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Le résumé

Les utilisateurs de systèmes d’information divisent normalement les tâches
en une séquence de plusieurs étapes pour les résoudre. En particulier, les
utilisateurs divisent les tâches de recherche en séquences de requêtes, en in-
teragissant avec les systèmes de recherche pour mener à bien le processus de
recherche d’informations. Les interactions des utilisateurs sont enregistrées
dans des journaux de requêtes, ce qui permet de développer des modèles pour
apprendre automatiquement les comportements de recherche à partir des in-
teractions des utilisateurs avec les systèmes de recherche. Ces modèles sont à
la base de multiples applications d’assistance aux utilisateurs qui aident les
systèmes de recherche à être plus interactifs, faciles à utiliser, et cohérents.

Par conséquent, nous proposons les contributions suivantes : un modèle
neuronale pour apprendre à détecter les limites des tâches de recherche dans
les journaux de requête ; une architecture de regroupement profond récurrent
qui apprend simultanément les représentations de requête et regroupe les
requêtes en tâches de recherche ; un modèle non supervisé et indépendant
d’utilisateur pour l’identification des tâches de recherche prenant en charge
les requêtes dans seize langues ; et un modèle de tâche de recherche multi-
lingue, une approche non supervisée qui modélise simultanément l’intention
de recherche de l’utilisateur et les tâches de recherche.

Les modèles proposés améliorent les méthodes existantes de modélisation,
en tenant compte de la confidentialité des utilisateurs, des réponses en temps
réel et de l’accessibilité linguistique. Le respect de la vie privée de l’utilisateur
est une préoccupation majeure, tandis que des réponses rapides sont essen-
tielles pour les systèmes de recherche qui interagissent avec les utilisateurs
en temps réel, en particulier dans la recherche par conversation. Dans le
même temps, l’accessibilité linguistique est essentielle pour aider les utilisa-
teurs du monde entier, qui interagissent avec les systèmes de recherche dans
de nombreuses langues. Les contributions proposées peuvent bénéficier à de
nombreuses applications d’assistance aux utilisateurs, en aidant ces derniers
à mieux résoudre leurs tâches de recherche lorsqu’ils accèdent aux systèmes
de recherche pour répondre à leurs besoins d’information.
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Abstract

Users of information systems normally divide tasks in a sequence of multiple
steps to solve them. In particular, users divide search tasks into sequences of
queries, interacting with search systems to carry out the information seek-
ing process. User interactions are registered on search query logs, enabling
the development of models to automatically learn search patterns from the
users’ interactions with search systems. These models underpin multiple user
assisting applications that help search systems to be more interactive, user-
friendly, and coherent. User assisting applications include query suggestion,
the ranking of search results based on tasks, query reformulation analysis,
e-commerce applications, retrieval of advertisement, query-term prediction,
mapping of queries to search tasks, and so on.

Consequently, we propose the following contributions: a neural model for
learning to detect search task boundaries in query logs; a recurrent deep clus-
tering architecture that simultaneously learns query representations through
self-training, and cluster queries into groups of search tasks; Multilingual
Graph-Based Clustering, an unsupervised, user-agnostic model for search
task identification supporting queries in sixteen languages; and Language-
agnostic Search Task Model, an unsupervised approach that simultaneously
models user search intent and search tasks.

Proposed models improve on existing methods for modeling user interac-
tions, taking into account user privacy, realtime response times, and language
accessibility. User privacy is a major concern in Ethics for intelligent systems,
while fast responses are critical for search systems interacting with users in
realtime, particularly in conversational search. At the same time, language
accessibility is essential to assist users worldwide, who interact with search
systems in many languages. The proposed contributions can benefit many
user assisting applications, helping users to better solve their search tasks
when accessing search systems to fulfill their information needs.
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Chapter 1
Introduction

On ne voit bien qu’avec le cœur.
L’essentiel est invisible pour les
yeux.

Antoine de Saint-Exupéry

Users divide mental tasks in a sequence of multiple easy steps to deal with
mental overload (Kahneman, 2013). In particular, when users interact with
search systems to satisfy their information needs, they divide search tasks
into sequences of queries. Those interactions are registered in query logs, and
mining users’ interactions enable the development of models that learn the
patterns users follow to carry out their search tasks (Hearst, 2009; Lucchese
et al., 2013; Mehrotra and Yilmaz, 2017).

Initially, when users run a search query, search systems produced a list of
hyperlinks for ranked documents. Commonly known as the “ten-blue-links”
approach to search, this paradigm is no longer in use (Rosset et al., 2020).
Nowadays, search systems assist users while they carry out their search tasks
using multiple supporting applications, including query autocompletion (Li
et al., 2017; Sun and Lou, 2014), search clarification (Zamani et al., 2020),
query suggestion (Ahmad et al., 2019; Tamine et al., 2020), query term pre-
diction, e-commerce applications, product recommendations, advertising re-
trieval for products (Hearst, 2009; Mehrotra and Yilmaz, 2017) query-task
mapping (Völske et al., 2019), ranking of results based on search tasks (Ah-
mad et al., 2019), suggestion of questions (Rosset et al., 2020), and so on.

Furthermore, advances in speech recognition, natural language under-
standing, and text-to-speech synthesis enable users to leverage digital per-
sonal assistants to satisfy their information needs (Thomas et al., 2020; Za-
mani and Craswell, 2020). Digital assistants are now available in desktops,
smartphones, tablets, smartwatches, and dedicated smart speakers. When
users access digital assistants for information seeking, tracking the conversa-

1



2 1 Introduction

tion topic is essential so that users can carry out their search tasks (Khatri
et al., 2018; Venkatesh et al., 2018).

To underpin those user assisting applications and retrieval methods, it is
crucial to develop models that automatically learn from user interactions with
search systems. As search systems evolve and new platforms emerge, centering
on users to help them in their information seeking journeys, learning from
user interactions is becoming increasingly important in information retrieval
research (Mehrotra et al., 2020).

Therefore, the research problem we aim to address in this dissertation is
the development of models that learn search patterns from user interactions
with search systems. For developing these models, along with the interactions
of users with search systems, we also leverage advances in natural language
processing for encoding search queries. As queries are steps users execute as
part of a search task, and because of the relevance of search tasks in many
user assisting applications and retrieval methods, we focus our research on
search patterns related to user search tasks.

To address the research problem, the first approach is the detection of
search task boundaries in user interactions with search systems. Some exist-
ing models use surrounding user queries or clicked URLs, which make them
unfeasible to use in realtime interactions. Other models use heuristics with
constant thresholds, but a manual statistical analysis is required to update
the thresholds. We propose a neural model that learns to detect search task
boundaries in query logs. The interactions of the users in the search query
logs are ordered by time and grouped by user identifiers, providing a chrono-
logically ordered set of interactions per user. Such interactions are the input
to the proposed model, which is supervised (Lugo et al., 2020b).

The second approach deals with the modeling of search tasks from user
interactions with search systems. We propose Recurrent Deep Clustering
(RDC), a deep clustering architecture that extends the foregoing neural
model to extract user search tasks from query logs in an unsupervised way.
The deep clustering architecture uses a multiobjective approach, simultane-
ously optimizing the query representation and the clustering of queries into
search tasks. The representation for user queries is learned through a self-
supervised method, leveraging data augmentation for language inputs and
dual-channel neural architectures (Lugo et al., 2021a,b).

Most existing models for search task identification are monolingual, sup-
porting user queries normally in English only. However, users around the
world access search systems in many languages. Also, a single user can is-
sue queries in two or more languages to solve a particular information need.
Another limitation of existing models for search tasks is the lack of realtime
response times, which relegates them to offline modeling applications. For the
third approach, we propose Multilingual Graph-based Clustering (MGBC), a
multilingual unsupervised approach for search task identification, supporting
user queries in several languages and providing the possibility of mapping
queries to search tasks in realtime (Lugo et al., 2020a).
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Finally, the fourth approach is Language-agnostic Search Task Modeling
(LASTM), an unsupervised model that uses a multiobjective approach, si-
multaneously optimizing search task clusters and user search intents through
the relationship between user queries and clicked documents. The modeling
scheme for user search intent leverages user query – clicked document rela-
tionships, representing queries in a language-agnostic semantic space. This
proposed model takes advantage of query-task mapping to provide results in
realtime (Lugo et al., 2021c). Moreover, the code for all contributions is pub-
licly available in a GitHub repository1, facilitating the replication of results
and the utilization of proposed models for further research.

1.1 Overview

The remaining chapters of this dissertation are organized as follows. Chapter
2 presents a critical review of existing work, ranging from publicly available
datasets to machine learning methods, to natural language models for text
representation, to existing information retrieval literature centered around
user search patterns. Chapter 3 proposes a neural model for learning to de-
tect search task boundaries in query logs. In chapter 4, a recurrent deep
clustering architecture for search task extraction is proposed, along with a
self-supervised method to learn query representations using data augmenta-
tion. Chapter 5 develops a multilingual, unsupervised approach for identi-
fying user search tasks, with the ability to map queries to search tasks in
realtime. Chapter 6 proposes a model for user search intent, which leverages
the relationship between user queries and clicked documents. At the same
time, it develops a language-agnostic, unsupervised approach for modeling
search tasks using semantic relationships between queries. Finally, chapter
7 explores the significance of the contributions, along with perspectives for
future research directions.

1 https://github.com/lelugom/search





Chapter 2
Background

. . . sin saber que la búsqueda de
las cosas perdidas está entorpecida
por los hábitos rutinarios, y es por
eso que cuesta tanto trabajo
encontrarlas.

Gabriel Garćıa Márquez

More than half the world’s population uses the internet, according to the
Internet World Stats1. Essential components in such interactions are search
systems, which help users access the ever-increasing amount of information
available to satisfy their information needs. Search systems allow users to
perform their search tasks, relying on large web indexes to respond to users’
requests. For example, Google’s search index has an estimated size of around
55 billion web pages, while Microsoft’s Bing search index has an estimated
size of around 12 billion web pages2.

Likewise, the most popular mobile applications, like WhatsApp Messenger,
Twitter, and Facebook3, have search systems available for the millions of users
who access these applications every day. Android, the mobile OS with the
biggest user base, has a default search bar on its main screen. By the same
token, Windows, the most popular desktop OS in the world4, has a search
box right beside the Start button. The search box is also a default feature in
its Windows 10 version. On top of that, the advent of smart home devices

1 https://www.internetworldstats.com/stats.htm
2 https://www.worldwidewebsize.com
3 https://www.cnet.com/news/10-most-downloaded-apps-of-the-decade-facebook-
dominated-2010-2019
4 https://https://arstechnica.com/gadgets/2021/02/the-worlds-second-most-popular-
desktop-operating-system-isnt-macos-anymore

5
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and digital assistants like Amazon Alexa, Apple Siri, Google Assistant, and
Microsoft Cortana, constitutes another way to interact with search systems.

All those interactions enable the development of models that learn search
patterns to better assist users in their information seeking. In this chapter,
we perform a critical review of existing literature, comparing and contrasting
existing research related to the modeling of users’ search patterns.

To structure the literature review, we consider that a wide range of needs
and desires from users are converted to queries and run in search systems
(Hearst, 2009). Search query logs register the queries users run to fulfill their
information needs. Some of those search query logs are publicly available for
analysis and model extraction (Section 2.1). Mining such query logs allows
the modeling of search behaviors through automatic or manual analysis of
user interactions. For automatic analysis, machine learning (Section 2.2) pro-
vides methods for processing the high dimensional data present in query logs.
Machine learning approaches require representing queries in a vector space.
Thus, multiple language representation models (Section 2.3) have been pro-
posed to encode the text data in user queries. Using query representations
and machine learning, we can model the tasks that users perform on search
systems (Section 2.4), as well as other search patterns, including the seg-
mentation of query logs (Section 2.5), that enable the development of several
user assisting applications and retrieval models to support users while they
perform their information seeking.

2.1 Search query log datasets

Multiple research works (Thomas et al., 2020; Wang et al., 2013a,b; Zhang
et al., 2019) use proprietary search query logs mainly for two reasons: user
privacy and commercial concerns that could arise when other search systems
exploit the information (Craswell et al., 2020a). However, there are some
publicly available datasets that we can leverage to model search behaviors
(Table 2.1).

SogouQ5 released the SogouQ User Query Log (SUQL) (Liu et al., 2011).
The Lite version from June 2008 has 1,724,264 queries corresponding to
around one day of search activities. Queries were registered from 519,876
user identifiers and are mostly in Chinese (Table 2.2). A subset of the SUQL
collection with search tasks labels (SUQLST) contains 18,600 queries from
532 users (Du et al., 2018); however, SUQLST is not publicly available for
download.

AOL6 released the AOL Query Log (AOLQL) in 2006 (Pass et al., 2006).
It contains 36,389,566 queries from 657,426 users, collected over a period of

5 http://www.sogou.com
6 https://www.aol.com

http://www.sogou.com
https://www.aol.com
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around three months (Gayo-Avello, 2009). Multiple subsets from the AOLQL
collection has been released, with ground-truth labels for topical sessions
(Gayo-Avello, 2009; Gomes et al., 2019) and search tasks (Hagen et al., 2013;
Lucchese et al., 2013; Sen et al., 2018; Völske et al., 2019).

The AOLQL subset with topical sessions (AOLTS) (Gayo-Avello, 2009;
Gomes et al., 2019) contains 10235 queries issued by 215 unique users. La-
bels for the queries in the dataset correspond to topical sessions, which are
groups of successive queries related to the same information need (Gayo-
Avello, 2009). Topical sessions are independent of information needs. For
instance, the user with identifier 1713103 issued the query “ebay.com”, which
has the topical session ’733’. The same user issued the query “ebay” later
on, after issuing queries with other information needs like “club pogo” or
“metal detecting”. Nevertheless, the topical session label for the query “ebay”
changed to ’737’ even though it reflects the same user intent as the query
“ebay.com”.

Dataset Reference No. of queries Labels

SUQL (Liu et al., 2011) 1724264 None
SUQLST (Du et al., 2018) 18600 Search tasks
AOLQL (Pass et al., 2006) 36389566 None
AOLTS (Gayo-Avello, 2009) 10235 Topical sessions
AOLQTM (Völske et al., 2019) 41780 Search tasks
WSMC12 (Hagen et al., 2013) 8840 Search tasks
CSTE (Sen et al., 2018) 1424 Search tasks
TGSST (Lucchese et al., 2013) 1424 Search tasks
TRECQTM (Völske et al., 2019) 47514 Search tasks
ORCAS (Craswell et al., 2020a) 10400000 Document IDs
WHQTM (Völske et al., 2019) 119292 Search tasks
CUSTA (Dosso et al., 2020) 2390 Search tasks

Table 2.1: Search query collections for modelling several users’ search pat-
terns.

The Webis Search Mission Corpus 2012 (WSMC12) dataset (Hagen et al.,
2013) has 8840 entries with 2881 search task labels of 127 users. It is a subset
of the AOLQL collection. Labels in this dataset correspond to search tasks –
known as search missions – for a particular user identifier, grouping queries
by user. If two users run a query for the same search task, the search task
label is not necessarily the same. For instance, the user with identifier 9887420
issued the query “maps” and it was labeled with search task ’2’; the user with
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identifier 1713103 issued the query “maps” as well, but it was labeled with
search task ’22’. Overall, both queries represent the same search task because
user intents reflect maps websites, as the clicked URLs show: the clicked URL
for the first case was maps.google.com while the clicked URL for the second
case was maps.yahoo.com.

The Cross-Session Task Extraction (CSTE) dataset (Sen et al., 2018) is a
subset of the AOLQL collection. The CSTE dataset has 1424 entries with 224
labels corresponding to cross-session search tasks, without grouping queries
by user information or query timestamps. Because of this, ground-truth labels
are independent from users and time sessions. By contrast, the Time Gap
Session with Search Tasks (TGSST) dataset (Lucchese et al., 2013) has the
same queries than the CSTE dataset, but the 1424 entries are grouped by
user identifiers and time sessions. Time sessions are clusters of chronological
queries with a time span of less than 26 minutes between subsequent query
pairs. Every time session has its own search task labels. If queries with the
same tasks happens in different time sessions, they could have distinct search
task labels. For instance, the query ”precious momunts”, run by user with
identifier 117514, has a search task label of ’3’ for time session 3, while the
query ”precious momounts”, run by the same user, has a search task label of
’1’ for time session 5.

Combining search queries and user clicks, the Open Resource for Click
Analysis in Search (ORCAS) (Craswell et al., 2020a) contains 18.8M clicked
document query pairs for 10.4M unique queries. Entries in ORCAS comprise
query ID, query text, document ID, and document URL. The document IDs
and URLs come from the TREC deep learning track document collection
(Craswell et al., 2020b); by doing so, it is possible to avoid revealing the
ranking mechanism of the search system. Queries are anonymized to protect
user information. Queries are also processed to remove sensitive information
like adult content or offensive words.

The Webis Query-Task-Mapping Corpus 2019 has three datasets with
search task labels (Völske et al., 2019), where commercial search engines78

provide suggested queries to perform data augmentation. The AOL-based
Query-Task-Mapping (AOLQTM) dataset has 41780 queries and labels for
1423 search tasks. The TREC-based Query-Task-Mapping (TRECQTM)
dataset has 47514 queries with labels for 276 search tasks. And the WikiHow-
based Query-Task-Mapping (WHQTM) dataset has 119292 queries with la-
bels for 7202 search tasks.

The Complex User Search Task Analysis (CUSTA) dataset (Dosso et al.,
2020) comes from a study of user interactions with search systems when
solving complex search tasks. The study included search tasks in computer
science, psychology, and medicine, with questionaries to assess if users had
experience in the field, as experienced users in a particular field already have

7 https://www.google.com
8 https://www.bing.com

https://www.google.com
https://www.bing.com
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several abstractions in that field. They also can use analogies to solve prob-
lems (Mitchell, 2019; Oakley, 2014), making it easier to solve complex search
tasks. Five types of learning tasks were evaluated: simple tasks, learning
tasks, decision tasks, problem-solving tasks, and multicriteria tasks. Queries
in the dataset are mostly in French (Table 2.2), totaling 2390 entries for 32
users.

Dataset Query
Language

Query
Timestamps

Clicked
URLs

Ground-truth
labels

SUQL Chinese
√ √

X
AOLTS English

√
X

√

AOLQTM English X X
√

WSMC12 English
√ √ √

CSTE English X X
√

TGSST English X X
√

TRECQTM English X X
√

ORCAS English X
√

X
WHQTM English X X

√

CUSTA French X X
√

Table 2.2: Common features in search log datasets. Only publicly available
datasets are considered.

AOLQTM, TRECQTM, and WHQTM are benchmark datasets for testing
methods that map user queries to search tasks. Table 2.3 include reference re-
sults for the three datasets, considering Word Movers Distance (WMD), Min-
Hash Locality-Sensitive Hashing (MinHash LSH), the Trie data structure9,
which is the fastest mapping method, and ElasticSearch BM2510, which is
the most accurate one (Völske et al., 2019).

Though AOLQTM, TRECQTM, and WHQTM have ground-truth labels
for search tasks, they do not have query timestamps. Thus, for models of
search behaviors requiring the computation of time spans between queries,
WSMC12 offers both query timestamps and ground-truth labels for search
tasks (Table 2.2). Query timestamps in WSMC12 are also essential when it
is required to determine whether two queries are adjacent. Finally, as search
task labels in WSMC12 are not user-independent, models for search tasks can

9 https://github.com/google/pygtrie
10 https://www.elastic.co



10 2 Background

leverage the CSTE dataset, which has user-independent ground-truth labels.
CSTE contains, however, user queries in English only, so the CUSTA dataset
can complement CSTE when testing search task models in multilingual se-
tups.

Dataset Method Accuracy Query time

AOLQTM

Trie 0.69 0.46ms
MinHash LSH 0.66 2.42ms
WMD 0.67 7.16s
ElasticSearch BM25 0.78 2.80ms

TRECQTM

Trie 0.66 0.51ms
MinHash LSH 0.68 2.50ms
WMD 0.73 9.24s
ElasticSearch BM25 0.80 2.95ms

WHQTM

Trie 0.48 0.33ms
MinHash LSH 0.41 2.28ms
WMD 0.55 22.65s
ElasticSearch BM25 0.63 4.21ms

Table 2.3: Reference results for mapping queries to search tasks.

2.2 Machine learning

Given the large size of search query logs and the high dimensionality of their
information, automatic analysis methods are crucial to model user behav-
iors from query logs. Automatic methods can extract models from query logs
in order to make descriptions or predictions of future user needs and inter-
actions. As machine learning provides methods to process large and high
dimensional data in an efficient manner (Murphy, 2012), machine learning
enables the modeling of user behaviors from their interactions with search
systems.

Existing query logs with ground-truth labels provide an input – output re-
lationship that the machine learning method can discover through the learn-
ing process (Alpaydin, 2014). This is known as supervised learning, where a
set of inputs is mapped to a certain output, and the parameters of the system
are changed to improve the matching of the model. Nonetheless, the need for
input-output samples represents a challenge for supervised learning models.
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They usually need big datasets that are cleaned and labeled by humans. In
most datasets, there is a long tail problem: common categories have high
probabilities, providing large counts of samples. But there are a lot of cate-
gories with few or no samples. Also known as edge cases, they are unlikely
but possible. These cases are challenging for machine learning models and
can easily confuse them. To deal with such scenarios, a possibility is to train
the models with common cases and let them learn the rest with unsupervised
learning (Mitchell, 2019).

In unsupervised learning, there is a set of inputs but no expected out-
put, thus, the model should extract patterns from the inputs to create valid
parameters. As unsupervised learning approaches do not need labels, this
is a viable alternative. Examples of unsupervised learning include models
that group similar items using abstract similarities or learn new categories
by analogy to existing ones (Murphy, 2012; Mitchell, 2019). Another type
of machine learning is reinforcement learning, which is based on a system of
punishments or rewards for the outputs generated, which tailor the system
for appropriate modeling (Murphy, 2012).

Furthermore, machine learning models can be parametric or non-parametric.
Parametric models have a fixed number of parameters in spite of the input
dataset size. They are computationally faster but less flexible. Parametric
models could be relatively simple like logistic regression or more complex like
deep neural networks. Conversely, In non-parametric models, the number of
parameters depends on the dataset. They are more flexible; however, large
datasets can make them computationally intractable. Also, non parametric
models could be difficult to scale because they grow as the dataset grows. An
example of a non-parametric machine learning method is k-nearest neighbor
(KNN). The label of one data point depends on the class with the higher
number of neighbors. K defines the complexity of the model. A low k has
a complex decision surface while a high k has a smoother decision surface,
usually generating as output the class with the higher data density (Murphy,
2012).

2.2.1 Supervised models

In supervised learning, the classical error rate in pattern classification – the
classification error rate – enables the computation of a loss function for the
models. The error rate is the relationship between correct input-target out-
puts and the testing set size (Graves, 2012):

E = 1
|S′|

∑
(x,z)∈S′

{
0 if h(x) = z
1 otherwise (2.1)
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where S′ is the test set, x is the input, z the expected output, and h is the
learning algorithm.

Traditional supervised machine learning algorithms depend heavily on the
way input data is represented. Each attribute of the proposed representation
is known as a feature. It usually requires considerable time and effort to find
the correct way to represent input data in order to get a good performance
in the machine learning method. The process also needs high domain specific
knowledge to extract the most important attributes of the input dataset. But
automatically learned representations usually have a better performance than
handcrafted feature extraction. When methods learn to represent input data
by themselves, we are talking about representation learning. Deep learning
models are a kind of representation learning. They learn not only the map-
ping between features and results, but the representation of input data itself
(Goodfellow et al., 2016).

Therefore, deep neural networks provide a way to infer models from the
raw data by extracting hidden structures from the information. They also au-
tomatically extract the set of attributes that best represents the input dataset
– improving the learning process by encoding representations as a nested hi-
erarchy of simpler or less abstract representations (Goodfellow et al., 2016;
Rampasek and Goldenberg, 2016). Very similar deep neural network archi-
tectures have worked for various case studies in not related domains, which
proves the suitability of deep learning models to adapt to various problem
domains. At the same time, it proves the capacity of deep neural models to
automatically extract features from data in spite of dataset domain origin. It
also shows the ability of deep neural networks to learn non–linear transforma-
tions in their hidden structures and to generate distributed representations
of input datasets (Goodfellow et al., 2016; Angermueller et al., 2016).

Common deep learning architectures include Multilayer Perceptrons, Con-
volutional Neural Networks, and Recurrent Neural Networks (Jouppi et al.,
2017).

