [N ] into K non-overlapping clusters, that is V1 ∪ · · · ∪ VK = V and Vk ∩ V` = ∅ for
k 6= `. The graph-Cut associated to such partition is de�ned as

Cut(A, V1, . . . , VK) =
K∑
k=1

Cut(A, Vk),

where Cut(A, Vk) =
∑N

i∈Vk,j∈V ck
Aij is the number of edges going from set Vk to set V c

k .
Directly minimising this quantity would lead to greatly unbalanced partitions, e.g., partitions
in which all or almost all the nodes are in the same cluster. To alleviate this issue, we �rst
de�ne the volume of a set by

vol (Vk) =
∑
i∈Vk

di.

We will then aim to �nd a partition V1, . . . , VK that minimises

Ncut(A, V1, . . . , VK) =
K∑
k=1

Cut(A, Vk)

vol(Vk)
. (1.3.1)

The Normalized-Cut corresponds to a Cut penalized with respect to the volume of the sets
Vk: small sets bear a large penalty. Hence, we can expect that the solutions minimising the
Normalized-Cut lead to clusters of similar sizes.

As minimising the Normalized-Cut is NP-hard [WW93], we instead perform a continuous
relaxation. Let us de�ne the matrix N = (nik) ∈ Rn×K by

∀ i ∈ [n], ∀ k ∈ [K] : nik =


1√

vol(Vk)
if vi ∈ Vk,

0 otherwise.
(1.3.2)

N is a matrix containing K indicators vectors as columns, where the size of each set Vk is
used as a penalization term. We notice that

Ncut(A, V1, . . . , VK) = Tr
(
NTLN

)
,

while NTDN = IK . Therefore, minimising the Ncut can be rewritten as

arg min
(V1,...,Vk)

Tr
(
XTLX

)
, (1.3.3)

where X := D1/2N and N is de�ned in equation (1.3.2). The �nal step is to relax (1.3.3) by
keeping only the constraint XTX = IK . This leads to the following relaxed problem

X̂ = arg min
X∈Rn×K : XTX=IK

Tr
(
XTLX

)
.

The solution of this relaxed problem is given by the matrix whose columns are given by the
K orthonormal eigenvectors of L associated with the K smallest eigenvalues.
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Once the relaxed problem is solved, we are left with a n-by-K matrix whose columns are

the K �rst eigenvectors of L. To reconvert this real-valued matrix to a discrete partition, a
standard method is to apply k-means algorithm on the n rows of K (seen as n data points in
RK). More precisely, k-means consists in the following minimisation problem(

Ẑ, X̂
)

= arg min
Z∈Zn,K
X∈RK×K

‖ZX − V ‖2
F (1.3.4)

where Zn,K denotes the space of membership matrices, that is n×K matrices with entries in
{0, 1} for which each row i has only one non-zero element. While solving the minimisation
problem (1.3.4) is NP-hard, there exists (see [KSS04]) a polynomial time procedure �nding(

Ẑ, X̂
)
∈ Zn,K × RK×K

(1.3.5)
s.t.

∥∥∥ẐX̂ − V ∥∥∥2

F
≤ (1 + ε) min

Z∈Zn,K
X∈RK×K

‖ZX − V ‖2
F .

Once Ẑ is found, we return the predicted clusters: node i is in cluster k if Ẑik = 1. We
summarize this in Algorithm 1.

Algorithm 1: (Normalized) Spectral Clustering.
Input: Graph Laplacian L (resp. normalized Laplacian L), number of clusters K .
Output: Predicted node labelling vector ẑ ∈ [K]n.
Spectral Step:

• Compute v1, . . . , vK the K orthonormal eigenvectors of L (resp. L) associated with
the K smallest eigenvalues;

• Let V ∈ Rn×K be the matrix whose column k is vk.

Clustering Step:

• Let
(
Ẑ, X̂

)
be an (1 + ε) approximate solution to the k-means problem (1.3.5);

• For every node i = 1 · · ·n, let zi = k if Zik = 1.

In the particular case of two clusters, one can simply look at the second eigenvector of L
(sometimes referred to as the Fiedler vector [Fie75]). The nodes are then clustered according
to the sign of their entries.

Limitations of spectral clustering

Dangling trees In this part, we will analyze the failure of spectral clustering on the politi-
cal blogs data set. Figure 1.5 shows the value of eigenvectors of L associated with the second
and third smallest eigenvalues. We see that the entries of the second eigenvector are localised
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over a few nodes. Moreover, those nodes are associated with a dangling tree and do not repre-
sent a meaningful community structure (see Figure 1.5c). On the contrary, the entries of the
third eigenvector lead to the correct community structure. In fact, using this eigenvector for
clustering would lead to an accuracy of 95%.
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(a) k = 2.
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(b) k = 3.

(c) k = 2. (d) k = 3.

Figure 1.5: Analysis of the failure of Spectral Clustering on the political blogs data set. Top:
value of the eigenvector of L associated to the k-th smallest eigenvalue, for k = 2 and k = 3.
Bottom: graph where the node colors show the prediction made using the sign of the entries
of the k-th eigenvector.

Figure 1.5 shows that the good eigenvector for clustering is the third one, while the second
eigenvector is concentrated around low degree nodes, forming a dangling tree1. Since it results
in a partition of the graph into one large community, with almost all the nodes, and a small
one with only a few nodes, it is easy to spot in practice. To solve this issue, one simple solution
would be to look at a higher-order eigenvector. But, how to determine the correct eigenvector?
Indeed, this might not always be an easy task. First of all, it could happen that the correct
eigenvector is in a lower position, say 5th or 7th, and localising it among noisy eigenvectors
might be non-trivial. Besides, it is di�cult to extend this reasoning for more than two clusters.

The regularization technique aims to solve this issue [ZR18]. It consists in performing
Spectral Clustering on Lτ := I − D

−1/2
τ AτD

−1/2
τ , where Aτ := A + τ

n
1Tn1n and Dτ is the

1Note that if one were to use the standard Laplacian, we would also observe an analogous phenomenon, with
noisy eigenvectors concentrated around high degree nodes.
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associated degree matrix. The matrixAτ is a perturbed version of the initial adjacency matrix
A, where was added an edge of weight τ

n
between all nodes pairs. The perturbation parameter

τ is typically taken as τ = 1 or τ = d̄ where d̄ is the average degree of the graph.

Spectral methods and geometric data In many situations, nodes can have geometric at-
tributes (for example, a position in a metric space). The geometric structure of this model
handicaps cut-based clustering methods. Indeed, in this case, the Fiedler vector might be
associated with a geometric con�guration, hence bearing no information about the latent
community labelling. Figure 1.6 highlights this issue in GBM. While the second and fourth
eigenvectors give con�gurations based on node positions, recovering the node labels is, in
this example, better done with the 10th eigenvector.

(a) True labels. (b) k = 2. (c) k = 4. (d) k = 10.

Figure 1.6: Analysis of the failure of Spectral Clustering on a Geometric Block Model, with
100 nodes, inter-distance and intra-distance cuto�s rin = 0.07, rout = 0.02.

We show that a higher-order eigenvector can lead to better clustering in real data sets.
We select 1000 images from MNIST, representing digits 4 and 9, and construct a k-nearest
neighbours (k = 8) interaction graph with Gaussian weights. The digits 4 and 9 form the
hardest digit pair to distinguish. We plot in Figure 1.7 the accuracy obtained by spectral clus-
tering as a function of the eigenvector order. We emphasise the fact that, unlike the political
blog data set, this is not an artefact due to dangling trees. We plot in Figure 1.8 the predicted
clusters using the eigenvectors associated with the second and smallest eigenvalues of the
graph’s normalized Laplacian and compare them with the true clusters. We notice that the
predicted clusters are of balanced sizes. We also note that the Ncut of the true labels is 3.8,
while the Ncut of the predicted labels associated with the prediction using the second (resp.
third) eigenvector is 2.7 (resp. 3.7). Therefore for this graph, the correct labels do not match
with the smallest normalized cut.

Graph semi-supervised clustering

Semi-supervised learning (SSL) aims at achieving superior learning performance by combin-
ing unlabelled and labelled data. Since typically the amount of unlabelled data is large com-
pared to the amount of labelled data, SSL methods are relevant when the performance of
unsupervised learning is low, or when the cost of getting a large amount of labelled data for
supervised learning is too high. Unfortunately, many standard semi-supervised learning tech-
niques have been shown to not e�ciently use the unlabelled data, leading to unsatisfactory
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Figure 1.7: Accuracy obtained on weighted graph build using a subset of the MNIST data
set (n = 1000 images representing digits 4 and 9) using the di�erent eigenvectors of the
normalized Laplacian matrix L. The eigenvector of index k is the eigenvector associated with
the k-th smallest eigenvalue of L.

(a) True labels (b) Labels using v2. (c) Labels using v3.

Figure 1.8: Di�erent clusterings on the same graph as Figure 1.7. The colours in Figure 1.8a
shows the true labels, while the colours in Figures 1.8b and 1.8c represent the predicted labels
using respectively the eigenvector associated with the second and third smallest eigenvalues
of the normalized Laplacian.

or unstable performances ([CSZ06, Chapter 4]; [BLP08; CCC02]). Furthermore, the presence
of noise in the labelled data can further degrade the performance. In practice, the noise can
come from a tired or non-diligent expert carrying out the labelling task.

Let us consider a graph G = (V,E) whose node-set is partitioned into K latent commu-
nities. For the simplicity of the current exposition, assume K = 2. The communities are thus
represented by a vector σ ∈ {−1, 1}n. In addition to the observation of the graph, an oracle
gives us extra information about the cluster assignment of some nodes. We call those nodes
labelled nodes, and we denote by ` the set of labelled nodes. Among those nodes, some are
correctly labelled by the oracle, and some are mislabelled by the oracle. We denote by `0 the
set of mislabelled nodes and `1 the set of correctly labelled nodes. In particular, ` = `0 t `1.
The oracle can be represented as a vector s ∈ {0, . . . , K}n such that

si =


σi if i ∈ `1,
−σi if i ∈ `0,
0 if i 6∈ `.

(1.3.6)

11



Chapter 1
In other words, the oracle (1.3.6) reveals the correct cluster assignment of |`1| nodes and a
false cluster assignment for |`0| nodes. It reveals nothing for n − |`| nodes. The quantity
|`0|/|`| is the rate of mistake of the oracle (i.e., the probability that the oracle reveals false
information given that it reveals something). The oracle is informative if this quantity is less
than 1/2, which is equivalent to the intuitive condition |`1| > |`0|. In the following, we will
always assume that the oracle is informative.

Assumption 1. The oracle is informative, that is |`1| > |`0|.

Given the oracle s and the graph G, our strategy is to �nd a vector x̂ ∈ Rn from which
we could predict the node’s labels: node i will be classi�ed in cluster σ̂i according to the sign
of x̂i. A standard framework is to let x̂ be the solution of an optimization problem of the type

x̂ = arg min
x∈X

C(x, s),

where C(x, s) is a cost function, and X a subset of Rn.

For instance, the paper [Avr+12] suggests the following optimization formulation

x̂ = arg minxTDσ−1LDσ−1x+ λ (x− s)T D2σ−1 (x− s) .

particular choices of σ lead to di�erent methods (namely σ = 1 is the Standard Laplacian
method [ZGL03], σ = 1

2
is the Normalized Laplacian method [Zho+04] and σ = 0 is a Page

Rank based method). Since the problem is equivalent to

x̂ = arg min
x

∑
i<j

aij
(
dσ−1
i xi − dσ−1

j xj
)2

+ λ
n∑
i=1

(xi − si)2 ,

we observe that the �rst term forces the smoothness of the solution x̂, while the second term
pushes the solution towards the oracle value s. This trade-o� is governed by a parameter λ.

Clustering temporal networks

In this section, we consider a temporal network represented by a tuple of adjacency matrices(
A1, . . . , AT

)
, and we consider a setting in which the node labels are static through time. If

we assume that the temporal snapshots At are independent of each other, one could simply
generalize the classical min Cut problem by considering

arg min
z∈[K]n

T∑
t=1

Cut
(
At, z

)
.

Since
∑T

t=1 Cut (At, z) = Cut
(∑T

t=1 A
t, z
)

, we would then apply a spectral method on
the time-aggregated graph (that is, the weighted graph represented by the adjacency matrix∑T

t=1 A
t).

Unfortunately, this fails at integrating the time-correlation in the interaction patterns be-
tween nodes. As an example, consider a network in which the inter-community interactions
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are sparse and temporally independent (hence forming spikes), while the intra-community
interactions are strongly correlated in time. Consider two node-pairs whose interaction pat-
terns are given by x1 = (0, 1, 0, 0, 0, 0, 1, 0, 0, 1) and x2 = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0). Since
‖x1‖1 = ‖x2‖1 = 3, we see that simple time-aggregation is agnostic to the di�erent time
patterns between time series x1 and x2.

A possible correction is to account for the persistent links. Indeed, since x1 (resp. x2) has
zero (resp. two) transitions 1 → 1, keeping the endpoints of x2 in the same cluster could be
preferred. This can be done by considering

arg min
z

T∑
t=1

Cut
(
At, z

)
+ α

T∑
t=2

PerCut
(
At−1, At, z

)
where

PerCut
(
At−1, At, z

)
=

∑
i,j : zi 6=zj

At−1
ij Atij

counts the number of persistent links from time t− 1 to time t between nodes with di�erent
label. We further notice that

PerCut
(
At−1, At, z

)
= Cut

(
At−1 � At, z

)
where � denotes the matrix element-wise product. Introducing

W = A1 +
T∑
t=2

At + αAt−1 � At

we can rewrite the minimisation problem as

arg min
z

Cut (W, z) .

This problem can be approximately solved by Spectral clustering on the weighted graph whose
adjacency matrix is W .

1.4 Contributions and open problems

The contributions of this Thesis are the following.

• We derive information-theoretic conditions for consistent and strongly consistent re-
covery for homogeneous SBM with non-binary interactions. This extends and uni�es
in a single framework existing results for the binary SBM, and for various extensions
such as edge-labelled SBM or weighted SBM. We can emphasise the following method-
ological improvements from current literature:

– In order to lower bound the error made by any algorithm, we use a change of
measure argument, similar to the one made by [YP16] in edge-labelled networks.
This lower bound is in particular derived for a non-homogeneous model.
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– We show that the Maximum Likelihood Estimator attains the lower bound for

homogeneous models. This result was shown in a minimax framework for the
binary SBM [ZZ16] and multiplex models with independent layers [PC16]; we
extend it to non-binary models.

– Under some additional technical assumptions on the Rényi divergence, we provide
an algorithm attaining the desired lower bound in a polynomial time in the number
of nodes. This also extends [ZZ16, Theorem 3.1] and [XJL20, Proposition 6.1] to a
larger set of interaction spaces.

– We explicit the particular case of a temporal SBM where interactions are Marko-
vian, by computing the Rényi-divergence between two sparse Markov chains,
which could be of independent interest. In particular, we show that consistent
recovery can be achieved even if the interactions are very sparse, given a large
enough number of snapshots. Moreover, we compare the recovery bounds ob-
tained to those obtained if one aggregates the temporal data.

• We have established error bounds on the recovery made by semi-supervised extensions
of spectral methods. Numerical experiments further show promising performance on
synthetic and real data sets, even in the case of very noisy labelled data.

• We derived a framework for spectral clustering in temporal networks, using the per-
sisting and freshly appearing edges.

• By characterising the spectrum of the adjacency matrix of geometric graphs, we show
that a higher-order eigenvector can recover the community structure of clustered geo-
metric networks.

Several problems remain open to future work.

• Studying the Stochastic Block Model (SBM) with non-uniform community labels and
non-homogeneous, non-binary interactions is a natural follow-up. Existing results for
the non-homogeneous binary SBM show that consistency thresholds are governed by
the Cherno�-Hellinger divergence [AS15]. We refer to the discussion in Section 3.5.2
for some insights.

• The study of recovery thresholds in SBM with a growing number of communities, for
example K = Nα for some α ∈ (0, 1). We note that this question is still under study in
the binary SBM. While some of our results extend to allow in�nitely many communities,
most do not, and several interesting research directions are left open (see the discussion
in Section 3.5.1).

• The derivation of consistency conditions for spectral methods (using persistent edges)
in temporal networks. In the binary SBM, consistency of Spectral Clustering is done by
showing that the normalized Laplacian concentrates around its expectation, and con-
cluding using the Davis-Kahan theorem [LR15; Abb+20]. Showing strong consistency
requires a �ner entry-wise analysis [Abb+20; Che+21]. Since obtaining tight bounds as
in [LLV17] on the concentration of the normalized Laplacian in binary networks is not
trivial (for example using matrix-Bernstein inequalities lead to sub-optimal concentra-
tions [Tro15]), extending such results to temporal networks is interesting.
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• Clustering temporal networks with time-varying communities. A weak recovery thresh-

old was conjectured in [Gha+16], alongside with a belief propagation algorithm on a
space-time graph. Dealing with temporally correlated interactions was partially tack-
led in [Bar+18], where the authors showed that the persistence of communities makes
the clustering problem easier, while the persistence of the edges makes it harder. Pur-
suing these directions, both from an information-theoretic and an algorithmic point of
view is an important open question.

• The study of clustering in geometric graphs is still in its infancy. In particular, our result
is valid only in a dense regime where the expected node degrees scale with the number
of nodes, while the information-theoretic results derived in [ABS17] assume that the
geometric position of the nodes is known.
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• [ABD20] Avrachenkov, K., Bobu, A., & Dreveton, M. (2021). Higher-Order Spectral
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This chapter contains some preliminaries results helping the motivation and the under-
standing of this thesis. We �rst present a quick reminder about the Rényi divergences be-
tween probability distributions, including some basic properties and examples. Then, we
introduce the S-valued stochastic block model (SBM) as a straightforward extension of the
standard (binary) SBM. The chapter ends on some reminders about current litterature results
of information-theoretic conditions for recovery in SBM.

2.1 Divergences between probability measures

Notations

For a measurable set (S,F), we denote by P(S) the set of probability measures on (S,F).
For two probability measures f and g, we denote by f � g if f is absolutely continuous
with respect to g and by f ⊥ g if f and g are singular. The negations of those statements
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are denoted f 6� g and f 6⊥ g. We recall that if f � µ, then df

dµ
denote the Radon-Nikodym

derivative of f with respect to µ, and that Radon-Nikodym derivatives di�er only on a µ-null
set.

2.1.1 Rényi and Kullback-Leibler divergences

The Rényi divergence of positive order α 6= 1 of a probability distributions f on a state space S
over another distribution g is de�ned as

Dα(f‖g) =
1

α− 1
log

∫ (
df

dµ

)α(
dg

dµ

)1−α

dµ, (2.1.1)

where µ is an arbitrary measure which dominates f and g. We use the convenient conventions
log 0 = −∞, 0/0 = 0 and x/0 = ∞ for x > 0. In particular, if f 6⊥ g and α ∈ (0, 1) then
Dα(f‖g) < ∞. The quantity Zα(f‖g) =

∫ (
df
dµ

)α (
dg
dµ

)1−α
dµ is called Hellinger integral of

order α.

Since the Rényi divergence of order α = 1
2

is symmetric in f and g, we will denote indi�er-
ently D1/2(f‖g) as D1/2(f, g). We also introduce the squared Hellinger distance Hel2(f, g) =
1− Z where Z = Z1/2(f, g). In particular, D1/2(f, g) = −2 logZ1/2(f, g).

The divergence of order α = 1 cannot be de�ned using Formula (2.1.1). We instead let
D1(f‖g) to be the Kullback–Leibler divergence, given by

DKL(f‖g) =

∫
df

dµ
log

(
df/dµ

dg/dµ

)
dµ

with the conventions that 0 ln(0/t) = 0 and t ln(t/0) =∞ if t > 0. These de�nition is moti-
vated by the continuity of α 7→ Dα(f‖g) (see Proposition 1). We observe that DKL(f‖g) =∞
if f 6� g. If X is a f -distributed random variable, then DKL(f‖g) = Ef

[
log f

g
(X)

]
. We also

de�ne the centered Kullback–Leibler variation by VKL(f‖g) = Varf

[
log f

g
(X)

]
. Thus

VKL(f‖g) =

∫
df

dµ

(
log

df/dµ

dg/dµ

)2

dµ− (DKL(f‖g))2 .

The quantities Dα,DKL,VKL are in general not symmetric in their arguments, with the
notable exception of D1/2. We denote with a superscript s the symmetrized version, that is

Ds
α(f, g) = Dα(f‖g) + Dα(g‖f),

and similarly for Ds
KL,V

s
KL.

2.1.2 Basic properties of Rényi-divergences

This section lists some common properties of Rényi divergences that will be used in this thesis.
The letters f and g refer to two probability distributions over a space S . We refer the reader
to [VH14] for additional information and proofs.
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Proposition 1 (Varying the order). The function α ∈ (0,∞) 7→ Dα(f‖g) is increasing, while
α ∈ [0,∞) 7→ (1 − α) Dα(f‖g) is concave. Finally, the function α 7→ Dα(f‖g) is continuous
on (0, 1] ∪ {α > 1: Dα(f‖g) <∞}.

Proposition 2 (Positivity and skew symmetry). For any α > 0 it holds Dα(f‖g) ≥ 0. More-
over, for α ∈ (0, 1) we have (1− α) Dα(f‖g) = αD1−α(g‖f).

Proposition 3 (Orders α ∈ (0, 1) are all equivalent). For any 0 < β1 ≤ β2 < 1 we have

β1

β2

1− β2

1− β1

Dβ2 ≤ Dβ1 ≤ Dβ2 .

Proposition 4. If α > 0 and α 6= 1 then

(1− α) Dα(f‖g) = inf
h
{αDKL(h‖f) + (1− α) DKL(h‖g)} ,

where the inf is taken over all probability distributions onS andwith the conventionαDKL(h‖f)+

(1 − α) DKL(h‖g) = ∞ if it were otherwise be unde�ned. Moreover, if the distribution hα =
fαg1−α∫
fαg1−α

is well de�ned and Dα(hα‖f) <∞ or α ∈ (0, 1) then the in�mum is uniquely achieved
by h = hα.

Proposition 5. Suppose that DKL(f‖g) <∞. Then

sup
α∈(0,1)

inf
h
{αDKL(h‖f) + (1− α) DKL(h‖g)} = inf

h
sup
α∈(0,1)

{αDKL(h‖f) + (1− α) DKL(h‖g)} .

Moreover, if there exists α∗ ∈ (0, 1) such that DKL(hα∗‖f) = DKL(hα∗‖g) where hα = fαg1−α∫
fαg1−α

then we have

sup
α∈(0,1)

(1− α) Dα(f‖g) = (1− α∗) Dα∗(f‖g) = DKL(hα∗‖f) = DKL(hα∗‖g).

The quantity sup
α∈(0,1)

(1− α) Dα(f‖g) is called the Cherno� information between f and g.

2.1.3 Examples

Bernoulli distributions

Consider two Bernoulli distributions on {0, 1} de�ned by f(x) = (1 − p)1−xpx and g(x) =
(1− q)1−xqx for some p, q ∈ (0, 1). For any α ∈ (0,∞)\{1} we �nd that

Dα (f‖g) =
1

α− 1
log
(
(1− p)α(1− q)1−α + pαq1−α) .
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Remark 1. In an asymptotic regime with p, q = o(1), Taylor’s approximations log(1 + t) =

t + O(t2) and (1 − t)α = 1 − αt + O(t2) for t = o(1), together with the fact that pαq1−α =

O(p ∨ q) for α ∈ (0, 1) imply that

Dα(f‖g) =
1

1− α
(
αp+ (1− α)q − pαq1−α)+O

(
(p ∨ q)2

)
for α ∈ (0, 1). Especially D1/2(f‖g) =

(√
p−√q

)2
+ O ((p ∨ q)2). In an asymptotic regime

with p, q = o(1) and p � q, the above approximation also holds for α > 1.

Observing that log f
g
(x) = log 1−p

1−q + x
(

log p
q
− log 1−p

1−q

)
, and noting that EfX = p and

Varf X = p(1 − p) for a f -distributed random variable X , the Kullback-Leibler divergence
between two Bernoulli distributions equals

DKL(f‖g) = Ef
(

log
f

g
(X)

)
= log

1− p
1− q

+ p

(
log

p

q
− log

1− p
1− q

)
,

and the Kullback-Leibler variation is

VKL(f‖g) = Varf

(
log

f

g
(X)

)
= p(1− p)

(
log

p

q
− log

1− p
1− q

)2

.

Especially, symmetrised versions of the above quantities equal

Ds
KL(f, g) = (p− q)

(
log

p

q
− log

1− p
1− q

)
,

Vs
KL(f, g) = (p(1− p) + q(1− q))

(
log

p

q
− log

1− p
1− q

)2

.

Remark 2. In an asymptotic regime in which p, q � 1 and |p − q| � p ∨ q, by noting
that p

q
=
(

1− |p−q|
p∨q

)sgn(p−q)
and log(1 + t) = t + O(t2) for t = o(1), we �nd that log p

q
=

sgn(p − q) log
(

1− |p−q|
p∨q

)
= p−q

p∨q + O

((
p−q
p∨q

)2
)

. Therefore Ds
KL(f, g) = (1 + o(1)) (p−q)2

p∨q

and Vs
KL(f, g) = (1 + o(1))(p+ q)

(
p−q
p∨q

)2

= (1 + o(1)) (p−q)2
p∨q .

Remark 3. In an asymptotic regime in which p, q � 1 and p � q, we �nd that Ds
KL(f, g) =

(1 + o(1))(p− q) log p
q

and Vs
KL(f, g) = (1 + o(1))(p+ q) log2 p

q
.

Geometric distributions

We will investigate geometric distributions on the strictly positive integers with densities
f(x) = (1− a)ax−1 and g(x) = (1− b)bx−1 for a, b ∈ (0, 1).

For any α ∈ (0, 1) ∪ (1,∞), by applying the geometric sum formula we �nd that

Dα(f‖g) =

{
1

α−1
log (1−a)α(1−b)1−α

1−aαb1−α if aαb1−α < 1,

∞ otherwise.
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In particular, the Rényi divergence is �nite for any α ∈ (0, 1). Furthermore,

Ds
α(f, g) =

{
1

α−1

(
log 1−a

1−aαb1−α + log 1−b
1−bαa1−α

)
if max {aαb1−α, a1−αbα} < 1,

∞ otherwise.

Observing that log f
g
(x) = log 1−a

1−b + (x − 1) log a
b

and noting that EfX = 1
1−a and

Varf X = a
(1−a)2

, it follows that

DKL(f‖g) = Ef
(

log
1− a
1− b

+ (X − 1) log
a

b

)
= log

1− a
1− b

+
a

1− a
log

a

b
,

VKL(f‖g) = Varf

(
log

1− a
1− b

+ (X − 1) log
a

b

)
=

a

(1− a)2
log2 a

b
.

Especially, symmetrised versions of the above quantities equal

Ds
KL(f, g) =

(
a

1− a
− b

1− b

)
log

a

b
and Vs

KL(f, g) =

(
a

(1− a)2
+

b

(1− b)2

)
log2 a

b
.

Zero-in�ated geometric distributions

For a ∈ [0, 1) and p ∈ [0, 1] we de�ne a zero-in�ated geometric distribution as the probability
measure

Geo∗a,p = (1− p)δ0 + pGeoa

where Geoa is geometric on {1, 2, · · · } with density Geoa(x) = (1 − a)ax−1 and δ0 is the
Dirac measure at zero. The zero-in�ated geometric distribution contains as special cases the
Bernoulli distribution Berp = Geo∗0,p and the geometric distribution Geoa = Geo∗a,1.

For parameters a, b, p, q ∈ (0, 1) and an exponent α ∈ (0,∞)\{1}, simple computations
show that

Dα

(
Geo∗a,p ‖Geo∗b,q

)
=

1

α− 1
log
(
(1− p)α(1− q)1−α + pαq1−αZα (Geoa ‖Geob)

)
,

where

Zα(Geoa ‖Geob) =

{
(1−a)α(1−b)1−α

1−aαb1−α if 1− aαb1−α <∞,
∞ otherwise.

Remark 4. Consider a regime where a, b = Θ(1) and p, q = Θ(δ) for δ = o(1). Taylor’s
expansions (1− p)α(1− q)1−α = 1−αp− (1−α)q+O(δ2) and pαq1−α = Θ(δ) ensures that

Dα

(
Geo∗a,p ‖Geo∗b,q

)
=

αp+ (1− α)q

1− α
− pαq1−α

1− α
Zα(Geoa ‖Geob) +O

(
δ2
)

= Dα (Berp ‖Berq) +
pαq1−α

1− α
(1− Zα (Geoa ‖Geob)) +O

(
δ2
)

where we used the result of Remark 1.
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Normal and doubly exponential distribution

This paragraph presents two real-valued distributions f and g such that DKL(f‖g) < ∞
but D1+r(f‖g) = ∞ for all r > 0. This counter-example is taken from [LV06]. De�ne
f(x) = e−2|x| as the density of a doubly-exponential random variable and let g(x) = 1√

2π
e−x

2/2

be the standard normal density. Then Z1+r(f‖g) = ∞ and hence D1+r(f‖g) = ∞, while
DKL (f‖g) <∞.

2.2 Graph data and clustered random graph models

2.2.1 Graph data and clustering

A graph G is a pair (V,E), where V is a (�nite) set, whose elements are called nodes (or
vertices, or points) and E is a set of ordered node pairs called edges (or links, lines, bonds).
An edge (i, j) represents a link between two nodes, and we denote i ∼ j if (i, j) ∈ E. We
will assume that the edges are undirected (that is i ∼ j implies j ∼ i), and that graphs do not
possess any self-loops (a link connecting a node with itself), unless otherwise stated.

The adjacency matrix A of a graph contains all the information from (V,E). Asuming
that each node of V is assigned an arbitrary unique index in [N ] where N = |V |, we de�ned
A ∈ {0, 1}N×N such that

Aij =

{
1 if i ∼ j,

0 otherwise.

In particular, A is symmetric when the graph is undirected.

For binary networks, the degree di of a node i is the number of nodes linked to i, and
is given by di =

∑N
j=iAij . The degree matrix D is the diagonal matrix whose diagonal is

given by d = (d1, · · · , dN). The graph standard Laplacian L (respectively the normalized
Laplacian L) is de�ned by L = D − A (respectively by L = D−1/2LD−1/2).

Graph clustering consists in partitioning the node set V into K non-overlapping commu-
nities (or clusters) V1, · · · , VK such that ∪Kk=1Vk = V and Vk ∩ V` = ∅ for k 6= `. Spectral
clustering [SM00; NJW02; Von07] is one of the most popular graph clustering algorithms. It
consists in selecting the K eigenvectors v1, · · · , vK of the normalized Laplacian L (or an-
other graph matrix) associated to the K leading eigenvalues of L, and performing k-means
on the row of the matrix

(
v1, · · · , vK

)
. In this Thesis, we refer to spectral method any graph

clustering algorithm that uses the eigenvectors of some graph matrix.

A networks whose edges take value in a interaction space S is naturally represented by
a S-valued array A ∈ SN×N . Examples of such networks include edge-labelled networks
(S = {0, 1 . . . , L}), weighted networks (S = R+), temporal networks with T snapshots
(S = {0, 1}T ), and multiplex networks with M layers (S = {0, 1}M ).
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2.2.2 Non-binary stochastic block models

The objective of study is a population of N ≥ 1 mutually interacting nodes partitioned into
K ≥ 1 disjoint sets called blocks. The partition is represented by a node labelling σ : [N ]→
[K], so that σ(i) indicates the block which contains node i. In line with the classical de�nition
of a stochastic block model [HLL83], we assume that interactions between node pairs can be of
arbitrary type, and the set of possible interaction types is a measurable space S . This general
setup allows to model usual random graphs (S = {0, 1}), edge-labelled random graphs (S =
{0, . . . , L}, S = R), multiplex and temporal networks (S = {0, 1}T , S = {0, 1}∞), and many
other settings such as nodes interacting over a continuous time interval. In full generality,
such a stochastic block model (SBM) is parameterised by a node labelling σ : [N ] → [K] and
an interaction kernel (fk`) which is a collection of probability density functions with respect to
a common sigma-�nite reference measure µ on S , such that fk` = f`k for all k, ` = 1, . . . , K .
These parameters specify a probability measure on a space of observations

X =
{
x : [N ]× [N ]→ S : xij = xji, xii = 0 for all i, j

}
with probability density function

Pσ(x) =
∏

1≤i<j≤N

fσ(i)σ(j) (xij) (2.2.1)

with respect to the N(N − 1)/2-fold product of the reference measure µ.

Our main focus is on homogeneous models in which the interaction kernel can be repre-
sented as

fk` =

{
f if k = `

g otherwise
(2.2.2)

for some probability densities f and g on S , called the intra-block and inter-block interaction
distribution, respectively. A homogeneous SBM is hence a probability density Pσ on X spec-
i�ed by (2.2.1)–(2.2.2) and parameterised by a 5-tuple (N,K, σ, f, g). For an observation X
distributed according to such Pσ, the entries Xij , 1 ≤ i < j ≤ N , are mutually independent,
and Xij is distributed according to f when σ(i) = σ(j), and according to g otherwise.

The node labelling σ representing the block membership structure is considered an un-
known parameter to be estimated. When studying the average error rate of estimators, it is
natural to regard the node labelling as a random variable distributed according to the uniform
distribution π(σ) = K−N on parameter space

Z =
{
σ : [N ]→ [K]

}
.

In this case the joint distribution of the node labelling and the observed data is characterised
by a probability density

P(σ, x) = π(σ)Pσ(x) (2.2.3)

on Z × X with respect to cardZ ×µ, where cardZ is the counting measure on Z .
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2.2.3 Community recovery and error indices

Community recovery refers to the estimation of an unknown node labelling σ = (σi)1≤i≤N
based on an observed interaction arrayX = (Xij)1≤i<j≤N . The community recovery problem
then becomes the problem of developing an algorithm φ : X → Z which maps an observed
data array X = (Xij) into an estimated node labelling σ̂ = φ(X). Stated like this, the
recovery problem is ill-posed because the map σ 7→ Pσ de�ned by (2.2.1) is in general non-
injective. Therefore, we adopt the common approach in which the goal is to recover the
unlabelled block structure, that is, the partition [σ] = {σ−1(k) : k ∈ [K]}, and the estimation
error is considered small when [σ̂] is close to [σ]. Accordingly, we de�ne for node labellings
σ1, σ2 : [N ]→ [K] an error quantity by

d∗Ham(σ1, σ2) = min
ρ∈Sym(K)

dHam(ρ ◦ σ1, σ2)

where Sym(K) denotes the group of permutations on [K] and dHam refers to the Hamming
distance. The above error takes values in {0, . . . , N} and depends on its inputs only via the
partitions [σ1] and [σ2]. The normalised error quantity N−1 d∗Ham(σ1, σ2) is known as the
classi�cation error in [For10; MH01].

When analysing the average performance of an estimator, we can view σ̂ as a Z-valued
random variable de�ned on the observation spaceX . ThenEσ d∗Ham(σ̂, σ) equals the expected
clustering error given a true parameter σ, and

E d∗Ham(σ̂) =
∑
σ∈Z

π(σ)Eσ d∗Ham(σ̂, σ)

is the average clustering error with respect to the uniform distribution π(σ) = K−N on the
parameter space.

2.2.4 Large-scale models

A large-scale network is represented as a sequence of models P (η)
σ indexed by a scale param-

eter η = 1, 2, . . . In this setting the model dimensions N (η), K(η), the node labelling σ(η), the
interaction densities f (η), g(η), as well as the spaces S(η),X (η),Z(η) all depend on the scale
parameter η. In this setup, an estimator is viewed as a map φ(η) : X (n) → Z(η). For nonneg-
ative sequences a = a(η) and b = b(η) we denote a = o(b) when lim supη→∞ a

(η)/b(η) = 0,
and a = O(b) when lim supη→∞ a

(η)/b(η) <∞. We write a = ω(b) when b = o(a), a = Ω(b)
when b = O(a), and a = Θ(b) when a = O(b) and b = O(a). We also denote a � b for
a = o(b), a . b for a = O(b), and a � b for a = Θ(b). To avoid overburdening the notation,
the scale parameter is mostly omitted from the notation in what follows.
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2.2.5 Consistent estimators

For a large-scale model with N � 1 nodes, an estimator σ̂ = σ̂(η) is called:

(i) consistent if E d∗Ham(σ̂) = o(N);

(ii) strongly consistent if E d∗Ham(σ̂) = o(1);

where we recall that E refers to the expectation with respect to the probability measure P
de�ned by (2.2.3). A strongly consistent estimator is also said to achieve exact recovery, and a
consistent estimator is said to achieve almost exact recovery [Abb18].

2.2.6 Information theoretic limits block model clustering

Theorem1 ([MNS16; ABH16]). Consider a homogeneous binary SBM, withK = 2 and where π
is the uniform distribution over the set of equal size blocks. Let f = Ber (pin) and g = Ber (pout)

and suppose N � 1. The following hold.

• Suppose pin = aN−1 and pout = bN−1 where a and b depend on the scale parameter η.
Then a consistent estimator exists if and only if (a−b)2

2(a+b)
� 1.

• Suppose pin = aN−1 logN and pout = bN−1 logN with a, b constants. Then a strongly
consistent estimator exist if

(√
a−
√
b
)2
> 2, and does not exist if

(√
a−
√
b
)2
< 2.

The result of Theorem 1 has been extended to more than two blocks [AS15], as well as
models consideringS = {0, 1, · · · , L} [JL15] orS = R [XJL20]. This Thesis extends the study
to homogeneous SBM with uniform node labels and general pairwise interaction space S ,
which eventually might depend on the scale parameter η. Example naturally occurs by con-
sidering a temporal network with Tη binary snapshots, where both the number of nodes Nη

and the number of snapshots Tη grow unbounded.

The connection between consistency conditions in binary SBM and S-valued SBM is nat-
urally done by considering the Rényi divergences between the probability distributions f, g.
Indeed, using the Taylor’s expansion of the Rényi divergence between Bernoulli distributions
(see Section 2.1.3), we have

D1/2

(
Ber

(
a

logN

N

)
,Ber

(
b
logN

N

))
=

logN

N

(√
a−
√
b
)2

+O

((
logN

N

)2
)
.

Thus, the strong consistency threshold can be rewritten as D1/2(f, g) ≥ (1 + Ω(1))K logN
N

.
Similarly, the condition for consistent recovery is D1/2 (f, g) � N−1. The role of the Rényi
divergence is further ampli�ed by the following mini-max result.
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Theorem 2 ([ZZ16]). Consider a homogeneous binary SBM with connectivity distributions f, g.
Let Σ =

{
σ ∈ [K]N : ∀k ∈ [K], |σ−1(k)| ∈

[
β−1N

K
, βN

K

]}
be the space of admissible distribu-

tions, where β ∈
[
1,
√

5/3
]
is an imbalanced parameter. Let I = D1/2 (f, g), and assume that

NI
K logK

� 1. Then

inf
σ̂

sup
σ∈Σ

N−1Eσ d∗Ham (σ̂, σ) =

exp
(
−(1− o(1))NI

2

)
if K = 2,

exp
(
−(1− o(1))NI

βK

)
if K ≥ 3.

Assuming K � 1 and β ∈ [1,
√

5/3], the main implications of Theorem 2 are:

1. Consistency is impossible (in a worst-case sense) when I . N−1. In this case, for any
estimator σ̂ there exists a worst-case node labelling σ with imbalance factor at most β,
for which the relative error remains bounded away from zero, regardless of the network
size. In other words, for any estimator σ̂ (taking also scale as input), as the scale grows
larger and larger, there always exist worst-case node labellings for which the relative
error remains bounded away from zero.

2. Strong consistency is impossible (in a worst-case sense) when I ≤ (1−Ω(1))K logN
N

and
K = 2, or I ≤ (1 − Ω(1))βK logN

N
and K ≥ 3. This means that for any estimator σ̂

there exists a worst-case node labelling σ with imbalance factor at most β, for which
the absolute error remains bounded away from zero.
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Recovery thresholds

3.1 Error bounds and recovery conditions . . . . . . . . . . . . . . . . . . 29
3.2 Recovery conditions for sparse non-binary SBM . . . . . . . . . . . . 31
3.3 Clustering sparse SBMs in polynomial time . . . . . . . . . . . . . . . 32
3.4 Temporal networks with sparse Markov interactions . . . . . . . . . 36

3.4.1 Rényi divergence between sparse chains . . . . . . . . . . . . 37
3.4.2 Bounded time horizon . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Long time horizon . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Large number of blocks . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Non-homogeneous models . . . . . . . . . . . . . . . . . . . . 42

In this section, we derive information-theoretic thresholds for consistent recovery in Sec-
tion 3.1 and specialise in sparse networks in Section 3.2. We propose a polynomial-time al-
gorithm for sparse networks and study its consistency in Section 3.3. To keep the exposition
clean, we relegate the proofs in Chapter 4.

3.1 Error bounds and recovery conditions

The following theorem characterises fundamental information-theoretic limits for the recov-
ery of block memberships from data generated by a homogeneous S-valued SBM. It does not
make any scaling assumptions on the model dimensions N and K , or on the space of inter-
action types S , and its proof indicates that maximum likelihood estimators achieve the upper
bound.
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Theorem 3. For a homogeneous SBM withN nodes,K blocks, and interaction distributions f, g
on a general measurable space S having Rényi divergence I = D1/2(f, g), the minimum average
classi�cation error among all estimators σ̂ : X → Z is bounded from below by

min
σ̂

E
(

d∗Ham(σ̂)

N

)
≥ 1

84
K−3e−

N
K
I−
√

8NI21 − 1

6
e−

N
8K

and from above by

min
σ̂

E
(

d∗Ham(σ̂)

N

)
≤ 8e(K − 1)e−(1−ζ−κ)N

K
I +KNe−

1
4

( ζ
K−1

−ε)(N/K)2I + 2Ke−
1
3
ε2 N
K ,

for all 0 ≤ ε ≤ ζ ≤ 1
21
, where κ = 56 max{K2e−

NI
8K , KN−1} and another auxiliary parameter

is de�ned by I21 =
(

1
2
−K−1

)
K−1I + 1

2
K−1J with J = Z1/2(f, g)−1

∫ √
fg log2 f

g
.

