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Résumé: La technologie Li-O, offre des densités
énergétiques trés prometteuses (1700 Wh/kg vs 160
Wh/kg pour les batteries Li-ion actuelles). Cependant, leurs
performances sont souvent limitées par le rendement des
réactions ORR/OER, ainsi que par la formation de
peroxydes de lithium Li;O, bouchant progressivement les
pores de la cathode. Ceci explique la perte rapide des
performances apres seulement quelques cycles. Les solides
poreux de type MOF (Metal-Organic Framework)
possedent de grandes surfaces spécifiques et une forte
porosité. Leur structure avec une charpente ouverte fournit
non seulement un réseau hote pour la diffusion des ions
Li* et de I'oxygene, mais aussi un espace suffisant pour le
dépdt des produits de décharge. Certains MOFs présentent
des propriétés de flexibilité structurale qui permettent de
modifier réversiblement la taille et donc le volume des
pores en fonction des molécules adsorbées et seraient
aptes a stocker des produits de décharge.

L'objectif de ce travail est d'étudier les performances
électrochimiques de matériaux flexibles MIL-53(Al), MIL-
53(Fe). Les solides MIL-53(Al) ont été synthétisés par deux
voies de synthése conduisant a des morphologies et tailles
de particules différentes.

Les analogues Al et Fe présentent des comportements de
flexibilité différents : le solide MIL-53(Al) présente des
pores contractés en présence de molécules hotes tandis
que les pores du solide MIL-53(Fe) sont ouverts.

Les trois solides synthétisés dans cette thése présentent
des capacités de décharge intéressantes au 1% cycle
(~1000 mAh/g pour MIL-53(Al) et ~2000 mAh/g pour
MIL-53(Fe)). La voie de synthese utilisée pour les solides
MIL-53(Al) ne semble pas impacter les capacités de 1%
décharge ou le comportement observé. En effet, dans
certains cas (~33%), une étape d'activation semble
nécessaire afin d'observer une capacité (ORR efficace).
L'expansion de volume constatée pour le MIL-53(Fe)
(ouverture des pores) semble étre en faveur d'une
meilleure répartition des produits de décharge mais
favoriserait également leur dissolution lors de la charge
de la batterie (OER efficace).

Des analyses ex-situ (XRD, SEM, XPS) ont permis
d'identifier LiO, comme principal produit de décharge.
Sa morphologie évolue en fonction des capacités de
décharge observées (plaquettes, toroids ou particules
sphériques).

Title : Flexible Metal-Organic Frameworks for new generation of Li-Air batteries

Keywords : lithium-air batteries, MOFs (Metal-Organic Frameworks), structural and electrochemical characterizations

Abstract : Li-O, technology offers very promising energy
densities (1700 Wh/kg vs 160 Wh/kg for current Li-ion
batteries). However, their performance is often limited by
the efficiency of the ORR/OER reactions, as well as by the
formation of lithium peroxide Li,O, that progressively clog
the cathode’s pores. This explains the rapid loss of
performance after only a few cycles. Porous MOF (Metal-
Organic Framework) solids have high specific surface areas
and high porosity. Their open framework structure
provides not only a host network for Li* ion and oxygen
diffusion, but also sufficient space for the deposition of
discharge products. Some MOFs exhibit structural flexibility
properties that allow the pore size and thus the volume of
the pores to be reversibly modified by adsorbed molecules
and would be suitable for storing discharge products.

The objective of this work is to study the electrochemical
performance of flexible MIL-53(Al), MIL-53(Fe) materials.
MIL-53(Al) solids were synthesized by two synthesis routes
leading to different morphologies and particle sizes. The

Al and Fe analogues exhibit different flexibility behaviors:
MIL-53(Al) solid pores contract in the presence of host
molecules while the MIL-53(Fe) solid pores are open.

The synthesized three solids in this thesis show interesting
discharge capacities in the 1 cycle (~1000 mAh/g for MIL-
53(Al) and ~2000 mAh/g for MIL-53(Fe)). The synthesis
route used for MIL-53(Al) solids does not seem to impact
the 1 discharge capacities or the observed behavior.
Indeed, in some cases (~33%), an activation step seems to
be necessary in order to observe an effective ORR capacity.
The volume expansion observed for MIL-53(Fe) (pore
opening) seems to be in favor of a better distribution of
the discharge products and would also favor their
dissolution during the charging of the battery (effective
OER).

Ex-situ analyses (XRD, SEM, XPS) have identified Li,O, as
the main discharge product. Its morphology evolves
according to the observed discharge capacities
(platelets, toroids or spherical particles).




Résumé

Dans un contexte de demande croissante en stockage mobile d'énergie, de nombreuses
recherches sont menées pour trouver des dispositifs de forte efficacité. Les batteries Li-ion sont
ainsi devenues les batteries de référence notamment pour les appareils électroniques grand
public. Cependant, leurs performances en termes de capacité et d'énergies spécifiques
semblent atteindre leurs limites et seront insuffisants pour les besoins a long terme de notre
société. Il s'avere donc nécessaire de développer une nouvelle technologie de batteries offrant
de nouvelles perspectives en matiere de capacité de stockage et de sécurité, en particulier dans
le domaine de l'automobile. La technologie Li-O, offre des densités énergétiques tres
prometteuses (1700 Wh/kg vs 160 Wh/kg pour les batteries Li-ion actuelles). Cependant, leurs
performances sont souvent limitées par le rendement des réactions ORR/OER, ainsi que par la
formation de peroxydes de lithium LiO, bouchant progressivement les pores de la cathode a
air. Ceci explique la perte rapide des performances apres seulement quelques cycles. Les
solides poreux de type MOF (Metal-Organic Framework) possedent de grandes surfaces
spécifiques et une forte porosité. Leur structure avec une charpente ouverte fournit non
seulement un réseau hote pour la diffusion des ions Li* et de I'oxygene, mais aussi un espace
suffisant pour le dépo6t des produits de décharge. Quelques MOFs rigides présentent de
bonnes capacités de décharge en tant de cathode a air dans les batteries Li-O.. Certains MOFs
présentent par ailleurs des propriétés de flexibilité structurale qui permettent de modifier
réversiblement la taille et donc le volume des pores en fonction des molécules adsorbées et
seraient aptes a stocker des produits de décharge. Néanmoins, les études concernant les MOFs
« pristines » pour les batteries Li-O, restent encore trés limitées jusqu'a présent.

L'objectif de ce travail est d'étudier les performances électrochimiques de matériaux
flexibles MIL-53(Al), MIL-53(Fe) et rigide MOF-5, tous trois constitués du méme ligand (acide
benzene-1,4-dicarboxylique). Différentes méthodes de syntheése ont été utilisées. Les solides
MIL-53(Al) ont été synthétisés par voie hydrothermale et par micro-ondes. La synthese
hydrothermale du MIL-53(Al) conduit a des cristallites en plaquette de taille d’environ 2 um,
tandis que celle par micro-ondes mene a des nano-sphéres de taille d’environ 500 nm. Les
matériaux MIL-53(Fe) et MOF-5 ont été synthétisés par reflux. Leurs performances
électrochimiques ont été explorées et rationalisées par rapport a leurs propriétés de flexibilité
structurale, du mode d'ouverture des pores, et de leur morphologie. Les analogues Al et Fe
présentent des comportements de flexibilité différents selon la nature du métal : le solide MIL-
53(Al) présente des pores contractés en présence de molécules hotes tandis que ceux de MIL-
53(Fe) sont ouverts. La flexibilité du MOF est prometteuse pour I'amélioration de I'accueil de
produits de décharge. Avec une formulation de cathode contenant une faible teneur en MOF,
le solide flexible MIL-53(Al) présente une capacité de décharge initiale plus de deux fois
supérieure a celle du MOF-5 (~3400 mAh/g pour MIL-53(Al) et ~1390 mAh/g pour MOF-5).
Pour un teneur en MOF plus importante, les deux solides flexibles synthétisés dans cette these
présentent des capacités de décharge intéressantes au Ter cycle : ~1000 mAh/g pour MIL-



53(Al) et ~2000 mAh/g pour MIL-53(Fe). La voie de synthese utilisée pour les solides MIL-53(Al)
ne semble pas impacter les capacités de 1°® décharge ou le comportement observé. Nous
avons observé un écart important de capacité de 1°¢ décharge parmi les nombreuses
électrodes testées. Dans environ 1/3 des cas, une étape d'activation au cours du 1° cycle
semble nécessaire afin d'observer une capacité de charge (ORR efficace). L'expansion de
volume constatée pour le MIL-53(Fe) semble étre en faveur d'une meilleure répartition des
produits de décharge et favoriserait également leur dissolution lors de la charge de la batterie
(OER efficace). Des analyses ex-situ (XRD, SEM, XPS) ont enfin permis d’identifier le peroxyde
de lithium Li,O, comme étant le principal produit de décharge. Sa morphologie évolue en
fonction des capacités de décharge accumulées observées (plaquettes, toroides ou particules
sphériques).
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Glossary

Acronyms

Abbreviation

Definition

BDC
BE

Cso
DME
EV

H
HKUST
LIB
LiTFSI
LOB
MIL
MOF
MW
NMP
ocv
OER
ORR
PVDF
Q

Q

R

SEI
SEM
TEGDME

benzene-1,4-dicarboxylic acid
binding energy

Super P carbon black
1,2-dimethoxyethane

electric vehicle

hydrothermal

Hong-Kong University of Science and Technology

lithium-ion battery

lithium bis(trifluoremethanesulfonyl)imide

lithium-oxygen battery
Material of Institute Lavoisier
Metal Organic Framework
microwave-assisted
N-Methyl-2-pyrrolidine
open circuit voltage

oxygen evolution reaction
oxygen reduction reaction
Polyvinylidene fluoride
capacity at the first cycle
capacity at the second cycle
reflux

solid electrolyte interphase
scanning electronic microscopy

Tetraethylene glycol dimethyl ether



Techniques

Abbreviation

Definition

BET
GCPL
SEM
TGA
XPS
XRD

Brunauer-Emmett-Teller

galvanostatic cycling with potential limitation
scanning electronic microscopy
thermogravimetric analysis

X-ray photoelectron spectroscopy

X-ray diffraction

Unit

Abbreviation

Definition

mA/g

mAh/g
mg/cm?
ppm

\")

wt. %

current density with respect to the mass of MOF
and Csp

capacity with respect to the mass of MOF and Cp
mass loading of MOF and Csp per surface

parts per million

voltage versus Li+/Li

weight ratio
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Introduction

Introduction

The development of the societies has benefited deeply from the energy source. The
energy mix system has been transformed dramatically since the Industrial Revolution in the
mid-18™ century. Since then, four successive industrial revolutions (Figure 1) have liberated
people from the labor, increased the production of goods, and boosted the economy and

technological innovations, as well as the standard of living [1].

Quick change of Mass production, Automated :
: : ; : : Cyber-physical
production assembly lines with production using systems
technologies electricity electronics and IT ¥

Figure 1: Overview of the Industrial Revolutions and the future view. Compilation from Desoutter
Industrial Tools [1].

Society development brought the rise of coal, followed by oil and gas. Demand for
energy has continuously increased across the world with the economic and population growth
year by year. The search for alternative renewable energies due to the limited storage of fossil
fuels on our planet never stops. The modern renewables, excluding hydropower which came
by the turn of the 20™ century, solar, and wind, were only added in the 1980s. Nowadays, the
global energy mix of many countries is still relying heavily on fossil fuels, which account for

more than 80 % of the energy consumption (Figure 2) [2].
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Global primary energy consumption by source

Primary energy is calculated based on the ‘substitution method' which takes account of the inefficiencies in fossil
fuel production by converting non-fossil energy into the energy inputs required if they had the same conversion
losses as fossil fuels,

Other
renewables
160,000 TWh Modern biofuels
140,000 TWh
Nuclear
Gas
120,000 TWh
100,000 TWh
80,000 TWh Qil
60,000 TWh
40,000 TWh
Coal
20,000 TWh
Traditional
0 TWh biomass
1800 1850 1900 1950 2019
Source: Vaclav Smil (2017) & BP Statistical Review of World Energy OurWorldinData.org/energy « CC BY

Figure 2 Global primary energy consumption by source. Copyright from OurWorldData.org.

As a result, the current energy mix state is implicated deeply for the global climate,
since three-quarters of global greenhouse gases (CO, N»O, NHs CFC) come from the
consumption of fossil fuels [2]. Over the last few decades, global temperatures have risen
sharply to approximately 0.7°C higher than in 1961-1990. When extended back to 1850,
temperatures were a further 0.4°C colder than the baseline. Overall, this would amount to an
average temperature rise of 1.1°C (Figure 3). The changing climate has a range of potential
ecological, physical, and health impacts, including extreme weather events (such as floods,
droughts, storms, and heatwaves); sea-level rise; altered crop growth; and disrupted water
systems [3]. It's urgent to make efforts for reducing CO, emissions by shifting towards low-

carbon sources of energy and renewable technologies.
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Annual carbon dioxide (CO;) emissions from different fuel types, measured in tonnes per year.
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Figure 3 Correlation between (top) the CO, emission by fuel consumption and (bottom) the global
warming anomaly. Copyright from OurWorldData.org.
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Among the low-carbon source of energy, the hydroelectric power accounts for more
than 60 % of the renewable sources (except traditional biomass) [2]. Even though this energy
is ecological and renewable, it is intermittent and requires devices for conversion, storage, and
transportation. Among the diverse developed energy storage systems, the electrical storage

devices take advantage of portability and lowing the energy supply costs.

The battery has been considered as the current reference energy storage device,
especially the lithium-ion batteries (LIBs), since the first commercialization by Sony in 1991 [4].
The current LIBs are dominating largely the market for portable devices and are broadening
largely their markets in the field of electric vehicles (EV). The total LIB market capacity size is
projected to reach more than a seven-fold increase to over 1.2 TWh by 2030 (from 160 GWh
in 2018), especially for the automotive field (Figure 4 (a)). It is expected to grow at a compound
annual growth rate (CAGR) of 12.3 % for the next decade [5]. LIBs for automotive applications
have shown rapid development; as shown in Figure 4 (b), the global market share of electric

vehicles within new vehicles sold has increased from 3.3 % in 2015 to 19.5 % in 2020 [6].

Moreover, driven by the surging requirement for continuous power supply from critical
infrastructures in wake of the sudden pandemic COVID-19, demands have been significantly
affected by the economic repercussion for EVs, battery-operated material-handling equipment

in industries due to automation, and smart devices.

Besides, some governments implement also incentive policies for pushing the EV's
development. For instance, Europe’s global car market contracted 22 % in 2020. Yet, new EV
registrations increased a sale share of 10 % to 1.4 million. Norway reached a record high sales
share of 75 %, up about one-third from 2019. Sale shares of EV exceeded 32 % in Sweden and
reached 25 % in the Netherlands. In the largest market, Germany registered 395 000 new EVs,
and France registered 185 000. The United Kingdom more than doubled registrations to reach
176 000. While in some other countries, EV markets saw sale shares of 4.2 % (Canada), 2.9 %
(Korea), and 0.6 % (Japan), respectively (Figure 4 (). Despite the encouragement for enlarging
the users, but also better battery performance is required to value the EVs competition. High
power and high energy batteries ensuring a long-distance driving (> 500 km) and fast charging

(< 30 min for 80 % state of charge) for electric vehicles are also required [7].
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Figure 4 (a) The present and future (predicted values in 2019-2030) LIB market including
electronic devices, EVs (auto, E-bus), industrial & stationary (ESS) energy, and others (medical
devices, power tools, gardening tools, e-bikes...). Copyright AVICENNE ENERGY 2019. (b) Global
EV market share in the new car sales from 2015-2020, and (c) the EV market penetration of
different countries within its total domestic vehicles sold in 2020. Compilations from IEA Global
EV Qutlook 2021.

Considering the overall intense energy demand, we are urged to develop new electrode
materials and technology with higher power and energy density to maintain the well-being of
our society. Among the alternative light batteries, the lithium-air (Li-air) batteries have
attracted much attention for the last two decades thanks to their high energy theoretical
discharge capacity (1168 mAh/g.) and cost-competitive source from the air. The Li-air batteries
could offer 5-10 times higher capacities than the current LIBs, in theory. Even though Li-air
batteries have a high energy density (11140 Wh/kg) comparable to that of gasoline, they are

still far from practical due to material challenges.

A Li-air battery consists of a porous air cathode, electrolyte impregnated separators,
and a lithium anode. The discharge products generate from the reaction of lithium ions and
the O,. These products need to be stored inside the air cathode and thus releasing electrons
during the charge. One of the major challenges for the Li-air battery is the proper porous
material in the air cathode. Their performances are limited by the rapid capacity loss within a

few discharge/charge cycles due to the decreased available porosity.

MOFs have been known for their highly porous structure. The MOFs and their
derivatives have been already explored in lithium batteries as active materials (Li-ion, Li-S, Li-
air). Among them, some materials show structural flexibility upon adsorbing guest molecules,

which makes it promising to accommodate the discharge products in the Li-air batteries.
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This thesis enrolls into the research of a flexible MOF material - MIL-53- as air cathode
in the Li-air batteries, including the preparation and characterizations of the MIL-53 air cathode
and characterizations of discharge products on the cycled air cathodes in the aprotic Li-air

batteries. The air cathode based on MIL-53 is then also compared to other MOF compositions.
This work is thus divided into five chapters:

Chapter | starts with a general introduction to the basic concepts of different types of
batteries and the applications of porous MOF materials as active material in batteries. The

state-of-the-art and the current issues are summarized.

Chapter Il focuses on synthesis methods used for our work (conventional solvothermal,
microwave-assisted solvothermal, and reflux syntheses) and gives the details for the
preparation of MIL-53 electrodes and for the battery assembly. We then describe the
experimental characterization techniques, including structural and physical characterizations
of the MOF materials (XRD, TGA, BET, and SEM), electrochemical characterization of the Li-Air
battery (GCPL), identification of the discharge products (ex situ characterizations: XRD, SEM,
and XPS).

Chapter Ill explores in detail the synthesis and structural / physical characterizations of
two flexible MIL-53 analogues (Al, and Fe). At first, we synthesize the MIL-53(Al) with
conventional hydrothermal and microwave-assisted hydrothermal methods, and the MIL-53(Fe)
with reflux method. The obtained MIL-53 solids are characterized by a combination of
techniques (XRD, TGA and BET, and SEM). The special flexibility of MIL-53 with the solvents
used (PVDF@NMP, NMP) for the preparation of air cathode in Li-air batteries is also
investigated by XRD. Discussions of breathing behaviors concerning MIL-53(Al) with two

synthesis methods, as well as the two analogues will end this chapter.

Chapter IV addresses the studies for electrochemical performances of the MIL-53 air
cathodes in the Li-air batteries. With a high MOF content electrode formulation, on one hand,
we investigate the influence of MIL-53(Al) crystallite size over the battery performance; on the
other hand, we discuss how the breathing behaviors with MIL-53(Al) and MIL-53(Fe) impact
the discharge product accommodation upon cycling. In addition, we compare the
electrochemical performance between the flexible MIL-53 and the reported robust material
MOF-5 with a low MOF content electrode formulation. At last, the general electrochemical

behavior of these MOF electrodes will be discussed.
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Chapter V is dedicated to the characterizations of discharge products on the MIL-53
air cathodes after discharge-charge cycling. We reveal the lithium peroxide as the main
discharge product by XRD identification and observe their morphologies over cycles with all
MIL-53 air cathodes. We hence promote a possible growth mechanism of LiO, particles.
Beyond the above Li,O; identification, we explore deeper the surface chemical composition of
the discharged cathodes with XPS.

The main results of this PhD work are summarized at the end, their impacts and

implications on further battery research are discussed along with the remaining issues.
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Chapter I. State of the art

Recently, Metal-Organic frameworks (MOFs) appeared as an emerging class of
materials for electrochemical energy storage. This chapter will first give an overview of the
different battery technologies, commercialized or still in development. Then in the second part,
we will describe the motivation of this thesis: the lithium-air batteries, with their principle,
limitations, and the current state of the art in terms of cathode materials. The MOF materials
and their potential applications, such as gas storage, biomedicine etc, and especially as
electrode materials for battery applications will be presented in a third part.
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|.1. Batteries overview

1.1.1. Definition and key parameters of a battery

A battery consists of a combination of electrochemical cells in a series or in parallel that
converts chemical energy into electrical energy. The term "battery” is commonly used to define
a single cell in the scientific community, which would be the case in this manuscript. A battery
is composed of a negative electrode and a positive electrode (called commonly anode and
cathode respectively) immersed in an electrolyte and isolated by a separator (Figure I-1).
Batteries store and produce electrical energy through oxidation-reduction processes. The
redox reactions occur both at the negative electrode and at the positive electrode — during the
discharge: oxidation at the negative electrode and reduction at the positive electrode; the roles
are reversed during the charge: reduction at the negative side and oxidation at the positive
one. During discharge, ions produced from oxidation migrate from the negative electrode to
the positive electrode through the electrolyte. Electrons travel through the external circuit to
the positive electrode. While the battery is charging, an external current is applied to cause a
reversal of the redox reactions and migration of the charged species from the positive
electrode to the negative electrode. In the thesis, we will use the terms "anode" for the negative
electrode and "cathode" for the positive electrode, regardless of the reactions occurring.

e

discharge

/
/
/

charge Ag-bdischarge

/] |

negative / N o positive
electrode separator electrolyte electrode

Mn+

Figure I-1 : Schematic representation of an electrochemical cell.

The nature of the electrodes used imposes an electrochemical potential, which is
equivalent to the potential difference of the redox reactions that take place at each electrode.
This potential E is of the order of a few volts and varies depending on the state of charge. The
capacity Q — expressed in ampere-hour (Ah) — corresponds to the maximum electric charges
that an electrochemical cell can stored during the discharge or supply during the charge. This
quantity corresponds to the number of electrons that a battery or an active material can
exchange (Equation I-1).

t
Q =j I(t)dt Equation I-1
0
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In order to compare the active materials with each other, the scientific community has
defined the theoretical specific capacity C of the electrode material itself. It corresponds to
the amount of electricity stored in the material, which is usually expressed in mAh/g. It is
defined by the number of ions inserted relative to the molar mass of active material present in
the electrode according to the Faraday's law (Equation I-2):

xzF
C = Equation I-2
i q

F - Faraday constant (96485 C/mol)
x - number of inserted ions

z - charge number of intercalated ion
M - molar mass of active material (in g/mol)

The stored energy € corresponds to the product of the capacity Q by the potential E,
and is expressed in watt-hours (Wh) or joule (J). The energy density can be reported by weight
(gravimetric energy density — Wh/kg) or by volume (volumetric energy density -Wh/L). To
increase the energy of a battery, it is therefore necessary to increase either its capacity Q or its
potential E (Figure 1-2).

charged state
&k@ - CoNoOminal voltage

\ discharged state

>

Potential E (V)

Energy & (Wh)

Time t (h) / Capacity Q (Ah) ]

Figure I-2 : Typical discharge curve of a battery.

The Coulombic efficiency CE is the ratio (expressed in percentage) between the charge
capacity and the discharge capacity over a full cycle.

The open-circuit voltage Eocv corresponds to the difference of the potential across the
electrodes of the battery when no current is flowing. The overpotential 1 is the potential
difference (voltage) between the half-reaction thermodynamic reduction potential Eo and the
potential at which the redox reaction is observed experimentally.

-12 -
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1.1.2. From the voltaic pile to the development of current batteries

1.1.2.1. Birth of batteries

Figure 1-3 presents an overview of the development of battery technologies since the
discovery of the voltaic pile by the Italian scientist Alessandro Volta in 1800. The voltaic pile
consists of a stack of copper and zinc plates separated by cloth soaked in a saline solution [1].
In 1802, William Cruickshank invented the trough battery — a variant of the voltaic pile — built
from brine-soaked pieces of cloth sandwiched between zinc and copper discs, piled in a stack

[2].

Voltaic pile 'i’
‘l"‘,l“r\‘.‘
u e yao‘u'id @
o © 4 ”f*'
4
1800 1900 1991 2000 nd
Ly ) | | Calendar/year
1802 Rechargeable battery Li battery Still under development
1859 Lead 1973 Li-Metal Li-S, Li-air, Na battery
1900 Ni-Cd and derivative 1978 Li-ion
1975 Ni-MH 1979 Li-polymer
Trough battery 1991 SONY - 15t commercial
Li-ion

Figure I-3 : Timeline development of batteries.

In 1859, the French physicist Gaston Planté created the first rechargeable battery
(lead-acid battery). It consists of a spiral roll of two sheets of pure lead separated by a linen
cloth immersed in a glass container filled with a solution of sulfuric acid. It has the advantage
of delivering high currents but suffers from low energy densities (25 - 55 Wh/kg) and a short
lifespan (200 - 300 cycles). They are still used in traditional combustion vehicles [3].

In the 1900s, others technologies emerged such as Nickel-Cadmium (Ni-Cd) batteries
or their derivatives Nickel-Iron (Ni-Fe), Nickel-Zinc (Ni-Zn) [1]. These rechargeable batteries
have the same nickel oxide hydroxide cathode (NiOOH) and alkaline electrolyte (potassium
hydroxide KOH), but the metallic anode varies with the type of batteries (Cd, Fe, or Zn). These
systems are generally used in applications requiring a long lifespan such as emergency medical
equipment, professional cameras, or two-way radios. Since 2006 the Ni-Cd batteries have been
prohibited due to cadmium toxicity.

In 1988, the Nickel-Metal Hydride (Ni-MH) battery replaced the Ni-Cd battery [1].
The cathode is still the hydroxide oxide nickel whereas the anode is now made of a hydrogen-
absorbing alloy and not a “consumption” anode. The Ni-MH battery was used to power the
first generation of commercialized hybrid vehicles such as the Toyota Prius in 1997. However,
its specific energy density is still relatively low (80 Wh/kg).

-13 -



Chapter | - State of the art

In order to increase the specific and volumetric energies, lithium is considered as a good
anode candidate. Indeed, lithium is the lightest metal (M = 6.94 g/mol) and the most reducing
element (-3.04 V vs. standard hydrogen electrode (SHE)), which provides a high cell potential.
It also possess a high capacity (3860 mAh/qg). In the 1970s, Whittingham proposed the first
lithium-metal battery based on intercalation materials such as MoS; and TiS; [4]. The specific
energy of lithium-metal batteries is more than two times higher than other technologies.
Unfortunately, due to the strong reaction of lithium metal with the electrolyte, this technology
presents significant safety problems which limit its commercialization [1]. This is due to the
formation of dendrites, leading to short-circuits and in some cases to explosions. This point
will be developed in Section 1.2.4.1. Two strategies are then considered to prevent the safety
issue: the replacement of the electrolyte or of the lithium metal anode.

Yoshino discovered that petroleum coke could reversibly intercalate lithium ions at a
low potential of ~0.5V vs. Li*/Li without structural destruction [5]. In parallel, Goodenough et
al. proposed in 1979 to use a cathode material based on lamellar lithium cobalt LiCoO: [6].
Later in 1991, Sony commercialized the first lithium-ion battery based on two intercalation
materials: a LiCoO; cathode and a LiCs anode with a liquid electrolyte [7]. The Nobel Prize in
Chemistry 2019 [8] was awarded to Goodenough, Whittingham, and Yoshino for their great
contributions to the development of the current lithium-ion batteries (LIBs). To this day, this
technology is still prominent in our life as it equips various mobile applications. However, Li-
ion batteries have a high cost and also can present safety issues due to the use of flammable
electrolytes.

In 1980, Armand proposed replacing the liquid electrolyte with a polymer such as
polyethylene oxide (PEO) coupled with a lithium salt, that prevents the formation of lithium
dendrite [9]. The lithium metal polymer battery with a solid polymer electrolyte appears safer
thanks to the use of a volatile solvent-free technology. However, the conductivity of the
electrolyte at room temperature is low and requires an increase of the operating temperature
(~70°C). Despite the above limitation, this technology has been developed for electric vehicles
as in the Bluecar by Bolloré [10].

Figure -4 compares the energy densities for the different battery technologies
mentioned above. Although the energy density of LIBs has increased gradually since their
discovery, they seem to reach their limits and will be insufficient for the long-term needs of
our society. In the next section, we will present the current Li-ion batteries to better understand
their limitations.

- 14 -
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Figure I-4 : Ragone plot of the different battery technologies. Reprinted from [11].

1.1.2.2. Current lithium-ion batteries

Since the commercialization of the first rechargeable Li-ion battery (LIB) by Sony in
1991 [7], the demand and improvement in energy density for LIBs have increased rapidly,
driven by the development of portable devices and electric vehicle market.

Currently, the LIB relies mainly on the Li* intercalation mechanism in cathode and anode
materials. In the conventional LiCoO; / graphite LIB, the electrode reactions during discharge

can be written as:

LiyCe » x Lit + Cg + x e Reaction I-1

Li;_4Co0, + x Li* + x e~ - LiCoO0, Reaction I-2

During the discharge, the oxidation of the anode leads to the deintercalation of Li* ions from
the graphite laminar structure. In opposition, Li* ions intercalate in cathode by a reduction
reaction of the LiCoO; with electrons coming from the anode through the external circuit. By
applying an opposite current, these reactions are forced in the opposite direction and then

allow to charge the battery.

To increase energy density and overcome the safety issues of lithium metal, the research
focuses on finding higher voltage cathode materials and / or other Li-containing compounds

that can replace lithium metal at the anode.

a. Cathode materials

As mentioned earlier, the nature of the electrodes used determines the working
potential of the battery. The oxides family is extensively studied as it gives higher potentials
compared to chalcogenides (TiSz MoS,,...) [12].

-15 -
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Layered oxides with the formula LIMO, (M=Co, Mn, Ni) are the most
used /commercialized cathode materials for LIBs. LiCoO; (Figure I-5 (a)) was first suggested as
intercalation compound by Goodenough et al. [6] and then commercialized by Sony [7]. This
material is still used in commercial batteries. A capacity of only 140 mAh/g is obtained
experimentally with LiCoO,, much lower than the theoretical one (274 mAh/g). It is in fact
difficult to remove more than 0.5 Li* without damaging the structure [13]. To solve this issue,
it is necessary to decrease or remove the Co content by a partial or total substitution, notably
with Ni. Among the nickel-based layered oxide compounds, the NCA and the NMC families —
with the formula Li(Nii-x-yCoxAl,)O, and Li(NixMnyCo,)O, respectively — are identified as
potential high specific capacity materials with working potential larger than 4 V vs. Li*/Li. Some
NMC and NCA cathode materials are already commercialized; for example, the phase NMC-
811 is commercialized by the Chinese company Contemporary Amperex and a NCA from
Panasonic is already deployed in the Tesla Model 3 batteries [14].

The Li-rich compounds — with the formula yLi>-«MnQOz+(1-y)Li1«MO; (with M=Ni, Co, Mn)
or Li1+yM1,0, — are obtained by substituting the metallic cations in the MO, layer by lithium
(Figure 1-5 (a)),. These electrodes can provide specific capacities larger than 250 mAh/g in a
wide potential range (2.0 - 4.8 V vs. Li*/Li), even often higher than their theoretical capacities
[15]. This phenomenon is explained by the redox activity of the anion network (or oxide ions)
that adds to the usual cationic redox [16], [17].

Among Co-free materials, the spinel LiMn,O, benefits from good structural stability, a
3D lithium diffusion pathway in vacant interstitial sites (Figure I-5 (b)), as well as high electrical
and Li* ion conductivities , thereby allowing a high operating voltage of 4.1 V vs. Li*/Li [18],
[19]. However, its practical specific capacity is in the range of 100 -120 mAh/g for about 700
cycles [13]. Moreover it suffers from a dissolution of Mn from the lattice when H* traces exist
in the electrolyte. One alternative to improve the structural stability of LiMn;Oj4 is the partial
substitution of Mn** by Ni?* or Fe*[20], [21]. Especially, the LiNiosMn1504 could operate at
about 4.7 V vs. Li*/Li with a capacity of about 90 mAh/g, resulting in a high energy density.
However, this substituted spinel solid suffers from capacity fading due to the lack of stable
electrolyte operating at such high voltages [21].

Other structures have been investigated as potential high voltage cathode materials.
Among the polyanion class of cathode materials, the olivine LiFePO, (Figure I-5 (c)) is
considered as a promising cathode due to its low cost, abundance, and environmental
friendliness [22]. It achieves a specific capacity of 170 mAh/g (close to its theoretical capacity)
with a good cyclability. Besides its low energy density, the LiFePO, suffers from a low electronic
conductivity. The low electronic conductivity can be further solved by carbon coating or making
a composite with carbon.

An overview of aforementioned representative crystal structures of intercalation
cathode materials for LIBs is shown in Figure I-5.
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(b)

MnOg

Figure I-5 : Representative crystal structures of cathode materials for LIBs: (a) layered LiCoO_; (b)
LiMn;O4 spinel; and (c) olivine LiFePO.. Li* ions are shown as light green spheres, CoOe octahedra
in blue; MnOg octahedra in mauve; Fe—O polyhedra in brown, and PO, tetrahedra in purple. Black
lines demarcate one unit cell in each structure. Reprinted from [23].

The layered V,0s also attracts interest due to its initial capacity of about 300 mAh/g,
which is higher than LiMn;O,, LiFePOy, or even Li-rich cathodes [24]. However, the practical
application of V>0s is impeded by its slow Li* diffusion (1072 - 10" cm?/s), its poor electrical
conductivity (102-10° S/cm) as well as its structural instability. One way to enhance the
electrochemical behavior is to fabricate nanostructured V.Os materials. For example, nano-
V>0s exhibited a good cycling stability with a specific capacity of 200 mAh/g retained after 50
cycles between 2.0 — 4.0 V vs. Li*/Li [25]. More recent studies show that the cathode fabricated
from 50 nm V>Os thin film delivered a high discharge capacity of 271 mAh/g at 0.5 C, and 129
mAh/g at a very high current of 20 C. When the current is decreased from 20 Cto0 0.5 C, 91.1 %
of the initial discharge capacity is still maintained [26].

An overview of the specific capacity and the operating voltage of the aforementioned
cathodes is given in Table I-1.

Table I-1 : The characteristics of Li-lon battery positive electrode materials [13], [27].

. ifi
Material Structure (:::f:::;l_i) :allo::cit; nﬁ)r::ll)eer
(mAh/g)

LiCoO; Layered 38 140 500-1000
"iNi°'8((:|‘\’l°c"li;“°'°5°2 Layered 37 180-200 500
"iNi"fﬁl‘\;;g;'"‘Boz Layered 3.7 160-170 1000-3000

LiNiosMn1504 Layered 4.7 130-140 300-1000
Li-rich NMC Layered 4.8 150-200 500-700

LiMn;O4 Spinel 4.1 100-120 300-700

LiFePO4 Olivine 33 150-170 1000-2000

V205 Layered 3.3,3.1and 2.1 100 - 140 500 - 1000

17 -



Chapter | - State of the art

b. Anode materials

As already mentioned, the development of LIB benefits mainly from the intercalation
chemistry. Many efforts have been devoted to develop new electrodes with Li intercalation
compounds, allowing the insertion of Li atoms between layers of the host. Other types of
materials that could react with Li are also investigated as potential anode materials, with
generally structural changes during the electrochemical reactions. As shown in Figure I-6, these
compounds are classified into three types according to their reaction mechanisms with lithium:
({) insertion/intercalation, (ii) alloying, and (iif) conversion.

Insertion

structural change

Alloying

Conversion

Figure I-6 : Schematic representation of the different reaction mechanisms occurring in negative
electrode material for LIBs. Black circles: voids in the crystal structure, blue circles: metal, yellow
circles: lithium. Reprinted from [28].

