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Abstract

Optimization is widely required and applied in science and in engineering. Many
powerful optimization techniques (algorithms) have been developed for different kinds of
optimization problems. An emerging class of challenging optimization problems is known
as expensive optimization problems. The high computational cost of solving this kind of
problems can arise due to the high expense in objective function evaluations, unavailability
of derivative information, and complex landscape of objective function. In order to reduce
the cost of solving expensive problems, this thesis devoted to Kriging-Assisted Covariance
Matrix Adaptation Evolution Strategy (KA-CMA-ES).

In this thesis, several propositions for the open questions in surrogate-assisted
evolutionary optimization have been developed and applied in KA-CMA-ES. The developed
KA-CMA-ES algorithms were analyzed and evaluated by experiments on forty test problems.
Applications of the proposed KA-CMA-ES algorithm were carried out in material parameter

identification of an elastic-plastic damage constitutive model.

The results of experimental studies demonstrate that the developed KA-CMA-ES
algorithms are more efficient than the standard CMA-ES and that the KA-CMA-ES using
modified approximate ranking procedure with Expected Improvement as metric (ARP-EI)
has the best performance among all the investigated KA-CMA-ES algorithms in this work.
The results of engineering applications of the algorithm ARP-EI in inverse method of
material parameter identification show that the presented elastic-plastic damage model is
adequate to describe the plastic and ductile damage behavior of the used material and also
prove that the proposed KA-CMA-ES apparently improve the efficiency of the standard
CMA-ES. Therefore, the KA-CMA-ES is more powerful and efficient than CMA-ES for
expensive optimization problems.

Keywords: expensive optimization problem, evolution strategy, CMA-ES, Kriging model,
pre-selection, evolution control, approximate ranking procedure, parameter identification.






Résumé

L'optimisation est une problématique largement demandee et appliques en science et
en ing&ierie. Beaucoup d’algorithme d'optimisation sont développés pour les diffé&ents
types de problémes dont un type classique et connu est le Probléne d'Optimisation Couteuse.
Les coUs pour réoudre ce type de probléne peut se produire en raison de la dépense dans
I’&aluations de la fonction d’objectif, de I'indisponibilitéde fonction d&iveée et du contexte
complexe pour la fonction objective. Afin de ré&luire le coG de calcul pour des Problémes
d’Optimisation Couteuse, cette thése a été consacrée a la Stratégie d’Evolution avec

Adaptation de Matrice de Covariance assistée par modée de Krigeage (KA-CMA-ES).

Dans cette these, plusieurs propositions pour les questions ouvertes dans I'optimisation
é/olutive assistée par substitution sont développées et appliquées dans KA-CMA-ES. Les
algorithmes KA-CMA-ES déselopp& sont analysé& et évalué par 40 cas-test. Les
applications de l'algorithme KA-CMA-ES développésont ré&lisées par I’identification des

parameétres matéiels avec un modée constitutif d’endommagement élastoplastique.

Les résultats exp&imentaux dénontrent que les algorithmes KA-CMA-ES développés
sont plus efficaces que le CMA-ES standard. lls justifient &alement que le KA-CMA-ES
coupléavec ARP-EI est le plus performant algorithme par rapport aux autres méhodes
éudiéss dans ce travail. Les réultats obtenus par I'algorithme ARP-EI dans I'identification
des parametres matériels montrent que le modele d’endommagement élastoplastique utilisé
est satisfait pour décrire le comportement d’endommage plastique et ductile. D’ailleurs, ils
prouvent que le KA-CMA-ES proposé am@iore I'efficace de la CMA-ES. Par conséjuent,
le KA-CMA-ES est plus puissant et efficace que CMA-ES pour des Problénes
d'Optimisation Co(teuse.

Mots-clé&: probleme d'optimisation coUeuse, stratggie d'éolution, CMA-ES, modde de
Krigeage, pré&dection, contrde d'éolution, procé&lure de classement approximatif,
identification des parameres.
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General Introduction

General Introduction

Optimization is extensively required and applied in almost all disciplines, whether
economics, sciences, or engineering. Commonly, in engineering design and management,
we almost always try to optimize something, for instance, to minimize the cost and energy
consumption, or to maximize the profit, performance and efficiency. In real life, resources,
time and money are always limited; consequently, optimization is far more important.
Motivated by industrial and research demands, many powerful optimization techniques
(algorithms) have been developed. The algorithm chosen for an optimization task largely
depend on the type of the problem, the nature of the algorithm, the desired quality of solution,
the available computing resource, time limit, availability of the algorithm implementation,
and the expertise of the decision-makers [1]. This thesis devotes to a class of challenging
optimization problems known as expensive optimization problems [2]. In this introductory
chapter, the scope and motivation of our study are firstly explained. Then, we give a brief

outline of the whole thesis.
Aim and Scope

With the development of numerical methods and computing technology, contemporary
engineering design is heavily based on computer simulations, such as finite element method
(FEM) and computational fluid dynamics (CFD) simulations. Correspondingly, computer-
aided design optimization is now involved in a wide range of applications, for instance,
optimization of automotive components and shape optimization of wind turbine blades.
However, computer-aided design optimization is accompanied by several difficulties, which
bring high computational cost in optimization. Thus, computer-aided design optimization
generally belongs to the so-called expensive optimization problems. The computational

challenge arises in this class of expensive optimization problems generally are due to:
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* Objective function is evaluated based on computer simulation, which can be
expensive (require anywhere from minutes to hours even days of computation
time for each run of simulation). Therefore, in this case, the computational cost
would be very expensive, because usually a large number of objective function

evaluations is needed in the optimization process.

e There is no explicit analytical expression for the objective function or its
derivatives. Thus, derivative-free algorithms are required to solve this black-box
type of optimization problem. Generally, without the aid of derivative
information, derivative-free algorithms require more evaluations of objective

function than derivative-based algorithms.

* For many computer-aided design optimization problems in industry and
engineering, the landscape of objective function may be non-smooth,
multimodal, discontinuous and ill-conditioned. These difficulties also bring

about high computational cost in finding the optimum.

In this thesis, our objective is to develop powerful optimization techniques that can
efficiently deal with the expensive optimization problems subject to the box constraints. This
kind of problems can be described as

minimize f (x)

subjectto I<x<u
where f (x):Rd > R is the objective function which is evaluated by running computer
simulation, vector x =[x+, X ]T is the collection of d design variables, vectors|andUare
called lower and upper bounds, respectively. Box constraints restrict the search space to the

hyperrectangle[l;,u, | x[1,,u, |x---x[l;,uq].

Because of the black-box property and complex landscape of objective function in
expensive optimization problems, evolutionary algorithms (EAs), which is a class of
derivative-free and powerful global optimizers, are appropriate for solving expensive
optimization problems. However, the main difficulty in applying EAs to solve expensive

optimization problems is that EAs usually need a large number of fitness function (objective
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function) evaluations before obtaining a satisfying result. Consequently, surrogate-assisted
evolution algorithms were motivated from reducing computational costs in evolutionary
optimization of expensive problems. Optimization using surrogate-assisted evolutionary
algorithms is also known as surrogate-assisted evolutionary optimization or surrogate-

assisted evolutionary computation in the optimization community.

This work concentrates on surrogate-assisted evolution strategy (ES) for expensive
optimization problems. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
and Kriging model are chosen as the two components of surrogate-assisted evolution
strategy. This Kriging-Assisted Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) is abbreviated as KA-CMA-ES in the thesis. Our goal is to investigate the existed
surrogate-assisted ES and develop new efficient algorithms of KA-CMA-ES for expensive

problems.

A comprehensive study on KA-CMA-ES are performed in this thesis. New training set
selection methods, pre-selection strategy, evolution control and approximate ranking
procedure have been modified or developed, and the corresponding KA-CMA-ES
algorithms are formulated. Then, experimental studies of KA-CMA-ES algorithms using
existed training set select methods, pre-selection and evolution control, and our new
developed KA-CMA-ES algorithms are carried out to analyze and evaluate the performance

of the algorithms.

Thesis Outline

This thesis is organized in six chapters. After this general introduction, Chapter 1 gives
the state of the art of optimization. Some basic concepts of optimization and a brief overview
of optimization algorithms are firstly presented in Chapter 1. Then, a review of surrogate-

assisted evolutionary computation based fitness approximation is offered.

Chapter 2 systematically presents the evolution strategies (ESs), from the main

principles and evolutionary operators to strategy parameter control and algorithms. The
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CMA-ES, which is one of the most successful evolution strategies and is chosen as the

representative of ESs, is completely introduced.

Chapter 3 introduces the surrogate modeling of computer experiments. Design of
experiments, surrogate models (including polynomial regression model, Kriging model,
radial basis function model, multi-layer perceptron networks and support vector regression),

and model validation are successively described in this chapter.

Chapter 4 dedicates to the Kriging-Assisted CMA-ES (KA-CMA-ES) algorithms,
which combine the Kriging model and CMA-ES to reduce the computational cost of ES for
expensive optimization problems. A brief survey of surrogate-assisted evolution strategies
and some open issues in this topic are firstly provided. We focus on dealing with these open
questions and developing new KA-CMA-ES algorithms for expensive optimization
problems. Then, a series of KA-CMA-ES algorithms using pre-selection strategy,
individual-based control, approximate ranking procedure and generation-based control are
illustrated in mathematical formulations. Finally, experimental studies on KA-CMA-ES
algorithms are performed on forty test problems (including twelve benchmarking functions),

to analyze and evaluate the performance of existed and our newly developed algorithms.

Chapter 5 provides an engineering application of the KA-CMA-ES algorithm using
approximate ranking procedure in material parameter identification of an elastic-plastic

damage model.
Chapter 6 gives a brief summary of the whole thesis in French.

Lastly, the conclusion and perspective part concludes the thesis and summarizes our

contributions to surrogate-assisted evolution strategies for expensive optimization problems.
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1. State of the Art of Optimization

This chapter presents a brief overview of optimization techniques and the state of the
art of surrogate-assisted evolutionary optimization. Firstly, basic concepts of optimization
are concisely introduced in Section 1.1. An overview of optimization algorithms is given
subsequently in Section 1.2, including derivative-based and derivative-free algorithms.
Section 1.3 reviews the development of surrogate-assisted evolutionary algorithms (EAS)

for optimization.
1.1 Basic Concepts of Optimization

Optimization means finding the best solution, which is specified by certain goals, such
as minimizing the cost of a process or maximizing the efficiency of a system from all feasible
solutions [1]. Feasible solutions are those that satisfy all the conditions or constraints in the
optimization problem. Nowadays, optimization is required and applied in almost all
disciplines, whether economics, science, or engineering. In this section, some basic notions

of optimization are presented.

In an optimization problem, a function that mathematically represents the problem is to
be minimized or maximized. The function that is being optimized is referred to as the
objective function. Generally, the objective function is a quantity such as cost, profit,
efficiency, size, weights, output, and so on. The variables in the objective function are
denoted as the design variables. For example, for a structural optimization problem, design
variables could be the dimensions of a structure or its material parameters. In some problems,
design variables take on values from a discrete set, often a subset of integers, whereas in
other problems, design variables can take on any real values. Problems with discrete design
variables are called discrete optimization problems; similarly, problems with continuous
variables are continuous optimization problems. In some optimization problems, there are

some constraints on design variables, which restrict the domain from which design variables



1.1 Basic Concepts of Optimization

can be taken values. In other words, the values that design variables taken should satisfy the
constraints, if constraints exist. In this work, only the continuous optimization problems with

box constraints are considered.

The standard mathematical form of an (continuous) optimization problem is

minimize  f (x)
subjectto  g;(x)<0, i=1---,m (1.1)

h; ()

where f (X): R’ - Ris the objective function to be minimized over the design variables

07 j=1,...’ p

that are collected in a vectorx = [x1 oy Xy ]T, g (X) <0 are called inequality constraints, and
hj (x)=0 are called equality constraints. Conventionally, the standard form defines a
minimization problem. A maximization problem can be treated by negating the objective

function. The constraints on design variables define the set or domain
S ={X€Rd |gi (x)<0, i=1---,m and h;(x)=0, j=1--, p}, (1.2)

which is called feasible set (also called feasible region) or search domain, and any element
from this set is called a feasible point. A feasible pointx*is called global minimum (global

optimum) solution, if
f*=f(x")<f(x)forallxes. (1.3)

Conversely, it is called a local minimum (local optimum) if the above inequality holds for X
only within its neighborhood [3]. The global and local optimum are simply illustrated in

Figure 1.1.

The optimization problem described in formulation (1.1) is called a constrained
optimization problem since there are constraints on design variables. Optimization problem
without constraints are correspondingly referred to as unconstrained optimization problems.
Unconstrained optimization problems arise directly in many practical applications. They are
also the basis for constrained optimization problems in which the constraints can be replaced
by a penalty term in the objective function. Constrained optimization problems come from

applications in which there are explicit constraints on the variables. The constraints on the
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variables can vary widely from simple bounds to systems of equalities and inequalities that
model complex relationships among the variables. Constrained optimization problems can
be furthered classified according to the nature of the constraints (e.g., linear, nonlinear,
convex) and the smoothness of the functions (e.g., differentiable or non-differentiable).

Different kinds of optimization problems usually call for distinct approaches to solve them.

Jf(x)

local optimum

global optimum

Figure 1.1 lllustration of local and global minimum

In optimization, after an problem is modeling as a mathematical form similar as (1.1),
the next essential step is to use the proper algorithm to solve the optimization problem. A

brief review of optimization algorithms is given in the following section.

1.2 Overview of Optimization Algorithms

1.2.1 Classification of Optimization Algorithms

Optimization algorithms, which try to find the minimum values of mathematical
functions, are essential in optimization. There are many optimization algorithms in the
literature and no single algorithm is suitable for all problems. Thus, the right choice of an
optimization algorithm is crucially important in solving a given optimization problem.
Optimization algorithms can be classified in many ways, depending on the focus or the

characteristics we are trying to compare [4]. For instance, optimization algorithms can be
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classified as derivative-based and derivative-free, deterministic and stochastic, trajectory-
based and population-based, and so on. In this section, the derivative-based and derivative-
free algorithms classification is considered. Derivative-based methods (or gradient-based
algorithms) use the derivative information in the search process, while the derivative-free
methods (gradient-free algorithms) only use use the values of the objective, not any

derivatives.

Derivative-based methods generally require a much smaller number of iterations to
converge to an optimum compared to derivative-free methods. However, only convergence
to local minimum is guaranteed for derivative-based methods, while derivative-free methods
are able to find global minimum. In addition, derivative-based methods are limited in cases
where the objective function is always differentiable and has continuous derivatives over the
search domain. Derivative-free methods do not place limitations on objective functions.
Several typical and popular algorithms including both derivative-based and derivative-free
algorithms for multi-variable/multi-dimensional unconstrained optimization problems are

introduced subsequently.

1.2.2 Derivative-based Algorithms

Since derivative-based algorithms require the first-order and second-order derivatives
of the objective function, firstly, some concepts about the derivative are given. The first-

order derivative or so-called gradient of a function f (X) ata pointx = [xl, s Xy ]T is

Vi (x) = afaf(j() , 5;)((2‘) afai:‘) , (1.4)

The gradient represents the slope of the tangent of the graph of the function. More precisely,
the gradient points in the direction of the greatest rate of increase of the function [1]. It is
obvious that f (x)decreases fastest in the direction of its negative gradient. Thus, gradient

information provides the search direction to locate the minimum of the function.

The Hessian matrix or Hessian H(X), which represents the second-order partial

derivatives of f (x), is written as
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- o'f o o f
XX oxox,  OxOx,
o* f o* f o’ f
H(x)=V2f (X)=| a0, o2 dx%0x, |- (L5)
ot o o2 f
| OXyO%,  OX4OX, X |

For unconstrained design space, the conditions for optimal solution can be formulated
via the first and the second partial derivatives. The necessary conditions for x*to be a
minimum of f (x)are Vf (X*)=0and the Hessian matrixH(X*)is positive definite [1, 5]

(x"Hx > 0 for any non-zero column vectors x e R?).

In practice, for most optimization problems in which the objective functions f (x)are
nonlinear, the derivatives have to be evaluated numerically. Finite difference methods,
including forward difference, backward difference, and central difference methods, can be
used to calculate the derivative of a function at a point. Because the central difference method
for computing the derivative is more accurate than forward/backward difference methods, it

is preferable in applications.
1.2.2.1 Steepest Descent Method

The steepest descent or gradient descent algorithms choose search direction as the
negative gradient, i.e., d" = —vf (X(k)) based on the idea that f decreases fastest in the
direction of this negative gradient [6]. In successive iterations, the design variables are

updated as
X9 =X 1 aMg0 = x4 vt (x), (1.6)

where o ¥ is called step length, which is a positive scalar parameter that can be determined
using the line search algorithm such as the golden section method [1]. The iterative process
terminates until the convergence criteria are fulfilled. The algorithm for the steepest descent

method is described in Algorithm 1.1.
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The steepest descent method ensures a reduction in the objective function value at every
iteration. Generally, when the search point is far away from the minimum, the gradient will
be higher and the function reduction will be large for an iteration. As approaching the
minimum, the gradient value usually decreases, i.e., the method becomes sluggish (slow
convergence) near the minimum. To overcome this, the conjugate gradient method was
proposed, which selects successive descent directions in a conjugate direction to previous

descent directions [7].

Algorithm 1.1 Steepest Descent

1:  input: objective function f (), initial pointx(©, tolerance &, setk =0.

2:  repeat

3 compute the search direction d" = —vf (X(k))

4: determine the step length o) by minimizing f (X(k) + a(k)d(k))using line search
5 update candidate x**) = x) 4 5)g®)

6 kek+1

7 until [V (xV)|<e

1.2.2.2 Newton’s Method
Newton’s method uses the search direction, which is based on the first-order and
-1
second-order  derivative information, given by d® :—[H(x("))} i (x(k))

Correspondingly, Newton’s method updates candidate solutions at each iteration via
X = x ) g = X0 — [H (x(k) )T \%i (X(k) ) : (1.7)

where Vf (x)and H(x) = V* f (x)denotes the gradient vector and Hessian matrix of f (X),

respectively. The algorithm for Newton’s method is described in Algorithm 1.2.

From Equation (1.7), for updating candidate solution at each iteration, the inverse of
Hessian matrix need to be computed, which can be expensive. To ease the computational
cost, approximations to the Hessian and its inverse are used. This has brought about the so-

called quasi-Newton methods, in which the DFP and BFGS methods are popular [6, 8].

10



1. State of the Art of Optimization

Algorithm 1.2 Newton’s method

input: objective function f (x), initial pointx(©, tolerance &, setk =0.
repeat

compute the search directiond® = —[H (x<k> )T v (x(”)

ke—k+1

1

2

3

4: update candidate x**9 = x¥) 4 ¢¥)
5

6. until |[Vf(x")

‘Ss

1.2.2.3 Levenberg-Marquardt Method

The advantage of the steepest descent method is that it reaches closer to the minimum
of the function in a few iterations even when the starting point is far away from the optimum
[1]. However, the method shows sluggishness near the optimum point. On the contrary,
Newton’s method shows a faster convergence if the starting point is close to the minimum
point. Newton’s method may not converge if the starting point is far away from the optimum
point. These have driven the development of the so-called hybrid methods that take

advantages of different methods.

Algorithm 1.3 Levenberg-Marquardt (LM) method

input: objective function f (), initial pointx(© , tolerance & , setk =0..
repeat
compute f (X(k)), \%i (X(k))and H (X(k))
compute the search directiond® = —[H (x<k>)+,1|]1 vi (x<k>)
update candidate x** = x®) +d®
If f (X(M))< f (X(k)) then
A<« /2 (change the value of 1)

else

A <« 24 (change the value of 1)
10: end if

11: kek+1

12: until HVf (X(k))HSE

The Levenberg-Marquardt (LM) method is a hybrid method that combines the strength

of both the steepest descent and Newton’s methods. The search direction in LM method is:

11
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d® = —[H (x“))ml}l vt (x), (1.8)

wherel is an identity matrix and A is a scalar that is set to a high value at the start of the
algorithm. The value of 4 is altered during every iteration depending on whether the function
value is decreasing or not. If the function value decreases in the iteration, 1 decreases by a
factor. On the other hand, if the function value is increase in the iteration, A increases by a

factor. The algorithm for the LM method is described in Algorithm 1.3.

1.2.3 Derivative-free Algorithms

Algorithms using derivative information are generally efficient, but these algorithms
pose limitations on objective functions. In many real-world optimization problems, the
objective function is evaluated by performing computer experiments and there is no
analytical expression for the objective function or its derivatives. In these case, derivative-
free algorithms are required. Additionally, when discontinuity exists in objective function,
derivative-free algorithms may be more efficient and proper. Subsequently, several

derivative-free algorithms are presented.
1.2.3.1 Nelder-Mead Simplex Algorithm

The Nelder-Mead algorithm [9] solves the optimization problem by containing the
solution within a simplex. Simplex refers to a geometric figure formed by d +1points in a d-
dimension space, which is the generalization of a polygon to d-dimension. For simplicity,
simplex in the d-dimension space is referred to as d-simplex, which hasd +1vertices. The
Nelder-Mead algorithm starts with a set of points inR¢ forming a simplex and at each
iteration, the objective function is evaluated at the vertice of the simplex. Using this
information, the simplex is moved in the search space. The process of moving the simplex
is continued until the optimum value of the function is reached. Three basic operations are

required to move the simplex in the search space: reflection, contraction, and expansion [1].

12
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Algorithm 1.4 Nelder-Mead Simplex Algorithm

1

© o N o a A DN

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:

w

input: objective function f (x), initial simplex x®,x® ..., x*Y coefficients @, 5,7 and§ ,
tolerance €.

repeat

re-order the vertices according to f(x(l))s f(X(Z))S--- <f (X(d“))
compute the centroid point X = %Zid:lx“)

generate a trial point through reflection X" =X+a (Y — X )

if f(x")<f(x¥) then
compute expansion point X =x0 4 ﬂ(x“) —Y)
if f(x%)<f(x") then
accepted the expansion point x4+  x()
else
accept the reflection point x4 « x(*)
end if
elseif f (X(r))< f (X(d))then
accept reflection point x4+  x()
elseif f(x")2f(x?) then
contraction X' =x 4 7(2 —X
if f(x(°))< f(x(d*l)) then

accept the contraction point x4 « x(©

(d+1)

else
reduction (shrink) X < x¥ +5(x" —x¥), i=2,3,--.d
end if
end if

until ﬁz:l[f (") f (7()}2 <¢

The fundamental procedure of Nelder-Mead algorithm is described in the following.

The first step is to construct an initial d-simplex with d +1vertices and to evaluate the

objective function at the vertices. Then, the d +1vertices are ordered according to their

corresponding objective function values as

F(xP)< £ (x@) << £ (x9), (1.9)

13
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wherex® x® ... x"“*Y are ordered vertices of the simplex, whose objective function values
are in ascending order. Apparently, x(*V is the worse point (solution) and x¥ is the best
solution, which is the convention in simplex method for minimization problem. At each

iteration, similar ranking manipulations are performed.

Then, the centroid point X of simplex is computed using all the vertices but with the

exclusion of the worst vertex x(@*9) . That is

138
X:EZX()' (1.10)
i=1

Using the centroid point as the basis point, the reflection point of the worse point (@Y is
computed as

X" =x+a(x-x""), a>0, (1.11)
where « is the so-called reflection coefficient. The typically value of « =1is often used.

Whether the new trial solution is accepted or not and how to update the new vertex,
depends on the objective function value at x(*) . There are three possibilities [10]:

e If f(x(l))s f(x('))< f(x(d)), then replace the worst vertex x(¢*) by x(") , i.e.,

a4 ()

X(
o Iff (X(r))< f(x(l))which means the objective improves, then it is possible to
move the vertex further along the line of reflection to seek an expand point that

can improve the objective even further. The expansion point is computed as
X =x") +ﬁ(x(r) —)‘(), (1.12)

where £ is the expansion coefficient. Typically, 8 = 2is adopted. Now, we have to
check if f (x(e)) improves even better. If (x(e))< f (X(r)), it is accepted and the
vertex is updated as x(¢*Y « x(®); otherwise, the result of reflection is used, i.e.,
(@) ()

» Ifthe reflect point is not better than the second worst point, i.e., f (x(r)) > f (x(‘”) ,
the contraction operation, which reduce the size of the simplex while maintaining

the best sides, is performed. The contraction point is computed as

14
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x©) = x4+ +y(i—x(d+l)), 0<y<1, (1.13)
where 7 is the so-called contraction coefficient and y =1/2 is usually used. If
f (x(°)) < f (X(d“)) is true, we then update x(@*) « x(©).
If all the above steps fail, we should reduce (shrink) the size of the simplex towards the
best vertice x . This is called the reduction (or shrink) step, which is expressed by
X(i) (—X(1)+§(X(i)—x(l)), i=2,3---,d, (114)
where ¢ is called the shrink coefficient, and usually & =1/2is used. The preceding operations

are continued until the the standard deviation of the objective function values computed at

the vertices of the simplex becomes less than the tolerance ¢, i.e.,

\/d%ldi[f (x)-1 ()_()T <e. (1.15)

i=1

Above described Nelder-Mead simplex algorithm is described in Algorithm 1.4.
1.2.3.2 Trust-Region Method

The so-called trust-region method is one of the most widely used optimization
algorithms. This method uses a model, which is usually smooth, easy to evaluate, and
presumed to be accurate in a neighborhood (trust-region) about the current iteration, to
approximate the objective function [11]. The next trial solution is then found by using the
approximate model of objective function. Since the approximate model of objective function
Is smooth and easy to evaluate, finding the next solution based on approximation is cheaper

than that from original function.

The fundamental step in trust-region algorithm is to approximate the objective function.

The commonly used approximate model is the quadratic model [12], which is of the form:
() = £ (x)Tg® T (x—x® Vo (5O 4® (5 )
¢ (x)_f(x )+[g ] (x X )+2(x X ) H (x X ) (1.16)

and this approximation is valid only in a small neighborhood of x*), which is the so-called

trust-region, defined by
o™ :{XeRd ‘ Hx—x(")H£5(k)}, (1.17)

15
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where x(¥)is the solution of current iterate, g*) € R¢ and symmetric matrix H*) ¢ R¢* are
parameters for the approximate model¢(k)(x), and s is the trust-region radius. Different
methods can be used to determine g*’and 4. Usually, g*'and ¥ are determined by the
first and second order derivatives of f (x). However, considering trust-region algorithm as
a derivative-free method, g and () can be estimated by approximate derivatives (e.g.,
through finite difference methods) or by requiring ¢(k)(x) to interpolate a set of sample

points as in [12].

Letx(*) denotes the minimum of approximation model ¢ in the trust-region 0, that

X" =argmin ¢ (x)

XEQ(k)

1.18
= f (x(k))+[g(k)]T(x—x(k))+%(x—x(k))T H® (x—x¥)). 10

How good the approximate model " (x) is to the actual objective function f (x)in the
trust-region can be measured by the ratio between the actual reduction and the predicted

reduction

= . (1.19)

Now, the two key questions are how to update the new solution x**Y/, which is the
center of the newly updated trust region, and the radius s*Y of the trust region for next

iteration. The scheme for these updating are as following:

e If0<py < r <n, <1, which means the approximate model is appropriate, we
accept x as the next solution, i.e., x**Y « x*), and keep the size of the trust

region, that is 5**9 « s®).

o Ifr® <n,, which implies that the approximate model is not appropriate in the
region, thus, we do not accept the solution x*) and the radius of the trust region is

reduced by a factor 7, <1. That is, x**9 « x®), §*™ « 5,60
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« 1fr% >z, which denotes that the approximate model is very appropriate,
correspondingly, we do accept the solution x*) and enlarge the trust region by a

(k+1

factory, >1, i.e., x* « xVand 5 « 5,60

Typical values for constants in the algorithm are 7, =0.25,7,=0.75, 7, =0.5 and
7, =3. According to above described procedure, the trust-region moves and updates
iteratively until the optimality is found or a fixed number of iterations is reached, which is

presented in Algorithm 1.5.

Algorithm 1.5 Trust-Region Algorithm

1: input: objective function f (X) , initial point x© , initial trust-region radius 5 , initial
algorithm constants0 <7, <7, <1 and0 <y, <1<y,, and tolerance¢ ; setk =0.
2:  repeat
3: construct an approximate model ¢**' (x) in Equation (1.16) for the objective function f (X)
in current trust-region Q" = {x eR* ‘ Hx - x(k)H < 6“‘)} .
find the minimum of ¢*' (x)inq®, x =argmin__,, 4" (x).
compute the ratio r') = [f (X(k))— f (X(*) )}/[(ﬁ(k) (X(k))—cﬁ(k) (X(*) )}
if r*) <z, then
reject the step and reduce the trust-region: x** « x| 5*9 « 5 5™

else if r <y, then

© ©°o N 2 9 &

accept the step and keep the trust-region: XY x50 50

10:  elseif r'*) > 7, then

11: accept the step and enlarge the trust-region : x** « x(*), §* « 5, 5%
12: end if

13: kek+1

14: until HVf (X(k))‘ﬁ &

1.2.3.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of stochastic derivative-free optimization
methods. EAs use mechanisms inspired by biological evolution, such as reproduction,
mutation, recombination, and selection. Among EAs, genetic algorithms (GAs), evolution
strategies (ESs) and differential evolution (DE) are popular and commonly applied in

research and engineering problems.
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EAs use population-based search mechanism. The general framework of an
evolutionary algorithm is presented in Algorithm 1.6. In the initialization of an EA, the first
generation (parent population), consisting of one or more individuals, is created, and the
fitness values (the objective function value is called fitness in EASs) of its individuals are
evaluated. Then, the so-called evolution loop is entered, which consists of the evolution
operators recombination (also known as crossover), mutation, evaluation, and selection [3].
Recombination creates new individuals, also called offspring, from the parent population.
Mutation adds random changes to the newly created offspring. Subsequently, the fitness of
the offspring is evaluated. Based on the fitness, selection identifies a subset of individuals
which form the new parent population for the next iteration of the evolution loop. The loop

is stopped when the termination criterion is fulfilled.

Algorithm 1.6 General Framework of an Evolutionary Algorithm

initialization
repeat

Recombination

Evaluation

1

2:

3

4: Mutation
5

6 Selection
7

until termination criterion fulfilled

1.2.3.4 Other Derivative-free Methods

In addition to the Nelder-Mead method, Trust-region method and EAs that we
introduced above, there are numerous other derivative-free optimization methods. As
deterministic methods, there are direction search methods including Generalized pattern
search method [13], Mesh adaptive direct search method [14], Lipschitzian-based methods,
such as DIRECT algorithm [15] and Brand-and-bound search, and multilevel coordinate
search [16], etc. For methods that mimic natural processes or some other physical analogies,
besides EAs, there are simulated annealing (SA) algorithm, particle swarm optimization

(PSO) algorithm, ant colony optimization (ACO) algorithm, harmony search (HS) algorithm,

and so forth.
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1.3 Review of Surrogate-Assisted Evolutionary Optimization

Surrogate-assisted evolutionary algorithms are mainly motivated from reducing
computational cost in evolutionary optimization of expensive problems. In surrogate-
assisted evolutionary algorithms, the so-called surrogate models or metamodels are
constructed to simulate the behavior of the original (true) fitness function. Because surrogate
models are much cheaper to evaluate, the computational costs are reduced with the assist of
surrogate models. In recent years, surrogate-assisted evolution methods based on fitness
approximation are preferable and popular in real-world applications, especially in expensive
optimization problems. Mainly based on the review papers [17-19] and book [2], this section

briefly reviews surrogate-assisted evolutionary optimization based on fitness approximation.

Three main aspects of surrogate-assisted evolutionary optimization are: types of fitness
approximation methods, the working styles and the management schemes of the fitness

approximation [20]. The following of this section expands these three aspects successively.

1.3.1 Fitness Approximation Methods

The popular and most commonly used fitness approximation methods are using so-
called surrogate models or metamodels that are constructed based on a set of evaluated points
from the evaluation history. Based on machine learning and statistical learning techniques,
so far, several models have been used for fitness approximation. The most popular ones
including polynomial regression, Kriging model, radial basis functions, neural networks and
support vector machines. A comprehensive description of surrogate modeling techniques are

presented in Chapter 3.
1.3.2 Working Styles of Fitness Approximation

The working style of fitness approximation denotes the mechanism of incorporating the
fitness approximation models (surrogate models) into evolutionary algorithms (EAS).

Surrogate models can be embedded in almost every operations of evolutionary algorithms,

such as initialization, mutation, recombination and fitness evaluations [18]. According to
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[20], the incorporation mechanisms of surrogate in EAs can be divided into direct and
indirect fitness replacement methods, i.e., direct and indirect styles, as shown in Figure 1.2.
The direct fitness replacement method is to use the approximate fitness to directly replace
the original (exact) fitness during the evolutionary optimization. Individuals mostly have the
approximate fitness during the optimization. Only a few individuals are evaluated by original
fitness function for control purpose. The indirect fitness replacement method is to use the
approximate fitness only for some but not all processes in the EAs, such as population
initialization and EA operators. The original fitness is kept for each individual and the

approximate fitness is not used to directly replace the original fitness.

