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Abstract

The current trend in electric autonomous vehicles design is based on pre-existing models
of cities which have been built for cars. The carbon footprint of cities cannot be
reduced until the overall requirement for vehicles is reduced and more green and
pedestrianized zones are created for better livability. However, such green zones cannot
be scaled without providing autonomous mobility solutions, accessible to people with
reduced mobility. Such solutions need to be capable of operating in spaces shared
with pedestrians, which makes this a much harder problem to solve as compared
to traditional autonomous driving. This thesis serves as a starting point to develop
such autonomous mobility solutions. The work is focused on developing a navigation
system for autonomous vehicles operating around pedestrians. The suggested solution
is a proactive framework capable of anticipating pedestrian reactions and exploiting
their cooperation to optimize the performance while ensuring pedestrians safety and
comfort.

A cooperation-based model for pedestrian behaviors around a vehicle is proposed. The
model starts by evaluating the pedestrian tendency to cooperate with the vehicle by a
time-varying factor. This factor is then used in combination with the space measurements
to predict the future trajectory. The model is based on social rules and cognitive studies
by using the concept of the social zones and then applying the deformable virtual zone
concept (DVZ) to measure the resulting influence in each zone. Both parts of the model
are learnt using a data-set of pedestrians to vehicle interactions by manually annotating
the behaviors in the data-set.

Moreover, the model is exploited in the navigation system to control both the velocity
and the local steering of the vehicle. Firstly, the longitudinal velocity is proactively
controlled. Two criteria are considered to control the longitudinal velocity. The first is a
safety criterion using the minimum distance between an agent and the vehicle’s body.
The second is proactive criterion using the cooperation measure of the surrounding
agents. The latter is essential to exploit any cooperative behavior and avoid the freezing
of the vehicle in dense scenarios. Finally, the optimal control is derived using the
gradient of a cost function combining the two previous criteria. This is possible thanks
to a suggested formulation of the cooperation model using a non-central chi distribution
for the distance between the vehicle and an agent.



A smooth steering is derived using a proactive dynamic channel method for the space
exploration. The method depends on evaluating the navigation cost in a channel (sub-
space) using a fuzzy cost model. The channel with the minimum cost is selected, and a
human-like steering is affected using a Quintic spline candidate path between channels.
Finally, the local steering is derived using a sliding mode path follower.

The navigation is evaluated using PedSim simulator under ROS in pedestrian-vehicle
interaction scenarios. The navigation is tested with different pedestrian density and
sparsity. The proactive framework managed to navigate the vehicle producing smooth
trajectories while maintaining the pedestrians’ safety and reducing the travel time in
comparison with traditional reactive methods (Risk-RRT).



Résumé

La tendance actuelle dans la conception des véhicules électriques autonomes est basée
sur des modeles préexistants de villes qui ont été construits pour les voitures. L’'empreinte
carbone des villes ne peut étre réduite tant que les besoins globaux en véhicules ne
sont pas réduits et que davantage de zones vertes ne soient créées pour une meilleure
habitabilité. Cependant, Le nombre de ces zones ne peuvent étre augmentées sans fournir
des solutions de mobilité autonomes et accessibles a tous. De telles solutions doivent
étre capables de fonctionner dans des espaces partagés avec les piétons, ce qui rend
ce probléeme beaucoup plus difficile par rapport a la conduite autonome traditionnelle.
Comme point de départ pour développer de telles solutions, cette thése pose des jalons
pour développer de telles solutions et se focalise sur la navigation pour les véhicules
autonomes a proximité des piétons. La solution proposée est un cadre proactif capable
d’anticiper les réactions des piétons et d’exploiter leur coopération pour optimiser la
performance tout en assurant leur sécurité.

Dans un premier temps, un modele de comportement des piétons est proposé. Le
modele commence par évaluer la tendance des piétons a coopérer avec le véhicule
par un parametre dépendant du temps. Cette tendance est ensuite utilisée combinée
a des mesures spatiales pour prédire la trajectoire future. Le modéle est basé sur des
regles sociales et des études cognitives en utilisant le concept de zones sociales. Il
integre ensuite le concept de zone virtuelle déformable (ZVD) pour mesurer I'influence
résultante dans chaque zone. Les deux parties du modele sont entrainées grace a un
corpus de données vidéos annoté ou des piétons interagissent avec un véhicule.

Dans un second temps, La vitesse et les manceuvres du véhicule sont étudiées. Premiere-
ment, deux critéres sont considérés pour contréler la vitesse longitudinale. Le premier
est un critere de sécurité qui utilise la distance minimale entre un agent et le chassis
du véhicule. Le second est un critére proactif qui utilise la mesure de coopération des
agents environnants. Ce dernier est indispensable pour exploiter tout comportement
coopératif et éviter le gel du véhicule dans des scénarios denses. Enfin, le controle
optimal est dérivé en utilisant le gradient d’'une fonction de cofit combinant les deux
critéres précédents. Ceci est possible grace a une formulation suggérée du modele de
coopération utilisant une distribution Chi non centrale pour la distance entre le véhicule
et un agent.



Vi

Un cadre de canaux dynamiques et proactifs est suggéré pour la manceuvre locale. La
méthode dépend de I’évaluation du cofit de navigation dans un canal (sous-espace) a
l'aide d'un modele de cofit flou. Le canal avec le moindre cofit est sélectionné et une
transition douce est réalisée a 'aide d’'une spline Quintique entre les canaux. Enfin, la
control local est calculé a I'aide d'un contréleur de mode glissant.

La navigation est évaluée a I'aide du simulateur PedSim sous ROS dans des scénarios
d’interaction piéton-véhicule. La navigation est testée avec différentes densités et
parcimonie de piétons. Le cadre proactif a produit des trajectoires de véhicules fluides
tout en maintenant la sécurité des piétons et en réduisant le temps de trajet par rapport
aux méthodes réactives traditionnelles (Risk-RRT).
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Introduction

Autonomous driving systems have the potential to transform cities planning and urban
lifestyle. Autonomous Vehicles (AVs) can reduce human losses and injures caused
by traffic accidents, and they are accessible equally to all (families, elderly, infirm).
Furthermore, they are predicted to reduce the harmful emissions by optimizing travel
times. However, these driver-less vehicles cannot be fully integrated into our daily lives
without the capability to navigate safely and efficiently around vulnerable road users.
Studying the interaction between vehicles and pedestrians is becoming increasingly more
interesting with the growing influence of the "Shared Space" concept in city planning.
Shared spaces introduce extra constraints and challenges to the navigation task. Insuring
both pedestrians’ and passengers’ comfort and safety while navigating efficiently is a
highly challenging task, especially in a shared, dynamic and dense environment.

This thesis is mainly focused on developing a robust navigation system suitable for close
interactions with pedestrians in an unstructured environment (no markings on the floor,
no traffic signs, etc). The proposed solution is a proactive navigation framework which
exploits the cooperative nature of human behavior. Thus, enabling the autonomous
vehicle to engage in the environment as an active agent and to deploy natural and legible
driving patterns.

In this chapter, we present the motivation behind this work and the general context on
automated vehicles, their advantages and challenges. The main problem addressed in
this thesis is presented. Furthermore, the general framework of the proposed method
is explained. Finally, the main contributions of this thesis along with the manuscript
outline are detailed.
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Motivation: Future Cities and Autonomous Vehicles

The quality of urban life is negatively affected by the increasing levels of road traffic and
congestion. High inner-city traffic levels produce both air and noise pollution, along
with a less safe neighborhood environment and reduced sense of local communities
[Env04]. Consecutively, cities around the world started converting large spaces into
green and pedestrian-friendly zones to improve the quality of air and the quality of life
in general [MV21]. We can see examples of such initiatives across the world such as the
pedestrianization of the Times Square, NYC in 2014 (Fig. 1.1).

, .
|BEFORE ' =’

Fig. 1.1.: Pedestrianization of the Times Square, NYC

This approach achieves a reduction in overall vehicle traffic which is a major cause of
greenhouse gas emissions. However, the size to which cities can expand these green
zones is limited due to lack of transport options for goods and people with reduced
mobility, such as the elderly, families and the infirm. This is compounded by the fact that
the elderly population is expected to double over the next 20 years in Europe [Boo20].
Shared spaces are presented in city planning as a solution to this issue. They are consid-
ered a way to balance mobility requirements and economic growth, while respecting
the environment and providing an improved quality of urban life [HamO08]. This is a
new design concept that is spreading across the world and changing the way cities look
and function. Such shared spaces can be seen in London’s Oxford Circus *X-crossing’!
and Exhibition Road (Fig. 1.2), or Sonnenfelsplatz square in Graz, Austria [Hoel1], to
mention a few.
'http://news.bbc.co.uk/2/hi/8337341.stm
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Fig. 1.2.: Turning London’s Exhibition Road into a shared space

The transition from the traditional road structure and the vision of open, pedestrian-
friendly city spaces is becoming a reality. Specially with more cities joining the green
initiatives and plans. This year only, 50 new cities joined the European Commission’s
Green City Accord?, including the city of Grenoble where this research is based. The
goal is reducing harmful gas emissions by 55% by 2030 as compared to its levels in 1990,
with the vision of promoting smart cities where people and robots (including AVs) can
interact in daily life [Ccr20]. These green cities are not a mere vision for the far future
but are becoming a near reality, specially with the new announced projects and planning
trends. The city of Paris, for example, recently released its vision for 2030° to transform
the famous Champs-Elysées area to a greener pedestrian-friendly area (Fig. 1.3), with
the Place de la Concorde to be ready in less than 3 years from now (by 2024). However,
current AVs are not ready to operate in these green, pedestrian-friendly cities.

