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Abstract 
 

Reversible photoswitchable fluorescent proteins (RSFPs) are fluorescent proteins (FP) that 

can be reversibly toggled back and forward between a fluorescent on-state and a non-

fluorescent off-state and thus allow to achieve super-resolution in fluorescence microscopy 

(e.g., in reversible saturable optical fluorescence transition – RESOLFT – microscopy). Even 

though their photo-physical parameters (switching and fluorescence quantum yield…) are 

linked to the image resolution and the image acquisition speed, the switching mechanism that 

controls these parameters is still a matter of debate. This thesis is focused on elucidating the 

photodynamics of rsEGFP2, a negative RSFP variant of the aqua victoria green fluorescent 

protein (avGFP). The rsEGFP2 is currently the reference fluorescent marker in RESOLFT 

microscopy. The Off to On switching involves a trans-to-cis isomerization and a proton 

transfer. It was previously highlighted that isomerization dynamics is characterized by a 

twisted chromophore which is formed at the picosecond time scale and restricted by the close 

proximity to the Valine 151. The mutation of Valine 151 into alanine (V151A) and leucine 

(V151L) showed that two different off-conformers exist. Their origin is presumably from a 

hula-twist and a one-bond-flip On to Off switching mechanism for V151L and V151A, 

respectively. In this thesis, we employed electronic and vibrational time-resolved absorption 

spectroscopy from the femtosecond to the minute time scales to study the photodynamics of 

wild-type rsEGPF2, V151A and V151L. These experiments were combined with the results 

of time-resolved crystallography obtained by collaborative groups. These two approaches 

permitted to infer the photo-switching mechanism of rsEGFP2 and its variants. Off to On 

photo-switching quantum yields of 11, 12 and 14% were estimated for WT, V151L and 

V151A, respectively. Such small differences were rationalized hypothesizing a common 

trans-to-cis isomerization via a sub-picosecond hula-twist mechanism, followed by 

microsecond preceding a sub-millisecond-scale multi-step deprotonation. Besides, the thesis 

also coped with the on-to-off dynamics of 20 other variants of rsEGFP2. From this study, it 

resulted that fluorescence and switching yield are controlled by the existence of at least two 

different ground states exhibiting a difference in the fluorescence lifetime of one order of 

magnitude (150 ps vs 2.3 ns). Overall, the outcomes of these studies will not only contribute 

to a better understanding of the photophysics of RSFPs but will also open newer perspectives 

towards the design of optimized RSFPs for advanced bio-imaging application. 
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Re sume  
 

Les protéines fluorescentes photocommutables réversibles (RSFP), qui peuvent être 

commutées de manière réversible entre un état fluorescent (forme On) et un état non 

fluorescent (forme Off), sont maintenant couramment utilisées dans les microscopies de 

fluorescence super-résolues. Leurs propriétés et caractéristiques photo-physiques (brillance, 

rendements quantiques de commutations et de fluorescence…) sont liées aux paramètres tels 

que la résolution et la vitesse d'acquisition de l'image. Cependant le mécanisme et la 

dynamique de commutation qui sont à l’origine de ces paramètres font toujours débat. Cette 

thèse porte sur l'élucidation de la photo-dynamique d'une RSFP négative, la protéine 

rsEGFP2, une protéine couramment utilisée dans les techniques de microscopie de 

fluorescence super-résolue. Des études antérieures ont montré que le processus de 

commutation Off vers On est un processus séquentiel d’isomérisation trans-vers-cis du 

chromophore à l’état excité suivi d’un transfert de proton à l’état fondamental. De plus un 

chromophore « twisté » se forme à l'échelle de temps de la picoseconde avec une dynamique 

contrainte par la proximité de la valine 151. La mutation de cette dernière en alanine (V151A) 

et leucine (V151L) conduit à l’existence de deux conformères différents pour les formes Off. 

Au cours de la thèse nous avons utilisé la spectroscopie d'absorption transitoire électronique 

et vibrationnelle de la femtoseconde jusqu’à la minute pour l’étude de la protéine sauvage, 

V151A et V151L. Nos résultats, combinés à ceux obtenus par cristallographie par nos 

collaborateurs, ont permis de proposer un mécanisme de photo-commutation Off vers On 

pour ces trois protéines. Plus particulièrement il a été montré que le rendement quantique de 

photo-commutation Off vers On est similaire, 11, 12 et 14% pour la protéine sauvage, V151L 

et V151A. Cette faible différence pour des formes off différentes a été rationalisée par 

l’existence d’un mécanisme d’isomérisation identique de type « hula-twist » avec un temps 

caractéristique sub-picoseconde suivie d’un réarrangement structural microseconde de la 

protéine à l’état fondamental et d’une déprotonation milliseconde. La dynamique de 

commutation On vers Off a été aussi étudiée pour 20 variants de la protéine rsEGP2. Les 

résultats montrent que les rendements quantiques de fluorescence et de commutation sont 

contrôlés par l'existence d'au moins deux états dans l’état fondamental qui sont caractérisés 

par des temps de vie de fluorescence très différents (150 ps et 2,3 ns). Les résultats de cette 

thèse devraient non seulement contribuer à la compréhension de la photo-dynamique des 

RSFPs mais aussi permettre de concevoir de nouvelles protéines optimisées pour la bio-

imagerie. 
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PAFP: Photo-activatable Fluorescent Protein 
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1 Introduction 
 

The interest of this thesis in the “reversible enhanced green fluorescent protein two” 

(rsEGFP2) is beyond the elucidation of the ultrafast photodynamics of another 

photoswitchable protein. rsEGFP2 is a fluorescent protein (FP) which is nowadays widely 

used as probe for bio-imaging in fluorescence microscopy, especially for nanoscopy. At first 

glance, the relation between the ultrafast photodynamics of the protein and its use as a marker 

for fluorescence imaging might not be obvious. Yet, these two aspects are correlated. To 

understand this relation, it is necessary to first explain the interest of the scientific community 

in FPs. This interest mainly results from the fact that FPs allow both live-cell imaging and 

single-molecule microscopy, which bring us into a new era of direct visualization of 

biological processes and molecular dynamics in real-time.  

Throughout the 19th century, several important findings, such as the discovery of the diastase 

enzyme1, the first explanation of a biochemical process (i.e. the alcoholic fermentation2), or 

the synthesis of “urea” (the first organic compound being synthesized outside of a living 

body3) have set the basis of biochemistry. New explanations for the different processes 

ongoing in living cells started to rise during the first half of the 20th century. Some of the 

most outstanding discoveries include those of DNA and RNA4,5, of the first antibiotic – 

penicillin – by Alexander Fleming, and of proteins for which Theodor Svedberg received the 

Nobel prize in 19266. By the early ‘50s, several complex biological processes such as the 

photosynthesis and the generation of ATP in mitochondria were explained. During the second 

half of the 20th century, the development of several basic techniques like chromatography, 

electrophoresis or centrifugation, together with more complex analytical spectroscopic 

techniques such as electron microscopy, nuclear magnetic resonance and x-ray 

crystallography – all supported by a massive development in computer science – gave rise to 

modern biochemistry. Thanks to all of these techniques, several breakthroughs in 

biochemistry were achieved. The most remarkable ones might be considered i. the revolution 

in gene expression through the work of Francis Crick, Severo Ochoa or Har Gobind Khorana 

amongst others6, ii. the elucidation of previously unimaginable aspects of cellular 

metabolism like the Krebs cycle7, and iii. the cloning of the first living being8. By the late 

https://www.thesaurus.com/browse/breakthrough
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‘80s, thousands of genes were sequenced and stored in the gene data bank GenBank9, several 

living organisms were cloned, hundreds of metabolic routes were described, and thousands 

of protein structures were elucidated and stored in protein the data bank (PDB)10. Nowadays, 

all these milestones represent biochemistry subfields known as genomics, genetic 

engineering, metabolomics and proteomics, respectively. Despite the enormous advances in 

these different biochemistry subfields, several biological processes occurring inside cells that 

are nowadays well studied, such as gene expression or cell division were still unclear or 

poorly described. This was mainly due to the absence of a tool that would allow scientists to 

monitor living organisms with sufficient spatial and temporal resolution. 

During the biochemistry revolution which took place throughout the second half of the 20th 

century, in the early ‘60s, a fluorescent protein was discovered in jellyfish11. As found out 

later, this protein is able to emit a photon thanks to an energy transfer from another protein12 

whose excitation is produced by a Ca2+ reaction (bioluminescence). This protein was named 

the Aqua-Victoria green fluorescent protein (avGFP or GFP). Thanks to the advances 

achieved in genetics, the protein sequence was determined13, and it was demonstrated that 

avGFP could be cloned14 and that other organisms could express it, preserving its 

fluorescence properties15,16. This observation marked the beginning of its use in molecular 

biology and biochemistry. The strong interest of the scientific community in avGFP and the 

advances in genetic engineering and mutagenesis significantly contributed to the design and 

development of new types of fluorescent proteins17. Today, many other fluorescent and non-

fluorescent GFP homologues are reported. In Figure 1.1, the most important avGFP 

mutagenesis-derived proteins are represented. The newly produced fluorescent proteins 

obtained through mutagenesis, together with the discoveries shortly after of new ones in a 

variety of sea organisms, such as reef corals18 and sea anemones19, have rendered GFPs some 

of the most useful tools in cell biology. All this success culminated with the 2008 Nobel Prize 

in chemistry20 awarded to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien for the 

discovery of avGFP, the demonstration of its expression in other living organisms and the 

development and understanding of the GFP proteins respectively. 
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Figure 1.1. Chart representing the main fluorescent proteins that have been genetically 

engineered from avGFP. The colour of the corresponding circles (Blue, Cyan, Green and 

Yellow) represents the range of fluorescent emission wavelengths. A grey circle represents a 

non-fluorescent protein, and a half-coloured circle represents a reversible switchable 

fluorescent protein (RSFP). Figure reproduced from the fluorescent protein data base. 
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GFP-like proteins are nowadays extensively used in biochemistry21. These proteins are 

usually utilized in sensors for the determination of pH and Ca2+ concentration, crucial 

features in living cells. They also allow spatial and temporal monitoring of an increasing 

number of phenomena, such as cellular transport, cell division, gene expression, protein 

localization, protein dynamics, protein-protein interactions, organelle inheritance and 

biogenesis. Even the molecular infection dynamics of viruses can be followed using GFP 

labeling22. Among the wide variety of applications of GFP-like proteins, the most important 

one is undoubtedly their use as markers in fluorescence microscopy23. While most small 

fluorescent molecules are toxic for living cells, fluorescent proteins such as GFPs are usually 

less harmful when tagging living cells. This distinctive property makes GFPs ideal markers 

for living cell imaging24.  

Furthermore, the fluorescence from single GFPs, together with the development of reversible 

switchable fluorescent proteins (RSFPs)25, has permitted to monitor biological processes and 

molecular dynamics not only in real-time but also at a spatial resolution higher than the 

optical diffraction limit in what is generally known as super-resolution fluorescence 

microscopy.  

Towards the end of the nineteenth century, Ernst Abbe26 and Lord Rayleigh27 formulated 

what is known as the optical “diffraction limit” in microscopy (Equation 1.1). The diffraction 

limit describes the impossibility to resolve two adjacent elements closer than about half the 

wavelength (λ) in the lateral (x,y) plane and even further apart in the longitudinal plane (z): 

𝑑 =
𝜆

2𝑛 𝑆𝑖𝑛𝛳
= 

𝜆

2𝑁𝐴
        Equation 1.1 

where λ is the wavelength of the incident light, n the refractive index of the medium being 

imaged and ϴ the incident angle. n Sin ϴ is also known as numerical aperture (NA). 

Assuming NA = 1 and considering an emission wavelength of 400 nm (blue) and 750 nm 

(red), the maximum lateral resolution achievable by a fluorescence microscope would be 

between 200 nm and 325 nm. In Figure 1.2, a comparison scheme between the diffraction 

limit and some small organic and biological structures is represented. In the 20th century, the 

resolution in microscopy was increased by developing improved objectives and microscopes 

(featuring, for example, higher NAs). In the 21st century and 100 years after the formulation 
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of Abbe’s theory, on October 8th 2014, Eric Betzig, W.E. Moerner and Stefan Hell were 

awarded the Nobel Prize in chemistry for “the development of super-resolved fluorescence 

microscopy”28. These techniques exploit specific fluorescent markers and allow taking 

images with a resolution exceeding the aforementioned diffraction limit. Super-resolution 

fluorescence microscopy (also called “nanoscopy”) is one of the most powerful tools for 

imaging biological structures29, as it allows to visualize ongoing process within living cells 

with enough spatial resolution30. Together with electron microscopy, super-resolution 

fluorescence microscopy approaches are essential tools for bioimaging and exhibit the 

advantage (compared to electron microscopy) of enabling life imaging. 

 

Figure 1.2 Lateral resolution diffraction limit for optical microscopy compared to some 

small organic and biological structures. From left to right: mammalian cell, a bacteria, a 

mitochondrion, a coronavirus unit, a lipoprotein, and fullerene C60. This scheme has been 

designed with ink scape, with some figures retrieved from https://smart.servier.com. 

The super-resolution (SR) in fluorescent microscopy is based on fluorophores having bright 

(On) and dark (Off) emissive states and can be achieved mainly by two different approaches. 

The first method uses widefield fluorescence microscopes and is based on the localization of 

single fluorophores31 known as super-resolved single-fluorophore microscopy. Some of these 

techniques are PALM32, STORM33 and PAINT34. The basic principle of these techniques is 

to collect a large number of images over time and isolate the emission of individual 
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fluorophores active within a diffraction-limited volume (1 emitter per m3) at different 

acquisition times which will be otherwise spatially overlapping fluorophores. The final 

super-resolved images are obtained by reconstruction of all the localized emitters. The strong 

limitation of such approaches is that they require the presence of only one active emitter in a 

diffraction-limited volume per image. This results in the need of acquiring large numbers of 

images to obtain enough fluorophore switching events for a detailed reconstruction (i.e. long 

acquisition time). The development of new algorithms and methods, such as SOFI35 or 

SPIDER36, that enable localization also in high emitter density conditions, has recently 

permitted to overcome this issue. 

The second type of methods uses confocal microscopes. These techniques consist of 

physically deactivating the fluorescence near the focal point to obtain a subdiffraction limited 

spot. These methods are known as super-resolved ensemble fluorophore microscopy, with 

the most popular technique being STimulated Emission Depletion (STED37,38). Basically, the 

fluorophores are deactivated by a stimulated emission donut beam (Figure 1.3) before the 

spontaneous emission of a photon, and therefore high energy light sources are needed. 

Nowadays, thanks to the most advanced methods of this type of nanoscopy, it is possible to 

achieve up to 1-3 nm 3D multicolour resolution in cells39. 

More specifically, STED belongs to the category of REversible Saturable OpticaL 

Fluorescence Transitions (RESOLFT) techniques that are based on the ability of individual 

fluorophores to reversibly switch between an On (bright) and an Off (dark) state25. In STED, 

the excited and ground states are the bright and dark states. This is universal for all 

fluorophores, and the only disadvantage of STED is the use of high energy switching beams 

(stimulated emission donut-beam). However, there exist several types of markers that show 

intrinsic On and Off states. These are known as photochromic/photoswitchable fluorescent 

markers. With these markers, there is no competition of processes (stimulated vs spontaneous 

emission) when the fluorophore is photoswitched to its dark state, thus reducing the required 

energy to deactivate the fluorophore (Figure 1.3). These lower excitation energies yield the 

advantage of lowering the photo-damage of markers and biological tissues that highly intense 

STED beams can produce25. Reversibly photoswitchable fluorescent proteins (RSFPs), and, 

in particular, rsEGFP2 are the main markers used in RESOLFT. A RESOLFT microscope 
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setup is schematically depicted in Figure 1.3 and Figure 1.4 contains several RESOLFT 

images obtained with rsEGFP2 as a fluorescent marker. 

 

Figure 1.3. a) Example of RESOLFT experiments for a negative photoswitch absorbing at 

488 nm b) The typical beam sequence. The duration of each step depends on the 

photophysical properties of the chosen protein/markers. Figure made with Inkscape. 

RSFPs are conventionally classified according to their switching mode40.For positive RSFPs 

the light used to get fluorescence induces the switching from the Off to the On state. There 

are only four RSFPs of this type; the best-known is Padron. For negative RSFPs, the same 
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light is used to switch from the On to Off state and produces fluorescence. This category 

includes the majority of RSFPs, including rsEGFP2, the protein studied in this thesis. Apart 

from these two classes of RSFPs, there exist Dreiklang and Spoon that show switching 

separate from excitation.  

 

Figure1.4. Expression of various functional rsEGFP2 fusion proteins in mammalian cells. 

Scale bars: 10 μm. Reproduced from Grotjohann et al. 41. (A–E): PtK2 cells; (F): Vero cell.  

The different types of RSFPs will influence the image acquisition and the RESOLFT 

experiments40,42. As already mentioned, the photophysical parameters of these proteins 

control the resolution in RESOLFT microscopy. The most important ones are the brightness, 

the fatigue, the switching contrast and the switching speed which is linked to the switching 

yield and the cross-section of the On and Off state at the excitation and switching light. Some 

theoretical models based on Dronpa, which take into account the experimental acquisition 

parameters43, have shown that one of the parameters that mostly affect the final resolution is 

the On to Off switching quantum yield: in general, higher quantum yields reduce the 

switching time, which is beneficial. On the contrary, high On to Off quantum yield values 
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lead to very low fluorescence counts since during the readout time the protein also switches 

to the Off state. On to Off quantum yields around 1% were determined to be optimal43 for 

negative RSFPs. One of the advantages of using positive RSFPs is that the problem of the 

protein being turned Off during the readout phase is overcome since positive RSFPs are 

activated42 (Figure 1.3). 

In scanning microscopy techniques such as RESOLFT, proteins are switched between On to 

Off states several times. Therefore, fatigue and photobleaching are also fundamental 

parameters to consider43. As detailed in reference40, one of the most critical parameters for 

RESOLFT is fatigue, remarkably rsEGFP2 displays excellent resistance to fatigue at high 

and low irradiation intensities, combined with excellent tagging capabilities, typical of EGFP 

derivates. This renders this protein to be one of the preferend fluorescent tags for RESOLFT 

nanoscopy40,41. In a few seconds, tens of images with a resolution below 50 nm can be 

collected for small fields of view40. Some very similar variants of rsEGFP2 with improved 

characteristics that had also shown promising results are rsFolder44 and rsGreen45, as well as 

the fast photoswitching mutant of Dronpa, Dronpa-M159T46,47 (negative RSFPs). Despite the 

possibility of using different fluorescent proteins in RESOLFT, rsEGFP2 and rsEGFP48 

plasmid remain the only products sold by Aberrior instruments as markers for RESOLFT49. 

Some super-resolved images of different cells tagged with rsEGFP2 are displayed in Figure 

1.4 (reproduced from Grotjohann et al. 41). 

In general, resolution in RESOLFT has many technical and challenging aspects, but it has 

been demonstrated that it is directly correlated with different photophysical parameters of the 

fluorophore used. And this is also the case for other super-resolved microscopy techniques. 

Indeed, both methods (SR single-fluorophore and SR ensemble fluorophore microscopy) are 

based on the dynamics of the fluorophores to deactivate into non-fluorescent states. 

Therefore, the photophysical properties of the markers (e.g. absorption and emission spectra, 

brightness, switching yield) will determine the maximal image resolution and will affect the 

acquisition parameters that should be used to get the desired super-resolved image (excitation 

light, acquisition time, number of pixels…). It is then clear that many aspects of nanoscopy 

techniques, including the spatial resolution that can be finally achieved, are directly related 

to the nature of the fluorophore used43. These photophysical properties can be tuned for FPs 
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by mutagenesis: even a single mutation can have huge effects on their photophysical 

characteristics50. The avGFP is constituted by more than 200 amino acids13, and, thus, a 

rationalizing the design of the possible mutations is essential to finely tune such features. 

Therefore, it is fundamental to investigate the photophysical behavior of FPs, as this 

knowledge can provide essential hints on how mutants will behave and can deeply aid the 

design of new protein variants. The switching dynamics of RSFPs (except for Dreiklang and 

Spoon), mainly involves a cis-trans isomerization and a proton transfer. These 

photoreactions take place from the femtosecond to the millisecond time range after excitation 

and encompass different chromophore intermediates stabilized by the protein cage. The 

understanding of the role of the chromophore-protein interactions in the photodynamics of 

RSFPs can yield useful insights into possible new mutations and help with the design of 

novel optimized RSFPs for nanoimaging.  

To this end, it is then needed to follow the protein photoreaction dynamics with femtosecond 

time resolution. Time-resolved spectroscopies are essential techniques for this kind of 

studies. However, monitoring in “slow-motion” how chemical bonds are broken, formed or 

isomerized during a photochemical reaction and how molecules behave after the interaction 

with light is not trivial as the primary events of a photochemical reaction occur in the 

femtosecond (fs) time range – 1fs is equivalent to 10–15 seconds. The area studying reactions 

at extremely short timescales is known as “femtochemistry”.The fundamental ideas of 

molecules adopting particular configurations throughout a reaction at very short times were 

introduced in 1935 by Evans, Polanyi51, and Eyring52 as transition states. They hypothesized 

that transition states might have lifetimes similar to the time scale of molecular vibrations, 

and thus, it would ever be possible to perform experiments over such short times to confirm 

them. Several years after, in 1946, George Porter came to the idea of using light pulses to 

generate free radicals and follow their underlying reactions with another continuous lamp 

spectroscopically. These techniques are known as pump- probe spectroscopy, the light pulse 

is the pump which excites the molecules to a higher energy state triggering the reaction, 

which is follow by the continuous lamp, the probe. The first flash photolysis apparatus was 

constructed in the following year by George Porter and Ronald Norrish, both published in 

1949 the article “Chemical Reactions Produced by Very High Light Intensities” reporting the 

first-ever flashphotolysis experiment53 by which reactions were monitored at the 
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microsecond scale resolution. In the same years, Manfred Eigen developed techniques 

capable of following chemical reactions at the nanosecond time scale54. Porter, Norrish and 

Eigen received the Nobel prize in Chemistry in 1967 “for their studies of extremely fast 

chemical reactions, affected by disturbing the equilibrium by means of very short pulses of 

energy”55. Nevertheless, all these techniques were then limited by the detector, i.e. the time 

of conversion of a photon into an electric signal (few nanoseconds). The maximum time 

scales resolution that can be achieved with these techniques are still far from the hypothetic 

lifetimes of transition states (except singlet-triplet state transitions).  

In the late 1980s, a series of experiments performed by Ahmed H. Zewail and coworkers56–

60, gave birth to ultrafast spectroscopy and femtochemistry. They were able to capture for the 

first time molecular signals just in the transition state56. Their idea was to use a stroboscope 

probe light like the one used in a discotheque. Our eyes need about 30 ms to acquire an image. 

However, if a 1 millisecond short pulse is emitted by a stroboscope every 30 ms, the image 

captured by our eyes has a temporal resolution of 1 millisecond. This same principle is used 

in femtochemistry. Basically, two femtoseconds pulses which are in the time scale of 

molecular vibrations taking place between 10 and100 fs are exploited. Similar to the pump 

probe experiments introduced by Porter, Norrish and Eigen, there is flash pulse which excites 

the molecules to a higher energy state triggering the reaction (a femtosecond laser pulse), and 

a second femtosecond probe pulse (stroboscope pulse light) that arrives at a precise interval 

after the pump-pulse. The probe pulse captures a “picture” of the reaction with femtoseconds 

resolution. Using this approach, even if the detector takes few milliseconds to convert the 

signal (for example by a CCD camera) measured from the fs-probe, the final measurement 

has still a femtosecond resolution58,60. The crucial point is controlling with femtosecond 

precision, the arrival time of the probe and pump pulses. This can be done by an optical delay 

line. Indeed, a micrometer difference between the optical pathway of two beams translates 

into about ~3.3 fs time difference. The first reaction studied using this approach was the 

unimolecular disintegration of iodine cyanide into iodine atom and cyano radical59. Ahmed 

H. Zewail received the Nobel prize in Chemistry in 1999 “for his studies of the transition 

states of chemical reactions using femtosecond spectroscopy.” 61 

https://www.nobelprize.org/prizes/chemistry/1999/zewail/facts/
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The ensemble of techniques that use a laser pulse to excite a sample and induce changes 

which are then measured by a subsequent light pulse are known as pump-probe spectroscopic 

techniques and the most common one is time-resolved femtosecond transient absorption. 

This is the main technique that will be used in this thesis. The principles of these techniques 

will be review in Chapter 2. These approaches are generally classified according to the type 

of probe used (UV-Vis, IR), which, depending on its nature, will yield different information 

on the intermediate species. Only the combination of several of these techniques (UV-Vis, 

Raman, IR) allows building a precise scheme of the photoreactions that a molecule undergoes 

after light excitation. The example of bacteriorhodopsin (bR), which after excitation results 

in a complex photocycle, illustrates the aforementioned need of multiple time-resolved 

techniques. The photocycle, in fact, consists of at least seven intermediates of bR 

characterized by different visible transient absorption spectra and lifetimes ranging from 

femtoseconds to milliseconds. The longer-lifetime intermediates were studied using 

flashphotolysis techniques, which highlighted that the last reactive event occurs in a few 

ms62. The primary reaction steps of bR were investigated in the 1970s  and to explain them, 

the bicycle pedal isomerization mechanism occurring in the ps time scale was proposed63. 

These studies were lately revised, and alternative isomerization pathways were proposed in 

1985 by Liu et al. 64. At the end of the 20th century, new results came out revealing the 

existence of some intermediates in the fs time scale65. However, the nature of some of these 

intermediates remained elusive since the interpretation of the measured time-resolved spectra 

and the assignment of their characteristic peaks to a specific structure is not always 

straightforward. It was only with the development of synchrotron and free-electron lasers 

(FELs) that the primary structure of the fs intermediates of the bR photocycle became 

observable through X-ray diffraction experiments with sub-nanosecond resolution66,67. 

Nevertheless, some questions have been recently raised since such experiments are 

conducted on microcrystals using high energy pulses to excite the samples68. Only the 

comparison of the outcomes from time-resolved spectroscopy in solution and crystallography 

for crystals, allows building precise photo-dynamical schemes for complex systems such as 

proteins. 

Elucidating the structure and dynamics of RSFPs is a prerequisite for understanding their 

functioning69. As mentioned before, the most used techniques for investigating the RSFP 
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photodynamics are electronic time-resolved spectroscopy and, more specifically, 

femtosecond transient absorption UV-Vis-NIR (300 nm – 2000 nm) spectroscopy and 

nanosecond flash photolysis combined with emission decay measurements. The analysis of 

time-resolved spectroscopy data with advanced analysis tools yields the spectra and the 

kinetic time constants of a photodynamic system. This information is afterwards linked to 

atomic-scale structures that defined the molecular properties. Optimizing a property for a 

specific application is then an easier task since the interconnection between property and 

structure is known. This was the original idea of Dr. M. Weik when in 2013 he contacted Dr. 

M. Sliwa. His main objective was to create a French consortium promoting the combined use 

of time-resolved XFELs and ultrafast optical spectroscopy to determine (at the atomic scale 

and with temporal resolutions ranging from femtosecond to millisecond) the structures and 

kinetics of transient species with biological relevance (metastable photoproducts, excited 

states to name a few). They succeeded to obtain an ANR project, and I have been working 

within this project: ANR BioXFEL 2015-2022 (PI M. Weik IBS Grenoble, Co-PI M. Sliwa, 

Co-PI M. Cammarata U. Rennes, S. Boutet LCLS Stanford) elucidating structural 

intermediates of fluorescent proteins using X-ray free-electron lasers and ultra-fast UV-

visible and infrared spectroscopies. Before the beginning of my PhD work, measurements at 

LCLS combined with transient UV-Visible spectroscopy made it possible to characterize for 

the first time the geometry of the precursor of the cis-trans isomerization of rsEGPF270. 

These results opened the possibility of designing new RSFPs optimized for super-resolved 

fluorescence microscopy, and the photodynamics of these new variants was the principal 

topic of my thesis. The reasons behind the choice of rsEGPF2 and its variants will be detailed 

in Chapter 3, which positions this thesis with respect to previous findings. Throughout my 

PhD, I characterized their photo-stationary properties (Chapter 4) and inferred a photo-

dynamical scheme ranging from the femtosecond to the millisecond time scale using time-

resolved UV-Vis (LASIRE, Miyasaka Laboratory) and IR transient absorption (Rutherford 

Appleton Laboratory) for both the Off to On (chapter 5, article in preparation) and On to Off 

photodynamics (chapter 6, article in preparation). The details of the experiments are given in 

Chapter 2 and the materials and methods in Appendix 1. The combination of TR-SFX results 

(Grenoble) with those obtained by ultrafast optical spectroscopy experiments allowed to 

clarify the RSFP Off to On switching mechanism. During my PhD studies, I contributed to 
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the characterization of 19 rsEGFP2 variants that were designed by Dr. J.P. Colletier based 

on results from a TR-SFX experiment conducted on rsEGFP2 with the aim on understanding 

the fluorescence molecular bases (article in preparation). Additionally, I participated in an 

XFEL beam time in Japan (SACLA), where my main contribution was to in advance 

characterize the rsEGFP2 variants studied, allowing to propose time delays at which the 

different excited states would become visible to a TR-SFX delay allowing to build a 

rationalized photo-mechanical scheme for these new variants. Finally, the photodynamic 

studies of rsEGFP2 microcrystals, with different excitation powers, and robust analysis 

validate the TR-SFX measurements. I showed that the deprotonation time constants are faster 

in crystals than in solution (Nature Communcation 202071, second equal author). Finally, I 

also focused on the development of novel data analysis approaches. I have designed a new 

software named Ultra Pyfit to analyze time-resolved data in a robust fashion and interpret 

them also in the light of their intrinsic uncertainty (Appendix 2), with suggestions from Prof. 

C. Ruckebusch, a specialist in chemometrics. In summary, in my PhD thesis, I tried to 

combine state-of-the-art characterization approaches and advanced data analysis techniques 

in the attempt of achieving unprecedented insights into complex systems like RSFP.  
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2 Photodynamics of photoswitchable 
proteins: definitions and 

methodologies 

2.1. Outline 

The study of photoactive systems is usually done using different electromagnetic radiations. 

How these systems interact with or produce electromagnetic radiation is known as 

spectroscopy. Depending on the frequency domain of light, the different spectroscopies that 

exist will measure spectra (spectrometry) after light-system interaction. Four main 

phenomena are usually observed: (i). Absorption (which can lead to emission) (ii). Reflection 

(iii). Scattering and (iv) Diffraction1. Therefore, scientists have developed experimental 

techniques based on these phenomena to study the photo-dynamics of photoactive systems. 

One of the most common technique (also used in this thesis) is the use of UV-visible 

absorption spectroscopy. Reversible photoswitchable fluorescent proteins (RSFPs) interact 

with light by absorbance that leads to emission of light (fluorescence) and chemical reactions. 

Therefore, in the first section, we will give some basic principles of light absorption (further 

details can be found in more specialized books) and deactivation processes that occur after 

the absorption of a UV-Visible photon. This part is followed by some specific definitions 

regarding RSFPs. In the second part of this chapter, technical details on the different time-

resolved methods that allow to measure the photo-dynamics of RSFP will be given. This part 

will focus on the description of the different methods, which are important to understand the 

results presented in the following chapters. All the details of the time-resolved experiments 

and data analysis methods are given in Appendix 1. Then, as the switching mechanism of 

photoswitchable fluorescent proteins is based on cis-trans isomerization and proton transfer, 

the third part of the chapter will be devoted to giving some general definitions and 

characteristics of these two processes.  
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2.2. Absorption of UV-Visible light and de-activation processes  

2.2.1 Absorption of UV-Visible light 

The absorption of electromagnetic radiation by chemical compounds or atoms is a physical 

process that brings the systems into an excited state. Depending on the electromagnetic 

radiation energy, the excited state produced in the atom or molecule differs (e.g. UV-visible, 

electronic excited state; Infrared, vibrational excited state), and thus the information retrieved 

from the system varies. There are different spectroscopic techniques used to study the 

different domains of the electromagnetic spectrum, from X-ray absorption spectroscopy 

dealing with X-ray to nuclear magnetic resonance or electron spin resonance dealing with 

radio-waves. In this chapter, we will focus on interactions with UV-Visible light.  

When a chemical compound absorbs a visible or UV photon, an electron from a bonding or 

a non-bonding orbital is promoted to an unoccupied anti-bonding orbital. Generally, an 

electron from the first vibrational (v=) singlet spin multiplicity electronic ground state (S0) 

is excited to an electronic excited state, most commonly the first electronic state (S1). This 

transition occurs in 10-15 seconds without any movement of the nuclei2. This principle is 

known as the Franck-Condon principle.2–4 For an electronic transition to be possible, the final 

excited state must have the same vibrational momentum as the ground state, and since nuclei 

movement is much slower, the S0 and S1 energy surfaces should have the same nuclear 

coordinate3. In other words, the final nuclei position in the excited state must be compatible 

with the original nuclei position in the ground state. From the quantum mechanics point of 

view, the Franck-Condon principle allows separating the wave function of a molecular state 

into an electronic component and a nuclear (vibrational) component. This is known as the 

Born-Oppenheimer approximation5. The probability of a molecule to end up in any particular 

vibrational level is proportional to the square overlap of the vibrational wavefunctions of the 

states involved in the transition. 

Experimentally, the efficiency of light absorption at a wavelength by an absorbing species is 

characterized by the absorbance (A) that follows the Beer-Lambert law: 

 𝐴 =  𝜀𝑙𝐶  Equation 2.1 
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Where (ε) is the molar absorption coefficient, (l) is the optical path and (C) the concentration 

of absorbing species. The molar absorption coefficient quantifies the ability of a molecule to 

absorb light in a given medium and at a specific wavelength. Classically, molecular 

absorption of light can be described by considering the molecule as an oscillating dipole. A 

quantity called oscillator strength (𝑓) can be used, which is related to the integral of the 

absorption band as follows: 

 𝑓 = 2303
𝑚𝑐0

2

𝒩𝑎𝜋𝑒2𝑛
 ∫ 𝜀 (�̅�)𝑑�̅� =  

4.32×10−9

𝑛
 ∫ 𝜀 (�̅�)𝑑�̅�  Equation 2.2 

Where (m) is the electron mass, (c) the speed of light, (𝒩a) is the Avogadro’s number, (e) the 

electron charge (n) the diffraction index and (ε) is the molar absorption coefficient and (�̅�) is 

the wavenumber in cm-1. In theoretical chemistry, the transition moment is defined to 

characterize the transition between an initial state and a final state. The transition moment 

represents the transient dipole resulting from the displacement of charges during the 

transition, represented by µ⃗  in Equation 2.3, where Ψ1 and Ψ2 represent the wavefunctions of 

initial and final states. The oscillator strength (classical approach) and transition moment 

(quantum chemistry approach) are linked through the Einstein coefficient 𝐵12 (Equation 2.4). 

 𝐵12 = 
2𝜋

3ℎ2  |⟨Ψ1|µ⃗ |Ψ2⟩|
2 Equation 2.3 

 𝑓 =  
8𝜋2𝑚𝜈

3ℎ𝑒2  |⟨Ψ1|µ⃗ |Ψ2⟩|
2 = 

𝑚ℎ𝜈

𝜋𝑒2 𝐵12    Equation 2.4 

 

Qualitatively, the transition occurs from the lowest vibrational state of the ground state to the 

vibrational state of the excited state that resembles the most in terms of vibrational 

wavefunction. 

Figure 2.1.a and 2.1.b represent the electronic transitions obtained by the absorption of UV-

Visible photons in a diatomic molecule, where both the ground and first excited electronic 

states are represented using a Morse-like potential energy function.6 At room temperature, 

the most populated vibrational level of the electronic ground state is v= (Boltzmann 

distribution). Thus, the majority of absorption will occur from this level. For figure 2.1.a, the 

energy surface of the excited state is identical to the ground state. In this situation, the 
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electronic transitions do not generate any shift in the nuclei positions of the molecule. 

According to this diagram, the most probable transition is the S0 (v=) →S1(v=). On the 

contrary, for the case pictured in Figure 2.1.b, the potential energy surface of the excited state 

is quite different from the ground state. The electronic transitions from S0 to S1 arising from 

the Born-Oppenheimer approximation are “vertical” (Franck-Condon transition), thus the 

S1(v=) is not anymore the most populated vibrational level of the excited state in this case. 

The S0 (v=)S1(v=) is now the most probable transition2. 

 

Figure 2.1. a and b. Internuclear coordinate energy diagrams for molecules with similar and 

different potential energy functions of the ground and excited states, represented by Morse 

potentials. c and d. Possible absorption (blue) and fluorescence (green) spectra that can be 

obtained from the systems represented in a and b. Figure made with Inkscape. 
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2.2.2 De-excitation processes without chemical reaction 

The absorption of a UV-visible photon brings the molecule from the electronic ground state 

S0 (v=) to the first, second or higher electronic excited state that can be vibrationally excited 

(v) the molecule will then dissipate this extra energy. The de-activation processes 

(without any change of conformation or chemical reaction) that may occur can be described 

simply by the Perrin Jablonski diagram (Figure 2.2)7,8.  

 

Figure 2.2. Perrin-Jablonski diagram with the approximate time constants associated to the 

different processes. Figure made with Inkscape. 

The non-radiative deactivation processes are: 

• Internal vibrational redistribution (IVR): this process (10-13-10-12 s) occurs just after 

excitation where the extra vibrational energy can be redistributed along with the other 

vibrational modes of the molecule in the same electronic level. 

• Vibrational relaxation (VR): this process is a relaxation of the vibrational energy 

(10-12-10-10 s) by interaction with the solvent molecules, where the energy is 

transmitted to the surrounding molecules. This mechanism is also known as 

vibrational cooling. 

• Internal conversion (IC): this process occurs when there is a vibronic coupling 

(nuclear motions) between two iso-energetically electronic levels with same spin 

multiplicity. This is a non-radiative process (10-11-10-9 s) occurring within the same 
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time frame as vibrational relaxation. The time constant of IC is usually inversely 

dependent on the energy gap between the involved electronic levels (Kasha rule9). 

• Intersystem crossing (ISC): this process occurs when there is a vibronic coupling 

(nuclear motions) between two iso-energetically electronic levels with different spin 

multiplicities. Such a transition involves a change in the spin of the electrons. The 

transition from the singlet excited state S1 to a triplet excited state T1 is a typical 

intersystem crossing. Such transitions are considered forbidden but allowed by spin-

orbital coupling. A time constant about 10-10 to 10-8 s is usually found for organic 

molecules while for inorganic molecules, ISC time constant will be faster than IC.  

Once the molecule has relaxed to the lowest vibrational level of S1 (T1), the molecules can 

have two different radiative deactivation processes that compete with those mentioned above. 

• Spontaneous emission: this radiative process is a mechanism which dissipates the extra 

energy by emission of a photon. The emission of a photon occurs from S1 to S0 states 

is called fluorescence (same multiplicity of spin states) while from T1 to S0, the 

phosphorescence term should be used. Fluorescence is an allowed transition (10-10 to 

10-7s) whereas phosphorescence is a forbidden transition (10-6 to 1 s). The energy of 

the emitted photon is smaller than the energy of the photon absorbed by the molecule. 

This energy shift is known as Stokes shift (expressed in wavenumber)10. Besides the 

energy shift, the absorption and fluorescent emission spectra will look like mirror 

images because the differences between the vibrational level are the same in the excited 

and ground states (Figure 2.2). This is called the mirror image rule (Franck & 

Livingston 1941).11 A difference of the fluorescence spectrum in comparison to the 

absorbance one can be assigned to different geometries and thus energy potential 

functions in the ground and excited states. This leads to a fluorescence spectrum that 

does not have the same vibrational structure. 

Regarding phosphorescence, we can note that the maximum of the phosphorescence 

emission spectrum is red-shifted in comparison to the fluorescence. The explanation is 

the VR occurring after the ISC to the triplet excited state. Therefore, in solution at room 

temperature, non-radiative de-excitation from the triplet state (small energy gap) is 
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predominant over phosphorescence. For this reason, phosphorescence is usually 

observed at low temperatures or in a rigid medium.  

• Stimulated emission: the emission of fluorescence photons just described above is a 

spontaneous process. However, under certain conditions, induced emission can occur 

(e.g. LASER) and should also be described here as it is observed in femtosecond 

transient absorption spectroscopy. The comparison of induced and spontaneous 

emission can be made using the Einstein coefficient for a two-level system. We already 

introduced above the induced absorption coefficient B12 (Equation 2.3) to discuss the 

probability of absorbance of light12. Stimulated emission occurs when a molecule in 

the S1 state is hit by a photon with an energy matching the difference between S1 and 

S0 states. The molecule then deactivates emitting one photon with the same energy that 

the one that hit it (same direction and wavelength, coherent photon). Stimulated 

emission plays an essential role in LASER13, pump-probe absorption spectroscopy14, 

as well as STED-microscopy15,16,17 (see chapter 1). Stimulated emission process is not 

observed in conventional steady-state optical spectroscopy since the excited state is, at 

room temperature, much less populated than the electronic ground state (Boltzmann 

distribution). Considering the same degeneracy for the S0 and S1, Boltzmann statistics, 

and a radiation density that is expressed by Planck’s black body law, there is a relation 

between stimulated (B21) and spontaneous (A21) coefficients that is given in Equation 

2.5. In this equation, the frequency cube factor entails spontaneous emission to be the 

primary radiative process in the visible frequency domain. 

𝐴21 = (
8𝜋ℎ

𝑐3 ) · 𝜐3𝐵21 Equation 2.5 

 

2.2.3 Excited state lifetime and quantum yield 

Different time constants were given above for the different processes (IC, ISC, fluorescence). 

Since we are dealing with fluorescent proteins, several definitions concerning the 

fluorescence process need to be clarified (lifetime and quantum yield). It should be noted that 

the emission of a photon is as fast as the absorption of a photon (10-15 s). However, the 

detection of photons is throughout the lifetime of the relaxed first singlet excited state S1(v=) 
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(similarly to the lifetime of radioactive species) which depends on all processes that affect 

the lifetime (IC, ISC). Considering a first-order monomolecular kinetic model for the excited 

state relaxation, we can formalize the above processes, in a first approximation, with the rate 

constant: 

𝑘𝑟
𝑠: rate constant for radiative deactivation S1→S0 with fluorescence emission 

𝑘𝑖𝑐
𝑠

: rate constant for internal conversion S1→S0 

𝑘𝑖𝑠𝑐: rate constant for intersystem crossing 

Therefore, the lifetime of an excited state A* can be expressed by Equation 2.6: 

 −
𝑑[𝐴∗]

𝑑𝑡
= (𝑘𝑟

𝑠 + 𝑘𝑖𝑐
𝑠 + 𝑘𝑖𝑠𝑐)[𝐴

∗] = (𝑘𝑟
𝑠 + 𝑘𝑛𝑟

𝑠 )[𝐴∗] Equation 2.6 

where 𝑘𝑛𝑟
𝑠  takes into account all non-radiative processes. After integration, the result is given 

by Equation 2.7: 

 [𝐴∗] =  [𝐴∗]0𝑒𝑥𝑝 (−
𝑡

𝑆
) Equation 2.7 

where s is the lifetime of A*
 and is related to the rate constants by Equation 2.8: 

 𝑆 =
1

𝑘𝑟
𝑠+𝑘𝑛𝑟

𝑠  Equation 2.8 

An important parameter for fluorescent proteins is the fluorescent quantum yield. In general, 

any photo-induced quantum yield is defined as the number of defined events occurring per 

photon absorbed18 (equation 2.9).  

 Φ𝑓  =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 Equation 2.9 

In fluorescence, the quantum yield (ϕf) the number of emitted photons divided by the total 

number of photons absorbed. The number of emitted photons is directly correlated to the 

number of molecules in the excited state that deactivate via fluorescence (Equation 2.10).  

 Φ𝑓  =
𝑘𝑟

𝑠

𝑘𝑟
𝑠+𝑘𝑛𝑟

𝑠  Equation 2.10 
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2.2.4 Photoswitching quantum yield 

Some definitions should also be given to characterize the switching properties of RSFPs. In 

the literature, the equilibrium between two different chemical forms (A and B) of the same 

compound that have two different absorption spectra is known as photochromic molecules. 

For a photochromic system with A and B states, the switching quantum yield from A to B is 

defined as the number of molecules that transform from A to B divided by the number of 

photons absorbed by A. Furthermore, the thermal equilibrium between A and B states implies 

that a non-radiative process for the transformation between A and B should be involved. Such 

a system has been schematically represented in the scheme 2.1. These parameters are 

essential for RSFPs.  

Scheme 2.1. Simple representation of a photochromic system. 

 

A crucial parameter is the so-called switching contrast which is defined as the ratio between 

the fluorescence signal in the On-state and the residual signal after Off switching. Such 

residual fluorescence after Off switching mainly originates from back switching of the Off 

state chromophore by the Off switching light and the thermal back-reaction Equation 2.12 

(More details regarding the intensity of absorption are given in chapter 4).  

 
𝑑𝐶off

𝑑𝑡
= −

𝑑𝐶𝑜𝑛

𝑑𝑡
=  𝜙on→off𝐼on

abs − 𝜙off→on𝐼𝐶off
abs  −  𝑘offCoff  Equation 2.12 

The switching contrast is directly linked to the photo-stationary state obtained after a certain 

irradiation time (∞), i.e. the concentration of On and Off state ([on]∞, [off]∞) at the 

thermodynamic equilibrium under specific irradiation wavelength. Generally, the thermal 

back-reaction for RSFPs (few minutes to hours) can be neglected in nanoscopy. The photo-

stationary state or overall conversion efficiency (x∞, defined in Equation 2.13) are then 

depending solely on the absorption cross-section (σ or molar absorption coefficient, 𝜀) and 

switching quantum yield (Φon→off and Φoff→on) at the irradiation wavelength which follows 

Equation 2.14. 
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 𝑥on→off
∞ =

[on]∞

[on]∞+[off]∞
=

𝜀on𝛷on→off

𝜀off𝛷off→𝑜𝑛+ 𝜀on𝛷on→off
 Equation 2.13 

 
[on]∞

[off]∞
=

𝜎off𝛷off→on

𝜎on𝛷on→off
=

𝜀off𝛷off→on

𝜀on𝛷on→off
  Equation 2.14 

Therefore, one of the parameters that have been determined for rsEGFP2 and its variants 

are the switching yield and the photo-stationary state obtained after a certain irradiation time, 

i.e. the concentration of On and Off state ([on]∞, [off]∞) at the thermodynamic equilibrium 

under specific irradiation wavelength.  

Other deactivation processes can occur, such as energy transfer, electron transfer or 

conformational changes. For each of these processes, one can define a rate kinetic constant 

and also a quantum yield. In Figure 2.3, the time scales of the different photophysical 

processes presented in this section are plotted together with the time resolution of the 

different time resolved (TR) techniques that allow studying the photodynamic of photoactive 

molecules. The techniques will be described in the next section of this chapter. 
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Figure 2.3. Time domains of photophysical processes and chemical reactions plotted 

together with the main time-resolved techniques used to study them. Figure made with 

Inkscape. 

 

 

2.3 Time-resolved techniques for studying the photodynamics of 

photoswitchable proteins 

The study of photochemical reactions has been an intense field of research where two main 

questions can be pointed out: how to follow ultrafast dynamics and how to characterize 

precisely the nature of intermediates. This last question is even more critical for proteins due 

to the influence of the protein cage (amino-acids) on the geometry of the photoactive 

chromophore. Chemical reactions occur via transient excited states or reaction intermediates 

which are short-living species that play a major role in the reactions. The goal is to build a 
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photo-dynamical scheme, i.e. to determine the nature of the different short-living transient 

species, their lifetime, their rate constant and the different pathways with their formation 

yield. The final target is then to find which parameters control the properties of interest (for 

example for rhodopsin the switching yield) in order to design efficient new bio-materials. 

The classical method is to use time-resolved spectroscopy which consists in measuring 

spectra while the photoreaction is occurring. Time-resolved spectroscopy techniques are 

widely used to investigate the properties of complex systems from proteins19,20 to 

photochromic molecules21 or metals complexes22, among others. Two main milestones can 

be pointed out in time-resolved spectroscopies: the development of techniques that can 

follow dynamics in the nanosecond time scale23,24, the limit of fast detectors and 

oscilloscopes24, and the development of stroboscopic optical methods to probe sub-

nanosecond dynamics (Figure 2.3). Both approaches will be explained in the following 

section. 

Time-resolved techniques are often based on a pump pulse (shorter than the dynamics to be 

studied) that triggers photophysical processes and photochemical reactions, and a probe beam 

(continuous or pulsed, depending on the technique) that will analyze the dynamics of the 

systems after the photo-excitation. In general, the pump pulse should photoactivate a 

sufficient number of molecules/proteins while the probe pulse should analyze and not 

interfere in the dynamics, i.e. the energy per pulse is high for pump pulses while it is low for 

probe pulses14. Depending on the different properties that have to be investigated, the spectral 

domain of the probe beam differs. For example, a UV-vis probe gives information related to 

changes in electronic states, while IR gives information about vibrational changes. Recently, 

time-resolved crystallography which uses X-ray probe pulses, has allowed to obtain 

information on structural changes. In Figure 2.4, a general schematic representation of a 

stroboscopic time-resolved pump-probe experiment used in femtosecond time-resolved 

transient absorption can be seen, with the pump represented by the purple beam and white 

light continuum pulse as the probe beam. The probe beam is analyzing (spectrograph) the 

species excited by the pump beam (both beams are overlapping in the sample cuvette). As 

shown in Figure 2.3, the photo-dynamics of photoswitchable proteins will span several 

timescales from a few femtoseconds to several milliseconds where several excited and 

ground-state intermediates may exist transiently. Therefore, in order to study such a broad 
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timescale, different spectroscopic techniques with the appropriate temporal resolution are 

required. The resolution depends primarily on the temporal width of the pump pulse and 

secondarily on the electronics and width of the probe beam used to monitor the reaction25. 

The majority of electronic devices cannot measure signals faster than a few nanoseconds26. 

In the best cases, an excellent temporal resolution can be achieved until a few hundreds of 

picoseconds with gated streak cameras27. For cases where electronics can reach the desired 

temporal resolution (nanoseconds to milliseconds), the method developed for flash 

photolysis experiments can be used (probe beam is continuous, and an oscilloscope analyzes 

the time evolution of probe beam after excitation by the pump pulse). When electronics are 

not fast enough to transform the energy of a photon into an electronic signal that can be read, 

an alternative approach is needed. This can be summarized as a stroboscopic approach that 

takes pictures of the dynamics at certain delay after photo-excitation. This method is using a 

pulsed probe beam (time width equal or smaller than the desired time resolution) and a 

precise control of delay between pump and probe pulses (Figure 2.4). This is achieved using 

an optical delay line, the arrival time for pump and probe pulse are done by changing the 

optical path-length; 1 micrometer difference of optical path-length corresponds to 3 fs. Any 

detector can be used (photodiode, photomultiplier, camera) and the electronics do not limit 

the time resolution anymore since the electronic signal observed is coming from a pulsed 

probe beam (femtosecond, picosecond…) that is determining the time resolution of the 

picture. This technique afforded Prof. A. Zewail to get the Nobel Prize in 1999. He showed 

how to capture molecular spectra just in the transition state28 with the use of powerful laser 

pulses of tens of femtoseconds which give birth to femtochemistry research field14. In each 

of the two approaches, the pump is generally either a nanosecond laser pulse for classical 

flash photolysis or a femtosecond pulse for the optical delay approach.  
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Figure 2. 4. Schematic representation of a pump-probe experiment given for femtosecond 

TRUV-vis. The probe pulse is a (fs) broad white-light continuum, and the detection system 

consists of some diffraction gratings and a detector in general, a spectrometer combined with 

a CCD camera. Figure made with Inkscape based on others29. 

Focusing on photo-active proteins, the study of structural dynamics was usually achieved 

using vibrational spectroscopies, i.e. Raman or IR, but recently the development of 

femtosecond X-ray pulse using a free electron laser (XFEL) allows to follow the dynamics 

of bR, PYP or myoglobin proteins using time-resolved crystallography with femtosecond 

time resolution. This powerful technique is however complex, and only the combination of 

time-resolved optical spectroscopy and crystallography affords to get a final photo-

dynamical scheme. In the following section, we will give the details of the most common 

techniques that are used to study photoswitchable fluorescent proteins, i.e. time-resolved 

emission (section 2.3.1.a), time-resolved UV-Vis-NIR transient absorption (section 2.3.1.b), 

time-resolved IR (section 2.3.2) and time-resolved serial femtosecond X-ray crystallography 

(TR-SFX) (section 2.3.3). Finally, we will focus on the analysis of transient absorption 

experiments spectra, i.e. how to build a photo-dynamical scheme from their analysis and 

what are the limits (section 2.3.4). We divided time-resolved spectroscopy techniques on 

their energy domains and information obtained: UV-Vis time-resolved electronic 

spectroscopy, IR-Raman time-resolved vibrational spectroscopy and X-ray time-resolved 

crystallography (not spectroscopy). 
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2.3.1 Time-resolved electronic spectroscopy 

2.3.1.a Time-resolved emission spectroscopy 

In general, fluorescence lifetime for FP is about few nansoeconds30. Fluorescence is the most 

sensitive method (single protein lifetime can be measured) and is thus the best way to study 

excited state dynamics. Due to the spontaneity of the phenomena, there is no need to use 

probe beams to follow the fluorescent emission. The most common technique to measure 

fluorescence lifetimes is Time Correlated Single Photon Counting (TCSPC) technique. It 

measures the arrival time to the detector of a single photon emitted by fluorescence with 

respect to the time when the molecule is excited as a stopwatch would do it25,31. The detection 

of the arrival time of a single photon is done by the combination of a single photon counting 

card and detectors such as photomultipliers tubes or microchannel plates with intrinsically 

higher gain25. This technique is a statistical method that requires sufficient accumulated 

events (a few millions) to be able to fit the data and determine precisely a lifetime. Indeed, 

the resulting signal, which is counts versus time, is a histogram representing the statistical 

values of single photons arrival times to the detector where x represents the time. Each time 

a photon reaches the detector at a specific time, it increases the count value by one. Only one 

photon should be detected to be able to determine precisely the arrival time and thus no more 

than one single photon event per excitation31. With a high repetition rate laser excitation 

(MHz), millions of sequences can be measured in a few minutes. The precision of the clock 

for arrival time is about few picoseconds, and instrumental response function is about 30 ps 

for microchannel plate photomultiplier tube (MCP-PMT). Altogether using deconvolution, 

this technique affords to determine the lifetime of a few tens of picoseconds25,31,32. The 

practical details of the experiments are given in Appendix 1 (section A1.3). 

The electronics inherent in TCSPC technique limit the measurement of lifetimes to a few 

tens of picoseconds. The principle of femtosecond fluorescence measurement is the same as 

in femtosecond transient absorption pump-probe spectroscopy. The problem of temporal 

resolution is overcome using stroboscopic technique, two femtoseconds optical pulses 

(reading and excitation) separated by a certain temporal delay will take a picture of the 

fluorescence response. The principle of femtosecond fluorescence is then to synchronize a 

reading "gate" femtosecond pulse with the fluorescence created by a femtosecond excitation 
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pulse and to be able to vary the delay between reading and excitation. Using pulses 

(excitation and reading) of a few tens of femtoseconds, it is in principle possible to catch the 

fluorescence for a time equal to the pulse width. By varying the delay, fluorescence kinetics 

are then reconstructed with femtosecond resolution. Two techniques have been developed 

for the reading gate pulses; both of them are based on a nonlinear phenomenon of wave 

mixing to temporally select the fluorescence signal. The main technique used is fluorescence 

upconversion: the optical gate is produced by mixing the frequencies of the fluorescence 

pulse and the gate pulse (generally the fundamental pulse of the Ti:Sa, 800 nm) in a non-

linear second order crystal. A frequency sum pulse is created, which is proportional to the 

fluorescence intensity and the delay between the reading and excitation pulse32. 

 

2.3.1.b Time-resolved absorption spectroscopy 

For time-resolved emission technique such as TCSPC, since the detection of a single photon 

can be achieved out of a non-fluorescent dark background, the signal to noise ratio is high. 

Time-resolved absorption is based on the measurement of absorption after excitation of the 

sample by the pump pulse. However, it is not possible to photo-convert 100% of proteins 

with the excitation of a single pulse. Indeed, only a few percent of the molecules are excited 

by the pump pulse (and it will be nonsense to use higher laser energies as these will induce 

non-linear processes such as photo-ionization). Therefore, the absorption spectra recorded 

after the pump pulse is composed of around 90 % of molecules which are not photo-activated. 

Consequently, the spectra before and after excitation are very similar. This difference is even 

smaller for longer decay times as photo-conversion yield does not exceed 50% of excited 

molecules (for example for bR). Therefore, to increase the clarity of the signals, the 

absorbance of the samples without excitation is subtracted. The spectrum without the 

excitation is measured at every time delay thus the difference of absorbance is calculated by 

measuring the absorbance with laser excitation (pump pulse) and by subtracting the 

absorbance spectrum without laser excitation measured immediately before as can be seen in 

equations 2.15. 

 𝛥𝐴𝑏𝑠(𝛥𝑡) = 𝐴𝑏𝑠with pump(𝛥𝑡) − 𝐴𝑏𝑠without pump(𝛥𝑡) Equation 2.15 
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As mentioned previously, there are two different techniques. For dynamics superior to few 

nanoseconds, time-resolved nanosecond transient absorption, known as flash photolysis 

experiments, is used. The pump pulse is a nanosecond pulse which is usually obtained from 

a Q-switch Nd:YAG laser (10 Hz, 5 ns, 1064 nm, 500 mJ). The visible pump is obtained 

using either nonlinear crystals (harmonics of Nd:YAG laser, 532, 355 and 266 nm) or an 

optical parametric oscillator (OPO) which covers all the UV-Vis domain33. For the probe 

beam, the most common light source is a Xenon lamp as it can cover from UV to NIR33 

regions (250-850 nm). The detection is done using a spectrometer coupled to a PMT (single 

wavelength measurements for different wavelengths to reconstruct the time-resolved 

different absorption spectra) or a gated intensified camera27 (iCCD, measurement of 

difference time delay gates to reconstruct the time-resolved difference absorption spectra). 

For short time experiments (10 ns – 400 µs), the Xenon lamp can be pulsed to increase the 

signal to noise ratio. As mentioned above, these experiments consist of signal measurements 

with and without excitation with a second repetition rate (dynamics until a few tens of 

millisecond are measured), and the number of accumulations is usually low. Secondly, it 

should be stressed that the system should be back to its initial state before being re-excited 

by the pump laser19. This is usually not the case for RSFPs, therefore, the sample should be 

refreshed by stirring, flowing, or moving the sample cuvette. Classical characteristics for the 

experiments are an excitation pulse around 1-2 mJ.cm2 and a protein solution having an 

absorbance about one at the excitation wavelength for an optical path of 1 cm. The number 

of accumulations is usually under 100. 

For dynamics faster than few nanoseconds, pump and probe beams are femtosecond pulses. 

They are generally generated from self-mode-locking Ti: sapphire-based laser systems 

(details of our system are in Appendix 1) which were discovered in the early 1990s34. Such 

commercial laser systems can generate routinely 80-100 fs pulse widths. 30-40 fs and even 

4-5 fs pulse widths are also available with specific designs26. Time and spectral widths are 

important parameters. Ultrashort pulses (< 50 femtoseconds) are used for coherent 

experiments because they have large spectral widths due to Heisenberg uncertainty principle, 

i.e. a 10 fs laser pulse at 800 nm has a spectral width of +/- 47 nm, while 100 fs pulses have 

narrow spectral width (+/- 4.7 nm). A compromise needs to be done between spectra and 

time widths33. The output from the Ti: sapphire-based lasers systems (oscillator + amplifier) 
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is generally peaking at 800 nm, the energy is about 1-5 mJ per pulse with a frequency about 

1-5 kHz. This beam is the source of the pump and probe beams. The beam is divided in two, 

~90% for the pump and ~10% for the probe beam. Each of the two beams should be converted 

into different wavelengths to excite photoactive systems: the pump, to a wavelength close to 

the maximum of the absorption spectrum of the sample and the probe into a white-light 

continuum beam to measure absorption spectra. Tuning the wavelength is usually done with 

an optical parametric amplifier (OPA, generation of a white-light continuum and 

amplification of one wavelength using a nonlinear crystal). The probe beam will be generated 

by focusing few micro-Joules of 800 nm into a 1-2 mm windows made of CaF2, silica, or 

YAG. Indeed, high energy femtosecond pulses have a peak power that generates a continuum 

of wavelengths by nonlinear optical effects. For example, using a CaF2 window a 

femtosecond white-light continuum from 350 to 800 nm is generated while using a YAG 

crystal, the continuum covers a spectral range between 450 nm to 2 micrometers. 

