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Avancement du projet MIGA vers des mesures de strain de gravité par
interférométrie atomique

Résumé : Le projet MIGA se trouve a mi-chemin entre la physique atomique et l’astronomie par
ondes gravitationnelles. Basée sur la technologie d’interférométrie atomique, ce projet ambitieux
vise à construire un gradiomètre gravitationnel sous-terrain horizontal, dans le laboratoire
à bas bruit LSBB. Au coeur d’un laboratoire essentiellement dédié à la géophysique, MIGA
complémentera le réseau de capteurs déjà en place tout en servant de banc d’essai pour étudier
la possibilité de construire un détecteur d’ondes gravitationnelles à basse fréquence basée sur
l’interférométrie atomique.

Ce manuscrit présente des travaux théoriques et expérimentaux apportant des éléments de
compréhension, plus ou moins indépendants, participant à l’avancement du projet.

Dans un premier temps, nous estimons, par une étude théorique, l’amplitude du strain
de gravité que l’on peut attendre sur le site de construction de l’instrument et étudions leur
détectabilité par l’instrument MIGA.

Dans un deuxième temps nous présentons l’architecture et le principe de fonctionnement du
principal organe de MIGA qui est constituté d’une source d’atomes froids de Rubidium 87 et
d’un système laser associé, puis nous présentons sa caractérisation expérimentale.

Profitant des performances de la source d’atomes froids, la dernière partie du manuscrit
démontre l’obtention d’interférences atomiques sensibles aux effets inertiels, utilisant des transi-
tions de Bragg d’ordre élevé, réalisées grâce au champ lumineux résonant dans un résonateur
optique.

Mots clés: Atomes froids, interférométrie atomique, strain de gravité, measure inertielle,
diffraction de Bragg, résonateur optique.

Progress of the MIGA project toward gravity strain measurements with atom
interferometry

Abstract: The MIGA project lies at the intersection between atomic physics and gravitational
wave astronomy. Based on atom interferometry, this ambitious project aims at building an
underground horizontal gravity gradiometer in the low noise laboratory LSSB. Immersed in a
facility dedicated to geophysics, MIGA will complement the sensor network already deployed on
site as well as being a test bench to study the feasibility of building a low frequency gravitational
wave detector based on atom interferometry.

This manuscript presents independent theoretical and experimental work, that enhance
knowledge for the whole project.

We first estimate the amplitude of gravity strain to be expected on the building site and
study their detectability by the MIGA instrument.

We then present the functioning of the core of the instrument that is a 87Rb cold atom
source and its laser system and their experimental characterization.

Taking advantage of the atom source capabilities, the last part of the manuscript demon-
strates Bragg interferometry inside a wide waist optical resonator.

Keywords: Cold atoms, atom interferometry, gravity strain, inertial sensing, Bragg diffraction,
optical resonator.
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Introduction

"The art of the physicist is at its finest on the back of an envelop."

The advent of laser cooling techniques [1, 2, 3] in the late 1980’s opened the way to
neutral atom optics. Following these breakthrough techniques, in 1991, the first atom
interferometric signals [4, 5, 6, 7] started a new, rapidly growing field of research: atom
interferometry.

The principle of interferometry consists in combining the phase information acquired
by a wave while propagating through two or more distinct paths. The phase difference,
visible in the resulting interference pattern, constitutes in itself, a measurement of the
difference of action between the two paths.

Historically, this principle has been applied to various measurements using light at
the end of the 19th century [8, 9, 10]. The use of matter waves instead of electromag-
netic waves, opened the possibility to conceive interferometers sensitive to new types of
action and throughout the last thirty years, atom interferometry has been successfully
applied to conduct precision measurements of various types, from fundamental constants
determination [11, 12], test of equivalence principle [13], to probing of atomic or materi-
als properties. Notably, the inertial sensitivity of light pulse atom interferometry is now
being used to measure rotations [14, 15], gravity and its gradient [16, 17] with a precison
comparable or better than other classical devices, and these experiments, that could seem
extremely complex, are now getting out of the lab with the apparition of commercial, field
operable, devices [18, 19].

While the atomic physics community was refining the art of matter wave interferome-
try, another scientific community was pushing the limits of light interferometry to create
instruments capable of directly detecting gravitational waves (GW). The endeavor of the
"GW community" was finally rewarded, in 2015, when a first GW signal was success-
fully extracted from the LIGO interferometric data flow [20]. Detection events are now
common place during each operational runs conducted by the LIGO/VIRGO/KAGRA
cooperation [21] and they have been gradually opening the still burgeoning field of GW
astronomy, apprehending the universe through an up to now hidden phenomenon; the
propagation of space-time deformations. These observations, complementary to electro-
magnetic waves and particles detection, bring either new information on objects hidden
to other detector types [22] or redundent information enabling comparisons of models
yielding, for example, new constraints on cosmological models [23].

The MIGA project (Matter-wave Interferometer Gravitation Antenna) is one of the
projects [24, 25, 26, 27] that lies at the intersection of both fields: GW astronomy and
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atom interferometry, with the intent of studying the feasibility of building a GW detector
relying on atom interferometry technology that would extend the frequency window of
sensitivity of the present optical GW detectors.

This ambitious project [28], composed of three 87Rb atom sources and a 150 m long
optical cavity, is now being assembled 300 m underground in a low noise environment
at the French laboratory LSBB 1. Given the scale of the MIGA project, many different
problems have to be addressed and various expertise required. For these reasons, MIGA
is a joint efforts between many partners and institutions [29]. This thesis work, conducted
in Talence at the LP2N 2, falls within the collaboration framework between the MIGA
consortium and the µQuans company, and provides building blocks for different topics in
the whole project.

Organization of the manuscript
This manuscript is divided into four somewhat independent chapters.

The first chapter consist in a presentation of the MIGA project with its different
intermediary goals.

. in section 1.1 we explain the concept of gravity strainmeter.

. in section 1.2 we detail the functioning principle of the MIGA instrument.

. section 1.3 presents the preliminary experiments that are part of the MIGA project
and the status of the building works of the main instrument.

The second chapter presents a theoretical study of the gravity gradient signals that
can be expected at the MIGA site and compares them to the expected MIGA sensitivity.

. in section 2.1 we start by calculating the sensitivity of the MIGA instrument.

. in section 2.2 we consider the case of transient signals generated by moving masses
around the detector.

. in section 2.3 we predict the gravity gradient fluctuations produced by the seismic
activity at the site of the instrument considering surface seismic waves and using
seismic data recorded at the LSBB.

. following the seismic case, we predict in section 2.4 the gravity gradient fluctua-
tions produced by atmospheric perturbations above the LSBB using atmospheric
pressure variations collected on-site.

The third chapter is dedicated to the atom source that constitutes the core of the
MIGA instrument.

. in section 3.1 we describe the architecture of the atom source with its main sub-
elements and explain the functions that the source has to fulfill.

. section 3.2 presents the experimental characterization of the source.

In the last chapter, using the atom source as a tool, we demonstrate atom interferom-
etry using high order Bragg diffraction inside a horizontal optical resonator.

. we first recall some Bragg diffraction theory in section 4.1.

. in section 4.2 we move to a theoretical presentation of the behavior of our optical
resonator.

. section 4.3 presents the experimental setup.

. we end this chapter with section 4.4 where we present the experimental demon-
stration and characterization of our interferometer inside the resonator.

1. Laboratoire Sous-terrain à Bas Bruit, Rustrel, France
2. Laboratoire Photonique Numérique Nanoscience, Talence, France



CHAPTER 1

The MIGA project

Contents
1.1 Gravity strainmeters . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The MIGA scheme . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Status of the project . . . . . . . . . . . . . . . . . . . . . . . . 10

In the same way that electromagnetic waves are produced by accelerated charges,
gravitational waves (GW) are produced by accelerated masses and as charges are needed
to detect electromagnetic waves, masses are needed to detect gravitational waves. It is
therefore of no surprise that the instrument of predilection to detect GW is composed of
at least one pair of spatially separated test masses. Such an instrument is called a gravity
strainmeter. In this chapter, we will explain the concept of gravity strainmeter and then
describe the principle of the MIGA detection scheme and present the organization of the
project with its intermediary experiments.

1.1 Gravity strainmeters
In the Newtonian theory of gravity, the variation over time of the distance between

two free falling test masses is interpreted as their response to a tidal force.
Within the framework of general relativity, the variation over time of the distance

between two free falling test masses is interpreted as a non zero gravity strain, formally,
of a locally curved 4-dimensional space-time.

Therefore, an acceleration gradiometer using free falling test masses probing the grav-
itational tidal field between two points in the Newtonian understanding of gravity is also
a gravity strainmeter probing the curvature of space-time.

Gravity strainmeters come in two kinds, one measuring the displacement strain (LIGO/
VIRGO/KAGRA type), the other, the rotational strain (per ex. torsion bars [30]). The
first scheme is equivalent to measuring the difference of acceleration projected along the
line connecting the two test masses, while the second measures the projection perpendic-
ular to this direction (see Figure 1.1).

Gravitational waves are weak transverse oscillations of the metric of space-time, pro-
duced by accelerated masses, that propagate at the speed of light. In the long-wavelength

7
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Figure 1.1 – Illustration of the two strain measurement schemes.

approximation regime 1, their effect on a pair of test masses, is equivalent to the propaga-
tion of a gravitational tidal field that takes the form of an oscillating quadrupole. Taking
the line passing through two test masses as a reference, we can define two polarizations
for an orthogonally incident gravitational wave, traditionally noted + and ×, that will
create, respectively, an oscillating contraction and dilation of the distance between the
test masses or an apparent alternating rotation of the test masses around their center of
mass (see Figure 1.2).

+ polarized GW × polarized GW

Figure 1.2 – The two types of polarization of GW induce either a contraction/dilation
of the distance between to test masses or a rotation of these around their center of mass.

Each type of strainmeter is therefore an instrument sensitive to one type of GW
polarizations (+ or ×) and one direction of tidal fields (parallel or orthogonal).

Up to now, only the LIGO/VIRGO detectors could detect gravitational waves. These
detectors are of the first type described above, where the free-falling test masses are
actually the suspended mirrors of a gigantic Michelson interferometer. Because of the
suspension, below some characteristic frequency of the very elaborate suspension appara-
tus, the test masses are not effectively in free fall and the instrument is not anymore a
gravity strainmeter. Even on proposed third generation optical detectors, like the Einstein
Telescope [31] or Cosmic Explorer [32], as can be seen in Figure 1.3, this low frequency
barrier remains, blinding the instrument to signal of frequency below 1 or 10 Hz, respec-
tively. However the frequency range below 1 Hz is also a region of great scientific interest
where the GW signals can last for an extended period of time. Being able to resolve
these continuing signals would enable the study of the dynamics of GW sources over an
extended period of time, enabling precise localization, eventually leading to the concur-
rent observation of the same phenomenon with other detection channels (electromagnetic
or neutrinos type detectors) as has been achieved once with a neutron star-neutron star
merger [33]. The frequency region below one Hertz is also a place where merging events
of intermediate-mass black holes (IMBH) can be observed[34].

1. In the long-wavelength approximation regime, the distance between test masses is small compared
to the wavelength of the GW.
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Figure 1.3 – Design strain sensitivity of the LIGO detectors (green) compared to planned
sensitivities of the Einstein Telescope (purple), Cosmic Explorer (yellow) and spatial in-
terferometer LISA (blue). These detectors leave a gap in the decihertz region (red circle)
with a much reduced sensitivity.

To extend the sensitivity window to lower frequencies, new technology is needed. The
planned spatial interferometer LISA [35] would fill up the millihertz region, leaving a
small frequency gap around the decihertz (see Figure 1.3). MIGA is a project that aims
at studying the feasibility of building a GW detector, based on atom interferometry that
could fill this gap.

1.2 The MIGA scheme

Figure 1.4 – Representation of the MIGA strain measurement scheme: an optical cavity
enhances the light of a laser to drive two atom interferometers (trajectories of the atoms
in purple) separated by a bit less than 150 m.

The MIGA strainmeter falls into the first category of gravity strainmeter, it will use
two free-falling clouds of Rubidium atoms as test masses on either sides of the instru-
ment and measure their relative horizontal displacement during their ballistic trajectory
by matter-wave interferometry. Two mirrors create an optical resonator that enhance the
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light field to create the atom interferometers while acting as a common reference. Fig-
ure 1.4 illustrates the horizontal cavity that defines the common reference and the atoms
trajectories (in purple) separated by a distance of almost 150 m.

Bragg transitions will be used to create the beamsplitters and mirrors needed to make a
three pulse atom interferometer. A sequence of π/2-π-π/2 pulses will separate, reflect and
recombine the matter-wave packets creating a superposition of states at the outputs of the
interferometer that contains some information on the horizontal trajectory of the atoms,
namely, the effective horizontal acceleration the atoms observed between the opening and
closing of the interferometer.

Each Bragg transition comprises the exchange of 2n photons which yields a sensitivity
to acceleration proportional to the Bragg order n. These transitions do not change the
internal state of the atom but only their momentum state and the two outputs of the
interferometer have an opposite horizontal velocity. The phase of the interferometer can
be recovered from the population ratio between the two velocity classes:

Nn~k

Nn~k +N−n~k
= 1 + cos Φ

2 , (1.1)

where the phase Φ of the interferometer is proportional to the projected acceleration along
the beam direction:

Φ = 2n~kL.~aT 2, (1.2)

where ~kL is the wave vector of the light and T the time between each pulse of the inter-
ferometer.

The difference of phase between the two interferometers yields the differential accel-
eration:

∆Φ12 = 2n~kL. ~∆a12T
2 (1.3)

The high sensitivity of this measure stems from the very fine phase ruler defined by
the wavelength of the light (λ = 780 nm or kL = 8.05 · 106 m) along the direction of
the beam, against which, the movement of the atoms is "compared" by the process of
interferometry. In this regard, the differential measurement using the same light beam
for both measurement points is critical in this scheme, as phase noise coming from mirror
vibrations will be common to both points and canceled in the end.

Compared to the optical interferometer detectors, this detection scheme has the ad-
vantage of using "truly" free falling test masses and therefore do not suffer any abrupt
loss of sensitivity around the end mirrors suspension characteristic frequency. However
the free-fall time of the test masses is limited, determined by the time between each pulse
of the interferometer and constrained by the distance covered by the atoms during this
time. For this reason, the interrogating beam is not a single beam, but a pair of parallel
beams separated vertically by circa 30 cm, allowing a free fall time of half a second and
therefore a peak sensitivity around 2 Hz.

Another advantage of this scheme is the possibility to conduct differential measure-
ments of strain synchronously between different baseline lengths by adding points of mea-
sure along the reference beam, which would allow a spatial resolution of the strain. This
additional information could be critical when devising cancellation techniques of gravity
gradient noise [36]. For this reason, MIGA will have a third atom source, placed in the
middle of the beam line.
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1.3 Status of the project
When lowering the peak sensitivity frequency of a ground based strainmeter, new com-

plications arise as they become sensitive to gravity gradient noise. Indeed, as explained
in section 1.1, gravity strainmeters, besides being sensitive to space-time fluctuations in-
duced by gravitational waves, are equally sensitive to any variations of mass distribution
around the detector. Therefore, on the surface of the earth, the seismic activity and at-
mospheric perturbations being continuous source of stochastic variations of the density
of the ground and atmosphere will constitute a continuous source of noise susceptible to
limit the sensitivity of strainmeters.

The first studies that have been done on gravity gradient noise [37, 38, 39, 40] con-
cluded that this noise would not be significant for the LIGO/VIRGO detectors, however,
because these noises are growing very fast when lowering the frequency (∝ f−4), they are
expected to start being an issue for the third generation detectors (ET and CE) and even
more so for detectors sensitive in the decihertz region.

However, this noise is exponentially suppressed when going underground, for this
reason, low frequency ground detectors like ET are planned to be build underground.
The MIGA project, being a test bench for a real detector, follows this recommendation
and is being assembled 300 m underground in the low noise laboratory LSBB [41]. This
underground facility, located away from major human activity, hosts different types of
experiments benefiting from its low noise environment with a specialization on geophysics.
MIGA will therefore contribute to the geophysical studies carried out in the laboratory,
complementing the existing network of sensors spread around the site.

  

RAS

MIGA galleries

entrance

Anti-blast gallery

Capsule

Safety exit

Secondary gallery

Main gallery

West exit

Figure 1.5 – Plan of the underground tunnels of the LSBB with the two orthogonal
MIGA galleries visible inside the dash blue ellipse.
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In order to accommodate the MIGA vacuum vessel, a 150 m long gallery has been
blasted out together with a second identical gallery perpendicular to the first one foresee-
ing the installation of a second arm to measure the gravity strain along a perpendicular
direction (see Figure 1.5).

Figure 1.6 – Glimpse at the front of the gallery being drilled before blasting.

Figure 1.7 – 360◦ view from the cavity common to both galleries during the drilling
works.

Figure 1.8 – The first section of the vac-
uum vessel bolted in the Miga gallery.

Figure 1.9 – View of the second orthogo-
nal gallery.
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Drilling works shown figures 1.6 and 1.7 are over and the assembling of the vacuum
vessel is starting (see Figure 1.8), meanwhile, two intermediate experiments have been
assembled at the LP2N to facilitate the development of the different sub-elements of the
instrument, in a lab environment, before putting them together in the harsh environment
of the gallery, characterized by a temperature around 15◦C for a humidity index around
100 %.

The last two chapters of this thesis present the results of the first experiment, repre-
sented in Figure 1.10, that is being used to develop and fine tune the atom source and its
laser system and to demonstrate Bragg interferometry inside an optical resonator.

Figure 1.10 – Preliminary experiment used to develop and characterize the atom source
and its laser system.

The second experiment (see [42]), represented in Figure 1.11, has been assembled at
the LP2N and reproduces the exact same instrument as the final one with a distance of
a single meter between the two measurement points. The vacuum vessel, although much
shorter than the final one, has the exact same characteristics (material, cross section and
assembling principle) and constitutes a perfect test bench for fine tuning the pumping
down of the final chamber to UHV levels. This setup will be used to obtain the first
gradiometric signals, testing and preparing the measurement protocols before applying
them on the final instrument.
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Figure 1.11 – "Short" gradiometer configuration to test the MIGA scheme in a lab
environment.



CHAPTER 2

MIGA and gravity gradients

Contents
2.1 MIGA strain sensitivity . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Object in motion near the detector . . . . . . . . . . . . . . . . 16
2.3 Rayleigh waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Infrasounds in the atmosphere . . . . . . . . . . . . . . . . . . 23

The measure of gravity strain is usually conducted to observe gravitational waves and
any other strain signal is traditionally considered as noise and falls in the gravity gradient
noise category also called Newtonian noise. As MIGA is not directly concerned with the
detection of gravitational waves, we take here a different approach and consider this so-
called noise as signal 1. We then attempt to determine if MIGA will be able to detect
some contributions to this noise, hoping to enable comparisons of theoretical predictions
with actual signals. This would allow the testing of cancellation techniques that could be
applied to other devices focused on the detection of gravitational waves.

In this chapter, with this perspective in mind, we will present a theoretical study
that aims at quantifying the gravity strain induced by tidal fields generated by different
terrestrial sources. We will compare the amplitude of the expected strains with the
projected sensitivity of the MIGA strainmeter, but all the results are general and can be
compared to other devices of the same length and sensitive to displacement strain.

After briefly defining the expected sensitivity of MIGA in two different configurations
in section 2.1, we will consider in section 2.2 the effect of a moving mass nearby the
detector. In section 2.3 we will study the effect of density variations in the ground due to
the propagation of seismic Rayleigh waves, and we will close this chapter with section 2.4,
studying the case of density variations in the atmosphere due to infrasounds propagating
as pressure waves.

2.1 MIGA strain sensitivity
In this section, in order to evaluate the sensitivity of the MIGA strainmeter, we will

consider a simplified version of the MIGA scheme where the beam is simply retro-reflected,
to drive counter-propagating Bragg transitions (see Figure 2.1). The interferometer is
driven with a π/2-π-π/2 sequence of 3 pulses, using Bragg transitions of order n. For each

1. We note here that gravity gradient signals are expected as precursors of high magnitude earthquakes
and that their detection could be a great tool to generate early warnings [43].

15
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laser x
0 L

Figure 2.1 – Simplified representation of the MIGA strainmeter.

point of measure i, the interferometric phase Φi can be calculated from the sensitivity
function gs(t) of the three pulse atom interferometer [44]:

Φi(t) = n
∫ ∞
−∞

∆ϕi(τ)g′s(τ − t)dτ + εi(t), (2.1)

where εi(t) is the detection noise and ∆ϕi(t) is the difference of phase of the standing
wave at the position of the atoms at time t.