Classical autonomous vehicles navigation is adapted to simple, structured and predictable
environments. When encountering an obstacle, these vehicles either stop or a collision
is avoided by handling control back to drivers. Furthermore, the current incumbents in
the automotive industry are designing AVs which mostly operate on road infrastructure,
sparsely interacts with pedestrians and follows stipulated traffic rules. On top of not
closely interacting with pedestrians, these systems relay heavily on the traditional road
structure, which makes it incapable of operating unstructured spaces. However, with this
increased push towards greener and more livable spaces it becomes even more imperative
to develop models of autonomous mobility for shared spaces with pedestrians.

https://ec.europa.eu
®https://hubinstitute.com
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Fig. 1.3.: An aspect of the 2030 Champs-Elysées vision by Philippe Chiambaretta & Co

This vision of the future pedestrian-friendly cities is the main motivation behind this
work and the french ANR project HIANIC #. The project addresses the different problems
related to autonomous driving in a shared space. As a part of the project, this work
is focused on the navigation aspect to develop a socially compliant, efficient and safe
navigation system for AVs. With the goal of being capable of navigating the shared
pedestrian-friendly spaces which are anticipated to grow over the coming years.

To address autonomous driving in this thesis, let’s start with an overview of autonomous
driving systems, their categories, latest advancements and ongoing challenges.

Autonomous Driving Systems

Autonomous mobility has many advantages over traditional mobility solutions. One of
the main advantage autonomous solutions can bring to society is the improved road
safety. Studies show that 94% of road accidents are attributed to human factor [Adm18].
They are also expected to reduce harmful gas emission by 60% by optimizing travel times
and energy consumption therefore dampening traffic waves [Ste+19; ET21]. Moreover,
autonomous mobility can positively impact the environment by reducing the overall
requirement for privately owned vehicles. This is according to a study in Germany which
showed that autonomous shared mobility could help dispense of around 85% of the
current vehicles on the roads [Hei+17].

All these promising prospects have created a flourishing market and pushed automakers
and stack-holders in the field to introduce new autonomous driving technologies. The

“Human Inspired Autonomous Navigation In Crowds, https://project.inria.fr/hianic/
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first autonomous driving technologies date back to the 1970s when the anti-lock braking
system was introduced [Gall9]. This type of technology is known as ADAS which
stands for Advanced Driver-Assistance Systems. The past 50 years have witnessed major
advancement in ADAS technologies. The newly developed systems took advantage of
the wide range of available sensors and perception algorithms to estimate not only
the vehicle’s state, but also to estimate and understand the state of the surrounding
environment. Some ADAS systems are only designed to warn or inform the driver to
take a corrective action, such as lane departure warning. Whereas, other ADAS can
directly take partial or full control over a sub-system in the vehicle, like the automatic
emergency braking system [Zie+17].

Based on the degree of autonomy, autonomous driving systems are classified to 6 levels
as shown in Fig. 1.4. Systems of levels 0-2 are considered driver’s support features
where the driver is responsible of monitoring the system performance. In level O, the
human driver is responsible of all the aspects of the driving task (i.e. no autonomy). In
this level the driving is enhanced by warnings such as the blind spot warning but the
driver is mainly responsible of steering/braking to maintain safety. In Level 1, the driver
assistance system can provide steering OR acceleration/braking actions support to the
driver such as the lane centering system or the adaptive cruise control system. When
the ADAS provides both steering AND acceleration/braking assistance, the system is
considered of level 2. Therefore, a system providing both lane centering and adaptive
cruise control at the same time is considered of level 2. On the other hand, systems of
levels 3-5 are considered automated driving features, where the driver does not need
to be continuously engaged when these features are in action. In levels 3 and 4, the
system can take full control of the vehicle but only when specific conditions are met.
The main difference between these two levels, is that in level 3 the driver must be ready
to take over when requested to intervene by the system. Finally, level 5 provides a
full-time control of the vehicle under all conditions that can be managed by a human
driver. [Int18]

Latest Development and Current Challenges

Despite the ongoing developments and achievements in the automotive industry, the
current technologies are still not ready for mass deployment or higher levels of autonomy.
Many autonomous driving companies had promised the public with fully autonomous
vehicles by 2020, from General Motors to Googl’s Waymo, Toyota and Tesla. However,
when it comes to autonomous driving, the community had greatly underestimated the
complexity of the driving task in a variety of environments and scenarios.

1.2 Autonomous Driving Systems
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Mo Automation

Driver Assistance Provides longitudinal OR lateral control of the vehicle 1

“artial om Provides both longitudinal AND lateral control of the vehicle . \/
Conditional Automation [l Provides full control in specific conditions. Driver retakes control when required 3 I

Full Driver Control, with warning assistance 0

|

Driver Support

High Automation Provides full control in specific conditions. No Driver action is required

Provides full-time full contral in all conditions. No Driver action is required

Automated Driving

Fig. 1.4.: The 6 levels of autonomy in driving systems

Most autonomous driving technologies on the market today are offering up-to level
2 or 3 autonomy. However, several fatal crashes involving these levels have been

reported in the past years®

. We can identify a large spectrum of challenges related
to autonomous vehicles control, perception or navigation depending on the working
scenario and environment [Yaq+20]. In the context of this work, let’s identify the main
challenges and milestones on the way to full autonomous navigation in shared spaces

with pedestrians:

* Planning Challenges: It is highly challenging to find a valid path in a dynamic
human-populated and unstructured space, while ensuring safety and efficiency.
One main reason is the coupled nature of the human-vehicle planning imposed by
the shared space. Ignoring this cooperation between the two parties can lead to the
freezing of the vehicle and not just in highly dense spaces. The study in [Mav+21]
argues that this problem can occur even with one human interactions if the agent
is navigating in close proximity. This makes the coupled behavior problem a
core concern and not just a limit problem. This coupled behavior results in
complex, non-convex planning objective functions. This computational complexity
starts becoming obvious even in a simple collision avoidance cooperative objective,
such as the one in [TP20] where the problem is tackled locally. Since tools for
global non-convex multi-objectives analysis do not exist, then frameworks such as
RRT[RSL11] are expected to fail in such scenarios, as well.

* Behavioral Challenges: One of the biggest challenges in navigating shared spaces
is understanding human behavior, specially around vehicles. Despite the huge body
of research on human motion modeling in crowds [Rud+20], modeling human
behavior and reactions in close proximity with autonomous vehicles remains an
open research question. Moreover, the vehicle should abide by human expectations

5Tesla’s level 2 crash, Level 3 accidents
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by deploying a behavior similar to that of experienced drivers, or what is referred
to as producing legible motion [MTK18; Sto18]. The vehicle should also produce
natural driving patterns, which means that it should be able to blend in the
environment as an active and not just a responsive agent.

* Evaluation Challenges: Evaluating the navigation performance and qualifying a
navigation systems in shared spaces is not a straightforward task. The challenges
arise when evaluating the performance both in simulations and in real-world
experiments. Firstly, the limitations of the currently available spared spaces sim-
ulators make testing and validating the navigation in simulations more limited.
The study in [FL20] shows that the available crowd simulators suffer from a
limited performance due to unrealistic assumptions of the real-world such as be-
havior homogeneity and agents omniscience. Additionally, the issue of simulating
autonomous vehicles around crowds is still not addressed in most simulators.
Whereas, setting up real-world experiments to evaluate the navigation around
humans is highly challenging. It is even more challenging in the case of an au-
tonomous vehicle that can be potentially harmful. In addition to the simulation
or testing environment challenges, the evaluation methods, criteria and metrics
should be well-defined and adapted to the particular targeted case of shared spaces
social navigation [Mav+21].

* Societal and Legislative Challenges: A main issue in the field of autonomous
driving is that the technology is in general more advanced that the regulatory
processes. These legislative challenges are even more prominent for the case
of navigating in close proximity with pedestrians [Bar+17]. Furthermore, the
social acceptability of autonomous vehicles, specially around pedestrians, is a major
concern in the community. A recent study in [Jin+20] summarized the main points
that affect the social acceptability. According to the study, multiple factor which
are not related to the navigation performance can affect the social acceptance.
Such factors include the performance-to-price value, the ease of use and the
environmental impact. However, the main identified factors contributing to the
social acceptability are navigation performance related such as the perceived risk,
the safety concerns and the compatibility with social norms. Meaning that a robust,
safe and socially-aware navigation system is the key to the social acceptability and
to raising the public trust of autonomous vehicles.