To avoid safety issues, graphite is identified as a good candidate to replace lithium
metal at the anode. Although its theoretical capacity is much lower than lithium metal
(372 mAh/g vs. 3860 mAh/g, respectively), lithium ions could intercalate in graphite at a low
potential around 0.1 V vs. Li*/Li [7]. It has been commercially used in LIBs for its high reversibility
and low volumetric expansion. In the 1990s, the spinel LisTisO1, material was proposed for Li-
ion batteries and has been successfully commercialized due to its superior thermal stability,
high rate, and high cycle life [29]. Its theoretical specific capacity is low (175 mAh/g) but it
presents a well-defined charge/discharge plateau and a high rate capability.

In addition to insertion compounds, some materials can alloy electrochemically with
lithium at ambient temperature (Li-Al, Li-Si, Li-Sn, etc.) [30]. The silicon-based anodes are
certainly the most well-known examples. They have a low working potential of ~0.2 V vs. Li*/Li
with a theoretical capacity of 3579 mAh/g. However, a huge volume expansion upon lithiation
is observed leading to severe particle pulverization, loss of electrical contact, and formation of
unstable interface layers[30], which limit the battery lifespan.
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More recently, the conversion electrode has attracted attention due to the high capacity.
The conversion reaction is defined as the reduction of binary transition metal M.Xp (with
M=transition metal, X=0, S, F...) to its metallic state (Li,X). The main exception is the fluoride,
which reacts at voltage close to 3.0 V vs. Li*/Li. However, the main drawback of the conversion
electrode is the large voltage hysteresis between the discharging and charging, resulting in a

poor energy efficiency [31].

c. Electrolyte

The electrolyte is also a key component of the LIB since it serves as the medium for ion
transport. Its critical features concern safety (thermal stability), cell rate capability (conductivity),
and reactivity (electrochemical stability window) [32]. Electrolytes are generally composed of a
lithium salt dissolved in a liquid organic solvent. The most common solvents for LIBs are based
on carbonate species, ethylene carbonate (EC), propylene carbonate (PC), dimethyl (DMCQ),
ethyl methyl (EMC), or diethyl (DEC) carbonates [33]-[36]. Lithium hexafluorophosphate (LiPFs)
and lithium bis(trifluoromethane)-sulfonimidate (LiTFSI) are the most widely used salts in LIBs.
A concentration from 0.5 to 1 mol/L produces a conductivity of around 1 mS/cm at room
temperature [11]. The liquid electrolyte decomposes on the surface of the negative electrode
when the potential is less than 1V vs. Li*/Li. This decomposition is responsible for the formation
of a solid multicomponent layer on the surface of the negative electrode, called SEI (solid
electrolyte interphase)[37]. Despites the fact that the SEI formation induces irreversible
consumption of electrons and ions, the formation of the SEl is beneficial in the case of Li-LixCe
for example, as it is stable and prevents further degradation. In order to improve the
characteristics of electrolytes, such as thermal stability, conductivity, etc. additives can be used
such as Lewis base stabilizer additives [38], flame retardant additives, etc. [39]. These may
stabilize the SEI and then increase the performance of the battery.

1.1.2.3. Post-lithium-ion battery technologies
a. Introduction

Although significant progress are made for LIBs through decades of research to achieve
good power and energy density, Li low availability, low abundance and high cost cannot meet
the dramatically increasing demand for electrochemical energy storage for portable electronics
devices and for the growing market of electric or hybrid vehicles. It is therefore necessary to
develop a new technology of batteries offering new prospects for storage capacity, safety, cost
and energy density competitive with fossil fuels such as gasoline. This section provides a brief
overview of the most studied technologies.
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b. Technologies based on lithium metal

To increase the energy density, the use of lithium metal as the anode is still ideal due
to its low potential (-3.04 V vs. SHE) and its high gravimetric capacity (3860 mAh/g) [3].
However, the use of lithium metal leads to safety issues, which include uncontrolled growth of
dendrites, relatively infinite volume expansion, and an unfavorable solid electrolyte interphase
that is caused by the high reactivity of lithium metal. We will detail later the dendritic formation
with the description of non-aqueous lithium-air batteries (Section 1.2.4.1).

In all-solid-state LIB batteries, the presence of a solid electrolyte should solve the
problems of LIB with liquid electrolyte - where flammable solvents are generally used, making
the battery safer. It should also allow to use lithium metal, providing a higher capacity than
liquid-based LIBs. The solid electrolytes can be classified into organic such as polyethylene
oxide [40], and inorganic compounds such as Garnets, NASICON, perovskites, or sulfides [41].
These batteries may provide an energy density up to a range of 300 - 400 Wh/kg. Despite
improvements in safety issues and energy densities, all-solid-state batteries suffer from a high
resistance at the electrodes / solid electrolyte interfaces, hindering fast charging and
discharging and providing low cycle life (~100 cycles). This technology still requires some
developments before eventually being commercialized.

During the last decade, lithium-sulfur (Li-S) and lithium-air/lithium-oxygen (Li-O5)
batteries have attracted attention due to their extremely high theoretical energy density [42]-
[44]. In the case of Li-S batteries, sulfur offers a high theoretical specific capacity of
1675 mAh/g and a high theoretical energy density of 2500 Wh/kg. Moreover, sulfur is an
abundant and low-cost element and - which may drastically decrease the cost of the battery.
Li-S batteries are based on the electrochemical reaction of sulfur with lithium to form the final
product lithium sulfide (Li>S). The working mechanism is very complex and implies 16 electrons;
the reduction of the sulfur is accompanied by the shuttle formation of lithium polysulfides
(Li2Sy). Figure 1-7 shows a typical cycling profile of a Li-S battery with the formation of the
intermediate products.
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Figure I-7 : Classical discharge-charge profile of Li-S battery. Reprinted from [44].
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Many challenges remain for the Li-S battery development [42]. Lithium polysulfide
intermediates LiS« are soluble and can easily diffuse into the aprotic liquid electrolyte, leading
to a rapid capacity loss. Considerable efforts have been devoted to improve cycling
performances by preventing this shuttle mechanism, such as the utilization of solid or polymer
electrolytes as a physical barrier, the encapsulation of sulfur and sulfide in porous materials by
physical adsorption, or the reinforcement of sulfur species by chemical adsorption with metal
oxide additives [45]-[48].

c. Technologies based on other metal cations

Inspired by the development of intercalation LIBs, the community investigated other
alkali-metal, such as sodium-ion batteries and potassium-ion batteries. The sodium-ion
batteries are now close to commercialization. In 2015, the French research network on
electrochemical energy storage (RS2E) developed the first sodium-ion battery in a 18650
industrial prototype [49]. This battery has an energy density of 90 Wh/kg and is able to deliver
its energy at fast charging / discharging rates. Cathode materials with similar structures than
Li-ion application have also been investigated as cathode materials for Na-ion batteries, such
as layered transition metal oxides, P2/P'2 Naz;3sMnO,, polyanionic compounds such as NaFePO4
or NASICON-type NasV2(PO.); [50]. The potassium has a reduction potential lower than the
sodium and is very close to lithium (Table I-2). However, potassium-ion batteries suffer from a
limited choice of electrode materials due to the large ionic radius (1.33 A) and heavy atomic
mass of potassium compared to lithium and sodium. A recent study shows that a Prussian Blue
Kig2 Mn[Fe(CN)sJo.96:0.47H,O cathode exhibits a discharge capacity of 160 mAh/g and
120 mAh/g at 300 mA/g and 2,500 mA/g, respectively, and sustains 130,000 cycles (more than
500days) with negligible capacity loss. Pairing this cathode with a 3,4,910-
perylenetetracarboxylic diimide anode yields a full potassium-ion cell that delivers an energy
density as high as 92 Wh/kg and retains 82.5% of the initial capacity after 6500 cycles at
1500 mA/g [51].

Batteries based on multivalent metal-ions, metal-sulfur, and metal-air are also
investigated. Table I-2 gives some characteristic parameters of some metals. Although the
gravimetric and volumetric capacities obtained with Na, K, Mg, Al, Ca... are lower than with
lithium, these abundant elements benefit from low-cost, decreasing potentially the total cost
of the battery.
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Table I-2 : Characteristic parameters of some metals. Data are collected from [52], [53].

Element Potential  Gravimetric capacity Volumetric cagacity Cost
(V vs. SHE) (mAh/g) (mAh/cm°) ($/kg)
Li -3.0 3861 2062 17.00
Na -2.7 1166 1131 0.15
K -2.9 685 591 0.74
Mg -24 2205 3833 0.28
Al -1.7 2980 8046 0.56
Zn -0.8 820 5887 3.02

The metal-air battery technology attracts attention thanks to its great theoretical
energy density, which is 3 - 30 times higher than commercial LIBs (Table I-3) [54]. Metal-oxygen
batteries consist of a pure metal anode, a cathode that theoretically uses ambient air, and an
electrolyte (aqueous or non-aqueous). The air cathode is exposed to the ambient air using
specifically O to store and convert energy. The working principle is based on the reversible
electrochemical reaction between the metal ions and the O,. Table I-3 compares the theoretical
energy density of some metal-air systems. As these batteries are semi-open cells, it could lead
to significant battery weight reduction. Among these technologies, the Zn-air battery is the
most mature. The first primary Zn-air battery was dated back to 1878 with a porous platinized
carbon air electrode [55]. Primary Zn-air batteries have been commercialized for medical and
telecommunication applications. Commercialization of rechargeable Zn-air batteries has
already begun for grid energy storage systems. The Zn-air batteries are usually filled with a
high concentration of alkaline solutions [56]. During the discharge, the Zn(OH)s* ions are
generated in the solution until its saturation, after which the ZnO will precipitate as the final
product. However, in comparison to their high energy densities, the power output capability is
far from satisfactory due to the inefficiency of air catalysts available. The ZnO that are not
deposited on the Zn anode may cause the battery capacity loss. The Zn(OH)s* could also
migrate to the air cathode and the final coated product ZnO influence the performance of the
air cathode. In order to have a rechargeable system, research on zinc electrodes in Zn-air
batteries has focused on developing a rigid conductive porous network and minimal inactive
material that is self-sufficient in confining the dissolved zincate ions, promoting distribution of
Zn/ZnO deposition.
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Table I-3 : Characteristic parameters of some metal-air batteries [57].

Theoretical energy

Reaction Eo (V vs. M"* /M) density (Whkg)
Li-air 4Li+20;—2Li;0 291 11140
Al-air 4 Al +30;—2Al0; 2.73 8130
Ca-air 2Ca+0,—2Ca0 3.12 4180
Zn-air 27Zn+ 02— 27Zn0O 1.65 1350

I.2. Li-air or Li-O, batteries

Lithium-air batteries have attracted unprecedented attention due to their high
theoretical energy density, which is comparable to gasoline. As already mentioned, the lithium-
air battery provides a theoretical energy density of 11140 Wh/kg based on the mass of lithium
(without considering the mass of gas) [56]. The capacity of lithium-air batteries is generated
from electrochemical reactions between Liions and the O; present in the air atmosphere, which
is thus abundant and “free”. The first lithium-air battery was reported by Jiang and Abraham in
1996 [58]. It consists of a lithium metal anode and a thin conductive carbon composite cathode
with an organic polymer electrolyte membrane. This non-optimized electrochemical cell
showed a good energy density in the range of 250 - 350 Wh/kg (considering the weight of the
electrodes and electrolytes). Although the safety issues related to the lithium metal anode
remain challenging, most of the reported studies are still performed with a lithium metal anode
and generally a porous carbon with a high surface area as cathode, separated by a membrane
soaked with electrolyte.

1.2.1. Principle of Li-O: batteries

During the discharge process, the lithium metal anode releases lithium ions (Li*) into
the electrolyte, while generating an electron flow through the external circuit to the cathode.
In the meantime, O is reduced at the cathode via the oxygen reduction reaction (ORR). The O;
molecules incorporated into the porous electrode are first dissolved into the electrolyte and
then react with Li* at the surface of the cathode. The nature of the discharge products differs
from the type of electrolyte used, as we will discuss in the subsection below. During the charge
process, the reverse reaction of ORR occurs via the oxygen evolution reaction (OER) at the
cathode and the deposition of lithium metal at the anode. While the Li-air batteries ideally
involve Oy, there are other compounds than O; in air. The air consists of 78% N, but it has
been proved that N is electrochemically inert on the cathode whereas the metallic Li reacts
with N2. The generated LizN plays the role of SEl on the anode and is suitable for Li* migration,
but its low electronic conductivity (1072 S/cm) impedes easy electron transfer. Nevertheless,
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the CO; and H,O in air can cause irreversible parasitic reactions in Li-air batteries, leading to a
loss of capacity and a reduced cyclability [59]. Many studies at the laboratory scale are thus
based on the use of pure oxygen to avoid these undesired reactions and the systems are thus
better referred to as Li-O. batteries. Even if both terms Li-air and Li-O; batteries are usually
used in the literature without distinction, it is more accurate to use the term Li-O; batteries
rather than Li-air batteries [54], as studies usually use pure O; at the cathode.

1.2.2. Architecture types

As shown in Figure I-8, Li-O; batteries can be classified into four systems designated by
the nature of the electrolyte: (a) aprotic, (b) aqueous, (c) hybrid i.e. mixed aprotic / aqueous, or
(d) solid-state [60]. In all architectures, the fundamental electrochemical reactions at the anode
are the same, Le. the dissolution / deposition of lithium metal. For the cathode, the discharge
/ charge reactions depend on the electrolyte used, leading to different discharge products such
as LiOH, Li>O; and / or Li;O.

(a) Aprotic (b) Aqueous

Discharge Discharge
|
Lt Eit
Lithium - Aprotic Lithium Aqueous
Metal | Electrolyte Metal Electrolyte
Li metal protection film
(c) Hybrid Discharge (d) Solid-state Discharge
X R
Li* Lit
Lithium | Aprotic [l Aqueous [ Parc Lithium Solid State
Metal | Electrolyte jill Electrolyte (A sl Metal Electrolyte

Li metal protection film

Figure [-8 : Schematic battery configurations for the four types of Li-O; batteries. Reprinted
from [60].
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Aprotic Li-O; batteries — The electrolyte is composed of a lithium salt dissolved in a
non-aqueous organic solvent, similar to the ones used in Li-ion batteries [61]. As the solvent is
often aprotic, this type of battery is also called an aprotic Li-O, battery. The desired
electrochemical reaction in the Li-O; battery with an aprotic electrolyte leads to the formation
of LiO, and also possibly Li.O [61] following Reaction I-3 and Reaction |-4:

0, + 2Lit + 2e” = Li,0, E°=2.96 V vs. Li*/Li Reaction I-3
0, + 4Lit+ 4e” = 2Li,0 E°=2.91 V vs. Li*/Li Reaction I-4

The resulting insulating discharge products Li2O2 / Li.O are insoluble in the aprotic
solvents and deposit on the surface or in the pores of the cathode. The mechanisms of
formation / decomposition of Li.O. / Li.O via the ORR/OER reactions are in fact complex and
can be influenced by many factors such as electrode potential, current density, air cathode
materials, or the nature of electrolyte [62]. Often, a catalyst is required in order to reduce the
activation energy of the sluggish oxygen evolution reaction (OER) and accelerate the
reversibility of Li> O,/ Li»O formation and decomposition reactions [54]. In the following Section
1.2.3, we describe more in detail the main discharge product formation mechanisms.

Aqueous Li-O; batteries — The most common aqueous electrolyte used for the Li-O;
batteries is generally an alkaline solution, although acidic electrolytes can be also used. In
contrast to aprotic electrolytes, the water molecules participate in the electrochemical ORR
(Reaction I-5).

0, + 4Li*t+ 4e” 4+ 2H,0 = 4LIOH E°=3.43 Vs Li*/Li Reaction I-5

The reduction potential of the couple O,/LiOH being even higher than the couple
0,/Li>0; (3.43 V vs. 296V vs. Li*/Li, respectively) [61], the oxidation will thus take place at a
higher potential for the OER reaction with an aqueous electrolyte. As LiOH is formed in the
electrolyte, the capacity is in fact limited by the solubility of LIOH (~5.3 M) [60]. LIOH+H,O
precipitates at the surface of the electrodes and leads to pore clogging once the solubility limit
of LiOH is reached. Compared to flammable organic electrolytes, the use of aqueous electrolyte
appears safer. However, lithium can react vigorously with water. To prevent this reaction, the
lithium anode must be insulated with a ceramic membrane that ensures the exchange of Li*
ions (Figure 1-8 (b)). Bograchev et al. have proposed to use a protective bilayer between the
aqueous electrolyte and the lithium electrode [63]. They used a ceramic glass such as LISICON
(lithium superionic conductor — Lig+x+yALTi>2SiyP3,O12) combined with a LIPON (Lithium
phosphorous oxynitride Li,POyN) coating to prevent reactions between the ceramic glass and
the lithium metal. However, the decomposition of LiOH*H>O during charge requires activation
energy, resulting in a higher charge overpotential. This is accompanied with an important loss
of specific energy compared to the aprotic electrolyte, making the aqueous system less
competitive than the aprotic system [54].
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Hybrid Li-O: batteries — The hybrid architecture combines both aqueous and aprotic
electrolytes (Figure 1-8 (c)). The anode side is filled with an aprotic electrolyte whereas the
cathode is in contact with an aqueous electrode. This arrangement offers a stable behavior of
the Li* ions and Li metal anode in the aprotic organic solvent as well as the high solubility of
the discharge products LIOH in the water-based electrolyte [61].

Solid-state Li-O2 batteries — The electrolyte is here a solid phase. Based on the
development of solid electrolytes for all-solid-state batteries, the electrolyte can be a polymer
(PEO) or an inorganic compound (LISICON) [61]. However, these batteries face the same
problems as the all-solid-state batteries: the low ionic conductivity of the solid electrolyte and
the loss of contact at the interfaces between electrodes and the electrolyte.

Currently, the aprotic Li-O; architecture is dominating the research efforts due to its
sustainable rechargeability compared with the other three architectures. Hereafter, we
concentrate on the aprotic Li-O: architecture. A better understanding of the complex
discharge-charge mechanisms could help improve the corresponding Li-O, battery
performance.

1.2.3. Li2O2> formation mechanisms

1.2.3.1. Surface mechanism vs. solution-mediated mechanism

Jiang and Abraham have first proposed a stepwise reaction mechanism [58]: the O;
molecules incorporated in the cathode are first dissolved in the electrolyte to form a superoxide
05~ , which combines with Li* to form a surface adsorbed LiO(ads) and / or soluble LiOx(sol)
(Reaction I-6 and Reaction I-7). This intermediate product LiO; is thermodynamically unstable
and is quickly transformed to Li>O; (lithium peroxide) via disproportionation (Reaction 1-8) or
by receiving a second electron (Reaction 1-9).

0,+ e~ = 03(so)) Reaction I-6
Lit(sol) + 07(sol) = LiO,(ads/sol) Reaction I-7
LiO,(sol) = Li,0,(solid) + 0, Reaction I-8
2 Li0,(ads) + Lit(sol) + e~ = Li,0, (solid) Reaction I-9

The competition between these two last reactions (Reactions I-6 and I-7) depends on
various factors such as current density, overpotentials, or whether LiO; is soluble in the
electrolyte solution [43]. A suitable electrolyte should present here the following properties:

— High oxygen solubility and diffusivity for the ORR/OER reaction processes.

— High electrochemical stability and resistance to oxygen reduction intermediate species,
such as superoxide radicals 05".

— Good compatibility with the lithium anode, via the formation of a stable SEI film.

— High physicochemical stability, including low volatility to avoid the evaporation of the
solvent, low viscosity to ensure fast kinetics, and high ionic conductivity.
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Chen et al. have investigated the impact of aprotic solvents on the ORR mechanisms in
Li-O2 batteries [61]. As the solvation energy of Li* is higher in high donor number (DN) solvents
(typically DMSO), the ORR intermediate LiO; dissociates to solvated Li* and O3 ions in solution
(Reaction I-10). A solution-mediated mechanism to form directly large Li>O; particles from the
solution is then promoted.

LiO,(ads) = Lit(sol) + 03(sol) + ion pairs + higher agglomerate Reaction I-10

However, in low DN solvents (typically ether), LiO, is adsorbed dominantly on the
surface and transforms to Li,O; directly on the electrode surface, thereby promoting a surface
mechanism (Figure 1-9). High acceptor number (AN) additives, particularly protic ones, are
found to favor large discharge capacities with the formation of big toroidal Li>O; particles [43].
For example, some trace amounts of H,O could increase the solvation of the intermediate
compound LiO, and promotes the solution-mediated mechanism. Water molecule acts as a
proton donor and increase the lifetime of superoxide species thus allowing the formation of
large Li>,O; particles [64]. However, it must be noted that water traces also trigger overpotentials
during the charge of the battery [61], which is a serious issue for a practical system. The use of
redox mediators which can also significantly reduce the overpotentials is an effective strategy
to achieve a more stable reactive oxygen species [54].

Solution mechanism Surface mechanism
Li"tsony + €+ O3 501y = Li"tsaty + 02 sy Li* + €™+ 0, (4 = LiO;*
2(Li" oy + O3 (sony) = Liy0, + O, Li* + LiO,* +e =Li,0,*
2Li% iy + O3 (son + € = Li0, 2Li0,* = Li,0,"* + O,

Strong Li" solvation solvent % Weak Li" solvation solvent

L
W\%e

Cathode surface

.« - . &
Li" oyt O2 oty == LIO;

Figure I-9 : Solution-mediated and surface mechanisms for the formation of Li>O, [64].
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1.2.3.2. Li;O, morphology

The two mechanisms (surface or solution) lead to different morphologies of the
discharge products and thus a difference of capacity. In the surface model, thin-film Li,O; is
deposited on the electrode surface, yielding to a low charge overpotential but a small discharge
capacity. In the solution model, toroidal Li.O, grows on the electrode surface, yielding a large
discharge capacity but a high charge overpotential (Figure 1-10) [65] .

a Pristine Thin film

Surface model + Large discharge capacity
—————————— > + High charge overpotential

Capacity

Figure I-10 : (a) SEM images of the cathode with thin-film and toroidal LiO> morphologies after
full discharge. (b) Schematic of the effect of the typical Li>O> morphologies on battery
performance via different growth models. Reprinted from [65].

The current density plays an important role in the formation of discharge products and
influences the discharge capacity. As shown in Figure I-11 (a), the discharge capacities and the
sizes of Li»O; of the Li,O; toroids decrease with increasing current density [65]. Li.O, toroids
with a relatively good crystallinity can be produced at low current densities, while dominantly
quasi-amorphous thin film are formed at high current densities (Figure 1-11 (b)). Nazar et al.
further propose a mechanism to explain the differences in Li.O, morphology at different
current densities [66]. At low current density, the electron transfer rate is slower than the LiO;
solvation rate, leading to the disproportion to crystalline LiO; while at high current density,
the electron transfer rate is fast, and the LiO; are generated dominantly at high concentration
on the cathode surface, from where they can directly accept the electrons, leading to a film
morphology.

Nevertheless, apart from the current density, the electrolyte formulation implies also
different LiO> morphologies. Figure 1-12 summarizes different Li.O. morphologies generated
with carbon-based electrodes in aprotic systems. Besides small thin toroids (100-200 nm in
size) [68], Thompson et al. [69] have observed the growth of toroids as large as near 1 um in
diameter with increasing depth-of-discharge. Other Li;O, morphologies, such as needles,
crescents, or pseudo-spheres, are observed on carbon electrodes in ether Li-O; systems (Figure
I-12) [69], [67], [70]-[73].

- 08 -



Chapter | - State of the art

(a)

capacity decreases

(b) |

-

0.1 mAcm=

02mAcm? 05 mA

discharge-product morphology

cm?  1.0mAcm*?

Intensity (a.u.)

500 nm

I * Carbon
r
-
g |
~ !
L
1 - _/}L 100 pAjem’®
A - y L\ 50 phlem’
1 \ 25 ,-Ncm'
10 pAom’
Pristine Cathode

20 (degrees)

Figure I-11 : (a) Schematic of the discharge capacity and Li:O> morphology with increasing
current density. (b) XRD patterns after full discharge at the corresponding current rates. All the
peaks, with the exception of carbon arising from the gas diffusion electrode, could be indexed to
Li>O,. The inset displays a close-up of the (1 0 0) and (1 0 1) reflections. (c) Proposed ORR
mechanism as a function of the current density. Reprinted from [67].
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Figure I-12 : Overview of several discharge product morphologies of Li-O; batteries reported in

literature [67] [47-51].
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1.2.3.3. Properties of the electrolytes in Li-air batteries

The mechanisms of formation / decomposition of Li,O, via the ORR / OER reactions are
complex. Many factors contribute to the discharge/charge mechanism involved in the Li-O;
batteries. As mentioned above, low current densities favor the solution-mediated formation of
Li>O, due to the low electron transfer. And the surface mechanism for Li,O, formation is
involved at high current densities as the adsorbed LiO, species receive electrons directly from
the surface.

a. Solvent

The nature of the solvent in Li-O; is critical and influences the reaction mechanisms, the
reversibility of the systems, and it also influences the discharge capacity [57]. The viscosity,
polarity and basicity are the main physical properties of solvent which impact the discharge
mechanism of the Li-O; battery. At first, a low solvent viscosity facilitates O, gas transport,
favoring both the ORR kinetics and discharge capacity [74]. Secondly, the solvent polarity of
the solvent is also an important factor. On one hand, it should enable the facile dissolution of
Li-containing salts; on the other hand, low polarity is more suitable to ensure the electrolyte
wettability on the hydrophobic carbon-based air electrode. As already mentioned in section
[.2.3.1, another important parameter is the Lewis basicity of the solvents, measured by the
GuUtmann donor number (DN) [54]. It impacts the solubility and the dissociation of lithium
superoxide LiO; and thus governs the two competitive mechanisms for the formation of Li;O5.
Table I-4 gives some physical parameters of usual solvents for Li-O; batteries.

The early studies on Li - O batteries used the conventional Li-ion batteries electrolytes
based on carbonate solvents. However, carbonates are not suitable for aprotic Li-O, batteries
and were quickly abandoned due to their instability in the presence of reduced oxygen species.
Carbonated-based solvents decompose irreversibly at the cathode to form side products such
as LiCOs, C3Hg (OCO,Li), or CHsCO: Li with little or no evidence of Li.O, formation [61].

Overall, almost all the solvents are subject to decomposition under the oxidative
environment in Li-O; batteries. The decomposition of solvent can occur following different
reactions (i) nucleophilic attack, (i{) acid / base reaction, (iii) auto-oxidation, (iv) proton-
mediated reactions, and (v) reduction at the lithium anode [57]. These parasitic reactions
consume oxygen and lead to the formation of undesirable products, which can be deposited
onto the surface of the electrodes, reducing in the end the efficiency of the battery. As shown
in Figure 1-13, carbonate-, sulfoxide-, and amide-based electrolytes are susceptible to
nucleophilic attack by the superoxide. Through acid / base chemistry, dimethyl sulfoxide
(DMSO) can be easily deprotonated by superoxide and peroxide, leading to the decomposition
of the solvent and the generation of parasitic byproducts [76]. In contrast, special attention is
given to ethers, including dimethoxyethane (DME) and tetraethylene glycol dimethyl ether
(TEGDME), which are proven to be more stable during operation and Li,O, formation [43].
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Table I-4 : Key parameters of some solvents used in metal-O; batteries [75]. The acronyms are
specified in Section Glossary.

Solvent EC DEC DMSO DMF DME TEGDME
Category carbonate  carbonate  sulfoxide amide ether ether
Mol
olar mass 88.06 118.13 7813 7309 4607 22228
(g/mol)
Viscosit
iscosity 1.90 0.75 1.95 0.92 0.46 4.05
(cP)
Dipol t
potar momen 4.61 0.96 3.96 386 1.71 2.60
(debye)
Acceptor number 193 16.0 102 117
AN) . . . .
D b
onor number ) 16.0 29.8 26.6 20.0 16.6
(DN)
Li* conductivity 211 116 0.30
(mS/cm) ' ' |
O: solubility 21 957 4.43
(mM/cm?) ' ' '
‘ o (d @)
React i e i ‘ (s
eac |ve§;<gcgizz O (i @) (l)_lonz(y @) O, O, OH O, (aw)
Nucleophilic o D . 0.
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Figure 1-13 : Decomposition pathways of the solvents and related reactive O species. Reprinted
from [617].
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b. Salt anions

The solubility of lithium salts in aprotic solvents primarily depends on the solvation of
the Li* cations by the solvent molecules, while interactions between the Li* and other high AN
species (such as anions) are also observed to play an important role in LiO; solubility and the
ORR mechanism. It is interesting to note that Li.O. formation mechanism in aprotic solvents
depends primarily on the solvation of Li* rather than the species (O,") actually formed on
reduction. In other words, O, radicals can be stabilized indirectly by the anions of lithium salts
that can strongly associate with Li* ions and decrease their acidity or reactivity [77].

The stability of lithium salts plays an important role in the cyclability and capacity of Li—
O, cells especially in the presence of reduced oxygen species [78], but has not been
systematically investigated in rechargeable Li-O, batteries. Ehrenberg et al. have investigated
the stability of LiPFs and LiClO4 [79]. The formation of LiF is observed by XPS once LiPFs is in
contact with the lithium peroxide Li-Oz while the salt LiClO4 is more stable. Amine et al. have
investigated the stability of the most common salts such as LiPFs and LiTFSI (LICoNO4FeS,)
dissolved in various solvents [80]. They show that the stability of the electrolyte depends on
the compatibility of lithium salt with solvent. Table -5 compares the advantages and
disadvantages of lithium salts used in Li-O; batteries [77].

Table I-5 : Comparison of common Li salts used in Li-O: batteries [77].

Li salt Advantages Inconveniences
. Conductivity .
LiClO, - Explosive
Stability

. Thermal stability o
LiTFSI ) - Conductivity
Electrochemical stability

. . Thermal instability
LiPFs Conductivity

HF formation in the presence of H,O trace

1.2.4. Challenges of Li-O: batteries

As early mentioned in Section 1.2.1, the exploration of Li-O, batteries is still at its early
stage. There are some critical barriers for the practical application of Li-O; batteries. Figure |-14
gives an overview of some general challenges of Li-O, batteries [81]. They concern both the
anode, such as the safety issue related to the dendrite formation and high reactivity of lithium
metal through parasitic reactions, and the electrolyte with the reactivity with oxygen species,
including singlet oxygen. In terms of performance, there are still many problems that need to
be solved, including low capacity, poor rate-capability, low round-trip efficiency (large voltage
gaps between discharging and charging) of the ORR/OER, and short cycle life. However, these
later issues are more or less related to the cathode side, as will be described below.
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Figure I-14 : Major challenges of Li-O; batteries. Reprinted from [81].

1.2.4.1. Safety issues of lithium metal

As mentioned earlier, the problem of the lithium metal anode is not specific to Li-O;
batteries but general for Li metal-based batteries. Lithium is very reactive and forms
spontaneously a passivation layer in contact with organic electrolytes [82]. During the
discharge process, Li* - generated from the oxidation of the lithium anode - fissures the SElI
before dissolving into the electrolyte (Figure 1-15). During the charge process, the reverse
reaction occurs: lithium metal is redeposited onto the surface of the electrode (lithium plating),
leading to a non-homogeneous SEI layer. The uncontrolled growth of lithium dendrites leads
to the formation of non-active lithium ("dead lithium”) which causes irreversible capacity loss.
Moreover, the dendrites formed upon cycling may break through the separator which can
cause internal short-circuits and lead to explosion hazards [83].

Li dendrites

L+ L+ L Bead L

1 \ \
1

\ K Li\."

P Li
$ Plating Stripping
=, =

Figure 1-15 : Dendrite formation observed on a lithium metal anode during the
charge-discharge processes of a lithium-metal battery. Reprinted from [83].
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In order to overcome the above challenges concerning formation, researchers have
investigated different approaches [3]. The first consists of coating lithium metal with an ionic-
conductive ceramic protection layer (LISICON), like for the aqueous Li-O; batteries. This layer
also protects lithium from atmospheric contaminants such as H,O or CO,. Another possibility
is to optimize the electrolyte formulation by changing the composition (solid electrolyte, mix
of various solvents), by increasing the salt content, or by adding additives that stabilize the SEI
(fluoroethylene carbonate (FEC), lithium nitrate, etc.). Another strategy is to create a stable
artificial SEl by using a polymer electrolyte such as polyethylene oxide (PEO). These electrolytes
should be able to block the dendrite formation through their solid polymer matrix while
maintaining a good ionic conductivity. Still at the laboratory scale, the use of lithium metal
anode leads to a massive excess of lithium. Consequently, its degradation can occur without
limiting the capacity and does not strongly affect the study of others components such as the
electrolyte or the air cathode.

1.2.4.2. Active singlet oxygen intermediate formation

The fundamental understanding of the complex mechanisms in non-aqueous Li-O;
batteries is essential for the further development of these batteries. Recent studies have
investigated the active singlet oxygen intermediate by operando electron paramagnetic
resonance spectroscopy [84]-[86] and suggested its role in electrolyte and cathode
decomposition in Li-O, batteries. Freunberger et al. have given concrete substance to this
hypothesis [87]. They showed that producing singlet oxygen in typical ether-based electrolytes
leads to the same decomposition products as observed in actual Li-O, batteries (Li carbonate,
Li formate, and Li acetate). They achieved the measurement of singlet oxygen concentration
produced in Li-O; batteries indirectly via an operando fluorescence probe of a chemical trap
(dimethylanthracene), which reacts rapidly with the singlet oxygen. They found that singlet
oxygen is produced both during discharge and at the onset of charge. The singlet oxygen
content increases substantially upon charging, as the potential rises or with added trace H,O
to the electrolyte. This behavior matches the rate of parasitic chemistry occurring in Li-O>
batteries [88]. Parasitic reactions can be estimated by coupling the quantification of Li>O;
formation / decomposition to the O, consumption / evolution [89]. This is illustrated in Figure
[-16, where the regions shaded yellow represent the difference between the amount of O,
consumed or evolved and the amount of LiO, produced or consumed during discharge or
charge, respectively. This difference could be due in large part to parasitic chemistry caused by
singlet oxygen. The researchers suggested that the formation of active singlet oxygen in Li-O>
batteries is the dominant source of the parasitic reactions observed [88]. They also showed
that, by using a high concentration of singlet oxygen quenchers (1,4-diazabicyclo[2.2.2]octane),
the parasitic reactions in Li-O; batteries can be effectively reduced.
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Figure I-16 : (@) Number of moles of O> consumed (nO, blue) and of Li»O, formed (nLi>O, red)
during a 1T mAh Li-O, discharge. The ideal line for two electrons per O, consumed is
indistinguishable from the blue points. (b) Number of moles of O, evolved (nO;, blue) and Li;0;
consumed (nLi>;O;, red) during recharge of the battery above. The ideal line for 2e~ consumption
reflects the total charging current. The region in yellow for both discharge and charge reflects the
parasitic contribution that could arise from singlet oxygen. The region in blue on charge is due
to parasitic oxidation of species unrelated to Li>:O; and therefore presumably not related to singlet
oxygen formation. Reprinted from [89].