Working Styles of Fitness Approximation

[ |
Direct Style: Indirect Styles:

Approximate fitness directly All individuals carrying exact
replaces the exact fitness in fitness in fitness evaluations,
fitness evaluations, only the approximate fitness is used in
controlled individuals carry exact initialization, mutation or
fitness. recombination.
[ Evolution Control 1 [ Informed Operators }
[ 1 [ 1
No Evolution Fixed Evolution Adaptive Informed Informed Informed
Control Control Evolution Control Initialization Mutation Recombination

Figure 1.2 Working styles of fitness approximation

1.3.2.1 Direct Style

Direct style, i.e., direct fitness replacement method, is a straightforward strategy to use
fitness approximation models. Individuals are evaluated by surrogate models and then the
estimated fitness is assigned to each individual. In other words, the fitness approximation
model (surrogate model) undertakes the role of the original fitness function, and thus the
original fitness is replaced by approximate fitness. However, the obvious drawback is that

the evolutionary algorithm may be misled to false optimum due to the inaccuracy of the
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surrogates of the original fitness function [21]. A false optimum is an optimum of the
surrogate model, which is not an optimum of the original fitness function [18]. Therefore, in
most cases, surrogates should be used together with the original fitness function in order to
prevent the optimization process from being misled by false optima introduced by surrogates.
This is termed as model management [22, 23] or evolution control [21, 24], which is of
significant importance in direct fitness replacement methods. The details of model

management will be described below in Section 1.3.3.
1.3.2.2 Indirect Style

In indirect style, i.e., indirect fitness replacement method, the exact fitness of each
individual is computed during EA process and the approximate fitness is used in other ways.
For example, the approximate fitness can be used for population pre-selection. In [25], the
Gaussian process model was used to pre-select the most promising solutions, which were
then actually evaluated by the original fitness function. In this method, based on a standard
(1,4)-ES, 2" > 1 new offspring individuals are firstly created from # parents. Then, A
individuals out of these A" individuals are pre-selected according the merit function values
evaluated by Gaussian process model to generate the offspring population. The pre-selected

A offspring are evaluated by original fitness function for selection and recombination.

According to [20, 26, 27], indirect fitness replacement method uses approximate fitness
in mutation and recombination (crossover) operators through a technique known as Informed
Operators. In this approach, the approximate models are used to evaluated the fitness of
candidates only during the mutation and/or recombination process. After the mutation and/or
mutation process, the exact fitness is still computed for each individuals. The advantage is
that using the approximate fitness indirectly in the form of informed operator rather than
direct fitness replacement is expected to keep the optimization moving toward the true global
optima and to reduce the risk of convergence to suboptimal solutions or false optima because
each individual in the population still carries its exact fitness [27]. Some of the informed

operators in [26, 27] are described as follows:
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* Informed initialization: An individual in the initial population is generated by
selecting the best individual from a number of uniformly distributed individuals

in the design space according to the approximate fitness.

* Informed mutation: The informed mutation is best mutation from several
random mutations according to the approximate fitness. Specifically, several
random mutations of the base point are firstly generated ; these mutations then are
evaluated by the surrogate model; the mutation with the best approximate fitness

is returned as the result.

* Informed recombination: Two parents are selected randomly according to the
usual selection strategy. These two parents are not changed in the course of the
informed recombination (crossover) operation. Several recombinations are
conducted by randomly selecting a crossover method, randomly selecting its
internal parameters and applying it to the two parents to generate a potential child.
The surrogate is used to evaluate every potential child, and the best child is

selected as the outcome.

1.3.3 Model Management

The direct working style of fitness approximation uses surrogate model for fitness
evaluations and may reduce the number of fitness evaluations significantly [18]. However,
the application of surrogate models to evolution computation is not as straightforward as one
may expect. Apparently, there are two principles in direct fitness replacement strategy. First,
it should be ensured that the evolutionary algorithm converges to the global optimum or a
near-optimum of the original fitness function. Second, the computational cost should be
reduced as much as possible. In other words, the number of evaluating the expensive original

fitness function should be decreased as much as possible.

Due to the lack of data and the high dimensionality of design space, it is very difficult
to construct a perfect global approximate model of the original fitness function. The

inaccuracy of the approximate model may lead the EA to inferior local optimum or false
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optimum. To tackle this problem, two main aspects are considered. Firstly, the approximate
model should be used together with the original fitness function. This is known as evolution
control in evolutionary computation [21]. Secondly, the quality of surrogate model should
be improved as much as possible with the given limited data. Several aspects are important
to improve the model quality, such as selection of the model, selection of surrogate model
training method and selection of error measures [17]. Therefore, model management, which

consists of above two aspects, is essential for direct fitness replacement methods.
1.3.3.1 Evolution Control

Evolution control means that, in surrogate-assisted evolutionary computation, the
original fitness function is used to evaluate some/all individuals in some/all generations [21].
An individual that is evaluated using original fitness function is called a controlled individual.
Similarly, a generation in which all its individuals are evaluated using the original fitness
function is called a controlled generation [17]. The evolution control in surrogate-assisted

evolutionary computation generally can be divided into three main approaches [17, 18].

No Evolution Control

When the built surrogate model is assumed of high-fidelity, the original fitness function
is not used in evolutionary computation, i.e., no individual or generation is controlled. This
is known as no evolution control. In this case, after the surrogate model is constructed, the

original fitness function is not at all used in evolutionary computation.

Fixed Evolution Control

Fixed evolution control implies that the frequency of evolution control is fixed. There
are two approaches to fixed evolution control: individual-based evolution control and
generation-based evolution control. Individual-based evolution control means that in each
generation, some of the individuals are evaluated by surrogate model and the others are
evaluated using the original fitness function, which is illustrated in Figure 1.3. In individual-
based evolution control, the individual selection can be random or using some strategy, e.g.,

selecting the best individual (based on the prediction of surrogate model) for evolution
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control. In generation-based evolution control, all individuals in a selected generation will
be evaluated by the original fitness function. The generation selection can be random or with

a fixed frequency. A generation-based evolution control is shown in Figure 1.4.

The main drawback of fixed evolution control methods is that the frequency of
evolution control is fixed. This is not very practical because the fidelity of the surrogate
model may vary significantly during optimization process. As a matter of fact, a predefined
fixed evolution control frequency may cause strong oscillation during optimization due to

large model error [28].

Adaptive Evolution Control

It is intuitive and reasonable to assume that the frequency of evolution control should
depend on the fidelity of the surrogate model. This strategy is called adaptive evolution
control. In adaptive evolution control, individuals are iteratively controlled to update the

surrogate model until the fidelity (or quality) of the surrogate model is acceptable.
1.3.3.2 Off-line Model Training

Off-line model training denotes the training process before the model is used in
evolutionary computation [17]. Off-line model training constructs surrogate models based
on data sampling (design of experiments) or previous optimization history data. In this case,
either the surrogate model is of high fidelity or the original fitness function is expensive to

evaluate, so that the original fitness is not used after the model training [20].
1.3.3.3 On-line Model Updating

On-line model training (updating) denotes rebuilding or updating the model during the
evolutionary process. In surrogate-assisted evolutionary computation, surrogate model may
be constructed at an early stage of the EA process. Because the set of sample points, which
are used to train the model, is limited and does not cover the whole search space, the
surrogate may concentrate on the region spanned by the existing sample points and not cover
the rest of the search space well. As the EA continues and new individuals enter into the

population, the accuracy of the previously built surrogate model will decrease. By evolution
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control, new points are added into the training data set. Thus the surrogate model needs to
be retrained using the old sample points together with the new sample points. This is the

typical on-line model updating technique in surrogate-assisted evolutionary computation.
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Figure 1.3 llustration of fixed individual-based control
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2. Evolution Strategies

This chapter gives a comprehensive description of evolution strategies (ESs). A short
introduction of ESs is provided in Section 2.1. Then the main principles and evolutionary
operators used in ESs are introduced in Section 2.2. Subsequently, Section 2.3 presents
parameter control of ESs with three ES algorithms, (1+1)-ES, (#/4, ,2)-ES with
Cumulative Step-Size Adaptation, and Covariance Matrix Adaptation Evolution Strategy

(CMA-ES).
2.1 Introduction

Evolution strategies (ESs) are stochastic, derivative-free optimization methods. It has
been proven that ESs are appropriate and successful for continuous black-box optimization,
i.e., for optimization scenarios, where no analytical expressions of the objective functions
are explicitly given and derivatives are unavailable [29]. Additionally, ESs have the
capability of accessing the global optimum for multimodal problems [30]. Therefore, ESs

are increasingly popular in solving real-world optimization problems.

ESs are search paradigms inspired by the principles of biological evolution. They
belong to the family of evolutionary algorithms (EAs) that address optimization problems
by implementing a repeated process of stochastic variations followed by selection. In each
generation (iteration), new offspring (candidate solutions) are generated from their parents
(candidate solutions that have already been visited), their fitness are evaluated, and then the

better offspring are selected to become the parents for the next generation [31].

ESs most commonly address the problem of continuous black-box optimization. The
search space is the continuous domain, R¢, and solutions in search space are d-dimensional
vectors, denoted as x c R . The objective or fitness function f :R* ->R,x> f(x) is

considered to be minimized. In the field of evolutionary algorithms, the objective function

27



2.2 Main Principles and Evolutionary Operators

is often called fitness function, correspondingly, the objective function value is called the
fitness value. High fitness means low fitness function values in the convention minimizing
problem. There is no specific assumptions on fitness function f , except that the fitness
function f can be evaluated for each X. This kind of search problem is referred to as black-
box optimization. The objective is to generate solutions (X vector) with small fitness values

while using a small number of fitness function evaluations.
2.2 Main Principles and Evolutionary Operators

Inspired by the principles of biological evolution, evolution strategies use a repeated
process that consist of evolutionary operators which mimics the mechanisms of the
Darwinian theory of evolution to address optimization problems. A population P consists of
the so-called individuals is undergoes evolution cycles during each generation (iteration) of
evolutionary search. Each individual consists of a candidate solution or vectors of input
parameters x c R¢ , an associated fitness value f (), and of the so-called endogenous
parameters, which are strategy parameters for the mutation operator [3]. In some cases, the
population contains only one individuals. Individuals are also denoted as parents or offspring,

depending on the context. Generally, a generation loop can be described as :

1. One or several parents are selected from the population (mating selection) and new

offspring are generated by recombination of these parents.
2. The new offspring undergo mutation and become new members of the population.

3. Environmental selection reduces the population to its original size by choosing better

individuals.

The sequence of generations is continued until a termination criterion is met. Typical
termination criteria are set as reaching a maximum number of evaluations, reaching a target

fitness value, or stagnation of the search process.
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The main principles within above generational procedure of evolution strategies are
firstly presented below. Then the corresponding evolutionary operators, which are

implementations of main principles in algorithms, used in evolution strategies are described.

2.2.1 Main Principles

2.2.1.1 Environmental Selection

In evolution strategies, environmental selection is applied as so-called truncation
selection. Specifically, based on the individuals’ fitness f (X), only 4 best individuals from
the population survive. In other words, only # individuals that have best fitness are selected
and kept in the population. In contrast to roulette wheel selection in genetic algorithms [32],
only fitness ranks are used in truncation selection. In evolution strategies, environmental
selection is deterministic. Environmental selection, on average, increases the fitness of the
population and at the same time reduces diversity as some individuals are discarded. Overage

individuals can also removed by environmental selection.
2.2.1.2 Mating Selection and Recombination

In biological filed, recombination, also known as crossover, mixes the genetic material
of parents. Similarly, in evolution strategies, recombination combines information from
several parents to generate a new offspring. Firstly, mating selection picks individuals from
the population to become new parents. These parents are then used to generates a single new
offspring by recombination. There are two common scenarios for mating selection and

recombination [31]:

* Fitness-independent mating selection and recombination do not depend on the
fitness values of the individuals and can be either deterministic or stochastic. In this
scenario, environmental selection is essential to drive the evolution toward better

solutions.

* Fitness-based mating selection and recombination, where the recombination

operator utilizes the fitness ranking of the parents. Thus, recombination performs in
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a deterministic way. Environmental selection can be potentially be omitted in this

case.
2.2.1.3 Mutation and Parameter Control

Mutation introduces small, random, and unbiased changes (perturbations) to an
individual. This provides the main source of variation (evolutionary changes) of individuals
in evolution strategies. Thus, mutation plays an important role in evolution strategies. The
average size of these changes introduced by mutation, depends on endogenous parameters
that change over time, for example, the step-size o and covariance matrix C . These
parameters are also called control parameters, or endogenous strategy parameters. In contrast,
exogenous strategy parameters are fixed once and for all, for example, the parent number 4 .
Parameter control, i.e., how to control the endogenous parameters, is not always directly
inspired by biological evolution, but it is an indispensable and central feature of evolution

strategies.

2.2.2 Evolutionary Operators in Evolution Strategies

In order to realize algorithms of evolution strategies, principles described in above
subsection need to be specified in concrete evolutionary operators so that to form
evolutionary search schemes. The selection, recombination and mutation operators used in

evolution strategies are explained below.
2.2.2.1 Selection Operators

Selection operator, which relates directly to the environmental selection concept of
survival of the fittest, gives the evolutionary search a direction. In each generation, the
selection operator emphasizes better solutions by selecting a subset of individuals based on
their fitness to form the new parent population used in the next generation. Usually, we use
H to denotes the number of individuals in parent population (also called the size of parent

population), and 4 to denotes the number of offspring generated in each generation. In
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evolution strategies, the commonly used selection strategies are the comma (indicated by ,)

selection and plus (indicated by +) selection:

* Plus selection selects the # -best solutions from the union of the last parent
population ( # individuals in parent population) and the current offspring
population ( 4 individuals in offspring population), and is correspondingly

denoted as (u+4)-ES.

« Comma selection, i.e.,(x,1)-ES, selects u-bestsolutions exclusively from the
offspring population ( 4 individuals in offspring population), neglecting the

parent population, even if the parents have a superior fitness.

Neglecting superior solutions, in comma selection, may sound irrational. However,
good solutions can be only local optimum. By using comma selection, the evolutionary
process could escape from the local optimum and reach a better optimum [29]. In contrast,
when using plus selection, the search process may fail to leave the local optimum without
the ability to neglect [30]. Thus, comma selection is advantageous in the case of multimodal

problems.
2.2.2.2 Recombination Operators

In evolution strategies, recombination combines information from several parents to
generate a new offspring. Usually, multi-parent recombination is used, where more than two
parents are combined. Here we use £ to denotes the number of parent individuals used in
recombination (i.e., 2 out of # parent individuals are used to generate a new offspring by
recombination, where o< x ). The most important and commonly used types of

recombination in evolution strategies include:

« Dominant recombination, denoted by (x/p5.4), is also known as discrete
recombination. In dominant recombination, a property of a parent individual is
inherited by the offspring, i.e., this property dominates the corresponding property
of other parent individuals. Specifically, for each variable (component of the

design variable vector X), a single parent is drawn randomly from all £ parents
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to inherit the variable value. With £ parentsX;,---,X,, dominant recombination

creates the offspring x' = [xl’ X ]T by randomly choosing the j-th component

X, =X;, jerandom{l---, p}, (2.1)

J 1’

where X; is the j-th component of the i-th parent individual.

 Intermediate recombination, denoted by (/p, . 4), takes the average value of
all the parents. Given P parents X;,---,X, , each component of the offspring

X' = [xl’ ey X ]T is the arithmetic mean of the corresponding components of all ©

parents, i.e.,

) )
X;i=—) X, or X'==—> X. 2.2
" op : P iz @2)

i=1

In this case, the offspring is the centroid of 2 parents.

*  Weighted recombination, denoted by (#/py ,4), is the generalization of
intermediate recombination, usually with 2 = 4 in ES. Weighted recombination
takes a weighted average of all © parents X;,---, X, as the offspring X = [xl’ X ]T :

ie.,

X'= D WX, (2.3)

where W,, i =1,---, pare the weights, which usually have Ziilwi =1. In ES, the
weight values depend on the fitness ranking such that parents with higher fitness
never get smaller weights than lower ones. With equal weights, weighted

recombination recovers to intermediate recombination.

In evolution strategies, the intermediate or weighted recombination with £ = H is often
used. Thus, the result of selection and recombination is often deterministic. This means that
eventually all offspring are generated by mutation from the same single solution vector (the

parent centroid, generated by recombination).

2.2.2.3 Mutation Operators

32



2. Evolution Strategies

The mutation operator, which introduces variations by adding perturbation to the result
of recombination, provides the main source of variation (evolutionary changes) of offspring
in evolution strategies. According to [33, 34], a mutation operator is supposed to fulfill three

rules, namely:

* Reachability: from an arbitrary solution, any point in the search space can be
reachable with probability strictly larger than zero by means of a finite number of

applications of the mutation operator.

* Unbiasedness: the mutation operator should be unbiased, unless knowledge
about the problem has been gathered. This can be achieved by using the maximum

entropy distribution that obeys knowledge about the problem as constraints.

e Control: the mutation operator should have parameters that affect the mutation
strength (shape of the distribution), such that the extent of variation can be
controlled. As known from theory, when approaching the optimal solution, the

strength of mutation must be weakened steadily.

In continuous search space R?, these principles are fulfilled by the famous Gaussian
mutation operator [3], which uses the multivariate normally distributed random vector as the
variation for individual. Before presenting the commonly used Gaussian mutation in
algorithms of evolution strategy, basic concepts about multivariate Gaussian distribution

(also called multivariate normal distribution) are given firstly.

A d-dimensional random vector Y = [Yl,---,Yd ]T under multivariate normal distribution
with mean vector meR? and covariance matrix CeR%? is typically written as
Y ~ Ny (m,C), where N/, (m,C) denotes a d-dimensional multivariate normal distribution
in its general form. Correspondingly, the random vector Y has the probability density

function

1

(22) " [det(C)]

) zop2-m S y-m)| e
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wherey e R is the realization of the random vector Y and det(C) is the determinant of the
covariance matrix C . In mathematical equations, AV, (m,C) is sometimes used like a vector
which is actually sampled according the distribution given. Since the covariance matrix C is

symmetric and positive definite, the following eigendecomposition exists:

C=BD?B” and C?!=BDBT, (2.5)
where B is an orthogonal matrix (i.e.,B'"B = BB" = | where | is identity matrix), the columns
of which are the eigenvectors of C, D is a diagonal matrix with square roots of eigenvalues
of C as diagonal elements, and G2 < R is the symmetric square root matrix of C such that
C:C%(C%)T =C*C?. With above eigendecomposition and considering the properties of
multivariate normal random vector [35], the multivariate normal distribution NV, (m,C) can
be written as

Ng(m,C)~m+N,(0,C)

. (2.6)
~m+C2N,(0,1),
where C7 = BDBT is given in Equation (2.5).

In evolution strategies, the Gaussian mutation operator generates a mutated individual
x' from an individual x ¢ R® by adding a multivariate normally distributed vector on X. This
can be expressed generally as

x'=x+N,(0,C)=x+CiN, (0,1). 2.7)

Based on multivariate normal distribution, the three different mutation operators that

are commonly used in evolution strategies are:

(@) lIsotropic or Spherical Gaussian mutation generates the mutation x’ from X by
usingB =1 and D = ol for matrices B and D in Equation (2.7), where o is called
step-size, that is,

X' =x+o/N,(0,1). (2.8)
This corresponds with spheres with individual radii defined by o, as indicated in

Figure 2.1 (a).
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(b) Anisotropic or Axis-parallel Gaussian mutation generates the mutation x’ from
X by using B =1 and D =diag(&)=diag(é,,---,5, ) be a diagonal matrix with

different entries on the main diagonal, i.e.,
X' =x-+1diag(6) NV, (0,1) =x+ N (0, diag(5°)) (2.9)

This turns the spheres into anisotropic ellipsoids with main axes parallel to the

coordinate axes, as shown in Figure 2.1 (b).

(c) Correlated Gaussian mutation denotes the situation that matrix B is not just an

identity matrix and D = diag (&) =diag(d,,---, 6, ) is a diagonal matrix, i.e.,
X =x-+Bdiag(8) Ny (0,1)=x+BAN (0,diag(6°)) =x+ A, (0,C)  (2.10)

This rotates the hyperellipsoids with respect to the coordinate axes, as shown in the

right part of Figure 2.1 (c).

The choice of the mutation operator from above described three cases has a direct
impact on the complexity of the endogenous parameters that control the multivariate normal
distribution. For a problem of d-dimensional search space, the number of endogenous
strategy parameter in case of Equation (2.8) isO(1), i.e., constant. In case of Equation (2.9),
a vector of endogenous parameters with size O(d) is required. To adapt an arbitrary

covariance matrix C in Equation (2.10), O(dz) endogenous parameters are required [3].

(a) (b} ©
Isotropic Gaussian Mutation Anisotropic Gaussian Mutation Correlated Gaussian Mutation

A A A
Xy Xy FARE X2

\
A
A

Figure 2.1 Gaussian mutation operators in evolution strategies
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2.3 Parameter Control and Algorithms

Controlling the parameters of mutation operator is essential to the design of evolution
strategies. Consider an evolution strategy using the isotropic mutation operator, where the
step-size o is a scaling factor for the random vector perturbation. The step-size o controls to
a large extent the convergence speed. In situations where larger step-sizes lead to larger
expected improvements, a step-size control technique should aim at increasing the step-size
(and decreasing it in the opposite scenario) [31]. Generally, the goal of parameter control is
to drive the endogenous strategy parameters close to their optimal values. The research on
ESs mainly focuses on question of adaptation of parameters of mutation operators. Different
parameter control strategies bring about different algorithms for evolution strategies. In the
following, three specific ESs are outlined, each of them representing an important

achievement in parameter control.

2.3.1 The 1/5th Success Rule

The 1/5th success rule is a basic step-size control strategy for evolution strategies. It is
based on an important discovery made by Rechenberg [36] in early research of evolution
strategies. The (1+1)-ES using 1/5th success rule is the first evolution strategy and the basis
of the evolutionary algorithm in the field of ES. This algorithm is implemented in Algorithm

2.1.

As the first and simplest evolution strategy, (1+1)-ES only use mutation and selection
operators to guide the search. We denotes a generation (iteration) of the search by the
generation counter €N (g=0,1,2,---). In generation 9, a single offspring X, € R" is
generated from a single parent individual m(® ¢ RY by isotropic mutation i.e.,
X, = m'® +a(g)Nd (0,1) (Line 4 in Algorithm 2.1). If the offspring has higher fitness (lower
fitness function value) than its parent, it becomes the new parent; otherwise, the parent
remains (Lines 5~9 of the algorithm). The loop is terminated until termination criterion is

satisfied.
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Algorithm 2.1 The(1+1)-ESwith 1/5th Success Rule
given:d eN,_,d_~+1+d

1

2: initializem® eR?, 5% >0, g <0

3. repeat

4 x, =m® + 5N, (0,1) //mutation
5: if f(x)< f(m(g)) then
6

7

8

9

m(@ =x, /lselection of X, as the new parent if it is better than m(®)
else

m(@ —m©@

end if

10: o9 5 exp[di(E[]l( f(x,)<f (m<9> ))] _%H /Istep-size update

11: g«<g+1

12: until termination criterion is fulfilled

In (1+1)-ES, the adaptation of the step-size, which is the only one strategy parameter
of (1+1)-ES, is of crucial importance for reliable results and efficiency of the algorithm. The
step-size significantly affects the convergence speed. The step-size has to be adapted in order
to speed up the optimization process. Usually, in situations where larger step-size lead to
larger expected improvements, a step-size control technique should aim at increasing the
step-size, and decrease it in the opposite situations. The step-size o in (1+1)-ES is adapted

according to the 1/5th success rule.

The idea of the 1/5th success rule is to increase the mutation rate (step-size in isotropic
mutation), if the success probability (i.e., the empirical probability that f (x,) < f (m(g))),
which refers to the ratio between successful mutations and all mutations, is larger, and to
decrease it, if the success probability is smaller. Specifically, if about 1/5 of all mutations
are successful, the step-size is optimal and no adaptation is required. The step-size needs to
be reduced, if the success rate is smaller than 1/5, and needs to be increased, if the success
rate is larger than 1/5. The new step-size &(9*¥ is updated according to Line 10 in Algorithm
2.1. In the algorithm, the empirical probability that f(x;)< f(m(g)) is expressed by
E[H(f (%)< f(m(g)))] where E[-] denotes the expected value function, and I(-) is the
indicator function such that ]I( f(x)<f (m(g))):1 only if f(x)<f (m(g)) and
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]I( f(x,)<f (m(g)))=00therwise. The success probability information is obtained from

previous iterations.

2.3.2 Cumulative Step-Size Adaptation (CSA)

The Cumulative Step-Size Adaptation Evolution Strategy (CSA-ES) developed by
Ostermeier et al. [37] adapts the step-size o by using a so-called evolution path that records
information accumulated from the preceding generations instead of using information from
the current generation only. The evolution path records the sum of consecutive successful
mutation steps to make a decision about possible corrections of the step-size. This
information can improve the adaptation and search procedure remarkably [31]. When
successful steps are towards the same direction, the evolution path which records the sum of
mutation steps will be relatively long in this direction. Because the same distance in this
direction can be covered with larger steps, the step-size should be increased [38]. On the
contrary, if the orientations of successful steps are opposite to each other, they sum up
making the evolution path relatively short. In this case, the used step-size is too large and

should be decreased.

Algorithm 2.2 outlines the ( 22/ £, , ) -ESwith Cumulative Step-Size Adaptation (CSA).
In this algorithm, comma selection, isotropic mutation and intermediate recombination are
used. The step-size o is adapted by using the evolution pathp, . In the evolution loop, at
generation 9, 4 offspring (x,,---, X, ) are generated by adding a isotropic Gaussian mutation
on the solution vector m®@ (also known as the mean of mutation distribution), which is
described in Lines 4~6. The fitness of these 4 individuals then are evaluated (Line 7). The
selection operator chooses # best individuals to form the new parent population according
to their fitness values. Then, the intermediate recombination of the # parents generates a
single new solution vector m9*Y, which is the new mean vector of the mutation distribution

(Line 9).

The evolution pathp,, is updated (Line 10) using local information about a successful

mutation step%Z;zM , a decay factorC, is used to decrease the importance of previously
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performed steps with time, and the factor \/c_ (2—c, )\/; is set to normalize the variance of
P, such that p(j’”) ~ N, (0,1). Finally, the step-size o is updated by using the evolution path

(9+1)

Ps

P, as expressed in Line 11. The step-size increases if the length of the evolution path
is longer than the expected length of the evolution path under random selection

E (|, (0.1)]), and decreases otherwise. The expectation of [\, (0,1)], i.e. E(|A (0,1)]),

is approximated byx/a(l—ﬁ+ L ) . The damping factor d_ is used to control the change of

21d?

the step-size.

Algorithm 2.2 The( 2/ 44, , 2)-ES with Cumulative Step-Size Adaptation
1. given:deN,, A=4+[3In(d)]|, u=] 1/2],

¢, =(u#+2)/(d+u+5),d, =1+2max(0,4/(y—1)/(d +1) —1)+ca.

2: initialize m® eR?, 6" >0,p? =0,g «0

3. repeat

4: for k=1---,4 do

5: z, =Ny (0,1) /li.i.d. for each z,

6: x, =m'¥ + 59z, //mutation

7: fo = f(x)

8: end for

0: m®=1%"" x,,  llintermediate recombination

10:  pl9 ¢« (1-c,)pl? ﬂ/@%izmm(g*n /lupdate evolution path
=

(g+1)

pO'
11: o9 ol exp[;—”[m—lﬂ /Istep-size update

12: g«<g+1

13: until termination criterion is fulfilled

2.3.3 Covariance Matrix Adaptation (CMA)

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [39, 40], is a highly
developed evolution strategy and has become a standard for continuous black-box
evolutionary optimization. It is a powerful optimization algorithm and performs especially
well in non-smooth, multimodal back-box problems. The CMA-ES adopts the correlated

mutation operator, which makes it a high-level algorithm compared with previous described
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algorithms that use isotropic mutation. In CMA-ES, two techniques, namely the covariance
matrix adaptation (CMA) and the cumulative step-size adaptation (CSA), are used for

adapting the covariance matrix of mutation and the step-size, respectively.

The (#/ 1, 2)-CMA-ESiis detailed in the remaining part of this subsection. Briefly
speaking, in generation loop of the (4/u,,A)-CMA-ES (simply denoted as CMA-ES
hereafter), A offspring are generated by mutation based on a single solution vector (the mean
vector of mutation distribution), comma selection is then performed to select # (1 < 1) best
individuals according to their fitness, the weighted recombination of selected individuals
creates the single new solution. The generation loop stops until the termination criterion is

fulfilled. This generation loop of CMA-ES is presented in details in the following.

Mutation or Sampling
In( ¢/, A)-CMA-ES, the 4 offspring are generated by correlated mutation from the
same single solution vector, i.e.,
1
x, =m® + 5 ON (O, C(g)) =m® 4+ (C(g) )2 z,, for k=1-.,4, (211
where: g e N%is the counter of generation.

A is the number of offspring. Its default value is 4 = 4+L3In (d )J (d is the dimension

of the problem).
x, € R%is the k-th offspring (individual, search point, solution).

m'9 ¢ R¢is the mean of mutation distribution (a solution vector), which is formed
by weighted recombination of selected # best individuals after initialization. Its

initial value m(® is given by the user.

o9 < R* denotes the step-size (overall standard deviation) at generation 9 . Its initial

values &% is given according to the bounds of search space.

c9 e R™is a symmetric positive definite covariance matrix at generation 9. Its

default initial value isc® =1 . (C(t) )E e R is the symmetric square root matrix
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1 1

of c® such that C' :(C(g))7 {(C(g))ﬂT :(C(g))%(c(g))f , Which can be

obtained according to Equation (2.5)

z, R are random vectors (mutation vector) sampled from A, (0,1) , i.e.

z, =N, (0,1).

From Equation (2.11), the 1 offspring also can be viewed as sampling from a
2
multivariate normal distribution with mean vector m(@ and covariance matrix(a(g)) cl9,
2
e, X, ~ Ny (m(g),(a(g)) C(g)). To define the complete iteration procedure, the remaining

question is how to calculate m(@*, c(¢*Y and &(¢* for the next generationg +1.

Selection and Recombination

After generating A offspring, their fitness function values are evaluated. According to
their fitness, # (1 < A4) best individuals from 4 offspring are selected to become the parent
population and undergo weighted recombination to generate a single new solution vector

m(¢*). Thus, the new solution m(¢*Y is computed as a weighted average of the selected points:

u 1 u

m(9+1) _ zwixm — m(g) +O.(9) (C(g))z ZWiZi:/I (2.12)
i=1 i=1

i":lwi =L ww,>-->w,>0 (2.13)

where: 4 is the number of selected individuals. Its default value is . =| 4/2].

W, i=1---, uare positive weights for recombination. WhenW, =1/ z,i=1,---, it | it
corresponds to the intermediate recombination. In the standard CMA-ES, the

super-linear decrease weights are used, that is
w =[In(4/2+12)-In(i)]/> [In(2/2+12)-In(j)], i=1- 4.
X;., signifies the i-th best individual out of X;,X,, -+, X, from Equation (2.11). The

index i:4 denotes the index of the i-th ranked individual and

f (X, )< f(x,,)<---<f(x,,)where fis the objective function.
Z;., is the mutation vector associated with X;., .

Adaptation of Step-size and Covariance Matrix
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The CMA-ES uses accumulative step-size adaptation (CSA) to adapt the step-size o
and the covariance matrix adaptation (CMA) to update the covariance matrix C. These two
techniques (CSA and CMA) use so-called evolution paths for accumulating strategy
parameter information across several generations [3]. Two evolution paths, p, € R® for
adaptation of step-size o and p, € R for covariance matrix C adaptation, are used in CMA-

ES.

The evolution path P, and the step-size o are recursively computed [3, 41] according to

the equations below:

) L me _ @
p(ag ) :(1_Ca)pg)+\/CG(Z_CG)\/E(C(I)) 2 O_(I)

(2.14)
= (1_ Co‘ ) pgrg) + \' Co‘ (2 - Co‘ )\/Ezﬂ: Wizi:ﬂ.
i=1
c p(9+1)
o0 =V exp| == Z (2.15)

FR A

where: pf,g) e R%is the evolution path for global step-size at generation 9, its default initial

value isp!” =0.

¢, €[0,1]is the time constant for the adaptation of the step-size, its default value [41]
isc, =(u, +2)/(d+u,+5).

M, is the so-called variance effective selection mass, which is defined by:
1, =(Z£1V%)2/Zf;wi2- If equal weights W, =1/ are used, 4, is equal to 4 .

1 1
((;(9))7E is the inverse of(C(g) )zwhich is the symmetric square root matrix of C(9).
-1
d, is the damping factor, its default value isd_ =1+2max (O, /‘;WT —1] +C,.

E (|, (0,1)])is the expectation of the Euclidean norm of a AV, (0, 1) distributed

random vector, which can be approximated by

E(|A, (0.1)]) =ﬁr(d2+l)/F[;j “ﬁ(l‘%+Tldzj
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The evolution path p, and covariance matrix C are updated [3, 41] according to the

equations below:

g+1

pl =( 9 th, e (2-c, \/>
=(1-c )pﬁg‘)+h(ﬂ/cc(2—cc)\/EZwi (C“’))E Z.,
i=1

(i) o o s )

. 1 1 T (2.17)
+C,uZWi ((C(g) )E Z., j((c(g) )E ij

where: p{?) € R? is the evolution path for covariance matrix at generation 9 , its default initial

(2.16)

value isp!” =

e[0,1]is the constant for covariance matrix adaptation.1/c, is the backward time
horizon of the evolution pathp, . The default value ofC, is:
C.=(4+p,/d)/(d+4+2u,/d)

h_ is a Heaviside function defined by:

pif*”
\/1 o (14+Fj (JVvs (0.1)])
0 otherwise

The purpose of functionh,_ is to avoid an update of p, to take information of the

pff*l)uis too large [42]. This prevents a

too fast increase of axes of C when the step-size is far too small.