Multilayer perceptrons (MLPs) represent models of artificial neural net-
works that are useful for classification and regression tasks. They are also
known as feedforward networks. The perceptron is the basic processing unit
of the MLP. It comprises a series of weights that transform the input nodes
through a mathematical operation. Then, an output node computes the re-
sult by combining such transformations into a single value. If a system uses
only one perceptron, it can only approximate linear functions of input data.
Thus, it only performs linear regression. But real applications usually re-
quire nonlinear regressions. MLPs implement hidden layers of perceptrons
between input and output nodes. Those hidden layers enable the approxima-
tion of nonlinear functions for the input data. An MLP with a single hidden
layer and enough nonlinear nodes – processing units – can approximate any
continuous function in a compact domain. Therefore, they are considered
universal function approximators. (Alpaydin, 2014; Graves, 2012).
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Both hidden layers and output nodes in MLPs have nonlinear activation
functions. Once one or more input nodes are activated, the information prop-
agates through the whole set of interconnected nodes in the subsequent layers,
up to the output layer. Such propagation is known as a forward pass. The
MLP response does not depend on the past or future inputs, it only depends
on the current input. Because of this, they are a good alternative for pattern
classification tasks (Graves, 2012).

Convolutional neural networks (CNNs) are models inspired by biological
visual systems. Specifically, they are inspired by the visual cortex of the
brain, where a combination of simple and complex neurons interact to build
the powerful natural visual system. CNNs comprise convolution layers, non-
linear layers, and pooling layers. These models are quite successful nowa-
days for their ability to process spatial and multidimensional information
(Min et al., 2016). Most of the record-breaking applications of these neural
networks are part of the machine vision area, including semantic segmenta-
tion, object recognition, image classification, and image retrieval use CNNs
(Angermueller et al., 2016; Dolz et al., 2016).

Current advances in parallel computing, optimization techniques, and net-
work architectures have enabled recurrent neural network (RNN) applica-
tions in large-scale deep learning problems (Lipton et al., 2015). They are
inspired by the cyclical connection of the neurons inside our brain. Neu-
ral networks with cyclical connections also include recursive and feedback
networks (Graves, 2012). Novel applications for recurrent networks include
unsupervised video encoding, video captioning, biological sequence analysis,
and program execution. Also, they are widely used in the natural language
processing landscape (Graves, 2012; Lipton et al., 2015; Mitchell, 2019).

2.2.1.1 Recurrent neural networks

An RNN is a type of neural network ideally suited to process sequential infor-
mation. Sequences appear in multiple domains, including queries in a search
log, frames in a video, or words in a sentence. In an RNN, the output for a
step in the input sequence depends on the input of that step and information
of the preceding steps (Rajaraman and Ullman, 2011). These networks are
inspired by the cyclical connection of the neurons inside our brain. They store
information from input sequences by using iterative function loops (Graves,
2012).

RNNs process the output in the forward direction, starting from the first
step in the sequence, they compute forward hidden states until the last step
is reached. However, steps ahead of the current step in the input sequence
can provide valuable information to the overall results. Bidirectional RNNs
(BiRNNs) were proposed to process the input sequence simultaneously in
a forward and backward direction. To do so, they compute forward hidden
states and backward hidden states. Concatenating forward and backward
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hidden states enables the generation of outputs that leverage information
from preceding and following steps in the sequence (Bahdanau et al., 2015).

To store preceding information, RNNs have a hidden state vector, which
works as a memory while the network processes the sequence (Rajaraman and
Ullman, 2011). In practical setups, the memory in the standard RNN only
works effectively with information very close to the step that the network is
processing. Thus, Long Short-Term Memory (LSTM) networks were proposed
to enhance the performance of standard RNNs with long term information.
LSTMs have the ability to save important information, forget information
that is not relevant, and focus on the parts of the sequence that better serve
the overall network performance. To implement the ability to focus, a two-tier
configuration comprises a hidden state vector, which works as the working
memory, and a cell state vector, which corks as the long term memory. A
popular variant of the LSTM network is the Gated Recurrent Unit (GRU),
a much simpler architecture to compute and implement. It relies on a single
vector for memory purposes, decreasing the number of parameters needed
(Cho et al., 2014; Rajaraman and Ullman, 2011).

2.2.1.1.1 Equations for RNNs

Formally, given an input sequence x1, x2, . . . xT , equations for a standard
RNN are defined as follows (Martens and Sutskever, 2011):

ti = Whxxi +Whhhi−1 + bh

hi = e(ti)
si = Wyhhi + by

yi = g(si)

(2.2)

where Whx,Whh,Wyh are learnable weight matrices, bh, by are biases, hi
are the hidden states, yi are the outputs, e and g represent activation func-
tions. Common activation functions for RNNs are the hyperbolic tangent
(Equation 2.3) and the logistic sigmoid (Equation 2.4). Both functions are
vector valued functions which are differentiable and non-linear. A differen-
tiable activation function allows the use of gradient descent for neural net-
work training. On the other hand, non-linearity makes neural networks more
powerful than their linear equivalents (Graves, 2012; Martens and Sutskever,
2011).

tanh(x) = e2x − 1
e2x + 1 (2.3)

σ(x) = 1
1 + e−x

(2.4)

The following equations represent an LSTM unit (Graves, 2013):
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it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )
ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ottanh(ct)

(2.5)

where i is the input gate, f is the forget gate, o is the output gate, and c
is the unit cell. b are biases and W are learnable weight matrices. The hidden
state of the LSTM is the concatenation of h and c.

GRUs are similar to LSTM units. However, they are simpler (Jozefowicz
et al., 2015; Cho et al., 2014):

rt = σ(Wxrxt +Whrht−1 + br)
zt = σ(Wxzxt +Whzht−1 + bz)
h̃t = tanh(Wxhxt +Whh(rtht−1) + bh)
ht = ztht−1 + (1− zt)h̃t

(2.6)

where rt is the reset gate, zt is the update gate, b are biases and W are
learnable weight matrices.

For the network outputs in classification systems, a softmax function
(Equation 2.7) provides normalized output activations that represent the
class probabilities (Graves, 2012).

yj = eyj∑K
k=1 e

yj

where j = 1, 2, . . . ,K (2.7)

True class probabilities are obtained by representing the true labels with
a 1-of-K coding scheme (Cho et al., 2014), a binary vector with one-hot
encoding. The cross entropy loss function (Equation 2.8) provides the target
function that we minimize in order to train the network. By doing so, we
minimize the classification error rate in Equation 2.1.

L = −
K∑
k=1

zkln(yk) (2.8)

where z represents the true class probabilities and y represents the network
output probabilities.

2.2.1.1.2 The attention mechanism

To improve the performance of RNN architectures, the attention mechanism
(Luong et al., 2015; Bahdanau et al., 2015) processes the output of the recur-
rent layers to focus in the most relevant parts of the sequences. The attention
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mechanism has been applied in search task identification, neural machine
translation, language models, and several other language tasks (Du et al.,
2018; Vaswani et al., 2017). It creates a context vector ct from a weighted
combination of intermediate output states (Equation 2.12) from the recurrent
layer. In the global attention (Luong et al., 2015) with general content-based
score (Equation 2.10), the weights are stored in an alignment vector at:

at = exp(score(ht, h̃s))∑
s′ exp(score(ht, h̃s′))

(2.9)

score(ht, h̃s) = hTt Wah̃s (2.10)

where h̃s are the intermediate output states, ht is the last output state and
Wa is a learnable weight matrix. The concatenation of the context vector and
the final output state into a dense layer generates the output of the attention
mechanism:

h̃t = tanh(Wc [ct,ht]) (2.11)

ct =
∑
s′

ath̃s′ (2.12)

The attention mechanism takes as input the recurrent layer outputs. How-
ever, it is possible to replace the recurrent layer altogether, using a stack
of self-attention layers that process input sequences directly. This stack of
self-attention layers is commonly known as a transformer (Vaswani et al.,
2017). As the transformer processes the input directly, without the iterations
required by recurrent layers, it is faster to train using massive collections of
text. Nonetheless, the longer the input sequence, the bigger the transformer
becomes, requiring large computational resources for training and inference.
Indeed, transformers have a complexity of O(n2) in time and space (Mur-
phy, 2021). If resources are constrained, it is necessary to trim the input or
use small batch sizes for training. Another alternative is to use long-range
transformer architectures, which are specifically designed to process long se-
quences (Tay et al., 2020). Nowadays, transformers are widely used in natural
language models and computer vision (Devlin et al., 2019; Feng et al., 2020;
Khan et al., 2021; Radford et al., 2018; Yang et al., 2020).

2.2.2 Unsupervised models

The need for large datasets that are cleaned and labelled by humans is chal-
lenging (Mitchell, 2019; Du et al., 2018; Wang et al., 2013a). As mentioned be-
fore, a possibility is to train the models with common cases and let them learn
the rest with unsupervised learning. As unsupervised learning approaches do
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not need labels, this is a viable alternative. In an unsupervised approach,
there is a density estimation for the input data. No output is provided, thus,
the method should discover useful patterns from the available input (Murphy,
2012; Mitchell, 2019).

Examples of unsupervised learning include dimensionality reduction and
clustering models that group similar items using abstract similarities or learn
new categories by analogy to existing ones (Mitchell, 2019). Dimensionality
reduction aims to extract the most important latent information in the data
to better describe the original data with a lower number of dimensions. Ex-
amples include Principal Component Analysis (PCA) and Latent Semantic
Analysis (LSA), which uses global matrix factorization for document retrieval
(Dumais, 2004; Murphy, 2012; Pennington et al., 2014).

Clustering is a canonical example of unsupervised learning. Here, the clus-
ter is not part of the input data, thus, it is a latent or hidden variable. Two
goals comprise a clustering task: first, we need to find the number of clusters
which better fits the existing data. Secondly, we want to know which cluster
each data point pertains to (Murphy, 2012). Clustering methods are essential
in multiple data-driven applications. They are primarily based on partition-
ing, density, and hierarchies (Aljalbout et al., 2018; Min et al., 2018). An
example is Latent Dirichlet Allocation (LDA) (Blei et al., 2003), which is a
probabilistic generative model which has been successful in clustering docu-
ments into topics by using the co-occurrence of common words in them (Li
et al., 2017).

Another type of clustering uses graphs, representing each sample in the
input dataset as a node and using similarities between samples as weights in
the edges of the graphs (Chen and Ji, 2010; Nascimento and De Carvalho,
2011; Nie et al., 2016; Wang et al., 2019b). This approach is commonly used
for processing query log datasets (Du et al., 2018; Lucchese et al., 2011, 2013;
Sen et al., 2018).

Along with dimensionality reduction and clustering, there is another unsu-
pervised method specifically designed to train neural network architectures.
Though it is possible to pretrain neural architectures using labeled datasets,
there is an unsupervised alternative that trains neural architectures with-
out the need for ground-truth labels. Commonly known as self-training, this
unsupervised alternative allows neural architectures to optimize for a cer-
tain objective that can be automatically calculated without manual labels
(Karamanolakis et al., 2021). For example, the masked language modeling
(MLM) (Devlin et al., 2019) objective allows the training of large language
architectures using massive text datasets, without the need for any ground-
truth label, which would be challenging to generate for language datasets
with millions of samples.

A recent self-training configuration uses a dual-channel architecture (Chen
et al., 2020) and data augmentation techniques to train models in an unsu-
pervised way (Figure 2.1), using only 1% of existing labels. The configuration
performs contrastive learning (Yang et al., 2019), maximizing the agreement
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Fig. 2.1: Dual encoder configuration (Chen et al., 2020; Yang et al., 2019)
for self-training neural network architectures using data augmentation tech-
niques on input samples.

between the output of the encoders situated at each one of the channels.
Known as the Simple framework for contrastive learning (SimCLR) of visual
representations, it uses a predefined neural architecture for image classifica-
tion - ResNet (He et al., 2016), a set of stochastic data augmentations for
image samples, a projection head, and a contrastive learning loss to better
learn latent representations of image samples.

The whole SimCLR framework uses two identical branches, modifying the
input sample to create two altered versions of the same image. The con-
trastive crossentropy loss is designed to minimize the distance between the
pair of altered versions, comparing the altered version to the remaining al-
tered versions of the minibatch. There is only one positive pair of augmented
images in the minibatch. For helping the architecture to avoid learning trivial
features and generalize better, the series of data augmentations is applied to
a single channel of the dual-channel model. The projection head on top of the
ResNet output is a crucial component of the architecture, helping the model
to preserve more information in the latent space, which improves the overall
accuracy results.

Data augmentations in SimCLR are specifically designed for image datasets.
They include stochastic croppings and resizing, color transformations, rota-
tions, and other transformations like Gaussian noise, Gaussian blur, Sobel
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filter, and so on. Results show it is crucial to combine several image trans-
formations to increase the performance of the architecture. Applying single
image transformations yields lower metrics than their application in tandem.
Also, bigger and deeper neural architectures have a higher impact in SimCLR
than when training the architecture with a supervised learning approach. The
rate of improvement is higher as the dual-channel architecture grows, while
the rate of improvement for the ResNet architecture alone is slower. Moreover,
larger batch sizes and longer training times represent a benefit for SimCLR.
This phenomenon happens because the larger batch size and longer training
times expose the model to a bigger count of negative samples.

2.2.3 Model evaluation

There are several metrics to assess the performance of machine learning mod-
els, depending on the objective we are evaluating. Accuracy defines the rela-
tionship between the correct outputs and the total number of outputs (Equa-
tion 2.13). However, accuracy by itself could be a poor estimator of model
performance in some cases. A more robust approach includes the calculation
of precision and recall. Precision defines the fraction of detections reported
by the model that is correct. On the other hand, recall defines the fraction
of true events in the testing set that were successfully detected by the model
(Goodfellow et al., 2016):

Accuracy = TP + TN
TP + FP + TN + FN

(2.13)

Precision = TP
TP + FP

(2.14)

Recall = TP
TP + FN

(2.15)

where TP are true positives, FP are false positives, TN are true negatives,
and FN are false negatives. Table 2.4 has a tabular representation of TP , FP ,
TN , and FN for a supervised binary case (Tan et al., 2018).

Predicted
Class 0

Predicted
Class 1

Actual
Class 0 TP FP

Actual
Class 1 FN TN

Table 2.4: Confusion matrix for a binary classification model



20 2 Background

A common summarization of model performance combines precision p and
recall r into the Fβ score (Du et al., 2018):

Fβ = (1 + β)2pr

β2p+ r
(2.16)

where β is the factor that controls the weight of precision and recall. When
β = 1.0, we have a balanced F -score (Goodfellow et al., 2016). But in certain
cases, we would like to give more weight to precision or recall in the F -score
calculation, thus, when β < 1.0, the precision has more weight in the Fβ
score, while a β > 1.0 gives more weight to recall in the Fβ score.

In the case of unsupervised learning models, when ground-truth labels are
available, we compute the accuracy by maximizing the match between the
labels predicted by the model and the ground-truth labels (Min et al., 2018):

ACC = max
m

∑n
i=1 1 {yi = m(ci)}

n
(2.17)

where yi is the ground-truth label, ci is the label predicted by the model,
and m is the matching function that ranges over all possible mappings be-
tween ground-truth and generated labels. For maximizing the matching func-
tion, the Hungarian algorithm enables the computation of the optimum map-
ping between predicted labels and ground-truth labels (Min et al., 2018; Xie
et al., 2016).

As far as the Fβ score is concerned, we also calculate it with equation
2.16, but we use a pairwise approach to compute TP , FP , TN , and FN . What
matters in the pairwise approach is the relationship between the predicted
labels and the ground-truth labels of a given pair of samples. For a given pair
of input samples, if the predicted labels pertain to the same group and the
ground-truth labels also pertain to the same group, then we have a TP . If
the predicted labels do not pertain to the same group and the ground-truth
labels do not pertain to the same group either, then we have a TN . If the
predicted labels pertain to the same group and the ground-truth labels do not
pertain to the same group, then we have a FP . Finally, if the predicted labels
do not pertain to the same group and the ground-truth labels do pertain to
the same group, then we have a FN (Mehrotra and Yilmaz, 2017).

Other metrics for unsupervised learning models include the Normalized
Mutual Information (NMI) and the Adjusted Rand Index (ARI) (Min et al.,
2018). Considering U as the ground-truth labels and V as the predicted labels,
NMI is calculated as follows (Vinh et al., 2010):

NMI(U, V ) = 2I(U, V )
H(U) +H(V ) (2.18)

where I(U, V ) represents the mutual information and H is the entropy.
While NMI is an information theoretic based metric, ARI is a paired count-

ing based measure. ARI is calculated as follows (Vinh et al., 2010):
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ARI(U, V ) = 2(N00N11 −N01N10)
(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11) (2.19)

where N00 are the number of pairs that are in different clusters in both U
and V, N01 are the number of pairs that are in the same cluster in U but in
different clusters in V, N10 the number of pairs that are in different clusters
in U but in the same cluster in V, and N11 the number of pairs that are in
the same cluster in both U and V.

2.3 Language representation

When processing search query logs with machine learning models, the lan-
guage data in user queries needs to be represented in a vector space. But
language is hard for computers to understand because it heavily depends
on context, it requires a large amount of background knowledge common to
the parts communicating for proper understanding, and it has an inherent
ambiguity (Mitchell, 2019). First attempts to encode language data used one-
hot encodings for a large vocabulary. However, one-hot representations can
not encode semantic relationships between words (Mitchell, 2019). Similarly,
Bag-of-words (Zhang et al., 2010) text representations could pose problems
when encoding texts that are lexically similar but have different semantic
content. They can also miss texts with different words that have the same
semantic meaning (Zhang et al., 2019).

Therefore, distributed representations were proposed to improve text en-
codings from a semantic standpoint. Distributed representations can learn
to map semantically related words very close in the word embeddings space
by leveraging the fact that semantically similar words appear in similar sur-
roundings (Sen et al., 2018; Zhang et al., 2019). According to the distribu-
tional hypothesis, the meaning of a word is related to the context in which it
appears. In the field of linguistics, you can know a word by the context ac-
companying it. More precisely, the linguist John Firth said “You shall know
a word by the company it keeps”. This is formally known as distributed se-
mantics: the semantic similarity of two linguistic expressions is related to the
similarity of the contexts in which they appear (Mitchell, 2019). Distributed
semantics also affect the quality of word vectors. The quality of word vectors
depends on the quantity and quality of text datasets used to learn the word
vector models (Grave et al., 2018; Bojanowski et al., 2017).

Furthermore, a word can have different meanings depending on its context;
thus, if we use a vector to represent it, in certain dimensions of that vector
the word is close to words with a similar meaning, while in other dimensions,
it should be closer to other words that share another meaning (Mitchell,
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2019). For that reason, word vectors capture the multiclustering concept from
distributed representations (Bengio, 2009; Pennington et al., 2014).

2.3.1 Word vectors

Based on the distributed semantics concept from linguistics and a multidi-
mensional representation of words using vectors, word2vec (Mikolov et al.,
2013) uses a one-hot encoding for the input and output vocabulary, along
with an intermediate feedforward layer with 300 units to learn a word vector
for each input in the dictionary. The training method for the model scans
millions of texts to produce pairs of words that appear in documents. The
scanning ignores words like prepositions to get more meaningful pairs. It also
considers the pair of words both in the original order in which they appear
in the text and the inverse order. The feedforward layer learns to predict the
next word of the pair. Once it is trained, the neural layer produces a 300 di-
mensional word vector for each input word in the vocabulary. The word2vec
multidimensional representation captures semantic relatedness, as points in
space representing words with similar meanings appear nearby (Mitchell,
2019).

Word2vec (Mikolov et al., 2013) has two types of training objectives: Skip
Gram and Continuous Bag-of-Words (CBOW). Both objectives rely on sur-
rounding context to model the word embeddings space. Skip Gram predicts a
word’s context from the word itself, while CBOW predicts the word from its
context. To define the context, the training objectives consider a local window
of words. From that context, a matrix is learned to minimize the hinge loss
between related words and non-related words (Sen et al., 2018; Zhang et al.,
2019). Both Skip Gram and CBOW produce quantitatively and qualitatively
similar word vectors (Mikolov et al., 2013; Nalisnick et al., 2016)

NLP applications using Word2vec representations normally discard the
output layer, using only the input vectors to compute semantic representa-
tions of text (Mitchell, 2019; Nalisnick et al., 2016). However, output vectors
have important semantic relations with words that appear the texts to be
transformed because the input-output dataset for training word embeddings
depends on the context of the input words (Nalisnick et al., 2016). Output
vectors can be useful in certain scenarios. For instance, Dual Embedding
Space Model (DESM) (Nalisnick et al., 2016) uses input word embeddings
to represent the query words and output word embeddings to represent the
documents in the index, using the cosine similarity to compute a relevance
metric for the indexed documents. Documents are represented by the cen-
troid vector of the averaged vectors that encode the sentences, which can
be precomputed to decrease latency. The relevance depends on the cosine
similarity of the word embeddings in the query and the centroids encoding
the documents. The best performing embeddings are trained using a large
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collection of queries from Bing, using the CBOW model. The DESM model
outperforms the BM25 index baseline as well as Latent Semantic Analysis
(LSA) results.

The use of local context windows in word vectors like Word2Vec has one
major limitation: it overlooks the global co-occurrence statistics from the
training corpus. This is a major concern because of the amount of repeti-
tion that text datasets tend to contain. Because of this limitation, GloVe
(Pennington et al., 2014) word vectors combine the local window context of
Word2Vec with the global statistics present in matrix factorization methods
like LSA. The combination proves effective, allowing GloVe vectors to improve
on word vectors based on local context windows. Improvements are observed
in word analogy tasks, similarity tasks, and named entity recognition.

As machine learning architectures usually require inputs in the form of
vectors, word vectors like Word2Vec and GloVe – also known as word em-
beddings – are ideal for approaches that rely on machine learning models.
Word vectors encode syntactic and semantic information in a continuous
vector space, facilitating multiple language tasks (Grave et al., 2018; Mikolov
et al., 2013). Several variations of word vector representations have been pro-
posed and they are now widely used in various successful NLP applications
(Mitchell, 2019). Furthermore, pre-trained word vectors are now available in
multiple languages (Grave et al., 2018). However, an initial phase for lan-
guage selection (Kiela et al., 2018) or the use of automatic integration of
models (Conneau et al., 2017; Lample et al., 2017) are necessary.

Moreover, when the input for the machine learning model is a sentence, we
might want to compute a single vector representation per sentence. In this
case, individual word vectors could be averaged, a representation approach
used in several recent studies (Gomes et al., 2019; Mehrotra and Yilmaz,
2017; Sen et al., 2018; Saini et al., 2019; Yang et al., 2020; Zamani and Croft,
2016a,b). Another alternative is the use of convolutional neural networks to
produce one vector per sentence (Kim, 2014).

2.3.2 Custom word vectors

In spite of the way word vectors map semantically and syntactically related
words, they still pose problems when capturing fine grained details from
sentences. In addition, they can suffer from topic shifting (Rekabsaz et al.,
2017; Zhang et al., 2019).

To address such limitations in distributed word representations, it is pos-
sible to train the word vectors using search-related signals like relevance feed-
back (Zamani and Croft, 2017; Diaz et al., 2016; Zhang et al., 2019). Using
top retrieved results from user queries, a recent work (Zamani and Croft,
2017) proposed a query embedding that relies on the relationship between
terms that appear both in the query and the resulting documents.
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Another possibility is to fine tune word vectors for specific search related
tasks (Diaz et al., 2016; Sen et al., 2018). The tempo-lexical word embedding
approach (Sen et al., 2018) relies on an embedding mechanism that incor-
porates both temporal and lexical information. This word embedding uses
the task context to find query representations in a semantic space oriented
to search tasks. One vector represents each query in the semantic space. The
tempo-lexical word embedding is used in a global approach to identify users
tasks in search logs. It takes into account the whole query log to train the
word embedding, improving the subsequent results in the clustering of cross-
session queries related to the same task.

Word embeddings could work for long documents but they might not re-
flect the context in queries, where short sentences or keywords are utilized
by users to look for information. Thus, the number of words can be low and
the window for context can not include the amount of information it has in
long documents. In a temporal context, a 26-minute window (Lucchese et al.,
2013) provides the context to train the word vectors. In the tempo lexical
case, additional clustering of queries according to their relatedness helps to
improve the space for learning the representations (Sen et al., 2018).

2.3.3 Universal language models

Often, there is not enough data to custom train end-to-end word vector mod-
els. Also, some NLP problems are not supervised. Thus, models focused
on creating universal representations were proposed (Zhang et al., 2019).
Such models include Bidirectional Encoder Representations for Transformers
(BERT) (Devlin et al., 2019), Embeddings from Language Models (ELMo)
(Peters et al., 2018), and Generative Pretraining (GPT) (Radford et al.,
2018), now in its third version (Brown et al., 2020).