We focused here on the challenges related to the navigation behavior of the vehicle, as it
is the core subject of this thesis. However, the task of full autonomous driving in shared
spaces faces furthermore challenges related to the sensory and perceptive system of the

1.2 Autonomous Driving Systems



1.3

24

vehicle for example. More on the perception challenges for autonomous vehicles can be
viewed in [LI20; Ros+19; KJD18; Shi+17].

Targeted System And Problem Definition

The targeted system in this thesis is an automated vehicle equipped with the necessary
sensory system for pedestrian identification and tracking. The vehicle’s perception system
can make advantage of the wide range of available sensors from LiDARs to cameras,
to achieve the pedestrian tracking task. An example of an instrumented automated
vehicle is shown in Fig. 1.5 with the automated Renault Zoe we use in out laboratory
experiments.

Fig. 1.5.: The automated Renault Zoe vehicle

As illustrated in Fig. 1.6, the vehicle information pipeline starts with the raw sensor
information to localize the vehicle and to identify and track the dynamic objects (which
are the pedestrians in our case). This is followed by the prediction of the agents behavior
and the environment dynamics. The previous predictions are used to plan an appropriate
vehicle path and the necessary vehicle control commands (longitudinal velocity and
steering angle) are generated. The highlighted modules on the figure represent the parts
included in the scope of this thesis. Meaning that the pedestrian tracking is provided as
a system input.

Problem Definition: Consider a navigation space C € R? which does not contain any
special markings, signals or driving rules. All areas in the space are open equally to
the pedestrians and the vehicles. Moreover, the space imposes low speed limits of the
navigating vehicles. This speed is limited to V},,, = 20km/h, as this the maximum

1 Introduction
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Fig. 1.6.: Information flow diagram in an autonomous driving system

allowed speed for vehicles circulating shared spaces®.

Consider a set of N € N pedestrians {a;};<y in the space. The positions and the
velocities of each pedestrian are provided by the perception system as {X;(t)};<n € C,
{V;(t)}j<n € R?, respectively. The pedestrians navigate towards their goal destinations
{G;}j<n while abiding by the social norms and avoiding collisions with other agents.
Assuming an autonomous vehicle of dimensions L x W needs to navigate through the
shared space C to reach a final destination Gy, € R? according to a global path provided
by a higher level path planner.

Find the vehicle’s lower level control commands which are the longitudinal velocity
control v(t), and the steering angle d(¢) such that the following criteria are met:

* Success: The vehicle succeeds in navigating the shared space and reaches its goal
Gy within an infinite time Tp € R .

» Safety: The vehicle navigates the space while avoiding collisions with the pedes-
trians.

* Efficiency: The resulting trajectory is efficient in terms of optimizing the traveled
time and the traveled distance.

* Naturalness: The vehicle navigates the space actively while cooperating and
exchanging trajectories with the surrounding agents, i.e. the freezing of the vehicle
is avoided.

* Comfort: The vehicle produces a legible behavior and navigate while maintain-
ing the comfort of the surrounding pedestrians, and the comfort of its possible
passengers.

* Scalability: The proposed solution should meet the previously mentioned criteria
in interactions with both high and low pedestrian densities.

bArticle R.110-2 du code de la route, www.audiar.org
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1.4 Proposed Solution: A Proactive Social Navigation
Framework

The suggested solution is a proactive social navigation framework. The system is based
on the idea of the coupled navigation behavior between the pedestrian and the vehicle
in shared spaces. The system takes into account the cooperative nature of human
behavior and exploits it to explore new navigation options, and navigate the shared

space "proactively".

Proactive behaviours are natural behaviours applied by drivers in everyday scenarios.
Expert drivers interact, cooperate and influence other road users to navigate in an
optimal manner. Applying this kind of proactivity in autonomous driving systems is key
to a natural and socially acceptable behaviour. Moreover, the advantages of a proactive
navigation is particularly prominent in dense pedestrians-vehicle interaction scenarios.
A reactive controller cannot consider the cooperation of the pedestrians in the scene
and their reactions to the vehicle. This leads to over penalizing the vehicle’s navigation
options. Subsequently, the reactive controller would have a poor performance in such
scenarios [VMO17a], leading to suboptimal navigation solutions or even the freezing of
the vehicle in some cases.

Although the term "Proactivity" is not used explicitly in the literature very often, the
concept is considered in several applications. These applications include tasks which
require influencing the work space. To cite a few Example, this can be a leader/follower
task such as the work in [Clo+06], or minimizing the social effect of the navigation
policy in [FS14a]. In this work, the proactivity is considered as an invitation to the
pedestrians to cooperate with the vehicle and change their planned paths. Meaning that
the system does not merely awaits for an obstacle-free path to emerge in the shared
navigation space. The proactive system takes an action (proaction) to produce such
obstacle-free paths in an anticipated future horizon.

Finally, the suggested proactive navigation framework components and information flow
are illustrated in Fig. 1.7. The proposed system starts by estimating the cooperation
of the pedestrians in the scene, or how much would they be willing to compromise
their trajectories with the vehicle. Based on the cooperation level estimation the future
navigation behavior of each agent in predicted. Following this step, a decision is made
on the magnitude and direction of the proactive action. The decision is made using the
pedestrian behavior estimation and prediction information, as well as, the current state
of the navigation space. This step can be viewed as selecting a general direction of the
navigation within the shared space. Based on the decided proactive action, the global
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path of the vehicle is modified locally and the exact longitudinal and lateral control
commands are derived to follow the planned trajectory. The selected longitudinal-lateral
control architecture is a cascading architecture where first the longitudinal control is
derived using a stand-alone system, then the output of this system is used to compute
the lateral control (more on the control architecture is provided in 2.5).
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Fig. 1.7.: Suggested proactive navigation system components and information flow

Contributions

The main contributions of this thesis are the following:

A first implementation of a complete proactive navigation system. The following
system components are integrated and a complete proactive navigation system is imple-
mented. This is, to our knowledge, the first attempt to formulate, implement and test a
proactive navigation system around pedestrians.

* A cooperation-based behavioral model for pedestrians around vehicles. The
proposed model is a 2-layer behavioral model using social concepts. In the first
layer the cooperative behavior of a pedestrian is estimated and modeled by a
time-varying factor. In the second layer, this cooperation factor is used in combina-
tion with the space state measurements and the vehicle influence to predict the
pedestrian behavior. Chapter 3

* A method for proactive longitudinal velocity control. The longitudinal velocity
is controlled by exploiting the cooperative nature of pedestrian behavior. The
control is derived by influencing the pedestrians proactively to maximize their
cooperation, while maintaining their safety. Chapter 4

* A proactive navigation cost model. The model can be used to measure the cost
of navigating through a specific sub-space. The model is based on the travelled
distance cost in combination with a fuzzy logic based pedestrian disturbance cost.

1.5 Contributions
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The model is exploited in the manoeuvring system but can be used independently
and integrated into other pre-existing systems. Chapter 5

* A proactive dynamic channel method for manoeuvring pedestrian crowds.
The proposed method integrates multiple concepts and frameworks to build a
proactive manoeuvring system. The system is based on exploring the different
navigation options in the space (channels) and selecting the optimal channel with
the least navigation cost. The exploration of the space channels is done using
a segment of the global path. Whereas, the selection of a channel is done with
the previous cost model. The transition between the channels or the local path
modification is done using a human-like transition function. Moreover, a sliding
mode controller is suggested to perform the path following. Chapter 5

The testing and evaluation of the proactive navigation around pedestrians under
ROS’

* The formalization of the evaluation metrics necessary for performance val-
idation in shared spaces. The metrics necessary for performance evaluation
around pedestrians are presented. The algorithm for each metric calculation is
provided and the success/fail criteria for the case of autonomous vehicle navigation
is discussed. Chapter 6

* The collection of a pedestrian-vehicle interaction dataset. An experiment of
pedestrian-vehicle interaction is performed and the pedestrian tracking information
is collected on-board of the vehicle. The experiment provides data on pedestrian
behavior in a shared space with a vehicle and their reactions to both aggressive
and yielding driving patterns. The collected data is used in this work for model
validation and as reference for performance evaluation. Chapter 7

’The Robot Operating System, https://www.ros.org/
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1.6 Manuscript Outline

This manuscript starts in Chapter 2 with a general background on the different com-
ponents of a proactive and socially-aware navigation system. The chapter provides a
general overview, whereas, the more detailed background and related works on each
sub-system are found in the corresponding chapters.

Part II: Proactive Navigation Framework

In this part, the three components of the proactive navigation system shown previously
in Fig. 1.6 are discussed in a similar order:

In Chapter 3 the behavioral modeling of pedestrians around autonomous vehicles is
discussed. The proposed cooperation-based model is presented and evaluated. The
chapter further entails the presentation of a pedestrian-vehicle interaction dataset.

In Chapter 4 the proactive longitudinal velocity control of the vehicle is discussed. The
proposed control method is calibrated and tested in a simulated pedestrians-vehicle
interaction using the previously developed pedestrian behavioral model.