C,andC, are the learning rate for rank-one-update and rank-z-update, respectively.

Their default values are:

2 . ~2
= 2 ;andc, =min| 1-¢, 2—F s, witha, =2,
(d+13) +z, (d+2) +a, 11,/2

&(h,)=(1-h,)c.(2—c,)is of minor relevance. In the unusual case ofh =0, it

substitutes for the second summand from Equation (2.16) in (2.17) [41].
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In summary, for CMA-ES iteration, the new offspring population of search points is
generated by Equation (2.11), the selection and recombination is defined by Equation (2.12),
the adaptation of step-size is given by Equations (2.14) and (2.15), and the covariance
matrix is updated with Equations (2.16) and (2.17). The iteration defined above is
repeatedly executed until the termination criterion fulfilled. Putting it all together, the

pseudocode of (/ t,, A) -CMA-ES is given in Algorithm 2.3.

Algorithm 2.3 The (/. 2)-CMA-ES

1 gi\/en;dGN+,ﬂ:4+L3|n(d)J,ﬂ=Lﬂ/2J,
n(2/2+12)-In(i) o

S In(zv2-n()] = (2 w) /Z_l

c, = Hhy +2 ,d_ =1+2max| 0, /ﬂw—_l—l +C,
d+u,+5 d+1

2: initialize m®eR?, 6" >0,p” =0,p® =0,c” =1, g« 0
3. repeat

4: for k=1---,4 do

5: z, =Ny (0,1) /li.i.d. foreach z,

6: x, =m'® +G(g)(c(g))ﬂ2 Z, /Imutation

7: fo=f(x)

8: end for

9: mY «m® 4+ ( ) z ,

10: p™ «(1-c,)p!? +[c, (2—c, \/EZ

o0« o(®) x| Py
. g+l Zo il _
H AT

/ 1
12: pl™ «(1-c,)p +h, |, (2—cc)quwiwi (C9)z,
i=1
u 1 oy
13:  C' «(1-¢ —¢,)C" +Cl(pcg+1 ( (99 )T +5(hG)C(g)) +C, > W, (C(@’))2 z., [(C(g))2 ZM]

14: g«g+l1

15: until termination criterion is fulfilled
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3. Surrogate Modeling of Computer

Experiments

This chapter reviews the surrogate modeling method, which is an approach to model
the (input-output) behavior of the simulation model. Computer simulation tools, such as
finite element analysis (FEA) and computational fluid dynamics (CFD), are more and more
widely applied in engineering problems. Many engineering design problems require a
number of simulations to evaluate design objective. However, for many read world problems,
a single simulation can take many minutes, hours, or even days to complete. Consequently,
computation-intensive tasks, such as design optimization, sensitivity analysis and reliability
analysis, become impractical or impossible because they require doing hundreds, thousands
or even millions of simulations. One way of reducing this computational burden is by
constructing approximation models, known as surrogate models, or metamodels, that
approximate the input-output relationship of the simulation model as closely as possible
while being computationally cheap to evaluate [43]. Then, many tasks can be implemented
by using the built surrogate model. Computational cost is thus apparently reduced owing to

the aid of cheap-evaluated surrogate model.

Main issues about surrogate modeling are presented in the following of this chapter. In
Section 3.1, the general process of surrogate modeling is introduced. The three steps of
surrogate modeling, (i) design of experiments; (ii) training of the surrogate model; and (iii)

model validation, are respectively addressed in Section 3.2, 3.3 and 3.4.
3.1 Surrogate Modeling Process

Surrogate modeling is concerned with the construction of mathematical models to
describe the relationships between specific inputs and outputs exhibited by the simulation

model, based on a set of limited data acquired by running the simulation model with
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intelligently chosen input variables. Since simulation models usually generate multiple (a
set of) responses (outputs), a surrogate model can be constructed for each of the outputs of
interest. Without loss of generality, only one response of interest is considered in this chapter.

Let
y:f(x):f(xil..-’xd), X:[Xl,..-,Xd]TGSCRd, (31)

denotes a simulation model which models a physical system, Wherex=[x1,---,xd ]T is a
vector of d design variables or input variables (input), Y is a response (output), S is referred
to as the design space or input variable space, and the function f signifies the computer
simulation model, such as FEA and CFD model of a problem, that maps the d-dimensional
inputs into a scalar output. Model (3.1) generally can be regarded as a solution of a set of
equations, including linear, nonlinear, ordinary and/or partial differential equations, and it is

often impossible to obtain an analytic solution for the equations.

Then, the general surrogate modeling problem can be stated as follows: “Given a set of
samples (observations) Xz[x(l),u-,x(”)]T in the design space and the corresponding
response values y :[y(l),n-, y(")T :[f (x(l)),---, f (x(”)ﬂT , the goal is to obtain an
approximation model y = f(x) that adequately represents the input-output relationship
exhibited by simulation model over a given design domain.” The set of sampling points X
is determined by design of experiments (DOE), and the corresponding responses Y are
generated by the experiments conducted under that DOE. Thus, design of experiments is the
first step in the construction of surrogate models. The samples (sample points) used to
construct the surrogate models are generally called training points. The set of data that
includes input data and the corresponding output data is called training data set, while the
construction of the surrogate models based on training data set is often called model training.
With the training data set, a variety of surrogate models can be trained. Before the trained
surrogate model is used in lieu of the original simulation model, it is necessary to evaluate

the performance or expected accuracy of the surrogate model.

Therefore, the typical process of surrogate modeling mainly involves three steps (i)

design of experiments; (ii) construction or training of the surrogate model; and (iii) model
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validation. This process is illustrated in Figure 3.1. These three issues for surrogate modeling

are discussed separately in following sections.

Design of Experiments Surrogate Model
{DOE)

— \ P N /\

ey = f(xD)

o ; S i \—-by(23=f(x(2))

oo e -y = f(x)

. J

Figure 3.1 Process of surrogate modeling

3.2 Design of Experiments

Design of experiments (DOE, or experimental design) refers to the techniques that are
used for guiding the choice of experiments to be performed in an efficient way. DOE
techniques were originally developed to study the behavior of systems through physical
experiments [44]. The basic objective of DOE is to determine multiple combinations of the
controlled parameters (or conditions) at which the experiments will be conducted. Each
combination of controlled parameters, in mathematical terms, can be considered a sample.
Although DOE originally referred to physical experiments, in modern times, it would
includes both physical and computer experiments. This section only focus on the design of

computer experiments.

In computer experiments, DOE is a strategy for allocating samples (points) in the design
space that aims at maximizing the amount of information acquired [4]. Computer simulations
(experiments) are performed at these points to create the training data set that is subsequently
used to construct the surrogate model. Obviously, there is a trade-off between the number of

samples and the amount of information that can be extracted from these samples. Thus, a
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good experimental design should minimize the number of samples needed to acquire enough

information.

In following part of this section, the factorial designs, which are usually referred to as
classical DOE techniques, and several space-filling or modern DOE techniques are presented.
Before giving descriptions of these DOE techniques, some terminology in design of
computer experiments are introduced. The controllable variables that are of interest in
computer experiments are usually called design variables or input variables or simply called
inputs. Design space or input variable space is the space where the input variables take values.
A point in design space or an input setting, which is a combination of input variables, is
called a sample (sample point). A run is the implementation of an experiment (computer
simulation) with the input variables given in a sample. Output(s) or response(s) is the result

of a run based on the purpose of the experiment.

3.2.1 Factorial Designs

Factorial designs, which are classical DOE techniques [45], are straightforward
techniques for experimental design. In factorial designs, the range of each design variable is
divided into different levels between the upper and lower limits of the design space. Factorial
designs allocate samples at combinations of different levels of all the design variables. In
other words, a factorial design is a set of level-combinations of the factors. A factorial design
is called symmetric if all factors have the same number of levels ; otherwise, it is called

asymmetric.

When samples are located at all the combinations of the different levels of all the design
variables, the design is called full factorial design. Obviously, the number of sample points
in a full factorial design should ben = chj:lqj , Where d; is the number of levels of the design
variable j . When all the design variables have the same number of levelsd, the number of
samples aren = q° . Figure 3.2 illustrates a full factorial design of three-dimensional design
space with three level for all variables. The number of sample points of full factorial design

increases exponentially with the number of design variables. Thus, in high-dimensional
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problems, the full factorial design approach may be cost/time prohibitive. Therefore, we
consider implementing a subset of all the level-combinations that have a good representation

of the complete combinations.

X2 \j\/
Figure 3.2 A 3-level and 3-dimensional full factorial design (27 points)

In situations that the running of an experiment is expensive and the number of design
variables is large, fractional factorial design (FFD) can be used. Fractional factorial design
(FFD) uses a fraction of the full factorial design sample points, i.e., a FFD is a subset of all
level-combinations of the design variables. Consequently, how to choose a good subset is
the most important issue in FFD. A carefully selected combination known as the orthogonal
array is recommended in the literature and has been widely used in practice. In practice,
other alternative factorial designs, such as central composite design, star design, and Box-

Behnken design, can be used.

3.2.2 Latin Hypercube Designs

This subsection discusses some modern DOE techniques [45] for planning computer
experiments, which tend to allocate samples throughout the design space as uniformly as

possible. Such designs are broadly referred to as space-filling designs.
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Because of the deterministic feature of computer experiments, i.e., samples with the
same input setting will yield identical outputs, the basic principles of experimental design
for controlling noise and bias, replication, blocking, and randomization, are irrelevant to
computer experiments [46]. The exact functional form of the relationship between inputs
and the response is unknown and often very complicated, although the response can be
computed at any given inputs. Various surrogate models can be built using different
techniques. However, before data are collected, quite often little priori or background
knowledge is available about which model would be appropriate, and designs for computer
experiments should facilitate diverse modeling methods [47]. For this purpose, a space-
filling design is the best choice. The design region in which to make prediction may be
unspecified at the data collection stage. Therefore, it is appropriate to use designs that
represent all portions of the design space. When the primary goal of experiments is to make
prediction at unsampled points, space-filling designs allow us to build a predictor with better

average accuracy.

A variety of space-filling designs are available. One of the most popular category of
space-filling designs techniques is the Latin hypercube design, which is based on Latin
hypercube sampling. Basic Latin hypercube design and its variants are presented in the

following.

Basic Latin Hypercube Designs

Designs generated by Latin hypercube sampling are called Latin hypercube designs
(LHD) in computer experiments design. Latin hypercube sampling (LHS) was proposed by
McKay et al. (1979) specifically for computer experiments in which inputs are chosen
randomly from some specified distribution. Latin hypercube designs have one-dimensional
uniformity in that, when projected on each dimension, each interval of the dimension has

exactly one observation.

In order to allocate N sample points in d-dimensional design space with LHS, the range
of each variable is firstly divided into non-overlapping intervals with equal probability,

which yields a total number of n® bins in the design space. The samples are randomly
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selected in the design space so that (i) each sample is randomly placed inside a bin, and (ii)
for all one-dimensional projections of the nsamples and bins, there is exactly one sample in

each bin [4]. Figure 3.3 shows a LHS realization of 10 samples for two design variables.
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Figure 3.3 LHS realization of 10 samples in a two-dimensional design space

Mathematically, the algorithm for generating LHS samples in design space [0,1]d §
xW="1 1 1<i<n i< j<d (3:2)

where d is the number of design variables, n is the number of samples, 7", 7\" are
independent uniform random permutations of the integers 1 ton, andUJ(.i) are independent
random numbers from[0,1]. The subscript J denotes the dimension index and the superscript
(i) denotes sample number. Then the sampling plan xz[x(l),u-,x(")]T, where
x) = [x1<‘>,...,xgi>]T, is a LHD denoted by LHD(n,d) . If eachUj; in Equation (3.2) is taken
to be 0.5, the corresponding LHS is called midpoint Latin hypercube sampling or centered

Latin hypercube sampling. For each variable, Latin hypercube designs have exactly one

point in each of the nintervals. This property is referred to as one-dimensional uniformity.

One drawback of Latin hypercube sampling is that there is more than one possible

arrangement of bins and samples that meets the LHS criteria. So, a randomly generated Latin
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hypercube design does not necessarily perform well with respect to criteria of uniformity.
For example, samples allocated along the design space diagonal satisfy conditions of LHS,
but they are non-uniformly distributed. Fortunately, there are extensions to the basic LHS
technique that can improve the uniformity of Latin hypercube designs. In extensions of basic

LHS, the Latin hypercube designs based on distance are of desirable properties.

Latin Hypercube Designs based on Measures of Distance

To construct space-filling Latin hypercube designs, one natural approach is to make use
of distance criteria. One of the most widely-used measures to evaluate the uniformity
(‘space-fillingness’) of a sampling plan is the maximin metric introduced by Johnson et al.

(1990). The criterion based on this may be defined as follows.

Let x®) and x(2) be two design points in the design space D:[O,l]d. For p>0, the

distance between x(%) and x(%) is defined as

Yp
"j . (3.3)

When p =1and p = 2, the measure in Equation (3.3) becomes the rectangular and Euclidean

d ( x(il),x(iZ)) = (i X — x(+)

j=1

distance, respectively. Letd,,---,d, be the list of unique values of distances between all
possible pairs of points in a design X, sorted in ascending order. Further, letJ,---,J,, be

defined such that J; is the number of pairs of points in X separated by the distanced; .

The simple maximin distance criterion seeks a design X in the design space S that
maximizes the smallest inter-point distance d, among all available designs. This criterion

attempts to place the design points such that no two points are too close to each other.

Clearly, this definition could be applied to any set of sampling plans, but, since we
would like to keep the appealing stratification properties of Latin hypercube, we restrict our
scope to that class of designs. Nonetheless, even across this narrower domain, Definition 1.1
might still yield several maximin designs. Therefore, we shall use the more complete ‘tie-
breaker’ definition of Morris and Mitchell (1995). Thus, we call design X a maximin design

among all available designs if it maximizes d, , among designs for which this is true,
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minimizes J; , among designs for which this is true, maximizes d, , among designs for which

this is true, minimizes J,,..., minimizes J , .

An extended definition of a maximin design was given by Morris and Mitchell (1995).

In order to rank competing designs, based on above definition, they introduced a
computationally efficient scalar-value criterion

m 3 1a

®, = [zld—qj (3.4)

where 0 is a positive integer. The smaller the value of @, the better the space-filling

properties of X will be. This scalar value distills the cumbersome definition of the maximin

criterion into a rather neat and compact form, but it raises the question of how to choose the

value of 4 in Equation (3.4). Values of 4 are chosen depending on the size of the design

searched for, ranging from 5 for small designs to 20 for moderate-sized designs to 50 for

large designs [47]. The idea of above described maximin design sounds simple and desirable.

However, generating maximum Latin hypercube designs is a challenging task particularly

for large designs.

3.2.3 Other Space-filling Designs

Besides Latin hypercube designs, other space-filling design techniques including
orthogonal array, quasi-Monte Carlo sampling, and uniform design can be found in literature.
A good summary of space-filling designs for computer experiments can be found in [45] and
Chapter 5 of [48]. Sampling techniques can be improved by minimizing a specific non-
uniformity measure with optimization techniques. The above described maximin Latin

hypercube design is a typical instance for this.
3.3 Surrogate Models

Once the training data set has been collected from an experiment, the next step is to
construct a surrogate model which describes the relationship between the inputs and

output(s). Generally, the n samples in d-dimensional design space from DOE can be
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represented by anxd matrix X and their corresponding responses are expressed by anx1

vector Y as

X7 [x@ o x® yo7 | F(x?)
X=| :|=| + . | y=|:|=| (3.5)
X ™ y f(ﬂm)
wherex” i =1,..-,ndenotes the i-th sample, which is a combination ofd design variables,
and xﬁi),i =1---,n, j=1,---,d denotes the j-th component of the i-th sample, and function f
signifies the computer simulation model that can calculate the response with any given inputs,
y" i=1,--- nsignifies the corresponding response with inputs xV . With the training data
setD={X,y}={(X(l),y(l)),-~-,(x(”),y(”))} , our goal is to construct a cheap-to-evaluate
surrogate model f that emulates the response of expensive computer model f and thus we
can use the surrogate model to predict the output of the simulation model for any untried site

X. In this section, we describe several popular surrogate modeling techniques.

3.3.1 Polynomial Regression Model (PR)

Polynomial regression (PR) models have been widely used by researchers for modeling
computer experiments. PR model uses a polynomial form model to approximate the input-
output relationship. The number of terms included in a PR model depends on the desired
accuracy of the surrogate and the exact functional form of the relationship between inputs

and the response [49, 50]. The general PR model with P basis functions can be expressed as
R p

f(x)=2.5bi(x)=b"(x) (3.6)
J:

where B;, J =1,---, pare regression coefficients,b; (x), j =1,---, pare basis functions of the
PR model, ﬂ:[ﬂl,m,ﬂpf is the wvector of regression coefficients and
b(x):[bl(x),m,bp(x)]T is the vector of basis functions. Given the training data set
D={Xy)= {(x(l), y(l)),-u,(x(“), y" )} defined in Equation (3.5), the PR model in Equation

(3.6) fornsamples in X can be written in matrix notion as

y=Bg, (3.7)
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where Y is the vector of responses given by PR model and B is the so-called design matrix or

Vandermonde matrix, which are respectively defined by Equation (3.8) and (3.9).

9:[]?()((1))’..., f(Xm))T :[9@),...,9@)? (3.8)

B= : = : : (3.9)
o(x")] [ () - b.(<")

A commonly used approach to estimate the regression coefficients A is the least squares
method (LSM). The least squares approach is to minimize the sum of squared residuals at
the points in the training data set [43], i.e., to minimize

n 2 n p 2
s=2(y"-9") = Z[y") -2 b, (x"))j =ly-84]". (3.10)
i=1 i=1 j=1

Ifn = pand matrix B is full rank, the least squares estimator of regression coefficients
B is given by

p=(8"B) BY. (3.11)

Let x = [xi,---,xd ]T be the d-dimensional design variables, the P polynomial basis

functions of first-order (linear) and second-order (quadratic) PR models are:

Linear, p=d +1:
bl(X)Zl’ b, (X)lev"" bd+1(x):Xd (3.12)

Quadratic, p=4%(d +1)(d +2):

by (x) =1

b2 (X) =Xy bd+1 (X) =Xy

b2 (X) =%, By, (X) = XXy b2d+l(x) = XXy (3.13)

b2k+2 (X) = X22’ bd+3 (X) = X2X3! ' b2d+l (X) = XZXd

bp (X) = Xj

The number of polynomial basis functions dramatically increases with the number of

input variables and the order of the polynomial. Thus, lower-order polynomials such as first-
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order and second-order (or quadratic) PR models are commonly used in practice, in order to

simplify the modeling process.

With the estimator of regression coefficients 2 , the approximate response f (x)at any
untried X can be predicted by the PR model (3.6). It is worth mentioning that the resulting
PR model does not necessarily pass through the training sample data [50], i.e., does not

necessarily have a zero error at the training points.

3.3.2 Kriging Model (KG)

Kriging is a Gaussian process [51] based modeling method to interpolate deterministic
noise-free data [52] and has proven to be useful in a wide variety of fields [53, 54]. Kriging
model is also referred to as “Design and Analysis of Computer Experiments” (DACE) model
[46]. The distinctive feature of Kriging model is that it provides not only a predicted response
at an unsampled point but also an estimate of the prediction variance. This variance gives
indication of the uncertainty in the Kriging model, which results from the construction of
the covariance function. The covariance function is based on the idea that when input points
are near one another, the correlation between their corresponding outputs will be high. As a
result, the uncertainty associated with the model’s predictions will be small for input points
which are near the training points, and will increase as one moves further from the training

points.

The Kriging model consists of two components: a regression function (also known as
global trend function) g (x) which is constructed based on the training data set, and a
Gaussian process Z (X) which accounts for the local deviation of the data from the trend

function. Thus, the general form of Kriging surrogate model is given as

f(x) =g(x)+Z(x) (3.14)
where g (X) s a regression function and Z (x) is assumed to be a realization of Gaussian

process with zero mean, variance o2 and correlation matrix ¢’ .
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Depending on the form of the regression function, Kriging has been prefixed with
different names. Simple Kriging assumes the regression function to be a known constant. A
more popular version is ordinary Kriging, which assumes a constant but unknown regression
function. In general, universal Kriging treats the trend function as a polynomial regression

model, namely,
9(x)= 2 A, (x) =B (x) 5 (3.15)

where b; (x) and 3;, j=1,---, p are basis functions and corresponding coefficients,
b(x)=[b;(x),+-,b, (x)]'is the vector of the basis functions, and B=[ 4, 5, | is the

vector of coefficients.

The idea is that regression function captures the largest variance in the data (the general
trend) and that the Gaussian process interpolates the residuals. The covariance matrix of

Z (x)is defined as
Cov|[ Z(x),Z(X)|=0’R(x,X') (3.16)

where Cov[ Z(x),Z(X')] is the covariance of Z(X) between any two points X and X' ,
R(x,x) is the correlation function between X and x’ , and &2 is the stochastic process
variance. The correlation function in Equation (3.16) affects the both the range of influence
and the smoothness of the model [55]. The most commonly used correlation function is

Gaussian correlation function, which is defined by

d
R(x,x’):exp{—zmxk - X 2} (3.17)
k=1

where 6, j =1,---,d are unknown parameters of the correlation function and can be contained
in a column vector@=[4,,---,6, ]T ,d is the dimension of design space (number of design
variables), X, and X, denote the k-th component of the samples X and x , respectively, and

|Xk - XL| is the absolute distance between X, and X, .

Consider on the training data set D={X,y}:{(x(l),y(l)),-~-,(x(”),y(“))} . where

T T
X:[x(”,---,x(”)} are nsamples in d-dimensional design space, andy:[y(l),---,y(”)} are
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the corresponding responses. The prediction mean and prediction variance of Kriging [46]

can be respectively given by

u; (x)=b" () B+1T ()R (y-F'B) (3.18)

3 T T 0 F"|lb"(x)

) ( T ofp H()D e
where b(x [bl p(x)]T is the regression basis function vector of the predicting

point X , ﬂ:[ﬂl,-u,ﬂp] is the regression coefficients, r(x) is the vector of correlation
functions between the untried point and the n sampled (observed) points (defined in Equation
(3.20)), R is the nxn matrix of correlation functions for the sampled data (defined by

Equation (3.21)), andF is the " P model matrix defined by (3.22).

r(x) = [R(x, x(l)) R(x, x(z)) R(x, x( )]T (3.20)
(x“’ x(l’) (X(l),X(Z)) R(x(l’,x(”))_
. (X<2) x(l)) (X(Z),X(Z)) R(x(z),x(”)) -

F= : : : (3.22)

bl(x(”)) o by (X(n))
From above description, in order to build Kriging surrogate model, the regression
coefficients £ in Equation (3.15), the correlation parameter @ in Equation (3.17), and the
stochastic process variance o in Equation (3.16) need to be determined. The maximum

likelihood estimate method is used to determine the unknown model parameters £ , &% and

0.

Since the Kriging method assumes that the observed responses are from a Gaussian
process, the responses at sampling sites are considered to be correlated random functions

with the corresponding likelihood function given by
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(vs-F"8) R*(y-F'8)
(27[0_2 )”/2 |R|1/2 eXp| = 252 (3.23)

L(p.c%0)=

To simplify above likelihood function, we take the natural logarithm and gives

F'p) R (y-F') (3.24)

2

In(L):—gln(Zﬁ)—gIn(o-z)—%|R|—(y_ —

By taking derivatives of Equation (3.24) with respect to # and & respectively, and

setting to zero, we obtain maximum likelihood estimates (MLEs) for £ and &2
p=(F'R7F) F'RYy (3.25)
o 1 T
6% = ﬁ(y— F'g) R*(y-F'p) (3.26)

By substituting Equation (3.25) and (3.26) into Equation (3.24), we obtain the In-
likelihood function only in terms of parameter vector & , which is known as the concentrated

In-likelihood function:
B L n. .o\ 1
L(O)_In(L)_—EIn(Zﬂ)—EIn(a )—Eln|R| (3.27)
The estimator g of parameter vector @ is obtained by maximize Equation (3.27) under
the constraintd, >0, 1=1,2,---,d . In other words, parameter vector @ is achieved by solving
the following optimization problem:

{Meax L(0)

(3.28)
st. 0>0, 1=1,2,-+,k

This optimization problem can be carried out using numerical optimization technique.
A global search method such as a genetic algorithm or simulated annealing usually produce
good result. After gettingd, the estimators g and 52 can be calculated by Equation (3.25)
and (3.26). So far, we have determined the values of all unknowns in Kriging model, i.e.,
the Kriging model has been completely built. The prediction at any untried point can be

estimated by Equation (3.18).
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3.3.3 Radial Basis Function Model (RBF)

Radial basis function (RBF) model, which is also called Radial basis function network,
can be interpreted as an artificial neural network that uses radial basis functions as activation
functions, as shown in Figure 3.4. A RBF network consists of three layers: an input layer, a
hidden layer with a non-linear RBF activation function, and a linear output layer [56].
Usually, the neurons (nodes) in the hidden layer use the RBF in form of
¢ (x)= ¢(Hx—c(i)u), i=1,---,m, whereXis the input, mis the number of neurons in hidden
layer, ¢V is the center or prototype of the i-th radial basis functiond (x), and| - | is usually a
Euclidean norm. For inputx = [xl,---,xd ]T, the output of the RBF network f(x) is given by

a linear combination of a set of radial basis functions

f(x):§w¢(“x—0(i)“) (3.29)

where W, is the weight for i-th radial basis function. The RBFs ¢(HX_C(i)H) J=1-m
transform the input in terms of the distance between the input X and the centerc!). For the
generalized RBF network, the center ¢V are also unknown and have to be learned by other

methods such as the k-means method [2].
Commonly used non-parametric basis functions are [50] (writing r =[x —c||):
o Linear:g(r)=r,
« Cubic:¢(r)=r® and
* Thin plate spline:#(r)=r*In(r).

To improve the generalization properties of RBF model (3.29), parametric basis

functions can be adopted. Commonly used types of parametric basis functions include:
«  Gaussian: g(r)=e"/1*",
2

. Multi-quadric:¢(r):(r2+02)]/ , and

*  Inverse multi-quadric: (r)=(r* +o° )_M.
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Whether we choose a set of parametric basis function or non-parametric ones, the

WeightSW:[Wl,---,W ]T can be evaluated via the interpolation condition [54]. With the

m
T

training points X = [x(l) e x(”)]T and their corresponding responsesy = [y(l) e y(”)] , the

interpolation condition [57] can be written in matrix form as
dw=y (3.30)

where

R T TR

¢( X(n) _C(l) ) ¢( X(n) _C(Z) ) Ve ¢(‘X(n) _C(m) )
It is easy to see that if m=nand the centers of the radial basis functions coincide with the
training pointsc”) =x"” i=1---,n ,®is a regular square matrix and the matrix equation
(3.30) has unique solutionw =@y .

Figure 3.4 Structure of RBF network models

It is important to keep in mind that RBFs are essentially interpolating functions (i.e., a

trained RBF model will pass through all the training points). This property enables RBFs to
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represent highly nonlinear data, which is otherwise often challenging to accomplish using

low order PR models [50].

3.3.4 Multi-layer Perceptron Networks (MLP)

Multi-layer perceptron (MLP) network, which is a feedforward artificial neural network
(ANN) model that maps sets of input data onto a set of appropriate outputs, is a more recent
and increasingly popular choice of surrogate model. A MLP network consists of an input
layer, several hidden layers, and an output layer. The neuron or node which includes a

summation and activation function is the basis structure of ANN.

A simple MLP network (shown in Figure 3.5), that consists of one input layer, one
hidden layer with nonlinear activation function, and one output layer with linear activation

function, approximates the inputs and outputs as follows:

f(x):iﬂjg(iwijxi+woj'j+ﬂo (3.32)

wherex =[x, -+, X ]T is the input, M is the number of nodes (neurons) of the hidden layer, 5,
is the weight connect between the output and the j-th note in the hidden layer, the function
g(-)is the activation function of the hidden layer, W; is the weight connection between the
I-th component of the input and the j-th note in the hidden layer. The most commonly used
activation function is the logistic function (or called Sigmoid function), which has the form:

1
1+exp(—4-net)

g(net)= (3.33)

. d . . .
where 4 is a constant and net = Zi:IV\/ixi +W, is the so-called net input signal to the neuron.

A comprehensive study can be found in [58, 59].

Then, training a network is to estimate the unknown parameters in (3.32). Usually,
MLP utilizes a supervised learning technique called backpropagation for training the
network [2, 59]. One of the drawbacks associated with neural networks for function
approximation is the fairly large number of parameters that need to be prescribed by the user,

thereby demanding adequate user experience in implementing MLP. These prescribed
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parameters include the number of neurons, the number of layers, the type of activation
function, and the optimization algorithm used to train the network. In addition, the training

process generally needs to be supervised in order to avoid “over-fitting” [50].

Woin

Input Layer Hidden Layer Output Layer

Figure 3.5 Structure of a three-layer MLP network

3.3.5 Support Vector Regression (SVR)

Support vector machines (SVM) are popular models for solving classification and
regression problems in recent years. An important and favorable property of SVM models is
that the determination of the model parameters corresponds to a convex optimization
problem [60], i.e., there is no local minima during training SVM models, and thus the
optimization process does not depend on the problem dimensions and overfitting is seldom
an issue [18, 20]. In support vector regression (SVR), the goal is to construct a model f (x)
that has at most an & deviation from the actual targets y"” for all the training data, and at the
same time is as flat as possible [61]. In other words, the errors are not considered if they are

less than ¢, but any deviation larger than this will not be accepted.

Given the training data set D={X,y} {(X(l),y(l)),---,(x(”),y(”))} where x e R® and

y € R, a general SVR model can be given as
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f(x)=WT¢(x)+b (3.34)

where ¢(x) is a map (or transform) that transforms the input space X (whenx ¢ R, X' isR?)
to some feature space , i.e., map #(X): X — H ,w e H is the column vector of weights,
b e R is the bias. A small win Equation (3.34) means that the regression is flat [61]. One
way to ensure the flatness is to minimize the norm, |w|" = (w,w) = w"w where(-, -) denotes
the dot product. Considering minimizing this norm under the restriction of deviation, the

construction of the SVR model is reduced to the following convex optimization problem:

L 1 2
minmize —||W||
2
yU —WT¢(X(i))— b<e (3.35)

subject to . _
WT¢(X(') ) +h-yV<e

Note that the tacit assumption in Equation (3.35) is that a function f (x)exists that
approximates all pairs(x(i), y(i)) in training data set with precision &, or in other words, that
the convex optimization problem in (3.35) is feasible [57]. However, sometimes such a
solution may not actually exist and it is also likely that better predictions will be obtained if
we allow for the possibility of outliers. This is achieved by introducing slack variables
& >0 for WT¢(x(i))+b—y(i) >¢ and V>0 for y“)—quﬁ(x“))—ng . Thus, the

optimization problem in (3.35) can be rewritten as:

minmize 1||w||2Jr(;zn:(‘f(i)4_5*0))
2 i=1
O _wTa(xV) - (i)
y"-wig(x")-b<e+e 836
subject to WT¢(X(i))+ -y <gt W

é:(i)1§*(i)20, i=1---.n

The minimization in Equation (3.36) is a trade-off between the flatness of f (x) (model
complexity) and the degree to which deviations larger than € are tolerated. This trade-off is
controlled by the user defined constantC > 0. This method of tolerating errors is known as
g-insensitive loss function [62]. The linear g-insensitive loss function is described by

Equation (3.37),, which is shown in the right part of Figure 3.6. Points that lie inside the e-
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insensitive tube (the region between two red dashed lines in the left part of Figure 3.6) have

no loss associated with them, only points outside contribute to the loss of the function.

0 f(x)-y(x)<e
L (y().1 ()= [£09-y(x)

) (3.37)
f(x)- y(x)‘ —&, otherwise

prediction

,,,,,,,,,, predictiont+e

______ - prediction-&
+  sample data

loss

e

e 6O y(x)

Figure 3.6 The ginsensitive loss function for SVR

The constrained optimization problem of Equation (3.36) can be solved more easily in
its dual formulation based on Lagrange multipliers. By introducing Lagrange multipliers,
uV w0V gand o' the Lagrange function (or Lagrangian) L is given as

L=%||W||2 +Cizl:(§<i> N 5*0))_2”:( g0 4 0z

i=1

_Z“:[am(g 0 y0wTg(x0) +b)}
_Z”:[a*(i) (ng*(i) Tyl —WT¢(X(i))—b)}

(3.38)

The Lagrangian L must be minimized with respect to W, b, £ and &' (the primal
variables) and maximized with respect to 1, 1V, ¢ and o (the dual variables), where
1Y, 1 oV "0 > 0. Then, the minimization of L with respect to the primal variables (W,
b, £V £V and the maximization with respect to dual variables involves finding the saddle

point, at which the derivatives of L with respect to the primal variables have to vanish, i.e.,
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oL (0 ) M) =
L B x0 =0 3.39
mw= (- )o(x")] (339)
L_S(,0_0)_
%_;(a p. )_o (3.40)
L i i
ST POy Oy (3.41)
a?*_(i) _C—a 0 —0 (3.42)

Substituting Equations (3.39), (3.40), (3.41) and (3.42) into Equation (3.38) to

eliminate "' and ¥, finally yields the dual optimization problem:

maximize ]
—gZ(a(i) + a*(i))+ z yU (a(i) —a*(i)) (3.43)
subject to Zn:(a“) —a*<‘>)=o and ", a"" e[0,C]
i=1
where k(x(‘),x“)):<¢(x(i)),¢(x“))>=[¢(x(i))T¢(x“)) is the kernel function. This
maximize problem usually solved by quadratic programming algorithms, and thus (" and

" are obtained.

