
HAL Id: tel-03667920
https://theses.hal.science/tel-03667920

Submitted on 13 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Binary Diffing as a Network Alignment Problem
Elie Mengin

To cite this version:
Elie Mengin. Binary Diffing as a Network Alignment Problem. Machine Learning [cs.LG]. Université
Paris 1 - Panthéon Sorbonne, 2021. English. �NNT : �. �tel-03667920�

https://theses.hal.science/tel-03667920
https://hal.archives-ouvertes.fr

i

Université Paris 1 - Panthéon Sorbonne

École Doctorale Sciences Mathématiques de Paris Centre (ED 386)

Laboratoire Statistiques, Analyse et Modélisation Multidisciplinaire (EA 4543)

Binary Diffing as a
Network Alignment Problem

Thèse de doctorat de mathématiques appliquées de :

Elie MENGIN

Sous la direction de :

Fabrice ROSSI

Soutenue le 17 décembre 2021 devant un jury composé de :

Guillaume Bonfante École des Mines de Nancy Rapporteur

Éric Gaussier Université Grenoble Alpes Rapporteur

Jean-Marc Bardet Université Paris 1 - Panthéon Sorbonne Examinateur

Florian Yger Université Paris - Dauphine Examinateur

Sarah Zennou Airbus Examinatrice

Robin David Quarkslab Encadrant

Fabrice Rossi Université Paris - Dauphine Directeur

Après un avis favorable des rapporteurs :

Guillaume Bonfante École des Mines de Nancy

Éric Gaussier Université Grenoble Alpes

iii

Pour la suite du monde

v

Abstract

In this thesis, we address the problem of binary diffing, i.e. the problem of
finding the best possible one-to-one correspondence between the functions of
two programs in binary form. This problem is a major challenge in several
fields of computer security since it automatically designates to an analyst the
pieces of code that might have been previously analyzed among other pro-
grams. We propose a quite natural formulation of the binary diffing problem
as a particular instance of a graph edit problem over the call graphs of the
programs. Through this formulation, the quality of the function mapping is
evaluated simultaneously with respect to both the function content similarity
and the function calls consistency. We prove that this versatile formulation
is in fact equivalent to the well studied network alignment problem, which
enables us to leverage common optimization techniques. Following previous
works, we propose a solving strategy based on max-product belief propagation,
and introduce QBinDiff, a network alignment solver that outperforms other
state-of-the-art methods in almost all instances. We finally show that our ap-
proach outperforms existing diffing tools, and that the matching strategy has
more influence on the quality the solution than the measure of function similarity.

Keywords: Binary Diffing, Binary Code Analysis, Graph Edit Distance, Net-
work Alignment, Belief Propagation

vii

Résumé

L’analyse statique de programme désigne la discipline consistant à analyser
et prédire les différents comportements d’exécution possibles d’un programme
sans même pouvoir observer son exécution. Elle représente un enjeu majeur
en sécurité informatique, et comporte une grande variété d’applications telles
que la détection de vulnérabilité, l’analyse de correctifs de code, la détection de
logiciels malveillants, etc.

L’analyse statique d’un programme est la plupart du temps effectuée directe-
ment sur le code source du programme, car ce dernier inclue généralement une
variété d’informations lisibles par l’homme, telles que des commentaires ou des
noms de variables, ainsi que des concepts d’un haut niveau d’abstraction, tels
que des structures de contrôle (control flow statements), ainsi que des définitions
de fonctions ou de classes qui induisent une partition explicite du programme
en unités fonctionnellement liées.

Cependant, il arrive que le programme ne soit disponible que sous la forme
d’un exécutable binaire. Dans ce cas, l’analyse doit être conduite directement
sur le code machine, ce qui est souvent considérée comme beaucoup plus difficile
car ce dernier ne comprend pas le même niveau d’abstraction que les langages
de programmation. En pratique, de nombreuses informations précieuses, telles
que le type des variables, les adresses de destinations des sauts ou encore la
délimitation des fonctions sont perdues lors de la compilation.

La conception de méthodes automatisées pour traiter complètement ou par-
tiellement l’analyse d’un code binaire est une problème complexe. En fait, d’après
le théorème de Rice, le problème consistant à extraire n’importe quelle propriété
(non-triviale) d’un programme arbitraire est mathématiquement indécidable.
Par conséquent, il est impossible de concevoir un algorithme unique capable
d’effectuer une analyse parfaite de tous les programmes possibles. En pratique,
de nombreux outils basés sur des approximations ont été proposés. Cepen-
dant, après plusieurs décennies de recherche, de nombreux problèmes nécessitent
toujours une expertise humaine.

Les programmes informatiques non-triviaux sont rarement conçus de bout
en bout en une seule fois. La plupart du temps, ils résultent d’un processus
incrémental où des parties sont ajoutées, supprimées ou modifiées afin d’inclure
de nouvelles fonctionnalités ou bien de corriger des comportements indésirables.
Ainsi, un même programme existe souvent dans différentes versions, correspon-
dant à ces modifications successives. En outre, la plupart des logiciels incluent
généralement des bibliothèques externes afin de gérer les tâches auxiliaires du
programme, telles que l’interface système, le formatage des données ou encore
la gestion de la sécurité. Lorsqu’elles sont liées statiquement, le code de ces
bibliothèques est directement inséré au sein du programme. Par conséquent,

viii

différents programmes peuvent contenir des parties similaires, consistant en du
code dupliqué ou bien corrigé, ou en des dépendances de logiciels tierces.

Cette relation entre les programmes peut être habilement exploitée afin de
faciliter leur analyse. Par exemple, une fonctionnalité particulièrement utile
pour un analyste consisterait à retrouver les différences entre un programme
précédemment analysé et celui en cours d’investigation. Lorsque ces deux
programmes sont des exécutables binaires, ce problème est connu sous le nom
de problème de différentiation binaire (binary diffing problem).

En pratique, ce problème est généralement abordé à travers son corollaire
qui consiste cette fois à trouver la meilleures correspondance possibles entre les
différentes parties des deux binaires. La correspondance obtenue permet alors
simplement d’identifier les différences entre les deux programmes.

Il existe de nombreuses approches possibles pour rechercher des morceaux de
code similaires dans deux binaires. À titre d’illustration, considérons l’analogie
suivante : supposons que nous voulions retrouver les parties similaires au
sein de deux textes arbitraires. L’approche näıve consistant à trouver une
correspondance entre des châınes de caractères semblerait inutile à l’analyste car
il serait en fait incapable d’en déduire un sens. De même, aligner les mots entre
eux fournirait peut-être un peu d’informations sur certaines occurrences rares,
mais ne contiendrait aucune information contextuelle commune. À l’inverse,
l’alignement d’entités significatives de plus haut niveau, comme des phrases ou
des paragraphes, pourrait mettre en évidence des relations précieuses pour le
lecteur et révéler la signification commune des deux textes.

Afin de fournir des informations utiles à un analyste, le problème de la
différenciation binaire doit donc se concentrer sur la mise en relation de morceaux
de code ayant une fonctionnalité unifiée. Différents niveaux de granularité ont
ainsi été proposés, principalement en fonction du cas d’utilisation sous-jacent,
mais aussi implicitement induits par l’approche utilisée pour calculer l’alignement.
Par exemple, certains travaux visent à retrouver les différences au niveau des
bloc de base (basic blocks). A l’inverse, d’autres méthodes recherchent des
bibliothèques communes ou des dépendances logiciels, et considèrent le problème
à une échelle plus élevée. Dans cette thèse, nous abordons le problème de la
recherche de la meilleure correspondance une-à-une possible entre les fonctions
respectives des deux programmes.

L’approche directe pour obtenir une telle correspondance consiste à mesurer
la similarité entre chaque paire de fonctions prises dans les deux binaires, et à
calculer l’appariement (assignment) ayant le score de similarité global maximal.
Si l’on considère que le score de similarité entre deux fonctions représente la
probabilité que la première ait été modifiée en la seconde, l’alignement de
fonctions qui en résulte peut être considérée comme la plus probable.

En analyse statique, on distingue généralement la représentation disponible
du programme, appelée syntaxe, et son comportement d’exécution attendu, ou
sémantique. Un problème fondamental à la comparaison statique de morceaux
de code est que le seul recensement de leurs différences syntaxiques ne suffit pas à
évaluer la similarité de leur comportement lors de l’exécution. En outre, bien que
mesurer la similarité syntaxique puisse être relativement facile, la caractérisation
complète de la sémantique d’une fonction est un problème complexe, et les

ix

heuristiques existantes ont tendance à être très coûteuses en termes de calcul.
Par conséquent, toute mesure de similarité de fonctions comprend nécessairement
un certain degré d’approximation et ne peut donc être considérée que comme
partiellement fiable.

Afin de surmonter cette difficulté, la plupart des approches actuelles pro-
posent d’améliorer la pertinence de la correspondance de fonctions en exploitant
également leur contexte au sein du programme, et en particulier la façon dont les
fonctions s’appellent entre elles. Ces méthodes ne considèrent donc pas seulement
la similarité des fonctions lors de leur association, mais aussi la cohérence de leur
structure d’appel. Pour ce faire, elles se représente généralement le programme
sous la forme d’un graphe, appelé graphe d’appel (call graph), où les nœuds
correspondent aux fonctions tandis les arêtes désignent les différents appels entre
elles. Par conséquent, le problème originel d’appariement de fonctions devient
un problème d’alignement de graphes, ou l’on recherche une correspondance
entre les nœuds basée à la fois sur la similarité des nœuds (contenu des fonctions)
et la similarité des arêtes (cohérence des appels de fonctions).

Dans cette thèse, nous proposons une formulation générale du problème de
différentiation binaire, sous la forme d’un problème d’édition de graphe : étant
donné un ensemble d’opérations d’édition possibles ainsi que leur coût respectif
sur les nœuds et les arêtes, nous nous proposons de trouver une transformation
(presque) optimale du graphe d’appel du programme A en graphe d’appel du
programme B.

Cette formulation correspond à une généralisation du problème de la distance
d’édition de graphes (graph edit distance problem), où au lieu de calculer directe-
ment le score de dissimilarité (distance) entre les deux graphes, on recherche le
chemin d’édition qui induit ce score. Il s’agit sans doute de la formulation la plus
naturelle du problème de différentiation binaire puisqu’elle décrit précisément les
différentes modifications ayant eu lieu entre les deux programmes. De plus, le
problème de la distance d’édition de graphes est connu pour être très polyvalent,
car il dépend principalement de la définition donnée des coûts des différentes
opérations d’édition. Cela offre une certaine souplesse à l’analyste qui peut ainsi
configurer le problème en fonction de considérations sous-jacentes particulières.

Malheureusement, la résolution du problème de la distance d’édition des
graphes, c’est-à-dire la recherche de la séquence optimale d’opérations d’édition
qui transforme le graphe A en B, est connue pour être NP-difficile (NP-hard).
En pratique, il n’existe actuellement aucune méthode capable de calculer en
un temps raisonnable un chemin d’édition optimal pour des graphes composés
de plus d’une centaine de nœuds. Par conséquent, notre approche repose
nécessairement sur des solutions approximatives.

Alors que la plupart des solveurs traditionnels de distance d’édition de
graphes sont basés sur des algorithmes combinatoires et énumèrent l’espace
des solutions, plusieurs méthodes approximatives récentes proposent plutôt de
reformuler le problème en un programme d’optimisation sous contraintes afin
de bénéficier des techniques d’optimisation usuelles. Suivant cette idée, nous
reformulons le problème de différentiation binaire en un problème d’alignement
de réseaux (network alignment problem). En fait, nous prouvons que, moyen-
nant de faibles hypothèses, les deux problèmes sont équivalents. Bien que le

x

problème d’alignement de réseaux appartienne à la même classe de complexité
que le problème de distance d’édition de graphes, ce problème d’optimisation
quadratique en nombres entiers a été largement étudié depuis des décennies, et
plusieurs méthodes d’approximation efficaces ont été proposées.

Parmi les meilleures approches existantes, se trouve NetAlign, un modèle de
transmission de messages basé sur l’algorithme du max-produit (max-product
algorithm). Dans cette thèse, nous reprenons ce modèle et proposons quelques
modifications pour améliorer ses performances ainsi que pour considérablement
réduire son temps de calcul et sa consommation de la mémoire. Nous avons
dénommé notre algorithme QBinDiff.

Afin d’évaluer correctement l’approche que nous proposons, nous devons
réaliser plusieurs séries d’expériences successives.

Nous devons d’abord comparer notre algorithme d’alignement de réseaux
aux autres méthodes de l’état de l’art. Cela peut être fait en soumettant
exactement les mêmes instances de problème à tous les solveurs et en comparant
les scores d’alignement obtenus. Nous effectuons de telles comparaisons sur trois
ensembles de problèmes étalons, composés de nombreuses instances d’alignement
de graphes différents, partageant des propriétés similaires à celles que l’on
retrouve habituellement dans les problèmes de différentiation. Nos expériences
montrent que QBinDiff surpasse les autres méthodes existantes dans presque
toutes les configurations et, par conséquent, apparâıt comme l’un des meilleurs
algorithmes connus pour aligner ce genre de graphes.

Cependant, le calcul de bonnes solutions d’alignement ne fournit aucune
garantie sur la pertinence de ces correspondances de fonctions qu regard du
problème de différentiation binaire. En effet, les solutions optimales au problème
de différentiation pourraient en fait s’avérer très éloignées des solutions optimales
de notre formulation d’édition de graphes.

Nous devons donc conduire une autre série d’expériences afin, cette fois,
d’évaluer notre approche en tant que méthode de différenciation binaire et de la
comparer aux outils existants au regard de scores de précision. Pour réaliser de
telles expériences, il faut disposer d’une collection de problème pour lesquelles
les appariements optimaux des fonctions sont connus. La disponibilité de ces
collections d’instances étalons fait cruellement défaut au sein de la littérature.
Nous avons donc conçu notre propre jeu de problèmes, composé de plus de
50 binaires et de plus de 800 instances de différentiation, et l’avons mis à la
disposition de la communauté des chercheurs. Les résultats globaux montrent que
notre stratégie d’alignement de réseau surpasse les autres approches existantes et
suggèrent que notre formulation est très adaptée au problème du différentiation.

Enfin, on peut toujours affirmer que nos résultats dépendent des scores
de similarité des nœuds et des arrêtes. En effet, en prenant une médiocre
mesure de similarité des fonctions, il ne serait pas surprenant que notre stratégie
d’appariement équilibré fournisse de meilleures solutions que celle basée unique-
ment sur les scores de similarité des nœuds.

Par conséquent, nous avons reproduit nos expériences avec différentes mesures
de similarité de fonction à l’état de l’art. Nos résultats suggèrent que la stratégie
d’appariement a plus d’influence que les mesures de similarité choisies sur la
qualité des solutions. Plus intéressant encore, il apparâıt que l’utilisation de

xi

mesures de similarité sémantique sophistiquées n’améliore généralement pas la
précision de l’assignation et tend même à la détériorer dans certains cas.

Outre le fait que notre formulation du problème de différentiation binaires à
travers un problème de la distance d’édition des graphes est naturelle et qu’elle
donne lieu à des appariements plus précis, elle fournit également une métrique
appropriée pour mesurer la similarité à l’échelle du programme. En effet, toute
correspondance de fonctions induit une distance d’édition (approximée) entre
les deux programmes. Par conséquent, notre approche pourrait également être
utilisée dans une variété d’analyses basées sur des métriques au niveau des
programmes, comme la recherche de bibliothèques, du lignage de programmes,
etc.

xiii

Remerciements

Cette thèse n’aurait jamais pu aboutir sans le précieux concours de nombreuses
personnes que je tiens à remercier ici.

Je voudrais tout d’abord remercier chaleureusement mon directeur de thèse
Fabrice Rossi, pour son encadrement, ses conseils et sa confiance tout au long
de ces années. Merci de m’avoir accompagné à travers les vicissitudes de cette
thèse, les moments de joie, de stress et de lassitude, tout en gardant le recul et
la rigueur nécessaire à son achèvement.

Je souhaite aussi remercier mes rapporteurs Guillaume Bonfante et Eric
Gaussier, pour leur lecture attentive du manuscrit et pour les rapports qu’ils en
ont fait, ainsi que mes examinateurs et mon examinatrice pour avoir accepté de
participer à la soutenance.

J’ai également une pensée émue pour mes collègues, et tout particulièrement
Robin David, avec qui j’ai pris beaucoup de plaisir à travailler. Merci aussi à
Batiste, Léo, Nico, Alex et Alexis, tous doctorants à mes côtés, avec qui j’ai
pu partager les périodes d’excitation et de doutes intrinsèques à toute thèse, et
dont le soutien a été essentiel pour conclure cette entreprise sereinement.

Je tiens enfin à remercier les différents enseignants et enseignantes que j’ai
pu rencontrer tout au long de mon parcours scolaire et universitaire. Ils et
elles ont su, entre autre, attiser ma curiosité et développer mon goût pour les
mathématiques et la recherche. Cette thèse est le fruit de leur transmission, de
leur pédagogie et de leur patience, ainsi qu’une bien maigre compensation à la
perpétuelle dégradation de leurs conditions de travail.

Quant à mes proches, il m’est impossible de consigner fidèlement le rôle
déterminant qu’ils ont pu jouer tout au long de cette thèse, et pour lequel, je
leur suis éternellement reconnaissant. Merci à mon père et à ma mère pour
leur bienveillance, leur disponibilité et leur amour, à mon frère et à ma soeur
pour leur générosité et leur humour, à Jeanne pour son inébranlable patience, et
plus généralement à ma famille élargie pour son soutien inconditionnel. Merci
également à mes amis pour leur présence et leur gaieté, au ToBe pour leurs
doutes légitimes quant à l’aboutissement de ce travail et à mes collocs pour avoir
supporté mes grognements et autres allégations suicidaires lors de la rédaction.

Je dédie cette thèse à ma Grand-Mère, qui j’en suis sûr en aurait été fière, et
dont la mémoire anime aujourd’hui mes pensées et mes combats.

xv

Contents

Abstract iii

Résumé vi

Remerciements xii

1 Introduction 1

2 Background 7
2.1 Static binary analysis . 7

2.1.1 Binary executable . 7
2.1.2 Program disassembly . 9
2.1.3 Program representations 10

2.2 Binary Diffing . 13
2.2.1 Binary code granularity 13
2.2.2 Binary code similarity 16
2.2.3 Binary code matching 18

3 Problem Statement 21
3.1 Binary diffing as a graph edit distance problem 21
3.2 Binary diffing as a network alignment problem 23
3.3 Equivalence between graph edit distance and network alignment

problem . 24
3.3.1 Formal proof . 24
3.3.2 Related work . 27

3.4 Graph edit operation costs . 28
3.4.1 Edit operation relationships 28
3.4.2 Similarity measures . 31

4 Message-passing framework for the network alignment prob-
lem 35
4.1 Max-product algorithm . 35

4.1.1 Factor-graph . 36
4.1.2 Estimation of the max-marginals 37
4.1.3 Simplifications . 39
4.1.4 Extension to the ”loopy” case 40

4.2 Network alignment via max-product belief propagation 40
4.2.1 Factor-graph . 41
4.2.2 Message updates . 42
4.2.3 Damping strategy . 43

xvi

4.2.4 Rounding strategy . 43
4.2.5 Complexity . 44

4.3 Proposed improvements . 45
4.3.1 Solution assignment . 45
4.3.2 Updates schedule . 47
4.3.3 Auction based ε-complementary slackness 48

4.4 Related work . 49

5 Network Alignment Experiments 51
5.1 Baseline . 51
5.2 Synthetic problems . 54

5.2.1 Benchmark . 54
5.2.2 Results . 55

5.3 Real world problems . 55
5.3.1 Benchmark . 55
5.3.2 Results . 57

6 Binary Diffing Experiments 61
6.1 Baseline . 61

6.1.1 Function similarity . 61
6.1.2 Function matching . 63
6.1.3 Integrated differs . 63
6.1.4 Training . 65

6.2 Benchmark . 66
6.2.1 Preliminary . 66
6.2.2 Benchmark design . 67
6.2.3 Ground Truth . 68

6.3 Results . 69
6.3.1 Overall results . 69
6.3.2 Results with different similarity measures 74

7 Discussions 79
7.1 Limitations . 79
7.2 Threats to validity . 80
7.3 Future works . 81

8 Conclusion 85

xvii

List of Figures

2.1 Translation of a simple program source code into assembly code
and machine code. 9

2.2 Different representations of a binary 12
2.3 Illustration of the binary diffing problem 14

3.1 Decomposition of an edit path. 23
3.2 Ambiguity between substitution and deletion - insertion edit

schemes. 29

4.1 An example factor graph representation 37
4.2 An example factor graph tree-like representation 38
4.3 A factor graph representation of our model 42

5.1 Average network alignment scores on our synthetic benchmark . 56
5.2 Evolution of the alignment score of the current solution over the

iterations . 59

6.1 Average recall scores according to the program versions distance 71
6.2 Relative similarity scores and square numbers of different network

alignment solvers compared to QBinDiff 72
6.3 Average accuracy scores for different configurations of QBinDiff 73
6.4 Relative similarity scores and square numbers of different match-

ing methods compared to the optimal assignment 74
6.5 Relative similarity scores of the ground truth correspondences . 76

xix

List of Tables

3.1 Program edit operations and respective costs 22
3.2 Function features and respective weights 32

5.1 Description of our benchmark dataset 57
5.2 Resulting network alignment scores on our real world benchmark 58

6.1 Description of our binary diffing dataset 68
6.2 Average objective and accuracy scores for each state-of-the-art

solver on our binary diffing benchmark 70
6.3 Average precision and recall scores for each combination of similar-

ity measure and matching method on our binary diffing benchmark 75
6.4 Computation time of the similarity scores only for each similarity

measure . 77

1

Chapter 1

Introduction

Static program analysis is the process of analyzing and predicting the possible
execution behaviors and outcomes of a program without actually executing it
(Nielson, Nielson, and Hankin, 2010). It is a cornerstone of computer security,
and has a wide variety of applications such as vulnerability detection, patch
analysis, malware detection, software clone detection, etc. (Haq and Caballero,
2021)

Static program analysis is most of the time performed on the source code
of the program since it usually includes human-readable information such as
comments or variable names, but also high-level concepts such as control-flow
statements as well as function or class definitions which induce an explicit
partition of the program into functionally related units (Balakrishnan and Reps,
2010).

Sometimes, however, the program is only available as a binary executable.
In this case, the analysis must be conducted directly on the machine code, and
is often considered much more difficult since it does not include the same level
of abstraction as programming languages. In practice, many useful information
such as variable types, branching target addresses or function boundaries have
been lost during the compilation (Kinder, 2010).

The design of automated methods to completely or partially process binary
code analysis is a difficult task. In fact, it is known from Rice’s theorem that
any interesting property about the execution behavior of an arbitrary program
is undecidable (Rogers, 1987). As a consequence, there can not be any general
algorithm that performs an analysis task exactly on every possible program. In
practice, multiple approximate tools have been proposed (Chess and McGraw,
2004; Chess and West, 2007). However, after decades of research, many problems
still require human expertise.

Non-trivial computer programs are rarely implemented all at once. Most
of the time, they result from an incremental process where parts are added,
removed or modified in order to include new features or fix undesired behaviors.
Consequently, a same program often exists under different versions corresponding
to these successive modifications. Furthermore, most software usually include
external libraries in order to handle auxiliary tasks of the program such as
system interface, data formatting or security management. When they are
statically linked, the code of these modules is directly inserted into the program.
As a consequence, different programs may contain similar parts, consisting in
duplicated or patched code, or in third-party modular dependencies.

2 Chapter 1. Introduction

This relationship between programs can be leveraged in order to ease their
analysis. For instance, a particularly useful feature for an analyst would consist
in retrieving the differences between a previously analyzed program and the one
currently under investigation. When the two programs are binary executables,
this problem is known as the binary diffing problem (Baker, Manber, and Muth,
1999).

In practice, the binary diffing problem is usually addressed through its
corollary formulation which consists in matching the similar parts in both
binaries. Given the resulting correspondence, it is then straightforward to
identify the differences between the two programs.

There may be many approaches to search for similar pieces of code in two
binaries. As an illustration, consider the following analogy: suppose we are
willing to retrieve the similar and different parts in two arbitrary texts. The naive
approach consisting in finding a correspondence between chains of characters
in both texts would appear useless to the analyst, as he would actually be
unable to read it. Similarly, mapping words together would perhaps provide few
information about some rare occurrences, but would not enclose any common
contextual information. Conversely, the alignment of higher level, meaningful
entities, such as phrases or paragraphs, could highlight precious relationships to
the reader and reveal the common significations of both texts.

In order to provide useful information to an analyst, the binary diffing
problem should thus focus on mapping pieces of code with unified functionality.
Different levels of granularity have been proposed mostly depending on the
underlying use case but also implicitly induced by the solving approach (Haq
and Caballero, 2021). For instance, some works aim at retrieving fine-grained
differences at a basic-block level (Zuo et al., 2019). Conversely, other researches
are looking for common libraries or dependencies, and consider the problem
at a higher scale (Backes, Bugiel, and Derr, 2016). In this work, we address
the problem of finding the best possible one-to-one correspondence between the
respective functions of the two programs.

The straightforward approach to obtain such mapping consists in measuring
the similarity between every pair of functions taken from both binaries, and
to compute the one-to-one assignment with maximum overall similarity score
(Liu et al., 2018). If we consider that the similarity score between two functions
represents the probability that the first one has been modified into the second
one, the resulting function correspondence can be viewed as the most likely one.

In static program analysis, we usually distinguish the available code repre-
sentation of a program, known as syntax, and its expected execution behavior,
or semantic (Nielson, Nielson, and Hankin, 2010). A fundamental problem
in statically comparing pieces of code is that the retrieval of their syntactic
differences may be insufficient to assess the similarity of their respective behavior
when executed (Haq and Caballero, 2021). Furthermore, though measuring syn-
tactic similarity can be relatively easy, performing a complete characterization
of the semantic of a function is a complex problem, and practical heuristics tend
to be computationally expensive. As a consequence, any measure of function
similarity necessarily includes some levels of approximation and can thus only
be considered as partially reliable.

Chapter 1. Introduction 3

In order to overcome this limitation, most current binary diffing approaches
propose to improve the assignment accuracy by also leveraging the context of
the function within the program, and in particular, the way the functions call
each others (Dullien, 2005; Kostakis et al., 2011). These methods thus not only
consider the function similarity during the mapping but also the consistency
of their call structure. To do so, they usually refer to a graph representation
of the program, known as call graph (Callahan et al., 1990), where the nodes
correspond to the functions and the edges encode the different calls among them.
As a result, the naive function assignment problem becomes a graph matching
problem that searches for a node correspondence based on both the similarity of
nodes (function content) and the similarity of edges (function calls consistency).

In this work, we propose a general graph edit formulation of the binary
diffing problem: given a set of possible edit operations and respective costs on
both the nodes and edges, we find an (almost) optimal transformation of the
call graph of program A into the call graph of program B (Riesen, 2016).

Such formulation corresponds to a generalization of the graph edit distance
problem, where instead of directly computing the score of dissimilarity (distance)
between both graphs, we search for the actual edit path that induces this score.
It is arguably the most natural formulation of the binary diffing problem since
it precisely describes the different modifications that occur between the two
programs. Moreover, the graph edit distance problem is known to be very
versatile, as it mostly depends on the given definition of the edit operation costs.
This provides flexibility to the analyst in order to setup the problem according
to particular underlying considerations.

Unfortunately, solving the graph edit distance problem, i.e. finding the
optimal sequence of edit operations that transforms graph A into B, is known
to be NP-hard (Lin, 1994). In practice, no existing method can compute in
reasonable time an optimal edit path for graphs made of more than a hundred
nodes. Therefore, our approach would necessarily rely on approximate solutions.