1.2.4.3. Air cathode challenges

The drawback of Li-O; batteries is mainly the sluggish oxygen reduction reaction (ORR)
and oxygen evolution reaction (OER) kinetics and the slow mass transport on the cathode [54].
Hence, many researchers devoted their works to finding new cathodes where the ORR / OER
takes place and where the discharge products are hosted. The cathode must possess a high
electronic conductivity to facilitate the electron transfer for the electrochemical reactions, and
high porosity to 1) facilitate the O, gas and Li* diffusions and 2) store mainly the insoluble
lithium peroxide Li>O; [3]. The O, electrons and Li* ions in the electrolyte solution meet at
triple-phase boundaries where discharge product are generated [59]. The cathode material
itself must be stable towards the active intermediate species (superoxide, singlet oxygen) and
the final product Li,O,. Many works focus on the optimization of the cathode materials, tuning
the morphology, surface structure and pore distribution [90], [91]. The air cathode materials
are generally composed of catalysts, conductive carbon and binders (polyvinylidene fluoride
PVDF, polytetrafluoroethylene PTFE, etc.) loaded on a current collector (steel mesh, Ni foam,

carbon paper, etc.). In general, the mass loading of active material on the cathode is about 1
mg/cm? [92], [93].
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At first, an essential criterion of air cathode is the catalytic activity for ORR and/or OER,
which plays an important role in reducing overpotentials in both ORR / OER reactions. The high
overpotential () is mainly due to the sluggish decomposition of Li»O, during the OER reaction
[94]. Figure 1-17 illustrates a typical discharge-charge profile of a Li-O; cell, where the
overpotentials in both charge and discharge (Ncharge and Mdischarge) are depicted. These high
overpotentials in turn could cause electrolyte decomposition, and consequently, the cell’s life
may be diminished with low energy efficiency. Ideally, the cathode material should help
decrease the overpotential values. The use of intrinsic catalyst on the cathode or a redox
mediator may improve the ORR and / or OER kinetics by reducing the overpotential.

\_

Ncharge Large overpotentizm
&ischarge ‘

Potential (V)

Capacity (mAh/g)
Figure I-17 : Discharge-charge profile of Li-O; battery.

The second critical point of the cathode is the porosity. As aforementioned, aside from
the O, and Li* ions diffusion, the porosity of the cathode material ensures also the battery
capacity via the storage of generated Li,O, products. Open micropores and mesopores are
favorable for improved discharge capacity. Studies have shown that the pore size impacts the
discharge capacity [95], [96], and the mesoporous electrodes are more effective in the pore
volume utilization than micropores electrodes [97]. Additionally, even for the electrodes with
micropores, the open pores can promote O, diffusion [98].

The wettability of the electrode is an additional important parameter that influences
the discharge capacity in the Li-O; battery. Li and Wang have demonstrated that the wettability
of the electrode is highly related to the nature of the binder in the electrode. The lyophilicity
favors the wettability of the electrode by the aprotic solvent while the lyophobicity favors a fast
O, diffusion. The generally used PVDF binder is lyophilic while the PTFE is lyophobic [99].
Carbon electrodes with the same content of binder deliver a discharge capacity of 1666 mAh/g
and 4161 mAh/g for 15 % PVDF (36.5°C) and 15 % PTFE respectively. As a consequence, the
number of triple points for the ORR / OER might be impacted by the difference in the electrode
wettability, thereby influencing the Li-O, battery performances.
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1.2.5. Air cathode development

Air cathode materials in Li-O; batteries can be divided into two groups: carbon-based
materials and carbon-free materials. We selected some typical reports on each kind of cathode
material and introduce them in this section. However, the electrodes described in the literature
hardly ensure full reversibility, and their cyclability is still poor.

1.2.5.1. Carbon-based materials

Owning excellent electrical conductivity, high surface area and possible catalytic activity,
carbon materials have been widely used as air cathodes for Li-O; batteries with impressive
capacities. Especially, tailoring pore size could enhance the battery performance [95], [100],
[101].

Commercially available carbons, such as Super P, Vulcan XC-72, Ketjenblack, and carbon
nanotubes (CNTs) are largely used as conductive additives or materials in cathode in Li-O;
batteries. Table I-6 reports discharge capacities of various carbon materials [100]. Although
activated carbon has a high surface area, this material exhibits the lowest discharge capacity.
In contrast, carbon Super P shows a high specific capacity while it possesses a low surface area.
The high capacity can be explained by the large pore diameter inside this carbon. Upon
discharge, lithium oxide products accumulate inside the pore during the ORR reaction.
However, they also deposit on the surface of the air cathode, blocking thus the access to the
pores (Figure I-18). As Li»O; particles are electrical insulators, their accumulation on the cathode
interferes also on further electron transport [101].

Table I-6 : Discharge capacity for various carbon materials at 50 mA/g [100].

Carbon materials Discharge  capacity Surface area Pore diameter
(mAh/g) (m?/g) (nm)

Super P 1736 62 50

Vulcan XC-72 762 250 2

Activated carbon 414 2100 2

Carbon nanotubes 583 40 10

Mesocellular carbon foam 2500 824 30
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Figure I-18 : Accommodation of lithium oxides in various-sized pores of carbon materials.
Reprinted from [101].

Liu et al. have demonstrated that the increase of carbon pore size from 20 nm to 80
nm, increases the discharge capacity from 3343 mAh/g to over 7000 mAh/g (Figure 1-19) [95].
The slightly smaller discharge capacity at the pore size of 100 nm suggests that, for sufficiently
large pore size (when the access to the surface inside pores and the blockage of Li>O; are
unlikely issues), the BET surface area could play a role where a larger surface area enables a
higher capacity (859 cm?/g vs. 823 cm?/g). A physical model is proposed by the authors to
illustrate the influence of the carbon pore size on cell capacity, in which a monolayer of Li>O>
with a thickness of 7.8 nm forms inside the carbon pores during the discharge process.
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Figure 1-19 : Physical models of Li>O> stored in porous carbon: line a represents that all carbon
pores are fully filled by Li>Oz line b assumes the formation of a monolayer of Li>O; (with a
thickness of 7.8 nm) inside carbon pores; line c is the experimental data. Reprinted from [95].
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Despite the evidence of large capacities achieved with carbon electrodes, many studies
have demonstrated that these carbon materials suffer from irreversible surface decomposition
under the oxidative environment in the Li-O, batteries. Moreover, carbon materials are
unstable in Li-O; batteries at high charging overpotentials [54], [65]. As aforementioned, the
intermediate oxygen radical product O3 is reactive, it could also attack the carbon cathode to
generate side products. An early study has proved the presence of a thin layer of LioCOs at both
carbon / Li>O; and Li>O: / electrolyte interfaces since the onset of the charge process [54]. As
shown in Figure 1-20, the deposit may also contain some carbonate dispersed in the Li>O;
deposit due to an electrochemical reaction with the electrolyte during discharge (point A).
During charging, the Li>O, layer also becomes partially covered by carbonate (Li.COs; and
LIRCO:3) through the electrochemical reaction of Li.O; with the electrolyte, and by accumulation
at the surface of any dispersed carbonate formed in discharge that does not oxidize at low
voltage (point B). As charging continues, the surface becomes fully covered by carbonate (point
C). Because of the ever-smaller fraction of LiO, at the surface during charging, the
overpotential for OER must continuously increase to maintain a constant galvanostatic charge
rate until at high voltage. However, this rising potential is unfavorable for electrochemical
stability of the electrolyte and for the round-trip efficiency.
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Figure 1-20 : Electrochemical impedance behavior of Li:O, formation and decomposition
processes at various stages of charge, A-C. A substantial increase in polarization resistance occurs
toward the end of the discharge, whereas at the beginning of the charging, this polarization
resistance decreases compared to that at the end of the prior discharge. Reprinted from [54].

Generally speaking, the carbon porous materials exhibit good performance in the ORR
reaction owing to its good electrical conductivity but high charge overpotentials in the OER,
where electrolyte decomposition may occur [54], [57]. The use of catalysts is thus required to
reduce the charge potential to avoid this issue so as to increase the cycle life of the cells.
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1.2.5.2. Carbon-free materials

Alternatively, carbon-free materials have also been a research topic for the cathode in
Li-O; batteries, such as noble metals, their oxides, and transition metal-based materials [102].
These metal-based materials usually show good catalytic activity for the ORR/OER reactions.

Noble metals are important catalysts for ORR and OER applications [102]. Up to now,
many studies have reported the superiority of noble metals and their oxides including Au, Ru,
Pt, Pd [102]-[104]. For instance, nanoporous Au cathodes achieve a capacity of 320 mAh/g
(equivalent to 3000 mAh/g of carbon) and retain 95% of their capacity after 100 cycles. The
kinetic of charge is 10-fold higher in the case of Au cathode than carbon cathode. In addition,
the Au cathodes reduce the charge overpotential below 4.0 V vs. Li*/Li. Other noble metals
including Pt, Pd, Ru, and their oxides are also promising for both ORR and OER electrocatalysts
in Li-O; batteries [105], [106]. Although admirable achievements have been made by using
noble metals to reduce the overpotentials of Li-O; batteries, their high costs make themselves
unsuitable for practical applications.

To replace the expensive noble metals, many researchers have chosen the cheap
transition metal-based materials as the cathode of Li-O. batteries, such as metal carbides /
oxides. For instance, compared to the carbon electrode, Zhou and coworkers have reported
significant OER catalytic activity of a Li-O; battery using Ruthenium/Indium Tin Oxide (Ru/ITO)
as air cathode. The ITO electrode has very limited discharge capacity and cannot be recharged.
Upon adding Ru nanoparticles into ITO electrode, the charge potential of Ru/ITO is significantly
lower by 600 mV vs. Li*/Li compared with the corresponding Super P carbon electrode [107].
Besides, Liu's group prepared the vacancy-bearing CoO (CoO-A) and vacancy-free CoO (CoO-
N). They found a synergetic effect of CoO and oxygen vacancies that can significantly reduce
the overpotential by about 0.4 V vs. Li*/Li and achieves much better cycling stability (Figure
[-21) [108]. The authors demonstrated that oxygen vacancies can facilitate the electronic
conductivity and Li* migration as well as serve as active sites for O, and Li>O,. The CoO-A shows
an initial capacity of 3421 mAh/g. After 8 cycles, still 72 % of the capacity is retained. Upon
cycling with a cut-off capacity of 1000 mAh/g, the coulombic efficiency of CoO-A maintains
nearly 100 % during the first 25 cycles, while the coulombic efficiency of CoO-N is much lower
than the CoO-A and unstable.
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Figure I-21 : (a) The full discharge-charge profiles of CoO-A. (b) The first limited discharge—charge
curves, and (c) the coulombic efficiency of CoO-A and CoO-N based cathodes with a cut-off
capacity of 1000 mAh/g. The applied current densities are 200 mA/g [108].

Alternatively, manganese oxides have been studied intensively as air cathodes for Li-O;
batteries due to their robust OER and ORR performances [109], [110]. MnO; crystallizes in
various structures including three tunnel structures (a-, B-, y-MnO>) and a layered structure (-
MnQO;). The addition of MnO; nanoparticles in carbon electrodes significantly increases the
discharge capacity and the reduced discharge and charge overpotentials compared to bare
carbon electrodes [111]. Figure I-22 shows the charge-discharge profile of Li-O, batteries with
different MnO; cathodes as well as a KB carbon electrode. Both a-MnO; and 6-MnO; electrodes
exhibit similar discharge (2.7 V vs. Li*/Li) and charge potentials (3.9 V vs. Li*/Li) [111]. The
smaller overpotentials observed for MnO, demonstrate the better catalytic activity of MnO>
compared to KB carbon. The a-MnO:; electrode delivers a maximum discharge capacity of 6126
mAh/g which is more than 2000 mAh/g higher than 6-MnO: electrode, and 3-fold higher than
the carbon KB electrode. The a-MnO: electrode promotes also a high charge capacity with 100
% coulombic efficiency [111].
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Figure I-22 : Charge-discharge profiles of a- and >-MnO; nanomaterials. Reprinted from [111].

There are still various other transition metal oxides such as Cos04, NiO, Fe3Os, Mn304
that have been studied as air cathode with efficient catalytic activity. Besides, some binary
transition metals can provide better catalytic capacity than a single one [101].

However, the bulk transition metals / metal oxides particles suffer from particle
aggregation and may decrease their active sites exposed to the air. The particle dispersion
control of these compounds is key to their better catalytic performance in Li-O; batteries.

1.2.6. Reproducibility issue

The data reproducibility of Li-O; batteries is a big challenge in the community but it is
not often reported or even discussed. In most reports, a single cycle is presented and
reproducibility is not discussed. We give below the only few examples found in the literature.

Firstly, as shown in Figure I-23, a large discrepancy in both the discharge capacities and
the overpotentials has been observed for cycled Li-O, batteries, even for homogenous
electrode films [67], [112]. For example, a difference of discharge capacity close to 2000 mAh/g
could be observed for two similar carbon-loaded DPB60 electrodes at a low rate of 50 pA.
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Figure 1-23 : (a) First discharge curves in Li-O; battery for carbon-based DBP60 electrodes at 50
UA [112]. (b) Dependence of potential on specific capacity for carbon-based Li-O; cells discharged
at 0.1 mA/cm?. Vertical solid lines show the average discharge capacity; vertical dashed lines
indicate its standard deviation [67].
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Besides, Read et al. revealed that the electrolyte volume is a critical parameter for
obtaining reproducible results [113]. As shown in Figure I-24, the volume of the electrolyte
influence the capacity : excess or small amount of electrolyte lead to a decrease of the capacity.
With suitable volume electrolyte, the best capacity is obtained for the electrolyte-filling
cathode while still having sufficient pores for the O, diffusion.
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Figure I-24 : First discharge curves of three Li-O; cells with different electrolyte-filling statuses,
recorded at 0.2 mA/cm? (1) With insufficient electrolyte, (2) with excess electrolyte, (3) with
appropriate amount of electrolyte [113].

Overall, the largest discharge/charge capacities are often reached at the first full cycling
(around several thousand mAh/g). As a consequence of reproducibility issue from full cycling,
researches are usually cycling the Li-O; batteries with a cut-off capacity in order to increase the
battery cyclability, for example 1000 mAh/g, which is still larger than that of Li-ion batteries.
However, the true capacities depend on initial porosity and thus the discharge product-to-
electrolyte ratio, the limited-capacity regimes are believed unsuitable to demonstrate the large
reversible capacities for many cycles in the batteries [114].

1.3. Metal-Organic Frameworks

1.3.1. Definition

Metal-Organic Frameworks (MOFs) constitute a class of crystalline porous materials
built up from inorganic and organic groups connected through covalent bonds to form
multidimensional structures. As shown in Figure 1-25, the inorganic moieties (also called
Secondary Building Units — SBU) can be composed of metal ions or metallic clusters (dimer,
trimer,...), chains, layers, or 3D-networks and define the dimensionalities of the sub-network
[115]. The organic linker has generally one or more aromatic rings to provide a certain rigidity
to the structure and at least two complexing functions to create self-assembly. The most
popular organic ligand is based on carboxylate groups, such as benzene-1,4-dicarboxylic acid
(BDC) or benzene-1,3,5-tricarboxylic acid (BTC). Others groups such as phosphonate, sulfonate,
or imidazole are also being used [116], [117]. The combination of various metal centers and
the wide variety of organic ligands available offers a large range of compositions and
structures, leading to multiple applications.

-43 -



Chapter | - State of the art

N A
Sy

0D MOF-5 1D MiIL-53 2D MmiL-71 3D MmiL-73

(COED (o o

Figure 1-25 : Examples of MOFs with different dimensionalities of the inorganic sub-network and
their schematic representations (green: inorganic entities and blue organic linker). Reprinted from
[1715].

The term MOF was used for the first time by Li and Yaghi in 1995 [118]. However, other
groups have chosen to identify their own materials using a short acronym related to the name
of the institute or university where the new materials were synthetized, such as MIL for
Materials Institute Lavoisier or HKUST for Hong-Kong University of Science and Technology.
Sometimes, only the chemical formula is used to identify new materials. In 2013, the IUPAC
(International Union of Pure and Applied Chemistry) defined the term MOF as a coordination
network with organic ligands containing potential voids [119].

Depending on the size of the cavities or pores, porous materials can be classified as
microporous (pore diameter < 2 nm), mesoporous (pore diameter in the range 2-50 nm), or
macroporous (pore diameter > 50 nm) materials [120]. MOFs materials are often microporous
or mesoporous materials. They exhibit a high specific surface exceeding by far other porous
materials such as zeolites or activated carbon [121]. To our knowledge, the highest record of
BET surface area (7839 m?/g) was reported by the group of Kaskel in 2018 [122]. However, this
ambiguous value corresponds to the BET estimated from different linear regions.

- 44 -



Chapter | - State of the art

As shown in Figure 1-26, Kitagawa and coworkers have proposed a classification of
porous solids (MOFs included) into three categories depending on their responses to guest
molecules (gases, solvent molecules, drug, etc.) present inside the pores [123]:

— The 1°' generation: materials have microporous frameworks but show irreversible
framework collapse or removal of guest molecules;

— The 2" generation: materials have robust and rigid porous frameworks and retain their
crystallinity with any guest molecules in the pores;

— The 3" generation: materials have flexible and dynamic porous frameworks, leading to
a reversible structural transformation under external stimuli such as temperature,
presence of guest molecules.

1%t generation

2" generation

3" generation

Figure I-26 : Schematic representation of the three generations of porous materials. Reprinted
from [123].

1.3.2. Isoreticular chemistry and functionalization

To date, over 90 000 MOF materials have been synthetized [124]. Several approaches
are developed to design new structures by replacing the original ligands with an organic ligand
with different sizes or eventually functionalized, which increases the pore size while keeping
the same inorganic network. Figure 1-27 highlights the effects of increasing the length of the
organic linker or introducing a functionalization on the pore volume. The IRMOF (isoreticular
MOFs) series were reported by Yaghi and coworkers [125]. All IRMOFs have the cubic topology
of the MOF-5 (also called IRMOF-1) in which an oxide-centered Zn4O tetrahedron is edge-
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bridged by six carboxylates (from organic linker) to form a 3D cubic structure. These structures
differ in the nature of the functional groups decorating the pores and in the metrics of their
pore structures. The pore size can be incrementally varied from 3.8 A to 28.8 A [125]. The
functional groups that point towards the pore can affect the free pore size and thus properties
such as polarity, hydrophobicity, adsorption property, flexibility, etc. [125]-[127]. Depending on
the synthesis conditions (concentration of reactants, temperature, or other experimental
conditions), a non-interpenetrated network can be obtained. The structure corresponds to two
identical and independent network units thus forming a solid with different properties from
the initial non-interpenetrating network solid. Although this formation is sometimes unwilling
and is considered as a limit of isoreticular chemistry, it improves in certain cases the gas
adsorption or selectivity properties (such as hydrogen, carbon dioxide, methane adsorptions),
due to the pore volume reduction and the strengthening of the structure weakened during the
departure of adsorbed solvent molecules. Besides, the extension of the linker length may
generate interpenetration frameworks leading to less porous materials as expected [128].

Figure I-27 : Structures of the IRMOF series. The number beside the structure corresponds to the
name of the IRMOF-n. Blue: Zn, red: O, black: C, large yellow sphere: accessible pore based on
the van der Waals sphere. When an interpenetrated structure is observed (n=9, 11, 13, and 15),
no pore volume is available. Reprinted from [128].
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1.3.3. Well-known MOFs

1.3.3.1. Rigid solids

Frameworks constructed with carboxylate group represent the large majority of MOFs.
Among these materials, several MOFs are well known for their excellent thermal and chemical
stabilities. We report here only the most studied MOFs that show good stability and remarkable
properties.

In 1999, Williams et al described firstly the structure of the solid HKUST-1 or
Cus(H20)3(BTC)2 [129] This compound is also called MOF-199 or Cu-BTC. It is composed of
benzene-1,3,5-tricarboxylate (BTC) ligands coordinated by copper ions leading to a three-
dimensional cubic structure, exhibiting large square-shaped pores of 9x9 A? (Figure 1-28). The
copper is square-based pyramidal, with the axial positions being occupied by the other copper
cations and a water molecule. These water molecules can be eliminated by simple heating,
which promotes the creation of unsaturated metal centers necessary for physisorption. The
solid has thus exceptional properties for gas sorption [130], [131]. The structure remains stable
upon solvent sorption / desorption [132]. The solid achieves a BET surface area of 692.2 m?/g.

SBU b

paddle-wheel
[

HKUST-1 = Cu,(H,0),(BTC),

Figure I-28 : View of the SBU with Cu linked via the organic linker used and representation of the
cubic structure of HKUST-1. Guest molecules have been removed for sake of clarity.

In the same year, Yaghi et al. reported the synthesis and the structure of MOF-5 or
Zn,O(BDC)s, also known as IRMOF-1 [133]. Its three-dimensional cubic structure results from
the connection of metal cluster Zn,O by benzene-1,4-dicarboxylic acid (BDC) (Figure 1-29). The
metal cluster Zn,O is built from four tetrahedrons ZnO, sharing a common oxygen atom, while
the other oxygen atoms come from the carboxylate groups. It exhibits a high surface area of
2900 m?/g with a pore diameter of ca. 12 A. The structure remains crystalline and stable when
fully desolvated or heated up to 300°C [133]. Since 1999, the solid is largely studied for its
various applications such as gas storage [134], [135], catalysis [136], luminescence [137],
electrochemistry [138], [139] etc. As illustrated in Section 1.3.2, MOF-5 is the first of a series of
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isoreticular MOFs sharing the same cubic topology. It is possible to modify its properties by
increasing the organic ligand length or by decorating the pore volume.

SBU
tetramer BDC

MOF-5 = Zn,0(BDC),

Figure I-29 : View of the SBU Zn linked via the organic linker used and representation of the cubic
structure of MOF-5. Guest molecules have been omitted for sake of clarity.

Another crystallographic structure is obtained by replacing the benzene-1,4-
dicarboxylic acid (BDC) with 2,5-dihydroxybenzene-1,4-dicarboxylic acid (DHBDC) [140]. The
MOF-74 structure is based on coordinated carboxyl and hydroxyl groups. Helical Zn-O-C rods
of composition [0,Zn;](CO,), are constructed from 6-coordinated Zn(ll) centers (Figure 1-30).
In addition, two hydroxyl groups are bound as doubly bridging. The structure exhibits 1D
hexagonal channels, where free water molecules can be located. The group of Yaghi has
reported the synthesis of an isoreticular series of M-MOF-74 with other metals (M=Mg, Co, Nj,
Mn, etc.) [141]. Due to the presence of open metal sites, the M-MOF-74 are largely studied for
gas adsorption, and as separator and catalyst [142].

&
&F G

+ @103/\@@ @
G P

SBU 2,5-dihydroxy-BDC L 4% @
Helical Rods DHBDC

MOF-74 = Zn,(H,0),(DHBDC)

Figure [-30 : View of the SBU with Zn linked via the organic linker used and representation of the
hexagonal structure of MOF-74. Guest molecules have been omitted for sake of clarity.
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In the same period, the MIL-100 and MIL-101 solids with hybrid giant pores have been
synthesized [143], [144]. Both solids crystallize in a three-dimensional cubic structure based on
the connection of several super tetrahedrons (Figure 1-31). These inorganic moieties are built
up of inorganic trimers that consist of three chromium atoms in an octahedral environment
with four oxygen atoms coming from the dicarboxylate groups (BTC and BDC for MIL-100 and
MIL-101, respectively), sharing one common oxygen atom and the last oxygen atom comes
from the terminal water. The super tetrahedrons are microporous and the resulting framework
delimits two types of mesoporous cages with internal free diameters of 25 A / 29 A for MIL-
100 and 29 A / 34 A for MIL-101. The large windows of both cages give access to very large
molecules. The smaller cages exhibit pentagonal windows with a free opening of 12 A and a
hexagonal window of 14.7 - 16 A. These solids have giant cell volumes (380 000 and 702 000
A%) and exhibit high surface areas of 3100 m?/g and 5900 m?*qg for
MIL-100 and MIL-101 respectively. These solids are hence largely studied for their remarkable
sorption properties. Especially the iron-based MIL-100 and MIL-101 show the advantages of
being non-toxic and biocompatible carriers for the vectorization of drugs [145], [146].

MiL-101

MIL-100 = Cr;F(H,0),(BTC), “

MIL-10025 A MIL-100 29 A
MIL-101 29 A MIL-101 34 A

Bogole Bg%
”:& - ‘\/&;\ f? - e ?§
5. u*
B o
MIL-1004.8 x 5.8 A? MIL-100 8.6 x 8.6 A?
MIL-10112x 12 A MIL-10114.7 x 16 A

Figure I-31 : View of the SBU with Cr linked via the organic linker used and representation of the
cubic structure of MIL-101. Guest molecules have been omitted for sake of clarity. Only the super
tetrahedron of MIL-100(Cr) is shown.
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A decade ago, Lillerud et al. have synthesized the zirconium-based MOF solid UiO-66
[147]. This compound consists of ZrsO4(OH)4 hexamers coordinated with the dicarboxylate
groups of BDC. Each ZrsO4(OH). cluster is bridged with twelve BDC linkers, resulting in a face-
centered cubic lattice. The framework features two types of cages: one is tetrahedral with a free
diameter of 7 A through trigonal windows and the other is octahedral with a free diameter of
9 A (Figure 1-32) [148]. The UiO-66 has a pore volume of 0.77 cm?/g and a BET surface area of
1160 m?/g [149]. The framework is stable until about 450°C. UiO-66 is the pioneer of Zr-based
MOFs. Since the discovery of UiO-66, more than 40 analogues have been synthesized with
functionalized BDC linkers or other organic linkers [150]. For example, among the isoreticular
solids of UiO-66, the UiO-67 uses the 4,4'biphenyl-dicarboxylate (BPDC) ligand, leading to a
cage size up to 16 A and a surface area of 3000 m?/g. Another isoreticular solid is the UiO-68
which uses the terphenyl-dicarboxylate (TPDC) ligand. This linker having a longer phenyl length
than BDC and BPDC allows a larger cage size of 25.6 A and a higher surface area of 4170 m%/g
for UiO-68 [149]. Due to their stability in water, these Zr-based solids are largely studied
towards water purification and hydrolysis [149].

SBU
hexamer

Super octahedron

Figure I-32 : View of the SBU with Zr linked via the organic linker used and representation of the
cubic structure of UiO-66. Guest molecules have been removed for sake of clarity.

1.3.3.2. Flexible solids

As defined by Kitagawa et al. [123], the third generation of MOFs is flexible: a reversible
structural transformation occurs under external stimuli. These stimuli can be guest molecules
adsorption / desorption [151], temperature [152], mechanical stress [153] or pressure [154].
The modification of the structure leads to drastic changes in its physical and chemical
properties.
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Flexibility generally depends upon metal nodes, the flexibility of ligands, and the
connections between metal and ligands. It results from coordinative bonding / interactions
between inorganic and organic components. The flexibility can be explained by different
modes of transformation [154]. The flexibility can result from (i) breathing, (i) swelling, (iii)
linker rotation, and (iv) subnetwork displacement. Each mode is illustrated as below by an
adequate example of MOF reported in the literature (Figure 1-33).
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Figure 1-33 : Schematic of the different modes of flexibility in porous materials. Reprinted
from [154].

The breathing mode involves a reversible variation of the unit cell volume
accompanied by a structural transformation. The well-known MIL-53 family illustrates these
breathing transitions. MIL-53(Cr) is the first reported solid [155] whose structure is formed of
unidimensional chains of corner-sharing CrO4(OH). octahedra linked by benzene-1,4-
dicarboxylate (BDC) ligands, which results in linear lozenge-shaped channels being large
enough to accommodate small guest molecules (Figure 1-34). A volume change up to 40%
without loss of crystallinity is observed when the MIL-53(Cr) is dehydrated at 300°C and thus
suggests fully open pores evolved. MIL-53(Cr)_HT (fully dehydrated) and MIL-53(Cr)_LT (fully
hydrated) exhibit surface areas of 1500 m?/g and 1150 m?%/g, respectively. Since then,
isoreticular solids with a wide variety of metal cations (Al, Fe, Ga) and functional ligands have
been investigated [156]. We will see in Chapter Ill that the breathing behaviors depend on the
metal cation. In contrast to MIL-53(Cr), the pores of MIL-53(Fe) are fully open in the presence
of free water molecules.
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Figure I-34 : Representation of the breathing mode in the structure of MIL-53(Cr). View of the
pore system upon hydration/dehydration.

The swelling mode is characterized by an enlargement of the MOF unit cell along with
a change in the unit cell shape while maintaining the space group. The most representative
material is MIL-88, which exhibits a large flexible behavior resulting from pore size change
during solvation and desolvation (Figure I-35). Several isoreticular solids have been synthesized
using various metals (Fe, Cr) and / or organic dicarboxylate linkers (fumaric acid, benzene-1,4-
dicarboxylic acid, naphthalene-2,6-dicarboxylic acid...). The hexagonal structure consists of
trimeric inorganic species (three octahedra sharing one oxygen atom) linked by dicarboxylic
ligands. Upon immersion in solvents, a variation of the cell volume from 85% to 270% can be
observed depending on the nature of the metal cation and organic moieties [157]-[159]. These
systems are mostly studied for their adsorption properties [160] or drug delivery [161].

Stimuli
temperature

+ guest molecules 15.48 A

MIL-88B(Cr)_HT
CrOF(OH)(BDC),
Hexagonal P-62¢(n°190)
V=1524 A3

trimer

MIL-88B(Cr)_EtOH
CrOF(OH)(BDC),.7H,0.27C,H;OH
Hexagonal P-62¢(n°190)
V=3341 A3

Figure 1-35 : Representation of the swelling mode in the structure of MIL-88B(Cr). View of the
pore system upon solvation, the blue spheres correspond to the solvent guests (here water and

ethanol molecules).
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The subnetwork displacement without changing in volume occurs generally in
interpenetrated or interdigitated frameworks. Figure I-36 shows the example of InOF-23 (or
[In(HL)2]Cl+4H,O with H.L = 6-(4-carboxyphenyl) nicotinic acid) [161]. The orthorhombic
structure can be simplified and described as a three-dimensional uninodal four-connected
topological network. However, the indium atoms are in 8-coordinated geometry to give a
tetrahedral four-connected node.
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Figure I-36 : Representation of the structure of InOF-23 before and after adsorption of gases (N,
Ar, COy). Reprinted from [161].

The linker rotation mode or gate opening behavior is described as a transition where
the linker can rotate around a certain axis without phase transitions to change the pore
configuration. The gate opening of the ZIF-8 solid (zeolitic imidazolate framework) under N>
adsorption is observed using inelastic neutron scattering (Figure 1-37) [162]. The structure is
isomorphic of zeolite compounds and is composed of zinc tetrahedrons connected by
methylimidazolate linkers.

Stimuli
N, pressure

Figure 1-37 : Representation of the structure of ZIF-8, view of the linker reorientation observed
under N adsorption. Reprinted from [162].
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1.3.4. Overview of MOF applications

1.3.4.1. Generalities

MOFs have been investigated for numerous potential applications such as gas storage
and separation processes, drug storage and delivery, sensors, catalysis, or energy [163]-[168].
The number of published articles involving the keyword "MOF” has increased with an
exponential trend. MOF has also gained continuous interest in the field of energy since the last
decade (Figure 1-38). In addition to direct utilization of pristine MOF, MOFs have also been
used to generateMOF composites or MOF derivatives or for energy applications. MOFs have
been used as sacrificial templates for the synthesis of porous carbons / metal oxides. MOF
derivatives thus benefit from the high electrical conductivities, hierarchical porous structure,
and well-distributed catalysts. Besides, MOF composites are prepared by combining one MOF
and one or more distinct constituent materials, including other MOFs, with properties
noticeably differing from those of the individual components. They combine the advantages
of both MOFs (flexibility, high porosity with ordered crystalline pores) and various kinds of
functional materials (with electrical, magnetic, and catalytic properties). It can lead to
composites with new physical and chemical properties and enhance performances that cannot
be reached by the individual components [169].
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Figure I-38 : (@) Schemattic representation of some MOF applications. (b) Number of publications
with the keywords “MOF" and “MOF and energy" for the period 2000-2020 (data source: Web of
Science).

- 54 -



Chapter | - State of the art

1.3.4.2. MOFs for energy applications

Recently, MOFs have attracted many interests as electrocatalysts for the oxygen
reduction reaction (ORR) and the oxygen evolution reaction (OER) [170], [171]. The ORR and
OER are essential half-cell reactions to achieve energy storage and conversion through the
transformation between chemical energy and electrical energy in many O;-related energy
devices, such as fuel cells and rechargeable metal-O, batteries, especially rechargeable Li-O;
batteries.

a. Fuel cell

In a typical H>-O; fuel cell (FC), H. molecules are electrochemically oxidized via the
hydrogen oxidation reaction at the anode, while the O, are reduced to receive electrons
through the oxygen reduction reaction (ORR) at the cathode. A four-electron transfer
mechanism is involved as shown in Reaction I-11 and Reaction I-12 (the standard potential E°
is reported in the reference to the standard hydrogen electrode (SHE) [171]:

2H, = 4HY + 4e” E° =0V vs. SHE Reaction I-11
0,+ 4H*+ 4e” = 2H,0 E° = 1.23 Vvs. SHE Reaction I-12

Compared to the fast kinetics of hydrogen oxidation reaction, the kinetics of ORR is six
times lower, leading to a high overpotential and a low energy efficiency in the H,-O, fuel cells
[172]. Therefore, efficient electrocatalysts for ORR are highly required.

The possibility of using pristine MOFs as ORR electrocatalysts for fuel cells (FC) is firstly
investigated by Mao et al. [173]. In this study, two organic linkers are used to coordinate Cu?*
ions in Cu-bipy-BTC solid. The benzene-1,3,5-tricarboxylate (BTC) acts as the main linker while
the 2,2'-bipyridine (bipy) serves as the auxiliary linker, which stabilizes the framework through
stronger interaction of two linkers with the Cu®* ions compared to the single-linker based Cu-
BTC. The Cu-bipy-BTC is electrochemically active with one pair of redox waves at the formal
potential of ca. -0.1 V vs. Ag/AgCl in the acid electrolyte, assigned to the redox process of
Cu®*/Cu®. When used in an O,-containing electrolyte, the Cu-bipy-BTC shows an obvious
oxygen reduction peak during the CV scanning (Figure 1-39). Moreover, the Cu-bipy-BTC
electrode leads to a large positive shift of oxidation potential (ca. 0.4 V vs. Ag/AgCl) compared
with the bare glassy carbon electrode, which reveals Cu-bipy-BTC is an efficient ORR catalyst.
The Cu-bipy-BTC FC produces a power density of 126 mW/m?, which is 5.4 times higher than
the electrocatalyst-free FC but much lower than noble Pt FC [174].
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Figure 1-39 : (a) Coordination geometry of Cu atoms in Cu-bipy-BTC. (b) CVs of Cu-bipy-BTC-
modified GC electrodes in 0.1 M phosphate buffer solution (pH 6.0) saturated with N; (dotted
curve) or Oz (solid curve). Scan rate = 20 mV/s. Reprinted from [173].

Yin and co-workers have developed the BTC-based MOF(Fe) [175] as well as its
bimetallic form MOF(Fe/Co) as ORR electrocatalysts in alkaline electrolyte [176]. Both these
solids have high surface areas, good crystalline structures with micropores. The MOF(Fe)
exhibits a good ORR activity with a current density of -0.93 mA/cm? at — 0.3 V vs. Ag/AgCl. The
addition of Co into the MOF(Fe) enables MOF(Fe/Co) to enhance the ORR activity with an
increased current density of -1.19 mA/cm? at the same potential. In comparison, a bare SP
carbon electrode has a low ORR activity with a current density of only -0.08 mA/cm? at the
same potential. It is found that the presence of both Fe and Co in MOF(Fe/Co) enhances the
OER activity compared to the MOF(Fe) (Table I-7). The authors [176] attributed the good
ORR/OER activities to the fast O, diffusion and the utilization of unsaturated metal sites as
catalytic sites in MOF(Fe/Co), as a consequence of its high surface area and the microporous
structure.