From Equation (3.39) we can obtain

w= iznl:[(a<‘> —a)g(x")] (3.44)

Thus, the prediction of SVR for any new input point is computing by

f(x)= Zn:(a(i) —a*<‘>)k(x,x<‘))+b (3.45)

i=1
Wherek(x,x(i)) :<¢(x),¢(x(i))> :[¢(X)]T¢(X(i)) is the kernel function between the new
input X and sampled point x() in training data set. The constant termb , known as the bias, is

obtained by exploiting the so-called Karush-Kuhn-Tucker (KKT) conditions[61, 63].

The use of kernel functions (or kernels) k (-, -) make SVR models have the capability of
capturing complicated landscape. The kernel is related to the transformation ¢(X), which

maps the input space X to the so-called feature space H (i.e. #(X): X +—>H ), by
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k(x(i),x(”):<¢(x(i)),¢(x(”)>. In other words, the kernels are the inner products (also
known as dot products) of input points. Conventionally, kernels need to satisfies continuous,

symmetric and positive definite conditions. Popular choices fork (-, -) are:
« Linear:k (x(i),x“)) = <x(i),x“)>
pdegree homogeneous polynomial: k(x“),x“)) - (<x“),x(i)>)p
pdegree inhomogeneous polynomial: k (x(i) , x“)) = (<x(‘) , x“)> + c)p
. ; . 2
Gaussian: k(x('),x(”) = exp(—‘x(') —x“)‘ /az)
3.4 Model Validation/Model Performance Assessment

The accuracy of a surrogate model is affected by the type of surrogate model and the
quality and quantity of the dataset from which it is constructed [64]. Before we use the built
surrogate models, the performance of the surrogate model need to be assessed and validated.
This section discusses several measures and methods to assess the accuracy of a surrogate

model.

3.4.1 Fitting Error and Prediction Error

The most popular and simple way to evaluate the accuracy of a surrogate model is to
examine its residual errors, i.e., the difference between the output from original simulation
model and that predicted by the surrogate model. Letx = [x1 X ]T denotes the vector of
input variables, Y denotes the output from simulation model f (x), and § signifies the output
predicted by surrogate model f(x) built on training data setD = {(X(l), y(l)),-~-,(x("), y(”))}.
The residual error thus can be expressed as‘f (x)- f(x)‘ . Residual error evaluated on the
training points is referred to as the fitting error, while residual error at the set of points which
are randomly generated and not be touched during the surrogate model constructing stages
is called prediction error. In the following, several popular measures of model accuracy that
are based on residual error and thus can be evaluated on whether fitting error or prediction

error are presented.
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The first two measures are the root mean squared error (RMSE) and the maximum

absolute error (MAE) [65], separately defined by

N ST NURIRNOIS
RMSE \/mZ(y y) (3.46)

i=1
MAE:max‘y(i)—y(i)‘, i=12,--,m (3.47)
where M is the number of validation points, y"” is output from experiment, and y")is the
output predicted by surrogate model. When RMSE and MAE are calculated on fitting error,
the training points are used as validation points. While, a set of untried points are used when

we assess the surrogate model by prediction error.

An additional error measure based on the residual is the coefficient of determination

R?, which is defined by

S(y-9") X(s"-3)
R? =112 _E (3.48)
Z:j Y -y) Z(y(')—v

where m is the number of training pints (sampling points), y, ¥ and ¥ respectively
represent the (or experimental) response, the prediction and the mean of responses. The value
of coefficient of determination R? is between 0 and 1, i.e.,0<R*<1.If R*is near to 1,

generally, it indicates the model fit well the sampled data.

For surrogate models that interpolate the training points, there are no residual error on
training points, i.e., the fitting error is zero. Consequently, measures based on fitting error
are not relevant for interpolating surrogate models. In this case, the prediction error or the
cross validation described in next subsection can be used to assess the performance of the
model. Usually, prediction error, which assesses the ability of the surrogate model to predict

responses in unknown design points, is a more useful measure than fitting error.
3.4.2 Cross Validation

In many situations, computer experiments are computationally expensive. Thus, in such
situations, evaluation of the prediction error is expensive or time-consuming. To alleviate
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this problem, a general strategy is to estimate the prediction error of a surrogate model using

the cross validation (CV) procedure [43].

In cross validation (CV), the sample data is divided into training and test points. The
training points are used to build the surrogate model, while the test points are used to test the
performance of the model. The cross-validation technique operates through the following

five steps [50]:

1) Splits the sample points randomly into P (approximately) equal subsets;

2) Removes each of these subsets in turn (one at a time);

3) Trains a surrogate model according to the remaining p —1subsets;

4) Computes the error of the built surrogate model using the omitted subset;

5) Once each one of the P subsets has been used as the omitted subset, the P sets of

errors are generally aggregated to yield a global error measure.

Above described CV technique, which splits the sampling data into P subsets, is known
as p-fold CV. A variation of p-fold CV is the leave-k-out approach, in which all possible
subsets of sizek are left out, and the surrogate model is constructed to the remaining set.
Each time, the error measure is evaluated at the omitted points. Ifk =1, the cross validation
in this special case is called leave-one-out CV. Leave-one-out CV is probably the simplest
and most widely used method for surrogate model validation when additional validation
points are not available. The root mean squares prediction error for the one-leave-out CV is

calculated by:

1 : i ~(
RMSE,, :\/HZ(Y()—W)Z (3.49)

i=1
where y"is the response atx"” from sample data and " is the prediction atx"” from the
surrogate model constructed by using the sample points except(x“), y(‘)) . The leave-one-out
CV is ameasure of how sensitive the surrogate model is to lost information at its data points.
However, an insensitive surrogate model is not necessarily accurate and an accurate model

is not necessarily insensitive to lost information. Therefore, the leave-one-out CV is not
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sufficient to measure surrogate model accuracy, and the validation with an additional data

set is hence recommended [66].

CV is an extremely popular method for verifying the prediction capability of a surrogate
model, when additional validation points are unavailable or expensive. The disadvantage of
this method is that the surrogate model has to be constructed more than once. For example,
in a leave-one-out CV with nsamples, the surrogate model need to be trained for ntimes. If

the construction of the surrogate model is expensive, CV would be impractical.
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4. Kriging-Assisted CMA Evolution Strategy

This chapter focuses on Kriging-assisted evolution strategies, under the framework of
surrogate-assisted evolutionary optimization. A brief introduction of surrogate-assisted
evolution strategy is presented at Section 4.1. Then, the incorporation mechanisms of
surrogate model into ES and challenges exist in this domain are described in Section 4.2,
based on reviewing of literature. In Section 4.3, new methods about training set selection,
pre-selection, evolution control have been developed. Correspondingly, concrete algorithms
of Kriging-assisted CMA-ES algorithms are detailed in Section 4.4. In Section 4.5,
experimental studies of Kriging-assisted CMA-ES are performed to investigate and analyze
the performance of Kriging-assisted CMA-ES algorithms. Finally, a summary of this chapter

is provided in Section 4.6.

4.1 Introduction

For continuous optimization problems, evolution strategy (ES) generally works better
than other evolutionary algorithms, such as genetic algorithm (GA) [67]. In recent black-box
optimization benchmarking (2009 and 2010 GECCO), CMA-ES shows its outstanding
performance and has proven to be one of the best-performing search strategies for real-
valued black-box optimization [68]. Therefore, in this thesis, we adopt ES to solve expensive
optimization problems. However, ES, like other population based EAs, require a large
number of fitness function evaluations before obtaining a satisfying solution. Additionally,
in expensive optimization problems of real world applications, such as engineering design
optimization, no analytical fitness function exists and the evaluations of fitness function are
by means of expensive numerical simulations or experiments. Thus, large number of fitness
evaluations is not practical or prohibitive. Computational cost, consequently, has been a

crucial challenge in application of ES (and other EAS) to expensive optimization problems.
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This challenge has stimulated the advent and development of surrogate-assisted ES
(‘also called fitness approximation in ES), which becomes a promising solution to reduce
the computation cost of ES. In surrogate-assisted evolution strategies, generally, with the
evaluated points, a surrogate model is trained to approximate the real (or original) fitness
function and then used together with the real fitness function to guide the search of promising
solutions. In this way, the computational cost is reduced because the evaluation of a

surrogate is much cheaper than that of the expensive fitness function.

Among the ESs, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a
highly developed evolution strategy and has become a standard for continuous black-box
evolutionary optimization. It is a powerful optimization algorithm and performs especially
well in non-smooth, multimodal back-box problems. The CMA-ES adopts the correlated
mutation operator, which makes it a high-level algorithm compared with other algorithms
that use isotropic mutation. In CMA-ES, two techniques, namely the covariance matrix
adaptation (CMA) and the cumulative step-size adaptation (CSA), are used for adapting the
covariance matrix of mutation and the step-size, respectively. The CMA-ES is selected as
the basis evolution strategy for surrogate-assisted ES in this work owing to its powerfulness

and success in continuous black-box optimization.

Compared with other surrogate models like RBF, MLP model, the advantage of Kriging
model is that it not only predicts fitness value but also provides the standard deviation for
the predicted fitness without additional computational cost. The standard deviation of
predicted fitness indicates the uncertainty in fitness approximation. This information is
valuable for evolution control and improving the quality of surrogate in evolutionary
computation process. That is the reason for selecting Kriging model for surrogate-assisted
evolution strategy. Consequently, this chapter concentrates Kriging-Assisted Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), which is abbreviated as KA-CMA-ES in

the thesis.
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4.2 A Brief Survey of Surrogate-Assisted Evolution Strategies

The essential goal of surrogate-assisted evolutionary optimization is to use one or
several surrogate models f of the fitness function (objective function) f to improve the
quality of the search especially in terms of number of functions evaluations required to reach
the optimum. It is usually assumed that the evaluation of f is expensive in terms of time or
money and the learning (or training) of f is relatively cheap. Surrogate model f is trained
(learned/built) from a set of pairs(x, f (X))Which is known as training data set or simply
training set. Thus, the selection of training set has influence on the quality of the surrogate
model developed thereof. Generally speaking, a surrogate model with good quality ensures
good performance in surrogate-assisted optimization. In this section, a short overview of
existed works on surrogate-assisted evolution strategies (ES) is presented and some

challenges in this field are described subsequently.

4.2.1 Surrogate-Assisted Evolution Strategies

The first surrogate-assisted ES, very likely, were proposed by M. Papadrakakis in [69],
where a hidden-layer ANN was used to predict the objective and constraint functions values
of an expensive structural optimization problem using (x 4)-ESand (x+4)-ES . This
hybrid optimization procedure based on the combination of ES and ANN was found to be

very effective in shape and sizing structural optimization problems.

Individual-based and generation-based evolution control methods were proposed in [70]
for surrogate-assisted evolution strategies with CMA-ES. Evolution control is popular in
surrogate-assisted evolutionary algorithms, including evolution strategies. In individual-
based control, part of the individuals in the population are chosen and evaluated with the
original fitness function. The controlled individuals can be chosen by random or best
strategies. In generation-based control, the whole population of 77 generations will be
evaluated with original fitness function in every P generations, where”7 < p . Reference [70]
focused on generation-based evolution control and proposed a strategy to determine the

control frequency 7/ p . Specifically, the current model error was used to estimate the local
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fidelity of the approximate model and the local model fidelity was adopted to determine the
control frequency. After each generation control, new data points were added to training data
set and then the approximate model was updated. In the on-line learning of approximate
model, the weighted learning using covariance matrix was proposed and used in this work.
In [71], generation-based evolution control was adopted in surrogate-assisted CMA-ES,

where Gaussian process and random forests models were used as surrogates.

Pre-selection (pre-screening) of promising solutions (based on approximate model) is
another popular strategy of exploiting information from the surrogate model f in Evolution
Strategies. In pre-selection strategy, 4, > 4 (1 is the population size of ES) individuals are
generated each generation, then all 4, individuals are evaluated by approximate model f |,
after that, 1 out of 4,,, best individuals are selected to evaluate by the original fitness function.
The basic idea behind this approach is that only the most promising individuals with a good
fitness prediction are evaluated with the true fitness function, which results in a reduction of
the number of expensive true fitness calls. The Model-Assisted Evolution Strategy (MAES)

using pre-selection strategy for (£, 1)-ESwas described in [72].

Applications of Kriging model based pre-selection strategy in ES were studied in [25,
72-74]. The authors suggested to use criteria that based on both the model prediction f (x)
and estimated standard deviation $(X) to identify the most promising individuals in pre-
selection. This is based on the opinion that the key issue of using approximate models for
evolutionary computation lies in the trade-off between the exploitation of the approximate
model by sampling where it is optimized and the need to improve the approximate model by

sampling where the model confidence is low [72, 74].

In 2004, Runarsson [75] proposed the so-called approximate ranking procedure to
evaluate the quality of the surrogate models. The approximate ranking procedure, which is
described in Algorithm 4.1, evaluates the quality of the surrogate model by its consistency
in ranking the population rather than its statistical accuracy. The approximate ranking
procedure in Algorithm 4.1 can be seen as an adaptive evolution control mechanism to

determine the number of controlled individuals in every generation as follows: individuals
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are successively selected to be evaluated according to their approximate fitness and then are
added to the training set until the surrogate-based selection of the parents remains unchanged
in two iteration cycles. Then, based on approximate ranking procedure and using locally
weighted regression as surrogate, the local meta-model CMA-ES (Imm-CMA-ES) was
firstly proposed by Kern et al. [76] and later extended for large population size by
Bouzarkounaetal. [77]. The Imnm-CMA-ES is a carefully designed surrogate-assisted CMA.-
ES algorithm.

Algorithm 4.1 Approximate Ranking Procedure

given: (x, )., f(x),t, A (archive which save all evaluated data points).
A

(X21)

approximate: build surrogate models f based on.4 , and predict f, = f(xk), k=1,
rank and determine the parent set B = {x;, }* where f (x,,)< f (x,,) << f
select the best individual:t < t+1, Xt < argmin i forx; ¢.A

Xz

1:
2
3
4
5: evaluate the selected individual f (x,)and update set.A « A U(xt, f (X, ))
6: form=2:4do

7 approximate: build surrogate f based on.A , and predict f, = f(xk), k=1--,2
8 determine the parent set P, = {x,, } where f (x,)< f (X, )<< f(x,,)
9

if P, # B, then (the parent set has changed)

10: select an individual byt <~ t+1 % <—ar%ir:1in I forx; ¢.A
11 evaluate f (x,)and update A « AU(X,, f(xt))

12: else (parent set remains unchanged)

13: break (exit for loop)

14: end if

15  give the parent set for next generation P! « P
16: end for
17: output:t, A,(x,, f,)

A
k=1

Recently, comparison-based surrogate models [78], such as ordinal regression [79] and
ranking Support Vector Machine [80], are used in surrogate-assisted ES. The rank-based
Support Vector Machines (SVM) was used to learn the surrogate model for CMA-ES in [78-
80]. The experimental validation demonstrated the invariance of monotonous transformation
of the fitness by using rank-based SVM. However, the main weakness of comparison-based

surrogates assisted ES is that it can not handle well multi-modal diversity, i.e., comparison-
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based surrogate models easily fail in accounting for multi-modal landscapes of fitness

functions[38, 78].

4.2.2 Some Open Issues in Surrogate-Assisted ES

Even though surrogate-assisted ES has achieved considerable improvements over the
past decade, there are still many open issues need to be addressed. These open issues mainly
lies in i) surrogate model learning, i.e. how to use the previously evaluated data and training
the surrogate model, ii) model quality measure, i.e. how to evaluate the quality of the

surrogate model, and iii) model exploitation, i.e., how to exploit the built surrogate model.

Surrogate model learning is an essential step for surrogate-assisted ES. In surrogate
model learning, the key task is learning one or several appropriate surrogate models from
the evaluated candidates. Training data set selection has influence on the quality and the
training cost of surrogate model f (besides, the modeling method also has significant on the

training cost of f ). Thus, it is an important issue in surrogate model learning.

Another issue that relate to both design and use of surrogate models for evolutionary
computation is their quality. A surrogate with poor quality may guides the search to false

optimum and thus, model quality assessment is of importance.

After surrogate model has been trained, the key aspect of surrogate-assisted ES is to
exploit information from the surrogate model f . The two main strategies of surrogate model
exploitation applied in surrogate-assisted ES are pre-selection and evolution control. There
are several open questions for strategies of surrogate model exploitation, i.e., pre-selection
and evolution control. The following will briefly describe some open issues of training set
selection and model exploitation, which will be investigated and addressed in this work in

subsequent sections.
4.2.2.1 Training Set Selection

Let Nyaining denotes the number of data points in training set Dyining . Three popular ways

to select the training set (points/individuals for model training) are:
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1. All Previously Evaluated Points One can use all the previously evaluated points as
training set to construct surrogate models. Generally, for the same problem and using
same modeling techniques, the size of training set is larger, the performance of the
trained model is better. A model learned from all previously points may have better
performance than one learned from just a part of existed points. However, when all
the evaluated points are taken as training data, the size of training set increases
during the evolutionary search, and this require higher computational cost for model
training. In surrogate-assisted ES, usually, surrogate model need to retrained for
large number of times, so the high training cost of the surrogate model is not

desirable.

2. Recently Evaluated Points A simple but efficient strategy is to choose Nysining the
most recently evaluated points as training data set. This is a reasonable strategy
because that the recently evaluated points are relatively close to the actual search
subspace. However, in some cases, this strategy may be insufficiently “greedy”
because it may “forgets” promising individuals generated more than Nining

evaluations ago [38].

3. k-Nearest Neighbor Points Selecting evaluated points that are more relevant to
current search space is reasonable. Considering that ES use Gaussian mutation, the
k-nearest neighbor points (K =Ny ) to the mean of the Gaussian distributionm
best represent the actual search space and are good candidates for model training.
The Euclidean distance is usually used as similarity measure metric. However, when
f is a multi-modal function, it may happen that m is located around a local optimum
which has been visited by the evolutionary search many generations ago, and many
of Ny,ining ClOSESE POINtS to M are correspond to a smaller cluster of this local optimum.
Thus, in this case, the built model would be very precise for the smaller cluster near
the local optimum, but may not perform well in other place. This is undesirable in

surrogate-assisted evolutionary search. When surrogates are built for each

77



4.2 A Brief Survey of Surrogate-Assisted Evolution Strategies

individuals (such as in [81]), usually the k-nearest neighbor points of each individual

are used to train a surrogate model for corresponding individual.
4.2.2.2 Model Quality Assessment

Without no doubt, the most popular measure for model quality is the Mean Square Error
(MSE) which assesses the mean squared difference between the individual’s original fitness

function f (x)and the output of the surrogate model f(x), that is

MSE:ii(f(xi)— f(x))- 4.1)

[ ey
The MSE is evaluated over ndifferent individuals that are taken into account for the
estimation of the model quality, for instance, the n= A4 offspring individuals in one

generation.

The MSE is widely used to evaluate the approximation accuracy of surrogate models.
In the investigation of quality measures for surrogate model in evolutionary computation by
Jinetal. [82], it has been stated that the Mean Square Error (MSE) of the model only weakly
correlates with the ability to correctly select individuals in evolutionary computation, and

selection based or ranking based model quality measurements were suggested to use.

From the perspective of evolutionary computation, the correct selection is of
importance. In [82], Jin et al. proposed model quality measures that focus primarily on the
correct model-based selection rather than the approximation accuracy of surrogate model.

Some of these measures are presented below.

Let us consider the case of the (u,A1)-selection. The model-based selection process
(selection based on surrogate model) selects # out of the 2 individuals with the best
predicted fitness. An individual is correctly selected, if it would also be selected by a
selection process based on the original (true) fitness of the individuals. The first selection
based measure is about the number of individuals that have been selected correctly using the

surrogate model:

(4.2)
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where & (0< & < u)is the number of correctly selected individuals, i.e., the number of
individuals that have would also been selected if the original fitness function had been used

in fitness evaluation. The expectation of £ in case of random selection, that is

I
<§>fm—(ﬁj(” _ﬁ) -4 (43)

=07

is used as a normalization in Equation (4.2). If all # parents individuals are selected correctly,
the measure Pg reaches its maximum value of o =1. The negative values of Py
indicate that the selection based on the surrogate (model-based selection) is worse than a
random selection. The measure P, ONly evaluates the absolute number of correctly selected
individuals. However, this measure does not consider the rank of the selected individuals. In
case of P <1, the measure o does not indicate whether the (z+1)-th best individual or
the worst individual has been selected, which may have significant influence on the
evolution process. Therefore, the measure o is extended to include the rank of the selected

individuals that are determined based on the original fitness function values.

In the extended measure pP_.., the surrogate model gets a grade of A —m, if the m-th
best individual based on the original fitness function is selected. Thus, the quality of the
surrogate model can be indicated by summing up the grades of the selected individuals,
which is demoted by & . Apparently, if all # individuals are selected correctly, £ reaches its

maximum:
Cmax +1
E =Z(ﬂ—m)=u[i—”‘7} (4.4)
m=1
Similar to Equation (4.2), the measure p_g,.. is defined by transforming £ linearly using the

maximum ™ and the expectation <§~> = ud/2for the case of a purely random selection,
expressed as:

)
Poselect = é':max _<§~> '

Moreover, Jin et al. [82] suggested to use the rank correlation coefficient [83] (also

(4.5)

known as Spearman’s rank correlation coefficient), given by
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6 " d?
Prank :1_%’ (46)

is @ measure of the monotonic relation between the ranks of two variables, to evaluate the
quality of the surrogate model. In the case of using o, to measure the monotonic relation
between the individual’s rank based on surrogate model and that based on original fitness
function, d;is the difference between the ranks of the i-th offspring (among 1) individual
based on the original fitness function and on the surrogate model. The p,,, has the range
-1< p.« £1. The higher the value of p,, , the stronger the monotonic relation with a
positive slope between the ranks of the two variables. When the model predicts correct
ranking of all A individuals, we have p,, =1. Inversely, when the model predicts inverse
ranking of individuals, p,,,. = —1. The p,. calculated by Equation (4.6) takes the ranks of

all individuals rather than only take the ranking of the selected individuals into account.
4.2.2.3 Issues in Model Exploitation

The pre-selection and evolution control for model exploitation have already been
mentioned in Section 4.2.1. As previously description, in pre-selection strategy, for each
generation, 4., > A individuals are generated (through mutation) and evaluated by surrogate
model f , then 4 out of 4., best individuals are selected (based on the fitness value estimated
by f ) to re-evaluate by the original fitness function f . Thus, all the # parent for next
generation selected from A offspring are evaluated by real fitness function f . The pre-
selection strategy can be illustrated in Figure 4.1. Evolution control takes place when
surrogate model f is used in fitness evaluation of ES. In individual-based evolution control,
Zindividuals are firstly evaluated using the surrogate f , then 1* < 4 individuals are selected
to re-evaluated using the original fitness function f . As a result, the fitness values of #
parent for next generation can be based on surrogate f or on real fitness f . In generation-
based evolution control, evolution control is carried out at a specific frequency, where the
whole population of the controlled generation are evaluated using the original fitness
function f , while in other generations the whole population are evaluated by surrogate f.

Surrogate-assisted ES using individual-based and generation-based evolution control are
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illustrated in Figure 4.2. Some open issues in pre-selection and evolution control are

described in the following.

(' Initialization ) ( Initialization )
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Figure 4.1 lllustration of standard (., 4)-ES and the surrogate-assisted ES using pre-selection.

In Pre-selection, the number 4., which is called the size of pre-selection population
(or pre-selection population size) hereafter, has influence on evolutionary search. The size
of pre-selection population 4., controls the impact of the surrogate model f on the
evolutionary optimization process. For 4., = 4, the algorithm performs like a standard ES
and the surrogate model f has no impact on the ES. Increasing 4y brings about a larger
selection pressure and results in a stronger impact of the model f on the convergence of the
optimization process [74]. In [25, 72-74], the pre-selection population size 4., was set as a
constant during the optimization. The concept of model impact control was proposed by
Ulmer et al. [84], where the value of 4., was dynamically controlled by model quality
measurement based on the number of correctly pre-selected individuals. It was demonstrated

in [84] that controlling the impact of model impact ( 4., ) enhances the performance of model
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assisted Evolution Strategies (MAES) with fixed model influence (fixed 4., ). The concept

of model impact control will attract much more attention in MAES.

Another issue in pre-selection is the pre-selection criterion which is used to identify the
most promising individuals. For Gaussian process (Kriging) model assisted ES, several pre-
selection criteria have been applied in literature. For other surrogate model assisted ES,
usually, the model prediction is used to pre-screen the most promising individuals. However,
no precise conclusion on performance of different pre-selection criteria has been drawn so
far. Comprehensive study of existed pre-selection criteria is still needed. And more

sophisticated pre-selection criterion may be developed in the future.

In Evolution Control, the main issues is to determine the control frequency, which
denotes the number of individuals controlled in individual-based control and frequency of
controlled generation in generation-based control. The control frequency plays important
role in guaranteeing the correct convergence of the surrogate-assisted evolutionary

optimization.

Specifically, for individual-based evolution control, in each generation” individuals are
selected from A (4 is the size of population of the standard ES) offspring for control purpose,
i.e, to be evaluated by original fitness function. If the controlled individuals are chosen
randomly, it is called a random strategy. If the best”7 individuals are selected to be controlled,
we called it a best strategy. In generation-based evolution control, the whole population of
1 generations will be evaluated with original fitness function in every P generations, where
1 < P. Then, the control frequency in individual and generation-based evolution control can
be presented by the fractionz/A and#n/ p, respectively. Commonly, in evolution control, the
number7 is set by the users. For example, in [74] generation-based evolution control was
carried out every third generation. Empirical investigation on individual-based evolution
control has performed in [21], which showed that more than half of the individuals in
population need to be controlled when the random selection strategy is used and about 40%
of the individuals should be controlled when using best strategy, in order to guarantee a

correct convergence. To manage the control frequency of generation-based control, Jin et al.
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[70] introduced a framework to adapt the control frequency based on the fidelity of the

surrogate model.
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Figure 4.2 Individual-based generation-based evolution control in surrogate-assisted ES

4.3 Address Some Open Issues of Surrogate-Assisted ES

4.3.1 Training Set Selection

Training set selection affects both the quality of surrogate model learned from it and
the cost of model training. Thus, it is a subject worth studying. In previous section, selecting
training set as all previously evaluated points, the recently evaluated points, and nearest
neighbor points are already described. In this work, we propose a new approach for training

set selection based on properties of multivariate normal random variables.

Keep in mind that our goal of learning surrogate models is to predict fitness values of
current offspring population. Therefore, it is rational to choose points that are relevant to
current offspring population or current search subspace. The previously mentioned Recently

Evaluated Points and k-Nearest Neighbor Points for training set selection are based on this
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principle. However, in Recently Evaluated Points approach, no measurement is used to
assess the relevance between recently evaluated points and current search subspace. So, it
cannot guarantee that the selected recently evaluated points all are relevant to current search
subspace. In selection of training set by the k-Nearest Neighbor Points, the Euclidean
distance is usually used as a measurement to indicate the similarity between evaluated points
and the query point in such a way that previously evaluated points with smaller Euclidean
distance to the query point are chosen. For evolution strategy algorithms using isotropic
mutation (uncorrelated mutation), using Euclidean distance as similarity measure metric is
appropriate. When correlated mutation operator is used in evolution strategy algorithms,
such as the CMA-ES, the Euclidean distance may not be useful on correlated data since there
is no adjustment for the covariance. In this situation, the Mahalanobis distance becomes a
more proper similarity measure metric. Therefore, we firstly suggest to use the Mahalanobis
distance instead of Euclidean distance in k-Nearest Neighbor Points approach for training

set selection and another approach of using confidence interval is proposed.

4.3.1.1 k-Nearest Neighbor Points to Distribution Mean based on Mahalanobis

Distance

Without loss of generality, we consider the (/,,A4)-CMA-ES (this algorithm has
presented in Section 2.3.3) which uses a general (or correlated) mutation operator. In the
evolution loop of CMA-ES, for generation 9, A offspring are generated by mutation as:
x, =m9 + N, (O,C(g))for k=1---,4. Obviously, it can also be stated that the A
offspring are from a multivariate normal (MVN) distribution with mean vector u = m'® and
covariance matrix )’ :(a(g))z cl9, ie.x, ~ N, (#.X) . Correspondingly, the Mahalanobis

distance from a point Xto current distribution mean g = m'® is calculated by

)=l 2 = o) (o) ) (o). @

Generally speaking, data points with smaller Mahalanobis distance to current mean of

mutation distribution are more relevant to current offspring population. Thus, we can select
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the k-Nearest Neighbor Points according to the Mahalanobis distance to current distribution

mean m(9 as the training set.
4.3.1.2 Confidence Interval for Training Set Selection

Considering the A offspring are from a MVN distribution with mean vector z = m® and
. : 2 .
covariance matrix ), = (a(g)) Ccl9, ie.x ~ N, (#.X), the actual (current) search subspace
(the region that the distributed offspring can reach) is determined by current distribution of
offspring Ny (1, Z) . It is apparent that the sampled offspring probably lie in the region with
high probability of the multivariate normal distribution. Consequently, the region yielded by
the confidence interval of the multivariate normal distribution can be used to represent the

actual subspace with a given probability.

The confidence interval for the multivariate normal distribution AV, (& X) yields a

region consisting of those vectors x e R¢ satisfying

(x-u) T (x=u)< 25 (p), (4.8)
where z;(P) is the quantile function for probability P (0< p<1) of the chi-squared
distribution withd degrees of freedom. The inequality (4.8) provides the confidence region
containing P of the probability mass of the MVN distribution NV, (£,X). In other words, a
random vector from distribution NV, (£, %) has probability P of satisfying the inequality
(4.8).

Since 1 offspring X,, k =1,---, A are from MVN distribution NV, (£, X) (where gz =m'®
andy = (a“”)z C'9)), the region defined by inequality (4.8) has a probability P that it cover
the offspring. Put another way, this region is the subspace that the offspring generated from
the MVN distribution NV, (4, %) can reach with a probability P . The probability P indicates
the extent that the confidence region covers the actual search subspace. Therefore, we

propose to select the training data set Dyining DY

(Xi —m(g))T ((o-(g))z C(g))l (Xi —m9 ) <y ( Phraining )}, (4.9)

Dray={ (41 (1) 4
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where A is a set stores all the previously evaluated points (individuals, candidates) and
associated fitness function values, i.e. A={(Xi, f (xi)),i :1,---,neva,uated} ( Nvarated 1S the
number of evaluated points), > ( Prraining ) is the quantile function for probability Pyaining OF the
chi-squared distribution withd degrees of freedom, and the probability Pyaining Signifies the
confidence of selected training set (O < Phaining <1) . When we use a large Pyining , €valuated
points which lie in an interval with high confidence are selected to form the training set
Disining - While small Paining is Used, the training set Dyining ONly select evaluated points
contained in a low confidence interval. Usually, Dyning Selected with large Pyaining could
include more points than that with small Pysining . The value of Pyining IS Set by the user and
can be chosen as 95.45% or 99.73% or any other values. The surrogate models build on
D,

waining SElECted by Equation (4.9) are local models around the distribution mean m(® for

current offspring population.

4.3.2 Pre-Selection Strategy with Model Impact Control

4.3.2.1 Introduction of Pre-Selection with Model Impact Control (CPS)

The size of pre-selection population size 4, controls the impact of the surrogate model
f on the evolutionary optimization process. Thus, the search procedure would benefit from
the appropriate control of 4., . Simply, the pre-selection population size is set as a constant
by users during the optimization. Recently, researchers attempt to adapt 4., during the
evolutionary search process. It is intuitive to use the model quality to control the pre-
selection population size A, . In [84], the value of 4., was controlled by model quality
measurement based on the number of correctly pre-selected individuals. This idea gives

significant guidance for us in pre-selection population size control.

In this paragraph, we briefly present the model quality measurement and adaptation of
Ao that were proposed by Ulmer et al. [84]. Since in optimization by evolution strategies,
only the correct selection is of importance, the authors used a selection based model quality
which was similar to that proposed by Jin et al. [82]. Consider the model based selection

process selects # out of 4 individuals with the best predicted fitness. An individual is
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correctly selected, if it would also be selected by a selection process based on the original
(true) fitness of the individuals. Thus, the number of correctly selected individuals can be
used to measure the quality of the model based selection process. The authors assumed that
the selection quality determined for a selection of # out of 4 individuals, for which we known
the predicted and the true fitness, is equivalent to the selection quality of the pre-selection.
If the individual with the i-th best true fitness is correctly selected, a rank (grade) of (4 —i)
is given to this individual (this rank could be considered as the grade of the individual in
selection). The summed rank of all correctly selected individuals is defined as the quality
Quection OF the model based selection process. The difference between Qgqion and & in
Equation(4.4) is that Q.qi0, ONly counts the grades of correctly selected individuals but &
counts the grades of all selected individuals including both correctly and incorrectly selected
individuals. When none individual is correctly selected, Qgecion has its minimum value
(Q;Z,‘:mon = O). If all individuals are correctly selected, the maximum model quality is

)]

+1
Qleion = 2 (4 y R Ve (é ) (4.10)
i=1

The expectation value of Qg.io, fOr a purely random selection process is given as the

product of the expectation value of the number of correctly selected individuals and the

expectation value of the rank of a correctly selected individual :

(4.11)

Z,[“j[i”] (Lm0 2t

selectlon -
(ﬂ j

After each generationt the actual model quality Q'%) . is evaluated and compared to the

selection

expected quality of the random selection process Q... For Q%) rend the model

selection selection

based selection is better than a random selection, and 4, should be increased. On the
contrary, for Q%) dthe A, should be decreased. When Q' = Q™" the value of

selection selection

Ao is kept. Therefore, the update procedure for 4, is the following:
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Q(g) rand

g i i H rand
ﬁ’F(’re) + S;I:E“on sr(zlﬁgtlon §Pre’ If Qijgction > selection
(g+1) _ Qselection ~ Nselection
e rand (9) (4.12)
(9) Qselection ~ Nselection H
Apre — — Oper  Otherwise
Qselection

where ,, is the adaptation rate. It was demonstrated in [84] that controlling the impact of
model impact ( 4, ) enhances the performance of model assisted Evolution Strategies

(MAES) with fixed model influence (fixed 4, ).
4.3.2.2 Proposed Pre-Selection with Model Impact Control

Proposed Selection-based Model Quality Measure using Recombination Weights

In evolutionary algorithms, the selection operator choosing the best individuals to enter
next evolution loop and thus gives the evolutionary search a direction. Specially, in evolution
strategies, the selection is based on fitness ranks and deterministic. The recombination after
selection is also deterministic in ES. Thus, selection is particularly important in evolution
strategies. Consequently, in surrogate-assisted evolutionary computation, the quality of
model-based selection (selection by using surrogate model) is of importance, particularly in

surrogate-assisted evolution strategies.