Pump and probe arrival times between 0 to 2 nanoseconds are controlled by an optical delay 

line. The pump beam has an energy about 0.1-1 µJ (beam size 100-500 µm FWHM), and the 

sample has an absorbance about 0.1-0.5 for an optical path of about 0.1-1.0 mm. To avoid 

multiphoton ionization, a power density of few mJ/cm2 is used. The pump-probe polarization 

configuration is usually set at the magic angle (54.7°) to avoid having a change of signal due 

to Brownian motion of the photoactive samples. The white light probe beam is then detected 

by a spectrometer coupled with a CCD camera or a photodiode array to calculate the 

difference absorption spectra. Similarly to flash photolysis experiments, the sample should 

be refreshed at kHz level, i.e. a flow cell is used to ensure it35. One time delay difference 

absorption spectrum needs about 1000 accumulations to get a signal below 1 milli-OD 

differential absorbance.  

It should be noted that several laser centers offer measuring time-resolved absorption spectra 

from femtosecond to millisecond scale after a femtosecond excitation pulse. These systems 

are using a combination of different femtosecond laser systems that are electronically 

synchronized36,37. Such systems are known as time-resolved multi-probe spectroscopy 

(TRMPS). 
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2.3.2 Time-resolved vibrational spectroscopy (TRIR and TRSR) 

TR-UVvis measurements can yield many hints regarding excited state dynamics and reaction 

pathways. However, the measured spectra mainly reveal information regarding the electronic 

transitions which are not specific to the protein cage and the interaction between the 

chromophore and the protein38. This makes it challenging to infer structural dynamics from 

such signals, except for simple organic molecules with few but clear structural changes39. 

On the contrary, the IR region of the spectra can give important vibrational information of 

the transient species. From these signals, structural information regarding the vibration 

motions that are important in the reaction coordinates can be deduced, indicating which 

bonds are broken or formed. Techniques that yield this type of information are IR and Raman 

spectroscopies40. With these techniques, small geometrical changes can easily be detected by 

vibrational frequency shifts. The time-resolved versions of these two techniques were 

initially limited to the nanosecond time scale (Step Scan and Time-resolved nanosecond 

resonance Raman). The development of femtosecond IR probe pulses, which can be obtained 

from nonlinear effects in a noncollinear optical parameter amplifier (NOPA)26, were a great 

revolution in the 2000s38, decreasing the time resolution to 200-300 femtoseconds.  

TRIR spectroscopy 

The measurement of time-resolved difference absorption spectra in the IR region is using a 

similar scheme as the UVvis TR (UV-Vis pump pulse generated by an OPA, flow cell, magic 

angle polarization). The differences are in the spectral width, i.e. IR probe beam has a spectral 

width of about 200 cm-1, the detection part that is composed by a spectrometer and a detector 

which is composed of HgCdTe elements (usually 64 or 128 elements). One of the main 

drawbacks of TRIR spectroscopy is the high absorption of IR radiation by water molecules 

(solvent and moisture). The latter condition implies working with the thickness of a few tens 

of micrometer, exchanging H2O to D2O in water-based solvents and working under an inert 

atmosphere. Although TRIR measurements can yield crucial structural information, the 

molar absorption coefficient of IR transitions is lower than the UV-Vis one and higher 

concentrations of proteins (3 to 4 times) is needed to get at least 100 micro-absorbance 

signals. This can lead to some additional issues since high concentrated protein samples tend 

to aggregate and ultimately precipitate.  
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TRR spectroscopy 

The second vibrational technique is time-resolved Raman spectroscopy. It was initially 

limited by a pulse width of the probe of hundreds of picoseconds. Notice that since the Raman 

peak shifts depend on the excitation wavelength, Raman experiments need narrow bandwidth 

laser (>10 cm-1 Fourier transform) to only have peak shifts originating from a single 

wavelength. As mentioned above, due to Heisenberg uncertainty principle, such a narrow 

pulse limits the temporal width to the picosecond range. This problem was overcome by time-

resolved stimulated Raman (TRSR) experiments, which provide fundamental advantages 

compared to TRIR. This technique starts as the previous ones with a femtosecond pump pulse 

that triggers the photo-active protein38. The reaction is then probed at the desired time delay 

by two pulses that generate a stimulated Raman transition. These two pulses are a 2-3 

picoseconds narrow-bandwidth Raman pulse and a 20 femtoseconds broadband continuum 

probe pulse38. This broadband pulse enables simultaneous probing of the vibrational features 

from around 700 to 2200 cm-1. This technique allows recording vibrational structural 

information with a time resolution of 50 fs, which is similar to the vibrational periods of the 

probed bands38. The spectral resolution of TRSR is within 10 cm-1 38. One advantage of TRR 

compare TRIR is the absence of the water problem. Indeed, Raman transitions are linked to 

the polarizability of the chromophore. The bending modes of the water have a big influence 

in the dipolar moment (IR) but do not produce important changes on the polarizability, and 

as a consequence, H2O bending mode Raman signal is not significantly important to obscure 

the sample signals. Thus, there is no need to use deuterated water samples. However, TRSR 

is not often used due to the complexity of the experiments (three beams) combined to the low 

signal intensity of Raman bands (long acquisition time) and unwanted fluorescence signal 

for fluorescent proteins (high background). 

 2.3.3 Time-resolved crystallography 

None of the optical time-resolved techniques presented until now provide direct spatial or 

atomic information of the reaction intermediate structures. X-ray diffraction is a 

straightforward technique to obtain molecular structures of crystallized compounds. Some 

initial studies have determined the structures of the different photo-active forms of a protein, 

and the researchers have hypothesized the reaction pathway by comparing the initial and final 
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structures. Examples of such approaches can be found in the first structural studies of the 

RSFP dronpa41. X-ray diffraction has helped understanding many fundamental processes in 

biochemistry by determining the structure of proteins and other biomolecules26. Initial 

approaches to capture intermediate structures consisted of cryo-trapping. This technique 

consists of initializing the reaction by light and flash-cooling the crystal to try and capture an 

intermediate42. The first X-ray time-resolved crystallography experiments were developed 

several decades after the first flashphotolysis experiments24. High-intensity X-ray beam 

pulses are needed in order to observe small significant modifications in the observed 

diffracted patterns of the intermediates26. This high-intensity X-ray beams were available 

thanks to modern synchrotron facilities such as the Advanced Light Source (ALS) in 

Berkeley, USA or the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. 

By the end of the 1990s, two experiments on the photoactive yellow protein (PYP)43 and 

myoglobine44 were able to successfully capture intermediate structures in the millisecond and 

nanosecond timescales, respectively. Both studies used Laue crystallography and, and as 

pointed later by Gregory K. Farber45, "synchrotron radiation has been the crucial ingredient 

in making the experiments work". Nearly a decade later, the studies on myoglobin were 

extended to the subnanosecond range also using synchrotron radiation46. This time resolution 

is the time-resolved limit that can be achieved at synchrotrons. As discussed above, the time 

resolution in pump-probe experiments is limited to the temporal length of the probe pulse, 

and 100-ps is the typical electron-pulse length at synchrotrons, preventing the investigation 

of ultrafast intermediates involved in photochemical processes. This problem was solved 

using femtosecond X-ray pulses generated by FEL. 

X-ray free-electron lasers (XFEL) are so-called fourth generation light sources. The idea of 

XFEL came out at the beginning of the 1970s47 and was patented in 197448. Nevertheless, it 

took several decades for it to become a reality. The first XFEL available was the Linac 

Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC). The first 

publication by Emma et al49 in 2010 reported that the LCLS delivered coherent soft and hard 

X-rays from 22 to 1.2 Å wavelengths, with a peak brightness of about ten orders of magnitude 

beyond conventional synchrotron sources. Furthermore, it was able to deliver a wide range 

of X-ray pulses durations from 5 to 500 fs. These outstanding beam characteristics made it 

possible to capture ultrafast intermediate structures and reaction dynamics at atomic level.  
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Figure 2.5. Time resolved serial femtosecond X-ray crystallography experiment setup. The 

representation includes the XFEL beam generation (undulator), the scheme of the pump-

probe experiment, the MPCCD detector and the liquid jet sample injection. Figure made 

with Inkscape. 

These incredibly brilliant X-ray beams are produced thanks to a very long linear accelerator 

(undulator)50. A bunch of electrons are injected into the undulator (Figure 2.5), where they 

oscillate and emit electromagnetic radiation. Since the electrons oscillate all together, their 

emitted waves are correlated. The E-field of these emitted waves are added, and since the 
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wave intensity is proportional to the square of the E-field, the emitted intensity exponentially 

increases until saturation generating such tremendous peak brilliance50. In traditional lasers 

systems, the path available for amplification is expanded by an external optical cavity. On 

the contrary, normal-incidence mirrors are extremely ineffective for X-ray wavelengths; thus, 

a very long undulator is needed50. In Figure 2.5, an undulator is illustrated. Such intense X-

ray radiation destroys the protein, but it is possible to obtain structural information of 

microcrystals before the destruction of the protein. This is known as diffraction before 

destruction, and it was proposed in 2000 based on theoretical models51. The first X-ray 

structure resolved from data obtained with an XFEL proved experimentally this theory in 

201152 (serial femtosecond crystallography; SFX).  Finally, using an optical laser to photo-

activate the entire microcrystals (pump beam) and the XFEL beam to probe structural 

changes, Aquila et al53 performed in 2012 the first time-resolved experiments at an XFEL 

(TR-SFX). 

There is no doubt that ultrafast sub-picosecond time-resolved spectroscopic experiments 

have provided unprecedented indirect information into the early events and chemical 

intermediates after light absorption for many light-sensitive systems. TR-SFX is relatively 

new, and there is still a lot to be investigated. While conceptually TR-SFX are similar to any 

other pump-probe technique, experimentally there are several differences between a 

molecule in crystal and in solution phase54. In Figure 2.5, a schematic representation of an 

TR-SFX experiment is presented. The microcrystals of the studied protein are injected with 

a liquid jet to ensure that only one single crystal is probed by the X-ray pulse. These crystals 

are excited by a femtosecond optical pump pulse which triggers the photoreaction. The 

microcrystals are then hit by the XFEL beam and produce a diffraction pattern. Technically, 

these experiments represent different challenges. First, the crystals are destroyed by the FEL 

pulse and then new microcrystals need to be presented to the beam for each XFEL pulse. 

Secondly, due to the intensity fluctuation of optical and FEL beams and the different 

orientation and forms of each new microcrystal, there is variability between two collected 

data frames. Therefore, a large number of images need to be collected to solve a protein 

structure by SFX. For TR-SFX, the number of frames is even higher because, similarly to 

transient absorption experiments, the signal is calculated as the difference between the data 

collected with and without pump laser. The high number of frames that needs to be collected, 
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together with the repetition rate of XFEL beam which is around in 100 Hz range (except the 

European XFEL in Hamburg, Germany, which has been recently inaugurated and has a MHZ 

repetition rate55) and the hit rate of an XFEL experiment, definitively scale the time of these 

experiments to a few hours for a single point and reduce the number of collected points after 

excitation to few delay times. This is in high contrast with any other kind of TR spectroscopy 

experiments which usually take less than a few hours to collect several hundreds of time 

delay points.  

However, only TR-SFX experiments will provide the atomic structure of crucial 

intermediates that control the photo-activity of a protein. Such precise information is 

impossible to be provided entirely from any other technique. The exposed facts manifest the 

synergy between TR-SFX and optical TR experiments. TR spectroscopic experiments will 

give the main time constants and number of intermediates that need to be considered in the 

photodynamical scheme while TR-SFX will reveal their structure and interplay between 

chromophore and protein residues. Nevertheless, such synergy to get a precise photo-

dynamical scheme is not trivial since proteins in solution and crystals can have different 

dynamics due to different environments (solvation environment, confinement effect). It 

needs to be pointed out that protein crystals are formed by approximately 50% (per volume) 

of solvent. Therefore, protein crystals are semi-rigid media where side chains and secondary 

structures can move, which translate in protein crystals still being biologically active56. 

Besides the relative unconstrained environment of protein crystals, it is evident that they still 

represent a more constrained media than a liquid solution. Therefore, the dynamics in such 

different media can definitively differ. 
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Figure 2.6. Photophysical and chemical pathways at high peak power fluences for 

bacteriorhodopsin reproduced from reference 57.  

Moreover, in TR-SFX experiments, one tries to photo-convert as many of the proteins in a 

single microcrystal with a single optical pulse58. To achieve this photoconversion, knowing 

the chromophore absorption molar coefficient and the number of chromophores in a crystal, 

the energy needed is calculated. Up to date, all the sub-ps TR-SFX experiments have used 

tremendous excitation powers between 360 and 500 GW/cm2 35,54,59–62. These high power 

densities correspond to far over more than one absorbed photon per chromophore, and as 

discussed previously, it can lead to multiphoton ionization processes or open non-biological 

pathways58. Even taking into account that a part of the incident light is scattered by the 

sample60,63, which has been many times done to justify these high intensities, all performed 

TR-SFX experiment with sub-ps resolution are done until now are far from the excitation 

linear regime35,54,59–61, as clearly pointed out by Miller et al.57. For example, the end of the 

linear regime for bacteriorhodopsin is around 30 GW/cm2 (more than 100 times lower 
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energies than those in TR-SFX experiments), then electronic states higher than S1 state are 

accessible via multiphoton absorption processes. Depending on the laser pulse width and 

associated peak power, some of the processes that occur are fully resonant coherent 2-photon, 

sequential resonant 2-photon, non-resonant 2-photon, to more complex n-photon 

transitions57. The relaxation pathways available from higher electronic states, which can 

explore many different potential energy surfaces, can lead to entirely different photoproducts 

and photodynamics, while only the dynamics from S1 excited state will lead to the 

biologically relevant photoproduct56. The use of TR-SFX results needs to be validated by TR 

UV-Vis-IR spectroscopy for crystals and compared to the protein in solution. This will also 

be our strategy for rsEGPF2. Therefore, in the next section, we will give some details 

regarding the nature and analysis of the femtosecond difference absorption spectra to build a 

photo-dynamical scheme.  

 

2.4 Data analysis of time-resolved UV-Vis and IR transient 

absorption spectra. 

As given in the Equation 2.15, time-resolved absorption techniques consist in measuring and 

calculating the difference of absorption spectra at a specific delay time after excitation, i.e. 

the absorbance measured after laser excitation (pump pulse) minus the absorbance measured 

without laser excitation. Therefore the difference absorption spectra can be positive or 

negative related to the appearance of new absorbing intermediate species and 

photoproducts64 and disappearance of the initial products. In TRUV-vis spectroscopy, 

negative and positive difference spectra are the result of different contributions: Ground state 

bleaching or depopulation bands (GSB) and stimulated emission bands (SE) which are 

negative signals, and induced absorption which is positive. These signals can be seen in 

Figure 2.6 for TRUV-vis and TRIR experiments. While induced absorption and GSB are 

common for TRUV-vis and TRIR, SE is specific for TRUV-vis measurements.  

 

I. Ground state bleaching or depopulation bands (GSB): these negative bands are 

assigned to the decrease of the number of molecules in the ground state (few percent). 

The absorption spectra measured after the pump excitation compared to the one 



 

45 
 

measured without excitation will result in a negative absorption difference in the 

region where the system absorbs, i.e. the band (without other band contribution) is 

equal to the inverse of the steady-state absorbance of the sample. This signal is 

represented in green in Figure 2.6. It can be noted that for TR-UV-Vis spectra there is 

usually only one GSB band while for TR-IR several bands can be observed. 

II. Stimulated emission (SE) bands: these negative bands correspond to the emission from 

excited molecules when they are dumped to the ground state by the probe. Compared 

to the absorbance without excitation, there is more light reaching the detector (that 

coming from the stimulated emission), which leads to a lower absorbance in this 

spectral region. Therefore, these negative bands are intrinsically located at lower 

energy (red-shifted in wavelength) with respect to GSB bands. Due to its origin, this 

type of signals are usually located in the fluorescence emission spectral region. 

However, as mentioned previously, SE and emission transition are different and scaled 

by frequency cube (Equation 2.5). This signal is represented in red in Figure 2.6a in 

red. 

III. Excited-state absorption (ESA) band: this signal corresponds to new absorption bands 

formed by the molecules in the excited state (singlet state, triplet state, hot vibrational 

excited state, different intermediate states). This signal is represented in yellow in 

Figure 2.6. 

IV.  photoproduct (PA) bands: these bands are assigned to new species formed in either 

the ground or the excited state (and vibrationally excited or not). Technically there is 

no difference with ESA bands. The assignment of positive absorption bands to the 

existence of excited state or ground state intermediates is a continuous debate in 

photochemistry and will be developed in the next section for cis-trans isomerization57. 
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Figure 2.6. Simulated difference absorption spectra for a hypothetic pump-probe TR 

experiment recorded at 1.2 ps after pump excitation, together with the transitions represented 

in a simplified Jablonsky diagram. a) For a TRUV-vis experiment and b) for a TRIR 

experiment. Figure made with Inkscape. 

Three remarks can be made regarding the characteristic of difference absorption spectra. (i) 

As mentioned above, there is no way to distinguish PA or ESA bands. The discussion can be 

done if an SE band which evolves within the same time constant is observed. Indeed, in this 

case, only an excited state can have a SE band. (ii) Difference absorption spectra are 

calculated by subtracting the absorbance without excitation; therefore, GSB bands are a part 
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of the spectra and cannot be dissociated from the rest of the signals. Relaxation of excited 

states to the initial state will be associated with the decrease of the GSB band. (iii) Since for 

an electronic state there are different vibrational states; all the bands are usually convoluted 

with cooling process such as (IVR and VR) and hot vibrational excited states (in excited or 

ground states). This increases the complexity of the transient spectra and its analysis. 

TR spectroscopies often consist on detecting with a probe changes in absorption of the 

sample provoked by another laser pulse (the pump) over times with a stroboscopic or 

continuous detection. Thus, the resulting signal is a multivariate65,66, with a first independent 

variable wavelength (UV-Vis) or wavenumber (IR), and a second independent variable being 

the time delay between pump and probe. In other words, a time-resolved data set is a 

collection of measurements done at different (distinct) times and wavelengths. The evolution 

of the absorption in time for the different wavelengths contains information such as reaction 

kinetics and molecular changes. 

To unravel the chemical reactions and processes behind the multivariate data, model-based 

analysis of the data is mandatory65–67. The most straightforward approach to model a 

photochemical reaction is to assume that the concentration of transient species or reaction 

rate is the sum of independent species (Beer-Lambert law) and only depends on the 

concentration of these species (first-order reaction). The integration of a first order reaction 

can be described by exponential decay. According to this hypothesis, the data should be 

explained by a weighted sum of exponential functions, where every exponential time constant 

represents the decay of a transient species that follow a first-order reaction, and the pre-

exponential value or weight, represents the concentration of this species (Equation 2.16). 

Fitting the kinetic traces recorded at one wavelength can yield an estimation of the number 

of transient species involved in the reaction and their decay constants. One of the most 

established approaches to analyze the different absorption spectra is to fit the time evolution 

for several wavelengths with the same sum of exponentials65,66,68,69 (one wavelength can 

average with the adjacent ones to increase the signal to noise ratio). This approach has been 

demonstrated to be much robust and accurate than a separate or single wavelength analysis 

and is typically known as global fit analysis. Furthermore, from a global analysis of the data, 

not only the number of transient species and their decay time constants can be obtained but 
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also their decay associated spectral shapes. These are obtained from the weights of each 

exponentials associated to a species at each of the wavelengths, which constitute the so call 

Decay Associated Spectra (DAS). 

 𝜓(𝑡, 𝜆) =  ∑ 𝐴𝑖
𝑛
0 ∗ 𝑒(

𝑡−𝑡0
𝜏

)
 Equation 2.16 

More complex analysis can be done if the data is fitted to a specific kinetic model with rate 

constants; this is known as target analysis or chemical reaction modelling66. Kinetic models 

are for example a cascade model in which the species evolve from one to the next one 

sequentially with 100% quantum yield efficiency, or it can be more complex kinetic models 

(parallel pathway) were the conversion yields between the different species and pathways 

can be fixed with known external parameters as photoconversion quantum yields. The result 

of such an analysis can give the so-called evolving associated difference spectra (EADS), 

which can yield a more comprehensive picture with rate constants of the different pathways 

of the photoreaction and not only time constants of species in DAS analysis. 

Finally, more advanced analysis method can be applied. Due to the multilinearity 

characteristic of this type of data, multi-curve resolution alternating least squares method 

(MCR-ALS) has demonstrated to be efficient in decomposing the data in pure species spectra 

and their corresponding time evolution concentration profiles (soft modelling). From this 

concentration profiles, different models can be applied, e.g., lifetime decay can be obtained 

using an exponential fit. The rate constants for each species can also be obtained by applying 

a model and using hybrid hard-and soft-multivariate curve resolution methods65,67,70.  

For both simple and complex models, the goodness or quality of the fit should always be 

evaluated. In general, a correlation coefficient is used to examine “goodness of fit” between 

the model and experimental data. The most used one is the chi-squared χ2. A high correlation 

coefficient does not implicitly imply that the model correctly describes the data, as the 

Anscombe's quartet points out71. One of the best ways to evaluate a model is to analyze the 

residual plot (spectra and time profiles). The residues of the fit should be similar to random 

noise and centered around zero ordinates with no trend with time evolution. 

In practice, the selection of the number of species/components (number of exponential time 

constants in DAS) is not straightforward, as a higher number of components will always fit 
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better the data set, without necessarily describing better the photophysical model. The 

literature on similar systems can help in this step. Then a first visual analysis of the transient 

absorption spectra evolutions is already giving the main temporal and spectral evolutions. 

Finally, mathematical methods such as singular value decomposition (SVD) can also help. 

The SVD is a matrix factorization technique that decomposes the data (M) in three simpler 

matrices U, S and V72 (Equation 2.17).  

 𝑀 = 𝑈 × 𝑆 × 𝑉𝑇 Equation 2.17 

Where U and V are the left and right singular vectors and S a diagonal matrix containing the 

singular values, the number of non-zero singular values is the rank or the minimum number 

of components that describes the data set M. Nevertheless, due to inevitably noisy data, the 

selection of non-zero singular values can be tricky. As can be seen, the selection of 

components is not trivial, and usually, several tests are done by adding or subtracting one 

component in the analysis, to find the minimum number of components that correctly 

describes the data. Once a model has been chosen, we try to describe the data with it (fitting), 

which consists in varying the model parameters iteratively until a set of parameters that 

describes the data is found. One of the problems with nonlinear minimization, particularly 

with increasing model complexity, is the possibility to arrive in a local minimum of the error 

function without finding the global minimum; in other words, there might be other 

parameters for the model that could describe better the data. Even more, in multivariate data, 

different sets of model parameters may result in exactly the same quality fit (in terms of lack 

of fit) thus the same χ2. The best way to solve this issue is to repeat the process using a 

different set of initial model parameter guesses and determine whether an equivalent set of 

best-fit parameters is obtained.  

Once the best set of the model parameters that describes the data correctly is chosen, the error 

should be estimated for each fitted parameter (time and rate/decay time constant, pre-

exponential factors). The estimated error of a parameter is related to the minimum of the 

multidimensional χ2 surface. The ambiguity in the estimation of the parameter should not be 

mixed up with the error of each parameter73. Error translates the uncertainty in the estimation 

of each parameter independently of the others. The estimation of the fitting error is usually 

given as a confidence interval (+/-) calculated by inverting the second-order derivative error 
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matrix where only the diagonal terms of are taken into consideration, (not interaction terms). 

This means that a single 1D trace of the multidimensional χ2 surface is considered for each 

parameter. It can result that an ambiguous parameter may be estimated with a very low error. 

The error and the ambiguity in the parameter estimations are well-known problems in multi-

exponential functions74. The best way to estimate the error is to fit the model to multiple data 

sets of the same sample. If all data sets are collected similarly, they should only differ in 

random variability such as noise. Finally, the variation in the individual model parameters 

fitted to all the recorded data sets will give the confidence interval or error of the parameter 

models. It is practically impossible to acquire a sufficiently number (1000) of experimental 

datasets of the same sample under the same conditions to have a large representative number 

of samples. One approach to overcome this problem is bootstrap, which is one method that 

allows generating new data by shuffling and substituting a part of the original points in the 

initial data set by synthetic data generation with the best parameters describing the model 

and including noise representative of the actual measurement noise73. This last approach was 

used in this thesis to judge the quality of fit for noisy data and has been explored in this thesis. 

More details can be found in Appendix 2. 

 

2.5 Focus on two deactivation processes that occur for photo-

active fluorescent proteins. 

The first known deactivation process of fluorescent proteins is found for the famous avGFP. 

Excitation of the neutral form induces a fluorescence coming from anionic species through 

an excited-state proton transfer (ESPT). For most of RSFP proteins, such as rsEGFP2, the 

switch between states involves a cis-trans isomerization, a proton transfer and some protein 

rearrangements. Thus, here some definitions regarding basic concepts and literature 

examples of ESPT and cis-trans isomerization are given. More details on the photodynamics 

can be found in the next chapter. 
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2.5.1 Excited state proton transfer  

The fluorescence of the avGFP neutral form is due to an excited state proton transfer (ESPT). 

Proton transfer reactions are widely found in a wide variety of different chemical systems. In 

a water-based planet and water-based organism, proton transfer reactions are one of the most 

basic chemical reactions which are yet not perfectly understood75. In the case of a 

photoreaction, a proton transfer can occur in both ground and excited states and includes 

formation and breaking of hydrogen bonds. It can be produced intramolecularly (hydrogen 

is coming from the same molecule) or with other molecules or solvent. Proton transfer 

reactions represent a research field by itself, and many aspects can be found in the book 

“Hydrogen-Transfer Reactions”. Edited by J. T. Hynes et al.75.  

Proton transfer can occur in a single step or it can be characterized by a multi-step process 

through different metastable intermediates (both cases can be concerted). Finally, similar to 

electron transfer reactions, tunneling mechanism plays a vital role in proton transfer 

reactions. While electrons transfer reactions are well described by Marcus theory76, there is 

no widely accepted theory for H-transfer up to date77. The kinetic isotopic effects 

(comparison of the rate constant for hydrogen (H) and deuterium (D)) constitute an essential 

tool to study proton transfer reactions although they do not reveal the existence of ESPT via 

tunneling77. With so many possibilities and types of proton transfer reactions, it is not easy 

to revise all mechanisms and examples in literature. Therefore, only some essential 

definitions regarding ESPT occurring in FPs will be given here.  

Proton transfer reactions in the excited state can be divided in two types, intramolecular 

proton transfer i.e. ESIPT, or intermolecular one named ESPT. ESIPT is usually occurring 

with a shorter time constant (sub-100 fs can be found in the literature) while ESPT reaches 

few picoseconds. Some of the molecules exhibiting ESPT or ESIPT are GFP chromophores 

or analogues as the orto-HBDI78,79 or the avGFP itself80–82. In 1986, Kasha83 divided the 

ESPT reactions into four different types, only the two related with the avGFP and the HBDI 

will be described here. The first named “Intrinsic Intramolecular Proton Transfer” (ESIPT) 

is the one observed for o-HBDI analogues, while the one that exhibits by avGFP80–82 is a 

“Proton-relay tautomerization”, and is also observed for example in 7-hydroxyquinoline in 

methanol84. Besides their differences, both can be represented by similar schematic 
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dynamics. After excitation, an excited state A* converts to an unrelaxed excited tautomeric 

form I* by ESPT, which finally relaxes to an I state83 (Figure 2.7). 

 

Figure 2.7. Double-well potential for proton-transfer in the excited state, with QH as the 

proton-transfer coordinate. Figure adapted with Inkscape from reference 83. 

The characterization of ESPT is a weak fluorescence of the A initial stable form, which after 

excitation and proton transfer gives the tautomeric excited I* fluorescent form85. Due to the 

difference in energy for the transitions A→A* and I*→I, ESPT reactions display a 

significant Stokes shift for the fluorescence of A respect to the emission of I*, Figure 2.7. 

Therefore, one of the best ways to detect ESPT is via fluorescence upconversion, which will 

give the time constant of the ESPT. One of the parameters that controls the rate constant of 

the ESPT is slow motions of the molecular skeleton82,86–88, which are known as coherently 

excited vibrations. In some cases, these modes are the relevant reaction coordinates, to the 

detriment of proton modes85. These coherently excited vibrations revealed as oscillatory 

signals contributing to the primary decay signal in time-resolved transient absorption 

spectroscopy if short duration excitation pulses of ⁓ 30 fs are used (coherent excitation)88. 
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Applying the Fourier transform to these oscillatory signal components, the vibrational 

frequencies of the excited state modes can be deduced. The frequencies of the skeletal modes 

are compared to theoretically calculated ones with the help of quantum calculations, and can 

give excellent hints of the ESPT dynamics85. As mentioned above, they have been observed 

in organic molecules86,87 as well as GFP proteins82,88. Finally, it needs to be mentioned that 

ESPT is also responsible for the behavior of some organic dyes, which after excitation 

becomes stronger acids or stronger bases in the electronic excited-state, these molecules are 

known as photoacids. The pKa* of these molecules in the excited state can be estimated with 

the Föster cycle89; some GFP chromophore analogues have revealed such behaviour90,91.  

 

2.5.2 Cis-trans isomerization 

In organic molecules, when two atoms are covalently bound by a single bond, they can freely 

rotate if nothing hinders this movement. Theoretically, all positions within a 360º dihedral 

rotation angle around a C-C bond can be adopted. In the case where the rotation around a 

particular angle is blocked, for example the presence of a double bond, only distinct positions 

of the substituents along the C-C bond may exist as stable rotamers called isomers. In the 

simplest case, in the ground state, there are two stable geometrical isomers accessible through 

the intrinsic isomerization barrier92. A simple double bond has two possible isomers; 

depending on the number n of double bonds, there can be 2n isomers92. By convention, when 

the highest priority substituents (highest atomic number) of the double-bond are in the same 

side of the carbon chain, the isomer is in "cis" position, and "trans" when the substituents are 

in opposites sides92. 

Due to the steric hindrance of the substituents in the cis isomer, the trans conformer is 

generally the most stable one (Figure 2.8). The isomerization from trans to cis isomers can 

occur: (i). Thermally if the ΔG barrier can be overcome. (ii). Via a chemical reaction, 

generally via an intermediate for which the double bond is broken, which lowers the energy 

barrier. (iii). Via a photo-activated reaction, photoisomerization, where the energy barrier is 

overcome in the excited state. The identification and the description of the dynamics in the 

excited state and the existence or not of an intermediate is the main goal of ultrafast studies. 
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There are three mainly photoisomerization mechanisms proposed in the literature, One Bond 

Flip (OBF), Hula Twist (HT) and Bicyclic Pedal (BP)92–95.  

 

Figure 2.8. General schematic representation of a cis-trans isomerization of a double bond 

via an OBF mechanism. The blue arrows represent a hypothetical photoisomerization 

pathway via the S1 state. Figure made with Inkscape.  

The OBF mechanism was the firstly prevailing theory for cis-trans photoisomerization. After 

excitation, this mechanism implies a twisted excited S1 state92,95, with a dihedral angle near 

90º (blue arrow, see the schematic representation in figure 2.8). The relaxation of the excited 

state via an adiabatic mechanism through a conical intersection (CI) to the ground state leads 

the chromophore to be in hot energy ground state from which it can relax to either one of the 

more stable isomers (cis or trans). For OBF mechanism, the final isomer has achieved a 180º 

turnover of one half of the molecule compared to the initial isomer (Figure 2.9). This has 

been represented by a blue arrow in Figure 2.9. This mechanism needs a high free volume 

and could not explain isomerization in constrained environments and structures of photo-



 

55 
 

isomerized chromophores that show complete rotation. One of these cases is, for example, 

the retinal chromophores96,97
. 

Therefore, new mechanisms were proposed. The BP mechanism was first proposed to explain 

the ultrafast isomerization of the batho-rhodopsin98. This mechanism involves at least two 

conjugated double bonds and rationalizes the isomerization of these two adjacent double 

bounds with only one photon. The mechanism was in agreement with the low-volume-

demanding cis-trans isomerization of the 11-cis-retinyl chromophore inside the protein 

matrix but was not consistent with the final structures of bathorhodopsin (bR). The BP 

mechanism will not be further discussed since the HBDI chromophore isomerization cannot 

occur through this mechanism as it has only one double bond conjugated with two aromatic 

rings. Several years after the postulation of the BP isomerization mechanism, another volume 

conserving mechanism was suggested to be responsible for the cis-trans isomerization in bR. 

This new mechanism consists in a simultaneous rotation of the double bond τ together (blue 

arrow) with an additional 180º isomerization of one adjacent single bond Φ (red arrow), 

initially named concerted twist at center n99, was lately named hula twist (HT, Figure 2.9)100.  

 

Figure 2.9. Schematic representation of a cis-trans photoisomerization of a double bond, via 

one bond flip (OBF) and hula twist (HT) mechanism. Figure made with Inkscape. 
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The general established idea is that, without constraint, the photoproduct after isomerization 

corresponds to the OBF one, while the HT volume conserving photoproduct is found in 

constraint environments93–95,101. The different products of an isomerization via OBF and HT 

pathways are represented in Figure 2.10. Since OBF and HT photoproducts are rotamers, 

which means that they can transform into each other via single bond rotation (SBR), there 

are several open questions: (1) if an OBF photoproduct can be formed via a HT or an OBF 

mechanism (2) the existence of twisted intermediates in the excited or ground state for both 

mechanisms. To understand these issues, the example of choice is the classical and well-

studied cis-trans isomerization of stilbene and derivatives.  

The stable form of these molecules is the trans isomer. In the excited state, it was 

hypothesized (theoretical calculations, ultrafast electronic and vibrational spectroscopy) that 

both isomers, cis and trans, have a twisted minimum isomer, for which the double bond is 

elongated, allowing a more free isomerization upon rotation (OBF). Starting from the trans-

stilbene isomer, the photoisomerization characteristic time constant increases rapidly with 

the increase of solvent viscosity concomitantly with the increase of fluorescence quantum 

yield. Moreover, the photoisomerization is completely blocked and does not occur upon 

freezing. Such results are entirely in agreement with an OBF mechanism. On the contrary, 

starting from the cis isomer, upon sterical impediments and in frozen media, the cis-trans 

isomerization still occurs and become stereospecific. As discussed in literature, the behavior 

of cis conformers in frozen media can only be explained by a HT mechanism70,71,79. The 

complexity comes from the fact that the resulting photoproducts of cis stilbene isomerization 

from either a HT or OBF mechanisms are indistinguishable. Therefore, when studying the 

possible isomerization pathways of stilbene, it is essential to use substituents95. The 

isomerization in stilbenes have been extensively reviewed102. In the following discussion, the 

main results will be discussed.  

First, two important points need to be commented for the difference between photoproducts 

resulting from a HT isomerization and those arising from an OBF one, the region-selectivity 

and the metastability103. The single bonds adjacent to the double bond can have a torsion 

angle, and thus two photoproducts can exist after an HT isomerization. On the contrary, there 

will be only one photoproduct after an OBF isomerization95,103. In Figure 2.10, the possible 
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products after photoisomerization starting from cis-stilbene isomer (via OBF and HT) are 

presented. As can be seen, the HT-1 photoproduct, due to the steric impediment, has a higher 

potential energy than the other two (OBF and HT-2) which are indistinguishable in solution 

or gas phase. The HT-1 photoproduct rapidly evolves to an OBF photoproduct with a simple 

rotation along the single carbon bond (black arrow). These two photoproducts are rotamers. 

It has been indeed demonstrated that HT photoproducts are metastable, and even at 

temperatures lower than 50 K, they can evolve to the OBF photoproduct104. For these 

aforementioned reasons, it is difficult to observe a HT photoproduct and discuss the nature 

of the isomerization mechanism.  

 

Figure 2.10. Cis-trans isomerization reactions of stilbene with a Hula-twist marker. Top: 

Conventional one-bond-flip (OBF) process showing the rotation of one-half of the molecule 

around τ. Middle and bottom: The Hula-Twist (HT-1 and HT-2) photoproducts around Φ 

and τ, showing the steric impediment for HT-1. Figure made with Inkscape. 
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The publication “The case of medium-dependent dual mechanisms for photoisomerization: 

One-bond-flip and Hula-Twist” in 2000 from Robert S. H. Liu and George S. Hammond101, 

critically reviewed several results in different molecular systems and media, reinterpreting 

many previous findings initially attributed to OBF isomerization in favor of the HT 

mechanism. They refer to HT as a diabatic concerted mechanism higher in energy than OBF. 

Therefore, they postulated that isomerization via HT mechanism is the less probable 

isomerization process that only happens in restricted environment conditions, where the OBF 

is eliminated101.  

On the contrary, only a few years after, Oluvucci and Fuss105 in an also extended publication, 

including quantum chemistry calculations, suggested that the general mechanism for all 

photoisomerization reactions, even in solution, should be HT type. They showed that a cis-

trans isomerization through a CI requires a complex molecular distortion which, is 

impossible to be described in terms of just a single C=C double bond rotation (OBF), and 

corresponds to a concerted twisting around a double bond and an adjacent single bond. 

Furthermore, they concluded that the absence of the HT photoproduct is due to the fact that 

an isomerization through CI yields the HT photoproduct in a hot ground state, from where it 

can evolve upon relaxation to an OBF photoproduct via a single bond rotation (SBR), naming 

this mechanism “aborted hula twist”. Altogether the authors concluded that the HT 

mechanism is the lowest-energy pathway for cis–trans isomerization, contrary to Hammond 

et al.101 

There are several examples in the literature supporting the idea that HT mechanism is the 

general mechanism for cis-trans isomerization. In fact, it has been demonstrated that stilbene 

analogues, for which one of the two HT isomerization pathways is blocked by a carbon chain 

(single block stilbenes), still isomerizes with a similar time constant as free stilbene in around 

135 fs. On the contrary, when the two HT isomerization pathways are blocked, avoiding the 

rotation of the two single bonds, the time constant for isomerization increases by about 5-6 

times to around 800 fs106,107. Similar results can also be seen for cyanine dyes108. The general 

isomerization mechanism is still discussed up to date due to the difficulties in the 

characterization a HT intermidiate109. 
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The same isomerization discussion for stilbene can also be found in photoactive proteins, 

where the nature of intermediate states, their geometry and their existence in excited or 

ground states are also a matter of debate. As commented above the HT photoproduct is 

assumed to be the only one observed in constrained media such as frozen solvent and inside 

protein matrixes. The HT mechanism was first postulated for isomerization of 11-cis-retinyl 

chromophore “sandwiched” within the rhodopsin protein matrix99. Several articles and 

reviews described the complete rhodopsin mechanism for the vision as a several steps 

process, as well as mechanisms observed in other retinal binding proteins such as 

bathorodopsin93,96. Recently, the structure of the primary intermediates have been elucidated 

by TR-SFX experiments54,60.  

Another example of cis-trans isomerization via HT is the pre-vitamin D, which can photo-

transform to tachysterol under UV irradiation. UV-Vis absorption experiments done at 90 K 

on pre-vitamin by D. Fuss and coworkers, reported a volume conserving isomerization 

photoproduct; this photoproduct and the reviewed of several previous works lead to the 

authors to propose the HT isomerization mechanism in pre-vitamin D110. Nevertheless, 

several years after, new NMR and fluorescence experiments at even lower temperatures 

(77K) suggested a new mechanism via a one-bond twist (OBT) very similar to OBF 

mechanism111. More recently, a new extensive review of several works concluded that HT 

should be the main mechanism112.  

Finally, another example that shows the complexity of the spectroscopic experiments data 

and its interpretation in order to build a rationalized isomerization scheme is the photoactive 

yellow protein (PYP), which has also been extensively studied92,93. The PYP protein is a 

para-coumaric acid covalently bound to a protein matrix via a cysteine amino acid. The 

chromophore can reversibly be isomerized from trans to cis in the nanosecond time scale via 

several distinct intermediate conformations93. The PYP is one of the systems that Robert S. 

H. Liu and George S. Hammond reviewed, indicating that the isomerization results should 

be attributed to a HT101 mechanism as the chromophore is inside a protein cage and the OBF 

isomerization would result in the same photoproduct as HT-2. New results on PYP based on 

quantum mechanic calculations show that isomerization still happens around a single bond 

when isomerization around the double bond is blocked113. To conclude, it is need to be 
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mentioned that the isomerization mechanism for RSFPs is still a matter of debate and will be 

the center part of this thesis. 
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3 Photodynamics of photoswitchable 
fluorescent proteins (RSFPs): review 

and thesis’s objectives 
 

The discovery of the avGFP is the FPs starting point. Many of these proteins, including the 

rsEGFP2, share the same fluorescent chromophore: HBDI. Therefore, before the literature 

review of the RSFPs photodynamic, we will start by describing GFP fluorescent proteins and 

their general chemical-physical steady-state properties, including some RSFPs specific 

properties. Once the basic photophysical properties are established, in a second section, we 

will focus on the photodynamics of HBDI, avGFP and RSFPs in order to introduce the 

objectives and methodologies of the thesis. 

 

3.1 Chemical and physical properties of GFP proteins: towards 

RSFPs  

3.1.1 Introduction 

The chromophore is the origin of fluorescence in GFP (Figure 3.1). The organic name given 

to this chromophore is 4-(p-hydroxybenzylidene) 5-imidazolinone (HBDI). Few years after 

the elucidation of avGFP structure, the chromophore was synthesized and thoroughly 

studied. The HBDI inside the avGFP can exist in both anionic and neutral forms with a pKa 

value equal to 8.11. The pKa was assigned to the acid/basic equilibrium of the hydroxyl group. 

At low pH, the nitrogen of the imidazolinone group can also be protonated with an associated 

pKa of 1.42. At alkaline pH, the HBDI absorption spectrum has a maximum at 448 nm with 

a molar absorption coefficient of 44100 (M-1cm-1)2, while this maximum is shifted to 384 nm 

at neutral or acidic pH. The HBDI is characterized by two aromatic rings linked together with 

a carbon double bond which forms a -electron cloud where the electrons can be delocalized 

on the entire molecule and the existence of different mesomeric forms. The first allowed 
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dipole transition for the anionic form corresponds to the excitation of one electron from the 

HOMO to LUMO orbital ( –* transition).  

 

Figure 3.1. Neutral and anionic cis-forms of HBDI chromophore and its pKa value. Figure 

made with https://chemdrawdirect.perkinelmer.cloud. 

Depending on the two dihedral angles  and  that bridge the phenol and imidazolinone rings, 

the HBDI can adopt different possible geometries (cis/trans isomers). In the cis isomer, the 

phenol and imidazolinone rings are on the same side of the methylene double bond, while in 

the trans isomer they are in opposite sides. These angles are related to the efficiency of 

internal conversion and the existence of non-radiative pathways, which explain the absence 

of fluorescence of the chromophore in solution and unfolded proteins. These two results 

indicated that the non-constrained chromophore main excited-state deactivation is an internal 

conversion (IC) process. The absence of fluorescence is naturally in contrast with the high 

fluorescence quantum yield of avGFP, where the chromophore adopts cis neutral and anionic 

forms (ФF: 0.78 for the neutral form at 366 nm excitation, and 0.72 for anionic form at 470 

nm excitation3). The chromophore rigidity inside the protein matrix is one the main reasons 

explaining these high fluorescence quantum yield values. Indeed, several studies have 

demonstrated that the fluorescence becomes again the main deactivation process for the 

chromophore in solution at 77 K4,5 or when it is encapsulated in non-protein scaffolds6 and 

non-native proteins such as human serum albumin7.These results demonstrate that HBDI 

geometry and its interaction with the protein cage defines the photophysical properties of 

GFP proteins. 

Three decades after the discovery of the avGFP by Osamu Shimomura in the sixties8, the 

sequence of the protein consisting of 238 amino acid residues was elucidated by Prasher et 

https://chemdrawdirect.perkinelmer.cloud/
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al. in 19929. It was possible to isolate the GFP gene and consequently clone the protein10,11. 

In the following year, new studies showed that the HBDI chromophore is formed by the 

protein-peptide chain itself12. The chromophore of the avGFP protein is indeed formed by an 

autocatalytic cyclization reaction during protein maturation between the amino acid residues, 

Ser65, Gly67 and the oxidation of the α-β bond of the Tyr669,12 (see Figure 3.2). After the 

protein maturation and folding, the HBDI chromophore is localized in the center of a β-barrel 

covalently bound to the protein mainchain13. In 1996, the first X-ray crystallography structure 

was released, by Ormö et al.13. Nearly simultaneously and on the same year, another X-ray 

structure of its enhanced version EGFP was also elucidated by Yang et al.14. Ormö et al. 

determined that the protein fold consists of a 11-stranded β-barrel with a coaxial α-helix, with 

the chromophore formed in the central helix13.This structure confers rigidity to the HBDI . 

The β barrel and the chromophore can be seen in Figure 3.2. 

 

Figure 3.2. Aqua victoria Green Fluorescent Protein (avGFP) 3D structure, top and lateral 

perspective, represented together with the HBDI chromophore. The 3D representation, and 

chromophore has been done using pyMol from PDB generated by Ormö et al. 199613 

(1EMA). The images have been combined using Inkscape. 

The steady state absorption (blue) and emission spectrum after 400 nm excitation (green) at 

physiological pH for avGFP are shown in Figure 3.3. There are mainly two absorption 

maxima at 395 and 477 nm, which are logically assigned to neutral and anionic forms (also 

named A and B respectively) of HBDI respectively15 (phenol/phenolate, Figure 3.1). At 
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physiological pH, there is an equilibrium between these two forms with predominance of 

neutral form in agreement with a pKa of 8.1. After excitation with UV light, the fluorescence 

spectrum has its maximum at 510 nm while after 477 nm excitation the emission maximum 

is blue-shifted and peaks at 503 nm10. The 110 nm Stokes-shift after UV light excitation is 

explained by an excited-state proton transfer (ESPT). 

 

Figure 3.3. The absorption spectrum of avGFP at physiological pH (7.5) is represented in 

blue and the emission spectrum of avGFP after excitation with UV light is represented in 

green. The spectra have been reproduced from the fluorescent protein database were the 

avGFP associated code is 1XF1B16 and plot using matplotlib python package. 

A few number of mutations or even single point mutations can induce a variety of 

photophysical properties, including: i. red or blue shifts in the absorption or emission 

maxima, ii. changes in fluorescence stability, iii. changes in the fluorescent lifetime or the 

fluorescent quantum yield, and iv. the protein can even become photochromic with few 

muations17. Despite the enormous differences that can be found in optical properties of the 

different GFP proteins, their structure in form of a β-barrel is maintained across the GFP like 

proteins, with very few modifications among them17,18. This indicates that the protein cage 

and particularly the amino acids in the surroundings of the chromophore modified the 

photophysical properties of the HBDI chromophore. The protein should always be treated as 

a whole since the final photophysical properties do not only depend on the potential surfaces 

of the possible conformations of the chromophore, but also on the interactions with the 

https://www.fpbase.org/protein/1XF1B/
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surrounding amino acids, and probably as well on the structural water molecules observed in 

the crystal structures which form complex hydrogen bond networks18. 

This vast range of variations among the GFP-like properties greatly extends their utility. The 

carboxyl and amino terminal sides at the ends of the GFP protein chain allow tagging other 

proteins by fusion at either ends of the protein of interest. The specificity to target different 

proteins makes the GFP-like proteins an excellent tool for live-cell imaging19, e.g. different 

elements of a cell can be labelled with different proteins having different emission 

wavelengths20. GFP-like proteins can be classified depending on their photophysical 

properties and will be described in the next section. 

 

3.1.2 Classification of fluorescent proteins  

In 2002, only 22 fluorescent protein structures were listed in the protein data bank21. These 

22 proteins were classified by Tsien into seven different types 15: (For amino acid 

abbreviations refer to Appendix 3, Table A3.1) 

• Type I: Proteins characterized by a visible absorption spectrum with two maxima 

corresponding to neutral and anionic forms. An example is avGFP. 

• Type II: Proteins characterized by a visible absorption spectrum with one maximum 

corresponding to the phenolate anionic form due to mutation of the S65 by a Thr, Ala, 

or Gly. An example of this type is the EGFP22. 

• Type III: Proteins characterized by a visible absorption spectrum with one maximum 

corresponding to the phenol neutral form, attributed to the mutation of T203. An 

example is Sapphire23. 

• Type IV: Proteins having an anionic phenolate chromophore stacked by π-electron 

systems, due to a mutation of T203 to His, Trp, Phe, or Tyr. An example is the EYFP13 

and in general, are yellow fluorescent proteins. 

• Type V: Proteins having a chromophore with an indole group. An example is the 

CFP10. These proteins have properties in between those of BFP24 (Type VI) and 

EGFP22 (Type II). 
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• Type VI: Proteins characterized by a chromophore with a phenyl and imidazole ring. 

Such proteins have an absorption spectrum with a maximum at 380 nm. An example 

is the BFP24. 

• Type VII: Proteins characterized by an excitation spectrum with a maximum below 

300 nm. 

Nowadays, there are more than 820 structures listed in the protein data bank (entering GFP 

as key research word) with proteins emitting fluorescence at every different colour of the 

visible spectrum25 (Figure 3.5). The field has grown so fast that there is a separate fluorescent 

protein data base26 where authors can upload new discovered or synthesized fluorescent 

proteins, with currently 773 different FP listed. With these many different proteins, the 

previously given classification is obsolete, and nowadays the most common classification is 

according to their light-induced changes, which define the applications exploiting them. The 

most basic application is their use as fluorescent tags. Proteins that after light-excitation 

fluoresce and have a photo-transformation are classified as photo-transformable FPs (PTFP). 

These can be further classified into three different types: photoactivatable, photoconvertible 

or photoswitchable (Figure 3.4).  

• Photoactivatable (PAFP): Proteins that are able to go irreversibly from a dark non-

fluorescent state to a bright state with light. Some examples of this type of proteins 

are PA-GFP27 and PA-mCherry228. 

• Photoconvertible (PCFP): PAFP Proteins having two distinct emissive states and are 

able to go irreversibly from one to another. For example, a green emitting state, that 

after irradiation with the correct wavelength goes irreversibly to a red emitting state. 

Examples of these proteins are Kaede29, Dendra30 and EosFP31.  

• Photoswitchable (RSFP): Reversible PAFP Proteins or photochromic FPs, i.e 

proteins that can be switched reversibly from a bright fluorescent (On) state and a 

dark (Off) non fluorescent state. Examples of these proteins are Dronpa32, 

Dreiklang33, Skyline34 or rsEGFP235,36.  
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Figure 3.4. Light-induced phenomena in fluorescent proteins that allows classifying the 

phototransformable FPs. Figure made with Inkscape. 

It is worth mentioning that a fluorescent protein can have simultaneously different types of 

phototransformations. For example, IrisFP37 is photoconvertible from a green to a red 

fluorescent form, and each of these forms is photoswitchable37. In the FP database, a 

significant number of proteins correspond to those named “basic FP”38 (not-PTFP). 

Nevertheless, during the last couple of years, the number of photoactivatable, 

photoconvertible and photoswitchable proteins has drastically increased, mainly due to their 

applications in super-resolution microscopies. In Figure 3.5, the maximum of fluorescence 

emission spectra for all FPs listed in the FP database are plotted against their absorption 

maximum; the colours represent the different type of proteins according to the classification 

mentioned above. Interestingly, PTFPs are grouped in specific clusters with similar 

absorption and fluorescence maxima. On the contrary, non-PTFP proteins cover the entire 

visible domain. PAFPs are quite rare, and the majority of them absorb and emit in the 590-

630 nm region. RSFPs emit in a narrow region between 500 and 530 nm range, excluding 

the photoconverted red forms (i.e. red-IrisFP), and a few proteins emitting above 600 nm 

with low fluorescent quantum yield and brightness. PCFPs cover a broader emission region, 

but still only PSmOrange39 and PSmOrange240 can be excited in the red. The development 

of new phototransformable proteins which can be excited above 600 nm is a challenge. 25. 
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Figure 3.5. Fluorescence emission maximum of proteins listed in the FP database26 

represented according to their absorption maximum. The colours represent the different type 

of FPs: grey, blue, orange, and green for basic, RSFP, PCFP and PAFP respectively. Figure 

is plotted using matplotlib and seaborn python packages. (https://www.fpbase.org) 

 

3.1.3 Correlations between structure and photophysical properties of 

FPs 

The mechanism behind the different photo-transformations differs and their understanding 

for the design of new RSFPs is essential. For example, generally in PAFP, the photoactivation 

induces a decarboxylation of the glutamine E222 and a conversion from a neutral non-

fluorescent state to an anionic fluorescent state41. For PCFPS, Kaede29, Dendra30 and 

EosFP31, the mechanism of the photoconversion is a chemical modification which extends 

the π-system and breaks the protein backbone25. For RSFPs such as dronpa32 or rsEGFP235,36, 

the photoswitching mechanism between the fluorescent and non-fluorescent states is based 

on a cis-trans isomerization and a protonation/de-protonation of the chromophore. 

Interestingly, for Dreiklang33, the photoswitching mechanism is a photoinduced 

hydration/dehydration of the imidazolinone ring.  

https://www.fpbase.org/
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It is worth noting that there is not an established link between the FP structure and its 

photophysical properties (i.e. maxima of absorption and emission spectra, molar absorption 

coefficient, fluorescence quantum yield, brightness, fluorescence lifetime, switching yield, 

switching contrast, photostability, fatigue resistance, to name a few). As pointed out in an 

extensive study where the fluorescence of 51,715 proteins obtained by random mutagenesis 

of the avGFP was monitored42, the prediction of properties for new FPs is challenging. All 

the proteins studied had between 1 and 15 mutations, with an average of 3.7 mutations per 

protein. They reported that 75% of the proteins with a single point mutation had a negative 

effect on fluorescence and ~10% of them had their fluorescence emission intensity 

(brightness) divided by 5 in comparison to the WT avGFP42. This study showed that the 

mutations affecting the most the fluorescence quantum yield are those in the amino acid 

residues oriented internally towards the chromophore. Furthermore, they generally observed 

that multiple mutations result in a more substantial negative effect than the sum of individual 

mutations42.  

Rationally designing new mutations is therefore essential for the development of new RSFPs 

with optimized photo-physical properties. In a recent publication43, the group of Steven G. 

Boxer used an innovative technique to develop new FP mutants. This technique is based on 

FP split proteins43–45. Split proteins are two polypeptide chains having complementary parts 

of a complete entire protein sequence. These two peptides can then be fused together to form 

a complete functional protein46–48. A schematic representation of this technique applied to 

GFP type proteins is illustrated in Figure 3.6. The group of Boxer have studied the association 

of split proteins related to GFP for over a decade, discovering several unique light-dependent 

photodissociation and photoassociation of split FP fragments49,50. Using split proteins, they 

managed to precisely remove and substitute any amino acid in the avGFP protein sequence. 

They could incorporate non-canonical amino acids introducing electron-withdrawing and 

donating moieties directly to the chromophore and make several mutants targeting the 

different amino acids interacting directly with HBDI (R96, H148 T203, E222 and S65)51 (see 

appendix 3 for amino acid table and chromophores environments). They were then able to 

study the influence that the different amino acid residues had on several photo-physical 

properties of avGFP43 (Figure 3.7). 
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Figure 3.6. Semisynthetic route for creating new GFP mutants based on Split proteins. 

Proteins containing a trypsin cleavage inserted in a loop will be broken when the protein is 

digested with trypsin (step 1), this is followed by denaturation with guanidine hydrochloride 

and isolation of the larger piece of GFP by size exclusion. The dilution of these larger pieces 

into a solution containing the desire synthetic peptide yields the final modified protein. This 

can be applied to remove any specific β-strand (top) or the central chromophore (bottom). 

Figure made with Inkscape based on figure 2 from reference 45. 

They further showed that electronic interactions of the amino acids with the chromophore 

control, among other properties, the emission maximum of fluorescence spectrum. Indeed, 

there is a correlation between the value of Stokes shift and absorption maximum for the 

fluorescence of a protein. The correlation follows the equations from the Marcus−Hush 

theory for mixed-valence compounds52. The HBDI chromophores can exist with different 

forms and is treated as a mixed-valence compound that can either have the charge on the 

oxygen of the phenol ring or the oxygen of the imidazolinone ring. The negative charge on 

either of the two rings is stabilized by electrostatic interactions with amino-acids of the 

protein 43. For mutations on the Tyr66, the states depend on the capacity of the introduced 

chemical group to donate or withdraw electrons from HBDI43. They also studied spontaneous 

emission rate (Kr / fluorescence) relations with the molar absorption, transition dipole 
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moment, and absorption spectrum maxima. They reached to the conclusion that it is only 

possible to tune efficiently (several orders of magnitude) the fluorescence quantum yield of 

a chromophore by modifying the efficiency of competing nonradiative decay pathways, such 

as isomerization or excited state electron transfer43. 

Figure 3.7. The Stokes shift plotted against the absorption maximum for all studied mutants 

in reference 43, variants, and model chromophores of GFP, Dronpa, and PYP at room 

temperature, The red line corresponds to the fit of data to the equation inserted in the figure. 

This Figure has been reproduced from reference 43. 

 

3.1.4 Photophysical properties of RSFPs 

As mentioned above, RSFPs are photochromic proteins that can be switched reversibly from 

a bright fluorescent (On) state and a dark state (Off). In addition to the previous 

classifications, RSFPs can be further classified according to their switching mode in three 

groups53:  

• Negative RSFPs: Irradiation light induces switching from On to Off state and 

fluorescence. These types are the most common RSFP. Except for rsGamilus54, in the 
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On fluorescent state the chromophore adopts a cis anionic form, while in the Off non-

fluorescent state adopts trans neutral form.  

• Positive RSFPs: Irradiation light induces switching from Off to On state and 

fluorescence. In general, the Off non-fluorescent state is formed by the trans anionic 

form of the chromophore, which, when irradiated, provokes an isomerization to the 

cis form, which is found in equilibrium between the protonated and deprotonated 

forms, the latest is the fluorescent form (On). The deprotonated cis form has an 

absorption band maximum close to the trans Off state. It is important to note that all 

positive RSFP have an Anthozoa origin and are derived from Dronpa53. 

• Decoupled RSFPs: These proteins have a decoupled fluorescence excitation from the 

irradiation switching light. There are only two reported proteins of this type, 

Dreiklang33 and a mutant of it Spoon55. The switching between states is not based on 

a cis-trans isomerization but on a photoinduced hydration/dehydration of the 

imidazolinone ring. Indeed, in its On state, the chromophore is found in an 

equilibrium between the anionic and neutral forms. Excitation of the anionic form 

induces fluorescence, while irradiation of the neutral form induces the hydration to 

the Off state. 

In addition to the parameters that characterized general FPs, for RSFPs, it is essential to 

characterize the different spectral forms, switching quantum yields between the fluorescent 

and the non-fluorescent state and, for super-resolution microscopy, the switching contrast 

and fatigue. There are currently 42 RSFP including the different forms of RSFP that can 

photoconvert from a green fluorescent state to a red fluorescent state. The majority of 

publications have focused on studying the photophysical properties that directly influence 

the resolution in RESOLFT, such as brightness (contrast, molar absorption coefficient, 

brightness and fluorescence quantum yield), fatigue resistance, switching speed and 

switching contrast53. The switching contrast is determined by the crosstalk between On and 

Off switching and the molecular brightness of On and Off states. Furthermore, fast thermal 

relaxation of the switched protein to the respective equilibrium state, as well as the population 

of intermediate states, can affect the reachable switching contrast. RSFPs useful for 

RESOLFT nanoscopy exhibit a contrast higher than 10 (a residual fluorescence below 10%), 

although smaller values of the residual fluorescence have been reported and are beneficial. 
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In figure 3.8, the reported brightness for all the RSFP in the fluorescent protein database26 

have been plotted versus the fluorescence maximum. 