While most traditional exact graph edit distance solvers are based on com-
binatorial algorithms and enumerate the solution space (Fankhauser, Riesen,
and Bunke, 2011), several recent approximate methods propose instead to refor-
mulate the problem into constraint optimization programs in order to leverage
common optimization techniques (Riesen and Bunke, 2009; Bougleux et al.,
2017). Following these insights, we reformulate the binary diffing problem into
a network alignment problem. In fact, we prove that under minor conditions
both problems are equivalent. Though the network alignment problem belongs
to the same complexity class as the graph edit distance problem, this quadratic
integer program has been extensively studied for decades, and several efficient
approximate methods have been proposed (Burkard, 1984).

Amongst the current best existing approaches is NetAlign, a message pass-
ing framework introduced by Bayati et al. (2009) based on the max-product
algorithm (Loeliger, 2004). In our work, we leverage this model and propose
some modifications to improve its performances as well as to reduce its required
computational time and memory usage. We named our algorithm QBinDiff.

In order to properly evaluate our proposed approach, we must perform several
successive sets of experiments.

4 Chapter 1. Introduction

We must first compare our proposed network alignment algorithm to other
state-of-the-art methods. This may be done by submitting the exact same
problem instances to all solvers and by comparing the resulting alignment
scores. We perform such comparisons on three different benchmarks, made of
many different graph matching instances, sharing similar properties with the
ones usually found in diffing problems. Our experiments show that QBinDiff
outperforms other existing methods in almost all configurations and, as such, is
one of the best-known algorithms to align such graphs.

Unfortunately, computing high-quality alignment solutions does not provide
any guaranty about the relevance of these function correspondences in terms
of binary diffing. Indeed, optimal solutions to the binary diffing problem could
turn out to be far from optimal solutions of our graph edit formulation.

We must thus conduct another series of experiments in order to evaluate our
approach as a binary diffing method and compare to existing tools with respect
to accuracy metrics. Performing such experiments requires a collection of binary
diffing instances for which the actual optimal function mappings are known. As
readily available diffing benchmarks are crucially missing in the literature, we
designed our own, made of more than 50 binaries and over 800 diffing instances,
and released it to the research community. Overall results point out that our
network alignment matching strategy outperforms other existing approaches and
suggest that our formulation is very well suited to address the diffing problem.

Finally, one may still argue that our results depend on the given node and
edge similarity scores. Indeed, given a poor function similarity measure, it
would not be surprising that our balanced matching strategy provides better
assignments than the one solely based on the node similarity scores.

Therefore, we reproduce our experiments with different state-of-the-art func-
tion similarity measures. Our results highlight that the matching strategy has
more influence than the chosen similarity measures on the quality of the solu-
tions. More interestingly, it appears that using sophisticated semantic similarity
measures does not generally improve the assignment accuracy and tends to even
worsen it in some cases.

Contributions

In summary, the contributions of this thesis are:

� We introduce a new formulation of the binary diffing problem as a graph
edit distance problem and show that this formulation is equivalent to the
network alignment problem.

� We present an efficient network alignment algorithm, named QBinDiff,
based on max-product belief propagation, and show that it outperforms
other state-of-the-art solvers.

� We release a new binary diffing benchmark data set consisting in more than
60 binaries and over 800 manually extracted ground truth correspondences.

Chapter 1. Introduction 5

� We propose an extensive evaluation of our approach by comparing to
other common matching methods, as well as other state-of-the-art function
similarity measures.

The rest of this thesis is organized as follows. In Chapter 2, we introduce in
more details the context of static binary analysis and the common formulations
of the binary diffing problem. We then review some existing solutions. We
properly formalize the problem in Chapter 3 and prove that it actually consists
in an integer quadratic optimization problem. In Chapter 4, we present a
maximization algorithm able to efficiently find an approximate solution to the
problem. We evaluate our model as a network alignment solver in Chapter 5 and
compare its performances to some of the best existing approaches. In Chapter
6, we provide an evaluation of our proposed solution as a binary diffing tool.
We also analyze its relevance using different measures of function similarity. We
discuss our method and findings in Chapter 7, in order to finally conclude.

7

Chapter 2

Background

In this chapter, we first present the overall context of static binary analysis and
introduce several notions as well as common program representations. We then
discuss in more details the problem of binary diffing and review some of the
existing work.

2.1 Static binary analysis

The static analysis of programs in binary form, or static binary analysis, consists
in analyzing and predicting the possible behaviors of a binary program without
executing it (Nielson, Nielson, and Hankin, 2010). It thus requires to retrieve
most of the program properties and functionalities solely based on its available
binary representation. In this section, we give a short introduction of what is a
binary executable and then present some common analytical representations.

2.1.1 Binary executable

A binary executable is a file designed to order a machine to perform desired tasks.
It basically consists in a very long sequence of zeros and ones that corresponds to
machine code and provides to the computer information regarding the program
as well as the instructions that must be read and executed.

Though it may be directly implemented by hands, a binary executable
typically results from an automated translation process that converts human-
readable source code into low-level machine code (see Figure 2.1). This process
usually involves several successive transformation steps such as compilation,
assembling and linking (Aho et al., 2006).

Compilation

The compilation provides a formal translation of a source code into a semantically
equivalent assembly code. A common compilation process first converts the
source code into a low-level intermediate representation, then performs multiple
optimization passes that reformulate portions of the current representation into
equivalent but more efficient implementations. Finally, it translates the resulting
code into the assembly language of the desired computer architecture.

8 Chapter 2. Background

Assembling

The assembly code is then assembled in order to produce object code i.e. machine
code that is not directly executable by a computer but is designed to be reusable.
The assembler converts assembly mnemonics into binary instructions and resolves
the symbols i.e. turns human-readable names such as function denomination or
labels into their corresponding relative addresses. Moreover, it partitions the
code into different segments in order to distinguish the portions of code that
consist in executable code, constants and variables data, header, etc. It finally
includes several metadata sections that will be used during the linking step.

Linking

Modern computer programs are typically composed of several pieces of code
called modules. These modules may arise from an efficient partitioning from
the developer, as well as from the usage of third-party implementations such as
libraries or APIs. During the compilation, each module is processed separately
and results in a single object file. The linking step aggregates these object files in
order to produce a unified binary executable. It properly relocates the memory
addresses of the different modules in order to prevent overlaps and resolves the
function calls among them.

Information loss

Unfortunately, this automated translation process from source to machine code
induces some information loss that may harden the program analysis (see Figure
2.1).

In practice, most of the interesting features of the program are lost during
the compilation step, i.e. during the conversion of the source code into assem-
bly code (Nielson, Nielson, and Hankin, 2010). In particular, the high-level
concepts provided by the programming language, such as variable declaration,
type specification or function and class implementation are diluted. Moreover,
compiler optimizations may consist in complex patterns that very efficiently
exploit processor features such as the number of cycles per instruction or register
state side effects. Therefore, these optimizations may produce an assembly
code syntactically quite different from the one that would have resulted from a
non-optimized compilation. Finally, since they are of no interest to the computer
during the execution, almost all human-readable symbols such as function or
variable names, developer comments or debugging information are often removed,
or stripped. Stripping an executable reduces its size and provides some limited
protection against reverse engineering in hiding implementation details.

Furthermore, the translation of assembly code into machine code also causes
information loss. Indeed, machine code only targets computer comprehension,
and is designed to be read during an execution process, where instructions are
fetched one after the other through their address locations. Therefore, it does
not require a proper layout and usually consists in a simple concatenation of all
its binary content, code and data, resulting in a long sequence of bytes. As a
consequence, the actual delimitation of instructions, as well as the boundaries

2.1. Static binary analysis 9

// Collatz sequence

int collatz(int n) {
 // If n is even
 if(n % 2 == 0){
 n = n / 2;
 }
 // If odd
 else{
 n = n * 3 + 1;
 }
 return n;
}

int main() {
 int n = 100;
 /* Repeat until
 reaching 1*/
 while(n != 1){
 n = collatz(n);
 }
}

Source code

 [...]
 sub_1129:
 test dil, 1
 jnz short loc_113D
 mov eax, edi
 shr eax, 1Fh
 add eax, edi
 sar eax, 1
 retn
 loc_113D:
 lea eax, [rdi+rdi*2+1]
 retn
 main:
 mov edi, 64h
 loc_114B:
 call sub_1129
 mov edi, eax
 cmp eax, 1
 jnz short loc_114B
 mov eax, 0
 retn

 [...]

Assembly code

 return 0

while(n != 1)

n = collatz(n)

int n = 100

n = n / 2
return n

if(n % 2 == 0)

n = n * 3 + 1
return n

40F6 C701 F8D1 F8C3
750A 89F8 C1E8 1F01
F8D1 F8C3 8D44 7F01
C3BF 6400 0000 E8D9
FFFF FF89 C783 F801
75F4 B800 0000 00C3
F30F 1EFA E977 FFFF
FFF3 0F1E FA40 F6C7
0175 0A89 F8C1 E81F
01F8 D1F8 C38D 447F
01C3 F30F 1EFA BF64
0000 00E8 D9FF FFFF
89C7 83F8 0175 F4B8
0000 0000 C30F 1F00
F30F 1EFA 4157 4C8D
3D83 2C00 0041 5649
89D6 4155 4989 F541
5441 89FC 5548 8D2D
742C 0000 534C 29FD
4883 EC08 E86F FEFF
48C1 FD03 741F 31DB
0F1F 8000 0000 004C

Machine code

Figure 2.1: Translation of a simple program source code into
assembly code and machine code. While the machine code repre-
sentation of a program can not be analyzed directly, the assembly
representation lacks high-level concepts such as function names or
variable types, as well as human-readable comments. Moreover,
compiler optimizations introduce complex patterns to process
simple operations. As a result, assembly code is much more

difficult to analyze than source code.

of basic blocks or functions are not available. The retrieval of these information
is a challenging problem that enables one to leverage a program rendering close
to its original assembly representation (Kinder, 2010).

2.1.2 Program disassembly

To be readable by a human expert, even at a low level of abstraction, a binary
executable must be disassembled, i.e. translated from machine code into assembly
code. Each binary instruction is thus decoded and expressed as a mnemonic
specifying the nature of the machine operation, followed by zero or more operands
which may refer to registers, memory addresses or literal data (Eagle, 2008).
Therefore, the resulting assembly code is expected to be quite close to the one
produced by the compilation of the original source code, though all variable and
function names, as well as all comments would still be missing (see Figure 2.1).
Note that different computer processors might have different machine languages
(instruction set architectures) and thus different assembly languages. In this
work, we only consider programs designed to run on x86-64 processors, though
similar methods should provide comparable results on different architectures.

The process of disassembly is a challenging problem that requires to de-
duce from the raw binary code the correct delimitation of each machine code
instruction. In fact, this problem consists in retrieving the starting bit of each
instruction, or, in other words, to resolve the potential target addresses of each
branching instruction (Meng and Miller, 2016).

10 Chapter 2. Background

In practice, we usually distinguish two disassembly strategies (Wartell et al.,
2014). The first one, called linear-sweep, basically starts at the program entry
point and translates each instruction one after the other until it reaches the end.
The major drawback of such approach is that the sliding window of byte pattern
to decode is likely to misalign after few instructions. This happens, for instance,
when data lies between pieces of code and is interpreted as such, in the presence
of padding bytes (nop) or of optimized patterns of overlapping instructions.
In order to overcome this issue, another disassembly method, called recursive
traversal, consists in decoding the instructions in the order they are expected to
be executed, i.e. following the potential jump target addresses (Schwarz, Debray,
and Andrews, 2002). Such a strategy prevents linear-sweep misalignments and
thus only translates patterns of bytes that actually correspond to machine
code instructions. However, it does not guarantee to process all program bytes
since some parts may never be reached during the traversal. Though several
disassemblers are currently available (e.g. Radare2 1, Binary Ninja 2, Ghidra
3) our work only uses the most popular one, IDA Pro 4, which uses a recursive
traversal strategy (Eagle, 2008).

2.1.3 Program representations

Once disassembled, a binary executable can be represented as a series of assembly
instructions. However, one can leverage other graphical representations of the
program in order to best exhibit its potential behavior when executed (see Figure
2.2).

Control-flow graph

During its execution, most of the program instructions are executed sequentially,
following the order they were arranged in. However, programs typically include
branching instructions that order the computer to jump at a particular position
of the program and to carry on the execution from there (Knuth, 2009).

We usually distinguish two types of branching instructions: conditional or
unconditional branches, and direct or indirect branches. Unconditional branches
always order the computer to jump at the specified address whereas conditional
jumps may simply proceed to the next instruction if the condition is not fulfilled.
For instance, a function call in a source code will result in an unconditional
jump instruction which target address corresponds to the entry point of the
function in the binary executable. On the contrary, any if-else or loop statement
would probably induce a pattern of conditional branch instructions in the
program. Direct branches admit a unique target address whereas indirect branch
destinations can be specified at run-time.

In general, both the condition status of conditional jumps and the actual
target addresses of indirect branches can only be assessed on the fly during
the program execution. Moreover, they may be subject to arbitrary input

1https://www.radare.org/n/
2https://binary.ninja/
3https://ghidra-sre.org/
4https://www.hex-rays.com/products/ida

2.1. Static binary analysis 11

parameters or even randomness. Therefore, the control flow of a program, i.e.
the sequence of instructions that will actually be executed at run-time, remains
mostly unknown during a static analysis (Liu, Tan, and Chen, 2013).

In order to consider its different possible execution behaviors, a program can
be represented as a set of all its possible execution paths, i.e. all its possible
control flows. Such representation consists in a directed graph of instructions
where every non-branching instruction simply points at its successor, whereas
every jump instruction points at all its potential targeted instructions (in addition
to its successor in the case of a conditional jump). The graph can then be
simplified by gathering the consecutive instructions into so-called basic blocks.
This program representation is usually called a control flow graph (CFG) (Allen,
1970).

The partition of a program into related basic blocks is semantically relevant
since all constitutive instructions of a basic block will necessarily be executed
in their exact order. Moreover, unlike a sequential representation, this graph
structure is particularly convenient to deal with compilation-based instruction
reordering, as well as with address relocation resulting from linking step, since the
different blocks of instructions become position-independent along the program
and are then only related by the jumps among them (Khedker, Sanyal, and
Karkare, 2009).

Unfortunately, the retrieval of such a graph often results in an approximation
of the set of all possible execution paths of the program (Meng and Miller, 2016).
First, some of the walks in the graph might be subject to a combination of
branching conditions that are actually impossible to fulfill, though most modern
compiler optimizations aim at removing unreachable (dead) code. Moreover, the
retrieval of all possible target addresses of each indirect branching statement is
a complex problem, known to be undecidable. In some cases, some addresses
might be determined using heuristics such as alias analysis, or obtained from
additional information such as jump tables (records of common target addresses).
The rest of the time, the jump statement is simply ignored (Kinder, 2010).

Note that both the disassembly and the control flow construction address
the same problem that consists in statically resolving the target addresses of
the branch statements. In fact, both processes are performed at the same time,
successively decoding machine code instruction and, when this later is a jump,
inferring its target location.

Call graph

The representation of a binary executable as a graph not only deals with
uncertainties about its execution behavior. It may also be arguably thought
as an algorithmic view of the program. Indeed, any possible walk in this
graph can be considered a possible execution path specially designed by the
developer to perform a particular task. Following this insight, the structure
of the control flow graph could be leveraged in order to retrieve higher-level
program abstractions and hence highlight the potential intent of the developer.
In particular, an instructive representation consists in a partition of the control-
flow graph according to the program subroutines only. The resulting directed
attributed graph is composed of nodes denoting the different functions and

12 Chapter 2. Background

40F6 C701 F8D1 F8C3
750A 89F8 C1E8 1F01
F8D1 F8C3 8D44 7F01
C3BF 6400 0000 E8D9
FFFF FF89 C783 F801
75F4 B800 0000 00C3
F30F 1EFA E977 FFFF
FFF3 0F1E FA40 F6C7
0175 0A89 F8C1 E81F
01F8 D1F8 C38D 447F
01C3 F30F 1EFA BF64
0000 00E8 D9FF FFFF
89C7 83F8 0175 F4B8
0000 0039 D00F 1F00
F30F 1EFA 4157 4C8D
3D83 2C00 0041 5649
89D6 4155 4989 F541
5441 89FC 5548 8D2D
742C 0000 534C 29FD
4883 EC08 E86F FEFF
48C1 FD03 741F 31DB
0F1F 8000 0000 004C
0E4A 4118 200E 0E53
0008 0000 0060 0000
0748 0000 D93C FFFE
02AA 0000 6300 100E
028D 0E42 8C18 4603
200E 0486 0E41 8328
4405 300E 0A53 280E
0E41 4120 180E 0E42

Binary Instructions

 test r14d, r14d
 jnz loc_4B14
 mov esi, [rbx+172Ch]
 add ebp, r14d
 mov [rbx+0B4h], ebp
 lea eax, [rbp+rsi+0]
 cmp eax, 2
 ja loc_4688
 cmp ebp, 105h
 ja loc_4730
 mov rax, [rbx]
 mov r12d, [rax+8]
 test r12d, r12d
 jz loc_4830
 mov r14d, [rbx+68h]
 add eax, [rsp+48h+var_44]
 sub r14d, ebp
 sub r14d, edx
 cmp eax, edx
 jbe short loc_4508
 mov r15, [rbx]
 mov r12d, [r15+8]
 test r12d, r12d
 jz r15
 cmp r12d, r14d
 ja short loc_4448
 add rbp, [rbx+60h]
 mov r14d, r12d
 mov [r15+8], eax
 mov rdx, r14
 mov rdi, rbp
 call _memcpy
 mov rax, [r15+38h]
 mov eax, [rax+30h]
 cmp eax, 1
 jz loc_47F8
 push rbx
 sub rsp, 8
 call get_pc
 add rbx, 0x1217
 add rsp, 8
 pop rbx
 retn

 push rbx
 sub rsp, 8
 call get_pc
 add rbx, 0x1217
 add rsp, 8
 pop rbx
 retn

...

...
...

...

...

...

...

...

Control Flow Graph Call Graph

Figure 2.2: Different representations of a binary. The analysis
of a program through its binary form (left-most) is quite tedious
and usually requires a prior disassembling. The disassembly
process first delimits the constitutive bytes of each instruction
(red) and lift them into their corresponding assembly representa-
tion (center left). Then, the potential targets of the branching
instructions are analyzed (orange), and the program sequence
of instructions is partitioned into basic blocks according to the
different possible execution paths (center right). Finally, the
CFG is itself divided into independent subgraphs according to
the call procedures only (yellow). Each created node thus con-
sists in a whole graph, and represents a function in the program

(right-most).

2.2. Binary Diffing 13

edges registering the calls among them. Such representation is known as call
graph (CG) (Callahan et al., 1990). Notice that in a CG, each node can be
itself represented as an independent graph of basic blocks, and each basic block
consists in a sequence of assembly instructions (see Figure 2.2).

Usually, the retrieval of the function boundaries immediately follows the
call procedure layout, i.e. the conventional instruction patterns that enclose
the core of each function. However, such partitioning may produce an inexact
call graph in some more complex cases such as non-returning functions or tails
calls, as well as non-contiguous or code sharing functions (Ryder, 1979). Here
again, heuristics can be used to provide the best possible call graph, though no
guarantee can be given on its reliability. In particular, some languages, such as
object-oriented languages, may have an extended use of polymorphism. In this
case, the actual function to be executed is often resolved at run-time, through a
dynamic dispatch. As for the jump tables in CFG construction, such calls would
probably result in an over-approximation of the CG and all the homonymous
functions would be considered potential candidates (Grove et al., 1997).

2.2 Binary Diffing

The idea of binary diffing, is to provide an automatic comparison of two programs
based on their available machine code representation. It is a precious feature for
analysts and reverse engineers since it quickly enables one to leverage knowledge
gained during the investigation of previous binaries (see Figure 2.3).

The binary diffing problem consists in retrieving and aligning the pieces of
code common to two binary executables. It generally results in a one-to-one
correspondence, or mapping, between the aligned parts and a set of unmatched
elements for each program.

Such formulation requires the formal specification of the code granularity
(what should be compared), the comparison criteria (how it should be compared)
and the mapping criteria (how it should be aligned). The different proposed
definitions mostly depend on the underlying use-case of the analysis. In the rest
of this chapter, we review some of the most common approaches.

2.2.1 Binary code granularity

As it ultimately targets human comprehension, the binary diffing problem should
result in mappings that provide valuable information to the analyst. Therefore,
it should be performed on a code representation with a level of abstraction close
to the analysis. Usual comparisons focus on functionally related pieces of code
such as functions, traces, basic blocks or instructions. For more details about
the different code granularity used in the literature, we refer the reader to Haq
and Caballero (2021).

Function

Most approaches focus on mapping functions (Bourquin, King, and Robbins,
2013; Lee, Kang, and Im, 2013; Liu et al., 2018; Flake, 2004; Xu et al., 2017b).

14 Chapter 2. Background

40F6 C701 F8D1 F8C3
750A 89F8 C1E8 1F01
F8D1 F8C3 8D44 7F01
C3BF 6400 0000 E8D9
FFFF FF89 C783 F801
75F4 B800 0000 00C3
F30F 1EFA E977 FFFF
FFF3 0F1E FA40 F6C7
0175 0A89 F8C1 E81F
01F8 D1F8 C38D 447F
01C3 F30F 1EFA BF64
0000 00E8 D9FF FFFF
89C7 83F8 0175 F4B8
0000 0039 D00F 1F00
F30F 1EFA 4157 4C8D
3D83 2C00 0041 5649
89D6 4155 4989 F541
5441 89FC 5548 8D2D
742C 0000 534C 29FD
4883 EC08 E86F FEFF
48C1 FD03 741F 31DB
0F1F 8000 0000 004C
0E4A 4118 200E 0E53
0008 0000 0060 0000
0748 0000 D93C FFFE
02AA 0000 6300 100E
028D 0E42 8C18 4603
200E 0486 0E41 8328
4405 300E 0A53 280E
0E41 4120 180E 0E42

Binary A

080E 0B46 0000 0000
0010 0000 08A4 0000
0290 FFFF 00DE 0000
0000 0000 0010 0000
08B8 0000 035C FFFF
005E 0000 0000 0000
0054 0000 08CC 0000
03A8 FFFF 00E0 0000
4B00 100E 028D 0E42
8C18 4103 200E 0486
0E41 8328 4705 300E
0A70 280E 0E41 4120
180E 0E42 4210 080E
0B44 6602 0E0A 4128
0EC3 4420 0EC6 4218
0ECC 4210 0ECD 4908
520B 080E C6C3 CDCC
002C 0000 0924 0000
0430 FFFF 00F0 0000
4500 100E 028C 0E41
8618 4103 200E 0483
9902 0E0A 4118 100E
0E42 4508 000B 0000
0010 0000 0954 0000
04F0 FFFF 000F 0000
0000 0000 0010 0000

Binary B

Figure 2.3: Illustration of the binary diffing problem. Given
any two binaries A and B and their call graph representation
GA and GB, the binary diffing problem consists in finding the
best correspondence between the functions i of A and those i′

of B (black arrows). Such mapping provides useful information
to an analyst. In this figure, green dots and lines represent
functions and calls that remained identical from a program to
the other, and thus correspond to duplicated code. Blue (resp.
red) elements represent inserted (resp. deleted) items, and may
be considered as added (resp. removed) functionalities. Yellow
dots record matched functions which content has been modified
(substituted). They may thus indicate the functions that have
been patched during the release. Furthermore, any alignment
characterizes an edit-path between both binaries, and therefore

induces a score of similarity.

2.2. Binary Diffing 15

The partition of a program through its call graph is a natural granularity for
an analyst and is relatively robust to different compilation schemes. Moreover,
this granularity enables one to efficiently leverage the program dependency on
external functions such as those imported from libraries. These functions are
easy to match, and provide interesting information to carry on the rest of the
diffing. However, functions often consist in complex pieces of code, and their
comparison may require quite sophisticated (and approximate) measures of
similarity (Liu et al., 2018).

Basic block

Some methods propose to align the basic blocks (Duan et al., 2020; Luo et
al., 2014; Zuo et al., 2019; Ming, Pan, and Gao, 2012). The main interest of
such granularity is that it enables one to use very precise measures of code
similarity. However, it requires the comparison of a much larger number of
elements especially if the matching approach requires to compute all the pairwise
similarity scores. Moreover, the structure of code is quite sensitive to compilation
optimizations and can thus be leveraged with less confidence (Ng and Prakash,
2013).

Trace

Between functions and basic blocks, lies the trace granularity (Kargén and
Shahmehri, 2017; Ming et al., 2017). The idea consists in comparing sequences
of basic blocks that are likely to be executed in a row. A typical application is to
represent a function through one or several traces of its constitutive basic blocks.
Such an approach allows to use the basic block measure of similarity while
limiting the number of elements to be compared. However, the enumeration
of all possible traces of a piece of code rises exponentially with its complexity.
Therefore, this granularity requires to compare code with a possibly very limited
subset of its possible behaviors. In the literature, other names have been given
to traces, such as tracelets (David and Yahav, 2014), strands (David, Partush,
and Yahav, 2016) or juices (Lakhotia, Preda, and Giacobazzi, 2013).

Instruction

Finally, binary diffing can be performed at an instruction level of granularity
(Baker, Manber, and Muth, 1999; Sæbjørnsen et al., 2009). Such granularity is
arguably the most convenient for an analyst since it corresponds to the granularity
at which code is usually read. Yet, it is rarely used as such. Indeed, the purpose
of an instruction within a program usually depends on its surrounding context,
and in particular on the instructions that have just been previously executed.
Moreover, several syntactically quite different instructions can have the exact
same semantic depending on the status of their operands. Therefore, usual
binary diffing formulations favor to retrieve meaningful patterns of consecutive
instructions, over a one-to-one correspondence disseminated all along both
programs. However, in order to handle instruction reordering, binary diffing

16 Chapter 2. Background

should not restrict to aligning programs as immutable sequences of instructions,
and thus usually leverage a graph representation such as the CFG.

Hierarchical diffing

For the sake of readability, common binary diffing tools display the resulting
diffing correspondence at a fine-grained level of granularity, typically instructions.
In practice, most of them actually perform a hierarchical diffing (Flake, 2004).
They first compute a mapping of pieces of code at a higher level, such as function
or basic block, and then proceed a second diffing among each pair of matched
elements. In this case, the resulting fine-grained alignment largely depends on
the quality of the prior mapping, since any mismatch in this later would induce
a completely erroneous alignment of its constitutive elements.

Notice that the chosen level of granularity to perform binary diffing may
differ from the one chosen to measure the code similarity. For instance, an
approach may seek at aligning the functions of the program, while measuring
function similarity by comparing their constitutive basic blocks.

2.2.2 Binary code similarity

The key interest of binary diffing is to retrieve common features from a program
into another. Therefore, a robust problem formulation should not restrict to
mapping identical patterns, but should be able to match different pieces of
code that have a similar functionality. Consequently, an ideal code comparison
criteria for addressing the binary diffing problem would measure the semantic
similarity of the two pieces of code.

Code characterization

The comparison of two pieces of code requires a prior proper definition of the
properties that must be considered. Usually, we distinguish a syntactic depiction
of the binary, that only considers the available code representation, from a
semantic characterization that focuses on the intrinsic code functionality, or
meaning, no matter its practical implementation (Nielson, Nielson, and Hankin,
2010).

