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0.1. RESUME EN FRANCAIS 5

0.1 Résumé en francais

En informatique, il existe une dichotomie entre calculs séquentiels et calculs paral-
leles, chacun d’eux étant abstrait de diverses manieres selon 1’'objectif. Nous nous
intéressons aux calculs paralleles tels que capturés par le modele des automates cel-
lulaires introduit par John von Neumann dans les années 40. Nous nous concentrons
sur les outils théoriques et pratiques nécessaires pour concevoir un automate cellu-
laire particulier comme solution a un probleme algorithmique parallele donné. Des
exemples de tels problemes sont le probleme de synchronisation de fusiliers et les
problémes de génération de séquences en temps réel. Dans la programmation infor-
matique ordinaire, un programmeur réfléchit généralement a un probléme, propose
un algorithme abstrait et I'implémente dans un langage de programmation de haut
niveau qui est transformé par un compilateur en code d’assemblage de bas niveau.
Le langage de programmation de haut niveau est censé permettre au programmeur
d’exprimer son idée aussi directement ou clairement que possible, et le compilateur
optimise généralement le code d’assemblage produit d’une maniere ou d’'une autre.
Considérant les tables de transition d’automates cellulaires comme un code assem-
bleur exécutable de bas niveau, deux approches principales ont été imaginées pour
fournir une description formelle de haut niveau de “l’algorithme cellulaire” : les
machines a signaux introduites par Jérome Durand-Lose en 2003, et les champs cel-
lulaires introduit en 2010 par Luidnel Maignan. Une premiere description grossiere
du but de cette these est de permettre la réduction automatique du nombre d’états
et/ou du nombre de transitions d’un automate cellulaire déja donné, cette réduction
automatique étant pensée comme 1’étape d’optimisation du “processus de compila-
tion” de I'approche par champs cellulaires en particulier. Ceci est fait en considérant
le concept de “simulation locale”. Ce dernier permet de transformer un diagramme
espace-temps en un autre de maniere locale. En transformant des familles de dia-
grammes espace-temps d’'un automate cellulaire, un nouvel automate cellulaire peut
ainsi étre extrait de la famille de diagrammes résultante. Ce nouvel automate cel-
lulaire est similaire a 1’original, seul I’encodage local des informations est modifié.
Cela signifie que le nombre d’états ou le nombre de transitions peut changer tout
en préservant la correction de I'automate cellulaire par rapport a une spécification
spatio-temporelle donnée. Ce concept est appliqué a I’exploration de solutions pour
le probleme de synchronisation de fusiliers et pour les probléemes de génération de
séquences en temps réel. Dans le premier cas, cela montre qu’il existe des millions de
solutions a 6 états de la synchronisation, en les générant automatiquement a partir
de solutions connues. A noter qu’il s’agit 1a d’une grande surprise compte tenu de
la littérature actuelle sur le sujet. Dans le second cas, cela conduit a la premiere
solution & 4 états pour la génération de la séquence n?, un résultat qui est obtenu
en utiliser aucune compréhension de I'algorithme sous-jacent, mais plutot en manip-
ulant 'automate cellulaire avec des simulations locales, de facon semi-automatiques.

Mots clés: algorithmique répartie, programmation parallele, modele de calculs
informatique, automates cellulaires, minimisation d’automates, simulation locale,
génération automatique, probleme de synchronisation de fusiliers, génération de
séquence en temps-réel.



6 CONTENTS

0.2 Abstract

In computer science, there is a dichotomy between sequential computations and
parallel computations, each of them being abstracted in various ways depending
on the goal. We are interested in parallel computations as captured by the model
of cellular automata introduced by John von Neumann in the 40’s. We focus on
theoretical and practical tools needed to design a particular cellular automaton as
a solution for a given parallel algorithmic problem. Examples of such problems
are the firing squad synchronization problem and the real-time sequence generation
problems. In ordinary computer programming, a programmer typical thinks about
a problem, comes up with an abstract algorithm, and implement it in a high-level
programming language that is transformed by a compiler to the low-level assembly
code. The high-level programming language is supposed to allow the programmer to
express his or her idea as directly or clearly as possible, and the compiler typically
optimizes the produced assembly code in some way. Thinking of transition tables of
cellular automata as a low-level executable assembly code, two main approaches have
been devised to provide a high-level formal description of “cellular algorithm”: signal
machines introduced by Jérome Durand-Lose in 2003, and cellular fields introduced
in 2010 by Luidnel Maignan. A first rough description of the goal of this thesis is to
allow automatic reduction of the number of states and/or the number of transitions
of an already given cellular automaton, this automatic reduction being thought
of as the optimization step of the “compilation process” of cellular field approach
in particular. This is done by considering the concept of “local simulation”. The
latter allows to transform a space-time diagram into another one in a local manner.
By transforming families of space-time diagrams of a cellular automaton, a new
cellular automaton can thus be extracted from the resulting family of diagrams.
This new cellular automaton is similar to the original one, only the local encoding
of information is changed. This means that the number of states or number of
transitions can change while preserving the correctness of the cellular automaton
with respect to a given space-time specification. This concept is applied to the
exploration of solutions for the firing squad synchronization problem and for the
real-time sequence generation problems. In the first case, this shows that there are
millions of 6-state synchronization solutions, by generating them automatically from
known solutions. Note that this is a big surprise given the current literature on the
subject. In the second case, it leads to the first 4-state solution for the generation
of the n3 sequence, a result which is obtained with no use of any understanding
of the algorithm, but instead by manipulating the cellular automaton with local
simulations, in a semi-automatic manner.

Keywords: distributed computing, parallel computing, models of computation,
cellular automata, automata minimization, local simulation, automatic generation,
firing squad synchronization problem, real-time sequence generation.



Chapter 1

Cellular Automata Algorithms

In computer science, there is a dichotomy between sequential computations and
parallel computations, each of them being abstracted in various ways depending on
the goal. We are interested in parallel computations as captured by the model of
Cellular Automata (CA for short) introduced by John von Neumann in the 40’s
137] (Section [L.1)). We focus on theoretical and practical tools needed to design
a particular CA as a solution for a given parallel algorithmic problem. Examples
of such problems are the firing squad synchronization problem and the real-time
sequence generation problems (Section .

In ordinary computer programming, a programmer typical thinks about a prob-
lem, comes up with an abstract algorithm, and implement it in a high-level program-
ming language that is transformed by a compiler to the low-level assembly code. The
high-level programming language is supposed to allow the programmer to express
his or her idea as directly or clearly as possible, and the compiler typically optimizes
the produced assembly code in some way. Thinking of CA transition tables as a low-
level executable assembly code, two main approaches have been devised to provide
a high-level formal description of “cellular algorithms”: signal machines introduced
by Jérdéme Durand-Lose in 2003 [5], and cellular fields introduced during the PhD
thesis of Luidnel Maignan [14] (Section |1.3)).

A first rough description of the goal of this thesis is to allow automatic reduction
of the number of states and/or the number of transitions of an already given cellular
automaton, this automatic reduction being thought of as the optimization step of
the “compilation process” of cellular field approach in particular.

1.1 Cellular Automata, Tightly

Intuitively speaking, a cellular automaton is a set of rules describing the local,
synchronous and uniform evolution of an array of identical cells having a finite
number of possible states. Each rule specifies the next state of a cell, given its
current state and those of its neighbors. Here is a representation of the 8 rules of
the so-called “traffic” cellular automaton.

. piauiie "nin "R piEeRESSlEe

Figure 1.1: Local transition function 4, of the “traffic” cellular automaton 7.




8 CHAPTER 1. CELLULAR AUTOMATA ALGORITHMS

For a given configuration of the array of cells, i.e. the choice of a state for each
cell, the next configuration is obtained be assigning to each cell the state dictated by
the set of rules based on its current state and those of its immediate neighbors. If we
represent an initial configuration horizontally, and the resulting configurations on
the next line iteratively, we obtain the so-called space-time diagram of the cellular
automaton on the given initial configuration. Here is a space-time diagram of the
traffic cellular automaton on an initial configuration having 12 cells in the black
states. Note how the 8 rules are used to compute this space-time diagram from the
chosen initial configuration.

B 19 20 21 2 23 24 2 26 21 28 20 30 31 32 33 34 35 36 37 3 30 40

Figure 1.2: Space-time diagram of “traffic” CA 7 on a given initial configuration.

A detailed introduction to CA is beyond the scope of this document and we
assume the reader to be familiar with the topic. But CA are used in various slightly
different ways in different work, so let us give immediately a precise formal definition
that fits the need of this document, and better links with the choices in the associated
ublications. In particular, we consider uni-dimensional CA with a neighborhood of
radius 1. Further generalizations are easy to make once this case well understood.
We are also interested in counting the number of useful rules so we have the following
definition.

Definition 1. A cellular automaton « consists of a finite set of states ¥, a set
of initial configurations I, C Y% and a partial function 0, : Ea{_l’o’l} -+ X
called the local transition function or local transition table such that for any initial
configuration ¢ € 1, and any t € N, (6Z)!(c) is defined. The latter notation 5% refers
to the partial function 6% : £,% - X% called the global transition function of a and
defined as

0x(c)(p) = dalclp))  for any (c,p) € Lo x Z
where —(—=) : 1o x Z — S, 710 s defined as

c(p) (i) = c(p+ ) for any (¢, p,i) € I, x Z x {—1,0,1}.

The elements of .2 are called global configurations, or just configurations for
short, and those of >, 10 gre called local configurations.

Let us insist on the fact that the transition functions d, and §Z might be partial
but the global configurations (elements of ¥,%) are total functions on the domain Z
and local configurations (elements of ¥,{"5%) are total functions on the domain
{—1,0,1}. Given a local configuration [ € ¥,{71%1 | the values {(—1), 1(0) and (1)
respectively refer to state of the left, center and right cell of the local configuration.
The constraint that we put on the (partial) local transition function d, means that
the global transition function 6% should be applicable any number of times ¢ on
any initial configuration ¢ and still give a total configuration (6%)!(c) € ,%. We
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mostly restrict our attention to those cellular automata where every transition rule
is useful, i.e. V1 € dom(d,),3(c, t,p) € I, x N x Z, (6Z)(c)(p) = L.

Definition 2. Given a cellular automaton o and an initial configuration c € 1, the
space-time diagram D, (c) : N X Z — X, is defined as:

Da(e)(t,p) = (62)()(p)  for any (t,p) € N x Z.

When D, (c)(t, p) = s, we say that, for the cellular automaton a and initial config-
uration c, the cell at position p has state s at time t.

In the above example of the traffic cellular automaton 7, the set of states >, is
{0, 1} (0 for white empty cells, and 1 for filled black cells), and all configurations
are possible initial configurations, i.e. I, = ¥, Z. The local transition function 4, is
therefore a total function, and so is the global transition function §Z. Note that cells
at position less than 0 or bigger than 40, those not represented in the space-time
diagrams, are all in the white state 0. But our definition of cellular automata allows
to restrict the set of initial configurations to, say, configurations where there is never
more than two consecutive black cell. This leads to another cellular automaton 7/
with the same set of states ¥, = {0,1} and with I, = {c¢c € {0,1}2 | Vp €
Z,(c(p),c(p+1),c(p+2)) #(1,1,1)}. In this case, the local transition function o,/
can stay undefined on triplet of three black cells (1,1, 1).

R O R

Figure 1.3: Local transition (partial) function d,. of the CA 7.

Indeed, such a local configuration never occur in any space-time diagrams from
any initial configuration in I/, as in the following example. Put differently, restrict-
ing 0, not to be defined on (1,1, 1) implies that I, also have to restricted at least
as we just did in order for the property of having only total configurations to hold.

2 3 4 5 6 T 8 9 10 1 12 13 M4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 3 36 37 38 30 40

Figure 1.4: Space-time diagram of CA 7’ on a given initial configuration in L.

We can restrict further the set of initial configurations to those where there are
no consecutive black cells. This leads to yet another CA 7”7 with the same set of
states X,» = {0,1} and with I» = {c¢ € {0,1}* |Vp € Z, (c(p), c(p+ 1)) # (1,1)}.
In this case, the local transition function d,~, depicted in Fig|l.5] can stay undefined
on even more local configurations. Only 5 rules suffice has exemplified in Fig|1.6]

These examples are a bit misleading as they have the special property that any
configuration occurring in the space-time diagrams also belong to the set of initial
configurations. This is not required as will become clear thereafter. As a last note,
we will consider the following vocabulary in relation with cellular fields later on.
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| | | I? I;j [ [ﬂj | J | |

Figure 1.5: Local transition (partial) function ¢,~ of the CA 7.