Proof. The lower bound is established in Section 4.1, while the upper bound is analysed in
Section 4.2 and follows from Proposition 11.

Theorem 3 generalises [XJL20, Theorem 5.2] to a quantitative setting which requires nei-
ther regularity assumptions on f, g nor restrictions on the underlying space S of interaction
types. This also allows equally sized blocks, unlike in [XJL20]. Note that [XJL20, Theorem
5.2] does not tell what happens for large T in case where S = {0, 1}T . Theorem 3 is also
analogous to [ZZ16, Theorem 2.1 and 2.2] and [PC16, Theorem 6], who studied the binary
SBM and multiplex SBM in a minimax framework.

The next key result characterises information-theoretic recovery conditions in large-scale
networks, for which we emphasise that the model dimensions N = N (η), K = K(η), the
interaction distributions f = f (η), g = g(η), and also the interaction type space S = S(η), are
allowed to depend on the scale parameter.

Theorem 4. Consider a homogeneous SBM with N � 1 nodes, K � 1 blocks, and interaction
distributions f and g having Rényi divergence I = D1/2(f, g). The following hold:

(i) a consistent estimator exists if I � N−1, and does not exist if I . N−1;

(ii) a strongly consistent estimator exists if I ≥ (1 + Ω(1))K logN
N

, and does not exist if
I ≤ (1− Ω(1))K logN

N
.

Proof. The nonexistence statements are a direct consequence of the lower bound in Theo-
rem 3 combined with Lemma 8. The existence results follow by analysing the upper bound of
Theorem 3, which is done in Proposition 12 in Section 4.2.

Example 1 (Binary interactions). The Rényi divergence of order 1
2

for Bernoulli distributions
with means p and q equals I = −2 log((1 − p)1/2(1 − q)1/2 + p1/2q1/2). In a regime where
p = p0

logN
N

and q = q0
logN
N

for scale-independent constants p0, q0 > 0, this is approximated
by I = (

√
p0 −

√
q0)2 logN

N
+ o

(
logN
N

)
. Theorem 4 tells that a strongly consistent estimator

exists if (
√
p0 −

√
q0)2 > K and does not exist if (

√
p0 −

√
q0)2 < K . This is the well-known

threshold for strong consistency in binary SBMs [ABH16; MNS16].
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Example 2 (Poisson interactions). The Rényi divergence of order 1

2
for Poisson distributions

with means λ and µ equals I = (
√
λ − √µ)2. In a regime where λ = a logN

N
and µ = b logN

N

for scale-independent constants a, b > 0, Theorem 4 tells that a strongly consistent estimator
exists for (

√
a−
√
b)2 > K and does not exist for (

√
a−
√
b)2 < K . This is a similar condition

as in Example 1, and is due to the fact that Bernoulli distributions with small mean are well
approximated by Poisson distributions.

Example 3 (Censored block model). Consider a binary censored block model as in [Dha+22].
A latent graph is generated from a binary SBM with f = Ber(p0) and g = Ber(q0) and
then each pair interaction is revealed independently with probability r = r0

logN
N

, where we
assume that p0, q0, r0 are scale-independent constants. The resulting observed network is a
SBM with S = {present, absent, censored} (where censored denotes the non-observed in-
teractions) and with intra-block and inter-block probability distributions f̃ and g̃. We have
f̃(present) = rp0, f̃(absent) = r(1 − p0) and f̃(censored) = 1 − r, and similarly for
g̃. From D1/2(f̃ , g̃) = r

((√
p0 −

√
q0

)2
+
(√

1− p0 −
√

1− q0

)2
)

+ O (r2) it follows that
a strongly consistent estimator exists if r0 > rcrit

0 and does not exist if r0 < rcrit
0 , where

rcrit
0 = K

((√
p0 −

√
q0

)2
+
(√

1− p0 −
√

1− q0

)2
)−1

. For K = 2, this coincides with the
critical threshold obtained in [Dha+22].

Example 4 (Multiplex networks with independent layers). The interaction space of a multi-
plex network with M independent layers is S = {0, 1}M , and for x = (x1, . . . , xM) ∈ S we
have f(x) =

∏M
m=1 fm(xm) and g =

∏M
m=1 gm(xm). Then D1/2(f, g) =

∑M
m=1 D1/2(fm, gm).

Assuming K � 1, strong consistency in expectation is possible if

M∑
m=1

D1/2(fm, gm) ≥ (1 + Ω(1))
K logN

N
,

and impossible if
M∑
m=1

D1/2(fm, gm) ≤ (1− Ω(1))
K logN

N
.

Similarly, consistency is possible if
∑M

m=1 D1/2(fm, gm) � N−1 and impossible otherwise.
These thresholds are similar to the minimax error rates reported in [PC16, Theorem 6]. An
important extension here is that the above characterisation remains valid if {0, 1}M is replaced
by SM0 , where S0 is an arbitrary measurable space.

3.2 Recovery conditions for sparse non-binary SBM

Sparse networks can be modelled using interaction distributions f and g for which p = 1 −
f(0) and q = 1−g(0) are close to zero, where 0 ∈ S is an element representing no-interaction.
We can represent the interaction distributions as

f = (1− p)δ0 + pf̃ and g = (1− q)δ0 + qg̃, (3.2.1)
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where the probability distributions f̃ and g̃ may depend on the scale parameter η and f̃(0) =
g̃(0) = 0. Here f̃ and g̃ represent conditional distributions of intra-block and inter-block
interactions given that there is an interaction. In a sparse setting where p, q = O(ρ) for some
ρ� 1, Taylor’s approximations show that the Rényi divergence of order 1

2
is given by

D1/2(f, g) = (
√
p−√q)2 + 2

√
pqHel2(f̃ , g̃) +O(ρ2). (3.2.2)

Since D1/2(Berp,Berq) = (
√
p−√q)2 +O(ρ2), the Hellinger distance Hel(f̃ , g̃) characterises

the information gained by observing types of interactions, compared to the binary data cor-
responding to just observing whether or not there is an interaction.

The following proposition states consistency thresholds when the interactions distribu-
tions are given by (3.2.1).

Proposition 6. Consider a homogeneous SBM with N � 1 nodes, K � 1 blocks, and with
f, g given by (3.2.1). Suppose that p = p0ρ and q = q0ρ with p0, q0 constants and ρ � 1. Let
Ĩ =

(√
p0 −

√
q0

)2
+ 2
√
p0q0 Hel2(f̃ , g̃). Then the following hold:

(i) a consistent estimator exists if ρĨ � N−1, and does not exist if ρĨ . N−1;

(ii) a strongly consistent estimator exist if ρĨ ≥ (1 + Ω(1))K logN
N

, and does not exist if
ρĨ ≤ (1− Ω(1))K logN

N
.

Proof. Equation (3.2.2) shows that D1/2(f, g) = ρĨ + O(ρ2), and hence points (i) and (ii) are
straightforward consequences of Corollary 4.

Remark 5. Proposition 6 generalizes [JL15, Theorems 3.3 and 3.4], which only study strong
consistency in probability and further restrict S = {0, 1, · · · , L} while imposing f̃(`) > 0

and g̃(`) > 0 for all ` ∈ {1, . . . , L}.

3.3 Clustering sparse SBMs in polynomial time

To cluster sparse SBM in a polynomial time in N , we propose Algorithm 2 which employs
spectral clustering as a subroutine to produce a moderately accurate initial clustering, and
then performs a re�nement step through node-wise likelihood maximisation [Gao+17; XJL20].
Similarly to [Gao+17; XJL20], for technical reasons related to the proofs, the initialisation step
of Algorithm 2 involves N separate spectral clustering steps. A consensus step is therefore
needed at the end, to correctly permute the individual predictions. Numerical experiments
indicate that in practice it often su�ces to do one spectral clustering on a binary matrix, and
remove this consensus step.
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Algorithm 2: Clustering using general S-valued interaction data
Input: S-valued interaction matrix Aij ; interaction distributions f, g.
Output: Estimated node labelling σ̂.

1 Step 1: Coarse clustering using binary interaction data

2 Compute a binary matrix Ã by setting Ãij = 1(Aij 6= 0) for all i, j
3 for i = 1, . . . , N do
4 Let Ã−i be the submatrix of Ã with row i and column i removed.
5 Compute a node labelling σ̃i on [N ] \ {i} by applying a standard graph clustering

algorithm with adjacency matrix Ã−i.

6 Step 2: Re�ned clustering using full interaction data

7 for i = 1, . . . , N do
8 Compute hi(k) =

∑
j:σ̃i(j)=k

log
f(Aij)
g(Aij)

for all k ∈ [K].
9 Set σ̂i(i) = arg maxk∈[K] hi(k) with arbitrary tie breaks.

10 Set σ̂i(j) = σ̃i(j) for j 6= i.

11 Step 3: Consensus

12 Select σ̂1 as a baseline node labelling and set σ̂(1) = σ̂1(1).
13 for i = 2, . . . , N do
14 Set σ̂(i) = arg max` |σ̂−1

i (σ̂i(i)) ∩ σ̂−1
1 (`)| with arbitrary tie breaks.

The following theorem characterises the accuracy of Algorithm 2 for sparse large-scale
models, and implies that under some technical conditions this algorithm achieves the expo-
nential error rate in Theorem 3. The proof of Theorem 5 is given in Section 4.3.
Theorem 5. Consider a homogeneous SBM withN � 1 nodes,K � 1 blocks, and sparse inter-
action distributions f and g given by (3.2.1), having Rényi divergence I = D1/2(f, g). Assume
that p ∨ q & N−1 and (p−q)2

p∨q � N−1 Ds1+r(f,g)

Dsr(f,g)
for some r ∈

(
0, 1

2

]
. Then the classi�cation error

of Algorithm 2 is bounded by

E
(

d∗Ham(σ̂)

N

)
≤ Ke−(1−o(1))2rNI

K + o(1).

Theorem 5 is similar in spirit to upper bounds in [XJL20] and [YP16] but is fundamentally
di�erent in that it makes neither assumptions about truncating the label space S nor any
assumptions about the regularity of the interaction distributions f, g. Moreover, for temporal
binary interactions with S = {0, 1}T , the algorithms in [XJL20] are of exponential complexity
in T and the analytical techniques do not allow to consider regimes with T � 1. An open
future research problem is to derive an upper bound in the case with only one initial clustering
step.

When f, g are given by (3.2.1), a Taylor expansion of Dα(f‖g) for α ∈ (0,∞)\{1} leads to

Dα (f‖g) =
pαq1−α

α− 1
Zα(f̃‖g̃)− αp+ (1− α)q

α− 1
+O

(
ρ2
)
,
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where Zα(f̃‖g̃) =

∫
f̃αg̃1−α. If p = p0ρ and q = q0ρ where p0, q0 are constants, and

Zα(f̃‖g̃) = O(1), then Dα(f‖g) � ρ. Hence, Ds
1+r(f, g) � Ds

r(f, g) for every r such that
Ds

1+r(f̃ , g̃) = O(1).

Proposition 7. Consider a homogeneous SBMwithN � 1 nodes,K � 1 blocks, and interaction
distributions f and g having Rényi divergence I = D1/2(f, g) and form (3.2.1). Suppose that
p = p0ρ and q = q0ρ with p0 6= q0 constants and ρ� 1. Let

Ĩ = (
√
p0 −

√
q0)2 + 2

√
p0q0 Hel2(f̃ , g̃).

Then, the following hold:

(i) if Ds
1+r(f̃ , g̃) = O(1) for some constant r ∈

(
0, 1

2

]
, then Algorithm 2 is consistent for

ρĨ � N−1;

(ii) if Ds
3/2(f̃ , g̃) = O(1), then Algorithm 2 is strongly consistent for ρĨ ≥ (1 + Ω(1))K logN

N
.

Proof. Firstly, if ρ . N−1 then consistency is never possible (see e.g., point (i) of Proposi-
tion 6). We can thus assume ρ � N−1. Let r ∈

(
0, 1

2

]
such that Ds

1+r(f̃ , g̃) = O(1). Then
Ds

1+r(f, g) � Ds
r(f, g). Combined with p0 6= q0, this implies that (p−q)2

p∨q = ρ (p0−q0)2

p0∨q0 � ρ �
N−1 D1+r(f,g)

Dr(f,g)
, and we can apply Theorem 5 to prove (i). To prove (ii), we need to apply Theo-

rem 5 with r = 1
2
, so that Algorithm 2 achieves the threshold for strong consistency. This is

possible under the assumption Ds
3/2(f̃ , g̃) = O(1).

We will next illustrate by examples the applicability of Theorem 5 and Proposition 7 in
various contexts involving discrete labels and continuous weights.

Example 5 (Sparse categorical interactions). Consider a categorical stochastic block model
with intra- and inter-block interactions distributed according to

f = (1− ρp0)δ0 + ρp0f̃ and g = (1− ρq0)δ0 + ρq0g̃,

in which f̃ and g̃ are probability distributions on {1, . . . , L}, not depending on scale, such
that f̃(`), g̃(`) > 0 for all `. This is the model studied in [JL15]. In this case Ds

3/2(f̃ , g̃) is
�nite, and the critical information quantity de�ned in Proposition 7 equals

Ĩ = (
√
p0 −

√
q0)2 +

√
p0q0

L∑
`=1

(√
f̃(`)−

√
g̃(`)

)2

.

Proposition 7 then tells that Algorithm 2 is consistent for ρĨ � N−1 and strongly consistent
for ρĨ ≥ (1+Ω(1))K logN

N
. In the degenerate case with L = 1, we see that Ĩ =

(√
p0 −

√
q0

)2

and for ρ = logN
N

we recover the well-known condition
(√

p0 −
√
q0

)2
> K in Example 1.
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Example 6 (Sparse geometric interactions). Consider an integer-valued stochastic block model
with intra- and inter-block interactions distributed according to

f = (1− ρp0)δ0 + ρp0 Geo(a) and g = (1− ρq0)δ0 + ρq0 Geo(b),

for some scale-independent constants a, b ∈ (0, 1), where Geo(a) denotes a geometric distri-
bution on {1, 2, . . . } with probability mass function x 7→ (1 − a)ax−1. Basic computations
show that the critical information quantity de�ned in Proposition 7 equals

Ĩ = (
√
p0 −

√
q0)2 + 2

√
p0q0

(
1− (1− a)1/2(1− b)1/2

1− a1/2b1/2

)
.

Furthermore, Ds
1+r(Geo(a),Geo(b)) < ∞ if and only if b 1+r

r < a < b
r

1+r , see Figure 3.1. For
any a, b ∈ (0, 1), this condition holds for a small enough r > 0. Proposition 7 then tells that
Algorithm 2 is consistent when ρĨ � 1, and strongly consistent when ρĨ ≥ (1+Ω(1))K logN

N

and b3 < a < b1/3. The more a and b di�er from each other, the easier it is to distinguish
samples from the geometric distributions. On the other hand, very large di�erences between
a and b might imply divergences in the likelihood ratios used by Algorithm 2. Such cases are
ruled out by the extra condition b3 < a < b1/3.

Figure 3.1: Shaded areas display (a, b) pairs in the unit rectangle satisfying b 1+r
r < a < b

r
1+r

for r = 0.5 (left), r = 0.1 (center) and r = 0.01 (right).

Example 7 (Sparse normal interactions). Consider a real-valued stochastic block model with
intra- and inter-block interactions distributed according to

f = (1− ρp0)δ0 + ρp0f̃ and g = (1− ρq0)δ0 + ρq0g̃,

in which f̃ = Nor(0, σ2) and g̃ = Nor(0, τ 2) are zero-mean normal distributions, and we
assume that p0 6= q0 and σ 6= τ are scale-independent constants. The critical information
quantity de�ned in Proposition 7 then equals

Ĩ = (
√
p0 −

√
q0)2 + 2

√
p0q0

(
1−

√
στ

1
2
(σ2 + τ 2)

)
.

Simple computations show that the Rényi divergences between f̃ and g̃ are given by Dα(f̃‖g̃) =
1

α−1
log σ1−ατα

ξα
when ξ2

α = ασ2 + (1− α)τ 2 > 0, and by Dα(f̃‖g̃) =∞ otherwise. Thus, the
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symmetric Rényi divergence Ds

1+r(f̃ , g̃) is �nite if and only if max{σ,τ}
min{σ,τ} <

√
1 + 1/r. Proposi-

tion 7 then implies that Algorithm 2 is consistent when ρĨ � N−1, and strongly consistent
when ρĨ ≥ (1 + Ω(1))K logN

N
and σ∨τ

σ∧τ <
√

3. The more σ and τ di�er from each other, the
easier it is to distinguish samples from the normal distributions f̃ and g̃. On the other hand,
very large di�erences between σ and τ might imply divergences in the likelihood ratios used
in Algorithm 2. Such cases are ruled out by the extra condition max{σ,τ}

min{σ,τ} <
√

3.

Example 8. Consider a real-valued stochastic block model with intra- and inter-block inter-
actions distributed according to

f = (1− ρp0)δ0 + ρp0f̃ and g = (1− ρq0)δ0 + ρq0g̃,

in which f̃(x) = e−2|x| and g̃(x) = 1√
2π
e−x

2/2 are probability densities over R. We notice that
D1+r(f‖g) =∞ for every r > 0. Hence in that case, Proposition 7 cannot say if Algorithm 2
is consistent or not.

3.4 Temporal networks with sparse Markov interactions

As an instance of a network where interactions are correlated over time, we investigate a
Markov SBM with interaction space S = {0, 1}T in which intra- and inter-block distributions
are given by

f = µx1Px1,x2 · · ·PxT−1,xT , and g = νx1Qx1,x2 · · ·QxT−1,xT , (3.4.1)

where µ, ν are initial probability distributions on {0, 1} and P,Q are stochastic matrices
on {0, 1}. The following model instances deserve special attention.

Example 9 (Static SBM). If P and Q are identity matrices, then there is no temporal activity,
so thatA1 = · · · = AT almost surely. Hence the model reduces to a static homogeneous SBM.

Example 10 (Independent SBM samples). If the rows of P are equal, and the rows of Q are
equal, then there is no temporal dependence, and A1, . . . , AT are mutually independent. This
corresponds to observing T independent samples from a static SBM.

Example 11 (Static intra-block linkage). If P is the identity matrix, and the rows of Q are
identical, then the link states within blocks remain constant over time, whereas inter-block
interactions may be considered as temporally uncorrelated noise.

A Markov SBM is an instance of the general SBM model in which the symmetric Rényi
divergence between interaction distributions, a key quantity in Theorem 4, equals

D1/2(f, g) = −2 log

 ∑
x∈{0,1}T

(µx1νx1)
1/2

T∏
t=2

(Pxt−1xtQxt−1xt)
1/2

 . (3.4.2)
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In a sparse regime, the probability of observing a non-zero interaction between any par-

ticular pair of nodes is small, i.e.,

max{µ1, ν1, P01, Q01} ≤ ρ (3.4.3)

where ρ = ρη → 0 as η → ∞. One particular case is to assume that for some constants
u, v, p01, q01 ∈ (0,∞),

µ1 = uρ, ν1 = vρ, P01 = p01ρ, Q01 = q01ρ. (3.4.4)

Under this assumption, the expected number of 1’s in a f -distributed signal is E
∑T

t=1Xt ≤
µ1 +(T−1)P01 = O(ρT ). Hence when ρT = o(1), the probability of observing an interaction
between any particular node pair is small. We will often make the assumption that the chains
are indexed by a scale parameter η and verify

ρηTη � 1. (3.4.5)

3.4.1 Rényi divergence between sparse chains

The following result presents a key approximation formula with proof provided in Section 4.4.

Proposition 8. Consider binary Markov chains with initial distributions µ, ν and transition
probability matrices P,Q. Assume that µ1, ν1, P01, Q01 ≤ ρ for some ρ such that ρT ≤ 0.01.
Then the Rényi divergence (3.4.2) is approximated by |D1/2(f, g)− I| ≤ 92(ρT )2, where

I = (
√
µ1 −

√
ν1)2 +

((√
P01 −

√
Q01

)2

+ 2H2
11

√
P01Q01

)
(T − 1)

+ 2
(

Γ
√
µ1ν1 −

√
P01Q01

)
H2

11

T−2∑
t=0

(1− Γ)t
(3.4.6)

is de�ned in terms of H2
11 = 1−

√
1−P11

√
1−Q11

1−
√
P11Q11

, and Γ = 1−
√
P11Q11.

The quantities in (3.4.6) can be understood as follows. With the help of Taylor’s approxi-
mations we see that

(
√
µ1 −

√
ν1)2 = D1/2(Ber(µ1)‖Ber(ν1)) +O(ρ2),

(
√
P01 −

√
Q01)2 = D1/2(Ber(P01)‖Ber(Q01)) +O(ρ2),

H11 = Hel(Geo(P11),Geo(Q11)).

We also note that Γ = 1−
√
P11Q11 may be interpreted as an e�ective spectral gap averaged

over the two Markov chains1.
1The nontrivial eigenvalues of transition matrices P and Q can be written as ΛP = P11 − P01 and ΛQ =

Q11 −Q01. These are nonnegative when P01 ≤ P11 and Q01 ≤ Q11. The absolute spectral gaps characterising
the mixing rates of these chains [LPW08] are then ΓP = 1 − ΛP and ΓQ = 1 − ΛQ. When P01 � P11 and
Q01 � Q11, we �nd that Γ = 1−

√
P11Q11 = 1− (ΛP ΛQ)1/2 + o(1).
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3.4.2 Bounded time horizon

Consider a Markov SBM in which T = O(1) is a scale-independent constant, and

µ1 = uρ+ o(ρ), P01 = p01ρ+ o(ρ), H11 = h11 + o(1),

ν1 = vρ+ o(ρ), Q01 = q01ρ+ o(ρ), Γ = γ + o(1),
(3.4.7)

for some constants u, v, p01, q01, h11, γ, and de�ne a constant Ĩ by

Ĩ =
(√

u−
√
v
)2

+
(

(
√
p01 −

√
q01)2 + 2h2

11

√
p01q01

)
(T − 1)

+ 2h2
11

(
γ
√
uv −√p01q01

) T−2∑
t=0

(1− γ)t.
(3.4.8)

Theorem 6. Consider a Markov SBM with N � 1 nodes, K = O(1) blocks, and T = O(1)

snapshots, and assume that (3.4.7) holds for some constants u, v, p01, q01, h11, γ ≥ 0 such that
Ĩ 6= 0, and some ρ� 1. Then:

(i) a consistent estimator does not exist for ρ . 1
N
and does exist for ρ� 1

N
;

(ii) a strongly consistent estimator does not exist for ρ� logN
N

and does exist for ρ� logN
N

;

(iii) in a critical regime with ρ = logN
N

, a strongly consistent estimator does not exist for Ĩ < K

and does exist for Ĩ > K .

If we further assume that u, v, p01, q01 > 0, u + (T − 1)p01 6= v + (T − 1)q01, P10 � Q10, and
P11 � Q11, then Algorithm 2 is consistent when ρ� 1

N
; and strongly consistent when ρ� logN

N
,

or when ρ = logN
N

and Ĩ > K .

Proof. By Proposition 8, we �nd that

D1/2(f, g) = (1 + o(1))Ĩρ+O
(
ρ2
)
.

The assumption that Ĩ 6= 0 now implies that D1/2(f, g) = (1 + o(1))Ĩρ. The claims (i)–(iii)
now follow Theorem 4.

Let us now impose the further extra assumptions of the theorem. In this case may �x
a constant M ≥ 1 such that M−1 ≤ µ1

ν1
, P01

Q01
, P10

Q10
≤ M . Moreover, the assumption γ > 0

implies that P11 and Q11 cannot both go to one. Thus, we may choose a β ∈ [0, 1] such
that P 3/2

11 Q
β−3/2
11 6= 1 + o(1). Denote Λ = P

3/2
11 Q

−1/2
11 . Because P11 � Q11, we �nd that

Λ . 1. Proposition 14 then implies that D3/2(f‖g) . ρ. A similar argument shows that
D3/2(g‖f) . ρ as well. Therefore, Ds3/2(f,g)

D1/2(f,g)
. 1. Taylor’s approximations further show that

the intra- and inter-block probabilities p = 1− (1−µ1)(1−P01)T−1 and q = 1− (1−ν1)(1−
Q01)T−1 of observing a nonzero interaction pattern satisfy p = (u+ (T − 1)p01)ρ+ o(ρ) and
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q = (v + (T − 1)q01)ρ + o(ρ). It follows that p, q � ρ and p− q � ρ. When we assume that
ρ� 1

N
, it follows that p∨q � N−1 and (p−q)2

p∨q � ρ. We will apply Theorem 5 to conclude that
Algorithm 2 is consistent when ρ � 1

N
, and strongly consistent when ρ � logN

N
, or when

ρ = logN
N

and Ĩ > K .

Remark 6. The point (i) of Theorem 6 shows that consistency criteria is the same as for a
binary SBM. Hence observing a �nite number of snapshots does not change the consistency
threshold.

Remark 7. Theorem 6 shows that the critical network density for strong consistency is ρ =
logN
N

. In this regime, the the existence of a strongly consistent estimator is determined by Ĩ
de�ned in (3.4.8). The �rst term of Ĩ equals (

√
u−
√
v)2 and accounts for the �rst snapshot:

for T = 1 we recover the known threshold for strong consistency in the binary SBM [ABH16;
MNS16]. Each additional snapshot adds to Ĩ an extra term of size Ĩt de�ned by

Ĩt = (
√
p01 −

√
q01)2 + 2h2

11

√
p01q01 + 2h2

11

(
γ
√
uv −√p01q01

)
(1− γ)t−2.

In particular, Ĩt is bounded by

(
√
p01 −

√
q01)2 + 2c1h

2
11 ≤ Ĩt ≤ (

√
p01 −

√
q01)2 + 2c2h

2
11

with c1 = min{√p01q01, γ
√
uv} and c2 = max{√p01q01, γ

√
uv}. The extra term is zero

when p01 = q01 and h11 = 0. Notably, if the left side above is nonzero, then there exists a
�nite threshold T ∗ such that strong consistency is possible for T ≥ T ∗.

Remark 8. In a special case of (3.4.7) with p01 = u, q01 = v, h11 = 0, and γ = 1, the
critical information quantity in (3.4.8) equals Ĩ = T (

√
u−
√
v)2. This coincides with multiplex

networks composed of T independent layers studied in Example 4. This is also what we would
obtain when studying transition matrices P and Q corresponding to independent Bernoulli
sequences with means µ1 = uρ + o(ρ) and ν1 = vρ + o(ρ), because in this case Γ = 1 −√
P11Q11 = 1−O(ρ) and H11 = Hel(Geo(µ1),Geo(ν1)) = O(ρ).

3.4.3 Long time horizon

Consider a Markov SBM with T � 1 snapshots in which

P01 = p01ρ+ o(ρ), Q01 = q01ρ+ o(ρ), H11 = h11 + o(1), (3.4.9)

for some constants p01, q01, h11, and de�ne

Ĩ = (
√
p01 −

√
q01)2 + 2h2

11

√
p01q01. (3.4.10)

In the following result we assume that the e�ective spectral gap Γ = 1 −
√
P11Q11 satis�es

Γ � T−1 which guarantees that both Markov chains mix fast enough, and we may ignore
the role of initial states. Indeed, in this case, expression (3.4.6) shows that

D1/2(f, g) = ĨρT + o(ρT ). (3.4.11)
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Theorem 7. Consider a Markov SBM with N � 1 nodes, K = O(1) blocks, and T � 1

snapshots, and assume that µ1, ν1 . ρ and (3.4.9) holds for some constants p01, q01, h11 ≥ 0

such that Ĩ 6= 0. Assume also that ρ� T−1 � 1−
√
P11Q11. Then:

(i) a consistent estimator does not exist for ρ . 1
NT

and does exist for ρ� 1
NT

;

(ii) a strongly consistent estimator does not exist for ρ� logN
NT

and does exist for ρ� logN
NT

;

(iii) in a critical regime with ρ = logN
NT

, a strongly consistent estimator does not exist for Ĩ < K

and does exist for Ĩ > K .

If we further assume that p01, q01 > 0 and p01 6= q01, µ1 � ν1, P10 � Q10, and that

(1 + Ω(1))P 3
11 ≤ Q11 ≤ (1− Ω(1))P

1/3
11 , (3.4.12)

then Algorithm 2 is consistent when ρ� 1
NT

; and strongly consistent when ρ� logN
NT

, or when
ρ = logN

NT
and Ĩ > K .

Proof. By Proposition 8, we �nd that

D1/2(f, g) = (1 + o(1))ĨρT + 2
(

Γ
√
µ1ν1 −

√
P01Q01

)
H2

11ΓT +O((ρT )2),

where ΓT =
∑T−2

t=0 (1 − Γ)t. Because ΓT ≤ Γ−1 and H11 ≤ 1, we see that the middle term
on the right is bounded in absolute value by 2Γ−1ρ. The assumption that ρT � 1 � ΓT ,
combined with the assumption that Ĩ 6= 0, now implies that D1/2(f, g) = (1 + o(1))ĨρT . The
claims (i)–(iii) now follow from Theorem 4.

Let us now impose the extra assumptions that p01, q01 > 0 and p01 6= q01, µ1 � ν1, P10 �
Q10, and (3.4.12). In this case may �x a constant M ≥ 1 such that M−1 ≤ µ1

ν1
, P01

Q01
, P10

Q10
≤ M .

Furthermore, (3.4.12) implies that Λ ≤ 1− Ω(1). Proposition 14 then implies that

Dα(f‖g) ≤ 8CρTe5CρT with C =
M3

1− Λ
.

Because C . 1 and ρT � 1, we conclude that Dα(f‖g) . ρT . A similar argument shows
that D3/2(g‖f) . ρT as well. Therefore, Ds3/2(f,g)

D1/2(f,g)
. 1. Taylor’s approximations further

show that the intra- and inter-block probabilities p = 1 − (1 − µ1)(1 − P01)T−1 and q =

1−(1−ν1)(1−Q01)T−1 of observing a nonzero interaction pattern satisfy p = p01ρT +o(ρT )

and q = q01ρT + o(ρT ). It follows that p, q � ρT and p − q � ρT . When we assume that
ρ� 1

NT
, it follows that p∨ q � N−1 and (p−q)2

p∨q � ρT . We will apply Theorem 5 to conclude
that Algorithm 2 is consistent when ρ � 1

NT
, and strongly consistent when ρ � logN

NT
, or

when ρ = logN
NT

and Ĩ > K .

Remark 9. Theorem 7 shows that consistent recovery may be possible even in cases where
individual snapshots are very sparse, for example in regimes with ρ � 1

N
and T � 1. This

is in stark contrast with standard binary SBMs, where in the constant-degree regime with
ρ � 1

N
, the best one can achieve is detection [Mas14; MNS15; MNS18].
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Remark 10. We observe that the conditions derived in Theorem 7 are similar to those de-
rived for an SBM with zero-in�ated geometrically distributed edge weights. Indeed, the Rényi
divergence between two sparse Markov chains with T � 1 (expression (3.4.11)) corresponds
(up to second order terms) to the Rényi divergence between two zero-in�ated geometric dis-
tributions (equation (3.2.2)).

Example 12. A temporal network model in [Bar+18] is characterised by link density ρ� 1

and parameters 0 ≤ a, ξ, η ≤ 1 corresponding to assortativity, link persistence, and commu-
nity persistence. For η = 1, the model corresponds to a Markov SBM with intra- and inter-
block node pairs interacting according to stationary Markov chains having transition matrices
P = ξ [ 1 0

0 1 ] + (1− ξ)
[

1−µ1 µ1
1−µ1 µ1

]
and Q = ξ [ 1 0

0 1 ] + (1− ξ)
[

1−ν1 ν1
1−ν1 ν1

]
and marginal link prob-

abilities µ1 = (1− a+Ka)ρ and ν1 = (1− a)ρ, respectively. When K = 2 and 0 < a, ξ ≤ 1

are constants, conditions (3.4.9) are valid with p01 = (1− ξ)(1 + a), q01 = (1− ξ)(1− a), and
h11 = 0, and the critical information quantity in (3.4.10) equals

Ĩ = 2(1− ξ)
(

1−
√

(1− a)(1 + a)
)
. (3.4.13)

By Theorem 7, strong consistency in the critical regime with ρ = logN
NT

is possible for Ĩ > 2

and impossible for Ĩ < 2. Formula (3.4.13) quanti�es how higher link persistence ξ makes
community recovery harder, whereas higher assortativity a makes it easier. The model in
[Bar+18] assumes that intra-block and inter-block links have equal persistence ξ, leading to
h11 = 0.

3.5 Discussions

3.5.1 Large number of blocks

While in some situations the assumption of a �nite number of clusters is realistic (e.g., in the
political blog data set, no matter the number of blogs considered there are only two clusters
corresponding to political a�liations), some settings require an in�nite number of clusters (or
equivalently, communities of sub-linear size).

The lower bound of Theorem 3 tells nothing about impossibility of consistent recovery
whenever K � 1, while it gives some information about the impossibility of strong consis-
tency ifK � N−1/3. For example, forK = Nγ with γ < 1

3
, Theorem 3 implies that a strongly

consistent estimator does not exist if NI
K logN

≤ (1− Ω(1))(1− 3γ).

Furthermore, the form of the upper bound of Theorem 3 tempts to believe that the MLE is
consistent whenever I � K

N
. However, the proof requires the assumptions I � K3 logK

N
and

K �
(

N
logN

)1/3

(see Proposition 12).

Finally, a conjecture made in [ZZ16, Section 4.2] for binary SBMs in a minimax setting
states that the exact rate for the smallest expected error might be NKe−(1+o(1))NI

K . This con-
jecture implies that a strongly consistent estimator does not exist if I ≤ (1− Ω(1))K log(NK)

N
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and exists if I ≥ (1 + Ω(1))K log(NK)

N
. For a slowly growing K such that logK � logN

we recover the threshold stated in Theorem 4, while a regime in which K = Nγ leads to the
existence of a strongly consistent estimator if I ≥ (1 + γ + Ω(1))K logN

N
.

3.5.2 Non-homogeneous models

Existing results for the non-homogeneous binary SBM show that the thresholds for almost
exact and exact recovery are governed by the Cherno�-Hellinger divergence [AS15]. More
precisely, let αk be the probability that node i ∈ [N ] is in community k ∈ [K] and fk` be the
connection probability between a node in community k and a node in community `. If fk` are
Bernoulli probability distributions with parameters pk`, then [AS15, Theorem 6] states that
exact recovery of the community memberships is possible if ICH(α, f) ≥ (1 + Ω(1)) K logN

N
,

where ICH(α, f) is called Cherno�-Hellinger divergence and is de�ned by

ICH(α, f) = min
k1 6=k2

sup
t∈(0,1)

∑
`∈[K]

α`
(
tpk1` + (1− t)pk2` − (pk1`)

t (pk2`)
1−t) .

Noticing that the Rényi divergence of order t ∈ (0, 1) between two Poisson random variables
of parameters λ and µ is given by

Dt (P(λ)‖P(µ)) =
1

1− t
(
tλ+ (1− t)µ− λtµ1−t) ,

then ICH(α, f) = min
k1 6=k2

sup
t∈(0,1)

∑
`∈[K](1 − t) Dt (P(pk1`)‖P(pk2`)). Approximating Poisson

distributions by Bernoulli distributions leads to

ICH(α, f) ≈ min
k1 6=k2

sup
t∈(0,1)

(1− t)
∑
`∈[K]

α` Dt (fk1`‖fk2`) .

Theorem 8 provides a lower-bound for the expected loss made by any algorithm in clustering
non-homogeneous and non-binary SBM. A careful analysis of this lower bound as well as
deriving a matching upper bound is a challenging task.
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This section is devoted to the exposition of the proofs of the results of Chapter 3. Sec-
tion 4.1 provides a lower bound on the estimation error made by any algorithm on non-binary
SBM. Upper bound on the estimation error made by Maximum Likelihood Estimator and Al-
gorithm 2 are given in Section 4.2 and Section 4.3 respectively. Rényi-divergences between
sparse Markov chains are computed in Section 4.4.
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4.1 Proof of the lower bound of Theorem 3

This section is devoted to proving the lower bound of Theorem 3 and is organised as follows:
Section 4.1.1 describes a lower bound (Theorem 8) which is valid for general SBMs, not nec-
essarily homogeneous or binary. Section 4.1.2 presents the proof of Theorem 8. Section 4.1.3
specialises the lower bound into homogeneous SBMs and leads to Proposition 9.

4.1.1 A quantitative lower bound

Let us recall the model. A general SBM has N nodes, K blocks, and interaction distributions
fk` on a general interaction space S such that fk` = f`k for all k, ` ∈ [K]. The model has
parameter space Z ⊂ [K][N ], observation space

X = {x : [N ]× [N ]→ S : xij = xji, xii = 0 for all i, j}, (4.1.1)

and probability kernel
Pσ(x) =

∏
1≤i<j≤N

fσ(i)σ(j)(xij). (4.1.2)

For a probability distribution π on Z , de�ne a probability measure on Z × X by

P(σ, x) = π(σ)Pσ(x). (4.1.3)

The SBM is called homogeneous if

fk` = δk`f + (1− δk`)g

for some probability distributions f and g on S .

De�ne a probability measure π = α⊗N onZ = [K][N ] as theN -fold product of a probabil-
ity distribution α on [K]. This corresponds to the joint law of σ = (σ(1), . . . , σ(N)) in which
all labels are mutually independent and α-distributed. For any K ⊂ [K] and any reference
probability distributions f ∗1 , . . . , f ∗K , denote

I1 =
∑
k

∑
`

α∗kα` DKL(f ∗` ‖fk`),

I21 =
∑
k

∑
`

α∗kα` VKL(f ∗` ‖fk`) +
∑
k

α∗kBk,

I22 =
∑
k

α∗kA
2
k −

(∑
k

α∗kAk

)2

,

(4.1.4)

with Ak =
∑

` α` DKL(f ∗` ‖fk`) and Bk =
∑

` α` DKL(f ∗` ‖fk`)2 − (
∑

` α` DKL(f ∗` ‖fk`))2, to-
gether with α∗k = 1(k ∈ K) αk

αK
and αK =

∑
k∈K αk.
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Theorem 8. Consider a stochastic block model de�ned by (4.1.1)–(4.1.3), and �x an arbitrary
K ⊂ [K] and probability distributions f ∗1 , . . . , f

∗
K . Assume that N ≥ 8α−1

min log(K/δ) for δ =
1
4

(αK − αmax,K). Then for any estimator σ̂ : X → Z , the expected error de�ned in Section 2.2.3
is lower bounded by

E d∗Ham(σ̂) ≥ 1

21
Nα2

minδe
−NI1−α1/2

K δ−1/2
√
NI21+N2I22 − 1

6
NαminKe

− 1
8
Nαmin . (4.1.5)

Remark 11. The second term on the right side of (4.1.5) is o(1) when αmin ≥ 9N−1 logN

and 2 ≤ K ≤ N .

Remark 12. The lower bound of Theorem 8 is quantitative, and hence valid regardless of any
scaling assumptions, and also for all �nite models with �xed, not asymptotic, size. This one
of the �rst explicit quantitative lower bounds in this context.

Remark 13. In homogeneous models with uniform node labels, one can specify the quantities
I1, I21 and I12 to obtain the lower bound stated in Theorem 3. This is done in Section 4.1.3.

4.1.2 Proof of Theorem 8

This section is devoted to proving Theorem 8 step by step.

Key result on block permutations

The following key result implies that when L(σ1, σ2) = minτ dHam(σ1, τ ◦ σ2) < 1
2
Nmin(σ1),

then the minimum Hamming distance is attained by a unique block permutation.

Lemma 1. Let σ1, σ2 : [N ] → [K] be such that dHam(σ1, τ
∗ ◦ σ2) < 1

2
Nmin for some K-

permutation τ ∗, whereNmin = mink |σ−1
1 (k)|. Then τ ∗ is the uniqueminimiser of τ 7→ dHam(σ1, τ◦

σ2).

This corresponds to [XJL20, Lemma B.6].

Proof. Assume that τ ∈ Sym(K) satis�es dHam(τ ◦ σ1, σ2) < s
2
, where s = Nmin. Fix k ∈ [K]

and let Uk = {i : σ1(i) = k, σ2(i) 6= τ(k)}. Then every node i in Uk satis�es τ ◦σ1(i) 6= σ2(i),
and therefore |Uk| ≤ dHam(τ ◦ σ1, σ2) < s

2
. Hence for any ` 6= τ(k),

|σ−1
1 (k) ∩ σ−1

2 (`)| ≤ |Uk| <
s

2
.

On the other hand,

|σ−1
1 (k) ∩ σ−1

2 (τ(k))| = |σ−1
1 (k)| − |Uk| ≥ s− s

2
≥ s

2
.

Hence τ(k) is the unique value which maximises ` 7→ |σ−1
1 (k) ∩ σ−1

2 (`)|. Because this con-
clusion holds for all k, it follows that τ is uniquely de�ned.
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Lower bounding by critical node count

This method apparently originates from [ZZ16]. Let Opt(σ1, σ2) be the set ofK-permutations
τ for which dHam(σ1, τ ◦ σ2) is minimised. Given an estimated node labelling σ̂x, we de�ne a
set of critical nodes by

Crit(σ, σ̂x) = {j ∈ [N ] : σ(j) 6= τ ◦ σ̂x(j) for some τ ∈ Opt(σ, σ̂x)}.

We denote the number of critical nodes by

L+(σ, x) = |Crit(σ, σ̂x)|.

Lemma 2. For any estimate σ̂x obtained as a deterministic function of observed data. Then

E d∗Ham(σ, σ̂x) ≥
αmin

6

(
EL+ −NKe−

1
8
Nαmin

)
. (4.1.6)

Proof. Let L = L(σ, σ̂x) = d∗Ham(σ, σ̂x). We shall consider L+ = L+(σ, σ̂x), and Nmin =

Nmin(σ) as random variables de�ned on Z × X . By Lemma 1, L = L+ on the event L < c

where c = 1
2
Nmin. Given a node labelling σ ∈ Z , we consider x 7→ σ̂x, x 7→ L(σ, x) and

x 7→ L+(σ, x) as random variables on X . Consider the following two cases:

(i) If Pσ(L ≥ c) ≥ 1
N+c

EσL
+, then

EσL1(L ≥ c) ≥ cPσ(L ≥ c) ≥ c

N + c
EσL

+.