In the investigation of quality measures for surrogate model in evolutionary
computation by Jin et al. [82], it has been stated that the the Mean Square Error (MSE) of
the model only weakly correlates with the ability to correctly select individuals in
evolutionary computation, and selection based or ranking based model quality
measurements were suggested to use. In [84], a selection based model quality was used to
control the size of pre-selection population for surrogate-assisted evolution strategies. This
method for updating 4, has pointed out a direction for pre-selection population size control,
i.e., dynamically controlling 4., based on model quality. In this thesis, a variant of the
selection based model quality measurement, which was proposed by Ulmer et al. in [84] and
described above, is defined based on the weights used in recombination operator in an

evolution strategy.
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We consider an evolution strategy that use weighted recombination operator, denoted
by (#/#,4)-ES. In weighted recombination, the weight values depend on the fitness
ranking, in that better parents get larger weights than inferior ones. The widely used super-

linear decrease weights are given by

W

W, = , fork=1---, u

tw
i (4.13)
withw;=|n(%+1]—|n(rank(f(xk))), fork=21,-,

where rank( f (%, )) is the fitness ranking of individual X, in all 2 offspring X,, X,,-++,X,. The
weighted recombination generates a single solution vector m(e = Zi”:lvvixm, which is the
new mean vector of mutation distribution. It apparent that individuals with high fitness

ranking have larger weights and thus contribute more to the search step.

Considering the model based selection process selecting # out of the 4 individuals with
the best predicted fitness, an individual is correctly selected, if it would also be selected by
a selection process based on the original (true) fitness of the individuals. Usually, the number
of correctly selected individuals can be used to measure the quality of the surrogate model.
We define a selection based model quality that takes in account not only the number of
correctly selected individuals but also the real fitness ranking of individuals. Our idea is that,
for each model-based selected individual (individual that is selected according to their
prediction fitness), if it is also selected by selection process using real fitness, its associated
recombination weights calculated by real fitness ranking is assigned to this individual as the
score it obtains in model selection; otherwise, it has score zero. The measurement of
selection based model quality Q, is defined as the summed score of all model selected
individuals. Obviously, a larger value of Q, means the surrogate model has higher quality of
correctly selecting individuals, and vice versa. If the model selects none correct individual,

min

Q, reaches its minimum value Q™ = 0. When all individuals are correctly selected, Q, takes

w

its maximum value Q;* :Z;Wi =1. In other cases, i.e., only part of model selected

individuals are correct,0<Q,, <1. From the definition of Q,, it can be found that when
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individuals with higher real fitness ranking and/or more individuals are selected correctly,

Q,,obtains higher value and the model quality is better.

Similar to Equation (4.11), the expectation value of Q, for a purely random selection
process is simply given as the product of the expectation value of the number of correctly

selected individuals and the expectation value of the score of a correctly selected individual :

W.

T

In surrogate-assisted evolution strategies using pre-selection strategy, to measure the

(4.14)

*:_IH

i=1

Qe _ Z,w .[li j:%

quality of the pre-selection process with above defined Q,,, we need to know the true fitness
of all 4, individuals. However, only the true fitness of 2 most promising pre-selected
individuals is known. We also taken the assumption in [84] that the model quality Q, for a
selection of # out of the 4 individuals, for which we know the predicted and the true fitness,

is equivalent to that of the pre-selection process.

Controlling the Size of Pre-selection Population (Model Impact) Ap,
The evolutionary search can benefit from the surrogate model assistance if the model
selection process performs better than a purely random selection and correspondingly model

selection quality is better than the quality of a purely random selection.

After each generation in the surrogate-assisted ES with pre-selection, the actual
measured selection quality Q'®)is computed and compared with the expected quality of the

random selection Q™ (given in (4.14)).

IfQéf’) > Q"™ the model based selection is better than a random selection, and 4, should
be increased. On the contrary, for Q\®) < Q™" the 4., should be decreased. When Q!¢ = Q™™

the value of 4, is kept. Therefore, 4, is adapted similarly as (4.12), i.e.,
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Q\gvg) — Q\:vand : ran
/IF()?E) ’ QmaX Qrand §Pre’ If Q\Evg) > QW ‘
(9+1) — W Nw
re Qrand _ Q(g) . (415)
A9 - =w___<w_5,., otherwise

Q.

where d, _is the adaptation rate, which is set by the user.

Model Impact Control based on Different Model Quality Measures

In pre-selection with model impact control, different model quality measures can be
used. In our work, three model quality measures are included. These three model quality
measures are: 1) proposed selection-based model quality measure using recombination
weights Q,,; 2) selection-based model quality measure Q. qion Proposed by Ulmer et al. [84];
3) rank correlation coefficient p,,, proposed by Jin et al. [82]. The strategy of updating the
pre-selection population size 4, is expressed by Equation (4.12) or (4.15). In the model
impact control rule, three critical values of model quality measures and the model quality
evaluated at current generation are used. These three critical values are the minimum,
maximum and a threshold value of model quality, which are respectively noted by Q™" ,
Q™ and Q™. The size of pre-selection population 4, is increased when the model quality
of current generation is larger than the threshold value, i.e., Q' > Q™ and 4., is decreased

if Q(® <Q™. The uniform formulation of model impact control based on model quality

measure Q , which includes Q,,, Qection aNd Pranc » CaN be given as:

(9) _ATS _
zé?h%ém, it Q¥ Q"
(9+1) _ B
Apre o™ _QW (4.16)
A9 — 5 otherwise

re W Pre?
The critical values of model quality measures are listed in Table 4.1. For model quality

Mmeasure P, , Prank = 0-5 indicates a moderate monotonic relationship between the predicted

fitness and exact fitness. Thus, we choose p,,,« = 0.5 as the threshold value of o, .
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Table 4.1 Critical values of model quality measures

min

Model quality measureQ  Minimum value Q Maximum valueQ™  Threshold valueQ™

Q. 0 1 u/ A
Qselection 0 luﬂ,—[u(lu.g.]_)/z (#2//1)(2/1_/'1_1)/2
Prank -1 1 0.5

4.3.2.3 Algorithm of Pre-Selection Strategies

The pre-selection concept has been introduced in Section 4.2.1. In pre-selection
procedure, 4., > A individuals are generated, then all 4., individuals are evaluated by
surrogate model f and the estimated fitness values are used to pre-select the A best
individuals, which will be evaluated by the original fitness function. After the initial
sampling, the pre-selection procedure can be performed in each iteration of the evolution

loop. The module of pre-selection for evolution loop is expressed in Algorithm 4.2.

Algorithm 4.2 Pre-Selection Procedure

1. given:m®, o9, 9, 4, 29

2:  training set selection: D; <« training_set_selection(.A)

3:  model training: f < model_training (Dy)

4: fork=1,--,49 do

5: s, =Ny (0,1)

6: y, =m¥ 4+ 5 (C“’))Msk Iy, represents individuals in pre-selection population
7: fo=f(yy)

8: end for

9:  select promising individuals according to fk X =Yg, Ze = Siy,, fork =1,-+, 4.

10: output: (xk,zk, fk ):=1 /loffspring for re-evaluation using original fitness function

In Algorithm 4.2, the current distribution mean vectorm(@, step-size &%), covariance
matrix c(%) ,and the archive A which contains all previously evaluated data points are used
in pre-selection (Line 1). The pre-selection population size for current generation iéf’e) is the
parameter of pre-selection procedure. With the inputs, training setD; is firstly selected by
the training set selection method (Line 2), which can be the recently evaluated points, k-
nearest neighbor points to distribution mean and confidence interval method proposed in

Section 4.3.1, and the surrogate model f is trained from the selected training set (Line 3).
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Then, ﬁé?e) individuals are generated and subsequently evaluated by the surrogate (Line 4~8).
According to the estimated fitness values, 1 best individuals are selected for re-evaluation
using the original fitness function (Line 9). The 4 pre-selected offspring are exported for

original fitness evaluation and strategy parameters adaptation.

The size of pre-selection population 4, can be constant or be controlled during the
evolution loop. For pre-selection without model impact control (PS), the pre-selection
population 4, keeps constant during the evolution loop, i.e., A% = 4% =...= 29, While,
for pre-selection with model impact control (CPS), 4. is updated during evolutionary search
according to the model quality. The updating rule of 4, is given in Equation (4.16) based

on the model quality measures including Q,, , Qiection @Nd 2,2 have been described previously.

4.3.3 Individual-based Evolution Control

In surrogate-assisted evolution strategies with evolution control, the control frequency,
which is described in Section 4.2.2.3, is of significance. On one hand, in order to prevent the
evolutionary search from being misled by a false optimum introduced by the surrogate model
[85], the surrogate model should be used together with the original fitness function. On other
hand, the original fitness function should be used sparsely such that computational cost on
(original) fitness evaluation is saved as much as possible. Evolution control could be
regarded as a scheme to make balance between saving the computational cost of fitness
evaluation and ensuring the evolutionary search converging to the global optimum or a near-
optimum of the original fitness function. This subsection and next subsection devote to
putting forward strategies for individual-based and generation-based evolution control,

respectively.

The concepts of evolution control have already introduced in Section 1.3.3. In
surrogate-assisted evolutionary computation, the evolution control means that the original
fitness function is used to evaluate some/all individuals in some/all generations. An
individual that is evaluated using original fitness function is called a controlled individual.

Similarly, a generation in which all its individuals are evaluated using the original fitness
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function is called a controlled generation. Correspondingly, evolution control can be divided
into two approaches: individual-based and generation-based evolution control. In individual-
based evolution control, a certain number of individuals within a generation are selected to
be evaluated using the original fitness function, and other individuals in the generation use
the surrogate model for fitness evaluation. Generation-based evolution control is carried out
at a certain frequency. In a controlled generation, all individuals are evaluated with the
original fitness function. The most important question for evolution control, both of
individual-based and generation-based evolution control, is how to determine the control
frequency, which signifies the number of controlled individuals and generations for
individual-based and generation-based evolution control, respectively, in order to guarantee
the correct convergence of the evolutionary search when false optima are present in the

surrogate model of fitness function.

For individual-based evolution control, both fixed and adaptive control methods can be
used. In fixed individual-based evolution control, the number of controlled individuals is
fixed, i.e., a fixed number of individuals are selected to re-evaluated by using the original
fitness function. While, for adaptive individual-based evolution control, the number of re-
evaluated individuals is adaptive, usually depend on the fidelity (quality) of the surrogate
model. The controlled individuals can be selected randomly or by a best strategy, which
selects best individuals based on predicted fitness. Obviously, fixed individual-based control
is simpler and thus more easily to implement than adaptive control. However, adaptive
individual-based evolution control may require less number of re-evaluated individuals
owing to the adaptive control frequency, and thus may save more computational cost on

fitness evaluation and consequently would be more efficient.
4.3.3.1 Fixed Individual-based Control (FIC) using Metric

In individual-based control (FIC), usually, the individuals with best predicted fitness
are selected to be controlled. Compared with other surrogate models like RBF, MLP model,
the advantage of Kriging model (or Gaussian process model) is that it not only predicts

fitness value but also provides the standard deviation for the predicted fitness without
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additional computational cost. In this work, we comprehensively investigate the criteria
which based on the model prediction f (x)or/and estimated standard deviation $(x) to select
individuals for re-evaluation. The criteria used to select individuals which will be controlled
are called metrics hereafter in this thesis. Five different metrics, which have been used in
surrogate-based optimization [54, 57] but relatively new in surrogate-assisted evolution
computation, including the mean of model prediction (Mean), estimated standard deviation
(SD) of prediction, statistical lower bound (SLB), probability of improvement (POI), and
expected improvement (EI), are introduced and studied in KA-CMA-ES using fixed

individual-based control. These five metrics are defined by
Crean (X) = T (X) (4.17)
Csp (X) =8(x) (4.18)

-$(x) (4.19)

(4.20)

where A is a constant and in this work we set A=2,¢(-) and ®(-) are respectively the
probability distribution function and cumulative distribution function of standard normal

distribution, and f_;, is the current minimal fitness function value.

In fixed individual-based control, a fixed fraction of the individuals (7-4) in each
generation are selected to be controlled according to above five metrics. Specifically, for
fixed individual-based control using metric Mean, 77-4 individuals which have the smaller
predicted mean fitness are selected for controlling. When the SD metric is used, individuals
with larger estimated standard deviation are controlled. If the SLB is adopted, individuals

with the smaller SLB values are controlled. For POl and El metrics, individuals that have
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the larger POl or EI values are selected and then controlled. Above described fixed

individual-based control (FIC) can be illustrated by Algorithm 4.3.

Empirical investigations on evolutionary computation with approximate fitness
functions [21] showed that the number of the controlled individuals should be larger than
50% of the population size if individual-based control is used and that the best strategy was
recommended by the authors. The best strategy based on metric C (x) (including Mean, SD,
SLB, POI and El), which have been given from Equation (4.17) to (4.21), is used in fixed
individual-based control to select the controlled individuals. As for the fraction of controlled

individuals, we setn7 = 0.5, i.e., half of the individuals in each generation is controlled.

Algorithm 4.3 Fixed Individual-based Control (FIC) using Metric

1. given:(z,.,%)., . m? o, C9 tA, f(x),7C(x)

2:  training set selection: D; <« training_set_selection(.A)

3:  model training: f <— model_training(D; )

4: fork=1--,4do

5: C, < metricC (xk )computing by model f /lcompute the metric values of individuals
6: end for

7 Ponoled = {Xlwxzw'”’xw J:z}’ Pncontrotea = {XW J+1:A"",XM} Ilbest strategy based on C (X)
8:  forX, € Pooies dO

9: f,=f(x,) /levaluated by original fitness function

10: tet+1

11: A« AU(x,, f,)

12: Dy« D U(x,, i)

13: end for

14: f « train_model(D;)  //update surrogate model

15: for X, € R controtiea A0

16: fo=f(x,) /levaluated by surrogate model

17: end for

A
k=1

18: output: t, A, (X,.z,, )

4.3.3.2 Mixed Individual-based Control (MIC)

With the efforts of drawing the advantages of both fixed and adaptive individual-based

evolution control, an individual-based control strategy called mixed Individual-based control
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(MIC) which combines both features of fixed and adaptive control in some way, is proposed
and presented below. Similarly to fixed individual-based control, in this mixed individual-
based evolution control strategy, 77-4 individuals are chosen by a best strategy for re-
evaluation in each generation. However, the value of 77 is vary between the user defined lower
bound 77, and upper bound 7, , i.€.0 <7, <77 <7, <1, which is mainly different from
the FIC. In each generation, 77,5, - 4 individuals selected by a best strategy are unconditionally
re-evaluated using original fitness function f (X) Up to(77max —nmin)/i more offspring which
take on better fitness values (estimated by surrogates f (x)) than the current best solution
can be re-evaluated too. With these newly evaluated points, the surrogate model is retrained
(updated) and the fitness values of uncontrolled individuals are re-estimated by the updated

surrogate model.

Furthermore, since Kriging model is used as the surrogate model, a metric function
C (x)that is based on both the model prediction f (x)and estimated standard deviation $(x)
to identify the most promising individuals whose fitness are probably better than the current
best fitness. Evidently, besides the mean of prediction (Mean), the statistical lower bound
(SLB) can be used in above described mixed individual-based control without any other

change of the control method.

Above described mixed individual-based control strategy can be regarded as a
combination of fixed control with control frequency of 77, - 4 and an adaptive control that
controls up to (nmax—nmin)}t offspring individuals that has predicted fitness better than
current best solution. In addition, after the re-evaluation of controlled individuals, on-line
model updating is performed by retraining the surrogate model based on training set that
adds these newly evaluated points. This could improve the quality of surrogate model and is

good to the evolutionary computation.

Above proposed mixed individual-based control (MIC) is implemented here and given
in Algorithm 4.4. The metric Mean and SLB can be used in MIC. The lower bound7,,, and
upper bound 7, are set as7,,;, =0.4and7,,, =0.8. This means that at least 40% and up to

80% individuals are controlled in each generation. Too small77,,;, may lead to the algorithm
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fail of converging to the global optimum and too large 77,,;, would require more exact fitness

function evaluations.

Algorithm 4.4 Mixed Individual-based Control (MIC)

1. given:(z,% )., Mm%, o', C9t, A, f(X), ins e C(X)
2:  training set selection: D; < training_set_selection(.A)

3:  model training: f <— model_training(D; )

4. fork=1,---,Ado

5: C, < metricC (xk )computing by model f /lcompute the metric values of individuals
6: end for

70 Pooled = {Xl: %ot X i}, Prcontrolied = {Xanm apar X i} //best strategy using C (X)
8 fork=(| 7| +1), | 7wt |do

9: ifC., < f..then /I f . isthe minimum fitness in A
10: Prontotied < Prontoted U Xecrs Placonoties = 1Xisz10" "1 X101 |
11: end if

12: end for

13: for X, € P uroned dO

14: fo=f(x,) /levaluated by original fitness function

15: tet+1

16: A« AU(x, f)

172 D <D U(x, )

18: end for

19: f < train_model(D;)  //update surrogate model

20: for X, € P controea O

21:  f,=f(x,) [/levaluated by surrogate model

22: end for

23: output: t, A, (x,z,, f, )izl

4.3.4 Modified Approximate Ranking Procedure (ARP)

The original approximate ranking procedure proposed by Runarsson [75] has been
presented in Algorithm 4.1. In the iteration of the original approximate ranking procedure,

one individual is selected to be re-evaluated by original fitness function, and then the
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surrogate model is updated and the parent set is selected based on the updated surrogate.
This loop is stop until the parent set does not change or all the individuals in the generation
have been re-evaluated. However, when the population size 4 is large, which is often required
in solving difficult multimodal problems or high dimensional problems, the amount of
information added in one iteration may result in insignificant changes even of a surrogate
model with bad ranking predictions [76]. To overcome this deficiency, we make some

modifications for the original approximate ranking procedure.

Algorithm 4.5 Modified Approximate Ranking Procedure (ARP)
1. given:(z.%)., . m®, a9 C¥ 4, f(x),C(x)

approximate: D; < training_set_selection(A),

f < model_training(D; ) and predict f, = f (x, ), k=1,--,2

3: rank and determine the parent set 3 = {x,,, } where f (x, ) < f (x,, )<< f(x,,)
4:  select the n,,, best individuals based on metric(C(x, ))i=1 computed by model f
5. evaluate the n,; selected individuals by f (x) and add to the set. A ,t < t+n,,
6: form=2:(1-n,)/n, do
approximate: D; < training_set_selection(.A),
f < model_training(D; ) and predict f, = f(xk), k=1---,4
8: determine the parent set 7, = {x,., }" where f (x,, )< f (x,, )<< f(x,.,)
9: if B,_, # P, then (the parent set has changed)
10: select N, best individuals based on metric(C (X, ))i:l computed by model f
11: evaluate the N, selected individuals by f (x)and add to the set A ,t «t+n,

12: else (parent set remains unchanged)

13: break (exit for loop)
14: end if
15: end for

A
k=1

16: output: t, A, (X,.,Z,, f)

Firstly, instead of selecting only one individual for re-evaluation and updating the
surrogate before entering the iteration loop of approximate ranking procedure, we select
Ny =Max (1] 0.32 |) individuals to be re-evaluated by f(x) for updating the model.
Obviously, more information would be added through this change. Secondly, in the iteration

loop of approximate ranking procedure, we use a batch sizen, = max(1,|_/1/10J)which IS
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proportional to 4, which is similar to that in [76]. Furthermore, since Kriging model is used,
the metric (including Mean, SD, SLB, POI and EI) can be adopted in selecting individuals
for re-evaluation and updating the model. With the aid of metric, the individuals with which
the model can be significantly improved can be selected for re-evaluation and added to the
training data set. Therefore, with above modifications, the efficiency of approximate ranking
procedure could be enhanced. The modified approximate ranking procedure is expressed by

Algorithm 4.5.

4.3.5 Generation-based Evolution Control

For generation-based evolution control, both fixed and adaptive control frequency can
be used. In fixed generation-based evolution control, the control frequency is fixed, i.e.,
generation control is carried out once in a fixed number of generations. While, for adaptive
generation-based evolution control, the frequency of generation control is adaptive, usually
depend on the fidelity (quality) of the surrogate model. An appropriate generation control
frequency can ensure the evolutionary computation converge to correct optimum and, at the

same time, reduce the computational cost as much as possible.

In [74], generation control was performed in every third generation in the comparative
studies of surrogate-assisted ES with pre-selection strategy and generation-based control. Jin
etal. [70, 85] proposed a strategy for adapting the generation control frequency based on the
fidelity of the surrogate model. This adapting strategy for control frequency is presented

below.

It is intuitive that the higher the fidelity of the surrogate model is, the more often the
fitness evaluation can be made using the surrogate model [70]. Because it is very difficult to
estimate the global fidelity of the surrogate model, the authors proposed to use a local
estimation of the model fidelity. Since the evolution strategy generally proceeds with small
steps, the current error can be used to estimate the local fidelity of the model and then to
determine the frequency at which the original fitness function is used and the surrogate

model is updated. Consider there are P generations within an evolution control cycle, and 77
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generations need to be controlled. The’7, which indicates the control frequency, is adapted

by

(K +1) =1, +{EE(k)J(nmax—mmn), (4.22)

max
where| X | denotes the largest integer that is smaller than X, 77,,,, is the maximal value of 77 ,
Nax < P, and the minimum77,,;, usually equals 1 so that the information on the model fidelity
is always available, E,,, is the allowed maximal model error and E (k) is the current model
error estimation, k denotes the k-th evolution control cycle of P generations. The current

model error, which is estimated before the next control cycle, is measured as follows:

E(k)=\/ LS (1 (x)- (%)) (4.23)

where 4 is the population size of ES, X;,i=12,---,n4 arenA individuals that are evaluated
using original fitness function in current control cycle. Apparently, E(k)is the mean square
error of 74 evaluated points. To make sure that the information on the model fidelity is
always available, at least one generation should be controlled within one evolution control
cycle. Besides, since the model fidelity is estimated locally based on the error information

from the last cycle, P should not be too large.
4.3.5.1 Proposed Adaptive Generation-based Control (FGC) based on Model Quality

In previous sections, the model quality has been used to control the model impact of
pre-selection strategy. In this section, it is proposed to use the model quality to determine
whether next generation is control or not. The quality of the surrogate model Q is estimated
in every controlled generation, ifQ > Q™ (Q™ s the critical value or threshold of model
quality), the next generation is evaluated by surrogate model; otherwise, the next generation
is controlled and evaluated by original fitness function. The model quality measurements
can be the proposed selection-based model quality measure using recombination weights Q,,,
selection-based model quality measure Qo Proposed by Ulmer et al. [84], and the rank
correlation coefficient p,,, . The threshold of model quality measurements have been given

in Table 4.1.
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4.4 Kriging-Assisted CMA-ES (KA-CMA-ES) Algorithms

In this section, these issues described in previous section including training set selection,
pre-selection with model impact control (CPS), fixed individual-based control using metrics
(FIC), mixed individual-based control (MIC), modified approximate ranking procedure
(ARP) and adaptive generation-based control (AGC) are incorporated into CMA-ES to
compose several different KA-CMA-ES algorithms. In training and using the surrogate
model, variable transformation of correlated variables is performed firstly. Before the
evolution loop of KA-CMA-ES, a number of solutions (candidates or points) are initially
sampled such that surrogate model can be built at the beginning of evolution loop. At the
same time, the best candidate in initial sampling are chosen as the start point for evolution
loop in KA-CMA-ES rather than set the start point randomly. All these are described in the

remaining part of this section.

4.4.1 Variable Transformation for Model Learning and Prediction

Recently, the covariance matrix information has been used in model training so that the
correlations between variables are taken into account during model learning. In Imm-CMS-
ES (local-meta-model CMA-ES) [76] and its relevant studies [77, 86], the covariance matrix

C that is adapted in CMA-ES was used as a metric in the calculation of distance between

two variable vectors d (xi X ) = \/(Xi -x, )T ct (Xi X ) , wherex; € R® andx; € R are two
variable vectors (search points, candidates or individuals), and C e R is the current
covariance matrix of the CMA-ES. This covariance matrix based distance takes into account

the correlations of the data.

In this work, a transformation of variables which transforms correlated variables into
uncorrelated is suggested to be performed before the model training and prediction. The
CMA-ES, which uses general (or correlated) mutation operator, is considered. In each
generation of the CMA-ES, 1 offspring are generated by mutation
x, =m® + N, (O,C(g)),kzl,---,i. In other words, the A offspring are from MVN

2
distribution with mean vector z=m' and covariance matrix Z:(a(g)) cl9 | e,
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X~ Ny (1.2)~ Ny (m(g),(a(g))z C(g)). Thus, for the original variable vectorx, e R? | the
following transformation T is used

X =T(x)=X"(x—p)= [(a@') )2 C<Q>T/2 (x—m™®), (4.24)
where x| € R is the associated vector of X, € R” obtained by the defined transformation. This
transformation uses the inverse of the covariance matrix of MVN distribution and has the
effects of (1) standardizing all variables in the vector to the same variance and (2) eliminating
correlations between variables [35]. It is worth mentioning that standardization of data set is
a common requirement for many machine learning implementations. With transformation in

Equation (4.24), the Mahalanobis distance in Equation (4.7) can be rewritten as

M) == ) E (=) =) X =T (k). (425)

This shows that the Mahalanobis distance between original variable vectors can be viewed

as the Euclidean distance on transformed vectors.

Therefore, each time before training a surrogate model and making predictions by the
model, we firstly transform all the input vectors of previously evaluated points and the
current A offspring individuals using Equation (4.24). Then, the training set is selected by
using the k-Nearest Neighbor Points based on Mahalanobis Distance, the confidence interval
of MVN or other methods. That is to say, model learning and prediction are performed on

transformed variables.

4.4.2 Initial Sampling and Informed Start Point

For surrogate-assisted ES, a set of evaluated points is indispensable before the starting
of surrogate assistance. Usually, the surrogate model is trained at the beginning with a
randomly created initial population (or initial sampling), which can be found in [25, 72-74].
In this work, a different way is used to create initial population for constructing the initial
surrogate mode. As stated in Chapter 3, space-filling design is appropriate to represent all
portions of the design space. Thus, in this work, the initial sampling is created by the space-

filling Latin hypercube designs described in Section 3.2.2 rather than by randomly sampling.
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In other words, before the evolution loop of KA-CMA-ES, an initial design of experiments
(DOE) is carried out by using Latin Hypercube Designs (LHD) based on maximin distance
criterion. As for the size of the DOE, Nyoe , the Npoe =10D rule of thumb which was studied
in [87] is adopted. Specifically, Npoe =10D (D is the dimension of the problem) sampling
points are generated by LHD. However, in KA-CMA-ES using pre-selection, the size of pre-
selection population is set as 4, = 24 . In order to runs pre-selection after the initial sampling,
Nooe Should not smaller than 4., . Thus, we correspondingly set Npoe = max (10D, 24)in all

the KA-CMA-ES algorithms which are expressed and investigated subsequently.

It is apparent that smaller number of iterations are needed to reach the optimum when
the start point m(© for the evolution loop is near the location of the optimum, and vice versa.
However, for black-box problem, usually no prior knowledge about the global optimum is
available before we solve the optimization problems. Thus, the start point m© < R? is
generally initialized uniformly and randomly within the search space. Fortunately,
information can be extracted from the samples of initial sampling (DOE). Therefore, we
proposed to choose the best point in initial sampling (the point with minimum fitness
function value) as the start point for subsequent evolution loop, after the evaluation of the
Npoe points in DOE. This strategy for start point selection is referred to as informed start
point in this work. In this work, the initial sampling and informed start point are performed

before the evolution loop for all surrogate-assisted evolution algorithms.

4.4.3 KA-CMA-ES using Pre-Selection

This subsection dedicates to the KA-CMA-ES using pre-selection, where pre-selection
without model impact control (PS) and pre-selection with model impact control (CPS) are
incorporated into CMA-ES. The standard ( ¢/ 1,,, 2)-CMA-ES, which has already presented
in Section 2.3.3, is not repeated here. The KA-CMA-ES using pre-selection can be easily
developed by introducing initial sampling and informed start point before the evolution loop,

and then runs the pre-selection procedure before the evaluation of offspring population
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(using original fitness function f ) in the standard evolution loop of the ( ¢/ t,,4)-CMA-ES

algorithm.

Algorithm 4.6 The KA-CMA-ES using Pre-Selection

1:  given: strategy parameters of CMA-ES, pre-selection method (PS or CPS) and parameters ( A,
for PS, A, 8, and model quality measure Q for CPS).

2. initializec'” >0,p? =0,p =0,C% =1, 4=0, D, =&, g « 0,t <0

3 initial sampling: Xpoe =[X,,.... %, _ ]T < Ihsdesign (npoe, d)

4:  evaluate initial samples: f, = f (x, ), A< AU(X,, f, ) wherex, € Xpoe, k =1,--,npoe
5. informed start point: m = iigel?jf fi

6: repeat

7 training set selection: D; <« training_set_selection (A)

8: model training: f e model_training(D; )

9 if PS is used then

A \A ) ) (
(xk,zk, f, )k «— pre—selectlon_procedure(m(g ,o'9,c9 4, ﬂpre)
=1
/Ipre-selection without model impact control
11:  elseif CPS is used then
Y selecti @ S0 o) 4 40
(xk,zk, fk)k <« pre selectlon_procedure(m ,0,C ,A,Apre)
=1

- /Ipre-selection with model impact control

13:  endif

14: for k=1---,4 do //evaluate by original fitness function

15: fo="T(x)

16: Ae— AU(x, f,)

17: tet+1

18: end do

19: if CPS is used then

20: model quality estimate: Q"® < model_qualtiy_estimate({xk, f, }; AXes i }ilj
29+ %5%, if Q¥>Q™

21: (01) — Q™ -Q /lupdate A,
A9 - Q:: Q:n Sn.r  Otherwise

Q~-Q
22: end if

23 updatem®?, 59 Cl9Y (the same as standard CMA-ES algorithm Line 9~13)
24: g«g+1

25: until termination criterion is fulfilled
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In each evolution iteration, the pre-selection procedure is firstly performed. After the
pre-selection step, the evaluation, selection and recombination are performed on the 1 pre-
screened offspring in the same way as in standard CMA-ES. If there is no model impact
control in pre-selection (PS), the size of pre-selection population 4 is set by user and keeps
constant during the computation. For pre-selection with model impact control (CPS), the
model quality Q (including Q,,, Qqiection aNd Lo ) NEE t0 be estimated after the evaluation of
A offspring by original fitness function, and then the size of pre-selection population 4 is
updated according to Equation (4.16). The pseudocode of KA-CMA-ES using Pre-Selection
without and with model impact control is given in Algorithm 4.6. This algorithm contains
two methods: KA-CMA-ES using PS, which presents Kriging-assisted CMA-ES using pre-
selection without model impact control, and KA-CMA-ES using CPS,which stands for
Kriging-assisted CMA-ES using pre-selection with model impact control. The pre-selection

procedure used in Line 10 and 12 has been given in Algorithm 4.2.

4.4.4 KA-CMA-ES using Individual-based Evolution Control

For Kriging-Assisted CMA-ES using individual-based evolution control, fixed
individual-based control (FIC) using metric and our proposed mixed individual-based
control (MIC) can be used. In fixed individual-based control (FIC), metric is used for
selecting the most promising individuals for re-evaluation. The details about metrics (Mean,
SD, SLB, POI and EI) for FIC have been discussed in Section 4.3.3.1. In mixed individual-
based control (MIC), two metrics, i.e., the Mean (mean of prediction) and SLB (the statistical
lower bound), are provided. The pseudocode of KA-CMA-ES using individual-based control,

including FIC and MIC, is presented in Algorithm 4.7.

The initial sampling and informed start point are firstly introduced in KA-CMA-ES
using individual-based control (Line 3~5), before the evolution loop. In each evolution
iteration, A individuals (offspring) are generated by mutation operator (Line 7~10). Then, the

fixed individual-based control (FIC) or mixed individual-based control (MIC) is performed
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(Line 13~17). With the results of FIC or MIC, the distribution mean, step-size and

covariance matrix can be updated (Line 18) the same as the standard CMA-ES.