The differential interferometric phase between the two points of measure is:

∆Φ12(t) = n
∫ ∞
−∞

(∆ϕ2(τ)−∆ϕ1(τ))g′s(τ − t)dτ + ε2(t)− ε1(t). (2.2)

In the determination of ∆ϕi(t), we will neglect any frequency noise from the laser and
consider that the vibrations of the mirror affect in the same way both positions and that
therefore the overall difference of phase is 0. With these approximations, ∆ϕi(t) is only
function of the horizontal trajectories xi(t) of the atoms:

∆ϕi(t) = 2kLxi(t) and ∆ϕ2(t)−∆ϕ1(t) = 2kL∆x(t). (2.3)
To obtain the strain sensitivity of MIGA in the frequency domain, we compute the

power spectral density (PSD) of equation (2.2), noting Sf (ω) the PSD of a given func-
tion f(t), we obtain:

S∆Φ12(ω) = (2nkL)2S∆x(ω)|ωG(ω)|2 + 2Sε(ω), (2.4)
where we sum up the uncorrelated detection noise contributions of each interferometer and
whereG(ω) is the Fourier transform of the sensitivity function gs(t) and from reference [44]
we know that:

ωG(ω) = 4 sin2
(
ωT

2

)
. (2.5)

The strain corresponding to a differential displacement ∆x between the two test masses
is:

h = ∆x
L
, (2.6)

and equation (2.4) becomes:

S∆Φ12(ω) = (8nkLL)2Sh(ω) sin4
(
ωT

2

)
+ 2Sε(ω). (2.7)

Now, we define the strain sensitivity as the threshold where the strain signal equals
the detection noise:

(8nkLL)2Sh(ω) sin4
(
ωT

2

)
= 2Sε(ω), (2.8)

and we finally get the maximum expected sensitivity of the MIGA strainmeter:

Sh(ω) = Sε(ω)
2(4nkLL)2 sin4(ωT/2) · (2.9)
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In the following comparisons between this sensitivity and possible strain signals, we
will consider two configurations:
• an initial configuration at the shot noise limit with 106 atoms participating to each

interferometer using a beamsplitter/mirror comprising the exchange of 10 photons
which means: Sε(ω) = 10−3 and n = 5.
• an improved configuration at the shot noise limit with 108 atoms participating to

each interferometer using a beamsplitter/mirror comprising the exchange of 200
photons which means: Sε(ω) = 10−4 and n = 100.

Before closing this section, we recall the smallest differential acceleration that can be
resolved at steady state by the MIGA instrument:

∆amin
x = 1

2nkL
√
NT 2

· (2.10)

Some numbers...

The strain sensitivities of the two MIGA
configurations are shown on the adjacent
plot.
The best strain sensitivity is reached at
2 Hz and for the two different configura-
tions, we get:

Sh(f = 2 Hz) = 2.9 · 10−14 1/
√
Hz

Sh(f = 2 Hz) = 1.5 · 10−16 1/
√
Hz

At steady state, the smallest differen-
tial accelerations that these configura-
tions can resolve are:

∆amin
x ' 2 · 10−10 m.s−2

∆amin
x ' 10−12 m.s−2
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Figure 2.2 – Strain sensitivities for
the two MIGA configurations, initial
configuration in dashed line, plain line
for the improved one.

2.2 Object in motion near the detector
In this section we want to quantify the amplitude of signals generated by the motion of

a mass near the MIGA instrument. We will consider three cases: a pedestrian (∼ 80 kg)
walking (∼ 1 m/s) along the gallery following the tube of the vacuum vessel and the cases
of one of the small LSBB battery powered vehicles (∼ 1500 kg) driving along the main
gallery going up (∼ 10 km/h) and going down (∼ 20 km/h).

To model these situations, we consider a straight trajectory at constant speed ~v, we
note ~ri the minimal distance of the trajectory with the test mass i (see Figure 2.3).

Noting ti the time when the mass passes in ~ri, the acceleration perturbation δ~ai(t)
induced by M in i as a function of time is:
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~r1

~r2

~v

M

0 10 20 30 40 50 m

Figure 2.3 – A moving object along a linear trajectory in the vicinity of the instrument,
the actual shape and orientation of the galleries are represented to scale on this drawing.

δ~ai(t) = −GM ~ri + ~v(t− ti)
(r2
i + v2(t− ti)2)3/2 · (2.11)

From this relation, the differential acceleration between the two test masses (i = 1 and
i = 2) as a function of time can be calculated directly. The results taking into account
the geometries of the three situations described earlier are presented in Figure 2.4, where
these temporal signals are compared to the smallest differential accelerations that can be
resolved by the instrument. We can see that in all cases, differential signals are expected;
during a few seconds for the initial performances of the instrument, but during a much
longer period of time with the improved performances.

To complete our understanding of the perturbations induced by these moving masses,
we want to determine their power distribution among the frequency spectrum. To this
end, we Fourier transform equation (2.11) analytically:

δ~ai(ω) = −2GMω

v2

(
K1(riω/v)~ri

ri
− iK0(riω/v)~v

v

)
eiωti , (2.12)

where Kn(z) are modified Bessel functions of the second kind. It is interesting to note
here that for z > |n2 − 1

4 | these functions have asymptotic behavior:

Kn(z) ∝
√
π

2
e−z√
z

(
1 +O

(1
z

))
. (2.13)
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Figure 2.4 – Differential acceleration between the two test masses induced by a moving
object for the three situations: pedestrian walking along the tube (red), electric vehicle in
the main gallery, going down (yellow) and going up (purple). In green are drawn for com-
parison the smallest resolvable differential accelerations for the two sets of performances
described in the previous section (initial in dash, improved in plain).

Therefore the ratio fc = v
2πr1

defines a cutting frequency above which the acceleration
produced by the moving mass is vanishing exponentially.

From the Fourier amplitudes of the accelerations produced on each test masses, the
strain can be computed:

Sh(ω) = 1
ω4L2 [δ~a2(ω)− δ~a1(ω)] · ~e12 [δ~a∗2(ω)− δ~a∗1(ω)] · ~e12. (2.14)
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Figure 2.5 – Strain produced by a moving mass for the three configurations compared to
the MIGA sensitivity curves (red: pedestrian, yellow: vehicle going down, purple: vehicle
going up).

The strain produced by the three configurations of moving masses is compared to
the MIGA strain sensitivities in Figure 2.5. In this frequency picture, we can see that
the perturbations of the MIGA signal happens at low frequencies and that at its most
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sensitive frequency (2 Hz), the MIGA strainmeter will not be affected by the motions of
mass considered.

To visualize the dependence on mass and velocity of the shape and amplitude of
the strain curves we compare gravity strain produced by the electric vehicle for three
different velocities (1 m/s, 5 m/s and 10 m/s) in Figure 2.6 and the strain produced by
three different masses (1 kg, 80 kg and 1500 kg) going down the main gallery at the
velocity of 1 m/s.

10 3 10 2 10 1 100 101

frequency (Hz)
10 16

10 14

10 12

10 10

10 8

st
ra

in
 (1

/
H

z )

Figure 2.6 – Strain perturbation gen-
erated by the electric vehicle going down
at different velocities: 1 m/s (red),
5 m/s (yellow) and 10 m/s (purple)
compared to the MIGA sensitivity curves
(green).
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Figure 2.7 – Strain perturbation gener-
ated by a mass going down the main gallery
at 1 m/s: 1 kg (red), 80 kg (yellow) and
1500 kg (purple) compared to the MIGA
sensitivity curves (green).

From these calculations, we can foresee that the displacements of people or material in
the LSBB will have an impact on the measurements conducted by the MIGA strainmeter,
more so at low frequency than around 2 Hz. As is already the case for other measuring
instruments in place at the low noise laboratory, a recording of the times of entry and
exit of people in the vicinity around the experiment, may have to be implemented to
automatically discard data with transient signals of no further interest.

2.3 Rayleigh waves
In this section, we calculate the strain produced by the modification of density in the

earth surrounding the instrument due to the propagation of Rayleigh seismic waves. To
project the amplitude of the strain as a function of frequency, we start from seismic data
gathered at the LSBB. As a low noise environment platform with a strong component
dedicated to geophysical studies, the laboratory is equipped with a network of broadband
seismometer that continuously records the seismic activity at multiple places along the
tunnels. We used the measurement acquired by the "RAS" station, the deepest place of
the laboratory, a few hundred meters from the MIGA galleries. We kept two sets of data
to do our projections, one reflecting the quietest periods, the other the noisiest periods.

The vertical acceleration spectra used are compared to the Peterson model [45] in
Figure 2.8, in blue being the lowest 10th percentile of a quiet month (August 2011), in
red the 90th percentile of a noisy month (February 2011).

The seasonal variations observed on these spectra are due to different conditions of
the ocean and sea. Rough seas rocking the bottom floor of the ocean create local pertur-
bations that propagate as surface seismic waves and accounts for more than two orders of
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Figure 2.8 – Comparison of vertical acceleration spectra measured at LSBB (RAS sen-
sor) for a quiet period (blue) and noisy period (red) with Peterson low and high noise
models [45] (black dash lines).

Figure 2.9 – Notation definition for the calculation of the strain induced by the propa-
gation of Rayleigh waves.

magnitude of difference of amplitude of the vertical acceleration of the ground at LSBB
(see Figure 2.8).

The calculations, that which are not given in full here (details can be found in [46]),
are done in several steps.

We first calculate the gravity perturbation induced by the vertical displacement of the
ground, knowing its mechanical properties and the depth h of the detector. The result,
presented below, describes the gravity potential perturbation δU(~r0, t) produced by a
seismic Rayleigh wave of amplitude ξz(ω) and horizontal wave vector ~kR, propagating in
a direction defined by angle φ (see Figure 2.9 for a graphical representation and notation):

δU(~r0, t) = 2πGρ0
ξz(ω)

qPz − kR
√
qPz /q

S
z

ei(
~kR·~r0−ωt)

(
−2e−hqPz +

(
1 +

√
qPz /q

S
z

)
e−hkR

)
. (2.15)

The mechanical properties of the ground are the density of the ground ρ0 and contained
within the expression of the velocities of the P-waves (noted α), S-waves (noted β) and



CHAPTER 2. MIGA AND GRAVITY GRADIENTS 22

Rayleigh waves (noted cR) that define the wave numbers kP , kS and kR. We will assume
in the following linear dispersion relations. The complex wave parameters qPz and qSz are
calculated from these wave numbers such that:

qPz =
√
k2
R − k2

P and qSz =
√
k2
R − k2

S· (2.16)
We note at this point, in equation (2.15), the exponential suppression of the pertur-

bation with depth h, which motivates to place low frequency GW detectors underground.

The next step of the calculation is to determine the acceleration δ~a(~r0, t) produced in
~r0 by the gravity potential:

δ~a(~r0, t) = −~∇δU(~r0, t)

= 2πGρ0γξz(ω)ei(~kR·~r0−ωt)
[
e−hkR + b(e−hq

p
z − e−hkR)

]i cosφ
i sinφ
−1

 , (2.17)

where γ and b are dimensionless factors depending on the ratios cR/α and cR/β:

γ =

(
1−c2

R/α
2

1−c2
R/β

2

) 1
4
− 1(

1−c2
R/α

2

1−c2
R/β

2

) 1
4
−
√

1− c2
R/α

2
and b = 2

1−
(

1−c2
R/α

2

1−c2
R/β

2

) 1
4
· (2.18)

On a position along the baseline that can be written ~r0 = −h~ez +X~ex, the projection
of the acceleration along the direction of the detector can be written:

δax(X, t) = κR(kR)ξz(ω)e−iωteikRX cosφi cosφ, (2.19)

where we define

κR(kR) := 2πGρ0γ
[
e−hkR + b(e−hq

p
z − e−hkR)

]
(2.20)

to ease notation.

The last step of the calculation consists in summing up all the contributions of the
different directions of propagation to the differential acceleration between two test masses
in Fourier space. To do that, we assume an homogeneous repartition of the amplitudes
for all values of φ, which yields:

S∆ax(ω) = κ2
R(kR)Sξz(ω)〈2 cos2 φ(1− cos(kRL cosφ)〉φ

= κ2
R(kR)Sξz(ω)(1− J0(kRL) + J2(kRL)), (2.21)

where Jn(z) are Bessel functions of the first kind. The equivalent strain reads:

SRh (ω) = κ2
R(kR)Sξz(ω)

ω4L2 (1− J0(kRL) + J2(kRL)). (2.22)

where we define: χR(kR) := 1− J0(kRL) + J2(kRL). (2.23)
When kRL� 1, this last term has a low frequency approximation:

χR(kR) ' 3
8k

2
RL

2. (2.24)



CHAPTER 2. MIGA AND GRAVITY GRADIENTS 23

10 3 10 2 10 1 100 101 102 103

f

10 2

10 1

100

R
(k

R
,L

)/
(

3/
8 k

R
L)

Figure 2.10 –
√
χR(kRL)/(

√
3/8kRL) as a function of f . We observe the attenuation

of the strain above the cutting frequency fc.

and we note that when kRL� 1, the strain is independent of the length of the detector.
The ratio of

√
χR(kRL) divided by its approximated value

√
3/8kRL is plotted as a

function of f in Figure 2.10. We can see how the product kRL defines a cutting frequency
fRc = cR

2πL above which the Rayleigh length is small compared to the length of the in-
strument and the strain averages out along the length of the instrument. We can also
note in Figure 2.10 that there are discrete values of f that define local minima of strain,
features that gave rise to the idea of a Newtonian noise mitigation scheme using atom
interferometry [36].

Some numbers...

At LSBB, the mechanical properties of the ground are such that:

ρ0 = 2500 kg/m3

α = 4.66 km/s
β = 2.61 km/s
cR = 2.4 km/s

 γ = 0.77 and b = −4.18

With a length of 150 m, the cutting frequency of the strain is:

fRc = cR
2πL = 2.5 Hz (2.25)

Using equation (2.22), we derived the expected strain induced by the acceleration
spectra presented above, we compare them to the expected sensitivities of the MIGA
instrument in Figure 2.11.

We can see that the MIGA strainmeter, in its improved configuration, falls one order
of magnitude short of being able to resolve the small amplitudes of the strain around
0.1 Hz during the noisy period.
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Figure 2.11 – Comparison of the expected strain from seismic Rayleigh activity using
the noisy (resp. quiet) period spectrum in red (resp. blue) and the Peterson model (black
dash lines) with the sensitivity curves of the two MIGA configurations (green).

2.4 Infrasounds in the atmosphere
In this section, we want to repeat the previous calculation considering this time the

density fluctuations in the atmosphere due to the propagation of infrasound waves. We
will limit our study to the effect of adiabatic processes where pressure variations δp around
the mean pressure p0 are linked to density variations δρ around the mean density ρ0 by
the adiabatic index γ such that:

γ
δρ(~r, t)
ρ0

= δp

p0
(2.26)

Equation (2.26) is the starting point of this calculation from which we can express
the gravity potential perturbation δ3U(~r0, ~r, t) induced in ~r0 by the propagation in ~r of a
pressure wave of amplitude δp(ω) and wave vector ~kI :

δ3U(~r0, ~r, t) = −Gρ0

γp0
δp(ω)e

i(~kI ·~r−ωt)

|~r − ~r0|
d3~r. (2.27)

Xi

Xj

x

y

z

~k%
φ

~kI
θ

h
~r0

~%0

Figure 2.12 – Notation definition for the calculation of the strain induced by the prop-
agation of sound waves in the atmosphere.
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To calculate the total gravity potential perturbation δU(~r0, t) induced by the sound
wave, we will consider that this wave is fully reflected at the surface of the ground and
integrate its effects over the whole half sphere centered in ~r0. Noting ~k% the horizontal
component of the wave vector and kz its vertical component (see Figure 2.12 for an
illustration of the notation used), after integration, we obtain [46]:

δU(~r0, t) = −4πGρ0

γp0
ei(

~k%·~%0−ωt) δp(ω)
k2
I

e−hkI sin θ, (2.28)

where we wrote ~r0 = −h~ez + ~%0. Again, we note in equation (2.28), the exponential
suppression of the perturbation with depth h. The acceleration is calculated taking the
gradient of the potential:

δ~a(~r0, t) = −4πGρ0

γp0
ei(

~k%·~%0−ωt) δp(ω)
kI

e−hkI sin θ sin θ

i cosφ
i sinφ
−1

 , (2.29)

where (θ, φ) defines the direction of the incident wave.
The projection of this acceleration along the instrument’s direction, for a test mass

placed at X reads:

δax(X, t) = κI(kI)δp(ω)e−iωtei~kIX sin θ cosφe−hkI sin θ sin θi cosφ, (2.30)

where we define:
κI(kI) := 4πGρ0

γp0kI
(2.31)

to ease notation.
As we did for the Rayleigh strain calculation, we average all the contributions to

the differential acceleration in Fourier space considering an isotropic repartition of the
directions of propagation of the sound waves. The PSD of the differential acceleration
between the test masses of the strainmeter can be written:

S∆ax(ω) = κ2
I(kI)Sδp(ω)χI(kI , L), (2.32)

where χI(kI , X) =
〈
2(1− cos(kIX sin θ cosφ))e−2hkI sin θ sin2 θ cos2 φ

〉
θ,φ
. (2.33)

The strain reads:
SIh(ω) = κ2

I(kI)
Sδp(ω)
ω4L2 χI(kI , L). (2.34)

Like for the seismic case, the product kIL defines a cutting frequency f Ic = cair
2πL above

which the length of the sound wave is smaller than the distance between the test masses
and the strain perturbations average out and are strongly attenuated. For low frequencies,
(f � f Ic ), we have the approximation:

χI(kI , L) '
(3

8kIL
)2
, (2.35)

and the strain induced by sound waves is independent of the length of the detector.
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Some numbers...

The behavior of the ratio of
√
χI(kI , L)

divided by its approximated expression
3
8kIL as a function of frequency is shown
in Figure 2.13, where we can observe the
strong attenuation above f Ic .
Taking the room temperature speed of
sound cair = 343 m/s, the cutting fre-
quency f Ic is:

f Ic = cair
2πL = 0.36 Hz (2.36)
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Figure 2.13 –
√
χI(kI , L)/(3/8kIL)

as a function of f .

To compute an estimation of the strain induced by infrasounds propagating in the
atmosphere at the MIGA site, we conducted a measurement campaign at the LSBB. We
recorded pressure variations with an MB3D microbarometer (Seismo Wave) outside the
LSBB, above the MIGA galleries. As for the seismic study, we kept two spectra: one
defining quiet periods, the other defining noisy periods. Both spectra are compared to
the Bowman model [47] in Figure 2.14.

10 2 10 1 100 101

frequency (Hz)

10 4

10 3

10 2

10 1

100

101

pr
es

su
re

 (P
a/

H
z )

Figure 2.14 – Comparison of the pressure variations measured above the LSBB for a
quiet period (blue) and a noisy period (red) with the Bowman model (low, mid and high
model in black dash lines).

On these spectra, we can see that our pressure PSD for a noisy period surpasses the
Bowman high noise model. It is a bit surprising, as Bowman averaged his measurements
on sites all over the earth for an extended period of time. So we have to admit here, that
although we took care to add long pipes to the four microbarometer entries to filter out
wind noise, our filtering setup was not sufficient for high wind conditions. We nonetheless
decided to keep both spectra for our projection, keeping this bias in mind.

With the pressure PSD and equation (2.34), we computed the expected strain from
infrasounds in the atmosphere for the MIGA length. The results are compared to the
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Figure 2.15 – Comparison of the expected strain from infrasounds in the atmosphere
using the noisy (resp. quiet) period spectrum in red (resp. blue) and the Bowman model
(black dash lines) with the sensitivity curves of the two MIGA configurations.

MIGA sensitivity curves in Figure 2.15.
We can see that, at low frequencies and during noisy periods, the improved version of

the instrument should be capable of measuring strain signals induced by infrasounds prop-
agating in the atmosphere above the laboratory that could be correlated to direct pressure
measurements, offering the possibility to confront the theoretical model to experimental
observations.
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The preparation and detection of the atoms is provided by the atom source. Designed
and assembled in Paris by the SYRTE 1, its design is inherited from the gyroscope that
they have been developing during the last fifteen years [48, 49] and it relies on well
understood sub-elements. Each one of these elements will be presented in this chapter
from a user standpoint: the main theoretical results applied to our configuration will
be recalled in section 3.1 without entering in the theoretical intricacies of the atomic
physic phenomena which have been extensively presented elsewhere. The experimental
characterization and performances will follow in section 3.2 where we will go through
systematic effects that have to be understood before using the atom source as a tool.

3.1 Description of the 87Rb source
An overview of the atom source is presented in Figure 3.1, it has two main functions:

preparation and detection.
The preparation function consists in launching a cloud of 87Rb atoms with as many

atoms as possible in the mF = 0 internal state on a well defined trajectory with a narrow
horizontal velocity distribution. This function is achieved using a 2D-MOT, a 3D-MOT
and a series of horizontal and quasi-horizontal beams within the preparation/detection
region.