(ii) If Pσ(L ≥ c) ≤ 1
N+c

EσL
+, then

EσL
+1(L ≥ c) ≤ NPσ(L ≥ c) ≤ N

N + c
EσL

+,

so that

EσL1(L < c) = EσL
+1(L < c) = EσL

+ − EσL+1(L ≥ c) ≥ c

N + c
EσL

+.

In both cases, EσL ≥ c
N+c

EσL
+, so that

EσL ≥
Nmin

2N +Nmin

EσL
+ ≥ Nmin

3N
EσL

+.

By taking expectations with respect to the prior, we �nd that

EL ≥ 1

3N
ENminY, (4.1.7)

where Y = EσL
+ is viewed as a random variable on probability space S equipped with

probability measure π. Let t = 1
2
Nαmin. We note that 0 ≤ Y ≤ N surely, and that Nmin > t

with high probability. Observe that

ENminY ≥ ENminY 1(Nmin > t) ≥ tEY 1(Nmin > t),
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and, due to Y ≤ N ,

EY 1(Nmin > t) = EY − EY 1(Nmin ≤ t) ≥ EY −NP(Nmin ≤ t).

By noting that EY = EL+ and applying Lemma 10, we �nd that

ENminY ≥ t (EY −NP(Nmin ≤ t))

=
1

2
Nαmin

(
EL+ −NP(Nmin ≤

1

2
Nαmin)

)
≥ 1

2
Nαmin

(
EL+ −NKe−

1
8
Nαmin

)
.

Together with (4.1.7), the claim now follows.

Change of measure

Fix a reference node i, a set K ⊂ [K], and some probability distributions f ∗1 , . . . , f ∗K on the
interaction space S. We de�ne an alternative statistical model for σ and x by modifying Pσ(x)
de�ned in (4.1.2) according to

P ∗iσ (x) =

(
1K(σ(i))

∏
j 6=i

f ∗σ(j)(xij)

fσ(i)σ(j)(xij)
+ 1Kc(σ(i))

)
Pσ(x), (4.1.8)

and de�ning a modi�ed probability measure on Z × X by

P∗i(σ, x) = π(σ)P ∗iσ (x). (4.1.9)

In the modi�ed model, node labels are sampled independently as before, and all inter-
actions not involving node i are sampled just as in the original model. If the label of node
i belongs to K, then we sample all i-interactions from f ∗1 , . . . , f

∗
K . The following lemma con-

�rms that under the alternative model, σi is conditionally independent of observed data x and
other labels σ−i given σi ∈ K.

Lemma3. For (σ, x) sampled frommodel (4.1.9), the conditional distribution of the labelσi given
that σi ∈ K, the other labels are σ−i, and the observed interactions are x, equals

P∗i(σi = k |σi ∈ K, σ−i, x) = α∗k for all σ−i, x,

where α∗k = 1(k ∈ K) αk
αK

.

Proof. Observe that P ∗iσ (x) = Qσ−i(x) for all σ such that σi ∈ K, where

Qσ−i(x) =

(∏
j 6=i

f ∗σ−i(j)(xij)

)( ∏
uv∈E−i

fσ−i(u)σ−i(v)(xuv)

)
,
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and E−i is the set of unordered node pairs not incident to i. Especially,

P∗i(σ, x) = α(σi) π−i(σ−i)Qσ−i(x)

whenever σi ∈ K. Hence the conditional probability distribution of σi given (σ−i, x) satis�es
P∗i(σi |σ−i, x) = α(σi) for all σi ∈ K. The claim follows by summing this equality with
respect to σi ∈ K.

To analyse how much the alternative model di�ers from the original model, we will in-
vestigate the associated log-likelihood ratio

Λi(σ, x) = log
P∗i(σ, x)

P(σ, x)
.

Lemma 4. The mean and variance of the log-likelihood ratio given σ(i) ∈ K are equal to
E∗i(Λi |σi ∈ K) = (N − 1)I1 and V∗i(Λi |σi ∈ K) = (N − 1)I21 + (N − 1)2I22, where
I1, I21, I22 are given by (4.1.4).

Proof. The conditional distribution of (σ, x) sampled from P∗i given σ(i) ∈ K can be repre-
sented as

P̃∗i(σ, x) = π̃∗i(σ)P ∗iσ (x),

where π̃∗i(σ) = α∗σ(i)

∏
j 6=i ασ(j) and α∗k = 1(k ∈ K) αk

αK
, and P ∗iσ is de�ned by (4.1.8). Further-

more, the log-likelihood ratio can be written as

Λi(σ, x) = 1(σ(i) ∈ K)
∑
j 6=i

log
f ∗σ(j)(xij)

fσ(i)σ(j)(xij)
.

The conditional expectation A(σ) = E∗iσ Λi of the log-likelihood ratio given σ hence equals

A(σ) = 1(σ(i) ∈ K)
∑
j 6=i

mσ(i)σ(j)

wheremk` = DKL(f ∗` ‖fk`). Hence, treating (σ, x) 7→ σ(i), (σ, x) 7→ σ(j), and (σ, x) 7→ A(σ),
as random variables on probability space (Z × X , P̃∗i), and noting that σ(i) ∈ K with P̃∗i-
probability one, we �nd that

Ẽ∗iΛi = Ẽ∗iA =
∑
j 6=i

Ẽ∗imσ(i)σ(j) = (N − 1)
∑
k

∑
`

mk`α
∗
kα`,

which implies the �rst claim.

To compute the variance, we observe that

Ṽ∗iΛi = Ẽ∗iB + Ṽ∗iA, (4.1.10)

where B = V ∗iσ Λi. We note that by the conditional independence of xij , j 6= i, given σ, it
follows that

B = 1(σ(i) ∈ K)
∑
j 6=i

vσ(i)σ(j),
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where vk` = VKL(f ∗` ‖fk`). By taking expectations, we �nd that

Ẽ∗iB = (N − 1)
∑
k

∑
`

α∗kα`vk`. (4.1.11)

We still need to compute the variance of A. To do this, we condition on the label of node i
and observe that on the event σ(i) ∈ K of P̃∗i-probability one,

Ẽ∗i(A |σ(i) ) = (N − 1)Aσ(i),

Ṽ∗i(A |σ(i) ) = (N − 1)Bσ(i),

where Ak =
∑

` α`mk` and Bk =
∑

` α`m
2
k` − (

∑
` α`mk`)

2. Therefore,

Ṽ∗iA = Ẽ∗iṼ∗i(A |σ(i) ) + VẼ∗i(A |σ(i) )

= (N − 1)Ẽ∗iBσ(i) + (N − 1)2Ṽ∗iAσ(i)

= (N − 1)
∑
k

α∗kBk + (N − 1)2

{∑
k

α∗kA
2
k −

(∑
k

α∗kAk

)2
}
.

By combining this with (4.1.10) and (4.1.11), we �nd that

Ṽ∗iΛi = (N − 1)
∑
k

∑
`

α∗kα`vk` + (N − 1)
∑
k

α∗kBk

+ (N − 1)2

{∑
k

α∗kA
2
k −

(∑
k

α∗kAk

)2
}
,

and the second claim follows.

Lower bound of critical node count

The following is key to proving the lower bound, and rigorously handling stochastic depen-
dencies implied by optimalK-permutations in the de�nition of L. Recall that αK =

∑
k∈K αk

together with αmin = mink∈[K] αk and αmax,K = maxk∈K αk.

Lemma 5. Assume thatN ≥ 8α−1
min log(K/δ) for δ = 1

4
(αK − αmax,K). Then for any estimator

x 7→ σ̂x, the expected number of critical nodes is bounded by

EL+ ≥ 2

7
αminδNe

−t (4.1.12)

for t = maxi

(
E∗i(Λi|σi ∈ K) + α

1/2
K δ−1/2

√
V∗i(Λi|σi ∈ K)

)
.

Proof. Denote ε = 1
6
αmin. The proof contains four steps which are treated one by one in what

follows.

(i) Denote the event that node i is critical by

Ci =
{

(σ, x) : σ(i) 6= τ(σ̂x(i)) for some τ ∈ Opt(σ, σ̂x)
}
,
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and let

Ei = Ci ∪
{

(σ, x) : L+(σ, σ̂x) > εN
}
.

Recall that EL+ =
∑

i P(Ci). Markov’s inequality then implies that∑
i

P(Ei) ≤
∑
i

(
P(Ci) + (εN)−1EL+

)
.

By noting that the right side above equals (1 + ε−1)EL+, we obtain a lower bound

EL+ ≥ ε

1 + ε

∑
i

P(Ei). (4.1.13)

(ii) We will now focus on a particular node i, and derive a lower bound for the probability
of event Ei under the perturbed model P∗i de�ned by (4.1.8). We start by deriving an upper
bound for the probability of the event

P∗i(Eci , Nmin > 3εN, σ(i) ∈ K) = P∗i(Cci , B, σ(i) ∈ K),

where
B = {(σ, x) : L+(σ, σ̂x) ≤ εN, Nmin(σ) > 3εN}

and Nmin(σ) = mink |σ−1(k)|. On the event B, we see that L+(σ, σ̂x) < 1
3
Nmin(σ), and

Lemma 1 implies thatL+(σ, σ̂x) = minτ Ham(σ, τ◦σ̂x) is attained by a uniqueK-permutation τ .
This is why we may split the above probability into

P∗i(Cci , B, σ(i) ∈ K) =
∑
τ

P∗i(Cci , Bτ , σ(i) ∈ K) (4.1.14)

where
Bτ = {(σ, x) : Ham(σ, τ ◦ σ̂x) ≤ εN, Nmin(σ) > 3εN} .

To analyse events associated with Bτ , we consider an event

B−iτ =
{

(σ, x) : Ham−i(σ, τ ◦ σ̂x) ≤ εN, Nmin
−i (σ) > 3εN − 1

}
where Ham−i(σ1, σ2) =

∑
j 6=i 1(σ1(j) 6= σ2(j)) and Nmin

−i (σ) = mink |σ−1(k) \ {i}|. Then,

Cci ∩ Bτ = {σ(i) = τ(σ̂x(i))} ∩ Bτ
⊂ {σ(i) = τ(σ̂x(i))} ∩ B−iτ ,

so that, under the conditional distribution P̃∗i(·) = P∗i(· |σ(i) ∈ K),

P̃∗i(Cci , Bτ ) ≤ P̃∗i(σ(i) = τ(σ̂x(i)), B−iτ ). (4.1.15)

We note that the event B−iτ is completely determined by (σ−i, x), and according to Lemma 3,
we know that when (σ, x) is sampled from P∗i, then σ(i) is α∗-distributed and conditionally

50



Proofs for Chapter 3
independent of (σ−i, x) given σ(i) ∈ K. Therefore, under the conditional distribution P̃∗i(·) =

P∗i(· |σ(i) ∈ K), we �nd that

P̃∗i
(
σ(i) = τ(σ̂x(i)), B−iτ

)
=
∑
k∈K

P̃∗i
(
σ(i) = k, τ(σ̂x(i)) = k, B−iτ

)
=
∑
k∈K

α∗k P̃∗i
(
τ(σ̂x(i)) = k, B−iτ

)
,

from which we conclude together with (4.1.15) that

P̃∗i(Cci , Bτ ) ≤
αmax,K

αK
P̃∗i
(
B−iτ
)
.

Because N ≥ ε−1 due to log(K/δ) ≥ log(4K) ≥ 1 and N ≥ 8α−1
min log(K/δ), we see that

εN < 1
2
(3εN − 1). Therefore, Ham−i(σ, τ ◦ σ̂x) < 1

2
Nmin
−i (σ) on the event B−iτ . Then again

by Lemma 1, the events B−iτ are mutually exclusive, and in light of (4.1.14) it follows that

P̃∗i
(
Cci , B

)
≤ αmax,K

αK
P̃∗i(∪τB−iτ ) ≤ αmax,K

αK
.

By recalling the de�nitions of Ci, Ei, we now conclude that

P∗i
(
Eci , Nmin > 3εN, σ(i) ∈ K

)
= P∗i

(
Cci , L+ ≤ εN, Nmin > 3εN, σ(i) ∈ K

)
= P∗i

(
Cci , B, σ(i) ∈ K

)
≤ αmax,K,

and therefore,
P∗i(Eci , σ(i) ∈ K) ≤ αmax,K + P∗i(Nmin ≤ 3εN). (4.1.16)

(iii) Next, by recalling our choice of ε = 1
6
αmin and applying Lemma 10, we see that

P∗i(Nmin ≤ 3εN) = P(Nmin ≤ 1
2
Nαmin) ≤ Ke−

1
8
Nαmin ≤ δ due to N ≥ 8α−1

min log(K/δ).
By combining this with (4.1.16), we see that P∗i(Eci , σ(i) ∈ K) ≤ αmax,K + δ. Hence, by our
choice of δ, it follows that

P∗i(Ei, σ(i) ∈ K) ≥ P(σ(i) ∈ K)− αmax,K − δ
= αK − αmax,K − δ
= 3δ.

(4.1.17)

(iv) Finally, we will transform the lower bound (4.1.17) into one involving the original
probability distribution P instead of P∗i. By writing

P(Ei, σ(i) ∈ K) = E∗ie−Λi1(Ei, σ(i) ∈ K),

and noting that e−Λi1(Ei, σi ∈ K) ≥ e−t1(Ei, σi ∈ K,Λi ≤ t), it follows that

P(Ei, σ(i) ∈ K) ≥ e−tP∗i(Ei, σ(i) ∈ K, Λi ≤ t)

≥ e−t
(
P∗i(Ei, σ(i) ∈ K)− P∗i(Ei, σ(i) ∈ K, Λi > t)

)
≥ e−t

(
P∗i(Ei, σ(i) ∈ K)− P∗i(σ(i) ∈ K, Λi > t)

)
.
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For t ≥ Ẽ∗i (Λi) +
(
αK
δ
Ṽ∗i(Λi)

)1/2

, Chebyshev’s inequality implies that P̃∗i(Λi > t) ≤ δ
αK

,
and hence P∗i(σ(i) ∈ K, Λi > t) ≤ δ. By substituting this bound and the bound (4.1.17) to
the right side above, we see that

P(Ei, σ(i) ∈ K) ≥ e−t(3δ − δ) = 2δe−t.

By (4.1.13) it now follows that

EL+ ≥ ε

1 + ε

∑
i

P(Ei) ≥
ε

1 + ε

∑
i

P(Ei, σ(i) ∈ K),

so that
EL+ ≥ 2Nδe−t

1 + ε−1
.

Because 1 + ε−1 ≤ 7
6
ε−1 = 7α−1

min, the claim follows.

Concluding the proof of Theorem 8

By Lemma 2, we �nd that

EL ≥ αmin

6

(
EL+ −NKe−

1
8
Nαmin

)
.

By Lemma 5,
EL+ ≥ 2

7
αminδNe

−t

for t = maxi

(
Ẽ∗iΛi + α

1/2
K δ−1/2

√
Ṽ∗i(Λi)

)
. By Lemma 4, Ẽ∗iΛi ≤ NI1 and Ṽ∗i(Λi) ≤

NI21 + N2I22, so that t ≤ NI1 + α
1/2
K δ−1/2

√
NI21 +N2I22. By combining these facts, it

follows that

EL ≥ αmin

6

(
EL+ −NKe−

1
8
Nαmin

)
≥ αmin

6

(
2

7
αminδNe

−t −NKe−
1
8
Nαmin

)
≥ αmin

6

(
2

7
αminδNe

−NI1−α1/2
K δ−1/2

√
NI21+N2I22 −NKe−

1
8
Nαmin

)
.

Hence the claim of Theorem 8 is valid.

4.1.3 Application to homogeneous models

Log-likelihood ratio in homogeneous models

The expected log-likelihood ratio equals (N −1)I1 where I1 is given by (4.1.4). The following
result shows how to minimise this in the homogeneous case with intra-block and inter-block
interaction distributions f and g.
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Lemma 6. For any homogeneous SBM and for anyK ⊂ [K] of size at least two such that αk > 0

for all k ∈ K,
min

f∗1 ,...,f
∗
K

I1 =
∑
k∈K

α∗kαkD1−α∗k(g‖f), (4.1.18)

with α∗k = αk/(
∑

k∈K αk), and the minimum is attained by setting

f ∗k =

{
Z−1
α∗k
fα
∗
kg1−α∗k for k ∈ K,

g, otherwise.
(4.1.19)

Furthermore, when α is the uniform distribution on [K],

min
K:|K|≥2

min
f∗1 ,...,f

∗
K

I1 = K−1D1/2(f‖g). (4.1.20)

Proof. Observe that I1 = I11 + I12 where

I11 =
∑
`∈K

α`
∑
k∈K

α∗k DKL(f ∗` ‖fk`) and I12 =
∑
`∈Kc

α`
∑
k∈K

α∗k DKL(f ∗` ‖fk`).

We see that

I11 =
∑
`∈K

α`

(
α∗` DKL(f ∗` ‖f) + (1− α∗`) DKL(f ∗` ‖g)

)
and

I12 =
∑
`∈Kc

α` DKL(f ∗` ‖g).

Because each f ∗` appears only once in the sums above, we minimise I11 and I12 separately. To
minimise I12, we set f ∗` = g for all ` ∈ Kc, leading to I12 = 0. To minimise I11, we see by
applying [VH14, Theorem 30] that for all ` ∈ K,

min
f∗`

(
α∗` DKL(f ∗` ‖f) + (1− α∗`) DKL(f ∗` ‖g)

)
= (1− α∗`)Dα∗`

(f‖g),

and the minimum is attained by setting f ∗` as in (4.1.19). Hence the minimum value of I1

equals
I1 =

∑
`∈K

α`(1− α∗`)Dα∗`
(f‖g).

Finally, by skew symmetry of Rényi divergences, we know that (1−α∗`)Dα∗`
(f‖g) = α∗`D1−α∗` (g‖f),

so that we can also write the minimum as

I1 =
∑
`∈K

α`α
∗
`D1−α∗` (g‖f) = α−1

K

∑
`∈K

α2
`D1−α∗` (g‖f).

Assume now that α is the uniform distribution on [K]. Then the minimum above equals
I1 = (K/r)K−2rD1−1/r(g‖f) = K−1D1−1/r(g‖f) for r = |K|. Because r 7→ D1− 1

r
(g‖f) is

increasing in r, we see that I1 is increasing as a function of |K|. The minimum with respect
to K is hence attained at an arbitrary K with |K| = 2, con�rming (4.1.20).
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The following result describes the variance terms I21 and I22 given by (4.1.4) for a uniform

homogeneous SBM, when the reference distributions f ∗1 , . . . , f ∗K are selected to minimise I1

according to Lemma 6.

Lemma 7. Consider a homogeneous SBM with intra-block and inter-block interaction distri-
butions f and g, and uniform α on [K]. Fix K ⊂ [K] of size 2, and de�ne f ∗` as in (4.1.19).
Then

I21 =

(
1

2
−K−1

)
K−1I2 +

1

2
K−1J,

I22 = 0,

where I = D1/2(f‖g) and J =
∫
h log2 f

g
with h = Z−1

1/2(fg)1/2.

Proof. When α is uniform on [K] and |K| = 2, we see that the distributions in (4.1.19) are
given by f ∗` = h for ` ∈ K, f ∗` = g otherwise. Recall that

I21 =
∑
k∈K

∑
`

α∗kα` VKL(f ∗` ‖fk`) +
∑
k∈K

α∗kBk,

I22 =
∑
k∈K

α∗kA
2
k −

(∑
k∈K

α∗kAk

)2

,

withAk =
∑

` α` DKL(f ∗` ‖fk`) andBk =
∑

` α` DKL(f ∗` ‖fk`)2−(
∑

` α` DKL(f ∗` ‖fk`))2. Now,
using Proposition 4 of Chapter 2, we obtain that for any k ∈ K,

Ak = K−1
(

DKL(h‖f) + DKL(h‖g)
)

= K−1I.

This implies that I22 = 0.

Observe next that for k ∈ K,

Bk =
∑
`

α` DKL(f ∗` ‖fk`)2 − A2
k

= K−1
(

DKL(h‖f)2 + DKL(h‖g)2
)
−K−2I2.

Because logZ = −1
2
I , we �nd that log h

f
= 1

2
I− 1

2
log f

g
and log h

g
= 1

2
I+ 1

2
log f

g
. By squaring

these equalities and integrating against h, we �nd that

VKL(h‖f) + VKL(h‖g) =
1

2
I2 +

1

2
J −DKL(h‖f)2 −DKL(h‖g)2.

It follows that∑
k∈K

∑
`

α∗kα` VKL(f ∗` ‖fk`) =
∑
k∈K

∑
`∈K

α∗kα` VKL(h‖fk`)

=
1

2
K−1

∑
k∈K

(VKL(h‖f) + VKL(h‖g))

= K−1
(

VKL(h‖f) + VKL(h‖g)
)

= K−1
(1

2
I2 +

1

2
J −DKL(h‖f)2 −DKL(h‖g)2

)
.
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Therefore,

I21 =
∑
k∈K

∑
`

α∗kα` VKL(f ∗` ‖fk`) +
∑
k∈K

α∗kBk

= K−1
(1

2
I2 +

1

2
J −DKL(h‖f)2 −DKL(h‖g)2

)
+K−1

(
DKL(h‖f)2 + DKL(h‖g)2

)
−K−2I2

=

(
1

2
−K−1

)
K−1I2 +

1

2
K−1J.

Lemma 8. Let I = D1/2(f, g) = −2 logZ and J = Z−1
∫

log2(f/g)
√
fg, where Z =

∫ √
fg.

Assume that f, g > 0 on S, and that Z > 0. Then

J ≤ 8(eI/2 − 1).

Especially, J ≤ 14I whenever I ≤ 1.

Proof. Let us �x some x ∈ S for which f(x) 6= g(x). At this point, for t =
√

f
g
,

(log f − log g)2

(
√
f −√g)2

√
fg = 4

(log
√
f − log

√
g)2

(
√
f −√g)2

√
fg = 4φ(t)

where φ(t) = (log t)2

(t−1)2
t. Assume that t > 1, and let u = 1

2
log t. Then t = e2u and

φ(t) =

(
2u

e2u − 1

)2

e2u =

(
2u

eu − e−u

)2

=
( u

sinhu

)2

,

where
sinhu =

1

2
(eu − e−u) =

∑
k>0,odd

uk

k!
≥ u.

Hence φ(t) ≤ 1 for all t > 1. Next, by noting that φ(t) = φ(1/t) for all 0 < t, we conclude
that φ(t) ≤ 1 for all t > 0 such that t 6= 1. We conclude that

(log f − log g)2
√
fg ≤ 4(

√
f −√g)2

whenever f 6= g. Obviously the same inequality holds also when f = g. By integrating both
sides, it follows that

ZJ ≤ 4

∫
(
√
f −√g)2 = 4(2− 2Z) = 8(1− Z).

Hence J ≤ 8(Z−1 − 1). The �rst claim follows because Z = e−I/2. The second claim follows
by noting that et/2 − 1 =

∫ t/2
0

esds ≤ e1/2t for t ≤ 1, and 8e1/2 ≤ 14.
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Lower bound for homogeneous models

Proposition 9. Consider a stochastic block model de�ned by (2.2.1)–(2.2.3). Suppose that α
is the uniform distribution over [K], and that the interactions are homogeneous. Then for any
estimator σ̂ : X → Z , the expected error is lower bounded by

E
(

d∗Ham(σ̂)

N

)
≥ 1

84
K−3e−

N
K
I−
√

8NI21 − 1

6
e−

N
8K

where I21 =
(

1
2
−K−1

)
K−1I2 + 1

2
K−1J .

Proof. Theorem 8 states that

EHam∗(σ̂) ≥ 1

21
Nα2

minδe
−NI1−α1/2

K δ−1/2
√
NI21+N2I22 − 1

6
NαminKe

− 1
8
Nαmin . (4.1.21)

Lemma 6 implies that minK:|K|≥2 minf∗1 ,...,f∗K I1 = K−1D1/2(f‖g). When the minimum is
achieved, Lemmas 7 and 8 ensure that I22 = 0 and I21 =

(
1
2
−K−1

)
K−1I2 + 1

2
K−1J . Fur-

thermore, we have αK = 2
K

and δ = 1
4

(
2
K
− 1

K

)
= 1

4K
since α is uniform.

4.1.4 Miscellaneous result: multinomial concentration

Fix integers N,K ≥ 1, and consider the space [K]N of mappings σ : [N ] → [K]. For
any such mapping, we denote the frequencies of output values by Nk(σ) =

∑N
i=1 δσ(i)k for

k = 1, . . . , K . When the space [K]N is equipped with a probability measure P, then σ 7→
(N1(σ), . . . , NK(σ)) is considered as a random variable. Given ε > 0 and α1, . . . , αK ∈ [0, 1],
we shall be interested in probabilities of events of the form

Aε =
{
σ : |Nk(σ)− αkN | ≤ εαkN for all k ∈ [K]

}
, (4.1.22)

Aε,+ =
{
σ : Nk(σ) ≥ (1− ε)αkN for all k ∈ [K]

}
. (4.1.23)

Lemma 9. Let 0 < ε ≤ 1.

(i) If P = α⊗N for a probability measure α on [K], then P(Acε) ≤ 2
∑K

k=1 e
−(ε2/3)αkN and

P(Acε,+) ≤
∑K

k=1 e
−(ε2/2)αkN .

(ii) If P is the uniform distribution on [K]N , then P(Acε) ≤ 2elogK−ε2N/(3K) and P(Acε,+) ≤
elogK−ε2N/(2K).

Proof. (i) Because Nk is Bin(N,αk)-distributed, a Cherno� bound [JŁR00, Corollary 2.3] im-
plies that

P(|Nk(σ)− αkN | > εαkN) ≤ 2e−(ε2/3)αkN .
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Similarly, another Cherno� bound [JŁR00, Theorem 2.1] implies that

P(Nk(σ) ≤ (1− ε)αkN) ≤ e−(ε2/2)αkN .

Hence the �rst claim follows by the union bound.

(ii) The second claim follows immediately from (i) after noting that the uniform distribu-
tion on [K]N can be represented as π = α⊗N where αk = K−1 for all k.

We shall also be interested in random variables de�ned by Nmin(σ) = minkNk(σ) and
∆N(σ) = maxk,` |Nk(σ)−N`(σ)|. The following result implies that for large-scale uni-
formly distributed settings with N � K logK , these random variables are bounded by
Nmin ≥ (1 − ε)K−1N and ∆N ≤ 2εK−1N with high probability for (K logK

N
)1/2 � ε ≤ 1.

For example, we may select ε = (K logK
N

)0.499.

Lemma 10. Let 0 < ε ≤ 1. (i) If P = α⊗N for a probability measure α on [K], then

P
(
Nmin ≥ (1− ε)αminN

)
≥ 1− δ1,

P
(

∆N ≤ (2εαmax + ∆α)N
)
≥ 1− δ2,

(4.1.24)

where δ1 = Ke−(ε2/2)αminN and δ2 = 2Ke−(ε2/3)αminN , together with αmin = mink αk, αmax =

maxk αk, and ∆α = maxk,` |αk − α`|.

(ii) If P is the uniform distribution on [K]N , then

P
(
Nmin ≥ (1− ε)K−1N

)
≥ 1− δ1,

P
(

∆N ≤ 2εK−1N
)
≥ 1− δ2,

with δ1 = elogK−ε2N/(2K) and δ2 = 2elogK−ε2N/(3K).

Proof. (i) By Lemma 9, then events Aε and Aε,+ de�ned by (4.1.22)–(4.1.23) satisfy P(Acε+) ≤
δ1 and P(Acε) ≤ δ2. On the event Aε,+, Nmin ≥ (1 − ε)αminN . Hence the �rst inequality in
(4.1.24) follows. For the second inequality, we note that on the event Aε

|Nk −N`| ≤ |Nk − αkN |+ |N` − α`N |+ |αkN − α`N |
≤ εαkN + εα`N + |αk − α`|N
≤ 2εαmaxN + ∆αN

for all k, `. This con�rms the second inequality in (4.1.24).

(ii) This follows immediately from (i) after noting that the uniform distribution on [K]N

can be represented as π = α⊗N where αk = K−1 for all k.
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4.2 Upper bound on ML estimation error

This section is devoted to analysing the accuracy of maximum-likelihood estimators. Sec-
tion 4.2.1 describes how ML estimation error probabilities are characterised by Mirkin dis-
tances. Section 4.2.2 provides an upper bound on a worst-case ML estimation error among
balanced block structures. Section 4.2.3 provides an upper bound (Proposition 11) on an aver-
age ML estimation error among all block structures, which con�rms the upper bound of The-
orem 3, and also shows that any maximum-likelihood estimator achieves the upper bound.
Section 4.2.4 analyses the upper bound of Theorem 3 in a large-scale setting and yields a proof
of the existence part of Theorem 4, summarised as Proposition 12.

4.2.1 Maximum likelihood estimators

We denote the set of all node labellings by Z = [K][N ]. A maximum likelihood estimator of
σ is a map σ̂ : X → Z such that

Pσ̂x(x) ≥ Pσ′(x) for all σ′ ∈ Z and x ∈ X . (4.2.1)
The following results helps to analyse situations in which a maximum likelihood estimator
produces outputs diverging from the correct value. The result is stated using the Mirkin
distance dMir(σ, σ

′) de�ned in Section 4.2.5.
Lemma 11. For a homogeneous SBM with N nodes, K blocks, and interaction distributions f
and g with I = D1/2(f, g)

Pσ{x : Pσ′(x) ≥ Pσ(x)} ≤ e−
1
4
dMir(σ,σ

′)I ,

for all node labellings σ, σ′.

Proof. Observe that Pσ{x : Pσ′(x) ≥ Pσ(x)} = Pσ(` ≥ 0), where the log-likelihood ratio
`(x) = log

Pσ′ (x)

Pσ(x)
is viewed as a random variable on probability space (X , Pσ). Also denote by

E (resp. E ′) the set of node pairs {i, j} for which σ(i) = σ(j) (resp. σ′(i) = σ′(j)). Then we
�nd that

`(x) =
∑

ij∈E′\E

log
f

g
(xij) −

∑
ij∈E\E′

log
f

g
(xij).

Therefore, the distribution of x 7→ `(x) on the probability space (X , Pσ) is the same as the
law of

|E′\E|∑
j=1

log
f

g
(Yj)−

|E\E′|∑
i=1

log
f

g
(Xi),

in which the random variables Xi, Yj are mutually independent and distributed according to
Law(Xi) = f and Law(Yj) = g. By applying Markov’s inequality and the above representa-
tion, we �nd that

Pσ(` ≥ 0) = Pσ(e
1
2
` ≥ 1) ≤ Eσe

1
2
` = e−

1
2

(|E′\E|+|E\E′|)I ,

where I = D1/2(f, g). Hence the claim follows.
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4.2.2 Upper bound among balanced node labellings

The following result is key minimax upper bound characterising the worst-case estimation
accuracy among block structures which are balanced according to σ ∈ Z1−ε,1+ε, where

Za,b =

{
σ ∈ Z : a

N

K
≤ |σ−1(k)| ≤ b

N

K

}
, (4.2.2)

and we recall thatZ = [K][N ]. Similar upper bounds in the context of binary SBMs have been
derived in [ZZ16].

Proposition 10. For a homogeneous SBM with N nodes andK blocks, any estimator σ̂ : X →
Z satisfying the MLE property (4.2.1) has classi�cation error bounded by

max
σ∈Z1−ε,1+ε

Eσ d∗Ham(σ, σ̂) ≤ 8eN(K − 1)e−(1−ζ−κ)NI
K +NKNe−

1
4

( ζ
K−1

−ε)(N/K)2I

for all 0 ≤ ε ≤ ζ ≤ 1
21
, where κ = 56 max{K2e−

1
8
NI
K , KN−1} and I = D1/2(f, g).

Proof. We note that due to homogeneity, Pσ = P[σ] depends on σ only via the partition
[σ] = {σ−1(k) : k ∈ [K]}. A similar observation also holds for the absolute classi�cation
error d∗Ham(σ1, σ2) = d∗Ham([σ1], [σ2]). In the proof we denote by P1−ε,1+ε = {[σ] : σ ∈
Z1−ε,1+ε} the collection of partitions corresponding to node labellings in Z1−ε,1+ε. We select
a node labelling σ ∈ Z1−ε,1+ε, and split the error according to

EσL = EσL1(σ̂ ∈ Z1−ζ,1+ζ) + EσL1(σ̂ /∈ Z1−ζ,1+ζ). (4.2.3)

The remainder of the proof consists of two parts, where we derive upper bounds for both
terms on the right side above.

(i) For analysing the �rst term on the right side of (4.2.3), we note that σ̂ ∈ Z1−ζ,1+ζ if and
only if [σ̂] ∈ P1−ζ,1+ζ , and therefore,

EσL1(σ̂ ∈ Z1−ζ,1+ζ) =
N∑
m=1

mpm (4.2.4)

where pm = Pσ{x : [σ̂x] ∈ P1−ζ,1+ζ(σ,m)} is the probability of the event that the partition
associated to σ̂x belongs to the set

P1−ζ,1+ζ(σ,m) = {θ ∈ P1−ζ,1+ζ : d∗Ham([σ], θ) = m}.

On such event there exists a partition θ ∈ P1−ζ,1+ζ(σ,m) such that Pθ(x) ≥ P[σ](x). Hence
by the union bound,

pm ≤
∑

θ∈P1−ζ,1+ζ(σ,m)

Pσ{x : Pθ(x) ≥ P[σ](x)}.
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Observe next that to every partition θ ∈ P1−ζ,1+ζ(σ,m) there corresponds exactly K! node
labellings σ′ belonging to the set

Z1−ζ,1+ζ(σ,m) = {σ′ ∈ Z1−ζ,1+ζ : d∗Ham(σ, σ′) = m}.

Therefore, the above upper bound can be rewritten as

pm ≤ (K!)−1
∑

σ′∈Z1−ζ,1+ζ(σ,m)

Pσ{x : Pσ′(x) ≥ Pσ(x)}. (4.2.5)

Let us next analyse the probabilities on the right side of (4.2.5). By Lemma 11, we �nd that

Pσ{x : Pσ′(x) ≥ Pσ(x)} ≤ e−
1
4
dMir(σ,σ

′)I .

Because ε ≤ ζ , it follows that Z1−ε,1+ε ⊂ Z1−ζ,1+ζ . We note that 1
4
dMir(σ, σ

′) = 1
2
(|E \ E ′|+

|E ′ \ E| ≥ min{|E \ E ′|, |E ′ \ E|}, whereE (resp.E ′) denotes the set of node pairs for which
σ (resp. σ′) assigns the same label. With the help of Lemma 14 we then �nd that for all
σ, σ′ ∈ Z1−ζ,1+ζ , such that d∗Ham(σ, σ′) = m,

1

4
dMir(σ, σ

′) ≥ max

{
(1− ζ)

N

K
−m, 1

3
(1− ζ)

N

K
− 1

6
(1 + ζ)

N

K

}
m.

We note that 1
3
(1− ζ)− 1

6
(1 + ζ) = 1

6
− 1

2
ζ ≥ 1

7
when ζ ≤ 1

21
. Hence,

1

4
dMir(σ, σ

′) ≥ max

{
(1− ζ)

N

K
−m, 1

7

N

K

}
m,

and we conclude that for all σ ∈ Z1−ε,1+ε and σ′ ∈ Z1−ζ,1+ζ ,

Pσ{x : Pσ′(x) ≥ Pσ(x)} ≤ min
{
e−(1−ζ)NI

K
+mI , e−

1
7
NI
K

}m
. (4.2.6)

Furthermore, let us analyse the cardinality of the sum on (4.2.5). Because d∗Ham(σ, σ′) = m

if and only if Ham(τ ◦ σ, σ′) = m for some τ ∈ Sym(K), a union bound combined with
Lemma 15 implies that

|Z1−ζ,1+ζ(σ,m)| ≤ K! |{σ′ ∈ Z : Ham(σ, σ′) = m}| ≤ K!

(
eN(K − 1)

m

)m
.

By combining this bound with (4.2.5) and (4.2.6), we may now conclude that

pm ≤ min

{
eN(K − 1)

m
e−(1−ζ)NI

K
+mI ,

eN(K − 1)

m
e−

1
7
NI
K

}m
. (4.2.7)

We will now apply the bounds in (4.2.7) to derive an upper bound for the sum in (4.2.4)
which we will split according to

N∑
m=1

mpm =
∑
m≤m1

mpm +
∑

m1<m≤N

mpm (4.2.8)
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using a threshold parameter m1. We will also select another threshold parameter 0 < m0 ≤
m1. Using these, the probabilities pm are bounded by pm ≤ sm1 for m0 ≤ m ≤ m1, and
pm ≤ sm2 for m ≥ m1, where

s1 =
eN(K − 1)

m0

e−(1−ζ)NI
K

+m1I and s2 =
eN(K − 1)

m1

e−
1
7
NI
K .

To obtain a good upper bound, m1 should be small enough to keep the exponent in s1 small,
and large enough so that s2 < 1. From the latter point of view, we see that s2 ≤ 1

2
when

m1 ≥ 2eN(K−1)e−
1
7
NI
K . To leave some headroom, we set a slightly largerm1 corresponding

to 1
7

replaced by 1
8
. For later use purposes, we also require that m1 ≥ 56 which guarantees

that 1
m1
≤ 1

7
− 1

8
. Therefore, we set

m1 = 2eN(K − 1)e−
1
8
NI
K ∨ 56.

With this choice, we �nd that s2 ≤ 1
2
e−

1
56
NI
K ≤ 1

2
. Hence,∑

m1<m≤N

mpm ≤ N
∑
m≥m1

sm2 = N
s
dm1e
2

1− s2

≤ N
sm1

2

1− s2

≤ 2Nsm1
2 .

Furthermore, m1 ≥ 56 implies that sm1
2 ≤ e−

m1
56

NI
K ≤ e−

NI
K . It follows that the second term

on the right side of (4.2.8) is bounded by∑
m1<m≤N

mpm ≤ 2Ne−
NI
K . (4.2.9)

Let us next derive an upper bound for the �rst term on the right side of (4.2.8). We de�ne
B = eN(K − 1)e−(1−ζ)NI

K
+m1I , and consider the following two cases.

(a) If B ≤ 1
2
, we set m0 = 1, which implies that s1 = B, and we �nd that∑

1≤m≤m1

mpm ≤
∞∑
m=1

msm1 =
∞∑
m=1

mBm =
B

(1−B)2
≤ 4B. (4.2.10)

(b) If B > 1
2
, we set m0 = 2B, so that s1 = 1

2
, and we �nd that∑

1≤m≤m1

mpm =
∑

1≤m≤m0

mpm +
∑

m0<m≤m1

mpm ≤ m0 +
∑
m>m0

msm1 .

By noting that m0 > 1, we �nd that 2 ≤ bm0c + 1 ≤ 2m0. Then by applying Lemma 16 it
follows that ∑

m>m0

msm1 =
∞∑

m=bm0c+1

m2−m ≤ 4(bm0c+ 1)2−(bm0c+1) ≤ 2m0.

Hence,
∑

1≤m≤m1
mpm ≤ 3m0 = 6B. In light of (4.2.10), we conclude that the latter con-

clusion holds for both B ≤ 1
2

and B > 1
2
. By combining these observations with (4.2.9), and

noting that B ≥ Ne−
NI
K , it follows that∑

1≤m≤N

mpm ≤ 2Ne−
NI
K + 6B ≤ 8B = 8eN(K − 1)e−(1−ζ)NI

K
+m1I .
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After noting that m1I = NI

K
max{2eK(K − 1)e−

1
8
NI
K , 56K

N
}, we see that m1I ≤ κNI

K
for

κ = 56 max{K2e−
1
8
NI
K , KN−1}. Then we conclude that the �rst term on the right side of

(4.2.3) is bounded by

EσL1(σ̂ ∈ Z1−ζ,1+ζ) ≤ 8eN(K − 1)e−(1−ζ−κ)NI
K . (4.2.11)

(ii) Finally, it remains to derive an upper bound for the second term on the right side of
(4.2.3). Denote γ = (K − 1)−1ζ . Then the generic bound N ≤ Nmin(σ′) + (K − 1)Nmax(σ′)

implies that Nmin(σ′) ≥ N − (K − 1)(1 + γ)N
K

= (1 − ζ)N
K

for all σ′ ∈ Z0,1+γ . Therefore,
Z0,1+γ ⊂ Z1−ζ,1+γ ⊂ Z1−ζ,1+ζ . Especially,

Pσ(σ̂ 6∈ Z1−ζ,1+ζ) ≤ Pσ(σ̂ 6∈ Z0,1+γ).

On the event that σ̂ 6∈ Z0,1+γ , the MLE property (4.2.1) implies that there exists σ′ with
Nmax(σ′) > (1 + γ)N

K
for which Pσ′(x) ≥ Pσ(x). For any such σ′, Nmax(σ′) − Nmax(σ) ≥

(γ − ε)N
K

, so that by Lemma 12, we see that

dMir(σ, σ
′) = 2(|E \ E ′|+ |E ′ \ E|) ≥ 2|E ′ \ E| ≥ (γ − ε)(N/K)2.

By Lemma 11, we conclude that for all σ′ /∈ Z0,1+γ ,

Pσ{x : Pσ′(x) ≥ Pσ(x)} ≤ e−
1
4

(γ−ε)(N/K)2I .

Hence, by a crude union bound it follows that

Pσ(σ̂ 6∈ Z1−ζ,1+ζ) ≤ Pσ(σ̂ 6∈ Z0,1+γ) ≤ KNe−
1
4

(γ−ε)(N/K)2I , (4.2.12)

and we conclude that second term on the right side of (4.2.3) is bounded by

EσL1(σ̂ /∈ Z1−ζ,1+ζ) ≤ NPσ(σ̂ 6∈ Z1−ζ,1+ζ) ≤ NKNe−
1
4

(γ−ε)(N/K)2I . (4.2.13)

The claim now follows by combining (4.2.11)–(4.2.13).

4.2.3 Upper bound on average error among all node labellings

The following result is the upper bound of Theorem 3.