Figure 3.8. Brightness plotted against the fluorescence emission maximum for main RSFPs 

reported in the protein database26. The colour of the points corresponds to the wavelength 

value of the fluorescence emission maximum in RGB. Data plotted with matplotlib python 

package. 

As commented in the introduction (Chapter 1), the switching quantum yields between the 

fluorescent and non-fluorescent states are parameters that can influence the acquisition times 

of images and the spectral resolution that can be achieved in RESOLFT56. However, the 

quantum yields of switching have not always been reported in the literature. These 

parameters are not easy to determine, and the reported values for a same protein vary between 

different publications (see Table 3.1). These differences can be attributed to the different 

methods used to meassure them; which are based on monitoring the changes invitro/invivo 

under irradiation of either, the fluorescence under a microscope, or the absorbance of the 

protein in solution. To our knowledge, out of the 42 RSFP reported in the fluorescent protein 

database26, switching quantum yields have only been calculated for those proteins in Table 

3.1. (a similar table with the molar absorption coefficients of most relevant RSFPs On state 

have been recently published by S. Jakobs and coworkers53) 
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Table 3.1. Properties of RSFP with reported switching quantum yields. 

Protein 
Switch 

type 

λ Absorption (nm) 

/λ Emission (nm) 
ϕfluo ϕOn-Off ϕOff-On Ref 

Dronpa negative 503/517 

0.85 0.032 e-2 0.37 57 

0.78 0.0160 e-2 0.165 58 

- - 0.073 59 

0.93 0.043 e-2 0.21 54 

Dronpa 2 negative 489/515 
- - 0.13 59 

0.28 4.7 e-2 - 60 

ffDronpa negative 507/519 0.75 0.007 e-2 0.172 58 

pcDronpa (Green) negative 505/517 0.85 0.056 e-4 0.092 58 

rsGreen1 negative 486/509 0.42 0.42 e-2 0.14 61 

rsGreenF negative 486/509 0.39 0.87 e-2 0.18 61 

rsEGFP negative 491/510 0.42 0.55 e-2 0.17 61 

rsEGFP2 negative 478/503 

0.35 1.65 e-2 0.33 62 

0.34 0.089 0.12 61 

0.43 0.09 0.2 54 

IrisFP (Green) negative 488/516 0.43 1.4 e-2 0.5 63 

Skyline-NS negative  0.79 8.1 e-4 0.22 54 

IrisFP (Red) negative 551/580 0.47 0.2 e-2 0.047 63 

mIrisFP (Green) negative 486/516 0.54 0.69 e-2 0.36 37 

mIrisFP (Red) negative 546/578 0.59 0.31 e-2 0.28 37 

Dendra2 M159A 

(Green) 
negative 471/504 0.55 0.11 e-2 0.08 64 

Dendra2 M159A 

(Red) 
negative 528/562 0.75 0.32 e-2 0.01 64 

NijiFP (Green) negative 469/507 0.64 0.18 e-2 0.10 64 

NijiFP (Red) negative 526/569 0.65 0.10 e-2 0.10 64 

mEosFP (Green) negative 504/516 0.67 0.26 e-2 0.15 64 

mEosFP (Red) negative 569/581 0.66 0.0035 e-2 0.05 64 

rsFolder negative 478/503 0.25 2.1 e-2 0.44 62 

rsFolder2 negative 478/503 0.23 1.98 e-2 0.28 62 

Padron positive 503/522 0.64 0.3 e-2 0.04 65 

Kohinoor positive 495/514 0.71 2.0 e-2 0.15 65 

rsGamillus-S negative 504/522 0.70 0.56 e-3 0.50 54 

rsGamillus-F negative 505/522 0.71 2.7 e-3 0.51 54 
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3.2 Photodynamics of FPs.  

As discussed above, the photophysical properties of each of the different PTFP proteins and 

correlations with their structure are relatively complex and challenging. This difficulty is 

definitively associated with the excited state dynamics of the RSFP. Indeed, after excitation, 

RSFPs display a richer excited state dynamics than basic FPs66,67 including transition 

between several fluorescents and non-fluorescent states (in excited and ground states). In the 

next section, we will first review the photodynamics of HBDI followed by the GFP, and we 

will end with RSFPs. 

3.2.1 Photodynamics of HBDI 

The photodynamics of the HBDI have been extensively reviewed70,71. As mentioned in 

chapter 2, the photodynamics of HBDI and its analogues can involve ESPT and cis-trans 

isomerization. The HBDI stable isomer is “cis” and can have different protonation states 

(phenol or imidazolinone ring). Early studies done using quantum mechanics simulations 

suggested the cis-trans isomerization or twisting of the exo-methylene double bond to be the 

main deactivation process for HBDI, at room temperature68. All the possible protonation 

states of the chromophore phenol group were studied with time-resolved spectroscopies. 

Some common conclusion can be drawn5,69–72 and summarized in a fast bi-exponential decay, 

with a main characteristic time constant of few hundred of femtoseconds (~200-500 fs) 

followed by a longer decay in few picoseconds (~1-2 ps). The anionic chromophore excited 

state lifetime (~400 fs) is about two times longer than the neutral protonation state (~200 

fs)72. The HBDI excited state dynamics showed almost no dependence with the solvent 

viscosity5,70. This result suggested that isomerization processes should happen via a pathway 

with conserving volume, and the “hula twist” (Chapter 2 section 2.5.2) of the methylene 

bridge connecting the phenol and imidazolinone rings was suggested. Similar results were 

predicted by computational simulations73. 

More recent studies regarding the cis-trans photoisomerization of cis-HBDI showed that, 

upon irradiation, the photostationary state between cis and trans chromophore isomers 

depends on the different protonation states and solvent (methanol/acetonitrile). Whilst for the 

neutral chromophore the concentration is around 40:60 of trans isomer in methanol, for the 
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anionic form the trans isomer only represents about 23 %74. The study of the excited state 

dynamics using ultrafast fluorescence up-conversion (resolution 50 fs) of these photo-

stationary states (cis-trans mixture) showed that the anionic chromophore states always have 

the longest lifetimes72,74. Interestingly, identical decay times were found starting from 100% 

of cis-isomer as for cis-trans mixtures in both anionic and neutral forms74. The similarity 

between the lifetimes of the cis and trans states suggested that the excited states of the two 

isomers must also be similar74. Furthermore, NMR studies of the cationic, neutral and anionic 

forms of HBDI showed that the isomerization can also happen in the ground state75. Indeed, 

the isomerization energy barriers in the ground state were found to be very similar among 

the differently protonation states of the chromophore and relatively small compared to other 

similar compounds. Finally, this study showed that at room temperature, the ground state of 

the cationic chromophore is populated by cis and trans isomers. In contrast, only the cis 

isomer is present for the neutral and anionic chromophores forms75.  

To further describe the excited state dynamics of HBDI, and since there are a considerable 

large number of studies with different analogues76–83, here, we will only focus on those 

tackling the most similar and straightforward ones. They are particularly interesting those 

that try to increase or decrease the planarity of HBDI78,79. For example, the above results 

contrast with studies done for a nonplanar chromophore generated through methylation of 

HBDI on the phenolic ring in meta position to the hydroxyl group. The non-planarity of the 

chromophore increases the deactivation by non-radiative pathways decreasing the excited 

state lifetime by a factor of two for the neutral forms (from 0.29 to 0.15 ps) and by a factor 

of five for the anionic forms (from 0.5 to 0.1 ps)79. On the contrary, blocking the 

isomerization pathways and increasing the planarity decreases the deactivation by non-

radiative pathway and leads to an increase of the fluorescent quantum yield as for o-HBDI 

(see below)78. This observation confirms that the fluorescence in the avGFP is linked to the 

effect of the protein cage; which suppresses non-radiative relaxation by restricting large-

amplitude motions and isomerization. 

Some analogues that particularly draw the attention are those that have the -OH phenyl 

substituent in meta (m-HBDI)80,81 and orto- (o-HBDI)82,83 positions compared to the original 

HBDI where the OH is in para- position. The first significant difference for m-HBDI is that 
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the absorbance of the cationic form strongly overlaps with those of the neutral and anionic 

forms, and are practically indistinguishable among them. The photoconversion from cis to 

trans-isomers was about 35% in DMSO for p-HBDI80 (similar values were reported for p-

HBDI in methanol75). On the contrary, for m-HBDI, it was only about 7 %, together with an 

irreversible photo-degradation. The first excited state dynamics studies (using TCSPC) done 

in aprotic solvent, found longer lifetimes for m-HBDI (characteristic times of 15 and 90 ps 

in DMSO), compared to the p-HBDI with excited state lifetimes under the resolution limit of 

the TCSPC (~10 ps)80. This result correlated with the higher fluorescent quantum yields 

found for m-HBDI compared to p-HBDI. These first studies were expanded in protic solvents 

and not only to m-HBDI and p-HBDI but also to m-MeOBDI, p-MeOBDI, homologues that 

prohibit any kind of proton transfer from the phenyl to the solvent, and to p-HBDIMe+ which 

has an added methyl group to the nitrogen in the imidazolinone moiety81. The results for all 

para substituents were in agreement to those in previous studies, sub-picosecond excited 

state life time due to the existence of a near barrierless twisting chromophore in the excited 

state. On the contrary, they found a completely different behavior for meta conformers. For 

example, a sequential ESPT was observed for m-HBDI forms at neutral pH, involving first 

the adiabatically dissociation of the hydroxyl group in 0.7 ps (intermolecular proton transfer 

to the solvent) followed by the imidazolinone nitrogen protonation in 3.1 ps. For o-MeOBDI, 

the nitrogen protonation is the first step in 1.1 ps followed by cis-trans isomerization 27 ps. 

The essential result is that the overall photoinduced reactivity of the neutral anionic and 

cationic forms of m-HBDI in protic solvents is dominated by acid-base properties of the 

molecule81. These analogues are not the only ones exhibiting proton transfer to the solvent76 

(photo-acid). 

The o-HBDI dynamics were published a few years later, and a schematic representation of 

its mechanism can be seen in Figure 3.9. The intramolecular hydrogen bond of the cis form 

stabilizes it thermodynamically and makes it the stable form over the trans conformer. The 

absorption spectrum of o-HBDI in aprotic solvents is mainly characterized by an absorption 

maximum around 385 nm, excitation at this wavelength induces a fluorescent emission 

peaking at 605 nm82,83. This large Stokes shift of about 120 nm is the consequence of an 

ultrafast excited-state intramolecular proton transfer (ESIPT). Fluorescence up-conversion 

experiments showed that growing of fluorescence signal was beyond the system resolution 
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(<150 fs)82. The experiments performed with deuterated phenol -OD demonstrated that the 

rate of ESIPT is insensitive to an H/D exchange (isotopic effect) and underlines the existence 

of an essentially barrierless potential energy surface along with the ESIPT reaction.  

 

Figure 3.9. Proposed excited and ground-state dynamics of o-HBDI in CH3CN reproduced 

from Cheng-Chih Hsieh et al.83. The mechanism includes ESIPT and ground state, cis-trans 

isomerization, ground state deprotonation and a final reverse Proton Transfer. 

These studies were further extended by an extensive work combining several ultrafast time-

resolved (TR) spectroscopies including TR fluorescence up-conversion with a 40 fs 

resolution and TRUV/vis/mid-IR femtosecond-millisecond transient absorption83. TRUV-

Vis femtosecond transient absorption experiments showed that after the ESIPT in 25 fs 

(characterized with fluorescent up-conversion) a new positive absorption band centered at 

575 nm is growing in about 8 ps. This band was attributed to the photoproduct of cis-trans 

isomerization. The long-lived trans photoproduct had no evolution until the microsecond 

time range. Flash photolysis experiments were used to monitor the ground state dynamics of 
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this band, revealing a shift to 530 nm in the microsecond range (7.7 µs). This evolution was 

assigned to ground state deprotonation forming a trans anionic o-HBDI. All these results 

were further supported by similar time evolutions obtained by two-step laser-induced 

fluorescence (TSLIF) experiments and TRUV-pump/mid-IR transient absorption 

spectroscopy. Using the latter technique, the authors were able to identify a 6 ps lifetime 

species characterized by an exocyclic C=C double bond stretching at 1650 cm-1 and a C=O 

stretching of the imidazolidinone carbonyl group at 1720 cm-183, clear features of cis-trans 

isomerization.  

Table 3.2. Photodynamics of ortho, meta and para substituents for HBDI.  

POSITION DECAY TIMES MECHANISM 

p-HBDI <1 ps Ultrafast cis-trans isomerization 

m-HBDI 0.7 and 3.1 ps Phenol deprotonation + N imidazolinone protonation 

o-HBDI 25 fs, 7 ps, 7.7 µs ESIPT + isomerization + GSPT 

 

3.2.2 Photodynamics of avGFP 

From the previous section, it is clear that the main deactivation pathways of the p-HBDI in 

solution is the cis-trans isomerization68. Furthermore, it has been mentioned above that the 

chromophore becomes fluorescent at very low temperatures (77 K)4,5 and when it is 

encapsulated in non-protein scaffolds6 or non-native proteins7. These results indicate that the 

protein cage β-barrel plays a major role in the fluorescence of the avGFP. 

As shown in Figure 3.2, avGFP protein has two absorption maxima at 398 and 477 nm, the 

corresponding fluorescent emission spectra peak at 510 and 503 nm, respectively. The over 

100 nm Stokes shift for the 510 nm fluorescent emission maximum respect to the 398 nm 

absorption maximum is explained by an ESPT. Boxer and coworkers84 were the first to 

characterize it using fluorescence up-conversion. They showed that after excitation of the 

anionic form at 470 nm, there is an instantaneous rise of the fluorescence signal at 508 nm 

which lasts longer than 150 ps (longest delay meassured). While on the contrary, excitation 
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of the 398 nm maximum is characterized by an instantaneous fluorescence emission signal 

at 460 nm which decay in a few picoseconds and concomitantly the rise of the fluorescence 

emission at 508 nm occurs The significant isotopic effect observed (H/D) was attributed to 

an ultrafast ESPT in the ps range. Furthermore, they observed that the irradiation of the 

neutral form caused a small photoconversion to the ionic form attributed to an infrequent 

transition from I* to B*. Their studies, combined with the quantum calculations done by 

Weber et al.68 allowed rationalizing the different species and time constants observed for the 

avGFP photodynamics (Figure 3.10). Thanks to the X-rays structures, the I* to B* transition 

was assigned to the rotation of the Tyrosine 20385. 

A few years later, using pump-dump-probe transient absorption (TA) experiments, J. Van 

Thor’s group86 demonstrated that the recovery of the neutral chromophore (A) from the 

tautomer form (I) occurs in a two-step process with associated times of 3 ps and 0.4 ns via 

one intermediate state both affected by isotopic effects, attributed to proton diffusion 

processes. This work was later extended by other groups where they studied the chromophore 

re-protonation reaction using pump-dump temperature dependent experiments in both light 

and heavy water to study isotopic effects. The researchers found that the thermal back 

reaction from I to A occurs via hopping of two protons in a synchronous but concerted 

manner and a tunnelling mechanism at the S205 oxygen, where the ionization-resistant S205 

residue plays a major role acting as the limiting reaction step87.  

Finally, in 2015 the group of S.R. Meech reported the complete proton transfer cycle for 

avGFP using multiscale time resolve IR (TRMPS)88. They studied avGFP and two mutants 

T203V and S205V, which directly affect the hydrogen bond network88. They reported a 

similar time constant for avGFP and T203V. Excitation of the neutral form induces an 

ultrafast ESPT characterized by two time constants (13 ps and 100 ps), giving the photo-

excited intermediate tautomer I*, which relaxes in 2.1 ns mainly by fluorescence to I. The 

recovery of the original A form in about 17 ns. Surprisingly, the ESPT transfer in S205V was 

reported to be much slower around ~730 ps attributed to an alternative proton wire previously 

suggested89.  
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Figure 3.10. avGFP photodynamics scheme that combined results of Chattoraj et al. 84 and 

Weber et al. 68, together with the X-ray structures for the different states (neutral tautomer 

and anionic) from Brejc et al. 85. The associated time constants have been taken from 

Laptenok et al88 (experiment done D2O buffer). Figure made with Inkscape. 

The first step to elucidate the photodynamics of an FP is getting the time constant. 

Nevertheless, the most complex part is their assignment to a specific structure. A close look 

at Figure 3.10 shows the X-ray structures proposed by from Brejc et al. 85, suggesting that 

the ESPT forming the tautomer involves a water molecule, the phenol group of the 

chromophore and three protein-cage residues, S205, S65 (forming the chromophore), and 

E222. Therefore, the ESPT was rationalized by a proton relay (mechanism proposed by 

Kasha90, Chapter 2 section 2.5.1) between the phenol and the E222. Furthermore, it can also 

be seen that hydrogen bonds between the chromophore and the protein cage seem to control 

the rigidity, i. e. the radiative decay yields the anionic (B*) form and the characteristic 

dynamics of avGFP85. TRIR91 and femtosecond Raman spectroscopy92 experiment have 

confirmed that the E222 is the proton acceptor93 forming the tautomer. Furthermore, studies 

have shown that after excitation, the chromophore has some skeletal vibrations (280 fs 

characteristic time)92,94 in the form of a “wagging” and, since protein cage prevents the 
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chromophore to isomerized, and the ESPT is triggered as lower energy barrier reaction92,94. 

Recent studies using TRUV-Vis and TRSR of a mutant (avGFP S65T/S205V) that lowers 

the ESPT time constant by a factor of 30, were able to determine that the first step is the 

proton transfer from the phenol to the water molecule, followed by a concerted transfer to 

E22285,95. Furthermore, it has been shown that the mutation of the glutamic acid E222 to 

glutamine renders the avGFP non-fluorescent96. 

So far, the excited state dynamics of the avGFP neutral absorption band (A) have been 

described. To understand the excited state dynamics of the avGFP anionic form (B), we will 

review that of the EGFP due to their similarities22. The EGFP is obtained by mutation of the 

Serine 65(S) by threonine (T), causing the predominant form to be the anionic chromophore 

(B) and not the neutral form (A). This is mainly because S65T favors the protonation of E222 

and thus the deprotonation of HBDI97. In the avGFP after excitation of A the excited state 

tautomer I* is formed which decay via emission of fluorescent. The S65T in the EGFP 

distorts the hydrogen network provoking a higher fluorescence quantum yield of B form. 

However, at the same time, the deactivation of I* becomes mainly non-radiative. 

Interestingly, the fluorescence after excitation of the neutral A form is restored in the double 

mutants E222Q/H148D and S65T/H148D96. TRIR measurements have shown that in these 

two double mutants, an ESPT is occurring in about 100 ps from the chromophore to the 

aspartic acid. This demonstrates that multiple ESPT mechanisms through different amino 

acids are possible96. Single-molecule spectroscopy allows revealing silent and infrequent 

species such as dark state and triplet states that could be the origin of the avGFP blinking 

behavior. Initially, cis-trans isomerization was postulated by Weber et al.68 as a possible 

reason for the momentaneous absence of fluorescence of the neutral avGFP form. Studies 

following the fluorescence under the microscope of EGFP mutant (T203Y) by Pellegrini and 

coworkers, demonstrated the existence of a dark state when this protein is excited at 365 nm, 

and assigned it to the existence of a trans state98. Furthermore, Pellegrini and coworkers have 

also shown that the presence of zwitterionic species can also explain blinking in EGFP 

protein99. These last studies are in contrast with the results from Gosh et al.100, which 

attributed blinking of the EGFP to a heterogeneous ground state as a result of different amino 

acid side chains orientations. The authors were able to determine different ground state 

conformers using Fluorescence Lifetime Correlation Spectroscopy in EGFP100. They 
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recorded the fluorescent decay of the anionic form at 485 nm excitation, which needed two 

decay time constant of 2.1 and 3 ns to be correctly fitted. They used these time constants as 

filter functions to calculate fluorescent lifetime correlations identifying several ground state 

transitions between these two states and a dark state in the µs time scale. The three ground 

state conformers were assigned to the T203 rotation and two E222 conformations. These 

results are in agreement with new high resolutions X-ray structures which also reported 

different conformers for E222101 in agreement with recent neutron diffraction studies which 

detected two different hydrogen bond networks for the two conformers of E22297. 

Interestingly, from this last study, it was also possible to infer possible alternative 

deprotonation paths. The crystal structures obtained by neutron diffraction from this 

publication are reproduced in Figure 3.11. Other works which are also in favor of the 

hypothesis of E222 being the origin for blinking in EGFP are new fluorescence lifetime 

measurement on EGFP with the E222 mutated to a histidine, showing a mono-exponential 

decay102, and the fact that the mutation of E222 by glutamine renders the EGFP photo-

switchable reversible103. 

Figure 3.11. Bond model and neutron scattering length schematic drawing of the electron 

diffraction density maps. Including hydrogen, deuterium atoms and a magnified model for 

the water molecule close to the chromophore (named DOD323 in the figure). Reproduced 

from reference 97. CRO acronym correspond to the HBDI chromophore. 
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We can try to summarize in a scheme all the different information from the ensemble time-

resolved spectroscopies, single-molecule and X-rays results. Regardless of the origin of the 

multi-exponential decay and blinking of fluorescence in the GFP, the presence of different 

chromophore conformations in the ground state is clear43,68,99,100. From works reviewed here, 

it is possible to expand the photophysical scheme based on those proposed by Chattoraj et 

al.84, which is based on the ESPT mechanism proposed by Kasha90 (Chapter 2). The proposed 

photophysical scheme can be seen in Figure 3.12. In this figure, we can see a Kasha ESPT 

scheme (similar the one in Figure 2.13), adapted to the proposition of Chattoraj et al.84 and 

Weber et al68 for the neutral chromophore. Furthermore, the I1 and I2 states, revealed by 

pump-dump-probe experiments, have been added, displaying a multi-step ground process86 

characterized by the proton tunnelling effect at the Ser20587. In the middle part, we can see 

the anionic chromophore scheme treated as a mixed-valence compound,43, which introduced 

at least two fluorescent states in agreement with others100. Finally, in the right part, the 

existence of dark states proposed by several authors98–100 is represented. To conclude, the 

photodynamics of avGFP are complex, and this complexity will logically also be found in 

photo-transformable proteins and RSFPs.  

 

Figure 3.12. Suggested expanded photophysical scheme for GFP proteins, based on the one 

proposed by Chattoraj et al.84 with the contributions of other recent works43,86–88,98–100. 

Figure made with Inkscape. 
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3.2.3 Photodynamics of RSFPs 

As described above, there are currently 42 RSFP taking into account those that can be 

photoconverted from green to red. The majority of publications have focused on studying the 

photophysical properties of these proteins, such as fatigue brightness and fluorescence 

quantum yields. Nevertheless, the photodynamics of only very few of these proteins have 

been studied. 

As shown in Figure 3.13, only 7 RSFP have been studied. Several studies focus on 

Dronpa32,59,104,105 and Dronpa-2, the fast mutant M159T 32,59,106,107 that will be covered in the 

next section. Other RSFP studied are the positive photoswitcher Padron108, Padron0.9109 and 

the decoupled photoswitcher Dreiklang110. Regarding the multi-photochromic proteins, the 

photodynamics of IrisFP have been published. Nevertheless, this study only focused on the 

switching from Off to On form of the green part111. Finally, there are some studies on 

rsEGFP235,112. From all of RSFP, the most studied are definitely Dronpa and Dronpa-

232,59,104–107. 

 

Figure 3.13. Stokes shift plotted against the absorption maximum for main RSFP proteins. 

The colour of the points corresponds to the absorption maximum. Proteins represented by a 

triangle correspond to those that photodynamics has been studied to our knowledge. Data 

plotted with matplotlib python package. 
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3.2.3.a Dronpa 

Dronpa was the first RS-GFP-like protein discovered in 2004 by Miyawaki’s group57. They 

named this protein dron (ninja term for vanishing) and pa (which stands for photoactivation). 

The switching properties of Dronpa have been widely studied. The structure of Dronpa is 

similar to the avGFP structure and GFP-like proteins. The protein cage is a 11 stranded β-

barrel. The chromophore is also the HBDI which is formed by the tri-peptide Cys-62–Tyr-

63–Gly-64 (CYG) in an α-helical segment inside this β-barrel113. Dronpa can be reversibly 

switched between a fluorescent On-state (resting state) that absorbs at 50360 nm to a non-

fluorescent Off-state, and reversibly switched back to the On state by irradiation of the Off 

state with UV-blue light (Off state absorption maximum is at 390 nm). The On state has a 

fluorescence quantum yield of 0.8560 and a mono-exponential fluorescence decay with a 

characteristic time of 3.6 ns114.  

The first study by Andersen et al.113 focused on the X-ray structures of On and Off states. In 

the On fluorescent state, the chromophore has a cis-anionic geometry, while on the Off non-

fluorescent state, the chromophore adopts a trans neutral one. Besides the chromophore 

differences between On and Off states, there are also changes in the hydrogen bonding 

network and the protein cage, which mainly involve the amino acids Arg66, Ser142, Val157, 

and His193. From the X-ray structures, they concluded that the loss of fluorescence of the 

Off state is due to a change in the chromophore protonation state and two main structural 

differences between the states. The first is the planarity of the chromophore, which in the On 

state adopts an almost planar cis configuration, with a 15o dihedral angle between the phenol 

and imidazolinone rings, while in the Off state, the chromophore adopts a trans conformation 

with a 30o dihedral angle. The second is the freedom of movement coming from the fact that 

the chromophore in On state has 10 hydrogen bonds with the β-barrel cage whilst the Off 

form has only 8 hydrogen bonds resulting in a less bounded chromophore to the protein cage. 

This study showed that the switching mechanism between the two states in Dronpa requires 

several steps, which can be assigned to cis–trans isomerization, proton transfer, changes and 

rearrangement of the hydrogen bond network and amino acids of the protein cage113. 

Nevertheless, classical X-ray data do not handle any information regarding the time scale 

and order in which these processes may happen, and whether they take place in the ground 
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or excited states, and if all these rearrangements occur subsequently or in parallel to each 

other. 

Several groups (Figure 3.14) have done ultrafast (Uv-vis)59,104 or vibrational (IR)32,105–107 

transient absorption spectroscopies to address all these open questions for Dronpa. Since the 

photoswitching quantum yield of the On to Off reaction is several orders of magnitude lower 

than the Off to On (~1-4·10-4 vs ~0.1-0.4; see Table 3.1), the photoswitching studies for 

Dronpa are mainly focused on the later reaction. The study of On to Off reactions cannot be 

done directly, and only the fluorescence lifetime is giving some excited states information. 

Among all the Off to On photoswitching studies, it is clear that excited state species decay in 

the picosecond time range. Then the photoproducts in the ground state evolve to the final On 

state in the microsecond range. Besides the excited states lifetimes, which seems to be more 

or less clear among the literature, and the fact that there are processes in the ground state, the 

number and nature of species involved in the switching process and the order in which the 

structural changes happen, such as cis-trans isomerization, proton transfer or protein 

rearrangement, is still subject of debate. 

The first time-resolved Off to On isomerization study of Dronpa for was done in 2007 by 

Fron et al.104. They used TRUV-Vis and found that after excitation of the Off state with a 395 

nm 100 fs laser pulse, the excited state decay was characterized by a 4 ps time constant, 

which was affected by a 2 fold isotopic effect when the experiments were performed in heavy 

water. From these results, they concluded that the first step must be an excited-state proton 

transfer ESPT preceding a cis-trans isomerization in the ground state (see Figure 3.14). 

However, the study of Dronpa using IR femtosecond transient absorption led to different 

conclusions in 2013. Indeed, two other groups studied the photoswitching dynamics of 

Dronpa105 and Dronpa-2107, and none of the studies reported an ESPT. Dronpa-2 has a 

mutation of the Methionine 159 by a Thyrosine (Dronpa M159T), which increases the 

photoisomerization quantum yields (see table 3.1 reference 57 for an accurate comparison). 

Although both studies reported similar time constants for excited states decay, the assignment 

of the excited species nature was different. The first publication from Warren et al. 105 

reported an excited state which decays in 9 ps to a long-lived photoproduct (more than 100 

ps, limit of experiments). This long-lived GS species had no characteristic signal of the 
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phenolic group around 1500 cm-1 which would indicate chromophore deprotonation. In 

addition, some characteristic amino acid signals from the final cis anionic On state were 

missing. The authors then concluded that cis-trans isomerization occurs in 9 ps and is 

followed by millisecond ground-state proton transfer (GSPT)105. The authors also estimated 

that the trans to cis isomerization must occur from the cis anionic fluorescent state in 3.6 ns 

followed by a ground state proton transfer. Isomerization competes with emission 

deactivation, and this explains the low On to Off switching yield. 

The second publication from Lukacs et al.107, studied Dronpa-2 using also TRIR on a wider 

temporal range from 0 to1000 ps. The evolution of transient signals needed three-time 

constant to be fitted correctly. The first two (7 ps and 50 ps) were attributed to the recovery 

of the trans neutral isomer while the third one around (500 ps) was assigned to a long-lived 

metastable species in the ground state. Nevertheless, this long-lived species was lacking 

signal features of the final On state nor the characteristic signals that a photoproduct after 

either an ESPT (phenol deprotonation) or a cis-trans isomerization should have. These are 

characterized by a shift of the imidazolinone C=O mode or the formation of the phenolic 

group (1500 cm-1) for ESPT and isomerization respectively. Thus, they concluded that in the 

first picosecond time constant, a protein rearrangement occurs forming a photoproduct, 

which further evolves to the cis conformer in longer time scales (>> ns). In summary, two 

similar studies agree with the fact that there is no ESPT, but they disagree in the order of 

processes. Whilst for Warren et al. 105 cis-trans isomerization is the first step in a picosecond 

range, for Lukacs et al.107 it is a protein rearrangement. Such different conclusions rise from 

the same difficulties: i. none of the studies could monitor the evolution of the photoproduct 

between 1 nanosecond and 1 millisecond, and ii. assignment of IR band to cis/trans species 

is not trivial. Indeed, the assignment in both studies was based on the vibration of the Arg66 

side change or the imidazolinone C=O mode, respectively. These two groups are hydrogen 

bonded in the On state. The Arg66 bands changed drastically during the Off-On 

photoswitching, making these bands a good indication of protein rearrangement. The changes 

caused by a cis-trans isomerization might not be apparent since the C=O vibrational bands 

shifts are also affected by the hydrogen bond with Arg66 and thus can be confused with those 

cause by the cis-trans chromophore conformations.  
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Figure 3.14. Different proposed photodynamics mechanism for the photoswitching of the 

trans neutral Off state to the cis anionic On state. The structures correspond to the 

mechanism proposed by Laptenok et al. 34. Solid lines refer to proposed mechanisms from 

the recorded data. Dashed lines refer to hypothesized mechanisms in time scales longer than 

those recorded. Figure made with Inkscape. 
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Later on, in 2015, Kaucikas et al. 106, studied Dronpa-2, from 0 to 1800 ps using femtosecond 

TRIR and performed thorough quantum mechanics calculations to rationalize the different 

IR transient bands considering the different torsion dihedral angles for cis and trans isomer 

reported by Andersen et al.113. They concluded that the difficulty in getting a clear 

isomerization signature using the imidazolinone C=O mode in differential IR spectroscopy 

arises precisely from the trans distorted structure. This distortion implies that the discussion 

of the existence of cis/trans isomer is complex and cannot be only retrieved using 

imidazolinone C=O band shifts compared to quantum mechanics calculations done on the 

chromophore alone. All along their publications, they discuss the different TRIR transient 

signal attributions given by Lukacs et al.107 and Kaucikas et al.106 and compared their 

transient signals, which were mainly fitted by two time constants of 0.6 and 14 ps. According 

to their calculations, they concluded that the first step is the trans-cis isomerization, giving a 

long live species. This one will evolve via a ground state proton transfer to the final On state 

in time scales longer than 1.7 ns.  

The first complete time-resolved spectroscopy experiments probing the entire 

photoswitching dynamic range of Dronpa and Dronpa 2 were done in 2015 by Yadav et al.59 

They used femtosecond TRUV-Vis spectroscopy to study excited states dynamics and 

nanosecond TRUV-Vis (flashphotolysis) to study the ground state species evolution. Four 

time constants were used to describe the fs-TRUV-Vis data 220 fs and 2.6, 15 and 160 ps for 

Dronpa-2 and 190 fs, 2.3, 10 and 64 ps for Dronpa. The first-time constant was attributed to 

a fast relaxation from FC state, and the following three time constants were assigned to the 

decay of different excited states. The existence of different decay times was attributed to an 

Off ground-state heterogeneity. They reported a small remaining spectral signature at 300 ps 

which remains unchanged until 1.5 ns (the longest time probed with fs-TRUV-vis). This 

photoproduct spectrum could be compared to the steady-state difference spectra associated 

with the cis-trans isomerization (cis neutral absorption spectrum minus trans neutral 

absorption spectrum), which confirmed the excited-state isomerization. Furthermore, their 

performed fs-TRUV-Vis anisotropy experiments and revealed a change in the transition 

dipole moment orientation of the photoproduct. These results strongly suggest that the trans-

cis isomerization is the first step. In addition, they studied the evolution of the photoproduct 

and reported a deuterium isotopic effect (~3.5 longer evolutions) in the microsecond time 
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range. They concluded that Off to On photoswitching mechanism involves a trans-cis 

isomerization in the excited state. The photoproduct formed provokes a change in the HBDI 

pKa, which triggers the microsecond deprotonation in the ground state. The authors 

considered that Dronpa Off to On switching was a two-step process consisting of a trans to 

cis isomerization followed by proton transfer reaction59. 

Finally, in 2018, Laptenok et al. 32, studied the whole switching dynamics for Dronpa and 

Dronpa-2 using a unique multiscale IR transient absorption technique121. This technique 

allows to study, after a femtosecond excitation, the difference IR absorption spectra from the 

femtosecond to the millisecond range. The outstanding set-up providing a high signal to noise 

ratio combined with site-specific 13C isotope labelling of the chromophore enabled them to 

distinguish chromophore dynamics and the relaxation of the surrounding protein. They 

revealed a complex multi-step mechanism, with several intermediate states in the photocycle, 

with lifetimes from picoseconds to tens of microseconds for Dronpa and Dronpa-2 (Figure 

3.14). They confirmed that trans to cis isomerization precedes the proton transfer but 

revealed a much more sophisticated mechanism than the previously characterized two-step 

process. First of all, they suggest that the isomerization starts with a first 16 ps step assigned 

to the decay of the excited state. The geometry of the chromophore after this step is still an 

open question; however, it is not a cis-On form (dihedral angle). This first step is followed 

by some protein rearrangement in the ground state in 596 ps, which trigger the formation of 

the cis neutral intermediate in 91 ns. This time constant is much slower than the one reported 

in previous publications for cis-trans isomerization. The next step is then the rearrangement 

of the Arg66 in 4.6 µs which precedes the ground state proton transfer occurring in 156 μs, 

yielding the final cis anionic On state32. Interestingly, they found that the same time constants 

obtained after fitting the data for Dronap-2 could be used to fit results for Dronpa (giving 

good residues). They suggested that Dronpa and Dronpa-2 might follow the same 

mechanism, but no firm conclusion could be drawn because when Dronpa data was fitted 

without constraints, it yielded decay times in a similar time range but not identical.  

A comparison between the different proposed mechanisms and characteristic times for 

Dronpa and Dronpa 2 can be seen in Figure 3.14 and Table 3.2. As presented in Table 3.2, 
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the evolution of the time constants is very different for the same proteins, which manifests 

the complexity of the photodynamics of RSFP and the complexity of evaluating the TR data. 

Table 3.2. Resume of photophysical studies on Dronpa and Dronpa-2  

Journal 

first author 
Year/Ref 

Techniqu

e 

τSpecies in ES (τ ps) Species in GS (τ, ps) 

Dronpa Dronpa 2 Dronpa Dronpa 2 

JACS Fron, E 
2007 

104 

TR  

UV-Vis 
4*** NT* NT* NT* 

Nature com 

Warren, M. M. 

2013 

105 
TRIR 9 NT* NT* NT* 

J. Phys Chem B 

Lukacs, A. 

2013 

107 
TRIR NT* 7 / 50 NT* 500 ps 

J. Phys Chem B 

Yadav, D. 

2015 

59 

TR  

UV-Vis 

0.19 / 

2.3 10 / 

64 

0.22 / 2.6  

15 / 160 
12.5 µs*** 19.2 µs*** 

J. Phys Chem B 

Kaucikas, M 

2015 

106 
TRIR NT* 0.6 / 14 NT* 1.7 ns** 

Nature 

chemistry 

Laptenok, S. P 

2018 

32 
TRIR 16 16 

596 ps; 91 

ns; 4.5 µs; 

156 µs 

596 ps; 91 

ns; 4.5 µs; 

156 µs 

* NT (Not Studied): correspond to works only center in the excited state or one of the 

proteins.  

** Poorly determined data recorded until 1800 ps. 

*** D2O effect reported in the time constant. 

Although we have discussed how the majority of studies had focused on the Off to On 

photodynamics, the group of S. G. Boxer, using the approach described above (Figure 3.6), 

has recently evaluated the contributions of steric and electrostatic interactions that different 

substituents have directly on the chromophore to quantitatively demonstrate how electrostatic 

effects bias the chromophore On to Off photoisomerization pathway in RSFP, using Dronpa-

2 as reference115. Measuring the fluorescent decays of Dronpa-2 variants at different 

temperature (TCSPC), they showed that the primary dominant energetic feature governing 
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the competition between fluorescence and non-radiative decay is an excited-state barrier for 

chromophore bond rotations around the C=C-C bridge between the phenolate and the 

imidazolinone rings. If the rotation occurs around the C=C bond, a cis-trans isomerization 

may occur while an SBR around the C-C bond results in a phenolate-ring flip. With the use 

of electron withdrawing (i.e. halogen atoms or NO2 groups) and donating moieties (methyl 

and methoxy groups) directly in the chromophore (mutating the Tyr66), they managed to 

study the influence on the two non-radiative paths (Figure 3.15; red and blue). For variants 

with electron-withdrawing substituents, the isomerization pathway is energetically downhill 

and thus preferred over the ring-flip pathway. On the contrary, electron-donating substituents 

have the opposite energetic effect and favour the phenolate ring flip pathway115. Since the 

distinctive charge redistributions in the methylene bridge generate different bonds rotations, 

the use of withdrawing or donating moieties can be used to finely control properties of 

interest, such as isomerization regioselectivity. A schematic representation of the ring-flip 

and chromophore isomerization reproduced from reference 115 can be seen in Figure 3.15. 

 

Figure 3.15. Schematic representation of the possible rotation that can occur about either 

the single or double bond, leading to a P-ring flip or cis-trans isomerization, respectively. 

R1 and R2 represent residues Gly64 and Cys62, respectively. Electron-donating and 

electron-withdrawing groups, introduced in the phenolate ring using non-canonical 

tyrosines in Dronpa2. Reproduced from reference 115. 

3.2.3.b Other RSFPs 

Meanwhile, several studies regarding other RSFP have been published. The first studied the 

photodynamics of Padron, a positive RSFPs116. The authors could characterize a 5.2 ps cis-

trans isomerization step for Off to On switching, i.e. photoswitching from the trans anionic 
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Off state to the cis anionic On state. For the On to Off switching using 395 nm irradiation 

(starting from cis neutral form), they found two-time constants of 1 ps and 14.5 ps, attributed 

to ESPT and cis-trans isomerization. This first publication on Padron was followed by similar 

studies on one of its mutants - Padron0.9 by Walter et al.109. The authors, by selectively 

exciting at the proper wavelength and adjusting the pH to obtain the desired chromophore 

isomer, observed isotopic deuterium effects that allowed them to confirm the Padron 

suggested ps ESPT step for the On to Off photoswitching dynamics starting from the cis 

neutral form108. Furthermore, they could show a ps ground state dynamics between cis-

neutral and cis-anionic forms, and correlated the dynamics with the previously published X-

ray structures117. 

The publications regarding Padron and Padron0.9 were followed by Colletier et al.111 who 

studied the Off to On photoisomerization for the IrisFP green form. This tetrameric protein 

was previously characterized by Adam et al.63 who determined that in the fluorescent On 

state, the chromophore is a cis-anionic form, while in the Off state the chromophore adopts a 

trans neutral form. After excitation of the Off state at 400 nm and 100 fs relaxation from FC, 

they reported two excited states decaying in 2 and 15 ps. The 2 ps excited state species was 

assigned to the relaxation of hot S1 state. The second was assigned to an excited state species 

precursor of the isomerization. They also monitored the ground state dynamics from 10 ns to 

ms time scale. They found three-time components of 21 μs, 227 μs and 2.1 ms and a 

significant isotopic effect when experiments were done in D2O (51 µs, 2.7 ms and 16 ms). 

These results were the first multistep ground state process to ever be reported in RSFP in the 

literature (before the publication of Laptenok et al.32). From these results, they suggested a 

first cis-trans excited-state isomerization in a picosecond range followed by a ground state 

deprotonation of the chromophore to adopt the final cis anionic conformation in few hundred 

of microseconds (Figure 3.16). 

The last RSFPs that we need to mention in this chapter is Dreiklang. Lacombat et al.110 

studied the photodynamics of this protein using femtosecond TRUV-Vis spectroscopy in 

light and heavy water buffers. Dreiklang33 together with Spoon55 are the only two RSFPs that 

have a decoupled switching mode. Dreiklang was first reported by S. Hell and S. Jakobs 

coworkers33. Contrary to other RSFP, the On to Off switching is not based on a cis-trans 
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isomerization and a proton transfer33,110. From the X-ray structures, it was demonstrated that 

the switching mechanism is based on a reversible covalent addition of a water molecule to 

the C=N bond of the imidazolinone ring of the chromophore33. Lacombat et al. 110 showed 

that the On to Off switching dynamics after excitation of Dreiklang at 410 nm are 

characterized by 100 and 750 fs and 19, 108 ps excited states decay times (plus a long 1800 

ps component). The first one was attributed to an ESPT exactly as the one happening in 

avGFP84,92,94, i.e. they observed weak coherent oscillations 84,92,94. Finally, they attributed the 

other three constants in the ps range to the decay of the tautomer I* to the ground state. The 

absence of absorption at 10 ns at 340 nm indicates that the final formation of the Off state is 

in the ground state and happen at longer delay times. The lacking of the ground state 

evolution did not allow further elucidation of the mechanism. 

 

Figure 3.16. General overview of the proposed photodynamics for all the RSFP studied by 

ultrafast optical spectroscopy in the literature. Figure made with Inkscape. 
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The complete detailed mechanism between the different states in RSFP still represents an 

active research field. As we have seen, the different type of RSFP have different number of 

steps and mechanisms, mainly involving protonation states of the chromophore and cis/trans 

isomerization states118. Still the elucidation of the On to Off photoswitching mechanism for 

negative and positive RSFP needs to be studied in detail. Regarding decoupled RSFP, the 

studies of Spoon could complete the mechanism proposed for Dreiklang. In Figure 3.16, a 

summary of the above-discussed studies can be seen. 

 

3.4 Photodynamics of rsEGFP2, objectives and methodologies of 

the thesis. 

The rsEGFP2 protein is a negative RSFP developed by S. Hell and S. Jakobs group 

commonly used in RESOLFT microscopies. The resting state is the fluorescent On form: the 

chromophore adopts a cis configuration, and the phenol group is deprotonated (anionic cis-

phenolate)36,119. The non-resting state of the protein is non-fluorescent, meaning that the 

chromophore has a trans configuration with the phenol group protonated (neutral trans-

phenol). As pointed out previously, there is a high discrepancy on the photoswitching yields 

(Table 3.1). Therefore, determining the precise photo-physical steady-state and photo-

stationary properties of rsEGPF2 will be the first aim of the thesis.  

The switching dynamic between On and Off states involves at least a cis-trans isomerization, 

a proton transfer and some protein rearrangements62. Before I started my PhD thesis, the 

rsEGFP2 excited state dynamics were published by Coquelle et al.35. Using time-resolved 

serial femtosecond crystallography at an XFEL, combined with TRUV-vis spectroscopy, 

they showed the existence of a twisted chromophore configuration on the picosecond time-

scale. Actually, after 400 nm excitation of the trans neutral Off state in solution, in 100 fs 

there is a relaxation from FC state, after this relaxation they reported the existence of two 

excited states decaying in 0.9 ps and 3.65 ps. The X-ray structure collected at 1 ps on protein 

microcrystals allowed assigning the 0.9 ps to a twisted chromophore, halfway in between the 

trans and cis isomers, as shown in Figure 3.17. This intermediate state is accommodated by 

a shift in the central α-helix in the excited state restricted by the close proximity to the V151 
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side chain. Mutation of the latter into an alanine show an increase of the Off to On 

photoswitching quantum yield. The ground state evolutions, protein rearrangements and 

deprotonation mechanisms were not studied and represent one of the goals of my Ph.D.  

 

Figure 3.17. rsEGFP2 chromophore structures in On and Off states in green and blue 

superposed with the 1 ps structured in yellow. Structures reproduced using PyMol from the 

PDB 5DTX62, 5DTY62 and 5O8B35 respectively. 

 

The analysis of transient UV-Visible data in Coquelle et al.35 was based on the principle that 

the trans neutral Off state was populated by a single ground state conformer. This was based 

on the reported X-ray structures by El Khatib et al62 obtained at low temperature in a 

synchrotron and the X-ray structure of the XFEL experiments35. In Figure 3.17, the Off form 

can be seen as the photoproduct derived from an OBF On to Off isomerization mechanism. 

However, some of our preliminary results, published in the thesis of Joyce Woodhouse120, 

pointed out that depending on illumination conditions and crystal sizes, two trans Off 

https://www.rcsb.org/structure/5DTX
https://www.rcsb.org/structure/5DTY
https://www.rcsb.org/structure/5O8B
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conformers could be found in the trans neutral Off state. These Off conformers are in 

agreement with one-bond-flip (OBF) isomerization photoproduct -corresponding to trans1 

in figure 3.19- or a hula-twist (HT) isomerization photoproduct -corresponding to trans2 in 

figure 3.19-. The X-ray structures reproduced in Figure 3.18 correspond to Figure 3d in the 

page 101 of Joyce Woodhouse thesis120. Interestingly a (HT) photoproduct was previously 

observed by El Khatib et al62 in rsFolder and rsFolder2 already in 2015. 

 

Figure 3.18. Chromophore (HBI) and its neighboring residues in rsEGFP2. The final laser-

off model features triple conformations of His149 and the chromophore, i.e. His149-Off with 

trans1 (light grey), His149-On with cis (yellow) and the additional His149-superpose with 

trans2 (dark grey) conformations, at 70%, 10% and 20% occupancy, respectively. 

Reproduced from reference 120, page 101. 

These results were reproduced by Jeffrey et al.121 (group of S. G Boxer) in rsEGFP2 

microcrystals with Cl-HBDI. They showed that after On to Off photoisomerization final trans 
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neutral photoproduct were similar to those reported in the PhD thesis of Joyce Woodhouse120 

and compatible with either OBF or hula-twist isomerizations121. As explained in chapter 2 

(section 2.5.2), the OBF isomerization pathway is a mechanism that demands high volumes, 

while HT pathway can happen in sterically constraint environments, i.e. volume-conserving 

dynamics. A schematic representation of these two possible isomerization pathways is shown 

in Figure 3.19. Jeffrey et al.121 showed that the control of the crystallization condition 

determines the protein cage volume, which in turn control the final isomerization 

photoproduct. In addition, using a chlorine derivative of HBDI (Figure 3.19, H is replaced 

by Cl), they could unequivocally identify the two different OBF and HT photoproducts. The 

ground state Off conformers are entirely dependent on the environment, so far the HT 

photoproduct has only been observed in crystalline conditions. However, no proof has 

been given for the existence the rsEGFP2 Off ground-state heterogeneity in solution. 

Unravelling the Off and On ground-states heterogeneity of rsEGP2 in solution is 

another aim in this thesis.  

 

Figure 3.19. Schematic representation of rsEGFP2 chromophore cis-trans isomerization, via 

OBF involving a rotation around Ф, or via HT involving a rotation around Ф and τ. Figure 

made with Inkscape. 

As mentioned previously, the results obtained by Coquelle et al.35 allowed the development 

of a new RSFP where the Valine 151 was replaced by an Alanine and for which the Off to 
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On photoswitching quantum yield increases. Interestingly, the X-ray crystallographic 

structures in Figure 3.20, reveal that the mutation of the Valine 151 by either a leucine 

(V151L) or an alanine (V151A) generate variants that after photo-isomerization to the Off 

form only display one photoproduct, OBF (V151A) and HT (V151L). Not only the trans 

geometry is different, but also the hydrogen bond network and interaction with an amino acid 

of the protein cage. Remarkably, except for the introduced mutation in position 151, the On-

state for all three variants is very similar. Furthermore, the phenol group of the chromophore 

in the On state has three possible hydrogen bonds, with a water molecule, with Thr204 and 

His149. The distance between the oxygen of the chromophore phenol group and His149 is 

2.7 Å, 2.8 Å and 2.9 Å for WT, V151A and V151L respectively. After isomerization to the 

Off state, it is clear that there are not only rearrangement in the chromophore, but also in the 

protein cage; mainly involving the amino acids in the surroundings of the chromophore. A 

close look on Figure 3.17 reveals for the WT higher reorganizations in two amino acids, the 

Tyr146 and the His149. Interestingly, both amino acids are located in the surroundings of the 

phenol group, whilst no changes can be noticed in the surroundings of the chromophore 

imidazolinone carbonyl group. These differences are in contrast with Dronpa where one of 

the amino acids that display higher reorganizations is the Arg66 which is in direct contact 

with the imidazolinone carbonyl group in On state breaking this bond in the Off state32,113 

(Dronpa X-ray structures can be seen in Appendix 3). Furthermore, the chromophore in the 

Off structures of WT and V151A in Figure 3.20 adopts quite similar conformations. On the 

contrary, there are substantial differences between the Off states of the WT and V151L. The 

differences between Off conformations between WT and V151L are not only restricted to the 

chromophore configuration. In the On form, the three variants are hydrogen bond to the 

His149. This hydrogen bond between the chromophore and the His149 is broken and 

replaced by a new hydrogen-bond with a water molecule for WT and V151A variants (new 

distances of 2.8 and 2.9 Å respectively). At the same time, the His149 forms a new hydrogen 

bond with Tyr146, which adopts a new position. To the contrary, His149 in the V151L 

variant accompanied the conformational change of the chromophore to which it remained 

hydrogen-bonded -the distance between chromophore and His149 is 2.7 Å- and no 

conformational change is observed for Tyr146. 
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Figure 3.20. Structural comparison between rsEGFP2 and its V151A and V151L variants. 

(a) Model of rsEGFP2 V151A in the On state (green) (b) Model of rsEGFP2 V151A in the 

Off state (dark grey) (c) Model of rsEGFP2 V151L in the On state (yellow) (d) Model of 

rsEGFP2 V151L in the Off state (light grey). The cis conformer was removed from rsEGFP2 

V151L in the Off state for clarity. Light cyan (panels a and c) and magenta (panels b and d) 

correspond rsEGFP2 On and Off structures from reference 62. Figure reproduced from Joyce 

Woodhouse thesis, page 129120. 
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These two mutants are ideal tools to clarify the trans-cis isomerization dynamics in rsEGFP2. 

Indeed, the details of double bond isomerization mechanisms within RSFP is still an open 

question, especially the existence (multiple twisted conformers) and the nature of excited and 

ground intermediate states3. The main goal of this PhD thesis is to thoroughly 

characterize the photophysical properties (chapter 4) and the entire photodynamics 

(chapter 5) of V151A and V151L in comparison to the WT protein. The same 

methodology used for the WT (Coquelle et al.35) will be used. The combination of TR-SFX 

results (Grenoble and Heidelberg) and ultrafast optical spectroscopies (TRUV-Vis and 

TRIR) will allow to elucidate the photo-dynamical Off to On switching path for WT and 

the two variants. 

Besides, the thesis also coped with the fluorescent properties and On to Off dynamics of the 

WT variant (Chapter 6). The On to Off photodynamics of RSFP proteins is poorly studied 

mainly because the photoswitching quantum yield of the reaction is several orders of 

magnitude lower than the Off to On, (Table 3.1). The recent publication of S.G Boxer and 

coworkers showed that the study of fluorescence lifetimes can give indirect information of 

the isomerization115. The fluorescence quantum yield of rsEGFP2 is relatively low (0.34) in 

comparison to Dronpa (0.8), which implies a higher contribution of non-radiative excited 

state deactivation pathways, and thus, some information can be obtained probing non-

fluorescent excited states by TR spectroscopies. The combination of TR-SFX results 

(Grenoble and Heidelberg) and ultrafast optical spectroscopies (UV-Vis-IR) allows 

revealing the species that control the fluorescence and On to Off isomerization in 

rsEGPF2 (chapter 6). Finally, to validate our hypothesis, we will report preliminary 

results on the steady-state and photo-physical properties of 20 new rsEGFP2 variants 

(Chapter 7).  
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4 Photophysical properties of rsEGFP2 
WT, V151A and V151L. 

 

rsEGFP2 is a negative RSFP. The resting state of the protein is the fluorescent On state; the 

chromophore adopts a cis configuration, and the phenol group is deprotonated (anionic cis-

phenolate)1,2. The non-resting state of the protein is non-fluorescent, the chromophore 

displays mainly a trans configuration with the phenol group protonated (neutral trans-

phenol)1,2. As pointed in the introduction, there is a high discrepancy in the switching yield 

determination, measured by absorbance in solution and fluorescence in a cuvette compared 

to proteins immobilized in a film. Since we will use time-resolved transient absorption, we 

decided to determine On to Off and Off to On switching yields monitoring, the light-induced 

changes of the proteins in solution under continues irradiation, with UV-vis absorption 

spectroscopy. The precise determination of the switching yield and the photo-stationary 

states obtained after a certain irradiation time is not trivial, i.e. the concentration of On and 

Off forms ([on]∞, [off]∞) at the thermodynamic equilibrium under specific irradiation needs 

to be determined. One more time, it should be stressed the difference between On/Off 

fluorescent states and On/Off forms. A fluorescent state might be formed by several cis/trans 

anionic/neutral forms, and each form can be a mixture of different conformers. For example, 

a HT and OBF trans Off conformers compose the Off form, which in turn together with 

residual On form (cis anionic) compose the Off state. To get these parameters, we need to 

determine precisely molar absorption coefficient for cis anionic and trans neutral forms and 

the thermal back recovery from the trans neutral form to cis anionic (see equations 4.2, 4.3 

and 4.4 and definitions in Chapter 2).  

Furthermore, potentially in a photoactivation process, there are two possible intermediate 

forms that the chromophore could adopt a cis-phenol and a trans-phenolate. Although the Off 

to On photoisomerization first step is still a matter of debate3–5, it is clear that the 

deprotonation is the last step of the photo-cycle4–7. Therefore, the formation of the trans-

phenolate is very improbable as this would imply the proton transfer to occur in the excited 

state (ESPT) and previous to the isomerization. Thus here, we also determined the 
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spectroscopy properties of the cis-phenol form. For a correct determination of this form, the 

pKa values of WT and variants need to be known.  

Therefore, in this chapter, we determine the main photophysical properties for WT, V151A 

and V151L (Figure 4.1): (i) the molar absorption coefficient spectrum for trans neutral, cis 

neutral and cis anionic forms. (ii) The fluorescence spectrum, fluorescent quantum yields and 

brightness for the cis anionic form. (iii) The photoswitching quantum yields (trans neutral 

form to cis anionic form and vice versa). (iv) the thermal back recovery of trans neutral form. 

(v) the pKa of cis neutral/cis anionic. (vi) absorption spectra for trans neutral and cis anionic 

form in crystal environment. (vii) The FTIR spectra for cis anionic and trans neutral forms 

(Shown in Appendix 1). The interpretation of different photophysical properties was made 

with the help of X-ray crystallographic structures (shown in Chapter 3, and obtained by our 

collaborators8). 

 

Figure 4.1 HBDI forms involved in the photodynamics of rsEGFP2: trans neutral (Off form), 

cis anionic (fluorescent, On form) and cis neutral form. 

 

4.1. Molar absorption coefficient spectrum of trans neutral, cis 

neutral and cis anionic form  

There are different ways to calculate the molar absorption coefficients of a FP. The main 

difficulty is to determine the protein concentration in solution. A general method is to 

consider the number of aromatic amino acids (phenylalanine, tryptophan and tyrosines) that 

the protein has and correlated with the absorption of the protein at 280 nm (mainly tryptophan 

contribution). However, this method assumes that the chromophore does not absorb at this 

wavelength or have a minimal contribution. This is not the case for FP chromophore (HBDI) 

which contributes to the 280 nm absorbance band. The W. Ward method9,10 for FP does not 
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suffer from this approximation. It is based on denaturing the protein and is one of the most 

established methods. The method consists in comparing the FPs denatured absorption 

spectrum with the pure chromophore spectrum (HBDI) in solution. Since the molar 

absorption coefficient of the chromophore is known, one can calculate the protein 

concentration using Beer-Lambert equation (Chapter 2, Equation 2.1). The molar absorption 

coefficients were calculated by denaturation of the protein at basic pH. The details of the 

procedure used are given in the following section. The correct determination of these values 

has significant importance, as it is the starting point in the determination of several other 

photophysical properties.  

4.1.1 Molar absorption coefficient spectrum of trans neutral and cis 

anionic form 

Between 9-15 µL of protein were diluted into 3 mL buffer (50 mMol Hepes 50 mMol NaCl 

pH 8) and transferred to a spectroscopic cuvette (1 cm x 1 cm) to have an absorbance value 

between 0.3-0.5 at 480 nm. Protein solutions were irradiated under stirring with a homemade 

build LED (3W Ultraviolet UV LED (390-400nm) EPILED -already soldered to the printed 

circuit board (PCB)- and with an emission maximum at 395 nm; https://futureeden.co.uk/) 

to ensure a complete photo-transformation of RSFPs into the cis-anionic On form. We 

observed that the absence of irradiation at 395 nm would lower the value of cis anionic 

concentration, i.e. there was a mixture of cis anionic and trans neutral forms. The absorption 

spectrum of the pure cis anionic form (On state) was then measured. The absorption spectrum 

of trans neutral form was extracted from the photo-stationary absorption spectrum. This 

spectrum was obtained by irradiation of the protein solutions with a continuous LED light 

source at 505 nm (Thorlabs M505L3). To ensure the absence of photo-degradation, the 

solutions were switched back by 395 nm irradiation and the absorption spectrum compared 

to the initial one of the On form. Finally, 115 µL of NaOH 6M solution were added to 

denature the proteins. The protein concentration was then determined using the absorption 

coefficient of the anionic GFP denatured chromophore (44100 cm-1.M-1; Beer-Lambert 

equation)10. All the absorption spectra were collected with a Cary 3500 absorption 

spectrometer (spectral bandwidth of 0.4 nm and one point every 0.5 nm). Furthermore, for 

the Off state, two consecutive spectra were measured with a 5 minutes interval (the irradiation 

https://futureeden.co.uk/
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LED at 505 nm is turn on within this time) to ensure that the photo-stationary absorption 

spectrum is collected (if two spectra are identical photo-stationary state has been reached). 

 

Figure 4.1 Absorption spectra for the photostationary Off state (blue), the On form (green), 

the Off form (red) and the On form contribution at the photo-stationary state (light green) 

for a) WT, b) V151L and c) V151A. Figure made with matplotlib python library. 

The determination of the trans neutral spectrum is not trivial. The absorption spectrum at the 

photostationary state (Off state) is the sum of cis anionic and trans neutral forms absorption 

spectra because the chromophore is weakly switched back to the On-state by the Off-

switching light. Therefore 100% conversion to the trans neutral form in the Off state can not 

be achieved. For WT and V151L, the cis-anionic concentration in the photo-stationary Off 

state is significant while for the V151A is nearly negligible. This indicates that at the photo-

stationary state, the conversion to trans neutral form is much more efficient for V151A. The 

photostationary state spectra are represented in Figure 4.1a b and c for WT, V151L and 

V151A, respectively. The contribution of the residual On population (cis anionic form) can 

be calculated using the value of absorbance at 482 nm and subtracting it to the photo-

stationary Off state spectra to get pure trans neutral Off form spectrum. These values were 
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5%, 14% and 2% of cis anionic form for WT, V151L and V151A at the photo-stationary state 

respectively (represented in light green in Figure 4.1).  