1. SYRTE: SYstème Référence Temps Espace, Observatoire de Paris www.obsp.fr

28
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Figure 3.1 – Schematic overview of the atom head with the convention of the axis
orientation used throughout this chapter.

The detection function consists in measuring the ratio between two clouds of atoms
in the same internal state but with an opposite mean horizontal velocity that are the two
output ports of the Bragg interferometer. This interferometer is driven independently of
the atom source at the apogee of the trajectory by a separate beam that will be presented
in the next chapter. Detection is achieved using the beams in the detection/preparation
region and two pairs of low noise photodiodes.

All the laser frequencies necessary to carry out the different functions of the source
are provided by an integrated fibered laser system produced by the µQuans company.
A schematic representation of the main components this laser are represented in Fig-
ure 3.2 and a detailed presentation of its architecture and performances can be found in
reference [50].

It is built around four laser diodes at 1560 nm in a master-slaves configuration. The
master is locked on the 85Rb cross-over by saturated absorption after frequency doubling.
The three slave diodes after amplification and frequency doubling give the cooling light
for the 2D-MOT (slave 1) the cooling light for the 3D-MOT, detection and one of the
Raman frequency with a dedicated amplification/frequency doubling stage (slave 2), the
last diode gives either the repump light for the 3D-MOT and detection, the F=1 push
beam or the second Raman frequency.
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3.1.1 Trapping, cooling and launching the atoms

2DMOT coils

3DMOT coils

Bias coils

Figure 3.3 – Schematic view of the 2D and 3D-MOT elements

Atoms are loaded within a three dimensional magnetic optical trap (3D-MOT) as a
2D-MOT feeds it through a ∼ ∅ 1 mm pinhole allowing a differential pressure between
the two vacuum chambers, keeping the pressure in the 3D-MOT region down to a few
10−10 mbar. A current of 9 A is run through a pair of coils in anti-Helmoltz configuration
to produce a magnetic gradient of ∼ 9 G/cm centered on a titanium cuboctahedron where
3 pairs of beams trap, cool and launch the atoms.

Each 3D-MOT beam shines ∼ 30 mW of circularly polarized light set 3.5 Γ red from
the cooling transition F = 2 → F ′ = 3 (where Γ = 38.1 · 106 s is the line width of the
transition). Within the 3 lower beams is added ∼ 17 mW overall of repumping light
(resonant with the F = 1→ F ′ = 2 transition) split amongst the beams.

When the loading is over, launching the atoms is done by taking advantage of the
Doppler effect by lowering the frequency of the upper beams’ cooling light while increasing
the frequency of the lower beams by the same amount (noted here ∆f). In doing so, the
atoms are very rapidly (few tens of micro seconds) brought to rest in the moving frame
of the light, acquiring a vertical velocity ~vi in the reference frame of the laboratory.
The shift of frequency of a few MHz neces-
sary to launch the atoms up to the inter-
ferometer region is done by playing on the
frequency of the acoustic optical modulators
that control the light intensity of the MOT
beams.
The relation between the frequency shift and
the vertical initial velocity is a combination
between the Doppler effect and the geom-
etry of the optical trap. The collimators
of the MOT beams are fixed on the square
faces of the titanium cuboctahedron of the
MOT chamber which has a triangular face
facing upward, which gives a (1,1,1) direction
for the beams, the resultant of the radiation
pressure is therefore vertical and the velocity
~vi acquired by the atoms reads:

Figure 3.4 – Titanium cuboactahedron
constituting the 3D-MOT chamber.

~vi = 2π∆f
√

3
kcool

~ez =
√

3∆fλcool~ez. (3.1)
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While the atoms are kept in the moving frame of the light and before they leave the
beams, they are submitted to a phase of sub-Doppler cooling by ramping down the cooling
light frequency to circa 15 Γ in circa 0.7 ms, followed by a ramping down to extinction
of the intensity of the light in circa 1 ms. With these parameters, we obtained a 3D
temperature of a few micro Kelvin (T ' 2.9 µK). At that point, the atoms are therefore
"released" from the light frame and their mean motion follows the trajectory of a free fall.

We will define here the effective launching velocity vl that corresponds to the initial
vertical velocity that would define a free-fall trajectory overlapping the trajectory obtained
using the launching scheme and velocity vi. These two trajectories differ only at the very
beginning and vl is such that:

vl = vi + gτ (3.2)
where τ is the time spent by the atoms at rest in the moving light frame.

Before the phase of sub-Doppler cooling, the magnetic field of the trap is turned off
and the optimum orientation of the magnetic field is set playing on the current of 3 pairs
of coils in Helmoltz configuration (see bias coils in Figure 3.3).

3.1.2 Selecting atoms
On its way up, the atom cloud enters a selection zone where counter-propagating

Raman transitions are used to selectively pump down atoms from F=2 to F=1. In our
experiment the stimulated Raman transition is set to be resonant for atoms in mF = 0
and with a horizontal velocity of ±nvrec (where vrec =' 5.88 mm/s is the recoil velocity
acquired by a 87Rb atom after absorption (or emission) of a 780 nm photon and n =
1, 2...4).

Push beams
Raman beams

F=1 push beam

Figure 3.5 – Schematics of the selection zone with the beams used to select the atoms.
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Theoretical minimum: Raman transition formalism

We recall here the notation and results of the
Raman transition formalism necessary to un-
derstand and discuss the use of Raman selec-
tion in our experiment (a detailled presenta-
tion can be found in reference [51]).
We start by looking at the D2 line structure of
the 87Rb atom depicted Figure 3.6. In mod-
eling the quantum behavior of this atom, we
consider two stable ground states noted |a〉
and |b〉, and an excited state |i〉 that would
be a state among the 52P3/2 manifold.
We then consider an atom initially in the |a〉
ground state in presence of two counter prop-
agating beams of light of frequency ω1 and
ω2. The counter-propagating Raman transi-
tion consists in the absorption from one side
of a photon of frequency ω1 that puts the
atom in the excited state |i〉 where it emits
by stimulated emission a photon of frequency
ω2 in the other direction.

52S1/2

6.83 GHz

F=2

F=1

780 nm

52P3/2

F’=3

F’=2

F’=1
F’=0

|i〉

∆

δ

|b〉

ω1

ω2

|a〉

Figure 3.6 – 87Rb D2 line with no-
tation convention.

The energy jump of the atom is small (δω = ω1−ω2 = 2π×6.83 GHz) but the exchange
of momentum is important as it equals two photon recoils (δ~p = ~(k1 − k2) = ~~keff).

In the limit where the detuning is much larger than the Rabi frequency (∆ � Ω) this
three level atom in presence of the two light fields is formally equivalent to a two level atom
(|ψ〉 = aa|a〉+ ab|b〉) in presence of a single frequency and the evolution of the coefficients
(aa and ab) as a function of the length of the pulse τ is given by equations ((3.3)):

aa,p(t0 + τ) = exp
(
i

2[δ − (ΩAC
a + ΩAC

b )]τ
){[

i cos θ sin
(ΩRτ

2

)
+ cos

(ΩRτ

2

)]
aa,p(t0)

+
[
i sin θ sin

(ΩRτ

2

)
ei(δt0+ϕeff )

]
ab,p+~keff (t0)

}
,

ab,p+~keff (t0 + τ) = exp
(
i

2[−δ − (ΩAC
a + ΩAC

b )]τ
)

{[
−i cos θ sin

(ΩRτ

2

)
+ cos

(ΩRτ

2

)]
ab,p+~keff (t0)

+
[
i sin θ sin

(ΩRτ

2

)
e−i(δt0+ϕeff )

]
aa,p(t0)} , (3.3)

where:

δ = ω1 − ω2 −
(
ωab + ~vat · ~keff +

~k2
eff

2mRb

)
, δAC = ΩAC

a − ΩAC
b ,

Ωeff =
∑
i

Ω∗1aiΩ2bi
4∆1ai

, ΩR =
√

4Ω2
eff + (δAC − δ)2,

ΩAC
j =

∑
i,k

|Ωkai|2

4∆2
kai

, Ωkji = 〈i|d̂ij ·
~Ek|j〉

~
,
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cos θ = δAC − δ
ΩR

and sin θ = −Ωeff

ΩR
· (3.4)

When starting with a pure state |ψ〉 = |a〉 the probability of transition from |a〉 to |b〉
follows Rabi oscillations such that:

P|a〉→|b〉 = sin2 θ sin2
(ΩRτ

2

)
. (3.5)

To lift the degeneracy between the hyperfine states and set the quantization axis along
the direction of the beam, a current of 13 A is run through four vertical bars creating a
horizontal magnetic field along the x-axis (see bias bars in Figure 3.1).

To lift the degeneracy of the two possible diffractions ±~keff, the Raman beams are
tilted with respect to the horizontal (∼ −5o) which is enough to open a gap wider than
1 MHz in between the two diffraction directions, this opening depends on the vertical
velocity at the time of the pulse.

After the Raman pulse, the atoms pass through the detection sheets and the non
selected atoms, remaining in the F=2 state, are pushed out of their trajectory by the
cooling frequency of the detection beam that act as a push beam, leaving a cloud of
atoms in F=1, mF=0, hyperfine state with the proper horizontal velocity to enter the
interferometer region.

However, this selection process is not perfect, in the sense that spontaneous emission
during the Raman pulse and falling down to the F=1 state during pushing, leaves many
atoms not in the proper internal and/or momentum states.

To filter out these atoms, a double selection scheme is possible by repeating the same
sequence described above with the upper Raman beam and the F=1 push beam which
yields a much cleaner cloud in the F=2 internal state.

Although this possibility is appealing it adds a fair complexity in the handling of the
sequence and optimization of the selection process presented in section 3.2.3. This second
selection stage does not actually improve the signal to noise ratio of the Bragg experiment
but would improve the shot noise limit of the final experiment. This last point will be
discussed in the last section of this chapter. Most of the results presented in this chapter
were taken from the single selection scheme and we will further consider that the single
stage preparation is being used except when stated otherwise.

3.1.3 State labeling and detection
On their way down, after the three Bragg pulses have made the interferometer, both

outputs of the interferometer are in the F=1 ground state but in two different momentum
states. They are separated taking advantage of the Doppler sensitivity of the Raman
transition: the atoms of one of the outputs are pumped from F=1 to F=2 internal state
by setting the Raman detuning such as to have resonance for one of the ±nvrec velocity
classes. Each output of the interferometer is then in two different internal states and are
detected sequentially.

Detection is done in two steps by collecting fluorescence light on two distinct photo-
diodes (see Figure 3.8). After the Raman labeling, the cloud falls through a first light
sheet resonant with the F = 2→ F ′ = 3 transition which blows away the atoms in F = 2
while creating a photocurrent on the F = 2 photodiode (lower photodiode) proportional
to the blown atom number. The unperturbed atoms in the F = 1 state continue on their
descending trajectory and pass through a thin sheet of repump light that brings them to
the F = 2 internal state before crossing a second light sheet identical to the first one that
produces a photocurrent through the F = 1 photodiode (upper photodiode).
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Figure 3.7 – Schematics of the de-
tection region with the beams used to
label and detect the atoms, the col-
lecting optics and photodiodes.

Vacuum window
lenses

Photodiodes
Repump light sheet

Detection light sheets

Figure 3.8 – Cross section drawing of the de-
tection system.

To get an estimate of the atom number from the voltage measured at the output of
the photodiodes, we have to understand the complete chain linking these two quantities.
We start this analysis by expressing the photon flux nγ emitted by fluorescence by a single
atom in presence of quasi-resonant light. This flux is dependent on the intensity of the
light within the ratio s = I

Isat
(where Isat = 1.669 mW/cm2 is the saturation intensity of

the F = 2→ F ′ = 3 transition for σ-polarized light) and on the detuning δ such that:

nγ = Γ
2

s

1 + s+ (2δ/Γ)2 , (3.6)

where Γ is the linewidth of the 87Rb D2-line.
The photon flux hitting the photodiode generates a photocurrent proportional to its

efficiency η. A transimpendance amplifier of gain R translates this current into a volt-
age V . Noting ρ the actual portion of the photons emitted that is collected onto the
photodiode, the fluorescence signal per atom can be written:

V (t) = Rρnγ(t)
hc

λ
η = KV nγ(t). (3.7)

As the cloud falls through the light sheet, much thinner than its radius, the detection
voltage Udet is an instantaneous average over the thickness of the light sheet e of the
number of shining atoms noted here dN

dt
(t). In a first approximation, knowing the velocity

of the cloud vdet, this average can be written:

dN

dt
(t) = vdetUdet(t)

eKV nγ(t)
· (3.8)
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Some numbers...

On our setup, the numerical values are:

ρ = 2 %
R = 11 MΩ
η = 0.5 A/W

 KV = 2.8× 10−14 V/ph

s = 1.5
δ = −1.5 Γ

}
nγ = 2.5× 106 ph/s/at

e = 1 cm
vdet = 3.0 m/s


dN

dt
(t) = 4.3× 109(at/s)/V (3.9)

3.1.4 Running a sequence
The complete experiment is controlled via a home made digital pattern generator based

on open-source software. A full description of this system can be found in reference [52].
It is based on a field programmable gate array (FPGA) connected via usb to a PC. It
controls the analog, digital an radio frequency outputs necessary to run the experiment.
The running of a sequence starts with a plain text file defining the timing of change of
state of the various outputs. This file is compiled and uploaded onto the FPGA that
executes the sequence. At the beginning of detection, a trigger activates an acquisition
card that records the two photodiode signals. At the end of the sequence, this data is
uploaded to the PC as simple text files.

2D

3D/detection

Raman1/repump

Raman2

MOT loading detectionBragglaunch

preparation labeling

t (ms)
-300 0 670 870

Figure 3.9 – Overview of the light power sources during a typical sequence.

While testing and optimizing the functions of the atom source, a fair amount of time
has been spent developing a set of programs, written in python, that automates the
changing of parameters within a given sequence to realize various types of scans, analyze
the data and store them in a dedicated storage architecture.

Figure 3.9 represents the timing of a typical sequence with the different light chan-
nels. A representation of the corresponding atom cloud vertical trajectory is presented
Figure 3.10.
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t (ms)

z (cm)

Rdw

det

Rup

F=1 push

22.2

27.6

34.1

39.4

-300 0 64 104 386

73

690

Figure 3.10 – Overview of the vertical trajectory of the atoms during a typical sequence
with the different horizontal or quasi-horizontal beams.

3.2 Experimental characterization
After having described the different stages of preparation and detection of the atoms

with the main theoretical results associated with them, we will now present their experi-
mental characterization and measured performances.

3.2.1 MOT loading
The MOT loading can be observed with a dedicated photodiode.
A typical 3D-MOT fluorescence signal is shown in Figure 3.11 as the loading time is

increased, along with a logarithmic fit (in yellow). The fit yields an initial loading rate
around 9 · 108 atoms/s.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 3.11 – Fluorescence signal from the 3D-MOT plotted in purple with a logarithmic
fit in yellow. In green is shown the tangential at the origin that defines the initial loading
rate (∼ 9 · 108 atoms/s).
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3.2.2 Position distribution
Acquisition of the photodiodes’ signals is done with a Redpitaya [STEMlab 125-14]

at a rate of 15259 samples per second. Typical signals are shown in Figure 3.12 for both
photodiodes. The left plots show the signals after velocity selection, but without blowing
away the non selected atoms, the right plots show the signals after blowing away the non
selected atoms and labeling on the selected velocity.
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Figure 3.12 – Photodiodes’ signals for two different orders of magnitude of signals:
left after a single preparation with the lower Raman beam, right after a labeling pulse on
a selected cloud. For each plot, the purple color was acquired setting the Raman pulse
on resonance, in yellow setting the Raman detuning out of resonance to visualize the
spontaneous emission effect. We note on the right plots a short saturation at the beginning
of the acquisition window due to the light of the labeling pulse seen by the photodiodes.
Each signal is the average of five signals (standard deviation shown as a fuzz around the
mean values).

The digitization of the signal by the Redpitaya converts a voltage between -1 V and
+1 V in a 14 bits numerical value. The digitization noise is thus of the order of 100 µV.
Given the very small amplitude of the signal after preparation of the atoms (at the mV
level), we inserted an active low-pass filter between the transimpedance amplifier of the
photodiode and the acquisition card. But because of the huge difference in amplitude
between a selected cloud and a non selected one (almost 2 orders of magnitude) the gains
of these filters were made switchable between a low-gain setting and a high-gain setting
to bring the signals, as close as possible, to the -1 +1 V input window of the Redpitaya.

3.2.3 Selection
The selection process that consists in setting as many atoms as possible on a well

defined trajectory, in the mF = 0 hyperfine state, with a narrow velocity distribution, has
to be optimized with care. The optimization is done iteratively and will be presented in
this subsection.

The first step of this process consists in probing the internal and external state dis-
tribution within the initial cloud by doing spectroscopy. We recall first the resonance
condition of the Raman transition:
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δ = ω1 − ω2 − ωab = −~vat · ~keff − ωR − δAC, (3.10)

where ωR = ~k2
eff

2mRb is the recoil energy.
We want to emphasize here the consequence of the convention of the definition of δ

(see section 3.1.2) that is used throughout this manuscript: a negative Raman detuning
implies a positive projection of ~keff onto the velocity ~vat of the atoms.

δ < 0 ⇒ ~keff · ~vat > 0. (3.11)
Going back to the spectroscopy, by scanning the detuning between the light field

frequencies of the Raman beam, we have direct access to the number of atoms fulfilling
the resonance condition of equation (3.10) for each detuning. Figure 3.13 shows the result
of such a spectroscopy conducted with the lower beam.
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Figure 3.13 – Full range spectroscopy conducted with the lower Raman beam, with a
pulse length of 270 µs, each data point is averaged over 15 shots and the standard deviation
over the measure is represented as a purple fuzz.

We can see three sets of peaks: two sets of wide peaks coming from the counter-
propagating Doppler sensitive Raman transitions with opposite ~keff and one set of attenu-
ated narrow peaks coming from co-propagating Raman transitions. Within each set, the
three peaks correspond to the three hyperfine states mF = −1, 0, 1. From the position
of the co-propagating peaks that exist because of non zero projection between the quasi
vertical polarization of the incoming beam and the quasi horizontal polarization of the
reflected beam, we can check and empirically tune the power ratio between the two light
intensities to zero out the light shift. In the following, we will consider that δAC = 0.

Fine tuning the Raman pulses properties (light intensity and pulse length), that opti-
mize the selection process, is done recording the Rabi oscillations driven by the counter-
propagating light, as the length of the pulse is increased. Such oscillations are presented
Figure 3.14, (a) for the lower beam, (b) and (c) for the upper beam, driving the transition
when the atoms are on their way up and down, respectively, and after selection with the
lower beam. The intensities are set low, so as to have long π-pulses to obtain a narrow
horizontal velocity selectivity, to insure that the two outputs (or inputs) of the Bragg
interferometer will be separated.

Because of the small proportion of atoms (a few percent) that fulfill the resonance
condition when doing the first selection, the Rabi oscillations are spoiled by the sponta-
neous transfer of atoms to F = 1. To enhance the π-time readings of the Raman down
selection, it is useful to repeat the Rabi oscillations scan while labeling on the selected
velocity class. The result of such a scan is shown in Figure 3.14 (d) where we separate
the atoms coherently transfered, detecting them in F = 2, from the one that were (unfor-
tunately) selected through spontaneous emission, that are detected in F = 1. The sum
of both internal states reproduces the poor oscillations observed on (a).
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Figure 3.14 – (a): Rabi oscillations driven by an intensity of 5 mW/cm2 in the lower
beam (averaged over 15 measurements). (b) and (c), Rabi oscillations driven by the
upper beam, pulsing the light while the atoms are going up (I = 7 mW/cm2) and down
(I = 10 mW/cm2), respectively, after selection with the lower beam (averaged over 10
measurements).(d) repeat of (a) while labeling on the selected velocity class (averaged over
15 measurements).

Comparing (b) and (c), we also note the loss of efficiency of the Raman up selection,
when pulsing going down, explained by the thermal expansion of the cloud that induces
an important light intensity variation within the cloud.

Once all Raman pulses have been optimized, further spectroscopies can be done to
probe the selected cloud distribution. Figure 3.15.(a-b) and (c-d) presents spectroscopies
realized atoms going up and down respectively, (e-f) shows a spectroscopy, atoms going
down, after a second selection with the upper beam.

On these spectroscopies, we can observe the distribution of the atoms that were not
coherently transfered to the F = 1 state. We can also see how adding the second selection
stage cleans the distribution of the undesired atoms (e-f).

The combined (a) and (c) spectroscopies turn out to be a very useful tool, enabling
accurate measurements of the horizontal velocity of the selected cloud.