In Chapter 5 the steering control of the vehicle is discussed. The proactive dynamic
channel method for space exploration is presented and the corresponding steering control
is derived. The calibration and analysis of the proposed system is also provided.

Part III: Implementation and Validation

In this part, the three components presented in the previous part are integrated to test
and validate the entire system performance:

In Chapter 6 the performance metrics used to validate the different performance aspects
of a navigation system around pedestrians are presented and discussed.

In Chapter 7 the proactive navigation system is integrated and tested in a simu-
lated shared space environment under ROS. The performance is analysed in differ-
ent pedestrian-vehicle interaction scenarios, and the navigation is evaluated using the
previously defined performance metrics.

Finally, in Chapter 8 a global conclusion is derived on the work presented in this thesis.
The main contribution are summarized. Furthermore, A discussion on the potential
future avenues and prospects of this thesis is given.

1.6 Manuscript Outline 29






2.1

Background and Related Work

Building a proactive and socially-aware navigation system is a multidisciplinary challenge.
This chapter gives a background on the different components required for such systems.
These components include understanding the interaction between the navigating robot
and its surrounding environment, how is this new understanding used in the navigation
and the corresponding planning and control aspects. We start by placing this work in
the global framework of human-robot interaction and explaining how does this serve as
a starting point to establish the desired socially-aware navigation policy. The chapter
further entails a background on proactive navigation and modeling dynamic shared
spaces. Finally, a background on the verification of autonomous navigation systems is
given, with a focus on our special case of vehicle navigation in shared spaces.

From Human-Robot Interaction to Social Vehicle
Navigation

Studying robotic systems which require an interaction with a human agent to perform a
task is critical for applications in many emerging fields, ranging from simple domestic
applications to industrial applications and tasks in more undetermined environments
such as search and rescue operations. Studies have shown that human reactions to
machines are different from their reactions to other humans when performing the same
task [HRJ04]. This feature was the motivation for several studies aiming to understand
HRI. The main challenge in HRI applications is the fact that its a multidisciplinary task,
requiring developments in perception, Al, psychology and robotics.

Traditional robotic navigation systems were not viewed as HRI systems. The navigation
task was approached in a purely mathematical way to find the shortest path to a goal
point, for example, or to avoid static and dynamic obstacles [ZLC18; ABM11; FSL07a].
However, with the evolution of the field, robotic applications became increasingly
more present in human populated environments and the limitations of the previously
developed navigation methods became more prominent. Stakeholders in the field started
classifying navigation problems around humans as HRI applications under the category
of social navigation. Social Navigation (or socially-aware navigation) are navigation
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methods developed specifically for human populated environments. Meaning that the
navigation framework includes extra layers to deal with interpreting human intention,
decision making and producing human-like behaviors which are socially-acceptable
[Kru+13]. The term itself includes a wide range of applications and can be interpreted
in different ways based on what is considered "socially acceptable". However, some
ground rules are established in the community to give a minimum qualification for a
robot behavior to be considered socially-aware [RSL15].

Social navigation is a HRI problem whether the goal is to perform a task with a minimal
effect on the surrounding environment or to engage the surrounding agents in a desired
manner. In other words, whether the interaction with humans during the navigation
is preferred or not, it is present, and any navigation solution that does not consider
this interaction, is ill-defined. In some navigation applications the HRI aspect of the
task is very prominent and clear, such as evacuation or guidance tasks where there is
a leader-follower situation with the robot being the former. Here the interaction is a
straightforward main piece of the puzzle, similar to previously studied types of HRI.
This does not remain the case in other navigation applications, such as navigation in
spaces shared with pedestrians, where the goal is to reach a destination with an optimal
trajectory regardless of the other agents in the space. In such applications, the HRI
becomes an underlying layer that governs the dynamics of the space and drives the
solution to our puzzle. The navigation space and time both become common resources
between the robot and the other human agents in the environment. Understanding HRI
in this case means understanding how these resources are pooled and shared, and how
can these processes be manipulated to optimize the navigation task. In such case, and in
the specific application of autonomous vehicles we study PVI as a sub-category of HRI
(Fig. 2.1).

Understanding PVI enables us to develop autonomous vehicles which are capable of
navigating urban and pedestrian populated environments such as busy city centers,
shared spaces, parking lots, etc. The benefits of PVI research can also be extended to any
mobile robot navigating a pedestrian space, such as airports, universities and shopping
malls, for example. However, different adaptations are required for PVI case not only
due to the size of the vehicle, but also due to the different social rules and human
reactions in the case of a vehicle.

Finally, to move from general HRI to a social framework for navigation among human
crowds, two concepts should be taken into account: cooperation and proactivity. The
former two terms are qualities of any social interaction, therefore, navigating socially
cannot be established without them [JSM20]. Cooperative means that the navigation is
viewed as a shared task, and the burden of the task falls equally on both parties (the

2 Background and Related Work



Human-Robot Interaction (HRI)

/ Shared Task

Shared Resources Separate Resources

& » |

Master/Slave Relationship Peers or l\'IasterfSIa\-'e/

/ Separate Tasks + Shared Resources \

Master/Slave Relationship OR / Peers Relationship \ ‘

»

Common Workspace &ommon Navigation Space-Time

& Pedestrian-Vehicle Interaction (PVI)

Fig. 2.1.: PVI as a sub-category of HRI

robot and the human). This concept on its own, opened the door to more sociable and
efficient robotic navigation systems [KA17]. Proactivity, on the other hand, is a quality
of the agent performing the cooperative navigation.

PVIs (and more generally HRIs) can be split into two main categories: reactive inter-
actions and proactive interactions. Neuroscientists define reactive agents as the agents
who "learn during their lifetime how to react to environmental stimuli", while proactive
agents are more evolved inductive agents which "are able to make generalizations about
learned stimuli, and to react to new stimuli based on these generalizations" [SMT20]. In
robotics, reactive translates to the type of systems which can interpret their surround-
ing environment and take actions only as a response to an external influence. While
proactive robotics are those able to anticipate the evolution of the environment and take
actions without a proceeding influence (Fig. 2.2). Furthermore, in proactive interactions
the robot can take an initiative that influences the surrounding agents, similarly to how
an experienced conscious being would behave.

2.1 From Human-Robot Interaction to Social Vehicle Navigation
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Fig. 2.2.: Reactive vs. proactive actions

In the problem of navigation around humans, some solutions took the reactive approach
such as the works studying the dynamic obstacle avoidance problem [FSLO7b; SW14].
However, treating all the surrounding agents as dynamic obstacles that should be avoided
has its limitations and drawbacks, specially in more dense and complex spaces [LS13].
To account for this aspect without moving to a proactive approach, some works solve
the navigation problem by following an optimal leader through the space [Ste+16a;
SNO08; Jun+16]. In this case the robot remains a reactive agent following another more
experienced and more proactive agent. The goodness of such solutions depends on
finding a group of agents with aligned goals or sub-goals, selecting the best agent to
follow, and on the experience of the selected agent. All these factors limit the feasibility
and scope of such approaches, and the evolution towards proactive robotics becomes
inevitable for social navigation frameworks.

Proactivity in the Literature

Proactivity translates to creating or controlling a situation when performing a task,
and not just reacting to pre-existing situations. Motivated by the rowing number of
applications HRI applications, researchers recently started exploring proactive robotic
behavior. The study in [Gar+17] discussed providing a Tibi mobile robot with proactive
capabilities to establish an engagement with people through verbal and non-verbal cues.
The study concluded that providing the robot with the ability to take initiative improved
the overall human-robot communication, provided that the robot abides to the social
norms. Even thought the study is applied to an application which is not navigation
specific, the insights of this work on the importance of proactivity in social robotics
can be extended to socially-aware navigation. Few works in the literature targeted the
navigation task around humans proactively. One approach is presented in [FS14b] where
the Extended Social Force Model (ESFM) is exploited in a proactive kinodynamic planner.
The proposed planner aims at minimizing the robot disturbance to other pedestrians (or
its social work). The proactivity here is prominent in considering the robots effect on its
environment and propagating the pedestrian state accordingly. This study demonstrates
the advantages of having a proactive behavior in the social planner, over a reactive
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one. Although the system is only tested in low-density interaction, the results and
insight provided by the method are a motivation to implement proactive behaviors in
more socially-aware navigation system. In a more recent study, the work in [JSM20]
proposed a proactive-cooperative planner with a switching strategy to pass to a reactive
planner depending on the interaction situation. The proposed method integrated Model
Predictive Control (MPC) and the ESFM with Collision Prediction. The method was
only tested in a constrained one-pedestrian interactions. However, the idea of having a
decision making system to switch from proactive to reactive behavior is quite inspiring
and can be exploited in developing social navigation systems.

Finally, works on proactive robotic behavior in the literature are very few and limited.
However, the studies which discussed proactive behavior, or more specifically proactive
navigation, all demonstrate the advantages and importance of deploying robotics proac-
tively. This has been a major motivation for us to develop a proactive and socially-aware
navigation system for autonomous vehicles around pedestrians.