 

Figure 4.2. a) Molar absorption coefficient spectra for On (solid line) and Off state (photo-

stationary state, dashed line) for WT (Green), V151L (blue) and V151A (orange). b) Molar 

absorption coefficient spectra for the cis anionic On form and trans neutral Off form. Figure 

made with matplotlib python library. 
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The molar absorption coefficient spectra for On form and Off state (a), and for the cis anionic 

and trans neutral form (b) at pH 8 are shown in Figure 4.2a and 4.2b. The maxima values for 

WT, V151A and V151L are summarized in Table 4.3 in the discussion section of the chapter. 

As expected from the X-ray structure (Chapter 3.4), the cis-anionic form for WT, V151L and 

V151A has the same absorption maximum at 482-483 nm and similar molar absorption 

coefficients (~66000 M-1 cm-1; see Table 4.3 and Table 4S-1 at the end of the chapter) and 

assigned to π-π* transition. The On form absorption spectra are not symmetric; they all 

display a shoulder at 465 nm, revealing a vibronic structure. A similar result has been 

reported for PYP11 and the avGFP at low temperature12. This vibronic spectral signature of 

the On form is assigned to a higher constrained chromophore environment compared to the 

Off form. The only difference between WT and the variants for the On form is observed in 

the UV region. At 280 nm a hyperchromic effect is observed for V151L with an increase of 

10% in amplitude, which shows the advantage of using the Ward method for a precise 

determination of the molar absorption coefficient. Contrary to the cis anionic spectra, the 

trans neutral forms of WT, V151A and V151L have different maxima and different molar 

coefficient values (WT and V151A display similar values of 26443 and 24640 M-1 cm-1, 

while the V151L has nearly 50% higher values with 34231 M-1 cm-1). The first absorption 

maximum is blue-shifted (hypsochrome effect) for V151A and red-shifted (bathochromic 

effect) for V151L in comparison to WT one. Indeed, the absorbance maximum for trans 

neutral form is at 416 nm, 408 nm and 405 nm for V151L, WT and V151A respectively. An 

important result is the existence of a hyperchromic effect (an increase of molar absorption 

coefficient) for V151L and hypochromic effect (a decrease of molar absorption coefficient) 

for V151A in comparison to WT. Therefore, the WT trans neutral spectrum can be 

rationalized by the sum of both Off forms, the OBF (V151A) and HT (V151L) forms, in line 

with the microcrystals results (Figure 3.18). For V151L variant, there is an extra shoulder at 

440 nm that can be assigned to different hydrogen bond network compared to WT and 

V151A. From the X-ray structure in (Chapter 3.4), this shoulder, can be attributed to the H-

bond with the His149 that leads to different electronic delocalization (contribution of a 

phenolate-type mesomeric form). Another interpretation of this shoulder is a more rigid 

chromophore for V151L. Theoretical quantum calculations to modelized the different effects 

will be needed to further interpret the results.  
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4.1.2 Molar absorption coefficient spectrum of cis neutral form 

Before the determination of the cis-neutral molar absorption coefficient spectrum for each 

variant, the pKa values for the cis form were determined. To measure the pKa 14 buffer 

solutions containing 50 mMol glycine, 50 mMol phosphoric acid and 50 mMol citric acid 

were prepared. For each solution, the pH was adapted, adding NaOH to reach the 

corresponding pH and covering the range 4.0-10 with one point every 0.5 pH units. The 

chemicals, glycine, (BioUltra), for molecular biology, ≥99.0%, phosphoric acid, 

(BioReagent), suitable for insect cell culture, 85% and citric acid, (BioUltra), anhydrous, 

≥99.5%, were purchase from sigma Aldrich.  

For every pH point, a constant volume of concentrated proteins (between 3-6 µL depending 

on the protein variant) was diluted into 3 mL buffer and transferred to a cuvette (1 cm x 1 

cm). Figure 4.3 shows the absorption spectra of WT and two variants recorded from pH 4 to 

pH 11 with 0.5 pH steps (Cary 3500 absorption spectrometer, a spectral bandwidth of 2 nm 

and one point every 2 nm). Proteins started to denature at pH higher than 11, and a different 

form appears (shift of the absorbance maximum) for pH values below 4.5, probably due to 

the protonation of the imadozolinone nitrogen9. 

To determine the pKa, the Henderson–Hasselbalch equation (Equation 4.1) was used with 

[A-= cis anionic form] and [HA = cis neutral form].  

𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔10 (
[𝐴−]

[𝐻𝐴]
)       Equation 4.1 

The values for [A-] and [HA] can be calculated using Beer-Lambert law and the absorbance 

value at 480 nm for different pH. The assumption is that only the anionic form [A-] absorbs 

at 480 nm and mass conservation (thus the sum of the molar fractions of [A-] and [HA] is 

equal to 1). The spectra were normalized by the average value from the spectra at pH 8.5 to 

9.5 at 480 nm. The data were then fitted using a homemade python 3.7 routine (Figure 4.3). 

The pKa values obtained were 5.7, 5.8 and 6.3 for rsEGP2 WT, V151L and V151A, 

respectively.  
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Figure 4.3. Absorption spectra at different pH for WT (a), V151L (b) and V151A (c). 

Absorbance at 480 nm for WT(b), V151L (d), V151A (f) and fit of Henderson–Hasselbalch 

equation in blue. The spectra were normalized by the average absorbance value of spectra 

at pH 8.5, 9 and 9.5 at 480 nm. Figure made with matplotlib python library.  

Once the pKa values have been determined, it is possible to calculate the cis-neutral molar 

absorption spectrum for WT and each variant. For this, the contribution of cis anionic form 

at pH 4.5 is calculated knowing the corresponding pKa and using the Henderson–Hasselbalch 

(equation 4.1). Then this contribution is subtracted from the spectrum at pH 4.5 (at lower pH 

values the imidazolinone nitrogen is protonated). The example for V151L is given in Figure 

4.4. 
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Figure 4.4. cis-neutral molar absorption coefficient spectrum for V151L. In orange the 

measured molar absorption coefficient spectrum at pH 4.5; in blue, the cis anionic molar 

absorption coefficient spectrum, in green the cis anionic contribution at pH 4.5 and in red, 

the cis neutral molar absorption coefficient spectrum after the subtraction of cis anionic 

contribution. Figure made with matplotlib python library.  

All UV-Vis absorption molar coefficient spectra for the cis anionic, cis neutral and trans 

neutral forms determined for WT and two variants can be seen together in Figure 4.5. After 

the correction of the resting On-forms, the cis neutral form molar absorption coefficient 

spectra are characterized by one main band with maxima at 397, 401 and 395 nm for WT, 

V151L and V151A, and a shoulder at 468, 466 and 476 nm. The absorption maximum of the 

cis neutral form is blue-shifted in comparison with the absorption maximum of the trans 

neutral form. Contrary to what was previously stated for other proteins7; we think that this 

shoulders cannot be assigned to the cis anionic remaining On form because it was subtracted 

and the shoulder maximum is blue-shifted respect to the maximum of On form. This 

absorption shoulder is assigned to different mesomeric forms like in PYP11. For a precise 

comparison, theoretical calculation would be needed. 
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Figure 4.5. Trans neutral Off form (dashed line), cis anionic On form (solid line) and cis 

neutral form (dotted line) molar absorption coefficient spectra for WT (a), V151L (b) and 

V151A (c). All spectra are compared in (d). Figure made with matplotlib python library 

 

4.1.3 cis anionic and trans neutral form absorption spectra in 

microcrystals. 

The absorption spectra of the microcrystal colloidal solution were measured with a Nanodrop 

2000c spectrometer (2 µL, baseline correction on the buffer, Thermo Scientific, nanodrop 

http://www.nanodrop.com), “before” and “after irradiation” (488-nm, 200 mW, Cobolt laser) 

using a homemade custom setup13 to obtain the On and Off spectral state. The spectra with 

and without irradiation were recorded three times (refreshing the sample) and averaged. The 

recorded absorption spectra are considered as an overlapped of the microcrystal absorbance 

and a baseline artefact with a main scattering contribution (baseline shift). An example of the 

baseline and scattering subtraction is shown in Figure 4.6. The baseline and the scattering 

contribution were estimated, fitting the measured absorption spectra (red spectra in Figure 

4.6a,b) by a sum of 3 Gaussian function plus an exponential function. The Gaussian function 

http://www.nanodrop.com/
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reproduces the On and Off absorption spectra of rsEGFP2 proteins (maxima at 280 nm, 460 

nm and 482 nm for on state; and 280 nm, 400 nm and 482 nm for off state) and the 

exponential simulates the scattering and baseline contribution. Note that a 1/λ4 correction has 

been tried, nevertheless, the comparison of the corrected spectra with those obtained in 

solution revealed an over estimation of the scattering contribution for the 250-300 nm region 

with a 1/λ4 polynom. The resulting estimation by an exponential function was subtracted to 

correct the spectra (Orange spectrum in Figure 4.20c,d) which was further smoothed with a 

Savitzky-Golay14 filter using a 25 points window and a third-order polynomial. The same 

procedure was applied to all recorded On and Off spectra for WT and two variants.  

Figure 4.6. Top panels, correspond to the estimation of the baseline for V151A before 

irradiation spectrum by fitting it with a sum of 3 Gaussian functions to reproduce protein 

absorption and an exponential function (orange) to estimate the baseline artifact and the 

scattering contribution. a) V151A On form and b) V151A Off form. Bottom panel the raw 

data (blue) and final spectra (orange) can be seen. 

After pre-processing, the “before” and “after” irradiation recorded spectra were normalized 

by the corresponding intensities at 280 nm for comparison. To calculate the percentage of 

On form that is switched to Off form after irradiation, we fitted the “after irradiation” 

spectrum (a mixture of Off and On forms) with two Gaussian functions to determine the 
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corresponding contributions of On and Off forms (Orange and Green lines in the Figure 

4.7c,d). The absorbance of On contribution (thin green gaussian) at 482 nm was compared to 

the absorbance at 482 nm of the “without irradiation” spectrum (only On form) to determine 

the percentage of conversion. Using this procedure, we determined a conversion from On 

state to Off state of 85% for WT and V151A and 77% for V151L. The results are seen in 

Figure 4.7. The differences between crystal and solution absorption properties have been 

compared for the WT and the two variants. For this comparison, the different absorption 

bands have been fitted with a Gaussian to obtain the energy transition. The results can be 

seen in Table 4.1. A clear feature that can be extracted from the values in Table 4.1 and 

Figure 4.7 is that the maxima of the trans neutral form in the microcrystals are red-shifted 

respect to the maxima in solution. Moreover, the microcrystals absorption bands are wider. 

It also stands out that while we could see a shift in between the absorption maxima WT and 

V151A trans neutral spectra (Off form) in solution, for the microcrystals the maximum is 

found in both cases at 414 nm. Another result is that in both environments (crystal and 

solution) the V151L variant has a red-shifted absorption maximum. These results make 

reasonable to extrapolate the X-ray structure of Off state in crystal phase (particularly the 

geometry of HBDI) to the protein in solution.  
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Figure 4.7. UV-Vis absorption spectra for microcrystals “before” and “after” irradiation 

normalized at 280 nm (after subtraction of the baseline artifact and the scattering 

contribution) together with the estimation of On resting form (thin green gaussian) for WT 

(a), V151L (b) and V151A (c). Figure made with matplotlib python library. 
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Table 4.1. Off state absorption maximum comparison between microcrystal and solution. 

 solution microcrystals 

 

WT 

Max / ε (M-1, cm-1) 408 / 26443 414 

Energy in cm-1 4316 4762.6 

V151L 

Max / ε (M-1, cm-1) 416 / 34231 428 

Energy in cm-1 4426.40 5234.6 

V151A 

Max / ε (M-1, cm-1) 405 / 24640 414 

Energy in cm-1 4165.7 4864.0 

 

4.2 Photoswitching quantum yields 

Since the thermal back recovery values are needed to accurately determine the 

photoswitching quantum yields, these were previously determined. To perform these 

measurements, the protein concentration was adapted to have at 480 nm an absorbance of 

⁓0.5 in 1cm at pH 8 (50 mMol Hepes, 50 mMol NaCl buffer). The proteins solutions were 

irradiated with a continuous LED light source 505 nm Thorlabs M505L3 (FWHM 37 nm) to 

switch the proteins to the photo stationary Off state. The absorbance at 482 nm and 408, 417 

and 405 nm for WT, V151L and V151A respectively, was monitored for over 20 hours (140 

h for V151A) (Cary 3500 absorption spectrometer, spectral bandwidth of 2 nm). One point 

per minute was collected, the exposition time per point was 0.1 s which ensures a minimum 

influence of the spectrometer light. During the whole experiment, the temperature was 

controlled with a Peltier cooling system and set to 23°C. The sample was continuously stirred 

to ensure homogenization. The recovery of the initial absorbance value before 505 irradiation 

prove the absence of photo-degradation. The experimental curves were globally fitted to a 

mono-exponential function yielding values of 1.81 h, 2.57 h and 40.3 h for WT, V151L and 

V151A respectively. The fitting was done using python 3.7 with the minimize function of 

lmFit package15. The results for the three proteins can be seen in Figure 4.8. 
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Figure 4.8. Evolution of absorbance starting from photo-stationary Off state after stopping 

the 505 nm light irradiation for (a) WT, (b) V151L, and (c) V151A. In blue the disappearance 

of the Off form, in orange the recovery of the On form and in red the fitted curves. Figure 

made with matplotlib python library. 
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Figure 4.9. Schematic representation of the experimental setup used to monitor the changes 

in the absorption spectra under irradiation. Figure made with Inkscape.  

Once the molar absorption coefficients and thermal back-reaction have been determined, it 

is possible to characterize the photoswitching quantum yields monitoring the light-induced 

UV-Vis absorption changes of the proteins in solution under continuous irradiation. For this 

purpose, between 6-9 µL of protein were diluted into 2 mL buffer (50 mMol Hepes 50 mMol 

NaCl pH 8) and transferred to a cuvette (1 cm x 1 cm) to have an absorption of ⁓0.5 over 

1cm at 480 nm. The solutions were continuously irradiated with a Hamamatsu lamp (LC8 

bulb Xe-Hg) at selected wavelengths using interference filters. For the On to Off form 

conversion, a filter Semrock FF01-485/20-25 and 2 metallic neutral filters Melles of optical 

densities of 1.0 and 0.5 were used. This yields an irradiation power of 4,19x10-7 Einstein s-1 

(Einstein unit is defined as energy in one mole of photons) centred at 485 nm with a 10 nm 

spectral width. For the Off to On form conversion, a filter Semrock FF01-406/15-25 and a 

metallic neutral filter Melles with an optical density of 3.0 which yields an irradiation power 

of 6,40x10-8 Einstein s-1 centred at 405 nm with a 10 nm spectral width. The irradiation power 

was measured using a photodiode from Ophir (PD300-UV). During the irradiation, 

absorption spectra were continuously recorded using a white light beam (90° respect to the 

irradiation beam) and a spectrometer combined with a CCD (cooled with a Peltier -30 °C to 

https://en.wikipedia.org/wiki/Mole_(unit)
https://en.wikipedia.org/wiki/Photon
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reduced thermal noise). The sample temperature was controlled with a water cooling system 

and set to 23°C. The sample was continuously stirred to ensure homogenization. The setup 

has been represented in Figure 4.9, and has been previously reported elsewhere16.  

 

Figure 4.10. Example of data collected using the setup in Figure A1.18 for rsEGFP2 WT. a) 

raw data. b) data after pre-processing. The colour bar represents the recorded time in 

seconds for each of the spectra. Figure made with matplotlib python library. 

The collection of spectra started 30 seconds before the irradiation lamp was turned on. The 

time between collected spectra was 0.68 s, this time includes the accumulation time and the 

readout of the camera. First, the Off to On photoswitching was measured, followed by the On 

to Off photoswitching. The measurements were performed sequentially, and the absence of 

degradation was checked. In general, for WT, V151A and V151L, between 45 and 55 

minutes were enough to complete the On to Off and Off to On conversion. The lamp 

irradiation power was adapted to have enough time points to correctly fit the initial evolutions 

and reach the photostationary state in less than one hour. The raw data measurementfor WT 

can be seen in Figure 4.10a. These measurements are affected by some baseline drifts. 

Therefore, after a first correction step shifting the spectra to be equal to zero at 600 nm, if the 

difference in absorbance (at 480 nm) between two consecutive points was higher than 0.005, 

the spectra were filtered. Finally, after filtering, the spectra were smoothed using a Savitzky-

Golay third-order polynomial with 25 points. The difference between the original spectra and 

pre-process ones can be seen in Figure 4.10a and b. In figure 4.11, absorption spectra 
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evolutions under continuous 405 nm irradiation (Off to On switching) can be seen for WT, 

V151L and V151A. Similar data were collected for On to Off photo-switching using 485 nm 

irradiation (Figure 4.12). As shown in these two figures, there is a clear isosbestic point 

around 426 nm for WT and 2 variants, which indicates a photo-transformation between two 

forms. 

 

Figure 4.11. Time evolution of absorption spectra under continuous irradiation at 405 nm 

for: WT (a), V151L (b) and V151A (c). Time evolution of the absorbance at 480 nm (orange) 

and at the absorption maximum (blue) of Off form for WT (408 nm, d), V151L (416 nm, e) 

and V151A (405 nm, f). (data shown has been baseline corrected but not smooth). Figure 

made with UltraPyFit. 
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Figure 4.12 Time evolution of absorption spectra On to Off conversion under continuous 

irradiations at 485 nm. WT (a), V151L (b) and V151A (c). Time evolution of the absorbance at 

480 nm (orange) and at the absorption maximum (blue) of Off form for WT (408 nm, d), V151L 

(416 nm, e) and V151A (405 nm, f). (data shown has been baseline corrected but not smooth). 

Figure made with UltraPyFit.  

 

The formula to determine photoswitching quantum yields, Φon-off and Φoff-on, are given in 

the Equation 4.2:  

𝑑𝐶𝑜𝑓𝑓

𝑑𝑡
= −

𝑑𝐶𝑜𝑛

𝑑𝑡
=  𝜙 𝑜𝑛𝐼𝑜𝑛

𝑎𝑏𝑠 − 𝜙 𝑜𝑓𝑓𝐼𝐶𝑜𝑓𝑓
𝑎𝑏𝑠  −  𝑘 𝑜𝑓𝑓C𝑜𝑓𝑓    Equation 4.2 
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Where ΦOn, ΦOff are the corresponding isomerization quantum yields. koff is the thermal 

recovery rate constant from the Off to the On state. And finally, 𝐼On/Off
𝑎𝑏𝑠  is the absorbed light 

at the irradiation wavelength of the different forms (equations 4.3 and 4.4). 

𝐼On
𝑎𝑏𝑠=

εOnCOn 

εOff𝐶Off+εOnCOn 
𝐼 0[1 − 10−(εOffCOff +εOnCOn )]    Equation 4.3 

𝐼Off
𝑎𝑏𝑠=

εOff𝐶Off

εOff𝐶Off+εOnCOn 
𝐼 0[1 − 10−(εOffCOff +εOnCOn )]    Equation 4.4 

In equations 4.3 and 4.4, ε is the molar absorption coefficient of each species at the irradiation 

wavelength. I0 represents the irradiation intensity of the Xe-Hg lamp that reaches the sample 

after the interference and neutral filters, and C the concentration of each species. As can be 

seen in equation 4.3 and 4.4 -which are linked to equation 4.2- to calculate the quantum 

yields, the profile concentrations of the On and Off forms are necessary. Therefore, these 

need to be calculated. Each spectrum was decomposed -using a least-square function coded 

in python 3.7- as a mixture of Off (trans neutral form) and On (cis anionic form) spectra 

multiplied by a certain weighting factor (Equation 4.5) and imposing a closure (mass 

conservation law). Thus, the profiles represent the relative molar fractions between On and 

Off forms (Figure 13b). 

Spectra(t)=A (t) x Spectra_On + (1- A(t)) x Spectra_Off    Equation 4.5 

In equation 4.5, Spectra(t) is the recorded absorption spectrum at a particular time, 

Spectra_On is the cis anionic On form spectrum, and Spectra_Off is the trans neutral Off 

form spectrum. This last spectrum is obtained by subtracting to the final photo-stationary 

state the percentage of resting On form (see section 1). The absorption Spectrum in Figure 

4.13a represents the two absorption spectra used to decompose each of the spectra in the 

series; the resulting profile concentrations can be seen in Figure 4.13b. 
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Figure 4.13. a) Absorption spectra used to decompose each of the spectra in figure 4.10 

(WT). b) Profile obtained after the decomposition in molar fraction. For a) and b) orange 

curves represents “Off” form and blue one the “On” form. Figure made with matplotlib 

python library. 

Knowing the molar absorption coefficient spectra of the On form, the total concentration of 

protein can be determined. With this value, the molar fractions profiles in Figure 4.12b were 

transformed into real concentrations profiles. Finally, to obtain the switching quantum yields, 

the same procedure explained above for the Off to On experiment was done for the On to Off 

experiment. The four concentration profiles (the two concentration profiles of the On to Off 

experiment plus the two profiles from the On to Off experiments) were globally fitted to the 

photo-kinetic equation 4.3 using Levenberg-Marquardt algorithm to minimize the χ2 

function, the results for the above-presented data can be seen in Figure 4.14.  

The results for WT and two variants were ΦOn-Off = 0.0085, ΦOff-On = 0.11 for WT, ΦOn-Off = 

0.0075, ΦOff-On = 0.12 for V151L and ΦOn-Off = 0.010, ΦOff-On = 0.14 for V151A. The error 

value in this kind of experiments is estimated to be around 10%. The values for WT and 

V151A are different from those reported previously by Coquelle et al3. for Off to On 

switching which was 0.3 and 0.77 for WT and V151A, on the contrary, they agree with those 

reported by Duwé et al17 for WT. It can be seen that V151A has both switching quantum 

yields slightly higher than the other two variants. On the contrary, the differences among 

WT, V151L and V151A are not as high as expected. However, logically, the less constrained 

chromophore (V151A) has the highest switching yield (On to Off and Off to On). 
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Figure 4.14. Results after globally fitting the profile concentrations of On to Off and Off to 

On experiments for rsEGFP2 variants. Top pannels for WT, middel pannels for V151L and 

bottom pannels for V151A. Figure made with matplotlib python library. 
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4.3 Fluorescence  

Although some neutral forms have revealed to be fluorescent, mainly due to an ESPT as the 

avGFP18–20, the Off neutral forms for WT and the two variants are not. Nevertheless, still, 

some signal can be detected since the completed photoisomerization of the proteins to the 

trans neutral Off form cannot be achieved. We first measured absorption and emission spectra 

(and excitation spectra for WT Figure 4.15b). For all the proteins, the emission spectra have 

a maximum at 502 nm, and a vibrational structure (shoulder) at 535 nm (with 470 nm 

excitation, red dashed vertical line Figure 4.15). Interestingly the absorption and excitation 

spectra for WT peak at different maxima revealing probably a ground state heterogeneity. 

The intensity ratio between the shoulder and the maxima is the same for WT, V151A and 

V151L. For the WT and the two variants, the emission maximum is red-shifted by about 20 

nm respect to the absorption maximum (Stokes shift).  

The fluorescence quantum yield has been measured following the methods described in 

reference 21, at two excitation wavelengths using two different references Cu-153 in EtOH 

with a fluorescent quantum yield of 0.53 and fluoresceine in 0,1 M NaOH with a fluorescence 

quantum yield of 0.89. The normalized fluorescence and absorbance spectra of these two 

compounds can be seen in Figure 4S-1 at the end of the chapter. To record On state 

fluorescence spectra, between 1-2 µL of protein were diluted into 3 mL buffer (50 mMol 

Hepes 50 mMol NaCl pH 8) and transferred to a cuvette (1 cm x 1 cm) to have at 480 nm an 

absorbance below 0.1 over 1cm. Then absorption spectra of the On and photo-stationary Off 

state were collected (Cary 1 absorption spectrometer spectral bandwidth of 2 nm and one 

point every 1 nm). The fluorescence spectra of the proteins and references were measured in 

a fluoromax-3 spectrofluorometer. The correction factors Sc/R were applied for the emission 

spectra. Sc is the fluorescent signal after application of the correction file “c” that takes in 

account the optical efficiency of the photomultiplier tube at each wavelength, and R is the 

correction for possible lamp intensity fluctuations. The quantum yields have been calculated 

using equation 4.6. 

𝛷𝑠 = 𝛷𝑟 (
1−10

(−𝐴𝑏𝑠𝑟𝑒𝑓)
· 𝐹𝑙𝑢𝑜𝑠𝑎𝑚𝑝𝑙𝑒 ·𝑛𝑠𝑎𝑚𝑝𝑙𝑒

2

1−10
(−𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒)

· 𝐹𝑙𝑢𝑜𝑟𝑒𝑓 ·𝑛𝑟𝑒𝑓
2

)      Equation 4.6 
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𝛷𝑠and 𝛷𝑟 are the fluorescence quantum yields of the sample and the reference, respectively. 

Absref and Abssample the absorbance of proteins and the reference solutions at the excitation 

wavelength used. “n” is the different diffraction index for the solvents used, and Fluosample 

and Fluoref correspond to the number of emitted photons which was calculated integrating 

the fluorescent absorbance signal for samples and reference.  

Table 4.2 Quantum yield results for rsEGFP2 WT, V151L and V151A 

Sample C153, exc. 

450 nm 

Fluoresceine, 

exc. 470 nm 

Integrating 

sphere 470 nm 

Average 

WT 0.31 0.30 0.30 0.305 

V151L 0.27 0.25 0.26 0.260 

V151A 0.27 0.26 0.24 0.256 

 

As shown in Table 4.2, the results between the different techniques are similar. For all cases 

the Φf of WT is higher than those of V151L and V151A, which are quite similar. The average 

values are 0.305, 0.260 and 0.256 for WT, V151L and V151A, respectively. With the molar 

absorption coefficient values and the Φf it is possible to calculate the brightness for each 

protein. The corresponding values for each rsEGFP2 variant can be seen in Table 4.3. Finally, 

the switching contrast calculated as the ratio between the areas under the fluorescence spectra 

before and after irradiation for the different variants are 20, 50 and 7.1 for WT, V151A and 

V151L respectively. These values are similar to the one determined using in absorbance and 

resting On state in the photo-stationary state: 16.7, 25 and 6.7 for WT V151A and V151L 

respectively. This means that the Off form (trans neutral form) is nearly non-fluorescent. 
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Figure 4.15. Fluorescence spectra of On form (light green solid line) and at the photo-

stationary Off state (light blue dashed line) compared to the molar absorption coefficients of 

On (dark green solid line) and photo-stationary (dark blue dashed line) spectra. The red 

dashed vertical line at 470 nm is excitation wavelength. a) WT, c) V151A and d) V151L. b) 

correspond to a comparison between the absorption (maximum at 482 nm blue vertical line) 

and excitation spectra for WT (measured at 502 nm emission; maximum at 476 nm orange 

vertical line). Notice the emission and excitation spectra are normalized to their 

corresponding maxima. Figure made with matplotlib python library. 
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4.4 Discussion and conclusions 

The main photophysical properties determined for the three protein samples are summarized 

in Table 4.3 In the resting state the chromophore adopts a cis anionic conformation 

(fluorescent On state). The cis anionic form of the three proteins displays the same absorption 

maximum at 482-483 nm and have similar molar absorption coefficient ~66000 M-1 cm-1. 

The only difference observed is in the UV region at 280 nm (Figure 4.5). Upon irradiation of 

this cis anionic form with 490 nm visible light, the chromophore photo-converts into a trans 

neutral conformer (Off states). Contrary to cis anionic states, the trans neutral forms 

absorption spectra differ from each other, attributed to the different Off structures. Indeed, if 

a close comparison of the different chromophore in the Off states is made, it can be seen that 

they display different τ and Ф dihedral angles between the phenol and the imidazolinone 

moieties6. Furthermore, the protein environment of the chromophore and in particular, the 

H-bonding network are different. The His149 in the V151L variant accompanied the 

conformational change of the chromophore to which it remained hydrogen-bonded as 

commented just above. On the contrary, for WT and V151A, a new hydrogen bond is formed 

with a water structural molecule. 

Furthermore, the photostationary spectra for the three proteins are composed of different 

percentage of cis anionic and trans neutral forms. Two factors influence these values, the 

thermal back recovery, which is 40.3 h, 1.81 h and 2.57 h for V151A, WT and V151L 

respectively and the absorption of the trans-neutral form at 480 nm. This lasts parameter is 

explained by the induced photochemical reaction to the original cis anionic, when the 

photoconverted trans neutral form is irradiated at 480 nm. A Higher absorbance at 480 nm 

for the trans neutral form will increase the cis-anionic contribution to the photostationary 

state. The V151A has both the longest thermal back recovery and the lowest trans neutral 

absorption at 480 nm which translate to a nearly 100% of conversion from cis anionic to 

trans neutral form. While WT and V151L variants have similar thermal back recoveries, the 

V151L trans neutral form absorption maximum is red-shifted respect WT and V151A which 

translates in a higher absorption coefficient at 480 nm. All together we can conclude that at 

the photostationary state we converted 95%, 86% and 98% of On form for WT, V151L and 

V151A (values for fluorescence). As the trans neutral state is considered to be non-
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fluorescent, the switching contrast will be (Ion/Ioff) 20, 7.1 and 50, respectively. Therefore, 

V151L cannot be used in RESOLFT microscopy, as minimum values of 10 are needed22,23. 

Table 4.3 Photophysical properties of rsEGFP2 WT, V151L and V15A 

Property WT V151A V151L 

Absorption maximum On (nm) 482 483 482 

Absorption maximum Off (nm) 408 405 416 

Molar absorption coefficient for On form at its 

maximum, pH 8 (M-1, cm-1) 
67210 65596 66149 

Molar absorption coefficient for On form at 488 nm, 

pH 8 (M-1 cm-1) 
61609 61926 61326 

Molar absorption coefficient for Off form at its 

maximum, pH 8 (M-1 cm-1) 
26443 24640 34231 

Absorption maximum for Cis neutral (nm), pH 4.5 397 395 401 

Molar absorption coefficient for Cis neutral form at its 

maximum, pH 4.5 (M-1 cm-1) 
29221 32753 26231 

Switching contrast at photostationary (fluorescence) 20 50 7.1 

Switching contrast at photostationary (absorbance) 16.7 25.0 6.7 

Fluorescence emission maximum 502 502 502 

Fluorescence Quantum yield 0.34 0.27 0.28 

On to Off switching quantum yield 0.0085 0.010 0.0078 

Off to On switching quantum yield 0.11 0.14 0.12 

Brightness at 488 nm 22851 17710 18521 

Thermal recovery (h) 1.81 40.3 2.57 

pKa 5.7 6.3 5.8 
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Previous studies have shown that the rsEGFP2 WT upon irradiation with 490 nm visible light 

isomerized into a trans-neutral conformer adopting either HT type Off state as V151L or an 

OBF type as the V151A8. Interestingly our result shows that the WT Off state absorption 

maximum (408 nm) is in between those of the V151A (405 nm) and the V151L (416 nm). 

Therefore, the rsEGFP2 Off-state heterogeneity observed in crystals can also exist in solution. 

One could raise the objection that the differences between WT and V151A absorption spectra 

might not arise from the WT variant having an Off ground-state heterogeneity, but instead 

would originate from steric or electrostatic properties of the mutated amino acid at position 

151. However, it is well known that HT and OBF conformers can rapidly exchange between 

them via a single bond rotation24, as explained in Chapter 2. Indeed, the molar absorption 

coefficient spectrum of the trans neutral form for the WT variant can be perfectly reproduced 

by a weighted sum of the V151A (77.5%) and V151L (22.5%) spectra as can be seen in 

Figure 4.16. Notice that not only the main band at 408 nm but also the 280 nm maximum can 

be reproduced by the same sum of V151L and V151A spectra.  

 

Figure 4.16. rsEGP2 WT off trans-neutral UV-Vis absorption spectrum (green). 22.5 % of 

the V151L (HT Off conformer) in blue, 77.5 % V151A (OBF Off conformer) in orange, the 

sum of 0.225*V151L + 0.775*V151A gives the red dashed-dotted line which perfectly 

overlaps the WT trans-neutral Off molar absorption coefficient spectrum. Figure made with 

matplotlib python library. 
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It is possible to assume that the observed differences in the absorbance of V151A and V151L 

variants in the solution may originate from steric or electrostatic properties of the amino acid 

at position 151. On the contrary, neither an alanine nor a leucine at position 151 are in direct 

interaction with the chromophore in neither of the On or Off states of the proteins and have 

no option to form hydrogen bonds with it. Therefore, we attribute the red- and blue-shift of 

the absorption maxima in the V151L and V151A variants, to two possible reasons: i. the 

differences in τ and Ф dihedral angles of the chromophore in HT (V151L) and OBF (V151A) 

Off conformers. ii. differences in the local environment, that tunes the energy gap between 

the S0 and S1 electronic states, of the chromophore in V151L and V151A Off form. These 

differences are due to the different environments that the chromophore adopts in the two 

trans forms (HT vs OBF) rather than an electrostatic interaction with the amino acids at 

position 151. Shifts in the absorption band maximum position (both hypsochromic and 

bathochromic) accompanying mutation-induced changes in chromophore τ and Ф angles 

have previously been noted for green FPs with a cis chromophore25 and for red FPs with a 

trans chromophore26. The bathochromic shift of the V151L spectrum appears to be consistent 

with a more extended electron delocalization in the near-planar chromophore of HT (dihedral 

angles φ = 9.5°, τ= -17.5°) as compared to in OBF (φ = -50.2°, τ= 9.2°) (unpublished results 

obtained from V151L and V151A Off state X-ray structures by Martin Weik and coworkers). 

Further studies based on high-level quantum chemistry calculations could provide a more 

detailed mechanistic view in the future.  

From the values in Table 4.3, it stands out the relatively long thermal recovery, for V151A 

of over 40 h in comparison with those of WT and V151L which are 1.81 and 2.57 h 

respectively. In the same line is the pKa value of the On-form which was determined to be 

6.3 for V151A, 5.7 for WT and 5.8 for V151L, suggesting a possible relationship between 

these two properties. In the thermal back reaction, the trans-protonated state transforms into 

a cis anionic one. It is well known that the deprotonation in GFP-proteins occurs in the 

microsecond-millisecond time range constant, which is under the detection limit of our 

experiment, and thus instantaneous. Therefore mono-exponential thermal back evolution 

indicates that the cis-trans isomerization is the limiting reaction step. This further suggests 

that the isomerization provokes a change in the pKa of the chromophore probably induced by 
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a different interaction of the surrounding amino acids, which then triggers the deprotonation 

reaction occurring nearly instantaneously. 

The photoswitching quantum yields values, reported in Table 4.3 are in contrast to those 

previously reported by Coquelle et al.3, the values are much smaller, especially regarding the 

Off to On photoswitching quantum yield. The values reported here were obtained following 

the protein absorbance changes in solution under continuous irradiation of the On and Off 

forms, respectively. Our reported values are in agreement with those reported for WT by 

Duwé et al. 17 using a similar approach. On the contrary, those reported by Coquelle et al. 3 

were determined following the changes in fluorescence under a microscope for immobilized 

proteins in a film, which could explain the differences observed. Finally, logically a less 

constrained chromophore (V151A) has the highest switching yields (On to Off and Off to On) 

 

4.5 Supporting material 

 

Figure 4S-1. Normalized absorbance and fluorescence spectra for fluoresceine 0.1M NaOH (blue) 

and Cu153 in EtOH (orange). Unfilled curves correspond to absorbance spectra and fill curves to 

fluorescence spectra. Figure made with matplotlib python library. 
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Table 4S-1. Molar absorption coefficient measurements. 

 
measurement First Second Average 

WT 

Absorption On form max (nm) 482 482 482 

Epsilon On (L mol-1 cm-1) 67857.67 66561.63 67209.65 

Absorption Off state max (nm) 408 408 408 

Epsilon Off (L mol-1 cm-1) 26681.73 26203.4 26442.565 

V151A 

Absorption On form max (nm) 482.5 483 482.75 

Epsilon On (L mol-1 cm-1) 65552.02 65639.31 65595.665 

Absorption Off state max (nm) 405 405 405 

Epsilon Off at max (L mol-1 cm-1) 24624.65 24151.0 24387.825 

V151L 

Absorption On form max (nm) 482 482 482 

Epsilon On (L mol-1 cm-1) 66481.31 65817.59 66149.45 

Absorption Off form (nm) 416 416 416 

Epsilon Off (L mol-1 cm-1) 34051.88 34409.56 34230.72 
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5 Off state photodynamics of rsEGFP2 
WT, V151A and V151L 

 

5.1 Introduction 

After determining the photophysical properties for WT, V151A and V151L in solution 

(including the switching yield), we study in this chapter the Off to On photodynamics of these 

three proteins. As discussed in the introduction, after photoisomerization, the rsEGFP2 

chromophore can have different Off state photoproduct isomers. These isomers are 

compatible either with an OBF or an HT isomerizations1. The OBF pathway is a large volume 

demanding mechanism and V151A fulfil this requirement. On the contrary, HT pathway is a 

volume-conserving pathway favoured in sterically constraint environments which is the case 

for V151L. An important result obtained in Chapter 4 is that WT Off state absorption 

spectrum can be interpreted as the sum of V151A (OBF) and V151L (HT) Off form spectra. 

Preliminary TR-SFX results obtained for WT microcrystals by our collaborators confirm that 

in certain conditions, it is possible to observe both Off photoproducts (Figure 3.18).  

At the end of Chapter 3, it has been mentioned that the excited-state dynamics (from fs to 20 

ps) of rsEGFP2 was published by Coquelle et al.2. The use of TR-SFX, combined with 

TRUV-Vis, demonstrated the existence of a twisted chromophore configuration at 1 ps, 

halfway between the trans and cis isomers attributed to an isomerization intermediate. The τ 

and Φ angles in the twisted intermediate are in agreement with a HT isomerization 

mechanism1,2. These results were further supported by QM/MM simulations which 

demonstrated that upon excitation, the protonated HBDI chromophore within the protein 

preferentially rotates around Φ to facilitate the isomerization as previously suggested for 

HBDI in solution3. Moreover, S. R. Meech and coworkers have recently demonstrated using 

TRIR that the Off to On isomerization in Dronpa and Dronpa 2 is significantly more complex 

than a two-step process involving a one-step cis-trans isomerization and a proton transfer4. 

They show the existence of several chromophore and protein motions involved all along the 

isomerization process which ends in 91 ns in the ground state (chapter 3). They used an 

innovative multiplex time-resolved infrared multiple probe spectroscopy (TRMPS)4, that 
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allowed them to study in a single experiment the photodynamics from the femtosecond (fs) 

to the millisecond (ms) time range.  

The Off to On photodynamics of V151L (HT On to Off photoproduct) and V151A (OBF On 

to Off photoproduct) from femtosecond to millisecond time scale are essential to understand 

the photodynamics of rsEGFP2 (WT) and will help to understand the general 

photoisomerization mechanism of RSFPs. The results in this chapter will be divided into two 

sections according to the different time ranges available in TRUV-Vis spectroscopy 

(explained in chapter 2): 0-2 ns (stroboscopic) and 2 ns-10 ms (oscilloscope). Each section 

will be sub-divided with the results of TRUV-Vis and TRIR probes used. Some figures were 

added at the end of the chapter to support our analysis (Supporting figures). The experimental 

details can be found in Chapter 2 (description of TR spectroscopies) and Appendix 1 

(materials and methods). The structure at 10 ns obtained by TR-SFX (from Martin Weik’s 

group in collaboration with Ilme Schlichting’s group -see authors in section 5.3.3-) at 10 ns 

for WT, V151A and V151L are essential to link the optical TR spectroscopy results to the 

protein transient structures and build a final photo-dynamical scheme. Moreover, since the 

dynamic between solution and crystal can differ, we have also studied microcrystals colloidal 

solution using ultrafast optical spectroscopies to validate our methodology. Part of the results 

presented in this chapter are already published in Woodhouse et al.5. 

 

5.2 Dynamics between 0 and 2 ns 

5.2.1 Transient absorption UV-Vis Spectroscopy 

5.2.1.1 Excited-state dynamics, dynamics between 0-40 ps in H2O buffer 

Time-resolved difference absorption spectra between 0 and 40 ps for WT, V151A and V151L 

in solution (experimental condition are given in Appendix 1) can be seen in Figure 5.1 

together with the main kinetic traces in Figure 5.2. Transient absorption spectra were 

recorded after excitation of the Off state with a 400 nm laser pulse (2.1 µJ, 1kHz, 500 µm 

1/e2, 2.14 mJ/cm2). Four different growing bands between -200 fs and 250 fs can be 
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identified for WT: two positive bands with maxima at 335 and 455nm, which are attributed 

to excited-state species absorption (ESA), and two negative bands. The first narrow negative 

band centered between 390 and 410 nm is attributed to the ground state bleaching (GSB, 

depopulation of the trans neutral form), and the second broadband negative band ranging 

from 490 to 700 nm is attributed to the stimulated emission (SE) of excited-state species. The 

SE band is characterized by a broad band (490-600 nm) with a minimum at 515 nm and a 

red-shifted tail (600-720 nm). Note that this latter tail keeps growing during 100 

femtoseconds after the others. A small evolution of the two ESA bands is observed from 250 

to 400 fs (see Figure 5.1d). Then in ~1 ps (from 400 fs to 1.7 ps), the ESA bands centered at 

335 nm and 455 nm together with the GSB band and SE band centered at 515 nm decrease 

to around half of their intensities. Within the same time, the red tail part of the SE band 

completely decays. This evolution is followed by the decay of all transient absorption bands 

in ~10 ps to form at 40 ps a transient spectrum mainly characterized by a positive band at 

375 nm and a small negative band between 465 and 580 nm with a maximum at 502 nm.  

Similar experiments have been carried out for V151L and V151A variants. After excitation 

with a 400 nm laser pulse, the transient spectra which are growing until 200 fs exhibit similar 

features to WT ones. In both cases, after signal formation, at 200 fs, the transient spectrum 

shows mainly the same four bands, with two positive bands attributed to the ESA and two 

negative bands attributed to GSB and SE. However, the maxima, intensity and shape of these 

bands differ. Compared to WT, the maxima of ESA bands for V151A are blue-shifted at 330 

nm and 445 nm while V151L has its ESA maxima red-shifted at 350 and 460 nm. 

Nevertheless, the main difference can be seen in the SE region. Firstly, while the SE band of 

V151L displays only one minimum centered at 515 nm with a shoulder at 550 nm and without 

any red tail contribution, the SE band of V151A is characterized by a broadband from 490 to 

650 nm and centered at 530 nm. Notice that V151A has a weak positive extra ESA band with 

a maximum at 680 nm at 150 fs. The spectral evolutions among the two variants also differ. 

For V151L, there is a small growing of ESA band centered at 460 nm until 400 fs(also seen 

for WT). However, for V151A, in 400 fs, there is a new evolution of the SE band. Mainly 

there is a decrease and shift of the SE band maximum (from 530 to 550 nm), and 

simultaneously, the ESA band at 680 nm becomes negative, i.e. a new SE band. Notice the 

isosbestic point at 625 nm between these two bands (Figure 5.1.f). At 600 fs, the two SE band 
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contributions (550 nm and 680 nm) have almost the same intensity. This evolution is also 

accompanied by a red-shift of the second ESA band maximum from 445 to 450 nm. After 

this ultrafast spectral shift, we can observe a general decay of all bands in less than 2 ps. At 

2.35 ps the value of ΔA for GSB and ESA bands decrease over 2/3 of the value at 600 fs. 

Interestingly, the SE band has almost completely decayed to zero. At 2.35 ps the SE band 

displays only a minimum at 510 nm with no signal over 650 nm. This ps evolution is followed 

by the continuous decay until 40 ps of the SE and GSB bands. At 40 ps the remaining 

transient spectrum has two positive maxima (375 and 460 nm, similar to WT), and no SE 

signal can be observed. Strikingly, for V151L the evolution of transient spectra after 400 fs 

are more simple. All the bands decay in about tens of picoseconds without shifts of the SE 

maximum always centered at 512 nm. At 40 ps, the transient spectrum has a positive band 

with a maximum at 375 nm, and two negative bands peaking at 445 nm and 500 nm. The 

remaining transient spectrum at 40 ps is a mixture of bands from the photoproduct (similar 

amplitude in agreement with the photo-switching yield values, 11% for WT, 12% for V151L, 

14% for V151A), and the dynamics of the cis anionic On form present in photo-stationary 

Off state (5% for WT, 14% for V151L and 2% for V151A).  
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Figure 5.1. Femtosecond transient difference absorption spectra recorded at different time delays after a femtosecond laser 

excitation (400 nm) of the trans protonated Off state until 40 ps for WT ( a,d g), V151L (b,e h) and V151A (c, f, i) in H2O solution 

(50 mM HEPES pH 8, 50 mM NaCl). The spectrum without laser excitation was subtracted to calculate the difference spectra. 

Upper panel correspond to the growing of the signal, middle panels to sub picosecond evolution and bottom panels to picosecond 

evolution. Figures made with Ultra Pyfit, arrows added with Inkscape. 
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The transient spectra evolutions until 40 ps for WT, V151A and V151L can be compared in 

Figure 5.1. The presence of SE bands indicates that the observed dynamics correspond to 

excited-state species. An interesting feature of the transient spectra in Figure 5.1 is the 

relative amplitude between the GSB and SE bands at 300 fs (Figure 5.1d,e,f). For V151L and 

WT the amplitude of SE band is higher than for the GSB whereas this is reverse for V151A. 

Secondly, the ratio between these bands is higher for V151L than for WT. Nevertheless, the 

most interesting difference is observed in the decay of the SE bands (after 600 fs time delay). 

For V151A the SE is completely red-shifted and decay without changes of shape and 

maximum (after 600 fs) and thus can be characterized by mainly one excited-state species 

with a fast decay (~90 %) and a second minor contribution decaying in longer time scales. 

For the V151L there is also short and a long component with similar contributions and shapes 

(Figure 5.2). Interestingly, for WT which also has two clear components; the shorter one has 

a red shifted contribution together with a minimum around 520 nm, thus, this band can be 

seen as a mixture of V151L and V151A short components (sub-ps) SE band. The global fit 

of the kinetic traces (convolved with the laser pulse 0.16 fs width and a constant  = inf, see 

Appendix 2 for details) yielded three-time constants, for WT (0.17 ps, 0.89 ps and 4.33 ps), 

for V151L (0.13 ps, 0.70 and 4.20 ps) and for V151A (0.17 ps, 0.72 ps and 4.74 ps). The 

DAS obtained from the global fit are shown in Figure 5.2 together with the charcteristic 

kinetic traces for each of the transient signals. The residues of all fitted traces are shown in 

Figure 5S-1. The first time constant of ~170 fs is attributed to the build-up of electronically 

excited intermediates from the Franck–Condon state, and the other two time constants to their 

decay. The SE band of the corresponding DAS confirm that WT excited states dynamics can 

be seen as a mixture of those of V151L and V151A.  
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Figure 5.2. Left panels correspond to the decay associated spectra reconstructed using the 

pre-exponential factors obtained from the global fit analysis of kinetic traces (every 5 nm) 

using a weighted sum of three exponential functions convolved with a Gaussian function and 

a constant (inf). In the right panels, selected kinetic traces for wavelengths representing each 

of the transient absorption spectral main features (ESA, GSB and SE bands) together with 

the corresponding fits and residues. Panel a and b correspond to WT, c and d to V151L and 

e and f to V151A. Figure made with Ultra Pyfit. 
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5.2.1.2 Ground-state dynamics, dynamics between 40-2000 ps in H2O solution 

The decay of the SE band at 40 ps indicates that excited-state species have relaxed to the 

ground state. Therefore, the spectral evolutions from 40 ps to 2000 ps are probing 

intermediate species in the electronic ground state.  

Figure 5.3. Time-resolved difference absorption spectra recorded between 40 ps and 2 ns 

after a 400 nm femtosecond excitation of the Off-state (a) and the cis-anionic on-state (b) of 

rsEGFP2 in H2O solution (50 mM HEPES pH 8, 50 mM NaCl). The black arrow (a) 

indicates the disappearance of the 420 nm band within 87 ps. Kinetic traces at 420 nm (c) 

and 500 nm (d) extracted from panels a) and b) are shown. Figure done with Igor pro. 

The photoproduct ΔA value is in the limit of the instrument signal to noise ratio. To avoid 

long time experiments and photo-degradation of the protein, we did not measure at the same 

time short time delays (0-40 ps) and longtime delays (0-2 ns). For long time delays, we also 

measured transient spectra between 0 and 40 ps, but with a reduced number of points until 

10 ps and on a new fresh sample. Therefore, the absolute value of ΔA is not exactly the same. 

It is worth noticing that the Off state is formed by contributions of trans neutral and cis 

anionic forms. Therefore, the evolutions for time delays longer than 40 ps are a mixture of 

the anionic excited state dynamics (negligible for V151A) and photoproducts of trans neutral 
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photodynamics. This explains the existence of a negative band at 500 nm assigned to SE of 

cis anionic On excited state. To confirm this attribution and solely identify the trans neutral 

photoproduct dynamics, we have followed On form spectral changes upon 400 nm 

femtosecond excitation (Figure 5S-2 and 5S-3). The On excited state dynamics will be 

discussed in Chapter 6, nevertheless, the essential result of these experiments is that the WT 

ESA, GSB and SE band of cis anionic form are decaying continuously until 2 ns (Figure 

5.3b). Consequently, the growing of the positive band at 420 nm (Figure 5.3a and 5.3c) is 

solely due to photodynamics of the trans neutral photoproduct. The exponential fit of the 

kinetic trace at 420 nm with four components yielded an extra associated characteristic time 

constant of 87 ps (result published in Woodhouse et al.5). The new band at 420 nm seen for 

WT is even clearer for the V151A (Figure 5.4c) because the residual On form population in 

Off state is negligible. Therefore, all kinetic traces (0 to 2 ns) could be globally fitted with 

four components and increase the precision on time associated to the spectral evolution after 

40 ps time delay. The results can be seen in (Figure 5S-4). The associated time constant for 

this extra evolution was 83 ps. For V151L the resting On-state in the Off state is estimated to 

be about 14 % (Chapter 4); therefore, the evolution of SE band around 512 nm is attributed 

to the residual On-state evolution Figure 5.4b. Besides this evolution, no additional changes 

from 40 ps until 2 ns can be seen (Figure 5.4b). This means that the trans neutral 

photoproduct formed after excited state relaxation does not evolve until 2 ns. 

Figure 5.4. Femtosecond transient difference absorption spectra recorded from 20 ps to 2000 

ps time delays after a femtosecond laser excitation (400 nm) of the Off state for a) WT, b) 

V151L and c) V151A. Figure made with Ultra Pyfit.  
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5.2.1.3 0-2 ns dynamics in D2O solution 

 

 

Figure 5.5. TRUV-Vis transient absorption experiments for WT, V151A and V151L in D2O 

solution (50 mM HEPES pD 8, 50 mM NaCl). Left graphs (a, c, e) correspond to the time-

resolved difference absorption spectra until 40 ps recorded after a femtosecond laser 

excitation (400 nm) of the Off state. Right graphs (b, d, f) correspond to the decay associated 

spectra reconstructed using the pre-exponential factors obtained from the global fit (0 to 2 

ns) of kinetic traces (every 10 nm) using a weighted sum of four exponential functions 

convolved with a Gaussian function and a constant (inf). WT (top panels: a, b), V151L 

(middle panels: c, d) and V151A (bottom panels: e, f). Figure made with Ultra Pyfit. 
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Similar experiments (Figure 5.5, only transient spectra until 40 ps is shown) to those reported 

above in H2O have been done for WT, V151A and V151L in heavy water (50 mM HEPES 

pD 8, 50 mM NaCl in D2O). Transient spectra and spectral evolutions correspond to those 

observed in H2O. Three time constants (1 time constant for the growing of excited states and 

2 time constants for their decay) are needed to fit the kinetics for V151L whereas a fourth 

time constant should be added to take into account the extra ground state evolution for WT 

and V151A. Global decay analysis of the data in heavy water yield for WT (0.2 ps, 0.75 ps, 

4.8 ps and 98 ps), for V151L (0.11 ps, 0.67 and 4.4 ps) and for V151A (0.11 ps, 0.77 ps, 3.4 

and 75 ps), the fits and residues can be seen in Figure 5S-1d, e and f. The comparison of time 

constants in H2O and D2O, reveals the absence of isotopic effects in the excited state 

dynamics.  

 

5.2.1.4 0-2 ns dynamics for crystals 

WT microcrystals were also studied using time-resolved UV-Vis transient absorption 

spectroscopy with the same setup. There are only two differences. Firstly, two LEDs emitting 

at 490 and 505 nm were used to keep the Off state during the experiment. Secondly, the 

optical path of the flow cell was increased from 250 µm to 500 µm. The number of time 

points collected was reduced to avoid photo-degradation. Since no significant changes can 

be observed after 60 ps, time points were collected only until 300 ps. The transient absorption 

spectra are shown in Figure 5.6. The results are comparable with the solution. The formation 

of excited states is within a few hundred femtoseconds. The transient spectrum at 200 fs 

displays 2 ESA positive bands and two negative bands attributed to GSB and SE (500 to 700 

nm). In comparison to the solution, the ESA and SE maxima are red-shifted peaking at 475 

nm and 550 nm. Kinetics traces (every 10 nm) were globally fitted from 0.2 ps to 60 ps with 

a bi-exponential function with associated decay times of 0.6 and 5.6 ps. The microcrystals 

red-shifted maxima indicate that the chromophore is feeling a different electrostatic field. 

Nevertheless, the DAS spectral features and time constants are similar, thus following the 

interpretation done for the protein in solution, the shorter decay time species (0.6 ps, red-

shifted SE) is assigned to a twisted excited state intermediate during the trans to cis 

isomerization. 
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Figure 5.6. TRUV-Vis transient absorption experiments for rsEGFP2 microcrystals in 100 

mM HEPES, pH 8, 2.5 M ammonium sulphate. a) time-resolved difference absorption spectra 

recorded after a femtosecond laser excitation (400 nm) of the trans protonated off state until 

to 2 ns. The spectrum without laser excitation was subtracted to calculate the difference 

spectra. b) decay associated spectra reconstructed using the pre-exponential factors 

obtained from the global fit with a weighted sum of 2 exponential functions. Figure made 

with Ultra Pyfit. 

The decay time associated with the isomerization (0.6 ps) is slightly shorter in crystals than 

in solution (0.88 ps) which can be the effect of crystal confinement. The second decay time 

seems to be slightly longer in microcrystals (5.99 vs 4.33 ps). However, the low S/N ratio of 

the microcrystals data makes difficult any precise conclusion. To come to an end, the excited 

state dynamics of rsEGFP2 microcrystal are dominated by two excited states, similar to those 

observed for the protein dynamics in solution, which validates the assignment of species done 

by Coquelle et al.2 using TR-SFX.  

5.2.2 Transient absorption Infrared spectroscopy 

The photodynamics between 0-2 ns were also studied by TRIR spectroscopy4 in heavy water. 

After irradiation of the Off-state with a (fs) laser pulse at 400 nm, some instantaneous signals 

are formed (0.3 ps is the shortest time delay that can be observed due to IR coherent artefact). 

As mentioned in Chapter 2, positive bands correspond to ESA and photoproduct 

intermediates and negative bands to GSB signals which correspond to the depopulation of 

the trans neutral Off state. The evolutions of transient spectra for different time delays can be 

seen in figure 5.7 for WT, V151A and V151L.  
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At 0.3 ps the WT spectrum displays a rich spectrum, the main bleaching bands are peaking 

at 1681, 1657, 1639, 1627, 1576, 1533, 1511 and 1488 cm-1 (trans neutral chromophore), 

those at 1681, 1657, 1639 and 1488 cm-1 are the ones with higher intensities and have similar 

amplitudes. Based on previous studies of Dronpa protein which has the same HBDI 

chromophore but different protein cage, the bleaching bands at 1681, 1639 and 1627 cm-1 are 

assigned respectively to C=O bond, delocalized C= C–N= C bonds and phenyl ring stretch 

vibration of the trans neutral chromophore4. The band at 1657 cm-1 is assigned to the C=C 

stretching vibration. Finally, the band at 1488 cm-1 is assigned to the residual cis anionic 

excited state dynamics. The main positive bands correspond to the signatures of excited state 

species and can be seen at 1666, 1649, 1611, 1594, 1560-1546, 1520 and 1500 cm-1. Three 

time windows can be identified from the transient spectra evolutions: 0.3-8 ps, 8-50 ps and 

50 ps-3 ns. From 0.3 to 8 ps some spectral evolutions can be seen between 1580 and 1700 

cm-1, primarily involving the decay of the negative GSB bands (1657 and 1680 cm-1). At 8 

ps the GSB bands have decreased by 2/3, this is assigned to the recovery of the trans Off 

form. New positive bands at 1691 cm-1 and 1587 cm-1 grow within the same time evolution. 

The 1691 cm-1 band is assigned to a cis photoproduct (see below). From 8 ps to 50 ps, the 

GSB bands continue to decay (for clarity the spectra at 0.3 and 50 ps are displayed in Figure 

5S-5). Finally, from 50 ps to 3 ns the prominent evolution involves the decay of the GSB at 

1488 cm-1, which is accompanied by the decay of three positive bands between 1350 and 

1470 cm-1, and two positive bands peaking at 1627 and 1649 cm-1. However, a comparison 

with On to Off transient spectra recorded after 480 nm excitation and DAS obtained by a 

global fit of all kinetic traces (Figure 5S-6), allows attributing the positive bands evolutions 

between 1350 - 1470 cm-1 and the bleach at 1488 cm-1 to the On residual form (cis anionic) 

ESA and GSB dynamics respectively.  

Similar results can be seen for the variants V151L and V151A. Notice that the contribution 

of the On form dynamics after 50 ps is lower for V151A. Important differences can be seen 

in the transient bands assigned to the Off to On dyanmics for both variants. While at 0.3 ps 

the WT spectrum has two prominent GSB bands at 1639, 1627 cm-1, only the first one is seen 

for V151A while the second is seen for V151L. Moreover, the excited state spectral 

evolutions are mainly finished at 8 ps for V151A. Importantly, it is possible to identify a new 

positive band at about 1691 cm-1, assigned to a cis form photoproduct. A similar band for 
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V151L appears only after the 1681 cm-1 GSB recovery (see spectrum at 20 ps) and at 1685 

cm-1. The excited state decay for V151A is faster than for V151L. Importantly, after 20 ps 

for WT and V151A variants the most prominent positive band is at 1649 cm-1, while on the 

contrary, this band has completely disappeared in V151L, which has as main positive band 

the 1587 cm-1 (also present in WT and V151A). The detailed analysis of photoproducts 

assigned to this positive bands is done in the discussion. 

The Off to On kinetic traces were globally fitted taking into account the above-explained 

evolutions. To consider the resting On state contributions, a weighted sum of four exponential 

was used, and the longest time value was fixed to the On to Off photodynamics TCSPC value 

(see Table 7.1, the values are 2.8, 2.2 and 2.5 ns for WT V151L and V15A respectively). The 

associated fit time constant for WT were 1.51 ps, 6.26 ps and 180 ps. For V151L 1.46 ps, 

5.88 ps and 90.9 ps. Finally, for V151A, 0.78 ps, 4.50 ps and 79.0 ps. The results can be seen 

in Figure 5.8 and the fits and residues in Figure 5S-7. For the three proteins the two first time 

constants can be assigned to the two excited species found in TRUV-Vis experiments (Table 

5.1 next page). Time constants seem longer in TRIR and it is usually due to the presence of 

vibrational cooling convolved to excited state deactivation6,7. Importantly during the first 

species de-activation processes, we can see the formation of a positive band at 1649 cm-1. 