Table I-7 : Overview of MOF(Fe) and MOF(Fe/Co) ORR/OER catalytic activity [175], [176].

Active Surface area Average pore ORR activity OER activity

material (m?/g) size (nm)

-0.93 mA/cm?at 2.3 mA/cm?at 0.9
MOF(Fe) 1600 1-2 ~03Vvs. Ag/AgCl  V vs. Ag/AgCl
-1.19 mA/cm? at 2.97 mA/cm?at 0.9
MOF(Fe/Co) 1070 <2 ~0.3Vvs. Ag/AgCl  V vs. Ag/AgC]
<p ] ] -0.08 mA/cm? at 0.03 mA/cm?at0.9
-0.3 Vvs. Ag/AgCl  Vvs. Ag/AgCl
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Moreover, Dinca et al. have systematically investigated the charge conductive 2D
Niz(HITP), (with HITP = 2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as a ORR electrocatalyst [177].
This layered material has a high BET surface area of 630 m?/g along with a good electrical
conductivity of 40 S/cm. Under the O, atmosphere, Niz(HITP), reduces oxygen with an onset
potential of 0.8V vs. RHE (Figure 1-40). The measured ORR onset potential is competitive with
the most active non-Pt group metal ORR electrocatalysts reported so far and sits at an
overpotential of 0.18 V vs. RHE relative to Pt. Nis(HITP), retains 88 % of the initial current over
8 h electrochemical cycling. This study shows that the real electrocatalytic active site is not the
Ni center but the organic linker HITP. A similar study has been reported by Bao et al. [178] for
Ni-HAB (with HAB = hexaaminobenzene), where the organic linker HAB serves as active site
and the Ni** ions help to modulate the linker sites’ binding strength. These researches
enlighten that not only the metal node but also the organic linker could be potential
electrocatalytic sites for the oxygen reduction reaction.
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Figure 1-40 : (a) View of the 2D layered structure of Ni3(HITP).. (b) Polarization curves of
Ni3(HITP); and the blank glassy carbon electrode under N vs. O» atmosphere. Reprinted from
[177], [179].

b. Li-ion battery

The MOFs and their derivatives have been also extensively studied for Li-ion battery
applications. However, the pristine MOFs suffer generally from poor conductivity leading to
poor cycling performance. MOF composites and MOF-derived metal oxide / carbon materials
boost the research for Li-ion batteries.

In 2006, MOF-177 was first investigated as an anode material for Li-ion batteries [180].
Unfortunately, the sample exhibits an irreversible capacity loss at the first cycle and the MOF
structure is destroyed after the first cycle (Figure 1-41 (a-c)). However, this example shows that
the porous framework of MOFs may be used for lithium insertion. In 2007, Tarascon et al. have
investigated the electrochemical performance of MIL-53(Fe) as cathode material [181]. The
authors show that lithium ions are inserted into the pores of MIL-53, leading to a reduction of
Fe®* to Fe** (formation of LiyFellFell, (OH),sF, » (BDC)). A reversible capacity of 75 mAh/g was
obtained (corresponding to the insertion of 0.6 moles of lithium per mole of iron) (Figure I-41
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(d)). Meng and co-workers have investigated the possible insertion of lithium in MIL-101(Fe)
[169]. The cathode can accommodate a similar amount of Li as MIL-53 (0.62 Li*/Fe upon initial
lithiation). However the oxidation of Fe** to Fe®* is irreversible, leading to a rapid loss of
capacity (0.37 Li/Fe at the 5™ charge-discharge cycle) (Figure I-41 (e)). The most promising
material in which the conversion-reaction mechanism is reversible is the formate Zn3(HCOOQ)s,
which exhibits a reversible capacity of 560 mAh/g (Figure I1-41 (f)) [182].
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Figure I-41 : (a) Discharge—charge profiles of the microcubic MOF-177 anode (solid lines) at a
current density of 50 mA/g. The TEM images of corresponding anode (b) before and (c) after 1
discharge [180]. (d) Discharge-charge profiles of the MIL-53(Fe) (inset) cathode at a current rate
of C/40 [181]. (e) Discharge-charge performances of the MIL-101(Fe) (inset) cathode at a curren
rate of C/40 [169]. () Capacity vs. cycle number plot under the current density of 60 mA/g [182].

MOF-based materials have been also explored for sodium-ion batteries (SIBs) and
potassium-ion batteries (PIBs). While the radius of Li* ion (0.76 A) is small enough to have
suitable mobility, the larger radii of Na* (1.06 A) and K* ions (1.38 A) require thus a more open
framework through which they could be inserted / extracted reversibly with acceptable mobility
[183]. The BDC-based MIL-125(Ti) possesses a pore diameter ca. 1.6 nm, which is beneficial to
the facile ion insertion and removal during the cycling process. The PIB based on the MIL-
125(Ti) cathode exhibits an initial discharge capacity of 260 mAh/h at and a coulombic
efficiency of 58.9% at current rate of 10 mA/g. Since the subsequent cycles, a coulombic
efficiency close to 100% is maintained by MIL-125(Ti). Even after 2000 cycles at a high current
density of 200 mA/g, there is almost no capacity loss, corresponding to a capacity retention of
90 %, which demonstrates its excellent cycling stability. In another study, a cobalt BDC-based
layered MOF (L-Co,(OH)>BDC) has been tested as anode for a PIB, delivering a large capacity
of 742 mAh/g at 50 mA/g. Even at 1 A/g, a capacity of 188 mAh/g can be achieved with almost
100% coulombic efficiency after 600 cycles [184]. However, compared to the LIBs, the research
on the SIBs and PIBs are still limited due to the critical pore size requirement of large
monovalent ionic radii.
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Alternatively, MOF derivatives have been applied for increasing the capacity and rate
performance of lithium-ion battery applications. For example, porous Zn,Cos3xOs4 material
processed in a hollow structure allows a discharge capacity of 990 mAh/g after 50 cycles [185].
The sandwich-structured RGO'/ZnC0,04-Zn0O-C/Ni electrode could reach a discharge capacity
of 1184 mAh/g [186]. Even better performances are achieved by using MOF-derived metal
oxide. The a -Fe;O3 produced by pyrolysis of Fe-MOF presents a reversible capacity of
1024 mAh/g [187]. Table -8 summarizes the mentioned MOF derivatives’ electrochemical
performances in LIBs.

Table I-8 : Overview of MOF derivatives electrochemical performances in LIBs.

MOF derivatives Potential Initial Reversible Initial
window (V discharge capacity CE/cycled
vs. Li*/Li) capacity (mAh/g) CE (%)
(mAh/g)
1272 990
ZnyCo3.404 0.01-3 762 %/ - [203]
@ 100 mA/g @ 100 mA/g
- 930.3 1184 71.7 % / 99.1
RGO/ZnC0294 0.01-3 o/ [204]
ZnO-C/Ni @ 0.1 A/g @0.1A/g @150 cycles
- 1487 1024 68.8 % /97 %
a-Fe:0; 0.005-3 o/ s 1205]
nanospinel @ 100 mA/g @ 100 mAh/g @ 40 cycles

c. Li-S battery

Porous MOFs are also promising as cathode material for lithium-sulfur (Li-S) batteries.
The Li-S system is also considered as one of the next-generation battery to its high theoretical
capacity and energy density. One of the challenges in the development of the Li-S batteries is
the irreversible energy loss due to the formation of soluble polysulfides in the reduction
process of sulfur, and the poor electrical conductivity of sulfur.

Xiao et al. immobilized sulfur into the highly porous Ni-MOF based Nis(BTB)4(BP)3 (with
BTB = benzene-1,3,5-tribenzoate and BP = 4,4'-bipyridyl) [188]. This framework provides two
types of pore (with a free diameter of 13.8 A and 27.6 A, respectively) along with an impressive
BET surface area of 5243 m?/g. At a low current rate of 0.1 C (168 mA/g), the Ni-MOF/S
composite offers high-capacity retention of 89% after 100 cycles. The hierarchical porous
structure of Ni-MOF and strong interactions between Ni metals and intermediate soluble
polysulfides prevent their migrations out of the pores, thus leading to a high capacity retention
of Ni-MOF/S composite. However, the insulating nature of MOFs and sulfur as well as the low
content of carbon in the electrode (10 wt. %) results in a weak utilization of sulfur and a weak

' RGO = reduced graphene oxide
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rate performance (Figure 1-42). Similar studies have also been investigated with other MOF
composites, such as MIL-100(Cr)/S [189], MIL-101(Cr)/S [190], [191], S/MIL-53(Al),
S/NHz-MIL-53(Al), and S/ZIF-8 [192].

(=]
(=]
(=]

Ni-MOF/S
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g

Specific capacity (mAh g™)
o

—4—05C

0 25 50 75 100 125 150 175 200
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Figure 1-42 : Crystal structure of Nis(BTB)4(BP)s, the corresponding cycling performance of
Ni-MOF/S composite electrode at 0.1 C, 0.2 C, and 0.5 C current rates in a voltage range of
1.5 -3.0 V vs. Li*/Li and schematic illustration of the interaction between polysulfides and Ni-
MOF. With 1.0 C =1685 mA/g. Reprinted from [188].

To tackle the poor electrical conductivity issue of pristine MOFs in Li-S batteries, an
alternative investigation is to synthesize MOF-derived carbon material. Two MOF-derived
carbons with different morphology have been synthesized from Cu-based MOF precursors
[193]. The cross-liking hierarchical porous carbon fiber CHPCF is prepared from the Cu-BTC
fiber precursor (Figure 1-43), while the HKC with octahedral morphology is prepared from
Cus(BTC),, also known as HKUST-1. Both MOF-derivative carbons exhibit high BET surface areas
and large pore volumes (HKC: 1623 m?/g, 1.13 cm?/g; CHPCF: 1906 m?%/g, 1.35 m?%/q). After
sulfur impregnation, it is noteworthy that the S/CHPCF composite provides more abundant
micro-pores than S/HKC composite that help confining the diffusion of intermediate
polysulfides. As a consequence, the S/CHPCF composite electrode provides a higher initial
discharge capacity than S/HKC (1336 mAh/g vs. 1181 mAh/g at 1.0 C). Besides, after 100 cycles,
the S/CHPCEF still retains a discharge capacity of 904 mAh/g, which is 68 % of its initial discharge
capacity and is 1.5-fold than that of S/HKC (599 mAh/qg). The improved capacity and cyclability
of S/CHPCF highlights the importance of hierarchical pore structure of MOF-derived materials
for both the polysulfides confinement and Li* migration.
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Figure 1-43 : (a) Synthesis procedure of S/CHPCF composite (STEM image with sulfur mapping)
from the 1D Cu-BTC fibers (SEM image) via the intermediate fibrous CHPCF (TEM image). (b)
Cycling performance of S/HKC and S/CHPCF electrodes in a LiNOs-free electrolyte. (c) Charge-
discharge cycling of the S/CHPCF electrode at 5.0 C in the 1%, 50", 100", 200", and 500" cycles
with electrolyte LiNO;z addition [193].

1.3.4.3. MOF for Li-O; battery applications

As we showed in Section 1.3.1, metal-organic frameworks and their derivatives materials
have a wide range of surface areas and different structures, they have gained interest in the
field of energy, in particular as catalysts for ORR/OER reactions [172]. As cathode materials of
the Li-O; battery application, MOFs may provide a host network for the mass transportation
(diffusion of Li* ions and O;), accommodate the discharge products (such as Li,O,), and act as
catalyst thanks to the open metal sites in the structure.

a. Pristine MOFs

Only few groups have reported the studies of pristine bulk MOFs as air cathode of Li-
O: batteries [92], [194], [195]. At first, the group of Li has investigated five MOFs as air cathode
material: MOF-5, HKUST-1, and M-MOF-74 (M=Mg, Mn, Co) [92]. The structures of these solids
are described in Section 1.3.3. They provide high surface areas in a wide range from 1213 to
3622 m?/g. A maximum initial discharge capacity of 9420 mAh/g is achieved with the Mn-MOF-
74 electrode, which is more than four times higher than the corresponding Super P carbon
electrode without MOF (Figure 1-44 (a)). Their discharge performance is directly assigned to the
O: enrichment of these MOF solids . The unsaturated metal coordination center could provide
binding sites for O, thus increasing the amount of O, available for discharge in the Li-O;
battery. As a result, despite MOF-5 exhibiting the highest surface area, both HKUST-1 and
M-MOF-74, which are lined with open metal sites, show better O, uptakes, explaining the
superior discharge capacities than the coordination-saturated MOF-5.
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While the first discharge capacity is remarkable, significant discharge and charge
capacity decays and electrode polarization are observed along with cycling. The Mn-MOF-74
retains a discharge capacity of ca. 1300 mAh/g after six full cycles at a high current of 200 mA/g
(Figure 1-44 (c)) [92]. The reversibility of Li-O, battery with Mn-MOF-74 might be impacted by
the possible electrolyte decomposition; on the other hand, parasitic reactions might also affect
electrode performance by diminishing the available porosity. However, an extended cyclability
performance is achieved over 30 cycles with a cut-off capacity of 1000 mAh/g at a high current
rate of 250 mA/g (Figure 1-44 (b)). Besides, all the structures of these materials are still
preserved after cycling. It is important to note that, while the first discharge capacities are
impressive, the group of Li revealed only the first discharge capacities of all these MOFs. They
showed only the cycling behavior along few cycles for Mn-MOF-74, while the cyclability data
of the other MOFs are not provided nor discussed. Additionally, the MOF content in the
electrode is quite low with 40wt. % of MOF and 40 wt. of carbon.
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Figure 1-44 : (a) Discharge profiles of Li-O: batteries with MOF-Super P composite electrodes or
pure Super P cathodes. (b) Discharge-charge cycling response of the Mn-MOF-74 based battery
with a capacity limited to 1000 mAh/g. Current: 250 mA/g. (c) Discharge-charge cycling response
of the Mn-MOF-74 based battery. Current: 200 mA/qg. Reprinted from [92].

The same group has also studied the electrochemical properties of Co-MOF-74 with
distinct sizes and morphologies (homogeneous rod-shaped crystals with a width of ~1400 nm,
nanorods with a width of ~1200 nm, and nanofibers with an average diameter of 20 nm) [196].
Downsizing the MOFs particles improve the electrochemistry performance. Figure 1-45 (a)
shows the first discharge curves of the different electrodes Co-MOF-n (with n = 1400, 800, and
20, n indicates the average length of the particle) in Li-O, batteries and the associated
morphologies. Co-MOF-74-20 achieves a maximum notable discharge capacity of 11350
mAh/g. The deviation of the potential of 0.85 V vs. Li*/Li is much lower than the conventional
value of 1.5 V from the carbon electrode. The capacity of the Li-O. cell decays rapidly with an
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increase in the polarization (Figure 1-45 (b)), similar to previous works [92]. The cycling stability
of the Co-MOF-74-20 based Li-O; cell was also evaluated with a fixed capacity of 1000 mAh/g
at a current density of 250 mA/g (Figure 1-45 (c)). The discharge profiles of the first 8 cycles
illustrate that the cell can operate efficiently with slightly lower voltage. A recent study reveals
that a higher percentage of exposed metal sites on the surface of these nanocrystals might be
responsible for the enhanced electrocatalytic behaviors comparted to the bulk MOF [197].
However, the mass loading of Co-MOF-74 and Super P is 0.6 mg/cm?, which is too low for MOF
structure stability confirmation with XRD after cycling.
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Figure I-45 : (a) Discharge profiles of Li-O: batteries with MOF-Super P composite electrodes or
pure Super P cathodes at a current density of 100 mA/g. (b) Cycling response of the
Co-MOF-74-20 based battery at a current of 500 mA/g. (c) The cycling performance of the
Co-MOF-74-20 based Li-O: cell under a specific capacity limit of 1000 mAh/g at a current density
of 250 mA/g. (d) SEM images of Co-MOF-74 (Co-MOF-74-1400 in olive green, Co-MOF-74-800
in red, and Co-MOF-74-20 in blue). Reprinted from [196].

Another group has studied the Ni-MOF (Ni(4,4'-bipy)(H3sBTC) with 4-4'-bipy = 4-
4'bipyridine and H3BTC = benzene-1,3,5-tricarboxylic acid) [194]. The framework is constructed
with two types of ligands of H3BTC and 4,4'-bipy as well as Ni?* centers. The honeycomb grid
layers constructed by Ni** and H3BTC are linked by 4,4'-bipy pillars to form a 3D structure
(Figure 1-46 (a)). This framework shows a high BET surface of 1225 m?/g and a bimodal pore-
size distribution centered at ~ 7 and ~ 11 A, which is believed to be large enough for the
transfer of O, (3.46 A) and Li* electrolyte. Moreover, the Ni-MOF presents open metal sites,
which favor the O, adsorption and enhance catalytic activities in Li-O batteries. As shown in
Figure 1-46 (b), the Ni-MOF cathode exhibits either higher ORR (2.84 V vs. Li*/Li) potential or
lower OER (3.84 V vs. Li*/Li) potential than corresponding potentials of pure VC-72 carbon
electrode. Besides, a high discharge capacity of 9000 mAh/g is achieved with Ni-MOF at a low
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rate of 0.12 mA/cm?®. With a cut-off capacity of 600 mA/g, the Li-O, battery with Ni-MOF
electrode could maintain a capacity of 478 mAh/g over 170 cycles at a rate of 0.6 mA/cm? A
preliminary attempt for a plastic rechargeable Li-O; battery with Ni-MOF electrode delivers
also an energy density of 537 Wh/kg at the 1% cycle and 239 Wh/kg at the 7™ cycle.
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Figure 1-46 : (a) Crystal structures of Ni-MOFs along the c-axis. (b) Cyclic voltammetry curves at
20 mV/s on rotating disk electrode. (c) Discharge—charge curves of Li-O; batteries (c) with a fixed
capacity of 600 mAh/g at 0.6 mA/cm? and (d) cycling curves of a plastic Li-O; battery at 0.6
mA/cm? Reprinted from [194].

The studies reported above show that the combination of pristine porous MOF and
carbon as cathode can produce high discharge capacity. Specifically, the presence of open
metal sites in the framework enhances significantly the electrochemical behaviors compared
to the electrode without MOF in the Li-Oz batteries. However, the pristine MOFs suffer from
poor electronic conductivities, which could limit the capacities and increase polarization over
cycling.
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b. MOF derivatives and MOF composites

When pristine MOFs are used as sacrificial templates, metal-doped carbons or metal
oxides can be generated by thermal treatment due to the collapse of coordination bonds and
the carbonization of organic linkers. Since the low electrical conductivity of pristine MOFs and
low kinetics of OER are detrimental factors for Li-O. batteries, the conversion from MOFs to
MOF derivatives is an effective way to improve the electrical conductivities and catalytic
activities while partially preserving the porous structures and active contents from MOF
precursors.

Wu's group was the first to report nitrogen-iron graphene/graphene tube composite
(N-Fe-MOF) derived from Co-MOFs containing dicyandiamide and Fe acetate (Figure 1-47 (a))
[198]. The BET surface area changes from only 10 m?/g to 449 m?/g after the 1000°C pyrolysis
of Co-MOF, as a result of the decomposition of N-C bonding and formation of porous carbon
material. The authors proposed that the formation of FesC promotes the growth of graphene
tubes, while N-doping leads to the activation of adjacent carbon atoms and coordination with
iron (Fe-N,) which generates more active sites for O, binding and dissociation of O-O bonds.
In addition, this composite favors the decomposition of Li;O, and thus improves the OER
catalytic performance. Compared with other derivatives prepared under different temperatures
as well as other control samples including carbon black, Pt/C, and MOF-free N-Fe, the
optimized N-Fe-MOF shows the best result with an onset potential around 3.2V vs. Li*/Li in
the non-aqueous electrolyte (0.1 mol/L LiPF¢ in tetramethylene glycol dimethyl ether) (Figure
[-47(b)). Besides, the discharge capacity of N-Fe-MOF (~5300 mAh/qg) is superior to other
catalysts and it also shows a higher average voltage plateau at 50 mA/g. Moreover, the N-Fe-
MOF-based cathode keeps stable discharge capacity for 16 cycles and exhibited 27% capacity
loss at a high current density of 400 mA/g until the 50th cycle (Figure 1-47(b-c). The
accumulated insoluble LiO, may block the catalyst sites and O, transfer channels in the
electrodes, thereby leading to the observed degradation.

Tan and co-workers [199] published a biphasic nitrogen dopants N-doping
Co@graphene derived from Co(mim), (with mim = 2-methylimidazole) as the cathode catalyst
for Li-O batteries. The carbonization of this Co-MOF at 900°C leads to the formation of
multiple core-shell nanocapsules, which are connected with each other through carbon
networks (Figure I-47 (d)). This derived catalyst exhibits a BET surface area of 780 m?/g with
an average pore size of 22 nm. During the thermal treatment, parts of nitrogen atoms from
organic linkers are doped in the graphene shell, which creates defective sites, while some other
nitrogen atoms take part in the association with cobalt atoms to form CoN. Both are the active
sites for catalyzing redox reactions, while the multiple-nanocapsule heterostructure is the key
to achieving a uniform distribution of those active sites, which leads to an initial discharge
capacity of 3.63 mAh/cm? at 0.1 mA/cm? while maintaining a relatively stable performance in
30 cycles.
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Figure I-47 : MOF-derived carbon catalysts for Li-O; batteries. Graphene/graphene tubes derived
from Fe-modified Co-MOF (N-Fe-MOF) (a) schematic illustration of N-Fe-MOF formation; (b) the
discharge profile of the N-Fe-MOF at the current density of 50 mA/g in comparison with those of
5% Pt/C, carbon black, and the controlled sample without MOF (N-Fe); (c) the discharge
performance of N-Fe-MOF up to 50 cycles at the current density of 400mA/qg. N-doped

Co@graphene derived from Co-MOF (BND-Co@G-MSH): (d) an illustration of synthesis

procedure; (e) its discharge performance in 30 cycles at the current density of 0.1TmAcm™

Reprinted from [198], [199].

Transition metals oxides are well known as effective electrocatalysts for ORR and OER.
Using MOFs as precursors to generate these oxides can lead to homogeneous distribution of
catalytic sites, benefiting from the structural periodic arrangement of metal centers and organic
linkers. Among all transition metals, cobalt has been largely studied [200]. Recently, Lyu et al.
have reported the hierarchical 3D printed-nitrogen carbon-Co framework (denoted as 3DP-
NC-Co) by calcinating the Co-MOF precursor [201]. This material displays a high discharge
capacity of 1124 mAh/g. Moreover, the 3DP-NC-Co presents a lower overpotential and longer
cycle ability than NC-Co/carbon paper electrode at a limited capacity of 1 mAh. The self-
standing framework benefits not only from the intrinsic catalytic site and good electrical
conductivity but also from the mechanical stability. This study provides new insight into the
self-standing hierarchical porous architecture and electrode manufacturing method in
developing advanced battery systems. Finally, we can mention the hierarchical nanocages of
Zn0O/ZnFez04 derived from Fe-MOF-5. They present discharge capacity over 11000 mAh/g at
300 mA/g and showed a stable reversibility of 15 cycles with a limited capacity of 5000 mAh/g
[202]. In brief, the hierarchical porous material enbedded with catalytic sites favors the efficient
deposition of Li,O, particles to enhance the discharge capacity and also facilitates the
decomposition of insulating Li2O2, due to the confinement and the presence of catalyst within
the hierarchical pores.
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.4. Conclusion

Up to now, the lithium-ion battery still holds a prominent place in the battery field since
its first commercialization in 1991. This achievement could not have been possible without
continuous improvements towards high-capacity electrodes and suitable electrolytes.
Although its energy densities are still improving and its cycle life exceeds thousands of cycles,
its specific capacity and energy density seem to reach their limits and will be insufficient in the
long-term.

Among the “post lithium-ion” technologies, lithium-air batteries are the object of
growing interest nowadays, owing to the high theoretical energy storage density of Li-O,
systems compared to other technologies. However, the technology remains at the laboratory
research stage for two decades due to the difficulty to master the chemistry and to find stable
compounds under its oxidative environment. Numerous scientific and technical challenges
must be overcome: capacity fading during cycling, electrolyte instability or large discharge and
charge overpotentials, etc.

One of the challenges for the development of Li-O; batteries concerns the air cathode,
where ORR and OER take place. The air cathode is exposed to ambient air, more specifically O,
to store and convert energy. Major drawbacks of the air cathode include the sluggish kinetics
of OER, high overpotentials, and pore clogging during the discharge process. Metal-Organic
Frameworks (MOFs) appear as promising air cathode materials due to their high surface area,
tunable pore size, and possible catalytic centers. Few pristine MOFs have been studied as air
cathode materials for Li-O, batteries. These cathodes exhibit superior electrochemical
performances to the corresponding electrodes without MOF. However, it is noteworthy that
these high capacities are obtained with high content of carbon additives, which play an
important role in increasing the electronic conductivity of air cathode. More efforts still need
to be invested to determine the own performance of pristine MOF.

My PhD project focused on the development of new air cathode materials for Li-O;
batteries based on the use of pristine MOF materials. Two analogues of flexible MIL-53 based
on aluminum and iron were synthesized and used as air cathode materials. MIL-53(Al) and MIL-
53(Fe) show different breathing transitions upon hosting guest molecules and may induce
different behaviors upon charge-discharge cycles. A crucial point of this thesis is to study the
impact of morphology and structure flexibility of the different MIL-53 compounds on the
cathode performances. The work starts with the synthesis of MIL-53 and associated structural,
physical, morphological characterizations. Before electrochemical tests, the framework
flexibility of MIL-53 are explored against compounds used for electrode preparation. We then
focus on the electrochemical behaviors of Li-O, batteries with MIL-53 cathodes. Battery using
MOF-5 cathode is also studied for comparison as MOF-5 is a rigid structure. To complete the
evaluation of the new materials, we applied ex situ structural and chemical characterizations in
order to study the nature and the morphology of the discharge products and get better
understanding of the cycling performance.
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Chapter Il. Experimental procedures

This chapter is dedicated to the description of experimental procedures. We will first describe
the synthesis processes used for the preparation of the MOF materials (solvothermal,
microwave-assisted, or reflux methods). The electrochemical procedures will then be described
in detail (from the preparation of electrodes and electrolyte until the electrochemical
measurements). Then the dedicated apparatus used for the structural and physical
characterizations of MOF powders and ex situ characterizations for electrodes will be
presented.
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The syntheses of MIL-53 materials and the corresponding structural / physical
characterizations (XRD, BET, TGA and SEM) involved in this PhD work were performed in
collaboration with Vanessa Pimenta at ESPCI.

1.1 Synthesis routes

Conventional solvothermal synthesis is one of the most popular methods to obtain
Metal-Organic Framework (MOF) solids [1]. Alternatively, they can be prepared also with other
methods, including microwave-assisted, ambient pressure, ionic liquids, mechanochemistry,
ultrasound, electrochemistry methods, etc. [2].

The list of the chemical products used during this work is reported in Appendix 1. All
chemicals were used as received without any purification.

11.1.1. Conventional solvothermal synthesis

The solvothermal synthesis of MOF materials consists of mixing metal precursors
(acetate, chloride, or nitrate salts) and organic linkers with a solvent (deionized water, alcohols,
pyridine, dimethylformamide ...). When water is used as solvent, the synthesis method is rather
designated by the term hydrothermal synthesis. The inorganic/organic precursor mixture was
introduced inside a Teflon liner and sealed in a stainless-steel autoclave (Figure II-1). When the
autoclave was heated at moderate temperatures (80°C - 250°C), an autogenous high vapor
pressure was generated, leading to crystalline powders. This commercial autoclave (also called
Parr® Acid Digestion Vessel) is designed to prevent leakage thanks to the Teflon liner and to
burst safely if the pressure in the liner becomes too high.

(a) (b)

Mixture of
inorganic/organic
precursors

Figure II-1 : (a) Longitudinal schematic representation of a 4749-type Parr Teflon-lined autoclave
assembly, and (b) a photograph of the Teflon container together with stainless-steel vessel (Parr
Instrument Co.).

-85 -



Chapter Il - Experimental procedures

The composition and crystallinity of the final MOF depend on various parameters:
nature of solvents and precursors (nitrate or chloride for metal salts), inorganic / organic
materials ratio, pH of the reaction, temperature, etc. [3]-[10]. Figure II-2 lists the synthesis
parameters of three well-known MOF materials by varying the solvent or the temperature.

MOF Synthesis conditions SBU Structure

Metal nitrate / 1,4-BDC / HF / H20

MIL-53 1:1:1:278 Qecaq -~ <o

220°C72h

Metal acetate / 1,4-BDC / NaOH /

MeOH ot

MIL-85 1:3:1.5:1000
90°C 96 h
Metal nitrate / 1,4-BDC / e
HF/pyridine / H.0 XX XAN
MIL-88B kX LX AN
1:1:1:19:139 RSl
VAV
220°C 96 h

Figure 1I-2 : MOF materials synthesized with solvothermal method and the related parameters

9], [11], [12].
11.1.2. Microwave-assisted solvothermal method

In the case of microwave-assisted synthesis, the inorganic/organic mixture is introduced
into a Teflon vessel and heated at an intermediate temperature (up to 250°C), as in the
conventional solvothermal method. However, in the microwave irradiation (microwave power
in the few hundred Watt range), the heating of the starting mixture is generated by the use of
the high-frequency wave. The heating mechanism can be explained by two processes: dipolar
polarization and ionic conductivity. The nucleation process is favored instead of the growth of
crystals as in the conventional route. This leads to short reaction times and therefore smaller
particles than the conventional solvothermal route. Few minutes are sufficient to perform
reactions which require several hours with conventional heating. Compared to the
solvothermal synthesis, the microwave-assisted synthesis benefits also from an increased
product yield and is a more energy-efficient process [13]-[15].

Figure II-3 presents the microwave Mars 6 synthesizer equipment used at ESPCI
together with the multiple Teflon-lined vessels, where the sample temperature is probe-
controlled [16].
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|

o=
Figure II-3 : Photograph of a single Teflon-lined reaction vessel (EasyPrep Plus) and the
microwave synthesizer Mars 6 equipped with multiple vessels (Copyright CEM Corporation,).

11.1.3. Reflux synthesis

Compared with the conventional solvothermal synthesis, the reflux synthesis — also
called bottom-flask synthesis — benefits from better reproducibility, better safety (lower
synthesis temperature and atmospheric pressure), and the possibility to scale up the synthesis
in order to produce several kilograms of powder [17].

The initial inorganic / organic precursors were introduced in a round-bottom flask. A
continuous stirring of precursor mixture was applied during the synthesis which limits the
particle growth. Also, the inorganic / organic mixture could be heated at a moderate
temperature at atmospheric pressure.

Figure 1I-4 illustrates the longitudinal schematic representation of the experimental
setup. A three-necked round-bottom flask equipped with a thermometer and a water-cooled
condenser was placed over a heating mantle with stirrer. The synthesis was carried out under
stirring at room pressure and a thermo-controlled water circulator was connected to the
condenser to maintain a 20°C-water-cooling of the condenser during the synthesis. To better
isolate the system, we covered the area of the round-bottom flask exposed to the air with
aluminum paper.
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(a)
| round-bottom flask =
5 LR - 7
Mixture of s - jji
inorganic/organic - : :
precursors | \Water circulator
o y¥=

Figure 1I-4 : (a) Schematic representation of the reflux synthesis. (b) Photograph of the
experimental reflux synthesis setup equipped with a water circulator (Lauda C6 CS). The round
flask is covered with aluminum paper for better temperature isolation.

1.2 Electrochemical characterization

The ideal operating environment of practical Li-air batteries is ambient atmosphere, in
which oxygen is the main contributing gas for the battery. However, some components of air,
such as carbon dioxide, water, are also reactive with lithium. To avoid unnecessary parasitic
reactions and the formation of byproducts, we performed the experiments with pure and dry
O.. In this case, the tested batteries were hereafter denoted as Li-O; batteries.

The electrochemical parameters related to the air cathode, including the mass loading,
current density, and capacity, are expressed herein gravimetrically with respect to the mass of
MOF and Cs,. This implies that values reported in “mg/cm?’, “mA/g”, and "mAh/g" correspond

"

to values in “gwor+c/cm?, "mA/gmor+c) . “MAh/gmor+c) respectively.
11.2.1. Preparation of electrodes and electrolyte

1.2.1.1. Preparation of air cathode

An ideal air cathode for the aprotic Li-O; batteries needs to provide a good electronic
conductivity, be porous to allow gas flow and to host discharge products. The porous air
cathode is usually made up in the form of an ink printed on the current collector. The ink
consists of a porous active material, carbon, and an appropriate solvent that dissolves a binder.
The active material provides the porosity and acts as a potential catalyst for electrochemical
reactions. Carbon is also porous but more importantly ensures a good electronic conductivity
of the air cathode. Finally, the binder ensures the triple connection among powder components
and also a good adhesion for the ink on the current collector. This later plays also a role in the
diffusion of gas through the air cathode.
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Figure II-5 illustrates a schematic representation of the MOF / carbon / PVDF composite

air cathode used in this thesis. The mixture of porous MOF, carbon, and PVDF was deposited
on the gas diffusion current collector. In this work, porous air cathodes were prepared by drop-

casting the ink of MOF material, carbon black Super P (noted hereafter Cs,), and polyvinylidene

fluoride (PVDF, Kynar 2801) mixed in N-methyl-2-pyrrolidone (NMP) over Toray carbon paper

discs.

Two formulations (expressed with respect to the weight ratio (wt. %)) for MOF / Csp /

PVDF electrodes were investigated in this work:

(1) 65/25/10 wt. % of MOF / Cs, / PVDF;
(2) 40 /40 /20 wt. % of MOF / Cs, / PVDF, which was the formulation reported in Li's work

on MOF cathodes in Li-O, batteries [18].

MOF(porous; catalytic site)
aﬁ'&'«a carbon (electronic conductor)

Current collector (gas diffusion)
Figure II-5 : Schematic representation of MOF/carbon/PVDF composite air cathodes.

The porous air cathodes were prepared with a standardized procedure in order to

ensure a good reproducibility between electrodes:

1.

3.

A suitable mass of PVDF was dissolved in around 600 uL of NMP for 24 h at ambient
temperature in order to get an adequate binder solution viscosity.

Secondly, the previous homogenous PVDF@NMP solution was mixed together with the
anhydrous MOF and the Cs, powder in a 1.5 mL-Eppendorf equipped with stainless
steel balls inside of the Ar glove box. These elements were then mixed using a vibratory
grinding mixer (Mixer Mill MM400, Retsch) at 20 Hz for 10 minutes.

Thirdly, the homogenous ink was drop-casted vertically 2-3 ¢cm in height over the
@18 mm Toray carbon discs (Figure 11-6). We optimized the ink volume deposited for
individual electrode with respect to the ink formulation in order to obtain a fully
covered neat disc. Injected volumes of 100 uL and 200 pyL were moderated for the 65 /
25 /10 wt.% and 40 / 40 / 20 wt. % ink formulation for each electrode, respectively. Air
cathodes were prepared one by one before use.
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e £ -
Figure 1I-6 : (a) Photograph of the drop-casting procedure. The support rack with cavity is used
to hold individually Toray carbon discs. The micropipette filled with ink is held vertically
2-3 c¢m in height above the disc. (b) Photographs of the two sides of the dried MIL-53(Al)
electrodes. Top: front side; Bottom: back side.

