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MOTIVATION

Welcome.

Before we start, let us have a quick introduction to the topic of the thesis. This chapter introduces HDR imaging and tone mapping operators. We construct the problem statement, try to understand how experts approach the problem and set our goals as we embark on our journey of scientific discovery. 

Introduction

The last thing that we find in making a book is to know what we must put first.

Blaise Pascal Figure 1.1: The earliest photograph. View from the window at Le Gras by Joseph Nicéphore Niépce (1816). Interestingly, the capture was made with an exposure time of around 8 hours. As a result, the sun changed position across the sky during the capture and the final image shows the wall illuminated from both sides. So, it's not just the first attempt in modern photography but also long exposure photography. Source: [START_REF] Tolmachev | A Brief History of Photography: The Beginning[END_REF] "What I like about photographs is that they capture a moment that's gone forever, impossible to reproduce." -Karl Lagerfeld. The ever changing three dimensional world has endless beauty and the beholder's eyes can only grasp so much. So, it is in the inherent human nature to freeze a frame, capture a moment in time to recollect and re-live what has gone by. Photography, in its true sense is not just an art form but a time machine and the photograph is the time capsule.

History dates back the first mention of an image capturing device to the Camera Obscura [START_REF] Tolmachev | A Brief History of Photography: The Beginning[END_REF]. It was the first form of analogue photography which was derived from the simple principle based on pin-hole projection. Modern photography made its first mark when Joseph Nicéphore Niépce took an image by appropriately exposing a petroleum derivative called "Bitumen of Judea" to record the camera's projection for almost 8 hours (refer to Figure 1.1). 1.2. Challenges of Tone Mapping Through the 19 th century, from discovery of photography by exposing glass negatives to Eastman's Kodak's mainstream camera, photography took a huge leap. Modern age photographic tools and digital imaging has come a long way but the intrinsic idea of manually curating an image through controlled exposure still remains pivotal. In its early days, photography was either used as an aid in the work of a painter or followed the same principles the painters followed. As a result, we observe through history how majority of initial photographs were portraits as an alternative to paintings. Hence, we understand that there is a correlation between methods of painters using pigments to control elements of light source in portraits to photographers using controlled techniques such as 'dodge and burn' to correctly expose photo-plates and negatives. Hence, exposure correction in post-process to curate an image mimicking natural fidelity is a task and problem time immemorial.

Challenges of Tone Mapping

Producing digital images involve many objective and subjective parameters which govern how they are perceived or how they are treated. Since, photography [phōtós-graphê] literally means drawing or writing with light, it is imperative that we speak about Dynamic Range. Dynamic range by definition means the ratio between the smallest and largest possible values of a changeable quantity. In digital photography, the observed quantity is luminance intensity. Hence, dynamic range denotes the ratio of the brightest pixel (in the highlights) to the darkest pixel (in the shadows) of the image. Figure 1.2 details the dynamic range of luminance values naturally occurring in the real world in units of cd/m 2 . Within the practical threshold of the human visual system, the photo-receptors in the eyes and their adaptation principles help humans to perceive imagery around the log luminance levels of (-2, 8) of light while the diminishing colour acuity has a threshold of perception at around -6. The same capability of dynamic range perception is not reflected in the other artificial visual modes of capturing and display devices. As we notice in Figure 1.3, the reproducible dynamic range on conventional displays is very small and although dedicated HDR displays improve over the conventional display capabilities, they are far off from covering a major part of the perceptible dynamic range for human vision. The procedure of compressing the dynamic range on an image captured from the real world, fit to render on a conventional display or any limited dynamic media such as photo prints, is called Tone Mapping [START_REF] Dufaux | High Dynamic Range Video: From Acquisition, to Display and Applications[END_REF][START_REF] Myszkowski | High dynamic range video[END_REF][5].

Functionally, tone mapping or compressing the dynamic range means correcting the luminance or exposure of the scene. Such process of exposure correction is very commonly used by expert photographers to retain the details of the scene in both highlights and shadows. However, this common process is not trivial. Not only does it affect the luminance distribution of the entire image, tone mapping operators (TMOs) affect the perceptual cues which govern the aesthetic quality of the image.

Historically, research on TMOs has been conducted with the primary objective of developing the best TMO. Over the years, several TMOs have been introduced incrementally improving the aesthetic quality. They have been compared on an objective scale using aesthetic evaluation metrics and a slight improvement has warranted the development of a new TMO. However, after all these years we have acknowledged that claiming to produce the best tone mapping quality and hence the best TMO is an ill-posed problem. Image aesthetics in photography is highly subjective. So, we can compare fidelity to a ground truth but cannot declare a standalone tone mapping result as the best. This is the reason, our topic is not just challenging but different than the other worksdeveloping yet another novel TMO. We draw analogies between tone mapping and the process of manually retouching an image. We ask -'How would a photographer do it? ' and draw inspiration from an expert's recipe. We got in touch with two experts (refer to Figure 1.4) in the field of photography. Fabrizio is a professional photographer and a photography teacher with an expertise in art direction and graphical designing spanning more than 15 years. He is responsible as the product manager of photo editing applications at DxO Labs, France. He is an expert in several genres including landscape, potraits and long-exposure photography. Julien is an expert photographer and an image specialist. He is an expert in street photography and portraits among other genres. He is a social media manager at DxO Labs and expert in major photo-editing and retouching pipeline on applications such as Photolab, Adobe Lightroom, Photoshop among others.

Our objective was to dissect the manual effort and flow of decision which drives both scene understanding and exposure correction in digital photography. We pose a host of questions to them during the interview. Consequently, we present certain important points of consensus from our discussion which ultimately help us to establish the problem statement. We are grateful to our experts for their valuable inputs and helping us decode the photographer's recipe to image enhancement.

Can we put in perspective the importance of local tone mapping operators for HDR image processing in the field of photography? HDR imaging, capture and processing has evolved over the years. The multi-exposure bracketing technique has been very popular to stack images of the same scene with variable exposure to include more details at both ends of the luminance spectrum. However, the technical constraints of bracketing and the evolution of modern camera sensors capable of capturing 14 stops (1 stop ∼ reduces the exposure by a factor of 2) of dynamic range implies that experts rely on a mix of global and local enhancement techniques to produce a result from a single shot. In that regards, the usability of tone mapping operators goes beyond HDR imaging. A recipe following local exposure correction can be used irrespective of the image having a high dynamic range or not.

How important is the role of the dynamic range when retouching images?

As humans, we tend to be drawn towards salient subjects in the image. However, in image enhancement a zone system, as developed in 1940s by Ansel Adams [START_REF] Adams | The Camera[END_REF][START_REF] Adams | The Ansel Adams photography series[END_REF][START_REF] Adams | The Ansel Adams photography series[END_REF][START_REF] Johnson | The practical zone system[END_REF] holds high importance in deciding final exposure of the image. The human visual system tends to retain as much details in the highlights while correctly exposing the shadows. Hence, the dynamic range and luminance distribution of the scene is pivotal in deciding how to retouch.

How important is it to be semantic-aware while retouching images?

Visual scene understanding is a pivotal part of establishing perception. Hence, to enhance the perceptual cues of an image it is important to be aware of the semantic content in the image. Experts use luminance statistics to retouch images. However, establishing the subject(s) of the scene and retouching locally according to the semantic content is equally important for aesthetic enhancement.

Do you break the scene down spatially into local regions for individual enhancement?

As mentioned previously, the luminance zones -highlights and shadows are important. Experts often use spot metering (computing exposure at a specific spot in the scene) on capturing devices to locally differentiate between regions of different luminance. Dividing the scene on the basis of luminance zones helps in locally correcting exposure in the post-processing step. Furthermore, salient subjects in the image play a vital role in determining local regions. An important aspect of photography is to draw the human attention to a salient object. Consequently, experts use a mask or a local adjustment tool such as a brush or radial filter to enhance important objects in the scene -sky with clouds, a mountain in the background, a human standing in the foreground etc.

How many fine or coarse semantic regions would you break the scene down into when retouching an image?

This is very subjective and hence challenging. Breaking the scene into semantic regions is very scene-specific. In a panoramic landscape scene one may broadly classify a landmass as a 'mountain' and retouch accordingly whereas in a zoomed-in shot of the same landmass we may need more specific labels to retouch a specific subject. It is hard to have an exhaustive list of fine and coarse labels. Ideally, it follows a hierarchical structure from coarse to fine segments. To make a hard generalisation in practice, we can have around 10 different semantic regions to break an image down across different photographic genres.

The Research Objective

The discussion with our expert photographers helps us understand how challenging the use-case of an ideal TMO for photography is.

-Our primary learning from them is that TMOs should have a semantic scene understanding to represent the perceptual cues of the scene better.

-It is important to note the luminance statistics of the image because it is human nature to preserve and perceive details even in challenging lighting conditions. -Retouching recipes may follow similar intuition but are highly subjective. Hence, it is ill-posed to have a best TMO.

-It is important to have masks for significant semantic objects in the scene to locally retouch the exposure. It is difficult to have an exhaustive list of semantic labels but depending on the scene context a generalisation can be made.

Based on our learning we establish a couple of important research questions which we answer in course of this work.

Objective 1

Can explicitly including semantic information improve the quality of TMOs over existing state-of-the-art? If so, how can we incorporate semantic information into the algorithm to develop a semantic-aware TMO?

Although, we mention our objective of developing a TMO with better results than the state-of-the-art we keep reminding ourselves that it is futile to aim just for better quality. Instead, we focus on producing better fidelity to a ground truth. Hence our second question follows a data driven approach.

Objective 2

How do expert photographers approach luminance correction? Can we develop a TMO to think and analyse a scene like an expert photographer and apply tone mapping? Can we make the machine learn photographer styles and individual recipes of luminance correction? Apart from our contributions towards the aforementioned objectives, we also present some significant works on aesthetic evaluation of tone mapped HDR results. Subjective aesthetic evaluation of images is a challenging topic of research. We explore ideas to conduct subjective evaluation remotely and answer some questions about the reliability of conducting aesthetic evaluation on crowdsourcing platforms. Such works open up new avenues of research and we hope our contributions provide a much needed impetus to a maturing field of research.

Our Contributions

Based on the objectives set previously and ancillary research which we conduct in conjunction to the HDR tone mapping, we briefly list our major contributions in this thesis.

Contribution 1:

We present a novel content aware tone mapping operator Seman-ticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] which in our knowledge, is the first one to explicitly use semantic information and luminance statistics leveraged through semantic masks. A probabilistic semantic framework governs the tone mapping by modifying each segmented region towards a semantic specific target.

Contribution 2:

We present the novel deep learning based operator G-SemTMO [START_REF] Goswami | G-SemTMO: Tone Mapping with a Trainable Semantic Graph[END_REF].

It uses a backbone of graph convolutional networks to predict a latent abstract feature space called semantic hints which addresses the scene understanding. G-SemTMO with assistance of semantic hints is able to learn local tonal adjustments created by expert photographers and affect tone mapping as a expert photographer would do.

Contribution 3: As an addition to our work with G-SemTMO we present LocHDR, a dataset of images manually retouched using local adjustment tools such as brushes and filters. This dataset in comparison to the state-of-the-art Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF], provides challenging local adjustments to learn. To the best of our knowledge, there are no image pair datasets in literature which contain local adjustments. We believe that the LocHDR can be pivotal in development of data driven TMOs moving ahead.

Contribution 4:

We also make some important strides in the field of subjective aesthetic evaluation of tone mapped HDR images. We conduct subjective IQA experiments via crowdsourcing and show that remote experimentation can be successfully used for the TMO evaluation use-case with significant reliability as compared to in-Lab experiments [START_REF] Goswami | Reliability of Crowdsourcing for Subjective Quality Evaluation of Tone Mapping Operators[END_REF]. Furthermore, we present filtering techniques using which spammer-like participants can be flagged, resulting noisy data can be filtered and reliability of the setup can be significantly improved [START_REF] Ak | A Comprehensive Analysis of Crowdsourcing for Subjective Evaluation of Tone Mapping Operators[END_REF].

Contribution 5:

We present a novel content selection strategy [START_REF] Ak | RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone Mapped Images[END_REF] which scores every HDR scenes based on some objective and perceptual factors of the image. A cluster based filtering strategy helps us identify challenging and interesting HDR stimuli which can be used for subjective evaluation. The strategy helps us produce the largest publicly available annotated dataset [START_REF] Ak | RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone Mapped Images[END_REF] of HDR images and the pairwise aesthetic preference data of their tone mapped versions. The dataset helps us benchmark performance of existing TMOs in correlation to subjective preference and can also be used to develop data driven objective IQA metrics.

Organization of the Chapters

There are 8 chapters in this thesis. Following the introduction in this current chapter, we explore the theoretical background of our research in Chapter 2. We build the theoretical foundation necessary for classical and data driven tone mapping approaches. We explore the application of convolutional neural networks in deep learning based methods for image enhancement and the possibility of using graph based learning. Consequently, we discuss the state-of-the-art research conducted in the field of classical HDR tone mapping, deep learning based methods for the same and quality evaluation of tone mapped content.

Chapter 3 addresses a part of Objective 1. Following our expert photographer's intuitions we discuss ways to extract semantic masks from an image and also answer questions related to the suitability of coarse or fine semantic annotations.

Chapter 4 is in direct correlation to our Objective 1. We present our first attempt of a semantic-aware tone mapping operator, SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF]. From our knowledge, it is the first attempt in literature to develop a TMO which explicitly considers semantic information.

Chapter 5 presents probably one of the most important contributions of this thesis. We present a deep learning network based on Graph Convolutional Networks (GCNs) to learn and predict the retouching style from expert photographer's samples. The novel G-SemTMO is the first of its kind to use GCN for image enhancement application.

In Chapter 6 and 7, we take a detour from developing TMOs and discuss about aesthetic quality evaluation of tone mapped image content. We explore the reliability of crowdsourcing platforms for conducting subjective evaluation of TMOs [START_REF] Goswami | Reliability of Crowdsourcing for Subjective Quality Evaluation of Tone Mapping Operators[END_REF][START_REF] Ak | A Comprehensive Analysis of Crowdsourcing for Subjective Evaluation of Tone Mapping Operators[END_REF]. Furthermore, in Chapter 7, we present a novel content selection strategy to identify challenging HDR source images. In the process, we compile the RV-TMO dataset of HDR source images, their tone mapped versions and subjective preference data -the largest dataset known in literature in terms of number of stimuli and data per stimuli recorded.

Finally, Chapter 8 summarizes our work in this thesis and provides an outlook into the future of HDR tone mapping. We list some short and long-term goals and ideas to push semantic aware tone mapping further. 

THEORETICAL BACKGROUND

About this Chapter:

This chapter provides a theoretical overview and literature review of articles about HDR imaging, tone mapping and related applications. We view our research from different perspectives -from traditional methods of semantic-awareness inclusion to data-driven methods for tone mapping and tone mapping quality evaluation. For each research area we uncover pivotal articles that help us draw inspiration for our work. Throughout our work we refer to the articles listed in this chapter.

Introduction

In history, a great volume is unrolled for our instruction, drawing the materials of future wisdom from the past errors and infirmities of mankind.

Edmund Burke

Having a solid foundation of the theoretical background and state-of-the-art contributions made in the related field is highly important before we start our work. The objective of conducting a literature survey is not just to list and cite resources that inspire us or we use for our research. It is important to place our research in perspective to the work that has already been done, to understand where our research stands, where we improve and where we are limited by constraints. It helps better evaluate the progress of our work.

We have come across several important articles which have paved way for developing newer TMOs. Many other tone mapping operators have been developed over the years. Hence, when we aim to develop yet another TMO, its objective needs to be significantly different than the others introduced along the way. In order to do that, we take a look at the different popular tone mapping operators and their objectives. Our tone mapping is aimed at being semantic-aware. We hypothesize that in order to better affect luminance corrections, we need to emulate how photographers include semantic awareness in their retouches. We notice that it is a futile attempt to aim for the 'best' TMO owing to the subjectivity of results. A more likely attempt at success is to learn the recipe of expert photographers and develop a TMO which can learn their intuition at semantic-aware luminance correction. Therefore, we review data-driven methods and neural network based learning algorithms for image enhancement and style transfer. We explore the resources available from a deep learn standpoint and how they have been or can be applied in the context of tone mapping. Furthermore, it is important to evaluate the quality of tone mapping operators that we develop. Hence, we explore the different evaluation techniques, both objective and subjective to correctly judge our TMO performance. Judging the aesthetic standard of a tone mapped image is an ill-posed problem. Hence, we take a look at several standalone metrics and subjective methodologies from literature which can assist us.

The following sections dive into the theory of tone mapping and its evaluation and we follow up with some of the most inspiring and pivotal works over the years.

HDR Imaging and Traditional TMOs

Most available display media or visual medium such as photo prints have a limited dynamic range (LDR) of representing details. Their capacity of producing the luminance dynamic range is shorter than the perceptual limit of the human visual system and also the acquisition medium such as modern cameras. Producing truly realistic visual content, improving natural fidelity on such limited dynamic range media is seen as 'the holy grail toward further improving the quality of experience for end users of multimedia services' [START_REF] Dufaux | High Dynamic Range Video: From Acquisition, to Display and Applications[END_REF].

Real world natural images often have a high dynamic range. High Dynamic Range (HDR) images are a specific class of images where the ratio of the brightest to the darkest pixel in the image is much higher than the rendering capability of the LDR medium. As a result, details in the highlights and the shadows are not perceived well. Our visual system can perceive such details and even with limited capabilities of capturing devices, such HDR scenes can be captured. The earliest HDR imaging by reconstruction was introduced by Steve Mann [START_REF] Mann | Compositing Multiple Pictures of the Same Scene[END_REF] in 1993, where multiple images of the same scene were fused for improved dynamic range. Along the next decade several other important works have introduced HDR image acquisition [START_REF] Mann | Being 'undigital' with digital cameras: Extending dynamic range by combining differently exposed pictures[END_REF][START_REF] Robertson | Estimation-theoretic approach to dynamic range enhancement using multiple exposures[END_REF][START_REF] Reinhard | High dynamic range imaging: acquisition, display, and image-based lighting[END_REF][START_REF] Ali | Comparametric image compositing: Computationally efficient high dynamic range imaging[END_REF] among others. HDR images have been accessible but displays and print media have not been able to render such content popularly. Hence the optimal solution has been to compress the dynamic range while preserving the details of the scene and the global aesthetic perception. This has paved the way for research on tone mapping operators.

A large section of theory related to HDR image and video acquisition and processing is covered in three comprehensive books by Banterle et al. [5], Myskowski et al. [START_REF] Myszkowski | High dynamic range video[END_REF] and Dufaux et al. [START_REF] Dufaux | High Dynamic Range Video: From Acquisition, to Display and Applications[END_REF]. We consult these books, individual research articles and some surveys and comparative analysis of TMOs to build our understanding of the topic.

TMOs can be qualitatively classified into two categories based on how they are developed. First, the classical TMOs which can be generalised as transfer functions which take in parameters such as luminance and colour channels of the HDR scene as input and output processed pixel intensities. They often follow photographic rules and models of the HVS. Second, data driven methods which learn the transfer function from training example pairs. Unlike classical methods, data-driven TMOs generalise not only over the input HDR image but also over encountered data in a dataset of tone mapped images. Functionally, a TMO can either be global or local. The transfer function for a global TMO is the same for all pixels in the image. Consequently, local TMOs take into account the pixel neighbourhood while deciding the output tone curve.

Pivotal Classical TMOs

The work by Miller et al. [START_REF] Miller | The application of computer graphics in lighting design[END_REF] from 1984 can be considered the first work on classical TMOs which predicts a mapping between the luminance levels of real scene to that of the capturing device. Since 1990s with the rising popularity of digital photography and cameras, we observe the surge in TMO development which reaches a peak in the early 2000s.

Following the chronology we find several pivotal TMOs - [START_REF] Tumblin | Tone reproduction for realistic images[END_REF] [START_REF] Tumblin | Tone reproduction for realistic images[END_REF], Ferwerda et al. (1996) [START_REF] Ferwerda | A model of visual adaptation for realistic image synthesis[END_REF], [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF] [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF], [START_REF] Pattanaik | Time-dependent visual adaptation for fast realistic image display[END_REF] [START_REF] Pattanaik | Time-dependent visual adaptation for fast realistic image display[END_REF], [START_REF] Ashikhmin | A Tone Mapping Algorithm for High Contrast Images[END_REF] [START_REF] Ashikhmin | A Tone Mapping Algorithm for High Contrast Images[END_REF], [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF] [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF], [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF] [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF], [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF], Drago et al.(2003) [START_REF] Drago | Adaptive logarithmic mapping for displaying high contrast scenes[END_REF], Krawczyk et al.(2005) [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF], [START_REF] Li | Compressing and companding high dynamic range images with subband architectures[END_REF] [START_REF] Li | Compressing and companding high dynamic range images with subband architectures[END_REF], [START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF] [START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF], [START_REF] Mantiuk | A perceptual framework for contrast processing of high dynamic range images[END_REF] [START_REF] Mantiuk | A perceptual framework for contrast processing of high dynamic range images[END_REF], Kuang et al.(2007) [START_REF] Kuang | iCAM06: A refined image appearance model for HDR image rendering[END_REF], [START_REF] Mertens | Exposure Fusion[END_REF] [START_REF] Mertens | Exposure Fusion[END_REF], [START_REF] Meylan | Model of retinal local adaptation for the tone mapping of color filter array images[END_REF] [START_REF] Meylan | Model of retinal local adaptation for the tone mapping of color filter array images[END_REF], [START_REF] Kim | Consistent tone reproduction[END_REF] [START_REF] Kim | Consistent tone reproduction[END_REF], [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF] [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF], [START_REF] Ferradans | An analysis of visual adaptation and contrast perception for tone mapping[END_REF] [START_REF] Ferradans | An analysis of visual adaptation and contrast perception for tone mapping[END_REF], and Otazu (2012) [START_REF] Otazu | Perceptual tone-mapping operator based on multiresolution contrast decomposition[END_REF] to name some.

As mentioned earlier, TMOs can be functionally local or global in nature. Global TMOs compute a constant tone curve for every pixel in the image. Lack of neighbourhood based computation makes global TMOs computationally light and efficient but they risk losing local contrast and details. On the other hand, local TMOs preserve local contrast but historically have been plagued with distortion and halos at the regions of high frequency.

Local TMOs are often driven by the adaptation model of human visual perception. Hence some of the TMOs which we explore are inspired by the functioning of the HVS.

Global TMOs

We take a brief look at some of the popular global operators over the years. human vision sensitivity follows the averaged log of luminance and that the sensitivity follows a Gaussian distribution. Their method claims to produce consistent tonal reproduction with a fixed set of parameters for a large variety of images.

Local TMOs

Next, we explore some local operators. As mentioned above, the local TMOs aim at retaining local contrast and are often inspired by local adaptation process at the early stages of the HVS. Hence, over the years local operators have seen an increased popularity. The base layer has its contrast reduced by using edge-preserving bilateral filtering. Consequently, the details are added back providing a tone mapped image while preserving local contrast.

• [START_REF] Fattal | Gradient domain high dynamic range compression[END_REF] [28] -Fattal et al. provide a computationally efficient TMO by manipulating the gradient field of the luminance image. They propose to filter out large gradients and attenuate their amplitude. The modified gradient field manages to reconstruct images with dynamic range reduction while preserving fine details and avoiding distortions such as halos and gradient reversals.

• Krawczyk et al.(2005) [31] -Krawczyk TMO is inspired by Gilchrist's anchoring rule [START_REF] Gilchrist | An anchoring theory of lightness perception[END_REF]. They propose to break the image down into fuzzy frameworks of consistent luminance. Each framework is then adjusted based on a perceived white point, specific to that local framework. They follow an approach slightly different to the other TMOs by applying the function directly on the sensor captured image before it is de-mosaiced thereby reducing the computational complexity by a factor of 3. Consequently, they map a Naka-Rushton non-linearity function [START_REF] Naka | S-potentials from luminosity units in the retina of fish (Cyprinidae)[END_REF] where the parameters are computed based on the weighted average of pixel neighbourhood.

• [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF] [39] - Mantiuk (2008) proposes a display adaptive tone mapping operator based on the visible contrast distortions in reproduction of images across different display media. They consider the HVS contrast perception model and penalize visible distortions thereby finding an optimal balance between preserving contrast and clipping them.

• Otazu (2012) [START_REF] Otazu | Perceptual tone-mapping operator based on multiresolution contrast decomposition[END_REF] -Otazu introduces a local TMO based on a generalisation of human colour perception. It follows a two stage model -starting with a multiresolution contrast decomposition inspired by the pyramidal contrast decomposition of [START_REF] Peli | Contrast in complex images[END_REF] [START_REF] Peli | Contrast in complex images[END_REF] followed by the application of a non-linear saturation model of visual cortex neurons.

Mix of Two Worlds: Hybrid TMOs

On occasions some TMOs are functionally hybrid as they incorporate global and local operations in stages. Two prime examples are [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] and [START_REF] Ferradans | An analysis of visual adaptation and contrast perception for tone mapping[END_REF]. 2002) is one of the first TMOs developed with the photographic practices and intuition taken into consideration. The TMO is based on exploiting Ansel Adam's photographic zone system [START_REF] Adams | The Camera[END_REF][START_REF] Adams | The Ansel Adams photography series[END_REF][START_REF] Adams | The Ansel Adams photography series[END_REF] for exposure compensation. This TMO follows a hybrid 2-step approach. It computes global scaling for an initial mapping followed by local dodge and burn based on luminance zone systems.

• Reinhard et al.(2002) [29] -Reinhard (
• Ferradans et al.( 2011) [START_REF] Ferradans | An analysis of visual adaptation and contrast perception for tone mapping[END_REF] -Ferradans TMO also follows a hybrid approach. Inspired by the human visual system, it simulates the eyes' cone cell saturation to apply a global visual adaptation. Consequently, it enhances the local contrast based on a variational model inspired by color vision phenomenology.

We discover a long list of TMOs across the decades. The motivation behind this is not to compare the performances but to understand the variety of approaches tried in HDR tone mapping. Literature has shown some comparative analysis of TMOs to generalize their robustness in different image scenarios [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF]. We consider such studies but the primary objective is to position our research among the pivotal TMOs. None of the TMOs we discuss here have considered explicit semantic information or abstract features related to semantic-awareness of scene understanding. Following the photographers recipe (refer to Section B.3), we understand that some of these TMOs have followed photographic intentions and decisions based on local exposure regions and explicit luminance distribution such as [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] and Krawczyk(2005) [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF]. We draw inspiration from them while developing our novel SemanticTMO in Chapter 4.

Deep Learning and Data-driven TMOs

Neural Networks

Neural networks and deep learning has been widely researched in the last decade and their application to the topic of image processing has been well documented [START_REF] Egmont-Petersen | Image processing with neural networks-a review[END_REF][START_REF] Jiao | A Survey on the New Generation of Deep Learning in Image Processing[END_REF]. Over the years the research has evolved from developing classical operators for aesthetic image enhancement, as a function of the corresponding image features and statistics, to a datadriven approach where apart from the image in consideration, the statistics of thousands of other images are also taken into account. In this section we explore tone mapping and exposure enhancement from the deep learning point of view. We explore the field of 2D convolutional neural networks and find applications to image and exposure enhancement. We translate from training over 2D convolutions on images to learning based on graph convolutions. Finally, we look at a novel avenue of graph convolutional neural network considering that an image and its semantic arrangements can be represented in form of a graph.

Humans can master various forms of logical functions ranging from computational tasks to recognition and recall through repetitions and experience. What we mean by experience is learning over millions of examples through years of interaction. Human brain is made up of cellular units called neurons. Whenever the brain receives information through its input dendrites it goes through the dense topological structure of neurons and arrives at an output which drives our decision. While the information passes through the axons of the neuron, it is parsed and analysed by the ever evolving learning algorithm inside our brain which has its own prior information and bias.

The main idea behind developing machine learning algorithms and creating artificial intelligence stems from how our human brain functions. Figure 2.1 presents an analogy, how an artificial neuron is modeled after the biological neuron. In its entirety a neural network, modeled after the human brain, is a system software or hardware that performs tasks as the neurons of a human brain would, to an extent, by transferring information along a predefined path between neurons. Artificial neural networks consist of layers of interconnected neurons. The same which is known as the neuron cell body in the brain, is considered as a node in the artificial neuron. The node receives a set of data inputs (x), weights (w) and bias (b) similar to the signals through the synapses and dendrites in the brain. Consequently, the node performs mathematical manipulations. The input-weight products are summed along with the bias and then the sum is passed through the node thereby 'activating' the node. The node's activation function f determines whether and to what extent that signal should progress further through the network to affect the ulti- Human brain learns to recognise, classify and recall by practice. Similarly, for neural networks to perform their tasks, they need to go through a 'learning phase' which means they need to learn to correlate incoming and outgoing signals. The training data used in the learning phase comes in pairs (x, y), where x is the input to the neural network and y is the ground-truth to which the output of the network is compared. The fidelity of the output helps adapt the weights at every node in the network. As we go through many example pairs, the learning phase slowly converges. Once done, the neural network can receive input data and generate output signals based on the accumulated information.

Neural networks have varying topology based on the structure, the direction of data flow, layers and their depth etc. We focus on a specific type -convolutional neural networks.

Convolutional Neural Networks

Convolutional Neural Network (CNN/ConvNet) is a specific type of neural network architecture. It is one of the most important deep learning algorithms which can take an image as the input signal and train over example images from a dataset to adapt the learn-able parameters -weights and biases, such that it can help differentiate between various objects or aspects in the image. In this section we take a look at the functional units of CNN and understand why they are so widely and successfully used in computer vision related tasks.

Structural Details

Figure 2.2 presents a basic structure of a CNN. There are broadly two sections, one dedicated to feature extraction and learning followed by a part to aggregate all the learnt features to classify the input data. The two functional sections have mainly three types of layers:

• Convolutional layer • Pooling layer • Fully Connected Layer (FC)
The convolution layer along with the non-linear activation function and the pooling layers make up the depth of the network. There can be several convolution and pooling layers making the network deep or shallow. As we deepen the network, there are more trainable parameters to learn and the CNN complexity increases, identifying more complex abstractions of the image. The initial layers of the network focus on the simpler objective low-level features of the image such as edges, colour, gradient orientation, etc whereas the deeper layers closer to the output focus more on the abstract high-level features incorporating the wholesome understanding of the image, thereby helping tasks like recognition and classification. The FC layer usually comes at the end of the network which aggregates all the learning into a classification output. 

Convolutional Layer

This is the most important building block of the CNN and we are going to focus on how this layer helps in computer vision tasks. The convolutional layer has the core computational capacity. The main responsibility of the layer is to act as a feature detector. Following the general idea of 2D convolutions, the layer has a 2D filter or a convolutionkernel of dimension n×n which corresponds to a certain receptive field of the image instead of a pixel. The filter is then applied to the image and it moves across the receptive fields with a stride to generate convolved outputs for every field. This convolution step generates a feature map which incorporates certain features of the image (refer to Figure 2.3). After each convolution operation a function applies a transformation to the feature map to introduce non-linearity to the model. One of the most popular such functions used in CNNs is Rectified Linear Unit (ReLU) In the learning/training phase of the CNN, the weights of the kernel are adjusted through the process of back-propagation and gradient descent which improves the feature extraction at every level. As the depth of the CNN increases, the feature maps form a hierarchical structure. On a global scale the deeper layers can take the feature maps of the shallower layers into consideration. On a local scale they can observe the pixels within the receptive field of each kernel in the prior layers. The combination of the various convolution layers creates a feature hierarchy that assists in complex tasks such as pattern recognition. CNNs are so widely successful in computer vision applications because the intuition behind CNN mimics the human brain closely. The artificial neural network forms a hierarchical knowledge base and learns patterns from signals o accomplish tasks much like humans would do.

Pooling

Pooling is a step to reduce the dimensionality of the input parameters for the layer. Similar to the convolution layer the pooling layer has a moving filter than sweeps across the image and applies an aggregation function within each receptive field to reduce the dimension. However, unlike the convolution layer the pooling filter does not have trainable parameters or weights. It is necessary to maintain that the features learnt by the convolution layers are generalised over all images encountered by the network and the network doesn't just over-fit or 'learn by heart'. The pooling helps in reducing the complexity and improving the efficiency and limits the risk of overfitting. Because of the dimensionality reduction, pooling reduces computational complexity and by aggregating the features, it identifies the dominant features in the receptive field. There are several forms of aggregation function the pooling uses. The most common are Max Pooling (returning the maximum value from the receptive field) and Average Pooling (returning the average).

The convolution layer followed by a pooling layer together forms a block in the CNN. Multiple blocks can be introduced with varying degrees of dimensionality reductions to make the CNN deeper and computational more powerful but also expensive. This constitutes the feature learning part of the CNN (see Figure 2.2). The extracted features are flattened and passed on to the final block for classification tasks.

Fully Connected Layer

As the name suggests the Fully Connected (FC) layer has every output feature node connected to every other from the previous layer. This layer performs the task of classification based on the features extracted through all the previous layers and their different filters. Unlike the non-linear ReLu functions used by the previous convolutional and pooling layers, FC layers usually leverage a softmax activation function [START_REF] Goodfellow | Deep Learning[END_REF] to classify inputs appropriately, producing a probability from 0 to 1.

Since our machine algorithm cannot perform complex tasks on the basis of input pixel values alone, the CNN break the image down to an abstract feature space and the FC layer learns a non-linear combination of these high-level features.

Role of CNN in Image Enhancement tasks

Over the last few decades, as research on CNN has evolved, their application in the field of computer vision has taken an exponential leap. Several architectures of CNN have been developed and still being developed which have provided support to machine learning and learning-based image processing applications. LeCun et al. introduced the first of the modern CNN architectures back in 1989 as the LeNet [START_REF] Lecun | Backpropagation applied to handwritten zip code recognition[END_REF] marked its presence. The next decade shows how CNNs started to become a powerful tool with the application of back-propagation networks and created a milestone in computer vision applications when LeNet-5 [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] outperformed other state of the art algorithms for the task of handwritten character recognition on the MNIST dataset. Since then, AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], VGGNet [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF], ResNet [START_REF] He | Deep residual learning for image recognition[END_REF] and several other convolution networks have been the backbone for a wide range of applications from recognition tasks to semantic segmentation [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF][START_REF] Chen | Rethinking atrous convolution for semantic image segmentation[END_REF][START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF], soft segmentation [START_REF] Aksoy | Semantic soft segmentation[END_REF], image enhancement and style transfer [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF][START_REF] Montulet | Deep Learning for Robust end-toend Tone Mapping[END_REF][START_REF] Rana | Deep Tone Mapping Operator for High Dynamic Range Images[END_REF] and many more.

Why has CNN been so appropriate for computer vision tasks and why is it so pertinent for tone mapping and image enhancement application such as ours?

We have already established the necessity of learning based approaches for tone mapping. Tone mapping is analogous to image enhancement on a local scale. We have learnt how expert photographers correct exposure for images locally based on luminance statistics and semantic features. This exact criterion fits well with how CNNs function. Given an image input-output pair, a CNN is able to break the image down and extract local and global features. Based on the features learnt, the CNN is able to predict a tone curve or a mapping function that can be a combination of all the semantic features extracted. This approach aligns well to the general intuition of human experts, who break the image down into perceivable features and decide on the mapping to apply locally. HDRNET by Gharbi et al. [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF] uses the computational powers of CNN in the same way to extract local and global features and learn mapping functions for image enhancement over 5000 images manually retouched by human experts [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF].

As understood by now, convolution is a very powerful computation tool. When used on image pixels, the convolution filter not just aggregates information but with the stride over other receptive fields in a single layer and the use of successive convolutional layers, it generates a feature map containing local information from all parts of the image. In simpler terms, convolution allows passing of information across local regions in the image. The pixels in the image can communicate on a low level, but the features extracted help create an understanding of the image on a high level. This understanding of the image has been successfully used to learn tone mapping. Hence, the role of CNN is pivotal in image enhancement tasks. By ths time we know that digital images are represented in form of standardized units called pixels which contain the tonal values. Hence, the image representation is structurally finite with fixed dimensions of a regular grid containing n × n pixels. The regular Euclidean grid-like structure (refer to Figure 2.4) helps computationally as well because convolution filters, strides, feature maps are all of regular grid-like structure. But unlike the machine perception of digital images, human's do not perceive images on a fine and low-level pixels.

Graph-based learning

Human visual cortex perceives image and constructs a global understanding through higher level abstractions. HVS understands low level features such as edges and colour gradients but not as low as pixel values. Local, region specific stimuli plays a vital role in creating the global understanding than pixel-level details. An example of higher level abstraction can be segmentation based on luminance characteristics such as highlights, midtones and shadows or semantic segmentation of the scene.

From Figure 2.5, we observe that the representations of such segmented regions are structurally irregular in nature. Experts consider the local factors from such irregular regions An image can be considered as a special case of graphs where pixels are connected by adjacent pixels. The 2D convolution takes the weighted average of pixel values of the red node along with its neighbors. Similar to 2D convolution, graph convolutions take the weighted average of a node's neighborhood information to compute the hidden representation. The only difference remains, neighbour nodes on an image data are ordered and fixed in size, whereas in graph they are unordered and variable. Source: [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] to decide on the final tone mapping. Hence it is implicit to consider low and high level features from such local irregular segments. We have seen previously that CNNs are responsible for extracting feature maps from 2D images. However, all such neural networks are implemented using regular or Euclidean data. Since, we hypothesize that the extracted features from the local irregular regions can be pivotal in learning tone mapping functions similar to the experts, it is necessary for the convolutions to operate on irregular data structure. The non-regularity of data structures have led to recent advancements in Graph Neural Networks (GNN). One of such GNNs is Graph Convolutional Network (GCN) have been computationally advantageous for convolutions on arbitrary structure. In our use case, the spatial arrangement of the irregular semantic segments can be represented in form of a graph and then graph convolutions can be used to extract high level features.

Graph Convolutional Networks

The success of neural networks especially CNNs has bolstered the research on computer vision tasks such as image enhancement but those networks need Euclidean data for computation. Meanwhile, a new branch neural networks deal with the use cases where data is generated from non-Euclidean domains, represented as graphs with complex relationships and interdependence between objects. In this section we discuss such graph neural networks, more specifically Graph Convolutional Networks (GCN).

Conventional Machine Learning and Deep Learning tools are specialized in processing simple data types such as images with the same structure and size, or text and speech as sequences. However, we established in the previous section that abstract features or arbitrary segmentation data can be represented as data in the non-Euclidean space as graphs. They can be devoid of fixed form, with a variable size of unordered nodes and unlike neighbouring pixels, nodes can have different amounts of neighbors. Figure 2.6 illustrates how the analogy of 2D convolutions on regular data can be translated to graphs of arbitrary structure.

As mentioned previously, the arrangement of semantic segments follows an arbitrary structure. Hence, we represent each image as a graph of its semantic arrangement and use GCN to extract features from the graphs.

Functional Details

We follow the definitions of graph and convolutions in graph as presented by Thomas Kipf [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF]. Following the standard definitions we explore the structure of a GCN.

Definition

The goal of a GCN is to learn a function on a data represented in form of a graph G = (V, E) which takes as input:

• A feature description x i for every node i; summarized in a N × D feature matrix X (N : number of nodes, D: number of input features)

• A representative description of the graph structure in matrix form. This is typically in the form of an adjacency matrix A which serves as an edge descriptor listing all neighbors and connections.

The function produces a node level output Z (an N × F feature matrix, where F is the output feature representation for each node). Instead of node level outputs, Duvenaud et al. [START_REF] Duvenaud | Convolutional Networks on Graphs for Learning Molecular Fingerprints[END_REF] show that even graph level outputs can be modeled with a GCN. 

Layer Functions

Similar to a CNN, a layer in the GCN can be presented as a non-linear function

H (l+1) = f (H (l) , A), (2.1) 
such that H (0) = X and H (L) = Z, where L is the number of layers in the GCN. The objective is to learn the function f ( ) and the related trainable parameters. Similar to 2D convolution in CNNs where feature information is pushed out to neighbouring receptive fields, the GCN also involves in a process of pushing information called message passing or neighbourhood aggregation. Node level features are extracted from the input feature D (embeddings). The extracted features are aggregated from neighbouring nodes and passed on to the reference node. Following Equation 2.1, we explore a simple layer-wise propagation of extracted features:

f (H (l) , A) = σ AH (l) W (l) , (2.2) 
where W (l) is a weight matrix of the l-th layer and σ(•) is a non-linear activation function, such as ReLU.

It is important to note that neighbourhood aggregation involves the reference node as well. Hence, we add a self loop to each node on the graph by adding an identity matrix to the adjacency matrix A. Secondly, to preserve the scale of the feature vectors post multiplication with A, the rows of A are normalised using a diagonal node degree matrix such that each row sums to one. Based on the functional details discussed Kipf et al. [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] presented the propagation rule in GCNs:

f (H (l) , A) = σ D-1 2 Â D-1 2 H (l) W (l) , (2.3) 
with  = A + I, where I is the identity matrix and D is the diagonal node degree matrix of Â.

To summarize, given a graph data, we learn features from the input to the nodes. Consequently, perform neighbourhood aggregation for all nodes. A propagation function combines all the embeddings and the aggregated features to produce a graph representation to be passed on to higher layers.