Compared to the FTIR differential spectra (Figure A1.11 Appendix 1), allow us attributing 

this band to a cis type photoproduct. It is difficult to attribute the geometry and nature of 

excited species without theoretical quantum calculations of the spectra which are in progress. 

Nevertheless, the absence of evolutions in TRUV-Vis for V151L after 20 ps allows us 

attributing the longer components found for this variant to the cis On form. Similarly, the 

comparison of the DAS long component found for the On to Off photodynamics (Figure 5S-

7) with those found here, allows assigning the last evolutions to the residual On form for 

V151A and WT. Contrary to TRUV-vis, the first ground state evolutions found for V151A 

and WT variants (~100 ps) are difficult to observe with TRIR. All time constants retrieved 

from global fits done to the decay traces of TRUV-Vis in H2O and D2O and TRIR the are 

compared in Table 5.1.
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Figure 5.7. Femtosecond transient difference absorption IR spectra recorded at different time delays (until 3 ns) after a 

femtosecond laser excitation (400 nm) of the Off state (50 mM HEPES pD 8, 50 mM NaCl). Top, middle and bottom panels 

correspond to time delay between 0.3 and 8 ps, 8 and 50 ps, and 50 ps to 3 ns, respectively. WT variant panels are (a,d and g), 

V151L (b,e and h) and V151A (c, f and i). Figures made with Ultra PyFit. 
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Figure 5.8. Left panels correspond to the decay associated spectra reconstructed using the 

pre-exponential factors obtained from the global fit analysis of all kinetic traces in data sets 

in Figure 5.7 with a weighted sum of four exponential functions. In the right panels, the 

selected traces representing the main transient bands together with their corresponding fits 

and residues. Notice that the time axis is set in a logarithmic scale. Panel a and b correspond 

to WT variant, c and d to V151L and e and f to V151A. Figure made with Ultra Pyfit. 
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Table 5.1 Time constants found after globally fitting the kinetic traces from TRUV-Vis (H2O 

and D2O) and TRIR (D2O) data.  

RSEGFP2 TIME 

CONSTANTS 

TRUV-VIS 

(H2O) (ps) 

TRUV-VIS 

(D2O)* (ps) 

TRIR 

(D2O)* (ps) 

WT τ1 0.17 0.20 NA 

τ2 0.89 0.75 1.51 

τ3 4.33 4.79 6.26 

τ4 87.0*** 98.2 180.6 

V151L τ1 0.13 0.11 NA 

τ2 0.70 0.67 1.46 

τ3 4.20 4.44 5.88 

τ4 Not seen Not seen 90.9** 

V151A τ1 0.17 0.11 NA 

τ2 0.72 0.77 0.78 

τ3 4.7 3.4 4.5 

τ4 83* 75 79 

NA: Not applicable, 

*The fit has been done including the last component to the On dynamics fixed (2.8, 2.5 and 

2.77 ns for WT V151L and V15A respectively). 

** Attributed unequivocally to On excited state dynamics. 

*** Single wavelength fit5 

The estimation of the errors of the fitted parameters have been calculated by inverting the 

Hessian matrix which represents the second order derivative matrix. From the square-root of 

the inverse of the diagonal, the standard errors for each variable parameter can be calculated 

independently and assuming that the components of the residual array are distributed around 

zero on the x-axis (residual plots) with a normal (Gaussian) distribution. This simple 

approach to calculate uncertainties ignores outliers, highly asymmetric uncertainties, or 

complex correlations between parameters. The values for the TRUV-Vis in H2O τ1= ±0.002, 

τ2= ±0.010 τ3 = ±0.029 and τ4 = ±3.9. For the TRUV-Vis in D2O the τ1=± 0.03, τ2=0.032 t3 = 



 

172 
 

±0.23 and τ4 = ±4.8. For TRIR in D2O τ2= ±0.044, t3= ±0.32 τ4 = ±5.7. Notice the lower 

values TRUV-Vis in H2O which are explained to the higher number of points and quality of 

the data in the 0-40 ps region. 

 

5.3 Dynamics between 2 ns and 10 ms 

5.3.1 Transient absorption UV-Vis Spectroscopy 

5.3.2.3 Dynamics in H2O and D2O buffers 

The spectral evolutions from 2 ns until 10 ns cannot be recorded since the excitation laser 

has a temporal width of ~8 ns. However, no evolutions can be seen between 10-100 ns in 

Figure 5S-8. Moreover, the comparison between the transient spectra at 2 ns (previous 

section) and 100 ns (410 nm excitation) shows the absence of spectral evolutions between 2 

and 100 ns for V151A and V151L. The small difference for WT is assigned to different ratio 

of HT and OBF photoproduct in the Off state between experiments. 

Figure 5.9 Normalized transient spectra at 2 ns (red) recorded after a femtosecond laser 

excitation (400 nm) compared to the spectra at 100 ns (blue) recorded after a 410 nm 

nanosecond excitation of the Off state (50 mM HEPES pH 8, 50 mM NaCl). a) WT, b) V151L 

and c) V151A. 

Figure 5.10 shows spectral changes from 100 ns to 10 ms (20 ms for V151A) for the different 

RSFPs. The WT transient spectrum at 100 ns shows a broad positive band with a maximum 

at 400 nm (cis neutral photoproduct dark blue in Figure 5.10a). This band evolves within 5 

µs to a spectrum with two positive maxima at 390 nm and 460 nm. Then within 50 µs, the 

first peak (390 nm) vanishes, while a negative band appears at 410 nm (GSB band). The 

second peak (460 nm) increases and shifts to 480 nm. Subsequently, and on a timescale from 
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100 µs up to 10 ms, the maximum of the negative band shifts from 420 to 400 nm while the 

positive band at 480 nm further increases in amplitude. The 480 nm band is the characteristic 

absorption band of the cis anionic form5 (Figure 4.2). The global fit of all kinetic traces 

identified three time constants, 5.43 µs, 34.40 µs and 827.71 µs (residues can be seen in 

Figure 5S-9). When similar experiments were carried out in D2O solution (50 mM HEPES 

pD 8, 50 mM NaCl; 5S-10a and b), time evolution also required fitting with three exponential 

functions, yielding time constants of 5.14 µs, 78.48 µs and 2.05 ms. Thus, the first time 

constant is similar in H2O and D2O, but a significant isotope effect is observed for the two 

longer components (kH/kD= 2.45 and 2.47, respectively) and can thus be assigned to 

deprotonation steps (multi-step deprotonation8). Decay associated spectra (Figure 5.12a) 

show that the 5.47 µs time constant is mainly characterized by a growth of the positive band 

at 460 nm. The 34.5 µs time constant has some positive and negative contributions 

characteristic of the band shift observed, while the 827.7 µs time constant is mainly 

characterized by the respective decay and growth of the 390 nm and 480 nm bands. 

Similar experiments were carried out for rsEGFP2 V151L and V151A variants (Figure. 

5.10b,e and h, and Figure. 5.10c, f and i, respectively). Transient difference spectrum of 

V151L shows at 100 ns two bands, a positive one centered at 380 nm and a negative one 

centered at 440 nm (GSB band, purple in Figure 5.10b). This spectrum evolves in about 4 µs 

with the growing of a new positive band at 470 nm while the positive band at 380 nm 

decreases and the minimum shifts to 420 nm. This evolution is followed by the vanishing at 

25 µs of the maximum at 390 nm, and the increase and shift of the negative band (from 420 

to 410 nm) and the second positive one (from 470 to 480 nm). Finally, from 40 µs to 2 ms, 

the band at 480 nm keep increasing while the band at 410 nm shift to 400 nm and further 

decreases. Following the three different time windows (100 ns – 5 µs; 5 µs – 40 µs; 40 µs – 

2 ms), the kinetic traces for all wavelengths were globally fitted with three exponentials, 

yielding time constants of 4.03 µs, 18.72 µs and 631.49 µs (Figure 5.12c and d). The analysis 

of the same experiments carried out in D2O solution with the same sum of exponentials (50 

mM HEPES pD 8, 50 mM NaCl; Figures 5S-10c, and d), yielded time constants of 4.59 µs, 

33.05 µs and 1.4 ms. A significant isotope effect is observed for the two last time constants 

(kH/kD= 1.77 and 2.22, respectively), indicating as well that these last two evolutions can be 

assigned to deprotonation steps. 
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Figure 5.10.). Time-resolved difference absorption spectra recorded after a 410 nm nanosecond excitation of the Off state for 

three different time windows from 100 ns to 10 ms (50 mM HEPES pH 8, 50 mM NaCl). The spectrum without laser excitation was 

subtracted to calculate the difference spectra. WT variant panels (a,d and g), V151L (b,e and h) and V151A (c, f and i). Figures 

made with Ultra PyFit 
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Figure 5.11. Left panels correspond to the decay associated spectra reconstructed using the 

pre-exponential factors obtained from the global fit analysis of the raw data in figure 5.10 

with a weighted sum of exponential decay functions. In the right panels, the selected traces 

representing the main transient bands together with the corresponding fits and residues. 

Notice that the time axis has a logarithmic scale. Panel a and b correspond to WT variant, c 

and d to V151L and e and f to V151A. Figure made with Ultra Pyfit. 
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For V151A, the spectral evolutions slightly differ. Transient difference spectrum at 100 ns 

(figures 5.10c, and 5S-8c) shows a broad positive band with a maximum at 430 nm much 

more pronounced than for WT. This band decays and gives at 18.5 µs a transient spectrum 

(green) with two positive bands centered at 390 nm and 480 nm. Subsequently, in 260 µs, 

the 480 nm positive band continue increasing while the 390 nm band decreases and becomes 

negative with a minimum centered at 420 nm (Figure. 5.11f). Finally, in about 1150 µs the 

band at 420 nm continues to increase in amplitude and shift to 400 nm while the positive 

band at 480 further increases. Following the different evolutions, three time windows were 

identified (100 ns – 25 µs; 25 µs – 300 µs; 180 µs – 10 ms). Kinetic traces for all wavelengths 

were globally fitted with a weighted sum of four exponential functions, yielding time 

constants of 0.98 µs, 18.50 µs, 197.28 µs and 1.14 ms (figure 5.12e and f). When similar 

experiments were carried out in D2O solution (50 mM HEPES pD 8, 50 mM NaCl; Figure 

5S-10e, and f) the time constant were 1.76 µs, 20.91 µs, 251.16 µs and 3.95 ms. The isotope 

effects are assigned to deprotonation step which is clearly observed for the last step (kH/kD = 

3.46). The first step shows also an isotope effect (1.8) indicating some protein rearrangement 

which involved hydrogen bond with HBDI. The 195 µs step characterized some band shift 

that can be interpreted by some non-single exponential process (diffusion, multi-step 

deprotonation). 

 

5.3.2.3 Microcrystal dynamics 

Transient absorption spectral evolutions and DAS are shown for WT in solution (50 mM 

HEPES pH 8, 50 mM NaCl) (Figure 5.12a), microcrystals suspensions (in 100 mM HEPES 

pH 8, 2.5 M ammonium sulphate) (Figure 5.12b) and WT in a partial crystalline sulphate 

buffer (50 mM HEPES pH 8, 50 mM NaCl, 1.25 ammonium sulphate) (Figure 5.12c). The 

measurement for crystal suspension can only be analysed from 600 ns (see Appendix 1 for 

methods). In general, it can be seen that transient microcrystals difference spectra are noisier; 

nevertheless, they are qualitatively similar to those measured in solution. i.e. have a positive 

band first growing at 460 nm and then at 480 nm are similar to those observed in solution. 

This result is important to validate the use of TR-SFX and linked the dynamics seen in 

solution to crystal structures.  
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Figure 5. 12. Comparison of time resolved absorption results for WT in H2O solution (50 

mM HEPES pH 8, 50 mM NaCl, top panels), for a suspension of WT microcrystals (100 mM 

HEPES pH 8, 2.5 M ammonium sulphate, middle panels) and for protein in crystallization 

type buffer (50 mM HEPES pH 8, 50 mM NaCl, 1.25 M ammonium sulphate, bottom panels). 

Left graphs (a, c, d) correspond to the time-resolved difference absorption spectra recorded 

after a 410 nm nanosecond excitation of the trans protonated Off form in the time windows 

from 100 ns to 10 ms. The spectrum without laser excitation was subtracted to calculate the 

difference spectra. Right graphs (b, d, f) correspond to the decay associated spectra obtained 

from global fit of the raw data with a 3 exponential decay function. 

The global fit of all microcrystals kinetic traces yielded time constants of 4.02 µs, 41.89 µs 

and 319.2 µs, i.e. significantly smaller than the rsEGFP2 in H2O solution (50 mM HEPES 

pH 8, 50 mM NaCl). Interestingly, adding ammonium sulphate to the buffer (50 mM HEPES, 
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50 mM NaCl, pH 8, 1.25 M ammonium sulphate Figure 5. 12e and f) causes an effect to the 

dynamics, the time constants found where 3.99 µs, 40.08 µs and 258.4 µs. These values are 

much closer to the evolutions seen in microcrystals than those seen in solution. These results 

demonstrate that the solvent effect in the protein dynamics is more important than the 

confinement effect due to crystallization. The effect of ammonium sulphate in the solvent 

was further studied measuring kinetic traces at 480 nm for different buffer condition and in 

comparison, with D2O. The results are shown in Figure 5.13a where the traces have been 

normalized to 1 (single shot measurements). All the traces were fitted with a 3 exponential 

function; the results can be seen in Table 5.2. The effect of ammonium sulphate with 

increasing concentrations from 0 to 1.5 M of ammonium sulphate was studied in D2O 

solutions since they have more clear effects (Table 5.2). The result can be seen in the 

supporting Figure 5S-11 where it is clear that the acceleration of the deprotonation in 

microcrystals does not follow a linear dependence with ammonium sulphate concentration. 

On the contrary, small concentrations of ammonium sulphate induce a drastic decrease of the 

deprotonation time constant, with nearly no changes between 0.45 M to 1.5 M. To identify 

which ion, NH4
+, SO4

2- or the ensemble of both, induced this effect similar experiments were 

repeated adding either Na2SO4 or NH4Cl salts at equal NH4
+ molar concentrations (Figure 

5.13b). The results show that the deprotonation step is accelerated only when NH4
+ is present. 

The fits can be seen in the supporting figures section Table 5S-1. The origin of the 

deprotonation acceleration with NH4
+ is not clear. The variation of pH can be excluded since 

pH changes were not seen after adding NH4
+ from 0 to 2.5 M to the buffer solution. The 

presence of tampon HEPES explains the absence of changes. The second hypothesis was that 

the positive charge of the NH4
+ could stabilize the formation of a negative charge after the 

phenol deprotonation. On the contrary, the NH4
+ and Na+ are equally charged, and no effect 

could be seen when Na2SO4 was added. The reason for the deprotonation step been 

accelerated in the presence NH4
+

 is still elusive. Nevertheless, these experiments demonstrate 

that the differences between microcrystal and solution are caused by the presence of NH4
+ 

and not by microcrystal structure. 
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Figure 5.13. Normalized transient absorption kinetic traces at 480 nm, a) for a WT micro-

crystals suspension (black), WT in H2O and 1.25 ammonium sulphate (red), WTin D2O and 

1.25 ammonium sulphate (blue), WT in H2O (green), rsEGFP2 in D2O (orange). The base 

buffer for all solutions in panel a base buffer was 50 mM HEPES pH/D 8, 50 mM NaCl; for 

the micro-crystals suspension was 100 mM HEPES pH 8, 2.5 M ammonium sulphate. b) 

rsEGFP2 WT in 50 mM HEPES pH 8, 50 mM NaCl. With no added salt (red), with Na2SO4 

0.2 M (pink), with NH4Cl 0.4 M (black) and (NH4)2SO4 0.2 M (blue). Figure made with Origin 

Pro 8. 

 

Table 5.2. Time constants retrieved using a weighted sum of three-exponential function to fit 

kinetic traces in Figure 5.13a 

rsEGFP2 form τ1 (µs) τ2 (µs) τ3 (µs) 

Micro-crystals 3.1 56.7 338 

H2O (NH4)2SO4 3.7 41.2 310 

D2O (NH4)2SO4 6.7 86.3 504 

H2O 4.4 40.5 919 

D2O 5.5 73.8 2198 
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5.3.2 Transient absorption Infrared spectroscopy. 

The TRIR evolutions in the ground state were followed using Time-resolved infrared 

multiple probe spectroscopy (TRMPS)9. The data have been corrected for baseline drift by 

fitting a 3 order polynomial to each spectra which was then substracted4,9. The TRMPS 

spectral evolutions in the ground state differ among the three proteins. Transient absorption 

spectra have been collected from 1 ps to 900 s time range; the complete spectral evolutions 

can be seen in Figure 5.14. Notice that the initial spectral evolutions (top panels from figure 

5.14) cover the same time range as the above-reported experiments using TRIR (0-2ns, 

Figure 5.7). 

As discussed above, the On dynamics (Figure 5S-8 and Chapter 6) for all the variants can be 

described with two component of around ~120 ps and a longer component > 2 ns (obtained 

from TCSPC, see chapter 6). The DAS of these two components reveal that the contribution 

of the longer component to the signal is around 40%. Furthermore, at 2 ns the decay of signal 

attributed to 2 ns component is over 65 %. Therefore after 2 ns the On contribution (10-15% 

at photostationary state) is considered between 2 and 3 % of the signal and thus negligible. 

Since the shorter decay times are better resolved by TRIR data, the recorded TRMPS 

evolutions have been analysed up from 2 ns. After excitation WT and V151A variant display 

few bands and evolutions from 10 ns to 1 ms, while V151L display a richer spectrum with 

clear evolutions. At 100 ns the spectra of the WT and two variants have two main positive 

peaks at 1595 and 1650 cm-1 (1643 cm-1 for V151L) (Figure 5.15a) corresponding to the cis 

neutral photoproducts formed after excited-state isomerization. The main ground state 

bleaching is at 1634 cm-1 for WT and V151A, and 1605 cm-1 for V151L. Therefore at 100 ns 

the three variants display similar photoproduct signals.  
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Figure 5.14. Selected transient IR spectra recorded at different time delays after a femtosecond laser excitation (400 nm) of the 

Off state from1 ps until 900 µs. The spectrum without laser excitation was subtracted to calculate the difference spectra. WT panels 

are (a,d and g), V151L (b, e and h) and V151A (c, f and i). Figure made with Ultra Pyfit. 
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Figure 5.15. Difference IR spectra recorded after a femtosecond laser excitation (400 nm) of 

the Off form, for WT (green), V151L (blue) and V151A (yellow). The spectrum without laser 

excitation was subtracted to calculate the difference spectra. a) at 100 ns after excitation. b) 

at 900 µs after excitation. Figure made with matplotlib python library. 

The comparison of transient spectra at 100 ns and 900 s shows that there are nearly no major 

evolutions for WT and V151A, while for V151L the spectral changes are important (Figure 

5.15 in blue) with clear disappearance and formation of bands. Indeed, for V151L the first 

initial positive bands peak at 1595 and 1643 cm-1, both evolve and nearly disappear together 
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with the recovery of the red part of the bleaching band at 1605 cm-1(transient spectra at 5 s). 

Simultaneously, a new positive band is formed at 1670 cm-1. These first evolutions are 

followed by the formation of four new positive signals in tens of µs (see transient spectra at 

50 µs) at 1340, 1495, 1568, and 1615 cm-1, together with the increase and shift of GSB band 

at 1650 cm-1 to 1644 cm-1 (also photoproduct evolution since the bleach of the trans neutral 

form is fixed after isomerization). The four new bands continue to grow until 900 µs. The 

bands peaking at 1495, 1523, 1568 and 1670 cm-1 can be seen as GSB band in the stationary 

FTIR spectrum of Off minus On differential spectrum (Appendix 1, Figure A1.17), and are 

thus assigned to the formation of On cis anionic form of V151L. Similarly, the GSB bands 

peaking at 1515, 1600, 1647 and 1682 cm-1 correspond perfectly to the positive FTIR band 

of the Off trans neutral form. All together proved the formation of the final On anionic form.  

Contrary to V151L, WT and V151A spectral evolutions are less important in amplitude. 

However, the transient spectra at 900 s is also characteristic by the disappearance of cis 

neutral photoproduct and the formation of cis anionic On form with the positive band peaking 

at 1490 cm-1. This is an agreement with time-resolved UV-Vis transient absorption data 

which demonstrated that the deprotonation mainly occurs with time constants of 3.95 ms and 

2.05 ms for V151A and WT respectively. Thus, only the initial evolutions can be inferred.  

As previously all kinetic traces were globally fitted with a weighted sum of exponential. For 

all the data sets, the long associated time constant over the ms range found in TRUV-Vis 

D2O data is fixed. The time constants (excluding the fixed one) for each mutant are: for WT 

421 ns, 4.2 µs, and 98.1 µs; for V151L 377.12 ns, 11.1 µs and 57.8 µs; for V151A 530.7 ns 

and 26.7 µs. Interestingly a hundred ns time constant is needed to fit the data, whereas the 

shortest time constant found in TR UV-vis data is in the microsecond range. The nature of 

this extra species is not clear but has characteristic of a cis neutral state and have similar DAS 

with the first microsecond species. For V151A, this extra time constant could also be 

assigned to the 1.76 s time constant found in the TRUV-Vis D2O experiments. The 

assignment of their nature will be done in the discussion section after TR-SFX. 
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Figure 5.16. Left panels correspond to the decay associated spectra reconstructed using the 

pre-exponential factors obtained from the global fit analysis of all traces from 2 ns to 1 ms 

in the data sets displayed in Figure 5.14 with a weighted sum of four exponential function. 

In the right panels, the selected traces representing each of the transient absorption spectral 

main features (photoproducts absorption and GSB) together with the corresponding fits and 

residues can be seen. Notice that the time axis is set in a logarithmic scale. Panel a and b 

correspond to WT variant, c and d to V151L and e and f to V151A. Figure made with Ultra 

Pyfit. 
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5.3.3 TR-SFX structures at 10 ns 

In this section, the TR-SFX results from the group of M. Weik in collaboration with I. 

Schlichting are reported. The WT structure at 10 ns after excitation is published and part of 

this PhD (figure 5.17)5. The time delay was chosen considering the TRUV-Vis results 

reported above, i.e. at 10 ns the structure should confirm the existence of cis neutral form and 

reveal the difference with On form helping in the assignation of the microsecond species. 

Two important results were reported: 

• The Off state structure determined from TR-SFX data, features the chromophore in 

two trans conformations assigned to HT (trans2, 25% occupancy) and OBF (trans 1, 

75% occupancy, Figure 5.17a), together with a remaining On form. 

• The 10-ns structure, reveals that the side chain of His149 remains in an Off-like 

conformation while the chromophore has already isomerized to a cis form. Thus, the 

transition to the final On state conformation of His149 will occur on a timescale 

longer than 10 ns (Figure 5.17b).  

 

Figure 5.17. a) Q-weighted difference electron density map (Fobs
laser_on_∆10ns–Fobs

laser_off), 

determined from TR-SFX data with and without pump-laser activation, is contoured at +3σ 

(green) and −3σ (red) and overlaid onto the model determined from the laser_Off dataset. b 

Model of the laser_on_∆10 ns intermediate structure (cyan) determined by difference 

refinement at 1.85 Å resolution. 2Fextrapolated
laser_on_∆10ns–Fcalc (blue, 1σ) and 

Fextrapolated
laser_on_∆10ns–Fcalc maps (green/red, ±3σ, respectively) are shown. Figure 

reproduced from reference 5.  
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Time-resolved serial femto-second crystallography data using pump-probe10 on V151A and 

V151L microcrystals are new data acquired on the BL2 – H3 experimental station of 

SACLA11 (SACLA 2018A8026, 27- 29 July 2018). The samples were injected into the 

helium-filled Diverse Application Platform for hard X-ray Diffraction in SACLA 

(DAPHNIS)12 using a Gas Dynamic Virtual Nozzle13. The X-ray beam (probe) was focused 

to 1.3 m (H) × 1.4 m (V) (FWHM) with nominal photon energy 7.6 keV, pulse length 10 

fs at a repetition rate of 30 Hz. The energy pump laser was set to 2 J and 5 J for V151A 

and -V151L data collection, respectively. The pump laser parameters for both data 

collections were set as follow: 400 nm of wavelength with circular polarization, 180 m 

(FWHM) of spot size and 6 ns of pulse duration at a repetition rate of 15 Hz. The pump-

probe delay was at 10 ns. To switch the microcrystals from the resting On state to the Off 

state, there were pre-illuminated prior to the injection, using a 488 nm at 200 mW laser14. 

The efficiency of the pre-illumination was estimated at 80% and 75% for V151A and V151L 

microcrystals, respectively (chapter 4). There are two important results: at 10 ns the 

chromophore has isomerized to final cis form and similarly to the reported results for WT, 

the His149 has not occupied the final On like position. 

 

Figure 5.18: Models of the laser_on_∆10 ns intermediate structures of rsEGP2-V15A (a) 

and –V151L (b) in light green and in salmon, respectively. The models were determined by 

difference refinement at 1.95 and 2.1 Å resolution for rsEGP2-V15A and –V151L, 

respectively. 2Fextrapolated
laser_on_∆10ns–Fcalc (blue, 1σ) and Fextrapolated

laser_on_∆10ns–Fcalc maps 

(green, +3σ and red,−3σ) are shown. Figure made by Kyprianos Hadjidemetriou 

unpublished. 
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The refinement of the structure are still under progress by Kyprianos Hadjidemetriou 

(Doctoral Student in the group M. Weik). The members of the team that participate in the 

XFEL bem time SACLA 2018A8026, 27- 29 July 2018 are: Kyprianos. Hadjidemetriou, 

Elena Andreeva, Thomas Barends, Marco Cammarata, Jacques-Philippe Colletier, Nicolas 

Coquelle, Yasumasa Joti, R. Bruce Doak, Lutz Foucar, Alexander Gorel, Marie Gruenbein, 

Mario Hilpert, Marco Klooos, Gabriela Nass-Kovac, Shigeki Owada, Christopher Roome, 

Giorgio Schiro, Ilme Schilchting, Michel Sliwa, Miriam Stricker, Robert L. Shoeman, 

Kensuke Tono, Lucas. M. Uriarte, Joyce Woodhouse, Daehyun You and Martin Weik.  

 

5.4 Off to On photodynamical scheme 

As discussed in the introduction, after On to Off photoisomerization, the rsEGFP2 

chromophore can have different Off states photoproducts isomers. These isomers are 

compatible with either an OBF or an HT isomerizations1. Preliminary TR-SFX results 

(previous section) from our collaborators confirm that in certain conditions they could 

observe both photoproduct in the Off state for WT in microcrystals. It has also been 

mentioned that the excited-state dynamics of rsEGFP2 were published by Coquelle et al., 

where they proposed an excited state isomerization2. On the contrary recent results in Dronpa 

and Dronpa2 by Laptenok et al.4, showed, a cis-trans isomerization precursor in the excited 

state which ended in the ground state in 91 ns. Our transient spectroscopic data between 0 to 

10 ms for WT, V151A and V151L are consistent with a trans-to-cis isomerization within the 

picosecond excited-state deactivation, followed by some protein rearrangements and ending 

in the ground-state proton transfer on a slower timescale, in line with previous studies on 

other RSFP2,8,15,16. Different results, indeed, confirm the absence of excited-state proton 

transfer (ESPT):  

• No isotopic effect could be observed for the lifetime of excited states species in 

TRUV-Vis measurements performed in D2O compared with H2O buffers.  

• By the time excited state has decayed to the ground state (time delay > 10 ps), the 

transient absorption spectra have no characteristic band of the phenolate form in the 
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UV-Vis (positive band around 480 nm Figure 4.2, TRUV-Vis result Figure 5.1) and 

the TRIR data (positive peak 1490 cm-1, Figure 5.8 and Figure 5S-5).  

• The difference of molar absorption coefficient between the spectra of cis neutral form 

minus trans neutral form are quite similar to UV-Vis transient spectra at 20 µs, 5 µs, 

and 50 µs for WT, V151L and V151A respectively (Figure 5.19). This indicates that 

at this points the only step to reach the final cis anionic form is the deprotonation of 

the chromophore.  

• Isotopic effects (D2O/H2O) is found for UV-Vis kinetic traces in the µs-ms range, 

which proved that ground state proton transfer (GSPT) is the last step in the photo-

switching. 

Figure 5.19. Top panel selected spectra after excitation of the trans Off-form that resemble 

the most to the difference molar absorption spectra of the On form at pH4.5 minus the trans 

Off spectrum at pH 8 (represented in Chapter 4 Figure 4.5). WT (a), V151L (b) and V151A 

(c). Figure made with Matplotlib python package. 

Consequently, the cis-trans isomerization and protein rearrangements should have taken 

place at earlier times. TR-SFX experiments reported by Coquelle et al2 attributed the 

isomerization to the deactivation of the excited state in the picosecond time scale. 

Nevertheless, several questions remained elusive. These are: i. the dynamics observed in 

crystal and in solution were not compared. ii. although they reported at 3 ps in TR-SFX the 

occupancy of a cis isomer, it was not clear if this cis isomer could be a twisted intermediate 

ground state or directly the cis On like form. iii. the nature of the isomerization mechanism 

starting from HT or OBF Off state. Moreover, the results obtained by Coquelle et al.2 were 

based under the assumption that only one conformer exist in the Off ground state, which is 

not the case for WT. Contrary, V151A and V151L Off states are formed by either only OBF 
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or HT Off forms, respectively. The results obtained from the TR spectroscopy studies of these 

two variants compared to WT will help to clarify these open questions. 

 

Dynamics between 0 and 40 ps. 

Our TRUV-Vis and TRIR results reveal the formation in ~150 fs of two excited states. The 

first has a sub-picosecond lifetime and the second few picoseconds lifetime. The sub-

picosecond excited state component DAS is (0.89 ps for WT, 0.70 ps for V151L and 0.72 ps 

for V151A; Figure 5.2) characterized by an SE band with a red tail (V151L) or a minimum 

at 680 nm (V151A, WT). Such a red-shifted SE band with large Stokes shift that grows with 

some band shift evolution from the FC state is assigned to a twisted excited state. The second 

excited state component has a DAS (4.20 ps for V151L, 4.33 ps for WT and 4.74 ps for 

V151A) characterized by a SE band with a minimum between 515-520 nm, and is assigned 

to a planar excited state that has a similar geometry to the ground state. The comparison of 

the ESA band at 450 nm and GSB at 390 nm (Figure 5.2) reveals that for V151L, the long-

lived excited state is the major contribution, while for V151A it is the sub-picosecond one. 

Interestingly, for WT both excited states have almost the same contributions. The 

contributions calculated from the DAS in Figure 5.2 at 385 nm (GSB) can summarized in 

Table 5.2 for WT, V151L and V151A. Similarly, two excited states are observed in TR-IR 

experiments. At 1 ps the transient IR spectra for WT and V151A (Figure 5.7) display a 

positive peak at 1650 cm-1. This band is present until 900 µs, by comparison with the cis 

anionic bands in the Off minus On FTIR spectrum (Figure A1.17 in Appendix 1), is assigned 

to a cis form. Moreover, after the decay of the excited state, the transient spectrum at 10 ps 

for WT, V151A and 20 ps for V151L is characterized by a positive band peaking around 

1691 cm-1 (1685 cm-1 for V151L) near the main GSB band peaking at 1681 cm-1 (stretching 

C=O trans chromophore). The band at 1650 cm-1 has been attributed to the exocyclic C=C 

double bond stretching for cis o-HBDI17 where a red shift of the C=O stretching of the 

imidazolidinone moiety is also observed. Moreover, the positive band at 1691 cm-1 has been 

attributed in Dronpa, and Dronpa2 also to C=O stretching of the chromophore in cis 

conformation and considered the primary trans-cis isomerization signature. The second time 

constant found in the TRIR experiments mainly is governed by the recovery of the GSB.  
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Table 5.2 Contributions of the different excited state species calculated using the variation 

of absorbance from the DAS spectra GSB at 385 nm (Figure 5.2). 

Component WT τ(ps) / ΔA % V151L τ(ps) / ΔA % V151A τ(ps) / ΔA% 

τ1 0.89 / 65.7 0.70 / 57.0  0.72 / 87.4 

τ2 4.33 / 34.3 4.20 / 43.0 4.74 / 12.6 

 

Considering the red-shifted SE band of the sub-picosecond time constant and the formation 

of clear features of the cis isomer after the decay of the excited state we attribute the first 

excited state species to a twisted intermediate state that goes under isomerization (as 

previously reported by Coquelle et al2). Concomitantly with the decay of the short-excited 

state component an important recovery of the GSB (e.g. V151A) is observed, which is in 

agreement with the photo-isomerization yields ~10-14%. Therefore, the isomerization occurs 

through a conical intersection where part of the twisted excited state evolves to the original 

trans neutral conformer and the rest to a cis neutral chromophore. The second excited state 

is assigned to a planar excited species that goes back to the original trans neutral chromophore 

(100 %). The results are in agreement with “two-state two-coordinate” model previously 

proposed for bR18 or the HBDI19. This model supposes the initial motion away from the 

Franck-Condon excited state is along a stretching coordinate, in agreement with the high 

number of stretching modes in TRIR, which provoke an energy redistribution between the 

different vibrational modes followed by a barrier-controlled evolution of the, at least partially 

equilibrated, twisted S1 species toward CI for the subpicosecond time constant or towards a 

planar minimum in excited-state potential energy surface. These two different excited states 

(planar and twisted) were modelled for WT2.  

Altogether the isomerization dyanmics seems to be the same for V151A and V151L. 

However, the Off to On photoswitching mechanism for V151A and V151L starts from 

different trans neutral forms originated from an OBF and HT On to Off photoproducts. 

Therefore, one could expect that V151A will follow an OBF mechanism and V151L an HT 

mechanism. The differences between OBF and HT isomerization have been discussed in 
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Chapter 2. It has been reported that the isomerization time constant for an OBF is longer than 

for an HT20,21-22. This was shown for example, for stiff-stilbene, -a stilbene analogue that can 

only isomerize via an OBF mechanism- where the isomerization occurs in about 800 fs, 

which is 5 to 6 times longer compared to the isomerization of single-block and free stilbenes, 

both having similar characteristic isomerization times around 135 fs. For the latest, it has 

been shown that their isomerization occurs via HT20,21. Similar results can also be seen for 

cyanine dyes22. Therefore, if the isomerization of WT and V151A were occurring via an OBF 

mechanism, one would expect longer lifetime for the excited-state at the origin of the 

isomerization, compare to the V151L, which can only isomerize via a HT pathway due to the 

constrained environment. However as discussed above the time constants associated with the 

isomerization are nearly identical, 0.88, 0.70 and 0.72 ps for WT, V151L and V151A 

respectively, this result is in line with the three proteins sharing the same isomerization 

mechanism. Moreover, since we show here that the excited state dynamics are similar in 

crystal and solution (Figure 5.8), it is possible to validate the proposed trans to cis 

isomerization in the excited state by Coquelle et al.2. The authors reported a twisted excited 

chromophore identified at 1 ps (TR-SFX), halfway between the trans and cis isomers. The 

authors proposed the simultaneous rotation of the double bond and the adjacent single bond, 

thus suggested a HT isomerization pathway for the OBF photoproduct and confirmed by 

QM/MM calculations2.  

 

Dynamics between 40 ps and 10 ns. 

From the aforementioned results, the photoproduct at 40 ps is attributed to a chromophore in 

cis form originated from an HT isomerization. For WT and V151A, a spectral evolution is 

observed in UV-Vis transient absorption spectra with 87 ps and 83 ps time constants. For 

V151L no spectral evolution is observed from 40 ps until 10 ns. The Off state X-ray structures 

of WT, V151A and V151L (Chapter 3 Figure 3.21) reveal that for WT and V151A Off forms, 

the hydrogen bond between the chromophore and the His-149 in the On state is broken and 

Tyr-146 relocates to establish a hydrogen bond with the His-149. The 10 ns X-ray structures 

for WT and V151A obtained in TR-SFX experiments (Figure 5.17 and 5.18) show that the 

Tyr-146 and the chromophore already occupy their respective final On state position. 
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Therefore, we attribute the first ground state evolution seen for WT (87 ps) and V151A 

(83 ps), which is absent for V151L, to the movement of the Tyr-146 which liberates a free 

space in the protein pocket cell allowing the relaxation of the chromophore via single bond 

rotation around Ф to the final cis On state position. The overall mechanism for WT and 

V151A is compatible with an aborted HT (Chapter 2). This mechanism was firstly described 

by Fuss and coworkers for several conjugated molecules23 and consist of HT isomerization 

through a CI which further evolve via single bond rotation in the ground state forming the 

OBF photoproducts. Our results show that the chromophore isomerization is coupled to 

motions of the surrounding β-barrel, and explains the nearly identical isomerization times for 

WT, V151A and V151L. 

 

Dynamics between 10 ns and 10 ms 

After these evolutions in the ps range, we were unable to identify any other spectral evolution 

in the TRUV-Vis data until few µs. Contrary, the IR transient spectra (Figure 5.13 TRMPS) 

evolutions needed an extra-time constant of a few hundreds of ns to be correctly fitted. This 

was the case for the three variants with associated times of 113 ns, 292 ns and 376 ns for WT, 

V151L and V151A respectively. Although, a time constant was needed to correctly describe 

the data spectrally the evolutions seen in the IR are very small and mainly involve changes 

in the signal amplitude of the most prominent peaks. Except for V151A where a 0.96 µs 

component was observed (attributed to the 376 ns TRMPS component), the following 

evolutions are in the µs time scale where no isotopic effect was found, with characteristic 

times of 5.43 µs, 4.03 µs and 18.50 µs for WT V151L and V151A respectively. The 10 ns 

TR-SFX X-ray structure reveals that at 10 ns the His149 has not its final position. Moreover, 

since the movement of the His-149 is expected to occur before the deprotonation (discussed 

in Figure 5.19), the movement of the His149 could be attributed to either of these two decay 

times. Nevertheless, the absence of spectral changes in the UV-Vis data for the first evolution 

and the fact that the changes in the IR spectra only involve variations in the peaks intensity 

reveal rearrangements that provoke very small or no changes at all in the chromophore 

environment. Thus, since the His149 is hydrogen-bonded to the chromophore in the final On 

state, having a direct interaction with the HBDI, we attribute the last evolutions which have 
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a clear influence on the UV spectra to the movement of the His149. The decay component 

occurring in few hundreds of nanoseconds is within the time scale of the protein domain 

movements and thus is tentatively attributed to some relaxation of the β-barrel, especially to 

the β-strands 10, 7 and 8, which as shown by NMR studies, are those that suffer major 

distortion in between On and Off states in rsFolder24. Moreover, the relaxation of this similar 

β- strands in Dronpa and some of its variants induce a broadening of the NMR signal 

occurring on a shorter time scale than NMR relaxation time25 thus in agreement with 

relaxations on the ns time scale. Probably, the stabilization of the protein cage favours the 

movement of the His149 in the µs range.  

Finally, the occupation of the final On like position for the chromophore and the surrounding 

amino acids triggers the chromophore deprotonation in the microsecond range with time 

constants of 36.1 and 825 μs for WT and, 197 µs and 1142 µs for V151A, where the main 

contribution is the longer one. For V151L two time constants of 18.7 µs and 631 µs were 

found with the main contribution being the shortest component. This results together with 

the V151L rich evolutions in TRIR with the appearance of characteristic On bands peaking 

at 1670 cm-1, 1568, and 1615 cm-1, already present for WT and V151A at earlier times, 

suggest that the His-149 accompanies the chromophore along the isomerization. For all the 

steps attributed to the chromophore deprotonations in the three proteins, substantial isotopic 

effects have been observed, supporting our assignations. Moreover, the presence of isosbestic 

points in the spectra evolutions in Figure 5.10, demonstrate that the ground state evolutions 

occur sequentially. 

 

Comparison with Dronpa switching mechanism 

The mechanism observed for the three proteins differs from that observed in Dronpa. In 

previous studies, it has been demonstrated that the primary signal signature of cis to trans 

isomerization in Dronpa and Dronpa2 is a shift of the C=O chromophore stretching band, 

which is red-shifted to higher values for the cis compared to the trans isomer (Laptenok et 

al. 4). For Dronpa2 this signature appeared in ns range (91 ns), while contrary, we can already 

see this shifts after few tens of ps for rsEGFP2 WT and variants. The photoisomerization 
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quantum yield is fixed by the excited state deactivation in 16 ps4. Therefore, since both 

proteins have the same chromophore, such a huge difference in time (ps vs ns) for the cis 

isomer signal between Dronpa and rsEGFP2 can only be attributed to the different protein 

cage rearrangements in the photoisomerization process of Dronpa compared to rsEGFP2. In 

Dronpa after the isomerization, the protein rearrangement provoked changes in the hydrogen 

bond networks of the carbonyl and phenyl groups of the chromophore. Contrary in rsEGFP2, 

the changes are exclusive to the phenyl group. Particularly important in Dronpa are the 

changes of Arg66, this amino acid has major rearrangements, and is found hydrogen-bonded 

to C=O carbonyl group of the chromophore imidazolinone in the On state but not in the Off 

state. The formation of a hydrogen bond between Arg66 and the chromophore will result in 

a shift of the C=O chromophore stretching band to higher values. This could explain the 

appearance of the shift in the C=O stretching in the nanosecond range, after the relaxation of 

the protein cage and the rearrangement of Arg66. It is worth mentioning that Laptenok et al.4 

founded a ground state protein rearrangement in around 596 ps. On the contrary, for rsEGFP2 

only the hydrogen bonds of the phenyl group are different between Off and On states, but 

none of the hydrogen bonds of the carbonyl imidazolinone group is broken, assuring that any 

of the shifts in the C=O chromophore stretching band cannot be hindered by a hydrogen bond 

formation.  

 

Global Off to On dynamics for V151A and V151L 

The combination of TRUV-Vis with TRIR and TR-SFX experiments allows to propose a 

complete isomerization pathway for V151A and V151Lfrom either OBF or HT starting Off 

state conformers (Figure 5.18). Basically, both pathways start identically with an 

isomerization via HT. For the V151A (trans1) this is followed by Tyr146 movement to the 

final On position, which allows the rotation and movement of the chromophore to form the 

OBF photoproduct (aborted HT). Once the chromophore in both cases is in the final Cis 

neutral form as confirmed by the TR-SFX data at 10 ns, there is a relaxation of the β barrel 

favoring< the His149 to evolve to the final position which then triggers the final 

deprotonation of the chromophore. 
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Figure 5.18. Main Off to On isomerization steps starting from: (a) hula twist and (b) One 

bond flip On to Off photoproducts for rsEGFP2 variants. Figure made with powerpoint. 
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5.5 Supporting Figures 

 

Figure 5S-1. Kinetic traces (every 10 nm) obtained from femtosecond TRUV-Vis experiment 

together with weighted sum of exponential function fit (convolved with a Gaussian function 

and a constant) with the corresponding residues. Top panels are the data sets measured in 

H2O buffer (0-40 ps) and bottom panel are the data sets measured in D2O buffer (0-2000 ps). 

Logarithmic scale is used from 2 ps. The panels a, d correspond to WT. b, e for V151L, and 

c, f for V151A. Figure made with Ultra Pyfit. 
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Figure 5S-2. Femtosecond transient difference absorption spectra recorded at different time delays after a femtosecond laser 

excitation (400 nm) of the cis anionic on state until to 2000 ps. The spectrum without laser excitation was subtracted to calculate 

the difference spectra. Top panels correspond to the signal formation. Middle panels correspond to a signal shift observed until 8 

ps delay. Bottom panels signal decays until 2 ns. WT correspond to panels (a,d and g), V151L (b,e and h) and V151A (c, f and i). 

Figures made with Ultra PyFit. 
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Figure 5S-3. Left panels correspond to the decay associated spectra reconstructed using the 

pre-exponential factors obtained from the global fit analysis of 1 decay traces every 5 nm 

form the data sets in Figure 5S-3 with weighted sum of exponential function convolved with 

a Gaussian function. In the right panels, the selected traces representing each of the transient 

absorption spectral main features (ESA, GSB and SE) together with the corresponding fits 

and residues can be seen. Panel a and b correspond to WT, c and d to V151A and e and f to 

V151A. Figure made with Ultra Pyfit. 

 



 

199 
 

Figure 5S-4. V151A long spectral evolutions data set global analysis results. Left panels 

correspond to DAS reconstructed using the pre-exponential factors obtained from the global 

fit analysis of kinetic traces (every 10 nm) form the data sets in Figure 5.5c with a 4 

exponential sum decay function convolved with a Gaussian function. In the right panels, the 

selected traces representing each of the transient absorption spectral main evolutions around 

430 nm together with the corresponding fits and residues can be seen. Notice that the scale 

of the rigth panel is linear until 2 ps and logarithmic from 2 ps until 2 ns. Figure made with 

Ultra Pyfit. 

 

 

Figure 5S-5. Difference IR spectra recorded at 0.3 and 50 ps time delays time after a 

femtosecond laser excitation (400 nm) of the Off state. The spectrum without laser excitation 

was subtracted to calculate the difference spectra. WT (a), V151L (b) and V151A (c). Figure 

made with Matplotlib python package. 
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Figure 5S-6. rsEGFP2 variants in D2O Transient absorption IR spectra recorded with 

TRMPS. Left graphs (a, c, d) correspond to the time-resolved difference absorption spectra 

recorded after a femtosecond laser excitation (482 nm) of the cis anionic On state until to 20 

ns. The spectrum without laser excitation was subtracted to calculate the difference spectra. 

Right graphs (b, d, f) correspond to the decay associated spectra reconstructed using the pre-

exponential factors obtained from the global fit analysis of 1 decay traces every 10 nm with 

a 2 exponential sum decay function convolved with a Gaussian function. WT (top panels: a, 

b), V151L (middle panels: c, d) and V151A (bottom panels: e, f). Figure made with Ultra 

Pyfit. 
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Figure 5S-7. Kinetic traces for IR experiments recorded in D2O buffer together with the fit 

of weighted sum of exponential function and the corresponding residues. Top panels TRIR 

data from 0.3 until 3000 ps. Bottom panels TRMPS data from2 ns until 900 µs. The panels 

a, d correspond to WT. b, e for V151L. Finally, c, f for V151A. Figure made with Ultra Pyfit. 

 

 

Figure 5S-8. Time-resolved UV-Vis difference absorption spectra recorded after a 410 nm 

nanosecond excitation of the trans protonated Off form between 10 ns and 100 ns, a b and c 

correspond to WT, V151L and V151A in H2O solution (50 mM HEPES pH 8, 50 mM NaCl) 

respectively. Figure made with Igor pro. 

 



 

202 
 

 

Figure 5S-9. Resulting decay traces from ns TRUV-Vis experiments between 10 ns until 30 

ms together with the fit with a weighted sum of exponential function and the corresponding 

residues. Top panels are the data sets recorded in H2O buffer. Bottom panels correspond to 

the data sets recorded in D2O buffer. The panels a, d correspond to WT. b, e for V151L. 

Finally, c, f for V151A. Figure made with Ultra Pyfit. 
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Figure 5S-10. rsEGFP2 variants ns TRUV-Vis in D2O solution (50 mM HEPES pD 8, 50 mM 

NaCl). Left graphs (a, c, d) correspond to the time-resolved difference absorption spectra 

recorded after a 410 nm ns excitation of the Off state in the time windows from 100 ns to 10 

ms. The spectrum without laser excitation was subtracted to calculate the difference spectra. 

Right graphs (b, d, f) correspond to the decay associated spectra obtained from global fitting 

the raw data with a 3 exponential decay function. WT (top panels: a, b), V151L (middle 

panels: c, d) and V151A (bottom panels: e, f). Figure made with Ultra Pyfit. 
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Figure 5S-11. a) Normalized recorded transient absorption time traces at 480 nm for 

rsEGFP2 in D2O and different ammonium sulfate concentrations. b) Third decay time 

constants of a three exponential fit of traces in panel (a). Figure made with Origin Pro 8. 

 

 

Table 5S-1. Time constants retrieved after a tri-exponential fit of the UV-Vis kinetic traces 

between 10 ns and 10 ms represented in Figure  5.13.  

rsEGFP2 in: τ1 (µs) τ2 (µs) τ3 (µs) 

Buffer + NH4Cl (0.4 M) 5.3 22.2 434 

Buffer + (NH4)2SO4 (0.2 M) 5.2 74.7 409 

Buffer +Na2SO4 (0.2 M) 5.3 96.3 851 

Buffer 5.2 33.2 820 

* buffer contained 50 mM HEPES pH 8, 50 mM NaCl. 
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6 On state photodynamics for WT 
 

6.1 Introduction 

In the On state, the rsEGFP2 chromophore adopts a cis conformer where the phenol group is 

deprotonated. The On state fluorescent quantum yield (ΦF) is 0.3, according to Grotjohann 

et al. 20111 and 20122. On to Off switching quantum yield (ΦOn→Off) is around 1 % (Chapter 

4) and over ten times smaller than the On to Off switching quantum yield (ΦOff→On). As shown 

in Table 3.1 (Chapter 3), this is a common characteristic of RSFPs. These low values of 

photoswitching quantum yields make challenging to investigate the On to Off 

photoisomerization and usually limit the studies to the On state photodynamics.  

While for fluorescent organic fluorophores the emission decay can be fitted by a single mono-

exponential, for FPs a weighted sum of several exponential functions (multiexponential 

decay) is needed and usually accounts for the existence of several ground state conformers3. 

For example, the EGFP4 fluorescence lifetime decay with two characteristics times of 2.0 ns 

and 3.1 ns, which are attributed to two possible positions of the amino acid E222 forming 

two different hydrogen bond networks3. For RSFPs, the average lifetime and fluorescence 

quantum yield are indirectly linked to the switching efficiency (chromophore isomerization). 

As indicated in chapter 2, the fluorescence quantum yield is the ratio between radiative rate 

(kr) and the sum of all decay rates (knr + kr) where the switching rate is included in the non-

radiative rate constant (knr). Therefore the investigation of the On state emission lifetime, 

indirectly reveals essential information related to the RSFP switching dynamics5. Directly 

modifying the non-radiative decay pathways is the best way to optimize the fluorescent 

quantum yields6. The fluorescence lifetime of rsEGFP2 has just been reported with an 

average lifetime of 2 ns7. For Dronpa, the first single-photon counting (TCSPC) experiments 

reported a mono-exponential fluorescent lifetime of 3.6 ns8. On the contrary, the same studies 

using TRIR revealed a 40 ps minor contribution with no significant spectral difference with 

the longer 3.6 ns component9 (370 ps and 1.6 ns for Dronpa2), this ps component was 

attributed to the solvation of the excited state following the direct electronic  

excitation. Similarly, Warren et al.10 also reported a biexponential decay for Dronpa On 
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excited-state dynamics (16 ps and 2 ns). Although no experimental result could validate their 

hypothesis, they suggested an excited state isomerization followed by a proton transfer in the 

ground state after the fluorescent decay. The existence of two excited state decay times was 

also attributed to a heterogeneous ground state population10. Moreover, molecular dynamics 

simulations on Dronpa211 attributed the origin of the ground state structural heterogeneity to 

the chromophore phenolate moiety having one, two, or three hydrogen bonds with the protein 

cage, revealing that the single hydrogen bond subpopulation is responsible for chromophore 

isomerization (Off‐switching). On the contrary, a higher number of hydrogen bonds inhibit 

the isomerization and promote fluorescence. 

In this chapter, the photodynamics of rsEGFP2 On state is investigated. The studies are 

centred on identifying the number of ground-state conformers that control the cis anionic 

lifetime, the fluorescence quantum yield and indirectly the switching rate. Due to its 

sensitivity, TCSPC is one of the best techniques to study the On state dynamics; nevertheless, 

its time resolution is limited to 100 ps and to fluorescent species. Therefore, UV-Visible and 

IR transient absorption will be used to study sub-100 ps dynamics and non-fluorescent 

species complementing the TCSPC results. As commented above the On to Off 

photoswitching quantum yield is 1%; one of the highest On to Off switching yield among the 

negative RSFPs. The quantum yield is control by the excited state dynamics which yield a 

photoproduct in the ground state. The evolution of this photoproduct will be probed using ns 

UV-Vis transient absorption. Finally, as in Chapter 5, TR-SFX experiments will reveal 

essential structural information helping to identify the excited-state species that control the 

emission and photoswitching yield. Some figures supporting our analysis can be found at the 

end of the chapter (Supporting Information Figures). The experimental details can be found 

in Chapter 2 (description of TR spectroscopies) and Appendix 1 (materials and methods). 
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6.2 Photodynamics of rsEGFP2 WT in solution 

6.2.1 Time-resolved emission using time-correlated single photon 

counting (TCSPC) 

6.2.1.1 Emission decays of rsEGFP2 and comparison to other RSFPs 

Absorption and emission spectra were reported in chapter 4 and are shown one more time in 

supporting Figure 6S-1 at the end of the chapter. The rsEGFP2 fluorescence decay (Figure 

6.1) was collected at 510 nm after 485 nm excitation (50 mM HEPES pH 8, 50 mM NaCl 

buffer). The decay was fitted with a weighted sum of three exponential functions convolved 

with the instrumental response function (IRF, laser scattering measured with a ludox 

solution). The fit was done using Fluofit suite from PicoQuant12 (the equations can be seen 

in Appendix 1). It is worth mentioning that the residuals. after fitting with a bi-exponential 

function are not well distributed around zero (Figure 6S-2), which is not the case for a three 

exponential fit, which yielded time constants of 2.72 ns (32%), 0.45 ns (18%) and 140 ps 

(50%) -values in parenthesis correspond to their relative contributions to the decay-. From 

these results stands the unique sub-nanosecond lifetime component with a 50% contribution 

to the excited state for an FP, which is assigned to a quasi non-fluorescent species (notice 

that its contribution to the steady-state fluorescence is only 7% in comparison to the 2.72 ns 

which represents 86%.). To verify the existence of this short component, we decided to 

measure a set of FP (EGFP) and RSFPs (IrisFP, rsfolder, rsfolder2) for comparison. The 

results can be seen in Figure 6.1. The fits results, time constants with their relative amplitude, 

can be seen in Table 6.1. The value for Dronpa found in literature8 has also been added to the 

table for comparison.  
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Figure 6.1. Fluorescence decays recorded at 510 nm (excitation 485 nm)  for EGFP (Purple), 

IrisFP (Blue), rsFolder (Orange), rsFolder2 (Red) and rsEGFP2 (Green). The instrument 

response function (IRF) measured at 485 nm is plotted in black. Figure made with matplotlib 

python library. 

Table 6.1. Fluorescence quantum yields and decay time constants with their relative 

amplitude (first value in percentage) obtained by TCSPC for different EGFP and different 

RSFPs at pH 8 (excitation at 485 nm, emission at 510 nm). The second value in percentage 

represents the contribution of each component to the steady state fluorescence. 

 Dronpa* EGFP IrisFP rsEGFP2 rsFolder rsFolder2 

τ1 (ns) 3.6 ns8 

100 % 

2.87 

87%/93/% 

2.94 

80%/90% 

2.72 

32%/86% 

2.48 

24%/73% 

2.76 

28%/78% 

τ2 (ns)  1.39 

13%/7% 

1.22 

20%/10% 

0.45 

18%/7% 

0.54 

24%/15% 

0.46 

20%/12% 

τ3 (ns)    0.14 

50%/7% 

0.18 

52%/11% 

0.15 

52%/10% 

Qf* 0.688 0.6113 0.4714 0.32 0.2515 0.2315 

 *value from the literature 

As expected for EGFP the fluorescence decay is fitted with two components of 1.39 (13%) 

and 2.87 (87%) ns. These results are in agreement with the results of Gosh et al.4, who 

reported two decay times attributed to two fluorescent ground state conformers. IrisFP decay 
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is also bi-exponential, and the analysis yielded two decay time constants of 1.22 (20%) and 

2.94 (80%) ns. Moreover, rsFolder and rsFolder2 confirm our results on rsEGFP2, i.e. a 

multi-exponential decay that needs three time constants, including a short decay time 

constant (< 200 ps) with an amplitude around 50% to the emission decay. This short lifetime 

species correlate with a lower value for the fluorescence quantum yield of rsEGFP2, rsFolder 

and rsFolder2 in comparison to EGFP, Dronpa or IrisFP. 

 

6.2.1.2 Emission decays of rsEGFP2 in H2O according to the excitation and emission 

wavelengths. 

 

Figure 6.2. Fluorescence decays for rsEGPF2 at different excitation and emission 

wavelengths. a) 488 nm excitation and emission from 500 to 600 nm. b) 480 nm excitation 

and emission from 490 to 560 nm. c) 460 nm excitation and emission from 490 to 560 nm. d) 

420 nm excitation and emission from 490 to 580 nm. Figure made with matplotlib python 

library. 
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To further investigate the excited state emission dynamics, fluorescence decays were 

recorded for rsEGFP2 WT according to the excitation and emission wavelengths, in 50 mM 

HEPES pH 8, 50 mM NaCl. The fluorescence decays dependence with the emission 

wavelength from 500 to 600 nm at four different excitation wavelengths (420 nm, 460 nm, 

480 nm, 488 nm) are shown in Figure 6.2. Each data set has been globally fitted with a 

weighted sum of three exponential functions convolve with the IRF. Time constants are given 

in Table 6.2 (the given amplitudes in the table are those at 520 nm emission) and the 

amplitude for each emission wavelengths have been plotted in Figure 6.3.  

 

Figure 6.3. Relative (calculated in percentage %) pre-exponential amplitude for the three 

time constants obtained with a global analysis of recorded fluorescence decays in Figure 

6.1. a) 488 nm. b)480 nm. c) 460 nm. d) 420 nm. Figure made with matplotlib python library. 
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Table 6.2. Global analysis results of rsEGFP2 fluorescence decays in recorded according to 

the excitation wavelength . 

Excitation 420 nm 460 nm 480 nm 488 nm 

τ1 (ns) 2,80 2,80 2,76 2.72 

*A1(%) 60.8 49.4 41.6 32.1 

τ2 (ns) 1,20 0,84 0,59 0.45 

*A2(%) 5.9 6.8 10.7 17.6 

τ3 (ns) 0,20 0,18 0,16 0.14 

*A3(%) 33.3 43.8 47.62 50.4 

*Amplitudes correspond to the values at 520 nm  

Several results can be highlighted from the values in Table 6.2 and Figure 6.3: 

• the contribution of the short lifetime species (τ1; named non-fluorescent) increases 

at higher emission wavelengths (lower energies), no matter the excitation 

wavelength, while the contribution of the 2.8 ns species (fluorescent) decreases. On 

the contrary, the intermediate lifetime species roughly does not vary in amplitude 

within emission wavelengths. 

• The intermediate lifetime species (τ2) is a minor species and has an amplitude which 

never exceeds 20%. Moreover, its contribution at higher excitation energy (lower 

wavelength) decreases in favour of the long component contribution. 

• The lifetime of the intermediate species increases at higher excitation energy from 

0.45 ns to 1.20 ns, (nearly a factor of 3). 

• The fluorescence decay of rsEGFP2 is nearly bi-exponential at 420 nm excitation. 

Altogether the long lifetime species (τ1) and the short lifetime species (τ3) are the main 

components and attributed to species existing in the ground state with slightly different 
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absorbance and emission spectra. The short component is mainly a non-fluorescent species 

and the long component fluorescent. On the contrary, the assignment of the intermediate 

component is not straightforward. Nevertheless, since the lifetime of the intermediate 

component increases and reach nanosecond values at high excitation energies, it is considered 

as a fluorescent species in equilibrium with the 2.8 ns.  

 

6.2.1.3 Emission decays of rsEGFP2 in D2O and crystals buffer solution. 

 

 

Figure 6.4. Fluorescence decays at different emission wavelengths for rsEGFP2 WT in 

different buffer solvents, all having 50 mMol NaCl and 50 mMol HEPES as a base. The 

excitation wavelength was 488 nm. a) in H2O pH 8. b) in D2O pD8. c) in H2O and (NH4)2SO4 

1.25 M pH 8. d) in H2O and (NH4)2SO4 2 M pH 8. Figure made with matplotlib python 

library. 
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The fluorescence decays were also studied according to the solvent in D2O solution and 

(NH4)2SO4 at concentrations of 1.5, and 2.0 M. For all solutions the buffer also contained 50 

mM HEPES pH/pD 8, 50 mM NaCl. The experiments in heavy water can help to identify the 

existence of an ESPT, like those in avGFP16–18. The (NH4)2SO4 2 M is a salt used to 

crystallize the protein. In the previous chapters, the flash-photolysis experiments were done 

in (NH4)2SO4 1.25 M since higher concentrations induced precipitation of the protein. 