Working towards proactive robotics is working towards more "intelligent" or advanced
robotics with a more human-like abilities. Moreover, in the case of safety-critical robotic
application, such as autonomous vehicles, proactive behavior can be regarded as a
necessity and not just an extra improvement. Although this is a new direction in the
community, but several opinions argue in favor of this necessity. In a recent article on
"Intuition Robotics" by Natalie Hoke titled "5 Times Our Cars Should Proactively Interact
with Us"!, the writer argues the importance of proactive vehicle behavior for the case
of in-car voice assistance. According to the study in [Sem+19], 78% of participated
drivers where in favor of more proactive voice assistance interventions. This was the
result of a poll after a 50 minutes test drive. Furthermore, Lance Eliot? argues that
today’s reactive AVs drive (at best) similarly to novice teenage drivers. He suggests a
very simple example scenario of a driver arriving at a traffic light when the light turns
yellow. In this situation some novice drivers might not consider the consequences of
their actions and brake regardless of the situation. However, more experienced drivers
would act proactively and consider their effect on other road agents. This might lead
them to deciding to cross the yellow light if they notice that the driver behind them
is too close and doesn’t seem to be slowing down, for example. In such case, if an
autonomous vehicle stops to follow the traffic rules and a human driver crashes into
the vehicle from behind, the automakers would blame the human driver. Where in fact
this is a matter of over-reactive behavior on the Autonomous Vehicle (AV)’s side and
a lack of proactivity. Imagine another example of an AV trying to insert into a busy

Thttps://blog.intuitionrobotics.com/5-times-our-cars-should-proactively-interact-with-us
https://lance-eliot.medium.com/proactive-defensive-driving-for-driverless-cars-missing-link-must-
have-88530f19a92d

2.2 Proactivity in the Literature
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round-about on a Monday morning (Fig. 2.3a). An over-reactive behavior would lead
the AV to keep freezing on the roundabout entry, blocking not just its passengers but
the whole traffic flow. Whereas, an experienced driver would act proactively finding
the appropriate moment to insert himself. A similar scenario can be imagined when
navigating human crowds as driving through a busy campus (Fig. 2.3b), for example.

™, o LAUSI N

(a) Busy roundabout, photo by bloomberg.com (b) Campus top-shot, photo source [Yan+19]

Fig. 2.3.: Examples of situations requiring proactive behavior

In the following, we move to talking about the main challenges in developing the differ-
ent components of a proactive navigation system. From the challenge of understanding
pedestrian behavior in section 2.3 to the navigation system structure and the different
planning and control challenges in section 2.4.

Perceiving Intentions For Proactive Decision Making

Perceiving and understanding intentions is a major challenge in any HRI problem,
including PVI. In the case of PVI, the main interest is to model the human behavior
during an interaction with the vehicle (Fig. 2.4). The vehicle (or the robot in general)
should be able to infer the underlying intention behind a human action in order to
respond in an appropriate human-like manner. HRI research resulted in several works
on modeling human intention using their movement [Wan+13; Shal2]. This is based
on the hypothesis that humans move according to goal-oriented policies [FR11]. The
advancement in sensors and perception enabled robotic systems with improved scene
understanding capabilities. Robots became capable of using body posture and gaze
detection to interpret engagement and even human feelings, as the works in [MKV20;
Xu+19; LT19] to mention a few. However, the problem of understanding human
behavior cannot be solved globally and solutions are context and environment oriented.
For example, the same action made by a pedestrian should be interpreted differently in
the case of an adult as compared to a child. Furthermore, the same person might respond
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differently to the same stimuli made by a robot in a lab environment as compared to a
vehicle on the street. Therefore, the previous works cannot be applied directly to the
case of PVI. The new environment outside the lab doors and the different dimensions of
a vehicle requires separate treatment.

(Remain in-front of the vehicle?
Accelerate? Decelerate?
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Fig. 2.4.: Understanding intentions in PVI scenarios inside a shared space

Recent studies in the field addressed the problem of intention prediction in the case of
PVI. Several works targeted the problem of pedestrian intention estimation around urban
roads, and more specifically addressed the crossing intention at signalized crosswalks
[Rid+18a]. Data-driven approaches had a major share in the used methods as they can
combine our knowledge about human behavior with other visual and spatial information,
such as the works in [Has+15; Vol+16; Ras+19; CMF19; AA20]. According to [SF09]
a visual information of the pedestrian such as gaze or body movement detection is
imperative to predict the intention. While a more recent study in [DT17b] argues that
the detection of explicit body or gaze communication between the pedestrian and the
vehicle is not significant in the intention prediction process. Their study showed that this
type of communication only occurs when a social or a safety rule was violated, and that
the main driver of the pedestrian motion is the behavior of the vehicle itself. Finally, all
the previous works and most recent studies address the problem of pedestrian intention
estimation in structured urban scenarios. Therefore, understanding pedestrian intention
in unstructured spaces shared with vehicles remains an open question on the cutting
edge of today’s research to develop socially-aware autonomous driving systems.

2.3 Perceiving Intentions For Proactive Decision Making
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The Navigation Task in Shared Spaces

The problem of autonomous navigation becomes increasingly challenging in environ-
ments including interactions with vulnerable road users (pedestrians, bikers, etc.)
[Ado16; Bel+19]. These scenarios present the challenge of navigating in a dynamic en-
vironment governed by specific social rules. In pedestrian-vehicle interaction scenarios,
the navigation policy should take into account the agents comfort and acceptance of the
autonomous vehicle on top of the strict safety measures.

The navigation and control system is in charge of performing the path planning and
computing the low level controls of the vehicle (acceleration and steering) using the
output of the perception systems, as shown in Fig. 2.5.

Navigation & Control

Offline

Map

Localization
alokial Decision Loen Vehicle
Path Path
Planni Making Planni Control
Perception Semantics auning atpug

Environment

Fig. 2.5.: The autonomous vehicle system components

Global path planning

The first component of the navigation and control system is the global path planner.
Global planning is focused on finding the best route to the long term goal. This is done
by using a prior knowledge of the space (maps) along with the accumulated sensor data.
The global planner doesn’t usually deals with the smaller sized dynamic obstacles such
as pedestrians and bikers, this is left instead to the local planner and control system.
Global path planning is a standing field of research with several algorithms developed
over the years from A* to RTT and different generic and data-driven algorithms [CS19].
We will not further explore the topic of global path planning as the scope of this research

targets the local planning and control aspects.
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2.4.3

Decision making

The decision making is the layer in charge of establishing a behavior policy for the
vehicle based on the perceived situation and the surrounding agents intentions. This
is key to defining the driving patterns and the social gestures of the vehicle, therefore,
it is essential for the social navigation framework. When vehicles navigate structured
environments such as highways or urban roads, the related traffic rules help guide
the decision making system. Traffic signals, floor markers, sidewalks and pedestrian
crossings are all indicators to how the driving pattern should be. However, shared spaces
usually lack such indicators. This combined with the uncertainty in pedestrian behavior
prediction makes the decision making process in shared spaces much more challenging.
Some works in robotics try to tackle this problem by using a context oriented multi-policy
decision making process [Cun+20]. In a first step, the system identifies the navigation
context and then the corresponding policy is selected. In the case of autonomous vehicles
navigation , this works well in situations where it is possible to identify the navigation
context, such as lane-change or parking [Cun+15; Gal+17]. The same technique is used
for navigating shared zones with pedestrians with human-sized robots. The context is
mostly identified based on the existence of a pedestrian-free path where the robot makes
a decision with a stop-or-go behavior, or with a follower behavior [MFO16]. However,
this limits the performance in more dense spaces where the bigger sized vehicle cannot
simply follow a pedestrian or keep stopping.

Local path planning and control

Local path planning allows the system to adapt the previously planned global path to
the perceived dynamics of the environment. The goal is to find the best feasible path to
drive the vehicle through the dynamic space from the current to the goal configuration.
While finding a feasible path for the vehicle is proven to be NP-complete problem, the
research community focused on solving the problem approximately or partially rather
than trying to find a global solution [Pad+16]. The local planning can use the sensory
information to either to build a local map and re-plan a local path or to modify the
previously planned global path. This path is then passed to a path tracker responsible
for providing the necessary vehicle controls to follow the planned path. Alternatively,
both the local planner and the path tracker can be replaced by a single sensor-based
controller. Therefore, we get three different categories of solutions to the planning and
control problem, as shown in Fig. 2.6.

The first two categories both use the same global planning and control techniques and
differ in the way the local path is produced.