Application of GNN in Computer Vision

Following the successful application of ConvNets in computer vision, the need for analysing and learning over arbitrary unstructured data pushed the boundaries of Graph Neural Networks (GNN). Wu et al. [START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] provide a comprehensive survey regarding applications of GNN in various fields including application to computer vision tasks. GNNs have been successfully used for scene graph generation aiming to parse scenes into semantic graphs consisting of objects and their semantic relations [START_REF] Xu | Scene graph generation by iterative message passing[END_REF][START_REF] Yang | Graph r-cnn for scene graph generation[END_REF][START_REF] Li | Factorizable net: An efficient subgraph-based framework for scene graph generation[END_REF]. Inversely, with a known object relationship GNN has been used for realistic image generation [START_REF] Johnson | Image generation from scene graphs[END_REF]. GNNs have been used for classification and segmentation of 3D point clouds and analyse their topological structure [START_REF] Wang | Dynamic graph CNN for learning on point clouds[END_REF][START_REF] Landrieu | Large-scale point cloud semantic segmentation with superpoint graphs[END_REF][START_REF] Te | Rgcnn: Regularized graph cnn for point cloud segmentation[END_REF] and also for 3D image segmentation [START_REF] Qi | 3D graph neural networks for RGBD semantic segmentation[END_REF][START_REF] Yi | Syncspeccnn: Synchronized spectral cnn for 3d shape segmentation[END_REF]. Furthermore, since human skeletal structure can be represented as a graph, a number of GNN applications have involved gait recognition and human-object interaction tasks [START_REF] Yan | Spatial temporal graph convolutional networks for skeleton-based action recognition[END_REF][START_REF] Jain | Structural-rnn: Deep learning on spatio-temporal graphs[END_REF][START_REF] Qi | Learning human-object interactions by graph parsing neural networks[END_REF].

It is fairly conclusive that graph based learning has benefited several tasks in computer vision field. However, to the best of our knowledge GNNs have not been used for image enhancement tasks or tone mapping of HDR images. Our hypothesis is that GNNs can be useful to create a semantic scene understanding similar to an expert photographer and predict luminance corrections based on the extracted semantic features. It can used to solve a problem similar to photographic style transfer where we learn the expert photographer's recipe for exposure correction. We discuss about our novel tone mapping approach in the following chapter.
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Pivotal Learning-based TMOs

Apart from the classical TMOs explored in Section 2.1.1, the other family of tone mapping operators that draws our attention are data-driven deep learning based TMOs. In classical TMOs image is defined around a set of objective parameters and the algorithm manipulates these parameters to fit to a tone curve producing a resulting image. Hence, the TMO relies on heuristics or rules inspired by theHVS or photographic practices. However, HVS models an image on the basis of objective as well as subjective perceptual parameters such as semantic awareness, naturalness, colourfulness which are challenging to define. Hence, it is challenging to formulate a mathematical equation which generalises over HDR images and tone maps to an aesthetic result. To produce an image which is aesthetically appealing to the HVS, we need to incorporate abstract features better than classical TMOs. This aligns well with machine learning techniques as they function on loosely defined rules and adapts to the data.

Data driven TMOs are fairly recent developments. A pivotal work in recent times which inspires us is HDRNET by Gharbi et al. [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF]. It uses convolutional neural networks (CNNs) [START_REF]A Comprehensive Guide to Convolutional Neural Networks -the ELI5 way[END_REF] to extract both local and global (contextual) features from the image in a low resolution and predict local affine transformations in a representation similar to the bilateral grid of Chen et al. [START_REF] Chen | Bilateral guided upsampling[END_REF]. In parallel, a full resolution version of the image captures the details and high frequency effects and learns a guidance map. The up-sampled low resolution image and the full resolution guidance map produces a final tone mapped image.

A series of works have been based on the Retinex theory [START_REF] Wei | Deep retinex decomposition for low-light enhancement[END_REF] [START_REF] Chen | Deep photo enhancer: Unpaired learning for image enhancement from photographs with gans[END_REF] which conducts an unsupervised learning on low level image enhancement based on two-way Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF].

Yan et al. [START_REF] Yan | Automatic Photo Adjustment using Deep Neural Networks[END_REF] follow the use of semantic information explicitly in their technique. In their deep learning model, they introduce an image feature descriptor which considers the local semantic cues. Their contextual features aim to characterize the distribution of semantic categories such as sky, building, car, person, tree etc. They also use 6 global image attributes such as intensity distribution, scene brightness, equalization curves etc. Some other pivotal works have gone beyond the traditional CNN architecture. Montulet et al. [START_REF] Montulet | Deep Learning for Robust end-toend Tone Mapping[END_REF] propose the use of Deep Convolutional Adverserial Networks (DCGANs) [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] on lightness channel from the LAB color space to enhance the structural details and intensity. Rana et al. [START_REF] Rana | Deep Tone Mapping Operator for High Dynamic Range Images[END_REF] explore 4 combinations of Generator-Discriminator architecture and learns to adapt to a vast scenic content both contextual (outdoors, indoors) and semantic (humans, structure etc) in nature.

On exploring other works in data driven image enhancement-retouching, we find the work of Bychkovsky et al. [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF]. They introduce the task of learning tone mapping from input/output image pairs as created by expert photographers. The model estimates local and global brightness and contrast enhancements. Their work is one of the first ones which explicitly use low level semantic information (faces in their case). Hwang et al. [START_REF] Hwang | Context-based Automatic Local Image Enhancement[END_REF] applies a context matching approach by finding the nearest neighbour in the set of reference images to learn a tone mapping. Some works approach tone mapping from the viewpoint of the observer's perceptual experience. Kang et al. [START_REF] Kang | Personalization of image enhancement[END_REF] and Caicedo et al. [START_REF] Caicedo | Collaborative personalization of image enhancement[END_REF] create a data driven model that analyses the observer's aesthetic preferences in a reference image and predicts adjustment for tone mapping. In a different but related context we also find deep learning being used to solve the problems of inverse tone mapping [START_REF] Marnerides | Expandnet: A Deep Convolutional Neural Network for High Dynamic Range Expansion from Low Dynamic Range Content[END_REF] where operators are used to expand the dynamic range of an image from and LDR input to an HDR result.

Advantage over Classical TMOs

Deep learning provides a platform where the parameters beyond the objectivity of luminance, contrast and colour can be learned in a very abstract feature space. The power of deep learning stems from the fact that there are many example pairs to learn from with the aim of reconstructing the reference image. Deep learning poses three main advantages.

-First, since it has more trainable parameters than any classical TMOs, deep learning based methods can better capture minute adjustments of image enhancement.

-Second, the TMOs are trained in reference to a ground truth which is subjectively preferred. Hence, a well trained model is better equipped to produce tone mapping results that can be preferred in subjective experiments.

-Finally, since the method is data driven, a model can learn tone mapping specific to an image scenario or a task. Unlike a classical TMO aiming to be the 'best' overall, a data-driven TMO aims at providing the best reproduction of the result which is the subjectively preferred as the 'best' overall.

Tone Mapped Image Quality Assessment (IQA)

Evaluation of image quality for image enhancement algorithms runs in parallel to development of new TMOs. Tone mapping affects not just the contrast or luminance levels of the image but also the perceptual cues governing aesthetic quality. Hence, a lot of research has gone into unifying a standard of comparison. Image quality evaluation techniques can be categorized in several ways depending upon the use case. Practically, these techniques can be broadly divided into two types -objective evaluation and subjective evaluation.

Objective assessment requires an evaluation metric. Objective IQA metrics are functions which provide a quantifiable measure to an image. Objective metrics usually take into account several physical and perceptual properties of the tone mapped result and output a score based on the measured factors. They aim to generalise the evaluation for all real-world use-cases and varied image scenarios. As a result, it often fails due to lack of robustness against the dynamic nature of the real world. On the other hand, subjective evaluation is much more robust to the real world variations. Subjective assessment is conducted by actually collecting subjective preference data from human over a stimuli. Hence, subjective quality assessments are often considered the ground truth and also used to validate objective evaluation metrics.

On the qualitative aspect, IQA techniques can be used to judge the aesthetics of the tone mapped image or the fidelity of the result to a natural scene or ground truth. Since, aesthetic quality is highly subjective, fidelity to original HDR source content is often used as a baseline for quality evaluation.

As per methodology, IQA can have two broad categories based on whether we evaluate aesthetic preference or the natural fidelity -No-reference methodology or Full-reference methodology. A no-reference method takes as input stimuli just the tone mapped image to be evaluated and provides a score. A full-reference methodology takes an additional image, the reference or ground truth to evaluate the result in comparison to the reference. For use-cases where fidelity to a target has to be measured, a full-reference metric serves better purpose as it measures the similarity.

Objective Quality Metrics

We explore several objective metrics from the simpler ones targeted to evaluate certain physical factors of the resulting image to more complex metrics which take into account perceptual factors and aesthetics of the tone mapped image.

Signal-based Global Metrics

The simplest method of objective evaluation of image quality is through mathematical computations on the image signal itself. Based on the pixel intensity values we can evaluate the resulting image in comparison to the reference.

• MSE (Mean Squared Error) -MSE [START_REF] Sara | Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study[END_REF] has been one of the most common estimator of image quality. It is a full reference metric and the values closer to zero are the better. Mean Squared Error (MSE) between two images such as g(x, y) and ĝ(x, y) is defined as:

M SE = 1 M N M N ĝ(m, n) -g(m, n) 2 (2.4)
• PSNR (Peak Signal to Noise Ratio) -PSNR [START_REF] Sara | Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study[END_REF] is used to calculate the ratio between the maximum possible signal value and the power of the distortion noise which affects the quality of its representation. Image signal having a high dynamic range, the logarithmic PSNR value provides a good representation of the Reconstruction quality tone mapped image with respect to the original image.

P SN R = 10 log 10 (peakval 2 )/M SE, (2.5) 
where peakval is the maximum possible pixel intensity of the image data.

Signal-based Contrast Metrics

Perceived contrast is one other key elements contributing to the overall perceived quality. It has been acknowledged that human vision finds contrast appealing. Hence, 'contrast-y' images are perceived as aesthetic. Literature has provided us with some contrast metrics and we explore them to categorise images based on their perceived contrast. The metrics computes in patches. They consider the local contrast in a specific pixel neighborhood. This neighborhood contrast maps are then averaged to provide a single value representing the overall contrast of the image.

• Weber Contrast -Inspired by the Weber Law [START_REF] Colman | A Dictionary of Psychology[END_REF], Agaian et al. [START_REF] Agaian | A new measure of image enhancement[END_REF] introduced the Weber contrast for uniform background images. It is represented as

C W eber = 1 N N 20 log I max (n) I min (n) , (2.6) 
where N is the number of patches in the image and I max and I min are the maximum and minimum pixel intensities respectively in the corresponding patches.

• Michelson Contrast -Agaian et al. [START_REF] Agaian | Transform coefficient histogram-based image enhancement algorithms using contrast entropy[END_REF] introduce another popular contrast metric based on the Michelson Law [START_REF] Michelson | Studies in Optics[END_REF] in optics. It computes peak-to-peak contrast as a ratio between the spread and the sum of two intensities.

C M ichelson = 1 N N 20 log I max (n) -I min (n) I max (n) + I min (n) , (2.7) 
where N and I follow the same notation as above.

• RMS, RME, CRME -Root Mean Square (RMS) [START_REF] Moulden | The standard deviation of luminance as a metric for contrast in random-dot images[END_REF] error is a widely popular metric that computes the standard deviation of intensities inside image patches and aggregates to provide a contrast score.

RM S = 1 N N I center (n) -I(n) 2 , (2.8) 
where I(n) and I center (n) is the mean intensity and the central pixel of block n. This idea is further improved by Panetta et al. [START_REF] Panetta | No reference color image contrast and quality measures[END_REF] who incorporate the logarithmic adaptation of intensities by the HVS in the contrast measure and introduce the Root Mean Enhancement (RME) measure.

RM E = 1 N N log I center (n) -I(n) log I center (n) + I(n) (2.9)
A further improvement of RME is a multi-spectral variant of the measure where Panetta et al. [START_REF] Panetta | No reference color image contrast and quality measures[END_REF] expand the traditional formulation of gray scale contrast to individual colour channels and introduce a measure called Color/Cube RME (CRME). The contrast measure is performed not only within each colour plane but across planes as well. This captures the perceived contrast differences raised by the colour components. As we understand, the RME and CRME measures go beyond simple signal based metrics and include the components of HVS.

HVS-based Metrics

• SSIM [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] , MS-SSIM [START_REF] Wang | Multiscale Structural Similarity for Image Quality Assessment[END_REF] -Structural Similarity Index (SSIM) has been one of the most popular metrics to evaluate quality of tone mapped images. It compares the tone mapped image to the reference image in small patches and creates similarity maps on the basis of luminance, contrast and structure. The final SSIM score is computed as the average of the patch scores. SSIM is calculated on a single scale and hence can fit a single set of conditions for analysis. This limitation is overcome in Multi-scale Structural Similarity Index (MS-SSIM). As the name suggests, the new index is computed over multiple scales using low-pass filters and dimensionality reduction by a factor of 2.

• HDR-VDP [100] -HDR-VDP is an algorithm which uses the model of the HVS to predict the physical difference between the generated and the reference image is noticeable to the human observer. It is inspired by a previous work by Daly [START_REF] Daly | Visible differences predictor: An algorithm for the assessment of image fidelity[END_REF] namely, Visible Difference Predictor and is extended to HDR images. Unlike other HVS based IQA metrics which are developed based on a perception model, HDR-VDP aims to quantify the visibility difference only. The metric has newer versions with incremental improvement -HDR-VDP-2 [START_REF] Mantiuk | HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions[END_REF] and HDR-VDP-2.2 [START_REF] Narwaria | HDR-VDP-2.2: a calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF]. The newer versions generate a visibility map with probability of difference detection. Furthermore, it can aggregate the visibility differences for an image to provide an estimated image quality score.

• HyAB [START_REF] Abasi | Distance metrics for very large color differences[END_REF] -HyAB is a perceptual color distance metric based on the HVS. The motivation behind the metric is that for very large color differences, the effect of lightness difference should be considered perceptually separable. Hence, it uses a combination of a Euclidean metric in hue and chroma and a city-block metric to incorporate lightness differences in the CIELAB colour space to measure color closeness to the reference image. A smaller HyAB score suggests better quality.

Tone Mapping Quality Metric

The primary objective of TMOs is to reproduce all contrast and details of the HDR scene while it also compresses the dynamic range. Narwaria et al. [START_REF] Narwaria | Single exposure vs tone mapped high dynamic range images: A study based on quality of experience[END_REF] show in their study that although human observers expect to perceive all details, they also require the tone mapped image to look natural. The goal is mildly contradictory as the process of reproduction of details often introduce some artifacts thereby inhibiting naturalness. As mentioned previously, an image can be defined in terms of its physical attributes as well as some perceptual attributes such as naturalness, colourfulness which all contribute to the overall aesthetic quality.

Therefore, objective IQA metrics for tone mapped content is especially challenging due to the myriad of objective and subjective factors. As image aesthetic is preferential, it is highly difficult to find a metric which is robust across varying image conditions and correlates highly to all subjective opinions. We explore several popular tone mapping metrics introduced in literature. In our our work we have used some of these metrics standalone or together to generalise consensus over image quality.

• DRIM [106] -Dynamic Range Independent Metric (DRIM) is probably the first metric to compare images irrespective of the dynamic range difference, enabling a full reference comparison between a source HDR and its tone mapped result. It uses the difference predictor model from HDR-VDP [START_REF] Mantiuk | Predicting visible differences in high dynamic range images: Model and its calibration[END_REF] and fine-tunes on data from the ModelFest dataset [START_REF] Watson | Visual detection of spatial contrast patterns: Evaluation of five simple models[END_REF] to create distortion maps indicating contrast differences between tone mapped image and the reference. The maps cover distortions due where contrast is attenuated, amplified or reversed (halo artifacts). The metric produces visualisation maps and natively does not provide a unified score.

• TMQI [108] -Yeganeh and Wang introduce the Tone-Mapped Quality Index (TMQI)

which has been one of the most popular objective IQA metrics in literature for years. TMQI judges quality on the basis of Structural Fidelity (SF) and Statistical Naturalness (SN) of the resulting image in comparison to the ground-truth. The SF is computed using a modification of the previously mentioned MS-SSIM [START_REF] Wang | Multiscale Structural Similarity for Image Quality Assessment[END_REF] structural measure. On the other hand, SN is a no reference measure based on an assumption that naturalness for an image can be modelled by the probability distribution of grayscale luminance and contrast statistics. The final TMQI score is computed using a parameterized combination of SF and SN where the parameters are obtained from subjective data. • NIQMC [110] -Gu et al. introduce a no reference IQA metric for contrast distorted images. They consider a visual saliency model to maximize information from local regions of higher entropy. They also combine global attributes by comparing the image histogram to a uniformly distributed histogram via K-L divergence [START_REF] Kullback | On information and sufficiency[END_REF]. The hypothesis behind the metric is that an image with more valuable information has better quality. Hence, their intuition is to combine the local and global features and perceptual cues from the salient region to provide a score.

• BTMQI [112] -Gu et al. introduce a blind tone mapping quality metric B-TMQI [START_REF] Gu | Blind Quality Assessment of Tone-Mapped Images Via Analysis of Information, Naturalness, and Structure[END_REF] which uses three factors -structure, naturalness and entropy information from the input image. The main contribution of their work is to obtain the entropy information from intermediate images by brightening and darkening the original image.

Consequently, they train a regression model to combine the three features ad derive an overall score.

• PCQI [START_REF] Wang | A patch-structure representation method for quality assessment of contrast changed images[END_REF] -Wang et al. present a patch structure representation method based evaluation for contrast distorted images. The novelty of this method is using an adaptive representation of local patch structure. The method breaks an image patch into mean intensity, signal strength and structure components to evaluate perceptual distortions. Similar to several other contrast based quality metrics, PCQI also provides a local contrast quality map which can further be used to guide contrast enhancement.

• C-PCQI [114] -Gu et al. build on the success of PCQI's correlation with subjective quality scores by adding a separate parameter called 'colourfulness'. C-PCQI evaluates distorted images not just on the basis of structural distortion, but also on the basis of colour contrast and colour saturation.

• BIQME [START_REF] Gu | Learning a no-reference quality assessment model of enhanced images with big data[END_REF] -The blind image quality metric BIQME extracts 17 features from the input image. The authors Gu et al. design the metric surrounding the 5 important attributes -contrast, sharpness, brightness, colourfulness and naturalness out of the 17 total parameters. Consequently, a regression model trained over a large training dataset, annotated using the C-PCQI metric, fits the 17 parameters to infer a quality score.

• FFTMI [START_REF] Krasula | FFTMI: Features Fusion for Natural Tone-Mapped Images Quality Evaluation[END_REF] It has been a popular practice of combining objective and handcrafted perceptual features from a tone mapped image to evaluate its quality as we have observed in several IQA metrics. Krasula et al. propose the Feature Fusion Tone Mapped Image index which fuses several perceptually relevant features. The relevance of the features is supported by an appropriate feature selection process. FFTMI identifies the importance of particular perceptual attributes when judging the quality of tone mapped content. In its final index the FFTMI combines 5 factors -Structural Fidelity-II (from TMQI-II [START_REF] Ma | High dynamic range image compression by optimizing tone mapped image quality index[END_REF]), Feature Naturalness from their previous work [START_REF] Krasula | Rendering of HDR content on LDR displays: An objective approach[END_REF] and the Feature Similarity Index [START_REF] Nafchi | FSITM: A feature similarity index for tone-mapped images[END_REF] for tone mapped images (FSITM) across the three RGB channels.

For sake of completion we also mention a further HDR objective quality measure HDR-VQM by Narwaria et al. [START_REF] Narwaria | Hdr-vqm: An objective quality measure for high dynamic range video[END_REF]. Although typically developed as a quality measure for HDR videos, it provides valuable insights in comparing source HDR and compressed, processed or distorted HDR content much like HDR-VDP [START_REF] Mantiuk | Predicting visible differences in high dynamic range images: Model and its calibration[END_REF] as a quality estimator. HDR-VQM is based on the frequency based decomposition of the source signal and the quality is assessed based on the spatio-temporal analysis of the human eye fixation. Even with the temporal computations it is fairly inexpensive and the spatial analysis can be transferred to HDR image quality evaluation.

Similar to the motivation behind listing all the TMOs, we explore the various metrics for tone mapping evaluation not to have a comparison between them but to understand the different factors considered for aesthetic evaluation when it comes to HDR images. None of the metrics consider semantic features. Literature has also shown that despite good correlation in certain cases, objective metrics sometimes disagree with subjective opinion.

Although we use several metrics along the way, we still consider subjective evaluation the most robust.

Subjective Quality Assessment

Subjective quality evaluation in image enhancement is considered the most robust methodology. Objective metrics are often not robust enough to caption the variations in natural images and can disagree with the subjective opinion. Hence, subjective experiments and the preference data are considered the baseline. During development of new IQA metrics they are validated based on their correlation to public opinion.

Conducting a subjective experiment is a resource expensive endeavour. Unlike objective metrics, where even the slowest and computationally most expensive methods evaluate data in order of minutes, in subjective experiment the method may take days because of the time spent in preparation of stimuli and actually conducting the study with human interaction.

Most recently, Cerdá-Company et al. [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF] present a comprehensive analysis of tone mapping performance. Their comparative study in search of the best tone mapping operator compares 15 different TMOs. They conduct 2 different psychophysical experiments where the participants compared the tone mapped image to the corresponding physical scenes.

From their experiments they conclude that TMOs by Kim et a. [START_REF] Kim | Consistent tone reproduction[END_REF], Krawczyk [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] and [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] are significantly better than the competitors.

However, subjective experiments comparing TMOs goes back quite a few years. Drago et al. [START_REF] Drago | Perceptual evaluation of tone mapping operators[END_REF] present one of the first psychophysical experiments to evaluate TMOs where they compare 6 different TMOs on 4 different scenes in a pairwise comparison fashion. In a forced-choice pairwise comparison (PC) methodology the participant is presented with a pair of stimuli an asked to make a choice as per preference. The question posed to the participant is based on the use case of the experiment. It can be used to collect varying data from contrast distortion to aesthetic preference. Kuang et al. [START_REF] Kuang | Testing HDR image rendering algorithms[END_REF] conducted a pairwise comparison on 8 different TMOs across 10 different scenes.

Other authors have conducted full-reference comparative studies. Yoshida et al. [START_REF] Yoshida | Perceptual evaluation of tone mapping operators with real-world scenes[END_REF][START_REF] Yoshida | Testing Tone Mapping Operators with Human-perceived Reality[END_REF] conducted experiments on images presented on LDR monitors and their real world appearance. The present a study with 14 participants who rated images based on perceptual factors like 'realism' and 'naturalness' and objective factors like image brightness, contrast etc. In 2007, they extended their work by trying to identify factors differentiating between real scene and tone mapped appearance.

We follow a significant queue of subjective studies conducted for TMO evaluation. To name some -Ashikhmin et al. [START_REF] Ashikhmin | A reality check for tone-mapping operators[END_REF] conducted three experiments where participants were asked to rate stimuli on preference, realism and fidelity respectively. Kuang et al. [START_REF] Kuang | Evaluating HDR rendering algorithms[END_REF] also performed three experiments as a method to validate their operator iCAM06 [START_REF] Kuang | iCAM06: A refined image appearance model for HDR image rendering[END_REF]. Cadík et al.( 2006) [START_REF] Čadík | Image attributes and quality for evaluation of tone mapping operators[END_REF] studied the relationships between image attributes such as brightness, contrast, colour and details reproduction. They conducted 2 experiments with 10 TMOs and 10 participants on a single scene. Cadík et al.( 2008) [START_REF] Čadík | Evaluation of HDR tone mapping methods using essential perceptual attributes[END_REF] builds upon the previous study with 3 scenes where they ask the participants to rate the overall quality of the image as well as the reproduction quality of 4 image attributes from the previous work.

Some subjective experiments in literature are conducted in full-reference method with the aid of HDR displays. Ledda et al. [START_REF] Ledda | Evaluation of tone mapping operators using a high dynamic range display[END_REF] present a subjective experiment where 23 different color and grayscale images are compared in pairwise fashion with the presence of a third stimuli, the source image on an HDR display. The experiment collected preference regarding fidelity to source image and evaluation of detail reproduction. Following this study, Akyüz et al. [START_REF] Akyuz | Do HDR displays support LDR content?: A psychophysical evaluation[END_REF] conducted an experiment asking the participants to rank 6 images -1 HDR image, 3 tone mapped images, 1 subjectively and 1 objectively exposed LDR image. A recent HDR full-reference subjective experiment is presented by Krasula et al. [START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF]. The PairComp TMO image database contains 10 HDR images processed with 9 different TMOs. The main objective of the study is to determine the effect of the presence of source HDR image on the participant preference between tone mapped content. This study is one of the largest among the listed subjective experiments.

All the above subjective experiments have been done in small to large scale based on the number of selected TMOs or scenes evaluated. Cerdá-Company's comparative study [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF] however considers a significant number of TMOs across two experiments. What appears interesting to observe is that the study shows no conclusive evidence of a clear case of out-performance. Although Krawczyk, KimKautz and Reinhard TMOs appear to be significantly ahead of the rest, the authors mention that they find no significant correlation between local and global rankings. This suggests that observers perform their tasks using certain visual attributes which are not considered by any TMOs. The study also mentions that there is no appropriate TMO for all situations, hence operators need to be chosen case-specific. We draw these statements to reiterate, that semantic awareness is likely one of the missing visual attributes that TMOs do not consider. Furthermore, we acknowledge that have an 'all-condition' perfect TMO is ill-posed.

Summary

We establish the research questions and our objectives in the previous Chapter 1 and consequently take a leap into the theoretical background for a strong foundation as we move ahead. We have understood the theory behind traditional and data-driven tone mapping approaches. We have explored the applications of convolutional neural networks in image enhancement tasks and also ventured into the possible solutions using graph based learning. The theory provides us with new ideas and the literature provides us validations of the ideas already implemented and tested. Throughout our work we draw inspiration from several of these works and the literature cited in this chapter remains pivotal in all our novel TMOs that we develop.

Lessons from the Chapter:

This chapter serves as a resource manual and a theoretical guide for our work. HDR Tone mapping is a well researched topic and a lot of work has been conducted over the years in different aspects of tone mapping. As we look for a new direction in Semantic-aware Tone Mapping, we stand on shoulders on the stalwarts of the past and look to find newer approaches. We refer to the works from this chapter time and again in the rest of our work.

We have seen classical and data driven approaches to tone mapping and their limitations to usage of explicit semantic information. We also list the applications of tone mapped image quality evaluation. In course of our work we use the aforementioned literature to compare our progress and also develop novel ideas. The literature is not exhaustive. Along the way we introduce ancillary works in future chapters that play a vital role in our TMO development.

Introduction

Photography is an art of observation. It has little to do with the things you see and everything to do with the way you see them.

Elliott Erwitt

Human visual system's perception of the scene or the judgement of the aesthetic quality of an image is based on several scene specific factors. Therefore, while editing an image or correcting the exposure, understanding the scene is very important. In Chapter 1, we shared a glimpse of the photographer's recipe for exposure correction in images. The recipes supported our hypothesis regarding the importance of semantic understanding of the scene. Experts suggest that to apply the exposure corrections, they consider the luminance distribution of the image as well as the distribution of semantically and photographically important subjects in the scene. The various objects in the scenes, their semantic salience, spatial arrangement, regions of highlights and shadows -a combination of all the visual cues received from the scene help us create a perception. While enhancing an image, it is therefore pivotal to parse the image.

In this chapter, we will discuss how state of the art techniques of semantic segmentation can assist our tone mapping pipeline. More specifically, we provide an analysis of semantic labels and how they are aligned with our use case of tone mapping in photography domain. The idea of having an exhaustive set of semantic labels which fulfil all photographic scenarios for exposure correction is ill-posed. As a verdict of this chapter we find an optimal set of labels that satisfy our use case and we consider the same set throughout our work.

Extracting Semantic Information

Scene parsing, a well-researched problem in computer vision, is the building block of semantic scene understanding. Scene parsing algorithms can provide a low-level annotation for each pixel of an image across a wide range of labels available from a pre-trained dataset. Furthermore, some algorithms can predict scene types which provide a general idea regarding the scene ambience. MIT-Adobe FiveK dataset [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] provides tags such as indoors/outdoors with subject type -nature, person, animal or man-made object. Some datasets provide scene tags based on the place of the image [START_REF] Zhou | Places: A 10 million Image Database for Scene Recognition[END_REF][START_REF] Xiao | Sun database: Exploring a large collection of scene categories[END_REF][START_REF] Schmid | Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search-Extended version[END_REF]. Consequently, another family of datasets provide large-scale information for object recognition or semantic segmentation on a global level such as COCO [START_REF] Lin | Microsoft COCO: Common objects in context[END_REF], PASCAL [START_REF] Everingham | The Pascal Visual Object Classes Challenge: A Retrospective[END_REF], ADE20k [START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF] among others. The final family of datasets provide object annotations in predetermined scene contexts such as Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF], SUN contextual database [START_REF] Xiao | Sun database: Largescale scene recognition from abbey to zoo[END_REF], Pascal-Context [START_REF] Mottaghi | The Role of Context for Object Detection and Semantic Segmentation in the Wild[END_REF] etc. The emergence of large-scale image datasets as mentioned above along with the rapid development of the ConvNets (CNN) [START_REF]A Comprehensive Guide to Convolutional Neural Networks -the ELI5 way[END_REF] have brought great advancements to visual scene understanding.

Visual scene understanding is one of the holy grails of computer vision. For image manipulation tasks, more specifically tone mapping and exposure correction application as ours, it is not just essential for ConvNets to predict a scene category but to segment finer objects in the image for local manipulation. Expert photographers use masking techniques to locally manipulate a semantic region in the scene with controlled brush strokes. The closest method of obtaining such semantic masks is through semantic object segmentation.

Semantic Segmentation: Getting Pixel Annotations

Inspired by the recipes of the expert photographers we obtain semantic masks of an image. We use an off the shelf semantic classifier pretrained on datasets mentioned before. we experimented with several network architectures namely PSPNet [START_REF] Zhao | Pyramid scene parsing network[END_REF], Deeplabv3 [START_REF] Chen | Rethinking atrous convolution for semantic image segmentation[END_REF], Deeplabv3+ [START_REF] Chen | Encoder-decoder with atrous separable convolution for semantic image segmentation[END_REF] and FastFCN [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF]. Our choice of network is chiefly governed by the quality of predicted semantic maps. On the other hand, the choice of dataset is more nuanced. Importantly, we observe that none of the aforementioned datasets have been compiled with the use-case of photography in mind. Literature survey shows that beyond these datasets there is a dearth of image datasets for photographic enhancement. Furthermore, although obtaining scene categories is useful, the enhancement recipe is not constrained by scene labels but by object labels. Hence, we focus on datasets which can provide us with a large variation of object labels in a global context.

By our analysis we choose ADE20k [START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF] as the best among the datasets available in literature for our application. ADE20k has 150 different object labels and significantly varies both by number of examples and categories than the other datasets in our list. However, we notice that dense annotation leads to occurrence of very fine label annotations such as towel, mirror, signboard etc such that many of those fine labels are either uncommon or too fine for the scope of photography. Furthermore, 150 is a very high count for varied object recognition when scene understanding is concerned. So we decide to merge the 150 fine labels into n broad semantic classes. 

Fine or Coarse Annotations?

We decide to group the fine labels from ADE20k into n semantic classes which are semantically and photographically important. Finding an optimal n is an ill-posed task. Object labels guide semantic scene understanding and it is practically difficult to have an exhaustive set of labels that are important for all photographic scenarios because the fine or coarse abstraction of labels is scene or context dependant. Figure 3.1 highlights two photographic scenarios an outdoor setting (left) and an indoor setting (right) both containing the semantic label window (highlighted in red). Contextually, the stained glass window on the right holds more photographic significance than the windows on the left. As a result, it appears intuitive to have window as a separate label in the indoor setting whereas in an outdoor setting, the label window can be merged with the label house to form a semantic class building which appears to be photographically more significant based on scene context. Hence, apart from the hierarchical nature of labels in scene understanding, the optimal number of n labels necessary to understand the scene is an important yet ill-posed problem. Furthermore, as mentioned before, some object labels are more frequently occurring such as sky than others such as flower-pot. So, it also seems intuitive to merge labels together on the basis of semantic similarity to create the classes.

We spoke to expert photographers and they confirm that although labels required for scene understanding are context dependant, they follow a coarser abstraction of the the scene with much fewer count of labels than 150 to understand the scene. In the different photographic genres, from landscape to portrait to street, an order of 10 different semantic labels can be sufficient for scene understanding.

Merging Semantic Labels

We compiled a dataset (lightness dataset, refer to Section 4.2.2) of 830 photographically aesthetic images from freely available sources on the internet [140]. The primary objective of this dataset is to learn semantic specific luminance statistics. We discuss the dataset and its usage in more details in Chapter 4. An ancillary objective of the dataset is also to analyse label distribution in real world data and propose ways to merge the semantic labels. We manually compiled the dataset while considering balanced representation of scenery, subjects, settings and different photographic genres such as landscapes, still-lives, portraits, street among others. Figure 3.2 displays a few examples and the take away from the dataset is that it is a balanced distribution of real world objects as represented through photography. It is important to iterate that the balance of representation is subjective and not exhaustive. However, it can serve as a baseline to analyse important semantic classes.

We used the FastFCN [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] classifier pre-trained over ADE20k dataset to infer on the 830 images of our dataset. Figure 3.3 shows the bar diagram denoting frequency of occurrence of each semantic label and the distribution of the most frequent labels. The first plot on the top shows the distribution of all 150 semantic labels on our lightness dataset. We hypothesize that the most important labels are also high in the percentage of occurrence. Consequently, we set a threshold of 1% of pixel occurrence to filter out the top 17 most frequent labels -sky, wall, tree, person, building, water, mountain, earth, plant, floor, sea, rock, road, ceiling, grass, flower, sand. The distribution of the most frequent labels are presented at the bottom of Figure 3.3.

Text Classification with SpaCy

We observe that the frequent labels are unique in literal context. However, semantically some labels such as mountain-earth or tree-plant share semantic similarities in photographic context. It is a difficult task to compute semantic similarity scores of the labels due to their subjectivity. However, we can use the tools of natural language processing to classify and obtain lexical similarities based on text token. We use the NLP tool spaCy v3.0 [START_REF] Honnibal | spaCy: Industrial-strength Natural Language Processing in Python[END_REF]142] to compare strings. The strings are mapped to integer IDs and consequently text tokens are converted into individual word vectors or embeddings. The spaCy library provides several web-based corpus using which we can compute the contextual similarity between two strings. We first computed inter label similarity scores. Consequently, for each label the rest where binary-classified using K-Means clustering into two classes 'Similar' or 'Dissimilar'. Most frequent labels The '..' on some of the label suggests that ADE20k provided a few synonyms for the label because often a single string is insufficient to capture the context. For example, 'person..' is originally -person; individual; someone; somebody; mortal; soul. In such cases we compute the similarity of all provided synonyms and when comparing two labels we compute inter-synonym similarity as well. From our analysis, we observe that certain labels such as sky, person require a cluster of their own whereas labels such as wall, floor, ceiling can be grouped together in context of an indoor room or tree, plant, grass and flower can be grouped together as plant-life/vegetation.

The most frequent labels cannot just be clustered as per their semantic similarity but also grouped as per their contextual occurrence in photography (refer to Figure 3.5). Some labels can be encountered in similar setting and hence can be treated similarly while retouching photographs. For example, rock/stone, mountain, earth/ground infer a terrain. Similarly, road/route and building can infer a cityscape. Considering the different genres of photography represented in the lightness dataset we compiled a few distinctive semantic classes based on the scene context and these frequent labels. Consequently, we grouped the 150 fine labels into their respective classes based on semantic similarity score. However, there is need for human intervention specifically to break ties. For example, sand can be categorized both with water bodies and terrain. However, we decided to group sand with terrain owing to the minute closeness with it's photographic context. Such subjectivity of choice restricts this process from becoming an objective selection.

Final Semantic Classes

Table 3.1 presents the 9 semantic classes which we decide altogether -Sky, Vegetation, Mountain/Terrain, Waterbody, Human-Subject, Still-life Subject, Cityscape, Indoor/Room, Others. We add the miscellaneous class, Others to address mostly labels which are too fine or are less frequent or are uninteresting in a photographic context. The other classes are made keeping in mind the broad semantic classifications a photographer may make in different genres such as landscape (frequent use of classes -sky, waterbody, terrain, vegetation etc.) or portraits (use of classes such as human, room etc.)

We acknowledge that these semantic classes are not exhaustive and can be flexible with the grouping of labels. Ideally, a hierarchical label structure similar to the SUN dataset [START_REF] Xiao | Sun database: Exploring a large collection of scene categories[END_REF] can serve as an optimal solution where a scene is broken down into n semantic classes but the class labels are flexible and scene dependant. However, such a dynamic semantic class allocation is a non-trivial task and beyond the scope of our current research. We limit ourselves to the 9 semantic classes. We confirm that the 9 classes are not just semantically unique but also unique in terms of the retouching or exposure correction required. We refer to the luminance histograms of each of our semantic classes in Figure 4.5. 

Semantic Classes Label Index ADE20k

Summary

The objective of the chapter was to analyse the annotations from the available image datasets and observe if they are sufficient or optimal for scene understanding in tone mapping use case. We step into the shoes of a photographer and try to find semantic labels which help us best describe and understand a scene. Unfortunately, we acknowledge that there is a dearth of datasets tailor made for photographic enhancement and hence the annotations do not cope well for the task at hand. The available datasets are also varied in their use cases and the labels in most cases are very fine.

We decide to merge the fine labels into coarser semantic classes. We tried classifying labels of ADE20k on the basis of their luminance distribution. Firstly, the label representation in real world is highly skewed with some labels being much more frequent and hence more important that most others. Secondly, scene understanding is more dependant on semantic parsing than luminance parsing. So, instead of grouping label based on unique luminance features, we filtered the most frequently occurring labels and grouped then on the basis of semantic similarity. Although the solution is not unique, we present one method of label clustering and show that our hypothesis of merging is supported by similarity measures as well as the uniqueness of luminance distributions for each merged semantic class.

Our list of 9 final semantic classes is not exhaustive or perfect, but it generalises well across major photographic scenarios according to the experts. Finding the optimal list of correct labels is ill-posed. An ideal solution would be to -either have an annotated dataset with labels pertinent to photographic image enhancements, or -a hierarchical scheme of scene context based labels with dynamic allocation of fine to coarse semantic labels.

This remains a different avenue of research beyond our current scope. Consequently, for the rest of this work we consider the 9 semantic classes for our tone mapping pipelines. 3.4. Summary

Lessons from the Chapter:

Finding the optimal number and most appropriate semantic labels for scene parsing is an ill-posed task. We decide to merge the fine 150 semantic labels of the ADE20k dataset to create coarser labels for optimal scene parsing and semantic segmentation on an image. We created 9 semantic classes which generalise over photographically important objects across different genres of photography.

The 9 classes are -Sky, Vegetation, Mountain/Terrain, Waterbody, Human-Subject, Still-life Subject, Cityscape, Indoor/Room, Others.

Our choices for merging labels are driven by semantic similarity of the finer texts. However, we also realise that the task of merging labels has no unique solution and our list is one of the several possibilities.

CHAPTER 4

SEMANTIC-AWARE TONE MAPPING I: SEMANTIC TMO

About this Chapter:

This chapter introduces SemanticTMO, our first attempt in developing a tone mapping algorithm which explicitly takes semantic information of the scene into account.

It follows the intuition of the photographer to identify not just the luminance statistics of the image but also the different important semantic objects in the scene while correcting the exposure. We introduce a probabilistic semantic framework inspired by the lightness framework established by KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF].

The research question to address is -Can explicitly introducing semantic information in the tone mapping pipeline improve over the existing classical methods?

Introduction

Dodging and burning are steps to take care of mistakes God made in establishing tonal relationships"..

Ansel Adams

In a previous chapter (Photographer interview) we took a dive into understanding the expert photographer's intuition behind their enhancement recipes and how they approach exposure correction for images. It has been established that they look beyond just the luminance and colour statistics of an image and consider semantic information of the scene while correcting exposure. Tone mapping operators are effectively functions for exposure correction. Hence, it is implicit for the TMOs to draw inspiration from the the intuition and recipe followed by the experts. In this chapter, we will take a look at our first attempt of explicitly including semantic information in the tone mapping pipeline. We will first outline the motivation behind our approach. Consequently, we will present the proposed tone mapping algorithm and the results obtained using our novel SemanticTMO. Finally, we will analyse our results and try to answer the question, whether explicitly including semantic information helps develop a better tone mapping operator.

Motivation

Our search for classical TMOs lead us to follow a comparative subjective study by Cerda-Company et al. [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF]. The authors list several local and global TMOs and rank them in the order of their performances, comparing fidelity to natural scenes across two psychophysical subjective experiments. Kim et al. [START_REF] Kim | Consistent tone reproduction[END_REF] (rated highly over subjective experiments [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF]) proposed the global KimKautzTMO based on the luminance adaptation of human visual cortex. They suggest that human visual sensitivity is adapted to the average log luminance of the scene and that it follows a Gaussian distribution. Another TMO proposed by Krawczyk et al. [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] showed to be a consistent top performer among 15 other operators (details about the study and operators are provided in Chapter 2). We found that KrawczykTMO followed a process of luminance enhancement similar to expert photographer recipe (refer to Chapter 1) to identify regions of similar luminance, highlights and shadows, and correct the luminance of the individual regions.

They propose a probabilistic model of lightness perception. They decompose an HDR image into areas of consistent luminance (called lightness framework) and map each frame- work by adjusting the perceived 'white' point based on Gilchrist's anchoring rule [START_REF] Gilchrist | An anchoring theory of lightness perception[END_REF]. However, the idea that the HVS breaks a scene down only on the basis of consistent luminance has shortcomings. As we have learned from the experts, luminance statistics are important but not sufficient for exposure correction. The semantic content of the scene is equally important to decide the enhancement. We postulate that consistent luminance should not necessarily mean allocation to same framework, especially if the luminance is encountered in a different semantic context.

Figure 4.1 presents the Petroglyphs image from the Fairchild HDR dataset [START_REF] Fairchild | The hdr photographic survey[END_REF]. In this image, the bright rocks on the bottom left and the sky on the top right have the same luminance (refer to Figure 4.1(c)). On tone mapping using Banterle's [5] implementation of KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF], we observe that the rocks are no longer underexposed, but the sky seems to be overexposed. As parts of the rocks and the sky fall in the same lightness framework (refer to Figure 4.1(d)), both semantic regions get treated similarly. We suppose that the HVS also breaks a scene down based on the semantic consistency rather than only consistent luminance. Expert photographers would also compensate for the exposure based on the semantic differences of the rocks and the sky. Hence, we propose to create semantic frameworks instead and adjust them towards a target.