Already at (NH4)2SO4 1.25 M, the protein dynamics in solution were highly affected and 

similar to the microcrystals dynamics. Due to the low concentrations of protein used in the 

TCSPC experiments, where this is adapted so that the solution has an absorption of around 

0.07 over one centimetre at 480 nm for the On form, a 2 M (NH4)2SO4 concentration did not 

induce sample precipitation. The recorded fluorescence intensity decays in the different 

buffers can be seen in Figure 6.4, and the global analysis fits results in Table 6.3. From the 

lifetime reported values, no evident dependence of the rsEGFP2 emission decays with the 

solvent can be inferred. All data sets have the same lifetime and amplitudes variations with 

the emission wavelength (Figure 6S-3). The exponential decay values in Table 6.3, reveal 

that the experiments in D2O buffer have slightly longer decay lifetimes than those in H2O, 

while the opposite effect is observed for decays with (NH4)2SO4 present in the buffer. 

However, these variations are relatively small, and no clear trend can be deduced from the 

data. Therefore, we can conclude that fluorescence lifetime for rsEGFP2 is relatively 

independent of the studied buffers for at pH 8. 

Table 6.3. Global analysis results of fluorescence intensity decays recorded in different 

buffers an at 488 nm excitation (Figure 6.4 and Figure 6S-3). 

 

H2O D2O (NH4)2SO4, 1.25M (NH4)2SO4 2.0 M 

τ1 2.72 2.86 2.62 2.59 

*A1(%) 32 31 30 31 

τ2 0.45 0.52 0.53 0.61 

*A2(%) 18 23 20 17 

τ3 0.14 0.17 0.15 0.17 

*A3(%) 50 46 50 52 

*Amplitudes correspond to the values at 520 nm  
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6.2.1.4 Emission decay for microcrystals 

The fluorescence decays were recorded for a rsEGFP2 microcrystals suspension in 100 mMol 

HEPES and (NH4)2SO4 2M. The suspension was highly diluted to avoid that the scattering 

of the excitation laser damages the detector. Moreover, the fluorescence decay from a single 

crystal has been measured under a fluorescence lifetime microscope. The recorded decays 

are shown in Figure 6.5 and the fits in Table 6.4.  

Figure 6.5. a) Fluorescence decays of rsEGFP2 at 500 nm (lifetime under microscope used 

a long pass filter at 500 nm). In red, colloidal solution of microcrystals, in green, single 

crystal, and in blue protein in solution (50 mMol NaCl and 50 mMol HEPES). The excitation 

wavelength was set to 480 for TCSPC experiments and 470 for microscope experiments. b) 

fluorescence decays for different emission wavelength for rsEGFP2 microcrystals with 488 

nm excitation. Figure made matplotlib python package. 

From the results in Figure 6.5a, it is clear that the fluorescence decays of rsEGFP2 in 

microcrystals and in solution differ. The long lifetime contribution (fluorescent species) 

decreases to a few percent in microcrystals while the shorter life time does not change (τ, %). 

Furthermore, it is also clear that the decay from a single crystal recorded in the microscope 

is different from the one recorded on a diluted microcrystals suspension. The differences are 

attributed to a lower time resolution (the short lifetime cannot be measured) and the use of a 

long-pass filter for the detection. The fit of the different traces yields three decay times 

constant; the results can be seen in Table 6.4, together with each component's pre-exponential 

percentage. Moreover, in Figure 6.5b we can see that for rsEGFP2 microcrystals suspension, 

there is no clear wavelength emission dependence of the fluorescence decay. This is in 
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contrast with the results obtained for the protein in solution, and in line with a rigid media. 

The main result is that the microcrystals fluorescent specie (F. Int) has a life time of 1.8 ns. 

Table 6.4. Results of the fits of fluorescence decays in Figure 6.5a. 

 
Solution Microcrystals 

suspension  

*Single 

Microcrystal  

τ1 (ns)  

F. Amp     

(F. Int) 

2.76 

41.6%         

85% 

1.80               

3.6%        

14.5% 

1,67 

35% 

τ2 (ns)  

F. Amp     

(F. Int) 

0.59                   

10.7%                   

8% 

0,58                 

54.2%            

70.4% 

0,57 

65% 

τ3 (ns)  

F. Amp     

(F. Int) 

0.14 

47.6%                    

7% 

0,16                  

42.2%          

15.1% 

NA 

             *fit not deconvolved with the IRF 

 

6.2.2 UV-Visible transient absorption 

6.2.2.1 TRUV-Vis of rsEGFP2 in solution 

The excited-state dynamics of the rsEGFP2 WT On state were also studied using transient 

absoprtion femtosecond UV-Vis spectroscopy. The results can be seen in Figure 6.6a and 

6.6b. Transient absorption spectra were recorded after excitation of the On state with a 482 

nm femtosecond laser pulse (0.9 µJ, 100 fs, 1 kHz). After signal formation, the spectrum at 

0.35 ps, has three distinct transient features. (i) There is a positive band from 330 to 440 nm, 

which displays a maximum at 415 nm, and is attributed to excited-state absorption (ESA) 

band. (ii) There is also a negative band from 440 to 495 nm. This negative band is the ground 

state bleaching (GSB) band. (ii) The stimulated emission (SE) band from 495 to 650 nm, 

with a minimum at 495 nm close to the rsEGFP2 fluorescence steady-state spectrum 
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maximum (502 nm) The GSB and SE bands are overlapped. Similar to TCSPC experiments, 

the TRUV-Vis have been fitted with the same number of exponentials convolved with a 

Gaussian function (FWHM, 180 fs). The longest decay time was fixed to that found in the 

TCSPC experiments. The global fit yielded time constants of 113 ps, 586 ps and 2.76 ns 

(fixed). Thus, the decay times are similar to those found in TCSPC, with lifetimes of 160 

ps, 590 ps and 2.76 ns. These results confirm the presence of three components participating 

in the excited state dynamics of rsEGFP2 cis anionic On state. DAS for the three species are 

relatively similar. In the TCSPC, the major contributions to the fluorescence decay are the 

2.76 ns (~40%) and the short component 160 ps (~50%). The pre-exponential factors at 470 

nm allow estimating the relative amplitude of each time constant to the recovery of the 

ground state (On state). These values are 50% for 113 ps component and 25% for the 

intermediate and long component (residues in Figure 6S-4). 

The rsEGFP2 excited state dynamics after 400 nm fs laser pulse excitation have also been 

followed by TRUV-Vis spectroscopy Similar to the above-described experiments the signal 

is formed in about 350 fs. The spectrum at this time displays an ESA band from 330 to 440 

nm, which has a clear maximum at 415 nm. Contrary to the experiments at 482 nm excitation, 

after signal formation, there is an extra evolution not seen previously from 0.35 to 7 ps, 

attributed to an excited state relaxation (Sn → S1 + VR). Four exponentials were needed to 

globally fit the data (convolve with a Gaussian FWHM 120 fs) 69 fs, 2.3 ps, 184 ps and 2800 

ps. The last time constant was fixed to the value founded in TCSPC for 420 nm excitation 

(Figure 6.2d). These results are in agreement with the TCSPC results, i.e. the long component 

is the main species (Pre-exponential factors amplitude at 490 nm). The results can be seen in 

the Figure 6S-5. 
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Figure 6.6. Transient absorption spectroscopy of rsEGFP2 (buffer: 50 mM HEPES pH 8, 50 

mM NaCl). a) and b) Time-resolved difference absorption spectra recorded after a 

femtosecond laser excitation (482 nm) of the cis anionic On state until to 2 ns. The spectrum 

without laser excitation was subtracted to calculate the difference spectra. c) Decay 

associated spectra reconstructed using the pre-exponential factors obtained from the global 

fit analysis of 1 decay traces every 10 nm from panels (a) and (b) with a weighted sum of 3 

exponential functions convolved with a Gaussian function (FWHM 180 fs). d) Selection of 

kinetic traces with the corresponding fits in red, the residues in the top panel correspond to 

the difference between the data and fits. Figure made with Ultra Pyfit. 

 

6.2.2.2 TRUV-Vis of rsEGFP2 microcrystals 

Microcrystals suspension were also studied using TRUV-Vis, the experimental result can be 

seen in Figure 6.7. Due to scattering of the excitation laser pulse, the spectra are cut between 

450 and 500 nm. After signal formation in less than a few hundreds of femtoseconds, the 

spectrum at 0.30 ps displays a positive band ranging from 335 to 450 nm with a maximum at 

435 nm. From 500 to 700 nm, we can see a negative band more pronounced until 650 nm. 

This negative band presents two close minima at 505 and 535 nm, with the first one being 

more intense at 0.30 ps. The evolutions of the transient signals are much faster for protein 
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microcrystals than for protein in solution (TRUV-Vis). First, the transient signals recover to 

half of their intensities in about 100 ps. Secondly, as can be seen in Figure 6.7b nearly all 

transient signals decay completely at 1.8 ns. Similar to previous TRUV-vis datasets, 1 trace 

every 10 nm was selected and all globally fitted. Since the amplitude of the 1.8 ns component 

is only 3.4 % in TCSPC, this component cannot be detected by TRUV-Vis absorption. 

Therefore, the data have been fitted with a weighted sum of 3 exponential functions 

convolved with a Gaussian pulse. The associated decay times are 0.16 ps, 93 ps and 497 ps, 

which are similar values to those found for the 3-exponential fit using TCSPC method (~0.16 

ns and ~0.58 ns). The first decay time is associated with the signal formation. The DAS reveal 

that 93 and 497 ps have similar contributions ~50 % and the shortest component has an SE 

with a minimum red-shifted in comparison to the long component as in solution. 

Figure 6.7. Transient absorption spectroscopy of rsEGFP2 microcrystals suspension (buffer: 

50 mM HEPES pD 8, 2 M (NH4)2SO4). a and b) Time-resolved difference absorption spectra 

recorded after a femtosecond laser excitation (482 nm) of the cis anionic On state until to 2 

ns. c) decay associated spectra reconstructed using the pre-exponential factors obtained 

from the global fit analysis of 1 decay traces every 10 nm from panel (a and b) with a 3 

exponential decay function convolved with a Gaussian function (FWHM 180 fs). d) Selected 

kinetic traces with the corresponding fits and residual plots Figure made with Ultra Pyfit. 
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The spectral signatures of rsEGFP2 microcrystals and the protein in solution differ as shown 

in Figure 6.8 where the spectra at 1 ps after laser excitation have been plotted. Two main 

differences stand out, the shifts of the ESA maximum between the microcrystals (435 nm) 

and the protein in solution (415 nm), and a difference in the SE band. While in solution the 

SE band has a minimum at 495 nm, for microcrystals, the SE band has two minima at 505 

and 535 nm with similar amplitude. Finally, the related intensities of the SE and ESA band 

are also different. In solution, the SE band is much more prominent compare to the ESA 

band, while in the microcrystals the SE and ESA bands have comparable amplitudes. The 

spectral evolutions are also different between crystal and solution. The most important 

differences are related with the long decay component, which is much shorter (1800 ps in 

crystal vs 2760 ps in solution, considering TCSPC decay values) and have a much lower 

contribution in crystal (3.4%) than in solution phase (41.6%). Finally, considering the 

TCSPC values in Table 6.4, we can see that while in solution the excited state dynamics 

major contribution is the shortest decay time of 140 ps, in microcrystals the main contribution 

is the intermediate decay time of 580 ps. Similar conclusions can be obtained from the decay 

times retrieved from the TRUV-vis data. 

Figure 6.8. Time-resolved difference absorption spectrum recorded at 1ps after a 

femtosecond laser excitation (482 nm) of the cis anionic On state. rsEGFP2 in solution in 

green, and rsEGP2 microcrystals suspension in red. Figure made with Igor pro. 
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The above experiments are done at an excitation energy of 10 GW/cm2. To validate the TR-

SFX results obtained for On form, we have studied the photodynamic of rsEGFP2 

microcrystals at higher excitation energies (26 GW/cm2 and 52 GW/cm2). The results are 

compared in Figure 6.9. The different data sets recorded at different excitation powers display 

similar shape and spectral evolution as those described above (10 GW/cm2). For the highest 

excitation power (26 and 52 GW/cm2) there is a new spectral evolution in the 0.5 – 5 ps time 

windows. This new evolution mainly involves the SE band, that keeps increasing in 

amplitude between 505-570 nm while no changes can be seen in the ESA band (350-450 

nm). These evolutions can be seen in Figures 6.9e and 6.9f. The global fit of the traces was 

done excluding the minor long component (1.8 ns; residual plots can be seen in Figure 6S-

6). The results can be seen in Figure 6.10, where the DAS and the kinetic traces with the 

corresponding fits and residues have been plotted. The DAS in Figures 6.10a, 6.10c and 

6.10e, reveal that the relative contributions of the different components to the SE band do not 

significantly vary with the excitation energy. The extra time constant (about 2 ps) seen in the 

26 and 52 GW/cm2 datasets can be assigned to a hot excited state or a hot ground state. Extra 

energy is depleting S1 state to the ground state (similar process than stimulated emission). 

Therefore, we can conclude that the On excited states dynamics is independent on excitation 

energy after 10 ps. 

 

Table 6.5. Global fits results obtained after fitting the transient absorption spectra recorded 

after excitation of the WT microcrystals On cis anionic state with a 480 nm femtosecond 

laser pulse. The data is plotted in Figure 6.9. 

 10 GW/cm2 26 GW/cm2 52 GW/cm2 

Signal formation (ps) 0.16 0.32 0.29 

Extra component - 2.29 2.15 

τ1 93 102 104 

τ2 497 636 528 
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Figure 6.9. Femtosecond transient difference absorption spectra recorded at different excitation energies after excitation of the WT 

microcrystals On cis anionic state with a 480 nm femtosecond laser pulse. The spectrum without laser excitation was subtracted to 

calculate the difference spectra. Top panels correspond to the signal formation. Middle panels to signal shifts observed within 5 ps. 

Bottom panels to the signal evolutions until 2 ns. Excitation energies: 10 GW/cm2 (a,d and g), 26 GW/cm2 (b,e and h) and and 52 

GW/cm2(c, f and i). Figure made with Ultra Pyfit, 
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Figure 6.10. The left panels correspond to the decay associated spectra reconstructed 

using the pre-exponential factors obtained from globally fitting a selection of traces (1 

decay traces every 10 nm) from the data set in Figure 6.9 with a weighted sum of 

exponential function convolved with a Gaussian. Note the shortest component attributed 

to the signal formation has been removed from all data sets for simplicity. In the right 

panels, the selected traces representing each of the transient absorption spectral 

evolution together with the corresponding fits and residues can be seen. Excitation 

energies: a), b) 10 GW/cm2, c), d) 26 GW/cm2, and e), f) 52 GW/cm2. Figure made with 

Ultra Pyfit. 
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6.2.3 Transient absorption Infrared spectroscopy. 

The excited-state dynamics of rsEGFP2 WT was studied in heavy water using time-

resolved infrared multiple probe spectroscopy (TRMPS) spectroscopy. After irradiation 

of the On state with a 100 femtoseconds (fs) laser pulse at 480 nm, some prominent 

instantaneous signals are formed, the positive signals correspond to the absorption of On 

excited states (ESA) and the negative signals correspond to depopulation of the On form 

(GSB). The evolutions of the signals at different time delays can be seen in figure 6.11a. 

The main bleaching bands can be seen at 1310, 1346, 1492, 1538, 1568, 1580, 1621, 1637 

and 1651 cm-1 with the band 1491 cm-1 having the highest amplitude. The most intense 

band is peaking at 1491 cm-1, which according to Dronpa literature, corresponds to the C-

O vibration of the phenolate On form10. The main positive bands correspond to the 

signatures of the first excited state species and can be seen at 1385, 1441, 1471, 1602 and 

1644 cm-1.  

After the laser excitation and signal formation, the transient spectra from 1 ps to 20 ns 

have mainly 2 spectral evolutions. The signal remains constant for the first few ps and the 

recovery does not occur after few hundreds of ps. This first evolution is followed by the 

general decay of all transient signals in a few ns. The evolutions in the ground state of the 

protein were monitored until 900 μs, although no signal can be observed after 20 ns. 

Following the spectral evolutions, a singular value decomposition of the spectra yielded 

two main components. Global analysis of the time traces from 1 ps to 20 ns with a 

weighted sum of 2 exponential yielded time constants of 0.15 and 2.81 ns (Figure 6.11b). 

Using the amplitude of the 1491 cm-1 GSB, the contributions of the two excited state 

species has been estimated to be 61.4 % and 38.6 % for τ1 (0.15 ns) and τ2 (2.81 ns) 

respectively. The time constant and percentage found in TRMPS are very similar to those 

found in TCSPC in D2O buffer. An important result is that the DAS for non-fluorescent 

(τ1) state and fluorescent one (τ2) are different in the 1300cm-1 – 1400 cm-1 region and at 

1568 cm-1. This means that the structure of these two excited states is different and justify 

the use of TR-SFX to reveal them.  
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Figure 6.11. a) rsEGFP2 WT IR spectra recorded at different time delays after a 100 

femtosecond laser excitation (480 nm) of the On state from 1 ps until 20 ns. The spectrum 

without laser excitation was subtracted to calculate the difference spectra. b) Decay 

associated spectra reconstructed using the pre-exponential factors obtained from the 

global fit analysis of traces from (a) with a weighted sum of 2 exponential functions. 

Figure made with Ultra Pyfit. 
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6.2.4 TR-SFX 

Since in rsEGFP2, there is about 60% of a non-fluorescent species, it appears as a perfect 

target for TR-SFX studies. Structural changes were observed at time delay of 1, 10, 200 

ps, 1000 ps and 20 ns after photoexcitation of rsEGFP2 in the On state. (LCLS LM47 23-

27 June 2016: Visualization of excited states in light-switchable fluorescent proteins by 

femtosecond time-resolved SFX, PI Dr. M. Weik). Condition of the experiment are 

overall similar to those used in Coquelle et al. with the important difference that the 

femtosecond pumping laser was carried out at 488 nm, not 400 nm. Time-resolved data 

enabled the identification of three excited states structures, characterized by different 

lifetimes, in agreement with high excitation energy TRUV-Vis absorption data for 

microcrystals. These structural results are illustrated in Figure 6.12 (made by Jacques-

Philippe Colletier). The figure displays the chromophore phenolate as well as the protein 

residues in its immediate vicinity, notably those to which it is H-bonded in the ground 

state, i.e. Thr 204, His 149, and a structural water. The first excited structure, observed 1 

ps after excitation, is characterized by rupture of two H-bonds between the chromophore 

phenolate oxygen and its partners, viz. those to His149 and the structural water. This 

excited state is assigned to the 2 ps lifetime hot ground and excited state. The second 

excited state structure, observed 10 ps after-excitation, is characterized rupture of the last 

H-bond holding the chromophore (that to Thr204). With no H-bonds to the protein 

moiety, the two excited states characterized at 1 ps and 10 ps time delay feature a more 

flexible chromophore, which could be the reason for these being less fluorescent. The last 

excited-state species, observed 1 ns after excitation, reveals a situation wherein the 

chromophore phenolate is H-bonded to Thr204 and to the water molecule, but not to 

His149. In turn, the water is also H-bonded to Ser206, enabling restoration of the proton 

relay between the chromophore and Glu223. We assign this structure to the fluorescent 

excited state. Analysis are still under progress to rationalize the decrease of lifetime for 

the fluorescence species in crystals in comparison to solution.  
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Figure 6.12. Schematic representation of the change in the structure obtained by TR-SFX 

experiments of hydrogen bonds (black arrow) with the chromophore (PIA) after a 488 

femtosecond excitation at 1, 10 and 1000 ps time delay. In pale dark the structure of the 

resting On state (PIA = HBDI chromophore). Figure made by Dr Jacques-Philippe 

Colletier.  

Unpublished results obtained at LCLC during LM47 beamtime, Andy Aquila, Thomas 

Barends, Sébastien Boutet, Marco Cammarata, Segio Carbajo, Jacques-Philippe 

Colletier, Nicolas Coquelle, R. Bruce Doak, Lutz Foucar, Mario Hilpert, Gabriela 

Kovacsova, Jason Koglin, Karol Nass, Christopher Roome, Giorgio Schiro, Robert L. 

Shoeman, Ilme Schlichting, Michel Sliwa, Martin Weik, Joyce Woodhouse. 

 

6.2.5 QM/MM calculations  

QM/MM simulations have been performed by Dr Matin Field to assign IR bands to 

specific vibrational modes and species. All the calculations have been carried out starting 

from the crystallographic On state conformation (PDB code 5O89). In the On state 

structure, the phenolate has three hydrogen bonds. One of these bonds is with a water 

https://www.rcsb.org/structure/5O89
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molecule placed just in front of it as can be seen in Figure 6.12 or Figure 7.1. The 

QM/MM simulations have been done considering the three possible orientations and 

hydrogen bond networks that the structural water (Wat24 in Figure 6.12) molecule can 

have which were revealed by TR-SFX structural changes. Three names have been given 

according to the different orientations H-NC, H-NS and H-CS, where H are the water 

hydrogens, which can be oriented to either the chromophore (C), the serine-206 (S) or the 

aspargine-147 (N). The IR spectra have been calculated in the ground and excited states 

(S0 and S1), including the dynamics from neighbouring groups to simulate the protein 

cage. In Figure 6.13 The differential spectra between S1 and S0 states calculated for the 

three different orientations of the water molecule, have been plotted. In the same figure, 

the DAS spectra obtained from the global fit with two exponential functions performed 

on the TRMPS data (Figure 6. 11b) have been overlaid for comparison. 

Figure 6.13. Differential spectra between S1 and S0 states calculated spectra for rsEGFP2 

chromophore and surrounding amino acids considering three different orientations for 

the water molecule in front of the chromophore H-NC (dashed blue line), H-NS, (dashed 

orange line) and H-CS (dashed green line). The overlaid solid lines (red and purple) 

correspond to the decay associated spectra reconstructed using the pre-exponential 

factors obtained from the global fit analysis of traces from figure 6.7a with a weighted 

sum of two exponential function. Figure made with matplotlib python package. 

The differential DAS spectra can be attributed to the sum of H-CS and H-NS calculated 

spectra. The H-CS conformer can be attributed to the longer lifetime species because it 

can model the prominent negative double peak between 1300-1375 cm-1 found in the 2.81 
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DAS. The non-fluorescent species (150 ps) can be attributed to the H-NS calculated 

conformer, mainly from the negative peak at 1490 cm-1 attributed to the C-O phenol 

stretching and together with the modelization that reproduce the double peak between 

1300-1375 cm-1.  

6.2.6 TRUV-Vis flash-photolysis ground state dynamics 

The ground state dynamics of rsEGFP2 WT in H2O and D2O were monitored from 100 

ns to 200 μs using a ns transient absorption apparatus. After excitation of the cis anionic 

form with a 5 ns laser pulse at 482 nm, the transient difference absorbance spectrum at 

100 ns shows a broad positive band with a maximum at 380 nm (dark blue in Figure 

6.14a, the region from 460 to 540 nm is attributed to the residual fluorescence signal). In 

less than 1 μs, we can see the formation of a positive band at 510 nm while the GSB 

minimum becomes well defined at 480 nm. Within this time no evolution is observed in 

the 380 nm positive band. At 1 μs the spectrum displays three clear signatures, two 

positive bands with maxima at 380 and 510 nm and a negative band with a minimum at 

480 nm. Following this first evolution, we can see the decrease of the band with a 

maximum at 510 nm while the GSB band decreases. Concomitantly the band with a 

maximum at 380 nm increases in amplitude and shifts to 410 nm. At 200 μs the 

differential spectrum has a negative maximum at 480 nm which is attributed to the 

disappearance of the On cis anionic form 16 and a maximum at 410 nm which corresponds 

to the absorbance of the Off trans neutral chromophore. Two time constants of 0.538 and 

24.14 μs were identified after globally fitting the kinetic traces.  

When similar experiments were carried out in D2O solution (50 mM HEPES pD 8, 50 

mM NaCl), the spectral evolutions are similar. The spectral evolutions also required a bi-

exponential function for fitting, yielding time constants of 0.64 µs and 36.09 µs. The first 

time constant is similar in H2O and D2O, but a significant deuterium isotope effect is 

observed for the long time constant (kH/kD= 1.5). The latest evolution can thus be 

attributed to a ground state proton transfer (GSPT). The results for both H2O and D2O 

experiments can be seen in Figure 6.14. The fits and residues for both data sets are shown 

in Figure 6S-7 at the end of the chapter. 
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Figure 6.14. a), b), c) and d) Transient absorption spectroscopy of rsEGFP2 WT in H2O 

and D2O solution (50 mM HEPES pH/pD 8, 50 mM NaCl). Time-resolved difference 

absorption spectra recorded after a 482 nm nanosecond excitation of the cis anionic On 

state in the time windows from 100 ns to 200 μs. The spectrum without laser excitation 

was subtracted to calculate the difference spectra. e) and f) correspond to the decay 

associated spectra reconstructed using the pre-exponential factors obtained from the 

global fit analysis fitting of the raw data with a weighted sum of 2 exponential functions. 

Left panels H2O results, right panel D2O results. Figure made with Ultra Pyfit 

 

6.3 Discussion and conclusions 

The global fit of the fluorescence decays (510 nm) after 488 nm excitation of rsEGFP2 

yielded 3 decay time constants, 0.14 ns, 0.45 ns and 2.72 ns, with relative amplitudes to 

the decay of 50%, 18% and 32 % respectively (Table 6.1). Therefore, three excited state 

species can be considered in the rsEGFP2 (On form) excited-state. The long and short are 
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the main components. Moreover, the ensemble of fluorescence decays reveals little 

variations in these two main components with the excitation and emission. The short 

component is attributed to a non-fluorescent state and the long component to a fluorescent 

state. The TRUV-Vis experiments using 480 nm excitation confirms the existence of 

three species with similar DAS contribution as those found in TCSPC. The amplitudes of 

the DAS spectra obtained from the TRUV-Vis global fit (Figure 6.6c) at 470 nm allows 

estimating the concentration of the three species, 50% for the non-fluorescent species 

(113 ps) and 25% for the intermediate and long species (586 ps and 2.72 ns). As no 

growing component is observed, the three species are formed within the excitation pulse 

and the most straightforward is to assign them to three species that exist in the ground 

state. The nature of the intermediate time constant (i.e fluorescent or non-fluorescent) is 

difficult to determined. The lifetime of this component has huge variations from 0.45 ns 

at 488 nm excitations to 1.20 ns at 420 nm. Moreover, its contribution to the excited state 

lifetime is overall small and decreases with the excitation energy, mainly, in favour of the 

long component (Figure 6.3). Finally, the fluorescence of microcrystals is mainly 

characterized by the short (42.2 %) and the intermediate (54.2 %) lifetime components; 

where the long component represents less than 3.6 % (Table 6.4).  

Only two components were needed to fit the TRMPS data (Figure 6.11) with associated 

time constants of 0.15 and 2.81 ns which are identical to the shorter and longer 

components found in TCSPC. The DAS spectra reveal that, structurally, these two 

components are relatively similar but not identical. The bleaching signals at 1346 and 

1568 cm-1, are mainly observed for the short component. According to the literature10, 

and compared to Dronpa, the band at 1568 cm-1 can be attributed to υ(C=N/ C=C) 

chromophore vibrations. Similar results have been reported for Dronpa2 where two decay 

times of 370 ps and 1.6 ns were found9. As demonstrated by Romei et al.5, the primary 

non-radiative decay process lowering the chromophore’s ΦF are related with changes in 

the C=C-C bridge between phenolate and the imidazolinone rings. If these changes occur 

around C=C bond, a cis-trans isomerization may occur while an SBR around C-C bond 

results in a Phenolate-ringflip5. The vibrations of the C=C bound lowers the electron 

density of the double bond and thus favours the cis-trans isomerization of the 

chromophore. At the same time, the hydrogen bonds of the phenolate with the protein 

cage prevents it from ring-flipping. Interestingly, the TR-SFX results show two 

conformers H-CS conformer present at 1000 ps and H-NS present at short delays (10 ps). 
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The TRMPS data, reveals as well two decay times having very similar DAS but not 

identical. If these DAS are compared with the differential spectra obtained by the 

QM/MM simulations, we can attribute the longest decay time to the H-CS as revealed by 

TR-SFX (Figure 6.12). In such a conformation, the proton relay between the 

chromophore and the Glu223, that characterized the avGFP protein family, can be 

formed. Notice that the ensemble of measurements are in agreement. The complexity of 

the time-resolved IR spectra and the similarities between H-NC and H-NS calculated 

spectra make the structural assignment of the short component not straightforward. 

Nevertheless, from the ensemble TCSPC results, it is clear that the shorter decay 

component is a flexible excited state component that rapidly decay to the ground state. 

Therefore, this component should have a structure that reduces the rigidity of the 

chromophore. Such a situation is found in the structure with a reduced number of 

hydrogen bonds between the chromophore and the protein cage; in agreement with the 10 

ps TR-SFX structure, where the structural water is oriented towards the Ser206 and the 

Asn147 (H-NS). In this structure, the hydrogen bond between the chromophore and the 

water molecule is broken and thus the proton relay. This assignment is in agreement with 

molecular dynamics simulations on Dronpa211; which attributed the origin of the ground 

state structural heterogeneity to the chromophore phenolate moiety having several 

hydrogen bond networks. Moreover, the authors assigned the isomerization to a 

conformer with a reduced number of hydrogen bonds11. Therefore, since the short 

component has a reduced number of hydrogen bonds, we attribute the main deactivation 

process for S1 to be the phenolate ring flip. 

So far, we have not attributed the intermediate decay time ~500 ps. The assignment of 

this component is not straightforward since it is not seen in the TRMPS data. Its amplitude 

is about 10 % for the TCSPC data and supposes a minor contribution to the excited state 

decay for the protein in solution. On the contrary, this component becomes the 

predominant deactivation pathway in microcrystals. Comparatively, both microcrystal 

and solution, need three components to fit the TCSPC fluorescence decays. In solution, 

the retrieved decay times at 480 nm excitation are 0.16 ns (main component 47.6 %) 0.59 

ns ( 10.7 %) and 2,76 ns (41.6 %), while in the microcrystals are 0.16 ns 0.58 ns and 1.8 

ns where the main component is the 0.58 ns. Therefore, the only difference found is the 

long decay component, which is much shorter and its contribution much smaller in 

crystals than in solution (3.4% contribution in microcrystals vs 41.6% in solution). As a 
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result, this contribution could not be seen for the microcrystals in TRUV-Vis datasets. 

Similar to the protein in solution, the two components found in the microcrystals of 0.16 

and 0.58 ns are attributed to two sub-populations already present in the ground state which 

are simultaneously excited, and they decay in parallel. In the previous chapter, we could 

assign the differences between the protein microcrystal and the protein in solution to the 

(NH4)2SO4 salt, which is used to crystallize the protein and accelerates the chromophore 

deprotonation when it is present in the buffer. On the contrary, the fluorescent decays 

recorded in the presence of (NH4)2SO4 are similar to the protein in solution. Therefore, 

the differences observed between the microcrystals and solution in the rsEGFP2 On state 

dynamics cannot be attributed to (NH4)2SO4. Therefore, we attribute the absence of the 

long component in the microcrystals, to a modification of the energy landscapes induced 

by the crystalline structure, which mainly favours the presence of the intermediate 

component over the longer one in microcrystals. Probably, the crystalline structure force 

a distorted chromophore which induced a fast excited state decay in ~0.6 ns. Similar to 

the EGFP4, we tentatively attribute the origin of the non-fluorescent components (~ 0.15 

ns) to the rotation of the T204 which force the rotation of the water molecule causing 

different hydrogen bond networks between the protein cage and the chromophore H-NS 

(non-fluorescent) and H-CS (fluorescent). 

Figure 6.15. Transient absorption spectroscopy of rsEGFP2 WT in H2O (50 mM HEPES 

pH 8, 50 mM NaCl), recorded after a 482 nm nanosecond excitation of the cis anionic on 

state in the time windows from 1 to 200 μs. The On spectrum was subtracted to calculate 

transient spectra. Figure made with Ultra Pyfit. 
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After the decay of the excited state, two decay evolutions were seen in solution. The first 

one is mainly an increase of signal at around 490-510 nm attributed to an artefact 

generated by the remaining fluorescence, therefore will not be further discussed. After 

the excited state isomerization through a conical intersection, the molecules mainly come 

back to the original cis anionic conformation as revealed by the low isomerization 

quantum yield around 1% (determined in chapter 4), but a small portion isomerized to the 

trans anionic form. The estimation of protein chromophores that have isomerized to the 

Off state in the flashphotolysis experiments can be calculated from the GSB signal 

(assuming the absorption of the Off form at 480 nm to be cero). The addition of the 

absorption On state spectrum to the transient spectra reveals the spectrum shape of the 

transient species (Figure 6.15). The results of this operation can be seen in Figure 6.15, 

where the spectrum at 1 s reveals a positive band at 500 nm attributed to the trans anionic 

form. Interestingly, the trans anionic form has a 20 nm redshifted absorption maximum 

compare to the cis anionic form. The positive band at 500 nm disappears within a few 

ten’s of microseconds and a positive band centered at 410 nm characteristic of the trans 

neutral form appears. The experiments performed in D2O reveal an apparent isotopic 

effect (kH/kD= 1.5), which confirms the ground state proton transfer (GSPT). These results 

are to our knowledge the first ground state On to Off photoswitching protonation of an 

RSFP ever reported in the literature. Considering the ensemble results we proposed the 

following mechanism depicted in Figure 6.16. 
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Figure 6.16. General scheme for the photodynamics of On cis anionic state for rsEGPF2 

WT. Figure made with InkScape. 

6.4 Supporting Figures 

 

Figure 6S-1. a)rsEGFP2 Fluorescence spectra (light green solid line excited at 470 nm, 

represented by the vertical red line) compared to the absorption extinction coefficients of On and 

Off states. b) Comparison between rsEGFP2 absorption (maximum at 482 nm blue vertical line) 

and excitation spectra (emission at 502 nm; maximum at 476 nm orange vertical line). Figure 

made with matplotlib python library. 
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Figure 6S-2. Top panels: fluorescence decay of rsEGFP2 after 480 nm excitation in blue, 

measured IRF in red and the resulting fit in black. Reduced χ2 show as an inset. Middle 

panels: residual plots. Bottom panels: autocorrelation plots. a) fit with a weighted sum 

of 2 exponential function convolved with the IRF. b) fit with a weighted sum of 3 

exponential function convolved with IRF. Figure made with Fluofit. 
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Figure 6S-3. Pre-exponential factor retrieved from the global analysis of the data sets 

shown in Figure 6.4. Figure made with matplotlib python package. 

 

Figure 6S-4. bottom panel: Resulting fit (red) of sum of a three exponential decay 

convolved with a Gaussian function (FWHM 180 fs) to the kinetic traces (1 every 10 nm) 

recorded after a 480 nm excitation for rsEGFP2 On state. Top panel: the residues of the 

fit which are the differences between the fit and raw data. Figure made with Ultra PyFit. 
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Figure 6S-5. Transient absorption spectroscopy of rsEGFP2 (buffer: 50 mM HEPES pH 

8, 50 mM NaCl). a) b) and c) Time-resolved difference absorption spectra recorded after 

a femtosecond laser excitation (400 nm) of the cis anionic On state until to 2 ns. d) decay 

associated spectra reconstructed using the pre-exponential factors obtained from the 

global fit analysis of 1 decay traces every 10 nm panel (a, b and c) with a 4 exponential 

sum decay function convolved with a Gaussian function. Figure made with Ultra Pyfit. 

 

Figure 6S-6. bottom panel: Resulting sum of exponentials function fits in red and raw 

decay traces for the TRUV-Vis data sets recorded at different excitation energies. Top 

panel: the residues of the fit which are the differences between the fit and raw data. The 

corresponding graphs for each of the excitation energies: a) 10 GW/cm2, b) 26 GW/cm2, 

and c) 52 GW/cm2. Notice that for the high energy excitation datasets, the traces that are 

distorted by huge stimulated Raman scattering peaks have not been fitted. Figure made 

with Ultra PyFit. 
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Figure 6S-7. bottom panel: Resulting sum of exponentials function fit in red and raw 

decay traces for the TRUV-Vis flashphotolysis experiments. Top panel: the residues of 

the fit which are the differences between the fit and raw data. The corresponding graphs 

for each of the excitation energies: a) H2O buffer and b) D2O buffer. Figure made with 

Ultra PyFit. 
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7 Preliminary results on rsEGFP2 
variants: influence of the 

chromophore environment to the On-
state photodynamics  

7.1 Introduction 

The previous chapter shows the importance of the chromophore surroundings to optimize 

the On state (cis anionic form) emission properties. The protein cage and chromophore 

surroundings of rsEGFP2 are very similar to those of the EGFP, as shown in Figure the 

7.1, where the structure of the On state of the two proteins are overlaid. The rsEGFP2 

structure corresponds to 5DTX reported by El Khatib et al1, and the EGFP corresponds to 

the 4EUL reported by Arpino et al2. As shown in Figure 7.1, in the two structures, the 

phenyl group of the chromophore has three hydrogen bonds with the T204(203), 

H149(148) and a hydrogen with a structural water molecule, which in turn is hydrogen 

bounded to the S206(205) and N147(146) (values in parenthesis correspond to the EGFP). 

Furthermore, both proteins have the same proton relay to the E223(222). In the EGFP, 

the E223(222) adopts two different conformers, either bounded to the S206(205) or to the 

T66(65) which forms part of the chromophore. On the contrary, the mutation T66A in 

rsEGFP2 avoids the interaction between the E223 with the mutated alanine, and only one 

conformer for E223 is seen in in the On state rsEGFP2 X-ray structure (pdb: 5DTX). The 

structures in figure 7.1 reveal the similarities between rsEGFP2 with its parent protein 

EGFP. Only four mutations differ between the two proteins, T66A, Q70L, V164S and 

A207K. If these four mutations are analysed, one by one, we can detect the main 

mutations that render EGFP reversible. As can be seen in Figure 7.1c, the mutation 

A207K is also shared by mEGFP3 (monomeric-EGFP) which is not RSFP. In general, 

this mutation helps to generate monomeric proteins. The mutation T66A in rsEGFP2 is 

not present in rsEGFP. Consequently, there are two main mutations that can be identified, 

Q70L and V164S, which render the EGFP reversible. The rsEGFP2 chromophore in the 

Off form is near to L70 (spatially on top) and is hydrogen-bonded with a water molecule 

which is in turn hydrogen-bonded to the S164. Therefore, the Q70L mutation liberates 

space for the chromophore to adopt the Off conformation, which is stabilized by the 

https://www.rcsb.org/structure/5DTX
https://www.rcsb.org/structure/4EUL
https://www.rcsb.org/structure/5DTX
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V164S mutation. Probably the carbonyl group of the Q70 prohibits the EGFP 

chromophore from adopting the Off from isomer. Interestingly, these two mutations are 

also shared by rsEGFP, rsGreen, rsFolder and rsFolder2, thus one can conclude that all 

RSFP derived from the avGFP share these two mutations. Finally, T66A is a very 

interesting mutation. As mentioned in chapter 6, in the EGFP, T66 directly interacts with 

the E223, which adopts two different conformations. On the contrary, as can be seen for 

rsEGFP2, the E223 has only one conformation. Thus, it is not possible to attribute the 

ground state conformers of rsEGFP2 to the different conformations of the E223, as it was 

attributed in EGFP to be the origin of the two fluorescent lifetimes by Gosh et al4. (Notice 

in chapter 6 it has been hypothesized that the ground state conformers attributed to 

different hydrogen bond networks are caused by the T204 rotation).  

 

Figure 7.1. a) X-ray structures of: rsEGP2 (green), PDB 5DTX 1 and EGFP (blue), PDB 

4EUL2. b) Zoom on the chromophore (HBDI) region together with the main interactions 

of the protein cage with the chromophore (red interaction EGFP, yellow interactions 

rsEGFP2). c) Lineage of rsEGFP2 with the corresponding mutations from the direct 

parent protein. (Notice rsEGFP2 in the PDB 5DTX has one extra aminoacid, thus T65 

in EGFP is A66 in rsEGFP2 marked in the figure as T66A. Similarly, the numbers in 

panel c) are increased by 1). Figure made with PyMol5 and InkScape. 

https://www.rcsb.org/structure/5DTX
https://www.rcsb.org/structure/4EUL
https://www.rcsb.org/structure/5DTX
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Recently, a new publication has come out targeting different mutations around the 

chromophore in rsGreen protein6, where the authors showed that a single point mutation 

can introduce small biochemical changes in the surroundings of the chromophore which 

can trigger large changes in the spectroscopic properties of a fluorescent protein. They 

also found that the hydrogen bonding network in the surroundings of HBDI oxygen of 

the phenolate, and in particular by water molecules in direct connection to it, is the 

determinant key aspect of photoswitching efficiency. As shown in the previous chapter, 

fluorescence decay reveal important information regarding the emission properties and 

indirectly on switching. We showed that the fit of the fluorescent intensity decay 

(excitation at 480 nm and emission at 510 nm) of rsEGFP2 (WT) yielded 3 decay time 

constants: 0.15 ns (non-fluorescent, τ3), 0.47 ns (fluorescent, τ2) and 2.81ns (fluorescent, 

τ1), and the corresponding populations to the decay is 42.5% (A3), 15.5% (A2) and 42 % 

(A1) respectively. These populations are attributed to species already present in the 

ground state, which are simultaneously excited and they decay parallel one to the others. 

They are attribute to different hydrogen bond network around the chromophore and are 

in equilibrium in the ground and excited state. The non-fluorescent species is the more 

flexible species and more likely the precursor of isomerization. To study how the 

chromophore surrounding influence the On state photodynamics nineteen different 

variants were designed by our collaborators in Grenoble (JP. Colletier, M. Weik and 

coworkers). These nineteen different rsEGFP2 variants contain from a single point 

mutation to up to three, and all in the close proximity or directly hydrogen bonded to the 

HBDI chromophore. We report here the photophysical steady-state properties (absorption 

spectra, emission spectra, fluorescence quantum yield, fluorescence lifetime) for nineteen 

variants (including V151A and V151L) in comparison to WT rsEGFP2.  

 

 

7.2 Photophysical properties of On state for different 

rsEGFP2 variants 

As illustrated in Figure 7.2, the majority of the mutations are located in the surrounding 

of the HBDI phenolate group, addressing amino acids involved in the hydrogen bond 

network, i.e. either the T204, the H149 and the S206. One of the most interesting 

mutations is the S206N which restores the asparagine, the original amino acid for rsEGFP 

and rsGreen proteins. Moreover, the E223 was also mutated in order to check if the proton 
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relay that is responsible for the fluorescence in all avGFP derivated proteins. Finally, 

there are several double and triple mutations combining the above-mentioned amino 

acids. Figure 7.2 summarizes the different mutations and the values in parenthesis are the 

corresponding fluorescent quantum yield values. (measured at a pH for which only On 

form is present). 

Figure 7.2. Scheme representing the main positions that have been mutated, the values in 

parenthesis indicate the fluorescence quantum yield. In the center the structure of the 

rsEGFP2 WT is represented in green. Figure adapted from an initial idea by Dr. Olivier 

Devos. X-Ray structures have been reproduced using Pymol from the PDB 5DTX1. Figure 

made with power point. 

 

For all 19 purified mutants, emission decays were also measured using TCSPC at four 

different emission wavelengths from 490 to 550 nm every 20 nm, after 478 nm 

femtosecond laser pulse excitation. The measurements were done by Dr. Olivier Devos. 

The four traces have been globally fitted for each of the mutants with a weighted sum of 

three exponential functions (equation 7.1) convolved with the instrument response 

https://www.rcsb.org/structure/5DTX
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function (IRF) measured in a Ludox solution. The decays were fitted to equation 7.1 with 

Fluofit suit from PicoQuant7.  

𝐼(𝑡) =  ∑𝑎𝑖 ∙ 𝑒
−𝑡

∑𝜏𝑖        Equation 7.1 

Where (ai) are the pre-exponential factors and τi the corresponding lifetimes for each 

component. From the fits to Equation 7.1 several values have been extracted and are 

displayed in Table 7.1. These are: (i) the contributions of each species to the emission 

decay Ai; (ii) The contribution of each species to the fluorescence Ii; (iii) And the average 

lifetime in intensity. The contributions of each species to the excited state (A) can be 

calculated as a relation of pre-exponential factors with equation 7.2. 

𝐴𝑖 =
𝑎𝑖

∑𝑎𝑖
        Equation 7.2 

The contribution of each of the components to the fluorescence (I) was calculated with 

equation 7.3. 

𝐼𝑖(%) =
𝑎𝑖 ∙𝜏𝑖

∑𝑎𝑖∙𝜏𝑖
       Equation 7.3 

Finally, the average lifetime in intensity was calculated using equation 7.4. 

< 𝜏 >=
∑𝑎𝑖∙𝜏𝑖

2

∑𝑎𝑖∙𝜏𝑖
       Equation 7.4 

Where (t) are each of the decay times retrieved from the global fit, and (A) the 

contribution (percentage) to the fluorescence decay at 510 nm The results of the global 

fits for all the mutants can be seen in Table 7.1 Together with the excited state life times, 

the approximate pKa is reported (pKa values have been determined by Dr. Martin Byrdin 

from the IBS, Grenoble). According to the pKa values in table 7.1, the emission decays 

and photo-physical properties (absorption and emission maxima, the Stokes shift and 

fluorescence quantum yield ΦF) were measured at pH where cis anionic is the solely 

conformer (pH = 8 for pKa = 6; pH = 10 for pKa = 8 and pH = 11.5 for pKa > 10). 
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Pearson correlation matrix 

As commented by der Zitter et al6, a correlation analysis can reveal important relations 

between parameters that might be difficult to directly infer otherwise. Therefore, the 

Pearson correlation coefficients have been calculated for the values reported in Table 7.1. 

The values have been put into a matrix and represented as a “heat map” in Table 7.2, 

where the dark green colors represent highly positive correlated variables (r= +1), white 

pale color represent non correlated variables (r= 0) and magenta highly negative 

correlated ones (r = -1).  

The correlation matrix directly reveals expected positive correlation as, for example, 

between the fluorescent quantum yield (Qf in the correlation matrix; and in this chapter) 

with the average intensity lifetime or with the decay times. On the contrary, it also reveals 

very interesting correlations between parameters that are not so intuitively 

interconnected. For example, the fluorescence emission maximum (wavelength) has a 

negative correlation with the Qf and a positive correlation with A2 (contribution in 

amplitude to the emission decay of the second species). Another interesting correlation is 

between τ3 (lifetime of non-fluorescent species) and its pre-exponential factor A3. The 

increase of τ3 lifetime is correlated with a lower contribution of this component to the 

decay. Finally, it also needs to be mentioned that, while the lifetime of the fluorescent 

species (τ1) is not correlated with either of the other two decay times, the intermediate 

fluorescent species lifetime (τ2) and non-fluorescent species lifetime (τ3) are highly 

positively correlated. This correlation value is in line with the complexity of precisely 

determining two decay times for a three exponential fit when lifetime are similar8.  
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 λ Abs 

peak 

(nm) 

λ Fluo 
peak 

(nm) 

Stokes- 
shift 

(cm-1) 
pKa 

Qf 
exc 
470 

Lifetime (exc  480 nm)  
Emission 510 nm 

Contribution in amplitude 
(exc  480 nm; em 510 nm) 

Contribution in intensity 
(exc  480 nm; em 510 nm) 

average 
lifetime 

Intensity
(ns)     τ1 

(ns) 
τ2 

 (ns) 
τ3 

(ns) 
A1% A2% A3% I1% I2% I3% 

EGFP 488 507 7679.4 6 0.60 2.87 1.39  86.9 13.1  93.2 6.8  2.77 

V151A-
S206N 

486 503 6954.2 6 0.45 2.58 1.74 0.28 72.4 10.1 17.5 89.2 8.4 2.4 2.46 

S206N 485 502 6982.4 6 0.38 2.36 1.1 0.26 70.3 13.7 16.0 89.6 8.1 2.3 2.21 

rsEGFP2 482 502 8265.7 6 0.34 2.81 0.47 0.15 41.9 15.6 42.5 89.7 5.6 4.7 2.55 

T204N 483 501 7438.5 6 0.32 2.81 0.45 0.14 41.5 15.1 43.4 90.1 5.3 4.6 2.56 

V151L 483 501 7438.5 6 0.28 2.49 0.72 0.14 25.4 21.2 53.4 73.4 17.8 8.9 1.97 

V151A 484 502 7408.4 6 0.27 2.77 0.33 0.11 33.0 23.5 43.4 87.9 7.4 4.7 2.47 

H149F 497 507 3968.6 8 0.27 2.68 0.73 0.16 37.2 40.5 22.3 75 22.2 2.7 2.18 

T204V 502 508 2352.8 8 0.26 2.97 0.5 0.18 37.4 24.2 38.4 85.4 9.3 5.2 2.59 

T63A 482 503 8661.7 6 0.24 2.35 0.85 0.17 39.1 16.8 44.0 81 12.6 6.5 2.02 

T63A-
S206N 

484 502 7408.4 6 0.22 1.72 0.75 0.15 27.1 37.6 35.3 58.1 35.3 6.7 1.28 

T204A 501 502 397.6 8 0.19 2.75 0.56 0.1 31.5 9.1 59.4 88.7 5.2 6.1 2.47 

H149W-
S206N 475 508 

13675.9 
>10 0.10 2.23 0.6 0.12 53.8 22.7 23.5 88 9.9 2.1 2.02 

T204S 484 504 8198.9 6 0.08 1.79 0.83 0.07 33.1 28.9 37.9 69.2 27.9 2.9 1.47 

H149F-
T204A 486 507 8522.7 >10 0.08 2.29 0.84 0.15 19.3 42.5 38.2 51.6 41.6 6.7 1.54 

H149F-
T204A-
S206N 

483 504 8626.6 >10 0.08 2.24 0.74 0.15 7.5 28.0 64.5 35.5 43.6 20.8 1.15 

H149W-
T204N 481 507 10661.5 

>10 0.07 2.51 0.74 0.15 18.7 34.2 47.1 59.4 31.7 8.9 1.74 

S206N-
E223Q 486 504 

7348.6 
6 0.07 0.79 0.40 0.14 10.4 42.9 46.8 25.7 53.4 20.9 0.45 

E223Q 478 503 10397.9 11.5 0.17 1.34 0.52 0.16 5.4 43.0 51.6 18.7 58.5 22.8 0.60 

S206V 501 512 
4288.3 

10 0.17 2.15 0.76 0.14 11.8 52.3 35.9 36.2 56.7 7.1 1.22 

S206A 492 510 
7173.6 

10 0.10 1.70 0.57 0.13 14.1 51.2 34.8 41.4 50.6 8.0 1.00 

 

Table 7.1. Photophysical properties for the 19 studied variants, WT rsEGFP2 and EGFP. 
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Table 7.2. Pearson correlation matrix of the spectroscopic properties in Table 7.1. Color code from green (r=1) over white (r= 0) to magenta 

(r = -1). (Representation made with Seaborn python package) 
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Princiopal component analysis 

To further study the correlations between structural mutations of the rsEGFP2 WT protein 

and the photophysical properties in Table 7.1, a principal component analysis (PCA) has been 

done using Scikitlearn python package8 (part of the code is shown at the end of the chapter). 

Such analysis transforms the real space into another space where the directions are orthogonal 

to the main direction, and in a such a way that the variance between samples points is 

minimized. The main direction or vector (PC1) explains the maximum variance of the 

sample. In that way, the PCA identifies linear combinations between properties. Before the 

PCA analysis, due to the huge differences in values between properties in Table 7.1, the 

different properties have been standardized, by subtracting the mean and dividing by the 

standard deviation. This means that the samples have been centered around 0 and have a 

standard deviation of 1. Therefore, properties with high values are not biasing the analysis. 

After applying the transformation of the data to the PCA space, we found that five principal 

components were required to represent 93.7% of the data variability, and eight for 99.3%. 

This highlights the complex relationships between the spectroscopic parameters. The 

distribution for the 20 proteins in the first two main principal components space can be seen 

in Figure 7.3a, where the form and color of the points represent the mutation. Figure 7.3b is 

the “biplot” representation of attributes contribution (protein properties) to each of the 

components. Finally, the circles in each of the figures represent the 95% confidence interval 

of the points which helps to identify mutations with clear distinct properties compared to the 

rest, and, in the case of the biplot figure, properties with high contributions to the principal 

component. The PC1-PC3 can be seen in Figure 7.3 and the PC1-PC4 at the end of the chapter 

(Supporting Figures 7S-1). Finally, the loadings of the spectroscopic parameters of the first 

four principal components are compared in Figure 7S-2.  

How to read the PCA: the biplot figure 

It is important to understand how to read these figures which are called biplot9 figure (e.g. 

Figure 7.3). The biplot figure is a useful tool of data analysis and allows the visual evaluation 

of the structure of large data matrices. In a biplot, the samples (proteins) are displayed as 

points (Figure 7.3a) while the variables are displayed either as vectors, linear or axes (vector 

in this case; Figure 7.3b), in both cases the directions or axes of the figures are the PC. 
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Therefore, these figures transform the original matrix in a simple visualization in the PCA 

space. In these figures, the properties with the same direction are correlated with each other 

(e.g., Qf with A1 in PC1-PC2 Figure 7.3b). On the contrary, those in opposite directions are 

anti-correlated (e.g., the absorption maximum and the Stokes shift Figure 7.3b). Secondly, 

the correlations can be checked with table 7.2. Finally, the values for each individual variant 

in Table 7.1 can be compared with those of another variant with the used of their 

representations in the PCA space (e.g. Figure 7.3a). Samples in a similar region of the PCA 

space should have similar properties. Furthermore, it should be notice that even though the 

dashed circumference seems to be a circle, it is indeed an ellipse as the size of the axes are 

not identical. PC1 direction (x axes goes from -7 to 7) is indeed much higher than the PC2 x 

axes (from -4 to 4) which is in agreement with the variance ratio explained by each 

component.  

 

Figure 7.3. Principal component analysis. (a) Plot showing the scores for the 20 proteins 

“On fluorescent state” on PC1 and PC2. (b) Loadings of the spectroscopic parameters on 

the same principal components as in a), representing the so called biplot figure. Gray dashed 

circle represents the 95% confidence level of the points represented in each panel. Figure 

made with matplotlib python package. 
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PCA results 

From these two representations in Figure 7.3, it is possible to attribute certain properties that 

force each of the 20 rsEGFP2 proteins into a certain area of the PCA space. Nevertheless, it 

is important to clarify that two variants with a mutation in a certain amino acid might lead to 

significant different positions in the PCA space, which is explained by the capabilities of the 

new amino acid to form Hydrogen bonds or electrostatic interactions with the chromophore. 

Finally, it also needs to be clarified that, although we will make some comparisons with the 

WT mutant, this one is not in the middle of the representation in the PC1 projection in Figure 

7.3a. 

Taking into consideration the above explanation and the biplot representation in Figure 7.3, 

some interesting correlations can be done. Firstly, as expected, we can see important 

anticorrelations between the absorption maximum and the Stokes shift, which is also revealed 

by the Pearson correlation matrix in Table 7.2. Furthermore, if we focus on the contribution 

of the different fluorescent species, we can see a strong correlation between A2 and A3 which 

in turn are anti-correlated with A1 and the fluorescent quantum yield (Qf). We can also found 

some interesting properties that have been defined by certain mutations. For example, the 

mutation of the T204 by amino acid with non-polar side chains, unable to form a hydrogen 

bond with the chromophore, will result in a red-shifted absorption maximum, and a nearly 

zero Stokes shift (Table 7.1). The same effect is found when the His149 is mutated to a amino 

acid with a non-polar side chain which cannot form a hydrogen bond with the chromophore 

(H149F variant). Similar to the conclusion drawn for T204 and H149, we can derive some 

important observations for the mutation of the S206. When it is mutated to an aspargine (N), 

which can form a hydrogen bond to the chromophore phenol group, the population of 

fluorescent species (A1) increases and thus the Qf. On the contrary, when this amino acid is 

mutated to an alanine or a valine which cannot form any bond to the chromophore, non-

fluorescent species (A2 and A3) drastically increase in detriment of fluorescent species 

population (A1). This is followed with the corresponding decrease of fluroescence quantum 

yield. 
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The PC2 captures a slightly higher amount of information than the PC3. In the PC2 space, 

the absorption maximum and the Stokes shift have important weights (Figure 7S-2). On the 

contrary, PC3 captures nearly the same amount of variability as PC2 (15.54% and 14.87% 

for PC2 and PC3 respectively) and more importantly the weights of the different decay 

species A1, A2 and A3 and the decay times are high. Therefore, the same representation was 

done for PC1-PC3 in Figure 7.4. With the study of the first three PC we have a clear overview 

of the variant’s properties as the first three PC together capture nearly 80% (77.4%) of the 

data variability in Table 7.1. Interestingly, we can see that A3 is anti-correlated with τ2 and 

τ3, which indicates that the smaller the contribution of A3 is, the higher the τ2 and τ3 decay 

times will be and vice-versa. The anti-correlation between A3 and τ3, indicates that, the 

higher the contribution of this short component (A3) to the excited state is, the faster is the 

decay (τ3). This is an important observation since τ3, and especially the contribution of this 

decay time to the excited state population (A3 values), are parameters that highly decrease 

the Qf.  

Figure 7.4. Principal component analysis. (a) Plot showing the scores for each RSFP “On 

fluorescent state” on PC1 and PC3. (b) Loadings of the spectroscopic parameters on the 

same principal components as in a, representing the so called biplot figure. Gray dashed 

circle represents the 95%confidence level of the points represented in each panel. Notice that 

even though the dashed circumference seems to be a circle, is indeed an ellipse as the size of 

the axes are not identical. Figure made with matplotlib python package. 
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Considering the representation of the RSFP proteins in the PC1-PC3 space, we can conclude 

that WT V151A, V151L and the proteins close to them have high contribution on the 

emission decay of non fluorescent species (A3) and a low contribution of A2, which results 

in a relatively high Qf. Fluorescent species contribution (A1) increases and becomes the 

major population in the emission decay. On the other hand, a mutation of the Ser206 by a 

amino acid with a non-polar side chain increases the intermediate lifetime (A2) contribution. 

Finally, through this representation, we can see that the E223Q mutants have a high 

contribution of A3 and I3, indicating that decays mainly via the non fluorescent species (high 

values of A3), in agreement with a low fluorescence quantum yield (Qf). A similar 

conclusion can be deduced for the triple mutant H149F-T204A-S206N. An interesting 

difference between the representations of the RSFP variants in the PC1-PC2 (Figure 7.3a) or 

the PC1-PC3 (Figure 7.4a) spaces is the T204A and T204V. We can see that, whilst they are 

close in the first space, they are separated in the second. This can mainly be explained by 

their similitudes in the absorption and Stokes shifts, but the differences in the non-fluorescent 

(A3) contributions. Furthermore, while the T204A has a high non fluorescent contribution, 

the T204V does not. Overall, we can see that mutating the S206 by an asparagine (N) 

increases the contribution of the fluoescent species (A1) which results in an increase of the 

Qf. On the contrary, we can see that the mutations of the T204 or the H149 by amino acids 

that cannot form an hydrogen bond to the chromophore makes the contribution of non 

fluorescent species (A3) and A2 (intermediate life time) to significantly increase, 

respectively. Therefore, we can see a decrease of the Qf for these mutants. More analysis will 

be done by adding X-ray structure of the different proteins (under progress)  

7.2.1 Characterization of switching properties for selected variants 

After identifying the mutations that allow us to control the different contributions to the 

excited state populations in rsEGFP2, a selection of these variants and several combinations 

with each other, were selected. Off state spectra and On to Off switching yield for these 

variants were measured (highlighted in green in Table 7.1; E223Q which is still currently 

under progress). For all the variants highlighted in green in Table 7.1, the Off state spectrum 

were recorded and the thermal back reaction measured. The results of these measurements 
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can be seen in Table 7.3 and the absorption and emission spectra in Figure 7.5. For some of 

them, the photoswitching quantum yield of On to Off could be determined. 