A fundamental problem of static program analysis is that there is no im-
mediate relationship between the syntax of a piece of code and its expected
execution behavior (Haq and Caballero, 2021). For instance, as there might be
multiple ways to implement a complex process, there may be several syntactic
representations of a same program semantic. In addition, it is well known that
the compilation of the same source code can result in very different binary
executables, though they share the exact same functionalities (Liu, Tan, and
Chen, 2013). These differences may be due to different compiler heuristics, or
optimization levels, but also to the targeted architecture or operating system
for which the program is built. Furthermore, though the exact same syntax
necessarily induces the same semantic, slight syntactic program divergences,
such as a single target address modification, may result in completely different
run-time behaviors. Consequently, the retrieval of the syntactic differences

2.2. Binary Diffing 17

between two pieces of code may be insufficient to assess the similarity of their
respective behavior when executed. Notice however that in practice, it still
provides valuable information in many cases.

Unfortunately, the complete semantic characterization of a program is also
a very challenging problem. In fact, from a simple reduction to the Halting
problem, it is known to be mathematically undecidable (Rogers, 1987). Therefore,
semantic characterizations are most of the time approximated on much smaller
pieces of code such as instructions or basic blocks, in order to be then compared
with each other. The resulting comparison can then be aggregated to evaluate
the similarity of larger elements such as functions.

Semantic measures

A convenient format to describe the semantic of a piece code is to record the
different memory modifications that result from its execution (Cadar and Sen,
2013). Such representation ignores the intermediate operations and is indepen-
dent of the code syntax. In static analysis, such semantic characterization can
be computed using symbolic execution (King, 1976). However, the computa-
tional cost of symbolic execution of a piece of code rises exponentially with its
complexity. Therefore, though it can characterize arbitrarily complex pieces
of code, symbolic execution is mostly performed on a consecutive sequence of
instructions, such as basic blocks or traces, in order to limit the code complexity
and thus the required computation time.

Several methods propose to evaluate the semantic similarity of two pieces
of code by comparing their symbolic execution. To this end, some of them
introduce satisfiability modulo theories (SMT) solvers to check if the resulting
symbolic formulas are equivalent (Gao, Reiter, and Song, 2008; Ming, Pan, and
Gao, 2012; Lakhotia, Preda, and Giacobazzi, 2013; Luo et al., 2014; David,
Partush, and Yahav, 2016). However, in addition to being very computationally
expensive, such approaches can only assess the equivalence of the code, and not
measure its similarity.

To overcome this issue, some methods propose to compute edit distances
on the set of symbolic formulas (David and Yahav, 2014; Pewny et al., 2014).
Other works refer instead to a statistical measure of semantic similarity by
comparing the ratio of identical outputs, given the same input (Kruegel et al.,
2005; Jin et al., 2012; Chandramohan et al., 2016; Pewny et al., 2015). Such
an approach is very convenient since each piece of code can be fully encoded
through a vector of output values, and therefore enables one to quickly compute
the similarity scores using common metrics. However, the number of evaluated
inputs is often insignificant with regards to the set of every possible arguments,
and consequently provides low confidence on the resulting similarity scores.

More recently, several methods introduced supervised learning models de-
signed to measure the semantic similarity of codes. The idea is to feed the
models with pairs of semantically equivalent pieces of code in order to learn their
common syntactic properties (Xu et al., 2017a; Massarelli et al., 2019; Li et al.,
2019; Liu et al., 2018; Zuo et al., 2019). The major interest of these approaches
is that the similarity score is directly computed on the code representation and
therefore is much faster than common semantic measures. However, they require

18 Chapter 2. Background

the collection of a large quantity of statistically significant pairs of semantically
equivalent pieces of code. Such training data set is not immediately available.
Current techniques restrict to samples taken from slight mutations of a same
program, resulting for instance from different compilation processes, or from mi-
nor source code modifications. However, there is no guarantee that the collected
pairs are semantically equivalent or, more importantly, statistically significant.
In fact, following this design, all training samples come from the same source
code, and therefore, enclose syntactic differences necessarily resulting from the
compilation process, and never from different implementations.

To some extend, unsupervised models designed to learn instruction embed-
dings based on their closest neighbors could be also considered as semantic
similarity measures, though they can actually only consider the syntax of the
code (Ding, Fung, and Charland, 2019; Zuo et al., 2019; Duan et al., 2020; Chua
et al., 2017).

Syntactic measures

Another category of code similarity measure focuses on the code syntax. These
measures mostly compare arbitrary features extracted from the code represen-
tation. Common features describe the code instructions (count of different
mnemonics or operands, occurrences of particular operations, etc.) or their
normalized representation (classification, intermediate representation, etc.), the
code structure (instruction number, basic blocks layout, callers and callees,
addresses, etc.) or the presence of characteristic elements (function names,
function imports, strings, system calls, immediate values, etc.) (Dullien, 2005;
Bourquin, King, and Robbins, 2013; Alrabaee et al., 2018; Kinable and Kostakis,
2011). Such approaches have the major advantage of being very fast to both
extract and compute, and enable the pairwise comparison of a large number
of pieces of code in a limited amount of time. Few other approaches introduce
more complex measure derived from graph matching problems such as string or
graph edit distance (Hu, Chiueh, and Shin, 2009; Huang, Youssef, and Debbabi,
2017; Alrabaee et al., 2015), maximum weight matching (Feng et al., 2016),
maximum common edge subgraph (Eschweiler, Yakdan, and Gerhards-Padilla,
2016). These methods are more precise and tend to better enclose the semantic
similarity of the code. However, solving a large number of matching problems
can be very expensive and therefore scales less easily to larger programs.

2.2.3 Binary code matching

Once a proper measure of code similarity has been defined, the pieces of code
that are considered similar must be aligned to provide to the analyst a precise
mapping of the common and different parts in each program. To the best of
our knowledge, all proposed approaches are designed to produce an injective
alignment, i.e. to match each piece of code to at most one counterpart. Such
mappings are sometimes abusively referred to as one-to-one correspondences,
though they do not actually consists in bijections. Notice that more complex
many-to-many mappings could be used to retrieve common code patterns such

2.2. Binary Diffing 19

as basic blocks or functions split or merge, or code duplication (Bernat and
Miller, 2012).

Maximum weight matching

The straightforward approach to compute a one-to-one mapping given a measure
of code similarity consists in computing all pairwise similarity scores and to find
the one-to-one mapping that maximizes the overall sum of similarity. This is the
natural matching strategy of methods using complex code similarity measures,
such as those originally designed to perform near-duplicate retrieval (Feng et al.,
2016; Xu et al., 2017a; Li et al., 2019). This assignment problem is known as
the maximum weight matching (MWM) problem and its optimal solutions can
be found exactly in polynomial time, using e.g. the Hungarian algorithm (Kuhn,
1955). The major drawback of this approach is that the resulting mapping might
be highly inconsistent with regards to the code structure of the two programs,
which may indicate that it failed to leverage part of the program semantics.

Maximum common edge subgraph

To overcome this issue, other formulations favor mappings that are locally
consistent with regard to the graph structure of the programs. For instance,
David and Yahav (2014) looks for the Longuest Common Sequence of basic
blocks. The most common approach addresses the binary diffing problem as a
maximum common edge subgraph problem (MCS). The idea consists in finding
the node correspondence that maximizes the number of induced common edges
in both graphs (Bahiense et al., 2012). Such edge overlaps are also known as
squares (Bayati et al., 2009).

Unfortunately, the MCS problem is known to be NP-complete and even
APX-hard (Kann, 1992). Since modern programs typically consist in much more
than a hundred functions and thousands of basic blocks, solutions to the MCS
must be approximated. The most common approximate method is based on the
VF algorithm of P. Cordella et al. (2004). The idea is to iteratively expand a
partial node correspondence while preserving its topological consistency. At each
iteration, a set of candidate nodes from each program is thus collected in the
neighborhood of the current mapping. A pair of nodes is matched and included
in the solution if they share a similar content as well as a similar neighborhood.
In practice, the error tolerance on both the node and edge similarity increases
with the number of iterations (Dullien, 2005).

Though this strategy proved to provide satisfying results, it suffers from
several important limitations. Indeed, at each iteration, the candidate nodes
are retrieved from the neighborhood of the current solution. Therefore, any
error in the partial assignment intrinsically misleads the candidate selection
and may propagate erroneous correspondences as the matching process goes
on. In particular, the algorithm is very sensitive to the mapping initialization,
which is often performed based on the node content only. More importantly,
another drawback of this approach is that by restricting new matches to belong
to the respective neighbors of the current partial mapping, it prevents the
assignment of potentially better non-local correspondences. Therefore, this

20 Chapter 2. Background

strategy mostly consists in finding a locally-consistent mapping whereas a
globally better assignment potentially exists.

Graph edit distance

To our knowledge, the only global formulation of the binary diffing problem
refers to a graph edit distance problem (GED) (Hu, Chiueh, and Shin, 2009;
Kostakis et al., 2011; Bourquin, King, and Robbins, 2013). The idea consists
in considering a set of possible graph edit operations on both the nodes and
edges of the graphs, and in assigning to them a cost. Intuitively, the cost of
substituting a piece of code with another one would be inversely proportional to
their measured similarity score. A series of edit operations is called an edit path,
and its cost is simply the sum of the costs of its constitutive operations. Then,
an edit path that transforms graph A into B at the minimum cost is called an
optimal edit path and the resulting edit cost is known as the graph edit distance
(Riesen and Bunke, 2009).

Such formulation is particularly convenient to an analyst since it provides an
explicit description of the different modifications that transform a first binary
into another one.

There is a close relationship between an edit path and a mapping. Indeed,
under mild conditions on the possible edit operations and their respective costs,
both solutions are equivalent (see Chapter 3 for more details). In this case,
substituted nodes correspond to matched elements, whereas inserted and deleted
nodes correspond to the pieces of code that do not belong to the mapping.
Therefore, the optimal graph edit path between two programs can be used as a
solution to the binary diffing problem.

Unfortunately, the graph edit distance problem is of the same complexity
as the MCS problem (Lin, 1994). Though exact algorithms exist, they rapidly
become intractable as the number of vertices rises (Riesen, 2016). In practice,
the computation of the GED of graphs of more than a hundred nodes must be
approximated.

Several approaches have been previously proposed to compare programs in
binary form through a GED formulation (Hu, Chiueh, and Shin, 2009; Kostakis
et al., 2011; Kinable and Kostakis, 2011; Bourquin, King, and Robbins, 2013).
However, in order to compute an approximated solution, all of them refer to the
linear programming relaxation of Riesen and Bunke (2009), which reduces to
the above-mentioned MWM formulation of the binary diffing problem where the
similarity score of each pair of nodes is computed with respect to their respective
number of incident edges.

In our work, we propose to address the binary diffing problem as a GED
problem. In Chapter 3 we introduce a proper formulation of the problem and
prove that it is equivalent to a constraint integer quadratic program known
as the network alignment problem (Burkard, 1984). In this form, the globally
optimal edit-path can be efficiently approximated by means of a message passing
framework presented in Chapter 4.

21

Chapter 3

Problem Statement

In this chapter, we formalize our definition of the binary diffing problem as a
graph edit distance problem. We then introduce another seemingly different
formulation of the problem through an integer quadratic program, known as the
network alignment problem (NAP) (Klau, 2009), for which efficient approximate
solutions have been proposed. We finally prove that under mild restrictions over
the set of possible edit-operations, both formulations are actually equivalent.
We conclude this chapter by discussing the determination of the edit-operation
costs, as well as the different assumptions induced by the restrictions.

3.1 Binary diffing as a graph edit distance prob-

lem

In our work, we define the binary diffing problem as the problem of aligning call
graphs. We want to map functions from a program into functions of another
such that they share similar functionalities (node content similarity) and they
call other functions in a similar way (induced edge similarity). As a result, when
a matching is satisfactory, the remaining differences between the call graphs
can be interpreted as meaningful modifications from a program to the other.
A natural representation of such correspondence implies an edit path and the
binary diffing can thus be formulated as an instance of a call graph edit distance
problem (Riesen and Bunke, 2009).

Let us consider two binary executables A and B. We assume that adapted
disassembly tools are used to represent them by their respective call graphs
GA = (VA, EA) and GB = (VB, EB). The vertices VA = {1, . . . , n} and VB =
{1′, . . . ,m′} represent the functions of A and B. The edges EA ⊂ {(i, j)|i, j ∈
V 2
A , i 6= j} and EB ⊂ {(i′, j′)|i′, j′ ∈ V 2

B, i
′ 6= j′} represent the function calls. For

instance, the edge (i, j) ∈ EA encodes the fact that function i calls function j in
program A. Without loss of generality, we assume that both call graphs do not
include self-loops, i.e. recursive calls. We discuss in Section 3.4.1 how they can
be accounted for at the level of the function similarity calculation.

We assume given a measure σV that evaluates the similarity between two
functions i ∈ VA and i′ ∈ VB such that σV (i, i′) = si,i′ . Similarly, the measure σE
computes the similarity between the function calls (i, j) ∈ EA and (i′, j′) ∈ EB
in A such that σE((i, j), (i′, j′)) = sij′,i′j′ . We also assume that the two similarity
measures give values in [0, 1]. As a result, we can easily convert similarity scores
into dissimilarity scores, or costs, using di,i′ = 1 − si,i′ and dij,i′j′ = 1 − sij,i′j′ .

22 Chapter 3. Problem Statement

Operation Cost
substitute function c(i→ i′) = di,i′
delete function c(i→ ε) = di,ε
insert function c(ε→ i′) = dε,i′

substitute call c((i, j)→ (i′, j′)) = dij,i′j′
delete call c((i, j)→ ε) = dij,ε
insert call c(ε→ (i′, j′)) = dε,i′j′

Table 3.1: Program edit operations and respective costs.

Finally, we assume that each node i ∈ VA and edge (i, j) ∈ EA is given a non-
negative value di,ε and dij,ε corresponding to the cost of removing the function i
or the call (i, j) in the graph A. Similarly, the values dε,i′ and dε,i′j′ characterize
the cost of insertion of each function i′ and call (i′, j′) in graph B.

Let us finally consider six possible program edit operations and their respec-
tive costs given in Table 3.1. We denote any series of graph edit operations
(op1, . . . , opk) an edit path, and define P(A,B) as the set of all possible edit
paths that transform GA into GB. Formally, if (op1, . . . , opk) ∈ P(A,B), then
opk(opk−1(. . . op1(GA) . . .)) = GB (see Figure 3.1).

The definition of an edit path is quite permissive. In order to control its
versatility, we must attach few constraints on P(A,B):

� every node and edge in both graphs A and B must be subject to one
and only one edit operation. In other words, every element of A must be
either deleted or substituted once, and every element of B must be either
inserted or substituted once

� every edge incident to a deleted node must be deleted and every edge
incident to an inserted node must be inserted

� an edge (i, j) ∈ EA is substituted by (i′, j′) ∈ EB if and only if i is
substituted by i′ and j is substituted by j′.

Furthermore, since they consist in an ordered sequence of operations, multiple
edit paths may encode the exact same graph transformation. For instance, a
path may remove node i before node j while another path can do the opposite
scheme. In our work, we are only interested in the resulting overall graph
transformation, no matter the order in which the operations are performed.
Therefore, we introduce an arbitrary order on both the nodes and edges such
that no two edit path can consist in the same collection of edit operations.

In the rest of this thesis, we abusively refer to this set of slightly restricted
edit-paths as P(A,B). Notice that, though these constraints might appear to
be quite restrictive, they are actually mechanically satisfied for most edit cost
definitions. We provide more details in the Section 3.4.

Following these notations, our formulation of the binary diffing problem
consists in finding the minimal-cost edit path P ∗ that transforms A into B.

3.2. Binary diffing as a network alignment problem 23

Deletions Substitutions Insertions

Deletions InsertionsSubstitutions Deletions InsertionsSubstitutions

Node edit operations Edge edit operations

Figure 3.1: Decomposition of an edit path P transforming
graph GA into GB. The sequence of operations of an edit path
can be dissociated into three different steps. All unnecessary
nodes and edges are first removed from GA. Then, the contents
of the all remaining elements are substituted into the one of
their corresponding item in GB. Finally, extra nodes and edges
are inserted in order to exactly recover GB. Each of these edit
operations has a particular cost, and the graph edit distance
problem consists in finding the edit path P ∗ whose constitutive

operations have the overall minimum cost.

Formally:

P ∗ =arg min
P∈P(A,B)

C(P)

= arg min
(op1,...,opk)∈P(A,B)

k∑
i=1

c(opi)
(GED)

3.2 Binary diffing as a network alignment prob-

lem

We now reformulate our definition of the binary diffing problem as an equivalent
instance of a network alignment problem. To begin with, we must introduce the
following notations.

24 Chapter 3. Problem Statement

We first describe the function mapping via a binary vector x ∈ {0, 1}|VA|×|VB |
(where |U | denotes the cardinality of the set U) such that xii′ = 1 if and only if
function i in A is matched with function i′ in B. In order to ensure that each
function in A is matched to at most one function in B and vice versa, x must
fulfill the following constraints:

∀i ∈ VA,
∑
j′∈VB

xij′ ≤ 1, ∀i′ ∈ VB,
∑
j∈VA

xji′ ≤ 1 (3.1)

A good matching should associate similar functions that have also similar
calling patterns. This can be captured in a large cost matrix W ∈ R|VA|2×|VB |2

defined as follows:

Wii′jj′ =

wii′ if ii′ = jj′,

wii′jj′ if (i, j) ∈ EA and (i′, j′) ∈ EB,
0 otherwise.

(3.2)

with:

wii′ = −di,i′ + di,ε + dε,i′ , wii′jj′ = −dij,i′j′ + dij,ε + dε,i′j′

Using these definitions, it can be shown that computing the optimal edit
path of (GED) is equivalent to solving the following network alignment problem:

x∗ =arg max
x

xTWx

subject to ∀i ∈ VA,
∑
j′∈VB

xij′ ≤ 1

∀i′ ∈ VB,
∑
j∈VA

xji′ ≤ 1

x ∈ {0, 1}|VA|×|VB |

(NAP)

We provide a proof in the next section.

3.3 Equivalence between graph edit distance

and network alignment problem

In the rest of this document, we denote X the solution set of (NAP), i.e. the
set of all binary vectors x ∈ {0, 1}|VA|×|VB | satisfying the constraints (3.1).

3.3.1 Formal proof

In the following proof, we first show that there is a one-to-one correspondence
between P(A,B), the solution set of (GED), and X , the one of (NAP). Then
we show that both objective functions are equivalent up to a sign and a constant
term. As a consequence, since both problems optimize an equivalent objective
function on an equivalent solution set, they can be considered equivalent.

3.3. Equivalence between graph edit distance and network alignment problem25

Lemma 1. The function φ : P(A,B)→ X , φ(P) = x such that i→ i′ ∈ P ⇔
xii′ = 1 is bijective.

Proof. We first show that φ is surjective, i.e. that any binary vector x ∈ X may
result from a valid edit path P ∈ P(A,B).

Consider any vector x ∈ X , and let us design an edit path P as follows: First
substitute both nodes and edges of graph A by those of graph B according to
vector x such that:

� i→ i′ ∈ P, ∀(i, i′) ∈ VA × VB such that xii′ = 1

� (i, j)→ (i′, j′) ∈ P, ∀((i, j), (i′, j′)) ∈ EA × EB such that xii′xjj′ = 1

Then remove all remaining nodes and edges in graph A:

� i→ ε ∈ P, ∀i ∈ VA such that ∀i′ ∈ VB, i→ i′ /∈ P

� (i, j)→ ε ∈ P, ∀(i, j) ∈ EA such that ∀(i′, j′) ∈ EB, (i, j)→ (i′, j′) /∈ P

And finally insert all missing nodes and edges in graph B:

� ε→ i′ ∈ P, ∀i′ ∈ VB such that ∀i ∈ VA, i→ i′ /∈ P

� ε→ (i′, j′) ∈ P, ∀(i′, j′) ∈ EB such that ∀(i, j) ∈ EA, (i, j)→ (i′, j′) /∈ P

From the first substitution step, it is clear that φ(P) = x. Moreover, P effectively
transforms graph A into B since after substituting a set of nodes and edges from
A to B, it removes all remaining elements of A and inserts all missing elements
in B. Finally, as x satisfies the constraints (3.1), every node and thus edge in
both graph is subject to one and only one edit operation. Since, by design, P
fulfills the other conditions, it consists in a valid edit path. Consequently, φ is
surjective.

We now show that φ is injective, i.e. that any two edit paths P, P ′ ∈ P(A,B)
such that P 6= P ′ necessarily characterize two different binary vectors x 6= x′

with x = φ(P) and x′ = φ(P ′).
It is clear that if the set of substituted nodes in P and P ′ differs, then x 6= x′.

Moreover, as any node must be subject to a single operation, any difference in
the set of inserted nodes in P and P ′ necessarily implies a difference in their
node substitution operations. Therefore, either both P and P ′ proceed to the
same node insertions, or x 6= x′. This property holds true for the set of deleted
nodes. Furthermore, if P and P ′ share the same set of edit operations on the
nodes, they must also have the same set of operations on the edges incident to
both inserted and deleted nodes, since these operations are constraint by our
definition of valid edit path. Finally, the remaining differences may come from
the edition of edges incident to two substituted nodes. However, here again
our definition of a valid edit path is unambiguous: if both graphs include an
edge between two substituted nodes, the edge must be substituted from A to
B, otherwise, the edge is either removed or inserted. Therefore, any difference
in the constitutive edit operation of both P and P ′ implies a difference in their
respective image x and x′ according to φ. As a consequence, function φ is
injective, surjective, and thus bijective.

26 Chapter 3. Problem Statement

Lemma 2. Let P ∈ P(A,B) be an arbitrary edit path and let x = φ(P) ∈ X be
its equivalent representation according to Lemma 1, then C(P) = −xTWx+C(P0)
where C(P0) is a constant term.

Proof. For the sakes of clarity, we represent the cost of the edit path P as
the sum of its node and edge operation costs, i.e. C(P) = CV (P) + CE(P).
Moreover, we introduce the following notations to represent the cost of inserting
or removing all nodes and all edges in each graph:

V A
0 =

∑
i∈VA

di,ε, V B
0 =

∑
i′∈VB

dε,i′ , EA
0 =

∑
(i,j)∈EA

dij,ε, EB
0 =

∑
(i′,j′)∈EB

dε,i′j′

Let us first describe CV (P), the cost of the node operations in P . We
distinguish the different possible operations such that:

CV (P) =
∑

i→i′∈P

c(i→ i′) +
∑
i→ε∈P

c(i→ ε) +
∑

ε→i′∈P

c(ε→ i′)

=
∑

i→i′∈P

di,i′ +
∑
i→ε∈P

di,ε +
∑

ε→i′∈P

dε,i′

=
∑

i→i′∈P

di,i′ − di,ε − dε,i′ +
∑

i→i′∈P

di,ε + dε,i′ +
∑
i→ε∈P

di,ε +
∑

ε→i′∈P

dε,i′

=
∑

i→i′∈P

di,i′ − di,ε − dε,i′ +
∑
i∈VA

di,ε +
∑
i′∈VB

dε,i′

=
∑

i→i′∈P

di,i′ − di,ε − dε,i′ + V A
0 + V B

0

where we used the fact that
∑

i→i′∈P xi +
∑

i→ε∈P xi =
∑

i∈VA xi.
In order to evaluate the cost of all the edges operations, we must consider the

different possible configurations for pairs of nodes. But first, we must introduce
the following notations:

δAij =

{
= 1, if (i, j) ∈ EA,
= 0, otherwise.

δBi′j′ =

{
= 1, if (i′, j′) ∈ EB,
= 0, otherwise.

We also notice that the edition cost of edges incident to two substituted
nodes is: ∑

i→i′∈P

∑
j→j′∈P

dij,i′j′δ
A
ijδ

B
i′j′ + dij,εδ

A
ij(1− δBi′j′) + dε,i′j′(1− δAij)δBi′j′

=
∑

i→i′∈P

∑
j→j′∈P

(dij,i′j′ − dij,ε − dε,i′j′)δAijδBi′j′

+
∑

i→i′∈P

∑
j→j′∈P

dij,εδ
A
ij +

∑
i→i′∈P

∑
j→j′∈P

dε,i′j′δ
B
i′j′

3.3. Equivalence between graph edit distance and network alignment problem27

We may now evaluate CE(P) such that:

CE(P) =
∑

i→i′∈P

∑
j→j′∈P

dij,i′j′δ
A
ijδ

B
i′j′ + dij,εδ

A
ij(1− δBi′j′) + dε,i′j′(1− δAij)δBi′j′

+
∑

i→i′∈P

∑
j→ε∈P

dij,εδ
A
ij +

∑
i→i′∈P

∑
ε→j′∈P

dε,i′j′δ
B
i′j′

+
∑
i→ε∈P

∑
j→j′∈P

dij,εδ
A
ij +

∑
ε→i′∈P

∑
j→j′∈P

dε,i′j′δ
B
i′j′

+
∑
i→ε∈P

∑
j→ε∈P

dij,εδ
A
ij +

∑
ε→i′∈P

∑
ε→j′∈P

dε,i′j′δ
B
i′j′

=
∑

i→i′∈P

∑
j→j′∈P

(dij,i′j′ − dij,ε − dε,i′j′)δAijδBi′j′

+
∑
i∈VA

∑
j∈VA

dij,εδ
A
ij +

∑
i′∈VB

∑
j′∈VB

dε,i′j′δ
B
i′j′

=
∑

i→i′∈P

∑
j→j′∈P

(dij,i′j′ − dij,ε − dε,i′j′)δAijδBi′j′ + EA
0 + EB

0

Putting all together, and denoting C(P0) = V A
0 + V B

0 + EA
0 + EB

0 , the cost
of any edit path P is:

C(P) = CV (P) + CE(P)

= C(P0) +
∑

i→i′∈P

di,i′ − di,ε − dε,i′

+
∑

i→i′∈P

∑
j→j′∈P

(dij,i′j′ − dij,ε − dε,i′j′)δAijδBi′j′

= C(P0)−
∑

i→i′∈P

wii′ −
∑

i→i′∈P

∑
j→j′∈P

wii′jj′δ
A
ijδ

B
i′j′

= C(P0)−
∑

ii′∈VA×VB

xii′wii′ −
∑

ii′∈VA×VB

∑
jj′∈VA×VB

xii′xjj′wii′jj′δ
A
ijδ

B
i′j′

= C(P0)−
∑

ii′∈VA×VB

∑
jj′∈VA×VB

xii′wii′jj′xjj′

= C(P0)− xTWx

where we simply use the fact that di,i′ − di,ε − dε,i′ = −wii′ and similarly for
wii′jj′ .

Proposition 1. The formulation of the graph edit distance problem GED is
equivalent to the network alignment problem NAP.

Proof. The proof immediately results from Lemmas 1 and 2.

3.3.2 Related work

Other works previously attempt to formalize relationships between the graph
edit distance problem and other graph matching problems. For instance, it has

28 Chapter 3. Problem Statement

been shown that the maximum common edge subgraph problem is equivalent to
a special case of the graph edit distance under particular edit operation costs
(Bunke, 1999; Bunke, 1997; Brun, Gaüzere, and Fourey, 2012). Moreover, Riesen,
Neuhaus, and Bunke (2007) proposed to compute a sub-optimal solution to the
GED problem by solving a maximum weight matching problem instance. In
order to enable node insertion and deletion, their model expands the pairwise
node substitution cost matrix of size |VA| × |VB| to a larger matrix of size
|VA|+ |VB| × |VA|+ |VB|. Bougleux et al. (2017) then extended this approach
and introduced a network alignment formulation of the GED. However, this
model requires a cost matrix of size (|VA|+ |VB|)2× (|VA|+ |VB|)2 which is much
larger than our |VA|2×|VB|2 formulation. Finally, Lerouge et al. (2017) proposed
another network alignment framework with the same cost matrix as ours, but
requiring |VA||VB|+ |EA||EB| variables and |VA|+ |VB|+ 2|VB||EA| constraints
whereas ours only requires respectively |VA||VB| and |VA|+ |VB|.