Proposition 11. For a homogeneous SBM with N nodes andK blocks, any estimator σ̂ : X →
Z satisfying the MLE property (4.2.1) has classi�cation error bounded by

E d∗Ham(σ, σ̂) ≤ 8eN(K − 1)e−(1−ζ−κ)NI
K +NKNe−

1
4

( ζ
K−1

−ε)(N/K)2I + 2NKe−
1
3
ε2 N
K ,

for all 0 ≤ ε ≤ ζ ≤ 1
21
, where κ = 56 max{K2e−

1
8
NI
K , KN−1} and I = D1/2(f, g).
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Proof. Denote L = d∗Ham(σ, σ̂). By noting that the classi�cation error is bounded by L ≤ N

with probability one, it follows that

EL ≤
∑

σ∈Z1−ε,1+ε

πσEσL +
∑

σ∈Zc1−ε,1+ε

πσEσL

≤ max
σ∈Z1−ε,1+ε

EσL +Nπ(Zc1−ε,1+ε).

For a random node labelling σ = (σ1, . . . , σN) sampled from the uniform distribution π on
Z , we see that coordinates are mutually independent and uniformly distributed on in [K]. A
multinomial concentration inequality (Lemma 10) then implies that

π(Zc1−ε,1+ε) ≤ 2Ke−
1
3
ε2 N
K .

The claim follows by Proposition 10.

4.2.4 Upper bound for large-scale settings

The following result implies the existence statements of Theorem 4.

Proposition 12. Consider a large-scale homogeneous SBM with N � 1 nodes and K = O(1)

blocks, and interaction distributions f, g such that I = D1/2(f, g), and let σ̂ be any estimator
having the MLE property (4.2.1). Then the following hold:

(i) if I � N−1, then the estimator σ̂ is consistent;

(ii) if I ≥ (1 + Ω(1))K logN
N

, then the estimator σ̂ is strongly consistent.

Proof. Denote L = d∗Ham(σ̂). By Proposition 11, we see that

EL ≤ 8eNKe−(1−ζ−κ)NI
K +NKNe−

1
4

( ζ
K−1

−ε)(N/K)2I + 2NKe−
1
3
ε2 N
K , (4.2.14)

where κ = 56 max{K2e−
1
8
NI
K , KN−1} and I = D1/2(f, g), and where we are free to choose

any 0 ≤ ε ≤ ζ ≤ 1
21

,

(i) Recall that we have assumed that K � ( N
logN

)1/3 and I � K3 logK
N

. Let us de�ne
ε = 3(K logN

N
)1/2 and ζ = εK + 5K

3 logK
NI

. Furthermore, ε � K−1 due to our assumption
K � ( N

logN
)1/3. Then it also follows that ζ � 1. Furthermore, we �nd that e− 1

3
ε2 N
K = N−3,

and the last term on the right side of (4.2.14) equals 2KN−2. We also �nd that(
ζ

K − 1
− ε
)

(N/K)2I ≥
(
ζ

K
− ε
)

(N/K)2I = 5N logK,

so that the middle term on the right side of (4.2.14) is bounded by

NKNe−
1
4

( ζ
K−1

−ε)(N/K)2I ≤ NKNK−
5
4
N = NK−

1
4
N .
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We conclude that

EL ≤ 8eNKe−(1−ζ−κ)NI
K +NK−

1
4
N + 2N−2K.

We note that κ � 1 and log(8eK) � NI
K

when I � K logK
N

. We note that NK− 1
4
N ≤

N2−
1
4
N = o(1). We conclude that

EL ≤ Ne−(1−o(1))NI
K + o(1)

for homogeneous SBMs with 2 ≤ K � ( N
logN

)1/3 and I � K3 logK
N

.

(ii) The condition for strong consistency follows immediately from the above bounds.

4.2.5 Comparing partitions

Classi�cation error

The absolute classi�cation error between node labellings σ, σ′ : [N ]→ [K] is de�ned by

d∗Ham(σ, σ′) = min
ρ∈Sym(K)

Ham(σ, ρ ◦ σ′),

where Ham(σ, σ′) =
∑N

i=1 1(σ(i) 6= σ′(i)) denotes the Hamming distance and Sym(K) de-
notes the group of permutations on [K]. We note that d∗Ham(σ, σ′) = d∗Ham(ρ◦σ, ρ′ ◦σ′) for all
ρ, ρ′ ∈ Sym(K), which con�rms that the classi�cation error depends on its inputs only via the
partitions induced by the preimages of the node labellings. The relative errorN−1 d∗Ham(σ, σ′)
is called usually just called the classi�cation error [MH01; Mei07].

Mirkin distance

The Mirkin distance is one of the common pair-counting based cluster validity indices [GTP21;
Lei+17], and it is related to the Rand index by dMir(σ, σ

′) = N(N − 1)(1− dRand(σ, σ′)). The
Mirkin distance between node labellings σ, σ′ : [N ]→ [K] is de�ned by

dMir(σ, σ
′) = 2

∑
1≤i<j≤N

(
eij(1− e′ij) + (1− eij)e′ij

)
where eij = 1(σ(i) = σ(j)) and e′ij = 1(σ′(i) = σ′(j)).

For any node labelling σ : [N ]→ [K], we denote by E(σ) the set of unordered node pairs
{i, j} such that σ(i) = σ(j), by Nσ

min = mink |Ck| and Nσ
max = maxk |Ck| where Ck = {i :

σ(i) = k}. Then we note that the Mirkin distance can be written as

dMir(σ, σ
′) = 2 (|E(σ) \ E(σ′)|+ |E(σ′) \ E(σ)|) . (4.2.15)

The following result shows that when the Mirkin metric is small, then the maximum set sizes
in two partitions cannot di�er arbitrarily much.
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Lemma 12. For any node labellings σ, σ′ : [N ]→ [K],

|E(σ) \ E(σ′)| ≥ 1

2
(Nσ

max −Nσ′

max)Nσ
max.

Proof. For any k, denote by E(Ck) the set of unordered node pairs in Ck. Also denote Nk =

|E(Ck)|, N ′` = |E(C ′`)|, and Nk` = |Ck ∩ C ′`|. Then we �nd that

|E(Ck) \ E(σ′)| =

(
Nk

2

)
−
∑
`

(
Nk`

2

)
.

By applying the bound Nk` ≤ Nσ′
max, we see that∑

`

(
Nk`

2

)
≤ 1

2
(Nσ′

max − 1)
∑
`

Nk` =
1

2
(Nσ′

max − 1)Nk.

Therefore,

|E(Ck) \ E(σ′)| ≥
(
Nk

2

)
− 1

2
(Nσ′

max − 1)Nk ≥
1

2
(Nk −Nσ′

max)Nk.

The claim now follows after noting that

|E(σ) \ E(σ′)| =
∑
k

|E(Ck) \ E(σ′)| ≥ max
k
|E(Ck) \ E(σ′)|.

Optimal alignments

The confusion matrix of node labellings σ, σ′ : [N ] → [K] is the K-by-K matrix having
entries

Nk` = |Ck ∩ C ′`|,

where Ck = σ−1(k) and C ′` = (σ′)−1(`). We say that node labellings σ, σ′ : [N ] → [K] are
optimally aligned if

d∗Ham(σ, σ′) = Ham(σ, σ′). (4.2.16)

The following result provides an entrywise upper bound for the confusion matrix of optimally
aligned node labellings.

Lemma 13. If σ and σ′ are optimally aligned, then the associated confusion matrix is bounded
by

Nk` +N`k ≤ Nkk +N`` (4.2.17)

and
Nk` ≤

1

3
(Nk +N ′`) (4.2.18)

for all k 6= `, where Nk =
∑

`Nk` and N ′` =
∑

kNk`.
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Proof. Fix some distinct k, ` ∈ [K]. De�ne σ′′ = τ ◦ σ′ where τ is the K-permutation which
swaps k and ` and leaves other elements of [K] intact. Denote C ′′j = (σ′′)−1(j). Then we see
that C ′′j = C ′` for j = k, C ′′j = C ′k for j = `, and C ′′j = C ′j otherwise. Using the formulas

Ham(σ, σ′) =
∑
j

|Cj \ C ′j| and Ham(σ, σ′′) =
∑
j

|Cj \ C ′′j |

we �nd that

Ham(σ, σ′′)− Ham(σ, σ′) = |Ck \ C ′`| − |Ck \ C ′k|+ |C` \ C ′k| − |C` \ C ′`|.

Because

|Ck \ C ′`| − |Ck \ C ′k| = (Nk −Nk`)− (Nk −Nkk) = Nkk −Nk`,

and the same formula holds also with the roles of k and ` swapped, it follows that

Ham(σ, σ′′)− Ham(σ, σ′) = Nkk −Nk` +N`` −N`k.

Because σ and σ′ are optimally aligned, we see that Ham(σ, σ′) ≤ Ham(σ, σ′′). Therefore,
the left side of the above equality is nonnegative, and (4.2.17) follows.

Next, by applying the bounds Nkk ≤ Nk − Nk` and N`` ≤ N ′` − Nk`, we may conclude
that

0 ≤ Nkk −Nk` +N`` −N`k ≤ Nk +N ′` − 3Nk` −N`k.

The inequality (4.2.18) now follows by noting that

Nk` ≤
1

3
(Nk +N ′` −N`k) ≤

1

3
(Nk +N ′`).

Relating the classi�cation error and the Mirkin distance

The next result provides a way to bound the absolute classi�cation error d∗Ham(σ, σ′) using
the Mirkin metric dMir(σ, σ

′). For any node labelling σ : [N ] → [K], we denote by E(σ) the
set of unordered node pairs {i, j} such that σ(i) = σ(j), by Nσ

min = mink |Ck| and Nσ
max =

maxk |Ck| where Ck = {i : σ(i) = k}. Then we note that the Mirkin distance can be written
using E(σ), E(σ′) according to (4.2.15).

Lemma 14. For any node labellings σ, σ′ : [N ]→ [K],

|E(σ) \ E(σ′)| ≥ max

{
Nσ

min − d∗Ham(σ, σ′),
1

3
Nσ

min −
1

6
Nσ′

max

}
d∗Ham(σ, σ′).

Proof. Let us note that all quantities appearing in the statement of the lemma remain invariant
if we replace σ′ by ρ ◦σ′, where ρ ∈ Sym(K) is an arbitrary permutation. Therefore, we may
without loss of generality assume that σ and σ′ are optimally aligned according to (4.2.16).

66



Proofs for Chapter 3
For sets C,D ⊂ [N ], we denote by E(C,D) the collection of unordered pairs which can

be written as e = {i, j} with i ∈ C and j ∈ D, and we denote the set of node pairs internal
to C by E(C) = E(C,C). We observe that the set Γ = E(σ) \ E(σ′) can be partitioned
into Γ = ∪kΓk, where Γk = E(Ck) \ E(σ′). We may further split this set according to
Γk = Γk1 ∪ Γk2, where

Γk1 = E(Ck ∩ C ′k, Ck \ C ′k),
Γk2 = E(Ck \ C ′k) \ E(σ′).

Therefore, it follows that |Γ| =
∑

k(|Γk1|+ |Γk2|).

To analyse the sizes of Γk1 and Γk2, denote Nk` = |Ck ∩ C ′`| and Dk = |Ck \ C ′k|. Then
we immediately see that

|Γk1| = NkkDk. (4.2.19)

Furthermore, we see that E(Ck \ C ′k) ∩ E(σ′) = ∪`6=kE(Ck ∩ C ′`), and it follows that

|Γk2| = |E(Ck \ C ′k)| −
∑
6̀=k

|E(Ck ∩ C ′`)| =

(
Dk

2

)
−
∑
` 6=k

(
Nk`

2

)
. (4.2.20)

By combining (4.2.19)–(4.2.20) we conclude that

|Γ| =
∑
k

(|Γk1|+ |Γk2|) =
∑
k

{
NkkDk +

(
Dk

2

)
−
∑
`6=k

(
Nk`

2

)}
.

Let us derive a lower bound for |Γ|. Denote Bk = max`6=kNk`. Then by noting that∑
` 6=kNk` = Dk, we see that∑

` 6=k

(
Nk`

2

)
=

1

2

∑
6̀=k

Nk`(Nk` − 1) ≤ 1

2
Dk(Bk − 1),

and by applying (4.2.20), it follows that

|Γk2| ≥
1

2
Dk(Dk − 1)− 1

2
Dk(Bk − 1) =

1

2
Dk(Dk −Bk).

By applying (4.2.19) and noting that Nkk = Nk −Dk, it now follows that

|Γk| ≥ Dk(Nk −Dk) +
1

2
Dk(Dk −Bk). (4.2.21)

We shall apply (4.2.21) to derive two lower bounds for |Γ|. First, by Lemma 13, we �nd
that Bk ≤ 1

3
(Nk +Nσ′

max), and hence

|Γk| ≥ (Nk −Dk)Dk +
1

2

(
Dk −

1

3
Nk −

1

3
Nσ′

max

)
Dk

=

(
5

6
Nk −

1

2
Dk −

1

6
Nσ′

max

)
Dk.
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Because Dk ≤ Nk, we conclude that

|Γk| ≥
(

1

3
Nk −

1

6
Nσ′

max

)
Dk ≥

(
1

3
Nσ

min −
1

6
Nσ′

max

)
Dk

By summing the above inequality over k and noting that
∑

kDk = Ham(σ, σ′) = L for
optimally aligned σ and σ′, we conclude that

|Γ| ≥
(

1

3
Nσ

min −
1

6
Nσ′

max

)
L. (4.2.22)

Second, by noting that Bk ≤ Dk, we see that (4.2.21) implies

|Γk| ≥ Dk(Nk −Dk) ≥ Dk(N
σ
min −Dk).

By summing the above inequality over k, we �nd that

|Γ| ≥ Nσ
min

∑
k

Dk −
∑
k

D2
k ≥ Nσ

min

∑
k

Dk − (
∑
k

Dk)
2.

By recalling that
∑

kDk = L, we conclude that

|Γ| ≥ Nσ
minL− L2. (4.2.23)

By combining (4.2.22)–(4.2.23), the claim follows.

4.2.6 Additional lemmas

Lemma 15. For any node labelling σ : [N ] → [K], the number Zσ,m of node labellings σ′ :

[N ]→ [K] such that Ham(σ, σ′) = m satis�es

Zσ,m =

(
N

m

)
(K − 1)m ≤

(
eN(K − 1)

m

)m
.

Proof. Any node labelling σ′ : [N ]→ [K] which di�ers from a particular σ at exactlym input
values can be constructed as follows. First choose a set of m input values out of N ; there
are
(
N
m

)
ways to do this. Then for each i of the chosen m input values, select a new output

value from the of K− 1 values excluding σ(i); there are (K− 1)m ways to do this. Hence the
equality follows.

To verify the inequality, we note that mm

m!
≤
∑∞

s=0
ms

s!
= em. Therefore, we see that(

N
m

)
≤ Nm

m!
≤ ( eN

m
)m, and the inequality follows.

Lemma 16. For any integerM ≥ 1 and any number 0 ≤ s < 1,

MsM ≤
∞∑

m=M

msm ≤ (1− s)−2MsM .
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Proof. Denote S =

∑∞
m=M msm. By di�erentiating

∑∞
m=M sm = (1− s)−1sM , we �nd that

s−1S =
∞∑

m=M

msm−1 = (1− s)−2sM + (1− s)−1MsM−1,

from which we see that

S = s(1− s)−2
(
sM + (1− s)MsM−1

)
=

MsM

(1− s)2

(
1− s(1− 1/M)

)
The upper bound now follows from 1 − s(1 − 1/M) ≤ 1. The lower bound is immediate,
corresponding to the �rst term of the nonnegative series.

4.3 Consistency of Algorithm 2

4.3.1 Single node label estimation

For r > 0 we de�ne the ratio

βr(f, g) =
Ds

1+r (f, g)

Ds
r (f, g)

. (4.3.1)

Given a reference node i and a node labelling1 σ̃i on [N ] \ {i}, de�ne an estimator for the
label of i by σ̂i(i) = arg max

k∈[K]

hi(k), with arbitrary tie breaks, where

hi(k) =
∑

j : σ̃i(j)=k

log
f(Xij)

g(Xij)
. (4.3.2)

This is a maximum likelihood estimator in the special case where σ̃i assigns a correct label to
all j 6= i. When this is not the case, we need to account for errors caused by corrupted like-
lihoods due to misclassi�ed nodes in σ̃i. The error in such a setting is given by the following
lemma.

Lemma 17. Let σ : [N ]→ [K] and assume thatXij , j 6= i, are mutually independent S-valued
random variables such that Law(Xij) = f for σ(i) = σ(j) and Law(Xij) = g otherwise. The
error probability when estimating the label of node i as a maximiser of (4.3.2) is bounded by

P (τ ◦ σ̂i(i) 6= σ(i)) ≤ Ke−(Nmin−1−2d∗i−
2r
1−r d

∗
i βr)2(1−r) Dsr(f,g) ∀r ∈ [0, 1],

where βr = βr(f, g) is de�ned by (4.3.1), d∗i = d∗Ham(σ̃i, σ−i) is the symmetrised Hamming
distance from σ̃i to the restriction σ−i of the true node labelling σ to [N ] \ {i}, and τ is an
arbitrary K-permutation such that dHam(τ ◦ σ̃i, σ−i) = d∗i .

1In this section we assume that σ̃i is nonrandom.
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Proof. Denote k∗ = τ−1(σ(i)). Observe that τ ◦ σ̂i(i) 6= σ(i) if and only if σ̂i(i) 6= k∗, and
the latter is possible only if Lk = hi(k) − hi(k

∗) ≥ 0 for some k 6= k∗. After noting that
P(Lk ≥ 0) = P

(
esLk ≥ 1

)
≤ EesLk , it follows that

P(τ ◦ σ̂i(i) 6= σ(i)) ≤
∑
k 6=k∗

P(Lk ≥ 0) ≤
∑
k 6=k∗

EesLk . (4.3.3)

Denote by Ck = {j 6= i : σ(j) = k} the peers of i with true label k, and by C̃k = {j 6= i :

σ̃i(j) = k} the set of peers labelled k by σ̃i. Denote Zα(f‖g) =
∫
fαg1−α. By noting that for

any j 6= i,

E
(
f(Xij)

g(Xij)

)r
=

{
Z1+r(f‖g), σ(j) = σ(i),

Zr(f‖g), else,
and

E
(
f(Xij)

g(Xij)

)−r
=

{
Zr(g‖f), σ(j) = σ(i),

Z1+r(g‖f), else,
we �nd that for all k, the log-likelihood ratio hi(k) de�ned in (4.3.2) satis�es

Eerhi(k) = Z1+r(f‖g)v
in
k Zr(f‖g)v

out
k and Ee−rhi(k) = Z1+r(g‖f)v

out
k Zr(g‖f)v

in
k ,

where vin
k = |C̃k ∩ Cσ(i)| and vout

k = |C̃k \ Cσ(i)|. Because hi(k) and hi(`) are mutually inde-
pendent for k 6= `, it follows that Lk for k 6= k∗ satis�es

EerLk = Z1+r(f‖g)v
in
k Z1+r(g‖f)v

out
k∗ Zr(f‖g)v

out
k Zr(g‖f)v

in
k∗ .

Because Zr = e−(1−r) Dr and Z1+r = erD1+r , we may rephrase the above equality as EerLk =

et, where
t = s1v

in
k + s2v

out
k∗ − u1v

out
k − u2v

in
k∗ ,

with s1 = rD1+r(f‖g), s2 = rD1+r(g‖f), u1 = (1− r) Dr(f‖g), and u2 = (1− r) Dr(g‖f).
By noting that vin

k + vout
k = |C̃k|, we see that

t = (u1 + s1) vin
k + (u2 + s2) vout

k∗ − u1|C̃k| − u2|C̃k∗|.

One may verify that τ ◦ σ̃i(j) 6= σ(j) for all j ∈ C̃k ∩ Cσ(i) and all k 6= k∗. Therefore,
vin
k = |Ck ∩ Cσ(i)| ≤ dHam(τ ◦ σ̃i, σ−i). Similarly, τ ◦ σ̃i(j) 6= σ(j) for all j ∈ C̃k∗ \ Cσ(i)

implies that vout
k∗ = |C̃k∗ \ Cσ(i)| ≤ dHam(τ ◦ σ̃i, σ−i). Next, by noting that τ ◦ σ̃i(j) 6= τ(k)

and σ(j) = τ(k) for j ∈ Cτ(k) \ C̃k, it follows that |Cτ(k) \ C̃k| ≤ dHam(τ ◦ σ̃i, σ−i). Therefore,

|C̃k| ≥ |C̃k ∩ Cτ(k)| = |Cτ(k)| − |Cτ(k) \ C̃k| ≥ Nmin − 1− dHam(τ ◦ σ̃i, σ−i),

and the above inequality also holds for k = k∗. By collecting the above inequalities and
recalling that dHam(τ ◦ σ̃i, σ−i) = d∗i , we conclude that

t ≤ d∗i (u1 + u2 + s1 + s2)− (Nmin − 1− d∗i ) (u1 + u2)

≤ −(u1 + u2)

(
Nmin − 1− 2d∗i − d∗i

s1 + s2

u1 + u2

)
.

The claim follows by observing that u1 +u2 = 2(1− r) Ds
r(f, g) and s1 + s2 = 2rDs

1+r (f, g).
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4.3.2 Analysis of re�nement and consensus procedures

Let us start with a Lemma bounding di�erence between the block sizes given by two node
labelling σ1, σ2 as a function of the Hamming distance.

Lemma 18. For any σ1, σ2 : [N ]→ [K], (i)
∣∣|σ−1

1 (k)|−|σ−1
2 (k)|

∣∣ ≤ dHam(σ1, σ2) for all k, and
(ii) |Nmin(σ1)−Nmin(σ2)| ≤ d∗Ham(σ1, σ2), where Nmin(σ1) = mink |σ−1

1 (k)| and Nmin(σ2) =

mink |σ−1
2 (k)|.

Proof. (i) Because |σ−1
1 (k) \ σ−1

2 (k)| ≤ dHam(σ1, σ2), we �nd that

|σ−1
1 (k)| = |σ−1

1 (k) ∩ σ−1
2 (k)|+ |σ−1

1 (k) \ σ−1
2 (k)|

≤ |σ−1
2 (k)|+ dHam(σ1, σ2).

By symmetry, the same inequality is true also with σ1, σ2 swapped.

(ii) Let π be a K-permutation for which dHam(π ◦ σ1, σ2) = d∗Ham(σ1, σ2). Then by (i),

|σ−1
2 (k)| ≥ |(π ◦ σ1)−1(k)| − dHam(π ◦ σ1, σ2) ≥ Nmin(σ1)− d∗Ham(σ1, σ2).

This implies that Nmin(σ2) ≥ Nmin(σ1) − d∗Ham(σ1, σ2). The second claim hence follows by
symmetry.

The following result describes the behaviour of Steps 2 and 3 in Algorithm 2 on the event
that Step 1 achieves moderate accuracy.

Lemma 19. Assume that the outputs σ̃i of Step 1 in Algorithm 2 satisfy d∗Ham(σ̃i, σ−i) <
1
5
Nmin − 1 for all i. Then there exist uniqueK-permutations π1, . . . , πN such that for all i:

(i) The outputs σ̃i of Step 1 satisfy d∗Ham(σ̃i, σ−i) = dHam(πi ◦ σ̃i, σ−i).

(ii) The outputs σ̂i of Step 2 satisfy d∗Ham(σ̂i, σ) = dHam(πi ◦ σ̂i, σ).

(iii) The �nal output σ̂ from Step 3 satis�es σ̂(i) = (π−1
1 ◦ πi)(σ̂i(i)).

Proof. (i) Denote ε = maxi d
∗
Ham(σ̃i, σ−i). Because the smallest block size of σ−i is bounded

by 1
2
Nmin(σ−i) ≥ 1

2
(Nmin−1) > ε, it follows by Lemma 1 that for every i there exists a unique

K-permutation πi such that dHam(πi ◦ σ̃i, σ−i) = d∗Ham(σ̃i, σ−i).

(ii) Observe that

dHam(πi ◦ σ̂i, σ) = dHam(πi ◦ σ̃i, σ−i) + 1(πi(σ̂i(i)) = σ(i)) ≤ ε+ 1. (4.3.4)

Because ε+ 1 < 1
2
Nmin, Lemma 1 implies that d∗Ham(σ̂i, σ) = dHam(πi ◦ σ̂i, σ).
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(iii) By Lemma 18 and (4.3.4), the minimum block size of σ̂1 is bounded by Nmin(σ̂1) ≥

Nmin − d∗Ham(σ̂1, σ) ≥ Nmin − (ε+ 1). Inequality (4.3.4) also implies that

dHam(πi ◦ σ̂i, π1 ◦ σ̂1) ≤ dHam(πi ◦ σ̂i, σ) + dHam(σ, π1 ◦ σ̂1) ≤ 2(ε+ 1).

Therefore, dHam(π−1
1 ◦ πi ◦ σ̂i, σ̂1) ≤ 2(ε + 1) as well. Furthermore, because 2(ε + 1) <

1
2
(Nmin−(ε+1)) ≤ 1

2
Nmin(σ̂1), we conclude by Lemma 1 that π−1

1 ◦πi is the unique minimiser
of π 7→ dHam(π ◦ σ̂i, σ̂1), and

π−1
1 ◦ πi(k) = arg max

`
|σ̂−1
i (k) ∩ σ̂−1

1 (`)| for all k.

Hence, the output value σ̂(i) satis�es σ̂(i) = (π−1
1 ◦ πi)(σ̂i(i)).

4.3.3 Proof of Theorem 5

In Algorithm 2, the outputs of Step 1 are denoted by σ̃1, . . . , σ̃N , the outputs of Step 2 by
σ̂1, . . . , σ̂N , and the �nal output from Step 3 by σ̂. Recall that σ denotes the unknown true
node labelling, and σ−i its restriction to [N ] \ {i}. As a standard graph clustering algorithm
for Step 1, we will employ a spectral clustering algorithm described in [XJL20, Algorithm 4]
with tuning parameter µ = 4K(αminN)−1N = 4Kα−1

min and trim threshold τ = 40Kd̄, where
d̄ is the average degree of Ã−i, which is a modi�ed version of [Gao+17, Algorithm 2] with
explicitly known error bounds.

Denote by B the event that Nmin ≥ Nαmin

(
1−

√
8 logN
αminN

)
. Lemma 10 shows that

P (Bc) ≤ KN−4.

Since N � 1 we have N ≥ 2000 when the scale-parameter η is large enough. Moreover,
αminN ≥ 6N1/2. Thus, we have

√
8 logN
αminN

≤ 1
2
, and hence event B implies Nmin ≥ 1

2
Nαmin.

Let J0 = (p−q)2
p∨q and denote by Ei the event that Step 1 for node i succeeds with accuracy

d∗Ham(σ̃i, σ−i) ≤ εN , where ε = 230K3 (αminN)−1 J−1
0 . The matrix Ã−i computed in Step 1 of

Algorithm 2 is the adjacency matrix of a standard binary SBM with intra-block link probability
p = 1−f(0), inter-block link probability q = 1−g(0), and node labelling σ−i, and by [XJL20,
Proposition B.3] it follows that

P (Ec
i ∩B) ≤ N−5. (4.3.5)

Since D1+r(f‖g) ≥ Dr(f‖g), the assumption J0 � N−1 Ds1+r(f‖g)
Dsr(f‖g)

implies, for η large
enough, that εN ≤ 2−4K−1Nmin ≤ 1

32
Nmin, and the event B implies Nmin ≥ 135. Therefore,

εN ≤ 1
32
Nmin <

1
5
Nmin−1, and we see by applying Lemma 19 that on the eventE∩B where

E = ∩iEi there exist unique K-permutations τ1, . . . , τN such that σ̂(i) = (τ−1
1 ◦ τi)(σ̂i(i))

for all i. Especially,

d∗Ham(σ̂, σ) ≤ dHam(τ1 ◦ σ̂, σ) =
∑
i

1(τi(σ̂i(i)) 6= σ(i)) on E ∩B,
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so it follows that E d∗Ham(σ̂, σ)1E∩B ≤

∑
i P(τi(σ̂i(i)) 6= σ(i), Ei, B). In light of (4.3.5), by

using d∗H = d∗H1E1B + d∗H1Ec1B + d∗H1BC and applying the bounds d∗Ham(σ̂, σ) ≤ N and
P(Ec ∩B) ≤

∑
i P(Ec

i ∩B) ≤ N−4, we conclude that

E d∗Ham(σ̂, σ) ≤
∑
i

P (τi(σ̂i(i)) 6= σ(i), Ei, B) + (K + 1)N−3. (4.3.6)

Let us analyse the sum on the right side of (4.3.6). Note that σ̃i and the K-permutation
τi are fully determined by the entries of the sub-array A−i = (Atj,j′ : j, j′ ∈ [N ] \ {i}).
Conditionally on A−i, we may hence treat σ̃i and τi as nonrandom, and apply Lemma 17 to
conclude that on the event Ei ∩B,

P (πi ◦ σ̂i(i) 6= σ(i) |A−i) ≤ Ke
−(Nαmin

(
1−
√

8 logN
αminN

)
−1−2d∗i−

2r
1−r d

∗
i βr)2(1−r) Dsr(f,g),

Because d∗Ham(σ̃i, σ−i) ≤ εN on Ei, and the event Ei ∩ B is measurable with respect to the
sigma-algebra generated by A−i, we conclude that

P (τi ◦ σ̂i(i) 6= σ(i), Ei, B) ≤ Ke
−
(
Nαmin

(
1−
√

8 logN
αminN

)
−1−3 r

1−rβrεN
)

2(1−r) Dsr(f,g).

By combining this with (4.3.6), we conclude that

E d∗Ham(σ̂) ≤ KNe
−
(
Nαmin

(
1−
√

8 logN
αminN

)
−1−2(1+ r

1−rβr)εN
)

2(1−r) Dsr(f,g) + (K + 1)N−3.

We �nish the proof of Theorem 5 by using the inequality (1 − r) Dr ≥ rD1/2, valid for any
r ∈

(
0, 1

2

]
[VH14, Theorem 16].

4.4 Rényi divergences of sparse binary Markov chains

This section discusses binary Markov chains with initial distributions µ, ν and transition prob-
ability matrices P,Q. In this case the Rényi divergence of order α ∈ (0,∞) \ {1} for the
associated path probability distributions f, g on {0, 1}T equals

Dα(f‖g) =
1

α− 1
log

( ∑
x∈{0,1}T

µαx1ν
1−α
x1

T∏
t=2

Pα
xt−1xt

Q1−α
xt−1xt

)
. (4.4.1)

Such divergences will be analysed using weighted geometric and arithmetic averages of tran-
sition parameters de�ned by

ra = µαaν
1−α
a , Rab = Pα

abQ
1−α
ab ,

r̂a = αµa + (1− α)νa, R̂ab = αPab + (1− α)Qab.
(4.4.2)

We note that Dα(f‖g) = 1
α−1

logZ , where Z =
∑

x∈{0,1}T rx1
∏T

t=2 Rxt−1xt . Moreover, r1 =

1− r̂1 +O(ρ2) and R01 = 1− R̂01 +O(ρ2) when µ1, ν1, P01, Q01 . ρ.
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4.4.1 Rényi divergences of order α ∈ (0, 1)

The following proposition provides an expression for the Rényi divergence between sparse
Markov chains. In particular, Proposition 8 follows by substituting α = 1

2
in the following

result.
Proposition 13. Consider binary Markov chains with initial distributions µ, ν and transition
probability matrices P,Q. Assume that µ1, ν1, P01, Q01 ≤ ρ for some ρ such that ρT ≤ 0.01.
Then the Rényi divergence of order α ∈ (0, 1) between the associated path probability distribu-
tions de�ned by (4.4.1) is approximated by

Dα(f‖g) =
1

1− α

(
r̂1 − r1 +

T∑
t=2

Jt + ε

)
, (4.4.3)

where the error term satis�es |ε| ≤ 46(ρT )2,

Jt =

R̂01 −R01 +
(

1− R10

1−R11

)(
R01 +

(
r1(1−R11)−R01

)
Rt−2

11

)
, R11 < 1,

R̂01 −R01, R11 = 1,

and the parameters ra, r̂a, Rab, R̂ab are given by (4.4.2).

The rest of this section is devoted to proving Proposition 13.

Basic results on binary sequences

For a path x = (x1, . . . , xT ) in {0, 1}T , by xij =
∑T

t=2 1(xt−1 = i, xt = j) the number of
ij-transitions. Then the path probability of a binary Markov chain with initial distribution µ
and transition matrix P can be written as f(x) = µx1

∏
ij P

xij
ij . For sparse Markov chains,

we will analyse path probabilities by focusing on the total number of 1’s ‖x‖ =
∑

t xt, and
the number of on-periods xon = x1 + x01 = x10 + xT , in which the count in middle is the
number of on-period start times, and the count on the right is the number of on-period end
times. We also note that x01 + x11 =

∑T
t=2 xt implies that ‖x‖ = xon + x11. The data

(xon, ‖x‖, x1, xT ) su�ces to determine the path probability of x because the transition counts
can be recovered using the formulas x01 = xon − x1, x10 = xon − xT , x11 = ‖x‖ − xon,
together with x00 + x01 + x10 + x11 = T − 1. Especially, the probability of a path with
(xon, ‖x‖, x1, xT ) = (j, t, a, b) equals

f(x) = µ1−a
0 µa1P

T−1−(t+j−a−b)
00 P j−a

01 P j−b
10 P t−j

11 . (4.4.4)

The number of such paths is summarised in the next result.
Lemma 20. Denote by cjt(ab) the number of paths x ∈ {0, 1}T such that xon = j, ‖x‖ = t,
x1 = a, and xT = b. Then the nonzero values of cjt(ab) are given by c00(00) = 1,

c1t(ab) =


T − t− 1, (a, b) = (0, 0), 1 ≤ t ≤ T − 2,

1, (a, b) = (0, 1), (1, 0), 1 ≤ t ≤ T − 1,

1, (a, b) = (1, 1), t = T,
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and cjt(ab) =

(
t−1
j−1

)(
T−t−1
j−a−b

)
for 2 ≤ j ≤ dT/2e, and j ≤ t ≤ T − 1− j + a+ b.

Proof. We compute the cardinalities separately for the three cases in which the number of
on-periods equals j = 0, j = 1, and j ≥ 2.

(i) Case j = 0. The only path with no on-periods is the path of all zeros. Therefore,
c0t(ab) = 1 for t = 0 and (a, b) = (0, 0), and c0t(a, b) = 0 otherwise.

(ii) Case j = 1. In this case c1t(00) = T − t − 1 for 1 ≤ t ≤ T − 2 and zero otherwise.
Furthermore, c1t(01) = c1t(10) = 1 for 1 ≤ t ≤ T − 1, and both are zero otherwise. Finally,
c1t(11) = 1 for t = T and zero otherwise.

(iii) Case j ≥ 2. Now we proceed as follows. First, given a series of t ones, we choose j−1

places to break the series: there are
(
t−1
j−1

)
ways of doing so. Then, we need to �ll those breaks

with zeros chosen among the T−t zeros of the chain. Note that when a = b = 0, we also need
to put zeros before and after the chain of ones. There are j−1+(1−a)+(1−b) = j+1−a−b
places to �ll with T − t zeros, and we need to put at least one zero in each place: there are(
T−t−1
j−a−b

)
ways of doing so.2 Therefore, we conclude that

cjt(ab) =

(
t− 1

j − 1

)(
T − t− 1

j − a− b

)
.

Useful Taylor expansions

Lemma 21. Assume that α ∈ (0, 1) and max{µ1, ν1, P01, Q01} ≤ ρ for some ρ ≤ 1
3
. Then the

geometric and arithmetic means de�ned by (4.4.2) are related according to

r0 = 1− r̂1 + ε1,

R00 = 1− R̂01 + ε2,

RT−1
00 = 1− (T − 1)R̂01 + ε3,

r0R
T−1
00 = 1− r̂1 − (T − 1)R̂01 + ε4,

where the error terms are bounded by |ε1|, |ε2| ≤ (1 + ρ)ρ2, |ε3| ≤ 2(1 + ρ)(ρT )2, and |ε4| ≤
4(1 + 2ρ)(ρT )2.

Proof. Note that r̂1 ≤ ρ and R̂01 ≤ ρ. Taylor’s approximation (Lemma 25) implies that (1 −
µ1)α = 1−αµ1+ε11 and (1−ν1)1−α = 1−(1−α)ν1+ε12 for |ε11|, |ε12| ≤ 1

2
ρ2. By multiplying

these, we �nd that
r0 = (1− µ1)α(1− ν1)1−α = 1− r̂1 + ε1,

2A combinatorial fact, often referred as the stars and bars method, is that the number of ways in which n

identical balls can be divided into m distinct bins is
(
n+m− 1

m− 1

)
, and

(
n− 1

m− 1

)
if bins cannot be empty.
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where the error term is bounded by |ε1| ≤ (1 + 1

4
ρ2)ρ2 ≤ (1 + ρ)ρ2. Because R00 = (1 −

P01)α(1−Q01)1−α, repeating the same argument yields |ε2| ≤ (1 + ρ)ρ2.

Assume next that T ≥ 2 (otherwise the third claim is trivial). Note that 0 ≤ 1 − R00 =

R̂01− ε2 ≤ ρ+ (1 + ρ)ρ2 ≤ 1
2

due to R̂01 ≤ ρ and ρ ≤ 1
3
. By applying Lemma 25, we then see

that
RT−1

00 = (1− R̂01 + ε2)T−1 = 1− (T − 1)(R̂01 − ε2) + ε31,

where |ε31| ≤ T 2(R̂01 − ε2)2 ≤ 2T 2(R̂2
01 + ε22). It follows that RT−1

00 = 1 − (T − 1)R̂01 + ε3
with ε3 = (T − 1)ε2 + ε31 bounded by |ε3| ≤ T |ε2| + |ε31| ≤ T |ε2| + 2(T |ε2|)2 + 2(ρT )2, so
that |ε3| ≤ 2(1 + ρ)ρ2T 2.

Finally, by multiplying the approximation formulas of r0 and RT−1
00 , we �nd that

ε4 = ε1(1− (T − 1)R̂01) + ε3(1− r̂1) + ε1ε3 + (T − 1)r̂1R̂01.

By the triangle inequality, we �nd that for T ≥ 2, |ε4| ≤ (1 + ρT )|ε1| + |ε3| + |ε1ε3| + ρ2T ,
from which one may check that |ε4| ≤ 4(1 + 2ρ)(ρT )2.

Analysing paths with two or more on-periods

Lemma 22. For any α ∈ (0, 1) and any Markov chain path distributions f, g with transition
matrices P,Q satisfying P11Q11 < 1,∑

x:xon≥2

fαx g
1−α
x ≤ R01(r1 +R01)T 2W (1 +W )eWR01T ,

whereW = R10

1−R11
and the weighted geometric means ra, Rab are de�ned by (4.4.2).

Proof. Fix an integer 2 ≤ j ≤ dT/2e, and denote Zj =
∑

x:xon=j f
α
x g

1−α
x . By (4.4.4), we see

that for any path x with j on-periods, t ones, initial state a, and �nal state b,

fαx g
1−α
x = r1−a

0 ra1R
T−1−(t+j−a−b)
00 Rj−a

01 Rj−b
10 Rt−j

11 ≤ ra1R
j−a
01 Rj−b

10 Rt−j
11 .

By Lemma 20, the number of such paths equals

cjt(ab) =

(
t− 1

j − 1

)(
T − t− 1

j − a− b

)
.

To obtain an upper bound for the path count, we note that
(
T−t−1
j−a−b

)
≤ T j−a−b

(j−a−b)! . Furthermore,
we also see that

(
t−1
j−1

)
= t−1

j−1

(
t−2
j−2

)
≤ T

(
t−2
j−2

)
. The latter bound implies that

(
t−1
j−1

)
≤ T b

(
t−b−1
j−b−1

)
for all b ∈ {0, 1}. As a consequence, we conclude that

cjt(ab) ≤
T j

(j − 2)!

(
t− b− 1

j − b− 1

)
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holds for all a, b ∈ {0, 1}. Hence,

Zj ≤
T j

(j − 2)!

1∑
a,b=0

∑
t≥j

(
t− b− 1

j − b− 1

)
ra1R

j−a
01 Rj−b

10 Rt−j
11 .

Using a geometric moment formula (Lemma 23), we �nd that
∞∑
t=j

(
t− b− 1

j − b− 1

)
Rt−j

11 = (1−R11)−(j−b) = Rb−j
10 W j−b,

and it follows that

Zj ≤
T j

(j − 2)!

1∑
a,b=0

ra1R
j−a
01 W j−b = T 2 (R01WT )j−2

(j − 2)!

1∑
a,b=0

ra1R
2−a
01 W 2−b.

By noting that
∑1

a,b=0 r
a
1R

2−a
01 W 2−b = R01(r1 + R01)W (1 + W ) and summing the above

inequality with respect to j ≥ 2, the claim follows.

Proof of Theorem 8

By de�nition, the Rényi divergence of order α can be written as Dα(f‖g) = 1
α−1

Zα(f‖g),
where Zα(f‖g) =

∑
x f

α
x g

1−α
x . We will split this Hellinger sum into

Zα(f‖g) = Z0 + Z1 +

dT/2e∑
j=2

Zj

where Zj =
∑

x:xon=j f
α
x g

1−α
x indicates a Hellinger sum over paths with j on-periods. We will

approximate the �rst two terms on the right by Z0 = Ẑ0 + ε0, Z1 = Ẑ1 + ε1, where

Ẑ0 = 1− r̂1 − (T − 1)R̂01

and

Ẑ1 = R01R10

T−2∑
t=1

(T − t− 1)Rt−1
11 + (R01 + r1R10)

T−1∑
t=1

Rt−1
11 + r1R

T−1
11 .

Then is follows that
Zα(f‖g) = Ẑ0 + Ẑ1 + ε0 + ε1 + ε2,

where ε2 =
∑dT/2e

j=2 Zj . We see that ε2 = 0 for R11 = 1, whereas for R11 < 1, Lemma 22
shows that 0 ≤ ε2 ≤ 4(ρT )2eρT ≤ 5(ρT )2.