2.4 The Navigation Task in Shared Spaces
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Fig. 2.6.: Three different methods for using planning and control in autonomous navigation
systems

The local planners used in the first category are based on finding an optimal path in
a local map generated using the sensory information (Fig. 2.6a). These planners are
usually based on search-based methods such as Dijkstra and D* algorithms (or their
variations) and sampling-based methods such as the RTT algorithm. A significant body
of research is devoted to optimizing these methods for dynamic and fast changing
environments which led to new algorithms such as D* Lite, Anytime Dynamic A* (AD*)
and several others [LL18]. These new algorithms improved the performance specially in
more dense and dynamic environments. However, the performance in these methods
remains limited due to the necessity of planning, then generating a local map and
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re-planning and finally computing the vehicle controls through a path follower or a
path stabilizer. This led to the development of alternative methods of planning where
no local map is generated and no search or sampling is required. Instead, the local
path is generated by locally modifying segments of the global path using the sensory
information (Fig. 2.6b). The most famous and well studies method for local path
modification is the Timed Elastic Bands (TEB) method. TEB was first introduced almost
a decade ago in [Roe+12], and has been improved and implemented in many works
over the years [SXV20; Sun+21]. In TEB the path is modified by solving a non-linear
least square optimization problem while taking into account both the non-holonomic and
the kinodynamic constraints. A main advantage of TEB and similar path modification
approaches is that it provides a balanced trade-off between avoiding local dynamic
obstacles and producing a goal oriented motion.

The third and final category of systems introduce a one step local planning and control
system when the vehicle controls are provided directly using the sensory information
without the need to build a local map or search for a local path (Fig. 2.6c). These
techniques also modify the global path, but the modification happens directly on the
level of the vehicle control. Such techniques are a necessity specially with the growing
need for efficient navigation systems suitable for highly dynamic environments where
fast-reactive and even proactive behaviors are needed. Sensor-based control techniques
are used in a wide range of robotic applications and can work with any type of perception
system (visual sensors, proximity sensors, LiDAR, etc.) [CN21]. One example of such
methods which are used for navigation in dynamic spaces are potential-based algorithms.
This includes nature-inspired techniques which depend on drawing a movement driven
by a group of fields or forces, such as the potential fields [Kha80] and the Deformable
Virtual Zone (DVZ) [ZLT94] algorithms. In the potential field approach, every object in
the environment produces an attractive or a repulsive force and the motion of the system
is driven towards the goal destination as a result of these forces. On the other hand,
DVZ method is based on surrounding the body of the robot with a virtual zone which
gets deformed due to external intrusions of dynamic and static obstacles, and the robot
is driven in the direction minimizing this deformation. The Although these methods are
fast and efficient, their main drawback is the problem of convergence towards a local
minima [Vic+17].

Local planning and control systems and their integration with the proactive and socially-
aware navigation framework are explored in more detail in Chapter 4 and Chapter
5.

2.4 The Navigation Task in Shared Spaces
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The navigation problem reduces to finding two system controls: the longitudinal and the
lateral. The longitudinal control aims at finding the acceleration or speed control (v) to
accomplish the specified system’s task. For example, if the task is navigating a dynamic
human-populated environment, this means finding the longitudinal control to reach a
goal point while avoiding collisions and maintaining the surrounding agents safety and
comfort. Whereas, if the task is agent following, for example, the longitudinal control
problem can be formulated as a reference speed tracking problem. On the other hand, the
lateral control is controlling the steering angle of the system (9). If the targeted system
is based on re-planning or local path modification (see Fig. 2.6), then the lateral control
problem reduces to following a previously planned path. Whereas, if the local planning
and control are merged in one system, such as sensor-based control systems, then the
lateral control aims at finding the exact steering commands to perform the targeted
task (reach goal, for example) while avoiding static and/or dynamic obstacles. The
longitudinal and lateral control systems can be designed in one of the three architectures
shown in Fig. 2.7.

Decoupled Architecture Combined Architecture
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ongitudinal Contro
g [ Longitudinal and ]::5

5 Lateral Control v
[ Lateral Control ]—>

Cascading Architecture
[ Longitudinal Control ]ﬂb{ Lateral Control ]_>5

[ Lateral Control ]—6{ Longitudinal Control ]-»‘U

Fig. 2.7.: Longitudinal-lateral Control Architectures

Early works on vehicle control designed a decoupled control architecture, where the
longitudinal and the lateral controls were addressed in two separate independent systems
[HTV95; GL94]. Since the two independent systems architecture simplifies the task,
many works in robotics focused on studying decoupling approaches [ABO99; BLO1].
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However, the decoupling of the two controls can be straightforward in some cases,
such as when using a kinematic vehicle model in low velocities [Thu+04]. Therefore,
even recent works which manly assumes zero-slip vehicle models used the decoupled
architecture to solve the navigation problem [BMMO5; Zha+12].

Many works used the decoupling while using the longitudinal control as an input to
designing the lateral control system. This cascading control architecture was used to
solve the path planning or tracking problem while assuming a constant longitudinal input
[Pas+14; Dom+16; MTO0O]. This architecture was also used to design a stand-alone
longitudinal control system, then cascade it with a lateral control system which considers
the coupled nature of the two, such as the system architecture in [AOB14]. Similarly,
the cascading architecture can be used such that the lateral control is computed in
an independent system, then used an an input to compute the longitudinal control
[Urd+07].

On the other hand, a combined control architecture can be used to consider the
coupled dynamics or to design a single longitudinal-lateral control system [LH99]. This
structure is commonly used in trajectory tracking control applications in the presence of
sliding and slippery surfaces [Fan+05], or in higher speed applications. The combined
architecture can also be used in shared control scheme to produce both the longitudinal
and lateral assistance commands, such as the work in [NSB16]. Moreover, Velocity
Obstacle (VO) based methods, such as Probabilistic Velocity Obstacle (PVO) [FSLO7b],
can also be classified under the combined longitudinal-lateral architecture.

Finally, in this work, a cascading longitudinal-lateral vehicle control architecture is
used. This architecture is selected since having two sub-systems simplifies the planning
task. Working with low vehicle velocities within shared spaces, allows using a kinematic
vehicle model which facilitates designing two control systems instead of one coupled
system. Moreover, using the cascading architecture where the longitudinal control is
provided as an input to the lateral control system produces more natural and speed
adapted steering maneuvers.

Validation of Autonomous Navigation Systems in
Shared Spaces

The process of evaluating and validating an autonomous navigation system translate
to making sure the system is functional, efficient and above all safe in all possible
working scenarios. This is essential for any system and specially robotic systems that

2.6 Validation of Autonomous Navigation Systems in Shared Spaces
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can potentially be harmful due to the size of the robot and its proximity to humans.
Autonomous vehicles navigating shared spaces with vulnerable road users fall in this
category of systems with a very high potential risk. It is therefore essential to validate
their performance before letting such a system share a space with pedestrians in a fully
autonomous way. The most important aspect in the validation process is validating the
safety of the navigation system.

This issue of motion safety is a key aspect in any mobile robot application. Researchers
in robotics started taking a special interest in studying and formalizing motion safety
standards with the increasing number of applications for robots in safety critical environ-
ments [Fra07]. There are multiple sources of motion safety failure for an autonomous
systems. The failure can be a hardware failure such as a fault in the braking system. It
can also accrue due to a perception error, where the perception system leads to an incor-
rect assumption about the environment. This brings to mind the accident that happened
with Tesla’s autopilot in 2016 on a highway in Florida, USA. The perception system of
the autopilot mode failed to identify a white tractor-trailer on the highway and instead
drove in full speed assuming that the path is free of any obstacle which led to the death
of the driver [YT16]. Furthermore, the safety motion failure can occur due a software
failure. This can either be a software bug or a reasoning error by taking the wrong
decision or by encountering a scenario without a valid behavior policy [FK12]. It is
critical to validate all the previously mentioned aspects to run the system autonomously
around pedestrians. However, for the purpose of this work, we are focused on validating
the reasoning and software failures associated with the navigation algorithm and the
control system.

The validation process in shared spaces is much more challenging than any other
structured environment. The more free and open nature of the shared space creates a
wide range of possible working scenarios to test and validate. While in more structured
environment, such as a highways, the structure of the space itself and the strict driving
roles limits the number of possible user cases. Furthermore, working in proximity with
humans with variable ages and physical abilities increases the validation difficulty. The
validation process should account for all possible interaction scenarios with pedestrians.
This includes all the different interaction types (frontal, lateral, etc.) with all the
different possible velocities, accelerations, goals and even space properties than can exist
in a shared space. The validation should also include the variable patterns for human
behavior and even unmodeled and unpredicted behavior patterns.
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2.6.1 Performance Validation Methodology and Criteria

The process of performance validation for an autonomous vehicle in a shared space starts
with the Testing Cases Identification. This aim to design a set of tests and identify the
parameters and the conditions in each test case. Firstly, the set of testing environments
should be identified. This includes the static shared space and its characteristics, such
as the entering/exiting points of the space, the shape of the space and the possible
pedestrian attraction points or gathering spots. Secondly, the set of parameters of
interest to be varied in each environment should be identified. Each parameter should
be assigned a range of possible values and a limited set of testing values within that
range. For example, if the parameter of interest is the speed of a pedestrian in the
space, the possible range of values can be assigned based on the known limits of human
speed which does not exceed 13m/s for the top world athletes [GN11]. While the set of
testing values can be chosen closer to the range of expected normal people’s speed in
shared spaces. The number of identified testing environments, testing parameters and
the size of the selected testing sets will result in the number of required test cases. The
identification of the size and nature of the testing set is highly dependant on experience
and reasoning. Any case that can accrue in the end application and that was not taken
into consideration in the testing set can be a high source of risk.