Recently, independently of our work, Raveaux (2021) proved that the formu-
lation of Lerouge et al. (2017) could be further simplified and actually correspond
to our quadratic integer formulation. However, it requires stronger constraints
on the set of possible edit paths.

3.4 Graph edit operation costs

In the previous sections of this chapter, we introduced a quite natural definition
of the binary diffing problem and propose an equivalent reformulation into a
network alignment problem. In this section, we discuss the definition of the edit
operation costs and propose two simple measures of function and call similarity.

3.4.1 Edit operation relationships

Local vs global similarity trade-off

The definition of the edit operation costs of any GED formulation usually relies
on carefully chosen data-based considerations (see e.g. Bourquin, King, and
Robbins (2013)). Costs have obviously an effect on the quality of the matching
but also on the ability of a solver to find an approximately optimal solution. In
particular, the local similarity scores between functions might be inconsistent
with the global edge structure of both call graphs, and therefore, there may
be no solution that is both locally and globally optimal. As a consequence, a
matching results from an inherent trade-off between local node similarity and
global graph topology.

In order to control this trade-off, we may decompose the matrix W into two
terms and weight them accordingly. We define W1 as the diagonal matrix in
R|VA|2×|VB |2 with diagonal terms W1ii′ii′ = wii′ and W2 as W2 = W −W1. Thus,
matrix W1 gathers the node similarity scores while W2 contains all the potential
induced overlapping edges, or “squares”.

Given a trade-off parameter α ∈ [0, 1], the objective function of (NAP) can
thus be modified into:

αxTW1x + (1− α)xTW2x

3.4. Graph edit operation costs 29

Deletion/insertion
scheme

Substitution
scheme

Figure 3.2: Ambiguity between substitution and deletion -
insertion edit schemes. The substitution of the node 2 in GA by
node 3′ in GB, as well as the one of their corresponding edges
can always can be alternatively obtained by first removing 2 and
all its incident edges and then inserting the desired 3′ along with

its adjacent edges in GB.

In terms of graph edit operations, this reformulation simply consists in
appropriately weighting the original edit operation costs.

Notice that extreme values for α correspond to some interesting particular
cases. Indeed, when α = 1, our problem reduces to a maximum weight matching
(MWM) strategy which disregards the function calls and produces a mapping
solely based on the function similarity. Furthermore, the case α = 0 corresponds
to an instance of the maximum common edge subgraph (MCS) problem where
function similarities are not used. Therefore, our formulation can be seen as a
balanced strategy between the two most common binary code matching methods.

Substitution vs deletion - insertion trade-off

The versatility of the graph edit distance problem offers multiple possible paths
to transform an element in graph A into one in B. In particular, any edit path
results from an inherent choice between substituting two elements or removing
the element in A and then insert the one in B. In our problem definition, we
introduce a restriction on the edge edit operations such that this choice does
not apply: any edge incident to two substituted nodes must be substituted, and
can not be removed and then inserted. However, this ambiguity remains for
the node operations: any two nodes in both graphs can always result from a
substitution, or a deletion followed by an insertion (see Figure 3.2). Notice that
both edit schemes provide a completely different interpretation in the context
of binary diffing. For instance, an analyst would pay different attention to a
patched function than to a newly inserted one.

30 Chapter 3. Problem Statement

The choice of favoring a substitution over a deletion - insertion scheme
depends on the cost of both patterns. From the previous proof, we may express
the relative cost of substituting two nodes i ∈ VA and i′ ∈ VB within an edit
path P such that:

di,i′ − di,ε − dε,i′ +
∑

j→j′∈P

(dij,i′j′ − dij,ε − dε,i′j′)δAijδBi′j′

This relative cost perfectly highlights the trade-off between substituting
both nodes or deleting node i in order to later insert node i′. On one hand,
the substitution of both nodes has a cost di,i′ . On the other hand, since each
node must be subject to an edit operation, performing a substitution implicitly
prevents to pay the cost of both an insertion and a deletion di,ε + dε,i′ . Such
balance is summed up in the first part of the above equation. Furthermore, the
substitution of two nodes immediately implies the substitution of their respective
edges that are both incident to other substituted nodes, again, the cost of these
operations can be view as the cost of substitution to which is subtracted the
avoided cost of insertion and deletion.

As a consequence, an edit path would prefer substituting both nodes instead
of performing a delete then insert scheme only if:

di,i′ − di,ε − dε,i′ +
∑

j→j′∈P

(dij,i′j′ − dij,ε − dε,i′j′)δAijδBi′j′ ≤ 0

which, following the notation of the proof, corresponds to the cases where:

wii′ +
∑

jj′∈VA×VB

xjj′wii′jj′ ≥ 0

In other words, in our graph edit formulation, the choice of substituting two
functions is not only based on their content similarity, but also considers the
one of their induced common edges.

Therefore, by leveraging the trade-off parameter α introduced above, we may
weight the node and edge similarity scores in order to precisely control to what
extent two functions that have a quite different content similarity but induce
many similar edges should be matched.

Edit path assumptions

We finally discuss the different restrictions introduced all along our problem
definition.

To begin with, we assumed that both graph A and B do not include self-loops,
i.e. recursive functions. This assumption may be very restrictive since modern
programs often require such implementation patterns. In fact, self-loops can be
easily handled. Indeed, in terms of edit operations, the cost of substituting two
recursive functions i ∈ VA and i′ ∈ VB is simply its original node substitution
cost to which we add the cost of substituting both function self-loops. Therefore,
this cost can be fully characterized by a slightly modified node similarity score
ˆdi,i′ such that ˆdi,i′ = di,i′ + dii,i′i′ . In other words, any self-loop can be considered

3.4. Graph edit operation costs 31

as an attribute of the function, if it is properly taken into account by the node
similarity measure. Similarly, the cost of removing the recursive function i
becomes d̂i,ε = di,ε + dii,ε.

We also proposed a constrained definition of the possible edit path. First, we
restrict valid edit paths to perform respectively a delete or insert operation on
edges incident to deleted or inserted nodes. Such definition is quite common in
other works (Riesen, 2016), though it could be formulated otherwise. It mostly
aims at properly distinguishing a node substitution from a deletion - insertion
scheme.

Moreover, we restrict a valid edit path to perform one and only one operation
per constitutive elements of both graphs. Here again, similar restrictions are
commonly introduced in other works (Bougleux et al., 2017; Raveaux, 2021).
Therefore, no function nor call could be, for instance, inserted then substituted,
inserted then removed or substituted multiple times. It is clear that all of these
edit patterns are redundant, since an equivalent edition could be obtained from a
single (or even no) edit operation. As a consequence, they would still be optimal
only if the unnecessary operations have zero cost (negative costs are forbidden
by definition). Notice that zero cost operations may be encountered in several
configurations, in order to address special cases of the GED (see e.g. (Bunke,
1997)). In such a case, an optimal edit path could include an infinite number
of free operations if it was not forbidden by our definition. On the contrary, in
the case of non-metric similarity measure, when the cost of substituting two
identical elements is strictly positive, our definition guaranties that this cost is
taken into account, since it can not be replaced by the equivalent but completely
free edition scheme that consists in performing no operation.

Finally, we constraint any solution edit path to favor edge substitution over
edge deletion then insertion whenever it is possible. Such a condition is truly
restrictive, since it may result in a sub-optimal edit-path when the cost of
substitution exceeds the one of both deletion and insertion. However, in practice,
edit costs often satisfy dij,i′j ≤ dij,ε + dε,i′j′ , in which case the restriction does
not apply (Blumenthal et al., 2018).

3.4.2 Similarity measures

Function content similarity

As mentioned in the previous chapter, many different methods have been pro-
posed to measure the similarity of two binary functions. Arguably, the quality
of this measure may significantly affect the performance of the diffing process.
However, the purpose of our work is to identify and evaluate the benefit of
the proposed matching strategy only. Therefore, we propose to use a simple
syntactic-based function similarity metric σV as a baseline.

Our measure consists in a weighted Canberra distance (Lance and Williams,
1966) over the set of features given in Table 3.2. During the computation, each
feature is properly weighted according to its type. We distinguish content-based
(instructions), topological-based (CFG layout), and neighborhood-based features
(CG callers and callees). Notice that one of our features refers to an instruction
classification. This classification encodes each instruction using the class of its

32 Chapter 3. Problem Statement

Type Weight Features

Content 23
total number of instructions
number of instructions per class
max number of bblock instructions

Topology 19

number of bblocks
number of jumps
max number of bblock callers
max number of bblock callees

Neighboorhood 7
number of function callers
number of function callees

Table 3.2: Function features and respective weights used in
our proposed similarity measure. The final similarity score is

computed using the Canberra distance.

mnemonic and the ones of its potential operands. Our taxonomy consists in
respectively 34 and 13 different mnemonic and operand classes.

Since most matching algorithms are sensitive to ties between function dis-
tances, we introduce a small perturbation to the resulting similarity scores.
Assuming that the denomination of the functions is consistent with their order
in terms of entry address, the similarity between function i in A and i′ in B is
being increased by the value 1− |i−i′|

max(|VA|,|VB |)
.

Function call similarity

In order to measure the similarity of two function calls, we simply use a 0/1
indicator, i.e. σE((i, j), (i′, j′)) = 1 if and only if (i, j) ∈ EA and (i′, j′) ∈ EB.
Therefore, the matrix W2 can be computed through the Kronecker product of
the affinity matrix of graphs A and B.

Insertion and deletion costs

Finally, in order to compare with other state of the art methods, and because,
in general, binary diffing favors recall over precision, we set all the insertion
and deletion operation costs to di,ε = dε,i′ = dij,εε = dεε,i′j′ = 1

2
. As a result, the

constitutive weights of matrix W (3.2) simply become:

wii′ = −di,i′ + di,ε + dε,i′

= 1− di,i′ + di,ε + dε,i′ − 1

= si,i′ +
1

2
+

1

2
− 1 = si,i′

Similarity, we have wii′jj′ = sij,i′j′ .
This configuration forces the algorithm to produce a complete mapping even

when some assignments are of poor relevance, since the cost of deleting then
inserting a node is equal to 1, which is always more expensive than the cost of
substituting both nodes.

3.4. Graph edit operation costs 33

In this Chapter, we proposed a formal definition of the binary diffing prob-
lem as a graph edit distance problem, and proved that it actually reduces to an
instance of the network alignment problem. In this form, the optimal edit-path
can be efficiently approximated by means of a message passing framework. We
provide a complete presentation to this framework in Chapter 4.

35

Chapter 4

Message-passing framework for
the network alignment problem

In this chapter, we present a novel algorithm to address the network alignment
problem. It is inspired from a previous model, named NetAlign, proposed by
Bayati et al. (2009) and designed to efficiently approximate a solution via the
max-product algorithm. We first give a short introduction to the max-product
algorithm, and then present in more details the original model of NetAlign. We
finally propose several modifications to this model, designed to significantly speed
up the message updates as well as to enforce their convergence. We conclude
the chapter by reviewing different other approaches proposed to address the
network alignment problem.

4.1 Max-product algorithm

A graphical model is a way to represent a class of probability distributions
over some random variables (Koller and Friedman, 2009). The main interest
of graphical model is to efficiently encode the local interactions between the
variables in order to leverage potential conditional independence, and thus to
reduce the overall combinatorial complexity of the distribution. There is a
strong link between inference in graphical models and optimization problems,
especially when we consider maximum a posteriori (MAP) inference. MAP
inference is the problem of finding the most probable value of some of the random
variables given the value of the rest of the variables. A particular case of MAP
inference reduces to finding the mode of the probability distribution, i.e. the
most probable value of all its variables. Therefore, if a graphical model encodes
both the objective function and the constraints of an optimization program
into a probability distribution such that it assigns maximum probability to the
optimal solution of the problem, then there is an equivalence between finding
the mode of the distribution and solving the program.

The max-product (or min-sum) algorithm is one of the most efficient algorithm
for performing MAP inference (Koller and Friedman, 2009). The idea of max-
product algorithm is to estimate the max-marginals of each variable in the
model, i.e. the marginal distribution of a single variable, given the optimal
assignment of all the others. At first sight, the benefit of maximizing multiple
times the joint distribution over all the variables but one, instead of directly
computing its mode is not clear. Indeed, both problems could be considered

36 Chapter 4. Message-passing framework for the network alignment problem

of the same complexity for sufficiently large graphical models or small variable
support. In fact, by means of an adapted message passing implementation, the
max-marginals can be estimated all at the same time, by recycling redundant
intermediate local maximizations (Loeliger, 2004).

The max-product algorithm has originally been designed to perform MAP
inference on tree-like graphical models. In this case, it was proven that the
messages converge to the true max-marginals in a finite number of iteration,
enabling to exactly determine the mode of the joint distribution (Pearl, 1988).
The algorithm was later extended to more complex graphical models containing
cycles, providing excellent empirical results in many models, though no theoreti-
cal guarantees are available in the general case (see e.g. Berrou, Glavieux, and
Thitimajshima (1993), Malioutov, Johnson, and Willsky (2006), Allahverdyan
and Galstyan (2009), Meltzer, Yanover, and Weiss (2005), Bayati, Shah, and
Sharma (2008), Huang and Jebara (2007), and Sanghavi, Malioutov, and Will-
sky (2007)). In the rest of this section, we propose a short introduction to
the max-product algorithm. We first introduce a particular representation of
a graphical model distribution via a factor graph. Then we present the max-
product algorithm in the case of tree-like graphical models. Finally, we show
how the algorithm applies to models with cycles.

4.1.1 Factor-graph

A factor graph is a graphical representation of the factorization of a function. It
consists in a bipartite graph, where the first part of the nodes, referred to as
variable nodes, represent the global variables of the function, whereas the second
part, called factor nodes, correspond to the different factors of the function.
Edges in this graph connect factors with their corresponding arguments.

As an example, let us consider the following probability distribution pX :
x = {x1, . . . , x7} ∈ A7 → [0, 1] for any finite alphabet A, such that:

PX(x1, . . . , x7) = fa(x1)fb(x1, x2)fc(x2, x3, x4)fd(x4, x5, x6, x7)fe(x5)

=
∏
k

fk(x∂fk)

where we denote x∂fk ⊂ x as the subset of variable in x that are arguments of
factor fk.

According to the above definition, such distribution is compatible with
the factor graph introduced in Figure 4.1. Indeed, the variables {X1, . . . , X7}
correspond to the variable nodes whereas the factors {fa, . . . , fe} are encoded
via the factor nodes. Notice that this bipartite graph may also be represented
through a tree-like graphical model as pictured in Figure 4.2, in order to best
highlight the conditional dependencies of each variables.

A factor graph is a very useful representation of a model distribution that
enables the design of a powerful message passing algorithm in order to effi-
ciently estimate each of its max-marginal distributions. Furthermore, it is very
convenient to encode constrained optimization program since it may easily si-
multaneously handle both the objective function and the hard constraints on
the function domain. Indeed, the objective function can be be represented by a

4.1. Max-product algorithm 37

Figure 4.1: The factor graph representation of the distribution
function PX in our example

multiplication of energy potentials, while the hard constraints may be managed
by indicator factors which output is null if the constraints are not satisfied. As
a result, we may ensure that the distribution function maxima is reached for
valid value of the variables only.

4.1.2 Estimation of the max-marginals

The max-product algorithm is designed to efficiently compute the max-marginal
distribution of all variables. Following the graphical model introduced above,
the max-marginal of variable X1 corresponds to the distribution:

P̂X1(x) = max
x∈A7

x1=x

PX(x1, x2, x3, x4, x5, x6, x7)

In order to evaluate P̂X1 , we may notice that the overall maximization may
be divided into several partial maximization such that:

P̂X1(x) = fa(x) max
x2

fb(x, x2) max
x3,x4

fc(x2, x3, x4) max
x5,x6,x7

fd(x4, x5, x6, x7) fe(x5)︸ ︷︷ ︸
λfe→X5

(x5)︸ ︷︷ ︸
λfd→X4

(x4)︸ ︷︷ ︸
λfc→X2

(x2)︸ ︷︷ ︸
λfb→X1

(x)

Consequently, we may compute the max-marginal P̂X1(x), by first finding
the optimal values of variables x5, x6 and x7 given each possible value of x4

(λfd→X4(x4)). The resulting local optimum can then be exploited to compute the
best combination of x3 and x4 given a value of x2, i.e. by solving λfc→X2(x2) =

max
x3,x4

fc(x2, x3, x4)λfd→X4(x4). Similarly, the distribution of P̂X1(x) can be finally

retrieved by maximizing x2 based on the later intermediate results (λfb→X1(x)).
These partial optimizations λfk→Xi

enclose all the information of its constitutive
variables regarding their contribution to the joint distribution. Therefore, they
could be seen as ”messages”, describing the optimal configuration of locally
interacting variables.

In fact, computing P̂X1(x) by performing multiple successive smaller max-
imizations is often much less expensive than directly optimizing the joint dis-
tribution. As an illustration, in our example, assuming that all variables are

38 Chapter 4. Message-passing framework for the network alignment problem

Figure 4.2: A tree-like representation of our example graphical
model. this representation best highlights the trajectory of the
messages during the computation. For instance, in order to
estimate the max-marginal of variable X1, the updates propagate
from factor node e to factor node b in order to transmit to variable
node X1 the locally optimal configuration, as described in our

equations.

binary valued, i.e. |A| = 2, the brute-force approach consists in comparing
26 = 64 possible variable combinations twice (one for x1 = 0, and another for
x1 = 1). Meanwhile, the ”divide and conquer” approach above requires only
2×23 +2×22 +2×2 = 28 comparisons. Notice that the computational benefit of
such approach rises exponentially with the size of the support of each variables.

Furthermore, we may notice that some of the messages are also encountered
in the computation of the other max-marginals. For instance, we have:

P̂X2(x) = max
x1

fa(x1)fb(x1, x)max
x3,x4

fc(x, x3, x4) max
x5,x6,x7

fd(x4, x5, x6, x7)fe(x5)

= max
x1

fa(x1)fb(x1, x)λfc→X2(x)

= λfb→X2(x)λfc→X2(x)

Therefore, an optimized implementation could store the intermediate results
of the partial maximization in order to avoid redundant computations and to
estimate all max-marginals at the same time.

Following this insight, Pearl (1982) proposed a message passing framework to
efficiently compute the max-marginals all at once. Messages are transmitted from
node to node along the factor graph following the edges. Therefore, messages
flow either from a variable node to a factor node, or conversely, from a factor
node to a variable node.

We denote µXi→fk the message from the variable node Xi to the factor node
fk. The message is defined for all possible values xi of variable Xi, and gathers
the information coming from all other neighboring factors fk′ ∈ ∂Xi \ fk such as:

µXi→fk(x) =
∏

fk′∈∂Xi\fk

λfk′→Xi
(x∂fk′)

In the case where fk is the only neighbor to Xi, i.e. ∂Xi \ fk = ∅, then µXi→fk
is considered uniformly distributed.

4.1. Max-product algorithm 39

Similarly, the message λfk→Xi
represents the message from the factor node

fk to the variable node Xi. It encloses the optimal configuration of all the
neighboring variables of factor fk, given each value of xi. Formally we have:

λfk→Xi
(x) = max

x∂fk
xi=x

fk(x∂fk)
∏

Xj∈∂fk\Xi

µXj→fk(xj)

Here again, if ∂fk \Xi = ∅, the message λfk→Xi
(x) is simply equal to fk(x).

Following this message passing scheme, the estimated max-marginal of
variable Xi can thus be computed such as:

P̂Xi
(x) ∝

∏
fk∈∂Xi

λfk→Xi
(x∂fk)

And the optimal marginal assignment can thus be deduced such as:

x∗i = arg max
x∈A

P̂Xi
(x)

It can be proven that, in the case of acyclic graphical models, all the estimated
max-marginals converge to the true max-marginals in a finite number of iteration
(Pearl, 1982). Furthermore, the resulting distributions can be used to compute
the exact mode of PX . In fact, if each max-marginal P̂Xi

has a unique optimum
x∗i , then the mode of the joint distribution corresponds to the combination
x = {x∗1, . . . , x∗7} (Wainwright and Jordan, 2008). In the case where the optimal
marginal assignment is not unique, i.e. if at least one max-marginal admits
several maximizers, a back-tracking procedure based on dynamic programming
may be leveraged to retrieve the exact MAP of PX (Wainwright, Jaakkola, and
Willsky, 2004).

4.1.3 Simplifications

Numerical instability is an inherent problem of message passing frameworks on
limited precision machines. In particular, when factors represents conditional
probabilities (as it is the case for tree-like models), the max-product algorithm
may perform many multiplications on values in [0, 1], and consequently may
result in messages extremely close to zero, below machine precision. To overcome
this issue, we usually reformulate the max-product updates into the log domain
such that:

log µXi→fk(x) =
∑

fk′∈∂Xi\fk

log λfk′→Xi
(x∂fk′)

log λfk→Xi
(x) = max

x∂fk
xi=x

log fk(x∂fk) +
∑

Xj∈∂fk\Xi

log µXj→fk(xj)

P̂Xi
(x) ∝

∑
fk∈∂Xi

log λfk→Xi
(x∂fk)

Notice that another reformulation also introduces a negation of the factors,
giving rise to the min-sum algorithm.

40 Chapter 4. Message-passing framework for the network alignment problem

When the variable are binary valued, i.e. A = {0, 1}, computing the messages
for x = 0 and x = 1 is redundant. Therefore, another common simplification

consists in only considering the log-ratios mXi→fk = log
µXi→fk

(1)

µXi→fk
(0)

, and similarly

mfk→Xi
= log

λfk→Xi
(1)

λfk→Xi
(0)

, which enables to halve the computation cost without

loss of information. The estimated max-marginal can then be retrieved such as:

x∗i = arg max
x∈{0,1}

P̂Xi
(x)

= H(log
P̂Xi

(1)

P̂Xi
(0)

)

= H(
∑

fk∈∂Xi

mfk→Xi
)

where H(x) = 1x≥0 is the Heaviside function.

4.1.4 Extension to the ”loopy” case

Though it has been originally designed to perform exact MAP inference on acyclic
factor graphs, the max-product algorithm has been later extended to ’loopy’
graphical models, i.e. models containing cycles. Surprisingly, the algorithm
showed to provide excellent results on many complex models, such as turbo
codes (Berrou, Glavieux, and Thitimajshima, 1993), Markov random fields
(Tappen and Freeman, 2003), clustering (Frey and Dueck, 2007) or several
optimization problems (Gamarnik, Shah, and Wei, 2012; Bayati, Shah, and
Sharma, 2005; Sanghavi, Shah, and Willsky, 2009). However, though particular
model have been extensively analyzed (Weiss, 2000; Weiss and Freeman, 2006;
Berrou, Glavieux, and Thitimajshima, 1993; Meltzer, Yanover, and Weiss, 2005;
Bayati, Shah, and Sharma, 2008; Zhang and Heusdens, 2014), the theoretical
guarantees on the messages convergence, the exactness of the resulting max-
marginals as well as the optimality of the induced MAP are still missing for the
general case. In particular, it is known that for some of these loopy graphs, the
messages may never converge, or oscillate between multiple states over repeated
iterations. Furthermore, excepted for few models, the messages may converge
into local optima that does not actually correspond to the distribution of the
max-marginals.

4.2 Network alignment via max-product belief

propagation

This section is dedicated to the presentation of the original model of Bayati
et al. (2009), named NetAlign, designed to efficiently compute an approximate
solution to the network alignment problem (NAP). We first introduce the factor
graph corresponding to the constraint program NAP and show that finding the
MAP of the model is equivalent to solving the alignment problem. We then
introduce the update scheme that immediately follows from the message passing
framework of Pearl (1982) presented above.

4.2. Network alignment via max-product belief propagation 41

4.2.1 Factor-graph

We first define the set of variable nodes in the factor graph:

X = {Xii′ ∈ {0, 1}, ii′ ∈ VA × VB}

These variables correspond to the matching vector x in NAP, that indicates if
function i ∈ VA matches function i′ ∈ VB.

We then introduce the different factor nodes. We distinguish the factors
encoding the program constraints from the factors providing the energy to the
objective function.

On one hand, the hard-constraints 3.1 of NAP are encoded through Dirac
measures fi : {0, 1}|∂fi| → {0, 1} and gi′ : {0, 1}|∂gi′ | → {0, 1} such that:

∀i ∈ VA, fi(x∂fi) =

{
1 if

∑
j′∈VB xij′ ≤ 1,

0, otherwise.

∀i′ ∈ VB, gi′(x∂gi′) =

{
1 if

∑
j∈VA xji′ ≤ 1,

0 otherwise.

where x∂fi = {xij′ ∈ x, j′ ∈ VB}, and similarly, x∂gi′ = {xji′ ∈ x, j ∈ VA}.
On the other hand, the objective function of 3.2 is encoded via two sets of

factor nodes hii′ : {0, 1} → R+ and hii′jj′ : {0, 1}2 → R+, such that:

∀ii′ ∈ VA × VB, hii′(xii′) = exii′wii′

∀ii′, jj′ ∈ (VA × VB)2 , hii′jj′(xii′ , xjj′) = exii′wii′jj′xjj′

Clearly we have: ∏
ii′

hii′(xii′)
∏
ii′jj′

hii′jj′(xii′ , xjj′) = ex
TWx

By multiplying all the factors, we obtain the joint probability distribution of
our graphical model:

pX(x) =
1

Z

n∏
i=1

fi(x∂fi)
m∏
i′=1

gi′(x∂gi′)
∏
ii′

hii′(xii′)
∏
ii′jj′

hii′jj′(xii′ , xjj′)

=
1

Z

[
n∏
i=1

fi(x∂fi)
m∏
i′=1

gi′(x∂gi′)

]
ex

TWx (4.1)

where the normalization constant Z denotes the partition function of the model.
It is clear that the support of the distribution 4.1 is equivalent to the set of

feasible solutions in NAP. Furthermore, the mode of pX(x) corresponds to the
optimal solution of the NAP.

We provide a representation of our graphical model in Figure 4.3. Notice
that it slightly diverges from the one proposed by Bayati et al. (2009) since
our model does not include the variable nodes Xii′,jj′ , though it is provably
equivalent.

42 Chapter 4. Message-passing framework for the network alignment problem

Figure 4.3: Our proposed model (right) induced by the two
directed graphs GA and GB (left). Notice that some possible
assignments (for instance 1→ 3′) may be arbitrarily excluded,
if considered too unlikely. Each pair of correspondences with
consistent topology (for instance 1 → 2′ and 2 → 3′) forms a
potential square (shaded). It is thus provided with an additional
factor node hii′jj′ that favors their simultaneous assignment

(right).