Figure 1.6: Space-time diagram of CA 7" on a given initial configuration in I.~.

Definition 3. An infinite cellular automaton is almost a cellular automaton, except
that the set of states is not necessarily finite.

The benefit of these definitions is that we can associate to any such (finite) CA
a number of states and a number of transitions. We are interested in procedures
allowing, for instance, to start with an infinite CA, to transform it into a finite CA
with a given number of states and transitions, then to transform this finite CA into
another one with fewer states or fewer transitions, and so on so forth. But these
transformations have to preserve the important properties of the CA, namely their
correctness as solutions to a given algorithmic problem, in the same way that a
compiler might optimize the size of an assembly code or its memory usage while
preserving its correctness.

1.2 Algorithmic Problems

Since von Neumann’s studies on auto-replication and synchronization of CA [37],
a number of algorithmic problems have been considered. In this work, we use two
algorithmic problems as examples: the firing squad synchronization problem, and
the problem of real-time sequence generation.

1.2.1 The Firing Squad Synchronization Problem

The Firing Squad Synchronization Problem (FSSP for short) was proposed by John
Myhill in 1957 [23]. The goal is to find a single cellular automaton that synchronizes
any one-dimensional horizontal array of an arbitrary number of cells. More precisely,
one considers that at initial time, all cells are inactive (i.e. in a special quiescent
state) except for the leftmost cell which is active (i.e. in a special general state).
One wants the local transition function of the cellular automaton to lead all cells
to transition to a special synchronization or firing state for the first time at the
same time. This time {, is called the synchronization time and it is known that its
minimal possible value is 2n — 2 where n is the number of cells [23].

For this problem, many minimal-time solutions were proposed using different ap-
proaches. As indicated in [32], the first one was proposed by Goto in 1962 [32] with
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(b) Mazoyer 6-state 119-rule [21]

(a) Balzer 8-state 165-rule [I]

Figure 1.7: Space-time diagram of Balzer’s and Mazoyer’s minimal-time solutions.

and finally Mazoyer in 1987 [2I] who presented respectively a
state and 6-state minimum-time solution, with no further im-

provements in number of states since 1987. Balzer [I] shows that there are no
4-state minimal-time solutions, latter confirmed by Sanders [30] through an exhaus-

tive search and some corrections to Balzer’s work. Whether there exists any 5-state
minimum-time solution or not is still an open question. In Fig one can see the

two archetypal strategies to obtain a minimum-time FSSP solution.

Y

many thousands of states, followed by Waksman in 1966 [38], Balzer in 1967 [II,
state, 7-

Gerken in 1987 [7]

16-state, 8-

In fact, all these solutions use a “divide and conquer” strategy. Goto’s solution

were pretty complex with two types of divisions. The following ones used a “mid-

way” division but Mazoyer’s 6-state solution uses for the first time a “two-third”

type of divisiorﬂ Until recently, it was believed that the special “two-third” type of

division used by Mazoyer was necessary to achieve as few as 6 states. In other words,

generated 718 new

it was believed that one needed to change the “‘mid-way” algorithm to improve the

number of states. But in 2018, Clergue, Verel and Formenti [3]

6-state solutions using an Iterated Local Search algorithm to explore the space of

717 of these solutions

6-state solutions on a cluster of heterogeneous machines:

came as

use a “mid-way” division, and only one use a “two-third” division. This

and Figure for a two-third division

?

!See Figure for a mid-way division
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a surprise, firstly because “mid-way” division seems now to be the norm even for
6-state CA, but also because 718 solutions seemed to be a lot of solutions. In
this document, we show how it is possible to find millions of such solutions with
a single personal computer [26] | This was discovered in the search for an semi-
automatic way to go from an infinite CA to a 6-state CA [25], but this asks also the
question of whether a similar technique can be used to find a 5-state CA in order to
close the aforementioned long standing open question of existence of such solutions.
Some hope in this direction comes from our result for the following algorithmic
problem [28], but we are getting ahead of ourselves.

Of course, there are also non-minimal-time solutions of interest [35]. In 1965,
Fischer proposed an algorithm synchronizing at time 3n — 4 [6] et Umeo proposed
an implementation using 15 states and 188 rules [35]. 1967, Minsky et McCarthy
[22] proposed an 3n + O(log n) algorithm and Yunes proposed an implementation
using 13 states and 138 rules in 1994 [39], together with two 7 states solutions
using 134 rules. Other solutions with the same time complexity were proposed by
Herman in 1972 [§] (10 states, 155 rules), by Umeo, Maeda et Hongyo in 2006 [34]
(6 states, 78 rules), by Yunes in 2008 (6 states, 125 rules), and by Umeo in 2015
[35] (2 solutions of 6 states, one with 114 rules and the other 100 rules). These
solutions also differ by other criteria such as their state-change complexity. Also
in 2007, Umeo et Yanagihara [36] proposed a partial solution for n = 2% using 5
states and 67 rules to synchronize at time 3n — 3. Despite the fact that they are not
minimal-time, these solutions are also based on a very similar “divide and conquer”
strategy. Figure illustrates how the non-minimal-time algorithm works. Figure
shows the space-time diagram of Yunes’s solution 7 state, 134 rules and Figure
shows which of Umeo’s solution 6 states, 78 rules.

Let us give a formal definition fitting our framework. In particular, the finite
configurations are embedded into infinite ones using an additional special state.

Definition 4. A cellular automaton « is an FSSP solution if there are four special
states x4, Ga, Qu, Fo € Xy satisfying the following conditions:

1. %, is an outside state, i.e. VI € dom(d,), 0a(l) = %o < 1(0) = *4.

2. G, is a general state, i.e. I, = {Tia | n > 2} with Tiq € X7 being the FSSP
initial configuration of size n defined as Tio(p) = *a, Ga, Qu, *a for p < 0,
p=0,0<p<mn, and p > n respectively.

3. Qq is a quiescent state, i.e. d4(Qa, Qa, Q) = 0a(Qas Qus *o) = Qu-

4. Fo is a firing state, i.e. Vn,3t € N, V(t',p) € N x Z,Dy(7)(t', p) = Fo <
t >t

The *,, state is not really counted as a state since it represents cells that should
be considered as non-existing. Therefore, an FSSP solution « is said to have s states
when | £, \{*a} | = s, and m transitions when | dom(d,) \ o X {*a,Fa} X X0 |= m.
In the last expression, note that we also uncount the transition happening after the
synchronization, i.e. those from the firing state to the firing state imposed by the
forth condition of FSSP solutions.
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Figure 1.9: Space-time diagram of Kamikawa and Umeo’s n3>-RTSG solution.

1.2.2 Real-Time Sequence Generators

Let us consider now another algorithmic problem, the so-called Real-Time Sequence
Generation problems (RTSG for short). In the latter, given a fixed sequence S C N,
the goal is to find a cellular automaton running on an one-dimensional horizontal
array of cells such that the leftmost cell is in a special state exactly when the number
of transition ¢ from the beginning belongs to S. In the following, we write f(n) to
mean S = {f(n) | n > 1}.

The study of such problems began in 1965 for the sequence of prime numbers,
with a description of a cellular automaton algorithm by Fischer [6]. In 1998, Ko-
rec [I3] proposed a 9-state solution. Other sequences where considered in 2007 by
Kamikawa and Umeo [24] who gave some different algorithms for the sequences
2", n?, and 3" using one-bit inter-cell-communication cellular automata. In 2012,
Kamikawa and Umeo [I0] described the sequence generation powers of CAs having
a small number of states, focusing on the CAs with one (only one sequence n of
all positive natural numbers), two, and three internal states, respectively. The au-
thors enumerate all of the sequences generated by two-state CAs (linear sequences:
2n,4n,3n —1,n,3n — 2,2n — 1, n + 1; non-regular sequences: 2" —2 2" — 1) and
present several non-regular sequences like 2%, n?, 3" that can be generated in real-
time by three-state CAs, but not generated by any two-states CA. In 2016 [I1], they
gave a construction for the Fibonacci sequence using five-state, followed in 2019 [12]
by two solutions of 8 states and 6 states for the sequence n3. Figure shows the
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solution 6 states of Umeo for the sequence n3. In these studies, much attention has
been paid to the developments of real-time generation algorithms and their small-
state implementations on CAs for specific non-regular sequences. Other complexities
are also studied such as the space, communication or state-change complexities.

The interesting thing about the latter sequence n? is its similarity with the
FSSP current situation: the best known solution uses 6 states, and the question of
existence of a better solution was open, but the methods describe in this document
close the question with an semi-automatic optimization of Umeo’s 6-state solution
into a 4-state solution ! This shows that the method might have some chance to be
useful for the harder open problem of the existence of 5-state FSSP solutions.

Let us give a formal definition for this problem too.

Definition 5. Given a sequence S C N, a cellular automaton is a S-RTSG solution
if there are four special states *4,Bq, Qa, Sa € Xq satisfying the following conditions.

1. %, is an outside state, i.e. VI € dom(d,), 0a(l) = %o < 1(0) = *4.

2. B, s the lauching state, i.e. I, = {@a} with 33, being the RTSG initial
configuration defined as @a(p) = *q, Ba and Q, for p <0, p=0andp > 1
respectively.

3. Qq is a quiescent state, i.e. 64(Qu,Qu,Qa) = Qo 0n one hand, and d (%, Qu, Qu) =
Q. if it is defined, on the the hand.

4. S, is a generating state, i.e. V¢ € N, Dy(38,)(t,0) =S, < t € S.

As for FSSP, the «, state is not really counted as a state since it represents cells
that should be considered as non-existing. Therefore, an RTSG solution « is said
to have s states when | X, \ {x,} | = s, and m transitions when | dom(d,) \ X, X
{*a} X g |= m.

To finish this section, let us summarize. At this point, we almost have all the
pieces together to have a full analogy between CA framework and usual computer
programming languages and their compilers. We consider CA as low-level assembly
code, and the optimization process of CA have to preserve correctness with respect
to the considered algorithmic problem as compilers do. With this section, we have
just presented the two algorithmic problems that we use as examples. The next
section introduce the last piece which should be compared to high-level programming
languages used to produce an initial low-level code via the compiler.

1.3 High-Level Descriptions of CA

It is often the case that solutions to CA algorithmic problems are first solved ab-
stractly through some idealized thinking in a first step, this abstract thinking being
translated into a concrete CA implementation “by hand” in a second step. It is very
tempting to try to formalize the abstract thinking into a kind of high-level frame-
work and to generate automatically the implementation from it, similar to high-level
languages compilers. One benefit is that the correctness could in principle be proved
on the high level description, making it closer to the designers thinking, and there-
fore easier to follow. The generation process should then automatically preserve
correctness.
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Figure 1.10: Cellular algorithms through signals in a continuous space

1.3.1 Abstract Geometrical Computations

It is a fact that many CA solutions are designed by first thinking in terms of so-called
“signals”: (finite) information that are sent at a given speed through the cellular
space. For simplicity, the discrete nature of the space is often ignored initially, and
replaced by a continuous space either. It is in particular true in the case of FSSP and
RTSG solutions, for which algorithms are often described geometrically, as shown
in the examples of Figure [1.10]

The goal of signal machines is to formalize this common geometrical thinking.
The initial configurations of cellular automata are replaced by a set of position/signal
pairs and the transition rules are replaced by a speed for each signal and a set of
rules specifying which signals should come out when a given set of signals meet
on the same exact position. The space-time diagram of such systems are therefore
continuous in space and in time as expected.

Although cellular automata geometry is discrete, signal machines idealize this



1.3. HIGH-LEVEL DESCRIPTIONS OF CA

—
~J

SEEEEE

Sioos|ses|s -

Sl L=

SIS )=

S| rprprfrfrfr]=

Sl s I~

SEEHEEEEEEEESIIIIE

% ok b b ok b b ok F ok F b b % b o b F

S| L[] H=

SEEEEEEEE SRR

S cs|ISSSS[ L]

slelslslslsslslslsl=slss -

>

ok o b b b b F

(a) Level 0 (b) Level 1 (c) All levels

Figure 1.11: Space-time diagrams of two instances of the compound “splitting” field
and the (partially reduced) resulting infinite cellular automaton. The first instance
is a cellular automaton, i.e. receives no external information, but each following
instances receives information from the previous one.

geometry into a continuous one to allow a direct expression of the geometrical ideas
and when possible, discretization of the “signals” are automatically dealt with as a
last step to obtain a transition table as described in [2]. A description of abstract
geometrical computations is beyond the scope of this document. The historical
motivation of this work is mainly the following second approach. Nonetheless, the
main results of this work is not tied to any particular approach.