Let analyse the error term ε0. Because the only path with xon = 0 is the identically zero
path, we �nd that Z0 = r0R

T−1
00 . By Lemma 21 we have |ε0| ≤ 4(1 + 2ρ)(ρT )2 ≤ 5(ρT )2.

For the error term ε1, with the help of formula (4.4.4) and Lemma 20, we see that

Z1 = r0R01R10

T−2∑
t=1

(T − t− 1)Rt−1
11 RT−2−t

00 + (r0R01 + r1R10)
T−1∑
t=1

Rt−1
11 RT−1−t

00

+ r1R
T−1
11 .
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Because r0, R00 ≤ 1, it follows that Z1 ≤ Ẑ1, and hence ε1 ≤ 0. Furthermore, Lemma 21
implies that r0, R00 ≥ 1− 2ρ. By noting that RT−t

00 ≥ RT−1
00 for t ≥ 1, it follows that

Z1 ≥ (1− 2ρ)T Ẑ1 ≥ (1− 2ρT )Ẑ1.

For R11 = 1 we have R10 = 0 and Ẑ1 = r1 + (T − 1)R01. For R11 < 1, we observe that

Ẑ1 ≤ (T − 1)R01
R10

1−R11

+ (T − 1)R01 + r1
R10

1−R11

+ r1

≤ (1 +W )
(
r1 + (T − 1)R01

)
,

where W = R10

1−R11
. We note that W = Zα(Geo(P11)‖Geo(Q11)) equals the Hellinger sum of

two geometric distributions, and therefore, W ∈ (0, 1]. Therefore, Ẑ1 ≤ 2ρT , and it follows
that

Z1 ≥ Ẑ1 − 2ρT Ẑ1 ≥ Ẑ1 − 4(ρT )2.

Hence |ε1| ≤ 4(ρT )2 for both R11 < 1 and R11 = 1.

We may now conclude that

Zα(f‖g) = Ẑ0 + Ẑ1 + ε′,

where
|ε′| ≤ |ε0|+ |ε1|+ |ε2| ≤ 14(ρT )2.

(iv) Next, Taylor’s approximation (Lemma 24) shows that log(1 − t) = −t − ε′′ where
0 ≤ ε′′ ≤ 2t2 for 0 ≤ t ≤ 1

2
. By applying this with t = 1− Zα(f‖g), and noting that |Jt| ≤ ρ

implies 0 ≤ t ≤ 3ρT + |ε′| ≤ 4ρT , we �nd that

Dα(f‖g) =
1

1− α
(1− Zα(f‖g) + ε′′) =

1

1− α

(
1− Ẑ0 − Ẑ1 − ε′ + ε′′

)
.

The claim about the error bound follows after noting that

|ε′|+ |ε′′| ≤ 14(ρT )2 + 2(4ρT )2 ≤ 46(ρT )2.

(v) Finally, let us simplify Ẑ0 + Ẑ1. When R11 < 1, by applying formulas
∑T−2

t=1 (T − t−
1)Rt−1

11 = (1−R11)−1
(

(T − 1)−
∑T

t=2R
t−2
11

)
and RT−1

11 = 1− (1−R11)
∑T

t=2 R
t−2
11 we �nd

that

Ẑ1 = r1 +WR01(T − 1)− (1−W ) (r1(1−R11)−R01)
T∑
t=2

Rt−2
11 .

Hence,

Ẑ0 + Ẑ1 = 1−

(
r̂1 − r1 +

T∑
t=2

Jt

)
, (4.4.5)

where the expression of Jt coincides with the one in the statement of the theorem. When
R11 = 1, we �nd that Jt = R̂01 −R01.
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4.4.2 High-order Rényi divergences

The following result provides an upper bound on the Rényi divergence of orderα > 1 between
path probability distributions of binary Markov chains de�ned by (4.4.1).

Proposition 14. Assume that µ1
ν1
, P01

Q01
, P10

Q10
≤ M for someM ≥ 1, Q11 > 0, and ν1, Q01 ≤ ρ

for some ρ ≤ 1
2
. Then the Rényi divergence of order 1 < α <∞ is bounded by

Dα(f‖g) ≤ 2α

α− 1
ρT +

M2α

α− 1
ρT

T−1∑
t=0

Λt

+
4

α− 1

dT/2e∑
j=2

(M2αρT )j

(j − 2)!

T∑
t=j

(
t− 1

j − 1

)
Λt−j,

(4.4.6)

where Λ = Pα
11Q

1−α
11 . Furthermore, when Λ < 1,

Dα(f‖g) ≤ 2α + 1

α− 1
CρTe5CρT with C =

M2α

1− Λ
. (4.4.7)

Proof. Recall that Dα(f‖g) = 1
α−1

logZ where Z =
∑

x gx(fx/gx)
α. Because ν1 ≤ ρ with

ρ ≤ 1
2
, we �nd that µ0

ν0
≤ 1

1−ν1 = 1 + ν1
1−ν1 ≤ 1 + 2ρ. Because Q01 ≤ ρ, the same argument

shows that P00

Q00
≤ 1 + 2ρ. Because 1− x1 + x00 ≤ T , it follows that

fx
gx

=

(
µ0

ν0

)1−x1 (µ1

ν1

)x1 (P00

Q00

)x00 (P01

Q01

)x01 (P10

Q10

)x10 (P11

Q11

)x11
≤ (1 + 2ρ)TMx1+x01+x10

(
P11

Q11

)x11
.

Observe also that gx ≤ νx11 Qx01
01 Q

x11
11 ≤ ρx1+x01Qx11

11 . Therefore,

Z ≤ (1 + 2ρ)αT
∑
x

ρx1+x01Mα(x1+x01+x10)Λx11 ,

where Λ = Pα
11Q

1−α
11 . By recalling that xon = x1 +x01 = x10 +xT and ‖x‖ = x1 +x01 +x11 =

x10 + x11 + xT , we �nd that x1 + x01 + x10 = 2xon− xT ≤ 2xon and x11 = ‖x‖− xon. Hence

Z ≤ (1 + 2ρ)αT
∑
x

ρxonM2αxonΛ‖x‖−xon = (1 + 2ρ)αT
dT/2e∑
j=0

Sj (4.4.8)

where

Sj = (M2αρ)j
T∑
t=j

cjtΛ
t−j,

and cjt is the number of paths x ∈ {0, 1}T containing xon = j on-periods and ‖x‖ = t ones.
Because there is only one path containing no ones, and this path has no on-periods, we �nd
that S0 = 1. By noting that log(1 + t) ≤ t, it follows from (4.4.8) that

Dα(f‖g) ≤ 2α

α− 1
ρT +

1

α− 1

dT/2e∑
j=1

Sj. (4.4.9)
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Because c1t ≤ T for all t, we se that

S1 ≤ M2αρT

T−1∑
t=0

Λt. (4.4.10)

For j ≥ 2, Lemma 20 implies that cjt =
∑1

a,b=0

(
t−1
j−1

)(
T−t−1
j−a−b

)
≤ 4 T j

(j−2)!

(
t−1
j−1

)
, and we �nd that

Sj ≤ 4
(M2αρT )j

(j − 2)!

T∑
t=j

(
t− 1

j − 1

)
Λt−j. (4.4.11)

Inequality (4.4.6) follows by substituting (4.4.10)–(4.4.11) into (4.4.9).

Assume next that Λ < 1, and denote C = M2α

1−Λ
. By replacing T −1 by in�nity on the right

side of (4.4.10), it follows that S1 ≤ CρT . By a geometric moment formula (Lemma 23), we
�nd that

T∑
t=j

(
t− 1

j − 1

)
Λt−j ≤

∞∑
t=j

(
t− 1

j − 1

)
Λt−j = (1− Λ)−j.

Then (4.4.11) implies that

dT/2e∑
j=2

Sj ≤ 4

dT/2e∑
j=2

(CρT )j

(j − 2)!
≤ 4

∞∑
j=2

(CρT )j

(j − 2)!
= 4(CρT )2eCρT .

Now it follows by (4.4.9) that

Dα(f‖g) ≤ 2α

α− 1
ρT +

CρT

α− 1
+

4(CρT )2

α− 1
eCρT .

Therefore,

(α− 1)Dα(f‖g)

CρT
≤ 2α

C
+ 1 + 4CρTeCρT ≤

(
2α

C
+ 1 + 4CρT

)
eCρT .

Because 2α
C

+ 1 + 4Cρ ≤
(

2α
C

+ 1
)

(1 + 4CρT ) ≤
(

2α
C

+ 1
)
e4CρT , we conclude that

(α− 1)Dα(f‖g)

CρT
≤
(

2α

C
+ 1

)
e5CρT

Because C ≥ 1, we see that 2α
C

+ 1 ≤ 2α + 1, and (4.4.7) follows.
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4.4.3 Additional lemmas

Lemma 23. For any integer j ≥ 1 and any real number 0 ≤ q < 1, we have

∞∑
k=j

(
k

j

)
qk−j = (1− q)−(j+1).

Proof. Denote the falling factorial by (x)j = x(x−1) · · · (x− j+ 1) and let f(q) = (1− q)−1.
Then the j-th derivative of f equals f (j)(q) = j!(1 − q)−(j+1). Because f(q) =

∑∞
k=0 q

k, we
�nd that the j-th derivative of f also equals

∑∞
k=j(k)jq

k−j . Hence the claim follows.

Lemma 24. (i) For t ≥ 0, log(1 + t) = t − ε1 where 0 ≤ ε1 ≤ 1
2
t2. (ii) For 0 ≤ t < 1,

log(1− t) = −t− ε2 where 0 ≤ ε2 ≤ t2

2(1−t)2 , and especially, 0 ≤ ε2 ≤ 2t2 for 0 ≤ t ≤ 1
2
.

Proof. (i) By taking two derivatives of t 7→ log(1 + t), we �nd that log(1 + t) = t − ε1 with
ε1 =

∫ t
0

∫ s
0

(1 + u)−2duds.

(ii) Similarly, we �nd that log(1− t) = −t− ε2 with ε2 =
∫ t

0

∫ s
0

(1− u)−2duds.

Lemma 25. For any 0 ≤ x ≤ 1
2
and a > 0, the error term in the approximation (1 − x)a =

1− ax− r(x) is bounded by |r(x)| ≤ 2|a−1|
2a

ax2. Moreover, r(x) ≥ 0 when a ≥ 1.

Proof. The error term in the approximation f(x) = f(0) + f ′(0)x + r(x) equals r(x) =∫ x
0

∫ t
0
f ′′(s)dsdt and is bounded by |r(x)| ≤ 1

2
cx2 with c = max0≤x≤1/2 |f ′′(x)|. The function

f(x) = (1−x)a satis�es f(0) = 1 and f ′(0) = −a, together with f ′′(x) = a(a−1)(1−x)a−2.
The claims follow after noticing that

max
0≤x≤1/2

|f ′′(x)| =

{
|f ′′(1

2
)| = 4

2a
a|a− 1| for 0 < a < 2,

f ′′(0) = a(a− 1) for a ≥ 2.

Lemma 26. Fix 0 ≤ δ < 1. Then the error term in the approximation
√

1− x = 1− 1
2
x− ε(x)

satis�es 0 ≤ ε(x) ≤ cx2 for all 0 ≤ x ≤ δ, where c = 1
8
(1− δ)−3/2.

Proof. Consider Taylor’s approximation f(x) = f(0) + f ′(0)x + r(x) where the quantity
r(x) =

∫ x
0

∫ t
0
f ′′(s)dsdt is bounded by 1

2
c1x

2 ≤ r(x) ≤ 1
2
c2x

2 with c1 = min0≤x≤δ f
′′(x) and

c2 = max0≤x≤δ f
′′(x). The function f(x) = (1 − x)1/2 satis�es f(0) = 1 and f ′(0) = −1

2
,

together with f ′′(x) = −1
4
(1 − x)−3/2. Now c1 = −1

4
(1 − x)−3/2 and c2 = −1

4
≤ 0. Hence

the claim is true with ε(x) = −r(x).
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Almost exact recovery in noisy semi su-
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Graph-based semi-supervised learning methods combine the graph structure and labelled
data to classify unlabelled data. In this Chapter, we study the e�ect of a noisy oracle on classi-
�cation. In particular, we derive in Section 5.1 the Maximum A Posteriori (MAP) estimator for
clustering a Degree Corrected Stochastic Block Model (DC-SBM) when a noisy oracle reveals
a fraction of the labels. We then propose an algorithm derived from a continuous relaxation
of the MAP, and we establish its consistency in Section 5.2. Numerical experiments in Sec-
tion 5.3 show that our approach achieves promising performance on synthetic and real data
sets, even in the case of very noisy labelled data.
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5.1 MAP estimator in a noisy semi-supervised setting

5.1.1 Problem formulation and notations

A homogeneous degree corrected stochastic block model (DC-SBM) is parametrized by the num-
ber of nodes n, two class-a�nity parameters pin, pout, and a pair (θ, Z) where θ ∈ Rn is a vec-
tor of intrinsic connection intensities and Z ∈ {−1, 1}n is the community labelling vector.
Given (pin, pout, θ, Z), the graph adjacency matrix A = (aij) is generated as

Aij = Aji ∼
{

Ber (θiθjpin) if Zi = Zj,
Ber (θiθjpout) otherwise,

(5.1.1)

for i 6= j, and Aii = 0. We assume throughout the paper that Zi ∼ Uni ({−1, 1}), and that
the entries of θ are independent random variables satisfying θi ∈ [θmin, θmax] with Eθi = 1,
θmin > 0, and θ2

max max(pin, pout) ≤ 1. In particular, when all the θi’s are equal to one, the
model reduces to the Stochastic Block Model (SBM):

Aij = Aji ∼
{

Ber (pin) if Zi = Zj,
Ber (pout) otherwise.

(5.1.2)

In addition to the observation of the graph adjacency matrix A, an oracle gives us extra
information about the cluster assignment of some nodes. This can be represented as a vector
s ∈ {0,−1, 1}n, whose entries si are independent and distributed as follows:

si =


Zi with probability η1,
−Zi with probability η0,
0 otherwise.

(5.1.3)

In words, the oracle (5.1.3) reveals the correct cluster assignment of node i with prob-
ability η1 and gives a false cluster assignment with probability η0. It reveals nothing with
probability 1− η1 − η0. The quantity P (si 6= Zi | si 6= 0) is the rate of mistakes of the oracle
(i.e., the probability that the oracle reveals a false information given that it reveals something),
and is equal to η0/(η1 +η0). The oracle is informative if this quantity is less than 1/2, which is
equivalent to η1 > η0. In the following, we will always assume that the oracle is informative.

Assumption 2. The oracle is informative, that is, η1 > η0.

Given the observation of A and s, the goal of clustering is to recover the community
labelling vector Z . For an estimator Ẑ ∈ {−1, 1}n of Z , the relative error is de�ned as the
proportion of misclustered nodes

L
(
Ẑ, Z

)
=

1

n

n∑
i=1

1
(
Ẑi 6= Zi

)
. (5.1.4)

Note that, unlike unsupervised clustering, we do not take a minimum over the permutations
of the predicted labels since we should be able to learn the correct community labels from the
informative oracle.
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Notations Given an oracle s, we let ` be the set of labelled nodes, that is ` := {i ∈ V : si 6=

0}, and denote P the diagonal matrix with entries (P)ii = 1 if i ∈ `, and (P)ii = 0 otherwise.

The notation In stands for the identity matrix of size n× n, and 1n (resp. 0n) is the vector
of size n× 1 of all ones (resp. of all zeros).

For any matrix A = (aij)i∈[n],j∈[m] and two sets S ⊂ [n], T ⊂ [m], we denote AS,T =

(aij)i∈S,j∈T the matrix obtained from A by keeping elements whose row indices are in S and
column indices are in T . We denote by ‖x‖ the Euclidean norm of a vector x and by ‖A‖ the
spectral norm of a matrix A ∈ Rn×m. Finally, A� B refers to the entry-wise matrix product
between two matrices A and B of the same size.

5.1.2 MAP estimator of semi-supervised recovery in DC-SBM

Given a realization of a DC-SBM graph adjacency matrix A and the oracle information s, the
Maximum A Posteriori (MAP) estimator is de�ned as

ẐMAP = arg max
z∈{−1,1}n

P(z |A, s). (5.1.5)

This estimator is known to be optimal (in the sense that if it fails then any other estimator
would also fail, see e.g., [Iba99]) for the exact recovery of all the community labels. Theorem 9
provides an expression of the MAP.

Theorem 9. Let G be a graph drawn from DC-SBM as de�ned in (5.1.1) and s be the oracle
information as de�ned in (5.1.3). DenoteM = (F1 − F0) � A + F0, where F0 =

(
f

(0)
ij

)
and

F1 =
(
f

(1)
ij

)
such that f (a)

ij = log
P(Aij=a | zi=zj)
P(Aij=a | zi 6=zj) for a ∈ {0, 1}. The MAP estimator de�ned

in (5.1.5) is given by

ẐMAP = arg min
z∈{−1,1}n

(
zTMz + log

(
η1

η0

)
‖Pz − s‖2

)
. (5.1.6)

For a perfect oracle (η0 = 0) this reduces to

ẐMAP = arg min
z∈{−1,1}n
z`=s`

zTMz. (5.1.7)

The proof of Theorem 9 is standard and postponed to Section 5.4.1. We note that, despite
being a priori standard, this result did not appear previously in the literature (neither for the
standard SBM nor for the perfect oracle).

The minimisation problem (5.1.6) consists of a trade-o� between minimising a quadratic
function zTMz and a penalty term. This trade-o� reads as follows: for each labelled node
such that the prediction contradicts the oracle, a penalty log

(
η1
η0

)
> 0 is added. In particular,

when the oracle is uninformative, that is η1 = η0, then this term is null, and Expression (5.1.6)
reduces to the MAP for unsupervised clustering.

The following Corollary 1, whose proof is in Section 5.4.1, provides the expression of the
MAP estimator for a standard SBM.
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Corollary 1. The MAP estimator for semi-supervised clustering on SBM graph with pin > pout

and with an oracle s de�ned in (5.1.3) is given by

ẐMAP = arg min
z∈{−1,1}n

(
−zT

(
A− τ1n1Tn

)
z + λ ‖Pz − s‖2

2

)
, (5.1.8)

where τ =

log
(1− pout

1− pin

)
log
(pin(1− pout)

pout(1− pin)

) and λ =

log
(η1

η0

)
log

(
pin(1− pout)

pout(1− pin)

) . For the perfect oracle, this
reduces to

ẐMAP = arg min
z∈{−1,1}n
z`=s`

(
zT
(
−A+ τ1n1Tn

)
z
)
. (5.1.9)

5.2 Almost exact recovery using a continuous relaxation

As �nding the MAP estimate is NP-hard [WW93], we perform a continuous relaxation (Sec-
tion 5.2.1). We then give an upper bound on the number of misclustered nodes in Section 5.2.2.

5.2.1 Continuous relaxation of the MAP

For the sake of simplicity, we focus on the MAP for SBM, i.e., minimisation problem (5.1.8).
We perform a continuous relaxation mirroring what is commonly done for spectral meth-
ods [New13], namely

X̂ = arg min
x∈Rn∑

i κix
2
i=
∑
i κi

(
−xTAτx+ λ(s− Px)T (s− Px)

)
, (5.2.1)

whereAτ = A− τ1n1Tn and κ = (κ1, . . . , κn) is a vector of positive entries. For the simplicity
of the derivations, we choose to constrain x on the hyper-sphere ‖x‖2 = n by letting κi = 1,
but other choices would lead to a similar analysis. In particular, in the numerical Section 5.3
we will compare this choice with a degree-normalization approach (κi = di).

We further note that for the perfect oracle the corresponding relaxation of (5.1.9) is

X̂ = arg min
x∈Rn
x`=s`
‖x‖2=n

(
−xTAτx

)
. (5.2.2)

Given the classi�cation vector X̂ ∈ Rn, node i is classi�ed into cluster Ẑi ∈ {−1, 1} such
that

Ẑi =

{
1 if X̂i > 0,
−1 otherwise.

(5.2.3)

Let us solve the minimisation problem (5.2.1). By letting γ ∈ R be the Lagrange multiplier
associated with the constraint ‖x‖2 = n, the Lagrangian of the optimization problem (5.2.1) is

−xTAτx+ λ(s− Px)T (s− Px)− γ
(
xTx− n

)
.
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Almost exact recovery in noisy semi supervised learning
This leads to the constrained linear system{

(−Aτ + λP − γIn)x = λs,
xTx = n,

(5.2.4)

whose unknowns are γ and x.

While [MC21] let γ to be a hyper-parameter (hence the norm constraint xTx = n is
no longer veri�ed), the exact optimal value of γ can be found explicitly following [GGV89].
Firstly, we note that if (γ1, x1) and (γ2, x2) are solutions of the system (5.2.4), then

C(x1)− C(x2) =
γ1 − γ2

2
‖x1 − x2‖2 ,

where C(x) = −xTAτx + λ(s − Px)T (s − Px) is the cost function minimised in (5.2.1).
Hence, among the solution pairs (γ, x) of the system (5.2.4), the solution of the minimisation
problem (5.2.1) is the vector x associated with the smallest γ.

Secondly, the eigenvalue decomposition of −Aτ + λP reads as

−Aτ + λP = Q∆QT ,

where ∆ = diag(δ1, . . . , δn) with δ1 ≤ · · · ≤ δn and QTQ = In. Therefore, after the change
of variables u = QTx and b = λQT s, the system (5.2.4) is transformed to{

∆u = γu+ b,
uTu = n.

Thus, the solution X̂ of the optimization problem (5.2.1) veri�es

(−Aτ + λP − γ∗In) X̂ = λs, (5.2.5)

where γ∗ is the smallest solution of the explicit secular equation [GGV89]
n∑
i=1

(
bi

δi − γ

)2

− n = 0. (5.2.6)

We summarize this in Algorithm 3. Note that for the sake of generality we let λ and τ be hyper-
parameters of the algorithm. If the model parameters are known, we can use the expressions
of λ and τ derived in Corollary 1. The choice of λ and τ is further discussed in Section 5.3.

5.2.2 Ratio of misclustered nodes

This section gives bounds on the number of unlabelled nodes misclassi�ed by Algorithm 3.
We then specialize the results for some particular cases.

Theorem 10. Consider a DC-SBM with a noisy oracle as de�ned in (5.1.1),(5.1.3). Let d̄ =
n
2
(pin+pout) and ᾱ = n

2
(pin−pout). Suppose that τ > pout, and let Ẑ be the output of Algorithm 3.

Then, the proportion of misclustered unlabelled nodes veri�es

L
(
Ẑu, Zu

)
≤ C

(
pin + pout

pin − pout

)2
(
ᾱ + λ

λ

)2
1

(η1 + η0) (η1 − η0)2 d̄
.
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Algorithm 3: Semi-supervised learning with regularized adjacency matrix.

Input: Adjacency matrix A, oracle information s, parameters τ and λ.
Procedure:
Let γ∗ be the smallest solution of Equation (5.2.6).
Compute X̂ as the solution of Equation (5.2.5).
for i = 1 . . . n do
Ẑi = sign

(
X̂i

)
.

end for
return Ẑ .

The core of the proof relies on the concentration of the adjacency matrix towards its expec-
tation. This result, as presented in [LLV17], holds under loose assumptions: it is valid for any
random graph whose edges are independent of each other. To use this result for d̄ = o

(
log n

)
,

one need to replace the matrixAτ byA′τ = A′−τ1n1Tn , whereA′ is the adjacency matrix of the
graph obtained after reducing the weights on the edges incident to the high degree vertices.
We refer to [LLV17, Section 1.4] for more details. This extra technical step is not necessary
when d̄ = Ω(log n). Moreover, concentration also occurs if we replace the adjacency matrix
by the normalized Laplacian in Equation (5.2.5). In that case, we obtain a generalization of the
Label Spreading algorithm [Zho+04], [CSZ06, Chapter 11].

In the following, the mean-�eld graph refers to the weighted graph formed by the expected
adjacency matrix of a DC-SBM graph. Moreover, we assume without loss of generality that the
�rst n

2
nodes are in the �rst cluster and the last n

2
are in the second cluster. Therefore, EA =

ZBZT with B =

(
pin pout

pout pin

)
and Z =

(
1n/2 0n/2
0n/2 1n/2

)
. In particular, the coe�cients θi

disappear because Eθi = 1. We consider the setting where diagonal elements of EA are not
zeros. This accounts for modifying the de�nition of DC-SBM, where we can have self-loops
with probability pin. Nonetheless, we could set the diagonal elements of EA to zeros and our
results would still hold at the expense of cumbersome expressions. Note that the matrix EA
has two non-zero eigenvalues: d̄ = npin+pout

2
and ᾱ = npin−pout

2
.

Proof of Theorem 10. We prove the statement in three steps. We �rst show that the solution
X̂ of the constrained linear system (5.2.4) is concentrated around the solution x̄ of the same
system for the mean-�eld model. Then, we compute x̄ and show that we can retrieve the
correct cluster assignment from it. We �nally conclude with the derivation of the bound.

(i) Similarly to [AKL18] and [AD19], let us rewrite equation (5.2.5) as a perturbation of a
system of linear equations corresponding to the mean-�eld solution. We thus have(

EL̃+ ∆L̃
)(
x̄+ ∆x

)
= λs,

where L̃ = −Aτ + λP − γ∗In, ∆x := X̂ − x̄ and ∆L̃ := L̃ − EL̃.

We recall that a perturbation of a system of linear equations (A+ ∆A)(x+ ∆x) = b leads
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Almost exact recovery in noisy semi supervised learning
to the following sensitivity inequality (see e.g., [HJ12, Section 5.8]):

‖∆x‖
‖x‖

≤ κ(A)
‖∆A‖
‖A‖

,

where ‖.‖ is the operator norm associated to a vector norm ‖.‖ (we use the same notations
for simplicity) and κ(A) := ‖A−1‖ · ‖A‖ is the condition number. In our case, the above
inequality can be rewritten as follows:∥∥∥X̂ − x̄∥∥∥

‖x̄‖
≤
∥∥∥∥(E L̃)−1

∥∥∥∥ · ∥∥∥∆ L̃
∥∥∥ , (5.2.7)

employing the Euclidean vector norm and spectral operator norm. The spectral study of E L̃
(see Corollary 4 in Section 5.4.2) gives:∥∥∥∥(E L̃)−1

∥∥∥∥ =
1

min
{
|λ| : λ ∈ Sp

(
E L̃
)} =

1

−t+2 − γ̄∗
,

where t+2 is de�ned in Corollary 4 in Section 5.4.2 and γ̄∗ is the solution of Equation (5.2.6) for
the mean-�eld model. Lemma 28 in Section 5.4.2 leads to∥∥∥∥(E L̃)−1

∥∥∥∥ ≤ 1

λ+ ᾱ
. (5.2.8)

The last ingredient needed is the concentration of the adjacency matrix around its expec-
tation. We have∥∥∥L̃ − EL̃

∥∥∥ ≤ ‖(γ∗ − γ̄∗) In‖+ ‖A− E A‖ ≤ | γ∗ − γ̄∗ |+ ‖A− E A‖.

Proposition 16 in Section 5.4.2 shows that

| γ∗ − γ̄∗ | ≤

(
1 +

27 (ᾱ + λ)3

√
2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄.

Moreover, when d = Ω(log n), it is shown in [FO05] that ‖A− E A‖ = O
(√

d̄
)
. If d̄ =

o(log n), the same result holds with a proper pre-processing on A, and we refer the reader to
[LLV17] for more details. To keep notations short, we will omit this extra step in the proof.
Using this concentration bound, we have

∥∥∥L̃ − EL̃
∥∥∥ ≤ (

C ′ +
27 (ᾱ + λ)3

√
2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄

≤
(
C ′ +

27√
2

)
(λ+ ᾱ)3

ᾱ2λ

√
d̄√

η1 + η0 (η1 − η0)
.

91



Chapter 5
for some constant C ′. Let C = C ′ + 27√

2
. By combining the above with inequality (5.2.8), the

inequality (5.2.7) becomes∥∥∥X̂ − x̄∥∥∥
‖x̄‖

≤ C
(λ+ ᾱ)2

ᾱ2λ

√
d̄√

η1 + η0 (η1 − η0)
. (5.2.9)

(ii) Node i in the mean-�eld model is correctly classi�ed by decision rule (5.2.3) if the sign
of x̄i equals the sign of Zi. Corollary 5 in Section 5.4.3 shows that this is indeed the case for
the unlabelled nodes.

(iii) Finally, for an unlabelled node i to be correctly classi�ed, the node’s value X̂i should
be close enough to its mean-�eld value x̄i. In particular, the part (ii) shows that if |X̂i − x̄i|
is smaller than some non-vanishing constant β, then an unlabelled node i will be correctly
classi�ed. An unlabelled node i is said to be β-bad if

∣∣∣X̂i − x̄i
∣∣∣ > β. We denote by Sβ the set of

β-bad nodes. The nodes that are not β-bad are a.s. correctly classi�ed, and thus L
(
Ẑu, Zu

)
≤

|Sβ |
n

.

From
∥∥∥X̂ − x̄∥∥∥2

≥
∑
i∈Sβ

∣∣∣X̂i − x̄i
∣∣∣2, it follows that

∥∥∥X̂ − x̄∥∥∥2

≥ |Sβ| × β2. Thus, using

inequality (5.2.9) and the norm constraint ‖x̄‖2 = n, we have

|Sβ| ≤
1

β2

(
C

η1 − η0

ᾱ + λ

ᾱλ

√
d̄

)2

n,

for some constant C . We end the proof by noticing that d̄
ᾱ

= pin+pout
pin−pout .

Corollary 2 (Almost exact recovery in the diverging degree regime). Consider a DC-SBM such
that d̄� 1, pin+pout

pin−pout = O(1), and
√
η0 + η1(η1 − η0)� 1√

d̄
. Suppose that τ > pout and λ & ᾱ.

Then, Algorithm 3 correctly classi�es almost all the unlabelled nodes.

Proof. With the corollary’s assumptions (η1− η0)2d̄→ +∞ and ᾱ+λ
λ

= O(1), by Theorem 10
the fraction of misclustered nodes is of the order o(1).

The quantity (η1− η0)n is the expected di�erence between the number of nodes correctly
labelled and the number of nodes wrongly labelled by the oracle. In particular, Corollary 2
allows for a sub-linear number of labelled nodes since η0 and η1 can go to zero.

Corollary 3 (Detection in the constant degree regime). Consider a DC-SBM such that pin = cin
n

and pout = cout
n

where cin, cout are constants. Suppose that
√
η0 + η1(η1 − η0) is a non-zero

constant, and let τ > 2pout and λ & 1. Then, for (cin−cout)2
cin+cout

bigger than some constant, w.h.p.
Algorithm 3 performs better than a random guess.

Proof. According to Theorem 10, the fraction of misclustered nodes is smaller than 1
2

when
(cin−cout)2
cin+cout

is larger than 2C
(η1−η0)2

(
ᾱ+λ
λ

)2, which is lower bounded by a constant.
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The quantity (cin−cout)2

cin+cout
can be interpreted as the signal-to-noise ratio. It is unfortunate

that Corollary 3 does not allow us to control the constant in the statement of the corollary.
This constant comes from concentration of the adjacency matrix. Similar remarks were made
in [LLV17] for the analysis of spectral clustering in the constant degree regime for SBM graph.

5.3 Numerical experiments

This section presents numerical experiments both on simulated data sets generated from DC-
SBMs and on real networks. In particular, we discuss the impact of the oracle mistakes (de�ned
by the ratio η0

η0+η1
) on the performance of the algorithms. The code for the simulations is

available on github at https://github.com/mdreveton/ssl-sbm.

Choice of λ and τ Let us denote by σ1 and σ2 the largest and second largest eigenvalues
of A. We choose τ = 4

n
(σ1 + σ2) and λ =

log
η1
η0

log
σ1+σ2
σ1−σ2

if η0 6= 0, and λ = log(nη1)

log
σ1+σ2
σ1−σ2

otherwise.

The heuristic for this choice is as follows. For a SBM graph, we have σ1 ≈ n
2

(pin + pout)
and σ2 ≈ n

2
(pin − pout), hence 4

n
(σ1 + σ2) = 2pin > pout, and τ veri�es the condition of

Theorem 10. For λ, we have
log

η1
η0

log
σ1+σ2
σ1−σ2

≈
log

η1
η0

log
pin
pout

, which is indeed close to the expression of λ

derived in Corollary 1 if pin, pout = o(1).

Choice of relaxation We �rst compare the choice of the constraint in the continuous re-
laxation (5.2.1). Speci�cally, we compare the choice

∑
i x

2
i = n (we refer to as standard re-

laxation) versus
∑

i dix
2
i = 2|E| ( we refer to as degree-normalized relaxation). This leads to

two versions of Algorithm 3, whose cost obtained on SBM graph with a noisy oracle is pre-
sented in Figure 5.1. In particular, we observe that the normalized choice leads to a smaller
cost. Therefore, in the following we will only consider the version of Algorithm 3 solving
the relaxed problem (5.2.1) with constraint

∑
i dix

2
i = 2|E| instead of

∑
i x

2
i = n, as it gives

better numerical results.

0.035 0.040 0.045 0.050
pin
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Figure 5.1: Cost in Algorithm 3 with the standard and normalized versions of the constraint,
on 50 realizations of SBM with n = 500, pout = 0.03 and 50 labelled nodes with 10% noise.

Experiments on synthetic graphs We �rst consider clustering on DC-SBM. We set n =
2000, pin = 0.04 and pout = 0.02. We consider three scenarios.
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• In Figure 5.2a we consider a standard SBM (θi = 1 for all i);

• In Figure 5.2b we generate θi according to |N (0, σ2)| + 1 − σ
√

2/π where |N (0, σ2)|
denotes the absolute value of a normal random variable with mean 0 and variance σ2.
We take σ = 0.25. Note that this de�nition enforces Eθi = 1.

• In Figure 5.2c we generate θi from Pareto distribution with density function f(x) =
ama

xa+1 1(x ≥ m) with a = 3 and m = 2/3 (chosen such that Eθi = 1).

We compare the performance of Algorithm 3 to the algorithm of [MC21] (referred to as Cen-
tered Similarities) and the Poisson learning algorithm described in [Cal+20]. Results are shown
in Figure 5.2. We observe that when the oracle noise is low, the performance of Algorithm 3
is comparable to Centered Similarities. But, when the noise starts to be non-negligible, the
performance of Centered Similarities deteriorates, while the accuracy of Algorithm 3 remains
high. We notice that Poisson learning gives poor result on synthetic data sets.
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(a) SBM
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Figure 5.2: Average accuracy obtained by di�erent semi-supervised clustering methods on
DC-SBM graphs, with n = 2000, pin = 0.04 and pout = 0.02 with di�erent distributions for
θ. The number of labelled nodes is equal to 40. Accuracies are computed on the unlabelled
nodes, and are averaged over 100 realisations; the error bars show the standard error.

Experiments on real data As a real-life example, we perform simulations on the standard
MNIST data set [LCB98]. As preprocessing, we select 1000 images corresponding to two
digits and compute the k-nearest-neighbors graph (we take k = 8) with gaussian weights
wij = exp (−‖xi − xj‖2/s2

i ) where xi represents the data for image i and si is the average
distance between xi and its K-nearest neighbors. Accuracy for di�erent digit pairs is given
in Figure 5.3. While the performance of Poisson learning is excellent, it can su�er from the
oracle noise, while the accuracy of Algorithm 3 remains unchanged.

To further highlight the in�uence of the noise, we plot in Figure 5.4 the accuracy obtained
by the three algorithms on the unlabelled nodes, the correctly labelled nodes, and the wrongly
labelled nodes. We observe that the hard constraint X` = s` imposed by Centered Similarities
forces that the correctly labelled nodes to be correctly classi�ed, while the wrongly labelled
nodes are not classi�ed much better than a random guess. In an extremely noisy setting,
this heavily penalizes the unlabelled nodes’ accuracy. On the contrary, Algorithm 3 allows
for a smoother recovery: the unlabelled, correctly labelled, and wrongly labelled nodes have

94



Almost exact recovery in noisy semi supervised learning

0.0 0.1 0.2 0.3 0.4
Oracle-misclassification ratio

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra
cy Algorithm 3.1

Centered similarities
Poisson learning

(a) Digits (2,4).
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(b) Digits (3,6).
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Figure 5.3: Average accuracy obtained on a subset of the MNIST data set by di�erent semi-
supervised algorithms as a function of the oracle-misclassi�cation ratio, when the number
of labelled nodes is equal to 10. Accuracy is averaged over 100 random realizations, and the
error bars show the standard error.

roughly the same classi�cation accuracy. While some correctly labelled nodes are misclassi-
�ed, many wrongly labelled nodes become correctly classi�ed, and the unlabelled nodes are
better recovered. Finally, Poisson learning lies between these two extreme cases: its accuracy
on the unlabelled nodes is excellent, but it fails at correctly classifying the wrongly labelled
nodes.
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Figure 5.4: Average accuracy obtained on the unlabelled, correctly labelled, and wrongly la-
belled nodes by the oracle. Simulations are done on the 1000 digits (2,4). The noisy oracle
correctly classi�es 24 nodes and misclassi�es 16 nodes, and the boxplots show 100 realiza-
tions.

5.4 Additional proofs

5.4.1 Derivation of the MAP

Proof of Theorem 9. Bayes’ formula gives P(z |A, s) ∝ P(A | z, s) P(z | s), where the propor-
tionality symbol hides P(A | s)-term independent of z.
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The likelihood term can be rewritten as follows:

P(A | z, s) = P(A | z) ∝
∏
i<j
zi=zj

(
pin

pout

1− θiθjpout

1− θiθjpin

)aij ( 1− θiθjpin

1− θiθjpout

)
,

where the proportionality hides a constant C =
∏
i<j

(
θiθjpout

1−θiθjpout

)aij
(1− θiθjpout) independent

of z. Hence,

logP (A | z, s) = logC +
1

2

∑
i,j

1(zi 6= zj)
((
f

(1)
ij − f

(0)
ij

)
aij + f

(0)
ij

)
= logC +

1

2

n∑
i,j=1

1− zizj
2

((
f

(1)
ij − f

(0)
ij

)
aij + f

(0)
ij

)
= logC ′ − 1

4
xTMx. (5.4.1)

for some constant C ′ and M = (F1 − F0)� A+ F0.

The oracle information, given by the term P(z | s), is equal to

P(z | s) =
n∏
i=1

P(si | zi)
P(si)

P(zi)

=

(
η1

η1 + η0

)∣∣{i∈` : zi=si}
∣∣ (

η0

η1 + η0

)∣∣{i∈` : zi 6=si}
∣∣ (

1

2

)n
=

(
η0

η1

)∣∣{i∈` : zi 6=si}
∣∣ (

η1

η1 + η0

)∣∣`∣∣ (
1

2

)n
, (5.4.2)

where we used
∣∣{i ∈ ` : zi = si}

∣∣+
∣∣{i ∈ ` : zi 6= si}

∣∣ =
∣∣`∣∣ in the last line. Noticing that

|{i ∈ ` : zi 6= si}| =
1

4

n∑
i=1

((Pz)i − si)
2 =

1

4
(Pz − s)T (Pz − s) ,

yields

logP (z | s) = −1

4
log

(
η1

η0

)
· ‖Pz − s‖2 + C ′, (5.4.3)

where C ′ is a term independent of z.

If η0 6= 0, the combination of Equations (5.4.1) and (5.4.3) with Bayes’ formula gives Ex-
pression (5.1.6). If η0 = 0, then from Equation (5.4.2) the term P(z | s) is non-zero (and con-
stant) if and only if zi = si for every labelled node i ∈ [`], and we obtain Expression (5.1.7).

Proof of Corollary 1. The proof follows from Theorem 9 and the fact that f (0)
ij = log 1−pin

1−pout and
f

(1)
ij = log pin

pout
.
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5.4.2 Lemmas related to mean-�eld solution of the secular equation

Spectral study of a perturbed rank-2 matrix

Lemma 27 (Matrix determinant lemma). Suppose A ∈ Rn is invertible, and let U, V be two n
bym matrices. Then det(A+ UV T ) = detA det(Im + V TA−1U).

Proof. We take the determinant of
(
A −U
V T I

)
=

(
A 0

V T I

)
.

(
I −A−1U

0 I + V TA−1U

)
and by the

Schur complement formula [HJ12, Section 0.8.5], det

(
A −U
V T I

)
= det I det

(
A+ UV T

)
.

Proposition 15. LetM = ZBZT , whereB =

(
a b

b a

)
is a 2×2matrix, andZ =

(
1n/2 0n/2
0n/2 1n/2

)
is an n × 2 matrix. Let m be an even number. We denote by PL the n × n diagonal ma-
trix whose �rst m

2
and last m

2
diagonal elements are ones, all other elements being zeros. Then,

det
(
tIn + λPL −M

)
= tn−m−2(t+ λ)m−2(t− t+1 )(t− t−1 )(t− t+2 )(t− t−2 ) with

t±1 =
1

2

(
n

2
(a+ b)− λ±

√(
λ+

n

2
(a+ b)

)2

− 2(a+ b)λm

)
,

t±2 =
1

2

(
n

2
(a− b)− λ±

√(
λ+

n

2
(a− b)

)2

− 2(a− b)λm

)
.

Proof. For now, assume that t 6= −λ and t 6= 0. Then, tIn + λPL is invertible, and by
Lemma 27,

det
(
tIn + λPL −M

)
= det(tIn + λPL) det

(
I2 + ZT (tIn + λPL)−1(−ZB)

)
= (t+ λ)mtn−m det

(
I2 − ZT (tIn + λPL)−1ZB

)
. (5.4.4)

Moreover, (
tIn + λPL

)−1
=

1

t
(In − PL) +

1

t+ λ
PL =

1

t
In −

λ

t(t+ λ)
PL.

Therefore, we can write

ZT
(
tIn + λPL

)−1
ZB =

1

t
ZTZB − λ

t(t+ λ)
ZTPLZB =

1

t

n

2
B − λ

t(t+ λ)

m

2
B = xB,

where x :=
n

2

1

t(t+ λ)

(
t+ λ

(
1− m

n

))
. Thus, a direct computation of the determinant

gives

det
(
I2 − ZT

(
tIn + λPL

)−1
ZB
)

=
(

1− x(a+ b)
)(

1− x(a− b)
)
.
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Going back to equation (5.4.4), we can write

det
(
tIn + λPL −M

)
= (t+ λ)m−2tn−m−2P1(t)P2(t), (5.4.5)

with P1(t) = t(t+λ)− n
2
(a+b)

(
t+λ(1− m

n
)
)

and P2(t) = t(t+λ)− n
2
(a−b)

(
t+λ(1− m

n
)
)
.