The absorption spectra in Figure 7.5 were recorded in a Cary3500 spectrometer, except for 

H149F-T204A and H149F-T204A-S206N which, due to the fast thermal recovery, were 

recorded with a CCD camera. As shown in Table 7.3, before recording the spectra in Figure 

7.5, the pH was adjusted according to the pKa values reported in Table 7.1 to displace the 

proton equilibrium and ensure that the main form is the cis anionic (On form). After 

switching the proteins to the Off state, we could see the formation of a positive band around 

400 nm for all the variants.  Interestingly, a second band over 515 nm is formed for H149F-

T204A, which became clearer for H149F-T204A-S206N. Moreover, if the H149F Off 

spectrum is analyzed in detail one can see a small increase of the absorption in the 515 nm 

region. For these variants the two bands formed (≈400 nm and ≈515 nm) are assigned to 

trans-neutral (blue maximum) and trans-anionic (red maximum) forms. The existence of a 

trans anionic form is due to the basic pH used for these measurements. This band is similar 

to the TRUV-Vis flash-photolysis spectra recorded at 1 µs excitation after correcting for the 

GSB shown in the previous chapter Figure 6.11, which has also a red-shifted maximum in 

respect to the cis-anionic form. Therefore, these results support the assignment done in 

Chapter 6 where the first ground state after excitation was assigned to a trans-anionic 

chromophore. 

Interestingly, the mutation T204A showed a unique feature among the nineteen mutants 

studied. There is a difference in the emission maximum with the excitation wavelength. In 

fact, when the mutant is excited at 450 nm, the fluorescence maximum is at 501 nm, while 

when excited at 470 nm, the fluorescence maximum is red shifted to 507 nm. This result are 

attributed to different cis ground state conformers and reminds to the two emission maxima 

for A and B avGFP forms10. Finally, it is worth mentioning the low molar absorption 

coefficients values for the H149F-T204A-S206N and H149F-T204A mutants. Note that the 

absorbance of the cis anionic form is decreasing with increasing pH. In the future one should 

measure the dependence of the switching properties with the pH. 
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Table 7.3. Off state properties of rsEGFP2 variants highlighted in Table 7.1. 

 pH  

Abs ON 

λmax / 

nm /(M-1, cm-1) 

Abs Off 

λmax /  

nm /(M-1, cm-1) 

Fluo λmax 

Exc 450 

nm 

Fluo λmax 

Exc 470 

nm 

Thermal 

recovery 

 

Фs (%) 

On-Off 

 

V151A

-S206N 
8 486(55309) 405(24273) 502 503 38.2 h 0.60 

S206N 8 485(66614) 405(26262) 501 502 3.31 h 0.39 

rsEGF

P2 
8 483(67210) 408(26443) 501 502 1.81 h 0.40* 

H149F 10 496 405 505 507 
3.7, 84.7 

min 
- 

T204A 10 501(95227) ** 400 (20921) ** 501 507 71 s 0.20 

H149F-

T204A 

11.

5 

400/482 

(4160/9707)** 

396/515 

(-/4298)** 

506 506 
130, 389 

s 
2.5 

T204A-

H149F-

S206N 

11.

5 
482(1690)** 513(787)** 506 504 183 s 38.1 

*Note the value for WT is different than that reported in chapter 4, as this value is obtained 

from only fitting the On to Off data sets and that in chapter 4 from globally fitting the On to 

Off and Off to On. Therefore, results in chapter 4 is much more reliable. 

** Molar absorption coefficient values are determined by comparison to WT using the 

absorbance at 280 mn, and not by denaturation. 
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Figure 7.5. Absorption spectra of On (blue) and Off (orange) forms together with the 

fluorescence (red) of the different rsEGFP2 variants. (a) WT, (b) S206N-V151A, (c) S206N, 

(d) H149F, (e) H149F-T204A-S206N, (f) ) H149F-T204A and (g) T204A. Figure made with 

matplotlib python package. 
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To determine the thermal recovery, starting from the photo-stationary Off state, we monitored 

the absorption maximum of the On and Off states for the different variants. The recorded 

traces for all the variants were then fitted with either a single or a double exponential function 

to recover the On state. (the traces and fits can be seen at the end of the chapter in Figure 7S-

4). For H149F-T204A and H149F-T204A-S206N, we monitored the spectra between 320 

and 620 nm to ensure a better study of the trans neutral and trans anionic forms of these two 

variants. In both cases, the recorded spectra were globally fitted with a single or double 

exponential function. The results for these two variants can be seen in Figure 7.6. 

Figure 7.6.(a) and (c) Spectra recorded during the thermal back reaction of the rsEGFP2 

variants H149F-T204A and H149F-T204A-S206N respectively. The proteins were initially 

irradiated to reach the photostationary Off state with a 490 nm LED (Thorlabs). (b) and (d) 

correspond to the decay associated spectra obtained from the global fit of the data in panels 

(a) and (c) respectively. The corresponding traces and fits can be seen at the end of the 

chapter in Figure 7S-3. Figure made with Ultra pyfit. 

Remarkably, the thermal back recovery time constant showed a wide range of values among 

the variants. The mutation S206N (3.31 h) barely affects the thermal recovery as this variant 

has relatively similar time when compared to the WT (1.81 h), similarly the S206N-V151A 

(38.2 h) and the V151A (40.3 h) thermal recoveries are also comparable. On the contrary, all 
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the other variants exhibit much faster recovery times (several seconds) except for H149F 

which had two clear recovery times of 3.7 and 84.7 minutes. The fastest recovery time was 

found for T204A, being 71 s. Finally, at least two times were needed to correctly fit the traces 

of H149F-T204A, while only one was needed for H149F-T204A-S206N. Although in these 

mutants two bands at around 400 nm and at 515 nm are formed after irradiation, which can 

be attributed to the trans anionic and neutral forms respectively, it is clear that only one time 

constant is needed for H149F-T204A-S206N (Figure 7.6b,d). Moreover, and even though 

two times constants were needed to fit the H149F-T204A data, the spectral signature of these 

components in Figure 7.6a, reveals that the evolutions of the anionic and neutral trans forms 

occur concomitantly and in identical times, and thus the two time evolutions cannot be 

attributed to either the neutral or to the anionic form but to both of the conformers. After 

determining the thermal back reactions and the molar absorption coefficient for all the 

variants, it was possible to measure the On to Off photoswitching quantum yield. The 

procedure has been explained in chapter 4.5. For these mutants, the On to Off photoswitching 

experiment did not represent any problem. On the contrary, due to the fast recovery of the 

Off state, the Off to On measurements could not be accurately recorded for several mutants. 

Therefore, for all these mutants only the On to Off photoswitching quantum yield was 

calculated. The results are shown in Table 7.3, and the fitting results can be seen in Figure 

7.7 (note that the H149F and E223Q variants have not been measured yet).  

It is important to mention that the value for WT reported in Table 7.3 is different than the 

one reported in chapter 4, obtained from globally fitting the On to Off and Off to On together. 

This difference shows the complexity of these measurements, especially when determining 

values that are under 1% for switching yield, where the errors in the determination of thermal 

back reaction and the molar absorption coefficient are added to those intrinsic of the 

measurement and those of the fit. Nevertheless, we can see that whilst all the single point 

mutations have similar values to the one obtained for the WT, the H149F-T204A and H149F-

T204A-S206N have increased switching quantum yields of over 10 and 100 times, 

respectively. These values are correlated with a high contribution of the non fluorescent 

species. Finally, it is worth mentioning that the extremely fast thermal recovery of the T204A 

variant causes the absence of formation of the Off form, as shown in Figure 7.7b 
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Figure 7.7. On to Off (blue) profile concentrations obtained from the continuous irradiation 

experiments together with thecorresponding fits (red) to equation 4.10 for the different 

rsEGFP2 variants. (a) WT, (b) T204A, (c) S206N, (d) S206N-V151A, (e) H149F-T204A and 

(f) H149F-T204A-S206N. Figure made with matplotlib python package. 
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7.3 Correlations between structure and properties 

In this chapter, the On state of nineteen rsEGFP2 variants have been spectroscopically 

studied, and their fluorescence intensity decay recorded. In the previous chapter, the different 

exponential decays were attributed to at least two well-defined ground state conformers of 

the protein in the cis anionic On form. The heterogeneity is attributed to different hydrogen 

bond patterns of the phenolate with a structural water and residues of the protein cage. From 

the PCA analysis performed on the values in Table 7.1, several principal components were 

obtained. The representation of the different variable loadings in the PC1-PC2 space reveal 

the correlation between (Qf) and other variables. Particularly interesting is the correlation 

with A1 (fluorescent species) and its anti-correlation with A2 and A3 (non fluorescent 

species, Figure 7.2b) which manifest that the only way to increase the Qf is by decreasing 

competing non-radiative decay paths (i.e.: indirectly increase A1). The representation of the 

different mutants in the PCA space reveals that there are two main areas that exhibit different 

behaviours: either the S206-E223 region, and the H149 and T204 region (Figure 7.2). 

Nevertheless, similar variants with same amino acid being mutated give different 

photophysical properties and are in completely different areas in the PCA space. This points 

that the photo-physical properties of the final substituent and the new possible interactions 

with the chromophore are more important than the mutated position and thus difficult to 

predict. 

The S206-E223 area: the proton relay 

As already discussed in the introduction, the first area (S206-E223) represents one of the 

most studied amino acids in the avGFP protein family as they are involved in the proton 

relay. Already since the first X-ray avGFP structure11, represented in Figure 3.2 and 3.10 

(chapter 3), the origin of fluorescence in avGFP was attributed to the proton transfer of the 

phenolic proton via an ESPT12 through a chain starting from a water molecule close to the 

phenyl ring, followed by the S206 and from there to the glutaminic acid (E223)13,14. The 

mutation of the E222 (E223 in rsEGFP2) by a glutamine (Q) renders the avGFP non-

fluorescent15. Our results in the E223Q variant reveal that, although the fluorescence is not 

completely lost, it is drastically reduced. We can clearly see from the values in Table 7.1 that 

this decrease of fluorescence is provoked by an increase of the non fluorescent species (A3) 
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population with the corresponding reduction of the population of fluorescent species (A1). 

This decrease of Qf is further stressed by the decrease of the average excited state lifetime. 

The second rsEGFP2 variant with a mutated amino acid in this area is the S206N. 

Interestingly, for the two variants S206N and V151A-S206N, we can find the highest 

populations for the fluorescent species (A1) among all the twenty (nineteen variants + WT) 

studied proteins. Furthermore, we can also find the highest lifetime for intermediate species 

(τ2). This explain the highest Qf values for V151A-S206N followed by the S206N. 

Structurally, this can be correlated with a stabilization of the proton relay between the 

chromophore and the E223, leading to a more stable environment around the chromophore 

attributed to a stronger steric hindrance of the asparagine (N) side chain compared to the 

serine (S). It is worth noting that other RSFPs derived from avGFP as rsEGFP16 or rsGreen17 

have an asparagine at 206 positions. Interestingly, when S206 is mutated to an alanine or a 

valine, we can see a clear decrease of the Qf, which is explained by an increase of the 

intermediate lifetime contribution. These two amino acids cannot form a hydrogen bond with 

the water molecule, and therefore the classical proton relay is broken. These two mutations 

reveal the importance of the position 206 as a key connector between the chromophore and 

the E223. In fact, studies in the avGFP have shown that the back proton transfer from I to A, 

occurs via a deep proton tunnelling where the S206 plays a major role18. Moreover, previous 

studies on similar mutants in the EGFP S206A19 and S206V20 have shown that an alternative 

proton transfer pathway is formed involving the chromophore hydroxyl, a bridging water 

molecule, T204 and E223. This alternative path has a slower proton transfer, explained by 

the long (∼3.2 Å and presumably weak) hydrogen bond, between T204 (T203 in EGFP) and 

the water molecule, compared to the 2.7 Å normal hydrogen bond between the water 

molecule and S206 (S205 in EGFP)19,20. Regarding the double variant E223Q-S206N, one 

may expect a mixture effect between the increase of Qf caused by the S206N mutation, and 

a decrease provoked by the E223Q mutation. Interestingly, the E223Q-S206N variant has the 

lowest Qf of all nineteen variants studied. The influence of multiple mutations resulting in a 

more substantial negative effect than the sum of individual mutations have already been 

reported21.  
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The H149-T204 area: Quinoidal form 

The T204 mutation has also been previously studied and, indeed, corresponds to the Type-

III (chapter 3) classification done by Tsien in 199810. In general, this mutation causes a red-

shift of the absorption maxima. In the avGFP family, the T204 is an important amino acid as 

in the crystal structure of monomeric wild-type GFP, T204 has two conformations: with the 

OH facing away from the HBDI phenol oxygen (85 %), and 15% with the OH rotated towards 

it11. This rotation was attributed to the photoconversion of neutral to anionic forms12 (Figure 

3.10 in chapter 3). Furthermore, in the EGFP, Gosh et al4 revealed that the On state is formed 

by three ground state conformers, two fluorescence attributed to the different conformations 

of the E222, and one non-fluorescence attributed to the rotation of the T204. The variants 

with the T204 mutated, have the expected red-shifted absorption maximum when the T204 

is the single mutation, and the mutated amino acid have a non-polar carbon side chain 

(T204A and T204V) but not when it is mutated to another amino acid with a polar side chain 

able to still form a hydrogen bond with the HBDI (T204N and T204S). An interesting feature 

of the T204A variant is that it has the major A3 (short decay) contribution to the excited state 

lifetime (Table 7.1 A3 value) with nearly 60% (except for the triple mutant H149F-T204A-

S206N with 64.5 %). Furthermore, this variant also displays the fastest thermal back reaction 

(nearly in less than a minute). Jung et al22 reported the T204V mutations in avGFP and 

attributed the absorption red-shift to the formation of the quinoidal form of the chromophore 

(Figure 7.8). As described in the introduction (Chapter 3, Figure 3.12), the HBDI 

chromophore can be treated as mixed valence compound that can either have the charge on 

the oxygen of the phenol group or on the oxygen of the imidazolinone moiety. Using the 

Marcus−Hush theory for mixed-valence compounds23 for electron transfer, the Stokes shift 

has been perfectly correlated with the absorption maxima by S. G. Boxer and coworkers24. 

The Stokes shift in the proteins is related to a charge transfer in the excited state, which 

displaces the charge from the imidazolinone to the phenol group. Interestingly, in a quinoidal 

HBDI form, this displacement is already done22. The HBDI phenol group forms three 

hydrogen bonds with the protein cage in rsEGFP2, these are with the T204, the H149 and a 

water molecule. Our results with the different T204 variants demonstrate that out of these 

three hydrogen bonds, the HBDI-T204 interaction is the one stabilizing the benzoidal form 

(Figure 7.8) versus the quinoidal form.  
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Figure 7.8 Benzoidal and quinoidal mesomers of the HBDI chromophore in its deprotonated 

form. Figure done with Inkscape. 

Finally, the H149F variants also have important differences as the histidine interacts directly 

through a hydrogen bond (2.82 Å) with the HBDI phenolate, helping to stabilize the cis 

conformation. The introduction of a phenylalanine at this position breaks this interaction as 

the apolar aromatic chain cannot form an hydrogen bond with the chromophore. This variant 

also displays a red-shift in the absorption spectra, which can be attributed to the same 

stabilization of the quinoidal form as for T204A and T204V. In fact, when represented in the 

PC1-PC2 space, where PC-2 is mainly affected by the absorption maximum and Stokes shift 

values, the H149F variant is the closest variant to the T204A and T204V. Furthermore, the 

mutation of the histidine by a phenylalanine increases the intermediate lifetime population 

A2. It is worth noticing that this variant is the only one from the nineteen studied that has 

two clear separate thermal recovery times with two different time constant of 3.7 and 84.7 

minutes. The reason behind these two different thermal recovery times is still elusive. 

Multiple mutations: 

Due to their spectroscopic properties of the double and triple mutation, H149F-T204A and 

H149F-T204A-S206N are quite different when compared to the single point mutation 

variants. What makes these two variants particularly interesting is the fact that two direct 

hydrogen bonds established in the WT are suppressed, which leads to an increase of the pKa 

values for both variants. For the H149F-T204A variant, the absorption spectrum in Figure 

7.5f and 7.6a has important contributions at between 390-440 nm. This reveals that the On 

ground state of this variant is formed by at least two different forms, where the major 

contribution is a cis anionic form (480 nm), and the band at 400 nm represents at least one 

neutral (probably trans) form. The high absorbance values between 420-440 nm may indicate 
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that more than one trans neutral conformer populates the On state. Contrary to the rest of 

variants after irradiation, we can see the rise of a band at around 515 nm which is attributed 

to the trans anionic form of the chromophore, together with a not so prominent raise of the 

band at around 400 nm corresponding to the trans neutral form. For this variant, two time 

constant were needed to fit the thermal recovery. From the associated spectra in Figure 7.6a,c 

it is clear that the evolutions of the anionic and neutral trans forms occur concomitantly and 

with identical times, and thus the two evolutions times cannot be attributed to either the 

neutral and anionic form, but rather to both states. On the contrary, for H149F-T204A-

S206N, we can only see a clear band at 483 nm, suggesting that the ground state is only 

formed by a single cis anionic chromophore. Similar to the H149F-T204A, after irradiation 

we can see the formation of a band a 515 nm which is also attributed to the trans anionic 

form. Interestingly, these variants have very low Qf values. This is not a surprising result as 

it has been demonstrated that the origin of the HBDI chromophore fluorescence is the 

electrostatic interactions of the chromophore with the protein cage preventing it to going 

under ultrafast internal conversion (IC) via cis-trans isomerization after excitation, which is 

the case of the HBDI in soltuion25–29. Blocking the IC for example at very low temperatures 

77 K27,30 and encapsulated in non-protein scaffolds31,32 makes the chromophore fluorescent 

again. Therefore, it is also not surprising that these two variants have the highest On to Off 

photo-switching quantum yield (IC process) of all the studied variants and low Qf (shown in 

Table 7.3.) as several interactions between the HBDI and the protein cage are broken. 
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7.3 Conclusion. 

This chapter summarizes the main spectroscopical characterization of nineteen different 

rsEGFP2 variants, containing up to three single point mutations, and all concerning amino 

acids close or directly hydrogen bounded to the HBDI. For all the studied variants, the 

chromophore adopts in the resting state a cis anionic conformation which is the fluorescent 

form. The TCSPC results confirm that the ground state is composed of at least two different 

conformers and that at least three times constants are needed to fit the fluorescent decay 

recorded for all twenty variants. It is important to note that τ2 and τ3 are highly positively 

correlated and make their analysis within the 20 proteins difficult. The PCA analysis revealed 

that the Qf is correlated with the population of the fluorescent species A1 and anti-correlated 

with A2 and A3 (non fluorescent species). According to the PCA analysis, we have identified 

two important areas near to the HBDI chromophore: either the S206-E223 involving changes 

in the proton relay between the HBDI phenol and the E223, and the H149 and T204 area 

which causes changes in the ground state of the chromophore stabilizing the HBDI into its 

quinoidal form. From the PCA analysis we can conclude that the quinoidal form increases 

the population of the non-fluorescent species (A2 and A3) respectively decreasing the 

fluorescent quantum yield. On the contrary, the S206N mutation drastically increases the 

population of the fluorescent species which we have tentatively attributed to a stabilization 

of the chromophore cause by the steric hinderance of the asparagine. Therefore, as a main 

conclusion, we can say that from all the twenty studied proteins (nineteen variants + WT), 

the combination of the S206N mutation, together with the V151A mutation (S206N-V151A 

variant) is the most interesting one to test in cells and then explore its possibility as a new 

fluorescent probe in RESOLFT. Finally, it should be mentioned that the ensemble of our 

results reveals important differences between variants with new apolar amino acid side chains 

which cannot form any electrostatic interaction with the chromophore and those that can still 

form or even strengthen the interaction (e.g., comparison between S206N and S206A) 

demonstrating that the behaviour of the final substituent and the new possible interactions 

with the chromophore are more important than the mutated position. 
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7.4 Supporting Figures. 

Figure 7S-1. Principal component analysis. (a) Plot showing the scores for each RSFP “On 

fluorescence state” on PC1 and PC4. (b) Loadings of the spectroscopic parameters on the 

same principal components as in (a), representing the so called biplot figure. Gray dashed 

circle represents the 95%confidence level of the points represented in each panel. Notice that 

even though the dashed circumference seems to be a circle, is indeed an ellipse as the size of 

the axes are not identical and PC1 direction (x axes) is indeed much bigger than the PC4 

axes, as is logical from the ratio of variance explained by each component. Figure done with 

matplotlib python package. 
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Figure 7S-2. Loadings of the spectroscopic parameters of the first four principal components. 

PC1 top-left, PC2 top-right, PC3, bottom-left and PC4 bottom-right. Notice that the first 4 

PC explain nearly 90% of the Table 7.1 parameters variance. Figure done with matplotlib 

python package. 

 

 

Figure 7S-3. bottom panel: Resulting fit of sum of exponential decay function in red and raw 

decay traces for the thermal recoveries sets recorded for H149F-T204A and (a) H149F-

T204A-S206N (b). Top panel: the residues of the fit which are the differences between the fit 

and raw data. Figure done with Ultra Pyfit. 
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Figure 7S-4. Thermal recovery trace of Off (blue) and On (orange) absorbance maxima 

together with fitted traces (red) of the different rsEGFP2 variants. (a) WT, (b) T204A, (c) 

S206N, (d) S206N-V151A and (e) H149F. Figure done with matplotlib python package. 
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7.5 Python 3.7 simplified code for PCA analysis: 

import pandas as pd  

import numpy as np 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

from matplotlib.patches import Ellipse 

 

#import data 

File = './Sumary preoperties On form3.txt' 

Data = pd.read_csv(file, delimiter='\t', index_col=0).dropna(axis=1) 

 

#Calculate Stokes shift in cm-1 

data['Stokes Shift'] = abs(10**7/data['Fluo peak']-10**7/data['Abs   

                   peak']) 

 

data=data.drop(data.dtypes[data.dtypes=='object'].index, axis=1) 

 

#instantiate Standar scaler 

scaler = StandardScaler() 

 

#instantiate PCA 

pca = PCA() 

 

#Standarize data 

data2 = pd.DataFrame(scaler.fit_transform(data)) 

 

#Fit PCA 

pca.fit(data2) 

 

#Transform original data into PCA spacae 

data_pca = pd.DataFrame(pca.transform(data2)) 

 

data_pca.index = data.index 

 

#Explore results and variance explained 

explained_var = pca.explained_variance_ratio_ 

data_pca.columns = [f"PC{i}" for i in range(1, data_pca.shape[1] + 1)] 

 

print(pca.explained_variance_ratio_.cumsum()) 
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8 Conclusions and perspectives 

In this work, we employed electronic and vibrational TR absorption spectroscopy from the 

femtosecond to the minute time scales to study the photodynamics of wild-type rsEGPF2, 

and two variants V151A and V151L, which are negative RSFPs having as origin the avGFP. 

The time-resolved transient absorption spectroscopy experiments have been combined with 

time-resolved crystallography results obtained by our collaborators (Martin Weik group 

IBS). These two approaches have allowed inferring the photoswitching mechanism of 

rsEGFP2 and its variants. We will discuss our results regarding the different objectives raised 

at the beginning of this PhD (chapter 3) and give also some perspectives. The first objective 

of the PhD was to determine the steady-state photophysical properties of rsEGPF2, 

V151A and V151L. The most relevant result is the Off-to-On photo-switching quantum 

yields of 11, 12 and 14% that were determined for WT, V151L and V151A, respectively 

(Chapter 4). Such small differences are reflected in similar isomerization mechanism. 

Rationalizing the Off to On isomerization mechanism was the main query of the PhD. 

Based on the new results described here, we can now propose detailed isomerization 

pathways for both HT (trans 2) and OBF (trans 1) Off trans neutral forms (Figure 8.1). The 

excitation of the HT and OBF Off forms triggers an excited-state isomerization to a cis 

chromophore within a few picoseconds via a twisted excited state1. The nearly identical 

characteristic time constants for the isomerization steps of V151A and V151L demonstrates 

that both have similar isomerization mechanism and this being the HT as the V151L cannot 

isomerized via an OBF mechanism. After excited-state de-activation, the mechanisms differ. 

For V151A there is an evolution in the ground-state in around 83 ps, which from the X-ray 

structures, is associated to the movement of the Tyr146 which breaks its hydrogen bond with 

the His149 and relocates to the On cis final position, allowing thus the rotation and movement 

of chromophore to the final On cis form. This step is in agreement with an OBF isomerization 

product formed via an aborted HT mechanism. The resulting photoproduct (cis protonated 

chromophore) remains stable until 100 ns. The next evolution seen by TRMPS is attributed 

to the protein cage relaxation in few hundreds of ns for both V151A and V151L, due to the 

absence of spectral changes in the UV-vis data. This is followed by the movement of the His-

149 to its final position which triggers a two-steps deprotonation in the µs-ms range.  
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Figure 8.1. Schematic representation of the different Off to On photoswitching mechanisms 

for V151A (a) and V151L (b) rsEGFP2 variants. Figure made with Inkscape. 
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Moreover, our results could demonstrate that the rsEGFP2 WT transient absorption spectra 

can be seen as a mixture between the excited state dynamics of V151L and V151A. The same 

conclusion can be done from the steady state absoption spectra. Thus we can conclude that 

the Off ground-state heterogeneity seen in rsEGP2 microcrystals seems to be 

maintained in solution. This answers the ground state heterogeneity question opened in 

Chapter 3.  

Finally, in chapter 5, the Off to On photodynamics of rsEGFP2 in solution and 

microcrystals have been compared. Interestingly a red-shift of the bands corresponding to 

the ESA and SE signal can be seen for microcrystals spectra compared to those in solution. 

These results indicate that the crystal phase modified the potential energy surface of the 

protein. On the contrary, no difference has been found in the Off neutral excited state 

dynamics of rsEGFP2 WT in crystal and solution; both data sets were fitted with two-time 

constants 0.6 ps (0.88 ps solution) and 5.59 ps (4.74 ps solutions). Surprisingly, clear 

differences have been found in the ground state dynamics, especially regarding the 

deprotonation steps, which have been found to be much faster in crystal than in solution. 

Nevertheless, these could be explained by the crystallization agent used (NH4)2SO4. Further 

analysis, has identified the NH4
+

 as the responsible cation for the accelerated deprotonation 

step.  

As discussed in chapter 2, the search of the existence of intermediate excited state during the 

cis-trans isomerization has been an important research topic throughout the last 50 years. 

Protein crystals are formed by about 50% of water molecules where side chains and 

secondary structures can move, which translates into protein crystals still been biologically 

active2. On the contrary crystallized organic molecules are rigid and not photoactive. 

Therefore, RSFPs such as V151A and V151L may be the only way to find and investigate, 

using TR-SFX, the different structures of excited state intermediates for HT and OBF 

primary isomerization steps. Thus TR-SFX experiment targeting the subpicosecond 

intermediates should be a future target. 

To investigate species that control the fluorescence and cis-trans isomerization in 

rsEGPF2 was another goal of this project. In chapter 6, the photodynamics of rsEGFP2 

On state has been presented. From the results presented, we confirm the presence of two main 
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ground state conformers for the protein On cis anionic state. These two ground state species 

have two different lifetimes, a short one of about 200 ps, which is also observed in rsFolder 

and rsFolder 2 (Figure 6.1). The second component is the long live fluorescent excited state, 

which takes of account of ~90% of the fluorescence. The TRMPS data and the comparison 

of the two main components with TR-SFX experiment and quantum mechanics calculations 

allow the attribution of these two ground-state conformers to different orientations of the 

water molecule in front of the chromophore (HBDI) phenol group. Since no difference has 

been found in the excited state dynamics of microcrystals, the TR-SFX structures at 10 ps 

and 1 ns after excitation can be used to get the structure of non fluorescent and fluorescent 

species. The structure at 1 ps (non fluorescent species) shows that the water molecule is 

hydrogen bonded to the Asn147 and the Ser206. While at 1000 ps (fluorescent species) the 

water molecule is hydrogen bonded to the HBDI phenolate and the Ser206. Therefore, the 

chromophore-Glu223 connexion via a proton relay, same as in avGFP, is broken in the first 

structure while established in the second. Overall the chapters 5 and 6 highlight the 

combination of TR-SFX results and ultrafast optical spectroscopies (UV-Vis-IR) to 

investigate photoactive biological systems. 

Ultimately, the rsEGFP2 microcrystals and protein in solution have been compared. In both 

cases the excited state dynamics is composed of mainly two components, a short one <200 

ps non-fluorescent and a long one with different decay times in crystal and solution. The 

differences of the long components in solution and crystals have been tentatively attributed 

to the chromophore environment in the microcrystals. On the contrary, in solution, the 

chromophore has enough space to adopt a planar excited state conformation, allowing it to 

decay with either 500 ps or via a long-lived excited state 2.8 ns. The origin of these two 

fluorescent components might be the same as those of the EGFP which is the rotation of 

T2043. Finally, after the decay to the ground state, the ns transient absorption spectroscopy 

experiments with relatively high S/N ratio compared to the TRMPS data, and performed in 

H2O and D2O, allows us to study the ground state switching dynamics. From the spectra in 

Figure 6.15, we show that after isomerization, at 1 µs, the transient spectra has a maximum 

of absorption at 500 nm, which is unequivocally attributed to the trans anionic chromophore. 

The significant isotopic effect (kH/kD= 1.5) reveals that this transient specie gets protonate in 

about 24.14 µs forming the final Off trans neutral form. This is the first-ever observed GSPT 
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from the On to Off state in an RSFP. Pump-dump experiment could confirm that the short 

lived excited state is the precursor of the final trans neutral photoproduct.  

Moreover, the thesis also deal with the photo-physical properties of nineteen other variants 

of rsEGFP2 (Chapter 7, Figure 7.2). From this study, we can confirm the existence of 

different ground states with different fluorescence lifetimes with one order of magnitude of 

difference (100 ps vs 2 ns). From all the nineteen studied variants the most interesting one to 

test its expression in cells and then explore its possibility as a new fluorescent probe in 

RESOLFT is the rsEGFP2 S206N-V151A variant. The study is still ongoing. Overall, the 

outcomes of these studies will contribute to a better understanding of the photo-physics of 

RSFPs but more particularly into negative RSFP. Finally, they should open newer 

perspectives towards the design of optimized RSFPs for advanced bio-imaging application.  

This thesis has study rsEGFP2, which is a negative RSFP. Nevertheless, although these 

proteins represent the major group among the RSFP proteins, and practically all RESOLFT 

implementations are based on them, they have several practical disadvantages compared to 

positive RSFP when applied in microscopy. The main one is that when excited they emit 

fluorescence and get deactivated at the same time. Therefore, during the readout in 

RESOLFT, they will turn Off, and consequently, if the number of collected photons is low, 

they need to be switched back to their On fluorescent state, and the RESOLFT excitation-

deexcitation sequence repeated7. Positive RSFP have the advantage that fluorescence and On 

switching are trigger by the same excitation wavelength, during readout, they get switched 

to the On state. Therefore, they overcome the problem and simplify the RESOLFT sequence 

of pulses. Currently, to my knowledge, all positive RSFPs are derived from Dronpa, and only 

the photodynamics of Padron has been partially studied. Therefore the study of new positive 

RSFP as Padron27 should be a priority to understand the sequence of events that control 

photodynamics and switching events of the positive RSFPs which can open new paths for 

the development of new positive RSFPs with other origins than Dronpa. 
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Appendix 1. Materials and methods 

 

This appendix contains relevant information for the majority of experiments and setups used 

to acquire the data described in this thesis. Here, detailed descriptions of the different setups 

can be found as well as different procedures and preprocessing used in the analysis of the 

data acquired. The appendix is organized as follow: 

• Short description of sample preparation. 

• Description of time-resolved setups in LASIRE (France). 

• Short description of time-resolved experiments done in Japan at Miyasaka’s 

laboratory. 

• Short description of time-resolved experiments done in England in the ultrafast laser 

laboratory. 

• Description of time steady-state FTIR measurements. 

 

A.1.0 Sample preparation 

rsEGFP2 samples were expressed and purified by researchers in the IBS (Ninon Zala and 

Kyprianos Hadjidemetriou) as described previously1–3. Briefly, rsEGFP2 proteins fused to 

an N-terminal polyhistidine tag were expressed in E. coli BL21 (DE3). After cell lysis, the 

fluorescent proteins were purified by Ni-NTA affinity chromatography followed by size 

exclusion chromatography using a HiLoad 16/600 Superdex 75 column (GE Healthcare, 

Freiburg, Germany). The purified proteins were concentrated by ultrafiltration and 

equilibrated in buffer solutions (50 mM NaCl, 50 mM HEPES pH 8). Deuterated samples 

were prepared by exchanging the storage buffer with the same deuterated one (50 mMol 

Hepes, 50 mMol NaCl and pD 8), using 10k-Da concentrators. The process was done three 

times to ensure 99.9% of D2O3. I personally only participated one week in the purification 

of V151L sample and deuteration of small samples. 
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A1.1 Pump-probe fs-ns transient absorption spectroscopy 

A1.1a System description 

Time-resolved transient absorption spectroscopy in the fs-ns range system uses fs laser pulses 

as pump and probe beams. The system in LASIR4,5 consists of fs Ti: sapphire laser pumped 

by an Nd: YVO4 continuous laser with 4.5 mW power (532 nm). This Ti: sapphire laser 

produces pulses of 180 nJ energy, 100 fs width centered at 800 nm, with a repetition rate of 

76 Mhz. These Laser pulses are stretched, further amplified and finally recompressed in a 

regenerative Ti: sapphire amplifier pumped with an Nd: YFL laser. The delivered laser pulses 

at the output of the amplifier have around 100 fs pulse width, 0.9 mJ energy and are centered 

at 800 nm. These fundamental 800 nm pulses are divided into two beams. Around 10 % of 

the pulse energy is focused in a 2 mm CaF2 rotating plate to generate the white light 

continuum probe beam. The remaining energy pulse is used to generate the pump pulse by 

focusing the 800 nm pulse into a BBO crystal to obtain the second harmonic 400 nm for the 

Off to On experiments and into an OPA (Palitra) to obtain 488 nm for the On to Off 

experiments. The polarization between the pump and probe pulse was always set at the magic 

angle (54.7°) to avoid anisotropy effects.  

TA spectra were recorded in the 320-710 nm spectral range at different delays after the 400 

nm pump excitation. The delay between the probe and pump pulses was obtained with an 

optical delay line. Each time delay spectrum is then averaged a certain number of frames 

(typically 1200). Each frame corresponds to 4 pump excitations pulses. Laser intensity 

fluctuations were corrected using a reference beam. Both beams, reference and signal, are 

recorded using multichannel spectrograph equipped with a CCD camera (Princeton 

Instruments). A CuSO4 solution was placed in front of the spectrograph to eliminate the 

remaining 800 nm laser pulse. The Rayleigh scattered light from the pump was suppressed 

using a Notch filter at the respective pump excitation wavelength (Semrock). Every 

experimental setup was controlled using a home-made LabVIEW interface program. The 

setup is illustrated in Figure A1.1. 



 

283 
 

Figure A1.1. Pump-probe transient absorption spectroscopy setup scheme. Figure made with Inkscape. 



 

 

The samples were placed inside a flow cell with 1 mm CaF2 windows and an internal 

thickness of 250 µm to refresh the probe volume (500 x 500 x 250 µm) between consecutive 

pump pulse. Due to the conversion of the samples to long lived photoproducts by the pump 

pulse, samples were irradiated in an external reservoir with a CW LED (Thorlabs), at 490 nm 

and 255 mW to keep the Off state concentration constant or 400 nm 100 mW home-made 

assembled LED to keep the On state concentration constant during the experiments. The 

sample volume for the total flow cell system is 2.75 mL; thus, in general, 3.5 mL volumes 

has been used. A schematic representation of the flow cell has been done in Figure A1.2.  

 

Figure A1.2. Flow cell used in TR-UVvis experiments to restore the photo-stationary Off 

state for Off to On experiment by illuminating an external reservoir. For On to Off 

experiments the restoring beam used was a home-made build 400 nm LED. Figure made with 

Inkscape. 
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A1.1b System characterization 

The correct alignment of the system is verified with a compound that generates a long live 

species that do not decay all along the measured times. The chosen compound was Tris 

(bipyridine) ruthenium(II) chloride, as it is a compound that can be easily dissolved in water 

[Ru (bpy)3]
2+

. This compound can absorb UV and visible light and is generally used as a 

reference in transient absorption spectroscopy6. In aqueous solution, the compound has an 

absorption band at 452 ± 3 nm with an extinction coefficient of 14,600 M−1cm−1. Excitation 

of this band provokes an almost instantaneous (sub-ps) metal to ligand charge transfer 

(MLCT) to a triplet state. As explained in the chapter “light and matter interaction”, triplet 

excited states are long live sates. The lifetime of this triplet MLCT state in water is 650 ns. 

Therefore, this compound is perfect for verifying the alignment of the setup from a few fs to 

around 2-3 ns delay times that can be achieved with an optical delay line, as there is no decay 

of the signal. Therefore, [Ru (bpy)3]
2+ spectra from 0-2 ns were recorded before the 

experiments. 

An example of an alignment experiment can be seen in Figure A1.3. For measurement that 

displayed fluctuations in the variation of absorption between 10 ps and 2ns, two main origins 

were identified: either a poor overlap between the pump and probe beams, or loss of 

continuum probe light at longer delay times. This is explained by the fact that at long delay, 

focused on the CaF2 plate can change due to misalignment of the optical delay line. 

In figure A1.3a for the spectrum at 0 ps (excitation 400 nm), two sharp peaks can be seen: 

one negative at around 460 nm and one positive around 350 nm. These two peaks correspond 

to the stimulated Raman amplification signal of the solvent (Stokes and anti-Stokes signal). 

From these signals, it is possible to retrieve the time resolution of the setup as they give the 

cross-correlation time between the pump and the probe beams. This measurement should be 

performed directly on the sample data when possible. In case these peaks signals are not 

visible in the data, a solvent measurement can give a reasonable estimation of it. 
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Figure A1.3. [Ru (bpy)3]
2+

 transient absorption spectra after GVD correction (excitation 400 

nm fs). a) Selected spectra from -1 ps to2 ns. b) Time traces at 366 and 450 nm. Figures made 

with UltraPyFit 
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The cross-correlation between the pump and the probe beam can be considered as the FWHM 

of the stimulated Raman amplification signal of the solvent peaks. To retrieve this value, the 

stimulated Raman peaks can be fitted to Gaussian function (Equations A1.1) since the laser 

pulses have a Gaussian profile. The FWHM is thus estimated from the parameters of the fit. 

𝑓(𝑥, 𝐴, µ, 𝜎) =  
𝐴

𝜎√2𝜋
𝑒[−(𝑥−µ)2/2𝜎2]    Equation A1.1 

Where the width of the function (σ) is related to the FWHM as follow: FWHM = 2√ln 2𝜎. 

In Figure A1.4 the Raman peak at 352 nm from Figure A1.3 has been plotted against time. 

After fitting this signal with a Gaussian function, the estimated FWHM was 190 fs. 

 

Figure A1.4. Early time evolution of kinetic trace at 352 nm for [Ru (bpy)3]
2+ excited by 400 

nm femtosecond pulse (in blue). In red, a fit to the data point between the two vertical blue 

lines with a Gaussian function. The estimated FWHM is 0.19 ps. Figure made with 

UltraPyFit. 
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A1.1c Data acquisition 

The signal at a chosen delay consists of a variation of absorbance between data collected 

when the pump is blocked and data when it is unblocked. Moreover, to correct the laser 

intensity fluctuation, not only the light from the sample (the point where pump and probe 

overlap, see Figure A1.1) is recorded, but also a laser reference beam. Finally, the 

background signals for each beam are also taken into account, with the particularity that also 

the pump beam can produce emission. All these datasets are stored in separate buffers and 

compared to each other when enough frames have been acquired. It is important to note that, 

due to the readout speed of the camera, each frame corresponds to four pump laser shot and 

not to a single one. The calculation of delta absorbance are shown in equations A1.2 and 

A1.3. 

𝛥𝐴𝑏𝑠(𝛥𝑡) = 𝐴𝑏𝑠𝑎𝑓𝑡𝑒𝑟 𝑝𝑢𝑚𝑝(𝛥𝑡) − 𝐴𝑏𝑠𝑏𝑒𝑓𝑜𝑟𝑒 𝑝𝑢𝑚𝑝(𝛥𝑡)   Equation A.12 

𝛥𝐴𝑏𝑠(𝛥𝑡, 𝜆) =  −𝑙𝑜𝑔 (
𝐼𝑠𝑎𝑚𝑝𝑙𝑒
𝑝𝑢𝑚𝑝 (𝜆,𝛥𝑡)−𝐼𝑠𝑎𝑚𝑝𝑙𝑒−𝑏𝑘𝑔

𝑝𝑢𝑚𝑝 (𝜆)

𝐼𝑟𝑒𝑓
𝑝𝑢𝑚𝑝(𝜆,𝛥𝑡)−𝐼𝑟𝑒𝑓−𝑏𝑘𝑔

𝑝𝑢𝑚𝑝 (𝜆)
) + 𝑙𝑜𝑔 (

𝐼𝑠𝑎𝑚𝑝𝑙𝑒
𝑁𝑜 𝑝𝑢𝑚𝑝(𝜆,𝛥𝑡)−𝐼𝑠𝑎𝑚𝑝𝑙𝑒−𝑏𝑘𝑔

𝑁𝑜 𝑝𝑢𝑚𝑝 (𝜆)

𝐼𝑟𝑒𝑓
𝑁𝑜 𝑝𝑢𝑚𝑝(𝜆,𝛥𝑡)−𝐼𝑟𝑒𝑓−𝑏𝑘𝑔

𝑁𝑜 𝑝𝑢𝑚𝑝(𝜆)
) 

Equation A1.3 

Each term corresponds to reference and sample intensities signals and background signal: 

𝐼𝑠𝑎𝑚𝑝𝑙𝑒
𝑝𝑢𝑚𝑝 (𝜆, 𝛥𝑡) : Intensity of the sample beam with the pump excitation. 

𝐼𝑟𝑒𝑓
𝑝𝑢𝑚𝑝(𝜆, 𝛥𝑡): Intensity of the reference beam with pump excitation. 

𝐼𝑠𝑎𝑚𝑝𝑙𝑒−𝑏𝑘𝑔
𝑝𝑢𝑚𝑝 (𝜆): Background signal with the pump excitation. 

𝐼𝑟𝑒𝑓−𝑏𝑘𝑔
𝑝𝑢𝑚𝑝 (𝜆): Background signal with pump excitation. 

𝐼𝑠𝑎𝑚𝑝𝑙𝑒
𝑁𝑜 𝑝𝑢𝑚𝑝(𝜆, 𝛥𝑡) : Intensity of the sample beam when the pump is blocked. 

𝐼𝑟𝑒𝑓
𝑁𝑜 𝑝𝑢𝑚𝑝(𝜆, 𝛥𝑡): Intensity of the reference beam when the pump is blocked. 

𝐼𝑠𝑎𝑚𝑝𝑙𝑒−𝑏𝑘𝑔
𝑁𝑜 𝑝𝑢𝑚𝑝 (𝜆): Background signal when the pump is blocked. 

𝐼𝑟𝑒𝑓−𝑏𝑘𝑔
𝑁𝑜 𝑝𝑢𝑚𝑝(𝜆): Background signal when the pump is blocked. 

The signals are recorded in a dual-channel CCD camera (1340 x 200 x 2). One channel 

detects the probe beam and the other the reference beam, and each channel records the 
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corresponding backgrounds. The dark background counts are recorded with pump and probe 

shutters closed. To take into account possible fluorescent emission and dispersion photons 

that this pulse might generate, a second background signal is recorded only with the pump 

pulse shutter open. These background signals are measured before and after the experiments. 

The rest of the signals are recorded at every delay time, where the pump pulse is blocked two 

times more than the probe pulse by the chopper (pump 57 Hz; probe 113 Hz), to take 

measurements without and with laser excitation. A home-made Labview software 

automatically controls the measurement acquisition. Once all the frames for the selected 

delay have been recorded, the optical delay is moved to collect the next time delay frames. 

 

A1.1d GVD correction. 

The phase velocity of a wave is related to the speed of propagation in a medium7. The speed 

is directly related to the diffractive index of the medium which can be expressed as a function 

of the wavelength or frequency of the wave. This phenomenon can cause different dispersion 

of light, which can be desired or non-desired. An example of a significant consequence of 

this effect is the change in the angle of refraction of different colors. This effect can be used 

to construct spectrometers. On the contrary, it also provokes the chromatic aberration in 

lenses. 

For the case of femtosecond pulses, the propagation of wave packets of the pulse is essential. 

Due to the Heisenberg incertitude principle8, these very short pulses have very large spectral 

widths (different wavelengths) as explained in chapter 2 “interaction of light and matter”. 

Therefore, these pulses have different frequency components which, when travelling through 

a dispersive media, have different propagation speeds. The ensemble effect produced is 

known as group velocity dispersion (GVD). This effect is even more pronounced for white 

light continuum pulses used as probe beams as they have a wider range of frequencies. As a 

consequence, the longer wavelength components of the white light continuum travel faster 

than the shorter wavelength when the pulse travels through a medium with positive group-

velocity dispersion. In general, this translates into a pulse becoming positively chirped. When 

travelling through a negative group-velocity dispersion media, the opposite occurs. The 
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dispersion media in the systems: i. lenses, ii. the filters, ii. the CaF2 plates to generate a white 

light continuum, iv. the window cells and v. the sample itself. All are positive group-velocity 

dispersive media and have a direct ensemble effect on the recorded data. In figure A1.5a, 

representing the collected data point from -1 to 2 ps from an Off to On experiment for V151L 

variant, it can be seen how for red part of the data set, the wavelength has travelled faster 

than the blue part of the spectrum, and thus at very short time delays, the recorded spectrum 

might have a raising signal in the blue part of the spectrum whilst for the other parts there is 

still no signal. The GVD introduces a nonlinear effect in the data which, in order to fit a 

global model, can introduce errors in the estimated parameters. Therefore, this effect needs 

to be corrected.  

There are several ways to correct GVD effects on the data. One popular way is to fit a 

polynomial function of at least order 3 to estimate the chirp. Nevertheless, since the GVD 

depends on the diffraction index of the media, this dispersion can be simulated. The equation 

4 shows that the GVD can be expressed as a function of the diffraction index of a dispersive 

media and the wavelength. Therefore, by calculating the GVD for each wavelength and 

taking into account the thickness of the dispersive media, it is possible to model the 

experimental data displacement introduced indirectly in the dataset for further corrections.  

𝐺𝑉𝐷(𝜆) =
𝜆

𝐶
·
𝑑2𝑛

𝑑𝜆2         Equation A1.4 

In the above equation, “C” is the speed of light and “n” is the refraction index of the 

dispersive media. The variation of “n” according to the wavelength can be calculated from 

the Sellmeier equation9 (Equation A1.5). 

𝑛2(𝜆) = 1 + 
𝐵1𝜆

2

𝜆2−𝐶1
+

𝐵2𝜆
2

𝜆2−𝐶2
+

𝐵3𝜆
2

𝜆2−𝐶3
      Equation A1.5 

Where B1-B3 and C1-C3 are constant values experimentally determined for each dispersive 

media. In the thesis, the data sets have been corrected considering three different dispersive 

media: CaF2, SiO2 and BK7. The corresponding B and C constants are stated in Table A1.1 

and values were obtained from references 10,11 and 12.  
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Figure A1.5. Representation of the collected data point from -1 to 2 ps versus wavelength for 

V151L Off to On experiment. In a) the red line represents the theoretical time zero that all 

wavelengths should have. In b) the red line represents the calculated t0 for each wavelength 

obtained after modelized the GVD using 2.66 mm of CaF2 and adjusting the offset to 23 fs. 

Figures made with UltraPyFit. 

In figure A1.5a, the data set before correction is shown, whilst figure A1.5b, shows that the 

estimation of the GVD can be correctly done using only 2.66 mm CaF2 thickness and the 

equations above. The used value is in agreement with the experimental setup as a 2 mm CaF2 

plate (see figure A1.1) has been used to generate the white light continuum and the flowing 

cell has 1mm CaF2 windows. 

Once the GVD calculated, the data needs to be corrected. Here, we have always corrected it 

using the points from the dataset itself as proposed by Nakayama et al13. The method used 

consists of subtracting the estimated dispersion curve (red line in Figure A1.5) for every 

independent wavelength. Therefore, every wavelength will be shifted differently, and thus 

data will be corrected. For every time point in a single wavelength, the estimated delay 

produced by the GVD was subtracted, yielding a new shifted time point. The estimations of 

the intensity of this new shifted time point were done as the pondered average of the two 

closest real-time points from the old-time grid to this new time point (See Equation A1.6 for 

pondered average and Figure A1.6 for the implemented algorithm). This results in a single 
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corrected time point. The same procedure was applied for the correction of every point in 

each recorded wavelength. The result of the final correction are shown in Figure A1.6. 

𝛥𝐴(𝑡𝑛𝑒𝑤) = 𝑊 · 𝛥𝐴(𝑡𝑜𝑙𝑑
ℎ𝑖𝑔ℎ

) + (1 − 𝑊) · 𝛥𝐴(𝑡𝑜𝑙𝑑
𝑙𝑜𝑤)    Equation A1.6 

Where told represents time points in the old-time grid, and W the weighting factor, which is 

calculated from equation A1.7. 

𝑊 = 𝑎𝑏𝑠 (
𝑡𝑜𝑙𝑑
ℎ𝑖𝑔ℎ

−𝑡𝑛𝑒𝑤

𝑡
𝑜𝑙𝑑
ℎ𝑖𝑔ℎ

−𝑡𝑜𝑙𝑑
𝑙𝑜𝑤

)        Equation A1.7 

Figure A1.6. Left panel, representation of the collected data point from -1 to 2 ps versus 

wavelength for V151L Off to On experiment after the GVD correction. The right panel 

corresponds to the selected time traces from -1 to 2.5 ps from the data in the right panel, 

where it can be seen the rise of the simultaneous rise of the signal for all traces. Figures 

made with UltraPyFit. 

Table A1.1 B and C values for CaF2 SiO2 and BK7 used to calculate the diffraction index 

 B1 C1 B2 C2 B3 C3 

BK7 1.0396121 6.00069·10-3 0.2317923 2.001791·10-2 1.0104694 103.5606 

SiO2 0.696160 4.67915·10-3 0.4079426 1.351206·10-2 0.8974794 97.93400 

CaF2 0.5675888 0.0502636 0.4710914 0.1003909 38.484723 34.64904 
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Figure A1.7 Schematic representation of the implemented algorithm to correct the GVD. 

Figure done with Inkscape. 
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In this thesis, a routine to correct the GVD as the one presented above has been developed in 

python 3.7. Finally, a similar routine to calculate the GVD as a polynomial function was also 

developed. In both cases, once the GVD dispersion is calculated, the correction algorithm 

presented just above is applied to correct the data (Figure A1.7.). The algorithm and the two 

different methods to calculate the GVD have been integrated into the Graphical user interface 

(GUI) named UltraPyFit, or as methods from the class GlobalFit python class. The codes and 

GUI are available on-demand, and more details about them are found in the next appendix, 

specially dedicated to the details of the developed GUI. 

 

A1.2 Pump-probe ns-ms transient absorption spectroscopy 

The nano-millisecond transient absorption experiments were performed by using a laser flash 

photolysis apparatus14. Excitation pulses were obtained from a 10 Hz Nd: YAG laser 

(Continuum Surelite II) coupled to an OPO (Continuum Panther EX OPO) and SH05 shutters 

(Thorlabs). The probe light was obtained from a pulsed Xe lamp (XBO 150W/CR OFR, 

OSRAM). The transmitted light was dispersed by a monochromator (Horiba Jobin–Yvon, 

iHR320) and analyzed with a photomultiplier (R1477-06, Hamamatsu) coupled to a digital 

oscilloscope (LeCroy 454, 500 MHz). Synchronization of the excitation pulses and the 

acquisition time was secured with PCI-6602 8 channel counter/timer (National Instruments 

card). The experiment was controlled by a home-made software written in the LabView. The 

nanosecond pump laser pulses at 410 nm (8 ns, 1.6 mJ) were used and focused onto a 1 cm  

1 mm cell containing 200 µl of the protein solution (absorbance of about 1 at 410 nm in a 1 

cm path-length). Before pump-laser excitation, rsEGFP2 was switched from the On to the 

Off state by 2 min irradiation with light from a continuous wave modulated laser diode 

(Cobolt 06-MLD 488) at a power of 200 mW and with a nominal wavelength of 488 nm. 

After pump-laser excitation, the time traces were recorded from 340 to 520 nm every 10 nm 

to reconstruct the transient absorption spectra. To increase the signal to noise ratio and avoid 

laser intensity fluctuations, traces were recorded 8 times which were then averaged. Between 

each single excitation shot, rsEGFP2 in solution was converted to its Off state by visible-light 

irradiation using LED with nominal wavelength 490 nm, 255 mW over 30 seconds. To 
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prevent the sample degradation, this was renewed every 56 laser shots, and absorption spectra 

were recorded before and after the laser exposure as a control measurement. The described 

setup is illustrated in Figure A1.8. Similar to the above described fs-ns pump-probe setup, 

the ns-ms setup was also optimized using [Ru (bpy)3]
2+. To do so, the signal at 360 nm, which 

corresponds to the absorption of the excited triplet state, was maximized. After maximizing 

the signal, and without moving the cuvette, the [Ru (bpy)3]
2+ sample was replaced by the 

protein solutions after correctly cleaning with water and buffer solutions. It is worth noticing 

that the probe beam travels through 1cm of the sample while the pump beam excites the 

sample in a 90° configuration over 1 mm. This 90° configuration ensures the complete 

excitation of the probed sample, and over 10 times higher signal to noise ratio compared to 

a collinear excitation since 1 cm of sample is probed (See figures A1.8 and A1.11.  

 

Figure A1.8. Schematic design of the flashphotolysis used to measure the ground state 

evolution from a few ns up to 10 or 20 ms. Figure made with Inkscape. 

The experiment was repeated three times to obtain different time spectral windows of 10000 

points each, which increases the number of points in the time domain of the recorded traces 

and ensures the collection of enough points in each interval. The selected windows were, 

from 0-5 µs and 0-100 µs for all studied samples plus a long time window. This last window 

was from 0-10000 µs for H2O solutions, 0-20000 µs for the D2O solution and 0-5000 µs for 
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solutions with ammonium sulfate. A 20MHz filter was used for all spectral windows to 

filtrate electronically the signal. For the time window 0-5 µs, the slit of the spectrometer was 

minimized to 1 nm to eliminate the laser dispersion and decrease the fluorescence 

contribution for traces recorded at wavelengths longer than 470 nm. For the remaining time 

windows, the slit was set to 1.5 nm, and the signal was amplified with an external resistance 

of 100 Ohm for 0-100 µs, and 560 Ohm for longer time domains. [Ru (bpy)3]
2+ traces were 

measured to characterize the electronic modification of the signal that the different resistance 

introduces. The results are shown in Figure A1.9. Finally, for the two shortest time windows, 

the Xe lamp used flash pulses for probing, whilst no flash was used for the longer time 

windows. 

 

Figure A1.9. Variation of the instrument responses according to the resistance and bandpass 

used to amplify the signal and reduced the noise measured in [Ru (bpy)3]
2+ water solution at 

360 nm. Figure made with Origin pro 8. 

The time evolutions measured are relatively long (ms range) and much longer than those 

found in dronpa (µs range). Thus, the question regarding the last evolutions observed in such 

long times may be raised. For example, diffusion of molecules may occur due to Brownian 

movement in such time scales which can cause diffusing inside the probed beam of proteins 
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that were not pumped, and vice-versa. Therefore, to verify this effect, a time trace evolution 

at 600 nm of an organic photochromic dye (named here PBOX) was recorded with the flash 

photolysis apparatus configuration. PBOX is an organic molecule with a much lower 

molecular mass compared to the rsEGFP2 protein and a long-live state in the second range, 

which is formed instantaneously after 410 nm laser excitation. The results are shown in figure 

A1.9. As can be appreciated, the signal recorded is a flat line. Therefore, one can conclude 

that the time evolutions seen at such long delays are originated from the protein. 

 

Figure A1.10. Variation of absorbance over time recorded in the flasphotlisys system for 

PBOX at 600 nm using 560 Ohm resistance and 20 MHz bandpass. The result ensures that 

the variations of the signal at long time delays measured for the proteins are intrinsic to 

them. Figure made with Matplotlib python package. 

For spectroscopy experiments on microcrystal suspensions (rsEGFP2 microcrystals), the 

setup was modified (collinear geometry between the pump and probe beams) to minimize 

light diffusion according to the literature. The pump laser (410 nm, 5 mJ) was focused using 

a spherical lens onto the cell containing the colloidal microcrystal solution. The probe light 

source was not modified from conventional experiments. The focal spot size of both pump 

and probe beams was 2 mm. To maximize the signal to noise ratio a 560 Ohm resistance was 

used, and thus, data can only be analysed up from 600 ns which was characterized as that for 
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100 Ohm resistance (Figure A1.9). Following single-shot excitation, the time traces were 

recorded from 350 to 520 nm using 10 nm steps to reconstruct the transient difference 

absorption spectra. Between each single shot excitation, the cell was moved manually to 

probe a previously unexposed area. A close comparison between the perpendicular and 

collinear configurations between the pump and probe beams can be seen in Figure A1.11. 

Note that the microcrystal measurements have a lower S/N ratio than the measurements in 

solution. This is explained by three main characteristics of the microcrystals suspension 

measurements: firstly, there are single-shot measurements which reduce the S/N ratio 

considerably. Secondly, the cuvette optical path used to measure the microcrystals is 10 times 

shorter than the one used to measure the protein in solution. And finally, the diffusion of the 

probing light by the microcrystals. 

 

Figure A1.11 a) perpendicular pump-probe configuration used for solution samples. b) 

collinear pump-probe configuration used for microcrystals suspension samples. Figure made 

with Inkscape. 

 

A1.3 TCSPC 

The setup used has already been described earlier15. Briefly, the excitation source for the 

time-correlated single-photon counting is originated in a Ti: sapphire laser (Coherent 

Chameleon Ultra II) with a repetition rate of 80 MHz and tunable output wavelength range 

of 700 1200 nm. The laser can deliver 200 fs width pulses. The output of the laser is coupled 

with a pulse picker (4 MHz pulse repetition rate). Finally, there is also a second harmonic 



 

299 
 

generator (SHG/THG, APE) that allow the production of excitation wavelengths between 

350-600nm. The fluorescence emission is recorded using an FT200 PicoQuant spectrometer. 

The emission of fluorescence is further filtrated with a Czerny-Turner type monochromator 

equipped with 0.5 mm slits that render a 4 nm spectral resolution. Finally, the photons are 

detected with a cooled microchannel plate (Hamamatsu R3809U) photomultiplier tube. 

The time correlation of photons is done with a PicoHarp 300 TCSPC system coupled with 

the detector and a photodiode that triggers the signal. The time resolution of the setup is 

determined by the instrument response function (IRF). This signal was measured using a 

Ludox solution to disperse the excitation beam for each excitation wavelength used. The IRF 

varies between the different excitations used. Nevertheless, in general, the full width at half 

maximum of the IRF was around to 32 ps. A scheme of the set up is shown in Figure A1.11. 

The polarization between the pump pulse and collected photons was set at the magic angle 

(54.7°) to avoid anisotropy effects. 

 

Figure A1.12. Scheme for the time-correlated single-photon counting setup. Figure made 

with Inkscape. 
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A1.4 Description of setups not present in LASIR 

A1.4a Set-up in Miyasaka laboratory - Japan 

The laser system used for transient absorption spectroscopy has already been described 

elsewhere16. A femtosecond laser pulse from a Ti: Sapphire oscillator (Tsunami, Spectra-

Physics, 802 nm, 100 fs, 820 mW, 80 MHz) was injected into a regenerative amplifier at 1-

kHz repetition rate (Spitfire, Spectra-Physics). Similar to the setup described above, the 

output pulses were divided into two portions. The majority of the 802-nm pulse was led to 

the other OPA (TOPAS-Prime, Light-Conversion) and converted into 1180 nm. This near-

infrared pulse was focused into a 2-mm CaF2 to generate a femtosecond white-light 

continuum which was used as a probing pulse. The rest of the 802-nm fundamental pulse was 

focused into a BBO crystal pulse to obtain the second harmonic 400 nm for the Off to On 

experiments and into OPA system (TOPAS-Prime, Light-Conversion) to obtain the 488 nm 

for laser pulses in the On to Off experiments. 