1.3.2 Decomposition into Cellular Fields

In cellular fields, the space is still discrete but the number of states is typically
allowed to be infinite, in order to include more structure and more semantic. Indeed,
the main focus is on modularity: a “field” is almost like a cellular automaton, but
it can communicate with other “fields”. In the case of the FSSP, one can consider
a “distance field”, i.e. a “cellular automaton” asking at each cell if the cell is a
delimiting border and computing the distance to those borders. On top of that,
one can build the “middle field”, i.e. a “cellular automaton” asking at each cell the
distance to the border and determining the cells that are the most far away from
the delimiting borders. Combining these two fields and a few others, one obtains
a compound field that starts with a number of delimited regions, and produces
twice as much delimited regions. Composing recursively infinitely many instances
of this compound field, one obtain a infinite cellular automaton solving the FSSP
as pictured in Figure The reduction to a finite (and possibly small) number of
state is left as a last step in the design.

This approach was initiated by Gruau and Maignan [14] and applied to FSSP in
the work of Maignan and Yunes [I5] [I8]. In the latter, a complete formal description
from fields to a finite cellular automaton is described. However, the transition tables
thus obtained uses 21 states, a large number of states compared to the 6 states
obtained “by hand”. But the goal was just to obtain a finite cellular automaton,
the hope being to use automatic techniques to optimize the number of states up to
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competitive number.

To summarize, the infinite solution being a modular one, a semantical high-level
formal description was achieved in these previous works. One benefit is that the
same modules arranged differently was expected to describe other algorithms, as
in classical computer programming. Other benefits are to have semantical proof of
correctness together with a correctness-preserving reduction procedure into a finite
state CA using a particular kind of cellular field, “reductions”. In other words, the
proofs are free of all the intricacies of the “optimization to a finite number of states”.
This can be applied to ease the formal proof of correctness of Mazoyer’s solution
for instance. Up to our knowledge, it is known to be long and hard but also to be
the only proof to be precise enough to actually be implemented in the Coq Proof
Assistant [4].

1.4 Contributions of this Thesis

From theses works and concepts, two intertwined research directions emerge. One
direction is to ask whether a reduction to fewer states is firstly possible, and sec-
ondly automatically generable, in the same spirit as compiler optimization, with
the possible application of reducing further the 21 states. The second direction is
to build a map of as many FSSP solutions as possible and study how they relate
through the notion of “reduction” introduced. Applications of this maps includes
the discovery and systematisation of techniques used in handcrafted transition table
and the factorisation of correctness proofs. The contributions of this thesis give
answers to both directions and open new ones.

In Chapter 2] we first introduce the original results of Maignan and Yunes [15] 18],
namely their infinite CA and its associated 21-state CA. Then, we show how to
modify their approach to obtain less than 21 states from their infinite solution,
but also how to apply the same procedure for another non-minimal-time FSSP
algorithm by exposing a trade-off between the robustness of the reduced solution
and its number of states. This is reminiscent of classical phenomenon in classical
computer programming and exemplifies the high-level aspects claimed earlier. These
results are not published. In this same chapter, we also show a first attempt to reduce
the two finite CA at hand by quotienting their set of states. This does provide some
improvements in the number of states and number of transitions, e.g., the 21-state
solution is reduced into to 14 states automatically. These results are published
in [25] and [27].

The results of Chapter only lead to 14 states, and can readily not give any
better result based of the 21-state CA as explained in the conclusion of the chapter.
In Chapter [3] we introduce a generalized kind of quotient which is able to go further.
It allows the 21 states to be reduced to an 8-state solution, this 8-state CA being in
fact a known solution.

in [25], [27]

and [26].

Also, inspired by the idea of local search and exploration through small modi-
fications used in [3] to generate the 718 solutions, we tried such search algorithms
to generate “reductions” of existing solutions rather than transition tables directly.
Although the idea of local search is to navigate randomly in a landscape with few
actual solutions, the discovered landscape of reductions has so many solutions that
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a “best-effort-exhaustive” exploration have been tried, leading to many millions of
6-states solutions. Also, this space is much more easily explored because of its nice
computational properties. These results are not specific to FSSP solutions. For
example, considering the n3-RTSG solutions and we provide millions of 5-state solu-
tions and a 4-state solution to improve on the previous 6-state solution.In Chapter[2]
we first introduce the original results of Maignan and Yunes [I5] [I8], namely their
infinite CA and its associated 21-state CA.
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Chapter 2

Field-Based FSSP and Quotients

We begin by recalling in Section the required background about the field-based
approach applied in [I8] to solve the minimal-time FSSP. The adaptativeness of
this approach has already been demonstrated at the algorithmic level in many arti-
cles solving different version of the FSSP (multidimensional GFSSP [19], hexagonal
GFSSP [16], Mazoyer-like strategy adapted to GFSSP [I7] and generalization to
arbitrary ratio [20]). However, except for [I8], the details are not given up to an ac-
tual cellular automaton transition table. So we proceed by demonstrating again the
adaptativeness of this approach with full detail by rewiring the modules to match
a different algorithm corresponding to non-minimal-time FSSP in Section [2.2] This
is useful to exemplify some later concept too.

We then jump into the core of this thesis by considering ways to reduce the
number of states of these FSSP solutions. We first do so by a slight modification
of the previous procedures from infinite cellular automata: a modification of the
reduction formulas. We then consider ways to improve on a given finite cellular
automata, in a way analogous to what happen for deterministic finite automata: a
simple quotient of the set of states. The limitations in this approach leads to the
generalizations considered in the next chapter. Some of the results described in this
chapter are published in [27].

2.1 Background on Fields for FSSP

Let us recall roughly the required background on the field-based approach to FSSP.
For our concern, it is enough to see that, once all fields composed, the resulting
cellular automaton is infinite, a state being a infinite tuple because of the recursive
nature of the algorithm. We describe this infinite cellular automaton in Section[2.1.1}
We then introduce the concept of family of space-time diagrams in Section [2.1.2]
which is used to produce a finite cellular automaton out of the infinite one, as
described in Section 2.1.3

2.1.1 Infinite Cellular Automaton §

A detailed explanation of the field-based approach in out of the scope of this doc-
ument, and is not required to follow its content. We refer the interested reader
to [18] for more information. We nonetheless need to give a rough description of the
resulting infinite cellular automaton formalizing conceptually the recursive splitting

21
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of the space in halves, the most well-known algorithm to solve the FSSP as already
shown in Figure [1.7]

A state of this infinite cellular automaton is composed of a first boolean inp , an
infinite sequence of tuples, and a final boolean out. The three-valued inp, taking
values in the set {*, T, L}, specifies which cells are outside of the finite configuration
by %, and which cells are allowed to start working according to the FSSP specification
by T, i.e. only the leftmost cell (the general) in the initial configuration, then any
cell having a working neighbor. The boolean out specifies which cells fire. Each
tuple of the infinite sequence encodes information for one level of splitting: the level
0 split the whole space in halves, the level 1 split the halves in quarters, and so
on so forth. The tuple of a given level ¢ consists of 5 data: brd’, ins, dst’, sta’,
mid’. The boolean brd® (respectively ins’) is true when a cell is know to be a
border (respectively a non-border) for the level £. Two booleans are needed since
a cell might not have determined yet its status, in which case both booleans are
false. The natural number dst’ indicates the lower bound distance of each cell to
the nearest borders, up to current knowledge. The boolean sta’ (for stability) is
true when the distance is known to be correct because the knowledge will not evolve
anymore. Finally, the boolean mid* (for middle) is true for the cells that are known
to be at the splitting point of the current level of splitting.

In the initial configuration, all booleans are false, and all distance values are 0.
In field inp is set to x outside of the finite configuration, to T at the general, and to
L at the other cells. The following configurations are obtained using the following
evolution rules, where the field notation f;(c) is the value, in the space-time diagram,
of the data/field f at time ¢ and position/cell ¢. A detailed understanding of these
formulas is not crucial.

*x if inp,(c) = *
inp, (c) =<9 T if 3i€ {-1,0,+1}; inp,(c+i) =T
1 otherwise
brd},(c) = inp,,,(c) = T AJi € {—1,+1}; inp,(c + i) = *.
insy ;(c) = inp,,,(c) = T AVi € {=1,+1}; inp,(c + 7) # *.
astl () minge .y {1 +dsti(c+4)} if insf ()
* 0 otherwise.

stay,,(c) = \/ {brdﬁﬂ(c)

Jie {—1,+1};dsti, (c) =1 +dsti(c+1i) A staj(c+1).
dstiy(c) > maz,e,  y(dsti(c+1))
\/ AVi € {—1,+1},stal(c+ i),
dstf, (c) = maxie{_17+1}(dstf(c + 1))
AVie {=1,0,+1}, stal(c+i).
brdﬁ%(@ = brdﬁﬂ(c) v mide(c).
insiTi(c) = inst  (c) A stal  (c) A Tie€ {—1,+1}:dsti(c+ i) > dstl, (c).
outsyi(c) =30 €N,Vie {-1,0,+1} ; brdi(c +1).

mide(c) =

Figure [2.1 shows the space-time diagram, level by level for readability. In each
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level ¢, brd’ is true at cells containing a boldface 0, ins’ is true at cells containing
a non-null value, the value of dst’ is the displayed value, sta’ is true at cells with
boldface values, and mid’ is true at cells with highlighted values. In the level 3 of
this example, all cells are ultimately identified as borders, at which point all cells fire
according to the evolution rule of out. The main feature to look for in the following
above formulas is that the initial level sees its data brd® and ins® built from inp
only, while the following levels £+ 1, see their data brd“*! and ins‘*! built from the
data of the previous level ¢ only.

2.1.2 Cellular Automata and Family of Diagrams

In order to produce a finite cellular automaton from this infinite one, we need to
make a detour and make precise the fact that a finite or infinite cellular automaton
is a description of special family of space-time diagrams: deterministic ones. But
we need to consider also more general, non-deterministic, families of space-time
diagrams in some reasoning.

Definition 6. A family of space-time diagrams D consists of a set of states Xp
and an arbitrary set (abusively denoted) D C Y2 of space-time diagrams. The
(induced) local transition relation 6p C Xp® x Xp of D is defined as:

(), 0, ), c)yedpeIdt,p) e DXNXZ s.t. ¢ =d(t+j,p+1i).

We call D a deterministic family if its induced local transition relation is functional.

Just to grasp the concepts, note that two different (non-deterministic) families
of space-time diagrams can have the same local transition relation. A given local
transition relation have a maximal family of space-time diagrams. In this case,
the local transition relation can be seen as a (partial) non-deterministic cellular
automaton, and the maximal family is just the family of all possible (complete)
diagrams. When the family is deterministic, one have the following.

Definition 7. Given a deterministic family D, its associated cellular automaton
I'p is defined as having the set of states ¥, = Xp, the set of initial configurations
Ir, = {d(0,~) € .7 | d € D}, and the local transition function ér, = 6p.

Definition 8. Given a cellular automaton «, its associated family of space-time
diagrams (abusively denoted) D, is defined as having the set of states ¥p, = g,
and the set of space-time diagrams { Dy (c¢) | ¢ € 1, } and is clearly deterministic.

These inverse constructions show that deterministic families and cellular au-
tomata are two presentations of the same object. For practical purposes, it is also
useful to note that, since dp has a finite domain, there are finite subsets of D that
are enough to specify it completely.

2.1.3 The Finite Cellular Automaton §2!

Now we have everything to produce a finite cellular automaton solving the FSSP.
The idea is to program the infinite cellular automaton, to generate an appropriate
number of space-time diagrams from it, to modify the states in these space-time
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diagrams, and to extract the local transition relation from these modified space-
time diagrams, hoping for it to be functional.