Since t ∈ R 7→ det(tIn + λPL −M) is continuous (even analytic), expression (5.4.5) is also
valid for t = 0 and t = −λ [AFH13]. We end the proof by observing that

P1(t) = (t− t+1 )(t− t−1 ) and P2(t) = (t− t+2 )(t− t−2 ),

where t±1 and t±2 are de�ned in the proposition’s statement.

Corollary 4. Let A be the adjacency matrix of a DC-SBM with pin > pout > 0, and s be the
oracle information. Let λ, τ > 0, and d̄τ = n

2
(pin + pout) − nτ , ᾱ = n

2
(pin − pout). Let Aτ :=

A− τ1n1Tn and PL be the diagonal matrix whose element (PL)ii is 1 if si 6= 0, and 0 otherwise.
Then, the spectrum of EL̃ = −EAτ +λP−γIn is

{
−γ − t±1 ;−γ − t±2 ;−γ;−γ + λ; 0

}
, where

t±1 =
1

2

(
d̄τ − λ±

√(
λ+ d̄τ

)2 − 4d̄τλ (η1 + η0)

)
,

t±2 =
1

2

(
ᾱ− λ±

√(
λ+ ᾱ

)2

− 4ᾱλ (η1 + η0)

)
.

Proof. Let M =

(
pin − τ pout − τ
pout − τ pin − τ

)
and Z =

(
1n/2 0n/2
0n/2 1n/2

)
. Then, we notice that EAτ =

ZMZT and we can apply Proposition 15 to compute the characteristic polynomial of EL̃. For
x ∈ R, det

(
EL̃ − xIn

)
= det

(
(−γ−x)In−EAτ +λP

)
,whose roots are−γ−t±1 ,−γ−t±2 ,

−γ, and −γ + λ.

Estimation of γ̄∗

Lemma 28. Let γ̄∗ be the solution of Equation (5.2.6) for the mean-�eld model. Then,

−ᾱ(1− 2η0) ≤ γ̄∗ ≤ −ᾱ.

Proof. For λ ≥ 0, we denote by (x̄λ, γ̄∗(λ)) the solution of the system (5.2.4) on a mean-
�eld DC-SBM. The proof is in two steps. First, let us show that γ̄∗(0) = −ᾱ and γ̄∗(∞) =

−ᾱ(1 − 2η0). For λ = 0, the constrained linear system (5.2.4) reduces to an eigenvector
problem, and hence γ̄∗(0) equals −α, the smallest eigenvalue of −EAτ . Moreover, when
λ =∞, the hard constraint x` = s̄` is enforced, and the system (5.2.4) becomes{

(−EAτ − γ̄∗(∞)In)uux̄u = (EAτ )u`s̄`
x̄Tu x̄u = n(1− η0 − η1)
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and we verify by hand that γ̄∗(∞) = −ᾱ(1 − 2η0) together with x̄u = Zu is indeed the
solution.

Second, if we letCλ(x) = −xTEAτx+λ(s̄−Px)T (s̄−Px) be the cost function minimised
in (5.2.1), then from equation (5.2.4) we have γ̄∗(λ1)− γ̄∗(λ2) = Cλ1(x̄1)−Cλ2(x̄2)+λ1x̄

T
1 s̄−

λ2x̄
T
2 s̄. Since λ 7→ Cλ(x) is increasing, then λ1 ≤ λ2 implies Cλ1(x̄1) ≤ Cλ2(x̄2). Since

x̄Tλ s̄ ≥ 0 (if it was not the case, thenCλ(−x̄λ) ≤ Cλ(x̄λ), and hence x̄λ 6= arg minx∈Rn Cλ(x)),
we can conclude that γ̄∗(0) ≤ γ̄∗(λ) and that γ̄∗(λ) ≤ γ̄∗(∞).

Concentration of γ∗

Proposition 16. Let γ∗ and γ̄∗ be the solutions of Equation (5.2.4) for a DC-SBM and the mean-
�eld DC-SBM, respectively. Then

|γ∗ − γ̄∗| ≤

(
1 +

27 (ᾱ + λ)3

√
2
√
η1 + η0(η1 − η0)ᾱ2λ

)√
d̄.

Proof. The gradient with respect to (δ̄1, ..., δ̄n, b̄1, ..., b̄n, γ) of the left-hand-side of Equation (5.2.6)
is equal to

2
n∑
i=1

b̄i
δ̄i − γ̄

[
∆bi

δ̄i − γ̄∗
− b̄i∆δi

(δ̄i − γ̄∗)2
+

b̄i∆γ

(δ̄i − γ̄∗)2

]
.

Thus, we have

∆γ
n∑
i=1

b̄2
i

(δ̄i − γ̄∗)3
=

n∑
i=1

b̄2
i

(δ̄i − γ̄∗)3
∆δi −

n∑
i=1

b̄i
(δ̄i − γ̄∗)2

∆bi + o (∆δi,∆bi) .

Firstly, we see that for all i ∈ [n], ∆δi =
∣∣δi − δ̄i∣∣ ≤ ‖A− EA‖ ≤ d̄ by the concentration

of the adjacency matrix of a DC-SBM graph. Therefore, using this fact and γ̄∗ ≤ δ̄1 ≤ δ̄2 ≤
· · · ≤ δ̄n,

∆γ = |γ∗ − γ̄∗| ≤ max
i

∣∣δi − δ̄i∣∣+
maxi

1
(δ̄i−γ̄∗)2

mini
1

(δ̄i−γ̄∗)3

∑
i |b̄i| · |bi − b̄i|∑

i b̄
2
i

≤
√
d̄+

maxi
(
δ̄i − γ̄∗

)3

mini
(
δ̄i − γ̄∗

)2

∑
i |b̄i| · |bi − b̄i|∑

i b̄
2
i

.

We notice that mini |δ̄i− γ̄∗| = δ̄1− γ̄∗. By using Lemma 28 and the expression of δ̄1 given in
Corollary 4, we have

min
i
|δ̄i − γ̄∗| ≥ ᾱ + λ.

Similarly, maxi |δ̄i − γ̄∗| = δ̄n − γ̄∗ = δ̄n − δ̄1 + δ̄1 − γ̄∗. Corollary 4 implies δ̄n = λ and

δ̄1 = 1
2

(
λ− ᾱ−

√
(λ+ ᾱ)2 − 4ᾱλ(η0 + η1)

)
, thus δ̄n−δ̄1 ≤ ᾱ+λ. Hence, using Lemma 28,

max
i
|δ̄i − γ̄∗| ≤

3

2
(ᾱ + λ) .
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Therefore, we have

|γ∗ − γ̄∗| ≤
√
d̄+

27

8
(ᾱ + λ) ·

∑
i |b̄i| · |bi − b̄i|∑

i b̄
2
i

. (5.4.6)

The term
∑
i |b̄i|·|bi−b̄i|∑

i b̄
2
i

can be bounded as follow. Let I = {i ∈ [n] : b̄i 6= 0}. Then∑
i

|b̄i| · |bi − b̄i| ≤ max
i∈I
|bi − b̄i| ·

∑
i∈I

∣∣b̄i∣∣ .
Combining the Cauchy–Schwarz inequality∣∣bi − b̄i∣∣ = λ

∣∣(Q·i − Q̄·i)T s̄∣∣ ≤ λ
∥∥Q·i − Q̄·i∥∥2

· ‖s̄‖,

with the Davis-Kahan theorem [YWS15]

∥∥Q·i − Q̄·i∥∥2
≤ 23/2 ‖A− EA‖

min
{
δ̄i − δ̄i−1, δ̄i+1 − δ̄i

} ,
‖s̄‖ =

√
(η0 + η1)n, and the concentration of A towards EA, yields

max
i∈I
|bi − b̄i| ≤

λ
√

(η0 + η1)n

mini∈I
{
δ̄i − δ̄i−1, δ̄i+1 − δ̄i

} · 23/2
√
d̄.

Using Lemma 29, we see that I = {i ∈ [n] : δi 6∈ {0, t−1 }}. Combining it with Corollary 4,
gives

min
i∈I

{
δ̄i − δ̄i−1, δ̄i+1 − δ̄i

}
= λ+ t+2

=
α + λ

2

(
1−

√
1− 4

αλ

(α + λ)2
(η0 + η1)

)
≥ αλ

α + λ
(η0 + η1),

where we used
√

1− x ≤ 1− x/2. Therefore,

∑
i

∣∣b̄i∣∣ · ∣∣bi − b̄i∣∣ ≤ 23/2

√
nd̄

η0 + η1

· α + λ

α
·
∑
i

∣∣b̄i∣∣ .
By noticing that

∑
i b̄

2
i ≥

(∑
i

∣∣b̄i∣∣)2 ≥
∣∣b̄1

∣∣ ·∑i

∣∣b̄i∣∣ ≥ √n η1−η0
2

ᾱλ
λ+ᾱ

∑
i

∣∣b̄i∣∣ where we
used b̄1 ≥

√
nη1−η0

2
ᾱλ
λ+ᾱ

(Lemma 29), we have∑
i

∣∣b̄i∣∣ · ∣∣bi − b̄i∣∣∑
i b̄

2
i

≤ 25/2

(η1 − η0)
√
η1 + η0)

(α + λ)2

α2λ

√
d̄.

Going back to inequality (5.4.6), implies that |γ∗ − γ̄∗| ≤
(

1 + 27(ᾱ+λ)3√
2
√
η1+η0(η1−η0)ᾱ2λ

)√
d̄.
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Lemma 29. Let −EAτ + λP = Q̄∆̄Q̄T , where ∆̄ = diag

(
δ̄1, . . . , δ̄n

)
and Q̄T Q̄ = In. Denote

b̄ = λQ̄T s. We have b̄1 ≥
√
nλ(η1−η0)

2
ᾱ

λ+ᾱ
. Moreover, b̄i = 0 if δ̄i = 0 or if δ̄i = −t−1 .

Proof. First, from Corollary 4, δ̄1 = −t+2 = −1
2

(
ᾱ − λ +

√(
λ+ ᾱ

)2

− 4ᾱλ (η1 + η0)

)
. By

symmetry, the i-th component of the �rst eigenvector Q̄·1 (associated with δ̄1) is equal to{
v1 Zi if i ∈ [`],

v0 Zi if i 6∈ [`],

where v1 and v0 are to be determined. Thus, the equation (−EAτ + λP) Q̄·1 = δ̄1Q̄·1 leads to{
ᾱ ((η1 + η0)v1 + (1− η1 − η0)v0) = −t+2 v0

ᾱ ((η1 + η0)v1 + (1− η1 − η0)v0) + λv1 = −t+2 v1,

which, given the norm constraint ‖v‖2 = 1, yields
v1 =

1√
n

t+2√
(η1+η0)(t+2 )

2
+(1−η1−η0)(t+2 +λ)

2 ,

v0 =
1√
n

+t+2 +λ√
(η1+η0)(t+2 )

2
+(1−η1−η0)(t+2 +λ)

2 .

Since b̄1 = λvT s̄ = λ(η1 − η0)nv1, we have

b̄1√
n

= λ(η1 − η0)
t+2√

(η1 + η0)
(
t+2
)2

+ (1− η1 − η0)
(
t+2 + λ

)2
.

The proof ends by noticing that t+2 ≥ ᾱ
2

and t+2 ≤ ᾱ. Indeed,

b̄1√
n
≥ λ(η1 − η0)

ᾱ

2
√

(η1 + η0)ᾱ2 + (1− η1 − η0)(ᾱ + λ)2

≥ λ(η1 − η0)

2

ᾱ

(ᾱ + λ)
√

(η1 + η0)
(

ᾱ
ᾱ+λ

)2
+ 1− η1 − η0

≥ λ(η1 − η0)

2

ᾱ

λ+ ᾱ
.

This proves the �rst claim of the lemma.

Similarly, by symmetry the i-th component of the eigenvector v′ associated with −t−1
equals v′` if i ∈ `, and v′u otherwise, and therefore (v′)T s = 0.

Finally, let I0 := {i ∈ [n] : δ̄i = 0}. By Corollary 4, we have |I0| = n(1−η1−η0)−2. Since
0 is also eigenvalue of order n(1−η0−η1)−2 of the extracted sub-matrix (−EAτ + λP)u,u =

(−EAτ )u,u, we have for all k ∈ I0, Q̄ik = 0 for every i ∈ [n]. Therefore, for k ∈ I0, bk =

λQ̄T
·ks = 0.
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5.4.3 Mean-�eld solution

In this section, we calculate the solution x̄ to the mean-�eld model and deduce from it the
conditions to recover the clusters.

Proposition 17. Suppose that τ > pout. Then the solution of Equation (5.2.5) on the mean-�eld
DC-SBM is the vector x̄ whose element x̄i is given by

x̄i =


C (−1 + (η1 − η0)ᾱB)Zi, if i ∈ ` and si 6= Zi,

C (1 + (η1 − η0)ᾱB)Zi, if i ∈ ` and si = Zi,
−ᾱC

ᾱ(1−η1−η0)+γ̄∗
(η1 − η0) (1 + (η1 + η0)ᾱB)Zi, if i 6∈ `,

where ᾱ = n
2
(pin − pout), B = ᾱγ̄∗

λᾱ(1−η1−η0)+γ̄∗(λ−ᾱ−γ̄∗) and C = λ
λ−γ̄∗ .

Proof. Let x̄ be a solution of Equation (5.2.5). By symmetry, we have

x̄i =


xt Zi, if i ∈ [`] and s̄i = Zi,

xf Zi, if i ∈ [`] and s̄i = −Zi,
x0 Zi, if i 6∈ [`],

where xt, xf and x0 are unknowns to be determined. Since for every i ∈ [n]

(EAτ x̄)i = ᾱ (x0(1− η1 − η0) + xtη1 + xfη0) ,

the linear system composed of the equations
(

(−EAτ + λP − γ̄∗In) x̄
)
i

= λsi for all i ∈ [n]

leads to the system
−ᾱ ((1− η1 − η0)x0 + xtη1 + xfη0)− γ̄∗x0 = 0,

−ᾱ ((1− η1 − η0)x0 + xtη1 + xfη0)− γ̄∗xt + λxt = λ,

−ᾱ ((1− η1 − η0)x0 + xtη1 + xfη0)− γ̄∗xf + λxf = −λ.

The rows of the latter system correspond to a node unlabelled by the oracle, correctly labelled
and falsely labelled, respectively. This system can be rewritten as follows:

x0 = −ᾱ
ᾱ(1−η1−η0)+γ̄∗

(η1xt + η0xf ) ,

γ̄∗x0 + xt(λ− γ̄∗) = λ,

γ̄∗x0 + xf (λ− γ̄∗) = −λ.

In particular, we have xt−xf = 2λ
λ−γ̄∗ . By subsequently eliminating x0 and xt in the equation

γ̄∗x0 + xf (λ− γ̄∗) = −λ, we �nd

xf =
λ

λ− γ̄∗

(
−1 +

ᾱγ̄∗ (η1 − η0)

λᾱ(1− η1 − η0) + λγ̄∗ − γ̄∗(ᾱ + γ̄∗)

)
,

xt =
λ

λ− γ̄∗

(
1 +

ᾱγ̄∗ (η1 − η0)

λᾱ(1− η1 − η0) + λγ̄∗ − γ̄∗(ᾱ + γ̄∗)

)
,
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and �nally

x0 =
−ᾱ

ᾱ(1− η1 − η0) + γ̄∗
· λ

λ− γ̄∗

(
1 +

ᾱγ̄∗ (η1 + η0)

λᾱ(1− η1 − η0) + λγ̄∗ − γ̄∗(ᾱ + γ̄∗)

)
.

Corollary 5. Suppose that τ > pout. Then sign (x̄i) = sign (Zi) if

• node i is not labelled by the oracle;

• node i is correctly labelled by the oracle;

• node i is mislabelled by the oracle and λ < (1− 2η0)ᾱη1−η0
η1+η0

.

Proof. A node i is correctly classi�ed by decision rule (5.2.3) if the sign of x̄i is equal to the
sign of Zi. Using Lemma 28 in Section 5.4.2, we have −ᾱ ≤ γ̄∗ ≤ −ᾱ(1 − 2η0). Therefore,
the quantities B and C in Proposition 17 verify C ≥ 0 and 1−2η0

λ(η0+η1)
≤ B ≤ 1

λ(η0+η1)
. The

statement then follows from the expression of x̄i computed in Proposition 17.
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Clustering temporal networks
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This chapter presents some algorithms for clustering temporal networks. Section 6.1 in-
troduces various baseline algorithms for special cases, while Section 6.2 is devoted to online
algorithms based on likelihood. Section 6.3 studies spectral methods applied to temporal net-
works with �xed communities, and Section 6.4 generalizes to the case of time-varying com-
munities.
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6.1 Baseline algorithms for special cases

This section provides some baseline algorithms to recover the blocks in some particular cases,
without prior knowledge of the block interaction parameters. Section 6.1.1 concerns regimes
with N = O(1) and T � 1. An algorithm based on parameter estimations is proposed, and
showed to converge to the true community structure. Section 6.1.2 describes tailored-made
algorithms for a speci�c model instance with static intra-block interactions and uncorrelated
inter-block noise.

6.1.1 Clustering using empirical transition rates

We consider a homogeneous Markov SBM, as de�ned in Section 3.4. The intra- and inter-block
interactions are Markovian, and we denote by P and Q the respective transition probability
matrices. We study the situation where the number of snapshots T goes to in�nity while the
number of nodes N remains bounded. The main idea is to use the ergodicity of the Markov
chains to estimate the parameters using standard techniques, and then perform inference. For
now, we will assume that the interaction parameters P and Q are known, but K is unknown.
We refer to Remark 14 when P and Q are unknown as well.

Let nab(i, j) be the observed number of transitions a → b in the interaction pattern be-
tween nodes i and j, and let na(i, j) =

∑
b nab(i, j). Let P (i, j) be the 2-by-2 matrix transition

probabilities for the evolution of the pattern interaction between a node pair {i, j}. By the
law of large numbers (for stationary and ergodic random processes), the empirical transition
probabilities

P̂ab(i, j) =
nab(i, j)

na(i, j)
(6.1.1)

are with high probability close to Pab(i, j) for T � 1.

Once all Pab(i, j) are known with a good precision, we can use our knowledge of P,Q to
distinguish whether nodes i and j are in the same block or not, and use this data to construct
a similarity graph on the set of nodes. This leads to Algorithm 4 which does not require a
priori knowledge about the number of blocks, but instead estimates it as a byproduct. Note
that this algorithm is tailor-made for homogeneous interaction tensors.

Proposition 18. Consider a homogeneous Markov SBM with N nodes, K communities and T
snapshots. Assume that N is �xed, and the interaction pattern probabilities f, g are known and
ergodic. Then with high probability Algorithm 4 correctly classi�es every node when T goes to
in�nity, as long as the evolution is not static and P 6= Q.

Proof. For a, b ∈ {0, 1}, let na(i, j) =
∑

b nab(i, j) where nab(i, j) counts the observed num-
ber of transitions a → b between a node pair ij. From [Bil61, Theorem 3.1 and Formula
3.13], the distribution of the random variable ξab(i, j) := nab(i,j)−na(i,j)Pab(i,j)√

na(i,j)
tends to a nor-

mal distribution with the zero mean and �nite variance given by λ(ab),(cd) := δac
(
δbdPab(i, j)−

106



Clustering temporal networks
Algorithm 4: Clustering by empirical transition rates.
Input: Observed interaction array (X t

ij); transition probability matrices P,Q.
Output: Estimated node labelling σ̂ = (σ̂1, . . . , σ̂N); estimated number of

communities K̂ .
1

2 V ← {1, . . . , N} and E ← ∅.
3 for all unordered node pairs ij do
4 Compute P̂ab(i, j) for a, b = 0, 1

5 if |P̂ab(i, j)− Pab| ≤ 1
2
|Pab −Qab| for some a, b then

6 Set E ← E ∪ {ij}.

7 Compute C ← set of connected components in G = (V,E)

8 Let K̂ ← |C| and (C1, . . . , CK̂)← members of C listed in arbitrary order.
9 for i = 1, . . . , N do
10 σ̂i ← unique k for which Ck 3 i.

Pab(i, j)Pa,d(i, j)
)
. Therefore, for any α > 0,

P
(
|P̂ab(i, j)− Pab(i, j)| ≥ α

)
= P

(
|ξab(i, j)| ≥ α

√
na(i, j)

)
(6.1.2)

and this quantity goes to zero as T goes to in�nity.

From model identi�ability, P 6= Q. Therefore, w.l.o.g. we can assume P01 6= Q01, and let α

such that 0 < α <
|P01 −Q01|

2
. The nodes i and j are predicted to be in the same community

if P̂ij(0, 1) >
P01 +Q01

2
, and the probability of making an error is

P
(∣∣∣P̂01(i, j)− P01(i, j)

∣∣∣ ≥ α
)
.

By the union bound, the probability that all nodes are correctly classi�ed is bounded by

N(N − 1)

2
max
ij

P
(∣∣∣P̂01(i, j)− P01(i, j)

∣∣∣ ≥ α
)
,

where the maximum is taken over all nodes pair ij. By equation (6.1.2), for all node pairs ij
we have P

(
|P̂01(i, j)− P01(i, j)| ≥ α

)
→ 0. Therefore, all nodes are a.s. correctly classi�ed

as T →∞.

Remark 14. If P and Q are unknown, we can add a step where the estimated transition
matrices (P̂ij) are clustered into two classes (for example using k-means).

107



Chapter 6
6.1.2 Algorithms for static and deterministic inter-block patterns

This section investigates special data tensors where the intra-block interactions are static and
deterministic, and the inter-block interactions are considered as (non-static) random noise.
For example, a Markov SBM with static intra-block interactions corresponds to P = I2. For
such data, we will �rst make two simple observations that greatly help recovering the under-
lying block structure. Those observations lead to two di�erent algorithms, and we will study
their performance in Section 9.

Description of the algorithms based on two simple observations

When the intra-block interactions are static, the two following observations hold.

Observation 1. If nodes i and j interact at time t but not at time t+ 1 (or vice versa), then i
and j do not belong to the same block.

Observation 2. If nodes i and j interact at every time step, then i and j probably belong to
the same block.

Observation 2 suggests a very simple and extremely fast clustering method (Algorithm 5)
which tracks persistent interactions and disregards other information. Persistent interac-
tions can be represented as an intersection graph G = ∩tGt, where Gt is the graph with
adjacency matrix At. By noting that G can be computed by performing O(log T ) graph
intersections of complexity O(∆maxN), and that a breadth-�rst search �nds the connected
components in O(N) time, we see that Algorithm 5 runs in O(∆maxN log T ) time, where
∆max = max

t
max
i

∑
j |Atij| is the maximum degree of the graphs Gt.

Algorithm 5: Best friends forever
Input: Observed interaction tensor (Atij)

Output: Estimated node labelling σ̂ = (σ̂1, . . . , σ̂N); estimated number of
communities K̂ .

1

2 Set V ← {1, . . . , N}.
3 Compute ET ← ∩Tt=1E

t where Et = {ij : Atij = 1}
4 Compute C ← set of connected components in GT = (V,ET ) and set K̂ ← number

of members in C of size larger than N1/2, and (C1, . . . , CK̂)← list of K̂ largest
members in C in arbitrary order.

5 Set V1 ← ∪K̂k=1Ck.
6 For i ∈ V1, set σ̂i ← unique k for which Ck 3 i.
7 For i ∈ V \ V1, set σ̂i ← arbitrarily value k ∈ {1, . . . , K̂}.

Similarly, we propose a clustering method based on Observation 1. We call enemies two
nodes i and j such that there is a change in the interaction pattern between i and j. Then we
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can group nodes that share a common enemy. Indeed, if K = 2, the fact that node i is enemy
with h, and h is also enemy with j means that nodes i and j belong to the same cluster. This
enemies of my enemies are my friends procedure leads to Algorithm 6.

Algorithm 6: Enemies of my enemy.
Input: Observed interaction tensor (Atij).
Output: Estimated node labelling σ̂ = (σ̂1, . . . , σ̂N).

1

2 Compute E∩ ← ∩tEt and E∪ ← ∪tEt where Et = {ij : Atij = 1}.
3 Compute E ′ = E∪ \ E∩.
4 Set V ← {1, . . . , N}.
5 Set G′ ← (V,E ′).
6 Set G′′ = (V,E ′′) where ij ∈ E ′′ i� there is a 2-path i→ h→ j in G′.
7 Compute C ← set of connected components in G′′ and set K̂ ← |C| and

(C1, . . . , CK̂)← members of C listed in arbitrary order.
8 for i = 1, . . . , N do
9 σ̂i ← unique k for which Ck 3 i.

Remark 15. The above description for Algorithm 6 runs in O (∆maxNT ), where ∆max is
the maximal degree over all single layers. A faster, but less transparent, implementation is
possible, by �rst computing the union graph. Then, two nodes are marked as enemies if the
weight between them in the union graph belongs to the interval [1, T − 1]. This reduces the
time complexity to O (∆max N log T ).

Performance guarantees for Algorithms 5 and 6

Proposition 19 states the performance guarantees for Algorithm 5.

Proposition 19. Consider a SBM with T snapshots and K = O(1) blocks of size N1, . . . , NK .
Assume that Nk � N for all k, and that

∀k 6= ` : N2 max
1≤k<`≤K

fk`(1, . . . , 1)� 1. (6.1.3)

Then Algorithm 5 is consistent if

∀k ∈ [K] : Nkfkk(1, . . . , 1)� 1, (6.1.4)

and is strongly consistent if

∀k ∈ [K] : Nkfkk(1, . . . , 1) ≥ (1 + Ω(1)) log (KNk) . (6.1.5)

Remark 16. Condition (6.1.3) ensures that the number of nodes in di�erent community inter-
acting at every time step remains small, making Observation 2 meaningful. The extra condi-
tions (6.1.5) and (6.1.4) ensures that in each community, there is enough node pairs interacting
at all time step.
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Proof of Proposition 19. Assume that the true block membership structure σ containsK blocks
C1, . . . , CK of sizes Nk = |Ck|. Let Gt be the graph on node set V = [N ] and edge set Et =

{ij : Atij = 1}. Let GT = ∩tGt be the intersection graph. We denote by pTk` = fk`(1, . . . , 1︸ ︷︷ ︸
T

)

the probability of a persistent interaction of duration T between a pair of nodes in blocks k
and `.

(a) Conditions for strong consistency. Algorithm 5 returns exactly the correct block mem-
bership structure if and only if each Ck forms a connected set of nodes in GT , and for all
blocks k 6= `, there are no links between Ck and C` in GT .

The probability that the intersection graph GT contains a link between some distinct
blocks is bounded by ∑

1≤k<`≤K

NkN` p
T
k`.

Hence, by the union bound, the probability that Algorithm 5 does not give exact recovery is
bounded by ∑

k∈[K]

(1− cTk ) +
∑

1≤k<`≤K

NkN` p
T
k`,

where cTk is the probability that the subgraph of GT induced by Ck is connected. By classical
results about Erdős–Rényi graph models [Les] we know that

cTk ≥ 1− 100e−(Nkp
T
kk−logNk),

whenever Nkp
T
kk ≥ max{9e, logNk}. Hence

∑
k∈[K]

(1− cTk ) ≤ 100
∑
k∈[K]

e−(Nkp
T
kk−logNk) ≤ 100 e

− min
k∈[K]

log(KNk)

(
Nkp

T
kk

log(KNk)
−1

)
,

and this last term goes to zero under Condition (6.1.5). Moreover,∑
1≤k<`≤K

NkN`p
T
k` ≤

(
N

2

)
max
k 6=`

pTk`

which also goes to zero under Condition (6.1.3).

(b) Condition for consistency. We just saw that the probability that the intersection graph
GT contains a link between some distinct blocks is bounded by

(
N
2

)
max1≤k<`≤K p

T
k`, and

hence goes to zero if Condition (6.1.3) holds.

Let GT [Ck] be the subgraph of GT induced by Ck. Let AkT be the event that the largest
connected component of GT [Ck] has size at least N1/2, and all other components are smaller
than N1/2. Observe that GT [Ck] is an instance of a Bernoulli random graph with Nk nodes
where all node pairs are independently linked with probability pTkk. When Nkp

T
kk � 1, classi-

cal Erdős–Rényi random graph theory tells that P(AkT ) = 1−o(1) for any �xed k asN � 1.
For bounded K = O(1) this implies that P(∩kAkT ) = 1− o(1).

110



Clustering temporal networks
On the event A = (∩kAkT ) ∩ B, the algorithm estimates K̂ = K correctly, and (with the

correct permutation), the number of misclustered nodes is at most∑
k∈[K]

|Ck \ ĈkT | � 1,

where ĈkT is the largest component of GT [Ck].

The following Proposition 20 gives the guarantees of convergence of Algorithm 6 for a
general temporal SBM with two communities.

Proposition 20. Consider a dynamic SBM with N � 1 nodes and K = 2 blocks of sizes
N1, N2 � N . Assume that log(1/p11T ) + log(1/p22T ) � N−2 and 1 − p12T � N−1 logN ,
where

pk`T = fk`(0, . . . , 0︸ ︷︷ ︸
T

) + fk`(1, . . . , 1︸ ︷︷ ︸
T

)

is the probability of observing a static interaction pattern of length T between any particular pair
of nodes in blocks k and `. Then Algorithm 6 is strongly consistent.

Proof. Denote the time-aggregated interaction tensor by A+
ij =

∑
tA

t
ij . Let G′ be the “enemy

graph” with node set {1, . . . , N} and adjacency matrix A′ij = 1(0 < A+
ij < T ). Let C1, C2 be

blocks corresponding to the true labelling σ. The probability that all intra-block interactions
are static is

p
(N1

2 )
11T p

(N2
2 )

22T ≥ (p11Tp22T )N
2 → 1.

Hence, it follows that G′ is whp bipartite with respect to partition {C1, C2}.

Let us next analyze the probability that G′ is connected. Let G′′ be the graph on node set
{1, . . . , N} obtained by deleting all edges connecting pair of nodes within C1 or within C2.
Then G′′ is random bipartite graph with bipartition {C1, C2} where each node pair ij with
i ∈ C1 and j ∈ C2 is linked with probability q = 1 − p12T , independently of other node
pairs. Because blocks sizes are balanced according N1, N2 � N and Nq � logN , it follows
by applying [Sin95, Theorem 3.3] that G′′ is connected with high probability. Because G′′ is a
subgraph of G′, the same is true for G′.

We have now seen thatG′ is whp connected and bipartite with respect to partition {C1, C2}.
Let G̃ be the graph on [N ], of which nodes i and j are linked if and only if there exists a 2-
path in G′ between i and j. Then the connected components of G̃ are C1 and C2. Hence
Algorithm 6 estimates the correct block memberships on the high-probability event that G′
is connected.
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6.2 Online likelihood based algorithms

Algorithms 5 and 6 are based on two Observations that rely a lot on the initial assumption
of static inter-community edge, and i.i.d. evolution for the intra-community edges. If those
assumptions are relaxed, both algorithms fail (see Section 6.2.3 for empirical evidence). Hence,
we need to make softer decisions for clustering, e.g. based on the likelihood that node i is in
cluster k.

To do so, we �rst derive the log-likelihood of a node i being in a cluster k given a clustering
assignment of the other nodes. For homogeneous Markov SBM, we derive an online algorithm
based on this likelihood.

6.2.1 Online algorithm when the model parameters are known

Let f and g be the intra- and inter-block interaction distributions of a temporal SBM. Given
A1:t = (A1, . . . , At), we de�ne a log-likelihood ratio matrix by

M
(t)
ij = log

f(A1:t
ij )

g(A1:t
ij )

. (6.2.1)

Then the log of the probability of observing a graph sequence A1:t given node labelling σ
equals 1

2

∑
i

∑
j 6=iM

(t)
ij δσj ,σi+

1
2

∑
i

∑
j 6=i g(A1:t

ij ). Therefore, given an assignment σ̂(t−1) com-
puted from the observation of the t−1 �rst snapshots, one can compute a new assignment σ̂(t)

such that node i is assigned to any block k which maximises

L
(t)
i,k =

∑
j 6=i

M
(t)
ij δσ̂(t−1)

j k
.

This formula is interesting only if the computation ofM (t) can be easily done fromM (t−1).
This is in particular the case for a Markov evolution. Indeed, if µ and ν are the initial proba-
bility distributions, and P,Q the transition matrices, then the cumulative log-likelihood ma-
trices de�ned in Equation (6.2.1) can be computed recursively by M (t) = M (t−1) + ∆(t) with
M

(1)
ij = log µ

ν

(
A1
ij

)
and ∆

(t)
ij = log P

Q

(
At−1
ij , Atij

)
. We summarize this in Algorithm 7. Let us

emphasize that this algorithm works in an online adaptive fashion.

The time complexity (worst case complexity) of Algorithm 7 is O(KN2T ) plus the time
complexity of the initial clustering. The space complexity is O(N2). In addition:

• Since at each time step, ∆ can take only one of four values, these four di�erent values
of ∆ can be precomputed and stored to avoid computing N2T logarithms.

• The N -by-K matrix (Lik) can be computed as a matrix product L = M0Σ, where
M0 is the matrix obtained by zeroing out the diagonal of M , and Σ is the one-hot
representation of σ̂ such that Σik = 1 if σ̂i = k and zero otherwise.
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Algorithm 7: Online clustering for homogeneous Markov dynamics when the block
interaction parameters are known.
Input: Observed interaction tensor (Atij); block interaction parameters µ, ν, P,Q;

number of communities K ; static graph clustering algorithm algo.
Output: Node labelling σ̂ = (σ̂1, . . . , σ̂N) ∈ [N ]K .

1

Initialize: Compute σ̂ ← algo(A1), and Mij ← log
µ(A1

ij)
ν(A1

ij)
for i, j = 1, . . . , N .

2 for t = 2, . . . , T do

3 Compute ∆ij ← log
P(At−1

ij ,Atij)
Q(At−1

ij ,Atij)
for i, j = 1, . . . , N .

4 Update M ←M + ∆.
5 for i = 1, . . . , N do
6 Set Lik ←

∑
j 6=iMij δσ̂jk for k = 1, . . . , K .

7 Set σ̂i ← arg max1≤k≤K Lik.

Return: σ̂

• For sparse networks the time and space complexity (average complexity) can be re-
duced by a factor of d/N where d is the average node degree, by neglecting the 0→ 0
transitions and only storing nonzero entries (similarly to what is often done for belief
propagation in the static SBM [Moo17]).

6.2.2 Extension when the parameters are unknown

Algorithm 7 requires the a priori knowledge of the interaction parameters. This is often not
the case in practice, and one has to learn the parameters during the process of recovering
communities. In this section, we adapt Algorithm 7 to estimate the parameters on the �y.

An estimator of P is obtained by averaging the probabilities P̂ij obtained using For-
mula 6.1.1 over the pairs of nodes predicted to belong to the same community. More precisely,
after t snapshots observed (t ≥ 2), given a predicted community assignment σ̂(t), we de�ne
for a, b ∈ {0, 1},

P̂
(t)
ab =

1∣∣∣{(i, j) : σ̂
(t)
i = σ̂

(t)
j

}∣∣∣
∑

(i,j) : σ̂
(t)
i =σ̂

(t)
j

n
(t)
ab (i, j)

n
(t)
a (i, j)

, (6.2.2)

where n(t)
ab (i, j) =

∑t−1
t′=1 1

(
At
′
ij = a

)
1
(
At
′+1
ij = b

)
is the number of a → b transitions in the

interaction pattern between nodes i and j seen during the t �rst snapshots and n(t)
a (i, j) =∑1

b=0 n
(t)
ab (i, j). Similarly,

Q̂
(t)
ab =

1∣∣∣{(i, j) : σ̂
(t)
i 6= σ̂

(t)
j

}∣∣∣
∑

(i,j) : σ̂
(t)
i 6=σ̂

(t)
j

n
(t)
ab (i, j)

n
(t)
a (i, j)

, (6.2.3)
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is an estimator of Qab. Moreover, the quantities n(t)

ab (i, j) can be updated inductively. Indeed,

n
(t+1)
ab (i, j) = n

(t)
ab (i, j) + 1

(
Atij = a

)
1
(
At+1
ij = b

)
. (6.2.4)

Finally, the initial distribution can also be estimated by averaging:

µ̂(t) =
1∣∣∣{(i, j) : σ̂

(t)
i = σ̂

(t)
j

}∣∣∣
∑

(i,j) : σ̂
(t)
i =σ̂

(t)
j

Atij (6.2.5)

and

ν̂(t) =
1∣∣∣{(i, j) : σ̂

(t)
i 6= σ̂

(t)
j

}∣∣∣
∑

(i,j) : σ̂
(t)
i 6=σ̂

(t)
j

Atij. (6.2.6)

This leads to Algorithm 8, for clustering in a Markov SBM when only the number of
communities K is known. Note that to save computation time, we can choose not to update
the parameters at each time step.

Algorithm 8: Online clustering for homogeneous Markov dynamics when the block
interaction parameters are unknown.
Input: Observed graph sequence A1:T =

(
A1, . . . , AT

)
; number of communities K ;

static graph clustering algorithm algo.
Output: Node labelling σ̂ = (σ̂1, . . . , σ̂n).

1

Initialize:

• Compute σ̂ ← algo (A1);

• Compute µ̂, ν̂ using formulas (6.2.5)-(6.2.6), and let Mij ← log
µ̂(A1

ij)
ν̂(A1

ij)
;

• Let nij(a, b)← 0 for i, j ∈ [N ] and a, b ∈ {0, 1}.

Update:
2 for t = 2, . . . , T do

3 Compute ∆ij ← log
P̂(At−1

ij ,Atij)
Q̂(At−1

ij ,Atij)
for i, j = 1, . . . , N ;

4 Set M ←M + ∆.
5 for i = 1, . . . , n do
6 Set Li,k ←

∑
j 6=iMij1 (σ̂j = k) for all k = 1, . . . , K

7 Set σ̂i ← arg max1≤k≤K Li,k

8 For every node pair (ij), update nij(a, b) using (6.2.4);
9 Update P̂ , Q̂ using (6.2.2) and (6.2.3).
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6.2.3 Numerical illustrations and experiments

In the numerical simulations, we suppose that
(

1− µ1

µ1

)
and

(
1− ν1

ν1

)
are the stationary

distributions of P and Q, respectively. Therefore,

P =

(
1− µ1

1−P11

1−µ1 µ1
1−P11

1−µ1
1− P11 P11

)
,

and Q has a similar expression.

Evolution of accuracy with the number of snapshots

Let us now study the e�ect of the initialization step. We plot in Figure 6.1 the evolution of
the averaged accuracy obtained when we run Algorithm 7 on 50 realizations of a Markov
SBM, where the initialization is done either using Spectral Clustering or Random Guessing.
Obviously, when Spectral Clustering works well (see Figure 6.1c), it is preferable to use it than
a random guess. Nonetheless, it is striking to see that when the initial Spectral Clustering gives
a bad accuracy, then the likelihood method can overcome it. For example, in Figure 6.1a, the
initial clustering with Spectral Clustering on the �rst snapshot is really bad (accuracy≈ 50%,
hence not much better than a random guessing), Algorithm 7 does overcome this and reaches
a perfect clustering after a few snapshots. In that particular setting, there is no advantage in
using Spectral Clustering rather than Random Guessing.
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Figure 6.1: Evolution of the accuracy given by Algorithm 7 when the initialisation is done
via Spectral Clustering or Random Guessing. The synthetic graphs are Markov SBM with
N = 500 nodes (equally divided in two clusters), and parameters ν1 = 1.5 logN

N
, P11 = 0.7

and Q11 = 0.3. Accuracy is averaged over 50 realisations, and the error bars represent the
standard error. T ∗theo is the theoretical minimum number of time steps needed to get above
the exact recovery threshold.

This is further strengthened by our numerical observations in the constant degree regime.
As we see in Figure 6.2, our Algorithm performs well when µ1 = cin

N
and ν = cout

N
(cin, cout

constants), even if cin ≈ cout (see Figure 6.2b). This is very similar to what we saw in the
logarithmic degree regime (Figure 6.1), except that the number of snapshots needed to get
excellent accuracy is higher since the graphs are sparser.
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Figure 6.2: Evolution of the accuracy with the number of snapshots obtained by Algorithm 7
in a sparse setting, when the initialisation is done via Random Guessing. We draw 50 synthetic
Markov SBM with two equal size communities. The choice of parameters in Figure (b) is much
more challenging than Figure (a). The di�erent curves show the averaged accuracy over 50
trials, and errors bars correspond to the empirical standard errors.

Unknown interaction parameters are unknown

We show in Figure 6.3 the comparison of the online Algorithm 7 (with known interaction
parameters) with the online Algorithm 8 (with unknown interaction parameters). We see
that, when the starting round of Spectral Clustering gives a decent accuracy (at least 75%),
then Algorithm 8 can learn the model parameters as well as communities. However, when
Spectral Clustering gives a bad accuracy, Algorithm 8 without the model parameters fails,
whereas the version with the known interaction parameters succeeds.

0 2 4 6
Number of time steps

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Model parameters:
known
unknown

(a) ν1 = 0.03.

0 2 4 6
Number of time steps

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Ac
cu
ra
cy

Model parameters:
known
unknown

(b) ν1 = 0.035.

0 2 4 6
Number of time steps

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy Model parameters:

known
unknown

(c) ν1 = 0.04.