Some universal language models like GPT process input language se-
quences in only one direction (Radford et al., 2018). Instead, ELMo uses
two separate recurrent models for both directions and then join the results
(Peters et al., 2018). It uses hidden states from right-to-left (RTL) and left-to-
right (LTR) sections of the recurrent neural network. The hidden states are
then concatenated for subsequent steps, providing a bidirectional approach
for processing the input. BERT also takes a bidirectional approach, taking ad-
vantage of context on both backward and forward directions, but in contrast
to ELMo, it uses a transformer-based architecture. The BERT architecture
is based on a bidirectional transformer and its results prove it outperforms
existing alternatives in various natural language processing tasks. Results
also highlight the importance of creating an architecture, pre-training it, and
then performing transfer learning by fine-tuning it to perform different nat-
ural language tasks (Devlin et al., 2019).
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Indeed, model pre-training for tasks based on NLP has proven instru-
mental in a number of applications, including natural language inference,
paraphrasing, named entity recognition, and question answering. There are
two trends. In the first trend, pretraining is performed in order to extract
features from language. Feature extraction architectures focus on generating
representations for other supervised tasks in the processing pipeline. Word
vectors (Bojanowski et al., 2017; Grave et al., 2018; Sen et al., 2018) take
advantage of this approach. There are word embeddings approaches with
broader scopes, extracting features from sentences or paragraphs. Another
scope is context. Models like ELMo (Peters et al., 2018) and tempo-lexical
word vectors (Sen et al., 2018) leverage context to generate word vectors from
text data (Devlin et al., 2019)

The second trend performs transfer learning, fine-tuning models for spe-
cific tasks. Transfer learning approaches leverage fine-tuning to perform NLP
Tasks. This approach starts by training supervised models with a certain
objective, usually with abundant labeled data available, and then perform
transfer learning and fine-tune the model for the target goal. Although un-
supervised pretraining for models leverages huge amounts of unlabeled data,
supervised pretraining has also proven useful in various fields, including nat-
ural language tasks and computer vision applications (Devlin et al., 2019).

Together with pretraining, BERT uses several components as input to the
model. The input can include three components (Devlin et al., 2019):

1. Embeddings from tokens, where a CLS token marks the beginning of
a sentence, and a SEP token marks the separation for cases when the
pretraining requires two sentences

2. Embeddings for sentences, A for one sentence, A - B for two sentences

3. Positional embeddings for learning the position of the token with respect
to the whole sentence

Few additions are stacked on top of the BERT architecture for fine tuning
specific tasks. Tasks include both one or two sentences for inference. For
sentence labeling, the architecture takes as input the output tokens and learns
to classify them. For sentence classification, the fine tuning is performed
over the output of the CLS token. The same happens for pairs of sentences,
where the CLS token output lets the fine tuning system learn sentiments,
relatedness, etc. Another alternative is to use BERT output as features for
further processing. In this case, although there is a loss in metrics with respect
to the fine-tuned model, the best working configurations concatenate the last
four layers outputs (Devlin et al., 2019).

Results show that BERT outperforms similar architectures in all tasks
considered for evaluation, including the General Language Understanding
Evaluation (GLUE) benchmark (Wang et al., 2019a). Unsupervised pretrain-
ing has a big impact on BERT final results. The bidirectional approach to
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process the input texts has a significant impact in the final results as well.
Furthermore, bigger language models create incremental improvements when
there are larger datasets. BERT helps problems with small datasets to also
get improvements thanks to model pretraining. Similarly, as language models
are less sensitive to hyperparameters when there are large training datasets,
BERT parameters create a larger impact on final language model results
when there is a small dataset in a fine-tuning configuration (Devlin et al.,
2019).

2.3.4 Language models for sentences

Universal Sentence Encoder (USE) (Cer et al., 2018) learns universal repre-
sentations using multitask learning on language semantic tasks (Zhang et al.,
2019). To produce sentence embeddings, USE can have two configurations.
The first configuration is more accurate but more complex computationally. It
is based on the encoding part of the transformer architecture. Context-aware
word embeddings are generated by the encoder; then, they are averaged to-
gether to produce one vector per sentence. As mentioned before (Section
2.2.1), the computational complexity is O(n2) in sentence length, making
it more computationally expensive as the length of the sentence grows. The
second configuration averages together word embeddings and bi-gram embed-
dings. The resulting average vector feeds a Deep Average Network (DAN),
a feedforward network which computes a fixed vector representation for the
input sentence. It is less computationally expensive than the transformer-
based model. Its computational complexity is linear with respect to sentence
length. However, the transformer-based model is more accurate.

The training of the universal sentence encoder uses a multitask approach
to improve model performance. A supervised training phase with the Stan-
ford Natural Language Interface (SNLI) augments the unsupervised train-
ing, which relies on sources like Wikipedia, web news, discussion forums, etc.
To test the model, several natural language processing tasks are utilized in
a transfer learning setup, proving the ability of the architecture even when
small labeled datasets are available. For transfer learning experiments, a task-
specific neural network takes as input the sentence embeddings. Furthermore,
the semantic textual similarity between pairs of sentences uses the arccos to
compute the angle between the embeddings. The angular distance between
two sentence embeddings has been found to work better for pairwise semantic
similarity tasks than the cosine similarity (Cer et al., 2018).

Most universal language models (Cer et al., 2018; Devlin et al., 2019; Peters
et al., 2018; Radford et al., 2018) use contextual information to learn uni-
versal representations. But it is not clear how those generic representations
relate to user intent (Zhang et al., 2019). Instead, Generic Intent Representa-
tion (GEN) creates a distributed space to represent queries modeling the user
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intent – what the user wants to get from the query. It learns from user clicks
in retrieved documents, a weak supervision signal strongly related to the user
intent. Training the model with query paraphrasing and question paraphras-
ing datasets help to improve the generalization abilities of the model (Zhang
et al., 2019). Applications of the GEN (Zhang et al., 2019) encoder include
the generation of more relevant results, better query suggestions, and more
precise answers. It also helps to deal with the long-tail effect in search engines
and model query reformulation behaviors.

The GEN (Zhang et al., 2019) architecture comprises three branches: word
embeddings, character embeddings, and a mix encoder. The word embedding
maps words to a continuous vector space. The character embedding deals
with rare words. The mix encoder composes word embeddings into query
encodings. It uses a BiGRU to learn cases in which the ordering of words has
an impact on the query intent. Both the word and character embedding parts
of the architecture include a highway neural layer to improve model capacity.
The character embedding uses a CNN architecture and max-pooling before
the highway layer.

The learning is performed end-to-end. It has two phases. In the first phase,
it utilizes user co-clicks to learn user intent. The loss for query co-clicks is de-
signed to minimize the distance between related query pairs while maximizing
it between negative query pairs. Co-click queries are sampled from a large
log. To avoid trivial negatives, the model uses noise-contrastive estimation
(NCE) to get good adversarial samples. During the second training phase,
the model uses a multitask approach, which combines the query co-clicks
weak supervision loss along with a query paraphrasing loss and a question
paraphrasing loss to improve the generalization ability of the model (Zhang
et al., 2019).

For evaluation purposes, an intrinsic user intent strategy is based on three
datasets with increasing levels of difficulty: general, easy, and hard. The nor-
malized discounted cumulative gain (NDCG) is the metric for query intent
evaluation. The area under the curve (AUC) provides performance metrics
for paraphrasing tasks. GEN consistently outperforms USE (Cer et al., 2018)
sentence representation, the best performing encoding of all the baselines
considered for experiments. In turn, USE gets better results than the best
performing information retrieval based representation: the Relevance Lan-
guage Model (RLM) (Zamani and Croft, 2017).

Moreover, an ablation study of the GEN encoder is conducted to eval-
uate the multiple components of the proposed model. The most important
conclusion of the ablation study is the importance of user clicks in training
the model. Simple models trained with user click get results very close to
state of the art text encodings, while complex methods failed to outperform
Term Frequency – Inverse Document Frequency (TF-IDF) (Robertson, 2004).
Thus, the supervision signal is more important than the architecture used to
learn the model (Zhang et al., 2019).
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2.3.5 Multilingual language models

Multilingual Universal Sentence Encoder (MUSE) (Yang et al., 2020) ex-
tends previous work (Cer et al., 2018) to provide sentence embeddings suited
to information retrieval tasks in a multilingual semantic space. It supports 16
languages and comprises three configurations: a CNN based model, a trans-
former based model, and a question answering model. All configurations use
SentencePiece (Kudo and Richardson, 2018), a language independent sub-
word tokenizer to process the input sequence. SentencePiece covers above
99% of possible tokens in all languages. The sentence encoder uses a dual
encoder architecture. The first encoder generates sentence embeddings. It is
shared in all the retrieval tasks, where additional layers process the sentence
embeddings to produce the results.

The transformer based model relies on the encoder part of the transformer
architecture. It takes into account context-aware embeddings and averages
together the results from the encoder to produce one vector per sentence.
The CNN based module processes the vectors for tokens using convolutional
and average pooling layers, similar to the approach in previous work (Kim,
2014). On the output of the convolutional network, additional dense layers
process the average pooling layer results to generate the sentence embed-
ding. The transformer based model is more computationally expensive, with
a complexity of O(n2) on sentence length (Section 2.2). CNN has a complex-
ity linear with respect to sentence length, but it is less accurate than the
transformer-based model (Yang et al., 2020).

Training is based on question answer pairs, translation pairs, and Stanford
Natural Language Inference (SNLI). Google translate is used for the SNLI
dataset – which only has english data – and for translating question answer
pairs to balance the data in all languages considered. Downstream tasks in-
clude sentence retrieval, bitext retrieval, and retrieval question answering.
Sentence retrieval returns all the sentences semantically related to the query
sentence. Bitext retrieval deals with bilingual sentence pairs. And retrieval
question answering process question answer tuples, considering the question
as the query and retrieving the answer corresponding to that question in the
tuple (Yang et al., 2020).

Language-agnostic BERT Sentence Embedding (LABSE) (Feng et al.,
2020) provides the sentence embeddings to represent texts in a language-
agnostic latent space. Using a 12-layer transformer architecture (Devlin et al.,
2019; Vaswani et al., 2017) in a dual configuration, LABSE takes the trans-
former’s hidden state for the last token in the sentence to generate the query
representation.

The training process of LABSE comprises two phases: a pre-training phase
and a fine-tuning phase, with a total of 109 languages. The pretraining uses
masked language modeling (MLM) (Devlin et al., 2019) and translation lan-
guage modeling (TLM) (Conneau and Lample, 2019) tasks to train the 12-
layer transformer architecture. MLM masks words in the monolingual input
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phrases and trains the model to predict the masked word, using 17 billion
monolingual phrases. TLM concatenates a phrase in one language with its
translation, masking words and training the model to predict the masked
words with 6 billion bilingual phrases. After pre-training with MLM and
TLM, the LABSE architecture is fine-tuned using the translation ranking
task. In translation ranking, the model learns to select the phrase in the tar-
get language, representing the best translation for the phrase in the source
language (Feng et al., 2020).

In cross-lingual text retrieval, using the TATOEBA corpus (Artetxe and
Schwenk, 2019), LABSE outperforms MUSE in the 14 languages that the
latter supports. It also outperforms the baseline Language-agnostic Sentence
Representations (LASER) (Artetxe and Schwenk, 2019) in the 82 languages
that LASER was trained with. Additionally, it can support languages not
included in the training dataset, achieving an average of 83.7% in the 112
languages of the TATOEBA dataset, even though there are more than 30
languages that are not part of the training dataset for LABSE. By contrast,
LASER obtains 65.5% in the 112 languages.

Overall, LABSE and MUSE provide representations for user queries in a
multilingual vector space. Each query is represented with a single vector and
the language coverage varies according to the language model. for represent-
ing queries in English only, GloVe leverages both local context and global
statistic in language corpus. GloVe vectors can be averaged together to gen-
erate a single vector per user query, or used individually for machine learning
models requiring one vector per word.

2.4 Search task identification

Leveraging language models (Section 2.3) and machine learning approaches
(Section 2.2), we can identifiy information seeking patterns in search query
logs (Section 2.1). The standard model for the information seeking process
establishes certain steps users take when they need to look for information.
Such steps include 1) recognizing the need for information, 2) formulating
the query according to the information they need, the context, and the time,
3) running the query in a search system to retrieve results, and 4) analyzing
the retrieved information and reformulating the query if the results are not
satisfactory (Hearst, 2009).

To support users during the different steps of the information seeking pro-
cess, it is crucial to correctly model users’ queries according to their search
tasks. Information needs could include complex search tasks, where users may
need to multitask, shift goals, or iterate to refine queries. Moreover, search
history improves personalization of search engine results and provides data to
extract predictive models for supporting users while they execute their search
tasks (Hearst, 2009). In particular, search system logs provide fine-grained



30 2 Background

Search task
identification

Bayesian 
methods

Graph-based
clustering

Semi-supervised
methods

Latent Dirichlet Allocation
with Hawkes processes
(LDA-Hawkes) (Li et al.,
2014a)

Query clustering based on
weighted connected
components (QC-WCC)
(Lucchese et al., 2011)

Pairwise binary classification
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Distance Dependent
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Bestlink Support Vector
Machine (Bestlink SVM)
(Wang et al., 2013a)
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(BRTs) (Mehrotra and
Yilmaz, 2017)

Context Attention based
Long Short-Term Memory
(CA-LSTM) (Du et al., 2018)

Tempo-Lexical Context
driven Word Embedding
(QRY-VEC) (Sen et al.,
2018)

Fig. 2.2: Recent machine learning models for search task identification, includ-
ing Bayesian methods, semi-supervised methods, and graph-based clustering
approaches.

details at the query level, enabling the characterization and classification
of individual queries according to their tasks. A precise task identification
improves user supporting applications, helping users to complete their infor-
mation seeking tasks. Supporting the user while performing complex tasks
is essential to avoid the cognitive load on the user. For that support, it is
crucial that search systems identify the tasks related to the issued query.
For instance, query term prediction requires the search system to correctly
identify the task the user is realizing to properly predict the next likely steps
(Mehrotra et al., 2016; Mehrotra and Yilmaz, 2017).

Similarly, the correct clustering of queries by search tasks enables the de-
sign of proactive search systems that can suggest next queries after the anal-
ysis of user intents. Suggestions help to support the user in the information
seeking process, as the user does not have to issue additional related queries
(Sen et al., 2018). Other applications like query recommendation (Boldi et al.,
2008; Zhao et al., 2018), conversational search (Zamani and Craswell, 2020),
user modeling based on tasks (Hearst, 2009), query - task mapping (Völske
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et al., 2019), personalization in e-commerce web interfaces (Mehrotra, 2015),
advertisement retrieval, ranking of results according to the task, and predic-
tion of user satisfaction based on tasks (Mehrotra and Yilmaz, 2017), and so
on, rely on accurate identification of tasks from user interactions.

Search task identification can be performed with methods using heuristics-
based models (Hagen et al., 2013). A model based on a cascade of heuristics
(Hagen et al., 2013) first segments the search query log in logical sessions;
then, it performs a post-processing step to detect search tasks – known as
search missions – based on the queries pertaining to the logical sessions. How-
ever, several manually set thresholds in the heuristics make it challenging to
adapt heuristics-based models to other datasets without manually adjusting
them. Therefore, machine learning models has been proposed for identify-
ing search tasks (Figure 2.2), including semi-supervised clustering (Du et al.,
2018; Kotov et al., 2011; Wang et al., 2013a), Bayesian approaches (Li et al.,
2014a; Mehrotra et al., 2016; Mehrotra and Yilmaz, 2017), and graph-based
clustering (Lucchese et al., 2011, 2013; Sen et al., 2018).

2.4.1 Graph-based clustering

To identify queries representing the same search task, the Query Cluster-
ing based on Weighted Connected Components (QC-WCC) (Lucchese et al.,
2013) is a query clustering based on weighted connected components. QC-
WCC does not need the number of clusters beforehand. It relies on the con-
struction of a graph where the nodes correspond to the queries and the edges
are weighted according to the similarities between the queries. Every query is
a node in the graph. The similarities are based on two features: one content-
based computing a Jaccard index on tri-grams, and the other semantic-based
exploiting Wikipedia and Wiktionary to infer the semantics. The graph is
then pruned by removing weak edge distances and the query cluster are ob-
tained from the connected components remaining in the graph.

Query Clustering based on Head-Tail Components (QC-HTC) (Lucchese
et al., 2013) is a computationally simpler algorithm based on QC-WCC, al-
though less accurate. It exploits the sequential nature of queries to decrease
the computational complexity of the graph based method. The QC-HTC al-
gorithm first builds sequences of queries according to the distance between
them, creating the first set of clusters, then takes the first and last queries
of a cluster to represent the set and group it with other sets depending on
query distances (Lucchese et al., 2013). Using only head and tail queries in
each cluster avoids the computation of the full similarity graph required for
QC-WCC, making QC-HTC less computationally expensive.

Tempo-Lexical Context driven Word Embedding (QRY-VEC) (Sen et al.,
2018) improves the QC-WCC (Lucchese et al., 2013) algorithm for search
task identification by using word embedding similarities instead of lexically
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based similarities. Queries for the same tasks in search logs tend to have a
low lexical similarity (Sen et al., 2018), which affects methods that rely on
lexical similarities or character-level information (Lucchese et al., 2013; Du
et al., 2018). Some queries might have no lexical similarity but could be highly
related from a semantic standpoint. Indeed, semantic similarity represents a
better way to detect queries related to the same task. Queries for the same
task clusters tend to be semantically similar rather than lexically similar,
as queries in the same tasks contain more synonym words than exact words
(Völske et al., 2019; Lucchese et al., 2013).

Because of this limitation, instead of relying on lexically based similari-
ties and retrieved documents from the Wikipedia collection (Lucchese et al.,
2013), QRY-VEC uses the cosine similarity on a tempo lexical word repre-
sentation and documents retrieved from the ClueWeb12B (Carterette et al.,
2016; Callan, 2012) collection. The ClueWeb12B dataset comprises a more
extensive set of web documents. It retrieves information even for terms that
are not expository, which are more challenging to match with Wikipedia doc-
uments because of vocabulary mismatch. Furthermore, instead of segmenting
queries inside time sessions, QRY-VEC identifies global search tasks for clus-
tering. As a baseline, QRY-VEC considers cosine similarities with pretrained
word embeddings (Mikolov et al., 2013). The tempo lexical word representa-
tions surpass the baseline, providing a more accurate method for search task
identification.

2.4.2 Semi-supervised clustering

A pairwise approach (Kotov et al., 2011) uses a binary classification model
to determine if query pairs pertain to the same search task. However, a post-
processing step is needed to determine the search tasks in the query log
(Mehrotra et al., 2016).

Bestlink SVM (Wang et al., 2013a) first trains a support vector machine
to detect if a pair of adjacent queries from a user pertains to the same search
tasks or not. Then, it clusters the related queries in the search log using the
SVM output to establish links between queries. Bestlink SVM uses a back-
ward context from users’ queries to improve the task clustering results. Links
between queries are established only with past queries in order to leverage
the chronological structure of the log. For the links with past queries, a pair-
wise parameter allows establishing if two queries should be related or not.
For instance, if the retrieved URLs are the same, if the clicked URLs are the
same, or if a query is a sub-query of another query, there must be a link
between them. No link between queries happens when queries are different,
and the intersection of the retrieved URL sets is null. Given that very dif-
ferent queries can be semantically related, they can provide similar sets of
related queries. Similar sets allow an automatic labeling scheme for search
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logs, a significant contribution because manual labeling tends to be expensive
and sometimes there are only small annotated logs available. Likewise, the
two most important features from the query representation in Bestlink SVM
includes the cosine similarity between query embeddings and the similarity
between clicked URLs.

Context Attention based Long Short-Term Memory (CA-LSTM) (Du
et al., 2018) uses neural networks and graph-based clustering to build a
pipeline for task identification. First, it learns to segment search logs in
a supervised way. CA-LSTM relies on RNNs instead of SVMs, using both
backward and forward queries to provide context while training the RNN to
detect if a pair of adjacent queries pertain to the same task or not. Then, it
uses the unsupervised QC-HTC clustering method to identify task clusters
in the segmented search log.

2.4.3 Bayesian approaches

Latent Dirichlet Allocation with Hawkes processes (LDA-Hawkes) (Li et al.,
2014a) combines LDA with Hawkes processes to identify and label search
tasks from query logs. LDA performs topic modeling, identifying semanti-
cally related queries from different users, while Hawkes processes take into
account time lapses between query timestamps in individual query sequences,
assigning temporally close queries to the same search task.

Some search tasks are atomic, where a sequence of related queries solves
the information needs. However, often information needs are complex. Users
perform complex tasks by executing related subtasks, some of which are also
complex information needs. Given the relationship between complex tasks
and subtasks, a hierarchical model could also serve to cluster search queries
(Mehrotra et al., 2016; Mehrotra and Yilmaz, 2017).

The Distance Dependent Chinese Restaurant Process (DD-CRP) (Blei and
Frazier, 2011) provides an approach to compute task relatedness from the hi-
erarchies of tasks. The CRP method is a non-parametric Bayesian approach.
It was proposed to model random groups of non-exchangeable data. It as-
sumes a restaurant with an infinite number of tables. Customers enter the
restaurant in tandem; they are assigned to a nonempty table based on the
number of already existing customers in the table, or to an empty table de-
pending on a scaling parameter. In this case, tables represent search subtasks,
while customers are entries in the query log (Blei and Frazier, 2011; Mehrotra
et al., 2016).

The hierarchies of search tasks are extracted from the query logs using a
representation that models queries as a linear combination of word vectors
for its terms. Weights in the linear combinations represent the maximum
likelihood for each term according to the query task relationships. (Mehrotra
et al., 2016; Sen et al., 2018). Search logs are considered as convoluted struc-
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tures of complex tasks and subtasks. Thus, given an on-task query collection,
a DD-CRP model enhanced with word embedding distances determines sub-
tasks in the search log (Mehrotra et al., 2016). The proposed approach does
not need the number of subtasks per complex task. It also uses word embed-
dings to deal with lexically similar queries that have different semantics, a
kind of queries where lexical based methods like bag of words or TF-IDF can
not discriminate.

The DD-CRP method models the query links to other queries and not to
sub-tasks. Distances between queries are based on cosine distance of word
embeddings. DD-CRP uses skip-gram based embeddings to represent queries
and computes a weighted average vector per query. Weights in the average
come from the frequency of the terms because low-frequency words could be
key for helping to identify subtotals. To compare results, (Mehrotra et al.,
2016) considers three baseline methods: QT-HTC (Lucchese et al., 2013),
LDA (Blei et al., 2003) learned over documents containing aggregation of
queries, and a vanilla CRP model to process queries in the AOLQL (Pass
et al., 2006) dataset (Section 2.1). The AOLQL is augmented with related
queries from available APIs of search engines.

A qualitative approach is used to validate the results. The subject chosen
is weddings. For that subject, the proposed method is the only one to detect
the subtasks. A quantitative evaluation is challenging because there are no
publicly available datasets with tasks - subtasks labels. Thus, the evaluation
is carried out based on randomly selecting pairs that the method detected
for the same subtasks, and asking users to assess if the queries pertain to
the same subtasks or not. One hundred repetitions were performed, and the
results of the DD-CRP method surpassed all the three baseline methods
(Mehrotra et al., 2016).

Bayesian Rose Trees (BRTs) (Blundell and Teh, 2013) extend the hierarchy
of search tasks to multiple levels, modeling search tasks using an agglomera-
tive clustering approach (Mehrotra and Yilmaz, 2017). Existing agglomera-
tive clustering methods consider nodes in trees as binary, but complex tasks
could have one or more related subtasks. Thus, it is essential to use an agglom-
erative method that supports multiple children from nodes. BRTs provide a
clustering method with multiple children in each node. They are adapted and
extended to model query hierarchical structures in an unsupervised process
(Mehrotra and Yilmaz, 2017).

BRTs represent data samples using binary features. But to better model
relationships between queries, binary features can not properly represent the
semantic relationships between queries. Thus, queries are represented as a set
of affinities. The marginal distribution of the data is modeled as a Bernoulli
distribution when using binary features to encode data. When using affini-
ties, the Bernoulli distribution is replaced by a Gamma-Poisson distribution.
Query affinities include (Mehrotra and Yilmaz, 2017):
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1. Query term affinity uses edit distance and Jaccard coefficients between
query terms, as well as the proportion of common terms and the cosine
similarity between term sets

2. Retrieved URL affinity uses edit distance and Jaccard coefficients between
URLs, given that similar information needs tend to produce similar sets
of URLs

3. Time / user session affinity is a binary feature indicating if the queries
are part of the same time session and if they were issued by the same
user

4. Query embedding affinity uses word embeddings, which are averaged to-
gether to form one vector per query. Cosine similarity between query
vectors model the semantic relationships of queries. Word embeddings
for query terms are custom-trained using the skip gram model and the
AOL dataset

The unsupervised process using BRTs starts with all queries in the log
as a subtree. In each step, trees are clustered using one of three operations:
join, collapse, or absorb. Join creates a top node and assigns each subtree as
a child to it. Collapse creates a top node whose children are the children of
all the merged subtrees; the top node remains while the nodes of the merged
subtrees disappear. Absorb assigns a subtree to the children of the top node;
by doing so, the merged subtree node becomes a child of the top node. The
clustering operation to perform and the subtrees to merge are selected to
maximise the quality of the hierarchical representation. The merging process
stops when possible merging operations on remaining subtrees do not improve
the quality of the hierarchical representation (Mehrotra and Yilmaz, 2017).