The modification applied on the states have to extract a finite information out
of the unbounded sequence of tuples, but to conserve enough information to obtain
a deterministic family of space-time diagram, and therefore reconstruct a cellular
automaton at the end. The following extraction formulas, also called reduction
formulas, are used. Note that they do not describe an evolution, just an extraction
of information.

rbrd = inp A 3¢ € N ; dst’ = 0 A sta’.

vl 0 if rbrd V — inp;
Vv =
min{¢ € N | dst**! =0} otherwise.

rlvl = 1vl mod 3.

0 if rbrd V — inp;
rdst = .
dst'™ mod 3 otherwise.

rsta = sta'™ V rbrd.

In fact, the resulting finite state o is a tuple of six data inp_, rlvl,, rdst,, rsta,,
rbrd,, out,. The semantic of inp_ and out, is already described. The other data
correspond the relevant core part of the active level 1v1, the distance value dst!"*
being moded out into rdst,, and the values of 1v1 too in rlvl,.

Figure shows a summary of an original space-time diagram, and the resulting
finite-state diagram. In this resulting diagram, the value inp, is false only for the
quiescent state [=. The value of rlvl, is represented by the background color : 0
is [, 1is [J and 2 is E. The numeric value of rdst, is indicated directly in the
state and this value is 0 when no value are indicated. The value of rsta, is true
for states with an bold digit, e.¢. [1], and for B, [F] and false for states with an italic
digit, e.g. 1], and for [=. The value of rbrd, is true only for Bl and [F and rout, is
true only for [Fl.

Following the procedure, we generate a finite subpart of its family of space-time
diagrams, i.e. the space-time diagrams associated with the FSSP initial config-
uration of size 2 to 1000. For each of space-time diagram, we transformed each
state according to the prescribed reduction formulas to produce a new family of
space-time diagram. This family being appropriately deterministic, we extracted
the induced local transition table of the cellular automaton associated to it. In fact,
the extraction was already complete with the FSSP initial configurations of size 2
to 105.

The result is a cellular automaton of 21 states and 486 local transition rules that
we denote §2! . Among these rules, there are 477 symmetric rules consisting of 23
self-symmetric rules and 227 pairs of symmetric rule. A rule (a,b,c) — d € Og21 s
self-symmetric if a = ¢ and symmetric if (¢, b, a) = d € 021 . In Figure 2.3 in page
is depicted the 9 asymmetric rules firsts, and then the symmetric rules, keeping
only one element of each pair of (non-self-)symmetric rules.

Note that, in fact, the original cellular automaton § is not just a solution for
the FSSP, but for the asynchronous multi general FSSP, and even for a novel kind
of FSSP that we call “full FSSP” where each cell decides to become non-quiescent
independently from the others. This is a side remark to explain partially why it is
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(a) Summary of the original space-time (b) Corresponding extracted finite-state
diagram of § depicted in Figure diagram leading to finite CA §2L

Figure 2.2: Field-based (finite) CA F2! extracted from infinite CA §

not surprising to obtain more state than usual. However, it should be possible to
optimize the number of states and the number of transitions to a competitive level,
which is one of the motivation of this work as already discussed.

2.2 Demonstrating Field-Based Modularity: §’

The previous solution correspond to the FSSP algorithm consisting in the recursive
splitting in halves in minimal time 2n — 2. Let us now apply the same procedure for
a slightly different FSSP solution algorithm. The goal is to match the 3n+ O(log n)
algorithm depicted in Figure to demonstrate the modularity of the field-based
approach, but also to prepare for some later investigation.

The infinite CA encoding this 3n + O(logn) algorithm is obtained by only a
slight modification of the previous evolution rules. Indeed, thinking in terms of
fields, the idea of this algorithm is still to split recursively the space in halves. The
only difference is that each level of splitting works independently, a large part of
the useful information built at each level being discarded by the next level to only
keep the splitting. Moreover, at each change of level, a delay is introduced for finite-
state encoding reasons. To capture these two features, it is enough to add to each
level £ + 1 an additional field/data inp“*! that simply propagates at speed 1 from
the splitting of level 7, in the same way as the original inp field of the previous
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(b) Symmetric rules
Figure 2.3: Transition table of Maignan - Yunes’s solution §
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field-based solution propagated at speed 1 from the leftmost cell. This latter field
is renamed inp® and the clever computation of ins‘*! and brd‘*! — that used as
much information as possible from the level ¢ in the previous solution — is replaced
by a computation only based on the propagation on inp‘*! with a delay.

inpi1(p) = midi,,(p) V 37 € {~1,0,1}; inpe™'(p + ).

brd;f;(p) = inp; ' (p) A (brdi(p) V midy(p)).

insfﬂ(p) = inpf™(p) A - brdfﬁ(p).
The rules specify that when middles are detected at a level, the next level start from
scratch with its own inp™!, brd‘*! and ins‘*! being built naively from inp‘*! and
the borders and middles of the previous level, with a slight delay ¢t — ¢ 4+ 1 in the
evolution rule of brd“'. Let us call this infinite cellular automaton §’. Figure
shows the impact of these modifications on the space-time diagrams, that should
be compared to Figure 2.1 A summary of the differences is the previously solution
launched all level simultaneously, the information between the levels being pipe-
lined as soon as possible, while this solution launches the levels one after the other,
in a kind of sequential manner.

The next step is the process of building a finite-state solution. For that, we use
of the following reduction formulas and extract, from each infinite state, a finite-
information tuple composed of 7 data rinp, rlvl, rchlvl, rbrd, rdst, rsta and
out.

0 if = inp®
vl =
maz{¢ € N | inp’} otherwise.

rinp = inp'™*

0 if rout
rlvl =
1vl mod 3 otherwise.

rchlvl = inp™ A dst™ =0 A = sta'™.
rbrd = brd'".

0 if brdiv?
rdst = )
dst' mod 3 otherwise.

rsta = sta'".

Doing so, we obtain, for instance, the finite-state space-time diagram depicted
in Figure [2.5] The family of space-time diagram is deterministic of course, and the
extracted cellular automaton has 26 states and 555 transition rules, noted §'2;.. The
encoding of the states is has before, with the additional field rchlvl being true at
cells with an underlined 0. The transition table has been extracted and checked
for determinism with FSSP initial configuration of size 2 to 1000 but the transition
table is already complete with the initial configuration up to size 89. The resulting
transition table is given in Figure
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Figure 2.5: Field-based (finite) CA §’

(a) Summary of the original space-time
diagram of §’ depicted in Figure
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Figure 2.7: Space-time diagram of size 15 of §2.  and §3
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2.3 Optimizations of Field-Based Solutions

Our goal is to find ways to optimize the finite CA obtained from the field-based
infinite CA. We begin by doing so by hand, at the level of the reduction formulas.
We then consider an exhaustive exploration of quotients of the finite CA obtained
with the reductions formulas. We then summarizing the results obtained so far and
look at the limitations of the approach to overcome them.

2.3.1 Improving the Reduction Formulas from § and §

When extracting a finite field-based solution from infinite field-based solution, the
number of states of the finite field-based solution depends on two “modulo” formulas:

dst'"' mod 3 otherwise.

rlvl = 1vl mod 3.

rdst — { 0 if rbrd V — inp;

It is very tempting to try to obtain less state by using smaller values for these
modulo.

The first modulo is intrinsic to the fact that, given two neighboring cells, and fix
the distance value d of the left cell for instance, the right can take value d — 1, d or
d + 1 and all three cases happen in a complex way. Indeed, replacing this modulo
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Figure 2.8: Symmetric rules of the transition table of §3 . The asymmetric part is
the same the CA §2 as given in Figure

3 by modulo 2 and repeating the finite state CA generation process, we found that
the family of space-time diagram obtained in this way is not deterministic.

The second modulo is 3 for the same reason as the first one, but there is more
structure, so we tried to replace this modulo 3 by modulo 2 in the reductions formulas
and repeated the process of generating a finite state CA. This time, the family of
space-time diagrams is deterministic (size 2 to 1000 as before, the transition table
being complete at size 53). This CA is noted F!5 and has 15 states, 329 rules.
Figure shows its space-time diagram for size 15 and Figure [2.8| shows its local
transition table.

In the same way, it is possible to change this second modulo from 3 to 2 in
the formulas rl1vl of the non-minimal-time infinite solution §'. The result is a
deterministic family of diagrams, and CA §'}°. which has 18 states and 373 rules
(built from size 2 to 1000 as before, the table being complete at size 45). Figure
shows a space-time diagram of size 15 and Figure [2.9|shows the local transition table

Of 3/18

373"
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Figure 2.9: Transition table of §’
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Figure 2.10: Space-time diagrams for the FSSP 3n initial configuration of size 15

ients

by Quot

21
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2.3.2 Improving the Finite CA §

We now turn to the goal of optimizing a given finite CA. We use the original finite-

state field-based CA of Maignan and Yunes for historical reasons.

ion

t

mmimiza

Background on Deterministic Finite Automata M

When talking about automata optimization, one immediately thinks about the min-

imization of Deterministic Finite Automata (DFA for short) and there are a number
of well-known algorithms like the Moore algorithm, the Brzozowski algorithm and

the Hopcroft algorithm. A DFA receives an input word ujus ..

. U, build from its

. qn of states according

input alphabet, and transitions through a sequence ¢yq; ¢ . .

to a transition function. Each state produces a bit of information called “accepting”

or “rejecting”. The collection gathering for each possible input word its last out-
putted bit of information is taken as a complete specification of the input-output

behavior of the DFA and is usually formalized by the notion of recognized language.

To minimize a DFA means to merge together its states in a coherent way so that the
input-output behavior stays unchanged. It is known that starting with any DFA

recognizing a language, such a merging of states produces the best possible DFA

that recognizes this language.

For CA, things are more intricated and such a strong minimization is impossible
but we can start by approaching the problem in a similar way. For the specific case
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of FSSP, the input-output behavior is mainly specified by the fact the quiescent state
should act as an inactive state and, considering the firing state as the only accepting
state, by the fact that no accepting state should appears before the transition 2n —2
and all states should be accepting at transition ¢, = 2n — 2 for any length n.

Brute Force Exploration of All Quotients

As in the case of DFA minimization, we want to merge as many states of §2! as
possible while preserving the fact that it is a minimal-time FSSP solution. The
merging of many states can always be obtained by merging two states, then another
two states, and so on so forth. Also, merging two states might be described simply
as a substitution of one of them by the other. However, the resulting object might
not be a deterministic CA. Indeed, we might have a cellular automaton o with two
transitions (a, b, ¢c) — d, (e, f, g) — h € é, with d # h and the substitution renders
(a, b, ¢) equals to (e, f, g) but keeps d # h. In this case, the transition table is not a
partial function anymore and we have a non-deterministic CA. However, if we then
substitute d by h, and so on so forth every time we obtain a non-deterministic CA,
we will necessarily end up with a deterministic CA at some point.

More precisely, let a be a CA, ey € 3, be a state and e; an arbitrary element,
a substitution of ey by e in a gives a new (maybe non-deterministic) CA g =
pleg, e1, ) with X5 = (X, \{eo}) U{er}, Is ={c | c € L,} and 95 = {(d, V', ') —
d | (a,b,c)— d € d,} where

x’—{ ep ifr=¢

x  otherwise.

As we are considering FSSP solutions, we also need to keep track of the four special
states and have x5 = x,’, Gg = G/, Qs = Q,/ and Fg =F,".

We also define v = p* (e, €1, ) the closest deterministic CA obtained by first
computing § = p(ey, €1, ), and then taking v = § if § is deterministic. If S is
not deterministic, then there exists a, b, ¢, es, 3 € X% such that (a,b,c) — ey €
0 and (a,b,c) — e3 € 65 but e # e3. In this case, we recursively set v =
pt(es, €3, ). This operation is well defined up to a state renaming. We use the
following straightforward algorithm to explore all quotients by brute force. This
algorithm is indeed exhaustive because once a CA is not an FSSP solution, none of
its quotients can be. Indeed, if it is not a FSSP solution, it is necessarily because
the firing state occurs too early, and more merging can only make the firing states
occur in more places in the space-time diagrams.