Inspiration from KrawczykTMO

Krawczyk et al. [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] present a local TMO based on the anchoring theory [START_REF] Gilchrist | An anchoring theory of lightness perception[END_REF] and the human visual system's (HVS) adaptation to regions of lightness constancy. The anchoring theory of lightness perception states that in order for the HVS to correlate physical luminance values to lightness, a mapping needs to be established between the luminance value and an anchor which is the value on the scale of perceivable gray shades. The authors propose to decompose an input HDR scene into overlapping spatial regions called frameworks based on luminance constancy. They use K-Means clustering method to divide the scene into two frameworks. The frameworks are probabilistic in nature such that each pixel location contains the belongingness, a measure of the specific pixel belonging to a particular framework. Allocation to framework is done on the basis of an empirical belongingness threshold of 60%.

Inside each framework the authors estimate the afforementioned anchor within each framework. They follow the 'highest luminance anchoring' principle and inside each framework set the luminance value which can be perceived as white, as a local anchor. The pixel with the 95 th percentile of highest luminance is considered as perceived weight. The next step is to calculate a local scaling factor for each framework based on the luminance distribution and the local anchor. Finally, after applying the scaling factors, the corresponding frameworks are merged proportionally to the pixel belongingness value to produce the tone mapped image.

Often the average luminance has also been used as an anchor. Renowned photographer Ansel Adams claimed that the global average perceived luminance of mid-grey for photography is 18% of visible light [START_REF] Brown | Cinematography: Theory and Practice : Image Making for Cinematographers, Directors & Videographers[END_REF], which has been the anchor for many TMOs. The approach by Krawczyk et al. is significant because of how it involves the human perception of luminance constancy in tone mapping. They follow the recipe similar to expert photographers who also virtually decompose the image into frameworks known as highlights, midtones and shadows. However, we maintain that luminance constancy does not necessarily warrant semantic constancy. Our hypothesis is that every semantic content has a target lightness (perceived luminance) which should be reproduced by the TMO. Frameworks based on luminance statistics are important but not sufficient. Frameworks based on semantic labels need to be considered as well. More specifically, HDR images need to be tone mapped towards the target lightness values which are a function of the semantic label of a region in the scene and each region should be adjusted accordingly.

Proposed Tone Mapping System

While developing our novel SemanticTMO, our objective is to explicitly define a semanticspecific target based on the content observed in the image and its luminance perception in the real world. We then guide the exposure adjustment towards that target lightness for each semantic framework. The entire pipeline is functionally divided into two modules -semantic classifier and gain computation.

The following subsections describe the functions inside the individual modules. Chapter 3 explores the various avenues of extracting semantic information from an image to create a scene understanding. We also mention the lightness dataset in Chapter 3 which we use to compute pixel specific gains for the final tone mapping. We derive knowledge from our previous experiments. Our contribution is how we use explicit semantic information to guide the exposure adjustment, thus making the TMO semantic-aware. Figure 4.2 presents an overview of our proposal.

Semantic Classifier Semantic Segmentation

The first step is to create our semantic frameworks. Semantic frameworks are probabilistic semantic maps which provide pixel specific label and luminance information. We start with the original HDR image, resized by a factor of 4 on each dimension to reduce memory requirements and computational complexity. We classify the image into semantic labels, using available deep learning tools. Following the knowledge from the previous Chapter 3 we use of-the-shelf tools as a black box for semantic segmentation. The same is used to create segment masks to learn semantic-specific target lightness values. We choose FastFCN [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] architecture pretrained over ADE20k dataset [START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF] as our semantic classifier.

The motivation behind preferring FastFCN to other state-of-the-art neural networks is detailed in Chapter 3.

Furthermore, in Chapter 3 we explored the coarse and fine levels of abstraction that can be followed while designating semantic labels. The ADE20k [START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF] dataset provides 150 fine semantic labels. To remind ourselves, it should be noted that the semantic distance between these 150 labels is not equal. Dogs and cats, for example, are different semantic labels, but when adjusting exposure, the HVS would probably consider them semantically similar. Moreover, from an expert photographer's intuition certain semantic classes can be considered comparatively more important than others which is also an important factor to consider while merging fine labels to their coarser classes. After performing several experiments we follow the 9 pre-defined semantically similar classes from Chapter 3 merged from 150 labels, which require unique lightness adjustment. The 9 semantic classes are: sky, mountain, vegetation, water, human subject, still-life subject, city, indoor, others. The result of merging the output masks from FastFCN are binary maps for each semantic class observed. Our next step is to enhance the pixel precision of these binary maps.

Proposed Precision Enhancement Using Matting

Obtaining a pixel precise semantic map is a non-trivial problem. FastFCN segmentation results have imprecision in the high frequency regions such as object boundaries. Tone mapping or exposure correction in our algorithm aims to compute pixel specific intensity gains. While applying pixel specific adjustments, such imprecision can lead to distinctive distortions while blending the gains at the boundary region of two differently exposed semantic segments. Therefore, we require approaches such as soft segmentation to deal with imprecise semantic label allocation. This process of obtaining soft segmentation is called matting.

Hu et al. [START_REF] Hu | Instance Segmentation based Semantic Matting for Compositing Applications[END_REF] proposed a semantic matting technique based on instance segmentation. It follows a two-step process where first the semantic instances are identified from the scene. Subsequently, the pixel precision on the segment boundaries are enhanced using the original image and the semantic segments. This process has been successfully used in image composting applications. Aksoy et al. [START_REF] Aksoy | Semantic soft segmentation[END_REF] considered matting from a spectral segmentation viewpoint and used high and low level image features to obtain a soft segment. Learning based methods [START_REF] Xu | Deep image matting[END_REF] also compute soft segments but they tend to associate certain semantic classes (such as vegetation and sky) systematically with the background and hence are unable to provide generalized semantic masks suitable for our purpose.

After experimenting with various matting techniques, we selected Alpha matting [START_REF] Gastal | Shared Sampling for Real-Time Alpha Matting[END_REF], due to the fewer artifacts it produces, leading to better quality while blending differently exposed segments. We first generate a morphologically expanded region of uncertainty called the trimap around the boundary of the semantic segment. Instead of binary labels, Alpha matting then provides fuzzy labels between [0, 1] to each uncertain pixel denoting the probability of it belonging to that segment.

We observe that the map corresponding to semantic class vegetation is likely to produce segments with finer local contrast at their borders. Conversely, maps for other semantic classes such as sky have lower contrast borders. He hypothesise that the thickness of the trimap border plays a role in the refinement. We experimented with the morphological dilation filter to vary thickness while generating the trimaps. A thicker border helps recover pixel precision at high contrast regions because the trimap treats a larger spatial neighbourhood as 'uncertain'. However, it is important to note that thickness should be such that the trimap region is smaller than the binary segment to be refined. For our pipeline, we fine-tune the thickness parameters. For images of size 1 million pixels, trimaps of all semantic maps barring vegetation were computed using a thin border of 10 pixels. For vegetation label, we used a thick border (4 times larger) of 40 pixels. We observed that modifying the relative border thickness for trimaps yields better matting results (See Figure 4.3). The Alpha matting returns one soft segmented matte for each observed class where each pixel has a fuzzy label i.e. a probability of belonging to that matte. The mattes may overlap at boundaries. Consequently, we normalize the label values at each pixel location over all mattes to get class-specific probability for that pixel. This collection of normalized mattes, called semantic framework shows, for every pixel p x,y in the image, its belongingness P x,y,i to each framework F i .
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Gain Computation

Learning Target Lightness

Our next objective is to use the semantic framework to adjust the observed luminance of the original image towards a target lightness. One of the important ancillary contributions of this work is learning semantic-specific perceived luminance. The intuition behind this step is that the luminance statistics of the various semantic objects which we observe in real world, govern their look and visual perception when presented in form of images. Our hypothesis is that the human visual system attributes semantic objects to some specific exposure levels which consequently assists us to parse a scene even in challenging lighting conditions. Hence, in order to correct the luminance for a scene, we propose to first learn the target lightness (perceived luminance) for different semantic classes from a real-world dataset of well-exposed photographically aesthetic images. Therefore, we confirm our initial hypothesis that semantic specific targets are aligned with the human visual system's perception of different semantic content. Since the semantic segmentation is not pixel precise, we choose the median of the histogram to compute the class specific target lightness, for its robustness against outliers.

Table 4.1 shows the target lightness for our 9 classes. Intuitively, some semantic labels such as sky are expected to have a brighter target, while others, a combined class for unrelated labels, has a target close to the global mid-grey of 18%. The class human has a surprisingly low target, which can be explained by the fact that the semantic classifier does not differentiate between skin and non-skin part of humans.

Computing Gain Factors

The next objective is to compute a gain factor for each semantic class based on the luminance statistics we observe and the luminance statistics we expect (target lightness). We compute the luminance map, L x,y for our test image using weighted average of the linear RGB values. Using the semantic framework and a probability threshold, we get a luminance distribution for each matte framework. We consider the luminance values of only those pixels which have a belongingness above a threshold T b , empirically set to 0.8. The median of this luminance distribution gives us the observed luminance L obs(i) for each matte framework. The target lightness L tar(i) is learnt from the aforementioned dataset, as detailed in Every index (x, y) in this gain map represents the pixel specific gain factors Γ x,y for tone mapping.

γ i = L tar(i) L obs(i) (4.1) Γ x,y = F i γ i • P x,y,i (4.2) 
In order to preserve local contrast and details at transition boundaries, we use spatial information of the pixel neighborhood while computing the gain factors. More precisely, we apply a bilateral filter [START_REF] Tomasi | Bilateral filtering for gray and color images[END_REF] to the mattes while creating the semantic framework to penalise for local variations. Finally, the gain map is used to scale the original image pixel by pixel to obtain our final tone mapped image.

It is important to note the domain in which the luminance statistics and the target lightness are computed. Our input HDR images are linear in nature hence the luminance statistics are computed on the linear scale. We remove the non-linearity from the target lightness values by applying a power of 2.2. Consequently, after the application of the gain map the tone mapping is completed by applying the non-linear gamma curve back to the image. We raise the pixel values by a factor of 1 2.2 .

Results

In this section, we present some results and analyse the performance of our proposed tone mapping algorithm. Figure 4.6 presents three HDR images from the Fairchild dataset [START_REF] Fairchild | The hdr photographic survey[END_REF] and their respective tone mapped LDR images using KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF], KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF], and our SemanticTMO. The implementations of KrawczykTMO and KimKautzTMO are used from the HDR Matlab Toolkit [5]. We aim to analyze the results based on three factors: Exposure compensation, Aesthetic presentation and Distortions.

Exposure compensation: It is straightforward to notice the different gains achieved by KrawczykTMO, KimKautzTMO and SemanticTMO. KrawczykTMO and KimKautzTMO enhance shadows based on the luminance distribution only. The green bush and surrounding rocks in Petroglyphs are assigned positive gains but their relative distance in the original luminance histogram is not maintained after compression, leading to loss of relative contrast. Same goes for the shadows on the ground in Jesse's Cabin. SemanticTMO treats the shadows on the basis of luminance and the semantic map, thereby preserving relative contrast. Hence, images tone mapped with SemanticTMO are not as washed out or flat as the others.

Aesthetic representation: Aesthetic quality, though subjective, can be discussed on the basis of colour representation and preservation of photographic intent. We observe the representation of sky in all the images. SemanticTMO provides better colour and contrast representation than KimKautzTMO and KrawczykTMO. Manual photo-retouching tends to enhance primary subjects even if that requires suppressing background regions or shadows. Using SemanticTMO, regions of shadows are enhanced but moderately to preserve the global perceptual attributes of the primary subjects, such as the cabin and the hall dome. This is possible due to the inclusion of semantic information, as the TMO determines the gain as a function of the target lightness for each semantic framework.

Distortions: TMOs should compress the dynamic range without introducing distortions. KrawczykTMO and KimKautzTMO rate highly in this aspect. SemanticTMO introduces some distortions in its current implementation, due to shortcomings of the FastFCN semantic classifier. Precise semantic segmentation is an ill-posed problem. Results can be inconsistent and poor when handling translucent or complex structures. Pixel-precision is not guaranteed even with matting. The Petroglyphs image is an example of pixel-precise mask without halos but the Cabin image shows limitations due to the dense distribution of vegetation in sky region.

In order to supplement the above observations, we also score the tone mapped images using two recent Image quality assessment (IQA) metrics. C-PCQI [START_REF] Gu | Learning a no-reference quality assessment model of enhanced images with big data[END_REF], a full reference metric, measures the quality for contrast enhanced images with importance on colourfulness. BIQME [START_REF] Gu | Learning a no-reference quality assessment model of enhanced images with big data[END_REF], a no reference metric, considers five influencing factors, contrast, sharpness, brightness, colorfulness and naturalness of images, contributing towards image quality and extracts a total of 17 features to assign a score to the tone mapped image.

For both of these metrics, a higher score implies better image quality. We observe in Figure 4.6, that our SemanticTMO consistently performs better than its two competitors on the test images. 

Choice of static luminance targets

Real world images pose varying lighting conditions. Therefore having a static target lightness to correct exposure appears flawed. The hypothesis of semantic labels having unique targets shows potential and we observe the same from the results of SemanticTMO. However, to generalise a tone mapping operator to produce exposure corrections for all real world scenes, a constant target doesn't work. We observe the luminance histogram of the semantic label 'sky' from our target lightness dataset (Figure 4.4) and we notice that the histogram, although skewed towards the highlights has a small peak in the shadows. Luminance histograms from real world images are more likely to have a wide domain (Figure 4.5) and at times even may even be multi-modal. Our approach of selecting the median as the target reduces the problem with a uni-modal solution. Although having the median as the target generalises well in several cases, having a dynamic target lightness based on the scene seems more appropriate than a look up table of static semantic specific targets. Chapter 5 presents an attempt to address this limitation. We use the resources of deep learning techniques and several thousand reference image pairs to create a predictive model which can produce dynamic adjustments based on semantic content.

Limitations of Alpha Matting

Matting is an important block in the SemanticTMO pipeline while creating the semantic frameworks. Since we compute gains per pixel for tone mapping, we have established the importance of the pixel precision of the semantic maps. Alpha matting can create fuzzy boundaries and improve the pixel precision but only to a certain degree. Alpha matting suffers from artifacts when the segment has 'textured' structures (such as tree branches) inwards from the boundary of the trimap. We observe in Figure 4.7 that even with a thick trimap border, the matted 'vegetation' segment 

Limitations of Semantic Classification

We used the FastFCN [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] semantic classifier pretrained over ADE20k [START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF] because it provided better quality and more labels than the other state-of-the-art. However we notice mis-classifications in several cases. Figure 4.7 (e-f) show that part of the 'vegetation' in the foreground is wrongly labeled as 'mountain'. Some of the mis-classifications on less frequent fine labels do not affect the overall quality of tone mapping as we merge the finer labels to the 9 semantic classes. But such errors on important labels may lead to erroneous gain computations. The distortion is further amplified because we have static targets and the tone mapping does not consider the luminance statistics of adjoining semantic region. This limitation also raises the importance of having an annotated dataset dedicated to photographic image enhancement goals.

Choice of objective metric while evaluating tone mapping quality

In the previous section we observed and analysed the results of SemanticTMO on some test images based on their Exposure compensation, Aesthetic presentation and Distortions. However, to evaluate the tone mapping result these three factors are not exhaustive. Subjective evaluation of tone mapped results is the most robust methodology of aesthetic evaluation. Objective metrics can often provide a satisfactory outcome but they are not robust to subjective preferences. Often the objective metric scores disagree with the subjective preference of tone mapped images. This affects the choice of metrics to use as well. We do not choose TMQI [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF] because we noticed subjective disagreements to the objective scores in several cases. It is important to mention that our choices of C-PCQI and BIQME, though well correlated in our case are not exhaustive or fully robust. We maintain that a subjective evaluation is essential to generalise the performance quality of SemanticTMO. As a result, we also conduct subjective evaluation of SemanticTMO along side 3 other classical TMOs. Chapter 6 and Chapter 7 discuss the subjective experiments we conduct and the observations we make.

Lessons from the Chapter:

We asked ourselves at the beginning of the chapter-Can explicit introduction of semantic information improve the tone mapping pipeline over existing classical methods?

We introduce SemanticTMO and can satisfactorily state that it does. We stated our hypothesis about individual semantic classes having unique lightness distribution. Our findings proved that the hypothesis holds true (Figure 4.5).

Based on our lightness targets we showed that SemanticTMO produced better tone mapping results than KrawczykTMO and KimKautzTMO for our test images. However, we also identified the limitations to our approach, more specifically, the use of static target lightness values for semantic classes irrespective of the scene. Furthermore, we also acknowledge the importance of conducting a subjective aesthetic study involving SemanticTMO results to analyse its performance. 

Introduction

It is an illusion that photos are made with the camera ... they are made with the eye, heart, and head.

Henri Cartier-Bresson

Previously, Chapter 4 has established the benefits of TMOs having semantic awareness, understanding the content in the scene to preserve the cues better. Expert photographers analyze the semantic and the contextual information of a scene and decide tonal transformations or luminance adjustments to be applied locally. This process can be considered as a manual analogy to tone mapping. However, over the course of the previous chapters we realise the limitations of our SemanticTMO and want to address them by reformulating our objectives. In this chapter, we draw inspiration from an expert photographer's approach and present a Graph-based Semantic-aware Tone Mapping Operator, G-SemTMO. We leverage semantic information as well as the contextual information of the scene in the form of a graph capturing the spatial arrangements of its semantic segments. Using Graph Convolutional Network (GCN), we predict intermediate parameters called semantic hints and use these parameters to apply tonal adjustments locally to different semantic segments in the image. We show that our approach, G-SemTMO can learn tonal transformations from input-manually retouched image pairs and produce better results than both classical and other learning based TMOs. 

Motivation

For so long, the primary objective of this thesis has been to develop a semantic-aware tone mapping algorithm with results aesthetically better than previous TMOs. The problem of finding a balance between dynamic range compression and aesthetic quality predates digital image processing. Renaissance painters created high fidelity paintings with the limited dynamic range of pigments while maintaining contextual cues of the scene. In the era of analog photography, photo retouchers reproduced high dynamic range content on limited dynamic media by locally adjusting exposure and contrast. These artists naturally took image semantics into account in order to reproduce the visual cues of the scene.

How do photographers analyse a scene while retouching? Parsing a scene is essential to aesthetically modify an image. In Chapter 1, we learn from the experts in photography how they approach exposure correction. We understand that they have their unique recipes but the general consensus of combining image statistics to semantic understanding of the scene prevails. The importance of TMOs being aware of the semantic context of a scene has been established in literature [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] which we further validate in Chapter 4. In Chapter 3 we explore how semantic segmentation can be used for scene understanding in tone mapping.

The specific point of interest lies in the question, how can we extract features and use contextual semantic information explicitly in the tone mapping pipeline? We hypothesise that ideally a TMO should analyse an image like an expert photographer, generate an abstract understanding of the scene and modify the image locally based on the abstract semantic information. In Chapter 4, we simplify the expert's recipe (refer to Section B.3) of including semantics and we include framework concepts from the established KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] to develop SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF]. The simplified approach fundamentally transpires to make a TMO better than any introduced in literature. Now, TMOs do not just correct the exposure of an image, they significantly alter the aesthetic quality as well. Therefore, tone mapping quality is directly correlated to subjective preference and is highly subjective in nature. We observe the subjectivity in the preference while evaluating the tone mapped results (our subjective evaluations are discussed in explicit details in future Chapter 6 and Chapter 7). We makes some important observations from SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF]. On analysing the limitations, we come to realise that our initial goal needs to be reformulated and we have to ask a different research question.

Aiming to develop a better or the best TMO based of preferred quality is an ill-posed objective. Our reformulated hypothesis is that TMOs should emulate the style of the expert photographer. Hence, the problem is to solve for fidelity to reference than for best subjective preference. We realise that the expert photographers do not follow a static look-up table while correcting exposure as is the case in SemanticTMO. The intuition behind analysing a scene and manually retouching images may be based on the same recipe, but application of the tonal correction depends on the knowledge gained over retouching thousands of images. Hence, an important decision block in their approach is data-driven. Furthermore, every expert has their own style of exposure correction and image enhancement. Hence it is implicit that an 'ideal' TMO learns tone mapping which may have a static recipe but a dynamic application based on the image or prior knowledge. This is where deep learning and neural networks come into our research. Reformulating our previous objective, the new question we ask ourselves is -

Research Question

'Can we learn from the editing styles from the expert photographer to develop a TMO which explicitly includes semantics and dynamically apply exposure corrections? Can we make a TMO think like a photographer?'

Learning-based semantic segmentation networks assign fine-grained labels to pixels and generate a semantic map for an image. Unlike the fine semantic segmentation of such models, photographers parse a scene on a coarser level. They identify photographically important objects in the scene. The abstract information combining the semantic labels, the context and the global attributes of the labels, such as the luminance distribution, play a significant role in deciding the local enhancement. We call these abstracted semantic information -'Semantic Hints'. These hints drive the local adjustment of tonal values.

Contributions

In summary, in this work, we propose:

• a tone mapping operator which learns the tonal transformation as a function of semantic and contextual information of the image.

• a graph convolutional network to exploit the semantic information from the spatial arrangement of semantic segments in the image and predict the semantic hints.

• to exploit the hints in conjunction with the semantic features from the linear image to predict a tone mapped image aesthetically and perceptually close to a retouched version as generated by an expert photographer.

• LocHDR, a dataset of 781 locally tone mapped HDR images manually retouched using local adjustment tools by an expert photographer.

Related Work

The term "tone mapping" is used to describe a broad range of techniques, often solving different problems. Therefore, it is important to position our research in that broader scope. The three main application areas of tone mapping are computer graphics, HDR video/television, and photography. In computer graphics tone mapping is used in the final stages of the rendering pipeline to simulate either a camera or the eye. Tone-mapping in graphics is often intended to bring a cinematographic look by simulating lens softness, or flare [START_REF] Hullin | Physically-based Real-Time Lens Flare Rendering[END_REF]. Alternatively, it could be used to mimic the appearance of scene as it would be perceived by the eye, for example, by simulating night vision [START_REF] Irawan | Perceptually Based Tone Mapping of High Dynamic Range Image Streams[END_REF][START_REF] Wanat | Simulating and compensating changes in appearance between day and night vision[END_REF]. Another important application is HDR video and television, where color graded HDR content needs to be mapped to a display that may offer lower dynamic range and brightness than the reference HDR display used for color grading [START_REF]ST 2094-2:2017 Dynamic Metadata for Color Volume Transform -KLV Encoding and MXF Mapping[END_REF]. This paper focuses on the application of tone mapping in photography, where the goal is to produce images of certain aesthetics from linear (RAW) images captured by a camera sensor. All three application areas are not mutually exclusive, however, their input and aims are distinct.

The early tone-mapping techniques for photography relied on heuristics or rules, often inspired by photographic practices, intended to reproduce images of good contrast on displays of limited dynamic range [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF][START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF]. Later methods were guided by optimization, which attempted to find the best reproduction by minimizing a perceptual difference between the original and reproduced images [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF][START_REF] Ma | High Dynamic Range Image Compression by Optimizing Tone Mapped Image Quality Index[END_REF]. More recently, machine learning was introduced to tone-mapping as a tool to learn mapping from RAW/HDR/linear images to their desired reproduction, provided by a large dataset of examples. Since the main goal of photographic tone mapping is reproducing loosely defined image aesthetics, the problem is an excellent fit for machine learning techniques, which can learn from a large number of examples, without the need for well-defined rules.

Tone mapping can be considered as a regression problem, in which the goal is to learn a function mapping from input HDR / RAW / linear images to the desired tone mapped images, usually provided by a large dataset of input/output examples. Such regression could be realized by standard techniques, such as LASSO (least absolute shrinkage and selection operator) or GPR (Gaussian process regression) [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF], by finding nearest-neighbors in a dataset or reference images [START_REF] Hwang | Context-based Automatic Local Image Enhancement[END_REF], using a fully connected neural network to learn the coefficients of the quadratic polynomial basis functions [START_REF] Yan | Automatic Photo Adjustment using Deep Neural Networks[END_REF], or learning simple brightness adjustment for semantic segments [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF]. More recent methods involve a combination of fully connected and convolutional neural networks to extract both local and global (contextual) features from images [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF]. Another popular choice is encoder-decoder architecture, based on convolutional neural networks [START_REF] Montulet | Deep Learning for Robust end-toend Tone Mapping[END_REF][START_REF] Rana | Deep Tone Mapping Operator for High Dynamic Range Images[END_REF]. One common feature in all these methods is that the input to the regression typically combines local features, such as pixel color and its neighborhood and global features, such as image statistics, contextual or semantic information. Our method expands on this concept by explicitly modeling a trainable semantic graph of the image, which guides the tone mapping process.

All the aforementioned learning based methods use semantic information in different forms to improve tone mapping. However, we realise that semantic awareness is not limited to learning local or global attributes based on semantic categories. It also involves analysing the context under which the semantic categories are observed. Hence, we analyse semantic information through a graph of connected semantic segments. A Graph Convolutional Network (GCN) helps us pass information between nodes in the graph [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] and learn local adjustments based on contextual information. A comparative study of graph neural networks and its application [START_REF] Zhou | Graph neural networks: A Review of Methods and Applications[END_REF] lists the domain of computer vision and image sciences where GCNs have been used. GCN has been applied for image classification [START_REF] Wang | Zero-Shot Recognition via Semantic Embeddings and Knowledge Graphs[END_REF][START_REF] Kampffmeyer | Rethinking Knowledge Graph Propagation for Zero-Shot Learning[END_REF], segmentation [START_REF] Liang | Semantic Object Parsing with Graph LSTM[END_REF] and reasoning [START_REF] Wang | Deep Reasoning with Knowledge Graph for Social Relationship Understanding[END_REF] but it has not been applied as a model of trainable image semantic for tone mapping. Although digital images have a regular grid-like structure, their semantic segmentation maps combined with attributes per segment leads to an irregular data structure fit for graph-based representation.

Training a GCN to learn contextual information from semantic categories and how it affects tonal modification, requires a dataset of input-and-retouched image pairs. MIT Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset provides 5000 RAW images and their retouched versions created manually by 5 expert photographers. This dataset has been used to learn expert retouching styles, most notably for HDRNET [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF].

Semantic-aware Tone Mapping

We propose a neural network architecture which is trained over RAW linear image and expert retouched image pairs from Adobe5K dataset [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF]. The network learns to generate latent hints based on the semantic content of the image and adjust tone mapping based on this semantic information. In the following subsections we describe our new learningbased pipeline. As illustrated in Figure 5.1, the pipeline has broadly two modules: a Semantic Hints Module and a Tone Mapping Module. The semantic hints module drives the semantic awareness of the TMO and generates the aforementioned hints. The application module works as a n-dimensional lookup table and learns a mapping as a function of the aforementioned hints. Before we dive deeper, it is necessary to to delve into the notion of semantic awareness. 

Introducing Semantic Awareness

To introduce semantic awareness, we incorporate the semantic features of a scene, based on the different labels obtained using semantic segmentation algorithm, e.g. the color and luminance statistics per semantic label. We also incorporate the contextual understanding of the scene through a graph representing the neighborhood and spatial arrangements of the semantic labels in the segmentation map. We hypothesize that, along with the semantic features, the node-level neighborhood semantic information guides the image enhancement while retouching images.

Figure 5.2 shows two images A and B from the Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset, both manually retouched by expert E. We use FastFCN semantic segmentation algorithm [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] and merge the labels to coarser bins as suggested in SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF], see Chapter 4. Although visually both images have a similar composition, semantic decomposition reveals the difference in semantic labels and their neighbors. The water semantic segment is surrounded by sky and mountain in image B, whereas in image A the vegetation and city are also neighbors to water. For both images, we plot the intensity histograms of the water segments for both the gamma-corrected input image and output image modified by the expert. The input histograms have a similar narrow distribution, although visibly shifted to the left for image B due to the overall low light. However, the output histograms have a very different distribution. The two segments receive different tonal adjustments despite having the same semantic label. This prompts us to conclude that the tonal adjustments are not just a function of semantic-based priors, but also of the local neighborhood of the semantic labels and their attributes, such as the intensity distribution or label information.

Hence, we propose a learning-based tone mapping algorithm which leverages spatial semantic information, as well as the contextual information in the form of a graph capturing the spatial arrangements of the segments.

Semantic Hint Module

An image can be segmented into several regions of semantic consistency by a semantic segmentation network. The segmentation map can be represented as a connected graph in which each node corresponds to a semantic segment and an edge is inserted when two semantic segments are neighbors in the map. This representation should mimic the way a photographer may analyze the semantic information in an image.

Formally, an input image I with linear color values and with n semantic segments can be represented as a graph G = (V, E) where V are n nodes corresponding to the segments, and E are the edges, represented as an adjacency matrix, such that E i,j = 1 if the segments corresponding to the nodes i and j are neighbours to each other. A Graph Convolutional Network (GCN) [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] is trained to learn a function on the graph G. More specifically, it takes, for each node in the graph, an input feature vector x i , i ∈ n, summarised in a n × d feature matrix X , where d is the number of features defining the semantic node. The GCN produces a node-level n × f output feature matrix H, where f is the number of output features per node.

In our pipeline, the GCN takes an n × 16 input feature matrix and produces an n × 18 output feature matrix, referred to as semantic hints H. The input features include: the one-hot-encoded labels of the semantic segments (with 9 semantic classes, see 5.3.4), median and standard deviation for each R, G and B channel, and the median luminance value, all computed for the pixels belonging to the corresponding semantic segment.

Each layer l of the GCN can be represented as a function:

Y (l+1) = f (Y (l) , E) = σ EY (l) W (l) , (5.1) 
where Y 0 = X , Y (L) = H, and L is the last layer. W l is the weight matrix of layer l of the GCN and σ(•) is a non-linear activation function which, in our case, is Leaky-ReLU.

Tone Mapping Module

The tone mapping module constitutes of a Fully Connected Network (FC) which acts as a 3D lookup table to map the input linear RGB pixel to the output RGB pixel. Supplemental inputs allow this function to be local and semantics aware: The contextual information in form of n × 18 semantic hints H from the GCN is passed in addition to the spatial information from the n × 16 input feature matrix X . The combined semantic information Ĥ from the resulting n × 34 matrix is spatially arranged with the input linear image such that each pixel in the image corresponds to 37 values: the 3 RGB channels and a semantic hint-feature vector of size 34. Consequently the FC trains over this 37 channel data to learn a mapping function:

f (I R , I G , I B , ĥ1 , ĥ2 ... ĥ33 , ĥ34 ) = O . (5.2)
We train to minimise the L 1 difference between the predicted, O, and reference, R, images:

L = i,j c∈{R,G,B} R c,i,j -O c,i,j , (5.3) 
where both I and O are gamma-encoded RGB images in ITU-Rec.709 color space. Using the input linear image and segmentation map we obtain a connected graph of N semantic nodes and an input feature matrix X . X and the node adjacency matrix is forwarded to the first network block GCN. The GCN has 6 graph convolutional layers followed by an activation layer of Leaky-ReLU. DropEdge [START_REF] Rong | Dropedge: Towards deep graph convolutional networks on node classification[END_REF] and Node dropouts are used to prevent over-fitting. The GCN outputs latent semantic hints H with 18 hints per node. Broadcasted features X and H stacked together ( Ĥ) and the input linear RGB create the final data block which is forwarded to the final network block FC. The FC has 2 fully connected layers with an activation Leaky-ReLU layer between the two. A gamma curve of 2.2 is applied to the input of the FC and the output is the tone mapped image.

The Implementation Details

Preparing the Image Dataset MIT-Adobe FiveK dataset [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] provides a set of 5000 high resolution RAW images and their manually retouched versions provided by 5 expert photographers (A, B, C, D, E).

Prior work on image enhancement uses retouched versions created by expert C [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF][START_REF] Yan | Automatic Photo Adjustment using Deep Neural Networks[END_REF][START_REF] Hwang | Context-based Automatic Local Image Enhancement[END_REF]. Gharbi et al. [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF] use all 5 expert versions for their HDRNET but mention the inconsistencies among the expert retouches. They mention that expert B is more selfconsistent and easier to learn for the network.

We initially choose expert E based on our subjective aesthetic preference of retouched results. However, we show in Section 5.5.1 that our architecture can learn irrespective of the choice of expert photographer. We observe that the dataset contains a significant number of images with large portion of saturated pixels in the RAW images, which were reconstructed to non-unique colors in the retouched images. As such saturated pixels may lead to inconsistent learning, we filter images with high number of saturated pixels during training. We empirically set a threshold of 3% pixels per image to filter pixels where any of the RGB channels values are above a normalised tonal value of .99. This provides us with 4205 16-bit linear color images and their retouched versions for our training. We use the 'as-shot' white balance applied by the camera while exporting the linear images. For training purpose, we resize images to the resolution of 100 × 100 pixels.

Preparing the Input Features

The next step is the generation of input feature space for each image-graph representation. Global attributes and overall visual cues such as the average luminance or standard deviation of intensity values play a partial but significant role in deciding the image enhancement. Based on this idea, Yan et al. [START_REF] Yan | Automatic Photo Adjustment using Deep Neural Networks[END_REF] use both global and contextual feature descriptors for their image enhancement. We use similar attributes corresponding to each semantic region of the image. First, we use FastFCN semantic classifier [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] pre-trained over ADE20K dataset [START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF] to generate segmentation maps. ADE20K provides a dataset with 150 annotated labels which results in a very fine-grained semantic breakdown of an image. However, we realise that, in the use-case of digital photography, the semantic abstraction which drives the human visual perception is not as fine-grained. Therefore, we merge the fine labels to a coarser semantic abstraction as described in Chapter 3. The 9 coarse labels: sky, mountain (terrain), vegetation, water, human subject, non-living subject, city, indoor-room, others fit the use-case of digital photography better. The segmentation maps are generated at full resolution and consequently resized to match the training image resolution of 100. The spatial arrangement of the segments are stored in the edge descriptor E in coordinate format (COO) for the GCN. Furthermore, we compute attributes for each segmented region: the median and standard deviation of RGB values, the median luminance and the 9-class one-hot encoded semantic labels for each semantic node. To prevent overfitting the model, we drop nodes from the graph in form of dropout layers before the first convolutional layer and after the last convolutional layer with probability of 0.2 and 0.5 respectively. Furthermore, we apply a DropEdge [START_REF] Rong | Dropedge: Towards deep graph convolutional networks on node classification[END_REF] with a probability of 0.2 before the first dropout.

GCN and Semantic Hint Generation

Prediction using FC

The FC acts as a lookup table which maps 37 input values to 3 output RGB values.

During training the input to the FC is a 2D array 10000 × 37 containing all pixels in the image and their corresponding hints. We observe that applying a power of 1/2.2 to the input of the FC helps it learn the non-linear mapping better. The FC has two fully connected hidden layers with 32 neurons each separated by a layer of Leaky-ReLU activation function. The output of the FC is the predicted non-linear RGB value. Due to the design of pixel prediction, the inference can be obtained on a high resolution image instead of 100 × 100.

Blending

The predicted output RGB shows visible inconsistencies at the border of semantic regions due to 1) the difference in tone mapping function across regions and 2) lack of smooth transition and segmentation precision of the FastFCN algorithm. In order to incorporate pixel precision, we utilise a shared alpha matting technique [START_REF] Gastal | Shared Sampling for Real-Time Alpha Matting[END_REF] and draw inspiration from the semantic framework idea of our SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] which involves stacking normalised fuzzy segmentation maps of each semantic region and blending the tonal modification.

To create the framework, we first breakdown a segmentation map containing n unique labels into n binary maps. Shared matting [START_REF] Gastal | Shared Sampling for Real-Time Alpha Matting[END_REF] converts each binary map to a fuzzy alpha map using a trimap obtained by dilation of the segment in the binary map with a disk structuring element of the radius of 25 pixels. Each alpha map is processed by a bilateral filter (we set pixel neighborhood diameter d=50 and color parameter σ = 30) to remove discontinuities if introduced due to the morphological operations in matting. The alpha maps are stacked along the z -axis and normalised to complete the semantic framework (S). The FC is used to infer n images, one for each semantic hint where the same hint is used for all pixels. Stacking the n images similarly provides an image framework (F).

The weighted summation of the two frameworks provides us the blended image result.

O blended = n i S i • F i (5.4)
Training Procedure

We use 4000 resized images out of the selected 4205 to train the networks. GCN and FC are trained jointly in an end-to-end fashion. We keep 106 images for validation and 99 for inference. The weights and biases are optimized by minimising the loss defined in Eq. 5.3. The weights are further regularised with a weight decay of 5e -4. We optimize the network parameters using ADAMW solver [START_REF] Loshchilov | Decoupled Weight Decay Regularization[END_REF]. We train in batch size of 1 due to the variable structure of the graphs and the learning rate is scheduled to vary with the epoch. We train for 250 epochs with a learning rate of 10 -3 between epoch 0 and 75, of 10 -4 between epoch 75 and 150, and 10 -5 from 150 onwards. We implement our architecture using PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF] and PyTorch Geometric [START_REF] Fey | Fast Graph Representation Learning with PyTorch Geometric[END_REF] on an Nvidia RTX2060 GPU. The training takes about 24 hours.

Ablation Study

Ablation on MIT-Adobe FiveK

To analyze the importance of each component of our method, we conduct two ablation experiments in addition to the proposed G-SemTMO. We observe in our previous work SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] (refer to Chapter 4) that tone mapping approaches work better than existing methods when explicit semantic information is provided as input. Our hypothesis is that it can be improved further when contextual semantic information is supplied in conjunction to the learning pipeline. We designed our ablation experiments to incrementally modify the sophistication of semantic information introduced to the learning pipeline as follows:

Ablation 1: 3D LUT-Global mapping Fully connected neural network (FC) without any semantic information.

We utilise the fully connected architecture of our Tone Mapping Module to learn the mapping from linear RAW images to expert retouched images. No additional semantic information is provided. Ablation 2: 3D LUT-Local Semantic mapping FC with semantic information.

We train the image pairs over the FC architecture as in Ablation 1. However, in this case as an input to the FC, we introduce spatial semantic information same as the input to our GCN architecture X . Ablation 3: Graph based Semantic mapping Proposed G-SemTMO.

We introduce graph based learning to provide the contextual information in addition to the spatial semantic information for the training pipeline in form of semantic hints. The pipeline is the same as our method described in Section 5.3. It is important to remind the difference between Ablation 2 and Ablation 3. In the latter case, the GCN and the input to the GCN is also passed to the FC along with the semantic hints.

For all the ablation studies the models are trained under the same hyper-parameters. They are trained on 3000 training image pairs and validated on 20 image pairs for 250 epochs with a learning rate of 10 -4 and a weight decay of 5e -4. To report test results, we compute the mean pixel HyAB perceptual colour distance [START_REF] Abasi | Distance metrics for very large color differences[END_REF] and the PSNR for the prediction results of 99 test images. We used HyAB rather than CIE DeltaE as it was shown to better capture luminance differences.

Observations: Figure 5.4 presents 3 images from the FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset tone mapped by the networks from the ablation study and their respective HyAB color distance and PSNR scores. On subjective assessment, we conclude that our proposed graph-based learning produces results much closer to the ground truth for the selected images. 

Ablation on Synthetic Data

We conduct ablation studies to further validate the effectiveness of graph-based learning.

The images used for the previous ablation study from the Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset are considered to contain global adjustments. To validate that our novel approach can learn local adjustments and that application of GCN is more effective in learning local neighbourhood based tonal changes, we prepare a synthetic dataset with local adjustments.

We follow the framework of SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] (refer Chapter 4). We provide a LUT similar to Table 4.1 for each semantic label forcefully changing their lightness targets. Instead of applying the targets directly to the respective semantic regions we compute a target in function of its neighbouring semantic labels.

t = .4 n t n + .6t .4n + .6 , (5.5) 
where t is the lightness target of the semantic label in consideration and t is the modified target. The label has n semantic neighbours and the modification provides 40% priority to the neighbouring labels. As a result, we compute synthetic data which are truly local, as the adjustments are a function of neighbouring semantic nodes. We observe that with presence of graph convolutions, G-SemTMO manages to generalise better than the Local LUT. The validation losses also show a significant improvement from the local LUT to G-SemTMO. To support the conclusion for the validation losses we infer 205 testing images from the synthetic dataset and compute the HyAB and PSNR metrics. As observed from Figure 5.8 and Figure 5.9, G-SemTMO outperforms Ablation 2. Figure 5.10 displays some inferred image results comparing the two ablation studies. Subjectively, we can conclude that the CNNs in Ablation 2 can learn the local adjustments but the graph convolutions can leverage the neighbourhood relationships better resulting in tone mapped images closer to the ground truth. In this section, we present images tone mapped using G-SemTMO and compare them against the prediction of another machine-learning-based method, HDRNET [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF], retrained on the same images as our method. We also include the results of 4 classical TMOs: Photoreceptor TM (Reinhard 2005) [START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF], Photographic TM [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF]) [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF], Display Adaptive TM (Mantiuk 2008) [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF] and Bilateral TM [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF]) [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF]. The traditional TMOs do not allow for training and they are included in our comparison to show the difference between trained and non-trained tone mapping. We present our observation based on our subjective assessment and validate them using objective metrics.

Since we are unable to train the official HDRNET Tensorflow implementation due to old version of the dependencies, we rely on a PyTorch re-implementation [START_REF] Ge | HDRnet-PyTorch[END_REF]. Gharbi et al. [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] use FiveK dataset to learn style transfer and their network was trained using image pairs comprising of 8-bit input images without corrections and 8-bit images retouched by experts. However, as per author suggestions, we use their network architecture to train for end-to-end tone mapping using 16-bit linear images as input and 8-bit retouched images as output. To generate the results for the 4 classical TMOs, we used pfstools [START_REF]Pfstools[END_REF] software.