4.2.2 Message updates

Given the factor graph introduced above, we may apply the message passing
scheme of Pearl (1982). Denoting by m(t) the value of the message m after t
iterations, we have the following updates:

First, the messages from the factor nodes to the variable nodes:

λ
(t)
fi→Xii′

(xii′) = max
x∂fi\{ii′}

fi(x∂fi)
∏
j′ 6=i′

µ
(t)
Xij′→fi

(xij′)

λ
(t)
gi′→Xii′

(xii′) = max
x∂gi′ \{ii

′}
gi′(x∂gi′)

∏
j 6=i

µ
(t)
Xji′→gi′

(xji′)

λ
(t)
hii′→Xii′

(xii′) = hii′(xii′)

λ
(t)
hii′jj′→Xii′

(xii′) = max
xjj′

hii′jj′(xii′ , xjj′)µ
(t)
Xjj′→hii′jj′

(xjj′)

Then, the messages from the variable nodes to the factor nodes:

µ
(t+1)
Xii′→fi

(xii′) = λ
(t)
gi′→Xii′

(xii′)λ
(t)
hii′→Xii′

(xii′)
∏
jj′

λ
(t)
hii′jj′→Xii′

(xii′)

µ
(t+1)
Xii′→gi′

(xii′) = λ
(t)
fi′→Xii′

(xii′)λ
(t)
hii′→Xii′

(xii′)
∏
jj′

λ
(t)
hii′jj′→Xii′

(xii′)

µ
(t+1)
Xii′→hii′jj′

(xii′ , xjj′) = λ
(t)
fi′→Xii′

(xii′)λ
(t)
gi′→Xii′

(xii′) λ
(t)
hii′→Xii′

(xii′)∏
kk′ 6=jj′

λ
(t)
hii′kk′→Xii′

(xii′)

Since xii′ are binary valued, we may apply the log-ratio simplification intro-
duced above. Then, it can be shown (Bayati et al., 2013) that the messages

4.2. Network alignment via max-product belief propagation 43

from the factor nodes to the variable nodes simplify to:

m
(t)
fi→Xii′

= −
(

max
k′ 6=i′

m
(t)
Xik′→fi

)
+

m
(t)
gi′→Xii′

= −
(

max
k 6=i

m
(t)
Xki′→gi′

)
+

m
(t)
hii′→Xii′

= wii′

m
(t)
hii′jj′→Xii′

=
(
wii′jj′ +m

(t)
Xjj′→hii′jj′

)
+
−
(
m

(t)
Xjj′→hii′jj′

)
+

where we use the notations: x+ = max(0, x).
Consequently, the message-passing framework reduces to the following up-

dates:

m
(t+1)
Xii′→fi

= wii′ +m
(t)
gi′→Xii′

+
∑
jj′

m
(t)
hii′jj′→Xii′

(4.2)

m
(t+1)
Xii′→gi′

= wii′ +m
(t)
fi→Xii′

+
∑
jj′

m
(t)
hii′jj′→Xii′

(4.3)

m
(t+1)
Xii′→hii′jj′

= wii′ +m
(t)
fi→Xii′

+m
(t)
gi′→Xii′

+
∑

kk′ 6=jj′
m

(t)
hii′kk′→Xii′

(4.4)

4.2.3 Damping strategy

Since the graphical model of our framework contain cycles (see Figure 4.3), the
theoretical properties applying to the acyclic case do not hold. In particular,
the messages are not guaranteed to converge, and may instead fall into infinite
loops and oscillate between few states (Murphy, Weiss, and Jordan, 1999). To
overcome this issue, most practical implementations include a mechanism that
enforces convergence (Braunstein and Zecchina, 2006; Frey and Dueck, 2007).
In their work, Bayati et al. (2013) propose a damping factor to mitigate the
updates over iterations. The idea is to progressively reduce the contribution of
the most recent updates to the messages values. Once this damping is sufficiently
low, the message updates become insignificant, and the algorithm converges.
Different damping strategies have been proposed. For instance, the default
implementation of Netalign uses the following scheme:

m
(t+1)
Xii′→fi

← γm
(t+1)
Xii′→fi

+ (1− γ)m
(t)
Xii′→fi

m
(t+1)
Xii′→gi′

← γm
(t+1)
Xii′→gi′

+ (1− γ)m
(t)
Xii′→gi′

m
(t+1)
Xii′→hii′jj′

← γm
(t+1)
Xii′→hii′jj′

+ (1− γ)m
(t)
Xii′→hii′jj′

where decreasing parameter γ ∈ [0, 1] controls the influence of the computed
updates on the current messages.

4.2.4 Rounding strategy

After each message-passing iteration, the algorithm must compute the current
best solution based on the lastly transmitted messages, in order to evaluate the

44 Chapter 4. Message-passing framework for the network alignment problem

progress made by the updates, and decide to proceed or not the iterations. In
other words, it must deduce a binary vector x based on the fractional values of the
current messages (4.2)-(4.4). As explained in Section 4.1.2, such solution could
be directly deduced from the current estimated the max-marginal distributions
P̂Xi

. However, since our factor graph is loopy, the resulting assignment vector
could not correspond to the actual MAP of the model. More specifically, it could
violate the matching constraint and thus not belong to the solution set.

In their work, Bayati et al. (2009) proposed several other binarization mech-
anisms, called ”rounding strategies”. The general idea is based on the concept
of auction: it considers the messages mXii′→fi as the auctioning bid of graph
A, i.e. as the current assignment preferences of graph A to map its nodes with
those of graph B. Similarly, the messages mXii′→gi′ are assumed to be the best
choice of graph B, given the one of graph A. Following this insight, the best
current mapping according to graph A corresponds to the one-to-one assignment
x which maximizes its preference scores or, in other words, to the solution of
the following instance of the maximum weight matching instance (MWM):

x∗ =arg max
x

∑
ii′

xii′mXii′→fi

subject to x ∈ X
Similarly, the optimal choice of graph B may be computed by solving the same
linear program with weights mXii′→gi′ .

The proposed rounding strategy thus consists is retrieving the best assign-
ment according to both messages mXii′→fi and mXii′→gi′ , and to compare their
corresponding overall network alignment score. The assignment with the higher
score is considered to be the current best solution.

As a result, this rounding strategy requires to solve two MWM problems
after each iteration. Though it can be done in reasonable time, proceeding to
this computational step after each iteration seriously slows down the algorithm.
Aware of this limitation, the authors suggested to instead compute approximate
solutions by running sub-optimal greedy matching algorithms such as the 1

2
-

approximate matching of Preis (1999). However, later works reported that these
approximations actually harm the resulting network alignment score (Khan
et al., 2012).

We must notice that this rounding strategy is immediately inspired from a
previous model proposed by Bayati, Shah, and Sharma (2008). In fact, it has
been shown that the MWM version of the graphical model, i.e. when α = 1 (or
all mhii′jj′→Xii′

= 0), the message passing scheme is equivalent to the auction
algorithm of Bertsekas (1988). This algorithm is known to efficiently find the
exact solution of the MWM problem when this later is unique. Though our
model is quite different in the general network alignment case, this relationship
may help to understand the messages mechanism and to propose some potential
improvements. We discuss these in more details in Section 4.3.

4.2.5 Complexity

A key property of this graphical model is the local interactions of the message
passing scheme. Indeed, the underlying structure of the factor-graph limits

4.3. Proposed improvements 45

the propagation of updates to the connected components only, and therefore
does not require a dense similarity matrix W . As a consequence, it enables to
discard a priori some potential correspondences in W1 that are considered too
unlikely to be matched, and thus to arbitrarily reduce the size of the problem
solution set. Furthermore, the model is particularly well fitted to leverage the
potential sparseness of matrix W2, since only the messages mhii′jj′→Xii′

with
non-zero weight wii′jj′ must be updated. The quadratic summations in the above
equations can thus be reduced to the only potential edge overlaps, which are of
limited number for sparse graphs (see Figure 4.3).

This property is very useful to control the required computation cost and
memory usage of large problem instances. Indeed, the computational cost of
performing a single iteration of the message passing scheme (4.2)-(4.4) is in
O(nnz(W1) + nnz(W2)) where nnz(x) denotes the number of non-zero entries
in x (Khan et al., 2012). Moreover, due to the rounding strategy, each iteration
terminates by solving two instances of the MWM problem, which can be done
in O(nnz(W1)N +N2 logN) operations, where N = |VA|+ |VB|.

4.3 Proposed improvements

In this section, we introduce three different modifications of the original model
of Bayati et al. (2009), designed to respectively speed up the computation, halve
the memory consumption and enforce the messages convergence. We summarize
the proposed modifications by providing a pseudo-code of our algorithm named
QBinDiff in Algorithm 1.

4.3.1 Solution assignment

We first propose to limit the heavy computational cost of the rounding strategy
of NetAlign by introducing another simple assignment procedure. Our scheme is
based on the current estimated max-marginals. In fact, as presented in Section
4.1, we propose to directly retrieve the most probable value of each variable Xii′

from the log-ratio of its max-marginal distribution P̂Xi
, such that:

x̂ii′ = arg max
x∈{0,1}

P̂Xii′
(x)

= H

(
log

P̂Xii′
(1)

P̂Xii′
(0)

)

= H

(
wii′ +m

(t)
fi→Xii′

+m
(t)
gi′→Xii′

+
∑
jj′

m
(t)
hii′jj′→Xii′

)

Notice that, since our graphical model is loopy, there is no guarantee that
the vector x̂ = {x̂11′ , . . . , x̂nm′} corresponds to the MAP of the joint distribution,
even if the max-marginal P̂Xii′

were exact. In particular, the vector x̂ may
violate the assignment constraint, and thus not even belong to the solution space
X . To overcome this issue, we ensure that the resulting solution determines a
valid matching by removing the correspondences that map a node more than

46 Chapter 4. Message-passing framework for the network alignment problem

Algorithm 1: QBinDiff message passing framework

Input: Node and edge similarity matrices W1 and W2, trade-off
parameter α, relaxation parameter ε, maximum number of
updates n.

Output: Assignment vector x∗

begin
/* balance the node and edge similarity */

W = αW1 + (1− α)W2

/* initialize all messages to zero */

fii′ ← 0 // mXii′→fi
gii′ ← 0 // mXii′→gi′
hii′jj′ ← 0 // mXii′→hii′jj′

xii′ ← 0 // log P̂Xi
(1)− log P̂Xi

(0)
while obj did not converge and n > 0 do

/* compute the updates */

fii′ ← wii′−
(

max
k 6=i

gki′

)
+

−ζii′+
∑

jj′ (wjj′ii′ + hjj′ii′)+−(hjj′ii′)+

gii′ ← wii′−
(

max
k′ 6=i′

fik′

)
+

− ξii′ +
∑

jj′ (wjj′ii′ + hjj′ii′)+− (hjj′ii′)+

xii′ ← fii′ + gii′ − wii′ −
∑

jj′ (wjj′ii′ + hjj′ii′)+ − (hjj′ii′)+

hii′jj′ ← xii′ − hjj′ii′
/* compute the current solution */

x∗ii′ ← H(xii′)
/* compute current objective score */

obj ←
∑

ii′
∑

jj′ x
∗
ii′ (wii′ + wii′jj′)x

∗
jj′

n← n− 1

/* compute a complete solution */

x∗ ← MWM(x)
return x∗

4.3. Proposed improvements 47

once. This results in a partial mapping that provides a lower bound of the
current objective score. After the last iteration, ie. when the objective score
converges or the algorithm reaches the maximum number of iterations, the
resulting assignment is augmented with less confident matches computed by
solving a maximum weight matching instance on the max-marginal log-ratios of
unmatched nodes (see Algorithm 1).

Such assignment procedure proved to provide comparable solutions, while
greatly reducing the computational cost of NetAlign (see Figure 5.1 in Chapter
5).

4.3.2 Updates schedule

In addition to significantly reduce the computational cost of the original model,
we propose to halve the memory consumption by introducing a simple update
scheduling.

Though it was originally designed to compute and transmit the messages all
at the same time, ie. in parallel (Pearl, 1988), the Max-Product algorithm has
shown to perform very well on frameworks that use sequential (or asynchronous)
updates (Tappen and Freeman, 2003; Wainwright, Jaakkola, and Willsky, 2005;
Elidan, McGraw, and Koller, 2006; Globerson and Jaakkola, 2007). Meanwhile,
different updating schemes inspired from auction processes were analyzed by
Bertsekas and Castañon (1991) and applied to its algorithm.

Following this idea, our scheduling tends to reproduce the bidding mechanism
of an auction process. Usually, the different actors wait to see the preferences of
their contenders, and update their prices accordingly. As suggested by Bertsekas
and Castañon (1991), this can be seen as a message passing mechanism. In
our work, we propose to consider the different factor nodes as different bidding
actors, and to compute the messages one after the other, such that every updates
is based on the most recent available information. Formally, the messages
(4.2)-(4.4) become:

m
(t+1)
Xii′→fi

= wii′ +m
(t)
gi′→Xii′

+
∑
jj′

m
(t)
hii′jj′→Xii′

m
(t+1)
Xii′→gi′

= wii′ +m
(t+1)
fi→Xii′

+
∑
jj′

m
(t)
hii′jj′→Xii′

m
(t+1)
Xii′→hii′jj′

= wii′ +m
(t+1)
fi→Xii′

+m
(t)
gi′→Xii′

+
∑

kk′ 6=jj′
m

(t)
hii′kk′→Xii′

Experimental results show that our sequential update scheme slightly speed-
up the update computation and ultimately results in more accurate assignments.
More importantly, since it overwrites the messages at each iteration, this update
scheme halves the memory consumption required by the original framework.

Unfortunately, it appears that the order of updates depends on the sizes of
both graphs. When the graphs to align are of different sizes, following the idea
of auctioning, we suggest to first compute the messages from the smallest graph
to the largest. For instance, the scheme given above assumes that n < m. On
the contrary, if n > m, we suggest to first update the messages m

(t)
X→g, then,

considering its new value, update m
(t)
X→f and finally m

(t)
X→h.

48 Chapter 4. Message-passing framework for the network alignment problem

4.3.3 Auction based ε-complementary slackness

Last but not least, we propose a novel mechanism to enforce message convergence.
Instead of the original damping scheme of Netalign, we introduce a slight
perturbation on the local maximization of the factors based on the concept
of ε-complementary slackness proposed by Bertsekas (1988). This relaxation
has been originally proposed to run the auction algorithm on MWM instances
that admit multiple optimal solutions. The idea is to prevent the saturation of
the complementary slackness with a small constant ε margin. This scheme not
only breaks ties and ensures the convergence but also provably converges to the
optimal solution for a small enough ε (Bertsekas, 1992). Furthermore, for larger
ε values, it shows to generally provide near-optimal assignments in much less
computation time.

As previously mentioned, our model is quite different to a MWM instance in
the general case. In order to adapt the idea of ε-complementary slackness to our
message-passing scheme, we propose the following modifications:

m
(t)
fi→Xii′

= −
(

max
k′ 6=i′

m
(t)
Xik′→fi

)
+

− ξ(t)
ii′

m
(t)
gi′→Xii′

= −
(

max
k 6=i

m
(t)
Xki′→gi′

)
+

− ζ(t)
ii′

where:

ξ
(t)
ii′ =

{
ε if m

(t)
Xii′→fi

6= max
k′

m
(t)
Xik′→fi

,

0 otherwise.

ζ
(t)
ii′ =

{
ε if m

(t)
Xii′→gi′

6= max
k
m

(t)
Xki′→gi′

,

0 otherwise.

Unfortunately, this relaxation suffers from an important drawback: the value
of the introduced ε must be chosen carefully. If set too small, the mechanism
cannot fully play its part and the algorithm may reach a maximum number of
iterations before converging. On the contrary, if too high, it could break ties too
coarsely and strongly favor local optima that might appear to be poor global
solutions. In this case, the algorithm could shortly converge to an unsatisfying
assignment. In their work, Bertsekas (1992) propose an iterative method, called
ε-scaling, to properly setup the relaxation. It consists in repeatedly decreasing ε
after the messages converged, until it reaches a small enough value, known to
provide an optimal solution. In our work, we suggest the opposite scheme. The
model starts with a rather small ε that helps to softly break local ties. Then, as
the algorithm iterates, we propose to raise the relaxation value each time the
messages have not improved the current objective function for few iterations. As
ε rises, the messages are more and more likely to escape their local optimum and
to fall into another better one. As soon as the current assignment improves, ε is
set back to its original value, such that the new local solutions can be carefully
explored. Note that a similar approach has been briefly discussed in Bertsekas
(1992).

4.4. Related work 49

In our experiments, this mechanism shows to significantly reduce the number
of required running iterations as well as to significantly improve the overall final
assignment score (see Figure 5.2 in Chapter 5).

4.4 Related work

Due to its high complexity, the different methods proposed to address the
Network Alignment Problem largely depend on the problem instance, especially
the size and the sparseness of the matrix W . According to our use cases, we
only review in this section methods that apply to graphs of more than several
hundred nodes in reasonable time. Therefore, the literature regarding exact
solution of the NAP is omitted. More details about these methods can be found
in Burkard (1984).

Spectral methods

Amongst the first approaches to approximate the NAP are the spectral methods
that can be distinguished into two main categories. On one hand, spectral
matching approaches are based on the idea that similar graphs share a similar
spectrum (Umeyama, 1988). Thus, they aim at best aligning the (leading) eigen-
vectors of the two affinity matrices (or Laplacians) (Horaud et al., 2011; Patro
and Kingsford, 2012). On the other hand, PageRank methods approximates the
NAP through an eigenvalue problem over the matrix W (Singh, Xu, and Berger,
2008). The idea consists in computing the principal eigenvectors of W , and
to use it as a similarity score of every possible correspondence. The resulting
assignment can then be computed using conventional MWM solvers. Over
the years, several improvements have been proposed to enhance the procedure
(Kollias, Mohammadi, and Grama, 2012; Nassar et al., 2018; Feizi et al., 2020;
Zhang and Tong, 2016).

Quadratic programming approaches

Other common approaches propose to directly address the quadratic program by
means of relaxations. The most common convex relaxation consists in extending
the solution set to the set of doubly stochastic matrices. The relaxed problem
can then be exactly solved using convex-optimization solvers, and is finally
projected into the set of permutation matrices to provide an integral assignment.
However, when the solution of the convex program is far from the optimal
permutation matrix, the final projection may result in an incorrect mapping
(Lyzinski et al., 2016). Other approaches make use of a concave (Zaslavskiy,
Bach, and Vert, 2009) or indefinite (Vogelstein et al., 2015) relaxations. The
induced programs are generally much harder to solve but yield better results
when properly initialized. Note that most methods use a combination of both
relaxations (Zhou, 2012; Zhang et al., 2019).

50 Chapter 4. Message-passing framework for the network alignment problem

Linear programming approaches

Several other methods are based on a linearization of the NAP objective function.
The idea is to reformulate the quadratic program into an equivalent linear
program, and to solve it using conventional (mixed-integer) linear programming
solvers. However, this reformulation usually requires the introduction of many
new variables and constraints, and computing the exact solutions of the linear
program may become prohibitively expensive. In most cases, relaxations must
also be introduced. A successful method, based on the linearization of Adams
and Johnson (1994) and using a Lagrangian dual relaxation have been proposed
by Klau (2009) and later improved by El-Kebir, Heringa, and Klau (2011).

Message passing models

Finally, Bradde et al. (2010) introduced a belief propagation algorithm based
on Bethe free energy approximation. Meanwhile, Bayati et al. (2009) proposed
a message passing framework that has shown promising results. This later is
directly derived from a previous model that provided important results on solving
the MWM using max-product belief propagation (Bayati, Shah, and Sharma,
2005). In our work, we chose to apply this model to our use case..

Sparse models

Note that an important limitation to the NAP is the size of the matrix W that
grows quartically with the size of the graphs. This memory requirement may
become prohibitive for relatively large graphs encountered in many real-world
problems. It is mainly due to the intrinsic nature of the problem which requires
that every potential correspondence is evaluated with regards to other candi-
dates, in order to take into account its topological consistency. In practice, most
methods are designed to efficiently exploit the potential sparseness of the matrix
W . Therefore, they generally apply to sparse graphs only. Moreover, several
approaches propose to also restrain the number of potential candidates (El-Kebir,
Heringa, and Klau, 2011; Bayati et al., 2009) and thus the problem complexity.
This pre-selection may rely on prior knowledge or on arbitrary decision rules.
It mostly aims at preventing the algorithm to compute the assignment score of
highly improbable correspondences. The framework we introduce in the next
section makes use of this interesting feature.

In this Chapter, we provided a complete presentation of our proposed network
alignment solver. In the following Chapters, we perform a series of experiment
to assess the quality of our approach. In Chapter 5, we evaluate our method
as a network alignment solver, and thus compare with other state-of-the-art
methods with regards to the resulting objective scores. Then, in Chapter 6, we
assess the relevance of our overall problem formulation to address the binary
diffing problem by comparing the resulting matchings to true assignments. As a
baseline, we compare to the two most common binary diffing tools, but also to
different other matching approaches, as well as to other state-of-the-art function
similarity measures.

51

Chapter 5

Network Alignment Experiments

In this chapter, we provide an evaluation of our proposed method as a network
alignment solver. Therefore, we compare with other state-of-the-art approaches
only with regards to the objective score of the resulting assignment. Our
evaluation is twofold: we first perform a series of experiments on a set of
randomly generated problem instances and compare the results according to
the different problem configurations. Then we submit to all solvers a set of
real-world problems commonly found in the literature. Our overall results show
that QBinDiff outperforms state-of-the-art methods, and is much faster than
its best competitors. As a consequence, it appears to be the best candidate to
approximate the solution of our diffing instances.

5.1 Baseline

In this set of experiments, we compare our method to other state-of-the-art
NAP solvers. We selected four competitors: Final, Natalie, NetAlign and Path,
often considered as the reference method in their respective solving approach
(see Section 4.4). All these solvers have been launched using the original source
code implementation, and configured with their default parameters.

All the experiments have been conducted on an identical hardware1.

QBinDiff

We provided a complete presentation of QBinDiff in the previous Chapter (see
Section 4.3, or Algorithm 1). Recall that our solver is designed to approximate
the following constrained integer quadratic program NAP:

x∗ =arg max
x

xTWx

=arg max
x

αxTW1x + (1− α)xTW2x

subject to x ∈ X

In all our experiments, unless precisely mentioned, we run our method with
default parameters: ε = 0.5, and within a maximum of 1000 iterations. Moreover,
though we test different configurations, the default trade-off between node and
edge similarity is set to α = 0.75. Notice that in order to ensure that every

1Intel Xeon E5-2630 v4 @2.20GHz

52 Chapter 5. Network Alignment Experiments

solver address the exact same alignment problem, we may adapt their respective
trade-off parameter in order to meet the desired balance.

In this chapter, we refer to QBinDiff as the network alignment solver only,
whereas, in the next chapter, it will designate the whole binary diffing framework,
including the setup of call graph alignment problem, as well as the computation
of all nodes and edges similarity scores.

Final

Following the idea of IsoRank (Singh, Xu, and Berger, 2008), Zhang and Tong
(2016) introduced an algorithm named Final which instantiates the network
alignment problem as an eigenvalue problem and aims at finding the leading
eigenvector of the association matrix W̃2 (normalized matrix W2) in order to
use it as a node similarity scores that includes topological information. They
thus aim at maximizing the following penalized objective function:

J(x) =− α̃||x− diag(W1)||2 + (1− α̃)xT (W̃2 − I)x

=− α̃(||x||2 + ||diag(W1)||2 − 2xTW1x) + (1− α̃)(xT W̃2x− ||x||2)

=2α̃xTW1x + (1− α̃)xT W̃2x− ||x||2 − cste

which lead to the relaxed and penalized formulation of NAP:

x̂ =arg max
x

xT W̃x− ||x||2

subject to x ∈ [0, 1]|VA|×|VB |

where we set α̃ = α
2−α such that the ratio between node and edge similarity

remains the same as in our definition.
It can be shown that this problem reduces to an eigenvalue (PageRank)

problem (Feizi et al., 2020). As a consequence, it may be efficiently approximated
by the iterative power method (Nassar et al., 2018). However, the resulting
vector x̂, corresponding to the leading eigenvector of W̃ , consists in values in
[0, 1], and as such, does not characterize a proper one-to-one assignment. In
order to retrieve such correspondence x∗, the authors suggest to finally solve
the following MWM instance:

x∗ =arg max
x

xT x̂

subject to x ∈ X

Notice that an interesting property of Final is the ability to leverage both
nodes and edges contents in order to introduce additional constraints on the
solution set and to ensure that matched elements share common features. In our
experiments, in order to provide to all solvers the exact same problem instance,
we did not use this property.

Natalie

Natalie is a linear programming approach proposed by El-Kebir, Heringa, and
Klau (2015) that refers to the linearization of Adams and Johnson (1994).

5.1. Baseline 53

The idea is to replace each quadratic combinations xii′xjj′ by a new variable
yii′jj′ such that yii′jj′ ≤ xii′ and yii′jj′ = yjj′ii′ . In order to efficiently handle
the resulting larger problem instance, the authors propose to relax these later
symmetry constraints by introducing Lagrangian multipliers λii′jj′ . As a result,
the relaxed linear program becomes:

x∗ =arg max
x

min
Λ

max
x,Y

αxTW1x + (1− α)W2 • Y + Λ • (Y − Y T)

subject to ∀ii′, jj′, yii′jj′ ≤ xii′

∀i′, jj′
∑
j

yii′jj′ ≤ 1

∀i, jj′
∑
j′

yii′jj′ ≤ 1

Y ∈ {0, 1}|VA|2×|VB |2

x ∈ X

where α is the exact same trade-off ratio than the one in our definition.
The interest of this rather heavy reformulation is that it can be noticed that

both x and Y can be optimized successively by solving multiple smaller MWM
instances.

NetAlign

Netalign is an alignment algorithm proposed by Bayati et al. (2009). It has been
introduced in the previous Chapter (see Section 4.2).

Path

Zaslavskiy, Bach, and Vert (2009) proposed a path-following algorithm, named
Path, that leverages a linear combination between two relaxations of the original
problem NAP. The first relaxation simply expands the solution set of NAP to the
set of doubly stochastic matrices, and thus consists in a convex quadratic program
for which an optimal solution can be found efficiently. However, the resulting
floating-point solution does not usually define a proper mapping. The second
relaxation is based on a concave reformulation of the problem NAP. Though it
is not easier to solve than the original problem, this reformulation ensures that
any local solution would consist in a proper one-to-one correspondence.

The idea of Path is to iteratively track the local optima of NAP through a
path of linear combinations of both problems, starting with the simply convex
relaxation and ending with the strictly concave reformulation.

Notice that, in practice, Path refers to a slightly different formulation of the
graph matching problem. Indeed, it aims at maximizing the following objective
function:

J(X) =α̃xTW1x− (1− α̃)||MAX −XMB||2

=α̃xTW1x− (1− α̃)(||MA||2 + ||MB||2 − 2vec(X)(MA ⊗MB)vec(X))

=α̃xTW1x− (1− α̃)(||MA||2 + ||MB||2 − 2xT (MA ⊗MB)x)

=α̃xTW1x + 2(1− α̃)xT (MA ⊗MB)x + cste

54 Chapter 5. Network Alignment Experiments

where we respectively denote MA and MB as the (potentially weighted) affinity
matrices of graphs A and B, and X as the matrix form of x, i.e vec(X) = x.

As a consequence, this formulation is equivalent to ours only if matrix
W2 = MA ⊗MB, which is the case in all the remaining experiments. Moreover,
we here again set the parameter α̃ = 2α

1+α
in order to fit the desired trade-off

between node and edge similarity.

5.2 Synthetic problems

5.2.1 Benchmark

We first evaluate the relative performances of our proposed algorithm on a set
of synthetic network alignment problems. Though the generated graph samples
appear to be unrealistic compared to actual call graphs, these instances enable
us to closely analyze the behavior of the different solvers according to different
graph properties. We chose to investigate four different parameters:

� the structural properties of the graphs, depending on the generative model

� the edge density of both graphs, controlled by parameter d

� the size of the subgraph common to both graphs, set by parameter n∗

� the ratio of noise on both the nodes and edges of the graphs, ruled by
parameters σN and σE.

Moreover, we also analyze degenerate instances, where the best possible edge
alignment does not fit with the best node content mapping.

In order to create these NAP instances, we follow a simple graph generation
procedure. We first generate two attributed graphs A and B with an arbitrary
number of nodes nA and nB, and an expected edge density d. We then replace
an entire subgraph of n∗ nodes in B with another one, randomly selected in
A. This subgraph includes both the nodes and their respective edges, and
corresponds to the conserved interactions between the two graphs. Notice that,
at this point, this later subgraph aligns perfectly: both its node contents and
edges are exactly the same in both A and B. Therefore, we finally randomly
regenerate a portion σN of nodes and σE of edges in B using the same generative
model. This perturbation adds noise to the conserved interactions.