Algorithm 4.7 The KA-CMA-ES using Individual-based Control

1

A

11:
12:
13:

14:

15:

16:

17:
18:
19:
20:

given: strategy parameters of CMA-ES, individual-based control method (FIC or MIC) and
parameters (77 for FIC, 7., e fOr MIC), and metric C (X ) used in individual control.
initialize o > 0,p® =0,p” =0,C'” =1, 4A=@, D; =@, g - 0,t 0

initial sampling: X[ :[xl,...,anOE ]T « lhsdesign (nye . d)

evaluate initial samples: f, = f (X, ), A< AU(X,, f, ) wherex, € Xpoe, k=1,--,Npoe

. A 0) _ .
informed start point: M =argmin f,

X, eXhoe
repeat
for k=1---,4 do  //generate A offspring
z, =N, (0,1)  J//i.id. foreach z,
x, =m® 4+ ¥ (C(g))]/2 z,  [lmutation
end for
training set selection: D; « training_set_selection(.A)
model training: f < model_training(D;)
if FIC is used then

4 (9) (9) ~(9)
Z,,X ,m¥ " CY,
t A, (X Ze F ) < fixed_individual_control[( X }

t, A, f(x),7,C(x)
elseif MIC is used then
t, A, (X, 2y, f, )izl « mixed_individual_control((Zk’Xk )i‘l’m(g)'a(g)'dg)']
t,A,f (X),r]min ,I]maX,C(X)
end if
update m®?, 59 C* (the same as standard CMA-ES algorithm Line 9~13)
g<«g+1

until termination criterion is fulfilled

4.4.5 KA-CMA-ES using Approximate Ranking Procedure (ARP)

Previously described modified approximate ranking procedure, which has been

illustrated in Algorithm 4.5, is embedded into CMA-ES. The pseudocode of KA-CMA-ES
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using approximate ranking procedure (ARP) is given in Algorithm 4.8. The initial sampling
and informed start point are firstly performed (Line 3~5). In each evolution loop, the

approximate ranking procedure is called after A individuals have been generated.

Algorithm 4.8 The KA-CMA-ES using Approximate Ranking Procedure (ARP)

1: given: strategy parameters of CMA-ES, parameters for approximate ranking procedure (N, N,
and metricC(x)).
2. initializec'” >0,p!” =0,p!” =0,C” =1, 4=@, D, =@, g - 0,t <0
T

3. initial sampling: Xe :[xl,...,anOE ]T « lhsdesign (nye.d)

4:  evaluate initial samples: f, = f (x, ), A< AU(X,, f, ) wherex, € Xpoe, k=1,-++,npoc

. . © _ i
5. informed start point: ™ =argmin f,

X €Xboe
6: repeat
7 for k=1---,14 do /Istandard mutation and evaluation of CMA-ES
8: z,=N,(0,1)  /i.id. foreachz,
9: x, =m'9 +o-(g)(C(g))Mzk
10: end for
11: t, A (X2, f, )izl «— approximate_ranking_procedure((zk,xk )i:l ;m® 59 clo ¢ A f (x),C(x))

12:  updatem®? 5@ cleY (the same as standard CMA-ES algorithm Line 9~13)
13:  g<g+1

14: until termination criterion is fulfilled

4.4.6 KA-CMA-ES using Adaptive Generation-based Control (AGC)

The CMA-ES is further combined with the adaptive generation-based control (AGC)
strategy described in Section 4.3.5, in which the model quality is used to control the
frequency of generation control. Specifically, in adaptive generation-based control, if the
model qualityQ(g)of current controlled generation exceeds the threshold value Q™ , next
generation is evaluated using the surrogate model; otherwise, next generation is controlled.
The pseudocode of KA-CMA-ES using adaptive generation-based control (AGC) is
expressed in Algorithm 4.9. The model quality measures Q,,, Quejection ANd Py CaN be used in

AGC. In Algorithm 4.9, 1!9)

control

indicates the generation Jis controlled or not. If 118 =1,

control
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generation 9 is controlled (evaluated by the original fitness function), otherwise, generation

g is evaluated by the surrogate model.

Algorithm 4.9 The KA-CMA-ES using Adaptive Generation-based Control (AGC)

1:  given: strategy parameters of CMA-ES, model quality Q for AGC
initialize'” >0,p® =0,p¥ =0,C” =1, 4=3, D, =@, 1) | =1,9«0,t <0

T control
T

2
3. initial sampling: Xz :[xl,...,anOE ]T < lhsdesign (nye ., d)
4

evaluate initial samples: f, = f (x, ), A< AU(x,, f, ) wherex, € Xpoz, k=1, npee

a

. . (0) _ ;
informed start point: M~ =argmin f,

X €XBoe
6: repeat
7 for k=1---,4 do /Istandard mutation and evaluation of CMA-ES
8: 2, =Ny (0,1)  Jhiid. foreach z,
9: X, =m® +59(c? )]/2 Z,

10: end for

11:  training set selection: D; < training_set_selection(.A)
12: model training: f « model_training(D; )

13:  prediction: f, = f(x,), k=12

14:  1f 119 isequal 1 then

15: evaluation: f, = f(x,), k=1---,4

16: model quality estimate: QY « model_qualtiy_estimate({xk, fk }:;1 AXes i }ilj
17: if Q19 >Q™ then

18: 1199 —0  //mark next generation as model-evaluated
19: else

20: 1) 1 //mark next generation as controlled

21: end if

22:  esleif 19 isequal 0 then

23: fo=1f(x) k=14

24: 1) —1 //mark next generation as controlled

25:  endif

26:  updatem®? 5@V cleY (the same as standard CMA-ES algorithm Line 9~13)
27: g«<g+1

28: until termination criterion is fulfilled
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4.5 Experimental Studies

The validation and the performance evaluation of optimization algorithms is commonly
carried out by using a chosen set of benchmarks or test functions. In this section, the
proposed Kriging-assisted CMA-ES algorithms in Section 4.4 are validated using a set of

test functions and their performance are evaluated and analyzed.

4.5.1 Experimental Setup

45.1.1 Test Functions

Test functions are important in performance validation and comparison of optimization
algorithms. In order to comprehensively evaluate an algorithm, the used set of test functions
should includes enough functions with different characteristics, such as continuous,
discontinuous, unimodal, multi-modal, separable, non-separable. In this work, we focus on
continuous optimization problems. In the experimental studies of proposed Kriging-Assisted
CMA-ES (KA-CMA-ES) algorithms, a set of 12 continuous benchmark functions is

carefully selected from [88-90].
All the test functions are minimization problems defined as follows :

minimize f (x), X=X, %,,--, X ]T
P 4.26
subjectto xeS =[X,g, Xys] (4.26)

where f (x)is objective or fitness function, D is the dimension of the problem (the number
of parameters or variables), andS is the search space (search domain) defined by the lower
bounds X, ; € R® and upper bounds X,z € R® . For handling the box constraints, the re-
sampling method, i.e. re-sampling any infeasible solution X until it becomes feasible, is

adopted.

The name, expression and the search space of 12 test functions are listed in Table 4.2,
in which f, ~ f,are unimodal functions and f; ~ f,, are multimodal problems. All these test
functions have the global optimum f(x*)=0, and the global optimum are located at

X" =[0,0,---,0]" except Rosenbrock function, whose optimum is atx” =[1,1,---,1]" . In our
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studies, for f, ~ f;, the dimensionality of search space are D =2,5,10 and 20; for f, ~ f;,,
we take D=2,5and 10, and f,, has dimension D =2 and 5. Each test function with each
dimension can be considered as an optimization problem. Totally, there are 40 test problems.

Table 4.2 Test functions for experimental studies

Name Function SSearch
pace
D
Sphere f,(x)=> % [-5,5]
i=1
D
Bent Cigar  f,(X)=x +10°>" 7 [-100,100]"
i=2
D
sum Squares f,(x)=>"(i-x) [-10,10]°
i=1
D i 2
Schwefel 1.2 f4(x)=2( xjj [-100,100]”
i=1\_j=1
D
Powell sum  f5(x)=>|x " [-11]°
i=1
Schwefel 3 £
Absolute )= 2%+ 11| [~100,100]°
D-1
Rosenbrock f,(x)= Z[lOO(XHl iz) +(Xi—1)2} [-5,5]
i=1
13 12 D
Ackley f,(x)=—20exp| 0.2 BZXf —exp(BZcos(Zﬁxi)j+20+exp(1) [-32,32]
i=1 i=1
D-1
fy(x)=sin’(zz,)+ Y. (z —1)° [1+10sin* (7z, +1) | .
Levy = [-10,10]

+(zp -1)° [1+S|n (anD)]

. (X) :i(kfx[ak COS(Zﬂbk (Xi +0.5))]j_ Dkg"[ak COS(Zﬂ'bk .0.5)] [_0'5’ O'S]D

Weierstrass =\ =
where a—05 b=3kmax =20

Bohachevsky f,; (X [x +2x2, —0.3c0s (37X, ) —0.4cos (47X
=1

1) +0.7 ] [-15,15]°

Rastrigin flz(X)ZloD-i-ZI:Xiz ~10cos(27x,) | [-5,5]°
i=1

4.5.1.2 Experimental Setting

For each test problem, 25 independent runs are performed using the algorithm which
are chosen to be investigated. The initial mean is set as: for CMA-ES, the initial meanm©

is uniformly sampled within the search domain of the problem (given in Table 4.2) ; for KA-
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CMA-ES, the initial mean m(® of the evolution loop is the best candidate in initial sampling
(informed start point), where Ny, = Max (10D, 21) samples are generated by LHD within the
search space. A single run of the algorithm is terminated, when the target function (fitness)

value fi g = 10 *js reached or one of the following termination conditions is satisfied:

maxFES: maximum number of exact fitness function evaluations, for CMA-ES,

maxFES =10*D ; for KA-CMA-ES, maxFES =10°.
ConditionCov: the condition number of C(?) exceeds10™.

TolFun: stop if the range of the best objective function values of the last10+] 30D/ |

generations and all function values of the recent generation is below TolFun =107".

TolX: stop if all components of p(cg) and all square roots of diagonal components of C(9),

multiplied by 59/ , are smaller than TolX =1072.
45.1.3 Evaluation Criteria

For each run of the problems, the number of exact function evaluations (FES) and
current best fitness function values are recorded. All the best fitness function values should
be from solutions that are evaluated using original fitness function. In other words, in KA-
CMA-ES, the number of exact function evaluations (evaluating using original fitness
function) and corresponding current best function values of evaluated individuals are

recorded.

In experimental study, the performance of an algorithm is evaluated according to the
success rate (SR), the success performance (SP) and the speedup performance (SPU). The
optimization runs which reach the target objective function value f... are known as
successful runs. While, these runs that do not reach f...are considered unsuccessful. A
successful run is rated with the number of function evaluations to reach fi g, i.e., the FES
of successful run. The success rate (SR) is the ratio of number of successful runs to total

runs, which is computed as

_ # of successful runs
# of total runs

SR

(4.27)
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The success performance (SP) can be regarded as the expected number of FES to reach
fget , and is given by

# of total runs
# of successful runs

SP = mean ( FES of successful runs)x (4.28)

Based on success performance (SP), the speedup performance (SPU) of KA-CMA-ES
is defined as the ratio between SP of CMA-ES and that of the investigated KA-CMA-ES
algorithm, i.e.,

SP of CMA-ES

SPU =
SP of KA-CMA-ES

(4.29)

The speedup performance (SPU) denotes the degree of improvement in performance
(according to number of exact function evaluations) of the KA-CMA-ES algorithm.
Obviously, the SPU of an algorithms is larger than one (SPU>1) means the algorithm makes
improvement in success performance. On the contrary, SPU<1 indicates the algorithm

performs worse than standard CMA-ES.

4.5.2 Experiments on KA-CMA-ES using Pre-Selection

4.5.2.1 Pre-Selection without Model Impact Control (PS)

Three training set selection methods, including Recently Evaluated Points, k-Nearest
Neighbor Points to distribution mean based on Mahalanobis distance and Confidence
Interval, have been investigated in KA-CMA-ES using pre-selection without model impact
control (PS). The size of training set is set as N; = 24 for Recently Evaluated Points and k-
Nearest Neighbor Points methods, and Pyaining = 99.73% for Confidence Interval methods.
The size of pre-selection population is set as 4., =24 and keeps as constant during the
computation. For simplification reason, we use ‘Recently’ to represents the Recently
Evaluated Points method of training set selection, ‘kNN” to stand for the k-Nearest Neighbor
Points to distribution mean based on Mahalanobis distance, and ‘Interval’ to signify the
proposed Confidence Interval method. The goal of running KA-CMA-ES using PS (KA-
CMA-ES using pre-selection without model impact control) with different training set

selection methods is to investigate the performance of training set selection methods and
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thus to determine which method is used in subsequent experiments of other KA-CMA-ES
algorithms. Additionally, the performance of PS algorithms will be compared with the pre-

selection with model impact control (CPS) which are studied in next subsection.

The experimental results of KA-CMA-ES using pre-selection without model impact
control (including success rate (SR), success performance (SP) and speedup performance
(SPU)), in which training set selection methods ‘Recently’, kNN’ and ‘Interval’ are adopted,
are listed in Table 4.3. In this table, PS-Recently indicates the pre-selection using Recently
Evaluated Points method for training set selection, PS-KNN stands for the pre-selection
where training set is selected as k-Nearest Neighbor Points to distribution mean based on
Mahalanobis distance, and PS-Interval signifies pre-selection using the proposed Confidence

Interval method as training set selection.

From Table 4.3, it can be found that, for large majority of the test problems, the speedup
performance (SPU) of PS-Interval is larger than that of PS-Recently and PS-kNN, which
indicates better performance of PS-Interval. Additionally, PS-Interval can get higher success
rate (SR) values on difficult problems such as f;; and f,. It can be initially concluded that
the proposed Confidence Interval method for training set selection, generally, work better

than ‘Recently’ and ‘kNN’ methods.

Furthermore, in order to analyze the performance of different training set selection
methods, we have classified the total 40 test problems into different categories (or groups)
according to their dimensionality and modality, and then evaluate the performance of PS
using different training selection methods on each category and overall problems. The total
test problems are grouped into: 2 dimensional problems (D=2), 5 dimensional problems
(D=5), 10 dimensional problems (D=10), 20 dimensional problems (D=20), unimodal
problem, and multimodal problems. For each category of problems and the overall problems,
we compute the average success rate (SR) and average speedup performance (SPU). This is
also used in subsequent investigation of other KA-CMA-ES algorithms. The average success
rate and speedup performance are listed in Table 4.4 and plotted in radar charts (also known

as spider chats or start plots) of Figure 4.3.
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Table 4.3 Results of KA-CMA-ES using pre-selection without model impact control (PS)

) PS-Recently PS-kNN PS-Interval CMA-ES

Function D4 oo™ sp SPU| SR SP SPU| SR _SP SPU| SR SP

2 6 | 1 253 131] 1 255 130| 1 257 129| 1 331

o 5 8|1 78 124/ 1 708 125\ 1 705 126| 1 888
10 10| 1 1535 1.16| 1 1521 117| 1 1410 127| 1 1784

20 12| 1 3110 106| 1 3090 1.07| 1 2902 1.13| 1 3292

2 6 | 1 326 119| 1 323 120] 1 319 121| 1 387

o 5 8|1 971 116 1 998 113| 1 1004 112| 1 1128
10 10| 1 2632 112 1 2422 121| 1 2509 117| 1 2941

20 12 [096 6422 1.16| 1 6742 111|096 6634 1.13| 1 7470

2 6 | 1 279 128| 1 283 126| 1 274 130| 1 35

o 5 8|1 7% 123 1 801 122| 1 760 129| 1 980
10 10| 1 1850 1.12| 1 1808 1.14| 1 1661 1.25| 1 2070

20 12| 1 4416 098] 1 4223 1.02| 1 4194 1.03| 1 4327

2 6 | 1 325 128| 1 336 124| 1 326 128| 1 417
o5 8|1 979 125/ 1 995 123| 1 941 130| 1 1224
10 10| 1 2535 1.13| 1 2530 1.13| 1 2307 124| 1 2858

20 12| 1 7172 104| 1 7114 104| 1 6825 1.09| 1 7431

2 6 | 1 202 137| 1 219 126| 1 216 128| 1 277

e 5 8| 1 g8 131 1 88 129| 1 912 126| 1 1149
10 10| 1 2866 124|092 3173 112| 1 2794 127| 1 3556
20 12 [0.72 12036 1.16|0.88 9843 1.42|0.84 10444 134|076 14014

2 6| 1 578 135| 1 574 136] 1 578 135| 1 778

f6 5 8 | 1 1745 129 1 1699 1.33| 1 1599 141| 1 2253
10 10| 1 4133 123| 1 4109 124| 1 3709 137| 1 5078

2 6 | 1 470 141| 1 456 145| 1 449 148| 1 663

f7 5 8 | 1 1744 142| 1 1809 136|096 1675 147|096 2468
10 10 |0.88 6503 1.27|0.96 5895 1.40|0.96 5073 163 | 0.8 8248

2 6 | 1 553 130| 1 560 128| 1 557 129| 1 717

f8 5 8 | 1 1464 139|096 1513 1.35| 1 1414 144|092 2040
10 10 |0.96 3163 1.19| 1 3052 1.23| 1 2810 134|096 3753

2 12| 1 390 125| 1 381 128| 1 376 129| 1 486

fo 5 16| 1 1141 130| 1 1137 131| 1 1137 1.31]096 1489
10 20| 1 2492 122096 2596 1.17| 1 2440 125| 1 3049
2 12| 1 846 125| 1 852 124|096 901 117| 1 1054

f10 5 16| 1 2354 133| 1 2399 131| 1 2362 133|096 3137
10 20| 1 5144 134| 1 5136 1.34| 1 4924 140|092 6893

2 12| 1 454 131| 1 461 130| 1 460 130| 1 597

f11 5 16|08 1618 1.05|092 1405 1.21| 1 1299 1.31|0.96 1700
10 20 | 088 3152 1.41|076 3673 121|092 2949 151|076 4457

o, 2 50[092 1508 157/096 1452 163(0.02 1496 159|068 2372
5 140| 06 9722 1.03|0.76 8338 1.20|084 7452 1.34| 0.8 10020

115



4.5 Experimental Studies

Table 4.4 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using pre-
selection without model impact control (PS).

Category Average Success Rate (SR) Average Speedup Performance (SPU)
PS-Recently PS-kKNN PS-Interval CMA-ES | PS-Recently PS-KNN PS-Interval
D=2 0.993 0.997 0.990 0.973 1.322 1.316 1.318
D=5 0.950 0.970 0.983 0.963 1.251 1.267 1.321
D=10 0.975 0.964 0.989 0.949 1.221 1.216 1.335
D=20 0.936 0.976 0.960 0.952 1.080 1.133 1.145
Unimodal 0.983 0.991 0.989 0.982 1.221 1.230 1.277
Multimodal 0.940 0.951 0.974 0.923 1.282 1.290 1.347
Overall 0.968 0.977 0.984 0.961 1.242 1.251 1.302
Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using
Pre-Selection without Model Impact Control (PS) Pre-Selection without Model Impact Control {PS)
PS-Recently -#-PS-kNN PS-Interval -e~-CMA-ES PS-Recently -#-PS-kNN PS-Interval
D=2 D=2
1.00 2 135 -
S wy D=5 Overall A H ~,D=5

Overall . 7

Multimodal 5§, A D=10 Multimodal .\ - D=10

Unimodal D=20 Unimodal D=20

Figure 4.3 Radar charts of average success rate and speedup performance of KA-CMA-ES using pre-
selection without model impact control (PS).

From the radar chart of average success rate (SR) in left of Figure 4.3 and Table 4.4,
for each category of problems, the KA-CMA-ES using PS have average success rate exceeds
0.9. Specifically, the PS-kNN has the highest average success rate on problems with D=2
and D=20, and unimodal problems. PS-Interval has the highest average success rate on
problems with D=5, D=10, multimodal problems, and on overall problems. The PS-Recently
method has the lowest average success rate among three methods. PS-kNN and PS-Interval
has higher average success rate than the standard CMA-ES on all categories of problems. In
terms of speedup performance (SPU) or success performance, PS-Interval has the best
success performance on all other category problems except 2 dimensional problems. Thus,

it can also be found that the ‘Interval’ method is superior to ‘Recently’” and ‘kNN’ methods.
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From the experimental study of KA-CMA-ES using pre-selection without model
impact control (PS), it can be found that the proposed Confidence Interval method for
training set selection in KA-CMA-ES is appropriate. Considering the success rate and
success performance as a whole, it is can be concluded that the ‘Interval’ (Confidence
Interval) method for training set selection has better performance than ‘Recently’ and ‘kNN’
methods. By all accounts, the proposed Confidence Interval method clearly superior to the
commonly used ‘Recently’ and ‘kNN’ methods for training set selection. Consequently,
Confidence Interval method of training set selection is adopted for training set selecting in

the remaining KA-CMA-ES algorithms owing to its superiority.
4.5.2.2 Pre-Selection with Model Impact Control (CPS)

In KA-CMA-ES using pre-selection with model impact control (CPS), three model
impact control approaches, in which three different model quality measures includingQ,,
Quetection aNd Py @re used, are investigated. In experiments of KA-CMA-ES using CPS, we

set the initial pre-selection population size ﬂé?e =22 and the adaptation rate 9, =

The experiments results of KA-CMA-ES using pre-selection with model impact control
(CPS), i.e., the success rate (SR), success performance (SP) and speedup performance (SPU),
are listed in Table 4.5. In the table, CPS-Q,, indicates pre-selection with model impact control
using Q,,as model quality measure, CPS-Q,,,..i., represents pre-selection with model impact
control using Qgeciion @ Model quality measure, and CPS-p,,, signifies pre-selection with

model impact control using o,.. a8 model quality measure.

According to the values of SP and SPU in Table 4.5, for most problems, CPS-Q,
performs better than CPS-Q,..., and CPS-p,,., . However, the values of SR of CPS-p,,, are
generally higher than that of CPS-Q,, and CPS-Q,,,.i, . FOr the problems of 20 dimensional

fyand f,, and 2 dimensional f,,, the performance of CPS-p,, significantly overweights
CPS-Q,, and CPS-Q,.qi0n - It is worth to note that CPS-p,,, and CPS-Q,, perform worsen than
CMA-ES on the problems of 20 dimensional f;and f, and 2 dimensional f,,. Thus, it can be
said that CPS-p,,, is more stable and reliable than CPS-Q, and CPS-Qg.yion » and that

CPS-Q, generally has better success performance and speedup performance.
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Table 4.5 Results of KA-CMA-ES using pre-selection with model impact control (CPS).

) CPS-Q,, CPS-Q.icction CPS-p,.0 CMA-ES
Function D 1
SR SP SPU | SR SP SPU | SR SP  SPU| SR SP
2 6 1 206 161| 1 209 158 1 202 164 1 331
f1 5 8 1 541 164| 1 544 163 1 545 163 1 888
10 10 1 1122 159 | 1 1159 154 | 1 1220 146 1 1784
20 12 1 2767 1.19| 1 275 1.19| 1 2871 115] 1 3292
2 6 1 256 151 1 264 147 1 258 150 1 387
2 5 8 1 797 142 1 753 150 1 814 139 1 1128
10 10 1 1864 158 1 1829 161| 1 1782 165| 1 2941
20 12 1 3778 198 1 3974 1.88| 1 4330 1.73| 1 7470
2 6 1 220 162| 1 216 165 1 222 160| 1 356
f3 5 8 1 589 166| 1 508 164 1 505 165| 1 980
10 10 1 1342 154 | 1 1389 149 | 1 1468 141 1 2070
20 12 1 5307 0.82| 1 5422 0.80| 1 4140 1.05| 1 4327
2 6 1 254 164| 1 256 163 1 252 165 1 417
f4 5 8 1 710 172| 1 719 170 1 723 169 | 1 1224
10 10 1 2102 136| 1 2084 137 1 2224 129| 1 2858
20 12 | 0.6 15281 0.49| 06 14963 050 1 6754 110| 1 7431
2 6 1 163 170 1 165 168 1 163 1.70| 1 277
5 5 8 1 572 201| 1 504 193] 1 506 193] 1 1149
10 10 1 1588 224 1 1693 210 1 1712 208 | 1 3556
20 12 1 4279 328| 1 4548 3.08| 1 4852 2.89|0.76 14014
2 6 1 448 174 1 461 169| 1 466 1.67| 1 778
6 5 8 1 1236 1.82| 1 1291 175 1 1358 166 | 1 2253
10 10 1 2881 1.76| 1 2853 1.78| 1 3305 154| 1 5078
2 6 1 308 215| 1 311 213| 1 320 207| 1 663
f7 5 8 |096 1104 224| 1 1105 2.23(0.96 1222 2.02|0.96 2468
10 10 | 096 4013 206|092 4444 186|096 4555 1.81| 0.8 8248
2 6 1 431 166| 1 438 164|096 463 155| 1 717
8 5 8 1 1043 196 1 1067 191 1 1070 1.91|0.92 2040
10 10 1 2096 179 1 2153 174 1 2364 159|096 3753
2 12 1 342 142 1 341 143| 1 344 141 1 486
f9 5 16 1 977 152 1 985 151 1 989 151|096 1489
10 20 1 2046 149|096 2180 140 1 2198 139| 1 3049
2 12 {052 1493 0.71| 04 1878 056|092 865 1.22| 1 1054
f10 5 16 1 1899 165| 1 1946 161| 1 2141 147|096 3137
10 20 1 3946 1.75| 1 4058 1.70| 1 4717 1.46|0.92 6893
2 12 1 399 150| 1 404 148 1 416 144 1 597
f11 5 16 096 1134 150 1 1089 156(0.92 1204 1.41|0.96 1700
10 20 |0.92 2460 1.81|0.88 2635 169| 0.8 2970 1.50|0.76 4457
f12 2 50|08 1700 140|088 1532 155|096 1417 1.67|0.68 2372
5 140]0.64 9092 1.10| 0.8 7376 1.36|0.84 7222 1.39| 0.8 10020
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Table 4.6 Average success rate (SR) and speedup (SPU) performance of KA-CMA-ES using pre-
selection with model impact control (CPS).

Category Average Success Rate (SR) Average Speedup (SPU)
CPS-Q, CPS-Q.jection CPS-p.« CMA-ES| CPS-Q, CPS-Q.jection CPS-p.
D=2 0.943 0.940 0.987 0.973 1.554 1.540 1.594
D=5 0.963 0.983 0.977 0.963 1.687 1.695 1.637
D=10 0.989 0.978 0.978 0.949 1.724 1.662 1.561
D=20 0.920 0.920 1.000 0.952 1.549 1.490 1.581
Unimodal | 0.982 0.982 0.997 0.982 1.706 1.669 1.651
Multimodal | 0.917 0.923 0.957 0.923 1.518 1.510 1.493
Overall 0.959 0.961 0.983 0.961 1.640 1.614 1.596
Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using
Pre-Selection with Model Impact Control {CPS) Pre-Selection with Model Impact Control (CPS)
CPS-Qu -#-CPS- Uselection CPS-Qy, -#-CPS-selection CPS- Prank
CPS-Prank -+-CMA-ES D=2
1.00 D=2 138
g5 180 e
Overall - . 7 7 ‘::_":-,‘ D=5 OVera'Tr r/ P v

Multimedal - D=10 Multimodal ‘ _____ ’ D=10

Unimodal® D=20 Unimodal D=20

Figure 4.4 Average success rate and outperform rate of pre-selection with model impact control using
different model quality measures.

The average success rate and speedup performance of CPS are listed in Table 4.6 and
plotted in Figure 4.4. For problems with D=2 and D=20, unimodal problems and multimodal
problems, the CPS-p,,., has the highest average success rate. The CPS-Q,, has highest average
success rate on 10 dimensional problems, and CPS-Q ..o, has highest success rate on 5
dimensional problems. However, according to the speedup performance, CPS-Q,, generally

outperforms CPS-Q,,..i,, and CPS-p,.., according to the overall average SPU.

With above results, it is hard to state which one in the three investigated CPS algorithms
is outstanding. If the success performance or speedup performance is considered, CPS-Q,, is
preferable. When higher success rate and the stability of algorithm are expected, CPS-p,,.,

is suggested. From the performance of pre-selection with model impact control using Q,,, it
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can be found that the proposed model quality measure Q,,is an appropriate measurement of

surrogate model quality in KA-CMA-ES.
4.5.2.3 Comparison of Pre-Selection with and without Model Impact Control

The results of KA-CMA-ES using pre-selection without model impact control using
‘Interval’ training set selection method (PS-Interval) and KA-CMA-ES using pre-selection
with model impact control are summarized in Table 4.7. It is apparent that pre-selection with
model impact control (CPS) outperforms pre-selection without model impact control (PS)
for most of the test problems according to the speedup performance. Thus, model impact

control is suggested in KA-CMA-ES using pre-selection.

The average success rate and speedup performance of PS-Interval, CPS-Q, ,
CPS-Qqpection and CPS-p,,., for different categories of problems are also presented in Table
4.8 and plotted in Figure 4.5. In the radar chart of speedup performance in the right of Figure
4.5, the CPS-Q,, obviously performs better than other pre-selection methods. It is clear that
the pre-selection with model impact control outperforms pre-selection without model impact
control. All the pre-selection methods have average success rate larger than 0.9. The
CPS-p,..« generally has the highest and stable success rate for all categories of test problems,
especially on 20 dimensional problems and multimodal problems. Yet the average success

performance (or speedup performance) of CPS-p,,, is not so good as that of CPS-Q,, .

As discussed above, taking the success rate, speedup performance and the reliability
into accounts, CPS-p,,, is preferable in all the investigated algorithms of KA-CMA-ES using
pre-selection strategy. If only the success performance or speedup performance is considered,

CPS-Q,, is outstanding in the investigated algorithms of pre-selection.
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Table 4.7 Comparison of KA-CMA-ES using pre-selection without and with model impact control,
including PS-Interval, CPS-Q,, , CPS-Q.¢ion aNd CPS-p,, .

Function 5 ; PS-Interval CPS-Q, CPS-Qgqection CPS-p

SR SPU SR SPU SR SPU SR SPU

2 6 1 1.29 1 1.61 1 1.58 1 1.64

f1 5 8 1 1.26 1 1.64 1 1.63 1 1.63
10 10 1 1.27 1 1.59 1 154 1 1.46

20 12 1 1.13 1 1.19 1 1.19 1 1.15

2 6 1 1.21 1 151 1 1.47 1 1.50

f 5 8 1 1.12 1 1.42 1 1.50 1 1.39
10 10 1 1.17 1 1.58 1 1.61 1 1.65

20 12 0.96 1.13 1 1.98 1 1.88 1 1.73

2 6 1 1.30 1 1.62 1 1.65 1 1.60

f3 5 8 1 1.29 1 1.66 1 1.64 1 1.65
10 10 1 1.25 1 1.54 1 1.49 1 1.41

20 12 1 1.03 1 0.82 1 0.80 1 1.05

2 6 1 1.28 1 1.64 1 1.63 1 1.65

i 5 8 1 1.30 1 1.72 1 1.70 1 1.69
10 10 1 1.24 1 1.36 1 1.37 1 1.29

20 12 1 1.09 0.6 0.49 0.6 0.50 1 1.10

2 6 1 1.28 1 1.70 1 1.68 1 1.70

5 5 8 1 1.26 1 2.01 1 1.93 1 1.93
10 10 1 1.27 1 2.24 1 2.10 1 2.08

20 12 0.84 1.34 1 3.28 1 3.08 1 2.89

2 6 1 1.35 1 1.74 1 1.69 1 1.67

f6 5 8 1 1.41 1 1.82 1 1.75 1 1.66
10 10 1 1.37 1 1.76 1 1.78 1 1.54

2 6 1 1.48 1 2.15 1 2.13 1 2.07

7 5 8 0.96 1.47 0.96 2.24 1 2.23 0.96 2.02
10 10 0.96 1.63 0.96 2.06 0.92 1.86 0.96 1.81

2 6 1 1.29 1 1.66 1 164 | 096 155

8 5 8 1 1.44 1 1.96 1 1.91 1 1.91
10 10 1 1.34 1 1.79 1 1.74 1 1.59

2 12 1 1.29 1 1.42 1 1.43 1 1.41

f9 5 16 1 1.31 1 1.52 1 1.51 1 1.51
10 20 1 1.25 1 149 | 096  1.40 1 1.39

2 12 096 117 | 052 071 | 04 056 | 092 122

f10 5 16 1 1.33 1 1.65 1 1.61 1 1.47
10 20 1 1.40 1 1.75 1 1.70 1 1.46

2 12 1 1.30 1 1.50 1 1.48 1 1.44

f11 5 16 1 1.31 0.96 1.50 1 1.56 0.92 1.41
10 20 0.92 1.51 0.92 1.81 0.88 1.69 0.8 1.50

f12 2 50 0.92 1.59 0.8 1.40 0.88 1.55 0.96 1.67
5 140 0.84 1.34 0.64 1.10 0.8 1.36 0.84 1.39
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Table 4.8 Average success rate and speedup performance of KA-CMA-ES using pre-selection without
and with model impact control, including PS-Interval, CPS-Q,,, CPS-Q,,cion and CPS-p,,.. .