For evaluation we use 4 objective metrics from the literature. We focus on the global reconstruction quality of the image as well as the perceptual attributes such as colour and details which govern the aesthetic perception of tone mapper result. We require an objective metric to assess the closeness of color reproduction to the ground truth. Hence, we choose HyAB, a perceptual color distance metric. It uses L 1 norm of L* and L 2 norm of a*b* in the CIELAB colour space to measure color distance from the reference image. It has shown good agreement to subjective preference for small colour deviations. A smaller HyAB score suggests better quality. To evaluate the reproduction of structural details and local contrast preservation, we use MS-SSIM [START_REF] Wang | Multiscale Structural Similarity for Image Quality Assessment[END_REF], which is a multiscale version of traditional structural similarity index. A higher MS-SSIM score suggests a higher measure of structural similarity resulting in better perceptual quality. Furthermore, for overall reproduction quality, we choose traditional PSNR and the HDR-VDP-3 (v3.0.6) [START_REF] Mantiuk | HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions[END_REF]165] Quality correlate (Q) score. It is a measure of the magnitude of distortion corresponding to visibility rather than the mathematical distance between the pixels. The HDR-VDP-3 score attains a maximum of 10 for best perceptual quality and gets lower for poorer reconstruction. Photoreceptor TM [START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF], Photographic TM [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF], Display Adaptive TM [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF] and Bilateral TM [START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF]. The median of each histogram is marked with a solid circle and a confidence interval of 95%. 

Observations

Figure 5.11 presents the results for 4 images from the MIT Adobe FiveK dataset [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] (from the testing set). In the top row, we reproduce the original RAW images exported via Lightroom without any modification except for the standard gamma encoding. The second row contains the images manually retouched by expert E (used for training HDRNET and G-SemTMO) and the following rows contain the results of each operator. The last row contains the plots of the per segment gray-scale tonecurves, produced by G-SemTMO for each semantic region. The tone curves are generated by mapping input grayscale values (where R = G = B) to output color and then computing the luma value. Our first observation is that, among the selected images, G-SemTMO produces results that are much closer to the expert retouched images than HDRNET trained on the same data.

The comparison with the traditional operators is for illustrative purposes only as they have never been trained and are not meant to reproduce the results of expert E.

Figure 5.12 shows the distribution of scores for aforementioned 4 objective metrics: PSNR, MS-SSIM, HDR-VDP-3 Quality and HyAB. As reference, we use the version of the test images manually retouched by expert E from the FiveK dataset. Along with the histogram of observed metric scores, we plot the median metric scores for each TMO with an error bar denoting a confidence interval of 95% of the median. On close inspection of the metric results, we notice that HDRNET results rival G-SemTMO closely in terms of colour difference (HyAB results) but there is a visible softness which is reflected in much worse scores for more spatial metrics (MS-SSIM, HDR-VDP-3). Fortuitously, the display adaptive tone mapping also produced results that are close to the retouched images of expert E. The histograms in Figure 5.12 confirm our subjective assessment of Figure 5.11. We validate our results over 99 test images and we observe that across all objective metrics the proposed G-SemTMO has a better median score than HDRNET. Therefore, we show that the proposed G-SemTMO produces results that are closer to the results of expert E according to all objective metrics. The results are notably better in terms of MS-SSIM and HDR-VDP-3, which are sensitive to the lack of sharpness in the HDRNET results. For completeness and reference, the plot also includes the results for 4 other traditional tone mapping operators, but it should be noted that those operators were not trained to reproduce the results of expert E.

Another interesting observation can be made when analyzing the per-segment tone curves of G-SemTMO (the bottom row in Figure 5.11). Each plot presents the tone curves predicted by G-SemTMO using the semantic hints per segment in a log 10 space. We hypothesized that the neighborhood of semantic segments play a part in deciding the tonal adjustment inside the segment. Consequently, different neighborhood should mean different tone curves for the same semantic label. Figure 5.13 compares the graph representations of the semantic segments in two images A and B from Figure 5.11 (a4986 and a5000 respectively). Both images contain a large semantic segment annotated as vegetation but the neighbors to vegetation in A are different from B. Consequently, from Figure 5.11, we observe that the tone curve for A's vegetation is different in the two plots. Hence, we validate that the GCN learns the neighborhood information and predicts different hints for the same semantic label resulting in different tone curves.

Training for Other Expert Photographers

We trained our network over the same set of training images for the 4 other expert photographers in the FiveK dataset and validated the results over the 99 test images. We use the same hyper-parameters for training as in Section 5.3.4. We observe that there are inconsistencies among the tonal adjustments provided by the experts in the FiveK dataset, and consequently learning tone mapping becomes harder. Gharbi et al. [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF] mention that HDRNET could learn the adjustments made by expert B better. We also notice that our training could learn and infer better for expert B, as validated by the objective metric scores in Figure 5.14. We find the adjustments made by expert A to be the most inconsistent.

Consequently, to validate that our network can differentiate between the styles of each expert and learn tonal adjustment specific to the expert, we compare the prediction of G-SemTMO trained for a particular expert to the other expert ground truth. Figure 5.15 shows the performance of networks trained over expert E and B on HyAB metric. We

HyAB↓ HyAB↓

Exp observe that results predicted by network trained over E is closest to the ground truth E than others over 99 images. The same holds true for network trained over expert B. This concludes that the parameters learnt by the network are not random in nature but specific to the expert trained.

Comparing to Photographic Global Tonal Adjustment

Bychkovsky et al. [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] use the FiveK dataset to train over images retouched by expert E to learn specific adjustment style for images. However, their inference is hybrid in nature. They learn and predict only the luminance adjustment for test images and apply the colour profile of the same as curated by expert E for each test image to produce the final result. Since, G-SemTMO infers the image end to end, to maintain fairness we compare the luminance predicted by G-SemTMO to those of Bychkovsky et al. over 50 common images among their and our test image set. 

Training on Local Image Dataset (LocHDR) LocHDR Dataset

It can be argued that the tonal adjustments posed by the expert photographers from the Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset is global in nature. The photographers had access to limited tools and sliders from the Adobe Lightroom photo-retouching application. Although, the sliders can effect non-linear adjustments on a local spatial scale, they are not explicitly as local as using tonal brushes and focused radial/gradual filters.

As an ancillary yet significant contribution to our work, we provide a dataset (subset from the FiveK dataset) of HDR images locally retouched by an expert photo-retoucher -LocHDR. In Section 5.3.4, we state that we use 4205 images from the FiveK dataset for our work. Not all of these 4205 images are inherently HDR. So, we filter a subset of images based on the absolute dynamic range and the number of semantic segments observed in the source HDR image. We compute dynamic range as the logarithm of the ratio of the 99 th and 1 st percentile of observed luminance and empirically put a threshold of 2.2 to filter out images. Furthermore, to emphasize on local changes we filter images based on the number of semantic segments. Hence, we choose images with at least 3 unique semantic labels. Based on our filters we compile a set of 781 HDR images (refer to Section A.2 for the selected image indices).

We hire an expert photo-retoucher (henceforth known as Expert I ) who is tasked to apply local corrections to the LocHDR dataset based on simple instructions using Adobe Lightroom application.

Retouching Instructions.

• Correct the exposure for the images using the 'Tone' Palette in Adobe Lightroom. Sliders inside the Tone section (Exposure, Contrast, Highlights, Shadows, Whites, Blacks) can be used.

• On each image, use of Radial/Gradual filters and brushes to locally correct exposure is appreciated. We are especially interested in having some degree of local adjustment on each image.

• Refrain from using auto-enhancement options.

• Refrain from affecting colour, detail, noise or white balance adjustments.

Training & Inference

Based on the aforementioned instructions Expert I provides us with locally corrected 781 HDR images. We use the G-SemTMO to train over 680 of the 781 images. To observe the effectiveness of graph convolutions, we also train the 3D Local LUT from our previous ablation study (refer to Section 5.4.1) on the same 680 images. The networks are trained for 500 epochs. Hyper-parameters for optimization and regularization is set as the previous ablation. However the learning rate is scheduled differently with 10 -3 to start, 10 -4 after 75 th epoch, 10 -5 after 150 th epoch and finally 10 -6 after epoch 300.

Figure 5.17 plots the training loss of G-SemTMO and 3D Local LUT over 500 epochs. The figure shows that G-SemTMO is able to learn better on the training set of images but is marginally better than the Local LUT. For inference, we choose 81 remaining images from the LocHDR dataset as test images. Figure 5.18 shows the HyAB [START_REF] Abasi | Distance metrics for very large color differences[END_REF] colour distance and the PSNR metric scores of the inference results of two networks when the testing set is compared to the ground truth. Objectively, we can summarize that G-SemTMO shows marginally better reconstruction fidelity than the Local LUT.

In Figure 5.19, we present examples of inferred images from the testing set. On subjective assessment, we notice that for selected images G-SemTMO performs significantly better than Local LUT which is also validated by the reported HyAB and PSNR scores on the figure. However, we make two important observations. First, the better performance of G-SemTMO cannot be generalised over the test population as we see that the difference between G-SemTMO and Local LUT is only marginal. Second, the outputs of two net-works can be compared relative to each other but are still far from the ground truth as we see from the HyAB score histogram. 

0

Contrast Inconsistency in LocHDR Dataset

We ask ourselves, why the G-SemTMO finds it challenging to learn local adjustment in LocHDR whereas we have seen in Section 5.4.2 that G-SemTMO is able to learn tonal adjustments based on neighbourhood relationships. We consider consistency in source data as an important factor in learning tonal adjustment styles. In data driven methods, the input-output mapping should be consistent for the model to learn a proper generalisation. Usually, neural networks can tune out outliers and small inconsistencies such that it does not affect the inference capability. In case there are larger inconsistencies, the model learns to average out as means of fitting the data points supplied. As a result the inference remains far from the ground truth as observed in our training over LocHDR dataset. On closer inspection we find cases where we observe significant inconsistency in the application of tonal adjustments.

Local inconsistency inside particular semantic segment

We find several images where the application of local corrections using radial or gradual filters or brush strokes cause gradient-like changes. Since, our algorithm learns the same adjustment for the entire region annotated by a semantic label, it becomes challenging to reproduce such gradient effects unless they are also present in the source image.

In Figure 5.20 we notice that the region marked as 'vegetation' is uniformly dark in the source image. However, application of brush stroked to the bottom and bottom-right of the segment creates drastic change in luminance, thereby creating a gradient artifact.

It is important to note that Expert I is unaware of the semantic classes we use for G-SemTMO. So, there is no bias while applying the adjustment. However, we ideally expect a much more uniform distribution of adjustments locally unless the semantic understanding of the scene directs otherwise. These drastic changes are not learnt properly by the network as the count of such examples are not so large to generalise and not so small that the network can disregard as outliers. 

Node-Relationship inconsistency among semantic segment

The second inconsistency which we observe affects the semantic node relationships governing the tonal adjustments. Figure 5.21 presents 3 image cases in an urban outdoor context with labels -sky and cityscape among others. For all three cases, we notice that in the locally retouched versions, the sky has marginal exposure adjustment, either marginally brightened or darkened. However, their neighbouring semantic region cityscape, with buildings, show significantly different luminance adjustment in each case.

Image a3847 preserves the luminance and details in the shadows on the building but for a0650 and a4811 the details are lost due to underexposure. On image a0650 (middle), on closer observation, we notice that the relative luminance difference between the two buildings (in the centre and far right) in the source image is also lost in the locally retouched version where both are significantly under-exposed. The change in the perceivable luminance difference on buildings is also noticeable in a811.

Furthermore, for both a0650 and a4811 the use of local brushes and gradual filters respectively cause gradient artifacts at the bottom of the image as described previously. 

Local contrast inconsistency

While creating LocHDR, Expert I does not have access to sliders on Lightooom to modify sharpness or details to adjust local contrast. However, a perceivable contrast difference can be affected by modifying the highlight, shadows and blacks locally. In several image cases, we find such local retouches exaggerating the contrast to make the images look extra 'punch-y'. Such images draw attention especially when the subject is human.

Figure 5.22 shows example images with human subject semantic labels. Unlike in image a1831, we observe a significantly higher contrast in image a4778. This is specially noticeable when comparing the skin tones on the human subjects of both images. Furthermore, our semantic segmentation does not differentiate between skin and non-skin part of human segments. So learning a diverse mapping for the same semantic label in a similar context becomes even more challenging. The three consistency issues we mention above are some of the most noticeable ones which affects several images in our LocHDR dataset. Learning tone mapping from reference pairs through a data-driven approach is similar to learning individual retouching styles. Hence, such inconsistencies may lead to a divergent behaviour where the network fails to generalise and converge on the style of adjustment. Hence, we find an alternative to make our network learn better. Previous work on FiveK dataset [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] mentions the inconsistencies in retouches [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF][START_REF] Yan | Automatic Photo Adjustment using Deep Neural Networks[END_REF] and the use of data splits such as 'Random 250' and 'High Variance 50' [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF][START_REF] Yan | Automatic Photo Adjustment using Deep Neural Networks[END_REF][START_REF] Hwang | Context-based Automatic Local Image Enhancement[END_REF] for analysis. We also decide to split our LocHDR based on inconsistency in style.

High Contrast LocHDR -HC200 Subset

We acknowledge that training over a dataset containing significant style inconsistencies result in improper inference. From Figure 5.18 and Figure 5.19 we understand that the network tends to fit a mean in order to reduce the reconstruction error and hence remains distant from the ground truth. We decide to filter the LocHDR dataset based on the perceivable contrast effected by Expert I. Similar to the data splits done to FiveK dataset in literature, we create a subset of images called 'High Contrast 200 (HC200)'.

Measuring the perceptual contrast or how 'contrast-y' or 'punch-y' an image appears is a challenging task. Inspired by multi-scale approaches in entropy [START_REF] Zhang | A Saliency Dispersion Measure for Improving Saliency-Based Image Quality Metrics[END_REF] and structural similarity measures [START_REF] Wang | Multiscale Structural Similarity for Image Quality Assessment[END_REF], we present our own approximation of a multi-scale contrast measure. Multi-scale contrast follows a pyramidal approach where at each level n, the image is divided into n × n patches and patch specific variance of pixel intensity is computed. The intermediate contrast measure for level n is the square root of mean variance. The final contrast measure is computed as the mean of level specific contrast scores.

M S -Contrast = 1 n n n×n V ar p n × n , (5.6) 
where n is the number of levels, and p is the number of patches in a level from 1 to n × n.

We empirically set n = 5 for our contrast estimation. Figure 5.23 shows the distribution of multi-scale contrast scores across 781 images in LocHDR. We choose the top 200 with high contrast (refer to Section A.3 for the selected image indices). On further subjective assessment, we can confirm that the HC200 subset mostly contains the high contrast images which we previously consider as outliers or differently styled. 

Training & Inference on HC200

We train our G-SemTMO network over the 200 high contrast images using K-fold cross validation [START_REF] Friedman | The elements of statistical learning[END_REF]. We make 4 folds with a training-validation data split of 150 -50. The training is conducted with ADAMW solver [START_REF] Loshchilov | Decoupled Weight Decay Regularization[END_REF] for optimization, weight decay of 5e -4 and a scheduled learning rate of 10 -3 between epoch 0 -150, 10 -4 after 150 th epoch and finally 10 -5 after epoch 300.

For inference, we find the common images between the test set of 81 images in LocHDR and HC200. The 40 common images make up our evaluation of HC200. To analyse the effect of training over a subset of contrast and style specific images, we compare the inference results of three different trainings -G-SemTMO network trained over HC200 and the G-SemTMO and Local LUT networks individually trained over all the training images from LocHDR. As in the comparison over objective metrics previously, we consider three networks to compare the inference subjectively. For each image in the figure, we see marked improvement in the inference quality of G-SemTMO when it is trained over HC200. This confirms that neural networks need to be trained on specific styles to learn style specific variations. Previously in Figure 5.15, we have shown that G-SemTMO could learn the different retouching styles made by 5 expert photographers on the FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset. The training on HC200 shows that for datasets with local adjustments the network be finetuned by training for specific style variations inside the dataset.

Learning Dynamic Targets for Semantic Classes

A major limitation of SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] as discussed in Chapter 4 is that the algorithm applies adjustment based on a static LUT for the observed semantic classes. One of our objectives of developing G-SemTMO as a data-driven method is to incorporate the ability of predicting dynamic targets based on the semantic class and the presence of other classes in the neighborhood.

In Figure 5.11, we show the tone curves predicted by G-SemTMO for each test image. It shows that the predicted tone curves are dynamic and scene dependant. However, it is interesting to know whether G-SemTMO manages to learn tone curves different due to the application of graph convolutions. To that intent, we make a further study between images in the HC200 dataset and between the G-SemTMO and 3D Local LUT trained on HC200.

We consider the 'Human Subject' class from our annotations and select all the images in HC200 containing human subjects. We use the G-SemTMO and 3D Local LUT networks pre-trained (using K-Fold validation) on HC200 to infer on 152 selected images and predict the tone curves for the 'Human' segments. The hypothesis is -two images may have similar tone curves according to Local LUT but the G-SemTMO can leverage the neighbourhood relationships to predict tone curves which are significantly different to each other and also have better fidelity to the ground truth.

To compare similarity between two tone curves, we experiment with popular curve distance metrics such as Discrete Frechet Distance [START_REF] Eiter | Computing discrete Fréchet distance[END_REF][START_REF] Alt | Computing the Fréchet distance between two polygonal curves[END_REF], Dynamic Time Warping (DTW) [START_REF] Senin | Dynamic time warping algorithm review[END_REF][START_REF] Petitjean | A global averaging method for dynamic time warping, with applications to clustering[END_REF] and Partial Curve Mapping (PCM) [START_REF] Witowski | Parameter Identification of Hysteretic Models using Partial Curve Mapping[END_REF]. The PCM metric incorporates the ordinate and abscissa mismatch into the computation and matches the area of a subset between the two curves. It has been used to compare hysteretic response curves and on subjective validation, it encapsulates the similarity between our tone curves quite well. We use the PCM implementation from the Python similaritymeasures [173] library. PCM [START_REF] Witowski | Parameter Identification of Hysteretic Models using Partial Curve Mapping[END_REF] measure has a lower bound of 0 when two curves have an exact match. The higher the measure, further apart are two curves. It is highly unlikely for two tone curves in real world images to have an exact match. Hence, we compared image results in pairs containing human subjects inferred by Local LUT with a tone curve PCM threshold of 1.

Figure 5.26 presents the inference of an image pair from our HC200 subset predicted by a 3D Local LUT and G-SemTMO trained on HC200 (using K-fold validation). Tone curves on human segment predicted by Local LUT is very similar as suggested by the PCM measure. However, we see a significant difference between the tone curves predicted by G-SemTMO. Furthermore, on comparing the HyAB colour distances, we observe that the inference of G-SemTMO is closer to the ground truth than Local LUT. This shows that G-SemTMO considers the local semantic neighbourhood and can predict the local adjustment while Local LUT which does not use graph convolutions cannot.

We try to observe a relationship between PCM distance and HyAB difference. However, we find it is rather difficult to correlate. We have established in Figure 5.25 and Figure 5.24 that G-SemTMO performs better than Local LUT trained on HC200 subset but it is difficult to arrive at that conclusion solely on the basis of the argument that similar tone curves produced by Local LUT are adjusted differently by G-SemTMO. Figure 5.27 illustrates multiple plots comparing the correlation between PCM and HyAB. Figure 5.27(a) shows a 3D scatter plot where every plot point denotes an image pair (i, j) from the list of 152 human subject images. The ∆PCM denotes the PCM distance between the tone curves predicted by Local LUT for images (i, j). HyAB i and HyAB j correspond to the HyAB difference between predictions of Local LUT and G-SemTMO for images (i, j) respectively. A positive HyAB difference score means that G-SemTMO inference has a smaller measure and hence is closer to the ground truth while a negative HyAB difference score means G-SemTMO inference is worse than Local LUT. We do not observe a conclusive correlation between HyAB and PCM differences. From Figure 5.27(b) we notice that there are 3 approximate clusters in the PCM distances between [0 -10], [10 -20] and higher than 20. However, comparing the scatter and the bar plot we notice that approximately 50% or more points in each cluster have positive HyAB difference, favouring G-SemTMO. Although this comparison is interesting and specific image cases support the advantage of graph convolutions over Local LUT, it is challenging to provide a decisive decision based on this comparison alone. However, this exercise helps us identify certain failure cases where the HyAB difference largely favors Local LUT than G-SemTMO. 

Analysing Failure Cases

From the results in the previous sections, it is evident that G-SemTMO has a significant improvement in inference quality over Local LUT in most cases. However, as the plots and measures indicate, on several cases the perceptual HyAB colour closeness for G-SemTMO results is worse than the 3D Local LUT. It is therefore important to identify some of the failure cases and analyse why G-SemTMO performs worse than the 3D Local LUT on those images according to HyAB. This may help us improve G-SemTMO or modify our future objectives accordingly to develop better TMOs. Is HyAB at fault?

.28 presents a select few images where the inference of Local LUT is closer to the ground truth than G-SemTMO on the basis of HyAB scores. However, on subjective assessment we have a different observation. All the results inferred by 3D Local LUT inherently appear warmer in colour whereas G-SemTMO appears to preserve the colour balance better. To confirm our assessment we compute the chroma difference in the CIELAB colour space per segment of the inferred image and compare to the ground truth.

HyAB is computed as the sum of the L1 norm of the luminance (L*) and L2 norm of the chrominance (a*b*) of the image in CIELAB colour space [START_REF] Abasi | Distance metrics for very large color differences[END_REF]. The measure is primarily developed for images with large colour differences but has shown robustness even for smaller colour shifts. The HyAB separates the luminance and chrominance computations on the basis of the hypothesis that effect of luminance shift is not considered properly in Euclidean metrics. Hence, the use of L1 norm of luminance plays a major role in the final outcome of the HyAB score. Even if the luminance shift is not perceived as much as chromatic shift, the former ends up deciding overall score. Figure 5.29 shows the luminance and chromatic errors for individual semantic segments of the image. As observed previously, all three images inferred by the 3D Local LUT have a warm yellowish tint which is objectively proven when we compare the chromatic error part from the HyAB. However, we see a significant difference in the L* score which overrides the chromatic difference.

Let us take the image 'a2134'-building segment from Figure 5.29. On Local LUT's inference, the window pane shows improper colour prediction and the wall has a noticeably shifted white balance. G-SemTMO is closer to the ground truth but still gets a worse overall HyAB score because the L* score of 3D Local LUT is better than that of G-SemTMO. The argument holds for the individual sky and vegetation segments of the other two example images 'a1906' and 'a2238'. We can argue that despite colour error being much more prominent than luminance error on subjective assessment, the objective metrics provide opposite verdicts.

This experiment raises the question about appropriateness of HyAB in such cases. Maybe, it is important to modify the way we use HyAB to evaluate image closeness. Since we predict images by inferring local adjustments, it may be more robust if HyAB or other similarity metrics evaluate locally and build up to compute a global measure for the whole image like a pyramidal or multilevel approach.

Do we train with insufficient data points?

We observe that in the example images presented in Figure 5.29, G-SemTMO fails to predict the luminance close to the ground truth. Interestingly, we observe that such improper prediction occurs in several images with 'shadowy' vegetation pixels. Hence, it is possible that the training suffers from insufficient data to generalise on. We analyse the distribution of colours occurring in each semantic segment and their densities.

With 9 semantic classes and a minimum of 3 observed class in each image, we can have 466 combinations of semantic labels per image. Furthermore, with every semantic region accommodating 2-8 neighbours the total number of graphical representations of an image can be several thousands. However, in HC200 where we train the model for a specific style, we have just 200 graphs at our disposal. Although, it covers a significant portion of neighborhood possibilities, it is still possible for test images to pose neighbourhood conditions during inference which the model has seldom encountered while training and hence finds it difficult to infer close to fidelity. and their density distribution for individual semantic segments as present in the HC200 data subset. On the top, we observe the distribution of Sky pixels. We observe that there is a significantly larger representation of gray pixels (as we would observe in a cloudy sky patch) than blue pixels. Similarly, for Vegetation segment, there is lesser representation of dark greens than the blacks. As mentioned previously, if the test image as pixels with low representation in the dataset it may be difficult to learn. Furthermore, beyond individual representation the frequency in conjunction to neighbour frequency is also an important factor -how frequent is the presence of dark vegetation pixels with blue sky as neighbour?

Inconsistency of adjustment masks

Gamma corrected HDR Cityscape segment Expert retouch Our hypothesis behind the semantic awareness of G-SemTMO is that the tonal adjustments are applied locally to regions defined by unique semantic labels. However, in reality the mask which the expert creates using brushes and filters are often different from the pixel masks created by semantic segmentation. Figure 5.31 shows an image with the cityscape semantic segment. The mask created by the expert using radial filter and brushes impacts only a part of the semantic mask computed by us. Previously, we have discussed about the inconsistencies introduced by the expert. The spatial difference of the ground truth mask and the computed mask using segmentation also creates inconsistency in adjustment as we see in the figure above. The centre of the bridge and parts of the road is brightened up whereas the rest of the masked region remains under exposed. The G-SemTMO performs well in general because of the significant overlap between the two masks of adjustment application. When the masks are different or less overlapping, it becomes challenging for the network to learn and infer close to the ground truth. To remind ourselves, the synthetic dataset used in one of our ablation studies (refer to Section 5.4.2) is created using the same semantic masks we use for training and inference. As a result, the network learns the local adjustments so well.

Learning both Colour and Luminance at the same time

Finally, a question that remains to be asked is whether it is challenging for the network to learn both the luminance and colour at the same time. G-SemTMO in most cases, generalises well to infer the colour and luminance closer to the ground truth. But in certain challenging images which may have certain other limitations as described earlier such as inconsistency or rare representation, G-SemTMO has found it challenging to infer both close to the reference. To put into perspective, Bychkovsky et al. [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] trained a network to learn the luminance adjustment only for an individual expert from the FiveK dataset and applied the colour profile from the expert directly (refer to Section 5.5.2). We provide luminance statistics and channel wise colour statistics to train G-SemTMO. However, we propagate the learning with an L1 loss of reconstructed RGB values. As a result we observe that the inference from G-SemTMO has better chrominance representation in general. Perhaps, we need a more sophisticated loss function similar to a modified version of HyAB measure which considers the luminance and colour reconstruction errors with equal weight.

G-SemTMO Outside The Box

In all our previous experiments and analysis, for fair comparison we have compared G-SemTMO to other data driven methods and some classical TMOS on dataset images for which the ground truth is known. As discussed in our motivation, we can consider an expert photographer's process of retouching to be a manual analogy to tone mapping. Since we train G-SemTMO to mimic an expert's style, it is interesting to observe how G-SemTMO generalizes over images outside the Adobe FiveK dataset and whether it can recreate the aesthetic retouching style of expert E from FiveK dataset. We conduct a subjective aesthetic assessment of G-SemTMO as a standalone tone mapping operator. We choose Fairchild's HDR dataset [START_REF] Fairchild | The hdr photographic survey[END_REF] and compare the results of G-SemTMO against 3 classical TMOs. Figure 5.32 shows tone mapped results of 4 selected images from the dataset. We exclude HDRNET tone mapping results from this comparison because of visible color artifacts in its prediction. On a cursory visual assessment we observe that G-SemTMO produces aesthetically pleasing colours and luminance corrections. On closer observation, we notice that unlike the Photographic TM or certain other results by the classical TMOs, G-SemTMO does not produce flat images. We find contrast and well preserved details even in the shadows. However, it is important to remember that the other classical TMOs are not developed with explicit semantic information in mind and they do not allow for training. Furthermore, G-SemTMO results can only be as aesthetic as is the style of the expert the network is trained on. Adaptive TM [START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF], Photographic TM [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] and Photoreceptor TM [START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF] and proposed G-SemTMO.

Discussion & Summary

We train multiple G-SemTMO networks on expert image pairs from the FiveK dataset, a locally adjusted HDR dataset and on synthetically computed locally adjusted image pairs. Comparing the results obtained using G-SemTMO across all the experiments and ablation studies we can claim that G-SemTMO is able to learn local adjustments by leveraging the spatial arrangement of semantic segments observed in the image. With support from the ablation studies, we can show that graph convolutions help G-SemTMO to learn local adjustments and infer better than networks with backbone of 2D convolutions. For real world images, on comparing G-SemTMO results to the images tone mapped by other selected TMOs we can confidently claim that graph-based learning can better incorporate semantic awareness in a TMO. On the FiveK dataset, the results show that our network can produce results closer to the version manually retouched by expert photographer E than the other methods by learning contextual information from the image. Furthermore, G-SemTMO can learn the distinctive styles of each expert different from the other. We also compare the complexity of G-SemTMO to state-of-the-art HDRNET [START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF]. We have 3 times fewer trainable parameters: 159,826 for GCN and 1315 for FCN, as compared to 483,453 parameters in HDRNET. To the best of our knowledge, we are not aware of any other lightweight method which can achieve similar performance when trained for a particular style.

However, in the process of developing G-SemTMO, we identify some limitations as well. Firstly, our algorithm is reliant on the semantic segmentation of the images to create a graph of their spatial arrangement of the segments. We observe several cases where the label annotations are improper. Image a1824 in Figure 5.2 contains a segment city, which should clearly belong to the segment water. The improper labels are more challenging with fine grained semantic labelling. Merging labels to courser segments helps reduce improper annotation to an extent but we still feel the need for a segmentation algorithm and annotated dataset with labels fit for the use case of photography. This can reduce not just improper labelling but also introduce labels that are closer to an expert photographers' impression of a scene.

Secondly, G-SemTMO in its current state treats all the neighbor semantic segments equally while predicting the latent semantic hints. However, in many cases, semantic segments occupy low percentage of pixels. Image a5000 in Figure 5.13 (bottom) has a very small proportion of pixels annotated as human. However, it impacts the tonal adjustment of its neighbor label vegetation equally as the label sky. One approach to address this would be to have edge-weighted learning where the GCN not only takes the edge adjacency but also the edge importance into account based on how large the semantic segment is. Furthermore, we observe that our networks can learn tone mapping specific to an expert but do not learn any distinct structural modifications. Figure 5.33 compares the performance of a network pre-trained on images from Expert E with the pairs from other experts. We observe that the network trained on expert E from the FiveK dataset learns a colour transformation significantly different from others (validated by HyAB colour distance) and closest to itself but the MS-SSIM scores do not show a discernible difference. The reason is two-fold: the experts from FiveK dataset do not modify structural parameters such as image sharpness, and although the local contrast parameters may change due to tonal transformation, it does not explicitly modify structural similarity in our result. G-SemTMO does not perform local structural modifications (e.g. sharpening) and it focuses instead on luminance, color and contrast transformations. Additionally, it must be noted that our network trains on input images with as-shot camera white balance. So, it is unable to reproduce occasional custom white balance modifications made by the expert.

Training G-SemTMO on the locally adjusted LocHDR dataset uncovers a few more important details. The first important learning is since G-SemTMO can learn distinctive styles, it is imperative to train on data that has consistent tonal adjustment for better fidelity during inference. As we see in LocHDR, G-SemTMO is not trained on the whole dataset in such case but on subsets with consistent edits. Second, semantic segmentation is an attempt in approximating the local masks created by expert retouchers during edits. A better overlap between the computed mask and the ground truth mask aids the performance of G-SemTMO. Last, it is important for the G-SemTMO training to have significantly large number of data pairs considering the number of different graphical arrangements of semantic labels needed to learn for the network to converge. Our LocHDR dataset is definitely a promising start to a local tone mapping dataset but it is important for future research to have larger and more consistent dataset of image pairs.

Our work with G-SemTMO takes a step towards achieving semantic awareness which is dynamic and scene dependant. We show that G-SemTMO produces different adjustments for same semantic label based on the different neighbourhood conditions experienced. We do not perform a formal subjective comparison of the results as our goal is to produce results that are close to those of an expert photographer rather than to produce the most preferred results. We find the existing full-reference objective metric sufficient for evaluation of that goal. We use our network pre-trained on expert E from FiveK dataset to tone map images from the Fairchild dataset to show that our results can be generalised for other datasets to produce aesthetically pleasing results too.

In summary, we have shown three important conclusions from this work. (A) Semantic information is essential to reproduce styles and aesthetic modifications of expert photographers. (B) Understanding contextual information of a scene alongside the semantic specific information allows a tone mapping operator to get closer to the styles proposed by human experts. (C) While traditional tone mapping operators have been predominantly based on ad-hoc rules and metrics, we show that it can be learned instead from modifications proposed by human experts. The tone mapping created this way is not meant to produce the most 'preferred' results, as the results depend on how well the training images prepared by the expert are preferred. In an ideal world, given a dataset of images with the 'most preferred' aesthetic modifications by an expert, our network can predict results closest to the expert in comparison to other mentioned TMOs.

As part of our contribution, we have presented a novel use of graph convolutional networks to predict semantic hints as intermediate parameters of tone mapping. We have conducted ablation studies to show that representing an image as a connected graph capturing spatial arrangements of semantic segments can help in accounting for semantic and contextual information in tone mapping. Furthermore, we have compared the results of G-SemTMO to other classical and learning-based TMOs and have shown that G-SemTMO produces the results closest to those of the expert. We believe that this novel approach opens a new dimension to learning-based image enhancement algorithms.

Lessons from the Chapter:

Semantic awareness incorporates the semantic specific information and contextual information from the spatial arrangement of semantic segments. Such awareness can be learnt by G-SemTMO, a graph convolutional neural network to mimic the recipe of expert photographers while retouching images. G-SemTMO does not tone map to produce the best or the most preferred result but proves to get closer to a reference style than any other traditional or data driven TMO. G-SemTMO shows that real world image adjustments are dynamic and content dependant and can be learnt well if the adjustments are consistent. It can be used successfully as a standalone TMO to produce aesthetic tone mapped results.

It is not about having the best result, but about reaching closest to whichever instance we consider, has the best result.

This chapter has contributed to the following article (in preparation): "G-SemTMO: Tone Mapping with a Trainable Semantic Graph" Abhishek Goswami, Wolf Hauser, Frédéric Dufaux and Rafal Mantiuk.

CHAPTER 6

EXPLORING CROWDSOURCING FOR TONE MAPPING QUALITY EVALUATION

About this Chapter:

This chapter details the various challenges we observed and addressed while evaluating the aesthetic quality of tone mapped HDR images. Aesthetic evaluation is highly preference based and non-trivial. We conducted subjective evaluation of tone mapping quality and collected preference data via Crowdsourcing. We asked ourselves -Is crowdsourcing, as a remote method, reliable enough to gather preference data for tone mapping evaluation?

This work has been conducted in collaboration with University of Nantes in the framework of RealVision ITN project.

Introduction

Crowdsourcing is a great way to approach creation because in any given point there's always somebody on the Internet who knows something better than you do.

Guy Kawasaki

The objective of tone mapping is not just to reduce the dynamic range for better representation of the scene but also to preserve the perceptual cues for the human visual system to maintain the aesthetic quality of the scene. The advent of hyper-realistic multimedia has expedited the consumption of HDR content. Hence evaluating quality of tone mapped images has been a pertinent topic of research. Objective Image quality assessment (IQA) metrics are often used to evaluate TMO quality but they do not always reflect the ground truth. A robust alternative to objective IQA metrics is subjective quality assessment. Although, subjective experiments provide accurate results, they can be time-consuming and expensive to conduct. We adapt crowdsourcing to perform subjective evaluation of TMO quality. In this chapter, we design experimental setups with varying degrees of control over the experimental conditions. Our contributions include the dataset of images and the crowdsourced subjective scores. Consequently, we present a comparative study of the different setups and analyse how crowdsourcing can be reliably used for TMO quality evaluation. Finally, we also present a collection of methods to detect unreliable participants in crowdsourcing experiments for TMO quality evaluation. In the process of subjective evaluation, we understand how well our novel SemanticTMO performs.

Motivation

Evaluating quality of tone mapped images is subjective because the process affects the visual cues of a scene. Research on HDR imaging has produced many TMOs. However, due to the aforementioned subjectivity of the results, evaluating TMOs remains a non-trivial problem. Researchers have identified several objective factors like brightness, contrast, colourfulness, structural fidelity etc. to come up with objective metrics for image quality assessment (IQA) [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF][START_REF] Krasula | Objective evaluation of naturalness, contrast, and colorfulness of tone-mapped images[END_REF]. However, the results of the metrics are often difficult to generalise and remain far from the subjective opinion, to be treated as the ground truth.

Subjective quality assessment is a more accurate method for evaluating TMOs. It is also essential in developing and optimizing objective quality metrics. However, conducting subjective experements with human participation has significant time and cost constraints. As a further motivation, with recent outbreak of a global pandemic named COVID19, health and physical regulations constraining the conducting of human-centric experiments, we found our work highly topical. Over the last decade, crowdsourcing has gained popularity as a cost, time and resource efficient and remote way to conduct subjective experiments. Crowdsourcing allows us to collect large amount of data in a short amount of time with minimal human interaction and is highly scalable. However, uncontrolled experimental conditions and unreliability of the participants has often put a barrier to a mass adoption of such platforms. Perceived image quality heavily depends on the visibility of distortions which may be enhanced or masked depending on the viewing conditions such as display device, viewing distance, background luminance [START_REF] Wolski | Dataset and Metrics for Predicting Local Visible Differences[END_REF]. Unlike objective tasks such as contrast enhancement evaluation, in aesthetic image quality evaluation scenario, distortion visibility plays a minimal role. Thus, subjective aesthetic preferences is unlikely to change with different viewing conditions. This has led us to investigate the possibility of using crowdsourcing platforms as a resource efficient medium to collect subjective preferences. In this chapter, we seek answers to the following questions:

• What are the effects of experimental conditions and participant recruitment methods on the subjective preferences?

• What are the effects of number of observers on the certainty of the results?

• Can crowdsourcing platforms be used for TMO evaluation without compromising on the gathered data?

• Can crowdsourced data be filtered for more reliability?

Experimental Design

In literature, there are several studies on subjective evaluation of TMOs [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF][START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF]. Based on the use-case of the study, TMO quality evaluation can be designed with the presence of the reference HDR image i.e., a Full-reference experiment, or without it i.e., a Noreference experiment. For an aesthetic quality evaluation use-case such as ours, a no reference methodology is preferred.

Crowdsourcing platforms such as Prolific [176], AMT [177] and Microworkers [178] have not been extensively utilised for subjective evaluation of TMOs. A recent large-scale study by Kundu et al [START_REF] Kundu | Large-Scale Crowdsourced Study for Tone-Mapped HDR Pictures[END_REF] adopted crowdsourcing to collect subjective preferences on aesthetic evaluation of tone mapped HDR results. Although the dataset provides more than 300, 000 opinion scores for 1811 images from over 5000 unique observers, it does not provide a TMO comparison for the same source image. As a result, subjective evaluation of tone mapping performance remains unavailable. Hence, our motivation is to create a dataset of images with their subjective preferences across TMOs. We have handpicked four TMOs for our subjective evaluation experiments. Based on the comparative subjective study by Cerda-Company [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF] we choose TMOs by Kim et al. [START_REF] Kim | Consistent tone reproduction[END_REF], Krawczyk et al. [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] and Reinhard et al. [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] as they have performed better in comparison to several other TMOs in two extensive psycho-physical subjective experiments. The final TMO is our novel SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] (refer to Chapter 4) which presents a new approach of semantic-aware tone mapping. It is also pointed out in the aforementioned study, that subjective data collected via crowdsourcing may be noisy due to the lack of control in the experiment conditions. So, we introduce systematic changes to the experimental conditions and observe the effects. Several methods have been developed to filter unreliable observers and noisy data [START_REF] Ying | From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality[END_REF]. In literature, there are also traditional methods, such as reliability checks [START_REF] Hoßfeld | Best Practices and Recommendations for Crowdsourced QoE -Lessons learned from the Qualinet Task Force "Crowdsourcing[END_REF] and gold standards [START_REF] Hsueh | Data quality from crowdsourcing: A study of annotation selection criteria[END_REF] where previously obtained results from reliable participants have been compared to crowdsourcers' responses to detect unreliable behaviours. Factors which govern the observer preference for images can be regulated in the controlled laboratory environment but the options are absent in the crowdsourcing setup [START_REF] Hoßfeld | Best Practices and Recommendations for Crowdsourced QoE -Lessons learned from the Qualinet Task Force "Crowdsourcing[END_REF]. Gadiraju et al. [START_REF] Gadiraju | Crowdsourcing versus the laboratory: Towards human-centered experiments using the crowd[END_REF] focused on such contributing factors when dealing with human-centric experiments via crowdsourcing. To tackle noisy data we also follow some processes from literature and develop our own methods to filter unreliable observers.

We conducted 3 different experiments with systematic changes in order to investigate the accuracy of the data collected from crowdsourcing platform. We use the Prolific [176] platform in our case for TMO evaluation as it conformed well with the human and ethical standards of subjective experiments. In the following subsections, we describe the experiment setups, the dataset and the platforms used for each experiment.

Setups & Procedure

As we understand, subjective evaluation of TMOs can be conducted with a full-reference or a no-reference methodology. Our study aims to compare TMOs among each other on the basis of observed aesthetic quality rather than comparing their naturalness, fidelity or proximity to the original scene. Therefore no-reference methodology is more suitable for the task [START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF]. Furthermore, on crowdsourcing platforms it is practically difficult to conduct a full-reference experiment as it would require an HDR screen for each observer. Therefore, we follow a no-reference design to collect subjective preferences. It also simplifies the task for the participant to a great extent and rules out observer bias while collecting preference. We adopt the forced-choice pairwise comparison (PC) method in the conducted experiments. Participants are presented with a pair of tone mapped images of the same source image and asked "Which image do you prefer?" (refer to Figure 6.1). It simplifies the evaluation task for the observers, therefore increasing the reliability of the collected preferences. Compared to alternatives, such as absolute category rating, the number of comparisons for the same number of content in PC is exponentially higher. Adaptive designs can be adopted to reduce the number of comparisons [START_REF] Li | Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation[END_REF], resulting in unbalanced number of observations. Although, it may not be efficient to use adaptive designs in online platforms such as Prolific [176]. An application programming interface (API) is necessary to be able to benefit from such designs which is not available on every crowdsourcing platform. Additionally, since the aim of our study is to compare different platforms, unbalanced number of observations may result in unfair comparison. Therefore, we follow a full PC design in all our experiments.