4. To prevent material loss while evaporating the NMP solvent, it was necessary to dry
first the electrodes in ambient air for several hours (2-3 h) at 80°C on a heating plate so
as to remove the majority of NMP. The wet electrodes were then dried under vacuum
(Diaphragm Vacuum Pump Vaccubrand MD 1C) in a Biichi oven (Blichi Glass Oven B-
585) at 80°C for 24 h. Then, the dried electrodes were transferred into the Ar glove box
(Jacomex, HO < 1ppm) without any air exposure before further use.

The mass loading of MOF and Cs;, per electrode was targeted at around 1 mg/cm?.

For comparison with MOF electrodes, pure Cs, electrodes were also prepared as the
procedure described above by replacing the MOF content with the Cs,, Le. two formulations of
Csp/ PVDF in respect of 90 / 10 wt. % and 80 / 20 wt. %.

11.2.1.2. Preparation of electrolyte

The electrolyte used for testing the Li-O; battery-cells was a solution of 1 M lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,2-dimethoxyethane (DME). The commercial
LiTFSI salt was dried at 150°C overnight under vacuum in a Blichi oven before the preparation
of the electrolyte inside of the Ar glove box, while the commercial anhydrous DME was used
without further treatment. The LiTFSI was quickly dissolved in DME inside of an Al bottle by
hand-shaking. The electrolyte was then stored inside the Ar glove box without any exposure
to the air atmosphere.

The water content of the electrolyte was measured with an automated Karl Fisher
titrator (CEA/LISCEN): the amount of water in the electrolyte is 5 ppm.
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11.2.2. Battery assembly

ECC-Air metal-oxygen electrochemical test cells (Figure 11-7) were purchased from EL-
CELL GmbH (Germany). Cells were assembled inside of the glove box under the Ar atmosphere
containing less than 1 ppm of H.O. The ECC-Air cell was dried in the oven for 2 h at 100°C
before assembly. Figure 1I-7 (a) illustrates the schematic representation of the main
components of the Li-O; battery assembly. The anode consisted of a @18 mm Li metal foil, and
the porous air cathode was prepared as described previously in section 11.2.1.1. The two
electrodes were separated by two @18 mm electrolyte-impregnated glass fiber separators
(Whatman glass microfiber filters, grade GF/A).

Figure II-7 (b) shows the disassembled parts of an ECC-Air test cell. This test cell consists
mainly of a lid and a hollow base both in stainless steel, which ensures the electrical conduction
between the potentiostat and the cell. In order to avoid short circuit issues, a cylindrical
isolating sleeve is fixed inside the hollow base through a locking ring. Then we put inside the
hollow base from the bottom to the top the Li anode, two electrolyte-impregnated separators
(20 drops of electrolyte per cell), the porous air cathode, and a stainless steel perforated plate.
Before covering the lid over the base, a stainless steel plunger and a golden spring were loaded
successively over the perforated plate, which ensures the electrical conduction between the lid
and the cathode and a suitable mechanical pressure in the cell once entirely mounted,
respectively. Furthermore, an isolating seal inserted between the lid and the base ensured the
tightness of the cell. The channel-containing lid was fitted from the side with two gas tubes
with valves and below with a hollow isolating siphon, allowing a gas flow inside the cell.
Eventually, the stacked assembly was tightly sealed with the help of a bracket with a wing nut
before being taken out of the Ar glove box for testing.

(a)

1. perforated plate
2. air cathode
3. separator impregnated
with 1 M LiTFSI in DME
. Lifoil

@cell base @sleeve @Iocking ring @perforated plate @plunger
@siphon @spring seal @Iid inlet tube @outlet tube @bracket

Figure II-7 : (a) Schematic representation of the Li-O; battery assembly. (b) Photograph of the
unmounted Li-O; test cell.

After assembly, the tightened Li-O, cell was transported to an O:-filling station
(Figure 11-8), and purged with pure and dry O at 0.3 bar for 5 min using Omnifit® connectors.
To obtain a slightly positive pressure inside the cell, the gas-inlet was maintained open for
10 s while the outlet was closed.
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Ethanol
bath

Figure II-8 : Oxygen-filling station showing the direction of the O; flow for the Li-O; battery.
11.2.3. Galvanostatic cycling with potential limitation

Galvanostatic cycling with potential limitation (GCPL) is a common electrochemical
characterization method in the field of batteries. By using GCPL, the electrochemical
characteristics of a battery, such as discharge / charge capacity, cycling stability, etc. are
determined from the cycling profiles.

In this method, the current applied between the cathode and the anode is fixed at the
same value but in the opposite direction for the discharge and charge regimes, while the
potential is limited. A negative current is applied for the discharge while a positive current is
applied for the charge. Figure 1I-9 represents a typical discharge-charge cycling profile of a
battery at a fixed current. Both the discharge and the charge processes are characterized by
potential plateaus at which the redox reactions occur.

E, -
2 charge
—
2
w
discharge
E; {|‘— —-\\\\\

Q (mAh/g)

Figure 1I-9 : Schematic representation of the GCPL discharge-charge cycling profile for a battery
at a constant current. The profile is characterized by a discharge potential (E;) and a charge
potential (E).
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In this work, we allowed the O;-filled cells to rest for 6 h at open circuit for the O,
dissolution in the electrolyte as well as the impregnation of electrolyte in the air cathode before
any GCPL test was performed. The electrochemical tests were carried out with a BioLogic VMP3
multichannel potentiostat. Galvanostatic discharge and charge cycling was applied at a current
density of 50 mA/g between 2.0 V and 4.5 V vs. Li* / Li [18]-[20].

All electrochemical tests in this work were reproduced several times in order to confirm
the results. For sake of clarity, the reported voltages values of Li-O, batteries hereafter are
expressed in "V, corresponding to “V vs. Li*/Li".

1.3 Structural and physical characterizations

We applied different analysis techniques for the characterization of the MOF materials
and the ex situ MOF air cathodes. These latter electrodes were analyzed outside of the batteries
where electrochemical tests originally takes place.

11.3.1. X-ray diffraction

X-ray diffraction (XRD) is the most common technique to investigate the structural
properties of materials. This technique is non-destructive. We used XRD to check firstly the
crystallinity and the purity of the synthetized MOF powders and to study the breathing
transitions occurring in flexible MOF materials. The identification of the discharge products on
cycled electrodes was also investigated by ex situ XRD.

11.3.1.1. X-ray basis: X-ray/material interactions

X-ray diffraction is based on constructive interference of monochromatic X-rays in a
crystalline sample. The beam is generated by an anticathode (anode) ray tube filtrated to
produce monochromatic radiation and collimated towards the sample. Since atoms are
ordered in three spatial directions in the crystalline solid, the interaction between the incident
X-ray photons with the sample produces diffracted constructive interference when the Bragg's
law (Equation 1I-1) condition is satisfied:

nXA=2Xdyy Xsin6 Equation II-1

The Bragg's law relates the wavelength of electromagnetic incident radiation (A) to the
inter-reticular distance between two crystal lattice planes (dna) and the incident radiation angle
of X-ray beam (8). An effect of diffraction of the n™ order due to the reflection from lattice
planes can always be interpreted as a reflection of the first order from the imaginary lattice
planes (h'’k'l) with indices h' = nh, k' = nk, and I' = nl and a spacing dnir = dnw/n [21]. The
analysis is therefore based on the variations of intensity of the emerging X-rays according to
crystal lattice planes orientation. These X-rays interfere with each other, resulting in maximal
intensity for particular crystallographic directions.
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11.3.1.2. Apparatus and experimental setup

a. MIL-53 materials and pristine electrode analyses

X-ray diffraction of starting MOF solids were performed on a powder sample with
Bruker D8 Advance diffractometer operating at 40 kV and 40 mA (ESPCI, Paris) under Cu-Ka
radiation (Aka1 = 1.5406 A, Aka1 = 1.5444 A, with Ko / Kao ratio = 0.5) in the Bragg-Brentano
geometry (6 - 26 mode). Analyses were performed here with a 26 range of 1.6° - 30°, a step
size of 0.02° and a step time of 71.4 s.

The studies of the breathing transition for the flexible MOF materials and the
identification of MIL-53 on pristine electrode were realized with a Siemens D5000
diffractometer at INSTN (Institut National des Sciences et Techniques Nucléaires), operating at
40 kV and 40 mA under Cu-Ka radiation in the 8 - 26 mode. Analyses were performed with a
20 range of 5° — 50°, a step size of 0.04° and a step time of 3.0 s.

b. Ex situ MIL-53 electrode analyses

The cycled MOF cathodes were analyzed in order to identify the discharge products
formed during discharge of the Li-Oz battery which are air-sensitive.

After electrochemical tests, the cycled cells were disassembled inside of the Ar glove
box. A small piece of cycled air cathode (dimension ~ 5 x 5 mm?) was sealed between two
pieces of adhesive Kapton tape (polyimide, 0.07 mm thickness) to avoid air contact
(Figure 11-10). For comparison, the dried MOF electrode ink was also analyzed in order to verify
the presence of MOF material.

Cycled cathode

_.®_. .

Cut a piece of about 5 Cover with Kapton
mm*5 mm

Figure II-10 : Schematic representation of ex situ XRD electrode sample preparation.

XRD patterns were collected using an RU-200B (Rigaku) rotating X-ray generator
located at NIMBE/LAPA (CEA Saclay), equipped with a molybdenum (Mo) anode. The Mo beam
was monochromatized (A = 0.70932 A) using a FOX-2D Mo 25-25 (Xenocs). The beam with a
size of 100 um and a photon flux of around 20 - 30x10° photons/s was focused on the sample.
The sample holder is made of several holes with a diameter of a few millimeters in an Al foil
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(0.5 mm in depth). Kapton tape (polyimide, 0.07 mm thickness) covered both sides of these
slots to prevent material loss. The diffracted rays (Debye-Scherrer rings) were recorded for
10 min and collected by three different detectors in transmission geometry:

e a Pilatus 300K hybrid pixel detector (Dectris) with a 20 range of 2° - 35°;

¢ atwo-dimension image plate detector (Fuji) with a 26 range of 2° - 35°. A Molecular
Dynamics STORM 820 (GE Healthcare) scanner allowed pixelating the recorded images
with a resolution of 100 x 100 pm?

e a Rebir-70S (Cegitek) hybrid pixel array detector with a 26 range of 2° - 35°.

Classical | = f (20) XRD patterns were obtained after circular integration using the fit2D
(version 17.006) [22] and PyFAI (version 0.20.0) softwares [23]. The phase identification was
performed with the Diffrac-EVA V5 software (Brucker) incorporating the ICDD references and
the Crystallography Open Database [24].

11.3.2. Thermogravimetric analysis

Thermogravimetric analysis (TGA) is a thermal analysis in which the mass of the sample
is monitored over a range of temperature or time after exposing the sample to a controlled
temperature ramp in a controlled atmosphere. While heating, the mass can increase due to
oxidation or absorption, or decrease due to decomposition, reduction, or evaporation. The
temperatures at which these processes take place allow us to know the thermal stability and
the volatility or the mass of adsorbed materials of the MOFs samples.

TG analyses were carried out at ESPCI. Few milligrams of powder were placed inside of
a weighing alumina crucible. The measurements were operated by the thermogravimetric
analyzer (Mettler Toledo TGA/DSC 2 STAR) with an air flow of 10 cm?/min. The temperature
was increased from 20°C to 800°C with a heating rate of 3°C/min.

11.3.3. Brunauer-Emmett-Teller measurement

Brunauer-Emmett-Teller (BET) theory is applied for measuring the surface area and the
pore volume of porous materials by measuring the amount of physically adsorbed probing gas
(such as N, COy). The most common gas used is N». In this work, we performed our analysis
under N gas at its boiling point (77 K). At this temperature, the N> molecules condense on the
surface of the material as the temperature of the material is below its critical point. The BET
theory extends the mono-layer (Langmuir theory) to multi-layer adsorption, relating the multi-
layer adsorption of probing gas molecules onto the solid surface to the gas pressure at a fixed
temperature [25]. Three assumptions are considered: (a) gas molecules physically adsorb on
the solid in layers infinitely; (b) different layers do not interact; (c) the Langmuir theory can be
applied to each layer.
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Since the N2 molecule size is known, N2 gas is assumed to have access to the entire
surface of the solid. The amount of adsorbed gas is correlated to the total surface area of the
solid. The total surface area (Stwtal) for a known mass (m) of solid and the specific BET surface
area (Seer) can be expressed as follows in Equation 11-2 and Equation 11-3:

VoNas .
Stota] = M Equat'on ”‘2
v
_ Sger Equation II-3
SpeT = g~ quation |-

where Vj is the monolayer volume of gas adsorbed at standard temperature and pressure
(273K and 1 atm), N, is the Avogadro’s number, s is the cross-sectional area of the adsorbed
gas and equals 0.162 nm? for an adsorbed N> molecule, M, is the molar volume and equals
22414 mL [26].

In this work, we used an advanced six-port Smart VacPreP™

degas (or called activate) samples at 200°C for 12 h. The N, adsorption isotherm of the
dehydrated MOF solid samples was then measured by N, porosimetry using a Micromeritics

067 apparatus to heat and

Tristar Il Plus instrument at 77 K and the results were analyzed with the Microactive software.

11.3.4. Scanning electron microscopy

Scanning electron microscopy (SEM) allows observing the morphology and texture of
samples by scanning the sample surface with a focused electron beam which interacts with
atoms in various depths of the sample. Different types of radiation can be emitted from the
probed sample, such as secondary electrons, backscattered electrons, characteristic X-rays and
cathodoluminescence photons, and transmitted electrons. These radiations are then collected
by selective detectors and form the SEM image of the sample.

In this work, two microscopes equipped with a field emission gun and a secondary
electron detector were used to observe the morphology of the MOF solids and discharge
products on the cycled MOF cathodes:

e A FEl Magellan 400 equipped with Everhart-Thornley detector (ESPCI Paris), operated
at 15 kV with a beam current of 50 pA, is used for the morphology characterization for
the MOF solids.

e A SEM-FEG Carl Zeiss Ultra 55 equipped with InLens detector (CEA/LEDNA) was used
in order to study the morphology of the discharge products on the cycled MOF
electrodes. Cells were disassembled in the Ar glove box after cycling. The electrodes
were quickly transferred into the microscope chamber with an exposure to air for less
than two minutes. As the MOF electrodes are very sensitive to the electron beam, two
beam acceleration potentials were moderated (1.5 kV and 3.0 kV) to record the SEM
images.
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11.3.5. X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive quantitative
spectroscopic technique. XPS can identify the chemical elements within the given sample
surface as well as their oxidation states and offers information about the chemical bonding
based on the photoelectric effect. XPS analysis is based on the electron binding energy (BE)
analysis by irradiating the sample with an X-ray beam. According to the kinetic energies of
emitted electrons from the surface (below 50 A [27]), the binding energy of core-level electron
of each atom on the surface can be determined by using the photoelectric effect equation
(Equation I1-4):

Epinding = Ephoton — (Ekinetic + @) Equation I1-4

where Epinding is the electron binding energy relative to the core-level electron, Ephoton is the
energy of the incident X-ray photon, Exinetic is the kinetic energy of the electron measured by
the analyzer and @ is a constant of the instrument.

An XPS spectrum exhibits a number of peaks for detected electrons at specific BEs.
Basically, each element could produce a set of characteristic XPS peaks. These peaks
correspond to different electron configurations within the atom, 1s, 2s, 2p, 3s for instance. The
number of detected electrons in each peak is directly related to the number of elements within
the analyzed sample volume.

The pure MOF solid, pristine and cycled electrode samples were analyzed with XPS
using a Kratos Analytical Axis Ultra DLD equipped with a monochromatic Al Ka excitation
(1486.7 eV) and a charge neutralizer (CEA/LISCEN).

After the electrochemical tests, we washed the cycled electrodes with few drops of DME
in order to remove the remaining electrolyte. The liquid in excess was gently absorbed with a
Kimtech wiper.

An isolating tape was used to fix the powder / electrode sample to avoid the
overcharging with X-ray beam. The sample was loaded into the XPS apparatus without
exposure to ambient air using a dedicated sample transfer vessel. All spectra were recorded
with a pass energy of 40 eV.

The quantification was explored using the CasaXPS (version 2.3.23 PR1.0) software [28].
The position, width, and area of peak spectra were fitted using a Gaussian-Lorentzian (GL)
fitting function [29] and a non-linear Shirley background [30]. All spectra were calibrated
according to the C 1s photoemission peak of the adventitious carbon at 284.4 eV [31].
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Chapter lll. Synthesis and characterizations

We will present in this chapter the synthesis and the characterizations of two analogues of the
flexible MIL-53 materials. MIL-53(Al) was synthesized using two methods: conventional
hydrothermal and microwave-assisted hydrothermal syntheses, while MIL-53(Fe) was obtained
through reflux synthesis. These materials were characterized by different techniques, including
XRD, TGA, BET, and SEM. The last section will be devoted to the study of the flexibility of both
MIL-53 when impregnated with the solvents used for the Li-O; electrochemical tests.






Chapter lll - Synthesis and characterizations

Reminder for readers: for sake of clarity, the MIL-53s were studied under various
experimental conditions. As the denomination of this flexible material diverges according to
the authors, a nomenclature inspired by the existing one is defined for this work. The general
formula for these materials is defined as:

x-MIL-53(M)_y

where x = H, MW, or R indicates the synthesis method, M = Al or Fe, and y represents the guest
molecule inside of the pores, such as BDC, H,O, DMF, or empty when no molecules fill the
pores. For example, the H-MIL-53(Al)_empty formula represents the anhydrous form of
hydrothermal synthesized MIL-53(Al), the R-MIL-53(Fe)_DMF formula represents the reflux
synthesized MIL-53(Fe) with pores occupied by DMF. H-MIL-53(Al)_PVDF@NMP, H-MIL-
53(Al)_PVDF, H-MIL-53(Al)_empty designate the MIL-53(Al) solid synthesized through the
hydrothermal route when the pores are filled with the PVDF@NMP, with the PVDF (we suppose
that the NMP molecules are removed after drying) and when the pores are empty, respectively.

However, we will keep the notation of the literature when we will describe the state of
the art of the flexibility occurring in the isoreticular MIL-53 materials i.e. HT (high temperature)
and LT (low temperature) to designate the anhydrous solid — without solvent molecules in the
pores — and fully hydrated solid (free water molecules in the pores).

111.1 The flexibility of MIL-53

As mentioned in Chapter |, the MIL-53(Cr) was the first MIL-53 compound reported in
the literature [1]. The structure consists of infinite corner-sharing metal chains of CrO4(OH)
octahedra bridged by the linear organic linker (benzene-1,4-dicarboxylic acid or BDC), which
results in large lozenge-shaped channels (Figure lll-1). In response to adsorption of gas/solvent
molecules or temperature, the structure evolves: the low temperature form (MIL-53(Cr)_LT, the
solid is fully hydrated) presents a contracted or “closed” pore, while in the high temperature
form (MIL-53(Cr)_HT), the pores are open.
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Figure Ill-1 : Representation of the breathing effect of MIL-53(Cr). View of the pore system upon
hydration/dehydration.
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Until now, isoreticular solids with a wide variety of metal cations (Al, In, Fe, Ga,
Sc ...) and functional ligands (-NHz, NO;, F...) have been investigated [2]. Similar structures are
observed with different cation valence, the neutrality of the framework being compensated by
the bridging group shared by the metal octahedra (u2-O, p2-OH, or DMF) (Figure 111-2).

Mv(v) M'"'(Cr, Al, Fe, In, Ga, Sc, V) M'(Fe, Co, Mn)

Figure IlI-2 : Representation of different groups bridging the cations in the metal chains of
MIL-53 depending on metal valence states (tetravalent, trivalent, bivalent). Reprinted from [3].

Except for the vanadium analogue (also called MIL-47) [2], the breathing effect is
observed for all MIL-53 analogues. However, the nature of the metal influences drastically the
breathing behavior. Férey and Serre demonstrated that the hydroxyl groups (u2-OH) play a role
in the flexibility [4]. The rigidity of MIL-47(V) can be explained by the presence of a p,-O instead
of a y>-OH [5]. The breathing magnitude depends mainly on the existence of weak points (here
the connections between the inorganic chains and the carboxylate groups) which allow the
flexibility by a possible rotation around the O-O axis of the two plans O-Cr-Cr-O and O-C-O
(Figure 1ll-3). The guest-guest (molecules or gas inside the pores) and host-guest interactions
are also decisive for the breathing behaviors.
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Figure IlI-3 : Breathing of MIL-53 (Cr) - (a) hydrogen bonding interactions between water
molecules and between water molecules and the hydroxide framework. (b) Mode of connection
between a dicarboxylate and Cr centers illustrating the flexible part of the structure, with «
indicating the variable inter-plane angle with the dicarboxylate oxygens forming the hinge. CrOs
octahedral are green with benzene-1,4-dicarboxylate atoms colored: oxygen red, carbon orange,
hydrogen atoms white. Reprinted from [2].

- 104 -



Chapter lll - Synthesis and characterizations

The flexibility of the structure is activated by the presence of molecules inserted in the
pores and the creation of weak bonds between the guest and the skeleton. Similar to the parent
MIL-53(Cr), in the as-synthetized form of MIL-53 analogues, the pores (in form of tunnels) are
occupied by free BDC or solvent molecules (H.O, DMF). Simple heating at a high temperature
(up to 300°C) removes the guest molecules and creates a structure (often called MIL-53_HT)
with empty tunnels. By cooling in ambient air, the structure MIL-53_HT evolves to MIL-53_LT
and the pores are filled with water molecules. The transition HT 2 LT is fully reversible. Only
the structure of the as-synthetized form for MIL-53(In) has been reported [6], but no report
mentions a possible activation of the solid to obtain the form with open pores. After activation
of MIL-53(Ga), a mixture of LT and HT forms persists until the point of thermal decomposition
[7]. In contrast with MIL-53(Cr), the In- Ga- Sc- and Fe-analogues (MIL-53(Fe)) present another
breathing transition behavior. The anhydrous forms of MIL-53(Sc) and MIL-53(Fe) show a
contraction of the pore after activation (while MIL-53(Cr) presents open pores) and the pores
open when guests are inserted (Figure I11-4).

_2127A 13.47 A 19.32A
- —.m_,_1056A —
6;6,.5&* v e W L 15044
e wedibes matutl Dl M oo~ matnl Rl LA SISO I |

b Rl ™y Stimuli L | Stimuli  ® D ®:
La temperature ™ . temperature La ¢ H0

+ guest molecules @®o

MIL-53(Fe)_HT MIL-53(Fe)_INT MIL-53(Fe)_LT @c

narrow pore narrow pore large pore

Figure Ill-4 : Flexibility behaviors of MIL-53(Fe).

In this work, we investigated the influence of such flexibility on the electrochemical
performance of two MIL-53 analogues (MIL-53(Al) and MIL-53(Fe)). MIL-53(Al) has a similar
breathing behavior to the MIL-53(Cr). The anhydrous form presents pores fully open while the
pores are contracted in the presence of guest molecules (H.O, gas, solvent molecules).
Furthermore, the Al-analogue has a very high thermal stability (decomposition at ~500°C
compared to ~400°C with Cr or < 350°C with Fe). In contrast, the pores of MIL-53(Fe) are open
in the presence of guest molecules.

111.2 Synthesis and characterizations

111.2.1. Synthesis

Both MIL-53 samples were synthetized using previous syntheses described in the
literature [8]-[10]. MIL-53(Al) solids were synthesized using two synthesis routes: conventional
hydrothermal synthesis and microwave-assisted hydrothermal synthesis (H-MIL-53(Al) and
MW-MIL-53(Al) respectively). The MIL-53(Fe) solid was obtained by reflux synthesis.
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For each synthesis, metal precursor (aluminum nitrate nonahydrate and iron chloride
hexahydrate) and organic ligand (BDC) were first mixed and prepared in water or DMF (MIL-
53(Al) and MIL-53(Fe), respectively) according to the molar ratio mentioned in Figure Ill-5. The
mixtures were then heated at 220°C for both H-MIL-53(Al) and MW-MIL-53(Al) for 72 hours or
30 minutes (hydrothermal or microwave routes), and 150°C for R-MIL-53(Fe) for 48 hours. The
as-synthesized form of MIL-53 sample was filtered using a Bichner for H-MIL-53(Al) or
centrifuged for MW-MIL-53(Al) and R-MIL-53(Fe) in order to separate the solid and the

surfactant. In each case, the as-synthetized solids were washed several times with deionized
water and dried under air.
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/

N

\\\/I-I [\\\

Zi— \.
Q:\\\ e 220°C 72h
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§é - AI(NO,),99H,0 + H,BDC+H20 H-MIL-53{Al)_8DC
g L) Molar ratio 2: 1: 160
é 2:1:160 g
L ,,,
2
07,
(b)
220°C 30 min
MW-MIL-53(Al)_BDC
AI(NO,),9H,0 + H,BDC+H,0 e
Molar ratio 2:1: 160 H— X
“;
e o
(c)

150°C 48h

FeCl,e6H,0 + H,BDC + HCl + DMF R-MIL-53(Fe)_DMF

Molarratio1:1:8:62

#Erw |

Figure IlI-5 : Schematic representation of (a) the syntheszs of H MIL-53(Al), (b) MW-MIL-53(Al),
and (c) R-MIL-53(Fe).

111.2.2. Structure characterizations

In all as-synthetized solids, the pores are filled by benzene-1,4-dicarboxylic acid (BDC)
for both MIL-53(Al), or by solvent molecules (DMF) for MIL-53(Fe) (the solids are called
hereafter MIL-53(Al)_BDC or MIL-53(Fe)_DMF). MIL-53(Al) solids were heated at 360°C in order
to remove the free acid and obtain the anhydrous forms MIL-53(Al)_empty; whereas the DMF
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molecules were first exchanged by methanol molecules and then by deionized H.O following
the scheme MIL-53(Fe)_DMF — MIL-53(Fe)_MeOH — MIL-53(Fe)_H>O The anhydrous form
was obtained after a heat treatment at 100°C in order to remove the water molecules inserted
in the pores. However, when the solids were exposed to ambient air, they reabsorbed
instantaneously water molecules, it was thus not possible to isolate the anhydrous form.

Figure IlI-6 shows the X-ray diffraction patterns of the as-synthetized and fully hydrated
samples corresponding to the forms reported in the literature [8], [10]. As the solids reabsorbed
instantaneously water molecules from ambient air, it was thus not possible to record the XRD
patterns of the anhydrous forms; we obtained a mixture of MIL-53_H,0 and MIL-53_empty. By
comparing the XRD of the as-synthetized phase of both MIL-53(Al), we observe an additional
peak around 26 = 17.5°, which is more intense for the H-MIL-53(Al)_BDC than MW-MIL-
53(Al)_BDC and corresponds to the free acid.

(a) H-MIL-53(Al)_H,0 (b) MW-MIL-53(Al)_H,0
—_ —_
3 S
LA A L. S L
> ] | i 1 | normm 1 > | ] i ] | n e |
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(<)) Q
et e
£ hy k=
| | 1 LI LI I B ) mninn (BRI R R RN 1 | | Tty mine (BRI AN EEAR |
6 8 10 12 14 16 18 20 22 24 26 28 30 6 8 10 12 14 16 18 20 22 24 26 28 30
20 (°, Cu Ka) 20 (°, Cu Ka)

R-MIL-53(Fe)_H,0

|

A J\ A o

| I 80 (i . e LR AL E R IR i B L L

R-MIL-53(Fe)_DMF
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(
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Figure IlI-6 : XRD patterns of MIL-53(Al)_BDC, MIL-53(Al)_HO for (a) H-MIL-53(Al), (b) MW-MIL-
53(Al), and (c) of R-MIL-53(Fe)_DMF and R-MIL-53(Fe)_H-O. Bragg positions of the as-synthetized
and hydrated forms described in the literature are indicated by tick marks [8], [10]. The star mark
indicates the presence of disordered free acid trapped inside the pores of MIL-53(Al).
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TGA measurements confirm the persistence of benzene-1,4-dicarboxylic acid (BDC) or
DMF molecules inserted in the pores for the as-synthetized samples (Figure IlI-7). Furthermore,
we observe more content of BDC with the microwave route than the hydrothermal one. We
have also successfully removed BDC or exchanged DMF and reabsorbed water molecules in
order to obtain the fully hydrated samples.

Table IlI-1 gives the chemical formula of as-synthetized and hydrated forms for both
MIL-53(Al) and MIL-53(Fe).
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Figure lll-7 TGA curves of as-synthetized and fully hydrated forms of (a) H-MIL-53(Al), (b) MW-
MIL-53(Al), and (c) R-MIL-53(Fe).
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Table Ill-1 : Experimental and calculated losses observed on TGA curves for all as-synthetized and
hydrated MIL-53. We report the chemical formula deduced from these analyses.

H_MIL-53(Al)_BDC MW_MIL-53(Al)_BDC R_MIL-53(Fe)_DMF
Formula Al(OH)(BDC)«0.7(BDC) Al(OH)(BDC)+1.3(BDC) Fe(OH)(BDC)+0.7(DMF)’
Loss 1 250-450°C — BDC pore 250-450°C — BDC pore 250-350°C — DMF pore
exp. 36.6% calc. 35.9% exp. 51.5% calc. 52.1% exp. 15.8% calc. 15.6%
Loss 2 470-560°C BDC framework 470-560°C BDC framework 320-400°C BDC framework
exp. 14.9% calc. 16.2% exp. 14.3% calc. 11.9% exp. 55.3% calc. 55.9%
final product Al,O3 final product Al,O3 final product Fe;0O3
Abbr. H_MIL-53(Al)_H-0 MW_MIL-53(Al)_H:0 R_MIL-53(Fe)_H-0 ‘
Formula Al(OH)(BDC)«0.7H,0 Al(OH)(BDC)« 0.7H,0 Fe(OH)(BDC)+ 1.4H,0
Loss 1 up to 100°C — H,O pore up to 100°C — H,O pore up to 100°C — H,O pore
exp. 6.0% calc. 5.7% exp. 5.5% calc. 5.7% exp. 9.9% calc. 9.6%
Loss 2 500°C BDC framework 500°C BDC framework 320°C BDC framework
exp. 70.9% calc. 70.6% exp. 71.3% calc. 70.6% exp. 61.4% calc. 55.9%
final product Al,O3 final product Al,O3 final product Fe,0O3

(1) The DMF molecules may be also coordinated to the iron octahedra if one considers the two-
step of loss of DMF : Fe(OH)o.67(DMF)o.33(BDC) «0.37(DMF).

111.2.3. Other characterizations

The morphology and particle size of MIL-53 were investigated by scanning electron
microscopy (SEM) for all the hydrated samples. SEM images are illustrated in Figure IlI-8.
Clearly, the microwave route leads to a smaller particle size than other routes (hydrothermal or
reflux synthesis) due to the time involved for the synthesis (30 minutes instead of 2 or 3 days).
For the H-MIL-53(Al) solid, micrometer-sized platelet crystallites are observed with an average
crystal length of ~ 2 um, while smaller pseudo-spherical crystallites with an average crystal
diameter ~ 500 nm are observed for the MW-MIL-53(Al) solid, about 4-times-smaller than H-
MIL-53(Al). The length-width or aspect ratio of the particles is smaller with the MW synthesis
method.
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As the MIL-53(Fe) samples are unstable under the electron beam irradiations, a shorter
time of exposition leads also to a degradation of the MOF. However, the main particles seem
to be micrometer-sized platelet crystallites like H-MIL-53(Al) with a length of 1 - 3 um.

H-MIL-53(Al) '. ¥ mwILs3(AT | vt ?T-MLL-SNFe)
4)) Y, & & TS

&

2 um

)

-
HeMIL-53(A1) | RawdviiL-53(Al)

:‘ 10 um . /® #3210 um

Figure IlI-8 : SEM images of H-MIL-53(Al)_H>O (blue), MW-MIL-53(Al)_H-O (red), and R-MIL-
53(Fe)_H-0 (green).

The surface areas of both MIL-53(Al), determined by Brunauer—-Emmett-Teller (BET)
method (Appendix 3), and the external surfaces obtained by Harkins-Jura equation, are
summarized in Table Ill-2. The MIL-53(Al) solids were first dried overnight at 100°C in order to
obtain the anhydrous form. Both MIL-53(Al) compounds display a high surface area, MW-MIL-
53 having a slightly higher value, certainly related to the smaller particle size. These values are
in agreement with those already reported [12]. As the anhydrous MIL-53(Fe) is in the contracted
form, we expect that no porosity could be measured.

Table IlI-2 : BET surface area (Sger) and external surface area (Sex) of MIL-53(Al) solids.

Material Seer (M?/g) Sext (M?/g) ‘
H-MIL-53(Al) 124046 + 2.51 52.13
MW-MIL-53(Al) 1390.72 £ 0.43 48.31
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111.3 Studies of the breathing transition

Breathing transitions occur in both MIL-53 solids (Al- or Fe-analogues) upon absorption
of guest molecules (such as gases, solvent molecules) [14], [15]. Moreover, size effect in flexible
MOFs is known to strongly impact the physical and structural properties of the material [16].
Downsizing the particles size directly influences the breathing effect of the framework, usually
making it easier once the particle size decreases, enhancing the diffusion of the trapped species
in the pores. In addition, flexibility is also influenced by the framework interaction with solvents
[17]. For the electrochemical studies, the cathode materials were prepared by mixing MIL-53
materials with carbon black and a binder composed of PVDF in a NMP solution (10 wt. % in
NMP, noted PVDF@NMP). Table IlI-3 sums up the developed formula of NMP and PVDF.

Table IlI-3 : Name of the solvent NMP and binder PVDF and their developed formula.

Abbreviation NMP PVDF
Name N-Methyl-2-pyrrolidone polyvinylidene fluoride
CHs T
Developed formula d/vo — ¢ — ¢ —
L.
Molar mass (g/mol) 99.13 534 (n=8.34)

For this purpose, the anhydrous form of both solids MIL-53(Al) and MIL-53(Fe) were
impregnated with an excess of NMP solvent (MIL-53_NMP) or PVDF@NMP (MIL-
53 PVDF@NMP). Then the solids were dried under vacuum at 80° C in order to simulate the
drying of the electrodes, 80°C being the usual temperature to remove the NMP solvent without
destroying the electrode structure [18], [19]. Figure 11I-9 shows the evolution of XRD patterns
as a function of the guest molecules. None of the recorded XRD patterns correspond to the
anhydrous form fingerprint, which implies that the guest molecules are confined in the pores.
Unsurprisingly, MIL-53(Al) and MIL-53(Fe) show different behaviors. For both MIL-53(Al), the
insertions of solvent molecules are quite similar. First, the NMP molecules are inserted in the
pores and produce a MIL-53(Al)_NMP phase. Additional Bragg peaks are observed when the
anhydrous solids are impregnated by the PVDF@NMP solution. These peaks seem to remain
at approximately the same 26 position after drying at 80°C under vacuum
(MIL-53(Al)_PVDF). Similar XRD patterns are observed for the MIL-53(Fe) materials.
Furthermore, we observe some similarities between the three XRD patterns related to the PVDF
forms of all samples. The first peak at 26 = 9.14° is common to all powders.
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Figure I1I-9 : Evolution of XRD patterns as a function of the molecules guests inside the pores of
(a) H-MIL-53(Al) (blue), (b) MW-MIL-53(Al) (red), and (c) R-MIL-53(Fe) (green). The colors for the
guest molecule are light color (NMP), medium color (PVDF@NMP), and dark colors (PVDF). The
dash lines highlight the additional Bragg peaks observed as soon as the MIL-53(Al) powders are
in contact with a solution of PVDF@NMP.