Raman detuning atoms going up Raman detuning atoms going down
~keff · ~ez > 0 −keff|vz| sinα− keffvx cosα− ωR < 0 keff|vz| sinα− |keff|vx cosα− ωR > 0
~keff · ~ez < 0 keff|vz| sinα + keffvx cosα− ωR > 0 −keff|vz| sinα + keffvx cosα− ωR < 0

Indeed, looking at the above table, we can see that the difference of frequency between
two peaks sharing the same detuning sign gives the Doppler shift due to the horizontal
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Figure 3.15 – (a) to (d): spectroscopies with the upper Raman beam, atoms going up and
down respectively, after selection with the lower beam. (e) and (f): spectroscopy with the
upper Raman beam after a double selection. The amplitude of the splitting of the hyperfine
states is a bit unfortunate on these spectroscopies as two "Doppler" peaks overlap around
the zero detuning on top of the co-propagating peaks. The left column represents transition
probabilities calculated from the atom numbers shown on the right column.

velocity of the atoms. This method, that measures precisely the horizontal velocity of the
cloud, is valid only if the timing of the upper Raman pulses are symmetrical with respect
to the apogee of the trajectory. The precise setting up of the vertical trajectory will be
discussed in section 3.2.5.

Once the Raman detunings that label the ±nvrec velocity classes are known, we can
fine tune the Raman down selection detuning by doing yet another spectroscopy with the
lower beam, while labeling on the desired velocity class. Such a spectroscopy is shown in
Figure 3.16 where we can see the ±vrec peaks in F = 2 and the non labeled atoms stay
in F = 1. We note the asymmetry between the purple and yellow peaks due to the two
photon recoil of the selection that necessitate selecting atoms with −vrec and −3vrec or
with vrec and 3vrec. We understand now the importance of carefully choosing the direction
of the ~keff that optimize the number of atoms in the desired velocity class.
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Figure 3.16 – In purple (resp. yellow), Raman down spectroscopy while labeling on the
+vrec (resp. −vrec) velocity class.

Once all these steps are fulfilled, the atom source is ready to feed the Bragg interfero-
metric beast and detect its outputs, operation that will be reported in the next chapter.

3.2.4 Detection
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Figure 3.17 – Close up of the mF = 0 peaks, in yellow are plotted two Gaussian fits of
the Doppler sensitive peaks.

We presented the detection principle in section 3.1.3 where we gave an approximate
formula for estimating the number of atoms detected. However, this formula did not take
into account the trajectories of the atoms. A closer look at the spectroscopy of Figure 3.13
shown in Figure 3.17, reveals some worrying details: the shape of the Doppler peak on
the δ < 0 side is deformed and the sum of the center frequencies of the mF = 0 Doppler
peaks is of the order of -10 kHz, which is unexpected as it should be equal to minus twice
the recoil energy (−2ωR ' −2π · 30 kHz). Although this could be explained by a strong
light shift, the position of the co-propagating center peak at the 0 kHz detuning discards
this possibility.

This distortion of the spectroscopy can be explained by the detection design, shown in
Figure 3.18 and its asymmetry with respect to the (yOz) plane. In this figure, the yellow
volumes represent the region where the photodiodes can detect the fluorescence signal.
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Figure 3.18 – 3D representation of the volume where the atoms can be "seen" by the
photodiodes.
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Figure 3.19 – (left):Detected atoms trajectory (purple line) as they are blown away
while crossing the light sheet. The scattering rate nγ as a function of the height z of the
atoms is shown in yellow and the total number of scattered photons as a function of x in
green.(right):Detectability window along the beam axis for 3 field depths along the y-axis:
center of the beam in purple, back in green and front in yellow.

The asymmetry of the detection design does not come from the volume where the emit-
ted photons can be collected onto the photodiode, but from the direction of the pushing
light that orientates the trajectory of the blown atoms toward negative x. Depending on
their position along the x-axis, when entering the detecting beam, the atoms will spend
a different amount of time in the "collected volume" and the resulting signal will depend
on this initial position.

Figure 3.19 (left) shows a simulation of the trajectory of an atom during detection
(purple), with the corresponding scattering rate (yellow) as the atom falls through the
beam. The total number of scattered photons as a function of x is shown in green. These
three curves illustrate the dependence of the signal on the entering distance along the
x-axis.

Figure 3.19 (right) shows the variation of the total number of collected photons per
atom as a function of the entering position along the x-axis for three different positions
along the y-axis: edge of the beam, close to the detection optics in yellow, center of the
beam in purple and edge of the beam, away from the detection optics in green. These
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simple simulations explain qualitatively the asymmetric window of the detection design.

This asymmetric window of detection, apart from distorting the spectroscopic sig-
nals, can become limiting because it will unbalance the two output ports of the Bragg
interferometer, this unbalance will be discussed in section 3.3.
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Figure 3.20 – Overlay of Raman down spectroscopies imaging the atoms going down
(yellow) and going up (purple).

To convince us that the distortion of the spectroscopy observed comes from the com-
bined effect of the atoms’ horizontal trajectory and the spatial filtering of the detection
design, we made a spectroscopy with the Raman down beam, imaging the atoms going
up. Imaging going up, the cloud has a millemetric size and the asymmetry is negligible.
This spectroscopy is compared in Figure 3.20 to the spectroscopy obtained imaging the
atoms going down of Figure 3.13. We can clearly see the spatial filtering of the detection
system that does not detect the hottest atoms and the asymmetry of this filtering effect.
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Figure 3.21 – Overlay of 10 Raman down spectroscopies labeling on the nvrec velocity
class (n = −5 to n = +4). The green color corresponds to a positive horizontal velocity,
red to a negative one, the blue color corresponds to the no horizontal velocity trajectory.

We close this discussion on the detection subtleties drawing the reader’s attention
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to Figure 3.21 where one can observe the intertwined effects of the velocity distribution
of the initial cloud, the velocity selection, the horizontal trajectory and the detection
asymmetry.

3.2.5 Launching
In its function of preparation, the atom source has to set the cloud on a well determined

parabolic trajectory, characterized by its apogee and its horizontal velocity, that optimize,
respectively, the interrogated volume of the cloud by the Bragg beam and the number of
atoms that fulfill the Bragg condition.

We have given extensive details on the optimization of the horizontal velocity of the
atoms in section 3.2.3. We mentioned there the importance of knowing with great precision
the time of the apogee in order to measure accurately the horizontal velocity. However,
this key parameter cannot be set a priori for several reasons.

Although we know the exact time at which we detune the light of the 3DMOT beams,
we do not know exactly the time spent by the atoms at rest in the moving light frame
and therefore the effective launching velocity cannot be calculated from equations (3.1)
and (3.2).

Neither can we measure it by direct timing of the atoms between launching and de-
tection as our detection scheme does not give us access to a detection height but only to
a detection time.

We therefore devised a way to measure the launching velocity with great precision.
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Figure 3.22 – Imaging of the detection light sheets using pulsed detection sequences.
Dots correspond to the maximum voltage recorded by the photodiodes for a given timing
the lines are the results of Gaussian fits of these data points (red imaging going atoms
going down, yellow imaging atoms going up).

The underlying principle is to "image" the detection beams using two pulsed detection
sequences. Each sequence consists in pulsing the detection light for a very short time
(few hundred of microseconds) at different times. The first sequence detecting the atoms
going up, the second going down. Each data point of the scan is the maximum voltage
given by the photodiodes for a given timing of the pulse, that is, a different position
of the cloud. The complete signal constructed with all the different timings gives the
convolution of the light field profile with the atom cloud spatial distribution, which is
exactly a spatial analogy of the probing of the velocity distribution of the cloud doing
Raman spectroscopy. However, in this case, we cannot play on the size of the cloud
(which would be the analogue of the length of the pulse) and the obtained profile is
widened by the important width of our cloud, especially when imaging going down. The



CHAPTER 3. CHARACTERIZATION OF THE ATOM SOURCE 46

maxima of intensity are nonetheless accurately determined with this method, therefore by
adjusting the initial velocity parameter such as to overlap the measured profiles for both
sequences; atoms going up and atoms going down, we calculate a very good estimation of
the launching velocity. The result of this process is shown in Figure 3.22.

Some numbers...

The Gaussian fits yield an effective vertical velocity vl = 3.785 m/s.
These data were obtained using a launching detuning ∆f = 2787.5 kHz which gives a
vertical velocity vi = 3.767 m/s.
Using equation 3.2 we can estimate the effective time spent by the atoms at rest in the
moving light frame:

τ = vl − vi
g

= 1.8 ms. (3.12)

This duration has to be compared to the actual times in the sequence when the frequency
ramp starts (tf = 1.04 ms) and when the amplitude ramp starts (ta = 2.26 ms).

Once the launching velocity is accurately known we can map the light profiles of the all
the other beams. The repump beam and the F=1 push beam were imaged with the same
type of sequence (atoms going up). For the repumping beam, light from the detection fiber
was temporarily injected in the collimator of the repumping beam. To get the "Raman
efficiency" profiles we changed the Raman detuning following the slowing down of the
cloud due to gravity, decreasing the detuning as the timing was increased. The profiles
of the six beams are compiled in Figure 3.23. Looking at this figure, we have to keep in
mind the convolution effect between the width of the cloud and the width of the beam
that makes the beams appear wider than they are.
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Figure 3.23 – Beam profiles as "seen" by the atoms, from left to right: Raman down,
detection down, repumping beam, detection up, Raman up and F = 1 push beam. We
note the position of the repumping beam of the detection, set very low to avoid repumping
atoms in the upper light sheet.

3.3 Probability calculation and calibration
In its function of detection, as described in the preceding sections, the atom source

has to map the two output ports of the Bragg interferometer, namely the two velocity
classes ±nvrec onto the two internal states F = 1, 2. In its preparation function, the atom
source has to produce a cloud that matches a single input of the interferometer.
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Whatever the performances of the Bragg process, the quality of these two functions
will alter the performances of the whole experiment. In this section, we will try to quantify
the eventual loss of performances that the atom source may induce, considering a perfect
Bragg process (contrast equal to unity).

The output signal of the experiment is the transition probability at the two outputs
of the detection system noted here P d

t :

P d
t = NF=2

NF=1 +NF=2
· (3.13)

Within this signal, we want to recover the interferometric phase Φ that describes the
change in population at the outputs of the interferometer. Noting Ni the number of atoms
at the output i, this change of population reads:

P = N2

N1 +N2
= 1− cos Φ

2 and 1− P = N1

N1 +N2
= 1 + cos Φ

2 · (3.14)

Because of the detection design and of experimental limitations, the mapping that
links NF=j to Ni is not a one to one relation. To calculate the effective mapping, in our
approach, we take into consideration the following effects:
• Some atoms are injected in the interferometer that are not on the correct trajectory

(due to spontaneous emission), let N0 be the number of atoms that are incorrectly
injected in the interferometer.
• Some atoms that were on the labeled output are not labeled, we call PL the prob-

ability of an atom being labeled correctly.
• Some atoms are labeled that should not be (through spontaneous emission), PSp

will denote the spontaneous emission rate of the labeling beam.
A graphical representation of these effects is presented in Figure 3.24.

N1PL

N2(1 − PSp)

N0 N2PSp

N1(1 − PL)

Figure 3.24 – Schematic and notation illustrating the different contributions of each
detection channel. Blue lines correspond to F = 1 atoms, red lines to F = 2 atoms.

Using the notation of Figure 3.24, the measured transition probability of output 1
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reads:

P 1
t = N1PL +N2PSp +N0PSp

N1 +N2 +N0
· (3.15)

Noting Ntot = N1 + N2 + N0 the total number of atoms detected and using the
relations (3.14) we can express the measured transition probability as a function of Φ:

P 1
t = 2N0PSp + (N1 +N2)(PL + PSp)

2Ntot

+ N1 +N2

2Ntot

(PL − PSp) cos Φ. (3.16)

From this expression, we can calculate the variation on the measure of the phase δΦ
induced by a variation of transition probability δPt:

δΦ = 2
PL − PSp

(
1 + N0

N1 +N2

)
δPt

sin Φ · (3.17)

We recall here the result in the case of a perfect mapping of the outputs:

δΦ = 2
sin ΦδPt. (3.18)

Comparing equations (3.17) and (3.18), we understand and can quantify how a defect
of preparation (N0 6= 0), spontaneous emission during labeling (PSp 6= 0) or non perfect
labeling (PL < 1), increases the sensitivity of the experiment to any sources of probability
of transition noise.

Continuing further, we want to calculate the limit of sensitivity set by the quantum
projection of detection. The fluctuations introduced by this projection can be calculated
from its statistics that follow a binomial law, which, when the total number of atoms
participating to the interferometer (N1 + N2) is high, reduces to a normal distribution
centered on the expected population ratio P , described by equations (3.14). In mathe-
matical terms:

P (Pexp) = 1
σP
√

2π
exp

(
−(Pexp − P )2

2σ2
P

)
, (3.19)

where the standard deviation σP is such that:

σP =
√
P (1− P )
N1 +N2

· (3.20)

From σP , we can calculate the standard deviation of the quantum projection fluctua-
tions on the reading of the phase:

σΦ = σP

∣∣∣∣∣ δΦδPt
∣∣∣∣∣ · (3.21)

Considering the case where δΦ
δPt

is minimum, that is at half-fringe when Φ = π
2 and

using the results of equations (3.16) and (3.17), and after some algebra, we obtain:

σΦ = 1√
N1 +N2

1
PL − PSp

×
√

2− PL − PSp
(

1 + 2N0

N1 +N2

)√
PL + PSp

(
1 + 2N0

N1 +N2

)
· (3.22)



CHAPTER 3. CHARACTERIZATION OF THE ATOM SOURCE 49

Spontaneous emission during labeling is a small effect (at most a few percent), to
evaluate the effect of the efficiency of labeling on the detection fluctuation, we neglect the
spontaneous emission and σΦ becomes:

σΦ = 1√
N1 +N2

√
2− PL
PL

· (3.23)

In this simplified expression, we see that σΦ is equal to the result for a perfect in-
terferometer ( 1√

N1+N2
) multiplied by a factor K(PL) which variations are represented in

Figure 3.25 in plain purple. In dashed purple is added the effect of 5 % of spontaneous
emission, neglecting any mispreparation (N0 = 0).
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Figure 3.25 – Variation of the multiplicative factor in front of the 1√
N1+N2

of σΦ for
our setup in purple and for a symmetric detection scheme in yellow, without spontaneous
emission in plain, with spontaneous emission in dash.

Some numbers...

In our experiment, we observed a labeling efficiency of 0.5, which yields:

σΦ '
1.73√
N1 +N2

· (3.24)

Adding 5% of spontaneous emission without any defect of preparation (N0 = 0) raises the
coefficient to 2.

At this point it is interesting to compare these results with a symmetric detection
scheme, that is, where both outputs are labeled in the same way and no repump light is
used during detection.

The above calculus can be repeated changing the expression of Ntot such that:

Ntot = (N1 +N2)PL + 2N0PSp. (3.25)
we obtain:

Pt = 1 + N1 +N2

2Ntot

PL + N1 +N2

2Ntot

(PL − PSp) cos Φ, (3.26)
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δΦ = 2
PL − PSp

(
PL + 2N0PSp

N1 +N2

)
δPt

sin Φ (3.27)

and

σΦ = 1√
(N1 +N2)PL

PL
PL − PSp

√
1 + PSp

PL

(
1 + 2N0

N1 +N2
PSp

)√
1 + PSp

PL

N0

N1 +N2
· (3.28)

Comparing equations (3.17) and (3.27), we first note that the symmetric detection
scheme is more immune from defect of preparation as N0 appears, this time, multiplied
by PSp (equivalent to a double preparation scheme). We also note that PL doesn’t affect
anymore the sensitivity to transition probability fluctuations and if we neglect spontaneous
emission during labeling we find back the result of a perfect interferometer:

δΦ = 2
N1 +N2

δPt
sin Φ · (3.29)

However, comparing equations (3.22) and (3.28) or the purple and yellow curves of
Figure 3.25, we can see that the uncertainties on the measure brought by the quantum
projection during detection is not significantly different although better for the symmetric
detection scheme.

Before closing this comparison of the two detection schemes, it is important to note
here that if we take into consideration some imperfections in the Bragg process that would
populate other momentum classes (by spontaneous emission or undesired Bragg diffraction
populating unwanted Bragg states), we see that the symmetric detection scheme will have
a strong immunity from these defects as the atoms will not be detected (except through
the small spontaneous emission term).

Crosstalk

We have omitted so far the existence of crosstalk between the two detection lines:
optical crosstalk or double detection due to insufficient blow or too early repumping.
We will now evaluate their consequences on the phase measurement independently from
the other defects. The crosstalk can be modeled adding a term in each detection line
proportional to the other line:

N exp
F=2 = NF=2 + αNF=1 and N exp

F=1 = NF=1 + βNF=2. (3.30)
Repeating the calculation done previously, we get:

PT = N1 +N2

Ntot

1 + α

2 + N1 +N2

Ntot

1− α
2 cos Φ, (3.31)

and at half-fringe:
δΦ
δP

∣∣∣∣∣
π
2

= 2 + α + β

1− α (3.32)

and σP = 1√
N1 +N2

√
(1 + α)(1 + β)

1− α · (3.33)
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Some numbers...

On our atom source the crosstalk terms are ∼ 2 % which yields:√
(1 + α)(1 + β)

1− α = 1.04 and (3.34)

δΦ
δP

∣∣∣∣
π
2

= 2.08 (3.35)

We can see that on our atom source, this effect is a small effect moreover it is important
to note that it can be corrected, post-processing the data, by subtracting to each detection
line a portion of the other one. This post processing has been applied to all the data
presented in this manuscript.

The α and β coefficients were determined doing two calibration runs, alternatively
preparing all atoms in each internal state, and reading directly the crosstalk portion on
the opposite detection line.

Outputs detection unbalance

We will end this section quantifying the effect on the interferometric phase measure-
ment of a detection efficiency unbalance between the two outputs of the interferometer.
This unbalance can come from two different levels:

— unbalanced detection of the internal states caused by a difference of effective in-
tensity profile between the two detection light sheets.

— unbalanced detection of the momentum states due to the spatial asymmetry along
the x-axis discussed in section 3.2.4.

In this study, we will neglect any other defects (PL = 1, N0=0 and PSp = 0) and
without loss of generality, set the efficiency of output 1 as the reference and note e the
efficiency ratio between output 2 and output 1, the transition probability reads:

Pt = N1

N1 +N2e
(3.36)

we thus obtain at half fringe: δΦ
δP

∣∣∣∣∣
π
2

= 1 + e and σP =
√
e√

N1 +N2
(3.37)

As for the crosstalk, this effect can be minimized by post processing the data after
having determined experimentally the value of e. However the measure of this quantity
is not straight forward as it is a function of the internal state F and position along the
x-axis at detection time: e = e(F, x).

The measure of the dependence on the internal state can be done with a double
calibration run, where the atoms are twice prepared in the F = 2 internal state and
detected first by the upper light sheet, then with the lower light sheet by blocking the
light in the upper sheet. The ratio of the atom number counts gives the efficiency e(F ) 2.

The measure of the dependence on the momentum state can be done preparing twice
the atoms in F=2 and doing two spectroscopies with the lower Raman beam, detecting

2. This method is not rigorously correct as it doesn’t take into account the repumping step that may
add some bias. However, as preparing twice the same number of atoms in the two fine states is not
possible without adding even more bias, the above method was kept.



CHAPTER 3. CHARACTERIZATION OF THE ATOM SOURCE 52

once the atoms going up and once the atoms going down. Assuming that on their way up
the atoms are detected in the center of the detection window (because of their short time of
expansion/propagation), the first spectroscopy gives access to the value of N(px)e(F, x =
0). The second spectroscopy giving access to N(px)e(F, x). Where x is linked to the
initial horizontal velocity v0

x by the expansion time between launch (t = 0) and detection
(t = tdet) and taking into account the modification of trajectory due to the two-photon
recoil of the Raman selection (happening at t = tRDw) such that:

x(tdet) = v0
xtdet ± 2(tdet − tRDw)vrec. (3.38)

The sign depending on the direction of the Raman diffraction.
The ratio of the two spectroscopies yields an efficiency profile along the x-axis.
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Figure 3.26 – Calibration of the efficiency profile of the detection window. In red from
the δ < 0 peak, in green the δ > 0 peak, in blue is shown the averaged profile.

Such a profile, calculated from the two mF = 0 Doppler sensitive peaks of the spectro-
scopies presented Figure 3.20, is shown in Figure 3.26. From this profile we understand
the importance of choosing the proper sign for the Raman down detuning to detect atoms
in the flatter and higher efficiency region of the x > 0 side.

To use this profile to post-process the data, the abscissa along the x-axis of each
outputs of the interferometer at detection time has to be determined carefully taking into
account the launching velocity, the Bragg order and the sign of the output velocity class,
which makes this correction very complex to set up. The post processing of the data,
correcting for the dependence of the efficiency on the momentum state, was not done on
the data presented in this manuscript.