Stimuli & Database

For the creation of the TMO evaluation dataset, we created 20 source contents (SRC) from HDR images taken from the Fairchild's HDR dataset [START_REF] Fairchild | The hdr photographic survey[END_REF]. The spatial resolution of the images in Fairchild dataset is fairly high. Thus we scale down and systematically crop the images to a resolution of 640 × 480. It allows us to display the stimuli side by side on display devices with 1080p resolution. We further shortlist a selection of crops using their absolute dynamic range and the entropy of their salient features in order to promote challenging content. Afterwards, the shortlisted crops are clustered based on TMQI [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF] scores of the tone mapped images. Finally, we select a total of 20 SRC among the clusters. A detailed description of the algorithm and motivation behind the systematic cropping strategy is provided in Chapter 7. Figure 6.2 contains a cropping example in addition to 20 SRCs used in the experiment. [START_REF] Fairchild | The hdr photographic survey[END_REF] are systematically cropped to create 20 SRCs. The cropping strategy is explained in details in Chapter 7. SRCs are tone mapped for visualization purposes using the ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] implementation from Banterle's HDR MATLAB toolbox [5].

Four tone mapping operators -ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF], KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF], KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF] and SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF], have been selected. We have tone mapped the set of 20 SRCs using the implementation of ReinhardTMO, KrawczykTMO and KimKautzTMO from Banterles' HDR MATLAB Toolbox [5]. Adjustable parameters of each of these 3 TMOs have been optimized to maximise their respective objective TMQI scores [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF]. We implement SemanticTMO as has been discussed in Chapter 4.

Consequently, we have compiled a dataset1 with 80 tone mapped images resulting in 120 unique pair of comparisons without cross content inclusion. We understand that creating a global ranking scale via cross content comparisons is not intuitive for us as we evaluate content specific aesthetic quality across TMOs.

Subjective Experiment Platforms

The first experiment, Exp-Lab, was conducted within a controlled laboratory facility. The experiment conditions were set as recommended in ITU-R BT.500-14 [START_REF] Itu-T | Methodologies for the subjective assessment of the quality of television images[END_REF]. Grundig Fine Arts 55 FLX 9492 SL is used to display the image pair side by side. 40 observers, 22 female and 18 male, who are not claimed experts in image quality domain, were recruited through the university mailing list. The average age of the participants was 33.5 years. Each participant was checked for visual acuity with Monoyer test and color perception with Ishihara tests. Each observer provided their preferences for all of the 120 pairs of comparisons in the dataset with a break after the 60 th pair. The average time taken per comparison was 7.49 seconds for an observer.

The second experiment, Exp-Online, was conducted with the same stimuli and experiment design. Participants were recruited through the same mailing list used for the Exp-Lab experiment. However, the difference was the change of experimental environment. Each observer conducted the experiment on their own devices in their desired unregulated environment. 50 observers, 28 female and 22 male with 22.6 years average age, were recruited in total. Literature suggests that crowdsourcing experiments induce a lower attention span in participants [START_REF] Gardlo | Crowdsourcing 2.0: Enhancing execution speed and reliability of web-based QoE testing[END_REF]. Hence, to optimize the performance and execution speed of the experiments we split the initial dataset into 4 playlists of 5 SRCs with 30 comparisons in each. Each participant was asked to complete all 4 playlists without any constraint on the break taken between playlists. The average time taken for an observer was 4.33 seconds per comparison.

The third experiment, Prolific, was conducted with the same stimuli and experiment design on the Prolific [176] crowdsourcing platform. Unlike the first two experiments, observers were recruited through Prolific participants pool. 400 participants, 116 female and 284 male, were recruited from more than 20 different countries, mostly being from Europe. Mean age of the participants was 28.5 years. Similar to the Exp-Online experiment, we split the initial dataset into 4 playlists of 5 SRCs with 30 comparisons in each. 100 unique participants evaluate each playlist. The average time spent per comparison was 3.64 seconds. Table 6.1 summarises the demographic information and statistics of the observers for each experiment. The three experimental designs with systematic changes in the environment and recruitment protocol pose a gradual change in the complexity of the experiments. As the remote-ness of the setups increase from Exp-Lab to Prolific, the control decreases. In the following section, we analyse whether the robustness or reliability of the data collected changes across the experiments in tandem. 

Comparisons

Reliability Analysis

As described in the earlier sections, we conducted the experiments on three different platforms with no difference in compared stimuli and systematic difference in the setup.

Using the collected data we continue to observe whether crowdsourcing methodology can be reliably used for aesthetic evaluation of TMOs. In the following subsections, we first evaluate the similarity between the results collected across the experiments based on the pairwise preferences. Consequently, we investigate the inter-observer agreements in the population of participants for each experiment. Finally, we use the permutation test to quantify the effect of the number of observers on the outcome of the experiment and quantify 'certainty' of the outcomes for aesthetic evaluation studies, conducted online, similar to our use-case. percentage of times Image-A has been preferred over Image-B. Each axis represents the labeled experiment in comparison. Two experiments have a perfect agreement and can be considered exactly similar when the scatter plot of points follow the identity and lie along the diagonal. Consequently, we compute the Mean Perpendicular Distance (MPD) to quantify the similarity between the experiments. MPD is calculated as the mean value of the perpendicular distance of each point from the diagonal. Therefore, a smaller MPD indicates a higher similarity between the compared experiments. Based on this, we observe that the distribution between Exp-Lab and Prolific experiment results are more linear and less scattered compared to Exp-Lab and Exp-Online, indicating a higher similarity for the former. We observe even higher similarity between Exp-Online and Prolific experiments. This can be attributed to the participant behaviour in uncontrolled environmental conditions in both experiments.

Pairwise Preference Similarity between Experiments

After comparing experiment results relative to each other, we use permutation test to compute an expected MPD value. We split the observers from Exp-Lab experiment into two disjoint groups and compare their cumulative preferences for 1000 iterations to compute an expected value. We use this as a baseline to evaluate the agreement across experiments. Distribution of the permutation results is plotted as a two dimensional histogram in Figure 6.4. Average MPD across 1000 iterations is calculated to be 0.0740. We observe in Figure 6. Additionally, we analyze the similarity of agreement, disagreement and contradiction regarding the statistically significant difference between image pairs. Table 6.2 presents the result of this analysis. Each row in the table corresponds to a comparison between the conducted experiments. We use Barnard's test2 [START_REF] Barnard | A new test for 2× 2 tables[END_REF] on the pairwise comparison results to determine the statistical significance between pairs [START_REF] Barnard | A new test for 2× 2 tables[END_REF]. Agreement value represents the number of pairs where both experiments agree on the outcome of Barnard's test e.g., Image-A is significantly better or worse than Image-B. Disagreement value represents the number of pairs where for one of the experiments the difference between the image pair is statistically significant while the difference is insignificant for the other experiment. Finally, Contradiction value corresponds to pairs where the sign of the statistical significance is reversed i.e., one of the experiments indicates that for pair A-B, A is significantly better than B whereas the other experiment suggests preference of B over A. Similar to the MPD values, we observe a higher number of agreements between Exp-Lab and Prolific experiments compared to Exp-Lab and Exp-Online by a margin of 89 to 73 out of 120 stimuli pairs.

Inter Observer Agreement

Aesthetic preference is highly subjective in nature. Hence, it is expected to have a high variance between the observer preferences in TMO evaluation data. Therefore, observer agreement which is partly a function of the subjectivity of the task, does not necessarily have a directly proportional correlation with the observer reliability. Nevertheless, it provides valuable insight regarding the effect of experimental conditions on the observer agreement. Hence, we compare the inter observer agreement for each of our three experiments.

Pairwise preferences are acquired in a binary form, i.e., Image A is better/worse than Image B. Unlike a rating task, PC methodology cannot be fit into a comparative continuous scale. Hence, traditional correlation analysis methods fail to capture the agreement among observers in an experiment. In order to measure the agreement of each observer with the rest of the peer population in the experiment, we utilized the Rogers-Tanomoto (RT) distance [START_REF] Rogers | A Computer Program for Classifying Plants[END_REF]. RT metric measures the dissimilarity between two binary vectors. It is robust to sample size differences and can use a weight vector to prioritize each observation. Figure 6.5 shows the distribution of the mean of the observer RT dissimilarity scores within their corresponding experiments. Each sample plot point represents an observer among its peers population. Black horizontal lines indicate the median of the observer dissimilarity for each experiment. RT values are bound between 0 and 1, and lower values indicate a higher agreement. Cumulative preferences of all observers are used as a weight in the calculation. Therefore, distance calculation penalizes the dissimilarities on pairs with higher statistical difference.

We observe that the participants in the Exp-Lab experiment have a higher agreement among themselves as compared to the online experiments. It may be attributed to the controlled environmental conditions in lab for the experiment and the reliable recruitment pool of participants. Additionally, we observe a higher agreement among observers in Exp-Online experiment compared to Prolific. This follows the same intuition that we had while designing the experiments. Although, the execution conditions online are similar between Exp-Online and Prolific, the recruited participants in Prolific shift from the trusted source of University mailing list to the diverse online pool in the crowdsourcing platform. This can introduce some unreliable participant data. In the current study, we do not consider removing outliers or unreliable participants, but compare the data from Prolific in its native form to the other experiments. In Section 6.4, we look at the various filtering techniques presented in literature and introduce our own procedure to filter unreliable participants. The major outlook of Figure 6.5 is finding crowd consensus. As mentioned earlier, observer agreement does not necessarily possess a direct correlation to the observer reliability. However, a general agreement in subjective preference reduces chances of outliers. In the plot, we do not observe multiple disjoint clusters of observers indicating unanimity. This is reconfirmed by Krippendorf's alpha evaluation. Table 6.3 presents the results of Krippendorff's alpha evaluation on each experiment. Krippendorff's alpha value measures the inter-observer agreement in an experiment [START_REF] Krippendorff | Estimating the Reliability, Systematic Error and Random Error of Interval Data[END_REF].

Higher alpha values indicate higher agreement among the observers. Since our online experiments are split into 4 playlists, we sampled each observer's data accordingly for the Exp-Lab experiment. The first 4 columns represent the alpha values on all pairs in corresponding playlists. Additionally, last 4 columns represent the alpha values for the pairs with statistically significant differences. Similar to the RT dissimilarity analysis results, we observe higher agreement among observers in Exp-Lab experiment compared to online experiments. For all the experiments, observers show higher agreement on pairs with statistically significant differences.

Effect of Number of Observers

A standard way to observe the effect of the number of observers on the experimental outcome is by applying bootstrapping. We create subsets of observers with incremental size from a randomly shuffled list of all observers and evaluate the experiment results over all created subsets. When repeated for a significant number of iterations, we can determine the required number of observers for a desired level of certainty. We start by shuffling our total list and select 10 observers and their preference data. We use Barnard's test [188] to check whether a statistically significant difference exists between the pairs with these 10 observers. The next observer's preferences are then combined with the existing preferences and Barnard's test is conducted again. This step of increasing the subset size and conducting the Barnard's test is repeated until the maximum number of observers is reached. The whole procedure is repeated 1000 times separately for each experiment. As a result of this bootstrapping, we can observe for each stimuli pair for 1000 instances, when the observer preference converges to a conclusion with significant difference. Difficult pair of images may result in delayed convergence beyond the maximum number of observers available resulting in incorrect inference.

To increase the reliability of the results within the maximum number of observers, we check for the consistency of the convergence for each pair, i.e, non-fluctuating Barnard's test results, for the observers between N -5 and N , where N is the maximum number of observers. In order to compute an expected baseline, independent of the observer order, we also calculate the Barnard's test results for maximum number of observers over 100 permutations. Finally, the distribution of results acquired through bootstrapping over 1000 iterations is compared with the distribution of expected baseline results calculated over 100 permutations to find a measure of certainty. Figure 6.6 presents the outcome of the permutation test. Y axis represents the certainty in percentage where 100% indicates a perfect match of the convergence distribution between the two permutation tests of 1000 and 100 iterations for all pairs in the evaluation. Each color represents an experiment. Solid curves represent certainty percentages over all pairs whereas dashed curves represent certainty percentages only for the common pairs with statistically significant difference.

As observed, to reach the same outcome of the Exp-Lab experiment with 35 observers with 65% certainty, Exp-Online requires 40 observers, and Prolific requires 50 observers. Similarly. for the common pairs with statistically significant difference among all experiments, to reach the same 95% certainty of the Exp-Lab experiment with 35 observers, Exp-Online requires 25 observers, Prolific requires 60 observers. We notice that the certainty curves for common significantly different pairs reach higher values than the distribution with all stimuli pair. This can be attributed to removal of image pairs where the statistical difference was insignificant, i.e. removal of stimuli which were debatable enough to reach a conclusive outcome and hence uncertain. Removing such pairs increases the certainty of the experimental outcome by a margin.

Verdict -Crowdsourcing Is Reliable

To summarise this section, we conducted three different experiments with systematic changes to investigate the possibility of using crowdsourcing platforms for aesthetic evaluation of TMOs. First, we collected subjective data in a controlled laboratory environment to acquire expected desired pairwise preferences. The second experiment was conducted online via a private call to the same recruitment channel to isolate the effect of uncontrolled experiment conditions. Finally, we conducted the same experiment on Prolific with the participants pool available on the website.

Comparing the three experiments revealed that the online experiments provide desirable similarity in terms of subjective preferences. Furthermore, effect of Prolific participants pool on the cumulative pairwise preferences is favorable and brings a degree of certainty after reaching certain number of observations per stimuli. We see a higher variation among observers' subjective preferences in Exp-Online and Prolific. This is an expected outcome considering the uncontrolled environmental conditions of the experiments. Finally, we compared the certainty of the collected subjective preferences with varying number of observers. To reach the desired level of certainty, Prolific requires higher number of observers overall when compared to other experiments. Considering the lower cost of recruitment through Prolific, the lower time constraint required for the actual execution of the study and the availability of a wider audience, we find Prolific advantageous in terms of certainty acquired per resource spent.

Hence, through extensive analysis we confirm that Prolific can be safely used to collect subjective preferences on aesthetic evaluation of TMOs. We believe that this conclusion can be generalized to other aesthetic image quality evaluation tasks which do not depend highly on viewing conditions. Finally, we also observe that, depending on the expected certainty compared to the in-lab experiment, the required number of observers to evaluate each pair of stimuli lies between 50 to 60 for a full pair comparison design. We answer 3 out of the 4 questions we asked ourselves in Section 6.1. In the final section of the chapter we explore and introduce techniques to detect outliers and unreliable participant data collected on a crowdsourcing platform.

Filtering Crowdsourcing Outliers

We have already established the effectiveness of using crowdsourcing platforms for conducting remote experiments on subjective quality evaluation of tone mapped images.

Although such platforms provide more data requiring less resources, lack of controlled environment for the experiment may result in noisy outlying data. In this section we analyse a crowdsourcing experiment with two different groups of participants ad explore outlier detection techniques.

Motivation

Identifying unreliable observers is not straightforward for subjective experiments focused on aesthetic quality. Primary reason is that aesthetic comparisons do not have a ground truth unlike subjective experiments measuring image fidelity or similarity. In other words, each observer can respond differently to the same stimuli. Thus, reliability of observers cannot be evaluated by their aesthetic choices. We identify different constraints for subjective evaluation via crowdsourcing. We focus on methods which can be used to process the collected preference data in order to extend the reliability of outcome. Literature has shown use of golden standards [START_REF] Hsueh | Data quality from crowdsourcing: A study of annotation selection criteria[END_REF] where results gathered from an in-lab experiment have been compared to participants' answers. Subsequently, participants who make more mistakes than previously set threshold are considered to be unreliable. Our hypothesis is that, we can track several objective factors in the crowdsourcing platform such as response time, response pattern etc. to flag unreliable participants. The two group of participants for our study is carefully chosen. Te design is such that one group can be considered reliable and the other from an unregulated source of recruitment similar to a crowdsourcing platform. We conduct a comparative study and present a collection of methods to detect unreliable participants in crowdsourcing experiments in a TMO quality evaluation scenario. These methods can be utilized by the scientific community to increase the reliability of the gathered data.

Experimental Design

We use the same stimuli dataset from Section 6.2.2 and follow the same execution setup for the experiment as described in Section 6.2.1. To remind ourselves, we follow the forcedchoice pair comparison methodology for our experiment. Participants are not allowed to use smartphones or tablets. In addition, display resolution is set to 1080p. This ensures same presentation of stimuli for every participant. Although display resolution is controlled during the experiment, participants are free to adjust viewing distance. Two tone mapped images of 480p resolution are shown side by side in landscape viewing mode.

Participants are requested to indicate their preference and are allowed to observe each stimuli as long as is deemed necessary.

Two separate experiments are conducted using the aforementioned dataset. Both experiments are conducted remotely. Although all design choices remain exactly identical, the method of recruitment of participants differs between the two experiments. For the first experiment a total of 400 participants, 100 for each playlist, are selected on an online platform Amazon Mechanical Turk [177] without any pre-conditioning or profiling candidates. We call this experiment 'In the wild'. For the second experiment around 35-40 participants are recruited for each playlist through formal connections at the university to mark a degree of reliability. We call this experiment the 'Control Group'. The primary difference between the two setups is the degree of control and interaction involved. While the participants in the 'Control Group' fit a profile of relative expertise and are considered reliable, the participants from 'In the wild' are completely random with no known degree of reliability. Furthermore, though remote, there lies a possibility of human interaction through verbal exchange when the 'Control group' participants are invited for the experiment. Whereas, the participants from 'In the wild' are not part of any interaction and their experiments run completely autonomous. We hypothesise that the 'In the Wild' experiment is highly likely to have unreliable observers. As a result, we may expect behavioral differences between the two group of participants. We will first investigate the differences between the two experiment, in terms of preferences. We will then provide different analysis in order to identify the participants with unexpected behavior which leads to suspicion.

Analysis of Pairwise Comparison Results

Since we use the same content and execution design for both of our experiments, we can expect that under ideal circumstances, with a large enough number of participants the preferences distribution of both groups would be similar. In this part, we compare and analyse the preference distribution of both experiments. Since we use forced-choice pair comparison for the experiments, preferences are stored in the form of pair comparison contingency matrices (PCM). Figure 6.7 shows an example PCM collected in our 'Control Group' experiment. Each cell (i, j) of the matrix represents the number of times observers have chosen the TMO i in comparison to TMO j .

Barnard's Exact Test

One popular method to determine whether there is a statistically significant difference between a pair of images over pair-comparison data is to check Barnard's test [START_REF] Barnard | A new test for 2× 2 tables[END_REF] results.

We have used this method in our previous crowdsourcing experiment as well. It is an alternative to Fisher's test [START_REF] Fisher | On the interpretation of χ 2 from contingency tables, and the calculation of p[END_REF] to determine statistically significant differences for n × n contingency tables. For large n, n being the number of stimuli to compare in an instance, effect of discreteness of Fisher's statistical test reduces and renders Fisher's test more powerful compared to Barnard's test. However, for 2 × 2 contingency tables, Barnard's test has been observed to be more powerful than Fisher's test [START_REF] Mehta | Conditional versus Unconditional Exact Tests for Comparing Two Binomials[END_REF]. We can analyse the results from the perspective of significantly different pairs in each experiment. Among 120 image pairs in total, both experiments are in agreement for 76 of the pairs. 

Permutation Test

Barnard's test can be used to compare preference distribution across experiments. It can be determined whether both distributions are statistically different for a given image pair. While directly comparing the two experiments for each of the image pairs is useful, a permutation test is necessary to ensure the validity of this information. For this purpose, we conduct a 10k fold permutation test. At every iteration we swap the data for two random observers, one from each experiment. Consequently, the new count of statistically different pairs is calculated. This procedure is applied to each playlist separately. Result of the permutation test indicates that the validity of the Barnard's test results from comparing both experiments are within the confidence interval of 95 percentile. We can claim with a confidence of 95% that the observed difference between the two experiment as per Barnard's test is not random. 

Detection of Noisy Observer Data

As discussed and documented in the previous section, we observe statistically significant differences between the result of both experiments. Although these differences can be partly attributed to some uncontrolled factors of the experimental environment, we believe that unreliability of observers within the 'In the wild' population is one of the most important reasons. To test our hypothesis, we propose a set of methods to identify unreliable observers. By comparing participants from 'In the wild' experiment and 'Control group' experiment, we can distinguish such behaviours.

Timing Analysis

We do not set a time limit for either experiment. Participants are allowed to respond as quickly or as slowly as they wish. On comparison, we observe that participants from 'In the wild' experiment have been faster on average. This may be an indication of the difference of attention span between both groups during the experiment. Histogram of the average time spent per comparison by participants is plotted in Figure 6.9. Timing alone is not a robust condition to detect an unreliable observer. However, it can be used to flag and further analyse observers who spend significantly less time on a comparison since it may be a sign of carelessness. With this in mind, we set an empirical threshold of 2 seconds per comparison and identify 10 participants who spend less than that on average and mark those data as suspicious.

Voting Pattern Analysis

Next, we evaluate participants' behaviour in terms of their voting patterns. We aim to identify whether a participant follows a certain discernible pattern while voting, such as voting left/right image consecutively, alternating left-right votes perfectly, etc such that the distribution is skewed. Since we shuffle the stimuli positions each instance, ideal vote patterns is expected to follow a normal distribution. In addition to voting patterns, we also analyse the distribution of left/right votes for each participants. Figure 6.10 presents the distribution of the participants by the number of times they have voted for the left image, for a playlist of 30 images. We observe normal distribution for both experiments. However 'In the wild' experiment presents some observers, who show suspicious behaviours such as voting for the image on the left side for more than 24 times. With a random sampling of paired test images, it is unlikely to happen. In addition, the comparison with the 'Control group' experiment confirms it. As a result, we identify 15 participants from 'In the wild' experiment as suspicious. In mathematics, a relation ">" is transitive over a set M if and only if ∀x, y, z ∈ M , x > y and y > z implies the condition x > z. In the context of our experiments, we check whether such transitivity exists between comparison of tone mapped images for each participant. Two example cases are shown in Figure 6.11. Arrow directions indicate an observer's preference of a tone mapped image over another tone mapped image. A behaviour is marked as suspicious if the relation is non-transitive. It is important to note that preferences that do not satisfy a transitive relation do not imply an unreliable participant, due to the subjective nature of the image comparison task. However, since the conditions for both experiments are identical, we expect to observe similar behaviours from both participant groups. With this in mind, we count the number of occurrences of non-transitive relations for each participant in both experiments and compare them. As it can be observed in Figure 6.12, 'In the wild' experiment has more participants with higher number of failed transitivity relations compared to 'Control group' experiment. Nearly 10 percent of the participants in the 'In the wild' experiment have at least 6 failed transitivity relations out of 20 possibilities. Conversely, there is no participant in the 'Control group' experiment with more than 5 failed transitivity relations. Thus, 29 participants from 'In the wild' experiment are marked as suspicious.

Verdict -Outlier Removal

In addition to the analyzed methods, one common method to identify unreliable participants is the gold standard image analysis [START_REF] Kundu | Large-Scale Crowdsourced Study for Tone-Mapped HDR Pictures[END_REF]. It requires a set of annotated comparisons with known outcomes. Stimuli from this set is then inserted into the crowdsourcing experiment playlists and participants' preference are checked for consistency. It is expected to be in line with the known outcomes. However, it is difficult to find gold standard images for aesthetic evaluation. Participants do not always share the same opinions. Evaluating participants by aesthetic preferences may lead to false detection. Another method that can be adapted is to repeat image pairs [START_REF] Kundu | Large-Scale Crowdsourced Study for Tone-Mapped HDR Pictures[END_REF]. Randomly selected stimuli are presented more than once to each observer and participants are expected to provide consistent answers. The disadvantage of both of these methods is the requirement of considerable amount of resource for implementation. Crowd sourcing experiments are shorter compared to an in-lab experiment due to lower attention span of the participants. A playlist with 30 stimuli where 5 stimuli are repeated requires to spend 20% more resource.

After conducting the analysis via our filtering methods, we identify 54 suspicious participants in total. Among 400 participants, 10 are identified by timing analysis, 15 are filtered further by voting pattern analysis and finally 29 are identified by transitivity analysis. After pruning the PCMs from unreliable records, agreement between the two experiment increased according to Barnard's Test results. Among 120 pairs in total, number of pairs where both experiments are in agreement increased from 76 to 82. Our proposed methods in this part can be adapted to other aesthetic preference subjective experiments without additional resources. The verdict states-with outlier filtering techniques such as ours, we can make data collected via crowdsourcing even more agreeable to data from robust in-lab environments.

Lessons from the Chapter:

We asked ourselves at the beginning of the chapter-Can crowdsourcing be reliably used for quality evaluation of TMOs? How do the number and mode of recruitment affect the outcome of the experiment? Finally, can we filter outliers from collected data to make crowdsourcing more reliable?

We conducted experiments in controlled laboratory environment and online on crowdsourcing platforms with systematic changes and diminishing control. We analysed participant behavior, their preference distribution across experiments and inter-observer agreements to conclude that crowdsourcing on Prolific [176] platform could help achieve desired outcome similar to laboratory environment. Consequently we conducted further studies on yet another crowdsourcing platform, Amazon Mechanical Turk [177] and we introduce methods to filter unreliable observers. The primary takeaway from this chapter is that crowdsourcing can not only be reliably used for TMO quality evaluation, but can be made more robust and agreeable to laboratory experiments using outlier detecting techniques.

This chapter contributed to the following papers: This chapter introduces RV-TMO dataset containing 250 HDR images, each tone mapped with 4 different TMOs. 1500 unique pairs of stimuli are evaluated in a pair comparison method by 70 unique observers each. The large number of tone mapped stimuli and the large number of unique observers (3500 in total) makes this the largest dataset with subjective preference data available in literature.

"

Introduction

A photograph is not necessarily a lie, but it isn't the truth either. It's more like a fleeting, subjective impression.

Martine Franck

In the previous chapter we discovered the reliable use of crowdsourcing platform for aesthetic evaluation of tone mapped image quality. Quality assessment of tone mapped image quality can be categorized broadly into two: objective and subjective quality evaluation. Objective quality evaluation can be done with tone mapped image quality metrics [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF][START_REF] Gu | No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization[END_REF][START_REF] Gu | Blind Quality Assessment of Tone-Mapped Images Via Analysis of Information, Naturalness, and Structure[END_REF][START_REF] Krasula | FFTMI: Features Fusion for Natural Tone-Mapped Images Quality Evaluation[END_REF]. Such metrics are often developed via annotated datasets of tone mapped image quality. Their objective is to provide scores by estimating human preference as portrayed by the datasets. However, it is difficult to predict the correct preference using metrics developed with limited number of data. We aim to adopt our newly discovered avenue of reliably using crowdsourcing to compile a dataset which not only helps us benchmark available objective IQA metrics but also develop new metrics. Creating a dataset involves several challenging aspects. High number of meaningful, challenging yet diverse content is essential to collect unbiased subjective preferences. In the following sections, we will first talk about our motivation behind building the largest annotated tone mapping dataset. Section 7.2 discusses the previous work in subjective tone mapped IQA, content selection strategies and outlier detection for PC experiments. Section 7.3 introduces the content selection strategy used in dataset creation. Details regarding the experimental design are provided in Section 7.4. We analyze the collected subjective pairwise preferences in Section 7.5. In Section 7.6 we use our dataset to benchmark the performances of 4 objective IQA metrics TMQI [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF], NIQMC [START_REF] Gu | No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization[END_REF], BTMQI [START_REF] Gu | Blind Quality Assessment of Tone-Mapped Images Via Analysis of Information, Naturalness, and Structure[END_REF] and FFTMI [START_REF] Krasula | FFTMI: Features Fusion for Natural Tone-Mapped Images Quality Evaluation[END_REF]. Finally, we make our recommendations towards the usage of collected subjective data in Section 7.7 and draw our conclusions in Section 7.8.

Motivation

Quality assessment of tone mapped image quality can be categorized broadly into two: objective and subjective quality evaluation. Objective quality evaluation provides quality scores to images considering several objective and perceptual factors of the result. However, they are not as robust as human preference and can rarely be considered as the ground truth. A subjective experiment with human participants is considered to be the most reliable method to evaluate tone mapped image quality. Methodologically, subjective evaluation of tone mapped images can be conducted with or without the presence of a reference HDR scene. Krasula et al. [START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF] show that the presence of the HDR reference can affect the participant preferences depending on the task and the content. Furthermore, subjective experiments can be split into two broad categories in terms of tasks performed-rating and ranking experiments. Rating tasks ask the observer to assign a score to an individual stimulus within the range of a predefined scale. Conversely, ranking tasks ask the observer to compare and rank multiple displayed stimuli. Rating methods such as Absolute Category Rating (ACR) or Double Stimulus Impairment Scale (DSIS) rely on observers' understanding of the scale [START_REF] Itu-R | Methodology for the Subjective Assessment of the Quality of Television Pictures[END_REF]. Therefore, without a proper training session prior to experiment, collected subjective scores from individuals may contain bias. On the other hand, ranking methods such as Pairwise Comparison (PC) simplifies the subjective task for the observers and eliminates the biases related to observer's understanding of the quality scale.

Subjective experiments are typically conducted in a controlled laboratory environment by inviting participants. Due to time and cost constraints related to the recruitment procedure, the scale of the collected dataset are generally rather small. As a result, datasets may lack the necessary generalisation for benchmarking existing objective image quality metrics. Furthermore, they often fail to provide sufficient data to develop learning based image quality assessment models.

The last decade brought a surge in the popularity of crowdsourcing platforms such as Prolific [176] and Amazon Mechanical Turk (AMT) [177]. They allow researchers to conduct large scale subjective experiments within a short amount of time for less cost and effort. In addition, they provide a large and varied demography owing to their wide participant pools. Therefore, considering the surge of learning based approaches in objective quality assessment models and their necessity of large scale data, crowdsourcing can play a crucial part as a medium of data collection.

However, crowdsourcing comes with its own set of pitfalls. Uncontrolled experimental conditions in crowdsourcing setup often leads to noise in collected subjective preferences [START_REF] Hoßfeld | Best Practices and Recommendations for Crowdsourced QoE -Lessons learned from the Qualinet Task Force "Crowdsourcing[END_REF]. Therefore, precautions should be taken in order to ensure the reliability of the collected data. Previous standardization efforts provide recommendation towards experimental design and outlier removal methods in order to make the data collection more reliable. These recommendations mainly deal with rating experiments which collects Mean Opinion Scores (MOS) and do not apply to ranking experiments (e.g. PC experiments) [START_REF] Itu-R | Methodology for the Subjective Assessment of the Quality of Television Pictures[END_REF]. In Chapter 6, we introduced various behavioral tools applicable to PC methodology of subjective assessment to detect various spammer-like behaviors [START_REF] Ak | A Comprehensive Analysis of Crowdsourcing for Subjective Evaluation of Tone Mapping Operators[END_REF]. Furthermore, we pre-sented a statistical evaluation of observer reliability in PC experiments. PC methodology with the correct outlier detection tools becomes a favorable design choice for subjective quality evaluation. It simplifies the task for the observers by asking for a binary preference between two stimuli thus eliminating observers' bias based on understanding of the scales in rating tasks. Being unbiased is of greater importance in crowdsourcing setup where uncontrolled experiment conditions lead to more noisy data collection. In addition, it is argued to be more suitable for real world use cases [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF].

Although crowdsourcing can handle the aspect of how large a dataset can be, there is an important attribute of a dataset -diversity of the content. Diversity of the source content is essential to compile a challenging dataset which can be used to benchmark existing objective quality metrics. Tone mapped image quality datasets in the literature contain relatively low number of images and subjective annotations [START_REF] Cerdá-Company | Which tone-mapping operator is the best? A comparative study of perceptual quality[END_REF][START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF][START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF][START_REF] Krishna | A subjective and objective quality assessment of tone-mapped images[END_REF]. Additionally, diversity and subjective annotations provided in existing datasets are also not sufficient for developing learning based image quality models. Recently, Kundu et al. [START_REF] Kundu | Large-Scale Crowdsourced Study for Tone-Mapped HDR Pictures[END_REF] attempted to partially overcome the aforementioned challenges by conducting a large-scale crowdsourcing experiment. However, the dataset is not intended to compare tone mapped images and includes multi-exposure fusion images with and without postprocessing. To the best of our knowledge, there is a deficit of large-scale tone mapped image quality datasets in the literature which hinders the development of accurate objective quality metrics for tone mapped content. Consequently, TMO development is also affected indirectly due to lack of objective quality metrics required for model optimization.

In order to address these challenges and limitations, we conduct a large scale crowdsourced subjective experiment to assess the aesthetic quality of tone mapped images. Our contributions are as follows:

• We present the RealVision-TMO (RV-TMO) dataset containing 250 HDR images, each tone mapped with 4 different state-of-the-art TMOs -KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF], KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF], ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF], SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] (refer to Chapter 4) and their respective subjective scores using a Full-PC methodology. 1500 unique image pairs, each evaluated by 70 unique observers via Prolific crowdsourcing platform and a total pool of 3500 unique observers attending the experiment makes this the largest publicly available dataset for quality assessment of tone mapped images, to the best of our knowledge.

• We develop a content selection strategy which provides diverse HDR images and challenging tone mapped image pairs. It is highly valuable for developing learning based Image Quality Assessment (IQA) model. The sophisticated strategy provides a challenging dataset which can be used to benchmark objective IQA models.

• We propose a novel approach to analyse the collected subjective pairwise preferences in order to assess observer reliability.

• We analyze the performance of existing state of the art IQA metrics for tone mapped images on the collected subjective scores.

• We provide recommendations and tools towards objective tone mapped IQA metric development and benchmarking.

Survey of Crowdsourcing Experiments

Crowdsourcing is relatively new in Quality of Experience (QoE) domain. Although crowdsourcing platforms provide researchers a wider audience, faster turnover and reduced costs, it brings additional challenges which differs from traditional laboratory experiments. Study of Qualinet task force [START_REF] Hoßfeld | Best Practices and Recommendations for Crowdsourced QoE -Lessons learned from the Qualinet Task Force "Crowdsourcing[END_REF] discusses these benefits and challenges from QoE point of view. An early example of subjective IQA on crowdsourcing shows promise by comparing crowdsourcing experiment and laboratory experiment results [START_REF] Ribeiro | Crowdsourcing subjective image quality evaluation[END_REF]. Recent works draw attention to the effect of QoE tasks on crowdsourcing subjective experiments [START_REF] Ak | On Spammer Detection in Crowdsourcing Pairwise Comparison Tasks: Case Study on Two Multimedia QoE Assessment Scenarios[END_REF], part of which is discussed in Chapter 6. LIVE In the Wild [START_REF] Ghadiyaram | Massive Online Crowdsourced Study of Subjective and Objective Picture Quality[END_REF] IQA dataset consists of over 350000 opinion scores on 1162 images. More than 8000 unique participants attended the subjective study to evaluate the quality of images with a wide set of distortions. Although these large-scale datasets provide the research community with opportunity to develop better objective IQA models, there is still a lack of large-scale dataset for many IQA tasks, including tone mapped IQA.

On another front, a few tone mapped IQA datasets collected in laboratory environments are publicly available in the literature. A good coverage of existing work can be found e.g. in [START_REF] Petit | Assessment of video tone-mapping: Are cameras' S-shaped tone-curves good enough?[END_REF]. More recently, Krasula et al. [START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF] conducted two separate subjective experiments to measure the effect of having the reference HDR scene on observer preferences. Additionally, Wang et al. [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF] conducted a subjective experiment to evaluate objective IQA performances by 15 HDR images where each one was tone mapped with 8 different TMOs where each stimuli is rated by around 24 observers. Both works have a similar scale in terms of number of stimuli, unique observers, etc. Conversely, we provide a large-scale dataset with 1500 tone mapped image pairs each evaluated by around 70 observers.

To the best of our knowledge, there is only one work on subjective quality evaluation of tone mapped images with crowdsourcing. In their work, Kundu et al. [START_REF] Kundu | Large-Scale Crowdsourced Study for Tone-Mapped HDR Pictures[END_REF] conducted a subjective experiment on Amazon Mechanical Turk (AMT) with more than 5000 observers on stimuli created from 605 HDR images. Despite providing high number of observations and stimuli, the dataset contains not only tone mapped images but also stimuli processed with Multi-Exposure Fusion (MEF) and visual effect algorithms. Furthermore, each HDR image is tone mapped with only one of the TMOs in the experiment, which renders evaluation of TMOs difficult. Although it provides great value in quality evaluation processed HDR images, benefits regarding tone mapped image quality are limited.

In contrast, we provide a large-scale dataset dedicated to tone mapped image quality evaluation. To the best of our knowledge, our work poses to be the largest publicly available dataset in terms of number of stimuli and number of observes rating each stimuli pair. We show that our 1500 unique image pairs covers a divers feature space of HDR images and the subjective preference on such a challenging content helps to benchmark TMO performance better.

Content Generation

We hypothesize that the HDR images can be characterised by several image features. Therefore, it is essential to compile a dataset of HDR images which cover a significant portion of the image features space and can be diverse. Furthermore, it will help us identify whether certain TMOs enhance certain aesthetic attributes thereby influencing subjective preference. In the following subsections, we present our proposed strategies to generate meaningful image data.

In our search for high resolution HDR images from available literature, two large datasets stand out -The HDR Photographic Survey by Fairchild et al. [START_REF] Fairchild | The hdr photographic survey[END_REF] and Artusi et al. [START_REF] Artusi | Overview and evaluation of the JPEG XT HDR image compression standard[END_REF]. Both datasets contain images of high to very high spatial resolutions ranging from 12 to 24 megapixels.

We observe that Full HD displays with 1080 × 1920 are the most common commercially available and accessible display resolution. Considering our subjective experiment is crowdsourced, we have aimed to create content that is accessible to the participants. Furthermore, to ensure that the display devices do not interpolate the image content while rendering and display the content true to its source, we have chosen a 480p spatial resolution such that a 1080 × 1920 pixel display can present two stimuli side by side in landscape mode. To utilise as much information from the HDR images and for consistency of operations we have adopted a method of systematically scaling and cropping the full resolution images to 480p resolution stimuli. This allows us to not only create a dataset tailored to be used for future learning based approaches but also increases the number of stimuli by natural augmentation.

Scale & Crop

The Fairchild and Artusi datasets include 105 and 124 images respectively, for a total of 229 high resolution HDR images. Our content creation strategy involves a process of iterative down-scaling of the original image by a factor of 2, 4 and 8 and successive use of sliding-window crops of size 480 × 640 px at each iteration. A 480p crop in an image of around 4300 × 2800 resolution provides very little spatial information. However, if we downscale the images the same crop window provides more valuable information to analyse.

Figure 7.1 illustrates our scale-crop strategy where each scale corresponds to the factor by which the spatial resolution is scaled down from the original size of the HDR image. We observe that the higher scales provide meaningful crops more often and may help us reduce homogeneous, redundant or less spatially informative crops. On each scale, we apply a sliding window crop of resolution 480 × 640 with a stride of 100 pixels. Following our strategy over 229 full resolution HDR images, we computed 167100 candidate crops of 480p resolution. Next, we identify certain image features from each crop and assign a score based on the extracted features to help us filter further.

Feature Extraction

We define a mixed set of 6 perceptual and objective features for HDR images. Our hypothesis is that the combination of these features is a good indicator of whether an HDR crop can provide valuable and interesting information. Each feature objectively provides some information about the crop to classify it as an informative 'good' crop. Our crop selection strategy aims to widen the distribution of such good crops in the aforementioned 6-dimensional feature space.

• ADR (r): Absolute Dynamic Range of the HDR crop. The ADR helps us identify crops with exposure variations and helps us to filter out mostly homogeneous crops.

• SD (σ): Standard Deviation of the luminance of the HDR crop. The standard deviation value for the crop can help us identify if a certain patch belongs to a homogeneous region (like a blank patch of sky or similar).

• MLE (m): Multi-Level Entropy of the saliency map of the crop. We use minimum barrier saliency detection [START_REF] Zhang | Minimum Barrier Salient Object Detection at 80 FPS[END_REF] to generate a saliency map for each crop. To approximate the information provided by the saliency map, we compute a multilevel entropy (Depth = 4) for each crop [START_REF] Zhang | A Saliency Dispersion Measure for Improving Saliency-Based Image Quality Metrics[END_REF]. This provides an intuition whether the crops are informative or have salient objects.

• Scale priority (s): The scale of the crop (2, 4 or 8). As discussed previously, the quality of the crop depends significantly on the scale of the crop. Higher scale crops have the chance to include more spatial information due to the scale-crop technique. Although we generate crops for each scale, we provide simple weights to prioritise the scales.

• Objective mean score (O): The mean TMQI [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF] score across 3 tone mapped versions of the crop. Each crop is tone mapped by 3 state of the art classical TMOs: KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF], KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] and ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF]. Our aim as part of compiling a dataset is also to identify a correlation between subjective and objective assessment of tone mapped images. The mean objective scores help us identify crops where the tone mapped versions are good as per objective IQA.

• Objective disagreement score (∆O): A score representing difference of tone mapping objective quality across the aforementioned 3 TMOs. The disagreement scores highlight challenging crops which are apparently difficult to tone map, leading to variation among the TMQI scores of the tone mapped crops. In other words, it helps to identify HDR crops which generates tone mapped image pairs with varying ambiguity.