A Brief Analysis of The Quotients

We have implemented this algorithm in Java with an Ubuntu machine which had
2.70GHz processor speed. An execution of this algorithm on the CA §2.  does not
produce a combinatorial explosion and stops after a few minutes. We found 3214
quotients, distinct even up to renaming: 30 quotients appear at recursion depth
1, 287 quotients at depth 2, 1041 quotients of depth 3, 1334 quotients of depth 4,
471 quotients of depth 5, 50 quotients of depth 6, and 1 reduction of depth 7. We
verified that the 3214 CA are minimal-time FSSP solution by checking their space-
time diagram for all FSSP initial configuration of size 2 to 1000. The following
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AilQuotients ()

2 res = {}

3 for {e, o} C X, with el # e2 do

pr (e, e2,0)
if 8 is an FSSP solution then

8=

res := res U {8}

res := res U Al1lQuotients ()

end

4
5

9 end
10 return res

noow o
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Figure 2.11: Space-time diagrams for the FSSP initial configuration of size 15

table lists for each number of states and each number of rules, the number of FSSP

solution found as a quotient of §
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486 °

134

21
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335 | 112 | 168
262 | 113 | 292

61

91

39

15
167 | 45
385
243

20

31
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114 | 49

146 | 79
53

8

6

AT4 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486

7
12

#states \ #rules

14
15
16
17
18
19
20

All the other quotients that have been generated and declared non-solution merges

the firing state with some other state, and in fact merges almost all states together
to become deterministic. Another interesting fact is that all of the valid quotients

only merges states two by two. In other words, changing p* (e, e, ) into p(ey, ea, @)

at line 4 and changing the test £ is an FSSP solution by the test 8 is a deterministic
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CA at line 5 in the algorithm lead to the same set of quotients. Fig. shows a
space-time diagram of the CA quotient of 14-state. It has 480 rules and is obtained
by merging the following set of substitutions: (E, [2)),([a], [2]) (M, [2]), (&, [o]),([2],
=1),(fol, [11), (101, [1]). Note that these pairs are all disjoints.

2.4 Summary: Reduction Formulas and Quotients

Reduction formulas and quotient are basically the same mathematical concept. In-
deed, they take as input a state and returns the new state that should be used
instead. We use here reductions formulas when working on an infinite CA and (fi-
nite) quotients when working with finite CA. Because the transition table of a finite
CA is a finite combinatorial object, and because of the simplicity of quotient (simple
renaming of states), it is possible to apply the quotient directly on it the transition
tables, and to explore quotient algorithmically as shown. But the results are very
limited. Even if the 14-state symmetric FSSP solution, and should therefore be
compared with other symmetric solutions to be fair, it is however the case that
there are hand-made non-symmetric solutions with smaller number of state and we
would like to be able to compare §21  with them. For instance, look at Noguchi’s
8-states solution depicted in Figure 2.11¢ Of course, one can see that the quotient
of a symmetric CA is necessarily a symmetric CA. Similarly, although the solution
5%, (Fi has been designed to mimic the algorithm of Umeo’s solution
(Figure [2.10d)), the latter can not be obtained as a quotient of the former, as we
will see more precisely later on. There is thus a need to generalize the concept of
quotient.



Chapter 3

From Quotients to Local
Simulations

In this chapter, we generalize the notion of quotients to the notion of local simula-
tions. This is done semi-formally to introduce the concept gently and match also
more closely to the structure of the publication [27]. The precise formal definition
is given in the next chapter.

3.1 Background: Noguchi’s CAs 91 8 9

119” 1347 141

Kenichiro Noguchi proposed two 8-state solutions and one 9-state solution for the
FSSP as described in [29]. Between the two 8-state solutions, one solution have
134 rules and the other is an optimization to 119 rules that we denote 9%, and

Dt | respectively. The 9-state solution is denoted 9°, ~and has 141 rules. The
space-time diagrams of these solutions have the same structure as those of the field-
based solution. However we obtained no 8-state solutions or 9-state solutions by the
method described above. In order to study the relation between §2! and these CA,
we mainly focus on 9%, only providing some quick remarks on the other two CA.
Fig. shows the transition table dys . In each grid, the first line presents
the current state ey, the second line presents the state of the right neighbour ey,
the first column presents the state of the left neighbour e_;. Each other cell of the
table shows the results 59??19 (e_1, €y, €1). An empty cell means that there is no local
transitions for (e_q, e, €1). Fig. shows the space-time diagram of this CA on an
FSSP initial configuration of size 15. In Fig.[3.1and Fig. ¢ denotes the general
Gys ,, -1 the quiescent state Qus =—and [Fl denotes the firing state Fys . Note that
this solution is “quasi-symmetric”. In the active part of this space-time diagram,
one can see that any state of 9% = has an associated symmetric state i.e. two states
contain the same information but in the opposite direction. The state [<] is reversed
into [>, the state [-] into [=], and the four states [¢], [F | [°], and [¢] are self-symmetric.
Note also that the local transitions table of CA 9%~ was not given in [29] but
we have been able to reconstruct it. Indeed, the space-time diagram of size 22 of
this solution was given. This space-time diagram allowed to retrieved 114 local
transitions. To find the other 20 local transitions, 18 local transitions was taken
from the original CA 91% . The two other missing local transitions are obvious to
deduce. Figures [3.2] and shows the transition tables of the two others Noguchi’s

solutions and space-time diagrams of the three solutions are depicted in Figure |3.4]

39
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Figure 3.1: Transition table of an 8-state and 119-rule Noguchi’s CA 918
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Figure 3.2: Transition table of an 8-state and 134-rule Noguchi’s CA 918

134

3.2 Comparison of §2! with Noguchi’s solutions

3.2.1 Local Simulation of §2! into 9

119
Although the space-time diagram of 9% = looks similar to the one of §2._, 91 is not
a quotient of §2!  since we did not obtained any 8-state quotient in the exhaustive

exploration of the previous chapter. It is expected since that transition table of

Ot . is non symmetric, i.e. there are local configurations that give different results

when reversed. However, looking only a local part of the space-time diagram of §2.,

seemed enough to determine the corresponding local part of the space-time diagram
of M . More precisely, one can C}E(jk on Fig. tha@t any time ¢ zﬂd any position
p, the local configuration (Dgz1 (15)(¢, p — 1), D21 (15)(%, p), Dgz1 (15)(¢, p + 1)) on
the space-time diagram of §2 determines the state Dys (15)(t+1, p) on the space-
time diagram of 9t ' i.e. if this local configuration appears at some other place
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Figure 3.3: Transition table of an 9-state and 141-rule Noguchi’s CA 91?

141

(t',p') on §2 | leads to the same states at (#' + 1, p) on 9T

486" 119 °
Formally, we consider a function f : 3%, X Xga1 X X%, — Ygs  defined as :
3486 486 3:486 119

f=ADg, (m)(t, p — 1), D1 (M)(L, p), Dgzr, (M) (L, p 1)) = Dons (M) (£ + 1, p) }

for any n € Nt € N and p € [1,n]. We call this function a local mapping. We
approximated it by taking it with n € [2,1000], i.e. we only considered the FSSP
initial configuration of size 2 to 1000, but the function stayed unchanged above
n = 105. This is indeed the size at which all local transition of §2! appears. The
check until n = 1000 was still necessary to check informally that the function is
indeed well defined, and is not a mere non-functional relation.

A Brief Analysis of The Result

We have built the local mapping which have the same number of elements with
the local transition table dg21 . Each element of f of the form (a,b,c) — d with
a,c € Egiés’ be Xz ,d e Nys  is indeed well-defined. This is indeed a notion of
quotient because the CA 9 = can be recovered from the CA F2! in the following
way. From the CA §2! , we first consider its family of space-time diagram (up to a
certain size). Using the local mapping, we can transform those space-time diagrams
to obtain a new family of space-time diagram. This new family being deterministic,
we can obtain 9% as the CA associated to this deterministic family.

Moreover, this is a proper generalization because the previous notion of quotient
can always be described as a particular case of this new notion. Indeed, a quotient
from a CA « transform each state e € ¥, to some state g(e). The associated local

mapping [ is simply defined as f(a, b, ¢) = ¢(d4(a, b, ¢)).

The reduction formulas from §2  to 91 and 9

We want to explain the local mapping in a more intelligible way. To do so, we

present the latter by formulas describing when and where the 91 ' states appears
in terms of the 6 data composing the §2! states.
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Figure 3.4: Space-time diagrams for the FSSP initial configuration of size 15

One important aspect of this reduction is that it goes from a symmetric solution
§2L. to a quasi-symmetric solution 9~ as noted in Section and Section
respectively. This means that all informations of 9% = comes with an orientation:
either left or right. For example, two symmetric local configurations (21, [2 [2]) and
([2,[2], 2) of §2! have same result [0. The local simulation of CA §2! into CA 918

486 119
gives (2, [2] [2) — [<Jand ([2], [2], 2) — [>. We begin be describing how this direction
can be obtained from the §2! states. We then express the 9 = states using the 6

data contained in the states of the 2. and this new direction information.

The direction information of CA §2!.  We denote the direction information
by dir. It has 4 possible values : a special quiescent value |- no direction for
border M, a direction to the right [l a direction to the left F¥. For a local transition
(I, c,r) = nof CA §2_, where [, ¢, 7, and n stands for “left”, “center”, “right”, and
“new” respectively, the direction information is calculated with the formula :

(-] if —inp,;
W if rbrd,;
=l if inp, A (= inp, V (rbrd; A = rbrd,) V
(rlvl; = rlvl, A — rsta, A rdst; = rdst,) V
(rlvl; = rlvl, A - rsta, A rdst; = (rdst, + 1) mod 3) V
(rlvl; = rlvl, A rsta, A rsta; A (rdst;+ 1) mod 3 = rdst,,) V
(rlvl; = (rlvl, + 1) mod 3));
® if inp, A (= inp, V (rbrd, A - rbrd;) Vv
(rlvl, = rlvl, A - rsta, A rdst, = rdst,) V
(rlvl, = rlvl, A - rsta, A rdst, = (rdst, + 1) mod 3) V
(rlvl, =rlvl, A rsta, A rsta, A (rdst, + 1) mod 3 = rdst,,) V
(rlvl, = (rlvl, + 1) mod 3)).

dir, =

\

Note that the two formulas of 2] and E are the same. As expected, passing from one
to the other is a matter of reversing the left and right states in the two formulas.
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Figure 3.5: Correspondence of local configurations of §2!  to states of 9 in their
space-time diagrams for the FSSP initial configuration of size 15.

Fig. shows the space-time diagram of the direction information with initial
configuration of size 15. In the following, we use the variable b and f, for “back”
and “front”, to talk about the left or right state relatively to the direction, i.e. the
local transition is (b, ¢, f) — n when dir, = and (f, ¢, b) — n when dir, = E.

The reduction formulas of CA J2 into CA 91 In the Fig. and
Fig. 7 it is easy to see that the two states [¢ and [F] of CA 918 corresponds
exactly to the two states B and [Fl of CA F2  (except for the initial configuration).
We explain this correspondence with the two simple formulas:

'¢] = rbrd,,, and
= rout,,.

In the active area, one can see that the two states (<l and [> appear in 9% = when, in
21 a cell sees its rdst value change but not its level, or when rlvl changes and
rsta is false at current or previous timestep. All these cases occur for the seventh

cell from the left in Fig [2.11bland 2.11d Formally:
_ \/ d}rn =& Arlvl, =rlvl, A rdst, # rdst.,
dir, =F A rlvl, # rlvl, A (- rsta. V — rsta,), and

B \/ dir, =& A rlvl, = rlvl, A rdst, # rdst.,
o dir, = A rlvl, # rlvl. A (- rsta, V - rsta,).
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Figure 3.6: Space-time diagrams of §2!  and a field direction initial configuration of
size 15

The main feature of the states |- [=] [*], and [°] can be observed with the third cell in
the same figures. Indeed, from time 9 to 11, this cell has state [/ in 98 = when there
is no state change in §2! . At time 12, its state is [< in 9N = because of the change
of rdst value in §2! . After that, there is a sequence of [° followed by a sequence
of [+ in 91 while the state does not change at all in §2. . However, this change of
state in 9M°  corresponds exactly to the time at which the cell observes a change of
distance value in its right neighbor. Of course, the same thing happens in the other
direction, e.g. cell 13, but with the state [-] changed into [=] and the left instead of
the right neighbor. This is the main content of the following reduction formulas. We
also need to take into account that state [= also represents the quiescent state, and
some particularities of 9%~ which appears because of the optimizations of Noguchi
on which we comment in the following section.