Despite the low quality of XRD patterns, we tried to determine the cell parameters of
both MIL-53(Al)_PVDF and MIL-53(Fe)_PVDF. XRD patterns were indexed using Dicvol program
[20] and pattern matching refinements were performed with Fullprof Software [21]. Table IlI-4
gives the crystal systems and the cell parameters. We assume for the pattern matching
refinements that the space group remained C2/c — like for the hydrated forms. The unit cells
for H-MIL-53(Al)_PVDF and MW-MIL-53(Al)_PVDF are quite similar: no effects of the particle
size or aspect ratio are observed on the breathing transition as expected. These results should
be taken carefully as drastic conditions were used to limit the number of possibilities
(a<25A bandc<10A 90° < B < 110°). By comparing the cell parameters with those of the
anhydrous and the hydrated MIL-53(Al)/MIL-53(Fe) solids (Table lI-5), we find that the pores
are closed upon absorption of guest molecules for MIL-53(Al)_PVDF and opened for the MIL-
53(Fe)_PVDF.
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Table IlI-4 : Cell Parameters of both MIL-53(Al)_PVDF and MIL-53(Fe) PVDF.

Form -_PVDF » = H-MIL-53(Al) » = MW-MIL-53(Al) = R-MIL-53(Fe)
:3\‘;: of Merit - 34.2 48.1 24.1
System monoclinic monoclinic monoclinic
Space group C2/c (n°15) C2/c (n°15) C2/c (n°15)
a (A 19.619(1) 19.484(5) 18.526(4)

b (A) 8.813(3) 8.808(3) 11.329(2)
cA) 7.703(2) 7.667(2) 8.535(2)
B(°) 98.46(3) 98.56(3) 101.69(3)

V (A3 1317.6(8) 1301.1(6) 1754.1(6)

Table IlI-5 Cell parameters of anhydrous and hydrated forms of MIL-53(Al) and MIL-53(Fe).
Powder MIL-53(Al)_empty  MIL-53(Al) H:O MIL-53(Fe)_empty MIL-53(Fe)_H:0

System orthorhombic monoclinic monoclinic monoclinic
;E’jﬁl‘; Imma (n°74) Cc (n°9) C2/c (n°15) C2/c (n°15)
a(A) 16.675(3) 19.513(2) 21.269(3) 19.319(2)
b (A) 12.813(2) 7.612(1) 6.758(1) 15.036(2)
c A 6.608(1) 6.576(1) 6.884(2) 6.835(6)
B(° - 104.24(1) 114.62(2) 96.31(1)
V (A3 1411.9(4) 946.7(2) 899.6(3) 1973.5(3)
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Figure IlI-10 : Pattern matchings of both MIL-53(Al)_PVDF and MIL-53(Fe)_PVDF. The difference
between calculated (red line) and experimental profiles (black line) is given by the blue solid line.

111.4 Conclusion

MIL-53(Al) compounds were successfully synthetized through hydrothermal and
microwave-assisted routes (H-MIL-53(Al) and MW-MIL-53(Al), respectively) in order to
investigate the potential impact of the particle size / aspect ratio on their electrochemical
behavior. The particle sizes of MW-MIL-53(Al) were found 4 times lower than H-MIL-53(Al)
(500 nm vs. 2 um). We also synthetized the Fe-analogue with the reflux method (R-MIL-53(Fe)).
In the anhydrous form, MIL-53(Al) exhibits fully open pores. Both MIL-53(Al) have high BET
surface and internal surface (up to 1240 and 1390 m?/g for H-MIL-53(Al)_empty and MW-MIL-
53(Al)_empty,, respectively). As the MIL-53(Fe) solid has narrow pores, no porosity could be
measured.
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In order to study the flexibility of these materials occurring during the preparation of
the cathode materials, we investigated how the structure evolved when adding NMP solvent
and PVDF@NMP binder solution and after drying at 80°C under vacuum. Based on qualitative
results, two phases seem to coexist when the MIL-53 powders are in contact with the
PVDF@NMP solution: a form with NMP and a second which corresponds to the initial powder.
The pattern matching refinements were performed on the later solids (MIL-53_PVDF). They
confirmed that the pores had been contracted for both MIL-53(Al) and opened for MIL-53(Fe).

Several porous flexible MIL-53 materials were successfully synthesized and
characterized. These flexible materials will be studied in the next chapter as the active material
of air cathodes of Li-O; batteries.
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Chapter IV. MOF electrode cycling performances

This chapter will present the electrochemical properties of both flexible MIL-53(Al) and
MIL-53(Fe) materials. We will compare first the effect of the structure and morphology on the
electrochemical performance by comparing MW-MIL-53(Al) and H-MIL-53(Al). Then, we will
investigate the electrochemical properties of R-MIL-53(Fe) in order to identify the role of the
breathing effect of flexible materials. We will end the chapter by comparing the flexible MIL-
53 structure with a rigid structure MOF-5. The capacities of MOF electrodes will also be
compared with the ones of pure carbon black electrodes and also with literature. Finally, the
reproducibility of the cycling performances of these particular materials will be discussed.






Chapter IV - Electrochemical properties

Reminder for readers: for sake of clarity, the reported capacity values in this chapter are
expressed with respect to the weight of MOF together with Super P carbon black (Csp). This
implies that values reported in “mAh/g” correspond to values in “mAh/gmor+csp)”. All voltages
are given versus Li*/Li.

IV.1 Flexible MOF

IV.1.1. MIL-53(Al)

The porous MIL-53(Al) structure is predicted to be able to store the discharge products
formed in Li-O, batteries. The effect of size in flexible MOFs is known to strongly impact the
physical and structural properties of the material [1]. Downsizing the particles size directly
influences the breathing effect of the framework, usually making it easier once the particle size
decreases, enhancing the diffusion of the trapped species in the pores [2]. In addition, the
structure and the morphology of the cathode materials can influence the capacity of the Li-O>
batteries [3]-[6].

In this work, the MIL-53(Al) material is obtained with two different morphologies:
homogenous small particles generated by microwave irradiation (500 nm) and heterogeneous
large particles obtained by the conventional hydrothermal method (2 um) (Section 111.2.3).
Surprisingly, same breathing transitions occur on both samples. Here we will first present
separately the electrochemical performances of MW-MIL-53(Al) and H-MIL-53(Al), while their
performances will be compared to pure Cs, electrodes. Then, the effect of the morphology of
MIL-53(Al) on the electrochemical performances of cathodes for Li-O, batteries will be
discussed. We may expect better discharge capacities with MIL-53(Al) compounds compared
to the pure Csp due to their higher surface area (1240 and 1390 m?/g for H-MIL-53(Al) and
MW-MIL-53(Al)), 52.52 m?/g for Cqp).

IV.1.1.1. MW-MIL-53(Al) electrochemical behavior and performances

To evaluate the performance of the MW-MIL-53(Al) compound, a series of independent
Li-O, cells with MW-MIL-53(Al) electrodes were cycled. We report here the results of seven
successful tests with MW-MIL-53(Al) for sake of reproducibility.

The first discharge profiles of Li-O, batteries with MW-MIL-53(Al) cathodes are shown
in Figure IV-1. For all electrochemical tests, we observe a wide range of initial discharge
capacities, from limited or no capacity to 1200 mAh/g. The discharge profiles are characterized
by monotonic plateaus / slopes followed by an abrupt drop in potential, which is assigned to
the end of the discharge process. The potentials of these plateaus are however different and
seem to determine the value of the initial discharge capacity.
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Figure IV-1: First discharge profiles of Li-O; batteries with seven similar MW-MIL-53(Al) cathodes.

As shown in Figure V-2 (a), two behaviors are observed: (case1) a high potential plateau
(>2.6 V) associated with a gradual decrease of discharge capacity upon cycles and (case 2) a
low potential plateau (<2.6 V) associated with low or no initial discharge capacity.

For 60 % of the electrodes (case 1), the initial discharge capacities are in the range
800 - 1200 mAh/g. The corresponding discharge potentials are around 2.6 - 2.7 V, which
correspond well with the value expected for the formation of Li>O: [7]. No charge capacity is
observed, indicating that the OER process does not occur for these electrodes. The charge
profile reaches quickly the potential limit (4.5 V) fixed by the stability window of the LiTFSI/DME
electrolyte, thus preventing a complete OER. It is important to note that the high overpotential
observed in charge may, in turn, trigger electrolyte decomposition. The discharge capacities
decrease quickly over cycles (Figure IV-2(a)), as we may expect that Li;O, products from the
first discharge block the pores, preventing the next deposition. In the same time, the potential
of the discharge plateau slowly decreases to 2.5 V upon cycling due to the increase of the
insulating Li>O; discharge products. Moreover, the insulating Li>O; limits electron transfer and
leads to an increase of overpotentials. The presence of these agglomerates at the cathode will
lead to greater resistance values due to the reduction of active cathode pore / area, limiting
the ORR. In addition, the low conductivity of Li>O will also limit the reduction kinetics of ORR
[8].
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Figure IV-2 : (a) The discharge-charge cycling profiles for Li-O, batteries with MW-MIL-53(Al)
electrodes. Cycles 1 and 2 are represented respectively in solid and dash red lines while cycles 3
to 10 are represented in black solid lines. (b) Discharge (square) and charge (black triangle)
capacities as a function of the cycle number for Li-O; batteries with MW-MIL-53(Al) electrodes.

For other electrodes (40%, case 2), no capacity is delivered at the initial discharge
(<100 mAh/g), while the second discharge capacities are higher than the first ones (Figure
IV-2(b)), denoting a possible activation process during the first cycle. We observe a
“sustainable” discharge capacity until the fourth cycle (<400 mAh/g). These electrodes display
large inclines with an onset of the first discharge potential between 2.4 — 2.5 V, which are
slightly lower than the values reported for the formation of Li,O; [7]. After the first cycle, the
discharge plateau potentials are higher (2.6 — 2.7 V) and the discharge process occurs, leading
most probably to the formation of LiO,. The lower discharge potential at the first discharge
may suggest some limitations in the transfer of species inside the electrodes. Some reports
reveal that a suitable tri-phase boundary between electrode / O, / electrolyte could ensure
good performance [9], [10]. The liquid covers the active area with a thin film ensuring the ionic
transport to the active sites, while the non-wetted regions ensure proper gas transport to the
active areas. Not enough or over-wetted electrodes could reduce the Li* diffusion or O
diffusion respectively, thus diminishing the battery cycle performance. Consequently, the
limited first capacities may be explained by an electrode wetting issue. The open circuit voltage
(OCV) values are lower for the electrodes which need "an activation process” (OCV~2.8 V, case
2) than for the electrodes which have a constant decrease of capacity over cycles (OCV~2.9 YV,
case 1). These observations are in favor of a lack of wettability of the electrode. We can also
infer that an initial activation cycle is occasionally necessary to reorganize or remove some
solvent molecules or PVDF inside the pores, which may at first prevent the nucleation of the
discharge products. In contrast to the first case, we observe a high charge capacity until the
second cycle, meaning that the decomposition of Li,O, through the OER occurs. Yet, after the
fourth cycle, a severe drop in capacity occurs.
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IV.1.1.2. H-MIL-53(Al) electrochemical behavior and performances

The large micro-sized H-MIL-53(Al) is synthesized through the traditional hydrothermal
heating method (Section 111.2.1). Ten individual Li-O, batteries with H-MIL-53(Al) electrodes are
evaluated here.

Figure IV-3 illustrates the first discharge and cycling profiles of H-MIL-53(Al) electrodes.
These discharge profiles are also characterized by monotonic plateaus / slopes followed by an
abrupt drop in potential. We observe also a large dispersion of the initial discharge capacities
from close to null to 1200 mAh/g. Compared with MW-MIL-53(Al) electrodes, one additional
behavior (case 3) is observed where the discharge capacities are in a medium range (700 —
900 mAh/g).
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Figure IV-3 : First discharge profiles of Li-O; batteries with ten similar H-MIL-53(Al) cathodes.
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An overview of the three cases obtained with H-MIL-53(Al) electrode is shown in Figure
IV-4. Like for the MW-MIL-53(Al) electrodes, the first case (high initial discharge capacity (900
— 1200 mAh/q) is observed for 30% of electrodes. The discharge capacities are higher at the
first cycle and quickly decrease over cycles. The potentials of the plateau start at ~2.7 V and
then slowly decrease to 2.4 V due to the increase of insulating discharge product Li,O,. No
charge capacity is observed for these electrodes, thus no OER occurs. For the next cycles (2 -
10), limited discharge capacities are obtained due to the low discharge plateau potentials (<2.5
V) which disfavor the formation / growth of Li>O,. The second case is characterized by a low
initial discharge capacity (<250 mAh/g for 40% of the electrodes), associated with a low
discharge plateau potential (<2.5 V) that may account for the limited growth of discharge
products such as Li>O,. For these later electrodes, the open circuit voltages (OCV) are also lower
than for the case 1 (~2.8 V vs ~2.9V), like for MW-MIL-53(Al) electrodes. We can again suggest
that an activation process is necessary to reorganize the pore configuration or wet the whole
electrode volume. After this step, the cells are quite reversibly cycling but the capacities are
limited after the fourth cycle, probably as a consequence of the high charge plateau potential
(~4.4V).
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The last case concerns the electrode with a medium initial discharge capacity
(700 — 900 mAh/g; 30 % of the electrodes). The discharge plateau starts from 2.7 V and
decreases slightly to 2.5 V, before collapsing and signifying the end of the discharge. The OER
process is observed for these electrodes from the first cycle, denoting the decomposition of
Li>O,. The cells are reversible for the first three cycles, denoting efficient ORR and OER
processes. We can suppose that if the pores are not fully blocked by Li>O; in the first discharge,
it decomposes more easily during the charge process (OER) and allow a new formation /
growth of Li,O, during the next discharge. Unfortunately, all capacities fade after the fourth
cycle, suggesting a poor cycling behavior of the MOF.
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Figure IV-4 : (a) The discharge-charge cycling profiles for Li-O, batteries with H-MIL-53(Al)
electrodes. Cycles 1 and 2 are represented respectively in solid and dash blue lines while cycles 3
to 10 are represented in black solid lines. Case 1: Q; = maximum. Case 2 : Q; = minimum. Case
3 : Q7 = medium. Batteries were cycled at a current density of 50 mA/g. (b) Discharge (square)
and charge (black triangle) capacities as a function of the cycle number for Li-O; batteries with
H-MIL-53(Al) electrodes.

IV.1.1.3. Effect of morphology

The morphologies of both MW-MIL-53(Al) and H-MIL-53(Al) have been already
illustrated in Chapter Ill. As a quick reminder, nanometer-sized pseudo-spherical crystallites
are observed (with an average crystal length of ~ 500 nm) for the MW-MIL-53(Al), while
micrometer-sized platelet crystallites (with an average crystal diameter ~ 2 ym) are obtained
for H-MIL-53(Al) solid. Besides, the length-width or aspect ratio of the particles is smaller for
these latter particles (Section 111.2.3). The breathing transitions occurring when the solids are
fully impregnated with the PVDF solution (10 wt. % PVDF salt in NMP solvent) are in the same
amplitude for both MIL-53(Al) solids (monoclinic cell with a volume of 1302 A® and 1318 A3 for
MW-MIL-53(Al) and H-MIL-53(Al), respectively).
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However, the expected impact of the morphology on the electrochemical performance
of Li-O; batteries is negligible for our MIL-53(Al) materials. Figure IV-5 illustrates the first two
discharge behaviors of both MIL-53(Al) electrodes studied. The top figure illustrates the first
and the second discharge capacities of the Li-O, batteries obtained with H-MIL-53(Al) or MW-
MIL-53(Al). With some electrodes, the first discharge capacities are in the range 700 - 1200
mAh/g, while other capacities are limited (< 250 mAh/g). In the latter case, the second
discharge capacities are higher than the first discharge capacities, denoting a possible
activation process during the first cycle, as discussed previously. Despite the activation process,
the discharge capacities still fade rapidly in a few cycles, and no charge capacities are obtained.
This stresses the absence of OER reactions with both MIL-53(Al) and the lack of reversibility of
these materials. Noteworthy, both MIL-53(Al) samples have similar BET surface areas and
external surfaces. As the surface area is in part responsible for the accommodation of guest
molecules, this may explain the similar electrochemical performances observed with MIL-
53(Al).
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Figure IV-5 : Top: discharge capacities at the first (gradient) and second (uniform) cycles for Li-
O; batteries at a current of 50 mA/g with H-MIL-53 (blue) and MW-MIL-53 (red) electrodes.
Bottom: associated open-circuit voltages (V) for each cell. The black lines indicate the tendency.

Same overpotentials for charge and discharge are observed for both MIL-53(Al)
electrodes. Moreover, higher overpotentials for charge and discharge are observed for both
MIL-53(Al) electrodes compared to the Super P carbon ones (Appendix 4). The accumulation
of insulting Li>O; limits the electron transfer through the electrode and increases the internal
battery resistance. The Li»O, and possible other parasitic products may block the surface area,
and no more porosity is available for the next deposition of the discharge product. As a result,
severe capacities are lost over deep cycling. As both MIL-53(Al) have similar surface areas, their
capacities fade both quickly with few cycles.
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Overall, compared to pure Cs, electrodes (Appendix 4) the values of the discharge
potentials for MIL-53(Al) are slightly lower than for pure Cs, electrodes (~2.60 V vs. ~2.72 V for
MOF and Cs, electrodes, respectively). Besides, the charge potentials (~4.5 V) are higher for
MW-MIL-53(Al) electrodes compared to Cs, electrodes (~ 4.3 V, Appendix 4). Moreover, the
best discharge capacity of MIL-53(Al) electrodes is about three times lower than Cp electrodes
(~ 3300 mAh/g, Appendix 4). Both the lower potential and discharge capacities reached for
MOF materials suggest some limitations in the transfer of species inside the electrodes or
obstruction of catalytic sites, if any, by the discharge products. While the overpotential is larger
for MOF electrodes, the polarization is still limited with regard to the thermodynamic potential
for the formation of Li2O> (E;,0,= 2.96 V) [11]. The poor electric conductivity of MOF may

cause high overpotentials, leading to unsatisfactory ORR and OER reactions [12].

To conclude on the MIL-53(Al) solids, we first expected a high-capacity delivery owing
to the high surface area of MIL-53(Al) compared to the Cs,. But in contrast, we observe lower
capacities with both H-MIL-53(Al) and MW-MIL-53(Al) (average discharge capacity at the first
cycle: 1000 mAh/g) which is certainly due to the poor electric conductivity of insulating MOF.
Concerning the size of the starting MOF, the smaller crystal sizes of MIL-53(Al) with microwave
irradiation compared to the hydrothermal does not result in different electrochemical
behaviors as expected. Such a difference in particle size / porosity of both MIL-53(Al) seems
not sufficient for battery performance improvement. Moreover, an activation process is
necessary for some electrodes so as to remove some guest solvent or PVDF molecules inside
of the pores. A further study on the porosity of pristine MOF electrodes could be helpful to
confirm our assumption for the activation step. Despite the activation process, the discharge
capacities still fade rapidly in a few cycles, and no charge capacities are obtained. This stresses
the absence of OER reactions with the MIL-53(Al) and the lack of reversibility of these materials.
The low performance of MIL-53(Al), compared to the pure Cs, electrode, is also impacted by
the lack of active open metal sites within the MIL-53 structure. Moreover, it is also possible that
the MIL-53(Al) pores are clogged while accommodating the discharge products, and hardly
reverse the pore opening for the decomposition of discharge products (OER) during the charge
process. This quasi-irreversible pore closure during the accommodation of discharge products
may prevent deep accessibility of pores and lead to a low cyclability. A less closed structure or
even opened pores, in reverse, might be key for achieving a better battery performance.

IV.1.2. MIL-53(Fe)

IV.1.2.1. Introduction

Inspired by the assumption that the poor reversibility observed with MIL-53(Al)
electrodes is probably related to the pore closure, we then investigated the flexible MIL-53(Fe),
expected to better accommodate the discharge products in the Li-O; batteries. As described
earlier in Chapter Ill, MIL-53(Fe) exhibits opposite breathing transitions while adsorbing /
releasing guest molecules compared to MIL-53(Al). When the pores are empty, MIL-53(Al) has
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a fully open framework while the pores of MIL-53(Fe) are closed. In contrast, when the pores
are filled with guest molecules (for example water molecules), the pores are narrow for MIL-
53(Al) but open for MIL-53(Fe). Thus, we expect a better capacity for MIL-53(Fe), for which the
discharge products can be stored in the open pores. We present hereafter the electrochemical
performances of the micrometer-sized R-MIL-53(Fe) synthesized by reflux in the Li-O;
batteries.

IV.1.2.2. Electrochemical behavior and performance of MIL-53(Fe)

Six independent Li-O, cells with R-MIL-53(Fe) electrodes were cycled for sake of
reproducibility. For all electrodes, the open circuit voltage (OCV) of R-MIL-53(Fe) cells is up to
2.8 V, which is comparable to the calculated OCV [13]. The first discharge-charge profiles and
corresponding capacities are illustrated in Figure IV-6 (a). The MIL-53(Fe) delivers an initial high
discharge capacity in a range of 1500 — 2200 mAh/g, which is higher than the capacities of MIL-
53(Al) electrodes (700-1200 mAh/g). The capacity deviation is similar that the one observed on
MIL-53(Al) cells. The discharge profile is characterized by two distinct plateaus. The first
discharge plateau (2.53 - 2.63 V) corresponds to the formation of Li>O; [14], while the second
plateau at a lower potential (2.33 - 2.41 V) may refer to the formation of Li,O [15] or Li>COs
[16]. The abrupt drop of potential between the two plateaus is related to the nucleation of first
grains and the growth of particles. Compared to the Cy, electrode (2.72 V, Appendix 4), the
Li.O, formation on R-MIL-53(Fe) electrode occurs at a lower discharge potential. This confirms
our previous assumption on the better electronic conductivity for the Cy, electrode compared
with the more insulating MOF-based electrodes.
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Figure IV-6 : (a) First discharge-charge profiles of Li-O; batteries with six similar R-MIL-53(Fe)
electrodes. The inset illustrates the onset process of the charge. (b) (Top) First discharge (gradient)
and charge (uniform) capacities and (bottom) the associated open-circuit voltage of Li-O;
batteries with R-MIL-53(Fe) electrodes.

Contrary to Al-analogues, a wide range of first charge capacities is observed with the
MIL-53(Fe) and can be declined into two trends: either a low charge capacity (case 1, 140 -
390 mAh/g for 33% of all experiments) or a high charge capacity (case 2, 1630 - 1880 mAh/g
for 67% of all experiments), as illustrated in Figure IV-6 (b). The charge potentials of the cells
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are nearly the same as pure Cs;, electrodes (~ 4.3 V). Such a high charge potential of MIL-53(Fe)
denotes a lack of catalytic site within the framework. The low charge capacity obtained in case
1 implies that pores of R-MIL-53(Fe) are clogged by Li,O.at the end of the charge, then no
more porosity is available for the next deposition of the product. Lack of porosity or thick
deposition of insulating Li>O; is supposed to impact the next deposition.

Starting from the second cycle, the discharge profile turns again into a typical
monotonical plateau, ending with a sharp decline (Figure 1V-7). The transformation from Li>O;
into Li,O may require too high overpotentials out of the electrolyte stability window, as
accumulated Li>O, or other decomposed byproducts limit the charge transfer in the electrode
[17]. Interestingly, the two behaviors observed on the initial charge impact the performance of
the second cycle. For the electrodes presenting low first charge capacities at the first cycle (case
1) the second discharge voltage is centered at 2.5 V (~2.49 - 253 V), ~0.1 V below their first
discharge potentials. In contrast, the electrodes delivering high charge capacities at their first
cycles (case 2) exhibit a second discharge plateau at around 2.6 V. This observation could
confirm our previous assumption about the residual Li2O: in the pores due to the inefficient
OER. The lack of porosity left due to the presence of residual Li,O; prevents the deposition of
the product in the next discharge. The residual Li>O: increases also the discharge overpotential
for the next cycles, as the charge transfers are limited through the insulating Li>O> [16]. After
the second discharge, the restructuring of pore allows an intense removal of discharge
products at the second charge, followed by an increase of the discharge potential at the third
cycle up to 2.60 V (case 1). This higher discharge potential confirms the foregoing deep
decomposition of insulating Li>O», which reduces the polarization and decreases the discharge
overpotential of the cell.
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Figure 1V-7 Discharge-charge cycling profiles of Li-O; batteries with R-MIL-53(Fe) electrodes. (a)
Case 1: low first charge capacity. (b) Case 2 : high first charge capacity. Cycle 1 and cycle 2 are
represented respectively in green solid and dash lines while cycles 3 to 10 are represented in black
solid lines.
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Figure 1V-8 shows the R-MIL-53(Fe) discharge and charge capacities as a function of
cycle number. This illustrates again the two trends upon cycling for the R-MIL-53(Fe)
electrodes. For the first group (case 1), the low charge capacity delivered at the first cycle
induces a medium value in the second discharge capacity. Yet, after the removal of species in
the pores, similar or even higher charge capacities are delivered at the second cycle compared
to the first cycle. Thereby, a CE over 100 % is obtained. This CE should not be considered as
meaningful as it could benefit from the decomposition of Li,O, produced on the first cycle or
from parasitic reactions from electrolyte decomposition [11]. For the other group (case 2),
efficient OER occurs with a high CE maintained between 80 — 94 % until the second cycle. Since
then, the charge capacity has faded more significantly than the discharge, but still, with a CE
of around 50 % retained at the fourth cycle. Some electrodes still deliver ~ 200 mAh/g
discharge capacity at the sixth cycle. Overall, in both cases, the charge and discharge capacities
decrease rapidly over cycles.
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Figure IV-8 : Discharge (green square) and charge (black triangle) capacities of Li-O, batteries
with R-MIL-53(Fe) electrodes as a function of the cycle number.

As mentioned in the literature [18], the capacity fading at deep discharge / charge is
related to inefficient deposition and decomposition of LiO, or decomposition of electrolyte.
The main discharge product Li>O; or other byproducts due to the electrolyte decomposition
could block the air cathode over full cycling [19]. While the presence of the insulating Li>O;
results in limited electron transfer at the cathode / Li>O; interface, the absence of porosity left
for the deposition of the discharge products affects also the performance of the battery. This
is what the electrochemical response suggests here for the MIL-53(Fe) material. In addition, the
charge potential of R-MIL-53(Fe) electrodes reaches the limits of the stability window of the
DME solvent, which results in a risk for electrolyte decomposition and Li.COs formation. The
byproduct might also impact the accessible surface of the framework for the main discharge
product.
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IV.1.3. Conclusion on the pore opening effect

The two analogues MIL-53(Al) and MIL-53(Fe) show different breathing behaviors
against guest molecules. Upon adsorbing PVDF, the MIL-53(Al) presents a narrow-pore form
with the dimension of contracted diamond-like pore; while the MIL-53(Fe) presents an open
pore form with the same shaped-pore expanded. As shown earlier in Chapter lll, the final MIL-
53_PVDF has both larger unit cell volume and pore size for the Fe analogue than for the Al
analogue (1754 A%vs. 1318 A*>and 185 A x 113 A vs. 19.6 x 8.8 A, for MIL-53(Fe)_PVDF and
MIL-53(Al)_PVDF respectively). The open pores of MIL-53(Fe) are more accessible to the
discharge products than the narrowed pores of MIL-53(Fe), explaining the improved capacity
obtained with the MIL-53(Fe). An almost two-fold higher initial discharge capacity is delivered
by MIL-53(Fe) compared to MIL-53(Al) (~2000 mAh/g for R-MIL-53(Fe) vs. ~1000 mAh/g for
MW-MIL-53(Al) / H-MIL-53(Al)). The enlargement of pore size also ensures a more efficient
decomposition of discharge products during the charge process, leading to higher charge
capacities. As the ORR / OER occurs on each full cycle with MIL-53(Fe), it leads to better
capacities and a better battery cyclability than with both MIL-53(Al) compounds. Although the
capacity fades significantly over cycling, for most of the cases, a charge capacity over 300
mAh/g is maintained by the MIL-53(Fe) material until the fourth cycle while only less than 100
mAh/g is reached at the third cycle by the MIL-53(Al) compound. The pore might be gradually
blocked by the Li,O, discharge product or parasitic species derived from electrolyte
decomposition during the discharge-charge cycling. At a high voltage, ether-based electrolyte
might decompose. The concerned parasitic species might be gradually accumulating inside of
the pores, thus leading to a rapid capacity fading over the ten cycles. Without efficient OER
catalysts in MIL-53(Fe), Li.O, could not be completely decomposed due to the sluggish kinetics
of the OER process. The accumulation of insulating products on the cathode may also lead to
the gradual capacity fading upon cycling. Among most of the cells, the OER reactions occur
efficiently with a CE of ca. 85 % for MIL-53(Fe) for all cycles. Overall, such differences in
discharge / charge capacities, CE, and capacity retention with R-MIL-53(Fe) and MIL-53(Al)
highlight the importance of the pore opening on the performance of flexible MOF materials
for Li-O; batteries.

IV.2 Rigid vs. flexible MOF

To evaluate the effect of flexibility on the electrochemical performance, we compare
here the flexible MIL-53 to a rigid MOF. Several rigid MOF materials with a wide range of
surface areas in diverse structural topologies have been studied as active materials of air
cathode in Li-O; batteries by Li et al. [20]. We select the rigid solid MOF-5 that has the same
organic linker as MIL-53, i.e. the benzene-1,4-dicarboxylic acid (BDC). Although the MIL-53(Fe)
shows better performance, we select the H-MIL-53-(Al), as its electrochemical behavior with
the monotonic plateau is simpler.
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IV.2.1. Electrochemical behavior and performance of R-MOF-5

The solid R-MOF-5 is first synthesized using the reflux method as previously reported
by Yaghi et al. [21]. The procedure and the XRD characterizations are given in Appendix 2.
MOF-5 consists of zinc clusters linked by the BDC leading to a 3D channel system with 12.9 A
spacing between the centers of adjacent clusters [22] (Figure IV-9). Note that the pore size of
MOF-5 is comparable to the anhydrous MIL-53(Al) with a large pore (16.7 A x 12.8 A).

SBU
tetramer BDC

MOF-5 = Zn,0(BDC),

Figure IV-9 : View of the SBU with Zn with the organic linker used and representation of the cubic
structure of MOF-5. Guest molecules have been omitted for sake of clarity.

MOF-5's electrochemical behavior is already reported in the literature by Li et al. [20].
Their electrodes formulation consists of MOF-5/Cs,/PVDF in a wt. % of 40/40/20 with the Toray
carbon paper as the gas diffusion layer. The 1M LiTFSI in TEGDME (tetraethylene glycol
dimethyl ether) is used as electrolyte. Moreover, all their batteries are tested in an O-filled
glove box. The cell with MOF-5 electrode reported by Li et al. delivers a first discharge capacity
of 1780 mAh/g [20]. They showed that the MOF-5 structure remains intact after the first
discharge by XRD. However, the authors did not investigate the following discharge-charge
cycles and showed only the initial discharge profile of MOF-5 cathode. We thus investigated
here the electrochemical properties along few cycles of this material using the same
formulation in order to have a point of comparison with the literature. Note however that our
sealed battery assembly are filled with O, out of glove box prior to the tests. Besides, the
electrolyte used consists of 1 M LiTFSI in DME.

The first discharge profiles of five similar R-MOF-5 cathodes are shown in Figure 1V-10.
Despite the rigid structure with constant pore opening, we effectively observe a wide range of
initial discharge capacities among the different R-MOF-5 cathode samples from 393 mAh/g to
1390 mAh/g. Only the best capacity value that we obtained is in the same order as the result
obtained by Li et al. (1780 mAh/g). However, it is worth mentioning that Li et al. [20] did not
address the reliability of the reported capacity. It is unclear if the reported capacity corresponds
to the optimal result or to a reproducible one. In our case, the R-MOF-5 cathodes provide an
onset discharge plateau voltage of 2.7 V and the discharge potentials of 2.6 V, which is similar
to the reported result of Li et al. [20].
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Figure IV-10 : First discharge profiles of Li-O: batteries with five similar R-MOF-5.

Figure IV-11 illustrates the cycling performance of R-MOF-5 electrodes. Upon
galvanostatic cycling, a maximal discharge capacity is reached at the second cycle for four of
the cells. A possible activation seems also necessary at the first cycle for the R-MOF-5, following
the MIL-53 cases. The discharge capacity fades gradually over cycling and the charge provides
a plateau at ~ 44V, especially at the first two cycles. Discharge and charge capacities fade
quickly starting from the second cycle. An increase of polarization appears during the cycling
of R-MOF-5 electrodes. CE maintains a level of 80% from the fourth cycle, but it does not imply
a great reversibility of the ORR / OER processes. Indeed, the difference between charge and
discharge capacities on these cycles becomes less important as a result of significant capacity
fading ahead. At the end of the 10" cycle, the remaining discharge capacity accounts for only
less than 100 mAh/g.
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Figure IV-11 : (a) Galvanostatic discharge-charge cycling profiles of Li-O; batteries with R-MOF-
5 electrodes. The first and second cycles are respectively represented in yellow solid and dash
lines, while cycles 3 to 10 are represented in black solid lines. (b) R-MOF-5 discharge (yellow
square) and charge (black triangle) capacities along with the coulombic efficiency (grey circle) in
Li-O; batteries as a function of the cycle number.
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IV.2.2. Comparison with MIL-53(Al) and effect of flexibility

In order to have a point of comparison with R-MOF-5, we explored the flexible
H-MIL-53(Al) in the same conditions, i.e with a low MOF content (40% MOF / 40% Cs, / 20%
PVDF). We now compare the results of the flexible structure H-MIL-53(Al) with R-MOF-5. We
will then discuss the effect of pore flexibility on the Li-O, battery cycling performance.