Each attribute provides certain understanding about how interesting, challenging or informative a crop is. Following the parameter fusion strategy of Krasula et al. [START_REF] Krasula | FFTMI: Features Fusion for Natural Tone-Mapped Images Quality Evaluation[END_REF], we decide to compute an affine combination of our features to get Crop Scores. However, we realise that each feature except scale has a different range. Consequently, we observe the histogram of each feature and we clip them such that the feature values lie within the range of their 1 st and 99 th percentile, followed by normalising them to the range [0, 1]. Hence, we get for each crop, a crop score

S = s 4 + Ô + ∆O -m + r + σ, (7.1) 
where ˆrepresents the clipped and normalised feature values for each crop. The scale s is weighted in a manner where we prioritise higher scale crops. For MLE a negative sign is introduced as we prefer a lower MLE score. It is interesting to note that the score computation considers the tone mapping quality of only 3 TMOs and their disagreements. We do not consider SemanticTMO because of two reasons. Primarily, the 3 other TMOs are established and widely researched upon in literature in comparison to SemanticTMO which follows a novel semantic-based approach. Furthermore, unlike the other 3 TMOs, SemanticTMO is not well optimized for real-time tone mapping and presents a significant time complexity to tone map 167100 candidate crops. Therefore, we rely on the 3 established TMOs to determine the agreement and disagreement of quality while computing scores for each crop.

Overlapping Crops

The candidate crops often represent regions of limited interest in an image such as a homogeneous patch of sky or any background with significantly low contrast. As a measure of such cases, we use two features from our list, namely the standard deviation and absolute dynamic range. We prune our candidate list by removing the lowest successive 20% candidates of each feature. Consequently we proceed to filtering by overlap and crop scores.

We observe that crops collected from the same spatial neighborhood of an HDR image via our sliding window strategy get similar scores. To reduce the redundancy of overlapping regions among candidate crops, first we apply a threshold of spatial overlap percentage. This is a percentage of pixels that two crops have in common. Consequently, we prioritise based on the score and the scale of the crop which allows us to remove redundant candidate crops across all scales for an HDR image.

We empirically set the spatial overlap threshold at 60%. As an example, suppose we encounter two crops with overlap greater than the threshold. If they belong to the same scale, the crop with higher score is chosen. If they belong to different scales, the candidate with higher score is preferred unless the candidates belong to scales 2 and 8, where candidate with scale 8 is preferred over scale 2 irrespective of score difference. The reason behind such preference is the more neighbourhood information and larger field of view in the frame that a higher scale crop provides. Figure 7.1 shows that for the same region a higher scale crop incorporates more neighbourhood information in the scene due to its scale. Consequently, a higher scale crop has the possibility to be more interesting and challenging because of the extra information. Figure 7.2 presents an outline of our crop filtering strategy from the candidate crops to the selected crops. 

Clustering Based on TMQI Scores

Overlap removal from the 167100 candidate crops leaves us with 19540 crops. We observe that although spatial redundancy has been removed, the crops vary in terms of how challenging or informative they are -suggested by the scores we compute for each crop. The scores do not have a fixed bound but a higher value suggests more interesting crop.

In our case, the score lies in the range [0.02, 3.85]. We empirically put a threshold of 1.5 to the score and select all candidate crops above the threshold. This step provides us 9730 candidate crops which we consider to be interesting, challenging and informative.

Consequently, we cluster the selected 9730 candidate crops on the basis of their objective IQA scores obtained using the TMQI [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF] metric on each crop, tone mapped by 3 TMOs; KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF], KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] and ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF]. Each crop can be represented in a 3-dimensional space with their 3 IQA scores as coordinates. The objective of the task is to identify crops which provide variety in their objective assessment. We observe cases where all the 3 tone mapped versions of the HDR crop are rated highly by TMQI. Conversely, in certain other cases TMQI suggests that one tone mapped crop is significantly better or worse than the others. We group our selected candidates into 5 clusters -one where all 3 tone mapped crops have high scores, one where all 3 have poor scores and 3 other clusters where one tone mapped crop is better than the other two. Finally we randomly select 50 crops from each cluster to produce a large dataset of 250 source content (SRC) HDR crops. Our selection procedure aims to maximise the distribution of crops in the aforementioned features space. The clustering based on TMQI scores helps us incorporate the agreement and disagreement in aesthetic quality. Using the clustering technique we produce a representation of stimuli pairs with varying ambiguity. Figure 7.3 presents two-dimensional views of the three-dimensional TMQI space. The five clusters are created using Spectral Clustering [START_REF] Luxburg | A Tutorial on Spectral Clustering[END_REF] as we intend to cluster based on the distance from the diagonal in form of concentric circles to capture the TMQI score ambiguities. 

Validation of Content Selection Strategy

The aim of the content selection strategy is to identify HDR crops that can be challenging for tone mapping evaluation. We hypothesize that by clustering the candidate HDR crops on a three dimensional space where each axis represents the TMQI scores of a tone mapped image, we can select a subset of HDR crops which will generate pairs with uniformly distributed agreement and disagreement over tone mapped quality. The consensus can be translated to how challenging a crop is, thereby, making the dataset challenging.

Validating the approach is a straightforward procedure after collecting pairwise preferences. Figure 7.4 depicts the distribution of pairwise preferences (for a detailed explanation of how to acquire pairwise preferences, please refer to Section 7.5.1) in terms of percentages. Vertical axis represents the number of pairs for each bar. Horizontal axis represents the pairwise preference percentages. 100% represents the pairs for which every observer preferred the same image, whereas 50% represents the pairs where half of the observers prefer one tone mapped image while the other half prefers the opposite. In other words, ambiguity of the pairs increases from left to right on the horizontal axis. We can observe that a balanced distribution of ambiguity exists in the dataset despite being not perfectly uniform. Approximate threshold for statistically significant difference (for a detailed explanation of statistically significant difference, please refer to Section 7.5.1) is plotted as a vertical line on the plot. Pairs on the right hand side of the threshold line show no statistically significance difference in subjective preference. Thanks to the high number of unique observations per pair, majority of the dataset present a statistically significant difference in pairwise preferences. This validates our approach of scoring each crop on the basis of 5 image features with successive filtering strategies and clustering technique based on objective IQA metric.

Subjective Experiment Design

In the following subsections, we describe in details the experimental design, generated dataset, information about participants and the crowdsourcing platform, and the strategies adopted to reject outliers and spammers.

Experiment Setup & Procedure

We have mentioned previously that subjective quality evaluation of tone mapped images can be conducted with either a full-reference or a no-reference methodology. While full-reference comparison reveals information regarding the test image's fidelity to the HDR image, no-reference scenario reveals the overall aesthetic quality preferred by the observer [START_REF] Krasula | Influence of HDR reference on observers preference in tone-mapped images evaluation[END_REF]. In this experiment, we aim to collect aesthetic preferences among tone mapped images. Therefore, a no-reference experiment design is more suitable. As mentioned previously, we use a forced-choice pairwise comparison methodology to compare the image stimuli.

Stimuli & Dataset

The dataset compiled using our content generation strategy (Section 7.3) for the subjective study consists of 250 SRCs tone mapped by 4 TMOs, a total of 1000 stimuli. For ease of experimentation we divided the dataset into 50 playlists of 5 SRCs or 20 tone mapped stimuli each ( refer to Figure 7.5). Consequently, each playlist has 30 tone mapped stimuli pairs to compare and 3 golden unit pairs (explained in Section 7.4.4) for experimental control. The 4 TMOs used consist of 3 classical TMOs deliberated by literature; KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF], KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] and ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] and our semantic-aware operator, SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF].

To remind ourselves of the TMOs -Kim et al. [START_REF] Kim | Consistent tone reproduction[END_REF] propose a global TMO based on the logluminance adaptation of human visual cortex. As a local approach, Krawczyk et al. [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] introduce a TMO based on a probabilistic model of lightness perception. They decompose an HDR image into areas of consistent luminance (lightness framework) and map each framework by adjusting the perceived 'white' point. Reinhard et al. [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] propose a TMO considering the photographic practices based on eminent photographer Ansel Adams. Finally, SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] addresses tone mapping as a semantic-aware operation taking semantic labels and a corresponding specific target luminance into consideration.

Each playlist is evaluated by 70 unique observers. Details of the platform and the study demography is provided in the following subsection.

Experiment Platform & Participants

We use the Prolific platform to recruit the observers and conduct the subjective experiment [176]. Contrary to the alternatives such as AMT [177] and Microworkers [178], which try to make crowdsourcing platforms more accessible while compromising on the ethical concerns and overall quality, Prolific focuses on the need of researchers with a platform which maintains the standards of recruitment similar to a laboratory experiment [START_REF] Peer | Beyond the Turk: Alternative platforms for crowdsourcing behavioral research[END_REF].

Participants are well informed that they are being recruited for a research study and the recruitment standards are set to benefit both researchers and the participants [START_REF] Palan | Prolific.ac-A subject pool for online experiments[END_REF]. Therefore, Prolific eliminates ethical concerns and increases the reliability of the collected data significantly.

In total, 3500 unique participants are recruited where each participant evaluates 33 stimuli. This allows us to have around 70 unique observations for each pair in the dataset. Majority of the participants consent to share their demographic information. We have 2311 male participants with a mean age of 28.75 years and a standard deviation of 9.47.

Similarly, we have 1154 female participants with a mean age of 31.54 years and a standard deviation of 10.83.

Rejection Strategies

Online studies have a fair share of pitfalls and one major concern is unreliable observers. Participants who do not provide required attention to the study, may end up providing unnatural data or typically try to bypass the experimental setup due to its uncontrolled nature. Such participants are considered as spammers. In Chapter 6, we have discussed in details about several aspects of reliability in a crowdsourcing platform. Furthermore, we presented several techniques to identify and remove noisy observer data from the collected preference. The following subsections outline the strategies we adopt to filter unreliable observer annotations from our large-scale subjective evaluation experiment and the motivation behind them. Consequently, we report the number of spammers rejected based on each method.

Golden Unit: Golden unit or a golden standard [START_REF] Hsueh | Data quality from crowdsourcing: A study of annotation selection criteria[END_REF] is a filtering technique where a stimuli pair is presented for comparison with their preference outcome (usually unanimous in nature) known prior to the subjective experiment. Participants who provide preferences different to the prior are considered to be spammers. The reason for such behaviour can be attributed to lack of attention or simply random selection on the observer's part.

To select a set of golden units, we conducted a pilot subjective experiment in a controlled laboratory environment and the same remotely via prolific platform. As a result of the experiment, we collected 3 pairs of tone mapped images where 100% of the participants provide the same preference. Figure 7.6 presents the 3 golden unit pairs used in our experiment with their known prior preference. The pilot study suggested that 100% of the participants did not prefer the aesthetics of the overexposed image. Consequently, in our large-scale study, preference towards strongly overexposed images, displayed in the top row, is considered as an indicator of unreliable behavior. Three golden units are included in all the 50 playlists of our experiments. Order of stimuli in each playlist is shuffled to prevent any bias towards the display order. 49 participants out of 3500 failed the golden unit check at least once and therefore were rejected and replaced by new participants.

Vote Position Pattern: Previous studies suggest another behaviour which can be observed in pairwise comparison experiments to filter unreliability. We can check for positional bias -the participants submitting preference towards the stimuli at the same position very frequently during the experiment. Since the stimuli positions are shuffled for each participant, we can calculate the probability that the observer votes for a fixed position. Figure 7.7 shows the probability distribution for each possible Left-Right share over 33 stimuli pairs. Orange dashed lines shows the threshold for rejection. It can be observed that either position receiving less than 6 or more than 27 votes is statistically highly unlikely with a probability of one in 10000 participants. Therefore, among 3500 participants, we rejected 13 participants who failed the position pattern criteria.

Voting Speed: Spammers on online platforms tend to optimize their effort by finishing more tasks and hence minimizing the time spent in each task. This results in a lack of attention and improper data quality. Comparing aesthetic quality may need a small yet significant duration to register two image stimuli and compare them to make an informed decision. During the experiment, we recorded the timestamps of observer sessions. We use this information to identify participants with unusually fast completion time which indicates a possible spammer-like behaviour, lack of attention and probably noisy data. We observed the average time spent per pair to be 4.08 seconds over the whole experiment. We identified, 56 out of 3500 participants who completed the task with a median time of 1 second per stimuli which is far less than the expected duration. Consequently, their pairwise preferences are considered to be unreliable and not included in the final results.

Rogers-Tanimoto Dissimilarity: Behavioral analysis may reveal certain spammer profiles but it is not enough to identify all types of unreliable behavior. After filtering the unreliable observers with the behavioral methods, statistical measures can be utilized to further improve the reliability of the collected data. Literature lacks a well established methodology to statistically measure the individual observer reliability for PC experiments. In Chapter 6, we proposed a novel methodology based on Rogers-Tanimoto (RT) dissimilarity. Details of the approach are given in Section 7.5.2. We observe that the efficiency of RT dissimilarity in measuring inter-observer agreement decreases with the increasing percentage of spammers among the observers. Therefore, observers who are rejected with behavioral analysis are omitted from RT dissimilarity analysis.

Analysis of Subjective Preferences 7.5.1 TMO Performances

In this section, we analyse the collected subjective preferences to evaluate the performance of tone mapping operators in comparison to each other. As previously described, 250 SRCs are tone mapped with 4 different TMOs and each tone mapped image is compared in a pairwise fashion. Therefore, we can compare the performance of each TMO with the others for all the compiled HDR content. Figure 7.8 presents the result of this evaluation. Each row in the scatter plot contains 250 data points, each of which represents an SRC. j. Note that, sum of percentages between two TMO is not equal to 100% due to pairs with statistically non-significant difference (points with yellow color in Figure 7.8). One, interesting observation from the table and the plot is the low preference percentage that SemanticTMO receives. Although we acknowledge the limitations and failings of SemanticTMO performance in comparison to the others, this partly skewed statistic is also influenced by our selection strategy. It is important to remind ourselves that as a final step of selection we cluster the candidate crops on the basis of the TMQI scores of all TMOs except SemanticTMO. By clustering the images in function of the three TMOs, and keeping some from each cluster, we have biased the content towards similar and dissimilar performance of these TMOs. By having the mean of the three TMQI scores and their disagreement in our overall score, we have favored source images for which all the aforementioned three algorithms perform rather well -in the hypothetical case of an image where SemanticTMO works very well but the other three fail, this image is probably rejected during the filtering stage of content selection. Hence, it is important to remember that although the dataset can be used as demonstrated to compare TMO performances, it has an underlying bias of finding challenging crops with the main objective beingcreating a diverse dataset.

Inter-Observer Agreement

Inter-observer agreement is an important indicator of reliability. Although ITU standards suggest methodologies for inter-observer agreement and outlier detection in rating experiments, there are not many well established methodologies for ranking experiments. Ak et al. [START_REF] Ak | On Spammer Detection in Crowdsourcing Pairwise Comparison Tasks: Case Study on Two Multimedia QoE Assessment Scenarios[END_REF] show that the inter-observer agreement in pairwise comparison experiments can be measured based on Rogers-Tanimoto (RT) dissimilarity measure. We explore the use of RT dissimilarity in Chapter 6 to address inter-observer consensus as well. A similar variation to such a metric, known as Jaccard index [START_REF] Jaccard | Étude comparative de la distribution florale dans une portion des alpes et des jura[END_REF], has been developed by Paul Jaccard. We use the Scipy implementation [START_REF] Virtanen | SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF] of RT dissimilarity measure which is defined as follows:

RT ij = 2 × (v d ) v a + 2 × (v d ) (7.2)
where v d is the number of stimuli for which two participants disagree on their pairwise preference, i.e. one select left image over the right while other observer selects the right image over the left one, whereas v a is the number of stimuli where both participants agree on their preference. In addition to the above equation, a weight vector with the same size can be used to emphasize on certain elements of the vector. More specifically, we generate the weights using the following equation to emphasize the effect of pairs with higher agreement on the dissimilarity calculation:

w ij = |p ij -p ji | n (7.3)
where n is the number of observers who ranked the pair of images {i, j} and p ij is the number of observers who prefer image i over image j in pair comparison. Similarly, p ji is the number of observers who prefer image j over image i in pair comparison. This allows us to generate weights closer to 1 when more observers agree on the preference among image pair {i, j} and closer to 0 when the disagreement and hence the ambiguity of the pair increases.

Figure 7.9 shows the distribution of mean RT dissimilarities. Each point on the scatter plot is a unique observer, their RT dissimilarities are computed with every other observer in the corresponding playlist and the mean of the dissimilarity is reported. Since the ambiguity of the image pairs is different in each playlist, this may affect the agreement among observers. Therefore, each playlist is represented in a separate column in the figure . Based on the synthetic spammer profiles described by Ak et al. [START_REF] Ak | On Spammer Detection in Crowdsourcing Pairwise Comparison Tasks: Case Study on Two Multimedia QoE Assessment Scenarios[END_REF], we create an expected spammer RT dissimilarity range for each playlist as a spammer baseline. For a given playlist, each observer RT dissimilarity distributions are then compared to the baseline. Observers who have 90% overlap with the expected spammer RT dissimilarity range are rejected. In total 96 observers are rejected and they are represented with magenta color while valid observers are represented with teal color on the scatter plot.

This section dealt with the analysis of the collected subjective preferences and our observation regarding performances of the TMOs and the participant behaviour in the large scale experiment. In the following section we look at how our collected data can be used to evaluate performance of objective IQA metrics.

Evaluation of Objective IQA Metrics

In this section, we first explain the methodology adopted to evaluate objective image quality metric performances. Consequently, we introduce the objective IQA metrics which we evaluate on the collected data. Finally, we present the result of our evaluation and comment on the metric performances.

Evaluation Criteria

Traditionally, performance of objective quality metrics have relied on ground truth MOS which are obtained through subjective experiments following a rating task on a comparative and continuous scale. Correlation between the MOS and predicted quality scores are computed to evaluate the performance of objective quality metrics. Methods which map the pairwise preferences into a continuous scale have been proposed in literature. Zerman et al. [START_REF] Zerman | The Relation Between MOS and Pairwise Comparisons and the Importance of Cross-Content Comparisons[END_REF] show that there is a strong linear correlation between pairwise preferences and MOS. However, cross content evaluation is required to reduce the content dependency of the mapped pairwise preferences. But this requirement is specific to the use-case. Cross content evaluation of tone mapped images does not provide any information in terms of TMO performances. In our use-case the important information pertains to the performance of the TMO on the same SRC. Therefore, cross content image pairs were not considered in the subjective experiment. This prevents us from mapping the pairwise preferences on to a common global continuous scale.

Krasula et al. [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF] propose an evaluation model which does not rely on mapping the collected preferences into a common scale. It also enables to merge multiple datasets while allowing to determine the statistical significance of the performance differences. In Krasula's model, performance evaluation of the objective quality metric is conducted in two follow-up conditional steps. Firstly, Area Under the Curve (AUC) value is computed to determine how well the quality metric can distinguish between significantly different and similar stimuli. Secondly, on positive identification in the previous step the objective metrics are evaluated in terms of efficiency -percentage of correct recognition of the qualitatively better stimulus in the pair. Examples of ideal distribution of metric score differences for each scenario is visualized in Figure 7.10. This allows for an evaluation strategy which is closer to the use cases in real applications. Thus, we rely on Krasula's model to evaluate some state-of-the-art objective quality metrics on the collected subjective data. Krasula's model and the method can be explored in more details in their original work [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF].

Selected IQA Metrics for Evaluation

Literature lists several objective IQA metrics to for the use case of tone mapping quality evaluation. We have shortlisted 4 from a some state-of-the-art metrics dedicated to tone mapped image quality and aesthetic image quality assessment tasks. To remind ourselves, evaluation using objective IQA metrics can be with or without the presence of the original HDR source making the metrics full-reference or no-reference respectively.

TMQI is a full-reference image quality metric to assess the quality of tone mapped images [START_REF] Yeganeh | Objective Quality Assessment of Tone-Mapped Images[END_REF]. Structural features and naturalness measures are combined to evaluate the quality of the tone mapped image with respect to the HDR image. It is one of the most popular quality metric for tone mapped image quality assessment.

NIQMC is a no-reference image quality metric that is developed to assess quality of contrast distorted images [START_REF] Gu | No-Reference Quality Metric of Contrast-Distorted Images Based on Information Maximization[END_REF]. It combines the local and global features to generate a quality score. Although it is not specifically developed for tone mapped image quality assessment, it has high correlation with subjective opinions in aesthetic evaluation tasks. Furthermore, the local and global contrast enhancement caused due to tone mapping makes this metric a fitting choice.

BTMQI is a no-reference image quality metric to assess the quality of tone mapped image by combining a mix of 11 objective and handcrafted features related to information entropy, statistical naturalness and structural preservation [START_REF] Gu | Blind Quality Assessment of Tone-Mapped Images Via Analysis of Information, Naturalness, and Structure[END_REF].

FFTMI is a full-reference tone mapped image quality metric [START_REF] Krasula | FFTMI: Features Fusion for Natural Tone-Mapped Images Quality Evaluation[END_REF]. It relies on structural similarity, feature naturalness and feature similarity between the HDR and tone mapped image.

Pre-processing Subjective Scores

As briefly described in Section 7.6.1, Krasula's method relies on statistical significance of the differences between a pair of images. Therefore, we determine the statistical significance of the pairwise preference differences for each image pair. Furthermore, significantly different pairs are divided into two different groups as better and worse. This two step evaluation strategy is highly comparable to real-life applications.

There are several ways to determine the statistical significance of the differences between different distributions [START_REF] Barnard | A new test for 2× 2 tables[END_REF][START_REF] Fisher | On the interpretation of χ 2 from contingency tables, and the calculation of p[END_REF]. It has been shown that Barnard's exact test is more powerful than alternative statistical tests on 2 × 2 contingency tables [START_REF] Mehta | Conditional versus Unconditional Exact Tests for Comparing Two Binomials[END_REF]. Therefore, for our use-case we use the Barnard's exact test, since pair comparison results are represented as 2 × 2 matrices.

Since each pair is ranked approximately by 70 observers, we use the pairwise preferences of the observers to generate the 2 × 2 contingency tables. Consequently, we use Barnard's test to determine the significance of the differences. 1154 pairs among the 1500 in total are found to be significant with 95% confidence. Significantly different pairs are further divided into two groups as better (736 pairs), and worse (418 pairs). Better pairs indicate the pairs where the image on the left is preferred as significantly better than the image on the right and conversely worse pairs indicate the pairs where image on the right is better than the left. Although any pair can easily be categorized as better or worse by swapping their image positions, we use the initial positioning of the dataset and disregard the random shuffle initialisation during the experiment. 

Evaluation Results

As mentioned before, we present the results of the objective quality metric evaluations in two steps -whether objective metrics can identify if an image pair has a qualitative difference (Different vs Similar), and if affirmative, which image has a higher quality (Better vs Worse).

Different vs Similar Analysis

First analysis in Krasula's method [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF] aims to determine how good the objective quality metrics are at distinguishing pairs with and without statistically significant difference. Ideally the difference between predicted quality scores should be higher for the image pairs with statistically significant difference. Krasula's method uses Receiver Operating Characteristic (ROC) analysis [START_REF] Swets | Book Reviews : Signal Detection Theory and ROC Analysis in Psychology and Diagnostics : Collected Papers[END_REF] to determine the different-similar classification performances of the metrics. The performance of each metric is consequently represented as the Area Under the ROC Curve (AUC) where the higher AUC values indicates a greater performance. In order to measure the statistical significance between metric performances, Krasula's method relies on the procedure proposed by Hanley and McNeil [209]. It calculates a critical ratio c ab between the AUC of objective quality metrics and the statistical significance is estimated as the cumulative distribution function of c ab . Different vs similar analysis can be visualized on a histogram of metric score differences. Ideally, different pairs should be distributed away from 0 metric score difference while similar pairs should be concentrated around 0 metric score difference (refer to Figure 7.10). Figure 7.11 presents the 4 different histograms of metric score difference for different and similar pairs. For each plot blue color represents the different pairs while pink color represents the similar pairs. By analysing the histograms, we can observe that FFTMI provides the most desirable distribution among the 4, although far from the ideal. It is important to note that metric score differences increase from left to right for each plot. AUC values for each metric is reported on top right corner of the plots. By comparing AUC values, we can observe that TMQI, NIQMC and BTMQI provide a low performance on classifying different-similar pairs. Although FFTMI performs better than the other 3 metrics, there lies a room for improvement. Statistical test results suggest that FFTMI significantly outperforms other metrics in different-similar classification scenario. It is also observed that the performances differences between TMQI, NIQMC and BTMQI is not statistically significant.

Better vs Worse Analysis

After measuring the performance of metrics on identifying different and similar pairs we aim to determine whether the metrics are able the recognize the image with higher prefer-7.7. Looking Forward ence in a pair. We divide different pairs into two groups as better and worse. Distribution of the metric scores can be visualized in a similar fashion as the previous analysis with AUC values to quantify the performance differences among evaluated metrics. To statistically compare the metric performances in terms of AUC, we rely on the same methodology described in Section 7.6.4. Additionally, a more straightforward way of evaluation is measuring the percentage of correct classifications of better and worse pairs for each metric.

In other words, we can check how many times an objective quality metric correctly recognize the higher quality tone mapped image for each pair in the dataset. For statistical comparing the correct classification performance of the metrics, Krasula's method relies on Fisher's exact test [START_REF] Fisher | On the interpretation of χ 2 from contingency tables, and the calculation of p[END_REF].

Figure 7.12 presents the histogram of metric score differences along with the AUC values. We can observe from the AUC values that FFTMI performs significantly better than the others. Distribution of the FFTMI score differences for better and worse pairs are closer to the desired distribution in comparison to the distribution of other metrics' score differences. We can see that the metric score differences for worse pairs are located mostly on negative values while better pairs are on the positive side. TMQI, NIQMC and BTMQI fails to provide a similar distinction between better and worse pairs as numerically represented by the AUC values. In terms of percentage of correct classification of better and worse groups, we observe a similar outcome. Percentages of correct classifications are calculated as 58%, 61%, 56%, 72% for TMQI, NIQMC, BTMQI and FFTMI respectively. Statistical analysis with Fisher's exact test suggests that FFTMI performs significantly better than the other 3 metrics. NIQMC also performs significantly better than TMQI and BTMQI whereas there is no statistically significant difference between TMQI and BTMQI performances.

Looking Forward

Apart from TMO evaluations or objective IQA metric bench-marking, a primary use of our dataset and the collected preference information is its utilisation in developing new data-driven objective metrics which are highly correlated to the subjective opinion. For metric development, the general methodology is to have the subjective opinion scores of all stimuli on a common global scale including cross-content comparison. As discussed earlier, it is easier and more natural for participants to compare the quality of two images in crowdsourcing than to assign a quality score to each image individually. Despite the advantages of pairwise comparison over rating tasks, metric development often relies on the aforementioned Mean Opinion Scores (MOS). Literature provides us with methods to acquire MOS from pairwise preferences [START_REF] Zerman | The Relation Between MOS and Pairwise Comparisons and the Importance of Cross-Content Comparisons[END_REF]. The authors conduct a series of experiments to acquire MOS scores from pairwise preferences and suggest to include cross content comparisons into the experiment to properly scale each stimuli into a global quality scale. However, it is not useful to include cross content comparisons in our use-case.

In order to develop objective IQA models directly on pairwise preferences, alternative objective functions are necessary to translate the information from pairwise comparison into a probabilistic or a quantifiable score fit to drive a learning based model. 

Summary

We conducted a large-scale experiment on tone mapped image quality evaluation via crowdsourcing. To the best of our knowledge, this is the largest publicly available TMO evaluation dataset -250 unique HDR images used to generate 1000 tone mapped images which provides 1500 pair comparisons. 3500 observers participated in the subjective experiment where each pair was evaluated by approximately 70 unique observers. We evaluated 4 state of the art TMO performances, where KimKautzTMO [START_REF] Kim | Consistent tone reproduction[END_REF] was most often preferred. ReinhardTMO [START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] performed the second best while KrawczykTMO [START_REF] Krawczyk | Lightness Perception in Tone Reproduction for High Dynamic Range Images[END_REF] came in third place, performing slightly better than the SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF] in fourth.

We developed a content selection strategy to select representative and challenging HDR crops from high resolution HDR images. We further introduced a filtering method based on clustering in the 3-dimensional space of objective quality scores to balance the ambiguity of the pairs in the experiment. It is crucial to have such balance for developing metrics, specifically for machine learning based models.

To the best of our knowledge, we observe a lack of well established methodology for observer reliability for pairwise experiments. In addition to behavioral tools used for the observer analysis, we proposed a novel approach to statistically evaluate the observer reliability for pairwise experiments.

Furthermore, we provide a benchmark for 4 well known tone mapped image quality assessment metrics based on Krasula's method [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]. Finally, we also discussed how to utilize collected data for developing novel objective quality metrics. Collected pairwise preferences, stimuli used in the experiment and scripts are made publicly available to aid further research.

Lessons from the Chapter:

This was quite a long chapter and rather a detour from our main objective of developing a semantic aware TMO. However, we made some valuable observations on the way. Our contributions were -

• RealVision-TMO Dataset -the largest known HDR TMO evaluation dataset.

• A novel content selection strategy to identify interesting and challenging source images for tone mapping.

• A benchmark of TMO performances as well as objective IQA metric performances.

This chapter inspires us to rethink our problem statement. Objective aesthetic quality metrics which rate our TMO results often do not correlate well to subjective opinion. So the quest to develop the best TMO which is unanimously validated by objective metrics and subjective opinion remains a challenging.

This chapter contributed to the following journal submission: "RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone Mapped Images"

Ali Ak, Abhishek Goswami, Wolf Hauser, Patrick Le Callet, and Frédéric Dufaux.

In IEEE Transactions of Multimedia (submitted).

This is not the end, this is not even the beginning of the end, this is just perhaps the end of the beginning.

Winston S. Churchill

As we come close to wrapping up, it is important to remind ourselves of all the lessons we have learnt through the evolution of our novel semantic aware tone mapping operators. It is also an opportunity to revisit the objectives we set and the research questions we asked as we began this work. We can evaluate the merits of our contributions based on the objectives met and valuable lessons learnt while searching answers for the research questions.

From SemanticTMO to G-SemTMO

Recalling Objective 1 Can explicitly including Semantic information improve the quality of TMOs over existing state-of-the-art?

Introducing semantic awareness in tonal adjustment leads to improved fidelity and the resulting images are not just aesthetic but represent the real-world perceptual cues for the human visual system. This hypothesis has been the primary motivation behind our work to develop semantic aware tone mapping operators. Our first attempt at explicitly including semantic information involves breaking images down into probabilistic semantic frameworks which can locally adjust images based on a semantically defined static Look-Up table.

SemanticTMO, as described in Chapter 4, draws inspiration from previous state-of-theart methods and shows using subjective assessment that tone mapping locally based on aforementioned semantic segments provides better tonal reproduction for HDR images. We observe limitations in the execution of semantic awareness where the semantic LUT is static unlike the dynamic nature of the real world. Despite the limitations, it is evident from comparisons with traditional TMOs that we are on the correct path.

Contribution 1:

We present the novel SemanticTMO, the first operator to use semantic specific luminance information explicitly.

Lesson 1.1: Explicitly including semantic information can make the TMO semantic aware and produce better tone mapped results.

Lesson 1.2: Semantic information governing the semantic awareness of the tonal adjustment should be dynamic in nature and not static like a LUT in SemanticTMO.

Words of advice from the expert photographers (refer Section B.3) form very important building blocks to our TMO development. Their recipe -considering the luminance distribution of the image along with the scene understanding driven by the semantic content, is an essential cog in the human way of retouching images. In order for TMOs to emulate the recipe of manual tonal adjustment, they need to analyse the scene and make decisions as a photographer would do.

Recalling Objective 2

Can we develop a TMO to think and analyse a scene like an expert photographer and apply tone mapping? Can we make the machine learn photographer styles and individual recipes of luminance correction? A recipe is perfected by rigorous repetitions under different conditions. Similarly, for a TMO to learn the photographer's way it has to follow a data driven approach with thousands of images to learn tonal adjustments from. In Chapter 5, we introduce our novel neural network architecture -G-SemTMO which trains over annotated image pairs manually retouched by expert photographers. The G-SemTMO creates a simulation of the photographer's recipe. It creates a scene understanding through semantic segmentation and spatial arrangements of segments. The contextual information and objective image statistics helps it to create a latent feature space called semantic hints which governs the final tonal adjustment.

The novelty of G-SemTMO, the use of Graph Convolutional Networks opens newer avenues for research in data driven image enhancement. We train over synthetic data to show the effectiveness of graph convolutions. In comparison to traditional neural networks using 2D convolution, our ablation studies show that GCN manages to leverage local neighbourhood information better and predict tonal transformations closer to the ground truth. Furthermore, we train on real world data from Adobe FiveK dataset to prove that G-SemTMO can reproduce the edits made by expert humans with good quality, closer than any state of the art methods.

Contribution 2:

We present the novel G-SemTMO, the first graph convolutional neural network for local tonal mapping. It is computationally 3 times lighter than the state-ofthe-art HDRNET and produces results with objectively higher quality than its competitors. Literature provides the Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset with 5000 manually retouched images which has been used for learning based image enhancement methods. However, the images not all HDR and the tonal adjustments recorded can be argued to be global in nature. Our local HDR dataset (refer to Chapter 5.5.3) solves the problem and provides a new dataset for future TMO development. Lesson 3.2: Consistency in the adjustment style to be learnt is important. Inconsistent tonal adjustments make it challenging for the network to converge. Hence, it is necessary and vital to train the networks on subsets showing consistent style instead of the whole dataset.

We have developed a successful transition from a static SemanticTMO to a dynamic G-SemTMO and shown that following a data driven approach which uses semantic information explicitly, a TMO can be made semantic aware. We identify important limitations in the process, which are beyond the scope of the current work. First, we require a more consistent and pixel precise semantic segmentation algorithms. Pixel imprecision can be addressed with techniques such as matting to a certain degree but limitation such as false labelling can cause drastic artifacts for image enhancement problems. Following better segmentation it is imperative to have better annotations. Literature does not provide any annotated dataset of images aligned for photographic image processing. We have discussed the challenges and provided one of many possible solutions (refer to Chapter 3) to having semantic classes specific for photography. However, having a dataset with a robust set of semantic labels requires further research. 8.2. Assessing TMO quality

Assessing TMO quality

Assessing aesthetic quality of tone mapped images is highly subjective because it is based on human preference. We have established that although we use objective metrics to compare TMO quality, they often show disagreement with the subjective opinion and hence is not always a robust measure. In Chapter 6 we discuss our motivation to conduct subjective quality evaluation via crowdsourcing and identify some vital research questions in relation.

Recalling Objective 3

Can crowdsourcing platforms be reliably used for TMO evaluation without compromising on the gathered data?

Recalling Objective 4

Can crowdsourced data be filtered for more reliability? Based on our previous attempt we conduct a large scale subjective aesthetic evaluation via crowdsourcing. We acknowledge that literature does not provide a significantly dataset for HDR tone mapped images and their corresponding subjective preferences. Hence, we address the problem (refer to Chapter 7) by compiling the largest known dataset for tone mapped HDR IQA in terms of number of stimuli and number of participants rating the stimuli pairs. Furthermore, we also demonstrate our novel content selection strategy to identify challenging HDR stimuli. 

Future Work

Our work, in course of this thesis, has addressed questions and researched problems that have been considered age old in literature. However, the novel contributions we have presented and the observations we have made paves the path for future work in the field of HDR tone mapping, evaluation and aesthetic image enhancement in general. We have not only seen a reformulation of the approach towards tone mapping, but have shown the utility of new tools such as graph convolutions which opens new avenues for data-driven operators and deep learning-based image enhancement. Based on the work we applied and evaluated across the two TMOs, we also identified limitation and certain ideas which we intend to try as a future scope.

Improving the Use of Semantic Information

First, we focus on how the process of explicit inclusion of semantic information in tone mapping can be driven further ahead. For our contributions in SemanticTMO and G-SemTMO, the inclusion of semantic information has been through segmentation masks analogous to local mask created by expert photographers. However, to emulate the expert's recipes even further, we need to fine-tune the semantic masks which we use in the tone mapping pipeline. One definite way is to go beyond the exhaustive set of 9 semantic classes as we have defined in Chapter 3. We can draw inspiration from the SUN dataset [START_REF] Xiao | Sun database: Exploring a large collection of scene categories[END_REF] which follows a top down approach of coarse to fine semantic classification. Specific scene labels are followed by image labels based on the initial scene type. Similarly, we can create a hierarchical top down structure which is governed by photographic genre or popular scene types in photographic context and then have exhaustive set of labels sufficient to create a contextual understanding of any type of scene. Such an approach can add yet another degree of freedom, allowing the semantic awareness of the tone mapping pipeline to be more dynamic. Finer labels can be reallocated to classes based on scene type and not be fixed to the initial allocation of 9 classes. Hence, we propose to work on building new annotated datasets focused towards photographic usecases with new labels which are more pertinent to the task.

Second, we have seen the limitations associated with improper semantic segmentation and how they can affect the tonal adjustment. We plan to annotate a large dataset manually based on the 9 semantic classes and retrain FastFCN [START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] on the new annotations. In hindsight, further research on more pixel precise semantic segmentation algorithms is warranted. We use FastFCN which is from 2019. Newer segmentation algorithms pre-trained over ADE20K dataset or over aforementioned custom dataset with photographically im-portant classes can provide much more pixel precision. Application of alpha matting in such case will be more focused on fine tuning boundary pixels than correcting improper pixel classification.

Finally, we plan on including a larger variation of semantic information beyond segmentation masks which has been the case in our work. The human visual system, while creating a scene understanding, is driven by multiple parsing algorithms such as semantic segmentation, salient object detection, foreground-background distinction, depth of field etc. Our semantic aware TMO frameworks make it feasible to include spatial information in form of probabilistic pixel maps. Consequently, information such as saliency maps or foreground background segments can be incorporated similar to the semantic segments. We feel that it is also important to have dedicated feature descriptors for certain semantic labels such as humans. Expert photographers generally pay additional attention to retouching human subjects and skin tones. Hence, our proposal is to incorporate face detection and skin tone masks as additional features. In order to address variation of luminance conditions inside a spatial segment, inclusion of the luminance histogram as an 8-bit or 16-bit vector can provide valuable insights to local contextual awareness.

Pushing the Boundaries of GCN

Graph convolutional network (GCN) has been a novel addition to tone mapping operators and we have shown the potential of learning local adjustments using GCNs. For our G-SemTMO application, we only manage to explore the potential of graph convolutions aided by the adjacency of neighbouring nodes and predicting tone curves based on node-node relationships. However, GCNs provide a much larger scope of learning and customization which can make graph based TMOs an even more powerful tool.

We do not prioritise the nodes or the edges by specifying weights which can make the learning non-linear. In it's current state, the G-SemTMO network converges uniformly for all the semantic segments observed in the image. We propose to conduct edge-weighted graph convolutions through which we can fine tune the effect of a specific spatial segment on its neighbours. Considering photographic importance is vital for tone mapping and we have understood that certain labels such as 'Human Subject' may require more emphasis during tonal adjustment. We can compute edge weights as a function of the semantic labels or as a function of feature vectors computed using saliency maps. This method of fine tuning can incorporate a necessary semantic bias similar to how the expert photographers analyse the image. Furthermore, G-SemTMO in its current state does consider the spatial dimension of the semantic segments. Segments with very low pixel representation are processed similar to large segments with many pixels. Although low in probability, such conditions if encountered can introduce incorrect predictions. Since segments are treated uniformly, a small amount of noise in a small segment of several hundred pixels can influence a large segment of several thousand pixels. We propose to normalise the effect by introducing pixel density per segment as an input parameter to the GCN or use it as an edge weight for weighted-learning.

Deep learning based TMOs have shown the potential to learn specific enhancement styles. Using G-SemTMO, we can learn and reproduce the expert modifications from FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset with good quality and also learn local style adjustments from the LocHDR datset (refer to Section 5.5.3). As a standalone tone mapping operator G-SemTMO can produce aesthetic results but needs to be pre-trained over a dataset. Instead of relying a on a large dataset of specific aesthetic style to extract and learn features we propose to explore meta-network learning. A meta network [START_REF] Hospedales | Meta-Learning in Neural Networks: A Survey[END_REF][START_REF] Vilalta | A Perspective View and Survey of Meta-Learning[END_REF] focuses on 'learning how to learn features' instead of 'which features to learn'. Our plan is to introduce a meta-network which shadows the existing G-SemTMO such that we can not only extract semantic features but also learn how the features can be learnt. The motivation behind having a meta-network is that G-SemTMO can perform better as a standalone TMO even with low number of training examples for any user. Hypothetically, we would not require an expert database but just a smaller subset of images styled by the user and the G-SemTMO would be able to replicate the styles.

Scope for TMO Quality Evaluation

We have not conducted an explicit subjective evaluation of G-SemTMO to other state-ofthe-art methods or our own SemanticTMO. We acknowledge that the aim of developing G-SemTMO was not generating the most preferred aesthetic result but the closest result to a given reference. Hence, for such an aim we feel that using objective metrics to measure colour closeness and overall fidelity was sufficient. However, we have also seen that G-SemTMO can be used as a standalone operator to produce aesthetic tone mapped images. Consequently, for sake of completion we can conduct a subjective experiment to collect observer preferences and conclusively adjudge the performance of G-SemTMO as a standalone algorithm.

We have already conducted a similar subjective experiment involving 4 TMOs including our novel SemanticTMO. Our contribution in Chapter 7 includes the largest publicly available dataset of HDR images and their tone mapped versions along with the subjective preference data. One possibility of expanding that work is by including G-SemTMO in the list of operators because we have shown that it addresses the limitations of SemanticTMO. This will not only provide a subjective evaluation of G-SemTMO but expand the dataset even further. We have shown that the dataset can be used to benchmark the performance of existing objective IQA metrics. The other application is to use the large amount of collected data to create a no-reference learning based objective metric to predict aesthetic quality scores for tone mapped images. We already have a large amount of annotated data and we have identified, through or content selection strategy, some objective and perceptual attributes of an image which govern its aesthetic preference. We propose to use all the collected and computed information to train a generator-discriminator type network which can predict the score of a tone mapped image based on its known objective measures and subjective preferences. Such a deep learning based metric can address the limitations and lack of robustness of objective IQA metrics. The aim would be to have an objective metric which emulates a subjective experiment. Under the conditions that we require more preference data, we have shown already that crowdsourcing can be a reliable resource effective medium to collect subjective information.