To avoid subtrees in nodes representing atomic tasks, a task coherence
computation allows the collapse of all subtreees if such coherence surparsses
a given threshold. This step is necessary because queries in atomic search
subtasks are strongly related semantically - a phenomenon not observed in
complex search tasks with multiple related subtasks. For computing task
coherence, the Pointwise Mutual Information (PMI) metric is utilized. It
is calculated using the AOL dataset query terms. Evaluation of the task
identification effectiveness of the model is performed using (Lucchese et al.,
2011) dataset, a subset of the AOL dataset with manual labels for search
tasks in time sessions. Pairwise F-score is the metric used for assessing model
performance. Also, tests are performed using query term prediction to test the
hierarchical model effectiveness in task identification applications (Mehrotra
and Yilmaz, 2017).
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Dataset Method Result

CSTE
QC-WCC (Lucchese et al., 2013) 0.471
QRY-VEC word2vec (Sen et al., 2018) 0.473
QRY-VEC tempo-lexical (Sen et al., 2018) 0.538

TGSST

QC-WCC (Lucchese et al., 2013) 0.812
QC-HTC (Lucchese et al., 2013) 0.800
DD-CRP (Mehrotra et al., 2016) 0.845
BRT (Mehrotra and Yilmaz, 2017) 0.845
QRY-VEC word2vec (Sen et al., 2018) 0.837
QRY-VEC tempo-lexical (Sen et al., 2018) 0.840

WSMC12

QC-HTC (Lucchese et al., 2013) 0.851
LDA-Hawkes (Li et al., 2014a) 0.871
BRT (Mehrotra and Yilmaz, 2017) 0.878
CA-LSTM (Du et al., 2018) 0.883

SUQLST

QC-HTC (Lucchese et al., 2013) 0.821
LDA-Hawkes (Li et al., 2014a) 0.837
BRT (Mehrotra and Yilmaz, 2017) 0.843
CA-LSTM (Du et al., 2018) 0.851

Table 2.5: Search task identification performance for several query log
datasets, including F1 results for semisupervised, unsupervised, and Bayesian
approaches.

2.4.4 Additional search patterns based on tasks

Personalization in search systems can be implicit or explicit. In explicit per-
sonalization, users directly specify their interests using tools such as forms,
surveys, or buttons for ranking. However, users tend to ignore the steps
needed to recollect information as they find the process for explicit personal-
ization difficult or undesirable. Thus, implicit personalization is better suited
to create models for users. In implicit personalization, search systems auto-
matically infer users’ features utilizing their search history. The automatic
processing of search history for implicit modeling of users relies on the anal-
ysis of query logs, where search systems store data they get from tracking
user queries (Hearst, 2009).

Search history from users include query sentences, timestamps and click
through data. In click through data, we can find the clicks users perform
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after retrieving search results, while they are browsing resulting documents
or reviewing web pages from results. Clicks help search systems assess the
quality of their ranking and improve relevance in personalized results (Borisov
et al., 2016; Hearst, 2009). They also help to model user intent and create
distributed query representations (Zhang et al., 2019).

For query auto-completion (QAC) or query suggestions, several works con-
sider click-through data or QAC logs (Bar-Yossef and Kraus, 2011; Boldi
et al., 2009; Cao et al., 2009; Li et al., 2017; Sun and Lou, 2014). However,
the two types of logs are considered separately. Given the user’s interaction
with the search system, these two logs are strongly correlated. A user performs
a query search, generating entries in the QAC log; then, the user analyzes
the retrieved documents, generating entries in the click log. If results are not
satisfactory, a new query search starts, and a subsequent click log entry is
added. Therefore, users’ behaviors extracted from both logs have a sequential
correlation. Also, users’ behaviors usually are stable during periods of time
(Li et al., 2017).

(Li et al., 2017) leverage both types of logs to extract and characterize
user search behaviors from them. The click log provides context to the QAC
log and vice-versa. Search logs are clustered according to the behavior of
the users, looking for correlations at both logs. Experiments to prove the
correlation between both logs, experiments include an LDA method that
models logs separately, a Hidden Markov Model (HMM) that takes advantage
of the correlation between both logs, and a contextual LDA, which also jointly
models both logs. Using the log predictive likelihood as a metric, results
prove the correlation between both types of logs: HMM and contextual LDA
generate a better metric than LDA. Also, contextual LDA outperforms HMM
in the log predictive likelihood, proving that it better models the behavior
correlation in both types of logs.

The QAC log is not a low resolution log, which registers the query for the
last keystroke and the run query. Instead, it is a high resolution log. It saves
ten suggested queries for every keystroke. Thus, every keystroke generates
its own session of queries in the log. Features from the high resolution log
include user behavior characteristics, like the variance of typing speed, the
length of the keystrokes, or the average speed. For example, if the user has
a low variance in the typing speed, it can suggest that the user ignores the
suggestions. Alternatively, if the user types the whole query fast, it can sug-
gest that the user is proficient in the subject she is looking for. Additional
tests were performed on the correlated model. A QAC task used contextual
LDA along with a two-dimensional click model (TDCM) (Li et al., 2014b),
outperforming previous methods for QAC. For the click prediction and rele-
vance ranking, Contextual LDA was used with the Bayesian Sequential State
(BSS) model (Wang et al., 2013b), also outperforming previous works.

Personalization can also include individual features or aggregate infor-
mation of search users, where other users’ interactions provide clues about
potential suggestions. In particular, implicit personalization can leverage ac-



38 2 Background

quired knowledge from other users’ interactions to better predict user needs.
Similarly, personalization could be content-based and users-based. In content-
based personalization, suggestions can be based on context related to users’
query terms. In users-based personalization, information from users with sim-
ilar characteristics helps to create tailored results (Hearst, 2009).

Search engine users change their behavior when analyzing search results
already seen. For instance, in file browsers, users prefer to browse the file tree
instead of using the search bar for finding files. Furthermore, users tend to
repeat a percentage of the previous searches; thus, the inclusion of previous
queries in suggestions helps to improve user productivity. In general, methods
for assisting search engine users can help to predict the information users are
likely to read or need. However, automatic suggestions can interfere with the
users’ intentions, hindering the usability of the search engine (Hearst, 2009).
Another change in user behavior can be seen when analyzing mobile and
personal computer logs, suggesting that users change their behavior when
searching on different platforms (Li et al., 2017).

Another aspect in user modelling is the analysis of user behaviors for sub-
sequent queries. The GEN encoder (Zhang et al., 2019), the query represen-
tation based on user intent (Section 2.3), can be used for modeling those past
user behaviors for the same query. Distances of subsequent pairs of queries
follow a bimodal distribution when using the GEN encoding. This bimodal
distribution allows the identification of query reformulation behavior from
four scenarios (Zhang et al., 2019):

• Topic change happens when the user focuses her attention on other tasks,
generating an unrelated query

• Exploration includes a related query inside the same topic

• Specification refers to queries aimed at narrowing the results of the pre-
vious query execution

• Paraphrasing includes changes to the query that represents the exact
same intent

Results using the GEN encoder bimodal distribution for query reformu-
lation were compared to a number of query encodings, including TF-IDF
(Robertson, 2004), USE (Cer et al., 2018), and BERT (Devlin et al., 2019).
A 30 minutes gap was used for segmenting sessions (Mehrotra and Yilmaz,
2017; Wang et al., 2013a). Sessions without clicks or with less than three
queries were ignored. The GEN encoder surpassed the performance of all the
other query encodings used for comparison; however, it still trails the average
performance of human labelers (Zhang et al., 2019).

The long-tail effect in machine learning (Section 2.2) can also be observed
in queries run by search engine users. The long-tail effect in search query
logs refers to the appearance of queries with few or no previous coincidence.
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However, they can be strongly related to other queries in terms of user intent.
This could happen, for example, when there are orthographic errors. Using
the GEN encoder and Approximate Nearest Neighbors (ANN), the long tail is
reduced in half, with a reasonable response time - 10ms for 700M query index
(Zhang et al., 2019). The ANN implementation uses hierarchical navigable
small world graphs (HNSWG) (Malkov and Yashunin, 2018).

2.4.5 Limitations of existing search task models

Most models for search task identification are non-parametric (Du et al.,
2018; Li et al., 2014a; Lucchese et al., 2013; Mehrotra et al., 2016; Mehrotra
and Yilmaz, 2017; Sen et al., 2018). Those models will grow as the size of the
input query log grows, becoming computationally expensive, especially when
processing large input datasets.

Also, some models requiring user identifiers can not be used in user-
independent modeling scenarios (Du et al., 2018; Hagen et al., 2013; Li et al.,
2014a; Mehrotra and Yilmaz, 2017), raising issues regarding user privacy.
When users carry out their information seeking, they can release personal
information during their interactions with search systems (Craswell et al.,
2020a), which brings privacy front and center, as privacy is crucial for the
broader field of ethics in intelligent systems (Manikonda et al., 2018; Stahl
and Wright, 2018).

Moreover, some models (Du et al., 2018; Wang et al., 2013a) require la-
beled datasets to train the supervised component of the model. Whether it
is a neural network or a support vector machine, labels are indispensable
to train them. But labeled datasets are challenging to create because of the
resources required to manually label them. When considering large datasets,
this limitation is even more critical (Wang et al., 2013a). Also, large collec-
tions are difficult to find publicly available, mainly because of user privacy
issues and commercial concerns that could arise when other search engines
exploit the information (Craswell et al., 2020a).

Furthermore, few models leverage clicked URLs, even though they are
strongly related to user search intent (Zhang et al., 2019). For instance, two
lexically different queries with the same clicked document are likely to reflect
the same information need (Mehrotra and Yilmaz, 2017; Zhang et al., 2019).
Also, a similarity metric based on clicked URLs is the second most important
similarity in Bestlink SVM (Wang et al., 2013a), just after the most important
one, which is the semantic similarity of the queries.

Another limitation of most models is the lack of realtime response times,
which relegates them to offline modeling only. Updating graphs or trees when
a user runs a query can cause delays in search systems, affecting the inter-
action with users in realtime. Most search systems need to generate results
interactively. For example, systems for query autocompletion, query sugges-
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tion, or ranking based on tasks need to have model results as the user runs
the query (Ahmad et al., 2019; Boldi et al., 2009; Borisov et al., 2016; Li
et al., 2017). Similarly, in conversational search, systems can have strict time
thresholds to generate answers, and systems aggregating results from several
indexes can discard an index result if it exceeds a certain limit of time (Ar-
guello and Capra, 2016; Zamani and Craswell, 2020). Such time thresholds
are normally in the order of milliseconds so that it is possible to interact with
users (Zamani and Craswell, 2020).

At the same time, most models are monolingual, supporting mostly users
queries in English only. But users worldwide can access search systems in
many languages. The use of custom-trained word vectors, which use AOLQL
for training, or the use of collections like ClueWeb12B or Wikipedia (Du
et al., 2018; Lucchese et al., 2013; Mehrotra and Yilmaz, 2017; Sen et al.,
2018; Wang et al., 2013a), limit the number of languages the model can
support, normally to English. Though it is possible to custom-train for other
languages, few languages have large collections available for training text
representations (Joshi et al., 2020). The number of languages is even smaller
when considering publicly available query logs (Section 2.1). On top of that,
it would be necessary to manually select the custom-trained vectors or the
specific collection, or create a pipeline, inserting another method that allows
selecting the word vectors depending on the query language.

2.5 Search log segmentation

As a first step in multiple search pattern models, a search log segmentation
is performed to help in the subsequent modeling of user interactions (Hearst,
2009). Once the segments in the search log are extracted, it is possible to
identify search tasks (Mehrotra and Yilmaz, 2017; Sen et al., 2018; Wang
et al., 2013a), analyze query reformulation behaviors (Tamine et al., 2020;
Zhang et al., 2019), improve query suggestions (Ahmad et al., 2019; Tamine
et al., 2020), or optimize document ranking (Ahmad et al., 2019).

To perform the search log segmentation, a chronologically ordered log of
search queries is partitioned into smaller sequences of queries. Those query log
partitions are commonly known as sessions (Gayo-Avello, 2009; Hagen et al.,
2013). The boundaries for the query log partitions lie in pairs of adjacent
queries. To determine if a query pair is a boundary, one may use time spans
between the queries (Lucchese et al., 2013). If the time span is larger than
a certain threshold, the query pair is considered a segment boundary, which
means that each query belongs to a different segment. The time span for the
segmentation can be 26 minutes (Lucchese et al., 2013), 30 minutes (Mehrotra
and Yilmaz, 2017), or 90 minutes (Hagen et al., 2013), depending on statis-
tical analyses of the query logs. By the same token, in some heuristic-based
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approaches (Gomes et al., 2019; Hagen et al., 2013), segmentation based on
time is the first heuristic to be considered.

Search log
segmentation

Time spans Heuristics-based
methods

Supervised
methods

Discovering tasks from
search engine query logs  
(Lucchese et al., 2013)

Geometric session detection
in query logs (Gayo-Avello,
2009)

Support Vector Machine
(SVM) (Wang et al., 2013a) 

Extracting hierarchies of
search tasks (Mehrotra and
Yilmaz, 2017)

From search session
detection to search mission
detection (Hagen et al.,
2013)

Context Attention based
Long Short-Term Memory
(CA-LSTM) (Du et al., 2018)

Analysis of query
reformulation behaviors
(Zhang et al., 2019)

Segmenting user sessions in
search engine query Logs
(Gomes et al., 2019)

Fig. 2.3: Recent methods for search log segmentation, including segmentation
based on time spans, heuristics-based methods, and supervised models.

Nonetheless, according to the analysis of query logs, users tend to inter-
leave multiple search tasks in a single time session. Also, some tasks are
performed during multiple time sessions. Thus, the search process for com-
plex tasks could be iterative, lengthy, and multistage, with shifting goals
(Mehrotra and Yilmaz, 2017). More sophisticated approaches learn models
(Du et al., 2018; Wang et al., 2013a) or establish a cascade of heuristics
(Gayo-Avello, 2009; Gomes et al., 2019; Hagen et al., 2013) to determine the
boundaries in the sequential query log (Table 2.3).

The cascade of heuristics (Hagen et al., 2013) uses a time span between
queries as the starting rule in the procedure. The cascade method then uses
additional heuristics to detect segments – logical sessions – in the query
log before performing the identification of search tasks. The heuristics-based
session segmentation method (HBSSM) (Gomes et al., 2019), an improved
heuristics-based method, leverages pre-trained word embeddings to provide
semantic similarity measures to segment the query logs, complementing se-
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Dataset Method Metric Result

WSMC12
Geometric (Gayo-Avello, 2009) F1 0.886
Heuristics (Hagen et al., 2013) F1.5 0.946
HBSSM (Gomes et al., 2019) F1 0.915

WSMC12
QC-HTC (Lucchese et al., 2013) Accuracy 0.851
BRT (Mehrotra and Yilmaz, 2017) Accuracy 0.878
CA-LSTM (Du et al., 2018) Accuracy 0.883

SUQLST
QC-HTC (Lucchese et al., 2013) Accuracy 0.821
BRT (Mehrotra and Yilmaz, 2017) Accuracy 0.843
CA-LSTM (Du et al., 2018) Accuracy 0.851

Table 2.6: Search log segmentation results for several existing query log
datasets.

mantic relatedness with temporal, lexical, and clicked URLs heuristics. Thus,
a cascade of heuristics is applied to each query pair, and manually set param-
eters provide thresholds in each heuristic to generate the output of the model.
However, as mentioned before (Section 2.4), several manually set thresholds
in the rules make it challenging to adapt heuristics-based methods (Gayo-
Avello, 2009; Gomes et al., 2019; Hagen et al., 2013) to other datasets without
manually adjusting them.

Instead, models can learn to segment logs using task labels, as tasks are
recognized as a good atomic unit to divide search logs (Hearst, 2009; Lucch-
ese et al., 2013). Formally, the task segmentation is defined as follows. Let
us consider a sequence of queries S = {q1, ..., qn}, a collection of pairs of suc-
cessive queries C = {(q1, q2), (q2, q3), ..., (qn−1, qn)} and its respective known
labels L = {l1, ..., ln−1} where li ∈ {0, 1}, ∀i ∈ J1;n− 1K. The task segmenta-
tion goal is to correctly predict the labels of unseen query pairs, where li = 1
or li = 0 indicate if qi+1 and qi belong to the same search task or not, respec-
tively. Support Vector Machines (SVMs) or neural networks can be used to
create the segmentation model (Du et al., 2018; Wang et al., 2013a). In par-
ticular, CA-LSTM (Du et al., 2018) uses RNNs for segmenting search query
logs. Three sequences encode the data, in contrast with other models (Liu,
2017), where a single input encodes data, and a bidirectional RNN processes
the single input to produce the model results. Moreover, exploiting the con-
text from query logs in CA-LSTM is necessary to generate an improvement
over the existing methods and surpass its baseline approach (Mehrotra and
Yilmaz, 2017). The performance of the CA-LSTM architecture depends on
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at least six adjacent queries for obtaining its best metrics, requiring context
around the pair of adjacent queries to properly segment the search query log.

2.5.1 Limitations of existing segmentation approaches

Even though clicked URLs are related to user search intent (Section 2.4),
when segmenting a log for interactive user assisting applications, it is not
possible to wait until the user clicks the URL. A similar scenario arises if the
model requires forward and backward queries to generate a context for the
segmentation model (Du et al., 2018), which limits the use of the segmenta-
tion methods to offline modeling.

Also, heuristics-based models pose some limitations. The thresholds for
the rules are set depending on a manual statistical analysis of the search
query logs (Gayo-Avello, 2009; Hagen et al., 2013; Gomes et al., 2019). No
method is included to adjust the thresholds when the search query log reg-
isters new entries, which requires a manual update of the heuristics. Also,
lexically different queries can pertain to the same information need (Mehro-
tra and Yilmaz, 2017; Zhang et al., 2019); thus, semantic comparisons are a
better choice when analyzing user search queries.





Chapter 3
Segmenting search query logs by learning
to detect search task boundaries

The important thing is not to stop
questioning. Curiosity has its own
reason for existing. One cannot
help but be in awe when he
contemplates the mysteries of
eternity, of life, of the marvelous
structure of reality.

Albert Einstein

As search log segmentation is the first step in many search task models,
analyses of search patterns, and user assisting applications (Chapter 2), in
this chapter we propose a neural model to learn to detect task boundaries
in search query logs. Previous models for task boundary detection rely on
clicked URLs and surrounding queries to properly segment the query logs,
determining if adjacent queries are part of the same search task or not. How-
ever, waiting for clicked URLs or future consecutive queries could render the
use of these methods unfeasible in user assisting applications that require
model results in realtime. The model proposed in this chapter uses only pairs
of adjacent queries and their time span, generating results suited for realtime
user assisting applications, with improved accuracy over existing approaches.
We also show the advantages of fine-tuning the proposed model for adjusting
the architecture to a small annotated collection.

3.1 Introduction

Search systems are an essential component of the interactions of users with
the World Wide Web. They are crucial to help users access the ever-increasing
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amount of information available. A wide range of needs and desires from users
are converted to queries and submitted to available search engines (Hearst,
2009). Both automatic and manual analysis of search interactions from users
enables the modeling of users’ search patterns. Extracted patterns help to
personalize search engine interactions. In turn, personalization allows the
modification of search results depending on the user, the retrieval of adver-
tisement according to user interests, the suggestion of queries related to user
information needs, and other tasks designed to support the user while she
performs her search tasks (Du et al., 2018; Hearst, 2009).

Search system logs register the queries users run in the search engines
to complete their search tasks. Mining those logs allows the identification of
search tasks. Search session segmentation is the first step in multiple methods
for search task identification(Hearst, 2009; Lucchese et al., 2013; Mehrotra
and Yilmaz, 2017). In session segmentation, a sequential log of search queries
is partitioned into smaller sequences of queries. The boundaries for the query
log partitions lie in pairs of adjacent queries. To determine if a query pair is
a boundary, one may use time spans between the queries (Hagen et al., 2013;
Lucchese et al., 2013; Mehrotra and Yilmaz, 2017; Wang et al., 2013a). If the
time span is larger than a certain threshold, the query pair is considered a
session boundary, which means that each query belongs to a different session.
More sophisticated approaches use heuristics-based models (Gomes et al.,
2019) or neural networks (Du et al., 2018) to determine the boundaries in the
sequential query log. However, the use of clicked URLs (Gomes et al., 2019)
or adjacent queries (Du et al., 2018) in the search log - in both backward
and forward directions - represents a limitation in practical setups, especially
in user supporting applications that require modeling on the fly. In such
applications, waiting for the clicked URL or future queries to populate the
model input might be unfeasible.

Hence, we propose a bidirectional recurrent neural network (RNN) ar-
chitecture that segments pairs of adjacent queries based on semantic repre-
sentations of queries and time spans between queries to provide temporal
information. The segmentation model determines if adjacent pairs of queries
represent a boundary between search tasks, without relying on clicked URLs,
character-level representations, or surrounding queries for optimum perfor-
mance. Furthermore, we test the segmentation architecture in a fine-tuning
setup (Angermueller et al., 2016) to know how the model adapts to a small
log dataset.

3.2 Related limitations

To support users during the information seeking process, it is crucial to seg-
ment query logs correctly according to their search tasks. Some methods
based on time spans between queries have been proposed to extract task-
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based sessions from query logs (Lucchese et al., 2013). However, when ana-
lyzing search logs, multiple information needs overlap because users tend to
solve various search problems during their interactions with search systems
(Hagen et al., 2013; Hearst, 2009; Lucchese et al., 2013). Because of this
multitasking, a time-based session might contain more than one search task
(Lucchese et al., 2013; Sen et al., 2018).

Supervised models and heuristics based methods has been proposed as
well (Section 2.5). But such approaches have some limitations. Heuristics-
based methods (Hagen et al., 2013; Gomes et al., 2019) have several manually
set thresholds in their rules, making it challenging to automatically adapt
to other labeled datasets if needed. Should an update is needed, a manual
analysis of the new dataset is required to update the thresholds of the rules,
while machine learning models could be automatically fine-tuned or retrained.

Likewise, the use of character-level information (Du et al., 2018; Hagen
et al., 2013; Gomes et al., 2019; Lucchese et al., 2013) can misrepresent
queries because lexically similar queries can have entirely different seman-
tic contents. A difference in semantic content implies that lexically similar
queries could pertain to non-related search tasks (Zhang et al., 2019). A re-
lated problem arises when evaluating similarities in queries based on term
likelihoods (Mehrotra and Yilmaz, 2017). Also, the need for clicked URLs
(Gomes et al., 2019) or adjacent queries to properly segment search logs (Du
et al., 2018) could be problematic. Some user supporting applications need
on the fly results, thus, they can not wait for clicked URLs or future user
queries to provide forward context. Likewise, when dealing with simple search
tasks like fact-finding, typically, a single query could solve the information
need (Hearst, 2009); thus, there is no related context available. Similarly, the
average amount of queries per search task is less than four, on the basis of
the data released by widely used search engines (Gayo-Avello, 2009; Völske
et al., 2019). For instance, there is an average of 3.2 queries per task (Hagen
et al., 2013) and 3.5 queries per task (Sen et al., 2018) in publicly available
search task datasets.

Because of these limitations, we propose a bidirectional RNN (BiRNN)
approach that relies on a semantic representation of queries in search logs,
adding time spans between queries to provide temporal information. The pro-
posed session segmentation architecture can be fine-tuned to automatically
adapt it to new datasets and does not need character level representations,
clicked URLs, or adjacent queries in the search log to achieve its maximum
performance.

3.3 A new task segmentation approach

Our proposed BiRNN-based architecture (Figure 3.1) processes search query
vector representations and learns to identify task boundaries in pairs of suc-
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Fig. 3.1: Segmentation architecture with a bidirectional recurrent neural layer
along with an attention mechanism. Input samples include the query pairs
and the time span between them. Query examples in the image come from
the first two entries in the CSTE dataset.

cessive queries. The architecture relies on a bidirectional recurrent layer, a
commonly used layer for processing sequential information (Angermueller
et al., 2016; Graves, 2012; Liu, 2017). Furthermore, some studies in the field
of Neural Machine Translation showed that intermediate output states from
recurrent layers could significantly improve the performance of the initial
models (Luong et al., 2015). Therefore, following these conclusions, we in-
clude an attention mechanism in the segmentation architecture to leverage
the information from the intermediate output states. Additionally, completely
different queries from a lexical standpoint might represent very similar infor-
mation seeking needs. For example, “constantinople” and “istanbul archeol-
ogy” could represent semantically related information needs because Istanbul
and Constantinople refer to the same city, but there is no lexical similarity
between the two queries (Hagen et al., 2013; Sen et al., 2018). These dis-
crepancies could affect the ability of methods that rely on character-level
information to extract task patterns from query logs. Thus, we do not use
character-level information to encode queries. Instead, we use word embed-
dings to capture the semantic meaning of the queries.
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3.3.1 Input representation

We use word embeddings to represent queries in the search log (Figure 3.1).
As queries are short texts, every query is mapped to a unique vector, which
allows us to keep both the syntactic and semantic information of the query
content (Sen et al., 2018). Thus, we define the vector representation of the
query qi as the average of all its word embeddings wi in order to get a
single vector per query, a query representation approach used in several recent
studies (Gomes et al., 2019; Mehrotra and Yilmaz, 2017; Sen et al., 2018;
Zamani and Croft, 2016a,b). Also, we concatenate the time span in seconds
between the timestamps of a query pair: dtime span = timestamp(qi+1) −
timestamp(qi), where timestamp is a function that gets the timestamp in
seconds of a given query. If needed, the dtime span value is broadcast1 to
match the input dimensions.