- inp,,
F:\/ dir, =E A - rsta, An=c,
dir, =E A rlvl, = (rlvl; + 1) mod 3 A dir, = dir., and
dir, = A rsta, A = inpy,
F:\/ dir, = A - rsta, An=c,
dir, =E A rlvl, = (rlvl; 4+ 1) mod 3 A dir,, = dir..
[> =dir, € {&,E} A rsta, A n= ¢ A rdst, = (rdsty + 1) mod 3.
[+ =dir, € {PF} A rsta, A rdst, = rdst. A rdst, = rdst;.
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Figure 3.7: Relation between the solutions at study in this paper.

The reduction formulas of CA §2. into CA 91, In the same way, we have
found the reduction formulas for recognizing the CA 91, from the CA §2! . The
reduction formulas of states [¢l, [F|, [*l are the sames for CA 9 ~and 918, . Note that
the reduction formulas for four states [, [], =] and [< are more simple in 91, than
in M . This is because this version of the CA is not optimized, so that each state
has a much clearer responsibility. For the five states [-], [-], ], [<] and [o] of CA 9%8_,
the reduction formulas are given as:

‘l= dir, = A - rsta, A n=c,
= (dir, =E A - rsta, An=c¢)V - inp,,
=dir, =B A (rdst, # rdst, V rlvl, # rlvl,),
<l=dir, =FIA (rdst, # rdst, V rlvl, # rlvl.), and
[l=dir, € {&,E} A rsta, A rdst, = rdst, A rlvl, = rlvl,
A (rdst, = (rdsty + 1) mod 3 V rlvl, = (rlvl; + 1) mod 3).

3.2.2 Analyzing the relations between the solutions

Fig. [3.7 shows the relations between the solutions studied in this chapter. An arrow
goes from CA a to CA § when CA f is a reduction of CA «. The arrow a is the
first reduction described in [I8]. In this paper, with the reduction by substitution,
we have build a collection of arrows b by passing through 3213 intermediate CA.
The arrows ¢, d, e are the local simulation that we talked about in Section [3.2] We
also use the local simulation to check the relation between other solutions and we
found the following:

 The three CA of Noguchi are also reductions of §!¢ (¢, j and k).
+ The two CA 9t and 918, are reductions of each other (g and m).

« Some local simulations increase the number of states (f, h and [).

o We have no arrow from the Noguchi’s solutions into the field-based solutions.

3.3 Comparison of Clergue et al’s 718 solutions

The former results shows that the field-based approach should be able to generate an
8-state solution from the high-level description. One can ask whether it is possible



46 CHAPTER 3. FROM QUOTIENTS TO LOCAL SIMULATIONS

to generate a 6-state solution. Let us come back on the 718 solutions found in [3]
and mentioned in Chapter (1} Look from a local mapping from §2! or from §33 to
these 718 solutions does not lead to any result unfortunately. This does not means
that the infinite cellular automaton § cannot be reduced into a 6-state solution, but
at this stage, a interesting question arises naturally.

Indeed, the notion of local simulation can be though of as a new way of grouping
CA together. Looking at the 718 solutions, a natural idea is that many solutions
are really just one solution slightly modified. Can the notion of local mapping help
to organize these solutions in equivalence classes exhibiting which of these solutions
have, informally speaking, the “same algorithm”. These solutions, numbered from 0
to 717, are freely available online, so we therefore tried to search local simulations
between them. Firstly, we found a slight mistake since there are 12 pairs of equivalent
solutions up to renaming of states: (105, 676), (127, 659), (243, 599), (562, 626),
(588, 619), (601, 609), (603, 689), (611, 651), (629, 714), (663, 684), (590, 596) and
(679, 707). This means that there are really 706 solutions, but we still refer to them
as the 718 solutions with their original numbering.

Once local simulations established between the 718 solutions, we analyzed the
number of connected components and found 193 while expecting only a few. We
expected ideally 2 connected components in fact: one for the halving-based solutions,
and one for the Mazoyer-like solutions. At this point, many things need to be said to
advance more on this subject, but this is not the right places to engage in further new
concepts as this might make the next chapter harder to follow. So these concepts
will be discussed in the final chapter.

3.4 Conclusion

We found a 14-states quotients of a field-based solution to the FSSP §2! . Note
that the original solution is designed for the generalized FSSP where the general
can be at any position. We also have shown in which sense the two Noguchi’s
solutions can be viewed as a particular reduction of the field-based solution via the
notion of local mapping and local simulation. We have explained these reductions
with the formulas. Some local simulations increase the number of states. This
is expected since we first virtually augment the “number of states” by passing to
the local configurations and then reduce from them. This notion is therefore not
about decreasing the number of states but about changing the local encoding of the
information while keeping the “algorithm” identical. Finally we studied how the 718
6-state solutions of Clerge’s et al. can be grouped into groups of solutions differing
only by their local encoding of information (in this precise sense) and showed that
there are thus essentially 193 solutions only at this level of grouping.



Chapter 4

Exploiting Local Simulations

With the concept of local simulation, we have been able to demonstrate the rela-
tion between several FSSP solutions, and more particularly between solutions with
a given number of states and transitions and solutions with fewer states or fewer
transitions. However, the goal is to generate solutions with fewer states or fewer
transitions. In this quest, we have tried different approaches (e.g., genetic algo-
rithm), but finally one of them produced so many solutions that a detour has been
taken to have a better grasp on what was happening and to make sure that there
were indeed millions of solutions even with just six states, and even after discarding
permutation-equivalent ones.

In the course of the generation, different kinds of intermediary objects are ma-
nipulated, which might lack some of the data or some of the properties we want
at the end. We begin by defining these objects in section [4.1 In Section [4.2] we
present nice properties relating these objects and allowing the search algorithm to
save a huge amount of time. Without these properties, it would have not been
practically tractable to generated all these solutions. In Section [4.3] we describe the
exploration algorithm and continue in Section with some experimental results:
millions of solution with little effort, making think that there might be billions of
solution eventually. We conclude in Section with some formal and experimental
future work.

4.1 Formalizing Local Simulations

In this section, we define formally local mappings and FSSP-candidate CAs in a way
suitable to the current study. The material here is a considerable re-organization of
the material found in [27].

4.1.1 FSSP-candidate

Definition 9. A cellular automaton « is FSSP-candidate if there are four special
states *q, G, Qu, Fa € Lo satisfying the following conditions:

1. %, is an outside state, i.e. VI € dom(d,), 0a(l) = %o < 1(0) = *4.

2. G, is a general state, i.e. I, = {Tiq | n > 2} with Ty € X7 being the FSSP
initial configuration of size n defined as Tio(p) = *a, Ga, Qu, *a for p < 0,
p=0,0<p<n, and p > n respectively.

47
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3. Qu is a quiescent state, i.e. 04(Qu; Qa, Q) = 00 (Qas Qo ¥a) = Qa-

In other words, a FSSP-candidate CA is almost a FSSP solution as in Def [4]
except that it does not necessarily have the synchronization condition (4) of this
definition.

4.1.2 Local Mappings and Local Simulations

These two concepts are more easily pictured with space-time diagrams. Given a
space-time diagram d € S™*Z  we build a new one d’ where each state d'(t, p) is
computed through a function A on the little cone (d(t—dt, p+dp) | dt € {0,1},dp €
[—dt,+dt]) in d. This cone is simply a state for ¢ = 0, and when d is generated
by a CA, this cone is entirely determined by (d(t — 1,p + dp) | dp € [-1,1]) for
t > 1. Since the set of all these triplets is exactly dom(d,) (the triplets of the
transition table), the following definitions suffice for the current study. We call this
h a local mapping, because the new diagram d’ = h(d) is determined locally by
the original one. When transforming a deterministic family, the result might not be
deterministic, but if it is, we speak of a local simulation between two CA.

Definition 10. A local mapping ¢ from a CA « to a finite set X consists of two
functions £, : {d(0,p) | (d,p) € Dy x Z} — X and ls : dom(d,) — X. We define its
associated family of diagrams ®, = {{(d) | d € D,} where:

i = 0.0 f1=0,
PN dt=1,p—1),d(t=1,p),d(t —1,p+1)) ift>0.

If @, is deterministic, we say that £ is a local simulation from CA «a to CA I's,.

Proposition 1. Fquivalently, a local simulation A from a CA a to a CA [ is a
local mapping from « to the set ¥z such that {h.(c) | ¢ € 1,} = Iz and for all
(¢, t,p) € Iy, x N X Z, we have hs(I_1,lp, ) = I} with l; = Dy(c)(t,p+ i) and I =
Dg(h,(c))(t+1,p). The details of these formula are more easily seen graphically.

- p—2p—1 p p+lp+2--- oo p—2p—1 p p+1lp+2---
t—1 t—1
t A t

_ _ _ ; _
t+1 ) b+ A )
t+2 t+2
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Proof

The first direction of this equivalence means that if we have
a local mapping h from « to X such that ®; is determinis-
tic, if we also have 8 = I'y,, then it follows that X = g,
{hz(c) | ¢ € 1.} = I and for all (¢, t,p) € I, x N x Z,
we have hg(l_1,l,h) = I} with [; = Du(c)(t,p+4) and
= Da(ha())(t +1,p).

Indeed, by Def [7] of I, having 3 = I'y, means that ¥ = X,
{Dgs(c) | ¢ € I3} = ;. So the diagrams of f and the dia-
grams generated by h are identical, and the claimed proper-
ties are just a rewriting of the defining properties of ®;, given
in Def [0l

The other direction is a similar rewriting.

In other words, the definition focuses on the generation of I'y, from o while the
proposition focuses on the situation where o and 3 are given and looking from the
local simulation relationship as in this previous chapter.

4.2 Some Useful Algorithmic Properties

Our global strategy to find new FSSP solutions is to build them from local simula-
tions of already existing FSSP solution «. Taking literally the previous definitions
could lead to the following procedure for a given local mapping h. First, generate
sufficiently many space-time diagrams of D,. Secondly, use A to transform each of
these diagrams d € D, into a new one h(d), thus producing a sub-family of ®,. At
the same time, build the local transition relation d4, of ®; by collecting all local
transitions appearing in each h(d) and check firsty for determinism and secondly
for correct synchronization. If everything goes fine, we have a new FSSP solution
B =Ty,

Such a procedure is time-consuming. We show here useful properties that reduces
drastically this procedure to a few steps. In fact, the space-time diagrams of ®, never
need to be computed, neither to build the local transition relation de, (Section[d.2.1)),
nor to check correct synchronization as showed in this section (Section [£.2.2).

4.2.1 Summarizing a Family by its Super Local Transitions

When trying to construct a CA g from a CA « and a local mapping h from the
families of space-time diagrams as suggested by the formal definitions, there is huge
amount of redundancy. All entries of the local transition relation d4, appear many
times in ®,, each of them being produced from the same recurring patterns in
the space-time diagrams of «. In fact, it is more efficient to simply collect these
recurring patterns that we may call super local transitions, and work from them
without constructing ®, at all. It is specially useful because we consider a huge
number of local mappings from a single CA a.
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Definition 11. For a given CA «, the super local transition table A, consists of
two sets (Ay)z C B and (An)s C Xo° X Bo° defined as:

(s_1,%,%) € (A4)z = 3(d,p) €D,y X Z
s.t. s; = d(0,p + 1),
(8%, 8,80, 8%, 89), (51, 53, 51)) € (An)s 1= 3(d, t,p) € Dy x N X Z
s.t.s=d(t+7,p+1)

Once all these patterns collected, it is possible to construct the local transition
relation dg, as specified in the following proposition.

Proposition 2. Let h be a local mapping from a CA « to a set S. The local
transition relation dg, of the family of space-time diagram ®; generated by h and
the super-local transition function A, of a obey:

((lgla Zga Z?)a l(%) € 5‘% A 3(8_1, S0, 81) € (Aa>z
s.t. 19 = hy(s;) and Iy = he(s_1, 50, 51)
v 3((592,891,58,8?,53),(811,85,8%)) € (Aa>s

s.1. Zi = hs(gg—lv Sgu 83—&-1)

Proof

This is obtained by taking the defining property of dp given in
Def[0] particularize it for D = &, using Def[10] and rewriting
it in terms of the defining properties of the components of the
super-local transition given in Def [11]

We now have an efficient way to build the local transition relation dp,. When it
is functional, it determines a cellular automaton 3 = I'y,. For our purpose, we need
to test or ensure in some way that 8 is an FSSP solution.