As a long term goal, we also look forward to translating the knowledge acquired from semantic aware tone mapping to processing HDR videos. HDR videos with an additional temporal dimension poses a new set of challenges. Maintaining the quality of experience and fidelity to natural scenes or a reference scene is even more challenging as the consistency of tonal adjustment across key frames has to be maintained. Treating each frame and predicting semantic specific tone curves can be computationally expensive and slow. Consequently, the semantic aware TMO has to predict adjustments based on key frames while keeping the temporal variations and spatial deviations in the scene as a separate feature to learn from to produce tone mapping results which are aesthetic and more importantly seamless.

Concluding Statement

We have addressed all the major research questions we posed and met all the objectives which we set. As established previously, a lot of research has been conducted in HDR tone mapping. A yet another new TMO can only add to the long list of numbers unless we reformulate how tone mapping as a problem is approached. Some TMOs in literature have considered photographic methods while some have traditionally considered image statistics but none of them have approached tone mapping as a method of manual retouching with explicit focus on semantic information. Our primary objective of making a semantic aware TMO to think like a photographer is achieved with a significant success.

The idea of developing a TMO with the objective of producing the best or most preferred quality is ill-posed. Our subjective assessments confirm the same. Instead of aiming to 8.5. Concluding Statement create the most preferred result, our semantic aware G-SemTMO aims to reproduce the result which is preferred best. Consequently, G-SemTMO can address the problem that aesthetic quality is subjective because it adjusts images based on the preferred style it is trained on. G-SemTMO in its current form is effective but not complete. As discussed in Chapter 5, we have certain limitations such as learning a dataset containing inconsistent styles which the current network cannot handle well. However, there are other implementation details which can potentially improve G-SemTMO to the next level. We have listed some of our ideas in a more specific way in Section 8.4.3. Enriching the input feature space, having more luminance and colour statistics for the network to learn and analyse is one of the important ideas. The use of variety of semantic and scene information such as saliency maps, human detection can further improve the semantic awareness of our TMOs. By unlocking the full potential of GCNs, using edge-prioritised learning, we can uncover the immense advantage that graph based learning brings to local image enhancement.

To conclude, despite its limitations, we have shown that a semantic aware tone mapping algorithm can be developed which can approach tone mapping as an analogy to manual photo retouching. Our work make some significant strides in the direction of data driven tonal adjustment using neural networks. The novelty of using graph convolutions in G-SemTMO and other contributions such as the large public dataset for subjective IQA and content selection strategies open up newer avenues for further research. We hope that G-SemTMO has successfully been able to reformulate the challenges of tone mapping and with its new perspectives and ideas we can reignite the plateauing field of not just HDR tone mapping but aesthetic image enhancement in general.

A.1 ADE20K Semantic Labels and Indices Index 1-50 "Ce que j'aime dans les photographies, c'est qu'elles capturent un moment disparu pour toujours, impossible à reproduire." -Karl Lagerfeld. Le monde tridimensionnel, en perpétuel changement, est d'une beauté sans fin, et les yeux de celui qui l'observe ne peuvent pas tout saisir. Ainsi, la nature humaine nous prédispose à faire un arrêt sur image, à capturer un moment dans le temps pour pouvoir se rappeler et revivre ce qui s'est passé. La photographie, au vrai sens du terme, n'est pas simplement une forme d'art mais une machine à remonter le temps, et les photographies sont les capsules temporelles.

Historiquement, la première allusion à un dispositif de capture d'image remonte à la Camera Obscura [START_REF] Tolmachev | A Brief History of Photography: The Beginning[END_REF]. Ce fut la première forme de photographie analogique, dérivée du principe simple fondé sur modèle projectif du sténopé. La photographie moderne a fait son entrée lorsque Joseph Nicéphore Niépce a pris une image en exposant adéquatement un dérivé du pétrole appelé "Bitume de Judée" pour enregistrer la projection de la caméra À travers le XIX ème siècle, de la découverte de la photographie avec l'exposition de négatifs verre à la caméra Kodak d'Eastman rendue accessible à tous, la photographie a connu une grande avancée. Les outils photographiques modernes et l'imagerie numérique ont fait de grands progrès, mais le concept intrinsèque de recueil manuel d'images au moyen d'une exposition contrôlée reste toujours central. Au début, la photographie était soit utilisée pour assister les peintres dans leur travail, ou elle suivait les mêmes principes que les peintres. Par conséquent, on observe à travers l'histoire que la majorité des premières photographies étaient des portraits comme une alternative aux peintures. Nous comprenons donc qu'il existe une corrélation entre les méthodes utilisées par les peintres pour contrôler les éléments liés aux sources de lumière grâce aux pigments, et les techniques maîtrisées telles que le "dodge and burn" utilisées par les photographes pour exposer correctement les plaques photographiques et les négatifs. La correction d'exposition dans le post-traitement pour recueillir une image fidèle à la réalité est donc une mission et un problème existant depuis la nuit des temps.

B.2 Les Défis du Mappage de Tonalités

La production d'images numériques met en jeu beaucoup de paramètres objectifs et subjectifs qui déterminent comment celles-ci sont perçues ou traitées. Puisque photographie [phōtós-graphê] signifie littéralement dessiner ou écrire avec la lumière, il est essentiel que nous parlions de plage dynamique. La plage dynamique fait référence au rapport entre la plus petite et la plus grande valeur possible d'une grandeur variable. Dans la photographie numérique, la grandeur observée est l'intensité de la luminance. La plage dynamique désigne donc le rapport entre le pixel le plus lumineux (dans les hautes lumières) et le pixel le plus sombre (dans les ombres) d'une image. Sur le plan fonctionnel, mapper en tonalités ou compresser la plage dynamique signifie corriger la luminance ou l'exposition de la scène. Ce type de procédé de correction d'exposition est très couramment utilisé par les experts en photographie pour conserver les détails de la scène à la fois dans les hautes lumières et dans les ombres. Cependant, ce procédé courant n'est pas trivial. Il n'affecte pas seulement la distribution de la luminance sur l'image entière, les opérateurs de mappage de tonalités (TMO) affectent aussi les indices perceptuels qui déterminent la qualité esthétique de l'image.

Historiquement, les recherches sur les TMO ont été faites avec l'objectif principal de développer le meilleur TMO. Au fil des années, plusieurs TMO ont été introduits, améliorant graduellement la qualité esthétique. Ils ont été comparés sur une échelle objective en utilisant des mesures d'évaluation de l'esthétique, et une légère amélioration a justifié le développement d'un nouveau TMO. Cependant, après toutes ces années nous avons reconnu que prétendre produire la meilleure qualité de mappage de tonalités et par conséquent le meilleur TMO était un problème mal posé. L'esthétique des images est très subjective en photographie. Nous pouvons donc comparer la fidélité à une vérité terrain mais nous ne pouvons pas déclarer qu'un résultat spécifique de mappage de tonalités est le meilleur. suite certains points de consensus importants qui découlent de notre discussion et qui, à terme, nous aident à établir l'énoncé de thèse. Nous sommes reconnaissants à nos experts de leur précieuse contribution et de nous avoir aidés à décoder la recette du photographe pour l'amélioration des images.

Pouvons-nous mettre en perspective l'importance des opérateurs locaux de mappage de tonalités pour le traitement d'image HDR dans le domaine de la photographie? L'imagerie, la capture et le traitement HDR ont évolué au fil des années. La technique du bracketing d'exposition multiple a été très populaire pour superposer des images d'une même scène avec une exposition variable afin d'inclure plus de détails aux deux extrémités du spectre de luminance. Cependant, les contraintes techniques du bracketing et l'évolution des capteurs des caméras modernes capables de capturer 14 stops (1 stop ∼ réduit l'exposition d'un facteur de 2) de plage dynamique laissent entendre que les experts comptent sur un mélange de techniques d'amélioration globales et locales pour produire un résultat à partir d'une seule photo. En ce sens, la convivialité des opérateurs de mappage de tonalités va au-delà de l'imagerie HDR. Une recette suivant la correction d'exposition locale peut être utilisée que l'image ait ou non une plage dynamique élevée.

Quelle est l'importance de la plage dynamique lors de la retouche d'images?

En tant qu'humains, nous avons tendance à être attirés par les objets saillants dans l'image. Cependant, dans le domaine de l'amélioration des images, un système de zones développé par Ansel Adams dans les années 1940 [START_REF] Adams | The Camera[END_REF][START_REF] Adams | The Ansel Adams photography series[END_REF][START_REF] Adams | The Ansel Adams photography series[END_REF][START_REF] Johnson | The practical zone system[END_REF] tient un rôle important dans la détermination de l'exposition finale de l'image. Le système visuel humain a tendance à retenir un maximum de détails dans les hautes lumières tout en exposant correctement les ombres. La plage dynamique et la distribution de la luminance dans la scène sont donc essentielles pour décider comment retoucher l'image.

À quel point est-il important d'être conscient de la sémantique lors de la retouche d'images? La compréhension des scènes visuelles est une partie essentielle de l'établissement de la perception. Il est donc important d'avoir conscience du contenu sémantique de l'image pour améliorer les indices perceptuels d'une image. Les experts utilisent des statistiques de luminance pour retoucher les images. Cependant, déterminer le(s) objet(s) dans la scène et retoucher localement en fonction du contenu sémantique est tout aussi important pour l'amélioration esthétique.

Est-ce que vous décomposez la scène en régions locales pour un rehaussement individuel ?

Comme mentionné précédemment, les zones de luminance -hautes lumières et ombres -sont importantes. Les experts utilisent souvent la mesure spot (qui calcule l'exposition sur une petite zone spécifique de la scène) sur les dispositifs de capture pour différencier localement les zones de luminance différentes. Diviser la scène en fonction des zones de luminance aide dans la correction locale de l'exposition lors de l'étape du post-traitement. Par ailleurs, les objets saillants dans l'image jouent un rôle vital dans la détermination de régions locales. Un aspect important de la photographie est d'attirer l'attention humaine sur un objet saillant. Par conséquent, les experts utilisent un masque ou un outil de réglage local tel qu'une brosse ou un filtre radial pour rehausser des objets importants dans la scène -ciel avec des nuages, une montagne en arrière-plan, une personne au premier plan, etc.

En combien de régions sémantiques fines ou grossières divisez-vous la scène quand vous retouchez une image? C'est très subjectif et donc complexe. La division en régions sémantiques dépend de la scène. Dans un paysage panoramique, on peut classer une masse continentale de manière générale comme une 'montagne' et la retoucher en conséquence, tandis qu'une image agrandie de cette masse continentale nécessiterait peut-être des classes plus spécifiques pour retoucher un objet spécifique. Il est difficile d'avoir une liste exhaustive des classes fines et grossières. Idéalement, elle suit une structure hiérarchique allant de segments grossiers au segments fins. En pratique, nous pouvons généralement diviser une image en environ 10 régions sémantiques différentes à travers différents genres photographiques.

B.4 L'Objectif de Recherche

La discussion avec nos photographes experts nous aide à comprendre à quel point le cas d'utilisation d'un TMO idéal pour la photographie est complexe.

-Notre première conclusion est que les TMO devraient avoir une compréhension sémantique de la scène pour mieux représenter les indices perceptuels de celle-ci.

-Il est important de prendre note des statistiques de luminance de l'image car il est humain de préserver et percevoir les détails même dans des conditions d'éclairage complexes.

-Les recettes de retouche peuvent avoir des intuitions similaires mais sont hautement subjectives. Il est donc mal posé d'avoir un TMO qui soit considéré comme le meilleur.

-Il est important d'avoir des masques pour des objets sémantiques significatifs dans la scène pour retoucher l'exposition localement. Il est difficile d'avoir une liste exhaustive de classes sémantiques mais une généralisation peur être faite en fonction du contexte de la scène.

Grâce aux connaissances acquises, nous établissons deux questions de recherche importantes auxquelles nous répondons au fil de ce travail.

Objectif 1

Le fait d'inclure explicitement des informations sémantiques peut-il améliorer la qualité des TMO par rapport aux TMO de pointe existants? Si oui, comment peuton incorporer des informations sémantiques dans l'algorithme pour développer un TMO sensible à la sémantique? Même si nous mentionnons notre objectif de développer un TMO ayant de meilleurs résultats que les TMO de pointe, on garde à l'esprit qu'il est vain de viser uniquement une meilleure qualité. Au contraire, nous privilégions la production d'une meilleure fidélité à une vérité terrain. C'est pourquoi notre deuxième question suit une approche axée sur les données.

Objectif 2

Comment les photographes experts abordent-ils la correction de luminance? Pouvons-nous développer un TMO capable de penser et d'analyser une scène comme un photographe expert et d'appliquer un mappage de tonalités? Pouvons-nous apprendre à la machine les différents styles de photographes et les recettes individuelles de correction de luminance? Hormis nos contributions en vue des objectifs mentionnés ci-dessus, nous présentons également des travaux significatifs sur l'évaluation esthétique de résultats de mappage de tonalités. L'évaluation esthétique subjective d'images est un sujet de recherche complexe. Nous explorons les possibilités de mener l'évaluation subjective à distance et répondons à quelques questions sur la fiabilité de l'évaluation esthétique menée sur les plateformes de crowdsourcing. Ces travaux ouvrent de nouvelles pistes de recherche et nous espérons que nos contributions donneront un élan grandement nécessaire à un domaine de recherche en maturation.

B.5 Nos Contributions

Sur la base des objectifs définis précédemment et des recherches complémentaires que nous menons en combinaison avec le mappage de tonalités HDR, nous listons brièvement nos contributions majeures dans cette thèse. Contribution 2: Nous présentons le nouvel opérateur, G-SemTMO [START_REF] Goswami | G-SemTMO: Tone Mapping with a Trainable Semantic Graph[END_REF], fondé sur l'apprentissage profond. Il utilise un squelette de réseaux convolutifs de graphes pour prédire un espace de caractéristique latent et abstrait appelé indices sémantiques, qui aborde la compréhension de la scène. Avec l'aide d'indices sémantiques, G-SemTMO est capable d'apprendre les ajustements de tonalités locaux créés par des photographes experts et d'affecter le mappage de tonalités comme un photographe expert.

Contribution 3: Outre nos travaux avec G-SemTMO, nous présentons LocHDR, un ensemble de données d'images retouchées manuellement à l'aide d'outils de réglages locaux tels que les brosses et les filtres. Cet ensemble de données, en comparaison avec l'Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] de pointe, fournit des réglages locaux complexes pour apprendre. À notre connaissance, il n'existe pas dans la littérature d'ensembles de données de paires d'images contenant des réglages locaux. Nous pensons que le LocHDR peut jouer un rôle essentiel dans le développement de futurs TMO axés sur les données. Contribution 4: Nous faisons également d'importants progrès dans le domaine de l'évaluation esthétique subjective d'images HDR mappées en tonalités. Nous menons des expériences d'évaluation subjective de la qualité des images via le crowdsourcing et montrons que l'expérimentation à distance peut être utilisée avec succès pour le cas de l'évaluation des TMO, avec une fiabilité élevée par rapport aux expériences de laboratoire [START_REF] Goswami | Reliability of Crowdsourcing for Subjective Quality Evaluation of Tone Mapping Operators[END_REF]. Par ailleurs, nous présentons des techniques de filtrage qui permettent de signaler les participants spammeurs, de filtrer les données bruitées obtenues et d'améliorer considérablement la fiabilité de la configuration [START_REF] Ak | A Comprehensive Analysis of Crowdsourcing for Subjective Evaluation of Tone Mapping Operators[END_REF].

Contribution 5: Nous présentons une nouvelle stratégie de sélection de contenu [START_REF] Ak | RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone Mapped Images[END_REF] qui donne un score à chaque scène HDR sur la base de certains facteurs objectifs et perceptuels de l'image. Une stratégie de filtrage sur la base de regroupements nous aide à identifier des stimuli HDR complexes et intéressants qui peuvent être utilisés pour l'évaluation subjective. Cette stratégie nous aide à produire le plus grand ensemble de données annotées accessibles au public [START_REF] Ak | RV-TMO: Large-Scale Dataset for Subjective Quality Assessment of Tone Mapped Images[END_REF] composé d'images HDR et de données par paires sur la préférence esthétique de leurs versions mappées en tonalités. Cet ensemble de données nous aide à comparer la performance des TMO existants aux préférences subjectives et peut aussi être utilisé pour développer des mesures d'évaluation objective de la qualité des images axées sur les données.

B.6 Organisation des Chapitres

Cette thèse est composée de 8 chapitres. Suite à ce chapitre introductif, nous explorons les fondements théoriques de nos recherches dans le Chapter 2. Nous établissons les bases théoriques nécessaires pour les approches classique et axée sur les données. Nous explorons l'application des réseaux convolutifs de graphes dans les méthodes d'apprentissage profond pour l'amélioration des images, et la possibilité d'utiliser l'apprentissage par graphes. Par conséquent, nous discutons des recherches de pointe conduites dans le domaine du mappage de tonalités HDR classique, des méthodes d'apprentissage profond dans ce domaine, ainsi que de l'évaluation de la qualité des contenus mappés en tonalités.

Le Chapter 3 aborde une partie de l'Objectif 1. Suivant les intuitions de nos photographes experts, nous discutons des façons d'extraire les masques sémantiques d'une image et nous répondons également à des questions liées à la pertinence des annotations sémantiques fines ou grossières.

Le Chapter 4 est directement lié à notre Objectif 1. Nous présentons notre première tentative de création d'un opérateur de mappage de tonalités sensible à la sémantique, SemanticTMO [START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF]. À notre connaissance, il s'agit de la première tentative documentée de développement d'un TMO qui prend en compte explicitement l'information sémantique.

Le Chapter 5 présente probablement l'une des contributions les plus importantes de cette thèse. Nous présentons un réseau d'apprentissage sur la base de réseaux convolutifs de graphes (Graph Convolutional Networks -GCN) pour apprendre et prédire le style de retouche à partir d'échantillons d'un photographe expert. Le nouveau G-SemTMO est le premier en son genre à appliquer les GCN à l'amélioration des images Dans les Chapter 6 et 7, nous nous écartons du développement des TMO et discutons de l'évaluation de la qualité esthétique des contenus mappés en tonalités. Nous examinons la fiabilité des plateformes de crowdsourcing pour la conduite d'une évaluation subjective des TMOs [START_REF] Goswami | Reliability of Crowdsourcing for Subjective Quality Evaluation of Tone Mapping Operators[END_REF][START_REF] Ak | A Comprehensive Analysis of Crowdsourcing for Subjective Evaluation of Tone Mapping Operators[END_REF]. Par ailleurs, dans le Chapter 7, nous présentons une nouvelle stratégie de sélection de contenu pour identifier les images source HDR complexes. Pour ce faire, nous compilons l'ensemble de données RV-TMO d'images source HDR, leurs versions mappées en tonalités et les données sur la préférence subjective -le plus grand ensemble de données documenté en termes de nombre de stimuli et de données enregistrées par stimulus.

Enfin, le Chapter 8 résume nos travaux dans cette thèse et jette un regard sur le futur du mappage de tonalités HDR. Nous listons quelques objectifs et idées à court et à long terme pour pousser le mappage de tonalités sensible à la sémantique plus loin.
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 5701803824835 Labels in different context. Clustered labels are grouped by photographic context. The colour code provides intuition of labels encountered in similar setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Petroglyphs: Image from the HDR Photographic Survey. [143]. (a) Gamma-corrected HDR content. (b) Linear image representation. (c) Luminance map of the linear image ranging from black (shadows) to white (higlights). (d) The lightness framework from KrawczykTMO [31] visualised as two clusters of similar luminance, highlights (white pixels) and shadows (black pixels) respectively. Notice -The rocks at the bottom left and sky both fall under the highlight cluster. (e) KrawczykTMO implementation from Banterle's HDR Toolkit [5]. . . . . . . . . . . . . . . . . . 77 4.2 SemanticTMO: Proposed tone mapping pipeline. The algorithm broadly has two blocks. The Semantic Classifier module (Section 4.2.1) uses off-the-shelf semantic classifiers to create a probabilistic semantic framework which denotes belongingness of pixels to a specific semantic class. The Gain Computation module (Section 4.2.2) computes a gain factor for each pixel based on the semantic target lightness, the observe luminance and the semantic framework. The gain factor corrects the exposure and produces the tone mapped image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alpha Matting. Image (a) denotes the gamma corrected Petroglyphs image from Fairchild's HDR dataset [143]. Subfigures (b) show the alpha matting technique on semantic segments sky (top row) and vegetation (bottom row). From Left to Right: The binary semantic map is used to generate the Trimap using morphological expansion at the boundary. The Trimap and the gamma corrected image are used to compute the refined mattes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lightness Histograms I. Histogram of luminance values observed in our dataset, for different semantic classes. Sky and vegetation are significantly different from the world average. Detailed histograms provided in Figure 4.5 Lightness Histograms II. Figure shows the lightness histogram for each of the semantic classes and the 'World' histogram for the entire lightness dataset. The histograms are all frequency-normalised and the x-axis denotes the sRGB lightness percentages. The red vertical line denotes the median value for each histogram which is set as the semantic class specific target lightness (

  Figure (a) shows distortions due to improper alpha matting. Figure (b) and (c) shows the binary semantic map and matted map of the 'vegetation' segment. Figure (d) shows distortion on the foreground due to improper semantic classification. Figure (e) and (f) show that part of the foreground, which is supposed to be 'vegetation' has been falsely classified as 'mountain'. . . . . . . . . . . . . . . . . . . . . . . 5.1 G-SemTMO. A Graph-based Semantic-aware Tone Mapping Operator which can predict tonal modifications learned from a dataset of images manually retouched by a human expert. It uses features from the semantic segmentation map of the linear image and a Graph Convolutional Network to predict a latent feature space called Semantic Hints. A Fully Connected Network is used to map linear RGB values of the input image to the tone mapped result while accounting for the semantic and contextual information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 1075108610871098 The HyAB and PSNR objective metric scores for each tone mapped image validates the advantage of graph-based learning over the other ablation studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Training and Validation losses. The figure presents the convergence plots of the loss curves for the ablation study. . . . . . . . . . . . . . . . . HyAB and PSNR histograms for the 3 ablation studies. The histograms correspond to score distribution over 99 test images. The median of the distribution is plotted with a solid circle with a confidence interval of 95%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Training and Validation losses -Synthetic image data. . . . . . . HyAB metric -Synthetic image data. HyAB metric histograms for 3D LUT Local and G-SemTMO. Validated over 205 synthetic images. . . . 110 5.9 PSNR metric -Synthetic image data. PSNR metric histograms for 3D LUT Local and G-SemTMO. Validated over 205 synthetic images. . . . 110 5.10 Comparison of Ablation studies on synthetic images. From left to right: Gamma corrected source image from FiveK dataset [12], ablation 2 -3D LUT local, ablation 3 -G-SemTMO and Ground truth synthetic image. Comparing HyAB [104] colour distance and PSNR values, we conclude the G-SemTMO shows objectively better reconstruction quality and better fidelity to ground truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.11 G-SemTMO results. Left to Right: 4 selected images from FiveK dataset. Row 1 : Raw images exported using Lightroom without modification. Row 2 : Target images modified by expert E [12]. Row 3-6 : Selected TMOs with HyAB, PSNR and MS-SSIM scores. Row 7 : Tone curve applied per segment by G-SemTMO. . . . . . . . . . . . . . . . . . .

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.14 Metric score distributions. HyAB, MS-SSIM and PSNR scores for inference using networks trained over 5 experts individually. The plots show the histograms of scores along with medians and its 95% confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.15 What you learn is what you get. HyAB metric scores for expert E (left) and expert B (right) in comparison to the ground truth of other experts.1175.16 Comparing L* prediction. G-SemTMO and network trained by Bychkovsky et al. on Adobe FiveK dataset to learn photographic global adjustment [12]. Bychkovsky et al. only predict luminance adjustment and copy the colour profile produced by the expert. G-SemTMO, trains for a much more complex end-to-end mapping of both colour and luminance. The plot shows L* error (from CIELAB space) histograms for 50 test images predicted by either method. . . . . . . . . . . . . . . . . . . . . . . . 5.17 LocHDR training loss. Training loss of Local LUT and G-SemTMO networks over 680 LocHDR images for 500 epochs. The G-SemTMO loss shows slightly better learning over the training images. . . . . . . . . . . . 5.18 HyAB colour distance and PSNR histogram comparison. G-SemTMO and Local LUT inference on LocHDR test images are compared. HyAB and PSNR distribution are plotted for the two networks with respective median and confidence interval of 95%. Overall, in the test image-set G-SemTMO shows slightly better performance that the local LUT. . . . . 5.19 Training on LocHDR dataset. From left to right: Gamma corrected source image from FiveK dataset [12], ablation 2 -3D LUT local, ablation 3 -G-SemTMO and Ground truth image. HyAB colour distance and PSNR metric scores suggest slight improvement of G-SemTMO over Local LUT. 5.20 Luminance inconsistency inside segment. Luminance adjustment inconsistency inside specific semantic region. . . . . . . . . . . . . . . . . . 5.21 Luminance inconsistency across images. Luminance adjustment inconsistency for same semantic labels across images. . . . . . . . . . . . . 5.22 Contrast inconsistency across images. Contrast adjustment inconsistency for same semantic labels across images. . . . . . . . . . . . . . . . 5.23 Histogram of Multi-scale contrast measure. The top 200 high contrast images are filtered to create the HC200 subset. . . . . . . . . . . . . 5.24 Inferring on test images from HC200. Comparing HyAB and PSNR scores for test images inferred by G-SemTMO trained only on HC200, G-SemTMO trained on LocHDR and 3d Local LUT trained on LocHDR. HyAB and PSNR histograms show respective scores over 40 test images common to both validation sets. We observe that G-SemTMO trained on the specific style of HC200 produces significantly better inference and colour closeness than the other two networks. . . . . . . . . . . . . . . . . 5.25 Comparing Inference on HC200 dataset. From left to right: Gamma corrected source image, 3D LUT local trained on LocHDR, G-SemTMO trained on LocHDR, G-SemTMO trained on HC200 and Ground truth. HyAB colour distance and PSNR metric scores show significant improvement when G-SemTMO is trained over the style and contrast specific HC200 images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.26 Comparing inference images with similar 'Human Subject' tone curves. 3D Local LUT infers tone curves for the human semantic segment (images a1994 and a2243 ) which are quite similar with a PCM distance of 0.66. The human semantic region has different semantic neighbours in the two images. Hence, G-SemTMO predicts significantly different tone curves for the same segment with a PCM distance of 6.0513. . . . . . . . . . . . 5.27 Correlation between PCM and HyAB. a) 3D scatter plot -P CM ij and pairwise HyAB i and HyAB j for 152 Human subject images. b) 2D scatter plot -PCM distance and HyAB difference for Human subject images. c) Bar plot -PCM distance and corresponding HyAB difference for Human subjects images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.28 Failed Cases. Comparing some images where Local LUT outperforms G-SemTMO based on HyAB metric scores. Subjective assessment favors G-SemTMO due to better colour closeness to ground truth but receives worse overall HyAB score. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.29 Luminance and Chrominance error per segment. Recomputing the HyAB scores from Figure 5.28 per segment shows the luminance and colour closeness to the ground truth for each region. It provides a new perspective of using HyAB as an objective measure. . . . . . . . . . . . . .
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 3646566676819717273747576777879 Scatter plot comparison for the conducted experiments. Each point represents an image pair. Axis values represent the percentage of votes for the same image in a pair. MPD is the mean of the perpendicular distances of the points from the diagonal. . . . . . . . . . . . . . . . . . . . Distribution of the permutation results. Subjective preference comparison distributions of randomly split halves over 1000 permutations for Exp-Lab experiment. MPD value represents the mean perpendicular distance across all permutations. . . . . . . . . . . . . . . . . . . . . . . . . . Mean observer dissimilarity distributions. Each sample represents the mean RT dissimilarity of an observer to rest of the observers in the corresponding experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . Observers versus Certainty. Effect of number of observers on the certainty of the acquired results over 100×1000 permutations. Y axis is the percentage of pairs which reach to the final conclusion with corresponding number of observers at X axis. . . . . . . . . . . . . . . . . . . . . . . . . . Preference data. Pair Comparison Matrix showing distribution of tone mapping preferences. E.g. KimKautzTMO was preferred over Krawczyk-TMO 33/39 times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Permutation test. The results between the two experiment for Playlist-Timing Analysis. Distribution of participants based on average time taken per comparison for each experiments. A bar at n th second on the plot corresponds to (n -1, n] seconds range. . . . . . . . . . . . . . . . . . 6.10 Voting Pattern Analysis. Distribution of participants based on the number of times the left image is chosen over the right one. . . . . . . . . . 6.11 Transitivity relation. Example cases of a transitive relation and a nontransitive one. Arrow directions indicate observer preferences for a tone mapped image over another. . . . . . . . . . . . . . . . . . . . . . . . . . . 6.12 Transitivity analysis. Distribution of the participants for each experiment based on the number of failed transitivity relation out of possible 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scale and Crop Strategy. Example shows 66 Museum image taken from Fairchild's HDR dataset [143]. The objective behind the strategy is natural augmentation of images for the dataset. The strategy creates three versions of each image, scaling the original size down by a factor of 2, 4 and 8 respectively. Consequently, for each version, a sliding-window crop of size 480 × 640 pixels is created with a horizontal and vertical stride of 100 pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter and Select. Selecting 250 final crops from 167000 candidate crops. Clustering candidate crops based on TMQI metric scores. Spectral clustering [202] on 5 bins help identify the agreement and disagreement between Reinhard, KimKautz and Krawczyk TMOs. The two plots show two two-dimensional views of the 3D space. . . . . . . . . . . . . . . . . . . Preference distribution. Percentage distribution of pairwise preferences in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example playlist. Playlist #42 containing 20 tone mapped stimuli over 5 unique SRCs. Additionally the playlist contains 3 pairs of 'golden unit' stimuli as described in Figure 7.6. . . . . . . . . . . . . . . . . . . . . . . . Golden units. Pair of images in each column were used as golden units. Left-right vote distribution. Occurrence probability of each left-right ratio for 33 stimuli. Dashed lines represent the limit for rejection. X-axis proved the vote share out of 33 possible votes. Y-axis shows the probability of the vote share. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distribution of preference percentage of participants for each pairwise comparison. Each data point represents a unique image pair in the dataset. Black vertical lines indicate the mean values of the preference percentages represented on the horizontal axis. . . . . . . . . . . . . . . . . Mean RT dissimilarity values of observers. Lower values of RT dissimilarity indicates a higher agreement. Observers are grouped on horizontal axis by their corresponding playlists . . . . . . . . . . . . . . . . . . 7.10 Ideal distribution. Example of an ideal distribution of metric score differences for the two evaluation scenario. . . . . . . . . . . . . .
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 12 Figure 1.2: Dynamic range. The spectrum of luminance conditions in real world. Source: [2]

Figure 1 . 3 :

 13 Figure 1.3: Perceptual limitations. HDR rendering capabilities across different visual modes.

Figure 1 . 4 :

 14 Figure 1.4: Our experts. Experts in the field help us understand the process of manual exposure correction.
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  [START_REF] Tumblin | Tone reproduction for realistic images[END_REF] [START_REF] Tumblin | Tone reproduction for realistic images[END_REF] -Tumblin and Rushmeier present one of the earliest works of modern TMOs, when they were commonly known as tone reproduction operator. They present a sensation preserving display converter for monochromatic images which maps the 'radiosity' and other global illumination parameters from the realworld to display synthesized radiance values. They present a framework by concatenating a real-world observer model, an inverse display observer model and an inverse display device model. • Ferwerda et al.(1996) [23] -This global TMO models the human visual cortex's adaptation mechanism to changes in visibility threshold, colour, acuity and sensitivity over time. The predictive model is then used to synthesize realistic image illuminations. Drago et al.(2003) [30] -This method proposed by Drago uses logarithmic compression of luminance values mimicking human response to light. Furthermore, the authors propose to use a non-linear tone curve to further preserve details and contrast. Reinhard et al.(2005) [33] -Reinhard (2005) presents a different approach based on the adaptation mechanism of photo-receptors in human eyes. It produces aesthetic outputs with flexible user parameters to control intensity, contrast and chromatic adaptation. Kim et al.(2008) [38] -Kim and Kautz propose a global TMO which assumes that

•

  [START_REF] Larson | A visibility matching tone reproduction operator for high dynamic range scenes[END_REF] [24] -Larson's TMO introduces a histogram adjustment technique based on the local adaptation of luminance in a scene. The algorithm factors in models of human contrast sensitivity, glare, spatial acuity and colour sensitivity. • Pattanaik et al.(2000) [25] -Pattanaik's method is also inspired by the adaptation of HVS to the large changes in the scene intensity. The transient adjustments made by the HVS to preserve the original scene contrast in face of sudden luminance change -from dramatic compression of visual response to gradual recovery of visual cues, the TMO simulates such adjustments. • Ashikhmin et al.(2002) [26] -Ashikhmin's TMO depends on simpler operations at the early stages of HVS. They propose a three step operator -estimating the local luminance adaptation at every point of the image, applying a function to scale them to a displayable range and finally reintroducing details to prevent loss of contrast. • Durand et al.(2002) [27] -Similar to Ashikhmin's approach, Durand et al. present a two step decomposition process by dividing the image into base and detail layers.

•

  Li et al.(2005) [32] -Traditionally, multi-scale processing in image range compression has shown presence of halos. However, Li et al. propose an implementation which uses symmetrical analysis-synthesis filter bank to reconstruct a signal post compression and apply local gain control to the sub-bands to reduce dynamic range. • Mantiuk et al.(2006) [34] -Mantiuk (2006) draws inspiration from gradient domain methods and derives a framework which constraints the scene contrast for a full range of spatial frequencies. They represent an image in physical and perceptual terms such as contrast and visual response and introduce a transducer function which predicts the response of the HVS for a full range of contrast amplitudes thereby mapping from HDR to LDR. • Kuang et al.(2007) [35] -Kuang's TMO is based on the iCAM06 framework which models colour appearance and incorporates spatial processing models of the HVS for contrast enhancement and photoreceptor adaptation to light. It helps enhance local details in the highlights and shadows while also considering the viewing conditions through an inverse model to generate the final tone mapped image. • Meylan et al.(2007) [37] -Adding to the list of TMOs inspired by the HVS, Meylan et al. present an operator which is derived from the model of human retinal processing.
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 21 Figure 2.1: Structure of a Node. From biological neurons to artificial neurons.

Figure 2 . 2 :

 22 Figure 2.2: Structure of a CNN. Convolutional Neural Network (CNN) can take in an input image and learn spatially and temporally dependant features and differentiate between varying objects and aspects of the image. Source [48].

Figure 2 . 3 :

 23 Figure 2.3: Convolution Kernel and Receptive field. At every convolutional layer of the CNN, a convolution step involves a sliding kernel that is applied locally on a receptive field. The kernel slides with a predetermined stride through the entire input image and outputs a feature map for that layer. The weights remain constant during the stride but are adapted during the training phase of the network through back-propagation and gradient descent.
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 24 Figure 2.4: Euclidean versus Non-Euclidean. CNNs process a regular Euclidean structured data but it is a challenge for models to adapt to arbitrarily structured non-Euclidean data.Source:[START_REF] Lin | A Survey on Deep Learning-Based Vehicular Communication Applications[END_REF] 
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 25 Figure 2.5: Irregular input data. The HVS perceives high level features of the image (center) such as the luminance based segmentation (left) or semantic based regions (right) which have an irregular grid structure and hence are not well suited as inputs to CNNs.
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 26 Figure 2.6: 2D convolutions versus graph convolutions.An image can be considered as a special case of graphs where pixels are connected by adjacent pixels. The 2D convolution takes the weighted average of pixel values of the red node along with its neighbors. Similar to 2D convolution, graph convolutions take the weighted average of a node's neighborhood information to compute the hidden representation. The only difference remains, neighbour nodes on an image data are ordered and fixed in size, whereas in graph they are unordered and variable. Source:[START_REF] Wu | A comprehensive survey on graph neural networks[END_REF] 
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 27 Figure 2.7: Image to graph. Representing spatial arrangement of semantic maps in form of a graph where each semantic label is a node and neighboring segments share an edge.

Figure 2 . 8 :

 28 Figure 2.8: Operations in a GCN layer.The violet squares denote a function which produces node-level outputs (black envelopes) from the input embeddings (white envelopes). The propagation function (red triangle) is applied to the current embedding (white envelope) and summation of neighbouring node-level outputs (black envelopes) to obtain the new embedding (white envelope prime). Source:[START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF][START_REF] By | [END_REF] 

Figure 2 .

 2 Figure 2.8 illustrates the step-by-step process of converting embeddings to features and propagating the information. All the features are aggregated and passed on to the next layer based on a propagation function (Equation 2.2).

•

  TMQI-II [109] -A couple of years later Ma et al. introduce TMQI-II where they modify the SF and SN terms. The modified SF-II adapts the contrast visibility framework for HDR images to the local luminance distribution. Furthermore, Ma et al. conduct a subjective experiment to correlate the mean and standard deviation to the bounds of naturalness and fit the bounds to a linear model. The linear model is used to present the modified SN-II which computes naturalness probability of an image in terms of its mean and standard deviation.
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 31 Figure 3.1: Same label, different scene. Object understanding is often based on scene context. The object label window is marked in red in two different contexts -outdoor (left) amd indoor (right). The context governs how photographically significant an object label is.

Figure 3 . 2 :

 32 Figure 3.2: Lightness dataset. Sample images from our dataset which has a total of 830 high resolution images.
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 3334 Figure 3.3: Semantic labels frequency analysis. The figure plots the percentage of occurrence for all 150 labels from ADE20k (top) and the frequent labels (threshold by 1%)

Figure 3 . 5 :

 35 Figure 3.5: Labels in different context. Clustered labels are grouped by photographic context. The colour code provides intuition of labels encountered in similar setting.

Figure 3 .

 3 Figure 3.4 lists some of the frequent labels with their similarity measures and clusters.The '..' on some of the label suggests that ADE20k provided a few synonyms for the label because often a single string is insufficient to capture the context. For example, 'person..' is originally -person; individual; someone; somebody; mortal; soul. In such cases we compute the similarity of all provided synonyms and when comparing two labels we compute inter-synonym similarity as well. From our analysis, we observe that certain labels such as sky, person require a cluster of their own whereas labels such as wall, floor, ceiling can be grouped together in context of an indoor room or tree, plant, grass and flower can be grouped together as plant-life/vegetation.
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 41 Figure 4.1: Petroglyphs: Image from the HDR Photographic Survey. [143]. (a) Gamma-corrected HDR content. (b) Linear image representation. (c) Luminance map of the linear image ranging from black (shadows) to white (higlights). (d) The lightness framework from KrawczykTMO [31] visualised as two clusters of similar luminance, highlights (white pixels) and shadows (black pixels) respectively. Notice -The rocks at the bottom left and sky both fall under the highlight cluster. (e) KrawczykTMO implementation from Banterle's HDR Toolkit [5].

Figure 4 . 2 :

 42 Figure 4.2: SemanticTMO: Proposed tone mapping pipeline. The algorithm broadly has two blocks. The Semantic Classifier module (Section 4.2.1) uses off-the-shelf semantic classifiers to create a probabilistic semantic framework which denotes belongingness of pixels to a specific semantic class. The Gain Computation module (Section 4.2.2) computes a gain factor for each pixel based on the semantic target lightness, the observe luminance and the semantic framework. The gain factor corrects the exposure and produces the tone mapped image.
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 43 Figure 4.3: Alpha Matting. Image (a) denotes the gamma corrected Petroglyphs image from Fairchild's HDR dataset [143]. Subfigures (b) show the alpha matting technique on semantic segments sky (top row) and vegetation (bottom row). From Left to Right: The binary semantic map is used to generate the Trimap using morphological expansion at the boundary. The Trimap and the gamma corrected image are used to compute the refined mattes.
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 44 Figure 4.4: Lightness Histograms I. Histogram of luminance values observed in our dataset, for different semantic classes. Sky and vegetation are significantly different from the world average. Detailed histograms provided in Figure 4.5

Figure 4 . 5 :

 45 Figure 4.5: Lightness Histograms II. Figure shows the lightness histogram for each of the semantic classes and the 'World' histogram for the entire lightness dataset. The histograms are all frequency-normalised and the x-axis denotes the sRGB lightness percentages. The red vertical line denotes the median value for each histogram which is set as the semantic class specific target lightness (Table 4.1).
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 46 Figure 4.6: SemanticTMO results. Left to Right: Gamma corrected HDR images from Fairchild HDR Dataset and respective tone mapped images using KrawczykTMO [31] & KimKautzTMO[START_REF] Kim | Consistent tone reproduction[END_REF] (implemented using HDR toolkit by Banterle[5]) and the proposed SemanticTMO respectively. C-PCQI and BIQME[START_REF] Gu | Learning a no-reference quality assessment model of enhanced images with big data[END_REF] scores have been computed for each tone mapped image and the best scores have been highlighted.
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 447 Figure 4.7: Limitations of Semantic Framework. (a) Jessie's Cabin and (d) Bar Harbor Sunrise from Fairchild's HDR dataset [143] tone mapped using SemanticTMO is presented.Figure (a) shows distortions due to improper alpha matting. Figure (b) and (c) shows the binary semantic map and matted map of the 'vegetation' segment. Figure (d) shows distortion on the foreground due to improper semantic classification. Figure (e) and (f) show that part of the foreground, which is supposed to be 'vegetation' has been falsely classified as 'mountain'.

  Figure 4.7(c) is not precise enough. This leads to improper gain factors on the sky pixels inside and around the vegetation segment Figure 4.7(a).
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 51 Figure 5.1: G-SemTMO. A Graph-based Semantic-aware Tone Mapping Operator which can predict tonal modifications learned from a dataset of images manually retouched by a human expert. It uses features from the semantic segmentation map of the linear image and a Graph Convolutional Network to predict a latent feature space called Semantic Hints. A Fully Connected Network is used to map linear RGB values of the input image to the tone mapped result while accounting for the semantic and contextual information.