Three individual tests with H-MIL-53(Al) electrodes were performed with the same
formulation as R-MOF-5 (40/40/20 wt.%). Figure 1V-12 compares the first and the second
discharge capacities of H-MIL-53(Al) and R-MOF-5 electrodes in the Li-O, batteries. Similarly
to the results obtained earlier with high MIL-53(Al) content (65 wt.%) electrodes in Section IV.1,
two behaviors are observed for H-MIL-53(Al): for two-thirds of electrodes, the activation
process occurs at the first cycles while the remaining one-third of electrodes delivers a
maximum capacity at the first cycle. The discharge capacity distribution is in a wide range of
1000 - 3390 mAh/g. For the electrodes submitted to an activation process (discharge capacity
Q1 < Q), the cells deliver first discharge capacities approximatively in the same magnitude as
the rigid R-MOF-5. However, after activation, the corresponding second discharge capacities
of H-MIL-53(Al) could even reach over 3000 mAh/g, which is almost twice higher than the
R-MOF-5 electrode. Such improvement in the discharge capacity might be triggered by the
flexible pores of H-MIL-53(Al) upon activation. The MOF-5 structure has in contrast small pore
size variation as adsorbent [23]. Thus, the pore size of R-MOF-5 remains still while
accommodating the discharge product. In contrast, the H-MIL-53(Al) structure remains flexible
even though it reveals a narrow pore during electrode preparation. It is possible that the pore
breathes during the activation, leading to an enhanced accommodation of discharge products.
The OCV for H-MIL-53(Al) is approximatively in the same order as R-MOF-5 (2.80 - 2.87 V for
MIL-53(Al) and 2.79 - 2.83 V for R-MOF-5).
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Figure IV-12 Discharge capacities at the first and second cycles for Li-O, batteries with
H-MIL-53(Al) (blue) and R-MOF-5 electrodes (brown) and associated open-circuit voltages.
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Figure IV-13 illustrates the discharge and charge capacities evolution of H-MIL-53(Al)
electrodes. H-MIL-53(Al) can deliver a high discharge capacity of 3390 mAh/g at the first cycle.
Despite this promising feature, only half of the initial discharge capacity remains at the second
discharge. For the H-MIL-53(Al) electrodes submitted to the activation process at the first cycle
(discharge capacity between 1143 - 1786 mAh/g), a higher discharge capacity (from
2000 mAh/g up to 3500mAh/g) could be reached at the second cycle. Similarly to the R-MOF-
5 electrode, the activation process at the first cycle allows a higher discharge capacity delivery
at the second cycle with a good coulombic efficiency maintained over 80 % during the first
four cycles. For the electrodes reaching the highest discharge capacity at the first cycle, an
efficient charge leading to a CE of ca. 80 % occurs. We may attribute this quite high efficiency
to the good electric conductivity ensured by the high carbon content (40 wt. %) in the electrode
formulation. However, a severe drop in capacities still happens since the second cycle. A
discharge capacity of ca. 1500 mAh/g is maintained at the second cycle, while a CE less than
40 % is reached. Similarly to previous observations with other MOFs electrodes of this work,
the decomposition of insulating Li>O> remains incomplete due to the lack of catalyst in H-MIL-
53(Al). The pores are clogged by the discharge products or parasitic products accumulated
along cycling, and less porosity is available for the next deposition of Li.O,. However, compared
to the R-MOF-5 with the robust pore size, the flexible H-MIL-53(Al) provides better capacities
at a first glance. The flexible structure seems thus predominant for accommodating Li>O;. Yet,
both H-MIL-53(Al) and MOF-5 show quick capacity fading upon cycling, meaning that the
opening of the pore does not improve the capacity retention of the battery.

4000
H-MIL-53(Al)

3000+ —=— discharge

2000 - —— charge
B 10004
i =
< . oo o
E 4008_ T T T T T T T T T T
=
£ 3000
Q
S 20001
3]
O 1000+

0 T T T T T T T T T

o 1 2 3 4 5 6 7 8 9 10 1
Cycle number

Figure IV-13 : Discharge (square) and charge (triangle) capacity evolutions of the Li-O: batteries
with H-MIL-53(Al) low content electrode as a function of the cycle number Case 1: Q1< Q.. Case
2: Q1>Q.. Electrode formulation : MOF/C,/PVDF = 40/40/20 wt. %.

For comparison purposes, we also prepared the pure Cs, electrodes with the
formulation 80/20 wt. % (for Csp and PVDF respectively). Figure IV-14 compares the discharge
and charge profiles at the 1°' and the 2" cycle of R-MOF-5 and H-MIL-53(Al) electrodes and
pure Csp electrodes. The discharge / charge profiles are in agreement with the reported carbon
electrode in the literature [17]. Compared to the pure Cs, electrode, both R-MOF-5 and H-MIL-

- 135 -



Chapter IV - Electrochemical properties

53(Al) electrodes with low MOF content show polarizations as high as with the high MOF
content electrodes (Section IV.1). Both R-MOF-5 and H-MIL-53(Al) show not only lower
discharge potentials but also higher charge potentials than carbon electrodes (discharge
potential: ~2.63 V vs. ~2.66 V and charge potential ~ 45 V vs. ~43 V, for MOF and Cs
respectively). This may again be due to the lower conductivity of the MOF materials. Even with
a lower MOF content (40 %), the conductivity is still too low compared to the pure Cp.
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Figure IV-14 : Comparison of (a) discharge and (b) charge profiles at the 1t and 2™ cycles of Li-
O, batteries with low R-MOF-5 or H-MIL-53(Al) weight content electrode. The electrode
formulation is 40/40/20 wt.% for MOF/Cs,/PVDF. Yellow/blue solid lines: Q:1<Q: (casel),
yellow/blue dash lines: Q1>Q: (case 2) for R-MOF-5/MIL-53(Al). Purple solid lines: pure Csp
electrode in an electrode formulation of Cs,/PVDF = 80/20 wt. %.

To conclude, the flexible H-MIL-53(Al) appears as a promising cathode material with a
better first discharge capacity than the rigid R-MOF-5, as the flexible framework could
accommodate the discharge products in the pore volume. The PVDF in rigid R-MOF-5 occupies
part of the porosity, while the rigid framework of R-MOF-5 limits the insertion of discharge
products. In turn, the H-MIL-53(Al) can deliver higher discharge capacities than the rigid R-
MOF-5, however the capacity retention is poor. Finally, it is noteworthy that these better
performances are obtained with low MOF content electrodes. The high content of carbon may
also favor a better electronic conductivity and better performance of these MOF/C/PVDF
composite electrodes.

IV.3 Discussion

As described in Chapter |, the cathode plays a crucial role as it hosts the essential ORR
/ OER processes of the Li-O; battery. The design of air cathode materials follows essentially
three key rules. At first, a high porosity is mandatory for the storage of the Li,O, discharge
products. The porosity guarantees also the Li* ion and O diffusions and electrolyte penetration.
Secondly, a good electronic conductivity is required for the fast electron supply for both ORR
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/ OER. Finally, as these reactions are sluggish, a catalyst in the cathode is highly desirable so as
to reduce the overpotential of the battery.

In this work, we investigated the flexible MIL-53(Al) and MIL-53(Fe) as cathode material
in Li-O; batteries. The structural flexibility of MIL-53 implies the potential to accommodate /
remove guest molecules. During electrode processing, the polymeric binder PVDF is adsorbed
by the anhydrous MIL-53, resulting in MIL-53_PVDF form, while the electronic conductor Cs,
remains intact in the cathode. We will discuss the global performance of the MOFs materials in
comparison to the literature and discuss the effect of porosity and pore-opening on the MIL-
53 electrode performances. Moreover, even if several studies addressed reproducibility issues
of the Li-O; system based on carbon cathode [7], [24], there is still a lack of deep understanding
of the reproducibility of pristine MOF cathodes. At the end of this section, we will discuss this
issue related to the MIL-53 electrodes.

IV.3.1. Comparison with literature

Apart from the porosity, there are also two other crucial factors for the design of
efficient cathodes for Li-O; batteries: guaranteeing the electronic conductivity and presenting
catalytic sites to improve the sluggish ORR / OER. Inspired by all these requirements, various
types of cathode materials have been developed, including the MOF-based electrodes. MOF
materials are known for their porous structures and high surface areas. The MOFs having open
metal sites (OMSs) could also act as catalysts for the ORR / OER.

Table IV-1 summarizes the physical and electrochemical properties of Cs, electrodes,
some reported rigid MOFs, the H-MIL-53(Al) and MOF-5, all reported with a low MOF content.

Table IV-1 : BET, mass loading of both MOF and Cs,, and corresponding first discharge capacities
of Li-O: battery with low MOF content electrode and related electrodes.

Materials External MOF+Csp Formulation Capacity Ref.

surface mass loading (wt. %) (mAh/g)

(m?/g) (mg/cm?)

MOF-5 3622 - 0.56 40/40/20 1780 [20]
Mn-MOF-74 1213 - 0.56 40/40/20 9420 [20]
Csp 87.6 - 0.56 80/20 2170 [20]
Csp 525 39.65 1.1 80/20 3327 This
work
MOF-5 - - 08-0.9 40/40/20 1390(max.)/  This
750(mean)  work
H-MIL-53(Al) 1240 52.13 09-1.0 40/40/20 3387(max.)/  This
2106 (mean) work
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Li et al. reported in a pioneering work several benchmark MOFs (HKUST-1, MOF-5, and
M-MOF-74 with M = Mg, Co, Mn) as cathodes for Li-O; batteries in 2014 [20]. These porous
materials have high BET surfaces within a large range. The authors have shown that the
presence of open metal sites (OMS or coordinatively unsaturated sites) in MOF materials can
improve the capacity compared to the corresponding electrode without MOF. The OMSs are
beneficial to bind with O,. They also participate in the cleavage of the O, intermolecular bond
during the discharge, as well as the O-O reformation during the charge [16]. For instance, the
porous OMS-containing Mn-MOF-74 shows a high discharge capacity of 9420 mAh/g. The
initial discharge capacity of a similar structure Mn-MOF-74 without accessible OMS (terminal
water on metal cluster) is 30% lower than with the accessible OMS [20]. Besides, the Mn-MOF-
74 solids show a gain of polarization of 0.62 V compared to the carbon black electrode [25].
This evidences the contributions of OMS to the capacity as well as to the reduction of
overpotentials in a MOF-based Li-O; battery.

We have reproduced Li's experiment with MOF-5 and Cs, electrodes, and studied the
MIL-53(Al) performance under similar conditions (with low MOF content electrode formulation).
Li et al. reported only one capacity value for each material studied without mentioning the
reproducibility [20]. When looking at our best result with MOF-5 electrodes, we are indeed
approaching the value of Li et al. We however in our case bring more with reproducibility
experiments which show lower mean value, while it is unclear if Li's data is the best they
obtained or a reliable result. Besides, our Cs, electrode delivers a capacity of ca. 3300 mAh/g,
which is 1200 mAh/g superior to Li's work. It is possible that the higher mass loading used here
contributes to the improvement of capacity [26]. Otherwise, this difference in capacity may be
also attributed to the LiO, growth mechanism ensured by solvent. Following the model
proposed by McCloskey et al. [27], the DME we used here with higher DN than TEGDME used
by Li et al. [20] favors the stable solvation of Li* and intermediate O species, thus inducing an
increased capacity.

When looking at the performance of the flexible H-MIL-53(Al) electrodes, we show that
it presents a high initial discharge capacity with an average of 2106 mAh/g and a maximum up
to 3387 mAh/g, which is comparable with the discharge capacities obtained for MOF-5 and Csp.
Although the external surface areas of both compounds are in the same range, we can note
that the overall surface area is much higher for H-MIL-53(Al) compared to Cs,. Regarding our
present result, a high surface area is not sufficient to enhance the electrochemical performance.

While the best or the mean initial discharge capacity of H-MIL-53(Al) is over 2-fold
higher than the MOF-5, the uptake of O, of MIL-53(Al) is similar to the coordination-saturated
MOF-5 (5.5 mg/g at 288K for MIL-53(Al) [28] and 6.6 mg/g at 273 K for MOF-5 [20]). Thus, the
superior performance of MIL-53(Al) compared to MOEF-5 in the Li-O; battery is most probably
promoted by the flexible structure. In other words, the flexible structure is beneficial for the
accommodation of discharge products in Li-O; batteries.

- 138 -



Chapter IV - Electrochemical properties

Upon exploring MIL-53(Al) electrodes, we have assumed that the flexibility of the
framework may hinder their performance in the Li-O, batteries, explaining the lower capacities
obtained in comparison to MOF reported by Li et al. At first, the narrow pore limits the storage
capacity of the Li,O,, its deposition could quickly fill entirely the pores. Besides, it may also
prevent the decomposition of Li,O, during the charge, as these particles might be held tight
by the narrow pores for MIL-53(Al). While for the alternative MIL-53(Fe), the pores are fully
open upon absorption of solvent molecules. A higher initial discharge capacity is delivered
(~2000 mAh/g). This pore-opening is believed to facilitate the deposition / decomposition of
Li>O,, thus resulting in the improved initial discharge capacity. Yet the capacities are still far
from the 9420 mAh/g obtained with an OMS-based MOF [20]. Moreover, the MIL-53(Fe) shows
a charge potential of near 4.3 V, as high as with the pure Cs, electrode, illustrating a lack of
OER catalytic activity for the framework. As a result, such high charge potential may lead to
electrolyte decomposition [16]. In turn, the deposition of parasitic products, as well as the
residual Li.Oz, may thus increase the internal battery resistance, and cause a higher polarization
over cycling. Thus, the absence of catalytic sites in the MIL-53 series partly explains the more
modest capacities obtained in comparison to the literature. The use of efficient electrocatalysts
for OER, especially, is mandatory for better Li-O, performance.

IV.3.2. Reproducibility issues

Overall, in this thesis, numerous independent cells with MIL-53(Al) / MIL-53(Fe)
cathodes have been meticulously cycled targeting reproducible results to estimate the average
capacity of each system. However large discrepancies in initial discharge capacities have been
observed with MIL-53 electrodes.

In the case of a high MIL-53(Al) content electrode, a large discrepancy in discharge
capacity of MIL-53(Al) has been observed from 12 mAh/g to 1214 mAh/g (Figure IV-15). We
cannot attribute directly this large discrepancy to the failure of the flexible MIL-53 material, as
this phenomenon has been already reported with other carbon-based electrodes [7], [29]. In
contrast, several trends in capacity evolution over cycling are observed with MIL-53(Al) and
MIL-53(Fe) electrodes. In general, at the initial cycle, two-thirds of all tests are able to deliver
high discharge capacities, while the rest could only deliver a low discharge capacity with
MIL-53(Al) or a low charge capacity with MIL-53(Fe). Noteworthy, the reproducibility issue is
inherent in the Li-O; system, as described notably by Larcher et al. [29] For example, they
showed that initial discharge capacity ranges from 2 to 87 mAh/g for six individual cells with
homogenous carbon-fiber gas diffusion layer electrodes. Critical parameters of the cathode
may thus impact the reliability of the electrochemical performances. We are giving below some
possible insights.

At first, a non-uniform electrode distribution may affect the variation of capacity. In our
case, we have developed a standardized drop-casting procedure (Chapter 11.2.1.1) for a reliable
mass loading preparation around 1 mg/cm? for both MOF and Cs, electrodes. The final specific
mass loading of (MIL-53+Csp) are achieved between 0.8 to 1.5 mg/cm?, ie. 2.0 — 3.7 mg per
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electrode. This value of active material loading mass is widely used for air cathodes [30]-[32].
Figure IV-15 illustrates the initial discharge capacities of high MIL-53 content electrodes as well
as their specific loading mass. The results are plotted with the evolution of capacity. It indicated
clearly that there is no direct relationship between the capacities obtained and the specific
loading mass deviating around 1.0 mg/cm? Even having the same mass loading, electrodes
capacities could vary. For instance, for the fours electrodes with the same loading of
1.1 mg/cm? with MIL-53(Al) (Figure IV-15 (a)), a large discrepancy in their first capacities exists,
ranging from 700 to 1200 mAh/g. One possible hypothesis to these scattered results is the
inhomogeneous distribution of electrode components during electrode processing. According
to Lestriez et al. [33], not-well dispersed formulation and / or improper electrode processing
might result in inhomogeneous ink deposition from one electrode to another, such as the
agglomeration of the polymeric binder, excess of binder, or lack of conductive additives, etc.
However, the latter assumption seems untenable in our case. For the electrodes delivering
discharge capacities lower than 300 mAh/g at the first cycle, a large capacity up to 1000 mAh/g
can still be reached at the second cycle, except if the first cycle contributes to redistribution
and homogenization of species.
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Figure IV-15 : First discharge capacities of Li-O; battery (black lined square) with the
corresponding specific mass loading for (a) H-MIL-53(Al),(b) MW-MIL-53(Al), and (c) R-MIL-53(Fe)
electrodes. The capacities are measured with 23 similar cells in total. For MIL-53(Al) electrodes,
two behaviors are observed: capacities less than 300 mAh/g, and large capacities with more than
700 mAh/g. The results of each behavior are lined up. For MIL-53(Al) electrode, the capacities are
more centered at 2000 mAh/g.
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Apart from the specific mass loading of active material, another crucial parameter is the
accessible porosity, i.e. the active surface and pore size of the cathode material. As mentioned
in Chapter |, a larger pore size accommodates more Li>O, during the discharge process, while
the pore’s entrance easily clogs if the pore size is too small, preventing access to the inner pore
volume. The MIL-53(Al) samples present a type | N> adsorption isotherm (Appendix 3, Figure
A.-4), denoting that they are microporous materials. According to the IUPAC classification,
microporous materials have pore diameters up to 2 nm [34]. Based on previous research [35],
a pore size less than 10 nm might be too narrow for O, diffusion and might easily be blocked
during the cathode processing despite the use of a low binder content. Indeed, the XRD
patterns of both MIL-53(Al) pristine electrodes confirm the pore occupation by PVDF. While
for the anhydrous MIL-53(Al) the pores are open, they shrink upon adsorbing the PVDF
molecules, resulting in narrow pores (pore size = 19.6 A x8.8 A). This contraction may further
deteriorate the pore accessibility. Especially, the “sudden death” with a low discharge capacity
may be induced by several possible cloggings: the encapsulated PVDF, or also some electrolyte,
or degradation products, or the generated discharge product Li>O,. At the initial discharge, if
PVDF or electrolyte clog completely the pores, they thus impede the deposition of Li>O»
discharge products and lead to an abrupt voltage drop and an early end of discharge [9]. Upon
recharging, a possible activation process removing PVDF or the passivation layer may allow the
reopening of the pores, which facilitates the future accommodation of LiO, and O, diffusion.
As we observed earlier in Section IV.1.1, these latter electrodes allow to chase up discharge
capacities at the second cycle as high as other electrodes delivering their highest capacity at
the initial cycle. It may be possible that the PVDF-containing pores are unevenly distributed
between electrodes. Some electrodes may have more accessible pores and are therefore able
to show medium or high discharge capacity at the first cycle. This phenomenon may explain
the two trends observed and the lack of reproducibility of the MIL-53.

In the case of MIL-53(Fe), the anhydrous MIL-53(Fe) analogue allows, in contrast, an
enlargement of the pore dimension from its anhydrous form by adsorbing PVDF, with a pore
size of 18.5 A x 11.3 A (Chapter II1.3). It may explain why we do not have any reproducibility
issues at the first discharge with the Fe analogue. However, some of these electrodes exhibit
limited charge capacities at the first cycle. This early “sudden death” is probably related to
interface phenomena. The gradual shrinkage of Li,O, particles upon charging may induce a
disconnection of the LiO, from the substrate. Consequently, the lack of interface contact
blocks the electron transfer pathway, leading to the end of the charge. Still, the following
discharge process with new Li,O, formation rebuilds up the better Li,O, / electrode, Li,O, /
electrolyte interfaces, thus allowing a deep second charge.

For all MIL-53 electrodes, we have hardly observed reproducible capacities when
comparing electrodes at the same cycling number. Considering all aforementioned potential
impacts, the accessible porosity for Li.O> deposition still needs to be further controlled for
reliable results. It is worthy to measure the porosity of MIL-53_PVDF to further understand the
mechanism of Li,O, accommodation inside the pore of MIL-53 electrodes.
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Finally, we should keep in mind the intrinsic issue about the insulating Li>O>. Studies
have illustrated that a crucial Li,O; thickness of 5-10 nm could also impulse the “sudden death”
of discharge even on the glassy carbon electrode, as the Li* ion and electron transport through
the insulating Li>O; layer is too small to support equivalent electrochemical current [11]. Its
deposition strongly influences capacity. Thus, a suitable optimization between the deposited
Li>O; thickness and the capacity might be a key for achieving a long-life battery.

IV.4 Conclusion

In this chapter, we studied the electrochemical properties in Li-O batteries with MIL-
53 electrodes. The effect of several factors related to the MOF electrodes properties was
discussed, including the crystal size and flexibility. We investigated three flexible MIL-53
materials based on Al and Fe metal sites as the active material of air cathode in the Li-O;
batteries and we compared their behaviors with a rigid MOF and pure super P carbon (Csp)
electrodes.

Due to their high surface area, both porous MIL-53(Al) electrodes were expected to
deliver higher capacity compared to the Cs,. An average discharge capacity at the first
discharge of 1000 mAh/g is obtained for both MIL-53(Al), denoting their potential as cathodes
for Li-O, batteries. However, the highly porous MIL-53(Al) does not show superior capacities
and capacity retention than the pure Cs, electrode. This is mainly related to the poor electric
conductivity of insulating MOFs and to the pore size reduction upon adsorbing polymeric
binder during electrode preparation, which prevents the accommodation of the discharge
products. Interestingly, the discharge capacities for some electrodes are really low at the first
cycle compared to the second cycle. An activation process is then necessary in that case so as
to remove the possible passivation layer or the guest PVDF from the pores. Finally, we
discovered that the decomposition of discharge products in charge (OER) is almost completely
impeded in MIL-53(Al), as shown by the very limited charge capacities observed. Lack of
catalytic sites explains the poorly efficient OER, explaining the rapid capacity fading and limited
cyclability observed. As previously shown in Chapter Ill, the MIL-53(Al) presents closed pores
when impregnated with solvent. We suggest that the closed pores in MIL-53(Al) could be
hardly reopened for the decomposition of discharge products (OER) during the charge process.
Concerning the effect of morphology, we showed that the particle sizes of MIL-53(Al)
compounds (500 nm — 2 ym) do not play a role in the capacity delivery, as similar capacities
are reached with both synthesis methods.

Based on the poor charge capacity obtained with closed pores MIL-53(Al), we then
investigated the flexible R-MIL-53(Fe) showing opened pores with PVDF. Enhancements in both
discharge/charge capacities were obtained for R-MIL-53(Fe). The expansion in volume with
R-MIL-53(Fe) favors the accommodation of discharge products. The different breathing
behaviors result in higher discharge capacity deliveries with R-MIL-53(Fe) than MIL-53(Al) (in
average ~2000 mAh/g for R-MIL-53(Fe) vs. ~1000 mAh/g for MIL-53(Al)). Better ORR / OER
performances and cyclability could be obtained with the opened pore R-MIL-53(Fe). However,

- 142 -



Chapter IV - Electrochemical properties

for some R-MIL-53(Fe) electrodes, a delay in charge capacity delivery is observed due probably
to the clogging of the pore volume or obstruction of reaction sites while charging.

We finally compared the effect of the flexibility on the performance of the MOFs
cathodes by comparing two compounds with similar pore sizes: the flexible MIL-53(Al) and the
rigid structure MOF-5. As the PVDF is already occupied part of the pore volume of the MOF
material, the rigid MOF-5 has a restricted volume for accommodating discharge products. After
the activation process, the flexible MIL-53(Al) electrodes show higher discharge capacity than
MOF-5 electrodes (300 — 2000 mAh/g improvement in discharge capacities compared to MOF-
5 at the second cycle). The activation process allows an expansion in MIL-53(Al) pore volume
thus favoring a higher discharge capacity at the second cycle compared with the robust
framework MOF-5. This highlights the importance of porosity in promoting the Li-O; battery
performance. The flexible MIL-53 structure is promising for improving the Li-O, battery
performance compared to the rigid structure. Note that in this case high capacities above
1000 mAh/g are reached for MIL-53(Al) but with a formulation containing only 40 wt. % of
MOF instead of 65 wt. % when MIL-53(Al) and MIL-53(Fe) were compared. This appears
promising but deviates from our initial intent of using MOF as the major active material in the
Li-O; battery. Compared to either Cs, or porous rigid MOF-5, the flexible porous structure of
MIL-53(Al) is beneficial for the good capacity in Li-O, batteries. Furthermore, thanks to the
pore-opening, the MIL-53(Fe) provides better capacities than MIL-53(Al).

Overall, the poor electronic conductivity of all aforementioned MOF materials results in
a high polarization. The absence of catalytic sites contributes also to the high overpotentials,
leading to unsatisfactory ORR and OER in the Li-O: batteries. A general activation process in
the first cycle is assumed to be necessary for almost all porous MOF electrodes to remove the
possible passivation layer or the guest PVDF from the pores. The poor electronic conductivity
of insulating MOF makes the electrodes still less competitive than the pure Cs, carbon electrode
in terms of cyclability and delivered capacity. It is thus necessary to reduce the polarization of
MOF electrodes. Alternative catalytic additives, such as metal oxide or open metal site in the
framework, etc., will be interesting to improve the Li-O; battery performance.

Finally, we observed that our results (capacity, CE...) are highly scattered whatever the
considered MOF. Although this is a relatively common observation in Li-O, battery
investigation, and also not systematically addressed, we emitted some hypotheses for the
reproducibility issue. At first, non-uniform ink contents could lead to an inhomogeneous
distribution of porosity, which we proved to be indispensable for the air cathode. Besides, a
non-reversible pore opening, such as MIL-53(Al) with narrow pores, diminishes the reversible
charge process. This could cause a pore-clogging and a higher polarization by the insulating
Li>O, or parasitic products. Moreover, the loss of triple points during the cycling may lead to
sudden death in capacities. Further investigations are needed to address these issues and
improve the global performances of such electrodes.
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This chapter will present the ex situ analyses realized on discharged MIL-53 electrodes to
understand the electrochemical behavior of these materials. Various characterization
techniques are applied, including ex situ XRD, SEM, and XPS. The lithium peroxide (Li2O2) is
identified as the main discharge product on MIL-53 electrodes. Depending on the state of
discharge of each MIL-53 electrode, different LiO, morphologies are observed, including
platelets, toroids and pseudo-spheres.






Chapter V - Ex situ characterizations

V.1 Nature and morphology of discharge products

To perform ex situ characterizations on cycled MIL-53 electrodes, similar individual Li-
O batteries with MIL-53 electrodes were galvanostatically cycled for 1 discharge or for
10 discharges. The electrodes were immediately recovered at the end of discharge. Each
electrode was sectioned into small samples pieces for both XRD and SEM analyses. The
discharge products and active materials are easily removed by gentle DME rinsing. Hence, no
rinsing was applied on samples for XRD and SEM analyses to avoid discharge product loss.
However, rinsing was found mandatory for XPS measurements.

V.1.1. Ex situ X-ray diffraction

In order to identify the nature of the discharge products, the MIL-53 electrodes before
and after cycling were investigated by XRD. As the discharged products are highly air-sensitive,
it is necessary to record XRD diffractograms using an adequate sample protection. In this work,
we used a Kapton tape. Unfortunately, this tape gives a signal in Bragg-Brentano geometry
(with the Cu anode) which masks a non-negligible part of the signal from the electrodes. We
alternatively used the Mo anode diffractometer in transition geometry, whose incident source
allows us to go through the whole sample and the two Kapton tape layers, generating viable
diffraction signals. Figure V-1 illustrates the XRD patterns as a function of reciprocal lattice
distance 1/dna with both Mo and Cu anodes. The resolution with the Mo anode was not as
good as with the Cu anode; for example, the two first peaks for R-MIL-53(Fe) cannot be
separated. Yet we can still identify some peaks of the MIL-53 compound. The MIL-53 ink
powder samples reveal diffraction peaks for crystalline MIL-53, while Cs, and PVDF are
amorphous. An additional peak at 1/dna = 0.30 A is observed for all electrodes, corresponding
to the Toray carbon paper. Above all, we can hardly observe changes in MIL-53 on the patterns
acquired with Mo radiation but at least it is sufficient to identify the formation of discharge
products on the Kapton protected electrodes.
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Figure V-1 : XRD patterns as a function of reciprocal lattice distance 1/dn for all MIL-53
electrodes, ink powder, and MIL-53 pristine electrodes with Cu and Mo radiations. The Kapton
tape results in a large peak at 1/dnq = 0.17 A”". The Toray carbon paper results in a large intense
peak at 1/dn.= 0.30 A™".

Figure V-2 shows the ex situ XRD patterns collected after the first and the tenth
discharge for MIL-53(Al) electrodes along with XRD on pristine electrodes with or without
electrolyte soaking. By comparing the XRD patterns of pristine MIL-53(Al) electrodes and Csp
electrodes, we can attribute the first 20 peak to the MIL-53. After discharge, we observe a shift
in the 26 value of this peak (from 4.17° to 3.85° for pristine and discharged electrodes,
respectively), which evidences an evolution of the pore configuration of the MIL-53(Al) when
the discharge products are inserted inside the pores. Upon adding electrolyte on the pristine
electrodes, we observe additional peaks corresponding to the electrolyte (by comparison with
Csp electrode), meanwhile no MIL-53 peak evolution is observed, denoting the stability of the
MOF in the electrolyte solution.

After discharging the cells, lithium peroxide Li,O; is found as the main discharge
product for all MIL-53(Al) electrodes (Figure V-2). The diffraction peaks at 26 = 14.8°, 15.7°, and
26.1° correspond respectively to the (100), (101), and (110) Bragg peaks of crystalline Li>O [1].
The intensity of the main peak at 15.7° significantly increases with the number of discharges
for MIL-53(Al) electrodes, denoting a large accumulation of crystalline Li;O, products upon
cycling. As noted in Chapter IV.1, charge capacities are found very low in these electrodes due
to the limited OER reactions. Hence, the accumulation of Li»O, products on the electrode is
explained by the absence of Li,O, decomposition during the charge. Thus, the Li,O, observed
at the 10" discharge does not only arise from the Li,O, formed solely on the 10" discharge but
to the Li,O; products accumulated all along the ten cycles. XRD patterns were also recorded at
the end of the 10" charge. The main peak of Li,O; at 15.7° remains after the 10" charge, again
confirming the incomplete OER reaction, i.e. the incomplete decomposition of Li,O,. This is in
agreement with the evolution of the discharge and charge profiles upon cycling (Figure V-3).
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Figure V-2 : Ex situ XRD patterns of (a) H-MIL-53(Al) (blue) and (b) MW-MIL-53(Al) (red) after 1
discharge, 10 discharges, and 10 charges, as well as a comparison with Cs, pristine electrode, and
the pristine electrode impregnated with TM LiTFSI in DME electrolyte. The grey star marks indicate
the contributions from the Toray paper. The Li>O; is simulated according to crystal data PDF 01-
074-0115. To visualize the evolution of the Li;O; discharge product, solid lines represent the (100),
(101), and (110) Li>O; Bragg positions.
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Figure V-3 : Capacity evolution as a function of cycle number for Li-O; batteries with (left) 1-
discharged and (right) 10-discharged H-MIL-53(Al) (blue), MW-MIL-53(Al) (red) and R-MIL-53(Fe)
(red) electrodes. The discharge and charge capacities are shown with square and triangle,
respectively.
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The same studies were also performed for R-MIL-53(Fe) electrodes. By comparing the
XRD pattern of R-MIL-53(Fe) pristine electrode with the Cs, electrodes (Figure V-4), we can
deduce that the first peak at 26 = 4.5° is attributed to the R-MIL-53(Fe). After introducing the
electrolyte, we observe a new peak at 26 = 3.8°, denoting a significant structure transition of
the R-MIL-53(Fe). In contrast to the MIL-53(Al), guest molecules can fully open the pores of the
R-MIL-53(Fe) structure (e.g. this is the case of water molecules). When adding electrolyte
solution at the surface of the R-MIL-53(Fe) electrodes, we observe an evolution of the XRD
pattern, showing another breathing transition. After discharge, two additional peaks are
observed on both peaks at 26 = 3.8° and 4.5° positions. As a result, not only the LiTFSI in DME
electrolyte but also the discharge products influence the pore configuration of the R-MIL-
53(Fe). The characteristic peaks for crystalline Li-O, [1] are found on the electrode at first
discharge at 26 = 14.8°, 15.7°, and 26.1°. Meanwhile, these peaks become hardly visible after
ten discharges, which is in agreement with the low discharge capacity obtained at the 10™ cycle
(Figure V-3, Qion = 47.6 mAh/g). While the second plateau observed on the discharge of R-
MIL-53(Fe) electrodes is attributed to Li>O (see 1V.1.2), no crystalline Li;O is detected here. This
suggests the absence of Li,O or its formation in an amorphous state. As shown in Figure V-3,
R-MIL-53(Fe) presents a good reversibility with a deep OER during the charge process. In
contrast to MIL-53(Al), high charge capacities denote the decomposition of Li»O; at each cycle.
However, almost no capacity is delivered at the 10" cycle leading to few amounts of Li,O;
discharge product formed. It is possible that the growth of Li>O; at deep discharge causes the
expansion of the R-MIL-53(Fe), resulting in a loss of contact between electrode particles or
even a deformation of the R-MIL-53(Fe) structure [2]. However, no significant structure
evolution of R-MIL-53(Fe) between the first and the tenth discharge electrodes is observed
with XRD (Figure V-4).
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Above all, the lithium peroxide Li>O: is successfully identified by ex situ XRD as the main
discharge product on MIL-53 electrodes in the Li-Oz batteries, showing that the MIL-53 series
is a promising cathode material for Li-O, batteries. The inefficient OER with the MIL-53(Al)
compound implies no Li;O, decomposition during the charge and a significant accumulation
of Li,O, over cycles. The MIL-53(Fe) in turn has open pores transition upon adsorbing guests,
favoring deep OER on each cycle. However, the deep discharge may lead to the contact loss of
electrode particles or the deformation MIL-53(Fe), resulting in the rapid fading in capacity after
10 cycles. As suggested in Chapter IV, the poor electronic conductivity and the absence of
catalytic sites in the electrodes may also explain the capacity fading.

V.1.2. Ex situ scanning electronic microscopy

The morphology of the Li.O discharge product on MIL-53 electrodes was investigated
with SEM on the samples already analyzed by XRD in Chapter V.1.1. After disassembling the
batteries, these electrodes were quickly transferred into the analysis chamber of the
microscope, with an air exposure of less than one or two minutes. As the Li,O discharge
product is unstable under the electron beam, the acquisition time was shortened to prevent
Li>O from collapsing under the beam.
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Interestingly, different morphologies of the Li>O, discharge product are observed on
MIL-53 electrodes. The Li>O, forms vary among the MIL-53 series and also with the discharge
cycle number. Figure V-5 shows the SEM images of MIL-53 electrodes discharged once and
ten times.

After the first discharge, we observe toroidal (yellow circled) and thin platelet (pink
circled) Li,O; products for H-MIL-53(Al) and MW-MIL-53(Al) electrodes, respectively. Few Li>O»
toroids are also observed with the MW-MIL-53(Al). Some Li>O particles are isolated while
others are partially overlapping. The morphology of the Li,O, products is well reported in the
literature and is in fact dependent on current density [3], electrolyte [4], and capacity [1]. The
nature of the cathode also plays a role as different Li.O, morphologies can also be observed
across different reports with similar battery cycling conditions. For example, plate-like Li,O; is
observed on a XC 72 carbon electrode [5] while a crescent-like Li>O; is identified on the carbon
paper without loading active carbon [6]. Here, knowing that the cycling conditions are similar
for both MIL-53(Al) compounds, the difference of LiO, morphology observed seems to be
related to the MIL-53(Al) particles size or morphology. Consequently, the synthesis route of
the MIL-53(Al) influences the Li,O, formation mechanism. After 10 discharges, we observe an
evolution of the morphologies for both MIL-53(Al) electrodes. We observe toroids presenting
a shape close to Li>O; spheres and few small toroids for H-MIL-53(Al) electrodes, while in
contrary small toroids are observed for MW-MIL-53(Al) with few Li,O, spheres.

Compared to the Li>O; particles observed on MIL-53(Al) discharged electrodes, smaller
Li,O; particles are observed with R-MIL-53(Fe) discharged electrodes (Figure V-5). In this case,
the discharge products edges are not well defined compared with MIL-53(Al), which is probably
due to the presence of Li,O on the particles’ surface [5]. Besides, as the Li,O; is unstable under
the electron beam, the small toroids after one discharge collapse rapidly during the
observation (beam focusing on the sample). After ten discharges, tiny Li>O; toroids and bare
R-MIL-53(Fe) crystallites are visible. Besides, the electrode surface of R-MIL-53(Fe) is covered
with crumpled products that might arise from incompletely decomposed Li,O; toroids (brown
circled in Figure V-5) upon OER [5]. We can infer that these crumpled undecomposed discharge
products gradually accumulate and clog the pores, leading to the fading of the discharge
capacity upon cycling. At the end of the tenth discharge, only few Li,O; particles could form
due to the lack of remaining porosity.
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Figure V-5 : SEM images of pristine electrodes and different discharge product morphologies
deposited on the separator side of MIL-53 electrodes cycled at 50 mA/g after one discharge and
ten discharges. The SEM images for the first discharge H-MIL-53(Al) and R-MIL-53(Fe) electrodes
are obtained under an acceleration voltage of 1.5 kV, the other images are obtained under an
acceleration voltage of 3.0 kV.