The second step is the design of the actual tests to be ran in each test case scenario.
Each test consists of a performance metric along with a success/failure criterion and
performance quality measure. The set of tests should be sufficient to encounter for both
the application purpose and all its possible effects on the environment. In our case for
AVs navigating shared spaces the purpose of the application will result in metrics for
travel time, number of collisions, trajectory smoothness, etc. On the other hand, the
designed tests should also account for the possible effect of our AV on the surroundings,
such as the comfortableness of the nearby pedestrians and the passengers within the
AV.

After the testing cases have been identified and the performance tests have been designed
the actual testing can begin, and the tests in each of the identified cases should be
repeated for a sufficient number of tries for the results to be qualified. This leads us to a
very important requirement in the validation process: a reliable testing environment.
The used testing environments, the design and the implementation of the appropriate
performance metrics is explored in detail in Chapter 6 and Chapter 7.

2.6 Validation of Autonomous Navigation Systems in Shared Spaces
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2.7 General Context and Notations

In the following we show the general notation and models used for both the vehicle and
the pedestrians in the shared space across this thesis:

2.7.1 Coordinate Frames

Let (O, X, Y ) be the Global Cartesian Coordinates map frame. Three additional
local coordinate frames are used in this work: two vehicle-centered frames (Fig. 2.8),
and one pedestrian-centered frame (Fig. 2.9). The first is the the vehicle’s local
Cartesian Coordinates frame (Op, X v, ?V), where Op, is the center of the rear wheels
axes of the vehicle and Xy is in the direction of the longitudinal velocity of the vehicle
V. Similarly, (O;, X;,Y;) is the pedestrian local Cartesian frame of a pedestrian i
where O; is the 2D center of mass of the pedestrian and X, is in the direction of the
pedestrian velocity vector V ;. The second local vehicle-centered frame is a Frenet frame
attached to the vehicle’s path [Fre52]. This frame is defined by the tangential and
normal vectors at a certain point of the reference curve. In the case of degenerate curves,
the tangential is defined in parallel to the curve.

-

Fig. 2.8.: Vehicle-centered local frames
In the following: the symbols X9, X¥, X* and X7¢ denotes the coordinates of a point

X expressed in the global frame, the vehicle frame, the pedestrian i frame (: € N ) and
the Frenet frame of a curve C respectively.
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Pedestrian j

Fig. 2.9.: Pedestrian-centered local frame

2.7.2 System Model

Pedestrians Model

A pedestrian is modelled as a point in the 2D plane. The position of a pedestrian j at
time ¢ is X;(t) = [;(t),y;(¢)]" and its velocity is V; (t) = [vs, (t), vy, (¢)]”. The pedestrian
space occupancy or the footprint of a pedestrian in the 2D plane is considered circular
with a radius R,.q (Fig. 2.9). We can define the footprint of a pedestrian j at time ¢ and
position Pjg with the function fy,:

frp: R? - R?
g 9\ T 9 2.1)
ffp(x§f)]‘vsp) = (m—P]) Sp(fv_Pj)_l
where S, is the shape matrix defined as:
1 10
Sp = —5— (2.2)
* Rp [ 01 ]

Vehicle Model

Navigating among pedestrians imposes low velocities and acceleration limits on the
vehicle. In this case, the vehicle is modelled using the kinematic bicycle model with a
zero slip assumption [Pol+17]. The position of the center of mass of the vehicle and its
orientation at time ¢ is Xy (t) = [z, (t), y,(t)]” and 6(t) respectively. The steering angle
is 6(t) and the longitudinal velocity and acceleration controls are v(t), a(t) respectively.
The vehicle’s body is assumed to be a rectangle of length L and width W.

2.7 General Context and Notations
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The differential bicycle model of the vehicle can be written at its center of mass in the
global coordinates frame as follows:

: | v(t)cosO(t)
Xv = [ v(t) sin O(¢) ] (23)
(t) = ”(Lt) tan 6(t) 2.4)

For control purposes the vehicle’s model can also be written in the Frenet frame of a
path C. This is done using:

* The lateral displacement and the traveled arc length (¢; and s in Fig. 2.8 respec-
tively)

* The heading error angle between the vehicle and the tangential vector to the path:
0=0—0c

Assuming «(s) is the curvature of the path C, the vehicle model can be written at O, as
follows [CSB96]:

5 = wvcos(0) 71—@15(5)

é = vsin(0)

0 =0 — vcos(0) 1_’2(;)(5)

(2.5)

v=a

The vehicle’s footprint is approximated with the outer Lowner-John ellipse of the
rectangle [Joh14] as shown in Fig. 2.10. This ellipse can be written in the local vehicle
frame as: . .

X Y

and (X’,Y”) can be written in the global frame as:

X' = (29 — 29) cos(0) + (y? — y9) sin() 2.7)
Y' = —(29 — 29) sin(0) + (y? — yJ) cos() (2.8)
and the ellipse dimensions (a, b) can be derived from the length and width of the vehicle

(L,W) as:
a=L2L, b=Y2W (2.9)
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Finally, the footprint of the AV can be expressed in quadratic form using the function fy,
(Eq. 2.1) as:
frp(x; PS, Sy) = (x — P)TSy(z — P§) — 1 (2.10)

with the shape matrix Sy:

1 b2 cos?(6) + a?sin?(0) (b? — a?) cos(#) sin() 2.11)
VT a2 (b — a?) cos(6) sin(6)  b%sin?(9) + a? cos?(0) '

L

| ) |
b
= Y a

(032

o /

|
|

‘— - \
Vehicle Body S——w Foatprint

Fig. 2.10.: The vehicle footprint Lowner-John ellipse approximation

2.8 Conclusion

In this chapter we broadly explored the concept of PVI as a sub-category of HRI. As
well as, the concept of proactive behavior and its application to the field of robotics and
more specifically autonomous navigation. The main behavioral, planning, control and
evaluation challenges related to the shared spaces navigation was generally presented.
Finally, the models and notations used to describe the autonomous vehicle and the
pedestrians across this thesis were detailed.

In the following chapters, we explore in detail the problems of understanding human
behavior and proactively controlling the vehicle within a shared space.
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Proactive Navigation Framework

“Treat a man as he is and he will remain as he is. Treat a man as he can and
should be and he will become as he can and should be.”

— Ralph Waldo Emerson






3.1

Understanding Pedestrian
Behavior Around Vehicles

Developing autonomous vehicles capable of navigating safely and socially around pedes-
trians is a major challenge in intelligent transportation. This challenge cannot be met
without understanding pedestrians’ behavioral response to an autonomous vehicle, and
the task of building a clear and quantitative description of the pedestrian to vehicle
interaction remains a key milestone in autonomous navigation research. This chapter
includes the model developed for predicting pedestrian behavior in shared spaces with
an autonomous vehicle. The proposed model is based on estimating the cooperation
of a pedestrian in interaction with the vehicle. This cooperation estimate is then used
to predict the short-term trajectory of the pedestrian. Firstly, the chapter presents the
formulation of the pedestrian behavior prediction problem and the related work in the
literature. Secondly, a background is given on the main tools and concepts used to
build the model. Finally, the proposed model is presented in section 3.4 along with
the estimation of the model parameters in section 3.6. The Analysis of the pedestrian
behavior prediction results using the proposed cooperation-based model is found in
section 3.9. Furthermore, this chapter includes an experiment of pedestrian-vehicle
interaction in a shared space. The data of pedestrian and vehicle trajectories is collected
during the experiment to further tune and validate the proposed model. The description
of the experiment, the collected data and its analysis is presented in section 3.5 of this

chapter.

Problem Definition

Shared spaces introduce new dimensions to the navigation task making it an interdisci-
plinary challenge, which requires a study of the interaction between the vehicle and its
conscious surrounding. Understanding and anticipating pedestrian behavior is crucial
for the proactive navigation frame (Fig. 3.1)

The problem of pedestrian behavioral modeling is summarized as follows: Assuming
a shared space with M pedestrians and a vehicle, where both the vehicle and the
pedestrians follow the models proposed in 2.7. Knowing the state of the space (i.e.
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Behavioral Modeling
g&\ [ Cooperative Behavior Estimation ]

[ Cooperation-Based Trajectory Prediction ]

I
i
>

I
Vehicle Control 4
Decision Making ]

Reactive Navigation —'fv“*r[ Proactive Navigation

Pedestrian-Vehicle
Interaction

Scenario Uncooperative agent: Cooperative agent:
React and wait for the
agent to pass.

I
Influence agent’s trajectory
proactively.

Fig. 3.1.: Pedestrian behavioral modeling as part of a global work scheme for proactive
navigation

Pedestrian positions and velocities), what is the reaction of a pedestrian to a specific
driving pattern of the vehicle:

Knowing the state of the space: {X(t), V;(t) }hi<j<m :t € [to,t1]
Given a vehicle behavior: Xy (1), Vi (t1)

Vi< M :

Find: X;(t) Vt € [t1,t1 + Th)

where T}, is the prediction time horizon.