4.2.2 Local Mappings and FSSP

We first note that the constraints put by the FSSP on space-time diagrams induces
constraints on local simulations between FSSP solutions. So we can restrict our at-
tention to local mappings respecting these constraints as formalized by the following
definition and proposition.

Definition 12. A local mapping h from an FSSP solution « to the states ¥g of an
FSSP-candidate CA [ is said to be FSSP-compliant if it is such that:

o hy, maps x4, Go, and Q, respectively to xg, Gg, and Qg,
o hs(l_1,lo, b)) = *p if and only if 04(1-1, 1o, b)) = %o (meaning simply ly = *,),
o hs(l_1,lo, b)) =Fg if and only if 04(l_1,1, 1) = Fa, and

b hs(Qan Qau Qa) - hs(Qan Qau*) - QB~
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Proposition 3. Let o be an FSSP solution CA, B an FSSP-candidate CA and h a
local simulation from o to 3. If 8 is an FSSP solution with the same synchronization
times as «, then h is FSSP-compliant.

Proof

Indeed, if both a and  are FSSP-solutions with the same
synchronization times, then there are many parts of the
space-time diagrams that are essentially the same: the initial
configuration, the border part, the firing part and the quies-
cent part. The fours parts leads to the four properties of the
proposition, taking into account Def [10| of local simulation
and Prop [}

The following proposition is at the same time not difficult once noted, but ex-
tremely surprising and useful: the simple constraints above are also “totally char-
acterizing” and the previous implication is in fact an equivalence. This means in
particular that it is not necessary to generate space-time diagrams to check if a
constructed CA is an FSSP solution, which saves lots of computations.

Proposition 4. Let o be an FSSP solution, § an FSSP-candidate CA and h be
local simulation from o to 3. If h is FSSP-compliant, then (3 is an FSSP solution
with the same synchronization times as a.

Proof

To see this, consider a diagram d € D, of the solution a.
Since a is an FSSP solution, the four characteristic part of d
are again the initial configuration, the border part, the firing
part and the quiescent part. Since h is FSSP-compliant, it
reproduces these parts in the diagrams of 5. But these parts
of enough to conclude that g is as stated.

4.3 Exploring The Graph of Local Mappings

4.3.1 The Graph of FSSP-compliant Local Mappings

In our actual algorithm, we take as input an existing FSSP solution « and fix a set of
state S of size | X, |. The search space consists of all FSSP-compliant local mappings
from « to S, the neighbors N(h) of a local mapping h being all A’ that differ from
h on exactly one entry, i.e. N(h) := {h' | 3(I_1, b, &) € dom(dy) s.t. hs(l_1,lo, 1) #
h.(1_1,l,4)}. More precisely, the mappings are considered modulo bijections of S.
Indeed, two mappings h and k' are considered equivalent if there is some bijection
r: S — S such that h, = roh, and hs = r o hl. So the search space is, in
a sense, made of equivalence classes, each class being represented by a particular
element. This element is chosen to be the only mapping A in the class such that
hs is monotonic according to arbitrary total orders on dom(é,) and S fixed for the
entire run of the algorithm.
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Considering 6-states solutions, let us denote ¥, = {*4, Ga, Qa, Fa, Aa, Ba, Co } and
S ={xG,Q,F,A,B, C}E]. In each of these sets, four of the states are the special FSSP
solution states (Def. [9] and Def. [)). Only the three states A, B, C come with no
constraints. We can thus evaluate the size of the search space by looking at the
degrees of freedom of FSSP-compliant local mappings (Def. .

Indeed, looking at Def[12[shows that all FSSP-compliant local mappings A from
a to S have the same partial function h,, and the same value hg(l_1, ly, ;) for those
entries (I_1,0, L) € dom(d,) forced to x, Q or F. For all other entries (I_1, b, ),
hs(l_1, lp, i) cannot take the values x nor F, leaving 5 values available. So given an
initial solution «, the number of local mappings is 5* where x is the size of dom(d,)
without those entries constrained in Def. To give an idea, for the solution 668 of
the 718 solutions, x = 86 to the size of the search has 61 digits, and for Mazoyer’s
solution, x = 112 leading to a number with 79 digits.

4.3.2 Preparation Before the Algorithm

As described in Section the local mappings are evaluated from the super local
transition table. To build this table, we generate, for each size n from 2 to 5000,
the space-time diagram D, (72) and collect all super local transitions occurring from
time 0 to 2n — 4 and from position 1 to n. Note that for all known minimum-time
6-state solutions, no additional super local transitions appear after n = 250.

The starting point of the exploration is the local mapping A, corresponding to the
local transition function 4, itself, i.e. (hy)z = p | {*a,Ga, Qa} and (hy)s = p o, for
the obvious bijection p : ¥, — §. This local mapping is obviously FSSP-compliant
since it is local simulation from « to a.

4.3.3 The Exploration Algorithm

To explain the algorithm, let us first consider the last parameter k£ to be 0, so
that line 7 of the explore algorithm can be considered to be simply S < N(h).
In this case, the algorithm starts with h,, and explores its neighbors to collect all
local simulations. Then the neighbors of those local simulations are considered to
collect more local simulations, and so on so forth. In other words, the connected
component of the sub-graph consisting only of the local simulations is collected.
More precisely, the variable H collects all local simulations, H,.ymen; contains the
simulation discovered in the previous round and whose neighbors should be examined
in current round, and the newly discovered local simulations are put in H,,,; for the
next round. The function isSimul uses the super local transition table to construct
the local transition relation of ®, and check if it is functional, i.e. if it is a local
transition function of a valid CA I's,. By our construction, a valid CA is necessarily
an FSSP solution making this operation really cheap.

When k£ > 0, line 7 puts in S not only N(h) but also N(h') for some local
mapping h' obtained by k random modifications of h. The hope is to jump to
another connected component of the “local simulation sub-graph”. Since A’ could
be a (new or already considered) local simulation, a quick check is necessary.

1Recall that we do not count the * states.
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Algorithm 1: Algorithm 2:

1 explore(A,, ha, k) 1 pertN(A,, H, h, k)

2 H <+ {h.} 2 S <+ N(h)

3 Hewrent < {ha} 3 h' < perturbation(h, k)
4 while | Hoyprens | > 0 do 4 if M ¢ H then

5 Hpewr < {} 5 S« SUN(K)

6 for h € H,.yprens do 6 if isSimul(#’, A,) then
7 S, H < pertN(A,, H, h, k) 7 ‘ H <« HU{W'}

8 for b € (S\ H) do 8 end

9 if isSimul(h’, A,) then 9 end

10 Hneact — Hnewt ) {h/} 10 return S, H

11 H<+— HU{W}

12 end

13 end
14 end
15 chrrent A Hnezt
16 end
17 return H

4.4 Analyzing the Results

4.4.1 Analyzing the Local Simulations

To find more FSSP solutions, we implemented many algorithms, gradually simpli-
fying them into the one presented in this paper. It has been run on an Ubuntu
Marvin machine with 32 cores of 2.00GHz speed and 126Gb of memory. However,
the implementation being sequential, only two cores was used by the program. The
original plan was to generate as many solutions as possible but we had some prob-
lems with the management of quotas in the shared machine. So we only expose
some selected data to show the relevance of the approach.

When running the program with the solution 355 and £ = 0, the program used
14GDb of memory and stopped after 27.5 hours and found 9,584,134 local simulations!
A second run of the program for this solution with & = 3 found 11,506,263 local
simulations after 80.5 hours. This indicates that perturbations are useful but the
second run find only 1,922,129 additional local simulations but its computing time
is three times more than the first run. Testing whether a local simulation belongs
to set H obviously takes more and more time as more local mappings are discovered
but there might be some understanding to gain about the proper mapping landscape
too in order to improve the situation.

The transition table for the original Mazoyer’s solution can be found in [21],
but also in [33] together with other minimal-time solution transition tables. When
running the program of the original Mazoyer’s solution with different values of k we
obtained the following number of new solutions for different runs.
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|

k \ number of solutions found by 10 different runs ‘
01644

1| 20682, 17645, 20731, 16139, 20731, 9538, 20626, 20682, 20054, 20490
2 |1 9451, 9451, 20595, 8241, 37275, 3817, 17421, 8241, 17317, 19895
3
4
5

644, 644, 644, 644, 644, 644, 644, 731, 8241, 8241
644, 644, 644, 2908, 644, 644, 644, 644, 644, 8241
644, 644, 644, 644, 644, 644, 644, 644, 644, 644

The behavior with £ = 1 seems to be pretty robust, but the bigger number of
results is obtained with k£ = 2. For k£ > 3, the perturbations seem to be too violent
and do not generally lead to more solutions. Note that while the solutions do not
have less states, the number of transitions do change. We show in Figure the
solution 668 (the only Mazoyer-like solutions found among the 718 solutions), and
one of its simulations having less transitions in Figure [4.1bl For fun, we also show
in Figure a local simulation of the solution 355 having alternating states at
time 2n — 3, illustrating how local simulation rearrange locally the information. The
identical part is represented with lighter colors to highlight the differences.

Proposition 5. There are at least 11,506,263 minimum-time 6-state FSSP solu-
tions.
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(¢) Original solution 355
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Figure 4.1
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Chapter 5

Beyond Synchronization Problems

Up to now, we have only considered FSSP solutions, but the approach is more
general. It is possible to formalize different classes of problems to which the results
generalizes. Informally, they correspond to problems specified in terms of space-time
constraints. In the following, we proceed more explicitly. We take a specific actively
studied example, the n3-RTSG already described in Chapter (1| and show why and
how things adapt naturally. In fact, the content of this chapter applies readily to
any S-RTSG problem, for any sequence S.

In Section [5.1] we define formally RTSG candidate and solutions and recall the
solution of Kamikawa and Umeo (6 states and 74 transition rules, state of the art
for the n® sequence) with enough detail for the results to be reproducible. In the
following sections, we describe RTSG-compliant local mappings and use the tools
developed in the previous chapter to obtain a new solution using only 4 states and
55 transition rules.

5.1 Real-Time Sequence Generators, Formally

The following definitions are obtained by adapting the FSSP definitions [J] and [4]
Where FSSP has an infinite number of finite initial configurations, RTSG as a single
infinite initial configuration.

Definition 13. A cellular automaton is RTSG-candidate if there are four special
states x4, Ba, Qu, Sa € Yo satisfying the following conditions.

1. %, is an outside state, i.e. VI € dom(d,), 0a(l) = %o < 1(0) = *4.

2. B, is the launching state, ie. I, = {@a} with 33, being the RTSG initial
configuration defined as @a(p) = %o, Bo and Q, for p <0, p=0and p > 1
respectively.

3. Qq @s a quiescent state, i.e. 64(Qu,Qu,Qa) = Qo 0n one hand, and §o (%, Qu, Qu) =
Q. if it is defined, on the the hand.

As for FSSP solutions and FSSP candidates, RTSG candidates are almost S-
RSTG solutions, except that they lack the last condition of Def [5

Proposition 6. There is a n*>-RTSG solution using 6 states and 74 transitions.

o7
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Figure 5.1: Transition table and space-time diagram of Kamikawa and Umeo’s so-
lution RLS using 6 state and 74 transitions.

Proof

In Figure [5.1]is the solution of Kamikawa and Umeo, repro-
duced with the same format as their paper to ease compar-
ison. The set of state is Xge = {x,Q,A,B,C,D, E}, the
special states being xgys, = *, By, = B, Que, = @, and
Spue, = A. Also, the local transition function dgye, contains
the above entries and additional obvious entries for the out-
side state x. The proof of correction can be found in [12].

The space-time diagram of this solution is depicted up in the two right columns of
Figure [5.1] where the cell at position 0 has the state A at time 1, 8, 27, and 64 as
expected. In the original paper [12], note that table of D wrongly has column C
filled with the content of column E. This mistake is easy to catch by examining the
proofs and space-time diagrams of the paper.

Now let us consider local mappings and local simulations for RTSG. The following

should be compared to their FSSP counterpart (Definition [12)).