For the experiments to evaluate the model with adjacent queries for con-
text, each adjacent query vector is appended to the query pair representation,
respecting the sequential order in which queries appear in the search log. In
this case, the input contains q−m, . . . , q0, q1, dtime span, . . . , qn, where m is
the number of backward queries and n is the number of forward queries.

3.3.2 Recurrent neural network

An RNN is a type of neural network ideally suited to process sequential in-
formation. In contrast with previous methods (Lucchese et al., 2013; Mehro-
tra and Yilmaz, 2017; Sen et al., 2018; Wang et al., 2013a), RNNs tend to
scale adequately and perform well when dealing with sequential data (Anger-
mueller et al., 2016). RNNs store information from input sequences by us-
ing iterative function loops (Graves, 2012; Rajaraman and Ullman, 2011).
To store information, RNNs have a hidden state vector, which works as a
memory while the network processes the sequence in the forward direction
(Rajaraman and Ullman, 2011). BiRNNs were proposed to process the in-
put sequence simultaneously in a forward and backward direction. To do so,
they compute forward hidden states and backward hidden states. Concate-
nating forward and backward hidden states enables the generation of outputs
that leverage information from preceding and following steps in the sequence
(Bahdanau et al., 2015; Luong et al., 2015).

In our proposed approach, we add an attention mechanism (Bahdanau
et al., 2015; Luong et al., 2015) at the output of the bidirectional RNN
(Figure 3.1). The forward and backward hidden states of the bidirectional
recurrent layer are concatenated to the attention mechanism output before
applying dropout. The proposed BiRNN-based model uses a fully connected

1 https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html
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layer that takes the dropout result as input (Figure 3.1). Then, Softmax is
used to generate the results in the fully connected layer, indicating if the two
queries are part of the same task or not.
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Fig. 3.2: Performance of the segmentation architecture considering different
numbers of recurrent units for the bidirectional layer. Results were calculated
using LSTM units and WSMC12 dataset.

3.3.3 Configurations of the proposed BiRNN approach

Four alternative configurations are studied for the proposed BiRNN approach
as a result of two hyperparameters: time span location and recurrent unit
type. The time span dtime span can be placed in the initial layer (Figure
3.1) or the concatenation layer (Du et al., 2018), at the attention mechanism
output. The latter is inspired by previous work (Severyn and Moschitti, 2015),
where the late concatenation of extra features improved performances in text
classification. Regarding recurrent unit types, in practical setups, the memory
in the standard RNN only works effectively with information very close to
the step that the network is processing. Thus, LSTM networks were proposed
to enhance the performance of standard RNNs with long term information.
LSTMs have the ability to save important information, forget information
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that is not relevant, and focus on the parts of the sequence that better serves
the overall network performance. A two-tier configuration provides the ability
to focus. It comprises a hidden state vector, which works as the working
memory, and a cell state vector, which works as the long term memory. A
popular variant of the LSTM network is the Gated Recurrent Unit (GRU), a
simpler architecture to compute and implement (Cho et al., 2014). It relies on
a single vector for memory purposes, decreasing the number of parameters
needed (Rajaraman and Ullman, 2011; Cho et al., 2014). In the proposed
architecture, we consider both types of recurrent units for the bidirectional
layer.

3.4 Results and discussion

3.4.1 Technical considerations

Query Timestamp Task label

update media player 2006-03-09 09:14:24 2
update media player 9 series 2006-03-09 09:15:40 2
jim rome 2006-03-09 09:17:13 1
bank of america 2006-03-10 02:01:42 3
bank of america 2006-03-10 23:50:33 3
jt the brick 2006-03-11 00:05:18 1
storm watch 2006-03-11 01:45:50 12
weather 2006-03-11 01:46:34 12
dailyracingform 2006-03-11 08:22:09 5
dailyracingform 2006-03-11 08:22:09 5
search with plate numbers 2006-03-11 09:00:35 13
plate searches 2006-03-11 09:55:33 13
jim rome 2006-03-11 10:18:25 1
license plate 2006-03-11 19:22:35 13
bank of america 2006-03-11 19:29:06 3
plate search 2006-03-11 19:42:41 13
plate search 2006-03-12 00:06:49 13

Table 3.1: Entries in the WSMC12 dataset from user with ID 1045635. Dashed
lines represent search task boundaries.
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Fig. 3.3: Training curves for the bidirectional architecture. (a) Loss curves
for both training and testing sets. (b) Accuracy and F1 results for the testing
set during the training of the system.

Two datasets were considered in this chapter: the WSMC12 and the CSTE
datasets (Section 2.1). While task labels in the WSMC12 dataset correspond
to search tasks inside user search sessions, with query timestamps (Table
3.1), task labels in the CSTE dataset correspond to cross-session search
tasks, without grouping queries by user information or query timestamps.
Therefore, to ensure the sequential order of queries in the CSTE dataset,
query timestamp information comes from (Lucchese et al., 2013). Moreover,
Accuracy and F1 score enable the evaluation of the different approaches,
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performing 10-fold cross-validation. The Student’s paired t-test provided the
test for statistical significance.

We used the GloVe publicly available pre-trained word vectors (Pennington
et al., 2014) for computing the search query vector representations. GloVe is
a word vector space used in several recent works for short text representation
and query encoding (Edo-Osagie et al., 2019; Marivate and Sefara, 2019;
Rakib et al., 2018; Zamani and Croft, 2016a,b; Wang et al., 2016). The pre-
trained word vectors have a dimension of 300 and are based on web corpora
with 42 billion tokens from Common Crawl (Pennington et al., 2014). Word
vectors have a coverage of 96.2% for the WSMC12 dataset and 84.5% for the
CSTE dataset.

The proposed segmentation architecture is implemented using the Tensor-
flow deep learning framework – an advanced dataflow system that provides
one of the most efficient implementations for RNNs (Angermueller et al.,
2016). To train the segmentation model, we minimized the cross-entropy loss
with the Adam optimizer (Figure 3.3). The Adam optimizer used the default
TensorFlow parameters β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning
rate was set to 10−4, batch size to 256, layer size to 32, training steps to 6
x 104, and dropout to 0.3. To initialize the weights in all the layers, we used
(Glorot and Bengio, 2010) initialization scheme. The bidirectional layer size
was determined by testing several sizes with recurrent units and the WSMC12
dataset (Figure 3.2). The model performance improved from an accuracy of
0.926 at 4 recurrent units, to an accuracy of 0.937 at 32 recurrent units. How-
ever, a further increase in size affects performance. Accuracy falls to 0.926
at 64 recurrent units. Because of these results, we set the bidirectional layer
size to 32 recurrent units.

3.4.2 Evaluation results

3.4.2.1 Comparison of results

We compared the proposed approach to the state-of-the-art HBSSM ap-
proach as a baseline. We also considered other supervised machine learning
approaches like logistic regression, Support Vector Machine (SVM) with lin-
ear kernel and Radial Basis Function (RBF) kernel (γ=2, C=1), K-Nearest
Neighbors (n=3), Naive Bayes, Gaussian Process Classification (GPC) with
(κ[γ=1]), Random Forest, AdaBoost, Decision Tree, and Quadratic Discrim-
inant Analysis (QDA) (Table 3.2). We also evaluated the proposed model in
several context scenarios (Table 3.3), using CA-LSTM (Du et al., 2018) as a
reference. Additional to the query pair representation (Section 3.3.1), we pro-
vided query texts and clicked URLs, when available, to the baseline HBSSM
approach so that it was possible to compute all the heuristics specified for
the model. We also flattened the query pair representation for methods that
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Segmentation model WSMC12 CSTE

Accuracy F1 Accuracy F1

Logistic regression 0.733 0.238 0.634 0.322
K-Nearest Neighbors 0.865 0.701 0.708 0.460
SVM, linear kernel 0.735 0.022 0.669 0.232
SVM, RBF kernel 0.742 0.055 0.671 0.105
Naive Bayes 0.773 0.306 0.643 0.223
QDA 0.323 0.428 0.534 0.553
Random Forest 0.862 0.742 0.725 0.502
AdaBoost 0.862 0.739 0.721 0.504
GPC 0.905 0.811 0.720 0.417
Decision Tree 0.882 0.777 0.759 0.541
HBSSM 0.886 0.813 0.656 0.627

BiRNN LSTM - time at AL 0.921 0.861 0.784 0.651
BiRNN GRU - time at AL 0.927 0.867 0.789 0.648
BiRNN LSTM 0.931 0.875 0.788 0.663
BiRNN GRU 0.937 0.884 0.751 0.604

Table 3.2: Model performance for WSMC12 and CSTE datasets. Architecture
configurations include GRU recurrent units, LSTM recurrent units, and time
span concatenation at the attention layer (AL). Differences between results
have p ≤ 0.05 for the Student’s t-test.

required a unidimensional vector as input, ensuring that all methods got the
query pair and its time span as input information.

Our proposed segmentation architecture obtains very satisfactory results,
surpassing the remaining methods used for comparison. Moreover, GPC – the
best performing method from the traditional machine learning approaches –
gets results close to the HBSSM performance and matches the accuracy of
CA-LSTM, even exceeding it in some context scenarios. Nonetheless, results
from our proposed segmentation architecture outperform the previous recur-
rent model in all context scenarios. The trained BiRNN GRU architecture is
also faster than the HBSSM baseline. We measured the query pair process-
ing time using a CPU-only virtual instance with a CPU frequency of 2.397
GHz, taking the average time per query pair for all the pairs in the WSMC12
dataset. The trained BiRNN GRU architecture took around 15ms per query
pair, while the HBSSM approach took around 61ms. This difference in exe-
cution time represented a speedup of 4 for our proposed architecture.
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Also, we analyze the model with both GRU and LSTM recurrent units, as
the decision of which to choose depends on the task and the dataset (Chung
et al., 2014). Replacing the GRU cells with LSTMs decreases the accuracy
of the segmentation architecture with the WSMC12 dataset. Accuracy drops
from 0.937 to 0.931 (Table 3.2). Similar behavior is observed in the fine-tuning
results for the CSTE dataset (Table 3.5), suggesting that the simpler GRU
cell (Cho et al., 2014) is a better choice for the search segmentation model.
Additionally, given the smaller number of parameters per recurrent unit,
GRU models have another advantage: a faster training time. One training
step with GRU cells takes around 20.15s, while one training step with LSTM
cells takes around 31.68s, representing a speedup of 1.6 for the GRU model.

Likewise, concatenating the time spans to the attention mechanism de-
creases the performance of the proposed architecture. Accuracy drops from
0.937 to 0.927 with the WSMC12 dataset. With the smaller CSTE dataset,
the best results are obtained when performing fine-tuning with time span
information at the input sample representation as well (Table 3.5). Thus, the
best scenario happens when the query vectors and the time span informa-
tion are part of the input sample representation. This configuration allows
the computation of hidden state vectors inside the bidirectional layer that
rely upon both the query pair semantic content and the time between them.
Similarly, the bidirectional output vectors depend on both semantic and time
information to feed the attention mechanism.

No. of queries 2 4 6 8 10

CA-LSTM 0.863 0.878 0.904 0.898 0.903
BiRNN LSTM 0.929 0.921 0.920 0.915 0.912
BiRNN GRU 0.935 0.920 0.927 0.919 0.917

Table 3.3: Segmentation model accuracy for the WSMC12 dataset, with addi-
tional adjacent queries for recurrent architectures. Differences between results
have p ≤ 0.05 for the Student’s t-test.

3.4.2.2 Impact of query context

We also analyzed how the model behaves when adding adjacent queries for
session segmentation. We computed query vectors for each adjacent query
and appended the query vectors to the original pair, respecting the order in
which they appeared in the original search log. Half of the adjacent queries
precedes the query pair, while the remaining half follows the query pair in
the chronological search log. When the input includes adjacent queries for
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Context No. of queries Accuracy F1

Backward - forward

2 0.935 0.882
4 0.920 0.853
6 0.927 0.868
8 0.919 0.852
10 0.917 0.844

Backward only

1 0.933 0.877
2 0.934 0.878
3 0.927 0.863
4 0.928 0.865
5 0.924 0.859

No context 0 0.937 0.884

Table 3.4: Model metrics using additional adjacent queries in the search log
for providing context. We consider several numbers of adjacent queries in the
WSMC12 dataset, selecting both backward and forward contexts or backward
context only.

context, we do not see any improvement in the accuracy of the segmentation
architecture. Although the addition of adjacent query vectors still exceeded
other baseline methods, overall, none of the results improved the performance
of the query pair without context (Table 3.3). Such a result is essential be-
cause the average amount of adjacent queries per search task is around three.
Similarly, simple information needs like fact-finding are usually solved with
only one query (Hearst, 2009). Furthermore, forward context can be a critical
drawback, especially when supporting user information needs. Applications
like query suggestion must respond on the fly. They cannot wait for future
queries to provide context to the model.

The same pattern was observed when we examined only backward queries
for context (Table 3.4), a strategy similar to the approach in Bestlink SVM
(Wang et al., 2013a), where only previous queries in the sequential log were
considered. In all tests, the segmentation model gave the best performance
when the input had the query pair and the time span between them.

3.4.2.3 Fine-tuning with a smaller dataset

Finally, we wanted to know the impact of pre-training the segmentation ar-
chitecture before training the model with a small dataset. Scarce data poses
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challenges to deep learning architectures, and fine-tuning is one of the al-
ternatives to deal with small datasets (Angermueller et al., 2016; Lin et al.,
2015). Table 3.5 presents the results for the fine-tuning experiments. When
performing 10-fold cross-validation on the CSTE dataset, without doing fine-
tuning, we got an accuracy of 0.751. After pre-training with the WSMC12
dataset, we performed 10-fold cross-validation on the CSTE dataset, obtain-
ing an accuracy of 0.803. Thus, the BiRNN architecture configuration with
the time span at the input and GRU recurrent units gave the best perfor-
mance when fine-tuning. Overall, it represents the best performance with the
smaller CSTE dataset when we consider all the methods tested. The results
mentioned above highlight the ability of the model to perform well when
processing datasets with a limited number of samples, a common scenario
because of the difficulty for obtaining large search query logs and the cost
associated with labeling them (Wang et al., 2013a).

Segmentation model Accuracy F1

No pre-training

BiRNN LSTM - time at AL 0.784 0.651
BiRNN GRU - time at AL 0.789 0.648
BiRNN LSTM 0.788 0.663
BiRNN GRU 0.751 0.604

Pre-training

BiRNN LSTM - time at AL 0.787 0.649
BiRNN GRU - time at AL 0.782 0.644
BiRNN LSTM 0.769 0.644
BiRNN GRU 0.803 0.665

Table 3.5: Fine-tuning the recurrent architecture to realize segmentation on
the CSTE dataset. The model is pre-trained using the WSMC12 dataset.

3.5 Summary

In this chapter, we proposed a bidirectional RNN architecture with an atten-
tion mechanism for segmenting search query logs by identifying task bound-
aries on them. Our proposed segmentation model processes query pairs in
search logs to determine if a boundary is present or not. Experimental re-
sults showcase the improvement of the proposed architecture over the base-
line method, outperforming the other approaches used for comparison. Once
trained, the recurrent model is also several times faster than the heuristics-
based baseline. Furthermore, there is no need for clicked URLs, character-
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level representations, or additional queries surrounding the query pair to pro-
vide context to the model. This result is especially relevant given the mean
number of queries per task in datasets from widely used search engines and
the fact that information needs like fact-finding and other simple tasks are
usually solved with only one query. Even when testing with additional context
to the query pair, segmentation architecture results continue to be above all
the other approaches. Also, the proposed segmentation model performs well
when fine-tuning with a smaller query log dataset. Fine-tuning performance
is useful given the scarcity of publicly available labeled collections from search
engines and the cost of labeling large search logs.



Chapter 4
Extracting Search Tasks from Query Logs
Using a Recurrent Deep Clustering
Architecture

Tout ce qu’un homme peut
imaginer, d’autres hommes
peuvent le rendre réel.

Jules Verne

The neural model in Chapter 3 learns to detect search task boundaries
from user interactions. However, it is a supervised method, requiring labeled
datasets for training the model. Likewise, task boundaries are not enough
to extract search tasks from user interactions. The steps users perform to
carry out search tasks are not necessarily sequential. Those steps can appear
interleaved in the search query log, reflecting the fact that users multitask
when accessing search systems. In several search query datasets (Section 2.1),
it is possible to observe that users can switch to other search tasks, and after
a certain period, come back to continue the previous search task. In addition,
different users can run queries to carry out the same information need.

Consequently, in this chapter, we extend the neural architecture to propose
a model that can extract search tasks from user interactions. Most existing
search task extraction methods use graph-based or non-parametric models,
which grow as the query log size increases (Section 2.4). Deep clustering meth-
ods offer a parametric alternative, but most deep clustering architectures fail
to exploit recurrent neural networks for learning text data representations.
Therefore, we propose a recurrent deep clustering model for extracting search
tasks from query logs. The proposed architecture leverages self-training and
dual recurrent encoders for learning suitable latent representations of user
queries, outperforming previous deep clustering methods. It is also a paramet-
ric approach, which offers the possibility of having a fixed-sized architecture
for analyzing increasingly large search query logs.
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4.1 Introduction

Users carry out their search tasks running groups of related queries in avail-
able search systems, fulfilling a wide range of information needs and desires
(Hearst, 2009). Query logs record the queries that users submit to search
engines. Therefore, proper extraction of search tasks from query logs helps
to support users while they fulfill their information needs, facilitating multi-
ple goals like query term prediction, query recommendation, advertisement,
results ranking depending on the search task, query-task mapping, and pre-
diction of user satisfaction based on search tasks (Du et al., 2018; Mehrotra
and Yilmaz, 2017; Sen et al., 2018; Völske et al., 2019).

Along with the search queries that users submit, query logs also con-
tain timestamps and other user-related information. Initially, query logs were
segmented using the time between query timestamps to establish a session
boundary and delimiting search tasks. If the time between a pair of subse-
quent queries was above a certain threshold in minutes, a boundary was es-
tablished, signaling the end of a search task (Lucchese et al., 2013). However,
according to multiple analyses of search query logs, users tend to interleave
search tasks in a single time session. Also, some tasks are performed during
multiple time sessions (Lucchese et al., 2013; Mehrotra and Yilmaz, 2017; Sen
et al., 2018). Hence, clustering models have been utilized to extract search
tasks by grouping semantically related queries.

Recent models for search task extraction rely on graph-based methods or
non-parametric approaches (Du et al., 2018; Lucchese et al., 2013; Mehrotra
et al., 2016; Mehrotra and Yilmaz, 2017; Sen et al., 2018), which grow as
search query logs increase in size, making them more computationally expen-
sive as the number of queries increases. By contrast, deep clustering methods
(Aljalbout et al., 2018; Min et al., 2018) offer a parametric alternative to
learn latent representations of query log entries and simultaneously cluster
them into interrelated groups of search queries.

Most existing deep clustering approaches do not exploit the modeling
power of recurrent neural networks (RNNs), which are widely used for natu-
ral language processing (NLP) and sequential data processing (Graves, 2012;
Lipton et al., 2015; Mitchell, 2019). Therefore, we propose a recurrent deep
clustering (RDC) model to extract search tasks from query logs. RDC lever-
ages the modeling power of recurrent neural networks in a dual encoder con-
figuration, along with self-training, to learn a suitable latent space of user
queries and simultaneously cluster them in groups of search tasks.

4.2 Related limitations

The need for large query log datasets that are cleaned and labeled by humans
represents a challenge for supervised task extraction models (Du et al., 2018;
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Mitchell, 2019; Wang et al., 2013a). As unsupervised learning approaches do
not rely on labels (Murphy, 2012), they could represent a better alternative
for search task extraction. Clustering is an unsupervised learning approach
that groups related items using abstract similarities or learns new categories
by analogy to existing ones (Mitchell, 2019).

Several clustering methods has been proposed proposed to extract search
tasks from query logs (Section 2.4). Nonetheless, graph-based and non-
parametric models grow as the size of datasets increases (Murphy, 2012),
becoming more computationally expensive. For example, the number of leaves
in BRTs (Mehrotra and Yilmaz, 2017) is directly related to the number of
queries in the search query log; for graph-based methods, every entry in the
search query log ends up being a node in the underlying graph. Likewise, the
representation of the data is crucial for the subsequent results of clustering
methods. High dimensional data tends to affect clustering methods because
distances in high dimensional spaces are less effective. Dimensionality reduc-
tion methods have been widely used, including linear methods, non-linear
methods, and spectral methods. Nevertheless, the latent representation ob-
tained from dimensionality reduction can affect clustering performance; thus,
deep neural networks are a viable alternative to compute latent representa-
tions (Aljalbout et al., 2018; Min et al., 2018; Murphy, 2012) for input data,
without performing dimensionality reduction as a preprocessing step.

Deep neural networks can be used to simultaneously learn latent represen-
tations and cluster data, using a method commonly known as deep clustering
(Aljalbout et al., 2018; Min et al., 2018). Also, in contrast with graph-based
methods and non-parametric approaches, deep clustering models do not grow
with the size of the search query log (Murphy, 2012). Deep clustering ap-
peared initially in acoustic separation and then spread to other areas of re-
search (Min et al., 2018). Before deep clustering appeared, research focused on
data representation and clustering methods independently. However, learning
latent representations is at the heart of deep clustering.

Models in deep clustering rely on several neural network architectures,
including autoencoders, variational autoencoders (VAEs), feedforward neural
networks, convolutional neural networks, deep belief networks, and generative
adversarial networks (GANs) (Aljalbout et al., 2018; Min et al., 2018). All
architectural variations are trained to learn cluster friendly representations,
combining representation learning and clustering. Deep neural networks are
trained to minimize the clustering loss, optimizing the network weights for
improving the predicted labels of input samples. Both GAN and VAE based
architectures are generative. They do not only learn to cluster inputs; they
are also able to generate samples from the clustering categories (Aljalbout
et al., 2018; Min et al., 2018).

Existing deep clustering models fail to exploit RNNs for learning latent
representations of text data samples. Text data naturally fits the sequen-
tial modeling power of recurrent neural networks (Graves, 2012). Because of
this, RNNs have been widely used for processing text data in NLP, generating
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state-of-the-art results in multiple applications (Graves, 2012; Mitchell, 2019;
Zhang et al., 2019). Our proposed architecture differs from prior deep clus-
tering methods (Aljalbout et al., 2018; Min et al., 2018) by using RNNs in a
dual encoder configuration (Yang et al., 2019) to simultaneously learn latent
representations of user queries and cluster them in groups of search tasks.
Also, in contrast with other approaches (Du et al., 2018; Lucchese et al.,
2013; Mehrotra and Yilmaz, 2017; Sen et al., 2018), it provides a parametric
model, which preserves its size despite the query log length.

4.3 Search task extraction

Encoder                      

     

     

     

     

     

     

     

     

     

glo
ba

l

pa
ym

en
ts

ne
tw

or
k

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

RNN

RNN

RNN

RNN

RNN

RNN

... ...

RNN RNN

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     Bidirectional
State

Bidirectional
RNN Outputs

Concatenation

Attention mechanism

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

Projection
head

La
te

nt
 s

pa
ce

Fig. 4.1: Recurrent neural network encoder for learning latent representations
of queries. The encoder comprises a bidirectional recurrent layer, an attention
mechanism, and a projection head.

The proposed RDC model has an RNN encoder as the central component
of its architecture. The architecture uses a dual encoder setup (Yang et al.,
2019) (Section 2.2), a widely used configuration in representation learning,
neural machine translation, and other NLP applications (Chen et al., 2020;
Yang et al., 2019, 2020). The recurrent encoder comprises a bidirectional
recurrent layer, an attention mechanism, and a projection head (Chen et al.,
2020). Input queries comprise a list of word embeddings qi = [w1, w2, w3, ...].
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Fig. 4.2: Pretraining and clustering phases for search task extraction using a
dual encoder configuration.

To form the input query’s latent representation, we concatenate the output of
the attention mechanism and the hidden state of the bidirectional recurrent
layer, passing the concatenated tensor through a projection head (Figure 4.1).
Regarding recurrent unit types for the encoder, we consider both Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) (Chung et al.,
2014).

Two phases optimize RDC in tandem: a pretraining phase and a clustering
phase (Guo et al., 2017; Min et al., 2018; Xie et al., 2016). Each phase has
its loss; thus, we adapt the architecture of the model depending on the loss
that we are optimizing (Figure 4.2).

4.3.1 Pretraining phase

Deep clustering methods tend to pretrain neural network layers before the
clustering phase, which allows the initialization of the latent representation
for input samples (Aljalbout et al., 2018; Min et al., 2018). During the pre-
training phase, we optimize the encoder with a supervised objective. We use
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the dual encoder configuration (Yang et al., 2019) to pretrain the recurrent
encoders according to the following objectives:

• Segmentation. In this supervised pretraining objective, the recurrent en-
coders are trained using the search task segmentation approach (Chapter
3). This pretraining objective determines if two adjacent queries in a
chronologically ordered query log are part of the same search task or not.
The expected output of this objective is binary, and we use cross-entropy
to compute the pretraining loss LP .