Related Work

Understanding how humans explore a complex environment has been a topic of spatial
cognitive studies for decades [MG76]. Researchers built on these concepts to develop
physical-based models for agents navigation around other dynamic agents and static
obstacles. The main two types of models are Social Force Model (SFM) [HM95] and
the Cellular Automata (CA) Models [NS92]. SFM models the agents in the space of
interest as particles moving according to a driving force. This force is the outcome of
all forces resulting from the individual interactions in the space. On the other hand,
CA models the space as a set of cells and the agents can move between cells based
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on a probability of choosing a specific cell. This probability is usually computed using
predefined navigation rules. Many works built on top of these two models over the years
to optimize the performance based on experience [Far+17; Zha+17], or to consider
different types of agents and environment [Zho+21]. Most of the recent studies started
optimizing the model for a specific scenario or environment rather than trying to find
one global model for pedestrian navigation [CFD21; IA17]. Several studies presents
pedestrian positions prediction models through a Kalman Filter (KF) or a Particle Filter
(PF) [MTM15; Ber+04; Rid+18b]. Moreover, many works developed Machine Learning
based models for the aim of motion prediction. This can be achieved using Markov
Decision Process Motion Prediction (MPDMP), such as the model presented in [Vas16].
Other works based their predictions on Gaussian Processes (GP), such as the models
proposed in [DT17a; VMO17b; Ful+08].

With the advancements in AV systems, the case of shared spaces started getting more
attention in the recent years, to include the interactions with vehicles and cyclists in
the model [AS20; Che+21]. However, there is an obvious lack of literature on studying
human-vehicle interaction, cooperation and social rules, compared to that of human-
robot interaction in general [GS07]. While the former falls under the same category,
it is important to consider the particularity of the situation when working with an
autonomous vehicle governed by its special properties and social conventions.

Some recent works have tackled the challenge of understanding and modeling the
behavior of pedestrians around an autonomous vehicle. [Ran+19] formulates a model
for pedestrians interaction based on social and psychological traits. This is done by
assigning a dominance percentage to each pedestrian in an interaction scenario. The
main limitation of this approach is basing the model on pedestrian-pedestrian interaction
and assuming that it applies to pedestrian-vehicle interaction. However, the use of
the social and psychological traits to build the model is inspiring and we construct
our pedestrian behavioral model in a similar manner. A different method to model
pedestrian-vehicle interaction is based on extending the classical SFM. The work in
[Pré21] presents a SFM extension to include the vehicle effect in a ROS-based simulation
environment. Moreover, [YOR18] also extends the glssfm by adding a repulsive force
specific to the vehicle’s influence. This resulted in a promising model, simulating several
interaction scenarios in a shared space, however it was not validated on real-life data.

3.2 Related Work
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The pedestrian-vehicle interaction model in a shared space is built using special inter-
action zones. The concept is based on dividing the space around the pedestrian into
special areas specific to describing him/her interaction with other pedestrians or with
the vehicle. These pedestrian areas are defined using the concepts of the social zones
from Proxemics theory. Whereas, the intensity of the interactions within these zones is
described using the deformable virtual zone method (DVZ).

The Pedestrian Social Zones

The concept of the pedestrian social zones was introduced in robotics from social
behavior and psychological studies on the human management of space, or what is called
Proxemics theory [RSL15]. The theory is based on the observations that individuals try
to maintain certain distances from others during social interactions [Hal66]. Therefore,
a socially-aware robotic system navigating among humans should respect these distances
to maintain human safety and comfort. The theory defines different types of zones
relative to individual interactions, group interactions or human-object interactions. To
study pedestrian behavior in shared spaces we require two types of pedestrian zones:
one related to pedestrian-pedestrian interaction, and one related to pedestrian-vehicle
interaction.

For modeling the interactions between the pedestrians, the concepts of the personal and
intimate zones are used. The personal zone (zone P in Fig. 3.2) is a space around
the pedestrian in which any human intrusion would cause discomfort. Such zones are
used in pedestrian force-based models (such as glssfm) to activate the repulsive force of
pedestrian influence, for example. The intimate zone (zone N in Fig. 3.2) is usually
contained in the personal zone. It is also related to pedestrian-pedestrian interactions
but represents a much lesser tolerant to intrusion than the personal zone. On the other
hand, to model the interactions between the pedestrians and the vehicle, different zone
dimensions and adaptations are required. This is a result of the increased size and
possible danger of a vehicle as compared to human-sized robots. Therefore, inspired by
the concept of the personal zone, we introduce the cooperation zone, which is a new
zone specific to the pedestrian’s interactions with a vehicle (zone C in Fig. 3.2). As a
pedestrian tends to clear the personal zone from human intrusion, (s)he tends to clear
the cooperation zone of any vehicle intrusion.

Different works consider different shapes for the the previous zones around a pedes-
trian. These shapes vary from concentric circles or ellipses to other asymmetric shapes
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dependant on personal factors such as the walking speed or the dominant side of the
pedestrian [Gér+08]. In this work, concentric circular shapes are considered for all the
zones.

_ . The Cooperation @The Cooperation Zone
Zone Radius (Rc) ®The Personal Zone
The Deformation .
Radius (dv) QThe Int@ate Zone

1y The Deformation Zone

Fig. 3.2.: The Deformation of the cooperation zone due to vehicle intrusion

3.3.2 Deformable Virtual Zone Method

The DVZ method was first introduced by R. Zapata in 1994 [ZLT94] and it has been
used since to model systems’ maneuvers in both 2D and 3D spaces [CZ01; Amo+11;
BMMO6]. The idea is to surround the system under study with a virtual zone, and any
body entering that zone will cause a deformation. Then, the system can be driven in
the direction minimizing this deformation or changing it in a desired way. The system
is first surrounded by an undeformed glsdvz. The shape of this zone corresponds to the
optimal obstacle free case. The intrusion of obstacles is expressed by two scalars: the
deformation quantity and the deformation mean angle.

By applying this concept to the previous personal and cooperation zones, we can express,
for each pedestrian, the intrusion of other pedestrians and the intrusion of the vehicle
respectively.

Assuming a pedestrian i at a position (z;,y;) with a heading 6;. Let I'; = (O;, X;,Y;) be
pedestrian i local coordinates frame which is given by:

Iy =TiTg (3.1

where I'¢; is the global coordinates frame and 7}, is a transformation matrix given by
a rotation ¢; and a translation [z;,y;] as shown in Fig. 3.3. Let Rp and R¢ be the

3.3 Background
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Fig. 3.3.: Example of the deformation radius of the personal zone due to pedestrian intrusion
at two angle «; and as

radius of the circular personal and cooperation zones centered at the pedestrian position
Xp = [zp, yp]. Then the undeformed glsdvz radius at angle a:

Rp for the personal zone
dp(a) = (3.2)

Rc  for the cooperation zone

and the deformed DVZ radius for both zones is given in the local frame I'; by:

de) = {C’(a) if C(a) < dp() 33)

dp(a) Otherwise

where c(«) is the distance between the pedestrian ¢ and the personal zone of the closest
pedestrian at the angle « for the pedestrian zone (Fig. 3.3), and the distance between
the pedestrian and the vehicle’s body at angle « for the cooperation zone.

Hence, the deformation of the cooperation zone due to vehicle intrusion (zone Iy in Fig.

; 1 2T R —d(a,t)
L (t) = — ———2d 3.
b =g [ = (3.4)

3.2) is written as:

where d(a, t) is the deformation radius at angle a and time ¢. Moreover, the cooperation
zone weighted deformation angle is defined as:

L [T (Rc — d(a,t)) ada

Ol (t) = 2= 0 (3.5)
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3.4

3.4.1

Finally, in a similar manner, I%(¢) and ©%(t) are defined as the deformation of the
personal zone and the deformation angle respectively, of an agent i due to pedestrian

intrusion: L R Ao 1)
It _ - fap —alat) )
plt) =5 /a:o Re @ (3.6)
1 2
‘ == Rp —d(a,t)) ad
o1 (1) = 2r Jazo (Fip — dla, ) ada 3.7)

Ip(1)

Model Description

Cooperation has been shown to be a natural behavior in human societies on different
scales [BR82], [Now06], and the task of navigating in a shared space can be viewed
as a cooperative task, as it involves pooling and sharing of resources (space and time)
between the pedestrians and the vehicle.

The proposed method deals with the navigation task as a cooperative task between the
vehicle and the pedestrians and models the pedestrian behavior in a two-step process:

* The cooperation behavior of the pedestrian is described with a time-varying factor
during the interaction with the vehicle.

* The future trajectory of the pedestrian is predicted based on its level of cooperation
and the state of the surrounding space.

Pedestrian-Vehicle Cooperation Modeling

The cooperation of a pedestrian in a glspvi scenario is defined as the tendency of the

pedestrian to modify his optimal trajectory around the vehicle to facilitate its navigation.

Fig. 3.4 shows an example of the cooperative behavior levels where an agent is navigating
around a vehicle from start to goal according to the green dashed path. In Fig. 3.4a the
agent i