Definition 14. A local mapping { from an RTSG-candidate o to the states Xg of
an RTSG-candidate CA [ is said to be RTSG-compliant if it is such that

o l, maps xq, By, and Q, respectively to x5, Bz, and Qg,
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o ls(c_1, co, 1) = *p if and only if 0o(c_1, o, €1) = *o (Meaning simply co = *,),
o ls(*as Co, 1) = Sg if and only if 64(*a, o, €1) = Sa, and
b gs(Qom Qom Qa) = QB and gs(*aa Qaa Qa) = Q,B Zf it 18 deﬁned.

Proposition 7. Given a sequence S C N, let a be an S-RTSG solution CA, [
an S-RTSG-candidate CA and ¢ a local simulation from o to 5. B is an S-RTSG
solution if and only if ¢ is RTSG-compliant.

Proof

To see this, consider the diagram d € D, of the solution
a. The special RTSG states appear at specific places and /¢
ensures or witnesses, depending on the direction of the im-
plication considered, that these special states/places are con-
served in {(d) € Dg, (Definition [10). Indeed, condition (1)
is just about the initial configuration, condition (2) is about
the conservation of the outside state, condition (3) is about
the conservation of the special generation state for the left-
most cell only and condition (4) about the conservation of the
quiescent state behaviour. These conditions are sufficient to

ensure that 3 is a solution, and clearly necessary since they
perfectly match Definitions [13] and [5] of the problem.

Let us repeat this important remark. Once « is fixed, S can be reconstructed
from ¢, and ¢ from (5. So the local mapping ¢ is just another representation of the
RTSG-candidate § that it generates (see Definition [L0)), but it is much easier to
check the compliance of the local mapping than the correction of CA 3 as an RTSG
solution, and this is the key property than justifies this particular application of
local mappings.

5.2 A Hand-Crafted Local Simulation from ﬁﬂ%
(to zmmg2)

Now that we have the relevant definitions, the study begins by first noting that the
space-time diagram of solution KU , as depicted in Fig. , make a very sparse use
of state A. It is subtle task to remove this state directly at the level of the transition
table. The task is however very direct using local mappings.

Similarly to the exploration algorithm, the first local mapping that we consider
is the identity local mapping id given by the local transition function of the 6-state
solution of Proposition [6] This local mapping simply transforms this solution into
itself. The point here is that we can now work with the local mapping because
each modification in the local mapping corresponds directly to a uniform set of
modifications in the space-time diagram which may or may not be deterministic
after these modifications.

Let us now describe how the second, hand-crafted, local mapping is obtained.
The goal is to remove the state A. This means changing every entry (z,y, z) of idg
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Figure 5.2: 6-state diagram, hand-crafted local mapping, the resulting 5-state dia-
gram, and its transition table using 72 transitions

such that ids(z,y,z) = A. But since A is the special generating state, we can not
replace it by B, () or F since they already appear in the evolution of the leftmost
cell. So we can consider either C' or D. However, looking at time 1, we see that
changing A into C' would lead to a C'CQ local configuration, which is already used.
So we heuristically choose D instead, to have DC(@ at time 1, an unused local
configuration. To summarize, for the leftmost cell we choose to change A by D, and
for the other cells, we can choose any state a priori.

The second local mapping is thus obtained by taking every local configurations
(z,v, 2) of ids such that ids(z,y,2) = A, and setting them to D if z = x, and to E
otherwise. The result is not a deterministic space-time diagram, but this is easily
corrected with two additional modifications for ACQ) and QQC, leading to the local
mapping depicted in the center of Figure The space-time diagram on the right
is obtained by applying the local mapping on the space-time on the left as indicated
by the outlined local configuration on the left, and resulting state on the right, at
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the following timestep in direct application of Definition [10}

Proposition 8. There is a n3-RTSG solution using 5 states and 72 transitions.

Proof

First note that the right space-time diagram of Fig. is
deterministic. We can therefore extract the solution 92,
whose transition table is given in Figure Its set of state is
opms, = {x, @, B, C, D, E} and its special generation state
is Synms, = D. No additional transitions appear after the
space-time shown in Figure 5.2l To prove this CA to be
an n3-RTSG solution, it is enough to check that the local
mapping is RTSG-compliant by examining the 12 entries in
Fig. , and since the source CA is an n®>-RTSG solution, we
can conclude using Proposition [7]

To ease the comparison of this 5-state solution with the original 6-state solution,
the transitions that are different, added or removed are highlighted in the above
table. Of course, all transition containing A should be considered as removed. The
reader can check that these differences do not correspond exactly to those described
in the local mapping.

5.3 Automatic Explorations from I,

5.3.1 Automatic Exploration from 99 (to IMIT))

Now that we have a first 5-state solution, we are ready to generate millions of them.

Running the algorithm on a 32 cores of 2.00GHz machine having 126Gb of mem-
ory, we obtain so many solutions that the algorithm stops because it runs out of
memory resource. The first time, we ran the algorithm with £ = 0. The pro-
gram actually uses 2 cores and about 43 Gb of memory. We did not optimize the
program nor did we check the configuration of the Java Virtual Machine for this
Java implementation. Since the machine is shared, the following data are not really
reproducible, but gives an idea of the execution.

o after 1 days, about 15 millions local simulations.
« after 6 days, about 85 millions local simulations.
« after 20 days, about 90 millions local simulations.

The number of solutions found each day was steady for the 6 firsts days then dropped,
presumably because of memory issues. Running concurrently the program with
k = 2, it uses 2 cores and 36 Gb of memory before it stops because of the same lake
of memory.

o after 1 days, about 15 millions local simulations.

o after 6 days, about 70 millions local simulations.
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Figure 5.3: Hand-crafted 5-state diagram, optimized 5-state diagram using 58 tran-
sitions, and transition table of the latter

« after 20 days, about 74 millions local simulations.

In fact, we had to keep in memory all the solutions and check whether we obtain
new solutions up to permutations, in order to be able to have a total number of
generated solutions. Better strategies can be found if the goal is only to optimize
the solution.

Proposition 9. There are at least 90,000,000 n®-RTSG solutions using 5 states.

Among these millions of solutions, no 4-state solutions are found, but 32379 of
them have fewer transitions. In the following table, the first line indicates a number
of transition and the second line the number of solutions having this number of
transitions.

Proposition 10. There is a n®-RTSG solution using 5 states and 58 transitions.
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58 59|60 |61]62] 63 |64 | 65| 66 | 67 | 68 | 69 | 70 | 71
1| 7 [22]51]98]| 174336589 | 1044 | 1618 | 2696 | 4643 | 7671 | 13429

Proof

The transition table of the generated solution IMN?_ is shown
in Figure[5.3] The 23 entries differing from the identity local
mapping are also depicted. It is then a matter of checking
that they are compliant and apply Proposition (7| to conclude
as before.

5.3.2 Automatic Exploration from 99 (to IMIT)

Now, from 9N, we collected his super local transition table up to time ¢ = 1003.
There are 264 super local transitions and the last super local transition appears at
time ¢ = 235. We explore 9N using our algorithm with £ = 0 in the same ma-
chine Ubuntu, we found 67925109 solutions after 280935 second within 13788797329
evaluations. This time is not running out of memory resource. Among the solutions
found, there are 3 5-state 55-rule solutions, 3 5-state 56-rule solutions, 13 5-state
57-rule solutions and only 1 4-state 55-rule solution as we denote MM . Fig
shows a diagram of I in the two columns in the right up to time ¢ = 73 and its
local transition table.

Proposition 11. There is a n®>-RTSG solution using 4 states and 55 transitions.

We tried to explore 9! but no local simulation found. We found that 99
is a reduction of RUZ, and IMN?, with dt = 1 but there is not local simulation from
IMNZ, to KU, or MM, with the same di = 1.

5.4 Conclusion

It should be clear by now that the approach can be applied to a large class of
problems. For example, the same algorithm used here for the n3-RTSG problem is
not particular to the n® sequence and can be used for any sequence S, as clearly
indicated in the definitions and propositions above. Also, the slightly differently pa-
rameterized algorithm for the minimal-time FSSP is not particular to minimal-time
solutions and can be used for any synchronization time, without even specifying this
synchronization time to the algorithm. The difference in the parameter only reflects
the slightly different notion of compliance for RTSG problems and FSSP. Because
the notion of compliance is the only changing factor, the approach can readily be
adapted to any class of problem for which an appropriate notion of compliance can
be designed. As examplified here, and in the FSSP case, the compliance property is
a direct translation of the problem.

There are still many components of this work to communicate properly, includ-
ing how local mappings compose and relate to each other and how the integration
of non-deterministic family of space-time diagrams can allow to explore even more
(deterministic) solutions. Beginning these discussions in this conclusion is not nec-
essarily useful. There is nonetheless one aspect on which we should comment. The
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Figure 5.4: A 5-state diagram using 58 transitions, its reduction 4-state diagram
using 55 transitions, and transition table of the latter

notion of local mapping appears to be a bridge between a common practice and a
topological tool. Indeed, on the practical side, it is common to work directly at
the level of space-time diagrams, and this is this practice that is captured formally,
and only partly, by local mappings. This allows to automate this practice. On the
other hand, a question was raised about the relation with conjugacy classes, a stan-
dard notion in the cellular automata and symbolic dynamics literature [9]. In fact,
the concept of local mapping appears to be an adaptation of the notion of shift-
equivariant homomorphism between two cellular automaton. Such homomorphisms
are usually described on total transition functions, with any configuration being a
valid initial configuration. This is a dynamical system point of view not necessar-
ily aligned with the more algorithmic point of view of FSSP and RTSG problems.
Local mappings augment the notion of homomorphism by including the partiality
of the transition functions and the temporal aspect of the space-time diagrams, es-
sential for the very specification of many algorithmic problem. Forming a bridge
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Figure 5.5: Umeo vs 4-state

between the algorithmic and dynamical points of view might be the reason of their

effectiveness.
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Chapter 6

Final Discussion

There are still lots of study required to fully explore what local mappings and local
simulations have to offer. This can be seen very concretely based on questions that
naturally arise from the examples considered so far.

A first important concept to further explore is related to the “depth” of the local
mappings. Indeed, starting with a CA «, a local simulation produces another CA .
If we start now from (3, a local simulation produces yet another CA ~. But ~ is, in
general, not a local simulation of a. Thinking in terms of space-time diagram, the
reason is that each local simulation consult ¢ — 1 in the origin CA to build time ¢ of
the target CA. So v needs to consult ¢t — 2 of a. More generally, in order to obtain
a kind of transitive closure of the notion of local simulation, we need to consider
local simulation of “depth” 2, 3, 4, etc. The composition of a local simulation of
depth d; with another one of depth dy generally leads to a local simulation of depth
di + dy. A local simulation of depth 0 is just a quotient of course. All of this creates
a nice algebraic structure that should be studied more thoroughly mathematically,
but also explored computationally.

The non-mininal-time FSSP solutions §,>, to S, considered in Chapter , of-
fers a concrete example. Indeed, although §'.°. have been created with the same
structure as S , none of these two CA is a local simulation of the other, not at
depth 1 at least. In fact, we need to go to depth 2 to see the relation. A depth-2
local mapping h is composed of two initializing function hy and h; used to create
or relate the timesteps 0 and 1 of the target CA from the initial configuration of
the source CA, and an additional hy used to create or relate the timestep ¢ of the
target CA from the timestep ¢t — 2 of the source CA as illustrated in Figure [6.1]
This figure shows the local mapping of depth 2 from §':°. to LS .. hy maps a state
of 3/18

i, to a state of U¢_ in the initial configuration. hy maps a triplet of §'.° in the

initial configuration to a state of LS, at time ¢ = 1. hy maps a quintuplet of §'.°  at
(t,p) to a state of U¢_ at (£+2,p). We use the colors to illustrate the levels of local
mapping.

Another application of this extension is the following. Our guess is that, with
a properly large notion of such simulations, it should be possible to classify the
718 solutions into only a few equivalence classes, more or less in two groups: the
“mid-way division” solutions and the “two-third division” solutions. Using deeper
local simulations indeed reduces the number of equivalence classes down to 19 in

our latest unfinished experiments up to depth 6.
But it is clear that there is a need to go beyond this extension local simulations.

67
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Figure 6.1: Local mapping dt = 2 from §’

15
329

or “mod 2” to obtain §

21
486

means that these two solutions are very closely related. However, they are not local
simulation in any direction, and for any depth a priori, because 2 and 3 are prime

numbers. This is illustrated in Figure [6.2] for depth 1.

For example, it is clear that using “mod 3” to obtain §

Of course, all of this is left as future work.
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