Figure 6.3: Comparison of the accuracy given by the online versions of the algorithm. The
results are averaged on 20 realizations of Markov SBM with parametersN = 1000, µ1 = 0.05,
P11 = 0.6, Q11 = 0.3, and for di�erent ν1.
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Comparison with the baseline algorithms

In this section, we compare the performance of Algorithm 7 to the baseline methods proposed
in Section 6.1.2. Results are shown in Figure 6.4. We draw the following observations:

• Algorithm 7 (called online likelihood in the plots) always achieves very high accuracy,
and outperforms all other methods;

• Spectral Clustering on the union graph always performs very poorly, while Spectral
Clustering on the time-aggregated graph can perform very well if the evolution of the
pattern interactions are not too static (i.e., P11 and Q11 are both away from 1);

• Spectral Clustering on
∑T

t=1 A
2
t − Dt, where Dt is the degree matrix of layer t, is the

method proposed and analysed in [LL20]. This method, called squared adjacency SC in
the caption of Figure 6.4, is always outperformed by Spectral Clustering on the time-
aggregated graph;

• Algorithms 5 and 6 are more sensitive to the hypothesis P11 = 1 than to Q11 = ν1. In
particular, Algorithm 6 (enemies of my enemy) fails as soon as P11 6= 1 (in Figure 6.4b,
when P11 = 0.99, the accuracy of Algorithm 6 drops to 50%);

• Given its simplicity, Algorithm 5 (best friends forever) performs surprisingly well. Of
course, when the parameter setting is too far from the ideal situation P11 = 1 and
Q11 = ν1, the algorithm fails as expected. However, even at not too short distances
from this ideal case, Algorithm 5 gives meaningful classi�cation.
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Figure 6.4: Comparison of the accuracy given by the di�erent algorithms. The results are
averaged on 50 realisations of Markov SBM with N = 500, T = 30 and µ1 = 0.05 and ν1 =

0.04. Figure (6.4a) shows the situation P11 = 1 (static intra-community interaction patterns)
andQ11 varies, while Figure (6.4b) showsQ11 = ν1 (i.i.d. inter-community interaction pattern)
and P11 varies. Colours correspond to the same algorithms in both plots.
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6.3 Spectral methods for temporal networks with static
communities

This Section studies the recovery of static communities in a temporal network. We introduce
in Section 6.3.1 a temporal stochastic block model where dynamic interaction patterns be-
tween node pairs follow a Markov chain. We render this model versatile by adding degree
correction parameters, describing the tendency of each node to start new interactions. We
show that in some cases the likelihood of this model is approximated by the regularized mod-
ularity of a time-aggregated graph. This time-aggregated graph involves a trade-o� between
new edges and persistent edges. A continuous relaxation reduces the regularized modularity
maximisation to a normalized spectral clustering. In Section 6.3.2, we illustrate by numerical
experiments the importance of edge persistence, both on simulated and real data sets.

6.3.1 Degree-corrected temporal network model

Consider a population of N nodes partitioned into K static communities such that node i
belongs to community σi ∈ [K]. We write Atij = 1 if nodes i and j interact at time t, and
Atij = 0 otherwise. We investigate methods of recovering the community structure σ =

(σ1, . . . , σN) from an observed adjacency tensor A =
(
Atij
)
. The following section describes

a versatile statistical model for this setting.

Model description

A degree-corrected temporal stochastic block model withN nodes,K blocks and T snapshots
is a probability distribution

P(A |σ, F, θ) =
∏

1≤i<j≤N

F θiθj
σiσj

(
A1
ij, . . . , A

T
ij

)
(6.3.1)

of a symmetric adjacency tensor A ∈ {0, 1}N×N×T with zero diagonal entries, where σ =
(σ1, . . . , σN) is a community assignment with σi ∈ {1, . . . , K} indicating the community
of node i, F = (F xy

k` ) is a collection of probability distributions over {0, 1}T , and θ =
(θ1, . . . , θN) is a vector of node-speci�c degree correction parameters, with 0 ≤ θi <∞.

In the following, we will restrict ourselves to homogeneous inter-block interactions with
Markov edge dynamics, for which the nodes’ static community labellings are sampled uni-
formly at random from the set [K] of all node labellings, and

F θiθj
σiσj

(x) =

{
µ
θiθj
x1

∏T
t=2 P

θiθj
xt−1,xt if σi = σj,

ν
θiθj
x1

∏T
t=2 Q

θiθj
xt−1,xt otherwise,

(6.3.2)

with initial distributions

µθiθj =

(
1− θiθjµ1

θiθjµ1

)
and νθiθj =

(
1− θiθjν1

θiθjν1

)
, (6.3.3)
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and transition probability matrices

P θiθj =

(
1− θiθjP01 θiθjP01

1− P11 P11

)
and Qθiθj =

(
1− θiθjQ01 θiθjQ01

1−Q11 Q11

)
. (6.3.4)

The parameters θi account for the fact that some nodes might be more inclined than others
to start new connections, similarly to the degree-corrected block model of [KN11]. To keep
the model simple, we do not add degree correction parameters in front of P11; hence once a
connection started, the probability to keep it active is simplyP11 orQ11. Moreover, we assume
that mini,j{θiθjδ} ≤ 1, where δ = max{µ1, ν1, P01, Q01}. Finally, we normalise the degree
correction parameters so that

∑
i 1(σi = k)θi =

∑
i 1(σi = k) for all k.

Maximum likelihood estimator

Proposition 21. Amaximum likelihood estimator for theMarkov blockmodel de�ned by (6.3.1)–
(6.3.2) is any community assignment σ ∈ [K]N that maximises

∑
i,j

δ(σi, σj)

{
A1
ij

(
ρ
θiθj
1 − ρθiθj0

)
+ ρ

θiθj
0 +

(
A1
ij − ATij

)
`
θiθj
10

}

+
∑
i,j

δ(σi, σj)
T∑
t=2

{(
`
θiθj
01 + `

θiθj
10

) (
Atij − At−1

ij Atij
)

+ `
θiθj
11 At−1

ij Atij − log
Q
θiθj
00

P
θiθj
00

}

where ρθiθja = log µ
θiθj
a

ν
θiθj
a

and `θiθjab = log
P
θiθj
ab

Q
θiθj
ab

− log
P
θiθj
00

Q
θiθj
00

.

The MLE derived in Proposition 21 is more complex that summing all snapshots inde-
pendently. In particular, the terms At−1

ij Atij account for persistent edges over two consecutive
snapshots. Denote by Atpers = At−1 � At the entrywise product of adjacency matrices At−1

and At. Then Atpers is the adjacency matrix of the graph containing the persistent edges be-
tween t−1 and t, andAtnew = At−Atpers corresponds to the graph containing the edges freshly
appearing at time t.

Proof of Proposition 21. By the temporal Markov property, the log-likelihood of the model can
be written as logP(A |σ, θ) = logP(A1 |σ, θ) +

∑T
t=2 P(At |At−1, σ, θ). By denoting ρθiθja =

log µ
θiθj
a

ν
θiθj
a

, we �nd that

logP(A1 |σ, θ) =
1

2

∑
i,j

∑
a

δ(A1
ij, a)

(
δ(σi, σj)ρ

θiθj
a + log νθiθja

)
=

1

2

∑
i,j

δ(σi, σj)
∑
a

δ(A1
ij, a)ρθiθja + c1(A),
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where c1(A) = 1

2

∑
i,j

∑
a δ(A

1
ij, a) log ν

θiθj
a does not depend on the community structure.

Similarly, by denoting Rθiθj
ab = log

P
θiθj
ab

Q
θiθj
ab

we �nd that

logP(At |At−1, σ, θ) =
1

2

∑
i,j

∑
a,b

δ(At−1
ij , a)δ(Atij, b)

(
δ(σi, σj)R

θiθj
ab + logQ

θiθj
ab

)
=

1

2

∑
i,j

δ(σi, σj)
∑
a,b

δ(At−1
ij , a)δ(Atij, b)R

θiθj
ab + ct(A),

where ct(A) = 1
2

∑
i,j

∑
a,b δ(A

t−1
ij , a)δ(Atij, b) logQ

θiθj
ab does not depend on the community

structure. Simple computations show that∑
a

δ(A1
ij, a)ρθiθja = A1

ij(ρ
θiθj
1 − ρθiθj0 ) + ρ

θiθj
0

and∑
a,b

δ(At−1
ij , a)δ(Atij, b)R

θiθj
ab = R

θiθj
00 + At−1

ij

(
R
θiθj
10 −R

θiθj
00

)
+ Atij

(
R
θiθj
01 −R

θiθj
00

)
+ At−1

ij Atij
(
R
θiθj
11 −R

θiθj
01 −R

θiθj
10 +R

θiθj
00

)
= R

θiθj
00 + At−1

ij `
θiθj
10 + Atij`

θiθj
01 + At−1

ij Atij
(
`
θiθj
11 − `

θiθj
01 − `

θiθj
10

)
.

By collecting the above observations, we now �nd that logP(A |σ, θ) equals

c(A)+
1

2

∑
i,j

δ(σi, σj)

{
A1
ij(ρ

θiθj
1 − ρθiθj0 ) + ρ

θiθj
0 + (A1

ij − ATij)`
θiθj
10

}

+
1

2

∑
i,j

δ(σi, σj)
T∑
t=2

{
(`
θiθj
01 + `

θiθj
10 )

(
Atij − At−1

ij Atij
)

+ `
θiθj
11 At−1

ij Atij − log
Q
θiθj
00

P
θiθj
00

}
,

where c(A) =
∑

t ct(A) does not depend on σ. Hence the claim follows.

Assuming that the number of snapshots T is large, we can ignore the boundary terms, and
the MLE expressed in Proposition 21 reduces to maximising

T∑
t=2

∑
i,j :
σi=σj

((
`
θiθj
01 + `

θiθj
10

) (
Atij − At−1

ij Atij
)

+ `
θiθj
11 At−1

ij Atij − log
Q
θiθj
00

P
θiθj
00

)
.

By utilising (6.3.3)–(6.3.4), we can further simplify it to express this as a modularity. Recall
given a weighted graph W , a partition Z and a resolution parameter γ, the regularized mod-
ularity is de�ned as [NG04; RB06]

M (W,σ, γ) =
∑
i,j

δ(σi, σj)

(
Wij − γ

didj
2m

)
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where di =

∑
jWij and m =

∑
i di. Hence, suppose that P θiθj and Qθiθj are nondegenerate,

and µθiθj (resp. νθiθj ) is the stationary distribution of P θiθj (resp. Qθiθj ). In a sparse setting,
P01 and Q01 are small, and after a Taylor expansion (see Section 6.3.3 for the full derivations)
the previous expression is approximately equal toM(W,σ, γ), where W is de�ned by

W =
T∑
t=2

(
αAtnew + βAtpers

)
(6.3.5)

with

α = log
P01

Q01

+ log
1− P11

1−Q11

and β = log
P11

Q11

, (6.3.6)

and γ = (P01 −Q01) α(µ1+(K−1)ν1)+(β−α)(µ1P11+(K−1)ν1Q11)
K

.

Comparison with previous work Correspondence between maximum likelihood estima-
tor and modularity maximisation are long known in static block models [New16]. Analo-
gously to the single-layer case, the modularity of a temporal network, with possibly time-
dependent community structure, was previously de�ned in [Muc+10; Pam+19] by

T∑
t=1

M(At, σt, γt) +
T∑
t=1

∑
s 6=t

∑
i

ωsti δ
(
σsi , σ

t
i

)
(6.3.7)

where γt is the resolution parameter for layer t, σti is the community membership of node i at
time step t, and wsti denotes a coupling between time instants s and t. For a static community
structure, the second term in (6.3.7) is irrelevant. When the resolution is constant over time,
the relevant term in (6.3.7) can be written as

T∑
t=1

M(At, σ, γ) = M(Aagg, σ, γ),

where Aagg =
∑T

t=1A
t is the weighted adjacency matrix of the time-aggregated data. In

contrast, the matrixW in (6.3.5) involves a trade-o� between new edges and persistent edges.
We notice that W = Aagg only if α = β = 1.

Temporal spectral clustering combining new and persistent edges

Following our analysis in Section 6.3.1, the community prediction should verify

σ̂ = arg max
σ∈[K]N

M(W,σ, γ)

where W is de�ned in Equation (6.3.5) and γ is a proper resolution parameter. This optimi-
sation problem is NP-complete in general [Bra+07], but can be approximately solved by con-
tinuous relaxation. We can choose the relaxation so that the optimization problem reduces
to normalized spectral clustering algorithm on the weighted graph W (we refer to [New13]
and to Section 6.3.3 for the full computations). We note that in order to compute the nor-
malized Laplacian of W , we should restrict α, β ≥ 0, which is not necessarily guaranteed by
Formula (6.3.6). We summarize this in Algorithm 9.
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Algorithm 9: Spectral clustering for temporal networks with Markov edge dynam-
ics and static node labelling.
Input: Adjacency matrices A1, . . . , AT , number of clusters K , parameter α, β.
Output: Predicted membership matrix σ̂ ∈ [K]N

1

Process:

• Let W =
T∑
t=2

αAtnew + βAtpers where Atnew = At − At−1 � At and Atpers = At−1 � At;

• Compute L = In −D−1/2WD−1/2 where D = diag(W1n);

• Compute the matrix X̂ ∈ RN×K whose columns consist of the K orthonormal
eigenvectors of L associated to the K smallest eigenvalues.

2 Return σ̂ ← kmeans
(
D−1/2X̂,K

)
.

6.3.2 Numerical experiments

The Python source code for reproducing our results is available online1.

Synthetic data

We �rst examine the e�ect of the choice of the parameters α and β in Algorithm 9. For this,
we let α = 1 and we plot in Figure 6.5 the averaged accuracy obtained on 25 realizations of
stochastic block models with Markov edge dynamics for various β. While spectral clustering
on the time-aggregated graph (corresponding to β = 1) works well, it is striking to notice
that other values of β give better results. The choice of β depends on the probabilities of
persistent interactions. For example, if P11 > Q11 (Figure 6.5a), then β > 1 are preferred,
while if P11 < Q11 (Figure 6.5b) large choice of β are penalized. This is in accordance to the
values of α, β derived in Formula (6.3.6) (albeit in Formula (6.3.6), α and β could be negative).

We show the robustness of Algorithm 9 on the degree correction parameters in Figure 6.6.
More precisely:

• Figure 6.6a generates θi according to |N (0, σ2)|+1−σ
√

2/π where |N (0, σ2)| denotes
the absolute value of a normal random variable with mean 0 and variance σ2. We choose
σ = 0.25.

• Figure 6.6b generates the θi from a Pareto distribution with density function f(x) =
ama

xa+1 1(x ≥ m) with a = 3 and m = 2/3 (chosen such that Eθi = 1).

Note that the sampling of the θi’s enforces Eθi = 1 in both settings. We notice that in both
cases, letting β 6= 1 improves the performance of Algorithm 9.

1https://github.com/mdreveton/Spectral-clustering-with-persistent-edges
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Figure 6.5: Accuracy of Algorithm 9 on a SBM with 300 nodes in K = 3 blocks, degree
correction parameters θ1 = · · · = θn = 1, and a stationary Markov edge evolution µ1 = 0.04,
ν1 = 0.02 and Q11 = 0.3. The results are averaged over 25 synthetic graphs, and error bars
show the standard deviation.
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Figure 6.6: Accuracy of Algorithm 9 with α = 1 and di�erent β, on a SBM with 300 nodes and
K = 3 blocks (with uniform prior), and a stationary Markov edge evolution µ1 = 0.06, ν1 =

0.03, P11 = 0.7 and Q11 = 0.4, for di�erent generation of the degree correction parameters θ.
The results are averaged over 25 synthetic graphs, and error bars show the standard deviation.

Social networks of high school students

We investigate three data sets collected during three consecutive years from the high school
Lycée Thiers in Marseilles, France [FB14; MFB15]. Nodes correspond to students, interac-
tions to close-proximity encounters, and communities to classes, with dimensions given in
Table 6.1.

We make a hypothesis that the temporal characteristics of the interactions are similar each
year. We then use the 2011 data set to estimate the transition probability matrices P and Q,
and use these for clustering the 2012 and 2013 data sets. We assume that θi = 1 (no degree
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Year N K T

2011 118 3 5609
2012 180 5 11273
2013 327 9 7375

Table 6.1: Dimensions of three data sets of interacting high school students.

correction). Assuming the ground truth clustering is known for the year 20112, a standard
estimator of Markov chain transition probability matrices [Bil61] gives

P̂ =

(
0.9992 0.0008
0.37 0.63

)
and Q̂ =

(
0.999967 3.3× 10−5

0.48 0.52

)
.

Using (6.3.6), leads to α̂ = 2.9 and β̂ = 0.18. We observe in Figure 6.7b that this choice of
parameters gives a better accuracy on the 2013 data set than simply applying spectral clus-
tering on the time-aggregated graph (α = β = 1). For the 2012 data set (Figure 6.7a), this
improvement is not so clearly visible.
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Figure 6.7: Accuracy of Algorithm 9 on the 2012 and 2013 high school datasets, using uniform
α = β = 1 (blue) and adjusted α, β predicted using 2011 data (orange).

To understand why Algorithm 9 performs better for 2013 than for 2012, we have listed in
Table 6.2 temporal transition probabilities and clustering weights α̂, β̂ estimated separately
for each dataset. For year 2012, the di�erence between intra-community edge persistence P̂11

and inter-community edge persistence Q̂11 is small, implying that persistent edges do not add
much extra information for distinguishing communities (β̂ ≈ 0). For years 2011 and 2013,
this di�erence is larger, manifesting that edge persistence contains information that can be
employed to recover communities with a higher accuracy.

2Alternatively, one could perform spectral clustering on the time-aggregated graph, which produces an ex-
cellent prediction of the ground truth community labels.
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Dataset P̂01 Q̂01 P̂11 Q̂11 α̂ β̂ β̂/α̂

2011 0.00080 0.000033 0.63 0.52 2.9 0.58 0.060
2012 0.00050 0.000011 0.57 0.56 3.8 0.01 0.003
2013 0.00150 0.000014 0.64 0.40 4.5 0.07 0.015

Table 6.2: Markov chain transition probabilities and adjusted clustering weights estimated
separately for each dataset.

6.3.3 Additional proofs

Approximation of the MLE

Recall the structural assumptions (6.3.3)–(6.3.4) about the degree correction parameters. Be-
cause P01, Q01 = o(1), a �rst-order Taylor expansion yields

log
1− θiθjQ01

1− θiθjP01

= θiθj (P01 −Q01) + o
(
P 2

01 +Q2
01

)
,

as well as `θiθj01 ≈ log P01

Q01
, `θiθj10 ≈ log 1−P11

1−Q11
and `θiθj11 ≈ log P11

Q11
. Using these approximations

in the MLE expression leads to the maximisation of
T∑
t=2

∑
i,j : σi=σj

(
ãtij − θiθj (P01 −Q01)

)
, (6.3.8)

where ãtij = α (Atnew)ij + β
(
Atpers

)
ij

. Since µ and ν are stationary distributions,

E
(
Atnew

)
ij

=

{
θiθjµ1(1− P11) if σi = σj,

θiθjν1(1−Q11) otherwise,

E
(
Atpers

)
ij

=

{
θiθjµ1P11 if σi = σj,

θiθjν1Q11 otherwise.

Therefore, using Wij =
∑T

t=2 ãij we have

EWij =

{
(T − 1)θiθjµ1 (α(1− P11) + βP11) if σi = σj

(T − 1)θiθjν1 (α(1−Q11) + βQ11) otherwise.

Since the community labelling are sampled uniformly at random and using the normalization
for the θi’s, we have

d̄i = (T − 1)θiN
µ1 (α(1− P11) + βP11) + (K − 1)ν1 (α(1−Q11) + βQ11)

K
,

together with m̄ = N2

2
(T −1)µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K
.Hence, we observe that

θiθj(P01−Q01) = γ
d̄id̄j
2m̄

where γ = (P01−Q01)(T−1)µ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)
K

.
We end the proof using equation (6.3.8).
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Modularity and normalized spectral clustering

The regularized modularity of a partition σ ∈ [K]N of the graph A is de�ned as

M (A, σ, γ) =
∑
i,j

δ (σi, σj)

(
Aij − γ

didj
2m

)
where d = A1n and γ is a resolution parameter. This can be rewritten as

M (A, σ, γ) = Tr Z̃T

(
A− γ dd

T

2m

)
Z̃

where Z̃ ∈ {0, 1}N×K is the membership matrix associated to the vector σ, that is Z̃ik = 1 for
k = σi, and Z̃ik = 0 otherwise. As maximising the modularity over σ ∈ [K]N is in general NP-
complete [Bra+07], it is convenient to perform a continuous relaxation. Following [New13],
we transform the problem into

X̂ = arg max
X∈RN×K
XTDX=IK

TrXT

(
A− γ dd

T

2m

)
X. (6.3.9)

The predicted membership matrix Ẑ is then recovered by performing an approximated solu-
tion to the following k-means problem (see [KK10])(

Ẑ, Ŷ
)

= arg min
Z∈ZN,K ,Y ∈RK×K

∥∥∥ZY − X̂∥∥∥
F
. (6.3.10)

The Lagrangian associated to the optimization problem (6.3.9) is

TrXT

(
A− γ dd

T

2m

)
X − Tr

(
ΛT
(
XTX − IK

))
where Λ ∈ RK×K is a symmetric matrix of Lagrangian multipliers. Up to a change of basis,
we can assume that Λ is diagonal. The solution of (6.3.9) veri�es(

A− γ dd
T

2m

)
X = DXΛ and XTDX = IK ,

which is a generalized eigenvalue problem: the columns ofX are the generalized eigenvectors,
and the diagonal elements of Λ are the eigenvalues. In particular, since the constant vector 1n
veri�es (A− γ ddT

2m
)1n = (1− γ)D1n, we conclude that the eigenvalues should be larger than

1− γ for the partition to be meaningful.

Multiplying the �rst equation by 1Tn leads to (1−γ)dTX = dTXΛ, and therefore dTX = 0
(using the previous remark on Λ). The system then simpli�es in

AX = DXΛ and XTDX = IK .

De�ning a re-scaled vector U = D−1/2X shows that U veri�es D−1/2AD−1/2U = UΛ and
UTU = IK . Thus, the columns of U are eigenvectors of D−1/2AD−1/2 associated to the K
largest eigenvalue (or equivalently, the eigenvectors of L = IN −D−1/2AD−1/2 associated to
the K smallest eigenvalues).
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6.4 Temporal networks with time-varying communities

In this section, we consider a population of N nodes partitioned into K time-evolving com-
munities. At time t, we denote by σti ∈ [K] the community membership of node i and by
Atij ∈ {0, 1} the observed interaction between nodes i and j. We investigate methods of
recovering the community structure, denoted by

(
σ1, · · · , σT

)
where σt ∈ [K]N , from an

observed adjacency tensor A =
(
Atij
)
.

6.4.1 Model description

Similarly to several papers on dynamic SBM [Gha+16; MM17; Bar+18], we �rstly assume that
each node community labels σ1:T

i ∈ [K]T is a Markov chain of length T with initial probability
α and transition probability matrix π. Hence,

P
(
σ1:T

)
=

N∏
i=1

α
(
σ1
i

) T∏
t=2

π
(
σt−1
i , σti

)
. (6.4.1)

For simplicity, we will assume that the initial labels and the transitions are uniform, that is

α =
1

K
1K and π = ηIK +

1− η
K

1K1TK (6.4.2)

In other words, a node keeps its label with probability η ∈ [0, 1], and choose a label uniformly
at random with probability 1− η.

We then assume that the pair interactions between two nodes i and j are Markov processes
depending only on the community labelling and on some degree correction parameters θ =
(θ1, · · · , θN). In particular,

P(A |σ, θ) =
∏

1≤i<j≤N

P
(
A1
ij |σ1

i , σ
1
j , θi, θj

) T∏
t=2

P
(
Atij |At−1

ij , σti , σ
t
j, θi, θj

)
. (6.4.3)

We consider a homogeneous model in which the initial distribution is given by

P
(
A1
ij |Zi1, Zj1, θi, θj

)
=

{
µθiθj

(
A1
ij

)
if σ1

i = σ1
j

νθiθj
(
A1
ij

)
otherwise,

(6.4.4)

and the transition probabilities are

P
(
Atij = b |At−1

ij = a, σti , σ
t
j, θi, θj

)
=

{
P
θiθj
ab if σti = σtj
Q
θiθj
ab otherwise.

(6.4.5)

Similarly to Section 6.3.1, the degree-corrected initial distributions are de�ned by

µθiθj =

(
1− θiθjµ1

θiθjµ1

)
and νθiθj =

(
1− θiθjν1

θiθjν1

)
, (6.4.6)
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and transition probability matrices

P θiθj =

(
1− θiθjP01 θiθjP01

1− P11 P11

)
and Qθiθj =

(
1− θiθjQ01 θiθjQ01

1−Q11 Q11

)
, (6.4.7)

with the assumption that mini,j{θiθjδ} ≤ 1, where δ = max{µ1, ν1, P01, Q01}. We normalise
the degree correction parameters so that

∑
i 1(σ1

i = k)θi =
∑

i 1(σ1
i = k) for all k. Finally,

we suppose that the transition probabilities and degree-corrected parameters do not vary with
time, to avoid any parameter identi�ability issues [MM17].

6.4.2 Online inference as a semi-supervised problem

Time-varying community memberships leads to a contamination of the information given by
the past interactions. Indeed, if node i changes its community assignment at time t1, then one
shall not use the interactions of node i during the �rst t1 to �nd its community membership
at time t > t1. This lagging problem occurs when the layers are temporally correlated and
renders the clustering harder. To avoid this issue, we propose an online recovery of the node
labels. More speci�cally:

• at time t = 1, we use a static community detection algorithm to output σ̂1, a prediction
of the initial node labels σ1 from the observation of the �rst snapshot A1;

• at time t > 1, we will use the observation of the �rst t snapshots A1, . . . , At as well as
the previous predictions σ̂1, · · · σ̂t−1. This will be treated as a semi-supervised learn-
ing problem, where the prediction σ̂t−1 is seen as a noisy oracle for the true node la-
belling σt.

From the Markov structure, the prediction at time t > 1 reduces to predicting σt using only the
network at time t−1 and t and the previous prediction σ̂t−1. This can be interpreted as a noisy
semi-supervised problem, where the previous prediction σ̂t−1 plays the role of an oracle for the
node labels at time t. This oracle is noisy, as it bears two kinds of potential mistakes. Firstly,
σ̂t−1 is not necessarily exactly equal to the perfect community labelling σt−1. Furthermore,
since the node labels vary through time, σt−1 does not precisely correspond to σt. Assume that
the network data A and community labels σ come from the model describe in Section 6.4.1.
We de�ne the rate of mistake of the oracle σ̂t−1 as

ρt = P
(
σti 6= σ̂t−1

i

)
.

The following Proposition gives the expression of the MAP estimator for this online learning
problem.

Proposition 22. Let s ∈ [K]N be a noisy oracle on the node labels at time t, which is supposed to
be independent of the observed interactions A. De�ne the rate of mistake of s as ρ = P (si 6= σi)

and assume this rate is the same for all nodes. A Maximum A Posteriori estimator for the online
learning problem described previously is de�ned by

σ̂t = arg max
σ∈[K]N

P
(
σ |At, At−1, s

)
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and is any labelling that maximises

∑
i,j

δ (σi, σj)

{
`
θiθj
01

(
Atij − At−1

ij Atij
)

+ `
θiθj
10

(
At−1
ij − At−1

ij Atij
)

+ `
θiθj
11 At−1

ij Atij − log
Q
θiθj
00

P
θiθj
00

}

+2λ
N∑
i=1

1 (σi = si)

where `θiθjab = log
P
θiθj
ab

P
θiθj
ab

− log
P
θiθj
00

P
θiθj
00

and λ = log 1−ρ
ρ
.

Proof. By Bayes’ rule, P (σ |At, At−1, s, θ) ∝ P (At |At−1, σ, s, θ)P (σ |At−1, s, θ) where the
proportionality symbol hides a term P (At |At−1, s, θ) independent of σ.

Since P (At |At−1, σ, s, θ) = P (At |At−1, σ, θ), then by proceeding similarly to the proof
of Proposition 21, the log-likelihood term logP (At |At−1, σ, θ) can be rewritten as

1

2

∑
i,j

δ (σi, σj)

{
`
θiθj
01

(
Atij − At−1

ij Atij
)

+ `
θiθj
10

(
At−1
ij − At−1

ij Atij
)

+ `
θiθj
11 At−1

ij Atij − log
Q
θiθj
00

P
θiθj
00

}
.

The oracle information is equal to

P (σ | s) =
N∏
i=1

P (si |σi)
P (si)

P (σi)

= (1− ρ)|{i∈[N ] : σi=si}| ρ|{i∈[N ] : σi 6=si}|
(

1

K

)N
=

(
ρ

1− ρ

)|{i∈[N ] : σi 6=si}|

(1− ρ)N
(

1

K

)N
where we used the uniformity of the node labels.

6.4.3 Continuous relaxation of the MAP

For simplicity of the derivations to come, in this section we restrict the study to K = 2.

Denote by Atpers = At−1 � At the persisting edges, by Anew = At − Atpers the freshly
formed edges, and by Aold = At−1 − Apers the disappearing edges between time t − 1 and t.
Using a Taylor expansion as in Section 6.3.1, we can approximate the MAP estimator as the
maximisation over x ∈ {−1, 1}N of

xT
(
W − τ dd

T

2m

)
x− λ(s− x)T (s− x) (6.4.8)

where W t = α01A
t
new + α10A

t
old + α11A

t
pers with αab = log Pab

Qab
, τ is a resolution param-

eter di =
∑N

j=1W
t
ij , and m = 1

2

∑N
i=1 di. The maximisation of Expression (6.4.8) becomes
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equivalent to σ̂t = sign(ẑ) where ẑ veri�es

ẑ = arg min
z∈{−1,1}N

−zTMz + λ (s− z)T (s− z)

withM = W −τ ddT
2m

. This minimisation problem is analogous to the one studied in Chapter 5
on noisy semi-supervised clustering in the SBM. Indeed, we propose the following continuous
relaxation

x̂ = arg min
x∈RN

xTDx=2m

−xTMx+ λ (s− x)T (s− x) ,

where D = diag(d1, · · · , dN) and m = 1
2

∑N
i=1 di. The solution of this relaxation is com-

puted by mimicking the reasoning of Section 5.2.1. In particular, by denoting the eigen-
decomposition of D−1/2 (−M + λIN)D−1/2 by

D−1/2 (−M + λIN)D−1/2 = Q∆QT

with ∆ = diag(δ1, . . . , δN) and QQT = IN and letting b = λQts, we obtain that x̂ veri�es

(−M + λIN − γ∗D) x̂ = λs, (6.4.9)

where γ∗ is the smallest solution of the explicit secular equation [GGV89]

n∑
i=1

(
bi

δi − γ

)2

− 2m = 0. (6.4.10)

This leads to Algorithm 10.

Algorithm 10: Online clustering of time-varying communities.
Input: Observed graph sequence A1:T =

(
A1, . . . , AT

)
; number of communities K ;

static graph clustering algorithm algo; parameters α01, α10, α11 and
λ1, . . . , λT .

Output: Node labelling σ̂1:T .
Initialize: Compute σ̂1 ← algo (A1).

1 for t = 2, . . . , T do
2 Compute W = α01A

t
new + α10A

t
old + α11A

t
pers.

3 Compute M = W − ddT

2m
where di =

∑N
j=1Wij and m = 1

2

∑N
i=1 di.

4 Let γ∗ be the smallest solution of Equation (6.4.10).
5 Compute x̂ as the solution of Equation (6.4.9).
6 Let σ̂t = sign(x̂).
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6.4.4 Numerical experiments

We compare in Figure 6.8 the averaged accuracy obtained by Algorithm 10 with Algorithm 9
(spectral clustering with persistent edges) and an algorithm performing spectral clustering on
each snapshot individually. In particular, we observe that when η = 1 (i.e., static community
structure), Algorithm 9 is extremely e�cient, as expected. Since it takes into account all
previous snapshots, it in particular outperforms Algorithm 10. On the contrary, when η 6= 1,
the lagging problem arises, and Algorithm 9 ends up with a very poor accuracy after a few
snapshots. On the contrary, Algorithm 10 keeps a very high accuracy over all snapshots.

In Figure 6.8, we choose λt to be constant and equal to 0.5, while Figure 6.9 explores
other possible values. We observe that when λt is equal to a constant in the interval [0.1, 1],
Algorithm 10 outputs similar performances. On the other hand, when λ becomes too large,
Algorithm 10 gives too much importance to the oracle, and the accuracy becomes worse. In
practice, the choice of the parameters λt could be optimized from the data, e.g. based on η or
on the transition matrices P and Q. Moreover, it would be intuitive to increase λt with t, as
the con�dence in the oracle is higher when more temporal data is available. We leave this as
future work.
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Figure 6.8: Accuracy of Algorithm 10 (online-ssl) with α01 = 1, α10 = 0 and α11 = 2, on
time-varying Markov Block Models with 300 nodes and K = 2 blocks (with uniform prior),
and a stationary Markov edge evolution µ1 = 0.05, ν1 = 0.02, P11 = 0.7 and Q11 = 0.3. The
results are averaged over 25 synthetic graphs, and error bars show the standard error. We
compare with Algorithm 5 (weighted SC with α = 1, β = 2) and an algorithm performing
Spectral Clustering on each snapshot individually.
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Figure 6.9: Accuracy of Algorithm 10 with α01 = 1, α10 = 0 and α22 = 2 and various values
of λ. Simulations are performed on time-varying Markov Block Models with n = 300,K = 2,
µ1 = 0.05, µ2 = 0.02, P11 = 0.7, Q11 = 0.3 and η = 0.9. The results are averaged over 25
synthetic graphs, and error bars show the standard error.
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The present Chapter is devoted to clustering geometric graphs. While the standard spec-
tral clustering is often not e�ective for geometric graphs, we present here an e�ective gener-
alization, called higher-order spectral clustering. It resembles in concept the classical spectral
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clustering method but uses for partitioning the eigenvector associated with a higher-order
eigenvalue. We establish the consistency of this algorithm for a wide class of geometric graphs
which we call Soft Geometric Block Model. A small adjustment of the algorithm provides
strong consistency. We also show that our method is e�ective in numerical experiments even
for graphs of modest size.

7.1 Model de�nition and notations

7.1.1 Notations

Let Td = Rd/Zd be the �at unit torus in dimension d represented by
[
−1

2
, 1

2

]d. The norm `∞
in Rd naturally induces a norm on Td such that for any vector x = (x1, . . . , xd) ∈ Td we have
‖x‖ = max

1≤i≤d
|xi|.

For a measurable functionF : Td → R and k ∈ Zd, we denote F̂ (k) =
∫
Td F (x)e−2iπ〈k,x〉 dx

the Fourier transform of F . The Fourier series of F is given by∑
k∈Zd

F̂ (k)e2iπ〈k,x〉.

For two integrable functions F, G : Td → R, we de�ne the convolution operation F ∗
G(y) =

∫
Td F (y−x)G(x) dx and F ∗m = F ∗F ∗· · ·∗F (m times). We recall that F̂ ∗G(k) =

F̂ (k)Ĝ(k).

7.1.2 Soft Geometric Block Model

A Soft Geometric Block Model (SGBM) is de�ned by a dimension d, a number of nodes n,
a set of blocks K and a connectivity probability function F : Td × K × K → [0, 1]. The
node set is taken as V = [n]. The model is parametrized by a node labelling σ : V → K and
nodes’ positions X = (X1, . . . , Xn) ∈

(
Td
)n. We suppose that F (·, σ, σ′) = F (·, σ′, σ) and

for any X ∈ Td, F (X) depends only on the norm ‖X‖. The probability of appearance of
an edge between nodes i and j is de�ned by F (Xi −Xj, σi, σj). Note that this probability
depends only on the distance between Xi and Xj and the labels σi, σj . Consequently, the
model parameters specify the distribution

Pσ,X(A) =
∏

1≤i<j≤n

(F (Xi −Xj, σi, σj))
Aij (1− F (Xi −Xj, σi, σj))

1−Aij (7.1.1)

of the adjacency matrix A = (Aij) of a random graph.

Furthermore, in this Chapter we assume that the model has only two equal size blocks, i. e.,
K = {1, 2}, and

∑n
i=1 1(σi = 1) =

∑n
i=1 1(σi = 2) = n

2
. The labels are assigned randomly,

that is, the set {i ∈ [n] : σi = 1} is chosen randomly over all the n
2
-subsets of [n]. We assume
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that the entries of X and σ are independent and ∀i ∈ V , Xi is uniformly distributed over Td.
Finally, suppose that for any x ∈ Td

F (x, σ, σ′) =

{
Fin(x), if σ = σ′,
Fout(x), otherwise,

(7.1.2)

where Fin, Fout : Td → [0, 1] are two measurable functions. We call these functions connec-
tivity probability functions.

The average intra- and inter-community edge densities are denoted by µin and µout, re-
spectively. Their expressions are given by the �rst Fourier modes of Fin and Fout:

µin =

∫
Td
Fin(x)dx and µout =

∫
Td
Fout(x)dx.

These quantities will play an important role in the following, as they represent the intensities
of interactions between nodes in the same community and nodes in di�erent communities.
In particular, the average inside community degree is

(
n
2
− 1
)
µin, and the average outside

community degree is n
2
µout.

Example 13. An SGBM where Fin(x) = pin and Fout(x) = pout with pin, pout being constants
is an instance of the Stochastic Block Model.

Example 14. An SGBM where Fin(x) = 1(‖x‖ ≤ rin), Fout(x) = 1(‖x‖ ≤ rout) with
rin, rout ∈ R+ is an instance of the Geometric Block Model introduced in [Gal+18].

Example 15. We call Waxman Block Model (WBM) an SGBM withFin(x) = min(1, qine−sin||x||),
Fout(x) = min(1, qoute

−sout||x||). This is a clustered version of the Waxman model [Wax88],
which is a particular case of soft geometric random graphs [Pen16].

Formally, clustering or community recovery problem is the following problem: given the
observation of the adjacency matrixA and the knowledge of Fin, Fout, we want to recover the
latent community labelling σ. Given an estimator σ̂ of σ, we de�ne the loss ` as the ratio of
misclassi�ed nodes, up to a global permutation of the labels:

` (σ, σ̂) =
1

n
min
π∈S2

∑
i

1 (σi 6= π ◦ σ̂i) .

Then, σ̂ is said to be consistent (or equivalently, achieves almost exact recovery) if

∀ε > 0 : lim
n→∞

P (` (σ, σ̂) > ε) = 0,

and strongly consistent (equivalently, achieves exact recovery) if

lim
n→∞

P (` (σ, σ̂) > 0) = 0.
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7.2 The analysis of limiting spectrum

7.2.1 Limit of the spectral measure

Theorem 11. Consider an SGBM de�ned by (7.1.1)-(7.1.2). Assume that Fin(0) and Fout(0) are
equal to the Fourier series of Fin(·) and Fout(·) evaluated at 0. Let λ1, . . . , λn be the eigenvalues
of A, and

µn =
n∑
i=1

δλi/n

the spectral measure of the matrix 1
n
A. Then, for all Borel sets B with µ (∂B) = 0 and 0 6∈ B̄,

a.s.,
lim
n→∞

µn(B) = µ(B),

where µ is the following measure:

µ =
∑
k∈Zd

δ F̂in(k)+F̂out(k)

2

+ δ F̂in(k)−F̂out(k)
2

.

Remark 17. The limiting measureµ is composed of two terms. The �rst term,
∑

k∈Zd δ F̂in(k)+F̂out(k)

2

corresponds to the spectrum of a random graph with no community structure, and where
edges between two nodes at distance x are drawn with probability Fin(x)+Fout(x)

2
. In other

words, it is the null-model of the considered SGBM. Hence, the eigenvectors associated with
those eigenvalues bear no community information, but only geometric features.

On the contrary, the second term
∑

k∈Zd δ F̂in(k)−F̂out(k)
2

corresponds to the di�erence be-
tween intra- and inter-community edges. In particular, as we shall see later, the ideal eigen-
vector for clustering is associated with the eigenvalue λ̃ closest to λ∗ = n F̂in(0)−F̂out(0)

2
. Other

eigenvectors might mix some geometric and community features and hence are harder to
analyze.

Last, the eigenvalue λ̃ is not necessarily the second largest eigenvalue, as the ordering of
eigenvalues here depends on the Fourier coe�cients F̂in(k) and F̂out(k), and is in general non
trivial.

Remark 18. The assumptions on Fin(0) and Fout(0) are validated for a wide range of rea-
sonable connectivity functions. For instance, by Dini’s criterion, all the functions that are
di�erentiable at 0 satisfy these conditions. Another appropriate class consists of piecewise
C1 functions that are continuous at 0 (this follows from the Dirichlet conditions).

Proof. The outline of the proof of Theorem 11 follows closely [Bor08]. First, we show that
∀m ∈ N, lim

n→∞
Eµn (Pm) = µ(Pm) where Pm(t) = tm. Second, we use Talagrand’s concen-

tration inequality to prove that µn(Pm) is not far from its mean, and conclude with Borel–
Cantelli lemma.
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(i) By Lemma 30 in Section 7.6, in order to establish the desired convergence it is enough

to show that lim
n→∞

Eµn (Pm) = µ(Pm) for any m ∈ N. First,

Eµn(Pm) =
1

nm

n∑
i=1

Eλmi =
1

nm
ETrAm. (7.2.1)

By de�nition,

TrAm =
∑
α∈[n]m

m∏
j=1

Aij ,ij+1
,

with α = (i1, . . . , im) ∈ [n]m and im+1 = i1. We denoteAmn the set of m-permutations of [n],
that is α ∈ Amn i� α is an m-tuple without repetition. We have,

TrAm =
∑
α∈Amn

m∏
j=1

Aij ,ij+1
+Rm, (7.2.2)

where Rm =
∑

α∈[n]m\Amn

∏m
j=1Aij ,ij+1

.

We �rst bound the quantity Rm. Since |Aij| ≤ 1, we have

|Rm| ≤
∣∣∣[n]m\Amn

∣∣∣ = nm − n!

(n−m)!
=

m(m− 1)

2
nm−1 + o(nm−1),

where we used n!

(n−m)!
= nm − nm−1

∑m−1
i=0 i+ o(nm−1). Hence

lim
n→∞

1

nm
Rm = 0. (7.2.3)

Moreover,

E
∑
α∈Amn

m∏
j=1

Aij ,ij+1
=

∑
α∈Amn

∫
(Td)m

m∏
j=1

F (xij − xij+1
, σij , σij+1

)dxi1 . . . dxim

=
∑
α∈Amn

G(α)

where G(α) =
∫

(Td)m

∏m
j=1 F (xij − xij+1

, σij , σij+1
)dxi1 . . . dxim for α ∈ Amn .