Figure 5 . 2 :

 52 Figure 5.2: Understanding semantic awareness. Row 1 : RAW input images A (a1824 ) and B (a1892 ), gamma correction (1/2.2) is applied for visualisation. Row 2 : Images manually retouched by expert E from MIT Adobe FiveK[START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF]. Row 3 : Coarse semantic segments -Fine labels obtained via FastFCN[START_REF] Wu | FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation[END_REF] segmentation and merged as per SemanticTMO[START_REF] Goswami | Tone Mapping Operators: Progressing Towards Semantic-awareness[END_REF]. Bottom: Input and output average intensity histograms for the 'water ' semantic segment. Histograms show markedly different output distribution for relatively similar input distribution.
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 53 Figure 5.3: G-SemTMO details: G-SemTMO has 4 data blocks and 2 network blocks.Using the input linear image and segmentation map we obtain a connected graph of N semantic nodes and an input feature matrix X . X and the node adjacency matrix is forwarded to the first network block GCN. The GCN has 6 graph convolutional layers followed by an activation layer of Leaky-ReLU. DropEdge[START_REF] Rong | Dropedge: Towards deep graph convolutional networks on node classification[END_REF] and Node dropouts are used to prevent over-fitting. The GCN outputs latent semantic hints H with 18 hints per node. Broadcasted features X and H stacked together ( Ĥ) and the input linear RGB create the final data block which is forwarded to the final network block FC. The FC has 2 fully connected layers with an activation Leaky-ReLU layer between the two. A gamma curve of 2.2 is applied to the input of the FC and the output is the tone mapped image.

Fig. 5 .

 5 Fig. 5.3 presents our architecture in detail. The GCN based Semantic Hint module has 6 graph convolutional layers generating 128, 128, 256, 256, 128 and 64 latent features respectively. Each convolutional layer is followed by an activation function of Leaky-ReLU.To prevent overfitting the model, we drop nodes from the graph in form of dropout layers before the first convolutional layer and after the last convolutional layer with probability of 0.2 and 0.5 respectively. Furthermore, we apply a DropEdge[START_REF] Rong | Dropedge: Towards deep graph convolutional networks on node classification[END_REF] with a probability of 0.2 before the first dropout.

Figure 5 .

 5 Figure 5.5 illustrates the training and validation loss curves across the three studies. The curves confirm our hypothesis that enriching the feature space with contextual semantic information improves the performance of the model. Across the three ablation studies, we observe that the model with the the full semantic information results in lower training and validation loss.

Figure 5 .

 5 Figure 5.6 plots the histogram of HyAB and PSNR objective scores across 99 test imagesfor each ablation study. Additionally, we plot the median for each histogram with its confidence interval of 95%. We observe that the proposed G-SemTMO prediction gets closest to the images retouched by expert E with a median perceptual colour distance score of 5.53. It also receives better PSNR evaluation than the other two ablations.
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 5455 Figure 5.4: Ablation comparisons.We present tone mapped results from the 3 ablation studies for 3 images from the FiveK dataset: a4886, a4986 and a5000. Left to right: 1) 3D Look-up table (LUT). A global TMO that learns the tonal transformation from input RGB to output RGB.2) 3D Look-up table (LUT) with semantic specific information. A local TMO that considers semantic labels and semantic-specific luminance values and channel-wise RGB color distribution. 3) Proposed G-SemTMO. The two step graph-based learning which considers semantic information as well as the contextual information from spatial arrangement of semantic labels. 4) The manually retouched version of the image produces by expert E[START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF]. The HyAB and PSNR objective metric scores for each tone mapped image validates the advantage of graph-based learning over the other ablation studies.
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 56 Figure 5.6: HyAB and PSNR histograms for the 3 ablation studies. The histograms correspond to score distribution over 99 test images. The median of the distribution is plotted with a solid circle with a confidence interval of 95%.
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 57 Figure 5.7: Training and Validation losses -Synthetic image data.
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 5859 Figure 5.8: HyAB metric -Synthetic image data. HyAB metric histograms for 3D LUT Local and G-SemTMO. Validated over 205 synthetic images.
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 510 Figure 5.10: Comparison of Ablation studies on synthetic images. From left to right: Gamma corrected source image from FiveK dataset [12], ablation 2 -3D LUT local, ablation 3 -G-SemTMO and Ground truth synthetic image. Comparing HyAB [104] colour distance and PSNR values, we conclude the G-SemTMO shows objectively better reconstruction quality and better fidelity to ground truth.

Figure 5 .

 5 Figure 5.11: G-SemTMO results. Left to Right: 4 selected images from FiveK dataset. Row 1 : Raw images exported using Lightroom without modification. Row 2 : Target images modified by expert E [12]. Row 3-6 : Selected TMOs with HyAB, PSNR and MS-SSIM scores. Row 7 : Tone curve applied per segment by G-SemTMO.
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 512 Figure 5.12: Objective metrics score comparison. 4 plots present 4 objective metrics: PSNR, HyAB, MS-SSIM and HDR-VDP-3 Quality. Each plot presents 6 histograms of scores achieved by 6 TMOs: proposed G-SemTMO, HDRNET[START_REF] Gharbi | Deep Bilateral Learning for Real-Time Image Enhancement[END_REF], Photoreceptor TM[START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF], Photographic TM[START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF], Display Adaptive TM[START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF] and Bilateral TM[START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF]. The median of each histogram is marked with a solid circle and a confidence interval of 95%.
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 513 Figure 5.13: Neighborhood based tonal adjustment. Segmented Image A (a4986) and Image B (a5000) from FiveK [12] dataset and their corresponding graph representation of semantic labels are presented. Since the neighborhood of vegetation is different in A from B, the predicted tone curve should be different.
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 514 Figure 5.14: Metric score distributions. HyAB, MS-SSIM and PSNR scores for inference using networks trained over 5 experts individually. The plots show the histograms of scores along with medians and its 95% confidence intervals.
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 5516 Figure 5.16 presents the results of the comparison. Objectively comparing using the L* values, we observe that G-SemTMO predicts luminance closer to expert for image A but performs worse for image B. Overall for the 50 test images, Bychkovsky et al. have a statistical advantage for better luminance prediction as we observe from the L* error histogram in the same figure. However, it should be noted that G-SemTMO trains endto-end to learn a far more complex mapping than just luminance adjustment. The better performance of Bychkovsky et al. maybe attributed to the simplicity of the problem they solve.

Figure 5 . 18 :

 518 Figure 5.18: HyAB colour distance and PSNR histogram comparison. G-SemTMO and Local LUT inference on LocHDR test images are compared. HyAB and PSNR distribution are plotted for the two networks with respective median and confidence interval of 95%. Overall, in the test image-set G-SemTMO shows slightly better performance that the local LUT.
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 519 Figure 5.19: Training on LocHDR dataset. From left to right: Gamma corrected source image from FiveK dataset [12], ablation 2 -3D LUT local, ablation 3 -G-SemTMO and Ground truth image. HyAB colour distance and PSNR metric scores suggest slight improvement of G-SemTMO over Local LUT.
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 520 Figure 5.20: Luminance inconsistency inside segment. Luminance adjustment inconsistency inside specific semantic region.
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 521 Figure 5.21: Luminance inconsistency across images. Luminance adjustment inconsistency for same semantic labels across images.

Figure 5 . 22 :

 522 Figure 5.22: Contrast inconsistency across images. Contrast adjustment inconsistency for same semantic labels across images.

Figure 5 . 23 :

 523 Figure 5.23: Histogram of Multi-scale contrast measure. The top 200 high contrast images are filtered to create the HC200 subset.

Figure 5 .

 5 Figure 5.24 compares the three trained networks objectively on the basis of PSNR and HyAB colour closeness. The HyAB and PSNR histograms for the three networks are plotted along with their median score with a confidence interval of 95%. In Section 5.5.3, we observed that by training over the entire LocHDR dataset G-SemTMO could only marginally improve over Local LUT. However, from Figure5.24, we observe significant improvement in G-SemTMO inference quality when trained over a specific style.

Figure 5 . 24 :

 524 Figure 5.24: Inferring on test images from HC200. Comparing HyAB and PSNR scores for test images inferred by G-SemTMO trained only on HC200, G-SemTMO trained on LocHDR and 3d Local LUT trained on LocHDR. HyAB and PSNR histograms show respective scores over 40 test images common to both validation sets. We observe that G-SemTMO trained on the specific style of HC200 produces significantly better inference and colour closeness than the other two networks.

Figure 5 . 25 :

 525 Figure 5.25: Comparing Inference on HC200 dataset. From left to right: Gamma corrected source image, 3D LUT local trained on LocHDR, G-SemTMO trained on LocHDR, G-SemTMO trained on HC200 and Ground truth. HyAB colour distance and PSNR metric scores show significant improvement when G-SemTMO is trained over the style and contrast specific HC200 images.

Figure 5 .

 5 Figure 5.25 shows the inference of selected example test images for subjective assessment. As in the comparison over objective metrics previously, we consider three networks to compare the inference subjectively. For each image in the figure, we see marked improvement in the inference quality of G-SemTMO when it is trained over HC200. This confirms that neural networks need to be trained on specific styles to learn style specific variations. Previously in Figure5.15, we have shown that G-SemTMO could learn the different retouching styles made by 5 expert photographers on the FiveK[START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset. The training on HC200 shows that for datasets with local adjustments the network be finetuned by training for specific style variations inside the dataset.

Figure 5 . 26 :

 526 Figure 5.26: Comparing inference images with similar 'Human Subject' tone curves. 3D Local LUT infers tone curves for the human semantic segment (images a1994 and a2243 ) which are quite similar with a PCM distance of 0.66. The human semantic region has different semantic neighbours in the two images. Hence, G-SemTMO predicts significantly different tone curves for the same segment with a PCM distance of 6.0513.

Figure 5 .

 5 27(b) and (c) show HyAB and PCM statistics individually for each of the 152 Human subject images. The PCM distance for image i denotes the distance between the tone curves predicted by Local LUT and G-SemTMO for image i. Similarly, HyAB difference is the difference between the HyAB scores of Local LUT and G-SemTMO for image i. The sign of HyAB difference holds same indication as before.

Figure 5 . 27 :

 527 Figure 5.27: Correlation between PCM and HyAB. a) 3D scatter plot -P CM ij and pairwise HyAB i and HyAB j for 152 Human subject images. b) 2D scatter plot -PCM distance and HyAB difference for Human subject images. c) Bar plot -PCM distance and corresponding HyAB difference for Human subjects images.

Figure 5 . 29 :

 529 Figure 5.29: Luminance and Chrominance error per segment. Recomputing the HyAB scores from Figure 5.28 per segment shows the luminance and colour closeness to the ground truth for each region. It provides a new perspective of using HyAB as an objective measure.

Figure 5 . 30 :

 530 Figure 5.30: Data distribution per semantic segment. The observed pixel colours and density of occurrence is plotted for Sky and Vegetation semantic segments. We notice that a certain colour or lightness of pixel is more frequently observed in the HC200 data subset. Insufficient representation of colours may lead to improper generalisation and faulty inference.

Figure 5 .

 5 Figure 5.30 plots a 3D scatter representation of observed pixel colour and lightness values and their density distribution for individual semantic segments as present in the HC200 data subset. On the top, we observe the distribution of Sky pixels. We observe that there is a significantly larger representation of gray pixels (as we would observe in a cloudy sky patch) than blue pixels. Similarly, for Vegetation segment, there is lesser representation of dark greens than the blacks. As mentioned previously, if the test image as pixels with low representation in the dataset it may be difficult to learn. Furthermore, beyond individual representation the frequency in conjunction to neighbour frequency is also an important factor -how frequent is the presence of dark vegetation pixels with blue sky as neighbour?

Figure 5 . 31 :

 531 Figure 5.31: Comparing semantic segments to expert masks. The mask created locally by the expert retoucher to apply adjustment has large difference to the semantic mask we use to approximate the retouching. This creates variations in the semantic segment which is challenging for G-SemTMO to learn.

Figure 5 . 32 :

 532 Figure 5.32: Using G-SemTMO (trained on expert E) outside the box. Images from Fairchild HDR [143] dataset tone mapped with DisplayAdaptive TM[START_REF] Mantiuk | Display Adaptive Tone Mapping[END_REF], Photographic TM[START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] and Photoreceptor TM[START_REF] Reinhard | Dynamic Range Reduction Inspired by Photoreceptor Physiology[END_REF] and proposed G-SemTMO.

Figure 5 . 33 :

 533 Figure 5.33: Learning tonal transformation vs structural attributes. HyAB metric scores (left) and MS-SSIM scores (right) for network trained over expert E. The network learns tonal transformation specific to the expert. However, there is no discernible difference on the structural similarity scale between networked trained on expert E and others.

Figure 6 . 1 :

 61 Figure 6.1: Pair Comparison of stimuli. Participants are provided with a simple task of choosing between two tone mapped images of the same source image. Each stimulus is of 480p resolution.

Figure 6 . 2 :

 62 Figure 6.2: Cropping Example and Stimuli dataset. High resolution images from Fairchild HDR dataset[START_REF] Fairchild | The hdr photographic survey[END_REF] are systematically cropped to create 20 SRCs. The cropping strategy is explained in details in Chapter 7. SRCs are tone mapped for visualization purposes using the ReinhardTMO[START_REF] Reinhard | Photographic tone reproduction for Digital Images[END_REF] implementation from Banterle's HDR MATLAB toolbox[5].

Figure 6 .

 6 Figure 6.3 presents a qualitative comparison of the conducted experiments. The plots compare the preference behavior of observers between two experiments. Each point, corresponds to an image pair A-B in the dataset. The value of the point denotes the

Figure 6 . 3 :

 63 Figure 6.3: Scatter plot comparison for the conducted experiments. Each point represents an image pair. Axis values represent the percentage of votes for the same image in a pair. MPD is the mean of the perpendicular distances of the points from the diagonal.

Figure 6 . 4 :

 64 Figure 6.4: Distribution of the permutation results. Subjective preference comparison distributions of randomly split halves over 1000 permutations for Exp-Lab experiment. MPD value represents the mean perpendicular distance across all permutations.

Figure 6 . 5 :

 65 Figure 6.5: Mean observer dissimilarity distributions. Each sample represents the mean RT dissimilarity of an observer to rest of the observers in the corresponding experiment

Figure 6 . 6 :

 66 Figure 6.6: Observers versus Certainty. Effect of number of observers on the certainty of the acquired results over 100 × 1000 permutations. Y axis is the percentage of pairs which reach to the final conclusion with corresponding number of observers at X axis.

Figure 6 . 7 :

 67 Figure 6.7: Preference data. Pair Comparison Matrix showing distribution of tone mapping preferences. E.g. KimKautzTMO was preferred over KrawczykTMO 33/39 times.

Figure 6 .

 6 8 illustrates the permutation test results for playlist-1. Histogram shows the distribution of statistically significant pairs between both experiments for 10000 permutations. The dark solid line represents the cumulative percentage value on the right vertical axis, while the dashed yellow line shows the 95 percentile threshold. The dark colored dot on the histogram represents the observed difference (5/30 pairs is significantly different) and we notice that it is below the 95 percentile threshold. For each playlist, permutation test indicate the same finding.

Figure 6 . 8 :

 68 Figure 6.8: Permutation test. The results between the two experiment for Playlist-1

Figure 6 . 9 :

 69 Figure 6.9: Timing Analysis. Distribution of participants based on average time taken per comparison for each experiments. A bar at n th second on the plot corresponds to (n -1, n] seconds range.

Figure 6 . 10 :Figure 6 . 11 :

 610611 Figure 6.10: Voting Pattern Analysis. Distribution of participants based on the number of times the left image is chosen over the right one.

Figure 6 . 12 :

 612 Figure 6.12: Transitivity analysis. Distribution of the participants for each experiment based on the number of failed transitivity relation out of possible 20.

CHAPTER 7 LARGE

 7 -SCALE TMO QUALITY ASSESSMENT: RV-TMO DATASET About this Chapter:

Figure 7 . 1 :

 71 Figure 7.1: Scale and Crop Strategy. Example shows 66 Museum image taken from Fairchild's HDR dataset[START_REF] Fairchild | The hdr photographic survey[END_REF]. The objective behind the strategy is natural augmentation of images for the dataset. The strategy creates three versions of each image, scaling the original size down by a factor of 2, 4 and 8 respectively. Consequently, for each version, a sliding-window crop of size 480 × 640 pixels is created with a horizontal and vertical stride of 100 pixels.

Figure 7 . 2 :

 72 Figure 7.2: Filter and Select. Selecting 250 final crops from 167000 candidate crops.

Figure 7 . 3 :

 73 Figure 7.3: Clustering candidate crops based on TMQI metric scores. Spectral clustering [202] on 5 bins help identify the agreement and disagreement between Reinhard, KimKautz and Krawczyk TMOs. The two plots show two two-dimensional views of the 3D space.

Figure 7 . 4 :

 74 Figure 7.4: Preference distribution. Percentage distribution of pairwise preferences in the dataset.

Figure 7 . 5 :

 75 Figure 7.5: Example playlist. Playlist #42 containing 20 tone mapped stimuli over 5 unique SRCs. Additionally the playlist contains 3 pairs of 'golden unit' stimuli as described in Figure 7.6.

Figure 7 . 6 :

 76 Figure 7.6: Golden units. Pair of images in each column were used as golden units.

Figure 7 . 7 :

 77 Figure 7.7: Left-right vote distribution. Occurrence probability of each left-right ratio for 33 stimuli. Dashed lines represent the limit for rejection. X-axis proved the vote share out of 33 possible votes. Y-axis shows the probability of the vote share.

Figure 7 . 9 :

 79 Figure 7.9: Mean RT dissimilarity values of observers. Lower values of RT dissimilarity indicates a higher agreement. Observers are grouped on horizontal axis by their corresponding playlists

Figure 7 . 10 :

 710 Figure 7.10: Ideal distribution. Example of an ideal distribution of metric score differences for the two evaluation scenario.

Figure 7 . 11 :

 711 Figure 7.11: Different vs Similar. Histograms of each metric for Different vs Similar analysis. AUC values are reported on top right corner of each plot.

Figure 7 . 12 :

 712 Figure 7.12: Better vs Worse. Histograms of metrics for Better vs Worse analysis. AUC values are reported on top right corner of each plot.

Lesson 2 . 1

 21 Graph convolutions can leverage the spatial arrangement of semantic segments in the image and create scene understanding. Lesson 2.2: G-SemTMO can approximate the local adjustments like an expert retoucher would create. Given a consistent style, G-SemTMO can analyse the scene like an expert and reproduce similar adjustments.

Contribution 3 :

 3 We present LocHDR, a dataset of 781 retouched HDR images created by expert retoucher by effecting local tonal adjustments using local digital tools such as brushes and filters.Lesson 3.1: G-SemTMO can learn locally effected tonal adjustments and predict tone curves dynamically as a function of the semantic segment and its neighbouring semantic labels.

Contribution 4 . 1 :Lesson 4 . 1 :

 4141 We conduct a subjective aesthetic assessment of HDR tonemapping on the Prolific crowdsourcing platform and provide the dataset of stimuli evaluated along with subjective preference data. Crowdsourcing can produce noisy data because of uncontrolled experimental conditions but it provides multiple possibilities to monitor participant behaviour and filter outliers. Crowdsourcing can be confidently used to collect subjective preference data with a desired level of reliability and certainty similar to an in-lab experiment.Contribution 4.2:We provide filtering techniques to identify and remove participants presenting spammer-like behaviour based on voting pattern, timing analysis, consistency of choice and golden standards.

Lesson 4 . 2 :

 42 Filtering the acquired data using our techniques significantly improves the collected data based on its correlation to subjective experiments conducted in lab.

Contribution 5 . 1 :Contribution 5 . 2 :

 5152 We present a novel content selection strategy based on objective and certain perceptual parameters of the image, which identifies challenging and interesting HDR crops to maximize the takeaway from subjective evaluation. We present the largest publicly available IQA dataset -RV-TMO, consisting of 250 unique HDR source images, 1500 unique pairs for comparison each evaluated by 70 unique observers and a total 3500 observers participating in the experiment.
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B. 1 IntroductionFigure B. 1 :

 11 Figure B.1: La première photographie. Vue de la fenêtre de la propriété du Gras, Joseph Nicéphore Niépce (1816). Il est intéressant de noter que la prise a été réalisée avec un temps de pose d'environ 8 heures. Par conséquent, la position du soleil dans le ciel a évolué pendant la prise et les deux pans de mur sont éclairés dans l'image finale.Ainsi, il ne s'agit pas seulement de la première tentative dans le domaine de la photographie moderne, mais également dans celui de la pose longue. Source:[START_REF] Tolmachev | A Brief History of Photography: The Beginning[END_REF] 

Figure B. 2 :

 2 Figure B.2: Plage dynamique. Le spectre des conditions de luminance dans le monde réel.Source:[START_REF] Kunkel | Perceptual design for high dynamic range systems[END_REF] 

Figure B. 3 :

 3 Figure B.3: Limites de la perception. Capacité de rendu HDR dans différents modes visuels.

CFigure B. 4 :

 4 Figure B.4: Nos experts. Des experts dans le domaine nous aident à comprendre le processus de correction manuelle de l'exposition.

Contribution 1 :

 1 Nous présentons un nouvel opérateur de mappage de tonalités dépendant du contenu, SemanticTMO [10], qui est à notre connaissance le premier à utiliser ex-B B B B B B B B 225 B.5. Nos Contributions plicitement l'information sémantique et les statistiques de luminance obtenues grâce à des masques sémantiques. Un cadre sémantique probabiliste détermine le mappage de tonalités en modifiant chaque région segmentée en vue d'une cible spécifique à la sémantique.

  

  Structure of a Node. From biological neurons to artificial neurons. . . . 2.2 Structure of a CNN. Convolutional Neural Network (CNN) can take in an input image and learn spatially and temporally dependant features and differentiate between varying objects and aspects of the image. Source [48]. Euclidean versus Non-Euclidean. CNNs process a regular Euclidean structured data but it is a challenge for models to adapt to arbitrarily structured non-Euclidean data. Source: [63] . . . . . . . . . . . . . . . . . 2.5 Irregular input data. The HVS perceives high level features of the image (center) such as the luminance based segmentation (left) or semantic based regions (right) which have an irregular grid structure and hence are not well suited as inputs to CNNs. . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 2D convolutions versus graph convolutions. An image can be considered as a special case of graphs where pixels are connected by adjacent pixels. The 2D convolution takes the weighted average of pixel values of the red node along with its neighbors. Similar to 2D convolution, graph convolutions take the weighted average of a node's neighborhood information to compute the hidden representation. The only difference remains, neighbour nodes on an image data are ordered and fixed in size, whereas in graph they are unordered and variable. Source: [64] . . . . . . . . . . . Lightness dataset. Sample images from our dataset which has a total of 830 high resolution images. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Semantic labels frequency analysis. The figure plots the percentage of occurrence for all 150 labels from ADE20k (top) and the frequent labels (threshold by 1%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 1.2 Dynamic range. The spectrum of luminance conditions in real world. Source: [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.3 Perceptual limitations. HDR rendering capabilities across different visual modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Our experts. Experts in the field help us understand the process of manual exposure correction. . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 2.3 Convolution Kernel and Receptive field. At every convolutional layer of the CNN, a convolution step involves a sliding kernel that is applied locally on a receptive field. The kernel slides with a predetermined stride through the entire input image and outputs a feature map for that layer. The weights remain constant during the stride but are adapted during the training phase of the network through back-propagation and gradient descent. 2.4 2.7 Image to graph. Representing spatial arrangement of semantic maps in form of a graph where each semantic label is a node and neighboring segments share an edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.8 Operations in a GCN layer. The violet squares denote a function which produces node-level outputs (black envelopes) from the input embeddings (white envelopes). The propagation function (red triangle) is applied to the current embedding (white envelope) and summation of neighbouring node-level outputs (black envelopes) to obtain the new embedding (white envelope prime). Source: [65, 67] . . . . . . . . . . . . . . . . . . . . . . . 3.1 Same label, different scene. Object understanding is often based on scene context. The object label window is marked in red in two different contexts -outdoor (left) amd indoor (right). The context governs how photographically significant an object label is. . . . . . . . . . . . . . . . . 3.2 3.4 Binary clustered label similarity scores. Cell (i, j) corresponds to the similarity measure of label i and label j . The cells in green and clustered to be 'similar' as per K-Means binary clustering. . . . . . . . . . . . . . . .

Table 4

 4 SemanticTMO results. Left to Right: Gamma corrected HDR images from Fairchild HDR Dataset and respective tone mapped images using KrawczykTMO
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Table 3 .

 3 

1: 9 Semantic classes. We merge the fine 150 labels from ADE20k

[START_REF] Zhou | Scene Parsing through ADE20K Dataset[END_REF]

. The index details are provided in appendix (refer to Appendix A.

[START_REF] Tolmachev | A Brief History of Photography: The Beginning[END_REF] 

  To this aim, we have created a Target Lightness Dataset of 830 high resolution 4000×3000 LDR images from freely available sources [140]. The dataset is not an exhaustive source of different kinds of scenic variations. It has been compiled keeping in mind the occurrence of the 9 semantic classes we have pre-defined: sky, mountain, vegetation, water, human subject, still-life subject, city, indoor, others. The main objective of the dataset is to observe whether the luminance statistics attributed to individual semantic labels have unique distributions. More precisely, we compute a luminance histogram for each of our

	Label	Target Lightness sRGB (%) Linear (%)
	Sky	72	48.5
	Mountain	36	10.5
	Vegetation	27	5.6
	Water	42	14.8
	Human subject	29	6.5
	Still-life subject	32	8.2
	City	43	15.6
	Indoor	36.5	10.8
	Others	43	15.6

[START_REF] Johnson | The practical zone system[END_REF] 

classes over the entire dataset. Figure

4

.4 shows three such histograms, as well as the world histogram (which contains all pixels in our dataset). Ideally, semantics with different perceived luminance should have different histograms and hence should require different classification and exposure adjustment. This hypothesis holds for our 9 classes.

Table 4 . 1 :

 41 Target lightness for different semantic classes. The targets are computed from the median of the luminance histograms of individual semantic labels across the Target Lightness Dataset.

Table 4

 4 
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.1. Using the two values, we compute a class specific gain factor, γ i . Finally, we merge the gain factors weighted by the pixel belongingness in the semantic framework to compute a gain map of the same dimension as of the input image.

Table 6 . 1 :

 61 Observer statistics. The table provides a general demographic detail of the participant pool for each of the 3 experimental setups.

Table 6 . 2 :

 62 Agreement, Disagreement & Contradictions. Comparing statistically significant differences between image pairs across 3 experiments.

	Comparisons	Agreement Disagreement Contradiction
	Exp-Lab vs Exp-Online	73	38	9
	Exp-Lab vs Prolific	89	27	4
	Exp-Online vs Prolific	89	31	0

3 that the MPD between Exp-Lab and Prolific is 0.0746. Comparing it to the expected MPD suggests a desirable similarity between Exp-Lab and Prolific results.

Table 6 . 3 :

 63 Krippendorff 's alpha evaluation. Analysing the inter-observer agreement across playlists and experimental setups.

	Comparisons	All Pairs	Significantly Different Pairs
		Plist-1 Plist-2 Plist-3 Plist-4 Plist-1 Plist-2 Plist-3 Plist-4
	Exp-Lab	0.2244 0.2512 0.2020 0.3229 0.2856 0.3274 0.3214 0.3579
	Exp-Online	0.1653 0.2420 0.1571 0.2496 0.2328 0.3157 0.2187 0.4420
	Prolific	0.1576 0.1904 0.1424 0.2224 0.1871 0.2602 0.1958 0.3048

  Reliability of Crowdsourcing for Subjective Quality Evaluation of Tone Mapping Operators."

	Abhishek Goswami, Ali Ak, Wolf Hauser, Patrick Le Callet, and Frédéric Dufaux.
	In IEEE International Workshop on Multimedia Signal Processing (MMSP' 2021
	Runner-up to Best Paper Award).
	"A Comprehensive Analysis of Crowdsourcing for Subjective Evaluation
	of Tone Mapping Operators."
	Ali Ak, Abhishek Goswami, Wolf Hauser, Patrick Le Callet, and Frédéric Dufaux.

Image Quality and System Performance, IS&T International Symposium on Electronic Imaging (EI 2021).

  Prashnani et al.[START_REF] Prashnani | PieAPP: Perceptual Image-Error Assessment through Pairwise Preference[END_REF] used a modified Bradley Terry (BT)[START_REF] Bradley | Rank analysis of incomplete block designs: The method of paired comparisons[END_REF] model as an objective function to train a deep learning model on probabilistic pairwise preference data. During training, the model predicts quality scores for each stimuli and pairwise preference probabilities are calculated from the predicted scores with modified BT. During inference, the model is able to predict quality scores for individual stimuli (in comparison to a pristine reference image). Deep neural networks have come a long way and their applications such as use of discriminators to evaluate aesthetic quality is well documented. The missing cog in the pipeline was a large scale dataset with subjective preferences. Now, with our dataset we can hope to explore newer avenues of data driven objective metrics for HDR tone mapping.

2.2. Deep Learning and Data-driven TMOs

3.2. Merging Semantic Labels

5.5. Results & Analysis

To access the dataset and implementation codes for analysis please visit here.

Details about Barnard's Test explained in part 6.4.3

A.1. ADE20K Semantic Labels and Indices

A.3. HC200 Indices

A.3. HC200 Indices

Nous avons contacté deux experts (voir Figure B.4) dans le domaine de la photographie. Fabrizio est photographe professionnel et professeur de photographie ayant plus de 15 ans d'expertise dans la direction artistique et le graphisme. Il est responsable produit pour les logiciels de retouche photo chez DxO Labs en France. Il est expert dans plusieurs genres dont la photographie de paysage, le portrait et la pose longue. Julien est photographe expert et spécialiste de l'image. Il est expert en photographie de rue et en portrait, entre autres. Il est social media manager chez DxO Labs et expert dans les pipelines majeurs d'édition et de retouche photo dans des logiciels tels que Photolab, Adobe Lightroom et Photoshop, entre autres.Notre objectif était de disséquer le travail manuel et le flux de décision qui conduit à la fois à la compréhension de la scène et à la correction d'exposition en photographie numérique. Lors de l'entretien, nous leur posons de nombreuses questions. Nous présentons par la
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A.2 LocHDR Indices

The following 781 images from the Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset have been selected for our LocHDR dataset (refer to Chapter 5.5.3). a0010 a0016 a0041 a0043 a0054 a0058 a0064 a0070 a0078 a0083 a0084 a0105 a0110 a0112 a0127 a0137 a0142 a0155 a0163 a0165 a0167 a0169 a0171 a0187 a0191 a0192 a0204 a0222 a0234 a0238 a0241 a0257 a0259 a0265 a0276 a0280 a0281 a0283 a0284 a0294 a0295 a0298 a0307 a0309 a0310 a0320 a0322 a0339 a0340 a0341 a0356 a0368 a0371 a0386 a0409 a0411 a0428 a0454 a0458 a0464 a0474 a0480 a0481 a0484 a0497 a0498 a0515 a0520 a0526 a0530 a0532 a0536 a0541 a0545 a0548 a0549 a0550 a0565 a0568 a0571 a0572 a0576 a0578 a0580 a0581 a0609 a0620 a0637 a0639 a0643 a0650 a0652 a0659 a0664 a0676 a0680 a0681 a0695 a0697 a0707 a0712 a0715 a0728 a0737 a0743 a0744 a0753 a0756 a0757 a0762 a0775 a0779 a0793 a0803 a0813 a0814 a0823 a0838 a0841 a0842 a0848 a0860 a0863 a0868 a0872 a0873 a0874 a0882 a0883 a0889 a0892 a0894 a0900 a0901 a0906 a0907 a0917 a0937 a0947 a0948 a0950 a0952 a0959 a0960 a0972 a0976 a0981 a0986 a0998 a1010 a1016 a1022 a1026 a1028 a1029 a1030 a1035 a1063 a1065 a1075 a1076 a1085 a1088 a1089 a1098 a1102 a1114 a1116 a1125 a1131 a1135 a1136 a1142 a1155 a1159 a1160 a1163 a1165 a1168 a1179 a1181 a1191 a1196 a1199 a1203 a1205 a1207 a1214 a1216 a1219 a1225 a1227 a1228 a1229 a1237 a1240 a1248 a1254 a1260 a1270 a1287 a1289 a1299 a1314 a1316 a1322 a1324 a1330 a1340 a1341 a1347 a1354 a1356 a1358 a1362 a1365 a1368 a1374 a1379 a1382 a1389 a1393 a1397 a1400 a1402 a1407 a1419 a1422 a1427 a1428 a1429 a1434 a1441 a1446 a1451 a1454 a1456 a1458 a1469 a1470 a1472 a1486 a1487 a1491 a1499 a1503 a1518 a1521 a1529 a1538 a1549 a1555 a1559 a1560 a1576 a1595 a1598 a1599 a1601 a1603 a1605 a1620 a1622 a1632 a1656 a1662 a1667 a1669 a1690 a1696 a1698 a1707 a1731 a1742 a1745 a1750 a1753 a1755 a1758 a1774 a1775 a1797 a1806 a1808 a1811 a1814 a1816 a1831 a1837 a1844 a1849 a1850 a1871 a1872 a1876 a1879 a1901 a1902 a1906 a1908 a1912 a1915 a1920 a1928 a1932 a1933 a1946 a1965 a1978 a1981 a1985 a1994 a1995 a2000 a2002 a2007 a2015 a2022 a2032 a2033 a2034 a2037 a2058 a2060 a2067 a2074 a2083 a2084 a2086 a2101 a2117 a2121 a2123 a2125 a2134 a2146 a2150 a2152 a2162 a2179 a2181 a2193 a2196 a2209 a2211 a2214 a2221 a2222 a2228 a2238 a2243 a2244
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A.2. LocHDR Indices 214 a2248 a2255 a2289 a2293 a2296 a2297 a2305 a2309 a2310 a2323 a2326 a2330 a2336 a2341 a2347 a2358 a2366 a2369 a2372 a2375 a2377 a2378 a2382 a2386 a2400 a2403 a2404 a2407 a2412 a2414 a2421 a2444 a2459 a2460 a2471 a2476 a2481 a2484 a2492 a2499 a2513 a2515 a2518 a2531 a2532 a2535 a2542 a2552 a2559 a2567 a2570 a2582 a2584 a2598 a2600 a2606 a2610 a2620 a2637 a2638 a2649 a2653 a2654 a2657 a2668 a2669 a2671 a2677 a2683 a2694 a2698 a2709 a2710 a2713 a2720 a2731 a2736 a2739 a2758 a2763 a2764 a2798 a2800 a2805 a2809 a2817 a2826 a2830 a2841 a2843 a2847 a2870 a2871 a2873 a2874 a2876 a2877 a2895 a2898 a2902 a2911 a2915 a2916 a2920 a2921 a2931 a2938 a2942 a2952 a2954 a2961 a2973 a2981 a2982 a2995 a3007 a3008 a3016 a3021 a3048 a3057 a3060 a3075 a3079 a3089 a3090 a3095 a3097 a3101 a3104 a3106 a3113 a3120 a3124 a3125 a3128 a3130 a3131 a3139 a3141 a3144 a3151 a3152 a3162 a3165 a3170 a3172 a3173 a3197 a3201 a3215 a3226 a3237 a3249 a3250 a3254 a3255 a3265 a3267 a3270 a3272 a3288 a3308 a3312 a3317 a3319 a3325 a3336 a3337 a3339 a3340 a3341 a3352 a3362 a3371 a3389 a3406 a3408 a3434 a3436 a3438 a3444 a3447 a3448 a3454 a3460 a3467 a3470 a3485 a3495 a3512 a3526 a3527 a3531 a3535 a3559 a3560 a3561 a3563 a3564 a3566 a3573 a3574 a3597 a3606 a3613 a3614 a3628 a3632 a3633 a3637 a3644 a3657 a3661 a3672 a3673 a3674 a3678 a3693 a3704 a3716 a3722 a3728 a3736 a3740 a3741 a3742 a3744 a3746 a3750 a3755 a3763 a3766 a3777 a3787 a3788 a3803 a3807 a3810 a3818 a3819 a3829 a3847 a3857 a3861 a3863 a3865 a3868 a3878 a3881 a3884 a3888 a3890 a3891 a3896 a3897 a3911 a3912 a3918 a3919 a3924 a3926 a3933 a3937 a3938 a3941 a3944 a3950 a3952 a3964 a3969 a3979 a3995 a3996 a3998 a4000 a4005 a4025 a4045 a4057 a4060 a4063 a4074 a4075 a4096 a4098 a4101 a4109 a4114 a4115 a4119 a4128 a4129 a4130 a4151 a4152 a4184 a4186 a4203 a4210 a4223 a4226 a4229 a4235 a4246 a4251 a4259 a4260 a4273 a4274 a4278 a4285 a4286 a4296 a4300 a4303 a4304 a4317 a4321 a4323 a4328 a4333 a4352 a4357 a4358 a4360 a4370 a4372 a4381 a4390 a4391 a4397 a4399 a4410 a4414 a4420 a4444 a4452 a4456 a4459 a4461 a4464 a4469 a4479 a4491 a4497 a4506 a4525 a4527 a4530 a4533 a4535 a4537 a4538 a4540 a4543 a4545 a4551 a4556 a4559 a4579 a4588 a4600 a4601 a4608 a4609 a4611 a4623 a4630 a4635 a4645 a4648 a4651 a4660 a4666 a4676 a4677 a4687 a4689 a4698 a4710 a4720 a4731 a4734 a4735 a4744 a4749 a4751 a4756 a4760 a4772 a4778 a4781 a4784 a4789 a4798 a4800 a4805 a4811 a4814 a4836 a4841 a4848 a4866 a4868 a4870 a4871 a4882 a4883 a4891 a4897 a4902 a4903 a4911 a4914 a4921 a4927 a4928 a4935 a4941 a4954 a4961 a4962 a4965 a4968 a4974 a4975 a4977 a4991

A.3 HC200 Indices

The following images from the Adobe FiveK [START_REF] Bychkovsky | Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs[END_REF] dataset have been selected for our HC200 dataset (refer to Chapter 5.5.3). a0054 a0058 a0070 a0084 a0112 a0137 a0167 a0265 a0298 a0341 a0411 a0428 a0454 a0458 a0481 a0484 a0526 a0530 a0545 a0550 a0571 a0609 a0650 a0659 a0695 a0697 a0743 a0841 a0842 a0860 a0883 a0889 a0907 a0947 a0960 a1022 a1085 a1131 a1142 a1203 a1228 a1229 a1237 a1248 a1260 a1289 a1362 a1389 a1397 a1407 a1429 a1458 a1470 a1486 a1538 a1622 a1696 a1871 a1906 a1912 a1915 a1928 a1933 a1946 a1994 a2033 a2060 a2117 a2134 a2150 a2193 a2221 a2238 a2243 a2255 a2293 a2296 a2336 a2341 a2358 a2404 a2412 a2513 a2535 a2542 a2567 a2669 a2694 a2739 a2758 a2763 a2798 a2817 a2843 a2870 a2973 a3090 a3097 a3124 a3130 a3141 a3172 a3250 a3254 a3288 a3308 a3340 a3444 a3495 a3561 a3564 a3566 a3574 a3657 a3673 a3728 a3740 a3742 a3763 a3818 a3829 a3878 a3912 a3952 a3996 a4025 a4060 a4074 a4075 a4109 a4119 a4128 a4129 a4186 a4203 a4210 a4223 a4235 a4246 a4259 a4300 a4304 a4321 a4323 a4328 a4352 a4360 a4370 a4390 a4414 a4444 a4452 a4456 a4459 a4461 a4464 a4469 a4479 a4506 a4525 a4530 a4535 a4538 a4543 a4545 a4551 a4609 a4611 a4651 a4676 a4677 a4687 a4720 a4735 a4749 a4756 a4760 a4772 a4789 a4805 a4811 a4841 a4848 a4866 a4870 a4871 a4883 a4891 a4897 a4902 a4903 a4914 a4927 a4954 a4962 a4965 a4974 a4975 a4977 a4991

Gamma Corrected

It displays the evaluation in terms of percentage of preference by the observers. Points on the x-axis, closer to one side of the y-axis indicate a higher preference towards the corresponding TMOs on the y-axis. Additionally, statistical significance of the pairwise preferences are color coded as labeled in the figure. We use Barnard's Exact Test [START_REF] Barnard | A new test for 2× 2 tables[END_REF] to estimate the statistical significance of the difference between the pairwise preferences. Avant de commencer, faisons une brève introduction du sujet de la thèse. Ce chapitre introduit l'imagerie HDR (High Dynamic Range Imaging -imagerie à plage dynamique élevée) et les opérateurs de mappage de tonalités (tone mapping operators). Nous formulons l'énoncé de thèse, essayons de comprendre comment les experts abordent le problème et définissons nos objectifs en embarquant pour un voyage de découvertes scientifiques. The ratio between the brightest and the darkest luminance intensity in High Dynamic Range (HDR) images is larger than the rendering capability of the output media. Tone mapping operators (TMOs) compress the HDR image while preserving the perceptual cues thereby modifying the subjective aesthetic quality. Age old painting and photography techniques of manual exposure correction has inspired a lot of research for TMOs. However, unlike the manual retouching process based on semantic content of the image, TMOs in literature have mostly relied upon photographic rules or adaptation principles of human vision to aim for the 'best' aesthetic quality which is ill-posed due to its subjectivity. Our work reformulates the challenges of tone mapping by stepping into the shoes of a photographer, following the photographic principles, image statistics and their local retouching recipe to achieve the tonal adjustments.

In this thesis, we present two semantic aware TMOs -a traditional SemanticTMO and a deep learning-based G-SemTMO. Our novel TMOs explicitly use semantic information in the tone mapping pipeline. Our novel G-SemTMO is the first instance of graph convolutional networks (GCN) being used for aesthetic image enhancement. We show that graph-based learning can leverage the spatial arrangement of semantic segments like the local masks made by experts. It creates a scene understanding based on the semantic specific image statistics a predicts a dynamic local tone mapping. Comparing our results to traditional and modern deep learning-based TMOs, we show that G-SemTMO can emulate an expert's recipe and reach closer to reference aesthetic styles than the state-of-the-art methods.
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