In order to properly analyze their effect on the resulting assignments, we
modify the parameters of our generative model one after the other. Default
parameters are nA = 500, nB = 650, d = 0.01, n∗ = 400, σN = 0.15, σE = 0.15.
For each different configurations, we generate five problem instances and average
the resulting scores.

In our experiments, we generate our samples using three different random
graph generation models. The model proposed by Erdös and Rényi (2011)
generates edges with equal probability and thus usually results in rather homoge-
neous graphs with binomial degree distribution. On the contrary, the generative
model of Albert and Barabási (2002), also known as Powerlaw model, generates
scale-free networks, where few nodes are likely to have much more edges than the

5.3. Real world problems 55

average. These graph structures are closer to observed call graphs. Finally, we
introduce a custom graph generation model named Motifs. This model concate-
nates a set of small subgraphs sampled from a collection of randomly generated
Erdős–Rényi graphs. Therefore, it results in graphs with multiple recurrent
substructures (motifs) connected with each others by few edges. Though the
resulting graphs are not realistic, the induced alignment problem is more likely
to include several common subgraphs and therefore several local optima.

5.2.2 Results

An overview of our experimental results is provided in Figure 5.1. It shows
that in almost every configuration, QBinDiff outperforms or nearly ties the
best state-of-the-art approaches. Moreover, it appears to perform well on all
three graph generation models whereas other approaches seem to be best suited
for particular graph layouts. For instance, Path generally provides the second-
best solution on Erdos-Renyi graphs, while NetAlign is the best competitor on
scale-free networks. This result is consistent with the solving strategy of both
approaches, since Path seeks a global solution to the (relaxed) NAP problem
and therefore performs well on balanced graphs, whereas NetAlign propagates
local optima information and thus matches well highly connected nodes.

Our experiments also show that our method is more robust to perturbation
on both node contents and edges than its competitor (see Figure 5.1a). In
fact, it seems to be less likely to fall into poor local optima induced by the
noise. In particular, QBinDiff proves to provide much better solutions on very
noisy instances, where the node similarity scores can only be misleading. This
result holds when comparing the solvers’ solutions according to the structural
consistency of the two graphs to be aligned (see Figure 5.1b). However, it
appears that QBinDiff performs similarly to its competitor when the graphs are
structurally very similar. Regarding the density of the graphs, QBinDiff appears
to be slightly better on very sparse graphs in comparison to other methods
(see Figure 5.1c). More importantly, it scales much better than NetAlign,
which computation time quickly becomes prohibitive, even on these rather small
problem instances. Finally, it appears that QBinDiff performs well for every
trade-off parameter α, which means that it relies on a balanced strategy between
matching similar nodes and aligning edges (see Figure 5.1d). Surprisingly, this
observation does not hold for NetAlign that seems to mostly maximize the node
similarity scores, neglecting the induced edge consistency. This result holds when
comparing the results on the degenerate instances, where QBinDiff provides
much better assignments for all three graph generative models.

5.3 Real world problems

5.3.1 Benchmark

In a second set of experiments, we evaluate the performances of QBinDiff on five
real-world network alignment problems commonly found in the literature (see
Table 5.1). In fact, all these instances have been introduced along with one of

56 Chapter 5. Network Alignment Experiments

(a) Average objective scores according to different ratios of noise.

(b) Average objective scores according to different ratios of conserved elements.

(c) Average objective scores according to different levels of graph density.

(d) Average objective scores according to different trade-offs parameter α.

Figure 5.1: Average network alignment scores for each solver
according different graph generation parameters (rows) and dif-
ferent graph generation model (columns). For each experiments,
the average computing time of each solver is given in second
(right most column). Recall that the default trade-off parameter

is α = 0.75.

5.3. Real world problems 57

Source A B |VA| |VB | |EA| |EB | nnz(W1)

Zhang et al. (2016) flickr lastfm 15436 12974 32638 32298 829875
Zhang et al. (2016) offline online 1118 3906 3022 16328 1294208
El-Kebir et al. (2015) dmela scere 9459 5696 25635 31261 34582
Bayati et al. (2009) lcsh wiki 1919 2000 3130 7808 16952
Zaslavskiy et al. (2009) 1EWK 1U19 57 59 3192 2974 2981

Table 5.1: Description of our benchmark dataset. The last
column records the number of non-zero entries in the similarity

matrix W1.

the competitor solvers in our evaluation. In order to analyze the ability of each
solver to provide proper solutions both in terms of node content and number of
overlapping edges, each problem was submitted multiple times, with different
trade-off parameters.

We must notice that some problems include a similarity score matrix with
several zero entries. In some models (QBinDiff, NetAlign, Natalie), those entries
are considered as unfeasible matches whereas they are legal correspondences in
others. Therefore, these models would optimize the problem on a subset of all
possible one-to-one mappings.

Finally, in order to ensure that every solver were submitted the same problem,
we did not take into account edge features when available. As a result, each
problem instance consists in a pairwise node similarity matrix X such that
vec(X) = diag(W1) as well as two unweighted affinity matrices MA and MB.

5.3.2 Results

Our results show that our approach outperforms or nearly ties the other existing
methods on every problem (see Table 5.2). It appears to provide better results on
sparse graphs, while it may compute slightly suboptimal assignments on densest
ones (1EWK-1U19). As observed in the synthetic experiments, it is also the best
fitted to perform diffing at different arbitrary settings of the trade-off parameter
α, even in the degenerated MCS case α = 0, where it provides significantly
better assignments than the other approaches.

We then compared the different proposed modifications of NetAlign according
to the quality of the current solution over iterations (see Figure 5.2). This analysis
shows that the ε-relaxation continuously looks for better local optima whereas
the common max-product updates do not significantly improve the current
solution over time. Moreover, it seems to best enforce convergence than the
original damping strategy. Finally, it appears that our proposed assignment
strategy does not harm the final assignment score while it seriously reduces the
required computation time.

In terms of computing time, as expected, QBinDiff takes much less time to
approximate the NAP than NetAlign. This is mostly due to the different assign-
ment strategies. Regarding other solvers, Final performs faster, but ends up with
less valuable assignments, while the computation time of Natalie greatly depends
on its convergence, but seems to scale reasonably to large graphs. Conversely,
Path tends to be very expensive, and may become prohibitive for larger problem

58 Chapter 5. Network Alignment Experiments

Matcher α = 0 α = 0.25 α = 0.5 α = 0.75 α = 0.9 Timing

fl
ic

k
r-

la
st

fm

QBinDiff 6144 6955.02 7775.69 8594.41 9118.51 419.6
Final 1980 3890.41 5800.81 7711.22 8857.46 156.8
Natalie 6012 5164.40 4282.43 3417.64 2896.06 94.1
NetAlign 5830 6742.41 7567.50 8427.41 9025.68 434531.5
Path 10 - 4316.11 7403.84 8845.28 387114.1

offl
in

e-
on

li
n
e QBinDiff 2608 2138.21 1678.45 1103.16 812.04 98.1

Final 40 222.35 404.70 587.06 696.47 22.7
Natalie 198 315.16 327.39 392.08 446.39 1553.8
NetAlign 1772 1507.91 1352.68 1002.28 756.60 27971.6
Path 244 789.61 725.42 690.01 742.72 13881.3

d
m

el
a-

sc
er

e QBinDiff 255 347.94 441.55 543.83 616.47 36.1
Final 112 250.95 389.91 528.86 612.23 45.9
Natalie 174 163.11 142.56 126.84 119.16 8.7
NetAlign 224 332.40 431.73 543.44 615.56 115.4
Path 47 230.81 376.12 522.18 609.81 17951.0

lc
sh

-w
ik

i QBinDiff 632 614.87 612.69 605.06 614.09 39.3
Final 574 585.22 596.43 607.65 614.38 20.3
Natalie 584 496.47 419.76 337.64 287.93 2.9
NetAlign 506 547.40 552.33 584.12 610.77 52.3
Path 238 385.09 462.93 539.48 594.96 4332.6

1E
W

K
-1

U
19 QBinDiff 2890 2183.37 1473.61 764.76 339.63 23.8

Final 2874 2169.75 1465.50 761.25 338.70 17.9
Natalie 2896 2172.50 1448.99 725.49 291.39 852.9
NetAlign 2896 2185.75 1474.02 765.02 338.70 1620.4
Path 2896 2169.75 1465.50 761.25 338.70 0.7

Table 5.2: Resulting network alignment scores of each solver
on different benchmark problems. The last column records the

average computing time in seconds.

5.3. Real world problems 59

Figure 5.2: Evolution of the alignment score of the current
solution over the iterations for different versions of NetAlign (lcsh-
wiki problem). A marker + indicates the algorithm convergence
or the 1000th iteration, and the corresponding objective score is
prolonged by a dotted line for readability. QBinDiff corresponds
to NetAlign + assignment strategy + epsilon relaxation. Both
methods using the max-marginal assignment strategy provide a
partial (thus suboptimal) mapping all along the algorithm and

finally perform a MWM assignment after convergence.

instances. Note that it was not able to provide a solution to the Flickr-Lastm
problem when α = 0.25 within 8 days, and was thus considered timed-out. Of
course, these timings depend on the quality of the implementation and should
only be considered with respect to their order of magnitude.

In this Chapter, we evaluated our framework as a network alignment solver
and showed that it outperforms other state-of-the-art method both in terms
of alignment scores and required computation time. However, such evaluation
does not provide any guarantee on the relevance of our approach to address
the binary diffing problem. In the next Chapter, we assess the quality of the
resulting assignment as approximate solutions of the binary diffing problem by
comparing to actual true solutions.

61

Chapter 6

Binary Diffing Experiments

In the previous set of experiments, we showed that our proposed solver is very
well suited to address network alignment problems on graphs of several thousand
nodes. In this chapter, we assess the relevance of formulating the binary diffing
problem as a network alignment problem. Therefore, we no longer focus on
objective scores, but now evaluate the ability of different methods to provide
relevant correspondences to diffing instances. We thus compare the resulting
assignment with the expected true assignment known as ”ground truth”, and
consider accuracy metrics.

6.1 Baseline

As mentioned in Section 2.2, any diffing process requires a formal measure of
code similarity, as well as a proper matching criterion. Both play an important
role in the quality of the resulting alignment. On one hand, a perfect measure
of function semantic similarity would produce univocal scores that immediately
induce the pair of functions to be matched, whatever the matching criteria.
Unfortunately, determining the semantic similarity of two pieces of code is a
complex problem and, to our knowledge, no such perfect measure has been
proposed yet. On the other hand, even though we could efficiently compute the
exact solution of the GED problem, its relevance would still heavily depends on
the quality of the chosen function and edge similarity measure, as well as on
the chosen trade-off parameter α. As a consequence, a careful evaluation of a
binary diffing method should be able to distinguish the benefit induced by the
similarity measure as well as the matching criteria.

In our experiments, we compare the resulting assignments of the different
function matching strategies outlined in Chapter 2.2.3, as well as the two most
common binary diffing tools. In order to evaluate the incidence of the similarity
scores on the resulting mapping, we also leverage three state-of-the-art function
similarity measures and combine them to the different matching approaches to
generate synthetic differs.

6.1.1 Function similarity

We first present the different measures of function similarity that we refer to in
our experiments.

62 Chapter 6. Binary Diffing Experiments

QBinDiff

We presented our measure of function similarity in Section 3.4.2. It consists in a
quite simple metric based on syntactic features. Recall that, in order to properly
compare different methods, we use a 0 and 1 edge similarity measure and set
the cost of node and edge insertion and deletion to 1

2
, which is sufficiently high

to produce complete mapping.

Gemini

Xu et al. (2017a) introduced Gemini, a Siamese graph neural network to learn
the common features of two semantically similar functions. It consists in an
embedding model, trained to transform a very simple syntactic representation
of the function instructions as well as the basic block layout of the CFG into
a metric space where semantically similar functions are likely to have close
coordinates. Once every function representation is projected into this metric
space, pairwise similarity scores can be computed very efficiently using common
vector-based distance computation routines.

GraphMatching

Following the idea of Gemini, Li et al. (2019) proposed GraphMatching, designed
to enhance the model with an attention mechanism based on the structure of both
function CFGs. However since it actively uses the topology of both graphs during
the similarity score computation itself, GraphMatching can not benefit from fast
vector-based distance computation as Gemini does. In fact, the computational
cost induced by the proposed attention mechanism rises quadratically with the
number of basic blocks in both functions. Therefore, the computation of the
similarity score between two large functions may easily take several seconds. As
a consequence, the time required to compute all pairwise similarity scores may
rise significantly with the number of functions in both binaries but also with the
number of basic blocks in each function.

DeepBinDiff

Duan et al. (2020) introduced DeepBinDiff, an unsupervised learning model
that embeds each basic block based on its content but also on the one of its
closest neighbors. In order to encode the content of a basic block, its constitutive
instructions are embedded and averaged into a vector representation using an
unsupervised model similar to Asm2Vec (Ding, Fung, and Charland, 2019). Then,
the authors propose to complete this embedding with topological information,
by leveraging the text-associated DeepWalk algorithm (TADW) (Yang et al.,
2015) on the inter-procedural control-flow graphs (ICFG). However, the TADW
algorithm is originally designed to perform network representation learning, i.e.
to provide a vector representation of each node in a single network, whereas
the diffing problem includes two binaries and thus two ICFGs. To overcome
this issue, DeepBinDiff first merges the ICFG of both programs based on the
available binary symbols.

6.1. Baseline 63

Notice that this approach is designed to proceed the diffing at a basic
block granularity, whereas ours seeks a mapping between the functions of each
binary. Therefore, we produce function embeddings by averaging the vector
representation of its constitutive basic blocks. Notice that other embedding
aggregation functions could also have been used, such as a min, max, etc.

6.1.2 Function matching

Then, we introduce the different matching strategies that will be compared.

Network alignment

In order to address the network alignment problem (NAP), we use QBinDiff,
the approximate solver presented in the next chapter, with default parameters:
α = 0.75, ε = 0.5, and within a maximum of 1000 iterations.

Maximum weight matching

Both Gemini and GraphMatching are originally designed to produce efficient
semantic similarity scores in order to perform near-duplicate retrieval of functions.
Therefore, a natural approach to use them to address a diffing problem would
arguably leverage a maximum weight matching (MWM) matching strategy. Such
a problem can be solved exactly by conventional optimization solvers. In our
experiments, we use a standard implementation of the Hungarian algorithm
(Kuhn, 1955).

Maximum common edge subgraph

DeepBinDiff suggests to use a matching strategy that reduces to an instance of
the maximum common edge subgraph problem (MCS). In fact, it proposes an
iterative matching algorithm very similar to the VF2 algorithm of P. Cordella
et al. (2004), known to efficiently provide approximate solutions to the MCS
problem. In our experiments, we based our implementation on the one of
DeepBinDiff (see Algorithm 2). However, since a CG is usually much more dense
than a ICFG, we limited the neighbor parameter k to 2. Note that, to output a
complete mapping, the algorithm terminates by applying a MWM solver to the
set of unmatched correspondences.

Notice that VF2 is a linear-time approximate algorithm and may actually
result in assignment quite far from the optimal solution. In particular, it is highly
sensitive to the provided initial mapping, which is usually based on arbitrary
considerations. In our experiments, this initialization matches functions with
the same name (such as imported functions), or functions with the exact same
content.

6.1.3 Integrated differs

We finally compare to what we call integrated differs, i.e. state of the art diffing
tools for which the matching strategy is closely related to the function similarity

64 Chapter 6. Binary Diffing Experiments

Algorithm 2: Maximum common subgraph approximate algorithm

Input: GA, GB, pairwise node similarity scores W1, max-hop parameter
k, similarity threshold t, initial mapping pairs X

Output: Complete mapping pairs X∗

begin
/* initialize mapping */

X∗ ← X
while X 6= ∅ do

/* pick a currently matched pair of functions */

(i, i′)← X.pop()
/* get respective unmatched candidates */

J ← GetUnmatchedKHopNeighbors(i)
J ′ ← GetUnmatchedKHopNeighbors(i′)
/* retrieve the most similar candidate pair */

(j, j′)← GetBestCandidate(J, J ′)
if W1[j, j′] ≥ t then

/* if the similarity score is high enough */

X∗ ← X∗ ∪ {(j, j′)}
X ← X ∪ {(j, j′)}

/* get all remaining unmatched candidates */

(J, J ′)← GetUnmatched()
/* complete mapping with a maximum weight matching */

X∗ ← X∗ ∪ MWM(W1[J, J ′])
return X∗

6.1. Baseline 65

measure based on expert heuristics. In these cases, it does not seem relevant to
distinguish both steps as we propose to do for the rest of the differs.

BinDiff

BinDiff (Dullien, 2005) is a closed source state-of-the-art binary diffing tool that
uses a MCS matching strategy based on different, non-public, function similarity
heuristics.

Diaphora

Diaphora 1 is an open-source differ, which initially attempted to reproduce
BinDiff features and recently proposed new ones. In order to compute an
assignment, it uses a greedy matching approach close to the 1

2
-approximate

matching algorithm of Preis (1999), known to provide suboptimal solutions to
the MWM problem.

6.1.4 Training

Gemini and GraphMatching are supervised learning models that require to be
trained on multiple pairs of functions labeled as similar or different. As the
manual construction of such a dataset is tedious, existing methods usually use
a collection of functions extracted from slightly mutated programs, such as
different versions of an executable. Then, a pair of functions is labeled as similar
if they share the same (or very similar) name, and dissimilar otherwise.

We applied this training protocol to our dataset. Notice that this should give
a small competitive advantage to the differs based on Gemini and GraphMatching
as their similarity measures will be optimized on the specific type of functions
found in the binaries under study (described in Section 6.2).

During the training process, we collected 85680 samples of 7276 different
functions from the unstripped binaries. 80% of them were used as training ex-
amples, 10% as a validation set, and the remaining 10% were used to assess the
final accuracy of the trained models. Both models were trained using their rec-
ommended hyper-parameters. To compute the similarity score of two embedded
vectors, Gemini uses a cosine similarity measure, whereas GraphMatching refers
to a normalized euclidean metric. After the training, the models respectively
provided an estimated AUC2 of 0.968 and 0.939.

We also trained DeepBinDiff instruction embedding model on each binary of
our dataset, following the protocol and the recommendations of the corresponding
article (Duan et al., 2020). As DeepBinDiff provides embeddings of basic blocks,
we represent each function by the average of all its basic block embeddings.

1https://github.com/joxeankoret/diaphora
2Area Under the ROC Curve

66 Chapter 6. Binary Diffing Experiments

6.2 Benchmark

A diffing approach can be evaluated by comparing the mapping results with
“true” assignments, known as the ground truth. Unfortunately, such assignments
are not readily available and may be in fact very difficult to determine in an
objective way. As part of this thesis, we have built a new benchmark that will
be released to the research community.

6.2.1 Preliminary

The determination of the ground truth correspondences between two binary exe-
cutables is a very challenging problem. In fact, whereas we could arguably map
all semantically equivalent pieces of code with each others (although assessing
their equivalence is theoretically infeasible (Haq and Caballero, 2021)), deter-
mining the alignment of the remaining functionally divergent parts necessarily
refers to subjective considerations.

First, to the best of our knowledge, there is no universal criterion that
determines if a function is more likely to result from the modification of one or
another pieces of code. Therefore, any correspondence between two semantically
different functions is based on a arbitrary definition of semantic similarity.

Moreover, the ground truth mapping between the functions of two programs
is not necessarily complete. Indeed, some functions in binary A could have been
removed whereas some in program B could have been added. Therefore, each
unmatched function induces an ambiguous assignment choice that also requires
an arbitrary rule. It must assess to what extent this function is not sufficiently
similar to its best candidate to be considered the consequence of a modification.
Notice that this ambiguity is closely related to the redundancy of the substitute
operation with the delete then insert scheme in the graph edit distance problem.

Although in many cases, it is impossible to determine a unanimous best
assignment among the functions of two arbitrary binaries, one may significantly
reduce the subjective bias by considering other sources of information.

Indeed, during its implementation, a source code is often enriched by human-
readable symbols such as function names, argument types, strings, comments,
etc. These textual information can be seen as a rather reliable description of
the actual intents of the program creator and may provide useful indications
concerning the purpose of each function. For instance, we may argue that in
general, even if they might be semantically distant, two functions that share
the same name, should encode the same functional utility, at least from the
developer’s point of view. In other words, instead of a custom interpretation
of the semantic similarity of two programs, we may extract the actual function
mapping by considering the potential motives of the developer following these
textual information. Notice however that such consistent denomination may
be only available in closely related programs, either in different versions of a
same executable or, more rarely, in different programs implemented by the
same developers. Notice that these information may not be found in binaries
including some sort of protection against reverse engineering, such as stripped
or obfuscated programs.

6.2. Benchmark 67

In addition to the source code documentation and symbols, some repositories
include detailed commit descriptions that precisely record the different modifica-
tions from a version to another. These information may also give major insights
on the function semantic relations along different program versions. However,
they almost always refer to the modifications occurring during a release, and
are thus available for successive versions only.

Therefore, in order to design an experimental dataset made of multiple
pairs of executables from which the ground truth functional correspondence
is available, we restrict to the diffing of different versions of a same program.
We then determine the ground truth assignment by hand, with the help of the
available human-readable information.

Notice that another possible approach to design such a benchmark would have
been to compare the same program in two different syntactic representations.
Such samples could be obtained, for instance, in compiling the same source
code with different optimizations or target architectures, but also in performing
code modifications such as obfuscation. The interest of this approach is that
the ground truth assignment is relatively easy to determine. However, it only
enables to compare semantically equivalent programs, and hence mostly relies
on the quality of the measure of function similarity.

6.2.2 Benchmark design

According to the previously exposed considerations, we selected programs to
include in our benchmark, based on several requirements. First, the source of
the programs should be made readily available, within several different versions.
This enables us to compile the program with symbols and thus to ease the
determination of the ground truth. Second, well-maintained source repositories
with explicit commit descriptions, detailed changelogs, as well as a relatively
consistent function denomination over time are also very important features for
the ground truth extraction. Third, since our evaluation method requires a time-
consuming manual extraction, we must restrict our experiments to programs of
”reasonable” size.

We thus chose three well-known open source projects to compose our ex-
perimental dataset, namely Zlib3, Libsodium4 and OpenSSL5. Note that some
of these programs are amongst the most frequently used for evaluation in the
literature (Haq and Caballero, 2021).

For each of these projects, we first downloaded the official repository, then
we compiled the different available versions using GCC v7.5 for x86-64 target ar-
chitecture with -O3 optimization level and keeping the symbols. Once extracted,
each binary was stripped to remove all symbols, then disassembled using IDA
Pro v7.2, and finally exported into a readable file with the help of BinExport6.
During the problem statement, only plain text functions determined during the
disassembly process are considered. Imported functions are hence discarded.

3https://github.com/madler/zlib
4https://github.com/jedisct1/libsodium
5https://github.com/openssl/openssl
6https://github.com/google/binexport

68 Chapter 6. Binary Diffing Experiments

Program Vers. Diff. Nodes Edges GT GT

Zlib 18 153 153 235 0.99 0.96
Libsodium 33 528 589 701 0.98 0.79
OpenSSL 17 136 3473 18563 0.94 0.72

Table 6.1: Description of our binary diffing dataset. The last
six columns respectively record the number of different binary
versions, the number of resulting diffing instances, the average
number of functions and function calls and the average ratio of
conserved functions in our manually extracted and extrapolated

ground truth.

This extraction protocol provided us with respectively 18, 33 and 17 different
binary versions. For each project, given n different versions of the program, we
propose to evaluate our method in diffing all the n(n−1)

2
possible pairs of different

executables. Statistics describing our evaluation benchmark are given in Table
6.1.

Few remarks can be made regarding our resulting dataset. First, the average
graph size of the project programs varies with around 150 functions in Zlib, 600
in Libsodium and over 4000 in OpenSSL. Moreover, the sparseness of the call
graphs also depends on the project. For instance, both Zlib and Libsodium are
extremely sparse with a mean degree of around 1.5 whereas OpenSSL counts on
average a bit more than 5 edges per node. This variety will provide insights on
the scalability of the diffing methods under study as well as the effect of sparsity
on our solver. Last but not least, one may notice an important gap in the number
of both nodes and edges following the release of OpenSSL 1 1 0. This difference
is explained by the removal of several deprecated functions, as it is usual for
major releases, but mostly by the migration of many cryptographic primitives
into the related library LibSSL. In our experiments, we chose to preserve our
dataset unchanged in order to evaluate the different approach behaviors in these
particular cases.

6.2.3 Ground Truth

Our ground truth extraction protocol has two steps. We first manually determine
what we think to be the function mapping that best describes the modifications
between two successive binary versions. This process is done with regards to
the Changelogs files, the source code and the unstripped binaries. Excepted for
few major project modifications, almost all the functions are mapped from a
version to its successor (see Table 6.1).

Once all the contiguous version ground truth mappings are extracted, we
deduce all the pairwise diffing correspondences by extrapolating the mappings
from version to versions. Formally, if we denote XA1→A2 the mapping between
program versions A1 and A2 into a boolean matrix such that vec(XA1→A2) =
xA1→A2 , then, our extrapolating scheme simply consists in computing the diffing
correspondence between Ak and An as follows: XAk→An =

∏n−1
i=k XAi→Ai+1

.

6.3. Results 69

6.3 Results

The quality of a diffing result is measured using its precision and recall with
respect to the ground truth. We refer to the standard definitions of precision and
recall i.e. p = |M∩G|

|G| and r = |M∩G|
|M | where M and G respectively correspond to

the set of matched function pairs in the computed and ground truth assignments.
Note that, except for BinDiff, all the evaluated methods are designed to produce
a complete mapping. In fact, none of them includes a mechanism to limit the
mapping of the most unlikely correspondences during computation. Therefore,
these matching strategies do not consider precision but only focuses on recall.
In future work, we will investigate the effect of rising the node insertion/deletion
operation costs di,ε and dε,i′ in order to favor the solution’s precision score.

6.3.1 Overall results

In a first set of experiments, we instantiate all diffing instances with our proposed
similarity measures. We thus evaluate the resulting accuracy scores for the three
matching approaches, given the exact same information. We also compare the
relevance of the resulting mappings to the two most common integrated differs,
as well as to the state-of-the-art network alignment solvers introduced in the
previous chapter.

Performance of the matching strategy

Our experiments show that QBinDiff generally outperforms other matching
approaches in both precision and recall (see Table 6.2). In fact, our method
appears to perform clearly better at diffing more different programs, whereas
it provides comparable solutions on similar binaries (see Figure 6.1). This
highlights that the local greedy matching strategy of both MWM and MCS is
able to provide good solutions on simple cases but generalizes poorly on more
difficult problem instances. This result should be view as promising in the
perspective of diffing much more different binaries.

Performance of the integrated differs

Regarding the common diffing tools, it appears that they provide partial as-
signments with slightly better precision scores but lower recall. In fact, as
they do not match functions with low content similarity, they only provide
likely correspondences and miss more tricky ones, resulting in another trade-off
between precision and recall.