Average Success Rate (SR)

Calegoy g interval CPS-Q, CPS-Qu.... CPSp..
D=2 0.990 0.943 0.940 0.987
D=5 0.983 0.963 0.983 0.977
D=10 0.989 0.989 0.978 0.978
D=20 0.960 0.920 0.920 1.000
Unimodal 0.989 0.982 0.982 0.997
Multimodal 0.974 0.917 0.923 0.957
Overall 0.984 0.959 0.961 0.983

Average Speedup (SPU)
Category

PS-Interval CPS-Q, CPS-Quicion  CPS-Prunk
D=2 1.318 1.554 1.540 1.594
D=5 1.321 1.687 1.695 1.637
D=10 1.335 1.724 1.662 1.561
D=20 1.145 1.549 1.490 1.581
Unimodal 1.277 1.706 1.669 1.651
Multimodal 1.347 1.518 1.510 1.493
Overall 1.302 1.640 1.614 1.596

Average SR of KA-CMA-ES using Pre-Selection Average SPU of KA-CMA-ES using Pre-Selection
(PS and CPS) (PS and CPS)
PS-Interval -»-CPS-Q,, PS-Interval --CPS-0Q,,
CPS- Uselection ~#~CPS-Prank CPS-Qselection #-CPS-Prank

D=2

Overall o g5 Overall ~ D=5

Multimodal 4 Multimodal » D=10

Unimodal D=20

Figure 4.5 Average success rate and speedup of pre-selection without and with model impact control.
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4.5.3 Experiments on KA-CMA-ES using Individual-based Control

4.5.3.1 Fixed Individual-based Control (FIC) using Different Metrics

The results of KA-CMA-ES using Fixed Individual-based Control (FIC) with different
metrics (Mean, SD, SLB, POl and EI) are given in Table 4.9. In all the tables of experiments
results in this chapter, we mark the SPU that do not exceed one (SPU <1) in red bold format,
which means the corresponding algorithm does not improve the success performance on the
corresponding test problem, and mark the maximum SPU of each row in bold number, which
represents the best success performance among the investigated algorithms on the
corresponding problem. Additionally, the average success rate and speedup performance of
FIC using five different metrics on each category problems and overall problems are
presented in Table 4.10 and plotted in Figure 4.6. In the tables, FIC-Mean stands for fixed
individual-based control using Mean as metric, FIC-SD denotes FIC using SD as metric,
FIC-SLB means using SLB as metric in fixed individual-based control, FIC-POI signifies
the FIC using POI metric, and FIC-EI represents fixed individual-based control using EI as

metric.

It is no doubt that the FIC-EI, on the whole, has the highest success rate among the
algorithms of FIC using five metrics. With regards to the success performance and speedup
performance, FIC-EI also has the best performance. Among the five metric, these metric
(SLB, POl and EI) which balances the exploitation of the surrogate and exploration of search
space performs better than metrics that only consider exploitation or exploration (Mean, and
SD). Taking both SR and SP into consideration, FIC-EI has advantages over other metrics
and thus is suggested to be used in other KA-CMA-ES algorithms using metric, such as KA-

CMA-ES using approximate ranking procedure which will be investigated in section 4.5.4.
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Table 4.9 Results of KA-CMA-ES using Fixed Individual-based Control (FIC) with different metrics.

. FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI CMA-ES
Function D SR SP SPU|SR SP SPU|SR SP SPUlSR SP SPU|SR SP SPU|SR SP
2 1 171 194| 1 182 182| 1 180 184 1 177 187 1 174 190 1 331

5 1 487 182| 1 546 163| 1 481 185 1 490 1.81| 1 475 187| 1 888

" 10 10| 1 1102 162| 1 1429 125 1 1085 1.64| 1 1100 1.62| 1 1087 1.64| 1 1784
20 12| 1 2462 1.34| 1 3295 100( 1 2499 132 1 2512 1.31| 1 2492 132 1 3292

1 203 191| 1 209 185 1 204 190| 1 202 1.92| 1 204 190| 1 387

1 578 195| 1 669 169 1 648 174 1 569 198 1 620 182 1 1128

2 10 10| 1 1440 2.04| 1 1578 1.86| 1 1659 1.77| 1 1557 1.89| 1 1543 1.91| 1 2941
20 12| 1 3909 191 1 4129 181| 1 3824 195/ 1 3793 197| 1 3668 2.04| 1 7470

1 188 189 1 195 183 1 186 191| 1 192 185| 1 187 190| 1 356

1 535 183| 1 605 162 1 530 1.85| 1 544 180| 1 544 180| 1 980

B 10 10 1 1338 155| 1 1737 119 1 1274 162| 1 1289 1.61| 1 1281 1.62| 1 2070
20 12| 1 3797 1.14| 1 4178 1.04] 1 3553 1.22| 1 3490 1.24| 1 3466 1.25| 1 4327

2 1 222 188| 1 227 184 1 226 185 1 225 1.85| 1 215 194| 1 417

f“ 5 1 660 185| 1 743 165 1 653 187| 1 652 188 1 661 1.85| 1 1224
10 10 1 1892 151| 1 2238 1.28| 1 1804 158| 1 1772 161| 1 1810 1.58| 1 2858

20 12| 1 6251 1.19| 1 6887 1.08] 1 5829 1.27| 1 5733 1.30| 1 5788 1.28| 1 7431

2 1 157 176| 1 157 176| 1 155 1.79| 1 152 1.82| 1 154 180| 1 277

5 1 634 181 1 672 171 1 625 184 1 614 187| 1 649 177 1 1149

& 10 10| 1 1891 1.88|0.92 2301 1.55(0.96 1977 1.80|0.96 2030 1.75|0.96 1957 1.82| 1 3556
20 1210.72 7843 1.79|0.8 8390 1.67| 0.6 9279 1.51|0.76 7520 1.86|0.84 7038 1.99|0.76 14014

2 1 407 191| 1 410 190| 1 398 195 1 422 184| 1 399 195 1 778

f6 5 096 1817 1.24| 1 1734 1.30( 1 1347 167| 1 1276 1.77| 1 1341 1.68| 1 2253
10 10 (0.16 37375 0.14|0.92 7477 0.68(0.92 5287 0.96|0.8 6229 0.82| 1 4503 1.13| 1 5078

2 1 360 1.84| 1 335 198| 1 348 191| 1 365 1.82| 1 342 194 1 663

7 5 0.96 1284 1.92|0.96 1402 1.76(0.92 1343 1.84|0.96 1289 1.91|0.92 1372 1.80|0.96 2468
10 10|0.84 5455 1.51|0.92 4925 1.67(0.88 4639 1.78|0.76 5055 1.63(0.96 4240 1.95| 0.8 8248

1 383 187 1 382 188 1 374 192|092 401 1.79| 1 373 192| 1 717

f8 5 0.96 1023 1.99(0.96 1193 1.71|0.96 1038 197 1 977 2.09| 1 991 2.06(0.92 2040
10 10 (0.84 2630 1.43|0.92 3273 1.15(0.84 2583 1.45|0.76 2875 1.31| 1 2221 1.69|0.96 3753

2 121 250 194 1 263 185 1 247 197 1 261 1.86| 1 256 1.90| 1 486

9 5 16| 1 745 200 1 812 183| 1 736 2.02(096 788 1.89| 1 747 1.99|0.96 1489
10 20(0.92 1775 1.72|0.88 2408 1.27|0.88 1876 1.63|0.92 1732 1.76|0.88 1846 1.65| 1 3049

2 12109 612 172 1 580 182| 1 557 189 1 549 192| 1 560 1.88| 1 1054

fl0 5 161|096 1653 1.90| 1 1845 1.70| 1 1548 2.03| 1 1611 1.95| 1 1595 1.97(0.96 3137
10 20 |0.64 5384 1.28|0.92 5427 1.27(0.68 5081 1.36|0.88 3970 1.74(0.92 3880 1.78|0.92 6893

2 12096 320 1.87| 1 312 191|096 314 190 1 301 1.98| 1 294 2.03| 1 597

fl1 5 16|0.84 999 1.70(0.76 1194 142| 1 824 2.06|0.88 967 1.76| 0.8 1046 1.63|0.96 1700
10 20 (0.56 3310 1.35|0.8 3098 1.44|0.84 2153 2.07|0.56 3263 1.37|0.96 1880 2.37|0.76 4457

2 50|08 1361 1.74|0.96 1240 1.91|0.92 1186 2.00(0.84 1345 1.76|0.92 1203 1.97|0.68 2372
f2 5 140| 0.4 9520 1.05|0.56 9777 1.02| 0.4 10675 0.94(0.72 5947 1.68|0.72 6066 1.65| 0.8 10020
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4. Kriging-Assisted CMA Evolution Strategy

Table 4.10 Average success rate and speedup performance of KA-CMA-ES using fixed individual-
based control (FIC) with different metrics.

Category Average Success Rate (SR) Average Speed (SPU)
FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-El CMA-ES |FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI
D=2 0977 0997 0990 0.980 0.993 0.973 1.857 1.862 1.902 1.858 1.920
D=5 0923 0937 0940 0.960 0.953 0.963 1.757 1587 1.806 1.866 1.824

D=10 0.815 0935 0909 0.876 0971 0.949 1.456 1.327 1.606 1554 1.738
D=20 0.944 0.960 0920 0.952 0.968 0.952 1.473 1319 1.455 1536 1.576
Unimodal 0.948 0.982 0972 0971 0.988 0.982 1.661 1554 1.701 1716  1.747
Multimodal | 0.846 0.911 0.891 0.889 0.943 0.923 1.683 1.584 1.800 1.775 1.892

Overall 0.912 0.957 0.944 0.942 0972 0.961 1.669 1564 1.736 1737 1.798
Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using
Fixed Individual-based Control (FIC) Fixed Individual-based Control (FIC)
FIC-Mean-e-FIC-SD FIC-SLB FIC-Mean-e-FIC-SD FIC-SLB
—-FIC-POI =«FIC-El —+CMA-ES =-FIC-POIl =xFIC-EI

Overall 2 . D=5

Multimodal - Ay Y D=10

Unimodal™ Unirmodalee D=20

Figure 4.6 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using fixed
individual-based control with different metrics.

4.5.3.2 Mixed Individual-based Control (MIC)

In the proposed mixed individual-based control (MIC), two metrics, Mean and SLB,
can be used. The results of KA-CMA-ES using MIC are given in Table 4.11. The average
success rate and speedup performance on each category of problems are listed in Table 4.12
and shown in Figure 4.7. In these tables, MIC-Mean represents mixed individual-based
control using Mean as metric, and MIC-SLB means using SLB as metric in mixed

individual-based control.
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Table 4.11 Results of KA-CMA-ES using Mixed Individual-based Control (MIC).

_ MIC-Mean MIC-SLB CMA-ES
Function D * "SR sP___sSPU| SR SP___SPU | SR sp
2 6 1 131 253 | 1 131 253 | 1 331
o 5 8 1 395 225 | 1 449 198 | 1 888
0 10 | 1 1007 177 | 1 1140 156 | 1 1784
20 12 | 1 2387 138 | 1 2500 127 | 1 3202
2 6 1 148 261 | 1 147 263 | 1 387
0 5 8 1 473 238 | 1 459 246 | 1 1128
10 10 | 1 1208 243 | 1 1256 234 | 1 2941
20 12 | 1 3251 230 | 1 3664 204 | 1 7470
2 6 1 143 249 | 1 143 249 | 1 356
f 5 8 1 428 229 | 1 505 194 | 1 980
3 10 10 | 1 1318 157 | 1 1342 154 | 1 2070
20 12 | 1 4146 104 | 1 3624 119 | 1 4327
2 6 1 165 253 | 1 163 256 | 1 417
o 5 8 1 535 220 | 1 617 198 | 1 1224
10 10 | 1 1882 152 | 1 1987 144 | 1 2858
20 12 | 1 6982 106 | 1 6258 119 | 1 7431
2 6 1 114 243 | 1 115 241 | 1 277
f5 5 8 1 500 230 | 1 506 227 | 1 1149
10 10 | 084 1889 188 | 084 1986 179 | 1 3556
20 12 | 06 8093 173 | 06 8140 172 | 076 14014
2 6 | 096 323 241 | 1 340 229 | 1 778
f6 5 8 1 1812 124 | 1 1270 177 | 1 2253
0 10 | 0 o0 00 | 096 4176 122 | 1 5078
2 6 1 265 250 | 1 280 237 | 1 663
f7 5 8 | 092 1138 217 | 092 1251 197 | 096 2468
10 10 | 084 6086 136 | 096 4293 192 | 08 8248
2 6 |08 313 229 | 096 308 233 | 1 717
f8 5 8 |092 835 244 | 1 842 242 | 092 2040
10 10 | 056 3573 105 | 096 2189 171 | 096 3753
2 12 | 1 218 223 | 1 234 208 | 1 486
fo 5 16 | 1 587 254 | 096 667 223 | 096 1489
10 20 |08 1590 192 | 092 1654 184 | 1 3049
2 12 | 064 763 138 | 1 501 210 | 1 1054
f10 5 16 | 084 1464 214 | 096 1349 233 | 096 3137
10 20 | 02 15116 046 | 052 5870 117 | 092 6893
2 12 | 096 270 221 | 1 263 227 | 1 597
f11 5 16 | 084 770 221 | 08 840 202 | 096 1700
10 20 | 052 3020 147 | 064 2584 172 | 076 4457
f 2 50 | 084 1181 201 | 0.84 1165 204 | 068 2372
12 5 140 | 024 12172 082 | 04 868 117 | 08 10020
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4. Kriging-Assisted CMA Evolution Strategy

Table 4.12 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using mixed
individual-based control.

Category Average Success Rate (SR) Average Speedup (SPU)
MIC-Mean MIC-SLB CMA-ES MIC-Mean MIC-SLB
D=2 0.940 0.983 0.973 2.302 2.341
D=5 0.897 0.920 0.963 2.090 2.046
D=10 0.713 0.891 0.949 1.449 1.661
D=20 0.920 0.920 0.952 1.503 1.483
Unimodal 0.929 0.972 0.982 1.961 1.957
Multimodal 0.737 0.854 0.923 1.798 1.960
Overall 0.862 0.931 0.961 1.904 1.958
Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using
Mixed Individual-based Control (MIC) Mixed Individual-based Control (MIC)
MIC-Mean -e-MIC-SLB -=CMA-ES MIC-Mean -e-MIC-SLB
D=2 D=2
1.00 & 240 L
LB 2N
SN D5 overal A0 N b5

Overall 7 o%s

D=10 Multimodal . \&

Multimadal = . D=10

Unimodal D=20 Unimodal D=20

Figure 4.7 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using mixed
individual-based control (MIC).

In Table 4.11, in terms of speedup performance, MIC-Mean (mixed individual-based
control using metric Mean) performs worsen than standard CMA-ES on 10 dimensional f;
and f;and 2 dimensional f,,. While, MIC-SLB (mixed individual-based control using
metric SLB) has better success performance than standard CMA-ES on all the test problems.

Form this, it can be found that MIC-SLB is more stable and reliable than MIC-Mean.

From Figure 4.7, it is apparent that MIC-SLB has higher success rate (SR) than that of
MIC-Mean, especially on multimodal problems. Furthermore, generally, MIC-SLB has
better average speedup performance (SPU) than MIC-Mean on all categories of problem
except problems with D=5. Taking both the success rate and speedup performance into

consideration, it can be concluded that MIC-SLB outperforms MIC-Mean.
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4.5.3.3 Comparison of Fixed and Mixed Individual-based Control

We compare the performance of KA-CMA-ES using Fixed Individual-based Control
(FIC) and KA-CMA-ES using Mixed Individual-based Control (MIC). The success rate (SR)
and speedup performance (SPU) of KA-CMA-ES using FIC and MIC are listed and
compared in Table 4.13. The average SR and SPU of each category problems of KA-CMA-
ES using FIC and MIC are given in Table 4.14 and shown in Figure 4.8.

From Table 4.13, it can be seen that, for most of the problems, KA-CMA-ES using MIC
(the proposed mixed individual-based control) has higher speedup performance (better
success performance) than using FIC (fixed individual-based control). It worth to note that
for 10 dimensional fg, only FIC-El and MIC-SLB perform better than the standard CMA.-
ES, and MIC-SLB also outperforms FIC-EI on this problem. Therefore, the proposed mixed
individual-based control (MIC) has better success performance than fixed individual-based

control (FIC).

Additionally, from the radar chart of average SR in the left of Figure 4.8, generally,
KA-CMA-ES using FIC have higher success rate than that using MIC. The FIC-Mean and
MIC-Mean has the lowest success rate among all the investigated algorithms using
individual-based control. The FIC-El generally has the highest success rate. Other
algorithms have moderate average success rate larger than 0.85. However, KA-CMA-ES
using MIC significantly outperform FIC according to the speedup performance and success
performance. Particularly, MIC-SLB has the highest average SPU and acceptable success
rate. Therefore, MIC-SLB is preferable among algorithms of KA-CMA-ES using individual-

based control.
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4. Kriging-Assisted CMA Evolution Strategy

Table 4.13 Success rate (SR) and speedup performance (SPU) comparison of KA-CMA-ES using Fixed
Individual-based Control (FIC) and Mixed Individual-based Control (MIC).

FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI MIC-Mean MIC-SLB
SR SPU| SR SPU| SR SPU| SR SPU| SR SPU| SR SPU | SR SPU

Function D 1

2 6 1 1941 1 18| 1 184| 1 187 190] 1 2.53 1 253

8 1 182 | 1 163 1 18| 1 181 187 1 2.25 1 198

fn 10 10 1 162 1 125 1 164| 1 162 164] 1 1.77 1 156
20 12 1 1341 100 1 132] 1 131 1321 1 1.38 1 127

1 191 1 18| 1 19| 1 1.92 190 1 2.61 1 263

1 195 1 169| 1 174 1 198 182] 1 2.38 1 246

f2 10 10 1 204 | 1 18| 1 177 1 1.89 1911 1 2.43 1 234
20 12 1 191 1 181| 1 195| 1 197 2041 1 2.30 1 204

6 1 189 | 1 183 1 191| 1 185 190 1 2.49 1 249

8 1 183 1 162 1 18| 1 180 18] 1 2.29 1 194

B 10 10 1 15| 1 119 1 162| 1 161 162] 1 1.57 1 154
20 12 1 114 1 104 1 122| 1 124 125] 1 1.04 1 119

1 18| 1 18| 1 18| 1 185 1941 1 2.53 1 256

" 1 18| 1 165 1 187| 1 188 185 1 2.29 1 198
10 10 1 150 1 128 1 158| 1 161 158] 1 1.52 1 144

20 12 1 1191 1 108 1 127 1 1.30 128] 1 1.06 1 119

6 1 17| 1 17| 1 179| 1 182 180 1 243 1 24

8 1 181 1 171 1 184| 1 187 1771] 1 2.30 1 227

f5 10 10 1 188 1092 155|096 180|096 1.75|096 1.82| 084 1.88 |0.84 1.79
20 12 | 072 179 |08 167| 06 151|076 186|084 199| 06 173 | 06 1.72

1 191 1 19| 1 19| 1 184
f6 5 8 |09% 124 1 130 1 167| 1 1.77
10 10 |0.16 0.14 |092 0.68 092 096 | 0.8 0.82

195109 241 1 229
1.68 1 1.24 1 177
113] O 00 | 096 122

6 1 184 | 1 198 1 191| 1 182
f7 5 8 |09 192 |09 176|092 1.84|0.96 1.91 0.
10 10 | 0.84 151 (092 167|088 178 |0.76 163 |0

1941 1 2.50 1 237
1.80] 092 217 | 092 1.97
195|084 136 | 096 1.92

DN

1 187 1 188 1 192|092 1.79
8 5 8 |09 199 09 17109 197| 1 209
10 10 | 084 143|092 115|084 145|076 131

192] 088 229 | 096 233
2061092 244 1 242
169] 05 105 | 096 1.71

12 1 1941 1 18| 1 197| 1 186
9 5 16 1 200 | 1 183 1 202|096 1.89
10 20 {092 172 |(0.88 127 |0.88 163|092 1.76 0.

1.90 1 2.23 1 208
1.99 1 254 1096 2.23
8 165]088 1.92 |0.92 184

12109 172 | 1 182| 1 189| 1 1.92
f10 5 16(09% 19| 1 170 1 203| 1 195
10 20 | 064 128 (092 127|068 136|088 1.74|092 1.78]| 02 046 |052 117

1881 0.64 1.38 1 210
1971084 214 |096 233

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
9
8
1
1
1
1
9
9
1
1
1
1
1
8
1
1
9
1

12 109 187 | 1 19109 190| 1 1.98 2031096 221 1 227
f11 5 16 {084 170 |0.76 142 | 1 206|088 176| 0.8 163]0.84 221 | 08 2.02
10 20 | 056 135 | 08 144|084 207|056 137|096 237|052 147 |0.64 172

50 | 0.8 174 |09 191|092 200|084 176|092 197|084 201 |0.84 204
5 140| 04 105|056 1.02| 04 094|072 168|072 165|024 082 | 04 117

f12
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Table 4.14 Average success rate and speedup performance of KA-CMA-ES using Fixed and Mixed
Individual-based Control (FIC and MIC)

Average Success Rate (SR)

Calegory i Mean FICSD FIC-SLB FIC-POI FIC-EI MIC-Mean  MIC-SLB
D=2 0.977 0.997 0.990 0.980 0.993 0.940 0.983
D=5 0.923 0.937 0.940 0.960 0.953 0.897 0.920

D=10 0.815 0.935 0.909 0.876 0.971 0.713 0.891
D=20 0.944 0.960 0.920 0.952 0.968 0.920 0.920
Unimodal 0.948 0.982 0.972 0.971 0.988 0.929 0.972
Multimodal 0.846 0.911 0.891 0.889 0.943 0.737 0.854
Overall 0.912 0.957 0.944 0.942 0.972 0.862 0.931

Category Average Speedup Performance (SPU)

FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-El MIC-Mean MIC-SLB
D=2 1.857 1.862 1.902 1.858 1.920 2.302 2.341
D=5 1.757 1.587 1.806 1.866 1.824 2.090 2.046
D=10 1.456 1.327 1.606 1.554 1.738 1.403 1.661
D=20 1.473 1.319 1.455 1.536 1.576 1.503 1.483
Unimodal 1.661 1.554 1.701 1.716 1.747 1.941 1.957
Multimodal 1.683 1.584 1.800 1.775 1.892 1.798 1.960
Overall 1.669 1.564 1.736 1.737 1.798 1.891 1.958
Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using
Individual-based Control (FIC and MIC}) Individual-based Control (FIC and MIC)
FIC-Mean -e-FIC-SD FIC-SLB -e-FIC-POI FIC-Mean -e-FIC-SD FIC-SLB -#-FIC-POI
FIC-El  —+MIC-Mean-%MIC-SLB FIC-El  —+MIC-Mean-%MIC-SLB
Overall, N D=5

Multimodal K D=10

Figure 4.8 Average SR and SPU of KA-CMA-ES using fixed and mixed individual-based control (FIC
and MIC).

4.5.4 Experiments on KA-CMA-ES using Approximate Ranking

Procedure

The experimental results of KA-CMA-ES using FIC with different metrics have proved

that the metric EIl is outstanding among the five metrics. Thus, in KA-CMA-ES using

130



4. Kriging-Assisted CMA Evolution Strategy

modified approximate ranking procedure (ARP), only two metrics, Mean and El, are used.
The results of KA-CMA-ES using ARP are listed in Table 4.15. The average success rate
and speedup performance are given in Table 4.16 and plotted in Figure 4.9. In the tables,
ARP-Mean indicates in Mean is used as metric in the ARP, and ARP-EI represents ARP

using EI as metric.

From Table 4.15, we can find that ARP-EI (approximate ranking procedure using El
metric) outperforms that using ARP-Mean. On problem of fswith D=10, both ARP-Mean
and ARP-EI perform worsen than CMA-ES.

According to the the radar chart of average success rate (SR), the average SR of ARP-
El are higher that of ARP-Mean on all categories of problems. In terms of the speedup
performance, ARP-EI also performs better than ARP-Mean. Therefore, it can be concluded

that ARP-EI outperforms ARP-Mean.

Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using
Approximate Ranking Procedure (ARP) Approximate Ranking Procedure (ARP)
ARP-Mean -e-ARP-EIl CMA-ES ARP-Mean -e-ARP-EI

D=2 D=2

Overall‘ _.D=5 Overall -~ D=5

Multimodal = 4" " D=10

) D=10 Multimodal =~

Unimodal D=20 Unimodal D=20

Figure 4.9 Average success rate and speedup performance of KA-CMA-ES using ARP.
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Table 4.15 Results of KA-CMA-ES using Approximate Ranking Procedure (ARP)

_ ARP-Mean ARP-EI CMA-ES

Function D & o SP SPU | SR SP SPU | SR sp

G 1 82 404 | 1 86 385 | 1 331

o 5 8 1 %1 253 | 1 352 252 | 1 888
10 10 | 1 1053 169 | 1 1014 176 | 1 1784
20 12 | 1 2453 134 | 1 2444 135 | 1 3292

G 1 84 461 | 1 87 445 | 1 387
o 5 8 1 345 327 | 1 365 300 | 1 1128
10 10 | 1 1067 276 | 1 9% 295 | 1 2041
20 12 | 1 2530 295 | 1 2563 291 | 1 7470

G 1 84 424 | 1 90 396 | 1 356

o 5 8 1 393 249 | 1 387 253 | 1 980
10 10 | 1 1272 163 | 1 1233 168 | 1 2070
20 12 | 1 3875 112 | 1 3540 122 | 1 4327

2 6 1 100 417 | 1 104 401 | 1 417
o 5 8 1 490 250 | 1 484 253 | 1 1224
10 10 | 1 1832 156 | 1 1667 171 | 1 2858
20 12 | 1 6660 112 | 1 5815 128 | 1 7431

2 6 1 76 364 | 1 74 374 | 1 277
- 5 8 1 424 271 | 1 397 289 | 1 1149
10 10 | 096 1452 245 | 096 1471 242 | 1 3556
20 12 | 044 9849 142 | 064 6437 218 | 076 14014

2 6 1 258 302 | 1 193 403 | 1 778
f6 5 8 | 08 1462 154 | 1 1225 184 | 1 2253
10 10 | 012 41047 012 | 088 6148 083 | 1 5078

2 6 1 172 385 | 1 157 422 | 1 663
f7 5 8 | 084 1163 212 | 092 968 255 | 096 2468
10 10 | 0.84 5658 146 | 088 4249 194 | 08 8248

2 6 | 084 225 319 | 096 191 375 | 1 717
f8 5 8 | 08 906 225| 1 726 281 | 092 2040
10 10 | 0.88 2400 156 | 096 2164 173 | 0.96 3753

2 12 | 1 150 324 | 1 149 326 | 1 486
fo 5 16 | 088 558 267 | 096 501 297 | 096 1489
10 20 | 092 1717 178 | 1 1585 192 | 1 3049
2 12 | 04 980 108 | 1 368 286 | 1 1054
10 5 16 | 0.64 1813 173 | 0.96 1146 274 | 096 3137
10 20 | 056 6724 103 | 096 3903 177 | 092 6893

2 12 | 088 199 300 | 096 182 328 | 1 597
f11 5 16 | 072 752 226 | 096 569 299 | 096 1700
10 20 | 08 2264 197 | 08 2260 197 | 0.76 4457
0 2 50 | 088 1042 228 | 096 916 259 | 068 2372
5 140 | 072 6363 157 | 08 5884 170 | 08 10020
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Table 4.16 Average success rate and speedup of KA-CMA-ES using ARP.

Category Average Success Rate (SR) Average Speedup (SPU)

ARP-Mean ARP-EI CMA-ES | ARP-Mean  ARP-EI
D=2 0.917 0.990 0.973 3.362 3.667
D=5 0.867 0.967 0.963 2.304 2.597
D=10 0.825 0.949 0.949 1.637 1.881
D=20 0.888 0.928 0.952 1.590 1.788
Unimodal 0.923 0.972 0.982 2.475 2.633
Multimodal 0.780 0.949 0.923 2.114 2.597
Overall 0.873 0.964 0.961 2.349 2.620

4.5.5 Experiments on KA-CMA-ES using Generation-based Control

For generation-based control, the Fixed Generation-based Control (FGC) where one
generation is controlled in each two generations and the proposed Adaptive Generation-
based Control (AGC) are investigated. The results of generation-based control are listed in
Table 4.17. The average success rate and speedup performance are presented in Table 4.18
and Figure 4.10. In these tables, FGC stands for fixed generation-based control, AGC-Q,,
indicates the adaptive generation-based control based on model quality Q,,, AGC-Qy,.cion
signifies adaptive generation-based control based on model quality measure Qegion » @and

AGC-p,,., represents AGC based on model quality measure o,

In Table 4.17, we mark the SPU that do not exceed one (SPU <1) in red bold format,
which means the corresponding algorithm does not improve the success performance on the
corresponding test problem. In other words, we can say that the investigated algorithm
performs worsen than standard CMA-ES on the test problem if the SPU of the algorithm on
a test problem is not larger than 1. For FGC, the number of problems on which SPU is not
larger than one is 6. This number for AGC-Q,, is 5, for AGC-Q, cion is 7, and for AGC-p,,,
is 5. The smaller this number is, the corresponding algorithm is more stable and reliable.
From this perspective, AGC-Q, and AGC-p,,. are slightly more stable and reliable than
FGC and AGC-Q.cion -
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Table 4.17 Results of KA-CMA-ES using FGC and AGC

) FGC AGC-Q, AGC-Qection AGC-p,,. CMA-ES
Function D A

SR SP SPU|SR SP SPU | SR SP SPU| SR SP SPU|SR SP

1 179 185/ 1 148 224 1 151 219 1 156 212 | 1 331

5 1 523 1.70| 1 499 1.78 1 473 183 | 1 586 152 | 1 888

f 10 10 |1 1308 1.36| 1 1264 141 1 1289 138| 1 1589 1.12| 1 1784
20 12 |1 3127 1.05/ 1 3205 1.03 1 3202 103| 1 3376 098] 1 3292

1 213 182 1 164 236 1 164 236 | 1 170 228 | 1 387

o 1 654 1.72| 1 477  2.36 1 460 245| 1 523 216 | 1 1128
10 10 |1 1675 1.76) 1 1181 249 1 1168 252 | 1 1523 193 | 1 2941

20 12 |1 4584 1.63] 1 4068 1.84 1 4018 186| 1 4820 155| 1 7470

1 195 1831 158 225 1 153 233| 1 172 207 | 1 356

1 588 1.67| 1 549 1.79 1 533 184 | 1 650 151 | 1 980

& 10 10 |1 1635 1.27) 1 1630 1.27 1 1616 128 | 1 1925 1.08| 1 2070
20 12 | 1 4958 0.87| 1 4914 0.88 1 4838 089 | 1 4523 096 | 1 4327

1 232 1801 179 233 1 176 237 | 1 195 214 | 1 417

1 724 169 1 672 1.82 1 658 1.86| 1 793 154 | 1 1224

" 10 10 |1 2295 1251 2361 121 1 2384 120| 1 2636 1.08| 1 2858
20 12 |1 8347 0.89] 1 8530 0.87 1 8030 093| 1 7536 0.99| 1 7431

2 1 155 179 1 134  2.07 1 128 216 1 145 191 1 277

1 667 1.72|0.96 584  1.97 1 561 205| 1 659 1.74| 1 1149

f5 10 10 (0.8 2588 1.37\0.92 1844 193 |0.88 1978 180|092 2530 141 | 1 3556
20 12 |0.64 10132 1.38/0.72 7362 1.90 |0.64 8377 167 | 0.8 9835 1.42|0.76 14014

2 1 444 175/ 1 349 2.23 1 3HB3 220| 1 432 180 1 778

6 5 1 2098 1.07(0.84 2342 096 |0.84 2182 1.03| 1 1802 125| 1 2253
10 10 [0.041.19E+050.04| 0 O 0.0 0 0 00| 1 4881 104| 1 5078

2 1 375 17711 296 224 1 296 224 | 1 309 215| 1 663

f7 0.88 1594 155(0.84 1642 150 | 0.8 1692 1.46|0.88 1762 1.40 |0.96 2468
10 10 [0.92 6283 1.31|0.88 6980 1.18 [0.96 6248 132|092 6686 1.23|0.8 8248

2 1 401 1.79/096 329 218 (096 337 213| 1 377 190 1 717

8 5 1 1091 1.87|0.96 1045 1.95 |0.68 1451 1.41|0.96 1288 1.58 [0.92 2040
10 10 [0.64 4173 0.90{0.8 3422 110 |0.64 4314 0.87| 1 3181 1.18(0.96 3753

12 |1 256 190 1 214 227 1 216 225| 1 253 192 | 1 486

9 16 |0.88 896 166/ 1 643 232 |0.96 685 217 |0.96 1058 1.41|0.96 1489
10 20 0.8 2241 1.36/0.8 2094 146 |08 2115 144|096 2880 106 | 1 3049

2 12 1092 665 158084 631 167 |0.96 555 190|096 908 116| 1 1054

f10 5 16 (0.8 2207 1.42|0.48 3054 103 |04 3841 0.82| 1 2714 1.16 (0.96 3137
10 20 [0.24 16028 043 0 oo 0.0 0.2 18420 0.37 {0.88 6927 1.00 |0.92 6893

2 12 096 322 1.85/0.88 275 217 |096 256 233| 1 299 200| 1 597

f11 16 [0.72 1208 1.41|0.76 926 184 |0.72 997 1.71|0.88 1271 1.34 {0.96 1700
10 20 [0.64 3146 1.42/0.52 3530 1.26 | 04 4690 0.95|0.64 4814 0.93 |0.76 4457

2 50 |0.92 1186 2.00|0.8 1184 2.00 |0.92 1033 2.30|0.84 1219 1.95|0.68 2372
f12 140 |0.28 14143 0.71/0.1227611 0.36 |0.44 7839 128 | 0.8 7858 1.28 | 0.8 10020
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Table 4.18 Average success rate and speedup of KA-CMA-ES using FGC and AGC.