Conclusion
In this chapter, we presented the different sub-elements that compose the atom source

and their working principle. We then explained the different steps that enable us to
tune the source to prepare optimally a cloud of atoms ready to undergo Bragg atom
interferometry at the apogee of its trajectory.
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We assessed the good performances of the atom source, but noted that it may reduce
the ultimate limit of sensitivity of the interferometer, due to its labeling process that will
introduce a bias in the determination of the atom number of each output port of the
interferometer.

This bias is a consequence of the limited efficiency of the stimulated Raman transition
used to label one output port of the interferometer and of the spontaneous emission
during this labeling. With the present labeling efficiency and spontaneous emission rate,
we expect a loss of sensitivity around a factor two.
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In this chapter, using the atom source as a tool, we explore the properties of an optical
resonator capable of enhancing a beam large enough to diffract a cloud of cold atoms at
the apogee of its trajectory after 400 ms of thermal expansion, to create large momentum
transfer beamsplitter and mirror.

We start this chapter by recalling some theory on the Bragg diffraction, we then
present some theory on optical resonators, focusing on the special case of the geometry
of our choice: a mirror-lens-mirror cavity. Moving to the description of the experimental
setup, we end this chapter presenting experimental results that illustrate the behavior of
the optical resonator and the performances and limitations of our diffracting beam.

4.1 Bragg diffraction
The sensitivity to inertial effects of a matter-wave interferometer is proportional to the

space-time area enclosed between the two arms of the interferometer. In a light pulse inter-
ferometer, the spatial separation of the two paths stems from the light pulses themselves,
that transfer momentum to the atoms while creating the interferometer. Designing atom
optics beamsplitters and mirrors capable of transferring a significant momentum to the
atoms is therefore key to inertial sensing sensitivity. For this reason, counter-propagating
Raman transitions opened the way to the very field of inertial sensing via atom interfer-
ometry [7] and keeping the same mindset, it is natural to try to find ways to increase
even more the exchange of momentum. One such possibility is to use high order Bragg
diffracting pulses that comprise the exchange of 2n photons.

In this section, without reproducing a complete analytical study, we will describe the
process and the different regimes of the Bragg diffraction (adapted from reference [53]).

54
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In 1933, P. Kapitza and P. Dirac [54] predicted the diffraction of matter by a standing
wave of light. Bragg scattering is a special case of this effect for a thick standing wave
and weak potentials.

During the Bragg diffraction process, the internal energy state of the atom is conserved,
and to explain this process, only a two-level atom needs to be considered with a ground
state |g〉 and an excited state |e〉 for an energy difference ~ωeg. In the following, we will
consider a standing wave of light of wave number k, along the z direction, far detuned
from resonance, such that its pulsation ωL = ωeg − ∆ where ∆ is much larger than
the linewidth of the excited state. We will neglect spontaneous emission and consider
only a weak coupling between the two states characterized by its Rabi frequency Ω0.
In this configuration, the excited state acts as an intermediate state that in the end is
adiabatically eliminated.

The dynamics of this system is determined by its Hamiltonian that can be written as:

H = p2

2M − ~∆|e〉〈e|+ ~Ω0 cos(kz)(|e〉〈g|+ |g〉〈e|). (4.1)

Using this Hamiltonian in the Schrödinger equation, writing the wave function:

|ψ(t)〉 = e(z, t)|e〉+ g(z, t)|g〉, (4.2)
we obtain two coupled differential equations describing the population evolution of the
two states: 

i~ė(z, t) = p2

2M e(z, t) + ~Ω0cos(kz)g(z, t)− ~∆e(z, t)

i~ġ(z, t) = p2

2M g(z, t) + ~Ω0cos(kz)e(z, t)
(4.3)

The detuning ∆ considered much wider than the linewidth of the excited state and
the weak coupling (∆� Ω0) enable us to adiabatically remove the excited state to keep a
single differential equation describing the dynamics of the population of the ground state:

i~ġ(z, t) = − ~2

2M
∂2g(z, t)
∂z2 + 2~Ωcos2(kz)g(z, t). (4.4)

This equation is invariant under a translation along the z direction by a multiple of
2πk−1, we can therefore apply the Bloch theorem and write g(z, t) as a sum of eigenfunc-
tions of constant quasimomentum δ:

g(z, t) =
∞∑

m=−∞
gm(t)ei(m+δ)kz. (4.5)

Injecting this expression of g(z, t) in the differential equation (4.4), we get a set of
differential equations indexed by integer m:

i~ġm = ~(Ω + ωr(m+ δ)2)gm + ~Ω
2 (gm+2 + gm−2), (4.6)

where Ω is the two-photon Rabi frequency and can be a function of t:

Ω(t) = Ω2
0

2∆ , (4.7)

and ~ωr the recoil energy:

~ωr = ~2k2

2M · (4.8)
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The set of equations expressed in (4.6) describes the evolution of population of momen-
tum states characterized by their index m, number of unit of ~k. The quasimomentum δ
represents a detuning from these discrete momentum states to take into account the finite
velocity spread of an atom cloud.

Neglecting for the moment this velocity spread (δ = 0), the set of equations (4.6) has
two limits: the thin standing wave limit that yields the Raman-Nath diffraction and the
thick standing wave limit that yields the Bragg diffraction.

p (m h̄k)

E

h̄ωg

h̄ωe

h̄∆

∆E

-5 -4 -3 -2 -1 0 1 2 3 4 5

p (m h̄k)
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h̄ωe

h̄∆

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 4.1 – Energy vs momentum pictures of the two limits of equations (4.6) for an
initial state such that g−2 = 1 (green state). Top illustrates the Raman-Nath diffraction of
the thin light wave limit, where the short interaction time yields a high energy uncertainty
that enables energy conservation for all even momentum states. Bottom illustrates the
Bragg regime where the interaction time is long enough so all intermediate states are
adiabatically suppressed and only the opposite momentum state n = 2 is populated.
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In the following, to discuss these limits, we will consider an initial state such that
g−n = 1 and gm = 0 ∀ m 6= n.

In the thick standing wave limit, the interaction lasts long enough so that all states that
do not fulfill the energy conservation are adiabatically eliminated and only the opposite
momentum state m = n gets populated (see Figure 4.1, bottom), this is exactly what we
intend to achieve to drive our high momentum transfer interferometer.

In the thin standing wave limit, the interaction time is short and the Heisenberg
uncertainty on time and energy implies that energy is not well defined on the time scale
of the interaction, and diffraction to states of same parity as n are possible (see Figure 4.1,
top), this is equivalent to the Raman-Nath diffraction [55] and has to be avoided in our
case.

In between these limits, the adiabatic elimination is not complete, and the diffraction
can populate adjacent momentum states. The intermediate region where the adiabatic
conditions are not fulfilled but where the losses to unwanted momentum states are low is
called the quasi-Bragg regime.

In the Bragg regime, the successive elimination of the intermediate states yields a set
of two differential equations describing the Rabi oscillations between the two opposite
momentum states: 

i~ġ−n = 1
2~Ωeffgn

i~ġn = 1
2~Ωeffg−n

(4.9)

where Ωeff is the effective Rabi frequency of the oscillations and reads:

Ωeff = Ωn

(8ωr)n−1
1

[(n− 1)!]2 · (4.10)

We note here a very important point from an experimental perspective: keeping Ωeff
constant while increasing n requires setting Ω = Ωn such that:

Ωn = 8ωrn2 = Ω1n
2, (4.11)

and we see that Ω scales as n2.

Experimentally, we want to be as close as possible to the Bragg regime, however, in a
real setup, we want to diffract a cloud of atoms that has a non zero momentum spread.
To diffract efficiently such a cloud (see Figure 4.2), one needs to lie in the quasi-Bragg
regime, shortening the interaction time to enable energy conservation for those states
characterized by a non zero velocity detuning (δ 6= 0).

An analytical theory of the quasi-Bragg regime is presented in reference [53], in this
study, Muller et al. show that in this regime, the shape of the time variation of the two-
photon Rabi frequency matters. They compare the dynamics of the diffraction using a
rectangular and a Gaussian pulse and observe that using the smooth temporal envelope
of a Gaussian, the losses in unwanted momentum states can be exponentially suppressed
by keeping the amplitude of the Gaussian under some maximum value that depends on
the Bragg order, while the pulse length remains shorter than the adiabatic criterion would
impose.

However this study does not take into account any velocity spread around the initial
momentum state. A numerical study that determines the pulse width and amplitude that
optimize the diffraction efficiency of an atom cloud as a function of its velocity spread can
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Figure 4.2 – Bragg diffraction of a cloud of atoms initially centered on the n = −2
momentum state (green). Are depicted the losses in unwanted momentum states (in red)
and the partial diffraction in the n = 2 state (blue).

be found in reference [56]. Their numerical approach shows how a finite velocity width
limits the maximum diffraction efficiency achievable and how this efficiency deteriorates
drastically if laser power is limited. They confirm that the optimum intensity scales
quadratically with the Bragg order, without a significant shortening of the pulse duration
passed the first few Bragg orders. This last point is of importance as far as spontaneous
emission is concerned.

Spontaneous emission
Keeping spontaneous emission, during the diffracting pulse, as low as possible is very

important for conducting atom interferometry. As we have seen above, increasing the
order of diffraction requires increasing the intensity without sensibly reducing the pulse
duration. To keep the spontaneous emission rate under control, one needs to use a large
detuning ∆ � Γ, in this case, the spontaneous emission rate R(I,∆) is proportional to
the intensity:

R(I,∆) ∝ I

∆2 · (4.12)

Therefore, to keep the spontaneous emission constant while increasing the intensity, one
needs to increase the detuning, which reduces the two photon Rabi frequency (Ω ∝
I/∆). Overall, the requirements on the light intensity to drive efficiently order n Bragg
transitions, scales as n4.

To close this section, we summarize the main features of the Bragg diffraction:
• 2n photons exchanged coherently with the standing light wave,
• the pulse duration and Rabi frequency have to be set optimizing two contradictory

effects: the pulse has to be long enough to avoid populating undesired momentum
states, but short enough to transfer efficiently a cloud of finite velocity spread, it is
therefore important to keep the velocity distribution of the initial cloud as narrow
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as possible,
• a smooth time envelope for the pulse is important to avoid scattering of atoms in

unwanted momentum states,
• the optimal Rabi frequency scales as n2,
• the intensity requirements to keep spontaneous emission constant as the Bragg

order is increased scales as n4.

4.2 The optical resonator
As explained in the previous section, the intensity requirements to drive high order

Bragg diffraction limits the momentum that can be coherently transfered to the atoms in
a large momentum transfer diffracting pulse. Using an optical resonator to enhance the
available intensity is a means to reach higher Bragg order for a given power available.

However, as we will discuss in this section, driving an atom interferometer inside a
cavity presents a serious challenge because of the size of the atom ensemble, especially
in the MIGA configuration where the last interferometer pulse happens more than half a
second after launching the atoms.

4.2.1 Two mirror resonators
The simplest kind of optical resonator consists of two curved mirrors facing each other,

separated by a distance L (see Figure 4.3). Such a resonator can trap a given Gaussian
beam if at the position of the mirrors, the radii of curvature of the mirrors match exactly
the radii of curvature of the wavefronts of the beam.

z

w(z)

L

Figure 4.3 – Two concave mirror resonator with Gaussian beam

These conditions can be written in mathematical terms, using the Gaussian beam
theory:

R1 = −R(z1) = −z1 −
z2
R

z1

R2 = R(z2) = z2 + z2
R

z2
(4.13)

z2 − z1 = L

where Ri are the radii of curvature of the mirrors, zR = πw2
0/λ, the Rayleigh length of

the trapped beam and zi the distances between the mirrors and the waist of the beam.
Equations (4.13), link the Radii of curvature R1, R2 and distance L to the Gaussian

parameters zR, z1 and z2. To determine the parameter space where these equations have
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solutions, it is customary to change variables and define g parameters g1 and g2 such that:

g1 := 1− L

R1
and g2 := 1− L

R2
(4.14)

Given two Radii of curvature and a distance L, the solutions of the set of equa-
tions (4.13) depend solely on the g parameters and read:

zR =

√
g1g2(1− g1g2)

g1 + g2 − 2g1g2
L (4.15)

z1 = g2(1− g1)
g1 + g2 − 2g1g2

L and z2 = g1(1− g2)
g1 + g2 − 2g1g2

L. (4.16)

However, as zR, z1 and z2 are lengths, they have to be real numbers and therefore we
have the condition on g1 and g2:

0 ≤ g1g2 ≤ 1 . (4.17)
A resonator fulfilling condition (4.17), in a ray optics approach, constitutes a stable

focusing periodic system where rays bounce back and forth about the optical axis staying
within the boundary of the mirrors. We therefore call the parameter space where condi-
tion (4.17) is fulfilled the stability area. This area can be represented on a plane called
the stability diagram where g1 and g2 vary from −∞ to +∞ (see Figure 4.4).

g1 = 1− L
R1

g2 = 1− L
R2

stable regions

marginally stable regions

symmetric resonators

planar

confocal

concentric

Figure 4.4 – Stability diagram for a two curved mirror optical resonator. The hatched
area corresponds to the stability area, in the blue area are found the symmetric resonators.
On the red hyperboles are found marginally stable resonators.

The center point of the stability diagram is constituted of two concave mirrors of
identical radii of curvatureR equal to the distance between the mirrors. This configuration
yields a geometrically stable configuration very insensitive to angular misalignment of the
mirrors. Its length equals two Rayleigh lengths zR of the trapped Gaussian beam.

In Figure 4.5 (left) is plotted the Rayleigh length of a beam as a function of its waist
(at 780 nm) and we can see that Gaussian optics are such that for a one meter long cavity,
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Figure 4.5 – Left: Rayleigh length (zR = πw2
0

λ
) as a function of the waist at 780 nm.

Right: radius of curvature in units of zR for a stable symmetric two mirror resonator as
a function of the distance between the mirrors in units of 2zR.

the short Rayleigh length imposed by the confocal stability criterion (50 cm) implies a
very tiny waist (< .5 mm at 780 nm).

We recall here that the thermal cloud of atoms after 400 ms of free expansion and
for a kinetic temperature of 2.5 µK (vat ' 15.5 mm/s) has a centimetric size diameter
(σr ∼ 6.2 mm).

Without changing the length of the cavity, to obtain a beam with a waist size com-
parable to the size of the atom cloud, one needs to increase the radii of curvature of
the mirrors, leaning toward the planar configuration where the Rayleigh length is much
longer than the cavity (gi → 1), but this means gradually losing the insensitivity to
angular misalignment while the beam widens.

Moreover, looking back at Figure 4.5 (left), we see how obtaining a waist size of circa
5 mm means having a Rayleigh length around 100 m (or a ratio L

2zR ∼ 5.10−3). Figure 4.5
(right) shows a plot of the radius of curvature in units of zR of a stable symmetric two
mirror resonator as a function of the distance between the mirrors in units of 2zR. On
this plot we can see that a ratio L

2zR ∼ 5.10−3 implies a radius of curvature of the mirrors
200 times the Rayleigh length: R ∼ 20 km. A one-inch mirror with such a long radius
of curvature cannot be manufactured nor could such a cavity be aligned because of its
sensitivity to angular misalignments.

We note here that the 150 m long cavity of the main MIGA project will allow a waist
size a bit smaller than 4.5 mm in a confocal configuration.

This calculation demonstrates that no two-mirror resonator, one meter long, can
achieve the enhancement of the beam necessary to diffract efficiently our cloud of atoms.

4.2.2 Mirror-lens-mirror optical resonator
Given the limitations of the two mirror resonators, it was proposed to use an optical

resonator composed of two plane mirrors at the focal planes of a bi-convex lens (see
Figure 4.6), this configuration was designed to offer the possibility to enhance a mode
volume large enough for our purpose. This resonator has been studied before in the
context of atom interferometry [57, 58] but we will present here some important properties
with an analytical approach.

Taking into account small longitudinal misalignments δ1 and δ2 between the mirrors
and the focal planes of the lens, the total ABCD matrix for a complete round trip of
this resonator, starting from the center of the atom cloud (at a distance z from the back
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mirror Mout), is:

M =
[
A B
C D

]
=
[
−1 + 2δ1

f2 (δ2 − z) −2δ2 − 2δ1
f2 (z2 − δ2

2)
2δ1
f2 −1 + 2δ1

f2 (δ2 + z)

]
. (4.19)

Within the ABCD formalism, this resonator is ostensibly similar to a confocal two-
mirror resonator (see Figure 4.7). However, comparing both matrices, we note that the
former has two different detunings which yields a condition on their values to insure the
geometrical stability of the resonator. This conditions is:

− 1 ≤ m = A+D

2 ≤ 1 =⇒ −1 ≤ m = −1 + 2δ1δ2

f 2 ≤ 1, (4.20)

which imposes that the longitudinal misalignments δ1 and δ2 have the same sign.
Another difference which is not visible within the ABCD formalism is that the plane

mirrors impose an infinite radius of curvature at their surface, a condition that can be
fulfilled by a Gaussian beam of any waist size. This feature is very advantageous for our
purpose. The only constraint on the waist is imposed by the lens that will make the light
field asymmetric as soon as the input waist is different from

√
λf/π (which would be the

size of the resonating beam in a 2f long confocal resonator). In all cases, the output waist
is the image of the input waist such that:

Min MoutL 87Rb

z

f + δ1 f + δ2

M =
[
1 f + δ2 − z
0 1

] [
1 0
− 1
f

1

] [
1 2f + 2δ1
0 1

] [
1 0
− 1
f

1

] [
1 f + δ2 + z
0 1

]
(4.18)

Figure 4.6 – diagram of the optical resonator used in the preliminary setup with nota-
tions and ABCD matrix cascade corresponding to a complete round trip of the light.
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R+ δ
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1 R+δ

2 − z
0 1

] [
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− 2
R

1

] [
1 R + δ
0 1

] [
1 0
− 2
R

1

] [
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2 + z
0 1

]
(4.21)

Figure 4.7 – diagram of a confocal resonator and ABCD matrix cascade corresponding
to a complete round trip of the light.
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wout = λf

πwin
· (4.22)

A last difference between these resonators is the absence in the mirror-lens-mirror
resonator of a defined optical axis; as illustrated in Figure 4.8, within the paraxial ap-
proximation and in the thin lens approximation, the resonator is aligned as soon as the
focused waist hits the input mirror on the focal plane of the lens while making sure that
the mirrors are orthogonal to the input beam.

Min

L
Mout

Figure 4.8 – Off-axis injection does not prevent one from aligning the cavity and having
it resonate.

However, if we take into account the spherical aberration of the lens, first order astig-
matism appears if the beam is not centered on the lens, as this effect is small, it is not easy
to observe and extremely tedious to correct (see appendix B for some practical experience
sharing).

Intra-cavity light field calculation
To understand in details the behavior of our resonator, we calculate analytically an

approximation of the intra-cavity light field denoted Ic. We start by observing that the
ABCD matrix of equation (4.19) can be seen as a small deviation from minus the identity
matrix and can be rewritten:

M =
[
−1 + εA εB
εC −1 + εD

]
, (4.23)

where the εi terms are first order quantities and read:

εA = −2δ1z

f 2 , εB = −2δ1z
2

f 2 − 2δ2, εC = 2δ1

f 2 , εD = 2δ1z

f 2 · (4.24)

From there, we can linearize the expression Mn of a cascade of n matrices M.
We then consider that we inject a Gaussian beam defined by its waist win and power Pin.

The principle of the calculation, that can be found in appendix A, is to calculate recur-
sively the electric field after n round trips of the light in the resonator and to sum all
contributions to get the total resonating intensity field. Because of our linearization of the
matrix Mn, the recurrence is straightforward and the electric field at the output mirror
can be written to first order in δi as:

En ' E0
ne
− iπ
qnλ

r2
e−iφn , (4.25)

where
1
qn

= −nεC − i
λ

πw2
in

and φn = 2nkL. (4.26)
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Summing up all the contributions to the light intensity, we obtain the approximated
expression of Ic:

Ic(r) '
2Pin

πw2
in

t2inrout
1 + ρ2

0 + 2ρ0 cosφ exp
(
−2r2

w2
in

)
, (4.27)

where ρ0 = routrint
2
l and φ = k

(
2L− r2δ1

f 2

)
, (4.28)

where rout and rin are the amplitude reflection coefficients of the output and input mirrors
and tl and tin the amplitude transmission coefficients of the lens and input mirror.