Performances of other network alignment solvers

We also submitted the diffing instances to other network alignment solvers. In
order to compare the resulting assignments of each solver for all instances at
once, we normalized the node similarity score as well as the number of edge
overlaps by the ones of the solution of QBinDiff (see Table 6.2). As observed
in our alignment benchmarks, our solver outperforms other methods in almost

70 Chapter 6. Binary Diffing Experiments

Matcher Similarity Squares Score Precision Recall Timing

Z
li
b

QBinDiff 0.929 0.807 0.888 0.955 0.995 0.2
MWM 0.930 0.789 0.883 0.953 0.992 0.0
MCS 0.924 0.781 0.876 0.946 0.985 0.0

BinDiff 0.921 0.765 0.869 0.943 0.975 0.9
Diaphora 0.863 0.655 0.792 0.978 0.940 1.4

Final 0.929 0.784 0.881 0.948 0.986 18.5
Natalie 0.587 0.812 0.663 0.901 0.603 0.4
NetAlign 0.929 0.807 0.888 0.955 0.995 21.9
Path 0.930 0.789 0.883 0.953 0.992 0.6

L
ib

so
d
iu

m

QBinDiff 0.706 0.604 0.677 0.722 0.880 6.6
MWM 0.712 0.483 0.647 0.699 0.847 0.2
MCS 0.708 0.494 0.647 0.704 0.854 0.3

BinDiff 0.662 0.544 0.628 0.752 0.869 0.9
Diaphora 0.605 0.470 0.567 0.783 0.831 8.6

Final 0.710 0.455 0.636 0.686 0.829 30.3
Natalie 0.424 0.565 0.462 0.596 0.438 37.0
NetAlign 0.703 0.597 0.673 0.722 0.879 283.1
Path 0.700 0.519 0.648 0.696 0.836 61.8

O
p

en
S
S
L

QBinDiff 0.720 0.595 0.643 0.605 0.783 213.3
MWM 0.738 0.506 0.592 0.522 0.670 25.5
MCS 0.738 0.506 0.592 0.522 0.670 24.4

BinDiff 0.643 0.501 0.553 0.572 0.681 3.2
Diaphora 0.543 0.332 0.408 0.577 0.565 60.6

Final 0.719 0.355 0.487 0.476 0.627 264.4
Natalie 0.620 0.589 0.601 0.599 0.668 733.8
NetAlign 0.682 0.587 0.623 0.625 0.755 15193.9
Path 0.722 0.521 0.596 0.556 0.715 7667.8

Table 6.2: Average objective and accuracy scores of each state-
of-the-art solver on binary diffing instances. Columns 2-4 respec-
tively represent the normalized overall node similarity scores,
normalized number of induced overlapping edges and normalized
resulting alignment scores. The last column provide the average
computation times for the matching step only, given in seconds.

6.3. Results 71

Figure 6.1: Average recall scores according to the program
versions distance. Every matching method provides comparable
near-optimal results while diffing very similar programs. As the
distance increases, the performances of local matching strategies

decline faster than our global approach.

all problem instances. In fact, it appears that QBinDiff efficiently leverages a
balanced matching strategy whereas other methods seem to mostly optimize
either only node or edge similarity scores, resulting in lower overall alignment
score. Regarding the accuracy of the resulting mappings, it seems that solutions
with higher network alignment scores are also the ones with higher sensitivity
(or recall), whereas only maximizing node or edge similarity scores appears to
provide less accurate assignments. As a consequence, our proposed alignment
solver clearly appears to be the best suited to compute diffing correspondences.

Parameter selection

We also performed a series of experiments in order to find the parameter setup
that provides the best results. We evaluate both the trade-off parameter α and
the complementary slackness relaxation ε at different levels and reproduce the
resulting accuracy scores in Figure 6.3. Notice that we did not evaluate the
parameter in charge of controlling the size of the solution set by removing the
less probable correspondences since this later mostly depends on the memory
limitation and is set to 0 for the smaller programs ZLib and Libsodium.

Experiments show that our network alignment formulation provides better
results with a relatively high parameter α, between 0.75 and 0.9 (see Figure
6.3a). This means that the matching strategy should mostly rely on the function
similarity score and not overestimate the influence of the consistency of the calls.
Meanwhile, a strategy only based on the function content (α = 1), equivalent to
the MWM approach, clearly results in suboptimal assignments (see also Table
6.2). These experiments highlight the benefit of our balanced matching strategy
over common MCS or MWM ones. We may also notice that programs with a
higher edge density require a higher trade-off parameter. This is consistent with
the fact that densest graphs mechanically include more potential edge overlaps
and thus the relative weight of node similarity decreases. As a consequence, it

72 Chapter 6. Binary Diffing Experiments

Figure 6.2: Relative similarity scores and square numbers of
different network alignment solvers compared to QBinDiff. The
grey lines record the normalized scores of the solution computed
by QBinDiff. The blue area represents solutions with a higher
overall network alignment score (α = 0.75). In almost all problem
instances, QBinDiff provides better assignments than its com-
petitors. In particular, most other methods appear to compute
solutions with a high node similarity score but much less induced
edges. On the contrary, Natalie seems to retrieve a high number

of edge overlaps with a low overall node similarity score.

appears that, to some extent, the optimal trade-off parameter α depends on the
density of the call graph. We discuss this property in the next chapter.

Interestingly, different configurations of the relaxation parameter ε appears
to result in quite similar accuracy scores (see Figure 6.3b). In fact, it seems
that the relaxation is mostly managed by the ε-scaling scheme introduced in
the previous chapter and thus simply requires a certain number of iterations
to reach the critical level that enables the current messages to switch from one
local optimum to another. Notice that, although the results are quite similar,
the required computational time may strongly vary with the parameter and that
a high value of ε will significantly accelerate the messages convergence.

Accuracy of the optimal solutions

An interesting analysis consists in comparing the different matching method
assignments to the ground truth correspondences in terms of function similarity
score and call graph alignment. Once again, we may display the relative
performances of the different strategies on every instances by normalizing the
resulting scores by ones of the ground truth assignments (see Figure 6.4). It
appears that both Zlib and OpenSSL ground truth assignments are near-optimal
in both maximum weight matching and maximum common edge subgraph scores.
This observation is consistent with our experimental results that show that a
balanced network alignment matching strategy provides better accuracy results
than other approaches. More importantly, it justifies our intuition that the
proposed problem formulation as a network alignment problem is very well suited
to address the binary diffing problem. However, in some cases, Libsodium’s

6.3. Results 73

(a) Average accuracy scores according to different trade-off parameters α.

(b) Average accuracy scores according to different relaxation parameters ε.

Figure 6.3: Average accuracy scores for different configurations
of QBinDiff. Notice that the extreme parameters α = 0 and
α = 1 in (A) respectively correspond to the resulting scores of

the MCS and MWM solvers.

74 Chapter 6. Binary Diffing Experiments

Figure 6.4: Relative similarity scores and square numbers of
different matching methods compared to the optimal assignment.
The grey lines record the normalized scores of the ground truth.
For Zlib and OpenSSL binaries, the ground truth seems to be
a near optimal NAP assignment in almost all cases. This result
does not hold for Libsodium, as in some cases, assignments
computed by QBinDiff are better in both function similarity and

number of induced squares.

correct assignments show to be sub-optimal in both function similarity and
graph topology. In these cases, the ground truth mappings are inconsistent in
both function content syntax and invoked call procedures. We investigated these
cases, and noticed that over the versions, several functions were split in two such
that a first trivial function is solely designed to access a second core function
actually containing the whole function semantic. As we largely determined our
ground truth based on function names, we mapped full functions into their newly
created accessors. We discuss these specific cases in the next chapter.

6.3.2 Results with different similarity measures

In order to evaluate the actual benefit of our matching approach on binary diffing
problems, we reproduced our experiments with different function similarity
measures. We thus generated several synthetic differs, each of which uses a
particular measure of similarity to setup the problem, as well as a particular
matching strategy to find a solution.

Predominance of the matching strategy

As observed with our custom metric, our network alignment strategy (NAP)
provides better assignments than other matching approaches. Furthermore, it
appears that in almost all cases, the chosen matching method has more influence
than the similarity metric, i.e. that it is more beneficial to switch the matching
strategy to NAP than to change the measures of similarity (see Table 6.3).

6.3. Results 75

Similarity Matcher Precision Recall Timing

Z
li
b

NAP 0.955 0.995 3.2
QBinDiff MWM 0.953 0.992 3.0

MCS 0.946 0.985 3.0

NAP 0.953 0.992 6.2
Gemini MWM 0.936 0.974 5.9

MCS 0.942 0.981 5.9

NAP 0.938 0.977 77.9
GraphMatching MWM 0.901 0.937 77.1

MCS 0.927 0.964 77.1

NAP 0.909 0.946 494.0
DeepBinDiff MWM 0.820 0.853 489.4

MCS 0.834 0.868 489.5

L
ib

so
d
iu

m

NAP 0.722 0.880 19.9
QBinDiff MWM 0.699 0.847 13.5

MCS 0.704 0.854 13.5

NAP 0.714 0.863 31.7
Gemini MWM 0.668 0.802 24.4

MCS 0.686 0.823 24.4

NAP 0.693 0.837 315.6
GraphMatching MWM 0.643 0.776 294.0

MCS 0.670 0.806 294.2

NAP 0.664 0.796 194.5
DeepBinDiff MWM 0.585 0.702 157.9

MCS 0.599 0.718 157.6

O
p

en
S
S
L

NAP 0.605 0.783 301.8
QBinDiff MWM 0.522 0.670 114.0

MCS 0.522 0.670 113.0

NAP 0.577 0.685 613.9
Gemini MWM 0.400 0.467 189.7

MCS 0.401 0.467 189.1

NAP 0.548 0.686 39186.8
GraphMatching MWM 0.316 0.408 37054.0

MCS 0.317 0.409 37054.3

DeepBinDiff - - - -

Table 6.3: Average precision and recall scores for each combi-
nation of similarity measure (Similarity) and matching method
(Matcher), for our three benchmark projects. The provided tim-
ings include both the computation of the similarity scores and

the solution assignment, and are given in seconds.

76 Chapter 6. Binary Diffing Experiments

(a) Pairwise similarity scores (b) Ground truth similarity scores

Figure 6.5: Cumulative distribution function of all non-zero
pairwise similarity scores (a) and of the ground truth pairs only
(b) (libsodium-0.4.2 vs libsodium-1.0.3). The similarity scores in
(a) that correspond to a ground truth correspondence are marked
by a cross. GraphMatching appears to be well fitted to retrieve
a large part of the correct matches but strongly deteriorates the
score of some. QBinDiff provides a more balanced score but keeps

almost all ground truth correspondence to a satisfying level.

Misleading similarity measures

Surprisingly, it appears that the use of these complex models does not actually
improve the accuracy of the resulting mapping, and might even worsen it in
some cases. Since the topology of the graphs does not change, this means
that the computed similarity scores are not consistent with the actual ground
truth assignment. By comparing the similarity scores of the pairs of functions
in the ground truth with all other scores, it appears that both Gemini and
GraphMatching models very accurately retrieve similar functions, but strongly
deteriorate the similarity scores of more diverging ones (see Figure 6.5). This is
consistent with the original purpose of both models and with the training dataset
which labels as completely different two similar functions with different names. In
the case of DeepBinDiff, it seems that the scores of ground truth correspondences
are distributed relatively uniformly over the cumulative distribution function,
which means that the model itself does not provide sufficiently discriminative
scores, and thus leads to erroneous assignments.

As previously mentioned, our experiments also suggest that our rather
basic function similarity metric provides scores that are consistent with the
actual ground truth assignment (see Figure 6.4). Moreover, on the contrary
to supervised learning models Gemini and GraphMatching, it produces less
discriminative scores. Though it might be view as a less informative metric, it
appears that this keeps the ground truth correspondences similarity scores at a
satisfying level and ultimately results in better solutions (see Figure 6.5).

Runtime comparisons

Finally, we recorded the computing time of each method. As could be expected,
it takes much more time to approximate the NAP of two graphs than to compute

6.3. Results 77

Similarity Timing

Zlib Libsodium OpenSSL

QBinDiff 3.0 13.3 88.6
Gemini 6.0 24.2 164.8
GraphMatching 77.1 293.9 36999.2
DeepBinDiff 489.3 156.0 -

Table 6.4: Average computation time of the similarity scores
only for each similarity measure, given in seconds. Notice that
we were not able to compute DeepBinDiff pairwise similarity

scores of OpenSSL programs in reasonable time.

the MWM or the MCS (see Table 6.2). However, this can be controlled by raising
the sparsity ratio parameter ξ, at the cost of limiting the problem solution set
and potentially resulting in sub-optimal assignments. Furthermore, QBinDiff
shows to run much faster than its best alignment solver competitors. In fact, it
appears to be the only one able to provide satisfying results in reasonable time
for large problem instances.

Regarding the processing times, it appears that, whereas the use of Gemini
model does not harm the required time, both GraphMatching and DeepBinDiff
take very long time to compute the pairwise similarity scores, which might be
prohibitive for larger programs (see Table 6.4). Moreover, it seems that better
similarity scores speed up the computation. This is due to the fact that the
algorithm finds more easily a satisfying local optima (see Table 6.3). Notice that
we were not able to compute DeepBinDiff embeddings on OpenSSL binaries
in reasonable time. Indeed, these problem instances involve the factorization
of the adjacency matrices of graphs of over 100 000 nodes which is a very
computationally intensive task.

In this Chapter, we evaluated our proposed approach to address the binary
diffing problem. Experimental results showed that our method outperforms other
state-of-the-art methods in almost all diffing instances. Therefore, it suggested
that our problem formulation is well fitted to address our problem. Furthermore,
it also highlighted that the matching strategy has more influence on the quality
of the resulting assignment than the choice of the function similarity measure.
Finally, it appeared that using similarity metrics originally designed to retrieve
near-duplicate functions might actually harm the quality of the resulting map-
ping. In the next Chapter, we discuss some limitations of our method as well as
some threats to the validity of our evaluation. We finally mention some possible
enhancements.

79

Chapter 7

Discussions

7.1 Limitations

While it improves the state-of-the-art, our method still includes some limitations
and could be further enhanced.

One-to-many correspondences

A first limitation is that our approach is designed to find a one-to-one corre-
spondence between the functions of both programs. Thus, it can not properly
handle cases where a function in a binary is split into several ones in the other
program, or similarly, multiple functions are merged into a single one. In such
cases, the information of both the function syntax and its call graph relations
is diluted into multiple chunks and may be harder to retrieve. Notice that,
to our knowledge, this problem is common to all other diffing methods, and
that in practice, many function splits result in a core function containing most
of the semantic information, and few trivial functions that are immediately
called before or after it (as in the Libsodium programs). Such schemes could be
handled by a pre-processing step.

Edit operation costs determination

The other key property of our approach is that it is based on the assumption
that the true expected mapping is the optimal solution to the graph edit distance
problem. Although it is partially validated by our limited-sized experiments,
there is no general available result that proves that this intuition is verified
in practice, especially for more complex cross-compiler or cross-architecture
diffing instances. One may argue that, due to the versatility of the graph-
edit distance problem, one may always define the graph edit operation costs
such that the optimal edit path meets the actual ground truth assignment.
However, in practice, there is no known function similarity metric that correctly
encodes function semantic, and therefore, the actual benefit of our approach is to
efficiently leverage the call graph structure of both programs. As a consequence,
our method mostly relies on programs with rather similar call graphs.

Furthermore, our method enables to balance the relative influence of both
node and edge similarity scores on the resulting solution. As highlighted in
our experiments, this trade-off actually depends on the density of the graphs,
since denser graphs mechanically induce more potential edge overlaps. As a

80 Chapter 7. Discussions

result, the choice of the trade-off parameter α requires human expertise and
prior knowledge about the binaries under analysis. In future work, we plan to
introduce a normalization process in matrix Q2 to ease the parameter selection.

Finally, in this work, we presented our method with deletion and insertion
operation costs di,ε = di,ε = 1

2
. In fact, setting these costs this high enforces

our network alignment solver to produce a complete mapping from the smallest
graph into the largest, since any node substitution would be always provide
more benefit than a node deletion followed by a node insertion. An immediate
consequence of this property is that QBinDiff does not include any mechanism
to improve the assignment precision score. This issue could be overcame by
lowering the costs of both deletion and insertion operations di,ε = di,ε = 1

2
− ξ

2

, or in terms of network alignment problem, by penalizing the node similarity
scores wii′ = −di,i′ + di,ε + dε,i′ = si,i′ − ξ. As a result, correspondences with
negative similarity scores would belong to the final mapping only if they induce
enough induced edge similarity.

Memory usage limitation

An important drawback of our problem formulation is that it requires a matrix
W ∈ R|VA|2×|VB |2 which memory requirements grow quartically with the size of
the graphs. Though we proposed to significantly reduce the problem size by
limiting the solution set to the most probable correspondences, this heuristic
inevitably induces some information loss, especially for large graphs where the
relaxation must rise consequently. In practice, binaries of several thousand
functions can be handled efficiently. For larger programs, it might be better to
first partition the call graphs into smaller consistent subgraphs, and then proceed
the matching among them. Although this partition is not trivial and might
result in important diffing errors, it can be quite natural in modern programs
for example following its modules.

7.2 Threats to validity

Internal validity

Our evaluation relies on a collection of diffing instances for which the ground truth
assignment has been manually determined. Though we performed this extraction
with regards to multiple sources of information such as source code, commit
descriptions and unstripped symbols, we can not guarantee that our judgment is
not biased, nor that it meets other experts’ opinions. Furthermore, any error or
absence in our extracted mappings is later propagated in our extrapolation step.
This may lower the confidence in the ground truth assignment between two
distant versions. This threat is inherent to any manually determined assignments
and can only be mitigated by releasing the dataset for the community to review.

External validity

Despite the relatively large number of proposed diffing instances, several factors
still threaten the generalizability of our experiments. First, our benchmark only

7.3. Future works 81

includes C programs taken from three open-source projects. This is not repre-
sentative of the variety of existing binaries. Moreover, all the executables were
compiled with the same compiler, optimization level and targeted architecture.
In future works, we will investigate the performance of our approach on pro-
grams built under different settings. Notice that it would probably require more
sophisticated measures of similarity able to handle greater syntactic differences.
Last but not least, all of our diffing instances compare different versions of a
same program. Though the manual determination of a unanimous ground truth
assignment between two different binaries appears to be quite challenging, the
evaluation of our method on such instances could be very instructive in the
perspective of many applications such as the detection of duplicate code or
vulnerability.

Construct validity

The proposed comparison of our approach with other state-of-the-art methods
could also include threats to construct validity. First, all these methods are
based on machine learning models that require a prior training step. We trained
the models on the same dataset as the one we ran our experiments on. This
could bias the resulting similarity scores, especially in the case of overfitting.
Moreover, we configured all models with their default parameters (recommended
by the authors), though different settings could have provided better results.
Finally, we must recall that none of the competitor methods were originally
designed to address the exact same problem as ours. Indeed, both Gemini and
GraphMatching have been initially proposed to retrieve near-duplicate functions
whereas DeepBinDiff addresses the binary diffing at a basic block granularity.

7.3 Future works

In addition to the aforementioned extended analysis we plan to investigate in
the short run to improve our current solution, deeper researches will also be
conducted to enhance our method in the long run. Most of them focus on the
blind spot of our work: the measure of binary code similarity.

Hierarchical diffing

As introduced in Chapter 2 any function in our program representation actually
consists in a graph of basic blocks. Therefore, we believe that our proposed
network alignment framework could be leveraged in order to find a relevant basic
block correspondence between the content of any two matched functions in a
post-processing step. Such hierarchical diffing strategy consisting in first aligning
higher-level elements and then to perform finer-grained matching between them
is commonly found in the literature. To some extend, once the basic blocks
of each function have been aligned, we could also run an instruction matching
procedure inspired from sequence alignment methods.

According to our graph matching formulation, introducing a post-processing
step that performs basic block alignment inside any two matched functions

82 Chapter 7. Discussions

requires a proper measure of basic block similarity. Moreover, a careful analysis
of common control flow graph layout could provide insight about the desired
trade-off between block content and branches similarity. Notice however that
the graph structure of a function (control flow graph) might be quite different
from the one of a program (call graph). As a consequence, leveraging the CFG
during function mapping could provide not as much benefit as it does while
mapping CG.

Function similarity measure

As previously mentioned in this chapter, our framework crucially lacks of more
sophisticated measure of function semantic similarity. A substantial effort in
our future works will be directed to the elaboration of a finer measure, able
to leverage functions implemented via different programming languages, or
compiled under different optimization levels or targeted architecture. Moreover,
our measure should be sufficiently fast to compute several millions of similarity
scores in reasonable time.

Many researches have been conducted in this direction. In particular, machine
learning models are known to compute similarity scores relatively fast, based
on sophisticated measures enclosing knowledge gained on a great amount of
previously analyzed samples. Unfortunately, our experiments highlighted that
some of the best-known models could provide misleading measures in order to
perform binary diffing, though we believe that part of this issue might come
from a bias in the training step that only considers identically named functions.
In future work, we plan to investigate unsupervised learning models such as
asm2vec (Ding, Fung, and Charland, 2019). However, we may want to process
to a prior lifting of the assembly code into an intermediate representation, as
well as to apply a code normalization close to the one used in our proposed
similarity measure to limit unnecessary complex consideration of very similar
instructions of operands.

To some extent, we could also work on improving our measure of call similarity,
for instance by considering the type of function call (call to imported functions,
method, private function, etc.) or distinguishing direct and indirect calls.

Program similarity measure

An interesting property of our approach is that it ultimately computes an
approximation of the graph edit distance between both programs and thus
provides a proper metric for measuring program similarity. Indeed, given the
resulting assignment as well as the similarity scores, we may compute the overall
cost of the corresponding edit path as chosen in Chapter 3. As a result, our
framework could be leveraged in a variety of program-wide analyses requiring
proper metrics such as malware detection, program lineage or library retrieval.
We plan to investigate some of these applications in future works.

7.3. Future works 83

Diffing instance generative model

Finally, we believe that the current binary diffing community lacks of extended
benchmark instances with ground truth solutions to perform experiments and
compare approaches. In particular, in most existing available problem instances,
the ground truth assignment is either extracted manually which is very time-
consuming, or computed automatically based on the unstripped function names,
which usually results in partial mappings of the most similar functions. Both
methods are not able to provide reliable problems with solutions at large scale.

In future work, we will attempt to design generative models able to introduce
perturbation to a program while keeping the function correspondence. The idea
is to modify the syntax of each function individually while keeping its semantic
unchanged. To do so, we plan to review existing techniques in the field of binary
code obfuscation.

85

Chapter 8

Conclusion

In this thesis, we introduced a new approach to address the binary diffing
problem through its natural graph edit distance formulation: we aim at finding
the minimal cost sequence of edit operations that transforms the call graph of a
first binary A into the call graph of the second program B. In order to efficiently
find an approximate solution, we reformulated the problem as a constrained
integer quadratic program and proved that under mild conditions, the graph
edit distance problem is equivalent to the network alignment problem. This
reformulation enabled us to leverage efficient optimization techniques, such as
the max-product algorithm.

We thus encoded the resulting maximization problem into a factor-graph
graphical model such that the support of its distribution is equivalent to the
set of feasible solutions in the constraint program, as well as the mode of the
joint distribution corresponds to the optimal solution of the alignment problem.
As a result, finding the assignment with maximum probability in the graphical
model is equivalent to solving the network alignment problem, and therefore, to
finding the optimal edit path between program A and B.

In order to efficiently approximate the mode of our graphical model, we
leveraged the max-product algorithm, following the approach of NetAlign. As
shown by Bayati et al. (2009), the algorithm actually reduces to a quite simple
message-passing framework, which can compute updates very efficiently. How-
ever, both the control of the convergence of the messages, as well as the deduction
of the current assignment after each iteration require computational expensive
schemes in the original framework. We thus introduced several modifications to
NetAlign and showed that they significantly speed up the computation, improve
the control of the updates convergence, and halve the memory usage.

The evaluation of our proposed approach was twofold. We first compared our
proposed model as a network alignment solver against some of the best-known
methods. Based on a collection of synthetic alignment instances, as well as
several famous real-world problems, we showed that QBinDiff outperforms its
competitors in almost all instances and, as such, is one of the best-known solvers
to align these types of graphs.

We then evaluated QBinDiff as a binary diffing tool, and thus compared the
resulting assignments with ground truth solutions. Such experiments require a
collection of binary diffing instances for which the actual function correspondences
are known. Since no such benchmarks were readily available, we designed our
own, consisting in over 60 programs as well as hundreds of ground truth solutions,
and released it to the research community.

86 Chapter 8. Conclusion

As a baseline, we referred to the two most common binary diffing tools that
are BinDiff and Diaphora. Moreover, in order to properly assess the interest
of our matching approach, we reproduced our experiments with other state-of-
the-art measures of function similarity, namely Gemini, GraphMatching and
DeepBinDiff.

Our experiments showed that our algorithm outperforms other existing
approaches in almost every problem instance. It also highlighted that the
matching strategy is a crucial part of the diffing process and has more influence
than the choice of the function similarity measure. Moreover, it appeared that
using similarity metrics originally designed to retrieve near-duplicate functions
might actually harm the quality of the resulting mapping. Finally, our results
suggest that our problem formulation is a very adapted way to address the
binary diffing problem.

Besides our formulation is quite natural and showed to result in more accurate
mappings, it also provides a proper metric for measuring program-wide similarity.
Indeed, any diffing assignment induces the (approximated) graph edit distance
between the two programs. Therefore, our approach could also be used in a
variety of metric-based analysis at a program level, such as library retrieval,
program lineage, etc.

Finally, we believe that our graph matching algorithm could also be leveraged
to perform diffing between matched functions in a post-processing step. This
would result in a fined-grained alignment between constitutive basic blocks of
both functions and could provide to an analyst precious information about their
exact differences.

87

Bibliography

Adams, Warren P. and Terri A. Johnson (1994). “Improved linear programming
based lower bounds for the quadratic assignment problem”. In: Quadratic
Assignment and Related Problems, Dimacs series in Discrete Mathematics
and Theoretical Computer Science 16, pp. 43–77.

Aho, Alfred V. et al. (2006). Compilers: Principles, Techniques, and Tools (2nd
Edition). USA: Addison-Wesley Longman Publishing Co., Inc.

Albert, Réka and Albert-László Barabási (Jan. 2002). “Statistical mechanics of
complex networks”. In: Reviews of Modern Physics 74.1, pp. 47–97.

Allahverdyan, Armen and Aram Galstyan (June 2009). “On maximum a poste-
riori estimation of hidden Markov processes”. In: Proceedings of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence. UAI ’09. Arlington,
Virginia, USA: AUAI Press, pp. 1–9.

Allen, Frances E. (July 1970). “Control flow analysis”. In: ACM SIGPLAN
Notices 5.7, pp. 1–19.

Alrabaee, Saed et al. (Mar. 2015). “SIGMA”. In: Digital Investigation: The
International Journal of Digital Forensics & Incident Response 12.S1, S61–
S71.

— (Jan. 2018). “FOSSIL: A Resilient and Efficient System for Identifying FOSS
Functions in Malware Binaries”. In: ACM Transactions on Privacy and
Security (TOPS) 21.2, 8:1–8:34.

Backes, Michael, Sven Bugiel, and Erik Derr (Oct. 2016). “Reliable Third-Party
Library Detection in Android and its Security Applications”. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity. CCS ’16. New York, NY, USA: Association for Computing Machinery,
pp. 356–367.

Bahiense, Laura et al. (Dec. 2012). “The maximum common edge subgraph
problem: A polyhedral investigation”. In: Discrete Applied Mathematics
160.18, pp. 2523–2541.

Baker, Brenda S, Udi Manber, and Robert Muth (1999). “Compressing differences
of executable code”. In: ACMSIGPLAN Workshop on Compiler Support for
System Software (WCSS). Citeseer, pp. 1–10.

Balakrishnan, Gogul and Thomas Reps (Aug. 2010). “WYSINWYX: What
you see is not what you eXecute”. In: ACM Transactions on Programming
Languages and Systems 32.6, 23:1–23:84.

Bayati, M., D. Shah, and M. Sharma (Sept. 2005). “Maximum weight matching
via max-product belief propagation”. In: Proceedings. International Sympo-
sium on Information Theory, 2005. ISIT 2005. Pp. 1763–1767.