Let us �rst show that the value ofG(α) depends only on the number of consecutive indices
corresponding to the nodes from the same community. More precisely, let us de�ne the set
S(α) = {j ∈ [m] : σij = σij+1

}. Using Lemma 31 in Section 7.6 and the fact that the
convolution is commutative, we have

G(α) = F
∗|S(α)|
in ∗ F ∗(m−|S(α)|)

out (0).
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We introduce the following equivalence relationship in Amn : α ∼ α′ if |S(α)| = |S(α′)|. We
notice thanG(·) is constant on each equivalence class, and equals to F ∗pin ∗F

∗(m−p)
out (0) for any

α ∈ Amn such that |S(α)| = p.

Then, let us calculate the cardinal of each equivalence class with |S(α)| = p. First of all,
we choose the set S(α) which can be done in

(
m
p

)
ways if m− p is even and cannot be done

if m − p is odd. The latter follows from the fact that p (the number of ‘non-changes’ in the
consecutive community labels) has the same parity as m (the total number of indices) since
im+1 = i1. The set S(α) de�nes the community labels up to the �ip of communities since
σij = σij+1

for any j ∈ S(α) and σij 6= σij+1
for j ∈ [m]\S(α).

Let N1(α) be the number of indices ij with σij = 1. Consider �rst the case σi1 = 1 and
note that N1(α) is totally de�ned by the set S(α). There are n

2
possible choices for i1. Now

we have two possibilities. If σi1 = σi2 then we have n
2
− 1 possible choices for the index i2

(since α ∈ Amn ). Otherwise, if σi1 6= σi2 then the index i2 can be chosen in n
2

ways. Resuming
the above operation, we chooseN1(α) indices from the �rst community, and it can be done in
n/2(n/2−1) . . . (n/2−N1(α)) ways. The indices from the second community can be chosen
in n/2(n/2− 1) . . . (n/2− (m−N1(α))) ways. Thus in total the number of possible choices
of indices is

n

2

(n
2
− 1
)
. . .
(n

2
−N1(α)

)
· n

2

(n
2
− 1
)
. . .
(n

2
− (m−N1(α))

)
=
nm

2m
+O(nm−1), n→∞.

The same reasoning applies if σi1 = 2. Hence, when n goes to in�nity, the cardinal of each
equivalence class is

|{α ∈ Amn : |S(α)| = p}| =

{
0 if m− p is odd,
2
(
m
p

)
nm

2m
+O(nm−1) otherwise.

This can be rewritten as

|{α ∈ Amn : |S(α)| = p}| =
(
m

p

)(
1 + (−1)m−p

) nm
2m

+O(nm−1), n→∞.

Hence,

E
∑
α∈Amn

m∏
j=1

Aij ,ij+1
=

m∑
p=0

|{α ∈ Amn : |S(α)| = p}|F ∗pin ∗ F
∗(m−p)
out (0)

=
nm

2m

m∑
p=0

(
m

p

)(
1 + (−1)m−p

)
F ∗pin ∗ F

∗(m−p)
out (0) +O(nm−1)

= nm
((

Fin + Fout

2

)∗m
(0) +

(
Fin − Fout

2

)∗m
(0)

)
+O(nm−1).

Therefore, equations (7.2.1), (7.2.2) and (7.2.3) give us:

lim
n→∞

Eµn(Pm) =

(
Fin + Fout

2

)∗m
(0) +

(
Fin − Fout

2

)∗m
(0).
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Finally, sinceFin, Fout are equal to their Fourier series at 0, and using F̂ ∗G(k) = F̂ (k)Ĝ(k),

we have

lim
n→∞

Eµn(Pm) =
∑
k∈Zd

(
F̂in(k) + F̂out(k)

2

)m

+

(
F̂in(k)− F̂out(k)

2

)m

= µ (Pm) . (7.2.4)

(ii) For each m ≥ 1, and n �xed, we de�ne

Qm : SGBM(Fin, Fout) −→ R
A 7−→ 1

nm−1 TrAm

where SGBM(Fin, Fout) denotes the set of adjacency matrices of an SGBM random graph
with connectivity functions Fin, Fout. Note that Qm(A) = nµn(Pm).

LetA, Ã be two adjacency matrices. We denote the Hamming distance by dHam

(
A, Ã

)
=∑n

i=1

∑n
j=1 1(Aij 6= Ãij). Using Lemma 34 in Section 7.6, we show that the function Qm is

(m/n)–Lipschitz for the Hamming distance:∣∣∣Qm(A)−Qm(Ã)
∣∣∣ ≤ m

n
dHam

(
A, Ã

)
. (7.2.5)

Let Mm be the median of Qm. Talagrand’s concentration inequality [Tal96, Proposi-
tion 2.1] states that

P (|Qm −Mm| > t) ≤ 4 exp

(
−n

2t2

4m2

)
, (7.2.6)

which after integrating over all t gives

|nEµn (Pm)−Mm| ≤ E |Qm(A)−Mm| ≤
Cm
n
,

since EX =
∫∞

0
P(X > t)dt for any positive random variable X . The constant Cm is equal

to 8m
∫∞

0
e−u

2
du.

Moreover,

n |µn(Pm)− Eµn(Pm)| ≤ |nµn(Pm)−Mm|+ |Mm − nEµn(Pm)|

≤ |Qm −Mm|+
Cm
n
.

Let s > 0. Since Cm/n2 goes to 0 when n goes to in�nity, we can pick n large enough such
that s > Cm

n2 . Thus, using again inequality (7.2.6), we have

P (|µn(Pm)− Eµn(Pm)| > s) ≤ P
(

1

n
|Qm −Mm| > s− Cm

n2

)
≤ 4 exp

(
− n4

4m2

(
s− Cm

n2

)2
)
.
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However, by (7.2.4), lim

n→∞
Eµn(Pm) = µ(Pm). Hence µn(Pm) converges in probability to

µ(Pm). Let sn = 1
nκ

with κ > 0, and

εn = 4 exp

(
− n4

4m2

(
sn −

Cm
n2

)2
)
.

Since
∑

n∈N εn < ∞ when κ < 2, an application of Borel–Cantelli lemma shows that the
convergence holds in fact almost surely. This concludes the proof.

7.2.2 Conditions for the isolation of the ideal eigenvalue

As noticed in Remark 17, the ideal eigenvector for clustering is associated with the eigenvalue
of the adjacency matrix A closest to nµin−µout

2
(recall that µin = F̂in(0) and µout = F̂out(0)).

The following proposition shows that this ideal eigenvalue is isolated from other eigenvalues
under certain conditions.

Proposition 23. Consider the adjacency matrix A of an SGBM de�ned by (7.1.1)-(7.1.2), and
assume that:

F̂in(k) + F̂out(k) 6= µin − µout, ∀k ∈ Zd, (7.2.7)
F̂in(k)− F̂out(k) 6= µin − µout, ∀k ∈ Zd\{0}, (7.2.8)

with µin 6= µout. Then, the eigenvalue of A closest to nµin−µout
2

is of multiplicity one. Moreover,
there exists ε > 0 such that for large enough n every other eigenvalue is at a distance at least εn.

Proof. Let λ1, . . . , λn be the eigenvalues of A. Let i∗ ∈ arg mini∈[n]

∣∣λi
n
− µin−µout

2

∣∣. We will
show that there exists ε > 0 such that for large enough n, we have for all i 6= i∗:∣∣∣∣λin − µin − µout

2

∣∣∣∣ > ε.

Due to condition (7.2.7), and the fact that

lim
|k|→∞

(
F̂in(k) + F̂out(k)

)
= 0,

there is some �xed ε1 > 0 such that

min
k∈Zd

(∣∣∣∣∣ F̂in(k) + F̂out(k)

2
− µin − µout

2

∣∣∣∣∣
)
> ε1.

Similarly, condition (7.2.8) ensures the existence of ε2 > 0 such that

min
k∈Zd\{0}

(∣∣∣∣∣ F̂in(k)− F̂out(k)

2
− µin − µout

2

∣∣∣∣∣
)
> ε2.
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Denote ε3 = |µin−µout|

4
. Let ε = min (ε1, ε2, ε3) and consider B =

[
µin−µout

2
− ε, µin−µout

2
+ ε
]
.

By Theorem 11, a.s.,
lim
n→∞

µn(B) = µ(B) = 1.

Therefore, for n large enough the only eigenvalue of A in the interval B is λi∗ .

The following proposition shows that conditions (7.2.7) and (7.2.8) of Proposition 23 are
almost always veri�ed for a GBM.

Proposition 24. Consider the d-dimensional GBM model, where Fin, Fout are 1-periodic, and
de�ned on the �at torus Td by Fin(x) = 1(‖x‖ ≤ rin) and Fout(x) = 1(‖x‖ ≤ rout), with
rin > rout > 0. Denote by B+ and B− the sets of parameters rin and rout de�ned by negation of
conditions (7.2.7) and (7.2.8):

B+ =
{

(rin, rout) ∈ R2
+ : F̂in(k) + F̂out(k) = µin − µout for some k ∈ Zd

}
B− =

{
(rin, rout) ∈ R2

+ : F̂in(k)− F̂out(k) = µin − µout for some k ∈ Zd\{0}
}
.

Then these sets of ‘bad’ parameters are of zero Lebesgue measure:

Leb(B+) = 0; and Leb(B−) = 0.

Hence for B = B+ ∪ B−
Leb(B) = 0.

Proof. It is clear that
Leb(B) ≤ Leb(B+) + Leb(B−).

Thus, it is enough to show that Leb(B+) = 0 and Leb(B−) = 0. We shall establish the �rst
equality, and the second equality can be proved similarly.

By Lemma 32 in Section 7.6, the negation of condition (7.2.7) for given functions Fin and
Fout is as follows:

∃k = (k1, · · · , kd) ∈ Zd : rdin

d∏
j=1

sinc(2πrinkj) + rdout

d∏
j=1

sinc(2πroutkj) = rdin − rdout,

where sinc(x) =

{
sinx
x

if x 6= 0

0 otherwise
is the sinus cardinal function.

Notice that limkj→∞ sinc(2πrinkj) = 0 and limkj→∞ sinc(2πroutkj) = 0 while the right-hand
side of the above equation is �xed. Therefore, this equation can hold only for k from a �nite
set K. Let us �x some k = (k1, . . . , kd) ∈ K and denote

B+
k =

{
(rin, rout) ∈ R2

+ : rdin

d∏
j=1

sinc(2πrinkj) + rdout

d∏
j=1

sinc(2πroutkj) = rdin − rdout

}
.
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Let us now �x rin, and consider the condition de�ning B+

k as an equation on rout. De�ne
the functions

fk(x) = xd

(
1 +

d∏
j=1

sinc(2πxkj)

)
,

gk(x) = xd

(
1−

d∏
j=1

sinc(2πxkj)

)
.

Then the mentioned equation takes the form

fk(rout) = gk(rin). (7.2.9)

Consider the function hk : C→ R:

hk(z) = zd

(
1 +

d∏
j=1

sinc(2πzkj)

)
.

Clearly, this function coincides with fk on R. Moreover, it is holomorphic in C, as sinc(z) is
holomorphic (it can be represented by the series

∑∞
n=0

(−1)n

(2n+1)!
z2n), and the product of holo-

morphic functions is again holomorphic. But then the derivative h′k(z) is also holomorphic,
therefore, it has a countable number of zeros in C. Clearly, h′k ≡ f ′k on R, which yields that
f ′k has a countable number of zeros in R.

Hence, R+ is divided into a countable number of intervals on which the function fk(x) is
strictly monotone. That is, R+ = t∞i=0[ai(k), bi(k)] where fk,i = fk

∣∣
[ai(k),bi(k)]

is strictly mono-
tone. Then the function f−1

k,i (x) is correctly de�ned and, since fk,i is measurable and injective,
f−1
k,i is measurable as well. Consequently, there is a unique solution rout = f−1

k,i (gk(rin)) of
equation (7.2.9) for rin ∈ [min fk,i; max fk,i]. If rin 6∈ [min fk,i; max fk,i], there is no solution
at all.

Therefore, B+
k,i =

{(
rin, f

−1
k,i (gk(rin))

)
: rin ∈ [min fk,i; max fk,i]

}
is the graph of some

measurable function in R2
+. Since such a graph has a zero Lebesgue measure (see e.g., [WZ77,

Lemma 5.3]), we have:
Leb(B+

k ) = Leb
(
∪∞i=1B+

k,i

)
= 0.

Hence, we can conclude that

Leb(B+) = Leb

(⋃
k∈K

B+
k

)
≤
∑
k∈K

Leb(B+
k ) = 0.

Carrying out a similar argumentation for B− completes the proof.
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7.3 Consistency of higher-order spectral clustering

In this section we show that spectral clustering based on the ideal eigenvector (see Algo-
rithm 11) is consistent for SGBM (Theorem 12). We then show that a simple extra step can in
fact achieve strong consistency.

Algorithm 11: Higher-Order Spectral Clustering (HOSC).
Input: Adjacency matrix A, average intra- and inter-cluster edge densities µin, µout.
Output: Node labelling σ̃ ∈ {1, 2}n.

1

Global step:
2 Let λ̃ be the eigenvalue of A closest to λ∗ = (µin−µout)

2
n, and ṽ be the associated

eigenvector.
3 for i = 1, . . . , n do
4 If ṽi > 0, let σ̃i = 1; otherwise, let σ̃i = 2.

Remark 19. The worst case complexity of the eigenvalue factorization is O (n3) [Dem+08].
However, when the matrix is su�ciently sparse and the eigenvalues are well separated, the
empirical complexity can be close to O(kn), where k is the number of required eigenvalues
[Dem+08]. Moreover, since Algorithm 11 uses only the sign of eigenvector elements, a quite
rough accuracy can be su�cient for classi�cation purposes.

7.3.1 Weak consistency of higher-order spectral clustering

Theorem 12. Let us consider the d-dimensional SGBM with connectivity probability functions
Fin and Fout satisfying conditions (7.2.7)-(7.2.8). Then Algorithm 11 is consistent. More precisely,
Algorithm 11 misclassi�es at most O(log n) nodes.

Proof. Let us introduce some notations. Recall that µin = F̂in(0) and µout = F̂out(0). In the
limiting spectrum, the ideal eigenvalue for clustering is

λ∗ =
µin − µout

2
n.

We consider the closest eigenvalue of A to λ∗:

λ̃ = arg min
λ

(|λ− λ∗|).

Also, let ṽ be the normalized eigenvector corresponding to λ̃. In this proof, the Euclidean
norm ‖ · ‖2 is used.
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The plan of the proof is as follows. We consider the vector

v∗ = (1/
√
n, . . . , 1/

√
n︸ ︷︷ ︸

n/2

,−1/
√
n, . . . ,−1/

√
n︸ ︷︷ ︸

n/2

)T,

where we supposed without loss of generality that the n/2 �rst nodes are in cluster 1, and
the n/2 last nodes are in cluster 2. The vector v∗ gives the perfect recovery by the sign of its
coordinates. We shall show that with high probability for some constant C > 0

‖ṽ − v∗‖2 ≤ C

√
log n

n
. (7.3.1)

We say that an event occurswith high probability (w. h. p.) if its probability goes to 1 asn→∞.
With the bounding (7.3.1), we shall then show that at most o(n) of entries of ṽ have a sign
that di�er from the sign of the respective entry in v∗; hence ṽ retrieves almost exact recovery.

In order to establish inequality (7.3.1) we will use the following theorem from [KPJ82].

Theorem 13. Let A be a real symmetric matrix. If λ̃ is the eigenvalue of A closest to ρ(v) =
vTAv
vT v

, δ is the separation of ρ from the next closest eigenvalue and ṽ is the eigenvector correspond-
ing to λ̃, then

| sin∠(v, ṽ)| ≤ ‖Av − ρv‖2

‖v‖2δ
.

First we deal with ρ(v∗). Since v∗ is normalized and real-valued (by the symmetry of A),
we have

ρ(v∗) = vT∗ Av∗.

Denote u = Av∗. Then, obviously,

ui =
n∑
j=1

Aij(v∗)i =
1√
n

n/2∑
j=1

Aij −
1√
n

n∑
j=n/2+1

Aij. (7.3.2)

It is clear that each entry Aij with i 6= j is a Bernoulli random variable with the probability
of success either µin or µout. This can be illustrated by the element-wise expectation of the
adjacency matrix:

EA =



µin . . . µin

... . . . ...
µin . . . µin

µout . . . µout

... . . . ...
µout . . . µout

µout . . . µout

... . . . ...
µout . . . µout

µin . . . µin

... . . . ...
µin . . . µin


.

Let us consider the �rst term in the right-hand side of (7.3.2) for i ≤ n/2. Since Aij are
independent for �xed i, it is easy to see that Yi :=

∑n/2
j=1Aij ∼ Bin(n/2 − 1, µin) with the
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expectation EYi = (n/2− 1)µin. Then we can use the Cherno� bound to estimate a possible
deviation from the mean. For any 0 < t < 1

P(|Yi − EYi| > tEYi) ≤ e−EYit
2/2. (7.3.3)

Let us take t = 2
√

logn√
(n/2−1)µin

. Then for large enough n,

P

∣∣∣∣∣∣
n/2∑
j=1

Aij − µin
n

2

∣∣∣∣∣∣ >√2µinn log n

 = P
(
|Yi − EYi| >

√
2µinn log n

)
≤ 1

n2
.

Similarly,

P

∣∣∣∣∣∣
n∑

j=n/2+1

Aij − µout
n

2

∣∣∣∣∣∣ >√2µoutn log n

 ≤ 1

n2

and
P
(∣∣∣∣ui − (µin − µout)

√
n

2

∣∣∣∣ >√2(µin + µout) log n

)
≤ 2

n2
. (7.3.4)

Denote γn =
√

2(µin + µout) log n and notice that γn = Θ(
√

log n). By the union bound, we
have for large enough n

P
(
∃i ≤ n

2
:

∣∣∣∣ui − (µin − µout)

√
n

2

∣∣∣∣ > γn

)
≤ n

2
· 2

n2
=

1

n
. (7.3.5)

By the same argumentation,

P
(
∃i > n

2
:

∣∣∣∣ui − (µout − µin)

√
n

2

∣∣∣∣ > γn

)
≤ 1

n
. (7.3.6)

Now let us calculate ρ(v∗):

ρ(v∗) =
n∑
i=1

(v∗)iui =
1√
n

n/2∑
i=1

ui −
1√
n

n∑
i=n/2+1

ui.

We already established thatui ∼ (µin−µout)
√
n

2
for i ≤ n

2
(which means that lim 2ui

(µin−µout)
√
n

=

1 w.h.p.) and, therefore, that 1√
n

∑n/2
i=1 ui ∼ (µin − µout)

n
4
. More precisely, by (7.3.5),

P

∣∣∣∣∣∣ 1√
n

n/2∑
i=1

ui −
(µin − µout)n

4

∣∣∣∣∣∣ > γn
√
n

2

 ≤ 1

n
.

In the same way, by (7.3.6),

P

∣∣∣∣∣∣ 1√
n

n∑
i=n

2
+1

ui −
(µout − µin)n

4

∣∣∣∣∣∣ > γn
√
n

2

 ≤ 1

n
.
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Finally,

P
(∣∣∣∣ρ(v∗)−

(µin − µout)n

2

∣∣∣∣ > γn
√
n

)
≤ 2

n
. (7.3.7)

Now let us denote w = Av∗ − ρ(v∗)v∗ = u − ρ(v∗)v∗. As we already know, ui ∼ (µin −
µout)

√
n

2
and (ρ(v∗)v∗)i ∼ (µin − µout)

√
n

2
for i ≤ n

2
. Clearly, for i ≤ n

2

|wi| ≤
∣∣∣∣ui − (µin − µout)

√
n

2

∣∣∣∣+

∣∣∣∣(µin − µout)
√
n

2
− 1√

n
ρ(v∗)

∣∣∣∣ .
Then

P (|wi| > γn) ≤ P
(∣∣∣∣ui − (µin − µout)

√
n

2

∣∣∣∣ > γn

)
+

+ P
(∣∣∣∣(µin − µout)

√
n

2
− 1√

n
ρ(v∗)

∣∣∣∣ > γn

)
.

A similar bound can be derived for the case i > n/2. Taking into account that ρ(v∗) does not
depend on i, using the union bound and equations (7.3.4) and (7.3.7), we get that

P
(

max
i
|wi| > 2γn

)
≤ n · 2

n2
+

2

n
=

4

n
.

One can readily see that ‖w‖2 ≤
√
n ·maxiw2

i =
√
nmaxi |wi|. Thus, we �nally can bound

the Euclidean norm of the vector w:

P
(
‖w‖2 > 2γn

√
n
)
≤ 4

n
→ 0, n→∞.

Now we can use Theorem 13. According to this result,

| sin∠(v∗, ṽ)| ≤ ‖Av∗ − v∗ρ(v∗)‖2

‖v∗‖2δ
=
‖w‖2

δ
≤ 2γn

√
n

δ
w. h. p.,

where δ = mini |λi(A) − ρ(v∗)| over all λi 6= λ̃. Since we have assumed that (7.2.7) and
(7.2.8) hold, by Proposition 23, δ > εn. Then, since v∗ is normalized, a simple geometric
consideration guarantees that

‖v∗ − ṽ‖2 ≤
√

2 | sin∠(v∗, ṽ)| ≤ 2
√

2γn
√
n

εn
=

2
√

2γn
ε
√
n

w. h. p. (7.3.8)

Let us denote the number of errors by

r = |{i ∈ [n] : sign ((v∗)i) 6= sign (ṽi)}| .

If we now remember that the vector v∗ consists of± 1√
n

, it is clear that for any iwith sign((v∗)i) 6=
sign(ṽi)

|(v∗)i − v̂i| >
1√
n
.
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The number of such coordinates is r. Therefore,

‖v∗ − ṽ‖2
2 ≥ r

(
1√
n

)2

=
r

n
.

Then, by (7.3.8), the following chain of inequalities holds:

r

n
≤ ‖v∗ − ṽ‖2

2 ≤
8γ2

n

ε2n
=

16(µin + µout) log n

ε2n
w. h. p.

Hence, with high probability

r ≤ 16(µin + µout) log n

ε2
= O(log n), n→∞.

Thus, the vector ṽ provides almost exact recovery. This completes the proof.

7.3.2 Strong consistency of higher-order spectral clustering with lo-
cal improvement

In order to derive a strong consistency result, we shall add an extra step to Algorithm 11.
Given σ̃, the prediction of Algorithm 11, we classify each node to be in the community where
it has the most neighbors, according to the labelling σ̃. We summarize this procedure in
Algorithm 12, and Theorem 14 states the exact recovery result.

Algorithm 12: Higher-Order Spectral Clustering with Local Improvement (HOSC-
LI).
Input: Adjacency matrix A, average intra- and inter-cluster edge densities µin, µout.
Output: Node labelling σ̂ ∈ {1, 2}n.

1

Global step:
2 Let σ̃ be the output of Algorithm 11.
Local improvement:

3 for i = 1, . . . , n do
4 Set σ̂i := arg max

k∈{1,2}

∑
j 6=i

1 (σ̃j = k) aij .

Remark 20. The local improvement step runs in O(ndmax) operations, where dmax is the
maximum degree of the graph. Albeit the local improvement step being convenient for the
theoretical proof, we will see in Section 7.4 (Figure 7.3) that in practice Algorithm 11 already
works well often giving 100% accuracy even without local improvement.

Theorem 14. Let us consider the d-dimensional SGBM de�ned by (7.1.1)-(7.1.2), and connec-
tivity probability functions Fin and Fout satisfying conditions (7.2.7)-(7.2.8). Then Algorithm 12
provides exact recovery for the given SGBM.
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Proof. We need to prove that the almost exact recovery of Algorithm 11 (established in The-
orem 12) can be transformed into exact recovery by the local improvement step. This step
consists in counting neighbours in the obtained communities. For each node i we count the
number of neighbours in both supposed communities determined by the sign of the vector ṽ
coordinate:

Z̃1(i) =
∑

sign(ṽj)=1

Aij,

Z̃2(i) =
∑

sign(ṽj)=−1

Aij.

According to Algorithm 12, if Z̃1(i) > Z̃2(i), we assign the label σ̂i = 1 to node i, otherwise
we label it as σ̂i = 2. Suppose that some node i is still misclassi�ed after this procedure and
our prediction does not coincide with the true label: σ̂i 6= σi. Let us assume without loss of
generality that σi = 1 and, therefore, σ̂i = 2. Then, clearly, Z̃2(i) > Z̃1(i).

Let us denote by Z1(i) and Z2(i) degrees of node i in the communities de�ned by the true
labels σ:

Zj(i) =
∑
σi=j

Aij, j = 1, 2.

Since sign(ṽj) coincides with the true community partition for all but C log n nodes (see the
end of the proof of Theorem 12),∣∣∣Z̃j(i)− Zj(i)∣∣∣ ≤ C log n, j = 1, 2,

which implies that

Z̃1(i) ≥ Z1(i)− C log n and Z̃2(i) ≤ Z2(i) + C log n.

Hence, taking into account that Z̃2(i) > Z̃1(i),

Z2(i) + 2C log n > Z1(i),

which means that the inter-cluster degree of node i is asymptotically not less than its intra-
cluster degree (since Zj(i) = Θ(n) w.h.p.). Intuitively, this should happen very seldom,
and Lemma 33 in Section 7.6 gives an upper bound on the probability of this event. Thus, by
Lemma 33, for large n,

P(Z2(i) + 2C log n > Z1(i)) = P(Z1(i)− Z2(i) < 2C log n) ≤

≤ P
(
Z1(i)− Z2(i) <

√
2(µin + µout)n log n

)
≤ 1

n
→ 0, n→∞.

Then each node is classi�ed correctly with high probability and Theorem 14 is proved.
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7.4 Numerical results

7.4.1 Higher-order spectral clustering on 1-dimensional GBM

Let us consider a 1-dimensional GBM, de�ned in Example 14. We �rst emphasize two im-
portant points of the theoretical study: the ideal eigenvector for clustering is not necesarily
the Fiedler vector, and some eigenvectors, including the Fiedler vector, could correspond to
geometric con�gurations.

Figure 7.1 shows the accuracy (i.e., the ratio of correctly labelled nodes, up to a global
permutation of the labels if needed, divided by the total number of nodes) of each eigenvector
for a realization of 1-dimensional GBM. We see that, although the Fiedler vector is not suitable
for clustering, there is nonetheless one eigevector that stands out of the crowd.
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Figure 7.1: Accuracy obtained on a 1-dimensional GBM (n = 2000, rin = 0.08, rout = 0.02)
using the di�erent eigenvectors of the adjacency matrix. The eigenvector of index k corre-
sponds to the eigenvector associated with the k-th largest eigenvalue of A.

Then, in Figure 7.2 we draw the nodes of a GBM according to their respective position. We
then show the clusters predicted by some eigenvectors. We see some geometric con�gurations
(Figures 7.2a and 7.2c), while the eigenvector leading to the perfect accuracy corresponds to
index 4 (Figure 7.2b).

Figure 7.3 shows the evolution of the accuracy of Algorithms 11 and 12 when the number
of nodes n increases. As expected, the accuracy increases with n. Moreover, we see no signif-
icant e�ect of using the local improvement of Algorithm 12. Thus, we conduct all the rest of
numerical experiments with the basic Algorithm 11.

In Figure 7.4, we illustrate the statement of Proposition 24: for some speci�c values of
the pair (rin, rout), the Conditions (7.2.7) and (7.2.8) do not hold, and Algorithm 11 is not
guaranteed to work. We observe in Figure 7.4 that these pairs of bad values exactly correspond
to the moments when the index of the ideal eigenvector jumps from one value to another.
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(a) k = 2 (b) k = 4 (c) k = 8

Figure 7.2: Example of clustering done using the eigenvector associated to the k-th largest
eigenvalue of the adjacency matrix of a 1-dimensional GBM (n = 150, rin = 0.2, rout =

0.05). For clarity edges are not shown, and nodes are positioned on a circle according to their
true positions. The Fiedler vector (k = 2) is associated with a geometric cut, while the 4-th
eigenvector corresponds to the true community labelling and leads to the perfect accuracy.
The vector k = 8 is associated with yet another geometric cut.
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Figure 7.3: Accuracy obtained on 1-dimensional GBM as a function of n, when rin = 0.08 and
rout = 0.05, for Algorithm 11 and Algorithm 12. Results are averaged over 100 realisations,
and error bars show the standard error.
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Figure 7.4: Evolution of accuracy (blue curve) with respect to rin, for a GBM with n = 3000

and rout = 0.06. Results are averaged over 10 realisations. By the red curve we show the
index of the ideal eigenvector, again with respect to rin.
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Finally, we compare in Figure 7.5 the accuracy of Algorithm 11 with the motif counting

algorithms presented in references [Gal+18] and [Gal+19]. Those algorithms consist in count-
ing the number of common neighbors, and clustering accordingly. We call Motif Counting 1
(resp. Motif Counting 2) the algorithm of reference [Gal+18] (resp. of reference [Gal+19]).
We thank the authors for providing us the code used in their papers. We observed that with
present realizations the motif counting algorithms take much more time than HOSC takes.
For example on a GBM with n = 3000, rin = 0.08 and rout = 0.04, HOSC takes 8 seconds,
while Motif Counting 1 takes 130 seconds and Motif Counting 2 takes 60 seconds on a laptop
with 1.90GHz CPU and 15.5 GB memory.

0.04 0.06 0.08 0.10 0.12 0.14
rin

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

Evolution of accuracy, 
 for n = 3000 and rout = 0.04 

Algorithm:
HOSC
Motif Counting 1
Motif Counting 2

Figure 7.5: Accuracy obtained on 1-dimensional GBM for di�erent clustering methods. Motif
Counting 1 corresponds to the algorithm described in [Gal+18] and Motif Counting 2 to the
algorithm described in [Gal+19]. Results are averaged over 50 realisations, and error bars
show the standard error.

7.4.2 Waxman Block Model

Let us now consider the Waxman Block Model introduced in Example 15. Recall that Fin(x) =
min(1, qine

−sinx) and Fout(x) = min(1, qoute
−soutx), where qin, qout, sin, sout are four positive

real numbers. We have the following particular situations:

• if sout = 0, then Fout(x) = qout and the inter-cluster interactions are independent of
the nodes’ positions. If sin = 0 as well, we recover the SBM;

• if qin = erinsin and qout = eroutsout , then in the limit sin, sout � 1 we recover the 1-
dimensional GBM.

We show in Figure 7.6 the accuracy of Algorithm 11 on a WBM. In particular, we see that
we do not need µin > µout, and we can recover disassociative communities. However, there
are obvious dips when qin is close to qout or sin is close to sout. It is clear that if qin = qout on
the left-hand side picture or sin = sout on the right-hand side picture, one cannot distinguish
two communities in the graph. Thus, for small n, we observe some ranges around these ‘bad’
values where Algorithm 11 fails. As expected, the dips become narrower when n increases.
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Figure 7.6: Accuracy obtained on a 1-dimensional Waxman Block Model. Results are averaged
over 10 realizations. Same colors in the two plots correspond to the same graph size.

7.5 Conclusions and future research

In the present chapter we devised an e�ective algorithm for clustering geometric graphs. This
algorithm is close in concept to the classical spectral clustering method but it makes use of
the eigenvector associated with a higher-order eigenvalue. It provides weak consistency for
a wide class of graph models which we call the Soft Geometric Block Model, under some mild
conditions on the Fourier transform of Fin and Fout. A small adjustment of the algorithm
leads to strong consistency. Moreover, our method was shown to be e�ective in numerical
simulations even for graphs of modest size.

The problem stated in the current paper might be investigated further in several directions.
One of them is a possible study on the SGBM with more than two clusters. The situation here
is quite di�erent from the SBM where the spectral clustering algorithm with few eigenvec-
tors associated with the smallest non-zero eigenvalues provides good performance. In the
SGBM even the choice of such eigenvectors is not trivial, since the ‘optimal’ eigenvalue for
distinguishing two clusters is often not the smallest one.

Another natural direction of research is the investigation of the sparse regime, since all
our theoretical results concern the case of degrees linear in n (this assumption is used for the
analysis of the adjacency matrix spectrum and for �nding the spectral gap around the ‘ideal’
eigenvalue λ̃). In sparser regimes, there are e�ective algorithms for some particular cases of
the SGBM (e. g., for the GBM), but there is no established threshold when exact recovery is
theoretically possible. Unfortunately, the method of the current paper without revision is not
appropriate for this situation, and the technique will very likely be much more complicated.

Finally, considering weighted geometric graphs could be an interesting task for applica-
tions where clustering of weighted graphs is pertinent. For instance, the functions Fin and
Fout can be considered as weights on the edges in a graph. We believe that most of the results
of the paper may be easily transferred to this case.
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7.6 Auxiliary results

7.6.1 Hamburger moment problem for the limiting measure

Lemma 30. Assume that F : Td → R is such that F (0) is equal to the Fourier series of F (x)

evaluated at 0 and 0 ≤ F (x) ≤ 1. Consider the measure µ de�ned by the function F :

µ =
∑
k∈Zd

δF̂ (k).

Then µ is de�ned uniquely by the sequence of its moments {Mn}∞n=1.

Proof. It is enough to show that Carleman’s condition holds true for µ (see [AK65]):
∞∑
n=1

M
− 1

2n
2n = +∞. (7.6.1)

As one can easily see,
M2n =

∑
k∈Zd

F̂ 2n(k). (7.6.2)

From the bounds 0 ≤ F (x) ≤ 1 it follows that F̂ (k) ≤ 1. Then it is clear that F̂ n(k) ≤
F̂ (k) for any n ∈ N. We can write

M2n =
∑
k∈Zd

F̂ 2n(k) ≤
∑
k∈Zd

F̂ (k) = F (0) ≤ 1.

Here we used the assumption that F (0) equals its Fourier series evaluated at 0. Then

M
− 1

2n
2n ≥ 1.

Thus, the series in the right-hand side of (7.6.1) is divergent and Carleman’s condition is
veri�ed.

7.6.2 m-times convolution

Lemma 31. Letm ∈ N and F1, . . . , Fm be integrable functions over Td. Then,

F1 ∗ · · · ∗ Fm(0) =

∫
(Td)m

m∏
j=1

Fj(zj − zj+1) dz1 . . . dzm

with the notation zm+1 = z1.
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Proof. With the change of variable ui = zi − zi+1 for i = 1 . . .m− 1, we have∫

(Td)m

m∏
j=1

Fj(zj − zj+1) dz1 . . . dzm

=

∫
Td
dz1

∫
(Td)m−1

m−1∏
i=1

Fi(ui)Fm(−u1 − · · · − um−1)du1 . . . dum−1

We notice that ∫
Td
dum−1Fm−1(um−1)Fm(−u1 − · · · − um−1)

= Fm−1 ∗ Fm(−u1 − · · · − um−2).

Hence, ∫
(Td)m−1

m−1∏
i=1

Fi(ui)Fm(−u1 − · · · − um−1)du1 . . . dum−1

= F1 ∗ · · · ∗ Fm(0).

Therefore,∫
(Td)m

m∏
j=1

Fj(zj − zj+1) dz1 . . . dzm =

∫
Td
dz1F1 ∗ · · · ∗ Fm(0) = F1 ∗ · · · ∗ Fm(0),

which ends the proof.

7.6.3 Fourier transform of the square wave

Lemma 32. Let 0 < r < 1
2
. Let F : Rd → R be 1-periodic such that F (x) = 1 (‖x‖ ≤ r) for

x ∈ Td. Then,

F̂ (k) = 2rd
d∏
j=1

sinc(2πkjr),

where k = (k1, . . . , kd) ∈ Zd and sinc(x) =

{
1, if x = 0,
sinx
x
, otherwise.

Proof. We shall use the set [−1/2, 1/2]d as a representation of Td. Let us �rst notice that for
x ∈ [−1/2, 1/2]d

F (x) = 1(‖x‖ ≤ r) = 1

(
max
1≤j≤d

|xj| ≤ r

)
=

d∏
j=1

1 (|xj| ≤ r) .
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Then

F̂ (k) =

∫
[− 1

2
, 1
2 ]
d
F (x)e−2πi〈k,x〉dx

=

∫
[− 1

2
, 1
2 ]
d

d∏
j=1

1(|xj| ≤ r)e−2πikjxjdx1 . . . dxd

=
d∏
j=1

∫ 1/2

−1/2

1(|xj| ≤ r)e−2πikjxjdxj.

Let us consider some 1 ≤ j ≤ d. If kj = 0, we have
∫ 1/2

−1/2
1(|xj| ≤ r)dxj =

∫ r
−r dx = 2r.

Moreover, for kj 6= 0,

F̂ (k) =

∫ 1/2

−1/2

1(|xj| ≤ r)e−2πikjxjdxj =

∫ r

−r
e−2πikjxjdxj =

e−2πikjr − e2πikjr

−2πikj
=

=
sin(2πkjr)

πkj
= 2r

sin(2πkjr)

2πkjr
= 2r sinc(2πkjr).

Hence, F̂ (k) = 2rd
∏d

j=1 sinc(2πkjr).

7.6.4 Number of neighbours in di�erent clusters

Lemma 33. Let us consider the SGBM with connectivity probability functions Fin and Fout for
which µin = F̂in(0) > F̂out(0) = µout. Denote by Zin(i) (resp., Zout(i)) the ‘intra-cluster’ (resp.,
‘inter-cluster’) degree of i:

Zin(i) =
∑

j : σj=σi

Aij;

Zout(i) =
∑

j : σj 6=σi

Aij.

Denote Bi :=
{
Zin(i)− Zout(i) <

√
2(µin + µout)n log n

}
. Then

P (∪ni=1Bi) ≤
1

n
.

Proof. Let us �x i ∈ [n]. Clearly, Zin(i) ∼ Bin(n
2
− 1, µin) and Zout(i) ∼ Bin(n

2
, µout). We

again use Cherno� inequality (7.3.3). By this bound, for t = 2
√

logn√
(n/2−1)µin

and large enough n

P
(∣∣∣Zin(i)− µin

n

2

∣∣∣ > √
2µinn log n

)
≤ 1

n2
.

By the same reason, Zout is well concentrated around its mean µout
n
2
:

P
(∣∣∣Zout(i)− µout

n

2

∣∣∣ > √
2µoutn log n

)
≤ 1

n2
.
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Therefore, since µin > µout,

P(Bi) = P
(
Zin(i)− Zout(i) <

√
2(µin + µout)n log n

)
≤ 1

n2
.

By the union bound,

P(B) ≤ nP(B1) ≤ 1

n
,

which proves the lemma.

7.6.5 Trace operator is Lipschitz

Lemma 34. Let A, Ã ∈ {0, 1}n×n be two adjacency matrices, andm ≥ 1. Then,∣∣∣TrAm − Tr Ãm
∣∣∣ ≤ mnm−2 dHam

(
A, Ã

)
.

Proof. Since A and Ã are adjacency matrices of graphs without self-loops, we have TrA =

0 = Tr Ã. Hence
∣∣∣TrA− Tr Ã

∣∣∣ = 0 ≤ 1
n

dHam

(
A, Ã

)
, and the statement holds for m = 1.

Let us now consider m ≥ 2. We have

∣∣∣Tr
(
Am−1

)
− Tr(Ãm−1)

∣∣∣ =

∣∣∣∣∣ ∑
i1,...,im

(
m∏
j=1

Aijij+1
−

m∏
j=1

Ãij ,ij+1

)∣∣∣∣∣
≤

∑
i1,...,im

∣∣∣∣∣
m∏
j=1

Aijij+1
−

m∏
j=1

Ãij ,ij+1

∣∣∣∣∣ ,
with the notation im+1 = i1. The quantity

∏m
j=1Aijij+1

is equal to one if Aijij+1
= 1 for all

j = 1, . . . ,m, and equals zero otherwise. Hence, the di�erence
∣∣∣∏m

j=1Aijij+1
−
∏m

j=1 Ãij ,ij+1

∣∣∣
is non-zero and is equal to one in two scenarii:

• Aijij+1
= 1 for all j = 1, . . . ,m, while there is a j′ such that Ãij′ ij′+1

= 0,

• there is a j′ such that Aij′ ij′+1
= 0 and Ãijij+1

= 1 for all j = 1, . . . ,m.

Thus,∣∣∣∣∣
m∏
j=1

Aijij+1
−

m∏
j=1

Ãij ,ij+1

∣∣∣∣∣ = 1
(
∀j Aijij+1

= 1
)

1
(
∃j′ : Ãij′ ij′+1

= 0
)

+

+ 1
(
∃j′ : Aij′ ij′+1

= 0
)

1
(
∀j Ãijij+1

= 1
)
.
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But,

1
(
∀j Aijij+1

= 1
)

1
(
∃j′ : Ãij′ ij′+1

= 0
)
≤

m∏
j=1

1(Aijij+1
= 1)

m∑
j=1

1
(
Ãijij+1

= 0
)

≤
m∑
j=1

1(Aijij+1
= 1)1(Ãijij+1

= 0).

Similarly,

1
(
∃j′ : Aij′ ij′+1

= 0
)

1
(
∀j Ãijij+1

= 1
)
≤

m∑
j=1

1(Aijij+1
= 0)1(Ãijij+1

= 1).

Therefore, ∣∣∣∣∣
m∏
j=1

Aijij+1
−

m∏
j=1

Ãij ,ij+1

∣∣∣∣∣ ≤
m∑
j=1

1
(
Aijij+1

6= Ãijij+1

)
.

This leads to

∑
i1,...,im

∣∣∣∣∣
m∏
j=1

Aijij+1
−

m∏
j=1

Ãij ,ij+1

∣∣∣∣∣ ≤ ∑
i1,...,im

m∑
j=1

1
(
Aijij+1

6= Ãijij+1

)
≤ m nm−2 dHam(A, Ã),

where the last line holds since for all j = 1, . . . ,m and m ≥ 2∑
i1,...,im

1
(
Aijij+1

6= Ãijij+1

)
= nm−2

∑
ij ,ij+1

1
(
Aijij+1

6= Ãijij+1

)
= nm−2 dHam

(
A, Ã

)
.
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