This simple expression can be simplified even further close to resonance, that is k close
to the condition 2kL = (2p+ 1)π, p ∈ N. φ can then be written:

φ = (2p+ 1)π + 2Lδk − kr2δ1

f 2 = (2p+ 1)π + δφ(r, δk) (4.29)

and Ic becomes:

Ic(r) = 2Pin

πw2
in

t2inroute
− 2r2
w2

in

(1− ρ0)2 + ρ0∆φ(r, δk)2 = Gmax

1 + ρ0
(1−ρ0)2 δφ(r, δk)2 I

0
ine
− 2r2
w2

in , (4.30)

where I0
in = 2Pin

πw2
in

is the maximum input intensity. (4.31)

In this even clearer expression, the Lorentzian shape of the resonance appears, char-
acterized by its maximum gain Gmax and full width at half maximum ∆φFWHM:

Gmax = t2inrout
(1− ρ0)2 = t2inrout

(1− routrint2l )2 and ∆φFWHM = 21− ρ0√
ρ0

, (4.32)

and from the full width at half maximum, we define the finesse F of the resonator:

F = 2π
∆φFWHM

= π

√
ρ0

1− ρ0
= π

√
rinroutt2l

1− rinroutt2l
· (4.33)

With an experimental perspective , equation (4.30) can be rewritten using frequency ν
or wavelength λ instead of wave number k, we obtain:

Ic(r) = Gmax

1 + 4F 2
(

δν
∆νfsr
− δ1r2

λf2

)2 I
0
ine
− 2r2
w2

in , (4.34)

where we used the free spectral range ∆νfsr = c
2L ·

We can now clearly see that if the input mirror is not in the focal plane of the lens,
the finite radius of curvature of the wavefront at its position will shift the resonance by a
factor proportional to r2. A longitudinal misalignment of the input mirror will therefore
reduce the volume of our beamsplitter/mirror, either reducing the actual in-cavity beam
diameter or producing a ring shaped beam.

The intensity profiles computed at resonance (δν = 0) are compared to the input
profile in Figure 4.9 for different longitudinal detunings. We can observe the reduction of
waist of the beam as the detuning increases.

Integrating equation (4.34) over the width of the beam, we can compute the shape
of the resonance in power as a function of the frequency detuning δν. Figure 4.10 shows
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Figure 4.9 – Spatial modulation (dashed) of the gain of the cavity and light profile (plain)
for δ1 = 10 µm (blue), 20 µm (yellow) and 50 µm (green) compared to the input light
profile of waist 10 mm (red).
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Figure 4.10 – In purple: effective optical gain of the cavity for a longitudinal misalign-
ment of δ1 = 20 µm and an input waist win = 10 mm as a function of the frequency
detuning δν, dash is for approximated calculation integrating equation (4.34), plain is for
a numerical iterative calculation using an exact calculation of Mn. In yellow the corre-
sponding radius of the maximum intensity as a function of δν.

such a resonance shape for a misalignment of 20 µm and an input waist of 10 mm,
comparing the results obtained using the approximated expression of Ic to a numerical
calculation, calculating iteratively the electric field as it bounces back and forth inside
the resonator and summing up all the contributions as we did analytically. We can verify
that for the 20 µm misalignment considered, the linearized calculation gives a very good
approximation of the intra-cavity light field.

For this calculation, we used a gain circa 49, comparing this value to the peak value of
the resonance shape, we note the reduced overall gain of the resonator when considering
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the total resonating power. However, if we consider the intensity, for some values of the
radius (yellow curve in Figure 4.10), the gain is maximum.

We can sum up these observations, by saying that the longitudinal detuning spreads
the optical amplification in frequency and space.

However, looking back at the yellow profile in Figure 4.9, having an intra cavity waist
of 5 mm should be possible, injecting a beam of waist 10 mm and setting the injecting
mirror with a precision better than 20 µm.

Some numbers...

In our setup, we have rin ' rout '
√
.993, tl '

√
.995, f = 40 cm which yields:

Gmax ' 49 and F ' 260,

with L = 80 cm, ∆νfsr = 187.4 MHz.
Order of magnitude of the effect of the input mirror longitudinal misalignment: to keep
the frequency shift at a radius of 5 mm below half the width of the resonance, we need to
tune the input mirror such that:

δ1 <
λf2

2Fr2 ' 10 µm.

Spherical aberration

It is important to note that equation (4.34) shows that the spatial modulation of the
Gaussian intensity profile should vanish as the longitudinal detuning tends toward zero.
Thus getting a wide beam to resonate should just be a matter of properly aligning the
input mirror.

However, experimentally, we could never observe such a situation and we could never
obtain an intra-cavity waist much bigger than 2 mm (see section 4.4 for experimental
results).

We will show now that taking into account the longitudinal spherical aberration (LSA)
introduced by the lens, we can explain the observed limitation.

The LSA can be understood as a bending of the focal plane toward the lens as r
increases. To insert this effect in our model, we take a perturbative approach and consider
that at first order the only change is that the longitudinal detuning becomes a function
of r:

δ1(r) = δ0
1 + Sr2

f
, (4.35)

where S is a function of the shape and index of refraction of the lens and of the relative
position of the lens and mirror [59]. For a bi-convex lens and mirrors at the focal plane
of the lens, S reads:

S = 1
8

[
(3n+ 2)(n− 1)

n
+
(

n

n− 1

)2
]
, (4.36)

where n is the index of refraction of the lens glass.
Taking into consideration the LSA, even in the absence of longitudinal detuning

(δ0
1 = 0), the whole beam will not resonate at the same frequency and the intra-cavity

resonating volume will be limited. The intra-cavity intensity can be written:
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Ic(r) = Gmax

1 + 4F 2
(

δν
∆νfsr
− δ0

1r
2

λf2 − Sr4

λf3

)2 I
0
ine
− 2r2
w2

in . (4.37)

At resonance in the center, equation (4.37) describes a sharp decrease of the gain
around the critical radius:

rc =
(
λf 3

2FS

) 1
4

, (4.38)

that goes as r−8. This sharp decrease is visible in Figure 4.11 where the intensity profile
of the light resonating in the cavity for δν = 0 is compared to the Gaussian profile of the
injected beam.
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Figure 4.11 – Intensity profile of the resonating light (solid green) taking into account
longitudinal spherical aberration compared to the 10 mm waist input beam. In dash green
is represented the spatial gain window of the resonator

Some numbers...

With our bi-convex lens in UVFS (n = 1.45), S ' 1.5, and we obtain a critical beam radius:

rc =
(
λf3

2FS

) 1
4

' 2.8 mm

Which matches the order of magnitude of the observed experimental limitation.

As observed for the longitudinal misalignment of the input mirror, the LSA spreads the
resonating power over a wide frequency range, but in this case, as illustrated by Figure 4.12
this spreading becomes dramatic for wide input waists. The radius of maximum intensity
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Figure 4.12 – In purple: effective optical gain of the cavity taking into account the
longitudinal spherical aberration and without longitudinal misalignment (δ0

1 = 0) and
an input waist win = 10 mm as a function of the frequency detuning δν, dash is for
approximated calculation integrating equation (4.34), plain is for a numerical iterative
calculation using an exact calculation of Mn. In yellow the corresponding radius of the
maximum intensity as a function of δν.

can be computed from equation (4.37), and neglecting any longitudinal misalignment
(δ0

1 = 0) we get:

rm(δν) = r1

(
δν

∆νfsr

)1/4

. (4.39)

Frequency sweep

The spatial dependency of the resonance expressed in equation (4.39) limits the volume
of the resonating beam for a fixed detuning δν. However, we can circumvent this limitation
by using this feature to serve our purpose.

Indeed, while injecting a continuous light intensity, if one sweeps the frequency detun-
ing δν at a constant rate a, each point on a circle of radius r will experience a Lorentzian
shaped pulse of light in time described by Ic(r, t):

Ic(r, t) = Imax(r)
1 + ( t

τ
− r4

r4
c
)2
, (4.40)

where Imax(r) = I0
inGmaxe

− 2r2
w2

in and τ = ∆νfsr
2aF · (4.41)

We note a very important point in equation (4.41): the full width at half maximum
in time of the Lorentzian (2τ) is only a function of the sweeping rate a, finesse F and free
spectral range ∆νfsr but independent of r and of the longitudinal detuning.

Of course, the pulse will not be time synchronous within the beam but increasingly
delayed as the radius of the resonating ring increases. The time lag ∆t between the pulse
reaching maximum in the center of the beam and reaching maximum on a ring of radius
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r grows very fast (goes as r4) and will eventually limit the practical applicability of this
technique for wide waists:

∆t = r4

r4
c

τ. (4.42)

Some numbers...

Here are some numbers applying this technique to our setup:
To make a pulse of FWHM 30 µs, we need to scan the frequency at a rate a such that:

a = ∆νfsr
FWHM × F

' 24 kHz/µs.

Pulsing the light for 3 FWHM on each side necessitate to scan over a frequency range
∆νpulse such that:

∆νpulse = 180a ' 4.3 MHz.

To reach resonance up to a radius of rm = 5 mm, we have to scan over ∆ν0→5mm such
that:

∆ν0→5mm = ∆νfsr
2F

r4
m

r4
c

' 3.7 MHz.

Overall, scanning the frequency of the light from δν = −2.2 MHz to δν = 5.9 MHz in
340 µs around resonance will produce a Lorentzian pulse of FWHM 30 µs along a 5 mm
wide beam.

4.3 Experimental setup
The experimental setup is constituted of the atom source described in the previous

chapter and the mirror-lens-mirror resonator described in the previous section, set hori-
zontally, 73 cm above the center of the MOT chamber. The source prepares the atoms such
that they acquire a horizontal velocity equal to n times the recoil velocity and launching
is such that they reach the apogee of their trajectory in the center of the beam resonating
in the cavity. At this point a set of three pulses creates the interferometer and the atoms
fall back down where they are detected by the source.

During this sequence, the 780 nm light that drives the Bragg transitions is turned off
most of the time which prevents us from using it to generate an error signal necessary
to maintain the resonance inside the cavity during the pulses of the interferometer. The
780 nm is therefore not directly locked to the resonator but by the intermediate of a
1560 nm auxiliary laser. This laser is actually the seed laser used to produce the 780 nm
light by frequency doubling, the factor two between the two wavelengths insuring that
the 780 nm will be resonant whenever the 1560 nm is made resonant. It is locked to
the resonator using the Pound Drever Hall technique [60], retro-acting on the current
of the laser at high frequency and on a piezoelectric crystal stack holding one of the
mirrors at low frequency. The error signal is generated via modulation/demodulation of
the auxiliary laser that act as a carrier [61, 62]. The 1560 nm light has the advantage that,
being sufficiently detuned from any 87Rb transitions, it can be kept turned on continuously
without disturbing the atoms.

The resonator and the architecture of the locking scheme are shown in Figure 4.13.
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Figure 4.13 – Overview of the laser locking scheme on the cavity. In green, 1560 nm
light locked to the cavity via the PDH error generating scheme. In red, 780 nm light
controlled via an AOM and a VCA.

The 1560 nm light (colored in green) is injected from one side of the resonator, the
780 nm (colored in red) is injected from the opposite side. Dedicated photodiodes record
the transmission and reflection signals of both wavelengths (780T, 780R, 1560T and
1560R). A RIO laser diode at 1560 nm, temperature controlled, provides both the aux-
iliary light that is locked on the cavity and the seed that generates the 780 nm light by
frequency doubling with a periodically-poled lithium niobate nonlinear crystal (PPLN).
Sidebands are generated on the auxiliary light with an electro-optic modulator (EOM).

Before attempting to lock the laser on the cavity (for cavity alignment or fine tuning of
the error signal), one sets the switch S in 1, which opens the lock loop and enables direct
scanning of the laser current to visualize the resonances of the two beams. Typical signals
recorded by the transmission photodiodes (1560T and 780T) are shown in Figure 4.14.
We can see the resonance of the 1560 nm carrier with both sidebands on each sides (blue)
and a single resonance peak for the 780 nm light (magenta). The noise on top of these
signals is due to the vibrations of the end mirrors of the cavity.

After demodulation, phase-shifting and low-pass filtering, the signal from the photodi-
ode that collects the retro-reflected 1560 nm light (1560R) can be used as an error signal
to maintain one of the 1560 nm sidebands resonant inside the cavity. This error signal,
shown in yellow in Figure 4.14, is formally the derivative of the 1560 nm retro-reflected
light and its zero crossings, passing from negative to positive voltage, define stable locking
points of the servo loop. Playing on the modulating frequency, one changes the relative
position of the sidebands and 780 nm resonance and sets the locking point of the 780 nm
laser.

The relative position of the resonances of the 1560 nm carrier and 780 nm is determined
by the difference of optical path between the two frequencies and can fluctuate across a full
spectral range when tuning the alignment of the cavity and on a much smaller frequency
range (within 1 MHz) with thermal variations. The tuning of the modulating frequency,
in the case of a fixed lock, is a critical point as it defines the resonating mode and thermal
stability is important.

We note here that, at best, the tightness of the lock is limited by the finesse of the
1560 nm cavity, that defines the slope of the error signal and that the frequency doubling
strategy results in a linewidth for the 780 nm lock that will be wider or equal to twice
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Figure 4.14 – Visualization of the transmission signals (blue: 1560 nm, magenta:
780 nm) and error signal (yellow) while linearly increasing the current of the auxiliary
laser.

the linewidth of the 1560 nm. Therefore, optimally, the finesse of the 1560 nm should be
set better than double the finesse of the 780 nm.

On our setup, for delay of production and cost reasons, the reflectivity of the mirrors
for both wavelengths were set equal and the amplitude variations on the 780 nm light are
at best twice bigger than the variations of the 1560 nm light.

This laser locking scheme has the advantage that the 780 nm light, obtained by fre-
quency doubling of the 1560 nm laser can be locked anywhere in its free spectral range
by playing on the modulating frequency. This feature is of great interest to sweep the
resonance of the 780 nm to generate our pulse across the width of the beam (see 4.2.2 for
theory, and 4.4.2 for experimental results).

We therefore have two ways of pulsing the light in the cavity: either by modulating the
amplitude of the radio frequency signal that drives the AOM (see AM in Figure 4.13), or
by sweeping the modulating frequency, which sweeps the locking point across the 780 nm
resonance (see FS in Figure 4.13).

With the first pulsing scheme, the lock is fixed and one can give a Gaussian temporal
envelope to the light pulse using an arbitrary function generator, in the second scheme,
the amplitude of the radio frequency is constant and the temporal envelope induced by
the variation of the locking point is necessarily Lorentzian. Both pulsing schemes were
tested and experimental results are presented in the following section.

4.4 In-cavity interferometry: experimental results
In this section we demonstrate Bragg interferometry inside the mirror-lens-mirror cav-

ity using the two pulsing schemes described in the previous section. We start with the
fixed lock pulsing scheme and observe the small volumes of the effective atomic beam-
splitter and mirror but obtain nonetheless interferometric fringes up to Bragg order n = 4
with a good signal to noise ratio. We then demonstrate inertial sensitivity of our interfer-
ometric sequence by measuring the effect of a difference of tilt of the whole experiment.
In a second phase, we set up the locking point sweep pulsing scheme and demonstrate
clear increase of the volume of the atomic beamsplitter and mirror.
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4.4.1 Fixed lock
In this subsection, the locking point is fixed and such that the center of the beam is

resonant, which yields a light profile steeper than a Gaussian beam, visible in Figure 4.15,
with a diameter around 4 mm.
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Figure 4.15 – Resonant mode seen from the output mirror with intensity profile.

Each pulse of the interferometer is done with an arbitrary function generator, mod-
ulating the amplitude of the radio frequency that drives the AOM, giving a Gaussian
temporal envelope to the 200 MHz sine wave.

The atoms are prepared in the non magnetic F = 1, mF = 0 internal state with a nar-
row horizontal velocity distribution (σv ∼ .2vrec=1.2 mm/s) centered on +nvrec, n = 1, 2, 4
to drive order n Bragg transitions. The detection is done labeling on the opposite veloc-
ity class −nvrec and transition probability is calculated from the ratio of labeled atoms
divided by the total number of atoms detected (see chapter 3 for details on detection
scheme and probability calculation).

Rabi oscillations

To test the Bragg transition process using our resonant beam, we observe the Rabi
oscillations between the nvrec and −nvrec velocity classes after a single Gaussian pulse.
The Rabi oscillations shown Figure 4.16 are observed by changing the amplitude of the
Gaussian while keeping its full width at half maximum constant and equal to 30 µs. As
explained in section 4.1, the optimization of the Bragg transition parameters is a trade
off between keeping the adiabaticity of the Bragg process while being able to transfer
efficiently a cloud of atoms that has a finite horizontal velocity spread. This optimization
was done empirically, measuring the Rabi oscillations for different pulse lengths.

We note here the very low transition probability that is due to two main reasons.
First, as explained in the previous chapter, our preparation scheme using a single Raman
pulse leaves many atoms in F=1 that are not on the proper horizontal trajectory but are
nonetheless detected in the nvrec velocity class. The second reason is the small width of
the beam (∅ ∼ 4 mm) compared to the size of the cloud (σat ∼ 6.2 mm).

Velocity distribution after diffraction

To make sure our set of parameters kept us in the quasi-Bragg regime, the next step
was to check the velocity distribution of the atom cloud after diffraction. This check
is conducted doing Raman spectroscopy with the labeling beam after doing a π-pulse.
Results for n = 1 and n = 4 are shown in Figure 4.17.
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Figure 4.16 – Rabi oscillations for 2n~k beam splitter (n=1,2 and 4). The probability
oscillations are offset for better readability (left), the respective estimated diffracted atom
numbers are shown on the right plot.
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Figure 4.17 – Comparison of Raman spectroscopies before and after diffraction with a
π-pulse for n=1 (left) and n=4 (right). We note a difference of sign of the input: +vrec
for n = 1 and −4vrec for n = 4. This difference of sign comes from the optimization
of the signal and the best input velocity class depends on the trajectory of the atoms and
velocity selection process (see section 3.2.3 for details).

The spectroscopies after diffraction show the small transfer of population in the op-
posite velocity class without populating other velocity classes. Integrating the number of
atoms over a narrow velocity band around the center velocity for each velocity class we can
calculate an efficiency for our mirror pulse (see Figure 4.18), overcoming the unbalanced
detection scheme mentioned in section 3.3.

Interferometric fringes

The last step of the characterization of our beamsplitter was to check the homogeneity
of the phase across the atom cloud and the coherence of the momentum transfer. This was
done driving a three pulse atom interferometer for different time intervals T between the
pulses. Because the beam in the resonator is not exactly perpendicular to the local gravity,
the interferometer is sensitive to gravity and oscillations of the transition probability Pt
at the output of the detection appear such that:

Pt(T ) = C2 − C1C2 cos(2nkLαgT 2)
C1 + C2

, (4.43)
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Figure 4.18 – Comparing the weight of each peak of the two velocity classes, we
can calculate the efficiency of the mirror pulse, here for n=1 (yellow/purple) and n=4
(green/red).

where kL is the wavenumber of the light, g is the gravity, α is the angle between the
horizontal and the beam and the Ci are the ratios of the number of atoms participating
to the interferometer divided by the total atom number in each of the detection outputs
(upper photodiode and lower photodiode signals).

Figure 4.19 shows such fringes for Bragg order n=1,2 and 4. We notice the periodicity
of the fringes that scales down with the Bragg order n.

For a given preparation, a loss of contrast between the measured π-pulse efficiency on
the Rabi oscillations and the transition probability fringes that is independent of T can
be explained by an inhomogeneity of the interferometric phase across the cloud.
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Figure 4.19 – Interferometric fringes due to the remaining projection of gravity along
the direction of the beam. The transition probability (left) and the estimated atom number
(right) oscillations are offset for better readability.

Comparing Figure 4.16 and Figure 4.19 we note that the contrast of the oscillations
(in probability or estimated atom number) is roughly half the contrast of the π-pulse, and
we can suspect an inhomogeneity of the interferometric phase across the cloud.
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Inertial sensitivity

From the fringes obtained scanning the interferometer time T and using equation (4.43),
we can recover the angle between the beam resonating inside the cavity and the horizontal.
To demonstrate the validity of this method and therefore confirm the inertial sensitivity
of our interferometer, we took advantage of the fact that the whole experiment (atom
source, cavity and injection benches) rests on a concrete slab seismically isolated with an
air-pressure damping system. Playing on the air pressure floating the slab, we were able
to tilt the whole experiment by a very small angle denoted in the following δα. Using
the atom source and cavity only, we were able to measure this tiny angle by two separate
physical processes and compare the two values.

The first measure of the angle δα was obtained with the interferometer as described
above, the second measure was done with Raman spectroscopy. This last method relies
on the geometry of the labeling scheme where the Raman beam makes a slight angle with
the horizontal which shifts the two-photon resonance by Doppler effect by a frequency
∆f proportional to the projection of the velocity of the atoms on the axis of the beam
(see section 3.2.3):

∆f = 2vz(tlab) sinα
λ

+ 2vx(tlab) cosα
λ

, (4.44)

where α is the angle between the Raman labeling beam and the horizontal and tlab the
time of the labeling pulse.