— (Mar. 2008). “Max-Product for Maximum Weight Matching: Convergence,
Correctness, and LP Duality”. In: IEEE Transactions on Information Theory
54.3, pp. 1241–1251.

88 Bibliography

Bayati, Mohsen et al. (Dec. 2009). “Algorithms for Large, Sparse Network
Alignment Problems”. In: Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining. ICDM ’09. USA: IEEE Computer Society,
pp. 705–710.

Bayati, Mohsen et al. (Mar. 2013). “Message-Passing Algorithms for Sparse
Network Alignment”. In: ACM Transactions on Knowledge Discovery from
Data (TKDD) 7.1, 3:1–3:31.

Bernat, Andrew R. and Barton P. Miller (Oct. 2012). “Structured Binary
Editing with a CFG Transformation Algebra”. In: Proceedings of the 2012
19th Working Conference on Reverse Engineering. WCRE ’12. USA: IEEE
Computer Society, pp. 9–18.

Berrou, C., A. Glavieux, and P. Thitimajshima (May 1993). “Near Shannon
limit error-correcting coding and decoding: Turbo-codes. 1”. In: Proceedings
of ICC ’93 - IEEE International Conference on Communications. Vol. 2,
1064–1070 vol.2.

Bertsekas, D. P. (June 1988). “The auction algorithm: a distributed relaxation
method for the assignment problem”. In: Annals of Operations Research
14.1-4, pp. 105–123.

Bertsekas, Dimitri P. (Oct. 1992). “Auction algorithms for network flow prob-
lems: A tutorial introduction”. en. In: Computational Optimization and
Applications 1.1, pp. 7–66.

Bertsekas, Dimitri P. and David A. Castañon (Sept. 1991). “Parallel synchronous
and asynchronous implementations of the auction algorithm”. In: Parallel
Computing 17.6-7, pp. 707–732.

Blumenthal, David B. et al. (Aug. 2018). “Quasimetric Graph Edit Distance
as a Compact Quadratic Assignment Problem”. In: 2018 24th International
Conference on Pattern Recognition (ICPR), pp. 934–939.

Bougleux, Sbastien et al. (Feb. 2017). “Graph edit distance as a quadratic
assignment problem”. In: Pattern Recognition Letters 87.C, pp. 38–46.

Bourquin, Martial, Andy King, and Edward Robbins (Jan. 2013). “BinSlayer:
accurate comparison of binary executables”. In: Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop. PPREW
’13. New York, NY, USA: Association for Computing Machinery, pp. 1–10.

Bradde, S. et al. (Feb. 2010). “Aligning graphs and finding substructures by a
cavity approach”. en. In: EPL (Europhysics Letters) 89.3, p. 37009.

Braunstein, Alfredo and Riccardo Zecchina (Jan. 2006). “Learning by Message
Passing in Networks of Discrete Synapses”. In: Physical Review Letters 96.3,
p. 030201.

Brun, Luc, Benoit Gaüzere, and Sébastien Fourey (2012). “Relationships be-
tween graph edit distance and maximal common structural subgraph”. In:
SSPR/SPR, pp. 42–50.

Bunke, H. (Aug. 1997). “On a relation between graph edit distance and maximum
common subgraph”. In: Pattern Recognition Letters 18.9, pp. 689–694.

— (Sept. 1999). “Error Correcting Graph Matching: On the Influence of the
Underlying Cost Function”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 21.9, pp. 917–922.

Bibliography 89

Burkard, Rainer E. (Mar. 1984). “Quadratic assignment problems”. en. In:
European Journal of Operational Research 15.3, pp. 283–289.

Cadar, Cristian and Koushik Sen (Feb. 2013). “Symbolic execution for software
testing: three decades later”. In: Communications of the ACM 56.2, pp. 82–
90.

Callahan, David et al. (Apr. 1990). “Constructing the Procedure Call Multi-
graph”. In: IEEE Transactions on Software Engineering 16.4, pp. 483–487.

Chandramohan, Mahinthan et al. (Nov. 2016). “BinGo: cross-architecture cross-
OS binary search”. In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. FSE 2016. New
York, NY, USA: Association for Computing Machinery, pp. 678–689.

Chess, Brian and Gary McGraw (Nov. 2004). “Static Analysis for Security”. In:
IEEE Security and Privacy 2.6, pp. 76–79.

Chess, Brian and Jacob West (2007). Secure programming with static analysis.
First. Addison-Wesley Professional.

Chua, Zheng Leong et al. (Aug. 2017). “Neural nets can learn function type
signatures from binaries”. In: Proceedings of the 26th USENIX Conference
on Security Symposium. SEC’17. USA: USENIX Association, pp. 99–116.

David, Yaniv, Nimrod Partush, and Eran Yahav (June 2016). “Statistical simi-
larity of binaries”. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’16. New York,
NY, USA: Association for Computing Machinery, pp. 266–280.

David, Yaniv and Eran Yahav (June 2014). “Tracelet-based code search in
executables”. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’14. New York,
NY, USA: Association for Computing Machinery, pp. 349–360.

Ding, Steven H. H., Benjamin C. M. Fung, and Philippe Charland (May 2019).
“Asm2Vec: Boosting Static Representation Robustness for Binary Clone
Search against Code Obfuscation and Compiler Optimization”. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 472–489.

Duan, Yue et al. (2020). “DeepBinDiff: Learning Program-Wide Code Represen-
tations for Binary Diffing”. en. In: Proceedings 2020 Network and Distributed
System Security Symposium. San Diego, CA: Internet Society.

Dullien, T. (2005). “Graph-based comparison of executable Objects”. In: SSTIC’05
: Symposium sur la Securite des Technologies de l’Information et des Com-
munications, Rennes, France, June 2005.

Eagle, Chris (2008). The IDA Pro Book: The Unofficial Guide to the World’s
Most Popular Disassembler. USA: No Starch Press.

El-Kebir, Mohammed, Jaap Heringa, and Gunnar W. Klau (Nov. 2011). “La-
grangian relaxation applied to sparse global network alignment”. In: Pro-
ceedings of the 6th IAPR international conference on Pattern recognition in
bioinformatics. PRIB’11. Berlin, Heidelberg: Springer-Verlag, pp. 225–236.

— (Dec. 2015). “Natalie 2.0: Sparse Global Network Alignment as a Special
Case of Quadratic Assignment”. en. In: Algorithms 8.4, pp. 1035–1051.

Elidan, Gal, Ian McGraw, and Daphne Koller (July 2006). “Residual belief
Propagation: informed scheduling for asynchronous message passing”. In:

90 Bibliography

Proceedings of the Twenty-Second Conference on Uncertainty in Artificial
Intelligence. UAI’06. Arlington, Virginia, USA: AUAI Press, pp. 165–173.

Erdös, Paul and Alfréd Rényi (2011). “On the evolution of random graphs”.
In: The structure and dynamics of networks. Princeton University Press,
pp. 38–82.

Eschweiler, Sebastian, Khaled Yakdan, and Elmar Gerhards-Padilla (2016).
“discovRE: Efficient Cross-Architecture Identification of Bugs in Binary
Code”. en. In: Proceedings 2016 Network and Distributed System Security
Symposium. San Diego, CA: Internet Society.

Fankhauser, Stefan, Kaspar Riesen, and Horst Bunke (May 2011). “Speeding
up graph edit distance computation through fast bipartite matching”. In:
Proceedings of the 8th international conference on Graph-based representa-
tions in pattern recognition. GbRPR’11. Berlin, Heidelberg: Springer-Verlag,
pp. 102–111.

Feizi, Soheil et al. (July 2020). “Spectral Alignment of Graphs”. In: IEEE
Transactions on Network Science and Engineering 7.3, pp. 1182–1197.

Feng, Qian et al. (Oct. 2016). “Scalable Graph-based Bug Search for Firmware
Images”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’16. New York, NY, USA: Association
for Computing Machinery, pp. 480–491.

Flake, Halvar (2004). “Structural comparison of executable objects”. In: Detec-
tion of intrusions and malware & vulnerability assessment, GI SIG SIDAR
workshop, DIMVA 2004. Gesellschaft für Informatik eV.

Frey, Brendan J. and Delbert Dueck (Feb. 2007). “Clustering by Passing Messages
Between Data Points”. en. In: Science 315.5814, pp. 972–976.

Gamarnik, David, Devavrat Shah, and Yehua Wei (Mar. 2012). “Belief Prop-
agation for Min-Cost Network Flow: Convergence and Correctness”. In:
Operations Research 60.2, pp. 410–428.

Gao, Debin, Michael K. Reiter, and Dawn Song (Oct. 2008). “BinHunt: Auto-
matically Finding Semantic Differences in Binary Programs”. In: Proceedings
of the 10th International Conference on Information and Communications
Security. ICICS ’08. Berlin, Heidelberg: Springer-Verlag, pp. 238–255.

Globerson, Amir and Tommi Jaakkola (Dec. 2007). “Fixing max-product: conver-
gent message passing algorithms for MAP LP-relaxations”. In: Proceedings of
the 20th International Conference on Neural Information Processing Systems.
NIPS’07. Red Hook, NY, USA: Curran Associates Inc., pp. 553–560.

Grove, David et al. (Oct. 1997). “Call graph construction in object-oriented
languages”. In: Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. OOPSLA ’97.
New York, NY, USA: Association for Computing Machinery, pp. 108–124.

Haq, Irfan Ul and Juan Caballero (Apr. 2021). “A Survey of Binary Code
Similarity”. In: ACM Computing Surveys 54.3, 51:1–51:38.

Horaud, Radu et al. (Mar. 2011). “Rigid and Articulated Point Registration
with Expectation Conditional Maximization”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 33.3, pp. 587–602.

Bibliography 91

Hu, Xin, Tzi-cker Chiueh, and Kang G. Shin (Nov. 2009). “Large-scale malware
indexing using function-call graphs”. In: Proceedings of the 16th ACM con-
ference on Computer and communications security. CCS ’09. New York, NY,
USA: Association for Computing Machinery, pp. 611–620.

Huang, Bert and Tony Jebara (Mar. 2007). “Loopy Belief Propagation for
Bipartite Maximum Weight b-Matching”. en. In: Artificial Intelligence and
Statistics. PMLR, pp. 195–202.

Huang, He, Amr M. Youssef, and Mourad Debbabi (Apr. 2017). “BinSequence:
Fast, Accurate and Scalable Binary Code Reuse Detection”. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security. ASIA CCS ’17. New York, NY, USA: Association for Computing
Machinery, pp. 155–166.

Jin, Wesley et al. (Dec. 2012). “Binary Function Clustering Using Semantic
Hashes”. In: Proceedings of the 2012 11th International Conference on Ma-
chine Learning and Applications - Volume 01. ICMLA ’12. USA: IEEE
Computer Society, pp. 386–391.

Kann, Viggo (Feb. 1992). “On the Approximability of the Maximum Com-
mon Subgraph Problem”. In: Proceedings of the 9th Annual Symposium on
Theoretical Aspects of Computer Science. STACS ’92. Berlin, Heidelberg:
Springer-Verlag, pp. 377–388.

Kargén, Ulf and Nahid Shahmehri (Oct. 2017). “Towards robust instruction-level
trace alignment of binary code”. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. ASE 2017.
Urbana-Champaign, IL, USA: IEEE Press, pp. 342–352.

Khan, Arif M. et al. (Nov. 2012). “A multithreaded algorithm for network
alignment via approximate matching”. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Anal-
ysis. SC ’12. Washington, DC, USA: IEEE Computer Society Press, pp. 1–
11.

Khedker, Uday, Amitabha Sanyal, and Bageshri Karkare (2009). Data Flow
Analysis: Theory and Practice. 1st. USA: CRC Press, Inc.

Kinable, Joris and Orestis Kostakis (Nov. 2011). “Malware classification based
on call graph clustering”. In: Journal in Computer Virology 7.4, pp. 233–245.

Kinder, Johannes (2010). “Static Analysis of x86 Executables”. en. PhD Thesis.
Technische Universität Darmstadt.

King, James C. (July 1976). “Symbolic execution and program testing”. In:
Communications of the ACM 19.7, pp. 385–394.

Klau, Gunnar W. (Jan. 2009). “A new graph-based method for pairwise global
network alignment”. In: BMC Bioinformatics 10.1, S59.

Knuth, Donald E. (2009). The Art of Computer Programming: Fascicles 0-4.
1st. Addison-Wesley Professional.

Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Prin-
ciples and Techniques - Adaptive Computation and Machine Learning. The
MIT Press.

Kollias, Giorgos, Shahin Mohammadi, and Ananth Grama (Dec. 2012). “Network
Similarity Decomposition (NSD): A Fast and Scalable Approach to Network

92 Bibliography

Alignment”. In: IEEE Transactions on Knowledge and Data Engineering
24.12, pp. 2232–2243.

Kostakis, Orestis et al. (Mar. 2011). “Improved call graph comparison using
simulated annealing”. In: Proceedings of the 2011 ACM Symposium on
Applied Computing. SAC ’11. New York, NY, USA: Association for Computing
Machinery, pp. 1516–1523.

Kruegel, Christopher et al. (Sept. 2005). “Polymorphic worm detection using
structural information of executables”. In: Proceedings of the 8th international
conference on Recent Advances in Intrusion Detection. RAID’05. Berlin,
Heidelberg: Springer-Verlag, pp. 207–226.

Kuhn, H. W. (1955). “The Hungarian method for the assignment problem”. en.
In: Naval Research Logistics Quarterly 2.1-2, pp. 83–97.

Lakhotia, Arun, Mila Dalla Preda, and Roberto Giacobazzi (Jan. 2013). “Fast
location of similar code fragments using semantic ’juice’”. In: Proceedings
of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering
Workshop. PPREW ’13. New York, NY, USA: Association for Computing
Machinery, pp. 1–6.

Lance, G. N. and W. T. Williams (May 1966). “Computer Programs for Hierar-
chical Polythetic Classification (“Similarity Analyses”)”. In: The Computer
Journal 9.1, pp. 60–64.

Lee, Yeo Reum, BooJoong Kang, and Eul Gyu Im (Oct. 2013). “Function
matching-based binary-level software similarity calculation”. In: Proceedings
of the 2013 Research in Adaptive and Convergent Systems. RACS ’13. New
York, NY, USA: Association for Computing Machinery, pp. 322–327.

Lerouge, Julien et al. (Dec. 2017). “New binary linear programming formulation
to compute the graph edit distance”. In: Pattern Recognition 72.C, pp. 254–
265.

Li, Yujia et al. (May 2019). “Graph Matching Networks for Learning the Sim-
ilarity of Graph Structured Objects”. en. In: International Conference on
Machine Learning. PMLR, pp. 3835–3845.

Lin, Chih-Long (Aug. 1994). “Hardness of Approximating Graph Transformation
Problem”. In: Proceedings of the 5th International Symposium on Algorithms
and Computation. ISAAC ’94. Berlin, Heidelberg: Springer-Verlag, pp. 74–82.

Liu, Bingchang et al. (Sept. 2018). “α Diff: cross-version binary code
similarity detection with DNN”. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ASE 2018.
New York, NY, USA: Association for Computing Machinery, pp. 667–678.

Liu, Kaiping, Hee Beng Kuan Tan, and Xu Chen (Aug. 2013). “Binary Code
Analysis”. In: Computer 46.8, pp. 60–68.

Loeliger, H.-A. (Jan. 2004). “An introduction to factor graphs”. In: IEEE Signal
Processing Magazine 21.1, pp. 28–41.

Luo, Lannan et al. (Nov. 2014). “Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detec-
tion”. In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2014. New York, NY, USA:
Association for Computing Machinery, pp. 389–400.

Bibliography 93

Lyzinski, Vince et al. (Jan. 2016). “Graph Matching: Relax at Your Own Risk”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 38.1,
pp. 60–73.

Malioutov, Dmitry M., Jason K. Johnson, and Alan S. Willsky (Dec. 2006).
“Walk-Sums and Belief Propagation in Gaussian Graphical Models”. In: The
Journal of Machine Learning Research 7, pp. 2031–2064.

Massarelli, Luca et al. (2019). “SAFE: Self-Attentive Function Embeddings
for Binary Similarity”. en. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Ed. by Roberto Perdisci et al. Lecture Notes in
Computer Science. Cham: Springer International Publishing, pp. 309–329.

Meltzer, Talya, Chen Yanover, and Yair Weiss (Oct. 2005). “Globally Optimal
Solutions for Energy Minimization in Stereo Vision Using Reweighted Belief
Propagation”. In: Proceedings of the Tenth IEEE International Conference
on Computer Vision (ICCV’05) Volume 1 - Volume 01. ICCV ’05. USA:
IEEE Computer Society, pp. 428–435.

Meng, Xiaozhu and Barton P. Miller (July 2016). “Binary code is not easy”.
In: Proceedings of the 25th International Symposium on Software Testing
and Analysis. ISSTA 2016. New York, NY, USA: Association for Computing
Machinery, pp. 24–35.

Ming, Jiang, Meng Pan, and Debin Gao (Nov. 2012). “iBinHunt: binary hunting
with inter-procedural control flow”. In: Proceedings of the 15th interna-
tional conference on Information Security and Cryptology. ICISC’12. Berlin,
Heidelberg: Springer-Verlag, pp. 92–109.

Ming, Jiang et al. (Aug. 2017). “BinSim: trace-based semantic binary diffing
via system call sliced segment equivalence checking”. In: Proceedings of the
26th USENIX Conference on Security Symposium. SEC’17. USA: USENIX
Association, pp. 253–270.

Murphy, Kevin P., Yair Weiss, and Michael I. Jordan (July 1999). “Loopy belief
propagation for approximate inference: an empirical study”. In: Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence. UAI’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 467–475.

Nassar, Huda et al. (Apr. 2018). “Low Rank Spectral Network Alignment”. In:
Proceedings of the 2018 World Wide Web Conference. WWW ’18. Republic
and Canton of Geneva, CHE: International World Wide Web Conferences
Steering Committee, pp. 619–628.

Ng, Beng Heng and Atul Prakash (July 2013). “Expose: Discovering Potential
Binary Code Re-use”. In: Proceedings of the 2013 IEEE 37th Annual Com-
puter Software and Applications Conference. COMPSAC ’13. USA: IEEE
Computer Society, pp. 492–501.

Nielson, Flemming, Hanne R. Nielson, and Chris Hankin (2010). Principles of
Program Analysis. Springer Publishing Company, Incorporated.

P. Cordella, Luigi et al. (Oct. 2004). “A (Sub)Graph Isomorphism Algorithm for
Matching Large Graphs”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 26.10, pp. 1367–1372.

Patro, Rob and Carl Kingsford (Dec. 2012). “Global network alignment using
multiscale spectral signatures”. In: Bioinformatics 28.23, pp. 3105–3114.

94 Bibliography

Pearl, Judea (Aug. 1982). “Reverend bayes on inference engines: a distributed
hierarchical approach”. In: Proceedings of the Second AAAI Conference
on Artificial Intelligence. AAAI’82. Pittsburgh, Pennsylvania: AAAI Press,
pp. 133–136.

— (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Pewny, Jannik et al. (Dec. 2014). “Leveraging semantic signatures for bug search
in binary programs”. In: Proceedings of the 30th Annual Computer Security
Applications Conference. ACSAC ’14. New York, NY, USA: Association for
Computing Machinery, pp. 406–415.

Pewny, Jannik et al. (May 2015). “Cross-Architecture Bug Search in Binary
Executables”. In: Proceedings of the 2015 IEEE Symposium on Security and
Privacy. SP ’15. USA: IEEE Computer Society, pp. 709–724.

Preis, Robert (Mar. 1999). “Linear time 1/2 -approximation algorithm for
maximum weighted matching in general graphs”. In: Proceedings of the 16th
annual conference on Theoretical aspects of computer science. STACS’99.
Berlin, Heidelberg: Springer-Verlag, pp. 259–269.

Raveaux, Romain (May 2021). “On the unification of the graph edit distance
and graph matching problems”. en. In: Pattern Recognition Letters 145,
pp. 240–246.

Riesen, Kaspar (2016). Structural Pattern Recognition with Graph Edit Dis-
tance: Approximation Algorithms and Applications. 1st. Springer Publishing
Company, Incorporated.

Riesen, Kaspar and Horst Bunke (June 2009). “Approximate graph edit distance
computation by means of bipartite graph matching”. In: Image and Vision
Computing 27.7, pp. 950–959.

Riesen, Kaspar, Michel Neuhaus, and Horst Bunke (June 2007). “Bipartite graph
matching for computing the edit distance of graphs”. In: Proceedings of the
6th IAPR-TC-15 international conference on Graph-based representations in
pattern recognition. GbRPR’07. Berlin, Heidelberg: Springer-Verlag, pp. 1–12.

Rogers, Hartley (1987). Theory of recursive functions and effective computability.
Cambridge, MA, USA: MIT Press.

Ryder, B. G. (May 1979). “Constructing the Call Graph of a Program”. In:
IEEE Transactions on Software Engineering 5.3, pp. 216–226.

Sanghavi, Sujay, Dmitry M. Malioutov, and Alan S. Willsky (Dec. 2007). “Linear
programming analysis of Loopy belief propagation for weighted matching”.
In: Proceedings of the 20th International Conference on Neural Information
Processing Systems. NIPS’07. Red Hook, NY, USA: Curran Associates Inc.,
pp. 1273–1280.

Sanghavi, Sujay, Devavrat Shah, and Alan S. Willsky (Nov. 2009). “Message
passing for maximum weight independent set”. In: IEEE Transactions on
Information Theory 55.11, pp. 4822–4834.

Schwarz, B., S. Debray, and G. Andrews (Oct. 2002). “Disassembly of Executable
Code Revisited”. In: Proceedings of the Ninth Working Conference on Reverse
Engineering (WCRE’02). WCRE ’02. USA: IEEE Computer Society, p. 45.

Singh, Rohit, Jinbo Xu, and Bonnie Berger (Sept. 2008). “Global alignment of
multiple protein interaction networks with application to functional orthology

Bibliography 95

detection”. In: Proceedings of the National Academy of Sciences 105.35,
pp. 12763–12768.

Sæbjørnsen, Andreas et al. (July 2009). “Detecting code clones in binary ex-
ecutables”. In: Proceedings of the eighteenth international symposium on
Software testing and analysis. ISSTA ’09. New York, NY, USA: Association
for Computing Machinery, pp. 117–128.

Tappen, Marshall F. and William T. Freeman (Oct. 2003). “Comparison of Graph
Cuts with Belief Propagation for Stereo, using Identical MRF Parameters”.
In: Proceedings of the Ninth IEEE International Conference on Computer
Vision - Volume 2. ICCV ’03. USA: IEEE Computer Society, p. 900.

Umeyama, S. (Sept. 1988). “An Eigendecomposition Approach to Weighted
Graph Matching Problems”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 10.5, pp. 695–703.

Vogelstein, Joshua T. et al. (Apr. 2015). “Fast Approximate Quadratic Program-
ming for Graph Matching”. en. In: PLOS ONE 10.4, e0121002.

Wainwright, M. J., T. S. Jaakkola, and A. S. Willsky (Nov. 2005). “MAP
estimation via agreement on trees: message-passing and linear programming”.
In: IEEE Transactions on Information Theory 51.11, pp. 3697–3717.

Wainwright, Martin, Tommi Jaakkola, and Alan Willsky (Apr. 2004). “Tree
consistency and bounds on the performance of the max-product algorithm
and its generalizations”. In: Statistics and Computing 14.2, pp. 143–166.

Wainwright, Martin J and Michael I Jordan (2008). Graphical Models, Exponen-
tial Families, and Variational Inference. Hanover, MA, USA: Now Publishers
Inc.

Wartell, Richard et al. (2014). “Shingled Graph Disassembly: Finding the Unde-
cideable Path”. en. In: Advances in Knowledge Discovery and Data Mining.
Ed. by Vincent S. Tseng et al. Lecture Notes in Computer Science. Cham:
Springer International Publishing, pp. 273–285.

Weiss, Y. and W. T. Freeman (Sept. 2006). “On the optimality of solutions
of the max-product belief-propagation algorithm in arbitrary graphs”. In:
IEEE Transactions on Information Theory 47.2, pp. 736–744.

Weiss, Yair (Jan. 2000). “Correctness of Local Probability Propagation in
Graphical Models with Loops”. In: Neural Computation 12.1, pp. 1–41.

Xu, Xiaojun et al. (Oct. 2017a). “Neural Network-based Graph Embedding for
Cross-Platform Binary Code Similarity Detection”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity. CCS ’17. New York, NY, USA: Association for Computing Machinery,
pp. 363–376.

Xu, Zhengzi et al. (May 2017b). “SPAIN: security patch analysis for binaries
towards understanding the pain and pills”. In: Proceedings of the 39th In-
ternational Conference on Software Engineering. ICSE ’17. Buenos Aires,
Argentina: IEEE Press, pp. 462–472.

Yang, Cheng et al. (July 2015). “Network representation learning with rich
text information”. In: Proceedings of the 24th International Conference
on Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press,
pp. 2111–2117.

96 Bibliography

Zaslavskiy, Mikhail, Francis Bach, and Jean-Philippe Vert (Dec. 2009). “A
Path Following Algorithm for the Graph Matching Problem”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 31.12, pp. 2227–
2242.

Zhang, Guoqiang and Richard Heusdens (Sept. 2014). “Convergence of min-
sum-min message-passing for quadratic optimization”. In: Proceedings of the
2014th European Conference on Machine Learning and Knowledge Discovery
in Databases - Volume Part III. ECMLPKDD’14. Berlin, Heidelberg: Springer-
Verlag, pp. 353–368.

Zhang, Si and Hanghang Tong (Aug. 2016). “FINAL: Fast Attributed Network
Alignment”. In: Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. KDD ’16. New York, NY,
USA: Association for Computing Machinery, pp. 1345–1354.

Zhang, Zhen et al. (Dec. 2019). “KerGM: kernelized graph matching”. In:
Proceedings of the 33rd International Conference on Neural Information
Processing Systems. 300. Red Hook, NY, USA: Curran Associates Inc.,
pp. 3335–3346.

Zhou, Feng (June 2012). “Factorized graph matching”. In: Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
CVPR ’12. USA: IEEE Computer Society, pp. 127–134.

Zuo, Fei et al. (2019). “Neural Machine Translation Inspired Binary Code
Similarity Comparison beyond Function Pairs”. en. In: Proceedings 2019
Network and Distributed System Security Symposium. San Diego, CA: Internet
Society.

	Abstract
	Résumé
	Remerciements
	Introduction
	Background
	Static binary analysis
	Binary executable
	Program disassembly
	Program representations

	Binary Diffing
	Binary code granularity
	Binary code similarity
	Binary code matching

	Problem Statement
	Binary diffing as a graph edit distance problem
	Binary diffing as a network alignment problem
	Equivalence between graph edit distance and network alignment problem
	Formal proof
	Related work

	Graph edit operation costs
	Edit operation relationships
	Similarity measures

	Message-passing framework for the network alignment problem
	Max-product algorithm
	Factor-graph
	Estimation of the max-marginals
	Simplifications
	Extension to the ''loopy'' case

	Network alignment via max-product belief propagation
	Factor-graph
	Message updates
	Damping strategy
	Rounding strategy
	Complexity

	Proposed improvements
	Solution assignment
	Updates schedule
	Auction based -complementary slackness

	Related work

	Network Alignment Experiments
	Baseline
	Synthetic problems
	Benchmark
	Results

	Real world problems
	Benchmark
	Results

	Binary Diffing Experiments
	Baseline
	Function similarity
	Function matching
	Integrated differs
	Training

	Benchmark
	Preliminary
	Benchmark design
	Ground Truth

	Results
	Overall results
	Results with different similarity measures

	Discussions
	Limitations
	Threats to validity
	Future works

	Conclusion