• Sequence. The sequence pretraining objective determines if a pair of
queries appear adjacent in a chronologically ordered query log or not.
Similar to the segmentation objective, the expected output of this objec-
tive is also binary, and we use crossentropy to calculate the pretraining
loss LP .

• Intent. For the intent pretraining objective, queries representing the user’s
intent for the same search task are close in the latent representation space
(Zhang et al., 2019). Therefore, we compute the cosine proximity between
encoder outputs and use the Mean Squared Error (MSE) (Tan et al.,
2018) between predicted cosine proximity and expected cosine proximity
to calculate the pretraining loss LP . The expected cosine proximity is
set to one for pairs of queries pertaining to the same search task, zero
otherwise.

4.3.2 Clustering phase

Once the foregoing objectives have been used to pretrain the recurrent en-
coders, we discard the layers on top of the encoders that we used during
pretraining, changing the pretraining objective to the clustering objective.
The objective loss for the clustering phase LO comprises the clustering loss
LC and the self-training loss LS (Guo et al., 2017; Luo et al., 2017).

For the clustering loss, following previous work (Aljalbout et al., 2018;
Min et al., 2018; Xie et al., 2016), we connect the pretrained encoders’ out-
put to a clustering layer, where the Student’s t-distribution provides a kernel
to compute the soft assignments for the data points representing the user
queries. The Student’s t-distribution is a heavy-tailed distribution that helps
to preserve distances of data points when mapping from a high dimensional
to a low dimensional space. When mapping data points, the distances in the
high dimensional space require larger distances in the low dimensional space
to remain equivalent. Hence, the natural gaps existing between clusters in a
high dimensional space can easily disappear when mapping to a lower dimen-
sional space. One way to deal with this phenomenon is to use a heavy-tailed
distribution to model distances in the low dimensional space. Compared to a
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Gaussian distribution, the Student’s t distribution has much heavier tails. For
that reason, it is used in the t-Distributed Stochastic Neighbor Embedding
(t-NSE) (Van der Maaten and Hinton, 2008), a widely popular technique for
visualizing high dimensional data. Thus, by using the Student’s t distribution
in the low dimensional space for the clustering layer, it is possible to preserve
the natural gaps that exist in the high dimensional space (Xie et al., 2016;
Van der Maaten and Hinton, 2008).

Additionally, the soft assignments should match an auxiliary target dis-
tribution, which is designed to emphasize high confidence data point assign-
ments, strengthen predictions, and normalize the loss contribution from each
cluster by using the soft cluster frequencies. Therefore, we compute the clus-
tering loss by calculating the Kullback–Leibler (KL) divergence between the
Student’s t-distribution and the auxiliary target distribution. Formally, given
a query qi and initial cluster centroids µj , the clustering loss LC is calculated
as follows (Guo et al., 2017; Xie et al., 2016):

zi = encoder0(qi) (4.1)

sij = (1 + ‖zi − µj‖2)−1∑
j′

(1 + ‖zi − µ′j‖2)−1 (4.2)

fj =
∑
i

sij (4.3)

pij =
s2
ij/fj∑

j′
s2
ij′/fj′

(4.4)

LC =
∑
i

∑
j

pij log pij
sij

(4.5)

where pij is the auxiliary target distribution and fj are the soft cluster
frequencies. K-means generates the initial cluster centroids µj from the pre-
trained encoder representation. The Student’s t-distribution in equation 4.2
has one degree of freedom (Xie et al., 2016).

For the self-training loss, we use the dual encoder configuration along with
back translation (Edunov et al., 2018), a self-training technique for unsuper-
vised data augmentation (Xie et al., 2020) that preserves the semantics of the
query encodings. Adding noise to query encodings can be ineffective for creat-
ing augmented samples because the resulting samples hardly match variations
from real case scenarios. Hence, to create realistic augmented samples, strong
data augmentation methods focus on creating modifications that match real
variations. For instance, in computer vision, it is common to use cropping, ro-
tation, or scaling to create augmented samples for images (Chen et al., 2020;
Zoph et al., 2020). As queries are short texts, we use back translation to create
realistic augmented samples for entries in the search query log (Figure 4.3).
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Back translation creates paraphrases for a search query while preserving the
semantics of the original query (Edunov et al., 2018). Formally, given a query
qi, with augmented sampled bi, and because the semantics from back trans-
lation remains the same, target cosine proximity ti = 1.0, the self-training
loss LS is calculated as follows (Guo et al., 2017; Min et al., 2018; Xie et al.,
2020):

ui = encoder0(qi) (4.6)

vi = encoder1(bi) (4.7)

pi = uivi
|ui| |vi|

(4.8)

LS =
∑
i

(pi − ti)2 (4.9)

During the clustering phase, both the cluster centroids and the dual en-
coder weights are updated by optimizing the objective loss LO (Aljalbout
et al., 2018; Guo et al., 2017; Min et al., 2018):

LO = LS + γLC (4.10)

where γ is a constant. The range of γ is 0.0 < γ < 1.0 to help the model
preserve the semantic space of the query encodings with the optimization
of LS , while simultaneously optimizing LC to improve the clustering perfor-
mance.

Encoder 0 Encoder 1

cosine
Self-training loss

augmented queryuser query

back translation

user query

Fig. 4.3: Calculation of self-training loss using the dual encoder configuration,
together with back translation to produce realistic augmented queries.
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4.4 Experimental setup

Metrics to evaluate the performance of the models include the unsupervised
accuracy (ACC), the Normalized Mutual Information (NMI), and the Ad-
justed Rand Index (ARI) (Section 2.2.3). The Student’s paired t-test provides
the test for statistical significance. To evaluate the effectiveness of RDC, we
compare its performance with the following methods:

• Deep Embedded Clustering (DEC) combines feature extraction with au-
toencoders and clustering. It learns clustering centers by first pretraining
the autoencoder on the input dataset to learn a latent representation.
Then, DEC discards the decoder part of the autoencoder and uses the
encoder to calculate input representations. DEC uses K-means to initial-
ize cluster centroids, then, it minimizes the clustering loss by minimizing
the KL divergence (Equation 4.5) (Chang et al., 2017; Xie et al., 2016).

• Improved Deep Embedded Clustering (IDEC) extends DEC by including
the decoder part of the autoencoder during the clustering. Doing so aims
to preserve the original structure of the input data in the latent represen-
tation space. To include the encoder, IDEC uses a loss to simultaneously
optimize the clustering on the encoder output and the representational
accuracy of the decoder output (Guo et al., 2017).

• Point Symmetry-based Deep Clustering (SymDEC) replaces the eu-
clidean distance that DEC uses for computing the clustering loss with
the point symmetry-based distance, improving the results when cluster-
ing datasets with symmetrical input samples (Moreno, 2018).

• Deep adaptive clustering (DAC) joins feature extraction and clustering
into a single neural method. To extract features, DAC relies on a deep
convolutional neural network and adds a constraint, so that resulting
labels converge to a one-hot encoding. The constraint assumes that a
pair of input samples either pertain to the same cluster or pertain to
a different cluster. Input sample similarities are unknown beforehand;
thus, an adaptive approach inspired by curriculum learning (Bengio et al.,
2009) is proposed. First, only pairs of input samples with similarities
above or under a threshold are considered. With those pairs of images, the
weights of the convolutional network are updated using back-propagation.
As the training advances and the model improves, more pairs meet the
threshold criteria. When the model converges, all pairs of input samples
are part of the loss computation, and the loss stabilizes. Once the loss
stabilizes, it selects the label with the highest value inside the one-hot
vector to determine the cluster of the input sample (Chang et al., 2017).

• Chimera network (Luo et al., 2017; Wang et al., 2018) uses stacked layers
of bidirectional LSTMs for audio separation models. This stacked recur-
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rent model can handle problems like speaker-independent multi-speaker
speech separation and music source separation. The Chimera architec-
ture comprises four bidirectional layers, a dense layer to compute the
vectors in the latent space, and two heads for multi-task learning: one
head for unsupervised source separation and other head for supervised
time-frequency mask inference. We replace the multi-task learning heads
with the clustering layer in Section 4.3.2 to adapt the architecture for
search task extraction from query logs.

For reference, we also include results for k-means (Tan et al., 2018),
Density-based spatial clustering of applications with noise (DBSCAN) (Es-
ter et al., 1996), and Hierarchical Agglomerative Clustering (HAC) (Murtagh
and Legendre, 2014; Ward Jr, 1963). Scikit-learn1 with default parameters
provides the implementation for k-means, DBSCAN, and HAC. We also
use publicly available implementations for DEC2, IDEC2, SymDEC2, DAC3,
and Chimera4 with the best performing hyperparameters reported for each
method.

Two datasets are considered for evaluating RDC performance: the CSTE
and the TRECQTM datasets. For pretraining, two datasets are considered
as well: Sequence and Segmentation pretraining objectives use the WSMC12
dataset, which has timestamps so that we can guarantee a chronologically
ordered query log. The Intent pretraining objective uses the WHQTM dataset
(Section 2.1).

The GloVe publicly available pre-trained word vectors5 provide the repre-
sentation for the search queries (Pennington et al., 2014). We use the same
query representation for all the methods under testing. To train the RDC
model, we use the Adam optimizer (Kingma and Ba, 2014). The learning
rate is set to 10−4, batch size to 256, and dropout to 0.3. The bidirectional
layer contains 32 recurrent units, and the projection head has two feedforward
layers, one with 512 units and the other with 256 units. Using the Google
Cloud Translation API6, we perform the back translation augmentation for
the self-training loss (Equation 4.9). Back translation is realized offline for
practical purposes, using English (en) - French (fr) (Xie et al., 2020) to create
the augmented samples.

1 https://scikit-learn.org
2 https://github.com/XifengGuo/DEC-DA
3 https://github.com/HongtaoYang/DAC-tensorflow
4 https://github.com/leichtrhino/ChimeraNet
5 http://nlp.stanford.edu/data/glove.42B.300d.zip
6 https://cloud.google.com/translate

https://scikit-learn.org
https://github.com/XifengGuo/DEC-DA
https://github.com/HongtaoYang/DAC-tensorflow
https://github.com/leichtrhino/ChimeraNet
http://nlp.stanford.edu/data/glove.42B.300d.zip
https://cloud.google.com/translate
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Dataset Method Pretraining ACC NMI ARI

CSTE

k-means None 0.395 0.670 0.231
DBSCAN None 0.199 0.343 0.027
HAC None 0.407 0.719 0.310
DEC Autoencoder 0.362 0.684 0.345
IDEC Autoencoder 0.347 0.681 0.348
SymDEC Autoencoder 0.337 0.652 0.325
DAC None 0.318 0.644 0.344
Chimera None 0.387 0.707 0.339

RDC Sequence 0.420 0.735 0.355
RDC Segmentation 0.408 0.730 0.354
RDC Intent 0.331 0.641 0.334
RDC None 0.415 0.734 0.355

TRECQTM

k-means None 0.219 0.535 0.050
DBSCAN None 0.026 0.105 0.001
HAC None 0.276 0.613 0.086
DEC Autoencoder 0.097 0.419 0.019
IDEC Autoencoder 0.097 0.418 0.018
SymDEC Autoencoder 0.104 0.396 0.022
DAC None 0.095 0.368 0.025
Chimera None 0.214 0.523 0.061

RDC Sequence 0.285 0.594 0.094
RDC Segmentation 0.246 0.566 0.080
RDC Intent 0.187 0.508 0.055
RDC None 0.284 0.590 0.095

Table 4.1: Clustering performance for CSTE and TRECQTM datasets, in-
cluding RDC and other methods used for comparison. Differences in RDC
results against all baseline methods have p ≤ 0.05 for the Student’s t-test.

4.5 Results and discussion

Results for RDC with several pretraining configurations appear in Table 4.1.
RDC outperforms all the other deep clustering methods used for compari-
son, for both the CSTE and the TRECQTM datasets. RDC also outperforms
reference methods like k-means and DBSCAN. When comparing clustering
performance against HAC, we find that RDC outperforms HAC when ex-
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tracting short-lived search tasks, while in long search tasks, it improves over
HAC in two out of three metrics (p ≤ 0.05). The CSTE dataset has mostly
short-lived search tasks because the average number of user queries per task
is 3.2, while the TRECQTM dataset has an average of 28.2 user queries per
task, reflecting behaviors like exploration, specification, or paraphrasing that
users undertake in long search tasks (Zhang et al., 2019). These results are
essential because short-lived search tasks, including fact-finding, browsing, or
transactions, can account for up to 85% of all the entries in a search query
log (Hearst, 2009).

When comparing RDC with autoencoder-based models, such as DEC,
IDEC, and SymDEC, the results are higher in all the metrics used for assess-
ing clustering performance; we observe the same behavior when considering
DAC, which uses convolutional neural networks. This outperformance reflects
the advantage of using the modeling power of recurrent neural networks for
learning representations of search queries. Chimera, a stacked recurrent ar-
chitecture, also outperforms deep clustering models based on autoencoders
and convolutional neural networks. However, RDC has a better clustering
performance than Chimera in the three metrics used for comparison. Simi-
larly, RDC has a more straightforward configuration than Chimera because
RDC only uses two bidirectional recurrent layers for the dual encoder setup,
while Chimera uses a stack of four bidirectional recurrent layers.

Self-training with back translation for queries renders pretraining effects
negligible. Indeed, back translation using English (en) - French (fr) is a strong
data augmentation technique. It augments data samples while preserving the
semantics of the original queries. For instance, “effects of tide on columbia
river”gets translated to “effets de la marée sur la rivière Columbia”, and then
back translated to “tidal effects on the columbia river”; “farm houses for rent
in broom county”gets translated to “Maisons de ferme à louer dans le comté
de broome”, and then back translated to “farms for lease in broom county”.
Sometimes back translation corrects spelling, for instance “the cost of haveing
a horse in new york”gets translated to “le coût d’avoir un cheval à new york”,
and then back translated to “the cost of having a horse in new york”, but
in general, the semantics remain the same, so the query encoding space is
preserved during the clustering phase by minimizing the self-training loss.

Consequently, although the best pretraining scheme for the RDC models
is the Sequence objective, surpassing the results of both Segmentation and
Intent objectives, it represents no change when compared against RDC with
no pretraining. For the CSTE dataset, accuracy is only 0.5% higher, and
NMI is only 0.1% higher (p = 0.8); ARI has no change at all. We observe a
similar behavior with the QTMT dataset. In some cases, pretraining can even
end up hurting performance, as we can see with the Intent pretraining objec-
tive. Preceding results are in agreement with previous work about the effect
of pretraining neural architectures (Zoph et al., 2020), where self-training
with strong data augmentation diminishes the effect of pretraining, making
it negligible. Therefore, it is possible to discard neural network pretraining,
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Dataset Cell Pretraining ACC NMI ARI

CSTE

LSTM

Sequence 0.410 0.730 0.354
Segmentation 0.399 0.718 0.352
Intent 0.320 0.632 0.334
None 0.409 0.729 0.354

GRU

Sequence 0.420 0.735 0.355
Segmentation 0.408 0.730 0.354
Intent 0.331 0.641 0.334
None 0.415 0.734 0.355

TRECQTM

LSTM

Sequence 0.278 0.592 0.096
Segmentation 0.217 0.544 0.070
Intent 0.160 0.483 0.044
None 0.268 0.586 0.092

GRU

Sequence 0.285 0.594 0.094
Segmentation 0.246 0.566 0.080
Intent 0.187 0.508 0.055
None 0.284 0.590 0.095

Table 4.2: Comparison between LSTM and GRU cells for the recurrent lay-
ers of RDC. Results for the CSTE and TRECQTM datasets include all the
pretraining alternatives.

an essential result because pretraining needs labeled datasets, which can be
challenging to create (Wang et al., 2013a), while self-training with back trans-
lation is unsupervised.

Regarding recurrent units, the decision of which to choose depends on
the task and the dataset (Chung et al., 2014); therefore, we analyze the RDC
model with both GRU and LSTM cells (Table 4.2). Replacing the LSTM cells
with GRUs generates a slight decrease in model performance for CSTE and
TRECQTM datasets. The biggest difference happens with the TRECQTM
dataset, using intent pretraining, where changing GRUs to LSTMs makes
accuracy decrease 2.7%, NMI 2.5%, and ARI 1.1% (p ≤ 0.05). These changes
imply that less computationally expensive GRUs are a better choice for the
RDC architecture than LSTMs, although changes observed for the metrics
are low, especially with the sequence or no pretraining configurations, which
are the best performing setups for the RDC model.
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4.6 Summary

This chapter presented RDC, a recurrent deep clustering method for ex-
tracting search tasks from query logs. The proposed method leverages self-
training and dual recurrent encoders to find latent representations for user
queries, clustering them into search task groups. Experimental results show
the proposed clustering method outperforms prior deep embedding clustering
architectures in all the metrics used for testing. Also, RDC offers a paramet-
ric architecture for search task extraction, which preserves its size despite
changes in the query log size. This size preservation represents an advantage
compared to non-parametric methods and graph-based models that grow
with the query log size, making them more computationally expensive as the
number of queries in the search log grows.



Chapter 5
A multilingual approach for unsupervised
search task identification

The best way to get a good idea is
to get a lot of ideas.

Linus Pauling

Parametric models like RDC (Chapter 4) tend to have lower modeling
results than non-parametric alternatives. When comparing parametric and
non-parametric machine learning models, there is a trade-off between model
size and accuracy (Murphy, 2012). Parametric models remain constant re-
gardless of the size of the input dataset, but they tend to be less accurate.
On the other hand, non-parametric models grow as the size of the input
dataset grows. However, they tend to be more accurate. Additionally, the
use of GloVe word vectors for query representation limits RDC to English
queries only. On top of that, we need to estimate the number of search tasks
beforehand, so that we can initialize the clustering layer.

Therefore, in this chapter, we propose an unsupervised, multilingual model
for search task identification. Search system logs contain queries in multiple
languages, but most existing methods for search task identification are not
multilingual. Some methods rely on search context for custom embeddings
or external indexed collections that support a single language, making it
challenging to support the multiple languages of queries run in search sys-
tems. Other methods depend on supervised components and user identifiers
to model search tasks. The supervised components require labeled collections,
which are challenging and costly to get in multiple languages (Section 2.4).
Also, the need for user identifiers renders these methods unfeasible in user
agnostic scenarios. Hence, the proposed approach in this chapter is user ag-
nostic, enabling its use in both user-independent and personalized scenarios.
Furthermore, the multilingual query representation enables us to address the
existing trade-off when mapping new queries to the identified search tasks.
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5.1 Introduction

To support users during the different steps of the information seeking process,
it is crucial to correctly group queries in search logs according to their search
tasks. Mining query logs from search engines enable the automatic modeling
of search tasks. Precise modeling of search tasks is required for user assist-
ing applications like query term prediction, query recommendations, user
modeling based on tasks, personalization in e-commerce, and results rank-
ing (Hearst, 2009; Mehrotra and Yilmaz, 2017; Völske et al., 2019), which
enhance search system support for helping users to fulfill their information
needs.

Most unsupervised search task identification methods rely on custom train-
ing of word embeddings using search collections or external indexed collec-
tions to provide semantic similarities for search queries (Lucchese et al., 2013;
Mehrotra and Yilmaz, 2017; Sen et al., 2018). Unfortunately, these meth-
ods cannot support user queries in multiple languages. Other supervised ap-
proaches for search task identification require collections of manually labeled
data to train the models (Wang et al., 2013a; Du et al., 2018), which are
challenging to create because of the cost of manual labeling (Wang et al.,
2013a) and the long-tail nature of search queries (Zhang et al., 2019).

We propose a multilingual method for unsupervised search task identifica-
tion. The proposed approach combines graph clustering methods (Lucchese
et al., 2013; Sen et al., 2018) with recent general language models (Cer et al.,
2018; Yang et al., 2020) for obtaining query representations in a multilingual
semantic vector space. The proposed search task identification approach is
independent of user identifiers, enabling the modeling of search tasks in user
agnostic or personalized applications. We also address the existing trade-off
between accuracy and query time (Völske et al., 2019) that arises when map-
ping new incoming queries to identified search tasks.

5.2 Related limitations

Search logs provide fine-grained details at the query level, enabling the char-
acterization and classification of individual queries according to the informa-
tion need they are related to (Hearst, 2009). Hence, it is possible to cluster
related queries in the search log to model the tasks that users perform on
search engines to fulfill their information needs. Existing methods (Section
2.4) like Bestlink SVM (Wang et al., 2013a) and CA-LSTM (Du et al., 2018)
require a supervised component to perform task identification. CA-LSTM
also employs user identifiers to determine the adjacent queries needed to
provide context to the recurrent architecture. However, user agnostic sce-
narios do not have user identifiers available. Also, the context required from
adjacent queries could not be available, especially when dealing with sim-
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ple search tasks like fact-finding, which tend to have a single query (Hearst,
2009). BRTs (Mehrotra and Yilmaz, 2017) and LDA-Hawkes (Li et al., 2014a)
depend on user identifiers and time sessions to compute the user/time affin-
ity. Similarly, some graph clustering methods (Lucchese et al., 2013) use time
and user sessions to group the queries before the clustering. Heuristics task
identification methods (Gayo-Avello, 2009; Hagen et al., 2013) rely on user
information and timestamps to identify the search tasks, along with several
manually set thresholds. Furthermore, relying on time sessions to identify
tasks (Gayo-Avello, 2009; Hagen et al., 2013; Mehrotra and Yilmaz, 2017)
could be misleading. According to multiple analyses of search query logs
(Lucchese et al., 2013; Mehrotra and Yilmaz, 2017; Sen et al., 2018), users
tend to multitask during single time sessions and some complex tasks extend
during multiple sessions.

Likewise, both QRY-VEC (Sen et al., 2018) and BRTs (Mehrotra and
Yilmaz, 2017) use a custom training word embedding model. The custom
training performed using the tempo-lexical context (Sen et al., 2018) can
avoid topic shifting (Rekabsaz et al., 2017), but unfortunately, there are not
enough labeled collections to train multilingual word embeddings using such
context. Also, the use of an external index (Lucchese et al., 2013; Sen et al.,
2018) requires time-consuming index access at the retrieval model (Hagen
et al., 2013) and similar to the issue present in custom training word embed-
dings, there are not enough corpus for a multilingual clustering of queries.
Furthermore, several methods use cosine similarity between query vectors
to prune edges in the clustering graph (Sen et al., 2018) or compute the
query affinities (Hagen et al., 2013; Mehrotra and Yilmaz, 2017). However,
the angular similarity has a better performance than the cosine similarity in
semantic textual similarity (STS) between sentence pairs (Cer et al., 2018).

5.3 Task identification approach

The proposed unsupervised approach uses a multilingual query representation
and a graph based clustering method to group queries related to the same
search task. In contrast with previous methods (Du et al., 2018; Hagen et al.,
2013; Lucchese et al., 2013; Mehrotra and Yilmaz, 2017; Sen et al., 2018;
Wang et al., 2013a), it supports queries in multiple languages. Also, it does
not utilize user identifiers (Du et al., 2018; Hagen et al., 2013; Mehrotra and
Yilmaz, 2017) and has no supervised components (Du et al., 2018; Wang
et al., 2013a). In this section, we cover the multilingual query representation
and explain the graph based clustering method.
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5.3.1 Multilingual query representation

Pretrained word embeddings have been released in several languages (Grave
et al., 2018; Mikolov et al., 2013). However, using pre-trained word vectors
can generate topic shifting (Rekabsaz et al., 2017; Zhang et al., 2019) and
requires an additional phase to detect the language of the query to correctly
select the pre-trained model to compute the multilingual query vector. In-
stead, Multilingual Universal Sentence Encoder (MUSE) (Yang et al., 2020)
provides universal representations for sentence embeddings suited to infor-
mation retrieval tasks (Zhang et al., 2019).

MUSE has models based on transformers (Vaswani et al., 2017) or convo-
lutional neural networks (CNNs). We use the transformer-based model. It is
more computationally expensive than the CNN based model; however, it is
more accurate on several tasks, including sentence retrieval, bitext retrieval,
and retrieval question answering. The transformer-based model relies on the
encoder part of the transformer architecture. It takes into account context-
aware embeddings and averages together the results from the encoder to
produce one vector per sentence. Training is based on question-answer pairs,
translation pairs, and the Stanford Natural Language Inference (SNLI) cor-
pus. Furthermore, MUSE utilizes SentencePiece, a language-independent sub-
word tokenizer, to process the input query text. SentencePiece covers above
99% of possible tokens in all languages. Likewise, MUSE supports queries in
sixteen languages: Arabic (ar), Chinese PRC (zh), Chinese Taiwan (zh-tw),
Dutch(nl), English(en), German (de), French (fr), Italian (it), Portuguese
(pt), Spanish (es), Japanese (ja), Korean (ko), Russian (ru), Polish (pl), Thai
(th), and Turkish (tr).