From one angle setup to another, the atoms, having to fulfill the Bragg condition
vx = nvrec, do not change their horizontal velocity (along the x direction). Besides, the
projection of this velocity on the axis of the beam can be considered equal for both tilts as
the variation of angle δα and angle α are both small angles and cos(α+δα) ' cosα+αδα '
cosα 1. However, the projection of the vertical velocity does change significantly and
the velocity distribution of the atoms fulfilling the Bragg condition will appear on the
spectroscopy shifted by a small frequency δf such that:

δf = 2vz(tlab)δα
λ

· (4.45)

We applied these two methods for Bragg orders n=1,2 and 4 for two different tilt
angles, the fitting of the different datasets are shown in Figure 4.20.

Figure 4.21 compares the difference of tilt between the two positions of the concrete
slab calculated with the datasets shown in Figure 4.20. The values obtained, are in
agreement to one another within 100 µrad.

1. The correction on the Bragg condition on the horizontal velocity vx of the atoms is also a second
order correction in δα2
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Figure 4.20 – left: going from top to bottom, interferometric fringes with fit for n=1,2
and 4. right: from top to bottom, Raman spectroscopies of the diffracted cloud with fits.
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Figure 4.21 – Angle difference between the two tilts obtained by fitting of the fringes
(blue dots) and by fitting the spectroscopy (red squares).
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4.4.2 Sweeping the lock
With the intent of improving the performances of our matter-wave beamsplitter/mirror,

we endeavored to test the frequency sweeping scheme described earlier (see 4.2.2) to drive
the pulse in the cavity.

The principle is to change dynamically the frequency of the 780 nm light while keeping
the auxiliary laser locked on the cavity which is done by playing on the modulating
frequency that generates the error signal (see the locking scheme section 4.3). To set
the parameters of our frequency sweep, we started by observing the output mode of the
resonator while changing the modulating frequency. Figure 4.22 shows the output mode
of the resonator for different modulating frequencies with the corresponding intensity
profiles.
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Figure 4.22 – Resonating mode for different modulating frequencies, with corresponding
intensity profiles. The bright center dot is a reflection on the optics of the camera and
has to be ignored.

We note the elliptic shape of the ring modes that is due to astigmatism introduced
by the spherical aberration of the lens which is apparently not perfectly centered on
the beam. Because of the absence of optical axis of the resonator, this astigmatism is
extremely tedious to correct and the modes shown in Figure 4.22 were among the one
showing the smallest astigmatism (see appendix B for details on cavity alignment).

Astigmatism put aside, the profiles of Figure 4.22 show that by changing the modu-
lating frequency from 33.5 MHz to 36.5 MHz, we shift the resonance from the center of
the beam to a radius of circa 5 mm. We have to keep in mind that, given the architecture
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of our laser, this means changing the frequency of the 780 nm over a frequency range of
6 Mhz. This is sensibly more than the 3.7 MHz predicted in section 4.2.2 which let us
think that the input mirror is not perfectly at the focal plane of the lens (δ0 6= 0).

To generate a diffracting pulse across the beam from the center to a radius of circa 5 mm,
we ramp the modulating frequency over a range of 5 MHz, starting before any light res-
onates and continuing past the 5 mm radius point. Such a pulse seen by the 780 nm
transmission photodiode is shown in Figure 4.23 (left).
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Figure 4.23 – Left: frequency sweep pulse recorded by the 780 nm transmission photodi-
ode (purple) and fit (yellow). Right: simulated intensity profiles at the extremities of the
pulse and at the peak power of the pulse.

The steps on both sides of the pulse are due to the abrupt switching on and off of
the AOM (with a radio frequency switch) while light is already or still resonating. The
total time between those edges is 343 µs, for a total frequency sweep of 10 MHz, that
is a slope of 30 kHz/µs (taking into account a time lag of 10 µs at the beginning of the
pulse during which no changing of frequency is done). This sweeping rate, according to
equation (4.41), should yield a Lorentzian time envelope of full width at half maximum
of 2τ = ∆νfsr

aF
= 24 µs.

The yellow curve is a fit of the pulse, calculating the resonating power by integrating
equation (4.37) over the width of the beam for each frequency detuning. Setting as free
parameters the amplitude, resonance frequency and the input mirror detuning δ1, we
obtain an estimation of the detuning: δ1 ' 25µm. This estimated longitudinal detuning
is dependent on the actual finesse of the resonator (defined by the quality of the optics
see equation (4.33)) that we took equal to 260 as estimated previously.

The simulated light profile corresponding to this fit for the starting of the pulse (green),
peak power (red) and end of the pulse (blue) are shown in Figure 4.23 (right). There, we
can estimate that the light turns off when the radius reaches circa 6 mm.

All the tests and characterization presented in the previous section were repeated
using the sweeping strategy with a sweeping rate of a = 20 kHz/µs for a total pulse
length of 500 µs. The following plots illustrate these new tests, unfortunately difficulties
in keeping the laser locked on the cavity during the frequency sweep and an insuperable
lack of time have limited the quality of the results shown below that have to be looked at
as "preliminary" data.
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Figure 4.24 – Comparison of the Rabi oscillations for Bragg diffraction of order n=1,2
and 4, sweeping pulse scheme on the left, fixed lock on the right.

Rabi oscillations

Figure 4.24 compares the Rabi oscillations of the two pulsing schemes, and we can
assess a net increase in the efficiency of the diffraction for all Bragg orders.

The comparison of the effective Rabi frequencies of the diffraction process is complex
and would require an important theoretical study, taking into account the velocity distri-
bution of the atoms and the difference of time envelope (Gaussian vs Lorentzian), which
won’t be done here. We will nonetheless give an estimation of the light intensity inside
the cavity using the input intensities corresponding to the π-pulses read in Figure 4.24.

While acquiring the data presented in this section, the widths of the pulses were kept
constant for all Bragg orders and such that the full widths at half maximum were 36 µs
and 31 µs for the Lorentzian and Gaussian pulses respectively.

Integrating the temporal envelope of the pulses, we obtain the effective lengths of the
pulses denoted τGeff and τLeff:

τGeff =
∫ ∞
−∞

exp
(
− t2

2σ2

)
dt = σ

√
2π and τLeff =

∫ ∞
−∞

1
1 + t2/τ 2dt = τπ (4.46)

The experimental effective Rabi frequencies can be calculated from the pulse widths:

ΩG
eff = π

τGeff
= 1
σ

√
π

2 and ΩL
eff = π

τLeff
= 1
τ
, (4.47)

and compared to the theoretical value calculated with equation (4.10) that we recall here:

Ωeff = Ωn
c

(8ωr)n−1
1

[(n− 1)!]2 , (4.48)

where Ωc is the two photon Rabi frequency for the transition of a 87Rb atom from ground
state F = 1, mF = 0 to ground state F = 1, mF = 0 in presence of the in-cavity counter-
propagating linear polarized light. Denoting ∆ the detuning from the F = 1 → F ′ = 1
transition, ∆2 the difference of energy between the F ′ = 1 and F ′ = 2 states and Ic the
resonating intensity, Ωc reads [63]:

Ωc = Γ2

4
Ic
Isat

(
5

24∆ + 3
24(∆ + ∆2)

)
' Γ2

12∆
Ic
Isat
· (4.49)
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The detuning ∆ was set at 3.4 GHz and therefore Ωc/Ic = 2π × 3.4 kHz/(mW/cm2).
The table 4.1 presents the results of the calculation of the intra-cavity intensity and

the corresponding gains after reading the effective π intensity in Figure 4.24.

pulse type Bragg order Ωexp
eff (kHz) Ithc (mW/cm2) Iexpin (mW/cm2) estimated gain

sweeping
1

8.8
2.6 .15 17.3

2 9.6 .5 19.2
4 45.2 2.4 18.8

fixed lock
1

15.2
4.5 1.0 4.5

2 12.6 1.7 7.4
4 51.8 5.2 10.0

Table 4.1 – Calculation of an estimation of the effective gain for the different pulsing
schemes.

We observe that the effective gain is almost 20 for the sweeping scheme whereas in
the fixed lock scheme, the effective gain depends on the Bragg order and is clearly lower.

Velocity distribution after diffraction

The next step in characterizing this new pulsing scheme was to check the velocity
distribution of the diffracted atoms.
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Figure 4.25 – Comparison of Raman spectroscopies before and after diffraction with a
π-pulse (for n = 1,2 and 4 from top to bottom) for the sweeping pulse scheme (left) and
fixed lock scheme (right).

Figure 4.25 compares the labeling spectroscopies of the cloud after diffraction with a
π-pulse, for the different pulsing schemes and confirms that we stay in the quasi-Bragg
regime. These datasets confirm as well the clearcut improvement in the diffraction effi-
ciency.
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Interferometric fringes

The spectroscopies enabled us to confirm that the Bragg diffraction driven by our new
pulsing scheme did not suffer losses in unwanted momentum states. We then checked if
the phase acquired by the atoms during the diffraction process was homogeneous enough
throughout the cloud to yield a good interferometric contrast.

Figure 4.26 compares the interferometric fringes observed while scanning the time T
with both pulsing schemes.
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Figure 4.26 – Comparison of the interferometric fringes with the two pulsing schemes
of Bragg orders n = 1 and 2.

Comparing the contrast of the fringes for the sweeping scheme with the contrast of
the Rabi oscillations of Figure 4.24 2. We note that the loss of contrast for order n = 1
is very small (smaller than for the fixed lock pulsing scheme) however the loss of contrast
for order n = 2 is almost a factor 2.

Volume of the diffracting beam

The most obvious advantage of the sweeping pulsing scheme is to increase the volume
of the diffracting beam. Figure 4.27 compares the diffracted clouds, as recorded by the
detection photodiode, for the two pulsing schemes. To assess the effective width of the
diffracting beam, the spatial extension of the detected profiles are shrunk to the size they
had at the time of the pulse. These profiles confirm an effective width diameter of circa
1 cm for all Bragg orders for the sweeping scheme.

We also note on the right plots, that for the fixed lock scheme, the size of the diffracted
clouds decreases as the Bragg order increases. This last observation can explain the
increase of the gain with Bragg order n observed in table 4.1: as the Bragg order increases,
diffraction happens within a smaller volume where resonance is higher.

2. We could only present data for orders n = 1 and 2 as the signal was too noisy for the order n = 4 and
because of technical issues with the lock, we could not make long scans necessary to average over many
shots. We specify here that the interferometric fringes presented for the fixed lock pulsing scheme and
order n = 4 is the averaged signal over 20 identical shots.
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Figure 4.27 – Comparison of the diffracted atoms profiles for the two pulsing schemes.
In purple are shown the profiles of the diffracted atoms after a π pulse labeled in the
−nvrec velocity class (from top to bottom, n = 1, 2 and 4), in yellow the same profiles are
shown when no light is sent in the cavity. Distances along the x-axis correspond to vertical
distances at the time of the pulse where the x = 0 corresponds to the apogee of the mean
trajectory. This distance is reconstructed from the time of arrival knowing the launching
velocity. The difference between the mean heights of the atoms for the two pulsing schemes
is due to realignment of the cavity in between the two acquisition runs.
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4.5 Conclusion
In this chapter, we have presented a large momentum transfer Bragg beamsplit-

ter/mirror using a horizontal optical resonator comprising two flat mirrors and a bi-convex
lens. Using this atom optics device, we have demonstrated our ability to drive a Mach-
Zehnder atom interferometer sensitive to inertial effects along the direction of the optical
resonator. Although we obtained a good signal to noise ratio up to Bragg order n = 4,
we admitted a small contrast for our interferometer explained by our inability to increase
the waist of the resonating beam above 2 mm, limiting the number of atoms participating
to the interferometer.

After explaining analytically the behavior of the resonator, we were able to understand
the reason of this practical limitation. Taking advantage of our theoretical analysis, we
proposed a solution to overcome this limitation that consists in sweeping the frequency
of the laser while sending light in the cavity, which creates a pulse of light that resonates
first in the center of the beam and expands in a ring like mode toward the outside of the
beam. This new pulsing scheme enabled us, with our present experimental configuration,
to drive n = 1 to 4 Bragg transitions with an optical gain around 20, over a cross-
section of diameter circa 1 cm, keeping an homogeneous interferometric phase across the
interrogated cloud of atoms.

Because the temporal envelope of a large momentum transfer Bragg diffracting pulse
matters, further studies are needed to clarify the impact on the Bragg process of the
Lorentzian shape of the pulse imposed by this technique. Nonetheless, the preliminary
data presented here showed no significant losses in unwanted momentum states up to
Bragg order 4.



Conclusion

In this manuscript, after presenting an overview of the MIGA project in chapter 1, we
have presented theoretical and experimental results that enhance understanding for the
whole project.

In chapter 2, after calculating a projection of the gravity strain sensitivity of the
MIGA instrument in an initial configuration and in an improved one, we predicted the
detectability of gravity strains produced by various sources.

We have shown that displacement of material and people in the vicinity of the instru-
ment will produce strain signals that could alter measurement runs.

We then showed that gravity gradient signals produced by seismic Rayleigh waves
will not be directly detectable by the instrument even in its improved configuration,
whereas signals from infrasounds propagating in the atmosphere may be detectable by
the improved configuration below a few tens of mHz, during noisy atmospheric conditions.

In chapter 3, after describing and explaining the functioning of the atom source, we
presented its experimental characterization. We explained how to tune the source and
how it may limit the final sensitivity of the instrument and concluded that a reduction by
a factor two of the sensitivity is to be expected due to the small efficiency of the labeling
beam and due to spontaneous emission during labeling.

In chapter 4, we used the atom source to demonstrate Bragg interferometry inside a
horizontal optical resonator. We first explained the difficulty to obtain amplification of a
beam large enough to interrogate a cloud of atoms after half a second of thermal expan-
sion. Using a resonator composed of two flat mirrors at the focal planes of a lens, we were
able to enhance a beam of circa 4 mm of diameter and demonstrated up to order 4 Bragg
transition atom interferometry. Taking advantage of our theoretical understanding of this
optical resonator, we devised a way to increase the volume of the interrogating beam,
and demonstrated Bragg interferometry in a cloud of diameter circa 1 cm. Although the
preliminary results obtained with this new pulsing scheme are promising, further charac-
terization of its effect on the atomic phase for high Bragg order needs to be investigated
theoretically and experimentally.

The results presented in this manuscript are most relevant to the MIGA project,
however the in-cavity Bragg interferometry capabilities demonstrated by the mirror-lens-
mirror optical resonator can be applicable to other cold atom setups.
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APPENDIX A

Analytical calculation of the intracavity
light field

Preliminary

We recall first that the propagation of a Gaussian beam through a paraxial system
described by its ABCD matrix is a Gaussian beam such that, if the input electric field
Ein can be written in cylindrical coordinate (see for example [64]):

Ein = E0
in exp

(
−ikr

2

2qin

)
, (A.1)

then the output field will be:

Eout = E0
in√

A+B/qin
exp

(
− ikr

2

2qout

)
, (A.2)

where qout = Aqin +B

Cqin +D
· (A.3)

Calculus

To lead the calculation, we start by describing the experimental setup of the cavity
with the "injecting" lens as represented in figure A.1.

vacuum vessel

Ein

f + δa2 + z f + δa1 f + δ1 f + δ2

z

La
Min

L
Mout

Figure A.1 – Schematic representation of the in air injecting lens and optical resonator
under vacuum.

We will refer to the collimated beam on the left side as the injected beam and denote
its electric field Ein.

We start by calculating the ABCD matrix of the optical system from the collimated
beam to the position of the atoms:
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M =
[
1 f + δ2 − z
0 1

] [
1 0
− 1
f

1

] [
1 2f + δa1 + δ1
0 1

] [
1 0
− 1
f

1

] [
1 f + δa2 + z
0 1

]
(A.4)

The result of this matrix product can be written:

Ma =
[
−1 + εaA εaB
εaC −1 + εaD

]
(A.5)

εaA = (δa1 + δ1)(δ2 − z)
f 2 εaB = (δa1 + δ1)(δ2 − z)(δa2 + z)

f 2 − (δa2 + δ2)

with (A.6)

εaC = δa1 + δ1

f 2 εaD = (δa1 + δ1)(δ2 + z)
f 2

Considering the bench as well aligned longitudinally as possible, that is δi as small as
possible (δi . .1 mm), we have εaX . 10−4 � 1 and Ma is a small deviation from minus
the identity.

Moreover, we will consider that the injected beam, is a collimated Gaussian beam
defined by its waist win > 5 mm and power Pin such that the electric field at the object
focal plane of La can be written:

E+
in(r) = 2

win

√
µ0cPin
π

exp
(
−i kr

2

2qin

)
= E0

in exp
(
−i kr

2

2qin

)
, (A.7)

where qin is the complex radius of curvature. Given the wide waist of the beam, the
Rayleigh length of the input beam is large compared to the size of the setup: zR = πw2

in

λ
>

100 m and therefore qin will be taken purely imaginary: qin ' izR = i
πw2

in

λ
. Another

consequence of the large Rayleigh length is that 1/z2
R and z2/z2

R will be treated as first
order quantities.

With these approximations, the complex radius of curvature q0 and the complex am-
plitude factor 1√

A+B/qin
defining the Gaussian beam at the output of the optical system

described by Ma, can be linearized and to first order in εaX we get:

1
q0

= D/qin + C

B/qin + A
' −εaC − i

1− εaD + εaA
zR

1√
A+B/qin

' i
(

1 + εaA
2

)
exp

(
−i ε

a
B

2zR

)
(A.8)

Applying the result of equation A.2, the electric field at the position of the atoms,
before any reflection within the resonator, can be approximated to:

E+
0 (r, z) = E0

intini(1 + εaA
2 ) exp

(
− r2

w2
in

(1 + εaA − εaD) + i
kr2εaC

2 − i ε
a
B

2zR

)
(A.9)

where we set the origin of phase at the position of the atoms.

The ABCD matrix M of a complete round trip of the resonator is identical to Ma

changing the misalignment of the path under air δai for the one in vacuum δi. The
cascading of n such round trips can, as well, be linearized and we get:
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Mn = (−1)n
[
1− nεA −nεB
−nεC 1− nεD

]
, (A.10)

where to first order in δi:

εA = −2δ1z

f 2 , εB = −2δ1z
2

f 2 − 2δ2, εC = 2δ1

f 2 , εD = 2δ1z

f 2 · (A.11)

Starting from q0 and using theMn matrix, we calculate the output radius of curvature
and complex amplitude factor:

1
qn

= D/q0 + C

B/q0 + A
' −εaC − nεC − i

1− εaD + εaA − nεD + nεA
zR

1√
A+B/q0

' i
(

1 + nεA
2

)
exp

(
−inεB2zR

)
. (A.12)

Taking into account the losses at the reflection on the mirrors and transmission through
the lens, and after n round trips in the resonator, the forward propagating electric field
at the position of the atoms is:

E+
n (z, r) = E0

intin(routrint2l )n(−1)n+1
(

1 + εaA + nεA
2

)
exp

(
− r2

w2
in

(1 + εaA − εaD + nεA − nεD) + i
kr2(εaC + nεC)

2 − ni
(

2kL+ εB
2zR

)
− i ε

a
B

2zR

)
,

(A.13)

where L is the distance between the mirrors: L = 2f + δ1 + δ2.
To compute the total forward propagating electric field we need to sum all contribu-

tions:

E+
c (z, r) =

+∞∑
n=0

E+
n (z, r). (A.14)

Using the power series formulas:

+∞∑
n=0

zn = 1
1− z and

+∞∑
n=0

nzn = z

(1− z)2 , (A.15)

we obtain:

E+
c (z, r) = E0

intin
1 + εaA/2− ρ+(1 + εaA/2− εA/2)

(1− ρ+)2

× exp
(
− r2

w2
in

(1 + εaA − εaD) + i
kr2εaC

2 − i ε
a
B

2zR

)
(A.16)

where ρ+ = routrint
2
l exp

(
− r2

w2
in

(εA − εD)− 2ikL− i εB2zR
+ i

kr2εC
2

)
= ρ+

0 e
−iφ+

. (A.17)
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Given the long Rayleigh length of the beam propagating on the side of the atoms,
the intensity calculated (and observed) at the end mirror is a good approximation of the
intensity field at the atoms’ position and we will use:

Ic(r, z) ' Ic(r, z = 0) = |E+
c (r, 0)E+∗

c (r, 0)| (A.18)

Ic(r, z = 0) = I0
in

t2in
1 + ρ2

0 + 2ρ0 cosφ exp
(
−2r2

w2
in

)
(A.19)

where ρ0 = routrint
2
l and φ = k

(
2L− r2εC

2

)
− εB
zR

= k

(
2L− r2δ1

f 2

)
+ 2δ2

zR
(A.20)

We have 2δ2
zR

. 10−6 and we will neglect this term in front of the others.



APPENDIX B

Cavity alignment

As mentioned in section 4.2.2, the absence of optical axis makes the mirror-lens-mirror
resonator relatively easy to align, at zeroth order, although it needs some care. However
reducing the astigmatism is much more tedious and time consuming. We share in this
appendix our experience that could be helpful to people wanting to explore this kind of
resonator.