In order to qualitatively compare the sizes of the Li>O; discharge products obtained for
the MIL-53 electrodes, we measured the discharge particle length for Li,O, particles with the
ImagelJ software. All visible individual discharge products (around 80-90 individuals for both
H-MIL-53(Al) / MW-MIL-53(Al) and 40-50 for R-MIL-53(Fe) on each image) were measured.
Figure V-6 shows the histogram of discharge particle size distribution of Li,O; particles. For the
H-MIL-53(Al), the small toroid diameter distribution at the end of the first discharge is found
at 358 + 42 nm. These Li;O; particle sizes are in the same order as Li,O; toroid size (300 —
400 nm) reported in the literature [6] The toroid size largely evolves after ten discharges, where
particles grow into pseudo-spheres and their diameters are more widely dispersed from
520 nmto 2.2 ym.
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Figure V-6 : Particle length distribution of the Li>O; discharge products measured on MIL-53
electrodes after one or ten discharges.

Different morphologies are observed with the MW-MIL-53(Al) electrodes. A
homogenous Li,O; particle morphology evolution is observed with MW-MIL-53(Al). After one
discharge, the electrode surface is covered with a homogenous discharge product deposition.
We observe two forms of Li,O; products in similar length sizes: almost all of them are platelet-
like while a few are toroidal. The Li2O: platelets and toroids have lengths concentrated at
299 + 41 nm. After ten discharges, the surface deposition is still homogenous but almost all
Li,O; particles are toroidal (random pseudo-spherical) with a diameter ranging from 550 nm to
1T um.

The size evolution of Li,O; is actively related to the discharge capacity [1]. Some reports
have illustrated that the toroids evolve from disk-like to spherical-like when increasing the
depth of discharge [1], [7]. At a low current density, the solution-mediate mechanism of Li>O.
growth is dominant, as the solvation of intermediate LiO, molecules occurs at a faster rate than
the direct electron transfer to the cathode surface, leading to the disproportionation of LiO; to
Li.O, in solution [8]. Upon exceeding its limited solubility (order of 1077'M) [9], the Li,O>
precipitates directly on the surface of the electrode at the nucleation site. In our case, no
efficient OER occurs with MIL-53(Al), thus Li,O; is retained on the electrode upon charging. As
a result, these residual Li,O; particles could serve as nucleation sites to generate larger particles
upon further cycling.
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Table V-1 presents the cumulated discharge and charge capacities for both H-MIL-
53(Al) and MW-MIL-53(Al) electrodes discharged ten times. We also calculated the difference
between the cumulated discharge capacities and the cumulated charge capacities of each
electrode. We consider that the discharge/charge capacities are directly related to the quantity
of Li,O, formed / decomposed. As shown in Table V-1, 80% of the discharge capacity obtained
along the 10 cycles is not reversibly reached on charge (ratio of the difference of the cumulated
discharge and charge capacities to the discharge capacities). Li.O, discharge products are thus
not degraded and accumulate inside the pores during the charge.

By combining these findings with the observed morphologies, we could predict a
possible LiO> growth mechanism related to the morphology of MIL-53(Al), (Figure V-7). We
propose that for the H-MIL-53(Al), Li.O> grows first on the surface of the MIL-53(Al) electrode
upon the first discharge. The platelet Li.O, forms for low discharge capacity and grows up into
toroids with the increasing of discharge capacity (926.4 mAh/g-platelet vs 1622.7 mAh/g-
toroid). In subsequent cycles, both Li,O; toroids accumulated during the first discharge and the
large H-MIL-53(Al) particles (2 ym) act as nucleation sites for the following Li.O, products
deposition. The deposition of new Li>O; on the toroids finally leads to the large Li.O, pseudo-
spheres (Figure V-7). In the case of MW-MIL-53(Al), the mechanism is similar, Li.O, grows on
accumulated Li>O; platelets together with homogenous smaller MW-MIL-53(Al) particles
(500 nm) into homogenous toroids.

Table V-1 : Cumulated discharge/charge capacities (Quaischarge/Qcharge) 0ver 10 cycles and the
difference between them for MIL-53 electrodes observed with SEM. 10D corresponds to 10
discharges.

Electrode H-10D MW-10D R-10D
Total f:t.lmulated discharge 1771 2122 4659
capacities (Quischarge)

Total cumulated charge capacities 347 435 3910

(Qcharge)

Cumulated Quischarge- Qcharge 1424 1687 749

%(Qdischarge' Qcharge)/Qdischarge 80% 80% 16%

Li»0» moroholo Pseudo-sphere Toroid & pseudo-  Platelet
2R P 9y & toroid (minor) sphere (minor) & toroid
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Figure V-7 : Proposed Li>O; growth mechanism on MIL-53(Al) electrode. The SEM images of Li>O>
are obtained in this work.

In contrast, the Li,O; particle size evolution is different with R-MIL-53(Fe). Only nano-
sized Li;O, platelets and toroids are found on both 1-discharged and
10-discharged electrodes. The Li;O, size after one discharge is centered at
171 £ 25 nm, which is much smaller than with any other MIL-53(Al) electrodes. Even after ten
discharges, the average Li;O; size is still smaller than those observed on
MIL-53(Al) electrodes (351 nm vs. 762 nm). As discussed in Chapter IV.2, R-MIL-53(Fe) delivers
advanced charge capacity during OER due to its open pores configuration compared to the
MIL-53(Al). This is illustrated in Table V-1, where only 16% of the cumulated discharge
capacities are not reversible. The satisfying ORR / OER favored a reversible formation /
decomposition process of Li,O, particles on the first cycles. A large part of Li>O; is thus
decomposed and not accumulated during the charge, as illustrated in Figure V-8. In contrast
to the close pores configuration in MIL-53(Al), the open pores of R-MIL-53(Fe) ensure the
accommodation of Li,O,. Even at the external surface of R-MIL-53(Fe) crystallites, new Li>O>
grows on each discharge on almost “fresh” surfaces, as confirmed by the SEM images. As shown
in Table V-1, the total charge capacity is higher for R-MIL-53(Fe) electrodes than for MIL-53(Al)
electrodes, certainly due to the difference of pore opening between the two MIL-53 analogues.
However, and even if the removal of Li>O: is substantial, we still observe crumpled toroidal
particles on the 10-discharged R-MIL-53(Fe) electrode, denoting some irreversibility in the OER
process.

platelet/toroid

233 2o

ORR

® Li,0, <@ MIL-53(Al) I Toray carbon paper

Figure V-8 : Proposed Li;O, growth mechanism on R-MIL-53(Fe) electrode. The SEM images of
Li,O; were obtained in this work.
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To conclude, we thus propose two distinct growth routes of Li>O; related to the MIL-
53(Al) and R-MIL-53(Fe) materials in the DME-based Li-O; battery. For MIL-53(Al) electrodes,
platelet Li;O, particles are firstly formed with low discharge capacity. With the increase in
cumulated discharge capacity, Li»O; platelets grow into toroids. As the OER is not efficient in
MIL-53(Al) electrodes, the Li,O, toroids are not decomposed on charge. In the following
discharges, Li>O: still accumulates on the electrode. The pseudo-spheres morphology suggests
that Li»O; on further discharges nucleates on the existing toroids from the first discharge. When
no Li>O, decomposition during OER exists (MIL-53(Al)), the morphology evolution of Li,O;
particles is directly related to the morphology of the MIL-53(Al) crystallites. Homogenous Li>O»
toroids form with MW-MIL-53(Al) crystallites while Li>O, particles with large dispersion in size
are observed with H-MIL-53(Al).

For the R-MIL-53(Fe) electrode, only small Li>O; platelets and toroids are observed. The
pores of the framework open while accommodating electrolyte and Li>O, discharge products
which may allow the formation of triple points. Li,O, largely decomposes at the charge in
contrast to MIL-53(Al). Thus, on further discharges, only small LiO, particles are formed on
bare R-MIL-53(Fe) crystals as previous Li,O; particles are degraded.

V.2 X-ray photoelectron spectroscopy investigations

A deeper study of discharge products was performed for H-MIL-53(Al) electrodes with
X-ray photoelectron spectroscopy. XPS analyses were conducted on the same electrodes
studied with XRD and SEM. Figure V-9 shows an overview of XPS survey spectra for all
electrodes.
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Figure V-9 : XPS spectra (Al Ka) for the pristine H-MIL-53(Al) electrode, and similar electrodes
after 1 discharge and 10 discharges in 1 M LiTFSI in DME.

- 159 -



Chapter V - Ex situ characterizations

Figure V-10 shows the high-resolution fitted XPS spectra for pristine and discharged H-
MIL-53(Al) electrodes after one and ten discharges. For the pristine electrode in the C 1s region,
the contribution at approximately 285 eV is fitted into two contributions from the sp? C=C
bond (284.4 eV) and the sp> C-C bond (284.8 eV) in the benzene ring of the dicarboxylate linker
of the framework. The latter peak might also come from the adventitious carbon on the surface.
Peaks at 286.5 eV and 288.6 eV binding energies are indexed to C-O and C=0O bonds,
respectively. The C-O and the C=0 bonds are also indexed by the peaks at 534.4 eV and
533.4 eV in the O 1s spectrum. These peaks are in accordance with the reported organic linker
of the MIL-53 compound in the literature [10]. Besides, one more peak is observed for the
pristine electrode and is attributed to the C-F bond (291.2 eV) from the -CF, group of PVDF
binder. After 1 or 10 discharges, lithium peroxide Li;O; is clearly confirmed as the main
discharge product, as shown by the peaks at 54.8 eV and 531.5 eV in the Li 1s region and the
O 1s region, respectively. Even though the discharged electrodes are rinsed with a few drops
of DME solvent to remove the electrolyte in excess, we still see some contributions from the
LiTFSI salt (at 56.1 eV in the Li 1s region, at 293.0 eV in the C 1s region, at 688.3 eV in the F 1s
region, and the doublet peaks at 169.3 eV and 170.5 eV in the S 2p region assigned to S 2ps,>
and S 2pi of the LiTFSI salt) [11]. Interestingly, additional doublet peaks (167.2 eV and
168.4 eV) are observed in the S 2p region for the discharged electrodes, corresponding to the
S=0 bond, most probably arising from the decomposition products of the electrolyte salt [11],
[12]. The peak at 56.1 eV in the Li 1s region could be attributed to the byproduct Li.COs as its
relative intensity towards the Li>O; increases over cycles [13].

. ! £ . .
o|C1s CH/CC| o|82p | | LiTFSI o |F1s fiLiTFsI | 5|O1s o|Lils 1 Lo,
~— A ~ 14 — g"l; — ~ . . [
2 5| 20, s | 5| LTFSI 4
@ ] @ §o 5] | & | Li,CO,4
< < < g ";‘ < 1 <
© © © : © S=0. ©

l c-o. ff
- - - : — [0-c=0; /i -
(] | (]
& > 5 A 5 /i |8
£ g 8 /i g ! S
[5} Q [&} R Y [5} N o
@ K2 k] A k7] | 2
© © T 1‘/ A LIF | T ! ©
: - o
/& PVDF ' ILi,0, Lo
é"l% |
¢ z el : | 2
3 g| Nolithium | g|  fi iz : % | Nolithium
= = — 1 — I —
o o o (N o o
_,JT'; N Bl S b N
1 T T 1 | - —T

292 288 284 172 168 692 688 684 536 532 528 60 56 52
Binding energy (eV) Binding energy (eV) Binding energy (eV) Binding energy (eV) Binding energy (eV)

Figure V-10 : High resolution ex situ XPS spectra of C 1s, S 2p, F 1s, O 1s, and Li 1s for pristine,
and 1 and 10-discharged H-MIL-53(Al) electrodes.
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Table V-2 summarizes the characteristic peak binding energies and the assignments of
the principal elements: C 1s, O 1s, F 1s, S 2p, and Li 1s.

Overall, the XPS characterization confirms again the presence of L0, on
H-MIL-53(Al) electrodes over cycles. Additionally, XPS evidenced the LiTFSI salt decomposition
since the first discharge in the DME-based Li-O; batteries. This side-reaction needs to be
considered for further developments of the Li-O, batteries.

Table V-2 : Binding energies (eV) and assignments from XPS peaks of the MIL-53 pristine
electrode, electrode after 1 discharge and after 10 discharges.

Assignment Assignment Assignment
284.4 C=C 284.8 C-C 284.8 C-C
284.8 C-C 285.7 Cc-0 286.1 Cc-O
C1s 286.5 c-0 288.8 C=0 288.9 C=0
288.6 Cc=0 293.0 CFs (LiTFSI) 293.1 CF3 (LiTFSI)
291.2 CF, (PVDF)
5334 C=0 5315 Li2O2 531.6 Li2O2
o1 534.4 c-O 5324 C=0/C-0 533.1 C=0/C-0
688.3 CF> (PVDF) 684.9 Li-F 688.9 CF2 (LiTFSI)
Fls 688.9 CF> (LiTFSI)
167.2 S=0 167.2 S$=0
168.4 S=0 168.4 S$=0
S2p No signal
169.3 LiTFSI 169.3 LiTFSI
170.5 LiTFSI 170.5 LiTFSI
54.8 Li>O; 54.1 Li.O»
Li 1s No signal 55.6 LiTFSI 56.1 LiTFSI
56.1 LiF/Li,CO3

V.3 Conclusion

In this chapter, we explored with ex situ analysis (XRD, SEM and XPS) the
H-MIL-53(Al), MW-MIL-53(Al), and R-MIL-53(Fe) electrode behaviors after the first and the
tenth discharge in the Li-O; batteries in a typical ether electrolyte (1 M LiTFSI in DME).

The structural characterization evidenced the continuous formation of crystalline
particles of Li>O as the main discharge product on both MIL-53(Al) electrodes according to
the XRD and SEM. A complementary chemical study with XPS revealed also the presence of
Li>O, on the MIL-53(Al) electrodes. Due to the lack of OER efficiency, Li.O, accumulated during
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the discharges and subsequent cycles, leading to an increase in the crystal size from nano- to
micro-sized Li,O, and a more densely packed layer of Li,O, with MIL-53(Al) electrodes. We
assumed that the Li>O, discharge product grows with the number of cycles on MIL-53(Al)
electrodes from platelets, to toroids, until pseudo-spheres, with the first discharge Li,O>
products acting as nucleation sites for the pseudo-spheres. It seems also that the homogeneity
of the Li,O; particles is directly linked to the homogeneity of the MIL-53(Al) crystallites. After
10 discharges, larger pseudo-spherical LiO. were obtained with micro-sized H-MIL-53(Al)
while homogenous toroids were observed with nano-sized MW-MIL-53(Al).

Conversely, the pore opening in R-MIL-53(Fe) probably favored the formation of triple
points thus allowing efficient decomposition of LiO, during the charge process. As deep OER
occurred, almost no Li;O; residues accumulate during the charge, and Li;O; is formed mainly
as nano-sized platelets or toroids. This confirms that the R-MIL-53(Fe) is the best of the MOFs
materials studied in this work.

Finally, the surface analysis on the MIL-53 electrodes highlighted the LiTFSI electrolyte
decomposition starting from the first discharge. This side-reaction needs thus to be considered
for further development of the Li-O; batteries.
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General conclusion

Energy storage will be more essential in the future than it has never been in the
past. The development of alternative energy is of the utmost importance because our
society needs to produce, transport, consume and store energy to keep its high
technological level and well-being. Lithium-ion battery holds in this area a prominent
place on the market. Nevertheless, its specific capacity and energy density seem to
reach their limits and they will be insufficient for the long-term needs of our society. It
is therefore necessary to develop a new technology of batteries offering new prospects
for capacity storage and safety, particularly in the automotive field. The Li-air batteries
are receiving intense interest today due to potentially much higher gravimetric energy
storage density compared to other technologies (1700 Wh/kg vs. 160 Wh/kg for
current Li-ion batteries, in practice). However, there are numerous scientific and
technical challenges of Li-air batteries to overcome, such as the rapid loss of
electrochemical performance after only few cycles and the issue of reproducibility.
Metal-Organic Frameworks (MOF) compounds have low density, high surface area, and
high porosity. Their open structure provides a host network for lithium ion and oxygen
diffusions and can potentially hosts catalytic sites. A sufficient space is also available
for the discharge products. Their practical use for electrochemical applications and
particularly for Li-air batteries should constitute a breakthrough; several MOFs have
shown promising first discharge capacities in Li-air batteries[1], however, since 2014 no
major studies have been reported regarding MOF performance and cyclability in Li-air
batteries.

The objective of the thesis was to study two flexible MOF materials - MIL-53(Al)
and MIL-53(Fe) - as potential active materials of air cathode in non-aqueous Li-O>
batteries.

Different methods were used for the syntheses of MIL-53 materials. The
electrochemical performances of MIL-53 electrodes were investigated with discharge-
charge cycling and the performances were related to several properties of MIL-53:
particle morphology, pore opening, and flexibility behavior. A combination of
conventional characterization techniques was implemented on the starting MIL-53
materials as well as on ex situ electrodes after cycling in order to identify the discharge
products.
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The downsizing of particles was at first supposed to improve material properties,
such as already reported for adsorption ability and for catalysis. The MIL-53(Al) was
obtained through both microwave-assisted hydrothermal and conventional
hydrothermal routes (MW-MIL-53(Al) and H-MIL-53(Al), respectively). Both MIL-53(Al)
materials have high BET (1390 m?/g for MW-MIL-53(Al) and 1240 m?/g for H-MIL-
53(Al)) and low external surface areas (48 m?/g for MW-MIL-53(Al) and 52 m?/g for H-
MIL-53(Al)). The microwave irradiation favored a homogenous particle size and small
crystallite formation while the conventional heating promoted the growth of larger
crystallites.

We showed that the downsizing of MIL-53(Al) did not improve as expected the
initial discharge capacity of the MOF electrodes in Li-O> batteries, but seemed to
influence the morphology of the main discharge product, Li>O>. Li.O> was indeed
confirmed as the main discharge product on the MIL-53 electrodes by XRD, SEM, and
XPS. The MIL-53(Al) is known for its narrow pores configuration while adsorbing guest
molecules. We found that the PVDF binder was confined in the pores of MIL-53(Al)
during electrode preparation, which restricted the pore re-opening of the framework
for hosting the discharge products. We observed two discharge-charge cycling
behaviors for both MIL-53(Al). For some electrodes, a first discharge capacity in a range
of 700 — 1200 mAh/g (at a current density of 50 mA/g) was obtained but no charge
capacity was delivered maybe due to the narrowed pore configuration of the MOF. The
accumulation of Li>O; or parasitic products prevented the next deposition of Li>O;, thus
a rapid fading in discharge capacity was observed. For other electrodes, very limited
discharge and charge capacities were delivered at the first cycle (less than 250 mAh/q),
and an activation process in the first cycle seemed to be necessary to reorganize the
guest molecules inside the pore and then wet the whole electrode. After the activation,
a high discharge capacity (700 — 1600 mAh/g) was delivered at the 2" cycle. As the
Li>O> did not decompose efficiently during the charge, the Li>O> gradually accumulated
over cycles. We visualized this accumulation through ex situ XRD and SEM. With the
increase of discharge capacity and cycle number, the Li>O, evolved from nano-sized
platelets to nano-sized toroids, to finally micro-sized pseudo-spheres, which nucleated
directly on the Li.O2 formed initially on the first discharge. Besides the rapid capacity
fading behavior, starting from the first discharge, the decomposition of the LiTFSI-
based electrolyte was revealed by XPS, which could also decrease the battery
performance.
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Inspired by the narrowed pore behavior for MIL-53(Al), we then investigated the
MIL-53(Fe), whose pores are in contrast opened by the guest molecules (and here the
PVDF binder). The MIL-53(Fe) was synthesized with the reflux method. MIL-53(Fe)
delivered first discharge capacities of around 2000 mAh/g, which is almost two times
higher than MIL-53(Al). We thus deduced that the pore opening favored the
accommodating of LiO>. Moreover, MIL-53(Fe) allowed deep OER on each cycle, with
few Li>O> remaining after the charge. However, certain MIL-53(Fe) electrodes suffered
from limited initial charge capacities. It seems that the MIL-53(Fe) cathodes have
limitations in charge transfer or obstruction of active sites. Moreover, the capacity still
faded upon few cycles. During the charge, pores shrank with the Li.O> decomposition,
and the possible tri-phase boundary might be lost during this process, leading to a
decrease of charge capacity. We could observe some coverage of crumpled discharge
products formed during charging after 10 discharges, denoting still some irreversibility
in the OER.

We finally compared the effect of flexibility and rigidity of MOF materials on
their electrochemical performances by comparing the flexible H-MIL-53(Al) and an
already reported rigid MOF with the same organic linker (MOF-5) [1]. A low MOF
content was used for both materials to allow a direct comparison with the literature.
We found a median initial discharge capacity of MOF-5 around 750 mAh/g and a
maximum of 1390 mAh/g. The median is approximatively 2-fold lower while the
maximum is approaching the capacity obtained with MOF-5 in the literature (1780
mAh/g) [1]. In the same way as MIL-53(Al), an activation behavior at the first cycle was
also observed with the MOF-5 despite the rigid structure. Even though we found
previously that MIL-53(Al) was less competitive than the MIL-53(Fe) as air cathode, we
demonstrated here that the flexibility of MIL-53(Al) still allowed enhanced
electrochemical performance compared to the rigid MOF-5, especially for the MOF
electrodes that underwent the activation process. However, we cannot attribute the
elevated capacity observed in this case solely to the MIL-53(Al), as the electronic
conductivity was also improved with the increased Csp content in the electrode
formulation.

In comparison, all involved MIL-53 materials suffered from higher charge and
discharge overpotentials compared to a Csp electrode. These behaviors suggest a
limited electronic conductivity of MIL-53 or some limits in species transport inside the
cathode. The low performance of the high MIL-53 content electrode could be explained
by two factors: one is the low electronic conductivity of the MIL-53 electrode, and
another is the lack of catalytic site within the framework.
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Above all, our work demonstrated that the pore opening ability associated with
flexibility is a key feature for high-performance MOF-based Li-O, battery cathode
materials. This property improved the capability to accommodate and decompose the
LiO2 products. Nonetheless, to overcome the MOFs' low conductivity drawback, we
envision the design of new materials, in particular the synthesis of MOF/C composites
including highly conductive agents such as Ketjenblack or graphene oxide[2], [3].
Combining the high conductivity of carbon with the high porosity and flexibility of the
MOF could be an efficient way to enhance the electrochemical properties of MIL-53
electrodes for Li-O> batteries. For the most optimal components, high-rate cycling and
cyclability investigations will provide significant insights on their electrochemical
behavior. Beyond MIL-53s, other flexible porous materials hosting catalytic sites are
also worthy to investigate targeting to improvement in OER and cyclability, such as
MIL-101 [4]. The presence of catalytic sites may decrease the overpotentials in Li-O>
batteries compared to MIL-53.

As only few pristine MOFs were reported as air cathode material in Li-O>
batteries, there is still a lack of understanding in ORR / OER mechanisms involved in
these materials. Apart from the ex situ SEM and XPS used in this work, complementary
characterization techniques, such as FTIR, mass spectroscopy, online electrochemical
mass spectrometry, electron paramagnetic resonance spectroscopy, or operando NMR,
are potential techniques to implement to get a clearer view of the reaction mechanisms
as well as the comprehension of the rapid capacity fading behavior [4,5]. Finally, the
activation process needs to be investigated and rationalized. For example, one possible
way is to examining the available porosity probe the available porosity by pulsed field
gradient NMR [5].
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Appendix 1- List of chemical products

Product Brand Purity
Al(NOs3)3+9H.0 Sigma-Aldrich 99.99 %

Ar Air Products BIP X50S H,O < 20 ppb, Oz < 10 ppb
BDC Sigma-Aldrich 99+ %

CHCls Carbo Erba For analysis
Deionized H,O Direct-Q 3 UV 18.2 MQ.cm at 25°C
DME Acros Organics 99.50 %

DMF Carlo Erba For analysis

EtOH Carlo Erba Pure

FeCl3+6H.0 Sigma-Aldrich > 99 %

HCI VMR 37 % analytic

Li Sigma-Aldrich 99.90 %

LiTFSI Solvionic 99.90 %

MeOH VWR For analysis

NMP Acros Organics 99 %, extra pure

02 Air Products Ultrapure X20S, H.O < 1ppm
PVDF Arkema Kynar 2801

Csp Alfa Aesar 100 %

TEA Sigma-Aldrich For synthesis

Toray carbon paper Alfa Aesar TGH-H-60

Zn(OAc) Sigma-Aldrich 9999 %
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1.a. Synthesis procedure

dimethylformamide (DMF), according to the procedure described by Yaghi et al [1]. with a
mass scale-down of reagents by half. The synthesis precursors are shown in Figure A.-1.
Typically, a mixture of benzene-1,4-dicarboxylic acid (H.BDC) and trimethylamine (TEA) with a
molar ratio of 1:2 are dissolved in 100 mL DMF (named as organic solution). A 2.5 equivalent
of zinc acetate (Zn(OAc),) salt is dissolved in 125 mL of DMF (named as zinc solution). Each
solution is agitated for 30 min. The zinc solution is added to the organic solution and the global

mixture is stirred for 3 h (Figure A.-1). A white precipitation is observed immediately after

mixing the two solutions.

organic solution zinc solution

Figure A.-1 : Schematic representation of reflux MOF-5 synthesis. The organic and zinc solutions

were stirred separately for 30 min. They were then mixed under stirring for 3 h with reflux.

stirring 30 min
at room temperature

The synthesis of MOF-5 is performed via reflux synthesis at room temperature in N,N-

S

Y
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The precipitate is centrifuged and immersed with 60 mL of DMF overnight in order to
remove the unreacted acid. The DMF inside the pores is exchanged in multiple steps with DMF
and chloroform (CHCIs). After the last filtration, the DMF in MOF-5 is exchanged 4 times over
7 days with 90 mL of chloroform. The obtained residue is activated at 120 °C in a Blichi oven
under vacuum for 48 h and then transferred into the Ar glove box without air exposure. We
obtained a white powder (Figure A.-2) with a yield of 53.5 % regarding the molar mass of zinc

salt.

Figure A.-2 :  Photograph of the activated MOF-5. The activated sample was stored in the Ar

glove box without any exposure to the air.

1.b. Structural characterization

XRD analysis of the activated MOF-5 is performed with Kapton tape protection in
transmission mode with the Mo anode (Akx = 0.70932 A). The XRD pattern confirms that the
activated solid corresponds to the MOF-5 solid as reported in the literature [1]. It matches with
the MOF-5 Bragg positions (Figure A.-3). It is known that MOF-5 is water-sensitive, leading to
an irreversible formation towards a new phase - MOF-69c [2], [3]. An additional peak at 20 =
8.9° rises during the XRD acquisition with Cu-Kat irradiation in air (less tha 5 min) (Figure A.- 4).
As we have limit acces to an suitable sample protection for the Cu-sourced diffractometer, we
then repeat the acquisition with the Kapton protection under Mo irradiation, who is less
sensible to the Kapton tape. This time we could only abserve a tiny hump with Mo irradiation,
which can not tell significantly the impurity’s presence. Considering the hydroreactivity of
MOF-5 and a quick irreversible phase transition from MOF-5 towards MOF-69c in air, the dried
MOF-5 powder has been stored in the Ar glove box without exposure to air. No more other

physical characterizations are performed for MOF-5 powder, especially BET measurement, and
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TGA, that requires preparation in air for a certain period of time (longer than 10 min) before

analysis.

MOF-5
I Bragg position
-
=
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-
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»
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Figure A.-3 : XRD pattern of the MOF-5. The tic marks indicate the Bragg position of the MOF-5
[4]. The sample is proteched with a Kapton layer.
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Figure A.- 4 : XRD pattern of MOF-5. The sample is exposed to air during the acquisition (5 min).
Additional peak at 26 = 8.9° is attributed to the new phase MOF-69c upong hydration [3].
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—— MOF-5, air exposure, Cu-Ka
—— MOF-5, air exposure, Mo-Ka
—— MOF-5, Mo-Ka

|
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Figure A.- 5 : Comparison of XRD patterns for MOF-5 fresh-synthesized with Mo K« irradiation
and MOF-5 exposed to air with both Mo- and Cu-Ka irradiations.
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Figure A.-6 : Nitrogen adsorption isotherm of H-MIL-53(Al) and MW-MIL-53(Al) at 77 K.
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For comparative investigation of MIL-53 and MOF-5 cathode performance in Li-O;
batteries, similar batteries based on the pure carbon (Csp) cathode are investigated. The
electrode processing procedure is described in Chapter I1.2. Two Cp electrode formulations are

prepared:
(1) in 80/20 wt. % of Csp,/PVDF; and
(2) in 90/10 wt. % of Csp/PVDF.

The Cp electrode in formulation (1) is considered as a comparison for the reported low
MOF-5 content electrode [1], and the Cs;, electrode in formulation (2) is used as a comparison
for the high MIL-53 content electrode. The mass loading of Cs, on each electrode is about 1.0
mg/cm? for both formulations. To reproduce the results for each formulation, three individual
batteries are cycled according to the conditions described in Chapter Il.2. Here we present the

cycling performance of C, electrode.

Prior to the discharge — charge cycling, all Li — O, batteries with Cs, electrodes are rest
at open circuit to ensure the electrode wetting and diffusion of O, within the Cs, cathode. The
open circuit voltage is stabilized at about 2.8 to 2.9 V, which is close to the theoretical value

(2.96 V) [2].
1.a. Formulation (1) : 80 / 20 wt.% of Csp / PVDF

The discharge — charge profiles of Cs in formulation (1) are illustrated in Figure A.- 7
(a). The first discharge profile of Cs, electrode is characterized by a plateau at ca. 2.7 V, which
corresponds to the formation of Li>O, [3]. The first discharge capacity is ca. 3300 mAh/g
between (3292 - 3327 mAh/g). Our capacities are about 1000 mA/g higher than the work of Li
(2170 mAh/qg) [1]. It is possible that our higher mass loading contributes to the improvement
of capacity (1 mg/cm? vs. 0.5 mg/cm?). Otherwise, this difference in capacity may be also
attributed to the Li2O. growth mechanism ensured by solvent [4]. Following the model
proposed by McCloskey et al. [5], the DME with higher DN than TEGDME favors the stable
solvation of Li* and intermediate O, species, thus inducing an increased capacity. The first

charge profile of Csp electrode starts from a slope followed by a plateau at ca. 4.3 V. The charge
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voltage corresponds to the reported value for Cs, electrode [6]. Such a high overpotential in
charge, idem. 1.4V, is actively related to the sluggish OER of the Li-O; batteries [2]. The first

charge capacity of over 3000 mAh/g is delivered, with a coulombic efficiency of ca. 100%.

We notice that the charge profile at the first cycle is slightly different from the rest
cycles, the slope at the low overpotential becomes less mild over cycling. Shao-Horn et al.
suggest that the slope-stage is responsible for the surface decomposition and the plateau
stage represents the bulk decomposition of Li,O; at high overpotential [7]. According to their
study, we may deduce that smaller Li,O, particles (i.e. sphere), which have a larger surface /
volume ratio are generated at the end of the first discharge, which accounts for a larger fraction
of the lower overpotential surface delithiation. And since the second discharge, larger Li>O,

particles (i.e. toroid) are generated and less surface delithiation is performed.

1

1.5 1 T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Capacity (mAh/g)

Figure A.- 7 : (a) Discharge - charge cycling profiles of the Li-O; battery with Cs, electrode (in 80
/ 20 wt. % of Cs, / PVDF). The first and the second cycle profiles are represented respectively in

purple solid and dash lines, while cycles 3 to 10 are represented in black solid lines.

For the sake of clarity, we plot the discharge / charge capacities of Cy, electrode over
cycling as a function of cycling number (Figure A.- 8). At the second cycle, there is a significant
capacity fading of about 1000 mAh/g in both discharge and charge. We observe In the next
cycles, although the capacity does fade, the rate of fade slows. A discharge capacity of ca. 1250
mA-h/g is still obtained after 10 cycles. The overpotentials of discharge / charge increase
gradually over cycles. At the tenth cycle, we observe a variation of ca. 0.1 V in both

overpotentials. Similar Cs, cycling behaviors are also observed by Bruce et al. with ether-based
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electrolytes [6]. The rising overpotential in charge / discharge results actively from the
limitation of charge transfer across insulating Li>O, on the Cs, electrode [8]. Moreover, additive
contribution may be the possible formation of side products (i.e. Li»COs) [8]. These latter species
require high potential to decompose, which in turn destabilize the electrolyte and cause also
parasitic products [8]. As a result, they could not be deeply removed due to the potential barrier.
Their accumulation may decrease the tri-phase boundary hence limiting the diffusion of Li*
ions and O, thus diminishing the ORR / OER [9]. A less active surface is available for the next

deposition of Li>O,.
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Figure A.- 8 : (a) Discharge - charge capacities of the Li-O, battery as a function of cycle number
with Cs, electrode (in 80 / 20 wt. % of Cs, / PVDF).

1.b. Formulation (2) : 90 / 10 wt. % Csp / PVDF

The higher Cs, content electrodes behave the same at the first cycle as those lower Cs,
content electrodes (80 / 20 wt.%). The initial discharge capacities are dispersed between 3143
— 3551 mAh/g. We present here the example discharge — charge profiles of the Cs, electrode
with the median initial capacities in Figure A.-9 (a). This Csp electrode formulation shares the
same initial discharge and charge potentials (idem. 2.7 V and 4.3 V, respectively) with the last
formulation. It seems that such a difference in Cs, content does not affect their initial cycle
performance. However, we notice a quicker capacity fading within the high Cs, content
electrodes. For example, the example shown here in Figure A.-9 (b) results in a discharge

capacity of less than 150 mAh/g. Even for the highest-discharge-capacity electrode, it remains

- 182 -



Appendix 4 - C,, cathode electrochemical performance

ca. 610 mah/g at the tenth discharge, which is still twice less than the low Cy, content electrode.
This difference capacity fading evolution may suffer from two factors. The first is the electrode
wetting issue related to the binder content [10]. Besides, high Cs, content might be responsible
for a larger fraction of side reactions compared to the formulation, especially, the side products
could diminish the electrochemical behaviors as early mentioned in last section. Further
quantification is required to understand this issue. However, this deviates from the main
subject of the work. We keep focusing on the performance of MOF as active material
performance in the main text. But this point of investigation keeps an open door for battery

performance optimization.
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Figure A.-9 : (a) Discharge-charge cycling profile of the Li-O; battery with Cs, electrode (in 90 /
10 wt. % of Cs,/PVDF. The first and the second cycle profiles are represented respectively in purple
solid and dash lines, while cycles 3 to 10 are represented in black solid lines. (b) The corresponding

discharge / charge capacities with the evolution of cycle number.
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1.a. XRD
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Figure A.- 10 : XRD patterns of pristine, 1 discharged, and 10 discharged Cs, electrode (90 / 10

wt. %).
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1.b. MEB
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Figure A.- 11 : SEM images of 1 discharged, 2 discharged and pristine Cs, electrode (90 / 10 wt.%).
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