5.3.2 Graph Based Clustering

Existing clustering methods for search task identification rely on lexical sim-
ilarities (Lucchese et al., 2013) or cosine distances between word embeddings
(Sen et al., 2018; Mehrotra and Yilmaz, 2017). However, the angular similar-
ity (Cer et al., 2018) has been used in recent research (Chidambaram et al.,
2018; Yang et al., 2020) to better discriminate text representations in natural
language processing. In particular, the angular similarity has been found to
perform better in STS between sentence pairs than the cosine similarity (Cer
et al., 2018); thus, we use it to compute the similarity between query pairs.
Given two queries qi, qj , with multilingual vector representations vi, vj , the
angular similarity Sang is defined as follows (Cer et al., 2018):

Sang(vi, vj) = − arccos
(

vivj
|vi| |vj |

)
(5.1)
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Algorithm 1 MGBC algorithm
Input: Query log Q Output: Task labels L
V ← {} , E ← {} , G(V,E)← (V,E)
for all qi ∈ Q do

vi ← multilingual vector(qi)
V ← V ∪ {vi}

end for
for all vi, vj ∈ V do

ek ← Sang(vi, vj)
E ← E ∪ {ek}

end for
for all ek ∈ E do

if ek < η then
E ← E \ {ek}

end if
end for
for all Ci ∈ G(V,E) do

taski ← i
for all vk ∈ Ci do

L [vk]← taski
end for

end for

The Multilingual Graph Based Clustering (MGBC) relies on the multi-
lingual query representation to encode queries in the search logs (Algorithm
1). Once the queries are converted into vectors in the multilingual semantic
space, a weighted undirected graph G(V,E) is created, where query vectors
are nodes in the graph and Sang is the weight for the edges connecting the
queries. After creating the fully connected graph, the graph is pruned by fil-
tering out edges with Sang < η, where η is a threshold optimized during the
clustering process: η = k/10, 0 < k ≤ 10, k ∈ N. The connected components C
in the graph after the pruning process represent the search tasks in the query
log. Every connected component receives a unique task label taski, which
becomes the label for all the nodes pertaining to the connected component
Ci (Chen and Ji, 2010; Lucchese et al., 2013; Nascimento and De Carvalho,
2011; Sen et al., 2018).

5.4 Results and discussion

Following recent work (Du et al., 2018), we use the Fβ score, with β = 1 for
the balanced metric, and β = 0.6, which gives more weight to the precision
of the search task identification (Section 2.2.3). The Student’s paired t-test
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Fig. 5.1: Grid search for α, the parameter for the convex combination of
similarities, and η, the threshold for the MGBC clustering method.

provides the test for statistical significance. For evaluating the effectiveness of
the proposed approach, we consider a user agnostic search task identification
and a personalized search task identification. We also address the existing
trade-off when mapping queries to identified search tasks.

Identification method α η F1 F0.6

QC-WCC 0.8 0.4 0.471 0.428
QRY-VEC word2vec 0.6 0.5 0.473 0.441
QRY-VEC tempo-lexical 0.6 0.7 0.538 0.488
MGBC 0.4 0.3 0.624 0.695

Table 5.1: Clustering performance for the CSTE dataset with ground-truth
search task labels. Differences of MGBC results against the baseline have
p ≤ 0.05 for the Student’s t-test.



5.4 Results and discussion 79

5.4.1 User agnostic search task identification

Language ISO 639-1 η F1 F0.6

Arabic ar 0.9 0.447 0.395
Chinese PRC zh 0.8 0.480 0.473
Chinese Taiwan zh-tw 0.18 0.482 0.476
Dutch nl 0.8 0.449 0.431
English en 0.8 0.456 0.437
German de 0.8 0.450 0.432
French fr 0.8 0.484 0.547
Italian it 0.8 0.452 0.434
Portuguese pt 0.8 0.458 0.438
Spanish es 0.8 0.450 0.432
Japanese ja 0.8 0.453 0.436
Korean ko 0.9 0.451 0.396
Russian ru 0.8 0.449 0.429
Polish pl 0.8 0.460 0.524
Thai th 0.8 0.444 0.427
Turkish tr 0.8 0.429 0.401

Table 5.2: Search task identification results for all the supported languages of
the MGBC approach. Results for the CSTE dataset have p ≤ 0.05 between
languages.

The dataset for evaluating the clustering approach in a user agnostic sce-
nario is the CSTE dataset. As a baseline, we use the state-of-the-art QRY-
VEC (Sen et al., 2018) method, an unsupervised task identification method
that uses custom trained tempo-lexical embeddings, averaging the embed-
dings for each word in the query to compute a single vector per query. We
also include results from QC-WCC (Lucchese et al., 2013).

To compare to the QRY-VEC method, we use the same index similarity
Sind than the baseline (Sen et al., 2018), which is based on the ClueWeb12B
dataset (Callan, 2012). We adjust the angular similarity Sang in equation 5.1
by the use of a convex combination of both angular and index similarities.
The similarity between queries qi, qj with multilingual vectors vi, vj becomes
(Lucchese et al., 2013; Sen et al., 2018):
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Language ISO 639-1 η F1 F0.6

Arabic ar 0.70 0.595 0.648
Chinese PRC zh 0.70 0.658 0.667
Chinese Taiwan zh-tw 0.70 0.632 0.604
Dutch nl 0.70 0.594 0.577
English en 0.70 0.597 0.544
German de 0.70 0.550 0.542
French fr 0.60 0.656 0.748
Italian it 0.80 0.559 0.492
Portuguese pt 0.70 0.616 0.610
Spanish es 0.80 0.641 0.593
Japanese ja 0.70 0.697 0.737
Korean ko 0.70 0.573 0.639
Russian ru 0.70 0.633 0.742
Polish pl 0.70 0.541 0.578
Thai th 0.70 0.541 0.533
Turkish tr 0.70 0.618 0.640

Table 5.3: Search task identification results for all the supported languages of
the MGBC approach. Results for the CUSTA dataset have p ≤ 0.05 between
languages.

Sang(vi, vj) = −α ∗ arccos
(

vivj
|vi| |vj |

)
+ (1− α) ∗ (Sind) (5.2)

where α, η are parameters to be optimized during the process of clustering
for search tasks. The optimization uses a grid search with α = k/10, η = k/10,
where 0 < k ≤ 10, k ∈ N (Sen et al., 2018), selecting the model with the best
F1 metric.

Results show that MGBC outperforms the baseline method in search task
identification (Table 5.1, Figure 5.1). It gets better performance than both
lexically based (QC-WCC) and monolingual query vectors based (QRY-VEC)
methods for identifying tasks, highlighting the ability of the multilingual
semantic vector space to encode queries for the modeling of search tasks.

Regarding multilingual tests, in addition to the CSTE dataset, we use the
Complex User Search Task Analysis (CUSTA) dataset, which has queries
mostly in French (Section 2.1). Using Google Cloud Translation API1, we
translate the CSTE and CUSTA datasets to all the languages supported

1 https://cloud.google.com/translate/docs
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by MGBC. Running the search task identification method on automatically
translated queries enables the assessment of the method in multilingual task
identification.

MGBC uses the angular similarity Sang in equation 5.1 for the multilingual
tests. In the results for the CSTE dataset (Table 5.2), F1 metrics vary from
0.429 with the Turkish language to 0.484 with the French language, which are
located around the F1 metric of 0.456 for the English language, the original
language of the dataset (Figure 5.2). Similarly, for the CUSTA dataset (Table
5.3), F1 metrics vary from 0.541 with the Thai language to 0.697 with the
Japanese language, which are located around the F1 metric of 0.656 for the
French language, the original language of the dataset. These results reflect
the quality of the multilingual semantic space to represent the search tasks.
Overall, no drop in performance is observed despite the use of automatic
translation, suggesting an adequate performance in the sixteen languages
for the search task identification approach. Although there exist variations
in results for the different languages, they are explained by the expected
differences in the automatic translation results.
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Fig. 5.2: Threshold η search for the MGBC graph clustering method, consid-
ering English, French, and Turkish languages.
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5.4.2 Personalized search task identification

Identification method F1 F0.6

LDA-Hawkes 0.871 0.864
BRTs 0.878 0.874
CA-LSTM 0.883 0.887
QRY-VEC 0.851 0.880
MGBC 0.884 0.913

Table 5.4: Clustering performance for the WSMC12 dataset, which has search
task labels per user. The ClueWeb12B dataset provides the index similarity
for comparison to the baseline method.

We use the WSMC12 dataset for the evaluation of the proposed MGBC
approach in personalized search task identification. As discussed before (Sec-
tion 2.1), labels in this dataset correspond to search tasks for a particular
user identifier, grouping queries by user sessions. If two users run a query
for the same search task, the search task label is not necessarily the same.
For instance, the user with identifier 9887420 issued the query “maps” and
it was labeled with search task ’2’; the user with identifier 1713103 issued
the query “maps” as well, but it was labeled with search task ’22’. For that
reason, the WSMC12 dataset allows the evaluation of the proposed method
in a personalized setup.

Along with the QRY-VEC baseline, we include methods depending on
user identifiers for the input, namely, LDA-Hawkes, BRTs, and CA-LSTM
(Du et al., 2018; Li et al., 2014a; Mehrotra and Yilmaz, 2017).

Search task identification results show that MGBC matches the clustering
performance of CA-LSTM (Table 5.4), even though CA-LSTM is a semisu-
pervised approach, which uses recurrent layers trained in a supervised way.
Likewise, MGBC exhibits slight improvements against the other methods
used for comparison, though only with p ≤ 0.2 when using the Student’s t-test
for statistical significance. These results indicate that the proposed method
matches the identification performance of existing methods in personalized
setups, without requiring any supervised components or user identifiers. As
MGBC does not require user identifiers as input to the model, it can perform
search task identification in user agnostic scenarios as well as personalized
scenarios. Indeed, user agnostic scenarios can be crucial in current efforts to
address user privacy concerns in intelligent systems.
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5.4.3 Mapping queries to search tasks

Dataset Method Accuracy F1 F0.6 Query time

AOLQTM
Trie 0.693 0.543 0.543 0.029ms
BM25 0.809 0.689 0.689 947ms
NGT 0.751 0.608 0.607 0.308ms

TRECQTM
Trie 0.650 0.519 0.518 0.030ms
BM25 0.791 0.688 0.688 2532ms
NGT 0.804 0.705 0.704 0.299ms

WHQTM
Trie 0.471 0.310 0.311 0.032ms
BM25 0.621 0.453 0.454 6.572min
NGT 0.648 0.481 0.481 0.368ms

Table 5.5: Model metrics for mapping queries to search tasks. Three datasets
are considered to evaluate the performance of the NGT approach. Differences
against Trie have p ≤ 0.05 for the Student’s t-test.

The same multilingual semantic space for query representation and the
Sang similarity in Equation 5.1 enables us to address the existing trade-off
when mapping new incoming queries to the identified search tasks. Previously
analyzed methods for mapping queries face a trade-off between accuracy and
execution time. The most accurate method uses an inverted index approach
based on a BM25 retrieval model; however, its average time per query is much
slower than a Trie data structure implementation, which is the fastest method
(Völske et al., 2019). To address this trade-off, we utilize the Neighborhood
Graph and Tree (NGT) approximate nearest neighbor method (Iwasaki and
Miyazaki, 2018), along with Sang and multilingual query vectors. NGT2 is a
high-speed approach that supports large volumes of data in high-dimensional
spaces.

Three benchmark datasets have been proposed to evaluate the mapping of
new incoming queries: the AOLQTM dataset, the TRECQTM dataset, and
the WHQTM dataset (Section 2.1). For comparison, we use publicly available
implementations for the Trie data structure3 and the BM25 retrieval model4
with default parameters (Völske et al., 2019; Yang et al., 2020). Experiments
run on a virtual machine instance with 8 CPUs of 3GHz and 60GB of RAM.

2 https://github.com/yahoojapan/NGT
3 https://github.com/google/pygtrie
4 https://github.com/nhirakawa/BM25
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Fig. 5.3: Test NGT in the multilingual semantic space with multiple values
of k nearest neighbors. Results for AOLQTM, TRECQTM, and WHQTM
datasets include (a) Accuracy (b) F1.

We compute time per query as the average time for mapping 104 queries,
while accuracy is measured using a leave-one-out evaluation, independently
selecting 100 random queries from the dataset and repeating the evaluation
during 50 runs (Völske et al., 2019).
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We test several values of k nearest neighbors for NGT (Figure 5.3), finding
k = 9 as the best performing setup. NGT is several times faster than the
inverted index based on BM25 (Table 5.5), keeping average times per query
below half a millisecond. The speedup obtained with NGT does not imply a
deterioration in the accuracy metrics for TRECQTM and WHQTM datasets.
Also, AOLQTM differences are much lower than the Trie data structure drop
in metrics. Similarly, NGT is more accurate than the Trie data structure in
all the three datasets; nonetheless, the latter continues to be faster in terms
of average time per query.

5.5 Summary

The proposed MGBC multilingual search task identification approach enables
the modeling of search tasks from query logs, supporting queries in sixteen
languages. Experiments show that the proposed approach outperforms base-
line identification methods. Also, MGBC is user-independent, enabling its
use in both user agnostic and personalized search task identification applica-
tions. Moreover, the same multilingual semantic space and query similarity
of MGBC can be used with NGT nearest neighbor method to address the
existing trade-off when mapping new queries to identified search tasks. NGT
provides metrics at the same level of the BM25 retrieval model results; how-
ever, it is several times faster, keeping query response times below half a
millisecond, a crucial aspect for running on the fly applications for support-
ing search engine users.





Chapter 6
Modeling User Search Tasks with a
Language-agnostic Unsupervised
Approach

All models are wrong, but some
models are useful.

George Box

Although MGBC supports queries in sixteen languages (Chapter 5), users
around the world use many more languages when accessing search systems.
Also, there are multiple languages with not enough datasets to train language
models, arising the need for utilizing language-agnostic representations for
queries, representations that can support queries even when the language is
not part of the training dataset of the language model. Moreover, as discussed
before (Section 2.4), clicked URLs provide a way to model user search intent
from the relationship between queries and clicked documents (Zhang et al.,
2019). For example, a similarity metric based on clicked URLs is the second
most important in Bestlink SVM, after a similarity metric based on query
semantics (Wang et al., 2013a).

Consequently, in this chapter we propose a language-agnostic, user intent
aware approach to model search tasks from user interactions with search
systems. The proposed approach leverages user intent modeling from clicked
query-document pairs, latent representations of queries in a language-agnostic
space, and graph-based clustering to model search tasks in an unsupervised
approach. Experimental results demonstrate the proposed approach outper-
forms recent work in search task modeling, supporting user queries in multiple
languages. It can also produce search task modeling results in the order of
milliseconds, an essential aspect for conversational systems and user support
applications requiring realtime results.

87
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6.1 Introduction

Conversational AI systems are becoming increasingly popular because of ad-
vances in speech recognition, natural language understanding, text-to-speech
synthesis, and the availability of digital personal assistants (Khatri et al.,
2018; Thomas et al., 2020; Venkatesh et al., 2018). Personal assistants like
Amazon Alexa, Apple Siri, Google Assistant, and Microsoft Cortana are now
available in smartphones, tablets, desktops, and dedicated smart speakers
(Khatri et al., 2018; Zamani and Craswell, 2020). Consequently, the increas-
ing popularity and availability of conversational systems make conversational
information seeking a major emerging area of research (Anand et al., 2020;
Zamani and Craswell, 2020).

In conversational information seeking and other search systems, model-
ing the search tasks that users perform to satisfy their information needs is
a crucial step (Mehrotra and Yilmaz, 2017; Sen et al., 2018). Search task
modeling is a step in the process to make search systems more coherent, nat-
ural, engaging, and conversational (Khatri et al., 2018; Rosset et al., 2020;
Venkatesh et al., 2018). Multiple user supporting applications benefit from
search task modeling, including conversational question suggestion, person-
alization in e-commerce, product recommendations, query term prediction,
query suggestions, query reformulation, and results ranking (Hearst, 2009;
Mehrotra and Yilmaz, 2017; Rosset et al., 2020; Tamine et al., 2020; Völske
et al., 2019). Even informative conversations with digital assistants can ben-
efit from correctly modeling the search tasks, as the subjective perception of
the quality in the conversation is strongly related to the accurate tracking of
the topic (Venkatesh et al., 2018).

As discussed before, users around the world access search systems in mul-
tiple languages, making it essential to process users’ requests with language-
agnostic models. Also, search systems and user supporting applications re-
quire realtime responses when processing user information needs. For in-
stance, multimodal search in conversational systems runs multiple processes
in parallel, post-processing their outputs to generate a message answering the
user request; hence, modeling can not exceed the timeout periods set on the
search system (Zamani and Craswell, 2020). Similarly, user clicks are strongly
related to the user intent (Zhang et al., 2019). Different queries with simi-
lar clicked URLs can pertain to the same information need (Mehrotra and
Yilmaz, 2017), and analyzing clicked URLs can help disambiguate queries
(Craswell et al., 2020a).

Our contributions in this chapter are threefold. First, we propose a
language-agnostic search task modeling (LASTM) approach to model search
tasks from user interactions with search systems. Second, given the relation-
ship between clicked URLs and user intent, we propose a user intent modeling
technique leveraging a large scale query - clicked document collection in the
query latent space. Third, to enable the utilization of LASTM in conversa-
tional search systems and user supporting applications requiring responses



6.3 User search task modeling 89

on the fly, we propose a realtime method for mapping incoming queries to
the modeled user search tasks directly on the query latent space.

6.2 Related limitations

User interactions with search systems enable modeling the search tasks that
users perform to satisfy their information needs (Hearst, 2009). In particular,
search query logs can be mined for search task modeling using methods such
as heuristics-based models, semi-supervised clustering, bayesian approaches,
and graph-based clustering (Section 2.4). However, most search task modeling
methods (Du et al., 2018; Hagen et al., 2013; Li et al., 2014a; Lucchese et al.,
2013; Mehrotra et al., 2016; Mehrotra and Yilmaz, 2017; Sen et al., 2018;
Wang et al., 2013a) are monolingual. Although MGBC supports several lan-
guages through MUSE, it can only process queries in sixteen languages. Ad-
ditionally, when using ClueWeb12B for calculating query similarities, MGBC
can only support user queries in English.

By the same token, most search task modeling methods (Du et al., 2018;
Li et al., 2014a; Lucchese et al., 2013; Mehrotra et al., 2016; Sen et al.,
2018) fail to take into account clicked URLs when processing search query
logs, even though clicked URLs have a critical correlation to the user intent
(Zhang et al., 2019). Also, conversational information seeking systems and
multiple applications supporting users search efforts require results on the fly.
Building models from scratch when a user submits a query could create large
processing times, forcing search systems to trigger timeout intervals (Zamani
and Craswell, 2020). Similarly, waiting for forward queries to provide context
(Du et al., 2018) can render models unfeasible in realtime setups. Also, some
models requiring user identifiers (Du et al., 2018; Hagen et al., 2013; Li et al.,
2014a; Mehrotra and Yilmaz, 2017) can not be used in user-independent
modeling scenarios (Craswell et al., 2020a; Sen et al., 2018).

6.3 User search task modeling

LASTM is an unsupervised method that leverages latent representations of
queries in a language-agnostic space, user intent modeling from clicked query-
document pairs, and graph-based clustering to model user search tasks. It can
also produce a realtime mapping of queries to modeled search tasks. In con-
trast with previous work (Du et al., 2018; Hagen et al., 2013; Li et al., 2014a;
Lucchese et al., 2013; Mehrotra et al., 2016; Mehrotra and Yilmaz, 2017; Sen
et al., 2018; Wang et al., 2013a), our proposed approach supports multiple
languages through a language-agnostic latent space. The proposed approach
is also independent of user identifiers, enabling modeling of search tasks in
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both user-independent and personalized scenarios. It also differs from prior
methods (Du et al., 2018; Li et al., 2014a; Lucchese et al., 2013; Mehrotra
et al., 2016; Sen et al., 2018) by leveraging clicked URLs to model user intent
(Zhang et al., 2019) in the query latent space.

6.3.1 Language-agnostic query representation

As users worldwide submit queries in different languages to satisfy their in-
formation needs, Language-agnostic BERT Sentence Embedding (LABSE)
(Feng et al., 2020) provides the sentence embeddings to represent user queries
in a language-agnostic latent space. Using a 12-layer transformer architecture
(Devlin et al., 2019; Vaswani et al., 2017) in a dual configuration, LABSE
takes the transformer’s hidden state for the last token in the sentence to
generate the query representation.

The query representation using LABSE has the ability to perform zero-
shot cross-lingual transfer, supporting queries in languages that are not part
of the training dataset. When performing tests with the TAOEBA dataset
(Artetxe and Schwenk, 2019), LABSE obtains an 83.7% accuracy, while the
baseline Language-agnostic Sentence Representations (Artetxe and Schwenk,
2019) gets 65.5%, even though more than 30 languages in the TAOEBA
dataset were not part of the LABSE training data (Feng et al., 2020).

We use the cosine proximity (Feng et al., 2020; Sen et al., 2018) to com-
pute the similarity between query representations in the language-agnostic
latent space. Formally, given a pair of queries qi, qj with latent representa-
tions ui, uj , the similarity between query representations Slat is calculated as
follows (Feng et al., 2020; Sen et al., 2018):

Slat(ui, uj) = uiuj
|ui| |uj |

(6.1)

6.3.2 User intent modeling

User clicks play a critical role in modeling user intent – the information need
the user wants to satisfy by performing the search task (Zhang et al., 2019).
Query term match between queries for the same information need can be very
low; even different queries pertaining to the same search task can have similar
clicked URLs (Mehrotra and Yilmaz, 2017; Zhang et al., 2019). Also, analysis
of clicked URLs can help disambiguate queries, revealing which documents
users clicked when performing their search tasks (Craswell et al., 2020a).

To model user intent, we use the Open Resource for Click Analysis in
Search (ORCAS) (Craswell et al., 2020a), a collection containing 18.8 million
clicked document - query pairs for 10.4 million unique queries. Clicked docu-
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ORCAS

apa web page

http://www.bibme.org ...

major car brands

https://www.globalcars...

u of u login

https://cis.utah.edu ...

Fig. 6.1: User intent database with clicked document – query pairs from the
ORCAS dataset (Craswell et al., 2020b). Queries are encoded in a language-
agnostic semantic space using LABSE (Feng et al., 2020).

ments are represented using the TREC document identifier in the TREC
Deep Learning document collection (Craswell et al., 2020b). We encode
queries in ORCAS in the language-agnostic latent space (Feng et al., 2020),
creating a user intent database DM with clicked document – query pairs (Fig-
ure 6.1). To retrieve the most relevant documents for a given user query in
the database, we use Scalable Nearest Neighbor (ScaNN) (Guo et al., 2020),
a state-of-the-art method for large-scale retrieval tasks.

In retrieval tasks, it is usual to learn latent representations of queries and
documents in the same latent space. Then, we encode the query and look for
documents in the latent space by performing the inner product against the
query, selecting the documents that are as close as possible to the query. Such
documents will have the maximum possible inner product against the query,
representing the most relevant results from the documents’ database. This
procedure is commonly known as MIPS (Maximum Inner Product Search).

Computing the inner product of a query against all the documents in the
database can become unfeasible, especially for large databases. Thus, there
exist two possibilities to retrieve relevant results more quickly. One possibility
is partitioning the latent space so that the number of inner product operations
is reduced to the data points in the closest partition. For partitioning, there
exist methods like local sensitive hashing, graph search, and tree search.



92 6 Modeling User Search Tasks with a Language-agnostic Approach

The other possibility is to compute the inner products faster, improving the
scoring rate.

A strong alternative to improve the scoring rate is quantization. It makes
scoring data points faster, improving the rate of inner product calculations.
It also uses the memory bandwidth more efficiently because it can handle
more data points per memory access, maximizing CPU utilization. Morevoer,
quantization produces effiicency gains in terms of storage size, using more
efficiently the disk or memory space where the data points are stored.

Prior research in quantization focused on optimizing the reconstruction
error of the quantization method for all points in the database. However, it
is better to assign a higher weight to the most relevant items while safely re-
ducing the weight for irrelevant items. This intuition produces a weighted er-
ror optimization, commonly known as anisotropic vector quantization, where
items close to the query receive a higher weight in the error computations
than items orthogonal to it. By doing so, anisotropic vector quantization
improves the relevance of MIPS results. ScaNN uses anisotropic vector quan-
tization, improving over NGT (Section 5.4.3) and several other approximate
nearest neighbor methods (Guo et al., 2020). Therefore, we use ScaNN to
retrieve results from the ORCAS document collection.

Even though ORCAS has queries exclusively in English, doing MIPS di-
rectly on the language-agnostic latent space enables user intent modeling
in any language LABSE can support. Hence, we can leverage the existing
relationship between clicked URLs and user intent (Zhang et al., 2019) by
searching the DM database.