The white light was further divided into two different beams - sample and reference. This 

last one is used to correct fluctuations of the probe pulse. Both white light pulses were 

monitored by two multichannel photodiode arrays (PMA-10, Hamamatsu) equipped with 

polychromators. The polarization of the excitation pulse was set at the magic angle with 

respect to that of the probe pulse.  

The sample solution was set in a rotation cell with an optical length of 1 mm, and absorbance 

of the solution at excitation wavelength is around 0.5. Samples were irradiated in with a CW 

LED, at 490 nm and 255 mW to regenerate the Off state (Thorlabs) to keep the 

photostationary state. 
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A1.4b Setup used in the ultrafast laser facility at RAL - England 

The setup used, named Ultra, was published in 2012 by Greetham et al. 17 and has 10 kHz 

multiplexed infrared broadband probe pulses. The excitation is at 1 kHz with sub-100 fs. The 

setup allows to recorde data points using these two pump-probe beams in time delays from 

100 fs to 1 ms range. The setup used to generate the delays between the two pulse was based 

on different methods: the first delay times were obtained using an optical delay to collect fs–

ns data, and times longer than those that cannot be obtained from a delay line were 

electronically obtained with a delay generator up to 100 μs (ns- μs range). Finally, a multiple 

probe approach (flash photolysis-like) was used to collect μs–ms data and beyond. Therefore, 

with this approach that combines several methods to obtain all the time ranges from fs-ms, it 

is possible to measure time scales across 9 orders of magnitude on a single instrument. This 

makes it an extremely powerful setup as it allows comparing spectral evolutions accurately 

and in a single experiment. 

The excitation energy pulses were < 1 μJ energy in a 100-μ diameter spot. Lower intensities 

were checked to yield identical spectra and kinetics on the nanosecond timescale. The IR 

probe beam is split before the sample to provide probe and reference spectra, which can be 

normalized to reduce shot-to-shot probe intensity fluctuations. The spectrometer and detector 

systems are extensively described in detail in reference18. 

The samples were placed inside a flow cell with 1 mm CaF2 windows and an internal 

thickness of 50 µm. To avoid spatial overlap in between consecutive laser shot in the same 

sample spot the cell was also moved continuously in the plane (raster). Samples were 

irradiated in an external reservoir with a CW LED at 505 nm (500 mW) to regenerate the Off 

state (Thorlabs) or 405 nm to regenerate the On state (Thorlabs). The minimum sample 

volume for the total system is 650 µL. 
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A1.5 FTIR  

The On to Off photo-switching reaction was also studied using FTIR spectra in the region of 

1300-1800 cm-1. The experiments were done on deuterated samples to avoid the overlap of 

the water bending modes with the protein signals. The protein samples were deuterated using 

10k-Da concentrators. The process was done three times to ensure 99.9% of D2O, and 

concentrated to approximately 15mg/mL.  

 

Figure A1.13 Rotating cell designed in LASIRE and used in IR On to Off photoswitching 

experiments. 

The samples were introduced in a rotating cell with CaF2 1 mm windows and a thickness 

between windows of 50 µm (see figure A1.13). IR spectra were taken with an FTIR 

spectrometer Vertex 70 with a detector MCT D316 cooled with liquid nitrogen, with a 

spectral resolution of 4 cm-1. The time to stabilize vapor in the air (moisture) before the 

measure was 12 minutes. The spectra reference was air. The range studied goes from 7000 
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to 550 cm-1. Each spectrum was accumulated 128 times, and the time between two 

consecutive spectra was 28 seconds. A specific box was designed with polystyrene, and a 

transparent plastic window on top that entirely occupies the spectrometer space allowing to 

introduce the irradiation system. As irradiation source a fibered Hamamatsu Hg lamp with 

visible bandpass and an inference filter at 480 nm was used. The power of the lamp was set 

to 10%, to acquire enough spectra until reaching complete photoconversion of the samples. 

 

Figure A1.14. FTIR raw spectra obtained for WT variant between 1300-1800 cm-1, On form 

in blue and Off form in orange. Figure made with matplotlib python library. 

The FTIR spectra in the region of 1300-1800 cm-1 are mainly composed by two prominent 

bands corresponding to the strong absorption of amide 1 and 2 protein vibrations, which are 

found in every amino acid bond, as shown in Figure A1.14.. Therefore, On and Off spectral 

forms are very similar since the IR region probed the entire proteins and not only the 

chromophore. As a result, very little can be extracted from the raw data. Therefore, the initial 

spectrum was subtracted to all of the consecutive spectra to eliminate signals that have 

identical contributions in the On and Off forms and obtain more obvious variations of the 

light-induced conformational changes. These variations of absorbance are minimal and are 

strongly affected by the baseline drifts. To correct this effect, each spectrum mean value was 

subtracted to itself. The results of this correction for WT variant are shown in Figure A1.15. 
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Figure A1.15. FTIR differential spectra obtained for WT variant between 1400-1800 cm-1, a) 

correspond to uncorrected spectra, b) after baseline correction. Figure made with matplotlib 

python library. 

A selection of the differential spectra measured for WT variant are shown in Figure A1.16. 

Similarly, to femtosecond transient absorption spectroscopy, negative bands correspond to 

the depopulation of the On-state form, while the positive bands correspond to the growing of 

the Off form. 
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Figure A1.16. On to Off FTIR differential spectra for WT in D2O buffer under continuous 

irradiations at 480 nm. Figure made with matplotlib python library. 

Several clear bands arise after irradiation of the protein. In comparison to Dronpa which has 

the same chromophore, the most intense band corresponds to the 1492 cm-1 peak which can 

be assigned to the C-O vibration of the phenolate for the On-form. The essential bands for 

the On-form are those at 1538, 1569, 1615, 1651 and 1668 cm-1. The main Off-form 

characteristic band can be seen at 1681 cm-1, and according to the literature12–15, corresponds 

to the C=O stretching of the chromophore imidazolinone group. The other Off form main 

bands can be seen at 1514, 1602 and 1633 cm-1. The peak at 1514 cm-1 corresponds to the 

phenol symmetric stretching. 

Similar experiments were carried out for V15L and V151A. The differential spectra for the 

three proteins of Off forms minus On form at the photo-stationary state are displayed in 

Figure 4 A1.17. The spectra were corrected from baseline drift and normalized with the 

intensity of the highest peak (absolute value) which, for all three variants, corresponds to the 

C-O vibration of the phenolate On form.  
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Figure A1.17, On minus Off FTIR differential spectra for WT (green), V151L (blue) and 

V151A (orange). Negative peaks correspond to On form, and positive peaks correspond to 

Off form. Figure made with matplotlib python library. 

There are clear differences between the positive peaks of the differential spectra which 

correspond to the Off form for the three variants. Interestingly, and besides the similitudes 

found between the On forms X-ray structures and the UV-vis absorption spectra for the three 

variants, the FTIR negative peaks of the spectra also present several differences amongst 

them. Due to the differential character of the spectra represented in Figure A1.17, these 

differences could be originated by real structural differences between the variants On forms. 

However, most likely, they could be generated by differences between the Off spectra 

provoked as the Off forms have substantial structural differences. From the differences 

between the negative peaks, it is worth mentioning the red-shift of the C-O stretching band 

from 1492 to 1495 cm-1 for V151L compared to the other two variants which indicate a 

weaker C-O bond. It is also important the absence of the band at 1650 cm-1 for V151L. 

Nevertheless, this might be due to the presence of an Off-form intense positive peak at 1648 

cm-1 present for V151L but not for WT and V151A. Finally, V151L has two negative bands 

at 1623 and 1631 cm-1 which are not visible for WT and V151A. 
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The negative peaks corresponding to the Off form have a clear difference, which is the 

positive band at 1633 cm-1 for WT. This band has a much lower intensity in V151A and is is 

absent in V151L, which has a unique positive band red-shifted at 1648 cm-. These differences 

between V151L when compared to WT and V151A highlight the differences between the Off 

states of the variants. All the values for the different peaks for the three rsEGFP2 variants 

are resumed in Table A1.2. 

 

Table A1.2 FTIR main peaks for differential spectra in Figure A1.17. 

Positive peaks cm-1 Negative peaks cm-1 

WT V151L V151A WT V151L V151A 

  1507 1492 1495 1492 

1514 1514 1514 1538 1542 1535 

1602 1599 1602 1569 1570 1569 

1633 1645 1634 1615  1617 

1681 1682 1684  1623  

  1698  1631  

   1651  1649 

   1668 1667  

 

Importantly, from the TRIR differential spectra, the WT variant displays two negative peaks 

at 1650 cm-1 and 1668 cm-1, whilst the first peak is absent for V151L, only displaying the 

1668 cm-1 peak. The V151A variant has the opposite feature displaying the peak at 1650 cm-

1 and the absence of that at 1668 cm-1. It is worth noticing that since the amount of protein of 

the TRIR spectra is unknown, the same decomposition done for the UV-Vis absorption 

spectra cannot be performed. 
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Appendix 2. Ultra PyFit A Python 3.7 
self-made Software 

 

This appendix presents the most relevant information and features of Ultra-PyFit. This 

software application is a self-made graphical user interface (GUI) done using PyQT, which 

mainly interacts with the GlobalFit python class used in the thesis to fit the data, and both 

have been fully developed during the course of the PhD. The main target of this class is to 

accelerate every process between the collection of raw data from the lab and the final output 

results using the most common classical analysis for time-resolved spectroscopy data, but 

also more advanced techniques. The software includes data correction processes, fitting, 

validation and analysis of the error and model used to fit the data and, finally, the results are 

presented in a clear and understandable manner with the use of full functionalities of 

matplotlib and Seaborn python packages offering nicely formatted figures to the user.  

The origin of such a tool came from the necessity of a python package which allowed data-

fitting including from simple approaches (weighted sum of exponentials) to a wide range of 

target models to multi-way spectroscopy data. Apart from the obsolete Pytra package1 for 

python 2.7, there was no python 3.5-3.8 available packages (January 2021). It is worth noting 

that such tools for fitting a wide range of models to multi-way spectroscopy data with 

different approaches already exist in other languages such as R2 or MatLab3–5. Nevertheless, 

in none of them, a proper analysis of the fitting error is done and nor the most simple approach 

of fitting the data with a weighted sum of exponentials is possible. One of the most significant 

improvements of this python Class is the implementation of error analysis and model 

validation for fitting a wide range of models to multi-way spectroscopy data. 

Finally, regarding the development of the GUI, it is clear that there are also already developed 

Matlab Toolboxes such as Ultrafast toolbox3 and Optimus4, or Glotaran6 a Java-based GUI 

developed for Timp-R package2. However, still today, they all require Matlab or either R 

environments to be installed in the computer to work. On the contrary, Ultra PyFit has been 

compiled with pyinstaller package, and an installator has been created with Inno set-Up. 
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Therefore, there is no need to have Python installed on the computer. Moreover, the huge 

advantages for formatting figures and presenting results of Matplotlib7 and seaborn8 python 

packages together with the many widgets available in PyQt, creates a user-friendly and 

accessible GUI, for correcting data, designing the models, fitting and validating the models, 

and exporting the results. Ultimately, the development of the GUI came along with the 

necessity of transferring and making available the developed features that can be done with 

the GlobalFit Class, for users and lab members with zero or little programming and Python  

knowledge, for whom knowing the python syntax and the parameters of the GlobalFit 

functions and their many options may represent a challenge. This project was developed with 

the contributions of Stanislaw Niziński, especially regarding creation of a model based 

interface to easily generate models for a target fit (section A2.5b). Finally, a β- version of the 

program is available where the fitting algorithms have been verified. Although there is still 

work in progress, specially making the GUI more user friendly, writing documentation and 

development python test. 

 

A2.1 Introduction of Ultra Pyfit. 

 

Figure A2.1 Screenshot of the application window with windows OS with the main 

components: a) subwindow area (light-green). b) action menu (light-grey) with 4 sub-menus 

and fitting button. 
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Ultra PyFit is based on a main window consisting on two parts: an action menu in the left 

side of the window (light-grey) and a middle area (light-green) Figure A2.1. The first menu 

has 4 sub-menus, which are “File menu”, “Preprocess”, “Datasets” and “Plot menu”. File 

menu contains actions related to loading data, loading a previous project, saving the current 

project, displaying a report of actions and exporting data and results. The pre-process menu 

deals with all available pre-process actions, and is presented later on (section A2.4). The 

dataset menu is used to recover and undo any pre-process action. Finally, the plotting menu 

deals with presenting the results of the current activated data. Besides these four submenus, 

there are two buttons: "Exp settings" which is used to introduce the units of the current data 

sets (time unit and wavelength unit), and the Fitting button, which has two options - 

Exponential Fit and Target Fit. The second area is used for displaying an infinite number of 

sub-windows which will be activated subsequently for the user to interact with and guide 

him/her through the current process. For all displayed figures, there is an action bar designed 

for interacting with them, with eight buttons this is the standard matplotlib navigation toolbar 

Figure A2.2. The first five buttons can be used to zoom inside the figures and come back to 

the original perspective view. The sixth button is for interacting with the figure and white 

space, and the seventh for interacting with the actual elements of the figures like legends, 

plotted lines and axis labels. Finally, the last button is designed for exporting the figure in 

several different formats. 

 

FigureA2.2 Matplotlib navigation toolbar integrated inside ultra PyFit figures. 

The application works on a main single thread (“a thread of execution is the smallest 

sequence of programmed instructions that can be managed independently by a scheduler”, 

Wikipedia), which mainly handles the GUI processes and fast actions that do not require 
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much time to be finished. This means that the execution is driven in response to user 

interactions such as clicking on a button which creates an event. This event, when executed, 

produces an expected output. The events are handled sequentially and are therefore pushed 

onto and taken of an event queue to be processed, meaning a new event is not executed until 

the precedent event has finished. Therefore, running a process that can take several minutes, 

such as fitting a model to the data, will force the new events to be stacked in the events queue 

which can make the OS interpret to believe that the program is being blocked and not 

responding. To avoid such a situation, several "working threads" created from QThread class 

are instantiated when the application is started so that certain actions inside the application 

such as long calculation processes are transferred to these working threads to be handled. 

Finally, as commented above, the program has been compiled. Therefore, Ultra Pyfit is a 

complete application based on PyQt that doesn't require any other installed programs or 

interpreters, while still benefitting from the main functionalities that can be obtained from 

lmFit and Scipy Python packages for data analysis, and matplotlib and seaborn for Interactive 

data exploration via a specific and straightforward designed interface with specifically 

designed data editor. The main characteristics of the application are:  

 

• Importing data in various known data file formats, with an interactive menu to specify 

any specific options such as decimal use column separator, and organized file, which 

can read the main data files such as *.dat, *.txt and *.csv among others. (figure A2.3). 

 

• Several pre-processing options to correct the data sets from physical generated 

effects, such as the GVD (Appendix1 A1.1d), or correct initial signals by baseline 

subtraction, or eliminating data errors such as outliers, or saturated areas.  

 

• Interactive data exploration via an exploring data window, where it is possible to 

directly interact with the data set to directly select spectra and traces to visualize 

separately, via a 3D plot of the data and single trace fitting for a fast initial estimation 

of parameters, and full singular value decomposition (SVD) exploration. 
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• Clear separation of fitting procedures to either an exponential fit more widely used 

where no model is imposed, or a target fit where any kind of designed photochemical 

model can be easily designed via the custom-designed model creator window, which 

allows any model to be saved. 

 

• Pre-fittings options which allow verification of the initial model or initial estimations 

of the parameters. 

 

• Interactive results inspection via specific designed windows where several fits can be 

compared to each other. 

 

• Analysis of errors and model validation via Bootstrap and F-test which, although they 

are lengthy processes, can give a good estimation of the quality of the fit. 

 

• Tracking of the actions performed, which can help towards reproducibility and 

verifying analysis of actions by any external user or by the user itself months or years 

later.  

 

• Interactive figures, thanks to a self-made matplotlib cursor which allows direct 

interactions with the data. Finally, nicely formatted figures that can be directly saved 

into several types of possible formats thanks to Matplotlib library. 

 

 

 

A2.2 Importing data and GlobalFit Class instantiation. 

Importing data into Ultra PyFit it is straightforward via the sub-menu File-menu where the 

first option is Load data, after right-click a window where the computer explorer can be 

opened will pop out. After selection of the desired file, in the main menu several options will 

become available for specifically indicating the file specifications, such as header wavelength 

and time Column/row and the separator and a window where the file is ready for the user to 

inspect it. After indicating the parameters, they can be saved as default for a faster 

initialization next time. Once the data is loaded, the file will be read using the functions from 
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pandas package read_csv() and a homemade function to identify possible strings and 

transform then into data for the time and wavelength vectors. After the process, a wavelength 

vector, a time vector and a data matrix will be generated which will be then used to instantiate 

the GlobalFit class named as "Experiment". This is all automatically done by the program by 

clicking on the "Load by default" or "Load data" buttons. 

Once instantiated, it is important to know that from the data set it is possible to select traces 

from the pre-process sub-menu or fitting buttons. For all the functions related to the traces, 

such as plotting traces, fitting them or exploring the singular value decomposition, the 

functions will only work on the subset of selected traces. On the contrary, for the remaining 

functions, like for example plotting spectra, the complete data set will be taken into account. 

Finally, a new selection of traces can be done at any moment. 

 

 

Figure A2.3 Interface for loading data into Ultra-PyFit and instantiate the GlobalFit python 

Class. 
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A2.3 Exploring the data 

After loading the data, the first thing to do is to explore the spectral and time dimensions. To 

do so, in the plotting menu, there is the option of exploring the data. Clicking on the button 

will pop out a window where the figures will be displayed (see Figure A2.4), the first one top 

left is a 2D map representation of the data where warm colours represent positive differences 

of signal, and cold colours represent negative values. The right figure represents the spectra 

at the time where the slider is and the left bottom the corresponding traces. These two last 

figures are interactive. From the spectra, any trace can be selected, and vice-versa, and the 

selection of traces and spectra can be further plotted. Finally, the traces can be selected for 

fitting.  

 

Figure A2.4. Exploring the data window, the window under the explore data panel 

corresponds to the spectra selected directly on the time trace (vertical red lines). Note, this 

is the only window where the figures cannot be saved; this is done on purpose as the rest of 

plotting functions yield nice formatted figures. 

To further explore the data, we propose three fast plotting options. The first one is to plot the 

data in 3D, which will pop out a 3D map of the data surface which can be turned to interact 

and visualized from different directions. The second is to plot the spectra automatically; this 

function plots eight spectra equally spaced at the maximum absolute value of the dataset. At 
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the same time, new buttons in the left side main menu will be available after plotting the 

spectra automatically to have a personalized plotting. The possibilities are to select the time 

region for plotting, select the number of points to average, the legend properties, the number 

of spectra to plot and the wavelength value at which they should be equally spaced. Finally, 

as a fast plotting option, it is also possible to plot ten separated traces from the dataset. In 

Figure A2.4, a 3D plot and the result of plotting the spectra automatically together with the 

menu can be seen. Moreover, all colours maps available in Matplotlib are available in the 

program for a personal customization of the figures, and can be selected in the plot sub-menu 

in the plot spectra option "change colour". By default, the colour map is “Viridis”. Finally, it 

is worth mentioning that by adjusting the size of the figure window, we directly affect the 

size of the exported and saved figures. 

 

Figure A2.5. 3D plot, the automatically spectra plotted windows and the menu to manually 

customize auto-plotting. 

After spectrally exploring the data, the singular value decomposition (SVD) of the dataset 

can help to know the number of spectrally and temporally independent components. The 

SVD is a matrix factorization technique9. See next section. 

The complete calculation of all the singular vectors is a cost calculation for a matrix with a 

high number of rows or columns. Therefore GlobalFit uses scipy.sparse.linalg.svds() 

function which computes a N number of singular values/vectors (truncated SVD) for a sparse 
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matrix, where the order of the singular values is not guaranteed although is generally correct 

for the main vectors. This function uses Arpack10, which is a Fortran package which provides 

routines for quickly finding a few eigenvalues/eigenvectors of large sparse matrices. In 

experimental datasets, the noise causes the most significant singular vectors to be clearly 

defined and might stand out from the rest. Nevertheless, in some cases, it is difficult to 

differentiate the number of significant SV. In Ultra PyFit 15, SV are calculated by default. 

For the exploration of the SVD space in the plotting menu, there is the option of plotting only 

the singular values or plot the singular values together with the right and left singular vectors. 

As is explained further along, there is an option to fit the left singular vectors. In figure A2.5, 

the SVD window can be seen with the singular values and left and right singular vectors. 

 

Figure A2.5. Ultra Pyfit window displaying the complete SVD, including the singular values 

and left and right singular vectors 

 

A2.4 Pre-processing options 

There are several basic pre-processing features available in UltrPyFit which will be briefly 

described in this section: 

Calibrations of the wavelength vector. This can be done with four different options using 

a specific self-made Calibration python class: 1) introducing the first and final points of the 
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calibration curve, assuming the relation between the pixel and wavelengths is linear. 2) 

Copying a vector of wavelengths. 3) Fitting a third-order polynomial giving at least four 

points or more for the fit. 4) Interactively from the spectra of a reference sample taken with 

the spectrometer and the known spectrum of this reference. For each of the possibilities, 

either a window will pop-out or new options will be made available in the menu bar. In Figure 

A2.6, the window for calibrating with the spectra of a reference can be seen, with some 

polyester spectra as an example. 

 

Figure A2.6 Sub-window to calibrate the dataset with a reference spectra. The figures after 

calibration can be independently saved. The selection of calibration points can be easily 

done with the cursor that directly pops into the window, with a left-click to select a new point, 

and a right-click to de-select the last point. 

Baseline subtraction: two options are proposed, to either subtract a specific selected spectra, 

or a selection of spectra within a range. This will generate a new corrected data set, although 

it is always possible to go back to the original dataset. 

Group velocity dispersion correction: For the correction of the GVD11, we propose to 

either calculate it fitting a polynom or calculating it using the sellmeier equation12, as has 

been explained in the Appendix 1 (A1.1d section). Once calculated, a window will pop out 
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to verify the correction. Examples of the correction can be seen in Figure A1.5 and Figure 

A1.6 in the Appendix 1, and the algorithm to correct the data set can be seen in Figure A1.7. 

IRF fitting: for fitting instrument response function, we propose to fit the stimulated Raman 

amplification signal of the solvent. This can be done directly from the data set if the peaks 

are visible, or alternatively, we propose to load a solvent measurement where to fit it. The 

solvent measurement will be loaded with the same parameters as the loaded file, as we 

assume they are measured in the same apparatus. For details on the fitting, see the Appendix 

1 (section A1.1b). 

Cutting or selecting areas: in the program, it is possible to select or cut areas of the data for 

further analysis. A classical area that will be cut in TRUV-Vis data is the laser excitation 

area. 

Removing single points: Via an interactive figure, it is also possible to eliminate single 

points in the data that can, for example, come from a dead pixel. 

Averaging points in time dimension: This option is proposed as in many time-resolved 

experiments, such as flash photolysis or TRMPS, the number of recorded in longer delay 

times is very high. Thus by averaging points in areas where the dynamics between points do 

not vary, we can improve the S/N ratio. For averaging the time points, we proposed to either 

average the points in between constant increments or to increase the steps for the points to 

be average. 

Smooth and derivation: As seen in Chapter 8, an alternative to correct the baseline 

fluctuations is to derivate the data. This is done with fitting a Stavisky-Golay polyonomy and 

derivate, the result, thus a zero order derivation will result in only smoothing the data. 

 

A2.5 Fitting options in ultra PyFit. 

GlobalFit class uses lmfit python package13, which is a free software using an Open Source 

license, to fit the data. The interface can be used to manually build a number of models and 

instantiating parameter to these models with the use of lmFit package. This library provides 

a high-level interface to non-linear optimization and curve-fitting problems for Python. It is 
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based on Scipy optimize function14 and extends many of the optimization methods. Although 

lmFit has several different optimizer algorithms for minimizing the error surface, GlobalFit 

only uses the popular Levenberg-Marquardt method from scipy. optimize.leastsq. SciPy is 

the most standard python library for optimization (it also has many other utilities such as 

integration, interpolation, eigenvalue problems, algebraic equations, to name a few). It is 

built on top of the Numeric array data structure from Numpy15, and it has become one of the 

most used libraries in Python, with over 600 unique code contributors, thousands of 

dependent packages and over 100,000 dependent repositories and millions of downloads per 

year14. 

 

A2.5a Fitting with a weighted sum of exponential 

Physical explanation: To unravel the chemical reactions and processes behind the multiway 

data, a model-based analysis of the data is mandatory5,16–18. The most simple approach to 

model a photochemical reaction is to assume that the concentration of transient species or 

reaction rate follows a first-order reaction. According to this hypothesis, the data should be 

explained by a weighted sum of exponential functions, where every exponential time 

represents the decay of a transient species that follow a first-order reaction, and the pre-

exponential value or weight is the concentration of this species. Logically, fitting one of the 

kinetic traces records at one wavelength can yield an estimation of the number of transient 

species involved in the reaction and their decay constants. One of the most established 

approaches to analyze a certain number of selected traces (multi wavelengths) with the same 

sum of exponentials5,16,19,20. This approach, typically known as global analysis, has been 

demonstrated to be much more robust and accurate than separate or single wavelength 

analysis. Furthermore, from a global analysis of the data, not only the decay time constants 

and number of transient species can be obtained, but also their spectral shapes from the 

weights (pre-exponential factor) of the sum of exponential at each of the wavelengths, which 

constitute the so call Decay Associated Spectra (DAS). 

𝜓(𝑡) = ∑ 𝐴𝑖
𝑛
0 ∗ 𝑒(

𝑥−𝑥0
𝑡

)
      Equation A2.1 
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Ultra PyFit allows for single and global fitting with a sum of weighted exponential function 

(Equation A2.1), which can be either convolved with a Gaussian IRF (Equation A2.1) or not. 

It also allows fitting a selection of left singular vectors, with different output windows which 

allow always to understand what procedure we are applying.  

Single trace fitting: after clicking the Exponential fit button, there is available a new 

submenu for selecting traces to be fitted. The first option is “Select one trace and fit” this will 

generate an auto-plotted spectra figure from where a single trace the average points, and the 

number of exponentials can be selected. Just by clicking on the “select and fit”, a first fit will 

be performed with all conditions unrestricted and an initial estimation of the parameters done 

automatically by the program. This fit is nearly automatically completed, and the results will 

be displayed in a new window Figure A2.7. This window consists of two main parts; the first 

one is a figure where the selected trace is scattered in blue points with the fit result in red and 

the residual plot on top of its trace with the fitting result. The second part is the fit-report with 

all the details of the fit and buttons to change the fitting conditions and re-Fit with the new 

selected conditions. It is worth mentioning that the fitting regions can also be selected by 

directly clicking on the left-figure. If the fit is not successfully achieved, the parameters can 

be changed or fixed to known values manually to improve the fit in the open window. Finally, 

once the fit is completed and we have obtained logical parameters of the single trace fit, it is 

possible to export them and initialized them as initial guess for a global fit. An example of 

the single fit window can be seen in Figure A2.7. A single trace fitting is an excellent way to 

have an initial estimation of the decay times of the dataset. It is always advisable to fit 

independently several of the most representative traces to have a global idea of the dataset 

before starting a global fit where several traces are fitted together. Finally, the single trace fit 

can be stored in memory and can always be retrieved after form the previous fit button, from 

where it can be compared to any other single fit or integral band fit saved. 
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Figure A2.7. Example of window interface after single-trace fitting that is automatically 

opened after selection of the trace to fit. Notice all parameters are unfixed.  

Integral band fit: Similarly to the single trace fit, it is possible to perform an integral band 

fit. Such an analysis allows for example to remove features and time constants that are the 

result of a simultaneous I negative and positive contribution in the spectra. Some processes 

causing such features are vibrational cooling or solvation phenomena. The Interface for the 

integral band fitting is identical to the single trace fitting except that in the first selection 

graph two traces need to be selected to define the integration area and therefore no average 

can be selected. 

Global trace fitting: As explained above, a global fit consists on fitting several traces 

simultaneously, where the decay times and IRF factors (and t0 if the GVD has been 

corrected) are globally estimated from the ensemble of traces, while the pre-exponential 

factors are independently fitted for every trace. To perform a global fit, the first thing to do 

is to initialize the parameter's value. This can be done in the exponential fit section from the 

single trace fitting interface (see section above), or via the initial parameters button. This 

button displays a window where an infinite number of exponentials can be chosen and the 

option to fix their decay times or not. Once initialized, they will be visible in the parameter 

table together with all other global parameters. Finally, as expected, a global fit generates a 
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large surface where the absolute error between the data and the weighted sum of exponentials 

is minimized. Thus, such analysis cannot be performed to the ensemble of the data set. 

Nevertheless, this is not a problem as only fitting a few number of traces globally can give a 

good estimation of the decay times. Ultra PyFit can handle up to 75 traces without problems 

and allows to fit generally up to 180 traces (Depending on the number of parameters), 

although it is not recommended to fit more than 100 as this increases the fitting time but not 

the estimation of the times. Therefore, before doing a global fit we recommend selecting 

traces using the function "select a series of traces" from the select traces sub-menu. This 

function allows to select traces equally spaced according to an indicated wavelength distance, 

and it also allows to average the selected traces with the just direct adjacent traces which 

increase the S/N ratio of the exported final trace and can help to improve the quality of the 

fit. Finally, it is also possible to exclude regions where traces should not be selected, for 

example, traces affected by the Raman scattering signal from the solvent or laser excitation, 

which can affect the estimation of decay times.  

Once the parameters are initialized and the traces selected, the program will automatically 

generate the initial estimations for the fit. It is possible to perform a pre-fit, where the selected 

traces will be fitted independently with the decay times fix; thus only the pre-exponential 

factors are optimized, and the results can be seen by the plot fit results button. This allows 

having a hint of how good the initial estimations are. If they are not good enough, they can 

be changed with the change parameters button.  

By clicking on the “Final fit” button, the global fit will start. The parameters to be optimized 

will be changed to either convergence, or the maximum iterations are reached (by default 

5000). The fitting menu will transform into a progress bar. It is possible to perform other 

actions while fitting, although we recommend waiting as it generally takes less than a minute. 

Once finished, a report window will appear, and the fitting menu will become available again. 

The report window contains the main information, details of the fit and six extra buttons to 

further explore the fit. 

• “Verify Fit”, which displays at a time a single trace and its corresponding fit from the 

global fit. 
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• “Plot DAS” which plot the decay associated spectra (DAS), which corresponds to the 

pre-exponential factors of the sum of exponentials fitted. 

• "Plot Fit", displays the fits plot, which includes all traces with the corresponding fits 

and residual plot. From this figure, it is possible to select independent traces to have 

a clearer view of the most interesting traces independently. If less than ten traces are 

selected, the wavelength will be displayed in a legend. 

• "Extended fit report" displays an extended report with details of the fit and all of the 

parameters as well as correlations between them and the standard error estimation for 

each parameter. 

• “Calculate confidence interval” opens a window to verify the quality of the model 

and confidence intervals, using an F-test or via a bootstrap of the residues. Check the 

specific section for more details. 

• “Export to Target fit", this button exports the retrieved times and creates populations 

or species that have each of the associated times, to facilitate the creation of a model 

to initialized a target fit. Check the next section for more details. 

The window fit associated to a global fit can be seen together with the DAS plot and the fit 

plot in Figure A2.8. 

 

Figure A2.8. Fitting report window with details of the fit together with the DAS spectra and 

the general plot-fit. 
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Global fitting to left singular vectors: 

As previously explained, one of the best options to estimate the number of parameters in a 

sample is an SVD decomposition. Indeed, an SVD decomposition consists on taking the 

original data matrix (M) and decomposing in three simpler matrices U, S and V (Equation 

A2.3). 

𝑀 = 𝑈 × 𝑆 × 𝑉𝑇        Equation A2.3 

Considering that M is m by n, U is an order m matrix, V is an n order matrix, and S is an m 

by n diagonal matrix; T indicates matrix transposition. Where the non-nulls diagonal elements 

of S matrix are the singular values of M matrix, and thus if S has a number (k) of non-null 

diagonal elements M has rank k. Considering the Figure A2.5 middle panel where the 

singular values of the data are plotted and taking into account that the SV are in a descendent 

order, we can clearly observe three non-null elements. We could also consider the four values 

to be a non-null element. Nevertheless, due to inevitable experimental noisy data, the four 

elements may be already representing the noise. After an SVD decomposition, the non-null 

left singular vectors contain all the temporal evolution of the data. Therefore, they can be 

globally fitted to obtain the time constants in a dataset with the greatest certainty. On the 

other hand, when the resulting pre-exponential factors which are in a global fit associated to 

the spectra of the transient species, in this case, do not necessarily have a physical meaning. 

On the contrary, the time constants retrieved from the fit can be used as constant values to 

independently fit all the traces separately. The pre-exponential factors obtained from this last 

fit do have the same physical meaning as the DAS.  

Ultra Pyfit allows to fit the left singular vectors and can be selected directly from select traces 

submenu. Once fitted automatically, every single trace is fitted with the times found from the 

global fit of the left singular vectors (Scheme A2.1).  

Importantly the fit window has two slight variations compared to the traces fit. The first 

important thing is that the fit plot is that corresponding to the left-SV fit. On the contrary, the 

verify fit, which can be alternated with the verify spectra button and the DAS button, 

corresponds to the separated traces fitted done with the time constant retrieved from singular 

vectors fit fixed. The results of a fit to left SV can be seen in Figure A2.9. The data set used 
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is the same as the one globally fitted previously (Figure A2.8). It is important to note that the 

fit-figure correspond to the three selected left SV globally fitted while the DAS figure 

corresponds to the pre-exponential factors of the single fits done to each of the traces fixing 

the time values to those found in the global fit of the left SV. 

 

Figure A2.8. Fitting report window with details of the fit together and the general plot-fit 

and the DAS spectra obtained by fitting each of the traces fixing the time values to those 

found in the global fit of the left SV. 

 

A2.5b Fitting data to a model. 

In case the experimentalist has some knowledge about possible kinetic models that may occur 

in the system, it is possible to try to describe the data in a more complex way than the 

assumption done above where we estimate that all decay components have a parallel 

evolution independent from each other. For example, it is possible to have a model where the 

components can evolve one from the other (sequential model) or more complex models. This 

kind of approach is also known as target fit. An important assumption done in the possible 

kinetic models that can t with Ultra PyFit is that all components follow first-order kinetics in 

which their life-time is independent of the rest of components in the sample. Therefore, the 
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concentrations of the different components are described by linear differential equations. The 

objective of a target fit is to describe the concentrations of the components over time. Even 

when a certain model perfectly describes the data, it doesn't necessarily mean that the data 

follows this scheme as other models may also describe perfectly the same data, in such a case 

we can consider the system is structurally unidentifiable.  

The kinetics and evolutions of the initial components into the next ones are described by their 

life-time and the kinetic rates. In other words, a component may have several kinetic rates 

but can only have one decay component. In this case, the splitting factor between the two 

kinetic rates can be given by an external parameter which can be the photo-reaction quantum 

yield. The ensemble of rate constants forms the so-called "the transfer K matrix”. The 

diagonal elements of this matrix contain the total decay rates of each component and are 

related to the decay time constant of its Equation A2.4. The non-diagonal elements 

correspond to the rate constant that indicates transformation between components. Thus, if 

all non-diagonal components are cero, the model is equivalent to a parallel decay. 

𝑇𝑎𝑢𝑖 = 1/𝑘𝑖𝑖       Equation A2.3 

To build a particular model, all steps described above should be done to obtain the final k 

matrix, together with the initial concentrations of all the components. This is not a 

straightforward step and can be very tricky to build a K matrix that fulfilled all the above-

described steps. Therefore, in the software, a specific builder model window has been created 

to build and design models in a graphical way from where the program directly builds the K 

matrix and from there transferred to the global fit class to initialize the fitting parameters. An 

example of such a window can be seen in Figure A2.9 where a sequential model has been 

designed. The window has been designed in a way that elements in it can be dragged and 

moved to design a model, and each of the components (boxes) and rate constants (arrows) 

can be modified by double-clicking. In Figure A2.9, the specifications for the second 

component are visible. As we have just seen, modifying a decay time of a component will 

directly affect the rate constant, and thus these are automatically actualized. Equally, if a rate 

constant is set, the decay time is automatically set. Once the model is set, the program directly 

verifies the consistency of it and allows to set the parameters or raises an error message with 
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the inconsistency. We recommend to set the decay times (tau) of the components and, if 

needed, the splitting factors and let the program set the rate constants values (k).  

 

 Figure A2.9. Ultra PyFit builder model window example where a sequential model has been 

designed. In the left side of the window, the menu for specifically indicating the characteristic 

of population 2 component can be seen. 

Once finished, the model can be saved for future uses in other data sets. Loading an already 

built model is done directly by selecting the load model option in the model combo-box. 

Once the model is set, the K-matrix can be checked, and ultimately, the parameters can be 

modified, although the program will not verify this modification. Therefore, it is 

recommended to modify the existing model directly from the model window rather than from 

the K matrix all parameters window.  

As mentioned above, the data can be described by a number of components, where a spectrum 

at a certain delay time corresponds to the sum of all components and their concentrations. 

The evolution of the concentrations of the different components is described by linear 

differential equations. The objective is to describe the concentrations of the component over 
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time. The total concentration is the sum of all components concentration where each of them 

is described by Equation A2.4. 

𝑑𝐶𝑖

𝑑𝑡
= 𝐾𝑖𝑖𝐶𝑖(𝑡) + ∑𝐾𝑖𝑗𝐶𝑗(𝑡)      Equation A2.4. 

Where Kii represent the rate constant (diagonal element of K matrix), and Kij represent 

possible inputs of other components in the sample that evolve to this component (non-

diagonal K matrix elements). For the evaluation of the exponential of a non-diagonal 

Kmatrix, the program decomposes the K matrix in igenvector and eigenvalues using the 

scipy.linalg.eig() function. With the eigen vector matrix and the initial concentrations, the 

relative concentrations are solved by the linear equation set (eigenvectors*coeficients = 

Intial_Concentrations) to obtain the relative proportion of each component at a certain delay 

time. To solve this linear equation, the program uses scipy.linalg.solve() function. Once 

these coefficients are obtained, the concentration of each component at a certain delay can 

be obtained from an exponential decay and the corresponding eigenvalue (Equation A2.5) 

𝐶𝑖(𝑡) =  𝑒−𝑘𝑖𝑖𝑡         Equation A2.5 

Finally, the data, as said at the beginning, is the linear combinations of each concentration 

and their spectral shape Equation A2.6. The difference between the data and the model is 

minimized to obtain the parameters that best fit the model.  

𝜓(𝑡) =  ∑𝐶𝑖(𝑡) ∗ 𝑆𝑝𝑒𝑐𝑖       Equation A2.6 

In Ultra PyFit, either the left singular vectors or an ensemble of traces can be globally fitted 

with any custom-designed model. Once the fit is finished, similarly to the exponential global 

fit, a window fit will pop out. This window is identical to that of the exponential global fit, 

except for the fact that, instead of the DAS, there is the option to plot the evolving associated 

spectra (EAS), which correspond to the Spectra of each component (spec in equation A2.6) 

and their concentrations profile. Finally, instead of the Export to target fit button, there is the 

plot model button which retrieves the positions of the designed element that the user has 

designed in the builder model window and generates a matplotlib figure that can be saved. 

An example of the final fit window can be seen in Figure A2.10. 
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Figure A2.10. Fitting report window with details of the fit, together with windows containing 

the EAS spectra, and the a selection of traces with the corresponding fit and residues 

(sequential). The results were obtained in the same data set used previously. 

 

A2.6 Analysis of the error in Ultra PyFit. 

The model ambiguity is a known issue in multi-exponential fitting, except for mono-

exponential models (the most know ambiguity is the slow-fast ambiguity of the parameters 

in two exponential fittings)21. Moreover, one of the problems with non-linear minimization, 

particularly with increasing model complexity, is the possibility of reaching a local minimum 

of the error function without finding the global minimum, in other words, there might be 

other parameters for the model that could describe better the data. The best way to determine 

this id to repeat the process using a different set of initial model parameter guesses and 

determine whether an equivalent set of best-fit parameters is obtained. The fact that different 

sets of model parameters may results in precisely the same quality fit (in terms of lack of fit). 

This is inherent to the method itself. In general, a correlation coefficient (in our case χ2) is 

used to examine “goodness of fit” between the model and data18. However, a high correlation 

coefficient does not implicitly imply that the data are correctly described by the model as can 

be seen in the Anscombe’s quarter22 in chapter 2. One of the best ways to evaluate a model 
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is the residual plot. A good model should be able to describe the different trend of the data. 

Therefore the residues of the fit should be similar to random noise and uniformly spaced 

along the abscissa and around zero ordinates with no trend18,22.  

Once it is clear that the model correctly describes the data, the next step is to evaluate the 

uncertainty on each of the estimated parameters that best fit the data. The simple approach to 

estimating uncertainties and correlations is by inverting the second derivative matrix 

assuming that the components of the residual array are distributed around 0 with a normal 

Gaussian distribution. The error translates the uncertainty in the estimation of each parameter 

independently of the others (only the diagonal terms of the second-order derivative error 

matrix are taken into consideration no interaction term). This means that a 1D trace of the 

multidimensional qui-squared surface is considered for each parameter and we assume that 

the residues are well distributed around 0 with a normal (Gaussian distribution). It results 

that an ambiguous parameter may be estimated with a very low error. The estimated error of 

a parameter is related to the minimum of the multidimensional qui-squared surface. This 

simple approach to assessing uncertainties ignores outliers, highly asymmetric uncertainties, 

or complex correlations between Parameters. (e.g. the error fit of the estimated Off to On 

quantum yields are around 10-4 which not necessarily implies that the real parameter have 

this error of the same order or that the values is correctly estimated) 

Therefore, for determining the error in the estimated model parameter values, more advance 

methods are needed. The best way to do this would be to fit the model to multiple data sets 

of the same sample18. If all data sets are collected similarly, they should only differ on random 

variability such as random noise. Finally, the variation in the individual model parameters 

will give the confidence interval of each of the parameters. In order to do this, it is necessary 

to acquire a sufficiently large number of experimental datasets of the same sample under 

same conditions to have a large representative number of replicates between 500-1000 

samples to be able to estimate the uncertainties of the parameters accurately; as the reader 

might expect, this, in practice, is impossible. Therefore, the best approaches is the simulation 

of synthetic data sets using known parameter values, but also including noise representative 

of the actual measurement noise18. This approach of estimating the error in the parameter 

values is known as inverse modelling. The simulated data sets can be generating using the 
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inverse model itself or by using more complex forward models that represent the 

experimental system. In either case, it is crucial to include noise representative of the actual 

measurement noise. There are two different main approaches to do this: Monte Carlo 

simulations, from where the noise can be simulated following a known distribution (i.e. 

Normal Gaussian distribution for random noise) and selecting for each point of the data set 

values extracted from this distribution.  

 

Figure A2.11. Two bootstrap approaches for generating a number n of data sets as replicates 

for determining the error in the estimated fitted model parameters. a) Bootstrap on the data. 

b) Bootstrap on the residues. Figure done with Inkscape. 

The second option is the bootstrap technique which is based on generating data by shuffling 

and substituting data points from the original data set. In the case of a global fit where only 

a subset of traces has been fitted, two types of bootstrap can be imagined. The first is directly 

to the original data set, as generally from the dataset, not all traces are fitted but only a sub-

set of them. Therefore, no assumptions are made at all to generate the synthetic data sets as 

they are indeed directly taken from the original complete set of data. The second option is to 

assume that the fitted model correctly describes the data. In such a case, a synthetic data set 

can be generated by "inverse model” (using the retrieved parameters) and shuffling and 

substituting the residues to obtain actual noise representative of the measurement. This 

approach is known as residues bootstrap and we have previously applied it in time-resolved 
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spectroscopy data (nano second flashphotolysis data presented in chapter 5)23. The two 

approaches are represented in Figure A2.11. 

 

Figure A2.12. Fitting report window with details of confidence intervals studied using a 

residues bootstrap, where the histogram for t0 and the correlation plot for K_11 and K_33 

can be seen. 

Although both of the options have been coded in the GlobalFit python class, only the residues 

bootstrap are so far available in the Ultra PyFit GUI. After performing a global fit via an 

exponential or a target fit, the button confidence interval calculations offers the option to 

directly generate the desired number of data sets, after selecting the percentage of residue 

traces that will be shuffled. The results of a bootstrap can be seen once the calculations are 

finished. The result will be displayed as histograms for all parameters that have been globally 

fitted with a statistical description of the data including minimum, maximum, mean, standard 

deviation and an estimation of the 99.8 95.5% and 68% of the confidence intervals in both 

directions for all globally fitted parameters. Finally, the correlations between parameters can 

be studied via a triple plot figure where the middle figure the scatter plot of the two variables 

that want to be studied are represented together with a kernel density estimation, and in each 

of the sides the histograms of each variable can be seen. The bootstrap analysis results can 

be seen in Figure A2.12 for the fitted performed in section A2.5b and 600 replicates. 

Alternatively, the confidence intervals calculation can be done performing an F-test. This is 

the best option offered by lmfit python package13 calculating confidence intervals, from 
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where the code has been adapted to our specific case. The F-test is particularly useful in cases 

where the fit has been done to the left singular vector and thus is not possible to perform a 

bootstrap to the data or the residues, as there is no option to select other singular vectors and 

then shuffling, which is necessary to obtain actual noise representative of the measurement 

to generate new replicates by the bootstrap of the residues. 

 

Figure A2.13. Fitting report window with details of confidence intervals studied F-test, 

where values probabilities for t0 and K_11 can be seen. 

For these cases, after finding a set of best-fit parameters of the fitted model, we have obtained 

the lowest chi^2 possible. The F-test is used to compare fitted models, which is (best fit 

found), with an alternate model, where one of the parameters is fixed to a specific value 

(Equation A2.713). This alternative fit will always be worse and thus is up in the error surface 

(greater chi^2), which directly translates on an increased values F for comparing those two 

models. This is repeated iteratively until the confidence level desired for the parameter is 

reached. In other words, the value is changed until the difference between χ20 and χ2f can’t 

be explained by the loss of a degree of freedom within a certain confidence. This method 

calculates for each variable parameter the probabilities for the corresponding cumulative 

variables. This can be used to show the dependence between two parameters. An example is 
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shown in Figure A2.13, were also an estimation of the 99.8, 95.5% and 68% of the confidence 

intervals in both directions for all globally fitted parameters can be seen. 

𝐹(𝑃𝑓𝑖𝑥, 𝑁 − 𝑃) = (
𝜒2𝑓

𝜒20

− 1)
𝑁−𝑃

𝑃𝑓𝑖𝑥
      Equation A2.7 

Both methods are alternatives ways of estimating a more realistic value of the uncertainties 

and correlations of the parameters that best fit the data than those obtained by inversion of 

the second derivative matrix and assuming that the components of the residual array are 

distributed around 0 with a normal Gaussian distribution. 

 

A2.7 Keeping track of actions.  

At all moments, the analysis done can be saved, with the use of pickle python package, it is 

possible to generate a python object of the GlobalFit instance. This can be reloaded again in 

another computer with the program installed or later on for further analysis. Not only every 

fit that has been done can be re-plotted and checked effortlessly by clicking on the previous 

fit button, but also every action and steps done to reach to the fitted model can be seen. 

Indeed, the program keeps track of all preprocessing actions and details of these actions, for 

example, the number of spectra subtracted as baseline, and how the GVD was corrected. 

Finally, it also keeps track of the data file that was loaded initially. All of this information 

can be fast accessed by only clicking on display report button, where the user can see all the 

details of the preprocessing actions, all the results, the different fits performed, and a 

sequence of actions that have been done in a clear, self-explanatory page. An example of the 

report of the experiment is shown in Figure A2.14.  
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Figure A2.14. Report experiment page where all details of preprocessing results and 

sequence of actions are clear and summarized in a single page. 

At all moments, the analysis done can be saved, with the use of pickle python package, it is 

possible to generate a python object of the GlobalFit instance. This can be reloaded again in 

another computer with the program installed or later on for further analysis. Not only every 

fit that has been done can be re-plotted and checked effortlessly by clicking on the previous 

fit button, but also every action and steps done to reach to the fitted model can be seen. 

Indeed, the program keeps track of all preprocessing actions and details of these actions, for 

example, the number of spectra subtracted as baseline, and how the GVD was corrected. 

Finally, it also keeps track of the data file that was loaded initially. All of this information 
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can be fast accessed by only clicking on display report button, where the user can see all the 

details of the preprocessing actions, all the results, the different fits performed, and a 

sequence of actions that have been done in a clear, self-explanatory page. An example of the 

report of the experiment is shown in Figure A2.14.  
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Appendix 3 X-ray structures of 
rsEGFP2 and Dronpa 

 

X-ray structures of rsEGFP2. 

 

Figure A3.1. X-ray structure of rsEGFP2 cis anionic On state. The figure shows the main 

hydrogen bond between the protein cage and the HBDI phenol group. Reproduced from PDB 

5DTY1 using pymol 2. 

 

 

 

 

 

 

https://www.rcsb.org/structure/5DTY
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Figure A3.2. X-ray structure of rsEGFP2 trans neutral Off state. The figure shows the main 

hydrogen bond between the protein cage and the HBDI phenol group. Reproduced from PDB 

5DTX1 using pymol 2.  

 

 

 

 

 

 

 

 

 

 

 

https://www.rcsb.org/structure/5DTX
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Figure A3.3. Overlaid of figures A3.1 and A3.2. the differences in between On and Off states 

can be observed. 
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Figure A3.4. X-ray structure of rsEGFP2 trans neutral Off state in blue and cis anionic On 

state in orange. The figure shows the main hydrogen bond between the protein cage and the 

HBDI imidazolinone group. No difference can be observed. Reproduced from PDB 5DTY1 

and 5DTX1 using pymol 2.  
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X-ray structures of Dronpa. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.5. X-ray structure of Dronpa cis anionic On state. The figure shows the main 

hydrogen bond between the protein cage and the HBDI imidazolinone and phenol groups. 

Reproduced from PDB 2POX3 using pymol 2.  
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Figure A3.6. X-ray structure of Dronpa trans neutral Off state. The figure shows the main 

hydrogen bond between the protein cage and the HBDI imidazolinone and phenol groups. 

Reproduced from PDB 2IOV3 using pymol 2.  
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Table of amino acids 

Table A3.1 Table representing the twenty-one main amino acids. Reproduced from 

https://en.wikipedia.org/wiki/Amino_acid.  

 

 

https://en.wikipedia.org/wiki/Amino_acid.
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Joti, P. Macheboeuf, K. Motomura, K. Nass, S. Owada, C. M. Roome, C. Ruckebusch, G. Schirò, 

R. Shoeman, M. Thepaut, T. Togashi, K. Tono, M. Yabashi, M. Cammarata, L. Foucar, D. 

Bourgeois, M. Sliwa, J-P. Colletier, I. Schlichting, M. Weik. Photoswitching mechanism of a 

fluorescent protein revealed by time-resolved serial femtosecond crystallography and transient 

absorption spectroscopy. Nat Commun 2020, 11, 741 #these authors contributed equally to this 

work.  

Under preparation: 

2. Lucas M. Uriarte, Raffaele Vitale, Stanislaw Nizinski, Andras Lukacs, Steve Meech, Michel 

Sliwa, Cyril Ruckebusch. Undirected baseline correction on in time-resolved IR spectroscopy: 

example with the photo-dynamics off rsegfp2and transient. 

3. Lucas M. Uriarte, Kyprianos Hadjidemetriou, Stanislaw Nizinski, Olivier Devos, Cyril 

Ruckebusch, Jacques-Philippe Colletier, Martin Weik and Michel Sliwa. Trans to cis 

isomerization photo-dynamics in rsEGFP2 starting from OBF or HT conformer. 

4. Kyprianos Hadjidemetriou, N. Coquelle#, L. M. Uriarte#, V. Adam#, T. R. M. Barends, M. 

Byrdin, E. de la Mora, R. B. Doak, M. Feliks, M. Field, F. Fieschi, V. Guillon, S. Jakobs, Y. Joti, 

P. Macheboeuf, K. Motomura, K. Nass, S. Owada, C. M. Roome, C. Ruckebusch, G. Schirò, R. 

Shoeman, M. Thepaut, T. Togashi, K. Tono, M. Yabashi, M. Cammarata, L. Foucar, D. 

Bourgeois, M. Sliwa, J-P. Colletier, I. Schlichting, M. Weik Rational control of off-state 

heterogeneity in a photoswitchable fluorescent protein provides switching contrast enhancement. 

A4.1.2-Publications PhD not main research topic 

1. T. Nagasaka; H. Sotome, S. Morikawa, L. M. Uriarte, M. Sliwa, T. Kawai; H. Miyasaka. Restriction 

of the conrotatory motion in photo-induced 6π electrocyclic reaction: formation of the excited 

state of the closed-ring isomer in the cyclization RSC Adv., 2020,10, 20038-20045 

2. M. Jacquet, L. M. Uriarte, F. Lafolet, M. Boggio-Pasqua, M. Sliwa, F. Loiseau, E. Saint-Aman, S. 

Cobo, G Royal The Journal of Physical Chemistry Letters 2020 11 (7), 2682-2688  

3. 3- A. Tokunaga; L. M. Uriarte; K. Mutoh; E Fron; J. Hofkens; M.Sliwa J. Abe Photochromic 

Reaction by Red Light via Triplet Fusion Upconversion. Journal of American Chemical Society 

2019, 141, 44. 
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Under preparation: 

4. Stanislaw Nizinski, Adjéle Wilson, Lucas Uriarte, Cyril Ruckebusch, Elena Andreeva, Ilme 

Schilichting, Jacques-Philippe Colletier, Diana Kirilovsky*, Gotard Burdzinski*, Michel Sliwa*, 

Balance between picosecond lifetime intermediate states controls the primary photo-activation 

quantum 

yield of the Orange Carotenoid Protein from Synechocystis. 

 

 

A4.2 Contribution to congress being presenter 

A4.2.1 Oral presentations: 

1. Lucas M. Uriarte, Kyprianos Hadjidemetriou, Olivier Devos, Tadeo Moreno-Chicano, Jacques-

Philippe Colletier, Martin Weik, and Michel Sliwa. Influence of the environment on the photo-

dynamics of a photo-switchable fluorescent protein: solution vs micro-crystals, SolvATE2020: 

Scientific Meeting of the GdR SolvATE 25-26 Nov 2020, (Online). 

International conference 

2. Lucas M. Uriarte, Kyprianos Hadjidemetriou, Olivier Devos, Cyril Ruckebusch, Jacques-

Philippe Colletier, Martin Weik and Michel Sliwa. Trans to cis isomerization photo-dynamics in 

rsEGFP2 starting from OBF or HT conformer. 5th Nanosynergetics Workshop, 13th Nov. 2020 

(Online). 

 (Best talk award). 

International conference 

3. L. M. Uriarte, O. Devos, K. Hadjidemetriou, C. Ruckebusch, S. Meech, D. Bourgeois, J.P. 

Colletier, M. Weik and M. Sliwa. First study of the photodynamics of an hydrozoan fluorescent 

photo-switchable protein: existence of different switching mechanism. 9th International 

Symposium On Photochromism (Paris, France, 2019). 

International conference 

4. L. M. Uriarte, O. Devos, K. Hadjidemetriou, C. Ruckebusch, S. Meech, D. Bourgeois, J.P. 

Colletier, M. Weik and M. Sliwa. First study of the photodynamics of an hydrozoan fluorescent 

photo-switchable protein: existence of different switching mechanism. 17th Congress of the 

International Union of Photobiology & 18th Congress of the European Society for 

Photobiology (Barcelona, Spain, 2019). 

5. L. M. Uriarte, O. Devos, C. Ruckebusch, S. Meech, D. Bourgeois, M. Weik and M. Sliwa. First 

study of the photodynamics of an hydrozoan fluorescent photo-switchable protein: existence of 

different switching mechanism. Journées Annuelles de la SP2P (Lille, France, 2019). 
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International conference 

6. L. M. Uriarte, Cyril ruckebusch, Michel sliwa. photoswitching dynamics of the reversible 

photoswitchable fluorescence protein rsEGFP2: crystal and solution. Workshop for Young 

Researchers on Photo-active materials with cooperative and Synergetic Responses. (Lille, 

France, 2018). 

 

A4.2.2 Posters presentations: 

International conference 

1. L. M. Uriarte, O. Devos, K. Hadjidemetriou, C. Ruckebusch, S. Meech, D. Bourgeois, J.P. 

Colletier, M. Weik and M. Sliwa. Study of the photodynamics of a hydrozoan photo-switchable 

fluorescent protein: existence of different switching mechanisms. Let there be..... Light: A 

symposium on the occasion of the 80th birthday of Prof. Frans De Schryver (Leuven, 

Belgium 2019).  

(best poster award) 

International conference 

2. L. M. Uriarte, O. Devos, K. Hadjidemetriou, C. Ruckebusch, S. Meech, D. Bourgeois, J.P. 

Colletier, M. Weik and M. Sliwa Study of the photodynamics of a hydrozoan photo-switchable 

fluorescent protein: existence of different switching mechanisms. 9th International Symposium 

On Photochromism (Paris, France, 2019). 

3. L. M. Uriarte, R. Vitale, C. Ruckbusch, M. sliwa. Photoswitching dynamics of the reversible 

photoswitchable fluorescence protein rsegfp2: crystal and solution. 3ème Réunion plénière du 

GDR Ultrafast Phenomena. (Paris, France, 2018)  

International formation  

4. L. M. Uriarte, R. Vitale, C. Ruckbusch, M. sliwa. Photoswitching dynamics of the reversible 

photoswitchable fluorescence protein rsegfp2: crystal and solution. Ecole de physique des 

houches. Fluorescence markers for advance mycroscopy winter 2018. (Les Houches, 

France, 2018)  
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Abstract 
 

Among all applications of fluorescence proteins (FP), the most important one is undoubtedly 

their use as markers in fluorescence microscopy for in-vivo studies (Chemistry Nobel Prize 

2008). In the last decade, a new type of FPs, reversible photoswitchable fluorescent proteins 

(RSFP), has found growing applications in super-resolution fluorescence microscopy 

(Chemistry Nobel Prize 2014). RSFPs can be toggled back and forward between a fluorescent 

state and a non-fluorescent state. The image resolution and the image acquisition speed 

parameters are linked to their photodynamics. However, the switching mechanism that 

controls these parameters is still a matter of debate. In this thesis, time resolved spectroscopy 

and crystallography permitted to infer the photo-switching mechanism of different RSFPs. 

These results will open crucial perspectives towards the design of new RSFPs, capable of 

successfully facing the most recent challenges of modern advanced fluorescent microscopy. 

Re sume  
 

Parmi toutes les applications des protéines fluorescentes, la plus répandue est sans aucun 

doute leur utilisation comme marqueurs en microscopie de fluorescence (Prix Nobel de 

Chimie 2008). Ces dernières années ont vu l’émergence d’un nouveau type de protéine 

fluorescente, les protéines photo-commutables réversibles qui sont maintenant couramment 

utilisées dans les microscopies de fluorescence super-résolues (Prix Nobel de chimie 2014). 

Ces protéines sont caractérisées par une commutation réversible entre un état fluorescent et 

un état non fluorescent. Les paramètres de résolution et de vitesse d'acquisition des images 

sont liés à leur photo-dynamique de commutation. Cependant, son mécanisme est encore 

sujet à question. Dans cette thèse, la spectroscopie et cristallographie résolue dans le temps 

nous a permis de déterminer le mécanisme de commutation pour différentes protéines. Ces 

résultats devraient ouvrir des perspectives dans la conception de nouveaux marqueurs pour 

la bio-imagerie. 