Figure B.1 depicts the optical elements of the cavity with the injection benches.

Details on the experimental setup

The mirrors (Min and Mout) and lens (Lc) of the cavity were fixed onto an aluminum
plate and prealigned in air. The aluminum plate, 1080× 200× 8 mm was then bolted to
the vacuum vessel at its extremities. We note here that with this 8 mm thick plate design,
held by its extremities, the cavity got misaligned in case of thermal variations within a
couple degrees. Designing a stiffer support would be advisable.

The 1-inch cavity mirrors are held with cinematic mounts with picomotor actuators:
3 axis for the input mirror to enable its full translation and 2 axis for the output mirror
which is fixed onto a piezoelectric crystals stack enabling low frequency corrections with
the lock loop maintaining the resonance in the cavity.

During the whole aligning process, it is important to keep in mind the strong asym-
metry of the 780 nm beam that has a centimetric waist (wat ∼5 mm) on the output
mirror and a micrometric waist on the input mirror (λf/πwat ∼ 20 µm). This asymmetry
induces a great sensitivity to angular alignments on the output side, but a low sensitivity
to longitudinal alignment, whereas on the input side, it is the opposite. The 1560 nm is
also asymmetric but to a lesser extent and in the opposite way: wider waist on the Min
side.

To set the waist of the injected beam accurately on the surface of the input mirror,
the 2-inch lens Li is held on a translating platform (with centimetric displacement along
the direction of the beam), with a lens holder that enables tiny adjustments in the plane
perpendicular to the beam. The longitudinal position of the lens is set making sure that
the retro-reflected beam remains collimated when projected onto a screen, temporarily
removing mirror M780R.
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Alignment of the cavity

To align the cavity initially, or whenever it is so misaligned that resonance signals are
lost, we removed the 780 nm telescope to inject a millimetric waist beam. This initial
bright beam can be observed with an optical card even through the output mirror to
get the first rough alignment, moreover, a small waist on the output mirror is also less
demanding in terms of precision of alignment of the cavity mirrors and resonance signals
are easier to get.

We first center the beam on the injecting lens Li with the first pair of stirring mirrors
and then center it on both mirrors of the cavity with the two 780 nm stirring mirrors
SM1780 and SM2780.

We then repeat the same alignment with the 1560 nm light, where we can keep the
telescope in, as the waist is small even with it.

While doing this, we make sure that both beams are overlapped using irises on both
sides of the cavity.

Initial alignment of the cavity mirrors is done chasing the retroreflected beams on both
sides with a pin hole.

Fine tuning of the cavity mirrors, is done looking at the resonance peaks appearing in
the photodiodes 780T and 1560T voltages while linearly scanning the current of the laser.
We first try to increase the height of the peaks then try to get rid of the odd modes that is
characteristic of the semi-degeneracy of the resonator. This fine tuning is done iteratively
playing on the inside mirrors and on the stirring mirrors, reajusting the injection after
modifying the cavity alignment.

Of course all parameters are linked and whenever one touches the mirrors of the cavity,
one has to readjust the injection with the stirring mirrors on both sides. However because
of the asymmetry of the beams, as explained earlier, Mout has a strong influence on the
shape of the 780 nm peaks whereas Min has a strong influence on the resonance shape of
the 1560 nm light and one can iterate optimizing a single beam at a time.

Once semi-degeneracy is reached, one may want to play with the third picomotor
stirring Min to translate the input mirror to obtain symmetrical 780 nm peaks.

Once both beams are semi-degenerated with symmetrical resonance peaks, one can
insert the 780 nm telescope. We held it with an adapted kinematic mount and a translating
platform that enables small movements in the plane perpendicular to the beam as well
as rotations, to be able to center it accurately on the beam and align it properly, almost
without touching the alignment of the beam.

Increasing the waist with the telescope above 3 mm, one should start observing de-
formed resonance shapes, that cannot be corrected translating the input mirror, due to
longitudinal spherical aberrations that spreads the resonance across the beam as the fre-
quency is swept, as explained in section 4.2.2.

We warn here of a possible misinterpretation of the resonance shape because of an
eventual clipping of the transmitted beam. Indeed, if the photodiode collects only the
light of the central part of the beam, one might observes sharp symmetrical peaks instead
of the asymmetric Lorentzian expected for wide waists.

One will also most likely start to see appearing strange deformations of the resonance
peaks and deformed modes as shown in figure B.2 and B.3. These resonance shapes are
due to the miscentering of the beam on the cavity lens. Correction of these deformations
can be time consuming to say the least.

To observe the mode, one needs to be able to lock the laser on the cavity using the
retroreflected signal from the 1560R photodiode and setting the modulating frequency
and phase to generate a correct error signal as shown in figure B.4.
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Figure B.2 – Deformed mode due to astigmatism introduced by the lens when the resonat-
ing beam is not centered on the lens. On the right is shown the corresponding resonance
peak as recorded with the 780T photodiode while scanning the laser current.
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Figure B.3 – Same as figure B.2, when the astigmatism is reduced, an elliptical mode
reappear
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Figure B.4 – Resonance peaks as recorded by the transmission photodiodes: 780T (ma-
genta) and 1560T (blue). Error signal in yellow obtained after demodulation and low-pass
filtering of the signal from the 1560R photodiode.
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Correction of the astigmatism

To correct the astigmatism, one needs to be able to lock the laser on the cavity. The
principle is to iteratively change the injection of the 780 nm, reajust the cavity, and check
the effect on the resonating mode.

The correction process starts by observing the mode at a modulating frequency such
that a ring mode is obtained and noting the ellipticity of the ring. Then one needs to go
back to scanning the current of the laser to look at the resonance peaks and act gently
on the last 780 nm stirring mirror (SM1780). By changing the injection at this point, one
loses the semi-degeneracy of the cavity that needs to be realigned acting on the cavity
mirrors (mostly Mout). Then to recover the ability to lock the laser, one needs to reinject
the 1560 beam with SM11560 and SM21560. At this point, the proper modulating frequency
may have changed by several MHz. After setting it and adjusting the phase, one needs
to relock the laser to look at the mode shape again. Comparing the new ellipse with
the previous one, one can conclude which way to act on the last 780 nm stirring mirror
(SM1780).

Iterating this process enables one to converge gently toward a circular ring mode (see
figure B.5), but convergence can take a while...
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Figure B.5 – Example of quasi circular ring mode (left). Resonance shape of an align-
ment yielding a quasi-circular mode, the breaking of the slope at the tip of the red arrow
corresponds to the clipping of the beam by the piezoelectric stack at a diameter ∅ = 19 mm.
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C.1 Characterizing Earth gravity field fluctuations
with the MIGA antenna for future gravitational
wave detectors

J. Junca et al. “Characterizing Earth gravity field fluctuations with the MIGA antenna
for future gravitational wave detectors”. In: Physical Review D 99.10 (May 2019). doi:
10.1103/physrevd.99.104026. url: https://doi.org/10.1103/physrevd.99.
104026

Abstract
Fluctuations of the earth’s gravity field are a major noise source for ground-based
experiments investigating general relativity phenomena such as Gravitational
Waves (GWs). Mass density variations caused by local seismic or atmospheric
perturbations determine spurious differential displacements of the free falling
test masses, what is called Gravity Gradient Noise (GGN); it mimics GW ef-
fects. This GGN is expected to become dominant in the infrasound domain and
must be tackled for the future realization of observatories exploring GWs at low
frequency. GGN will be studied with the MIGA experiment, a demonstrator for
low frequency GW detection based on atom interferometry - now in construction
at the low noise underground laboratory LSBB in France. MIGA will provide
precise measurements of local gravity, probed by a network of three free-falling
atom test masses separated up to 150 m. We model the effect of GGN for MIGA
and use seismic and atmospheric data recorded at LSBB to characterize their
impact on the future measurements. We show that the antenna will be able to
characterize GGN using dedicated data analysis methods.
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C.2 A fibered laser system for the MIGA large scale
atom interferometer

D. O. Sabulsky et al. “A fibered laser system for the MIGA large scale atom interfer-
ometer”. In: Scientific Reports 10.1 (Feb. 2020). doi: 10.1038/s41598-020-59971-8.
url: https://doi.org/10.1038/s41598-020-59971-8

Abstract
We describe the realization and characterization of a compact, autonomous fiber
laser system that produces the optical frequencies required for laser cooling, trap-
ping, manipulation, and detection of 87Rb atoms - a typical atomic species for
emerging quantum technologies. This device, a customized laser system from the
Muquans company, is designed for use in the challenging operating environment
of the Laboratoire Souterrain à Bas Bruit (LSBB) in France, where a new large
scale atom interferometer is being constructed underground - the MIGA antenna.
The mobile bench comprises four frequency-agile C-band Telecom diode lasers
that are frequency doubled to 780 nm after passing through high-power fiber am-
plifiers. The first laser is frequency stabilized on a saturated absorption signal via
lock-in amplification, which serves as an optical frequency reference for the other
three lasers via optical phase-locked loops. Power and polarization stability are
maintained through a series of custom, flexible micro-optic splitter/combiners
that contain polarization optics, acousto-optic modulators, and shutters. Here,
we show how the laser system is designed, showcasing qualities such as reliability,
stability, remote control, and flexibility, while maintaining the qualities of lab-
oratory equipment. We characterize the laser system by measuring the power,
polarization, and frequency stability. We conclude with a demonstration using a
cold atom source from the MIGA project and show that this laser system fulfills
all requirements for the realization of the antenna.

C.3 A control hardware based on a field programmable
gate array for experiments in atomic physics

A. Bertoldi et al. “A control hardware based on a field programmable gate array for
experiments in atomic physics”. In: Review of Scientific Instruments 91.3 (Mar. 2020),
p. 033203. doi: 10.1063/1.5129595. url: https://doi.org/10.1063/1.5129595

Abstract
Experiments in Atomic, Molecular, and Optical (AMO) physics require precise
and accurate control of digital, analog, and radio frequency (RF) signals. We
present a control hardware based on a field programmable gate array (FPGA)
core which drives various modules via a simple interface bus. The system sup-
ports an operating frequency of 10 MHz and a memory depth of 8 M (223)
instructions, both easily scalable. Successive experimental sequences can be
stacked with no dead time and synchronized with external events at any in-
structions. Two or more units can be cascaded and synchronized to a common
clock, a feature useful to operate large experimental setups in a modular way.
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Resumé en français

La mise au point de techniques de refroidissement par laser à la fin des années 1980[1,
2, 3] a déclenché un développement rapide de l’optique atomique, qui a permis d’obtenir,
quelques années plus tard, les premiers signaux d’interférences atomiques[4, 5, 6, 7]. Ces
premiers résultats ont marqués le début d’un nouveau domaine pratique de la physique
quantique : l’interférométrie atomique.

Le principe d’interférométrie consiste à combiner l’information de phase accumulée
par une onde se propageant par deux chemins distincts. La différence de phase, rendue
visible par le processus d’interférence, est une mesure de la différence d’action entre les
deux chemins de propagations.

Historiquement, ce principe a été appliqué avec succès à la fin du XIXème siècle en
utilisant des ondes lumineuses[8, 9, 10]. L’utilisation d’ondes de matière au début des
années 1990 ouvre alors la possibilité de concevoir des interféromètres sensibles à de
nouveaux effets. Ainsi, durant les trentes dernières années, l’interférométrie atomique a
été appliquée avec succès à diverses mesures de précision comme la détermination de
constantes fondamentales[11, 12], le test du principe d’équivalence[13], la détermination
de la polarisabilité atomique ou l’étude de l’interaction atome-surface. En particulier,
la sensibilité aux effets inertiels des interféromètres atomiques a permis des mesures de
rotation[14, 15], de la gravité et de son gradient[16, 17] avec une précision comparable
ou meilleure que celle offerte par d’autres instruments déjà existants. D’autre part, ces
expériences qui peuvent paraître extrêmement complexes quittent désormais le domaine
du laboratoire et on observe l’apparition d’instruments commerciaux utilisables sur le
terrain par des personnes non spécialistes[18, 19].

Parallèlement, pendant que la communauté des physiciens atomiques affinaient l’art de
l’interférométrie atomique, une autre communauté de physiciens repoussaient les limites
de l’interférométrie optique en développant des instruments capables de détecter direc-
tement des ondes gravitationnelles. Cet effort fut couronné d’un premier succès en 2015
avec l’obtention du premier signal attribuable au passage d’une onde gravitationnelle[20].
La détection de nouveaux événements est maintenant régulière au cours de chaque pé-
riode opérationnelle de la collaboration LIGO/VIRGO/KAGRA[21]. Ainsi s’ouvre peu à
peu une nouvelle discipline : l’astronomie par ondes gravitationnelles. Discipline qui ob-
serve l’univers par l’intermédiaire d’un phénomène jusqu’alors inaccessible, la propagation
de déformations spatio-temporelles. Ces observations, complémentaires aux observations
réalisées dans le spectre électromagnétique ou via la détection de particules, offre, soit
la possibilité d’observer des phénomènes invisibles aux autres détecteurs[22], soit permet
l’observation conjointe d’un même événement. Ces nouvelles informations sont très riches
pour la physique moderne et ont déjà permis, par exemple, de restreindre des contraintes
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sur des modèles cosmologiques[23].
Le projet MIGA se situe a mi-chemin entre ces deux domaines de recherche : astrono-

mie par ondes gravitationnelles et interférométrie atomique. Son objectif est d’étudier la
faisabilité de concevoir un détecteur d’ondes gravitationnelles basé sur l’interférométrie
atomique qui étendrait vers les basses fréquences les capacités actuelles de détection des
interféromètres optiques.

Ce projet ambitieux, composé de trois sources d’atomes froids de Rubidium 87 et
d’une cavité optique de 150 m de long est en cours d’assemblage, 300 m sous terre, au
laboratoire sous terrain à bas bruit (LSBB) dans le Vaucluse. Etant donnée l’ampleur du
projet, des problématiques diverses doivent être adressées, et des expertises variées sont
nécessaires. Ce travail de thèse, mené au LP2N à Talence, s’intègre dans le cadre de la
collaboration entre le consortium MIGA et l’entreprise µQuans et apporte des éléments
de compréhension au projet dans son ensemble.

Ce manuscrit présente des travaux relativement indépendants. Le premier chapitre
présente le projet MIGA et son principe de fonctionnement, le deuxième chapitre présente
une étude théorique qui donne une estimation de l’amplitude des gradients de gravité que
l’on peut attendre sur le lieu de construction de l’instrument. Le troisième chapitre étudie
la source d’atomes froids qui prépare les atomes avant la réalisation de l’interféromètre,
puis les détecte après l’interféromètre. Le dernier chapitre utilise de façon pratique la
source d’atomes pour démontrer des interférences atomiques utilisant des transitions de
Bragg réalisées à l’intérieur d’un résonateur optique de large diamètre.

Chapitre 1 : le projet MIGA
Comme les détecteurs d’ondes gravitationnelles existants, le détecteur MIGA est un

instrument capable de mesurer le strain de gravité entre deux masses de test séparés hori-
zontalement. Dans le cas des interferomètres optiques, les masses de test sont les mirroirs
suspendus d’un interféromètre de Michelson géant, dans le cas de MIGA, les masses de test
sont deux nuages de Rubidium 87 en chute libre, lancés sur des trajectoires paraboliques
par des sources atomiques dédiées. L’utilisation de masses de test en chute libre plutôt
que suspendues présente l’avantage que l’instrument MIGA reste sensible aux variatons
de strain de gravité même à basses fréquences, en particulier autour du déciHertz, région
fréquentielle de grand intérêt scientifique mais innaccessible aux instruments existants ni
même planifiés.

Dans son processus de développement de l’instrument, le projet MIGA prévoit la
réalisation d’expériences intermédiaires permettant le test et le développement de chaque
élément composant l’instument final. Une première expérience, constituée d’une source
d’atomes froids et d’un résonateur optique a été utilisée pour mettre au point la source
et son système laser, aboutissant à la démonstration d’interférances atomiques au sein
du résonateur optique. Une deuxième expérience consiste à construire un gradiomètre en
tout point identique à l’instrument final avec une séparation de seulement 1 m entre les
deux points de mesures, permettant de tester la mise sous vide de l’enceinte de grand
diamètre et devant permettre l’obtention des premiers signaux gradiométriques.

Chapitre 2 : MIGA et gradients de gravity
La sensibilité maximale de l’instrument est calculée dans ce chapitre, prenant en

compte deux versions de performances de l’instrument : une configuration initiale et une
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configuration améliorée. Ces deux sensibilitées servent d’étalon de comparaison pour pré-
voir la détectabilité de signaux de gradients de gravité calculés dans le reste du chapitre.

Dans un premier temps, l’amplitude de signaux temporaires produits par le déplace-
ment de personnes ou matériel au sein du laboratoire est évaluée, et l’on conclut que ces
déplacements devront être contrôlés car ils auront un impact sur les mesures de l’instru-
ment.

Dans un deuxième temps, nous prédisons l’amplitude de variations de strain de gravité
produites par la propagation d’ondes sismiques dans le sol et d’infrasons dans l’atmo-
sphère. Nous concluons que les gradients de gravité d’origine sismique ne seront pas dé-
tectables par l’instrument, même dans sa configuration améliorée, par contre des signaux
provenants de perturbations atmosphériques devrait pouvoir être détectés par l’instru-
ment dans sa configuration améliorée lors de périodes agitées autour de la dizaine de
milliHertz.

Chapitre 3 : caractérisation de la source d’atomes
Ce chapitre est consacré à la présentation et la caractérisation de la source d’atomes.

On y décrit d’abord le principe de fonctionnement et les éléments composant cet outil.
On explique ensuite les méthodes permettant de le régler avec précision de façon à prépa-
rer les atomes de façon optimale pour pouvoir conduire une expérience d’interférométrie
atomique sur les atomes à l’apogée de leur trajectoire à l’aide d’un laser indépendant de
la source.

On caractérise alors ses performances et on constate son bon fonctionnement. On
remarque cependant que la source peut limiter la sensibilité ultime de l’instrument en
introduisant un léger biais dans la mesure du nombre d’atomes dans chaque port de sortie
de l’interféromètre. Ce biais est introduit par l’imperfection du processus mis en place
pour différencier les deux sorties de l’interféromètre.

Avec les performances présentées dans ce chapitre, l’efficacité d’étiquetage par tran-
sition Raman stimulée et l’émission spontanée pendant cette étiquetage réduiraient la
limite de sensibilité de l’interféromètre d’un facteur deux environ.

Chapitre 4 : interférométrie de Bragg en cavité
Le dernier chapitre présente l’utilisation de la source d’atomes pour démontrer des

interférences atomiques obtenues grâce au champ lumineux résonant dans un résonateur
optique.

On justifie dans un premier temps l’utilisation d’un résonateur composé de deux mir-
roirs placés aux plans focaux d’une lentille convergente pour permettre d’interroger effi-
cacement le nuage atomique après 400 ms d’expansion thermique.

On étudie alors, avec une approche analytique, le comportement de ce résonateur. On
montre que l’on doit s’attendre à une limitation de la taille du faisceau que l’on peut
espérer atteindre avec ce résonateur avec un diamètre maximum proche de 5 mm.

On propose alors de contourner cette limitation en changeant la manière de créer le
pulse lumineux dans la cavité. Au lieu de faire varier dans le temps l’intensité lumineuse,
on propose de garder l’intensité injectée constante mais de faire varier la fréquence de
la lumière dans le temps. Cette variation de fréquence au cours du temps fait varier
l’amplitude de la résonance spatialement au sein du faisceau au cours du temps. En
procédant de la sorte, on peut alors espérer obtenir un faisceau effectif d’un diamètre
centimétrique.
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La deuxième partie de ce chapitre présente des résultats expérimentaux illustrant
l’étude théorique et les propositions précédentes. Dans un premier temps utilisant des
pulses lumineux créés en variant l’intensité injectée au cours du temps, dans un deuxième
temps en variant la fréquence au cours du temps. Utilisant la premère méthode, nous
démontrons des interféromètres sensiblent aux accélérations avec des transitions de Bragg
jusqu’à l’ordre 4. Avec une interrogation efficace dans un diamètre de 4 mm environ.
Utilisant la méthode de la variation de la fréquence, nous démontrons un diamètre de
faisceau diffractant effectif centimétrique, tout en obtenant des interférences atomiques,
démontrées expérimentalement seulement jusqu’à l’ordre 2.

Conclusion

Les résultats présentés dans ce manuscrit apportent des éléments de compréhension
au projet MIGA dans sa progression vers la réalisation de mesure de strain de gravité par
interférométrie atomique.

Bien qu’une partie de ces résultats soient spécifiques au projet, en particulier la carac-
térisation de la source d’atomes froids, l’application du résonateur miroir-lentille-miroir à
l’interférométrie atomique est applicable de façon générale.
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