Formally, given a database DM = {mi}i=1,2,...,n formed from a clicked
query-document dataset DQ with n data points, where each data point
mi ∈ Rp is the latent representation of the query q ∈ DQ in the p-dimensional
language-agnostic latent space, we want to find the k most relevant docu-
ments {dj}j=1,2,...,k ∈ DM for the user query u ∈ Rp. Therefore, we search
for the k points with the maximum inner product with the user query u as
follows (Guo et al., 2020):

MIPS(DM , u) = {dj}j=1,2,...,k = arg max
mi∈DM

〈u,mi〉 (6.2)

Given a user query pair qi, qj with latent representations ui, uj , the simi-
larity based on user intent Sint is calculated using the Jaccard coefficient for
the top thousand relevant documents in the database DM (Sen et al., 2018):

Di = MIPS(DM , ui) (6.3)

Dj = MIPS(DM , uj) (6.4)

Sint(ui, uj) = |Di ∩Dj |
|Di ∪Dj |

(6.5)
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6.3.3 Unsupervised search task modeling

We now integrate user intent modeling and language-agnostic query repre-
sentations with graph-based clustering (Chen and Ji, 2010) to model search
tasks (Algorithm 2). First, we encode queries in the latent space (Section
6.3.1); every query embedding becomes a node in the weighted graph. Then,
we compute the similarities between pairs of queries to create the edges of the
weighted graph. The similarity between queries Sqry is a convex combination
of the similarity in the latent space Slat and the similarity based on user
intent Sint. Given a pair of queries qi, qj with latent representations ui, uj ,
query similarity Sqry is calculated as follows (Section 5.4):

Sqry(ui, uj) = α ∗ Slat(ui, uj) + (1− α) ∗ Sint(ui, uj) (6.6)

After finishing edge weight calculations, we prune the weighted graph,
deleting edges with Sqry < η. The resulting connected components C in the
graph constitute the search tasks, so we assign a unique task label taski
to every connected component. All the queries pertaining to a connected
component receive the same task label. A grid search (Figure 6.2) optimizes
parameters η and α, using η = k/10, α = k/10, 0 < k ≤ 10, k ∈ N (Chen and
Ji, 2010; Lucchese et al., 2013; Sen et al., 2018).

6.3.4 Realtime mapping of new queries

Most search systems and user supporting applications require results in re-
altime. Applications like contextual topic modeling in conversational search
(Khatri et al., 2018), query suggestion, or query reformulation can not afford
to wait for large processing times. It is essential to return an answer in a
few milliseconds. Hence, once the user performs a search request, we map the
new incoming query to the labels extracted with Algorithm 2 so that we can
model the search task in realtime. To do the mapping, we use the same MIPS
method with anisotropic vector quantization (Guo et al., 2020) that we used
in Section 6.3.3.

The search task database maps the latent representation of the queries in
the search log QL to the extracted task labels LT . Formally, given a database
QT = {mi}i=1,2,...,n formed from the search query log QL with search task
labels LT returned from Algorithm 2, where each datapoint mi ∈ Rp is the
latent representation of the query q ∈ QL in the p-dimensional language-
agnostic space. For an incoming query qi, we compute the latent representa-
tion ui; then, we retrieve the search task labels T of the k closest queries in
the language-agnostic latent space using MIPS:

T = MIPS(QT , ui) (6.7)
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Algorithm 2 LASTM

Inputs: Search query log QL, Clicked query-document collection DQ
Output: Task labels LT

// Build database for user intent
DM ← {}
for all qi, di ∈ DQ do

xi ← language agnostic space(qi)
DM ← DM ∪ {xi, di}

end for

// Model search tasks
V ← {} , E ← {} , G(V,E)← (V,E)
for all qi ∈ QL do

ui ← language agnostic space(qi)
V ← V ∪ {ui}

end for

for all vi, vj ∈ V do
Slat(vi, vj) = cos(vi, vj)
Di, Dj ← document IDs for vi, vj from DM
Sint(vi, vj) = Jaccard(Di, Dj)
ek ← α ∗ Slat(vi, vj) + (1− α) ∗ Sint(vi, vj)
E ← E ∪ {ek}

end for

for all ek ∈ E do
if ek < η then

E ← E \ {ek}
end if

end for

for all Ci ∈ G(V,E) do
taski ← i
for all vk ∈ Ci do
LT [vk]← taski

end for
end for

return LT
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Once we have the search task labels T of the k closest queries, we return
the task label with the highest number of occurrences in T .
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Fig. 6.2: Grid search for α, the parameter for the convex combination of
similarities, and η, the threshold for the LASTM clustering method.

6.4 Results and discussion

In this section, we analyze LASTM in user independent search task model-
ing and realtime mapping of incoming queries. Following previous work (Du
et al., 2018), we calculate model performance with the Fβ score. We con-
sider both β = 1.0 and β = 0.6 (Section 5.4). Moreover, we use open source
implementations for ScaNN1, NetworkX2 in graph-based clustering, and the
publicly available pretrained model for LABSE3.

1 https://github.com/google-research/google-research/tree/master/scann
2 https://networkx.github.io
3 https://tfhub.dev/google/LaBSE/1

https://github.com/google-research/google-research/tree/master/scann
https://networkx.github.io
https://tfhub.dev/google/LaBSE/1
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Language ISO 639-1 F1 F0.6

MGBC LASTM MGBC LASTM

Arabic ar 0.447 0.521 0.395 0.490
Chinese PRC zh 0.480 0.539 0.473 0.513
Chinese Taiwan zh-tw 0.482 0.540 0.476 0.515
Dutch nl 0.449 0.534 0.431 0.511
English en 0.456 0.538 0.437 0.512
German de 0.450 0.533 0.432 0.511
French fr 0.484 0.539 0.547 0.512
Italian it 0.452 0.540 0.434 0.517
Portuguese pt 0.458 0.537 0.438 0.514
Spanish es 0.450 0.541 0.432 0.516
Japanese ja 0.453 0.522 0.436 0.495
Korean ko 0.451 0.523 0.396 0.501
Russian ru 0.449 0.533 0.429 0.508
Polish pl 0.460 0.536 0.524 0.512
Thai th 0.444 0.522 0.427 0.489
Turkish tr 0.429 0.538 0.401 0.513

Table 6.1: Search task modeling results for the CSTE dataset in all the lan-
guages supported by the MGBC method. Differences between MGBC and
LASTM results have p ≤ 0.05 for the Student’s t-test.

6.4.1 Search task modeling

The CSTE dataset and the CUSTA dataset are used for experiments. As a
baseline, we use MGBC (Section 5.3), calculating metrics for all the languages
supported by the baseline. Queries in the CSTE dataset are in English, while
queries in the CUSTA dataset are mostly in French, with very few English
entries (Section 2.1). Hence, we perform machine translation with the Google
Cloud Translation API4 for evaluating LASTM in all the languages supported
by MGBC.

The proposed approach improves the search task modeling performance
of the baseline method in the two datasets used for testing. Using the CSTE
dataset (Table 6.1), LASTM surpasses MGBC in all the languages supported
by the baseline, obtaining up to 10.9% (p ≤ 0.05) improvement in the F1
score for the Turkish language; similarly, LASTM obtains better F0.6 scores
4 https://cloud.google.com/translate

https://cloud.google.com/translate
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Language ISO 639-1 F1 F0.6

MGBC LASTM MGBC LASTM

Arabic ar 0.595 0.608 0.648 0.665
Chinese PRC zh 0.658 0.667 0.667 0.688
Chinese Taiwan zh-tw 0.632 0.672 0.604 0.694
Dutch nl 0.594 0.648 0.577 0.761
English en 0.597 0.657 0.544 0.705
German de 0.550 0.642 0.542 0.715
French fr 0.656 0.732 0.748 0.750
Italian it 0.559 0.604 0.492 0.602
Portuguese pt 0.616 0.622 0.610 0.636
Spanish es 0.641 0.643 0.593 0.712
Japanese ja 0.697 0.619 0.737 0.571
Korean ko 0.573 0.563 0.639 0.561
Russian ru 0.633 0.641 0.742 0.754
Polish pl 0.541 0.598 0.578 0.605
Thai th 0.541 0.603 0.533 0.636
Turkish tr 0.618 0.653 0.640 0.711

Table 6.2: Search task modeling results for the CUSTA dataset in all the
languages supported by the MGBC method. Differences between MGBC and
LASTM results have p ≤ 0.05 for the Student’s t-test.

in fourteen out of sixteen languages, getting an improvement of up to 11.2%
(p ≤ 0.05) in the Turkish language. Furthermore, the monolingual QRY-VEC
method, which supports queries in English, obtains an F1 score of 0.538 and
an F0.6 score of 0.488 (Sen et al., 2018). Consequently, there is no loss in
modeling performance when comparing LASTM to the QRY-VEC method.
For the CUSTA dataset (Table 6.2), we observe improvements in fourteen out
of the sixteen languages supported by MGBC; LASTM generates up to 9.2%
(p ≤ 0.05) improvement in the F1 score for the German language and up to
18.4% (p ≤ 0.05) improvement in the F0.6 score for the Dutch language.

Both the similarity between query representations Slat and the similarity
based on user intent Sint contribute to the search task modeling results (Fig-
ure 6.3). In the grid search for the CSTE dataset, α values averaged 0.238 ±
0.099. For the CUSTA dataset, α values in the grid search averaged 0.731 ±
0.157. These α values indicate that the convex combination (Equation 6.6)
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Fig. 6.3: α values for the convex combination of query similarities. Results
include values after finishing the grid search for CSTE and CUSTA datasets.

effectively relies on the two similarities to compute the edges for the weighted
graph.

From a language coverage perspective, the query representation for LASTM
is trained with 109 languages and can perform zero-shot cross-lingual transfer
to multiple more languages (Feng et al., 2020). In contrast, the baseline only
supports sixteen languages, making LASTM language accessibility at least
seven times larger when considering training languages only. When compar-
ing LASTM to monolingual models, there is an improvement of two orders
of magnitude in language accessibility (Figure 6.4). The improvements in
modeling performance and language accessibility highlight the importance of
considering user intent along with language-agnostic query representation for
modeling search tasks.

6.4.2 Mapping of incoming queries

To analyze the performance of LASTM for mapping new incoming queries,
we run the mapping method using the three benchmark datasets previously
proposed for query-task mapping (Section 2.1): the AOLQTM dataset, the
TRECQTM dataset, and the WHQTM dataset (Section 2.1). Additionally,
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Dataset Method Accuracy F1 F0.6 Query time

AOLQTM

Trie 0.693 0.543 0.543 0.029ms
BM25 0.809 0.689 0.689 947ms
MGBC 0.751 0.608 0.607 0.308ms
LASTM 0.802 0.678 0.677 0.490ms

TRECQTM

Trie 0.650 0.519 0.518 0.030ms
BM25 0.791 0.688 0.688 2532ms
MGBC 0.804 0.705 0.704 0.299ms
LASTM 0.822 0.729 0.728 0.481ms

WHQTM

Trie 0.471 0.310 0.311 0.032ms
BM25 0.621 0.453 0.454 6.572min
MGBC 0.648 0.481 0.481 0.368ms
LASTM 0.558 0.389 0.389 0.982ms

Table 6.3: Realtime mapping of queries to search tasks. Differences against
baseline MGBC results have p ≤ 0.05 for the Student’s t-test.

we use a leave-one-out evaluation, independently selecting one hundred ran-
dom queries from the dataset and repeating the evaluation for fifty runs.
Experiments run on a virtual machine instance with 8 CPUs of 3GHz and
60GB of RAM. Metrics include accuracy, F1, F0.6, and query time. To mea-
sure query time, we take the average time for mapping a single query, using
104 mappings to compute the average (Völske et al., 2019). As a baseline, we
use the MGBC approach for query task mapping. MGBC combines the Neigh-
borhood Graph and Tree approximate nearest neighbor method (Iwasaki and
Miyazaki, 2018) with the MUSE latent space for query encoding (Section
5.4.3). For reference, we also include results using the Trie5 data structure
and the BM256 retrieval model (Völske et al., 2019; Yang et al., 2020).

Figure 6.5 depicts the optimization experiments for the number of top k re-
sults from ScaNN to consider. After running tests for k = [1, 3, 5, 7, 9, 11, 13],
we found that top k = 7 results from ScANN generates the optimal configu-
ration, providing the best results for task mapping while keeping the time per
query under a millisecond (Table 5.5). Low response time is an essential as-
pect for applications supporting users in realtime setups. Long answer times
could affect the interaction of the search system with the users, especially in
conversational and multimodal search systems, where a post-processing step
is required to generate a response to the user request (Khatri et al., 2018;
Zamani and Craswell, 2020). Similarly, long answer times could trigger inter-
5 https://github.com/google/pygtrie
6 https://github.com/nhirakawa/BM25

https://github.com/google/pygtrie
https://github.com/nhirakawa/BM25
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Fig. 6.4: Improvement in language accessibility when comparing LASTM
against the baseline, RDC, and existing monolingual methods for search task
modeling.

nal timeout intervals (Zamani and Craswell, 2020), forcing search systems to
ignore search task mapping results while doing internal post-processing.

Results from query-task mapping show that the proposed method sur-
pases MGBC in two out of the three benchmark datasets (5.5). For the
TREC-based dataset, LASTM improves the F1 score of the baseline by
2.4% (p ≤ 0.05), while keeping processing times under a millisecond. For
the AOL-based dataset, LASTM surpasses the baseline method, obtaining
a 7.0% improvement in the F1 score (p ≤ 0.05); likewise, LASTM obtains
similar results to BM25, but it is faster when comparing to the BM25 im-
plementation used for experiments. For the WikiHow-based dataset, LASTM
underperforms MGBC and BM25 (Table 5.5). Regarding the number of user
queries per task, we find that the TREC-based dataset has an average of 28
user queries per search task, while the WikiHow-based dataset has an aver-
age of 2 user queries per task. Hence, the WikiHow-based dataset contains
mostly simple tasks, which users can solve with a few queries (Hearst, 2009).
Task mapping results suggest that LASTM is better than the baseline and
reference methods when mapping search tasks containing multiple queries,
while MGBC is better when mapping simple search tasks in realtime.
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Fig. 6.5: Search task mapping results in the language-agnostic latent space
for AOLQTM, TRECQTM, and WHQTM datasets. Results include several
values of top k from the ScaNN index, considering (a) Accuracy (b) F1.
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6.5 Summary

In this chapter, we proposed LASTM, an unsupervised method for modeling
search tasks from user interactions with search systems. The proposed model
outperforms a state-of-the-art baseline both in modeling performance as well
as the number of languages it can support, highlighting the importance of
language-agnostic latent spaces for query representation and the importance
of considering clicked URLs to model user intent. Also, it is independent of
user identifiers, enabling modeling search tasks in user-independent or per-
sonalized applications. The modeling performance of LASTM, its language-
agnostic capacity, and its ability to support realtime modeling can benefit
search systems and user supporting applications, constituting an essential
step in the effort to make search more coherent, conversational, engaging,
and natural.



Chapter 7
Conclusions

It is a peculiarity of man that he
can only live by looking to the
future.

Viktor Frankl

In this dissertation, we proposed four models that learn search patterns
from users interactions with search systems, namely, the Language-agnostic
Search Task Modeling (LASTM) approach, the Multilingual Graph Based
Clustering (MGBC) method for search task identification, the Recurrent
Deep Clustering (RDC) model to extract users’ search tasks, and a recur-
rent neural architecture for segmenting search query logs.

The recurrent neural architecture learns to detect search task boundaries in
pairs of subsequent queries, determining if adjacent queries in chronologically
ordered query logs represent a task change or not, and taking as input the
query and its timestamp only. It does not rely on the context provided by
surrounding queries to achieve its maximum modeling performance. Also, it
is possible to fine-tune the model, allowing the processing of small query logs.
This is especially important given the scarcity of publicly available labeled
datasets from search systems. Once trained, it is several times faster than a
heuristics-based baseline. Additionally, as the proposed architecture does not
require surrounding queries for context, it can provide segmentation results
for tasks with one or few queries. The mean number of queries per task in
datasets from widely used search engines is low, and information needs like
fact-finding and other simple tasks are usually solved with only one query.

RDC extends the foregoing recurrent architecture to propose a model for
search task extraction. Taking the recurrent architecture as the encoder for
the user queries, RDC implements a dual-channel configuration that allows it
to simultaneously learn query latent representations and cluster queries into
groups of search tasks. The learning of query representations is performed

103
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using back translation, a strong data augmentation technique that renders
negligible the effects of pretraining RDC. For that reason, the supervised
pretraining can be discarded, providing an unsupervised method for search
task modeling. On top of the unsupervised nature of the proposed method,
it is also parametric, providing a fixed-sized query encoder regardless of the
number of queries in the search system log.

MGBC provides an unsupervised, non-parametric model to identify user
search tasks, combining a multilingual latent space for query representation
with graph-based clustering, and using the angular distance in the latent
space to group related queries. MGBC supports realtime modeling, as the
same multilingual semantic space and query similarity is used to address the
existing trade-off when mapping new queries to identified search tasks. For
that reason, MGBC keeps query response times below half a millisecond,
a crucial aspect for running on the fly applications for supporting search
system users. Likewise, MGBC is multilingual, facilitating the identification
of search tasks in sixteen languages, including the most used ones like Chinese,
English, Arabic, French, and Spanish. Moreover, as MGBC is independent
of user identifiers, it can perform search task modeling in user agnostic or
personalized scenarios.

Finally, LASTM models user search tasks by leveraging a language-
agnostic semantic space for query representation, along with user search in-
tent from the relationship between queries and clicked documents. As user
intent modeling is also performed in the language-agnostic semantic space,
LASTM can use both semantic relatedness and user search intent to group
similar queries in the search system logs. The query representation can realize
zero-shot transfer learning, which allows it to support queries in languages
that were not part of the training collection for the semantic space. Similar to
MGBC, it is possible to get realtime modeling results by mapping incoming
queries to modeled search tasks; also, the proposed model is independent of
user identifiers, enabling its use in user agnostic or personalized scenarios.

Indeed, a crucial aspect in the proposed models is user privacy, which is
part of broader efforts in ethics for intelligent systems. None of the proposed
models rely on user identifiers as direct input to the method. Though the
neural model for search task segmentation requires the queries in the log to
be ordered by timestamps and grouped by user, this ordering does not require
direct use of the identifiers as input to the neural model. Similarly, RDC is
user agnostic. It does not require user identifiers either for deep clustering or
self-training with back translation. MGBC and LASTM are user agnostic as
well. They take only queries as input, and the relationship between queries
and clicked documents we use to model user search intent does not utilize
any user identifiers.

Another crucial aspect is realtime response times, especially for interac-
tive search. Except for RDC, all proposed models take into account the need
for realtime results in modern search systems. Most search systems need to
provide results in realtime. Conversational information seeking can also im-



7.1 Perspectives for further research 105

plement time thresholds when aggregating results from multiple systems, so
that they can provide timely responses during the interaction with users.
Exceeding such limits render the system response unusable or can introduce
unnecessary delays in the process users carry out to fulfill their information
needs. Therefore, MGBC, LASTM, and the proposed method for search task
segmentation provide modeling results under a millisecond. The neural archi-
tecture for search task segmentation can be even faster than the heuristics-
based baseline once the neural network is trained. Moreover, both MGBC and
LASTM rely on query-task mapping with fast approximate nearest neighbors
methods for modeling search tasks in realtime.

Furthermore, language accessibility is at the core of the MGBC and
LASTM approaches. As discussed before, most labeled and unlabeled datasets
publicly available are in English, but users worldwide access search systems
in many languages. Therefore, MGBC represents queries in a multilingual
semantic space, supporting queries in sixteen languages. LASTM goes even
further, using a language-agnostic semantic space for representing queries
and modeling user search intent. When compared against existing monolin-
gual modeling methods, LASTM, which supports more than a hundred lan-
guages, represents an improvement of two orders of magnitude in language
accessibility.

Overall, our proposed models provide state-of-the-art performance, im-
proving on existing methods for modeling search patterns, and taking into
account user privacy, realtime responses, and language accessibility. Proposed
models can be part of many user assisting applications and retrieval models,
underpinning efforts of search systems to assist users while they carry out
their information seeking. They can also be used to design search systems
based on tasks, as well as to aid digital assistants to follow the topic in con-
versational search. Assisting users while they run the sequence of steps they
devise to solve their information needs allows them to deal with the mental
overload that information seeking requires.

7.1 Perspectives for further research

In our proposed non-parametric methods, we use existing ground-truth labels
to perform the grid search, producing models as accurate as possible with
respect to the ground-truth. Nonetheless, it would be interesting to explore
ways to optimize the model using metrics that are independent of ground-
truth labels. One possibility is the use of cluster validity indices, like the STR
index (Starczewski, 2017) or the Silhouette index (Rousseeuw, 1987). Another
possibility is the combined use of several cluster validity indices to optimize
the non-parametric models (Saini et al., 2019), as long as it guarantees that
queries inside a search task cluster are as close as possible, while search task
clusters remain as separated as possible between them.
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Another interesting research direction is the use of generative methods for
deep clustering (Aljalbout et al., 2018; Min et al., 2018). RDC outperforms
existing deep clustering methods by leveraging bidirectional RNNs and self-
training to learn query representations. But comparing RDC with generative
alternatives, like Variational Deep Embedding (Jiang et al., 2017) or Deep
Adversarial Subspace Clustering (Zhou et al., 2018), can give us hints of the
impact generative architectures can have on modeling results. If the impact
is positive, it is possible to devise ways to incorporate generative alternatives
to perform the clustering. Similarly, it is possible to replace the clustering
layer in RDC for graph-based clustering alternatives. Doing so allows the
simultaneous learning of query representations and the optimization of graphs
for clustering. Besides, discrete architectures (Kaiser and Bengio, 2018; Kaiser
et al., 2018) for clustering could improve the modeling of search tasks because
query logs can have thousands of search tasks, and quantization is already
used in extreme classification methods with a large number of classes (Guo
et al., 2020).

Moreover, it is widely accepted that users multitask when fulfilling their
information needs (Lucchese et al., 2013; Mehrotra and Yilmaz, 2017; Tamine
et al., 2020). Most publicly available datasets with timestamps show this be-
haviour (Section 2.1), except for the the Complex User Search Task Analysis
(CUSTA) dataset (Dosso et al., 2020). But why does the CUSTA dataset
shows little to no multitasking? There are some hints about this lack of mul-
titasking. First, “task sets” allow users to program their memory to perform
a certain task, even if it is not what users normally do. For example, when
looking at a book page, a user will normally read the content, but the user
can program its memory to instead count the number of f’s present on it
(Kahneman, 2013). Thus, users can perform all the steps to solve a particu-
lar search task in tandem, even though they normally multitask. Second, a
continuous train of thought requires effort. So, users should exert self-control
to resist the urge to stop the mental effort that a complex task requires (Kah-
neman, 2013), but if the user interface allows for “cues” like social network
notifications or mail access, users will have a harder time keeping focused in
a particular search task (Oakley, 2014; Williams et al., 2018). Understanding
this lack of multitasking can improve the design of search systems, allowing
users to maintain focus, an essential behavior when solving complex search
tasks.

Furthermore, conversational information seeking is increasingly becoming
a major area of research (Anand et al., 2020; Zamani and Craswell, 2020).
Among the many research problems in conversational search, two research
questions arise. First, what approaches adapt to evolving user information
needs, while at the same time, leverage past interactions with users? As
discussed before, mining search query logs allow search pattern modeling,
enabling multiple applications for assisting users while they satisfy their in-
formation needs. Assisting applications like conversational question sugges-
tion (Rosset et al., 2020) and clarifying question asking (Aliannejadi et al.,



7.1 Perspectives for further research 107

2019) can benefit from learned models. Though foregoing proposed models
learn from user interactions, they use an offline training scheme. To update
the models, it is necessary to retrain or fine-tune them with the updated
set of interactions. However, offline learning is not dynamic. For conversa-
tional search, systems should be interactive, dynamically adapting in real-
time to evolving user information needs. Conversely, learning from scratch
while interacting with users can cause conversational search systems to gen-
erate unwanted responses. In such scenarios, users will likely abandon the
search system (Zamani and Craswell, 2020). Hence, developing methods that
learn when interacting with users in realtime, but take advantage of past
interactions, is critical for information seeking in a conversational way.

Second, how to identify if users have experience in the subject matter of
the information need they want to fulfill? Experience in a particular subject
matter has an impact on the way users satisfy their information needs. Expe-
rienced users will use a different way to satisfy their information needs than
users who need to learn about the subject matter, particularly when solv-
ing complex search tasks (Hearst, 2009; Karanam et al., 2017). Discovering
whether the user has experience or not allows search systems to adapt their
responses. That adaptation can be instrumental for proposing clarifying ques-
tions (Rosset et al., 2020), presenting relevant passages (Chang et al., 2020;
Dai and Callan, 2020), or helping inexperienced users explore while carry-
ing out the information seeking process (Dosso et al., 2020; Hearst, 2009).
Accordingly, developing approaches to dynamically adapt to evolving users’
information needs, as well as identifying the experience of users in the topic
of search, can be a crucial part of the evolution of search systems towards
conversational information seeking.
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