Average Success Rate (SR) Average Speedup (SPU)

FGC AGC-Q, AGC-Q.uion AGC-p..« CMA-ES|FGC AGC-Q, AGC-Q.cion AGC-0
D=2 ]0.983 0.957 0.983 0.983 0.973 |1.810 2.168 2.230 1.949
D=5 |0.880 0.830 0.820 0.957 0.963 |1.516 1.640 1.662 1.490
D=10 1|0.735 0.720 0.716 0.938 0.949 |1.133 1.210 1.194 1.187
D=20 ]0.928 0.944 0.928 0.960 0.952 (1.166 1.304 1.276 1.179

Unimodal |0.934 0.929 0.928 0.982 0.982 |1.458 1.689 1.704 1.553

Multimodal |0.771 0.709 0.717 0.920 0.923 [1.450 1.543 1.566 1.418

Overall |0.877 0.852 0.854 0.960 0.961 |1.455 1.638 1.656 1.505

Category

Average SR of KA-CMA-ES using Average SPU of KA-CMA-ES using

Generation-based Control (FGC and AGC) Generation-hased Control (FGC and AGC)
FGC --AGC-,, AGC- Qselection —#AGC- Prank FGC -AGC-Q,, - AGC- Qselection ~#AGC-Prank

D=2 D=2
240

Overall " ~_. D=5 Overall -~ .~ 22/ &N~ D=5

Multimodal » . D=10 Multimodal © D=10

Unimodal D=20 Unimodal D=20

Figure 4.10 Average success rate and speedup of KA-CMA-ES using FGC and AGC.

From the radar charts in Figure 4.10, AGC-p,,,. (adaptive generation control using
Prank ) Nas the highest average success rate on all the problems. On multimodal problems, the
average success rate of FGC, AGC-Q,, and AGC-Q,,..i0, are lower than 0.8. Considering the
speedup performance, adaptive generation control using Q, and Qe have better
performance. There is slight difference between the average SPU of AGC-Q, and
AGC-Q,,.ion - However, as stated in previous paragraph, AGC-Q, seems more stable than
the AGC-Qgeeion - Thus, AGC-Q, is preferable to AGC-Q,.i0n . Overall, AGC-p,,, is

preferable according to success rate and stability, and AGC-Q,, is preferable when speedup

performance is considered.
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4.5.6 Performance Analysis of All the Investigated KA-CMA-ES

Algorithms

In previous three subsections, the KA-CMA-ES using pre-selection, individual-based
control, approximate ranking procedure and generation-based control are separately
investigated and analyzed. This subsection dedicates to comparing all the investigated
algorithms of KA-CMA-ES. Based on previously discussion and results, only the best
algorithms of each category of algorithms are chosen as the representatives and used in
analysis and comparison here. The PS-Interval is taken as the representative of pre-selection
without model impact control (PS). The CPS-Q, and CPS-p,,, are considered as typical
algorithms of pre-selection with model impact control (CPS). The FIC-El is used to represent
the fixed individual-based control (FIC). The ARP-EI stands for the KA-CMA-ES using
approximate ranking procedure (ARP). For generation-based control, AGC-Q, and

AGC-p,,. are regarded as the representatives.

The success rate (SR) and speedup performance of above selected KA-CMA-ES
algorithms are listed in Table 4.19. Additionally, the average success rate (SR) and speedup
performance (SPU) of each category of problems are given in Table 4.20 and illustrated by

Figure 4.11 and Figure 4.12.

For most test problems, ARP-EI has the best speedup performance. It is apparent that
ARP-EI has outstanding speedup performance among all the investigated algorithms. The
SPU values of PS-Interval, CPS-Q, , CPS-p,.,. , FIC-El and MIC-SLB on all the test
problems are larger than one. This shows a stable improvement in success performance of
these algorithms. The stabilities of AGC-Q, and AGC-p,, are lower than others. There is
only one problem on which ARP-EI performs worsen than CMA-ES. Therefore, it can be
stated that the ARP-EI is outstanding among all the investigated KA-CMA-ES algorithms,

according to the speedup performance or success performance.
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Table 4.19 Performance comparison of KA-CMA-ES algorithms, including PS-Interval, CPS-Q,,,
CPS-p,,  FIC-EI, MIC-SLB, ARP-EI, AGC-Q, and AGC-p,,.,. .

Function b |PSnterval CPS-Q, | CPS-p,.,. | FIC-EI | MIC-SLB | ARP-El | AGC-Q, | AGC-p,,
SR SPU |[SR SPU| SR SPU |SR SPU| SR SPU|SR SPU|SR SPU| SR SPU

1 1291 161| 1 164 |1 190( 1 253| 1 385 1 219 1 212

1 1261 164| 1 163| 1 187 1 198| 1 252 1 188| 1 152

M 010 1 127]1 159 1 146| 1 164| 1 156|1 176 1 138| 1 112
2012 1 143|1 119 1 115|1 132 1 1271 135 1 103| 1 0098

2 1 1211 151 1 150 | 1 190| 1 263| 1 445 1 236| 1 228

o 5 1 1121 142] 1 139| 1 182 1 246| 1 309 1 245| 1 216
10 10| 1 117 |1 158 1 165| 1 1.91| 1 234| 1 295 1 252| 1 193

20 12096 143 | 1 198 1 173 1 204| 1 204| 1 291| 1 18| 1 155

1 1301 162 1 160| 1 190( 1 249| 1 396 1 233| 1 207

f3 1 1291 166 1 165| 1 180 1 194| 1 253 1 184 1 151
1010 1 125|1 154 1 141| 1 162| 1 154| 1 168 1 128| 1  1.08
2012 1 103 |1 082 1 105|1 125 1 119| 1 122| 1 089| 1 096

2 1 1281 164 1 165| 1 194 1 256| 1 401 1 237| 1 214

5 1 1301 172| 1 169| 1 185 1 198| 1 253 1 18| 1 154

M 010 1 124]1 136 1 120|1 158 1 144 1 171| 1 120 1 108
20 12| 1 109 |06 049| 1 110 1 128/ 1 119| 1 128/ 1 093] 1 099

1 128|1 170 1 1701 180 1 241| 1 374/ 1 216 1 191

1 1261 201 1 193] 1 177 1 227| 1 289 1 205| 1 174

B 010 1 127]1 224] 1 208 |0.96 1.82]0.84 1.79|0.96 2.42|0.88 180| 092 141
20 12084 134 | 1 328) 1 289|084 1.99| 0.6 172 |0.64 2.18(0.64 1.67| 08 1.42

2 1 135[1 174 1 1671 195 1 229| 1 403/ 1 220 1  1.80

f6 5 1 1411 18| 1 166| 1 168 1 177| 1 184|084 1.03| 1 125
10 10| 1 137 |1 176] 1 154 | 1 113|096 1.22(088 083| 0 00| 1  1.04

1 148 |1 215 1 207 |1 194| 1 237| 1 422/ 1 224| 1 215

f7 096 1.47 [0.96 2.24| 0.96 2.02 |0.92 1.80|0.92 1.97 [0.92 2.55| 0.8 1.46| 0.88 1.40
10 10 | 0.96 1.63 [0.96 2.06| 0.96 1.81 [0.96 1.95/0.96 1.920.88 1.94(0.96 1.32| 0.92 1.23

2 1 1291 166{09 155| 1 1.92(/096 2.33(0.96 3.75/0.96 2.13| 1  1.90

f8 5 1 1441 196 1 191| 1 206| 1 242| 1 281|068 141|096 158
1010 1 134|1 179| 1 159 | 1 1.69/096 1.71(0.96 1.73|0.64 0.87| 1  1.18

12| 1 129 |1 142 1 1411 190| 1 208| 1 326 1 225 1 192

f9 5 16| 1 131| 1 152 1 151 | 1 1.99|0.96 2.23|0.96 2.97(0.96 2.17| 0.96 1.41
1020 1 125|1 149| 1 1.39 |0.88 1.65/0.92 1.84| 1 1.92|08 144|096 1.06

2 12[096 1.17 (052 0.71/092 122 | 1 1.88| 1 210| 1 2.86(0.96 1.90| 0.96 1.16

f10 5 16| 1 133 |1 165 1 147 | 1 197|096 233|096 2.74| 04 082| 1 116
1020 1 140 | 1 175 1  1.46 |0.92 1.78/0.52 1.17 |0.96 1.77| 0.2 0.37 | 0.88 1.00

2 12| 1 130| 1 150 1 144 | 1 203| 1 227|096 3.28{0.96 233 1  2.00

fl1 5 16| 1 131|096 150|092 141 |08 1.63| 0.8 2.02|0.96 2.99(0.72 1.71| 0.88 1.34
10 20| 092 151 [0.92 1.81| 0.8 1.50 [0.96 2.37|0.64 1.72|0.8 1.97| 04 0095|064 0.93

q, 250|092 15908 140/096 167 0.92 197|084 2.04/0.96 259|092 230 | 084 195
5 140| 0.84 1.34 [0.64 1.10| 0.84 1.39 |0.72 1.65| 0.4 1.17 |0.8 1.70|0.44 1.28| 08 1.28
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Table 4.20 Comparison of Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES
algorithms, including PS-Interval, CPS-Q,, CPS-p_,, FIC-El, MIC-SLB, ARP-EI, AGC-Q, and

AGC-prank .
Average Success Rate (SR)
Category
PS-Interval CPS-Q, CPS-p,, FIC-El MIC-SLB ARP-EI AGC-Q, AGC-p,,
D=2 0.990 0.943 0.987 0993 0.983  0.990 0.957 0.983
D=5 0.983 0.963 0977 0953 0.920 0.967 0.830 0.957
D=10 0.989 0.989 0978 0971 0.891  0.949 0.720 0.938
D=20 0.960 0.920 1.000 0968 0.920 0.928 0.944 0.960
Unimodal 0.989 0.982 0997 0988 0.972 0.972 0.929 0.982
Multimodal 0.974 0.917 0957 0943 0.854 0.949 0.709 0.920
Overall 0.984 0.959 0983 0972 0.931 0.964 0.852 0.960
Average Speedup (SPU
Category ge op p (SPU)
PS-Interval CPS-Q, CPS-p,, FIC-El MIC-SLB ARP-EI AGC-Q, AGC-p,,
D=2 1.318 1.554 1594 1920 2341  3.667 2.168 1.949
D=5 1.321 1.687 1.637 1.824 2.046  2.597 1.640 1.490
D=10 1.335 1.724 1.561 1.738 1.661  1.881 1.210 1.187
D=20 1.145 1.549 1.581 1576 1483  1.788 1.304 1.179
Unimodal 1.277 1.706 1.651 1.747 1.957 2.633 1.689 1.553
Multimodal 1.347 1.518 1493 1.892 1960  2.597 1.543 1.418
Overall 1.302 1.640 1596 1798 1958  2.620 1.638 1.505
Average SR of KA-CMA-ES Algorithms
-+PS-Interval --CPS-Q,, CPS-Prank —-FIC-El
MIC-SLB —+ARP-EI “#AGC-Q,, —AGC-Prank
Overall ~
Multimodal 4

Unimodéi &

Figure 4.11 Comparison of average success rate (SR) of KA-CMA-ES algorithms.
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Average SPU of KA-CMA-ES Algorithms

~&-PS-Interval -e-CPS-Q,, CPS-Prank —e-FIC-El
»%MIC-SLB —+ARP-EI #AGC-(Q,, —AGC-Prank
D=2

Overall .~ .

Multimodal ©  D=10

Unimodal D=20

Figure 4.12 Comparison of average speedup performance (SPU) of KA-CMA-ES algorithms.

In Figure 4.11, it can be found that AGC-Q,, generally has the lowest average success
rate. The average success rates of PS-Interval, CPS-Q, ,CPS-p,,.., FIC-EI, ARP-EI and
AGC-p,,, of overall test problems are higher than 0.9. From Figure 4.12, it is no doubt that
ARP-EI significantly outperforms other algorithms with respect to average SPU.
Considering both the average SR and SPU, it can be concluded that ARP-EI is preferable
among all the investigate KA-CMA-ES algorithms in this work. Additionally, the proposed
MIC-SLB has the second best performance, and FIC-EI has the third best performance.

These three algorithms are suggested in KA-CMA-ES.

In order to illustrate the improvement in efficiency of KA-CMA-ES compared with the
standard CMA-ES, the convergence graphs are presented. The graphs show the median
performance of the 25 runs on each problems. Since so many algorithms are studied in this

work, only the convergence graphs of several representative algorithms are plotted. Here we
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given the convergence graphs on each problem of the standard CMA-ES, CPS-p,,., , MIC-
SLB, ARP-EI and AGC-p,,,.. The convergence graphs of 12 functions (40 test problems)
are given from Figure 4.13 to Figure 4.24. It can be apparently found that the KA-CMA-ES
algorithms converge more quickly than the standard CMA-ES for almost all the test
problems. It can be stated that KA-CMA-ES algorithms have better convergence rate and
outperform the standard CMA-ES. In other words, KA-CMA-ES algorithms are more
efficient than CMA-ES. Therefore, for expensive optimization problems, KA-CMA-ES can
significantly reduce the computational cost. Furthermore, it can also be found that, among

the KA-CMA-ES algorithms, ARP-EI generally has the best performance.
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Figure 4.13 Convergence graphs of function 1
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Figure 4.14 Convergence graphs of function 2
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Figure 4.15 Convergence graphs of function 3
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Figure 4.16 Convergence graphs of function 4
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Figure 4.17 Convergence graphs of function 5
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Figure 4.18 Convergence graphs of function 6
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Figure 4.19 Convergence graphs of function 7

143



4.5 Experimental Studies

Fitness Function Value

-
<
5

Fitness Function Value

10" -

Function 8, D=2

Fitness Functicn Value

— CMA-ES
—— CPS-frank
— MIC-SLB
— ARP-EI
—— AGC-Prank

— T T T T
0 100 200 300 400 500 600 700 800

Exact Fitness Function Evaluations

Function 8, D=5

—_ —_

[a] o
& ES
1 1

—_
S,
&
1

Function 8, D=10

- —_
o (=]

& IS
1 1

-
<,
@
1

Exact Fitness Function Evaluations

10°
— CMA-ES —— CMA-ES
e CPS'prank o) 10EI - —— GPS-Prank
— MIC-SLB % — MIC-SLB
— ARP-EI > 107 — ARP-EI
—— AGC-Prank 5 . —— AGC-Prank
S 107
=]
107+
7]
8
£ 10%4
=
T T T 10 T T T
0 500 1000 1500 2000 0 1000 2000 3000 4000
Exact Fitness Function Evaluations Exact Fitness Function Evaluations
Figure 4.20 Convergence graphs of function 8
5 Function 9, D=2
10
— CMA-ES
o 10° —— CPS-Prank
% — MIC-SLB
> 10° —— ARP-EI
5 4 — AGC-Prank
8 107
=
L 10° o
w
(/2]
£ 10° 1
=2
107 — . T T
0 100 200 300 400 500
Exact Fitness Function Evaluations
Function 9, D=5 Function 9, D=10
— CMA-ES 10° —— CMA-ES
— CPS-prank ® . — CPS—prank
— MIC-SLB % 107 4 — MIC-SLB
- — ARP-EI > 102 —— ARP-EI
—— AGC-Prank & —— AGC-Prank
2 10*
T
w 10° -
[77]
[<M]
£ 107 1
=
T T T T T T T T T 1 T T T T T 10710 T T T T T
0 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500 3000

Exact Fitness Function Evaluations

Figure 4.21 Convergence graphs of function 9

144



4. Kriging-Assisted CMA Evolution Strategy

Function 10, D=2

S s o
=
) S %
1 ! 1

Fitness Functicn Value
3
1

— CMA-ES
—— CPS-frank
— MIC-SLB
— ARP-EI
—— AGC-Prank

=
=]
2

i I 1
0 200 400

1
600

1
800

' 1
1000

Exact Fitness Function Evaluations

Function 10, D=5

Fitness Function Value

10"° -

— CMA-ES
I CPS'prank
— MIC-SLB
—— ARP-EI
—— AGC-Prank

—_
[w]
™

4 1
500

T T T T T T T T T
1000 1500 2000 2500 3000
Exact Fitness Function Evaluations

Function 10, D=10

10°

Fitness Function Value

10™"° _

— CMA-ES
—— CPS-Prank
— MIC-SLB
— ARP-EI
—— AGC-Prank

— T T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000

Exact Fitness Function Evaluations

Figure 4.22 Convergence graphs of function 10

Function 11, D=2

10*

Fitness Function Value
>
1

— CMA-ES
—— CPS-frank
— MIC-SLB
— ARP-EI
—— AGC-Prank

—
0 100 200

300

400

™1
500 600

Exact Fitness Function Evaluations

Function 11, D=5

—_
(=)
S
1

i}

-
(]
1

Fitness Function Value
=)
IS
1

10" -

— CMA-ES
—— CPS-Prank
—— MIC-SLB
—— ARP-EI
—— AGC-Prank

0

— T r T T T T T T T
250 500 750 1000 1250 1500 1750

Exact Fitness Function Evaluations

10°

Function 11, D=10

10
10°
102 4
104—-
10°

Fitness Function Value

10°

107"

— CMA-ES
—— CPS-Prank
— MIC-SLB
— ARP-EI
—— AGC-Prank

L e e e A B B
0 500 1000 1500 2000 2500 3000 3500

Exact Fitness Function Evaluations

Figure 4.23 Convergence graphs of function 11

145



4.6 Summary

107 Function 12, D=2 Function 12, D=5
— CMA-ES 10% 4 — CMA-ES
° 10° 4 —— CPS-Prank ° ; . —— CPS-Prank
E —— MIC-SLB 2 10" — MIC-SLB
o 2 | o —— ARP-EI
> 10 — ARP-EI > 102 AGC.p
5 » —— AGC-Prank S rank
g 107 4 g 107 4
© 4g° - g
g’) uu)’ 10 7
_g 10° H _g 10° 4
L 1 L E
107 T T T 1 ' T ' 107 T T T T T T T
0 500 1000 1500 2000 0 2000 4000 6000 8000
Exact Fithess Function Evaluations Exact Fithess Function Evaluations
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4.6 Summary

This chapter focused on Kriging-Assisted CMA-ES (KA-CMA-ES) for expensive
optimization problems. New approaches for training set selection and evolution control have
been proposed, and the corresponding KA-CMA-ES algorithms are formulated.
Experimental studies on 40 test problems are performed to evaluate the performance of the

developed KA-CMA-ES algorithms.

The results of experiments on KA-CMA-ES using PS have shown that the proposed
confidence interval method for training set selection is superior to the commonly used
‘Recently’ and kNN’ methods for training set selection. The experimental results of KA-
CMA-ES using CPS have proven that CPS-Q,, has the highest average speedup performance
among the investigated algorithms of CPS, while CPS-p,,, is more stable and has higher
success rate. With comparison of KA-CMA-ES using PS and CPS, it is apparent that KA-

CMA-ES using CPS significantly perform better than that using PS.

In the experiments of fixed individual-based control (FIC), five different metrics have
been investigated. The results demonstrated that the EI metric has the best performance
among these five, considering both the success rate and success performance. For the
proposed mixed individual-based control (MIC), the MIC using SLB metric outperforms
that using Mean as metric. By comparing KA-CMA-ES using FIC and MIC, KA-CMA-ES

using MIC significantly outperform FIC according to the speedup performance and success
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performance. Particularly, MIC-SLB has the highest average speedup performance and

acceptable success rate.

Furthermore, in KA-CMA-ES using the modified approximate ranking procedure
(ARP), the Mean and EI metrics have been studied. The results show that ARP-EI clearly
outperforms ARP-Mean. This also proves that EI is the most promising metric in evolution

control.

The results of experiments of KA-CMA-ES using generation-based control, including
fixed generation-based control (FGC) and the proposed adaptive generation-based control
(AGC), indicate that the proposed AGC have better performance than FGC. AGC-p,,, has
the highest average success rate on all the problems. Considering the speedup performance,
adaptive generation control using Q, and Qgin have better performance. Overall,
AGC-p,..is preferable according to success rate and stability, and AGC-Q,, is preferable

when speedup performance is considered.

Considering all the investigated algorithms, it is apparent that ARP-EI has outstanding
speedup performance. The SPU values of PS-Interval, CPS-Q,,, CPS-p,,, , FIC-El and MIC-
SLB on all the test problems are larger than one. This shows a stable improvement in success
performance of these algorithms. The stabilities of AGC-Q,, and AGC-p,,, are lower than
others. There is only one problem on which ARP-EI performs worsen than CMA-ES.
Therefore, it can be stated that the ARP-EI is outstanding among all the investigated KA-

CMA-ES algorithms, according to the speedup performance or success performance.
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5. Applications in Material Parameter

Identification

This chapter presents applications of the proposed KA-CMA-ES algorithm in material
parameter identification, which involves expensive optimization problems. An elastic-
plastic damage model, in which material’s strain hardening behavior is described by Swift
law and ductile damage is modeled by Lemaitre’s damage model, is presented and
implemented in numerical simulation through VUMAT subroutine in ABAQUS. Then, the
KA-CMA-ES using Approximate Ranking Procedure with metric EI (ARP-EI) is applied in

inverse method of material parameter identification.
5.1 Introduction

Constitutive model and parameter identification can be seen as the two main aspects of
material modeling. Specifically, constitutive model describes material’s behavior by the use
of mathematical equations or formulations under the framework of constitutive theories;
while parameter identification determines the unknown parameters in the constitutive model
on the basis of experimental data. Both the constitutive model and parameter identification

play important roles in material modeling, and neither of the two aspects could be neglected.

5.1.1 Constitutive Model

The material’s constitutive model has experienced huge development during last
decades with the improvements both in constitutive theories and their applications. The
descriptions of elasticity and plasticity have been comprehensively investigated and
theorized in elastic-plastic theories (or elastoplastic theories). Even the more complicated
material’s behavior, such as viscoplasticity, fatigue, damage and anisotropy, can be modeled

at present. With regard to damage, which is a critical and popular issue in engineering
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material modeling, currently, continuum damage mechanics (CDM) provides a
comprehensive framework for the modeling of material’s behavior with consideration of
damage from a point view of continuum mechanics [91]. Since an aluminum material is
examined in this paper, the ductile damage behavior of the material is modeled by the

application of continuum damage mechanic theories.

Damage is defined as the presence and evolution of cracks and cavities at microscopic,
mesoscopic or macroscopic level of materials which result deterioration in mechanical
properties and may, eventually, lead to failure [92]. According to the difference in materials
and loading conditions, damage may be generally divided into: ductile damage, brittle
damage, creep damage, and fatigue damage. Ductile damage, occurring simultaneously with
large plastic deformation, is the most typical damage in engineering fracture problems. So,

in this work, ductile damage is considered and coupled into an elastic-plastic model.

In the theory of damage mechanics, the deterioration of ductile damaged material is
generally assumed to be a process of voids nucleation, growth and coalescence. In the phase
of voids nucleation, the micro-defects nucleate and germinate, i.e., the deterioration appears.
However, it has no significant effects on load-carrying capability of the material, and the
damage effects of the material can be neglected. In the following phase of voids growth, the
voids and cracks grow considerably as the plastic strain accumulating. The material
properties are strongly affected in this phase and damage effects in mechanical properties
cannot be ignored. During last phase of voids coalescence, the coalescence of voids and
cracks arise and, eventually, the macroscopic crack if formed. The ductile fracture is induced
at the end of this phase. The load-carrying capability of the material is reduced as the
accumulation of ductile damage in the last two phases until the material losing its loading

capability [93].

The continuum mechanics approach to ductile damage problems can be divided into
the following two approaches: micromechanical approach and phenomenological approach.
In the first approach, the mechanical effect of damage is represented by the void volume

fraction f . Then the plastic constitutive equation of voided material and the evolution law
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of the void development are derived by means of micromechanics analysis [94]. The Gurson-
Tvergaard-Needleman (GTN) model is the representative model of this approach. The
second approach to ductile damage analysis, called phenomenological approach, is based on
the CDM theory proposed by Lemaitre [95], who has described the ductile damage
phenomenon by a phenomenological model with the combination of continuum mechanics
and irreversible thermodynamics. Using the method of local state and internal variables,
Lemaitre’s model strongly coupled damage and elastoplasticity at the constitutive level. In

this paper, Lemaitre’s model is used to study the ductile damage of the material.

5.1.2 Material Parameter Identification

In the aspect of parameter identification, inverse techniques have become popular in
nowadays. In the past, the hand fitting method and the trial and error method are commonly
used in material parameter identification [96]. However, the inverse method has become a
promising method since optimization techniques and simulation are widely applied. The
inverse method considers parameter identification as an optimization problem and generally
gives satisfy results [97]. This method tries to find a set of parameters which yields the
simulated responses as closely as possible to the experimental response, in other words,
inverse method aims at obtaining the set of material parameters by solving the optimization

problem which minimize the difference between simulation results and experiment data.

Commonly, in the process of parameter identification by inverse method, the
parameters are driven by optimization algorithm, and the objective function, which measures
the difference between the simulated and experimental responses, is repeatedly evaluated by
numerical simulation until the computational scheme converges. Since optimization
algorithm (or optimization technique), which is used to find the solution to the optimization
problem, has influences on the convergence speed and the solution of the optimization
problem [98], appropriate algorithm should be chosen in the inverse problem of parameter

identification.
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Generally, optimization algorithms can be divided into two main categories: non-
gradient methods (or called direct search methods), which do not employ gradients and
involve only evaluations of the objective function, and gradient-based methods, which
require computations of the derivatives of the objective function [99]. Gradient-based
methods, generally, require a much smaller number of design cycles to converge to an
optimum compared to non-gradient methods. However, only convergence to a local
minimum is guaranteed for gradient-based methods, while non-gradient methods are able to
find global minimum. In addition, gradient-based methods are limited in cases that the
objective function is always differentiable and has continuous derivatives over the design
domain due to the requirements of computations of derivatives of the objective function.
Non-gradient methods do not have limitations on objective function and their convergence
speeds are enhanced significantly with the developments of non-gradient optimization

techniques.

In the optimization problem of parameter identification using inverse method, the
objective function is, normally, a highly nonlinear function and may possess many local
minima [100]. Furthermore, the analytical form of the objective function is not known and
the evaluation of the objective function is performed by numerical simulation (generally
finite element method simulation), in other words, derivatives of the objective function are
not available. Taking above aspects into account, a non-gradient global optimization

algorithm is preferred to solve the optimization task in parameter identification.

As above mentioned that the objective function in parameter identification problem is
not explicitly known and need to be evaluated by repeatedly running numerical simulations,
this brings bout heavy computational burden and makes parameter identification process
time-consuming. Therefore, in this chapter, the previously proposed KA-CMA-ES using
ARP-EI, which has the best success performance among the investigated KA-CMA-ES

algorithms, is applied in inverse method of parameter identification.
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5.2 Elastic-Plastic Damage Model

In general, a normal elastic-plastic constitutive model contains the following basic

components [92]:
(1) The elastic law, which gives the relation between stress and elastic strain;
(2) The yield criterion, which define the limit of plastic behavior;
(3) The flow rule, which describes the evolution of the plastic strain; and

(4) The hardening law, which characterizes the development of the criterion for

subsequent yielding.

Accordingly, the elastic-plastic damage model, which considers damage in elastic-
plastic material, contains an evolution law of damage variables in addition to these above

four components.

In this work, the commonly used von Mises yield criterion, the Swift strain hardening
law and Lemaitre’s ductile damage are included in the elastic-plastic damage model. The
basic components of the elastic-plastic damage model are detailed in this section. In first

place, the basic concept of damage variable is introduced.

5.2.1 Damage Variable

The notion of continuum damage mechanics was firstly proposed by Kachanov [101]
when he studied on the brittle creep rupture of metal. The first damage variable with physical
significance was given later by Rabotnov [92] who proposed the reduction of the cross-
sectional area due to micro-cracking as a suitable measure of the state of internal damage.
According to the concepts proposed by these authors, the damage variable, D, can be

modeled by effective area reduction:

. s
D, =5~ (5.1)

n
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where S is the overall area of the element defined by this normal vectorn, and§ is the
effective resisting area. When D, = Ocorresponds to the undamaged state, and D, = D, (D,

is a critical value, 0.2 < D, <0.8 for metals) corresponds to the rupture of the element [102].

From Equation (5.1), the damage variable D, is associated with nwhen cracks and
cavities are oriented, which leads to tensorial nature of damage variable. However, if cracks
and cavities are equally distributed in all directions, D, does not depend on nand it becomes
a scalar D, which is called scalar damage variable. In this paper, the damage state is taken

to be isotropic and the scalar damage variable D is used in damage model.

In the case that the state of damage is isotropic, the definition of damage by effective
area reduction has allowed to define the so-called effective stress:

(o)

5 (5.2)

o=

where & is the effective stress, D is the scalar damage variable, and o is the second-order
Cauchy stress tensor. The effective stress of Equation (5.2) simplifies the damage theory,

and is employed in a number of damage problems, including ductile damage especially.

5.2.2 Constitutive Model

Lemaitre’s ductile damage model is based on CDM theory and in the framework of
thermodynamics of irreversible processes. The constitutive equations are derived from
thermodynamic (or state) potentials and the evolution equations are given by dissipation
potentials, which are detailed in Lemaitre’s original model and CDM theory [91]. The
elastic-plastic damage model used in this paper (with von Mises yield criterion, Swift

hardening law and Lemaitre’s ductile damage) are presented in the following.
To begin with, the strain tensor additive split is given:

e=&"+¢", (5.3)
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where € is the total strain tensor, the tensor ¢® and g” are known, respectively, as the elastic
strain tensor and the plastic strain tensor. Correspondingly, the rate form of the additive

decomposition reads,
E=£"+¢&". (5.4)
The elastic law (coupled with damage) is expressed as:
o=(1-D)E:&°, (5.5)
whereE is the isotropic elasticity tensor, o is stress tensor and D is the scalar damage variable.

Since von Mises yield criterion is used, the yield function for elastic-plastic damage

model is given by

- %-ay, (5.6)

where 4 is the von Mises equivalent stress and o, is the yield stress which is defined by Swift

hardening law as:

n

o,(2")=A(g+2°) , (5.7)
where A, &,and Nare material parameters.
The evolution of plastic strain is expressed by

7 [Bs

gh=—L _ 2=
(1-D)V2 s

(5.8)

where 7 is the plastic multiplier, Sis the deviatoric stress tensor. Accordingly, the evolution

of accumulated (equivalent) plastic strain g? is:

a7
= 5.9
& =1"p (5.9)

The evolution equation of damage variable is
D=t _ ijsﬁ(gp—gg), (5.10)
1-D\r
where I and s are material’s damage parameters, H (-) is the Heaviside step function, £ is the

damage threshold, and -Y is the so-called damage energy release rate, which is defined as
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— :—1 oc:E':o
2(1-D)*

1 ] 2
:m[(]ﬁFV)O—.G—V(tr(O—)) j|

2 2 (5.11)
9 |2 _on)| P
~2EQ-D) {3(1+v)+3(1 2v)[qj ]

g’ p’

= —+ ,
6G(L—D)? 2K (1—D)>
whereE is Young’s modulus, Vis Poisson ratio, G is shear modulus, K is bulk modulus, tr(+)

denotes the trace, 4 is the von Mises equivalent stress and P is the hydrostatic stress.
The loading /unloading conditions ® <0, y >0, ®y = 0 must be satisfied.

The equations of the elastic-plastic damage model in this chapter are summarized in

Table 5.1.

Table 5.1 Equations of elastic-plastic damage model

Strain tensor additive split e=¢&"+¢’

Elastic law (coupled with damage) o =(1-D)E:&°

Yield function ®=q/(1-D)-o,
Strain hardening law (Swift law) o, (Ep)z A(g0 +§p)n

. . . . 14 3 s
Evolution of plastic strain e =—"—.|-—

(1-D)V2 s

. 7 (YY aee -

Evolution of damage D=—"—| —| H(z"-23)
1-D\r

Loading/unloading conditions ©<0,720,0y=0

5.2.3 Numerical Implementation of the Constitutive Model

The fully implicit elastic predictor/return-mapping scheme is commonly used in the
numerical implementation of constitutive model [92]. Given the increment of strain
Ag =¢,,, — &, corresponding to a pseudo-time increment|[t,, t,., |, and given the variables o,
g, &’ &"and D, att, , the goal of the algorithm is to find the update values of 0,,,;, &,.1, &5,

=P
€ and Dn+1 at tn+1 :
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The elastic predictor/return-mapping algorithm starts with the so-called elastic trial step.
In the elastic trial step, we assume that the step [tn, tnﬂ] is elastic; hence, neither damage nor

strain hardening evolution takes place at this stage. Therefore, the elastic trial solution is

given by:
et =gl +Ae,
p trial p
Ea &,
oo (5.12)
—ptrial _ —=p
nil G
trial
Dn+1 = Dn'

The corresponding trial stress can be evaluated by the deviatoric/hydrostatic split of the
stress tensor
otk =sud+ pdl, (513
with
0 = (1- D 2625 = (1- Dy )51

:]rJiril — (1_ Dtrial ) Kt trial _ (1_ Dtrial) r)::.il (1_ Dn) r)rt]rj—ill

(1_ Dn ) §trial

n+l?

(5.14)

n+1 vn+l n+1

x trial

where 5 =2Ge; and Pin = Ked are the effective trial deviatoric and hydrostatic

e trial e trial

stresses, respectively, | is the identity tensor, &4 ,,; and &, ., are deviatoric part and volumetric

part of the elastic trial strain&:[" , defined as:

n+l

getrial —tr (getrial )'

vn+l n+l

(5.15)

etrial __

e trial 1 e trial
Eina =€ - l.

n+l 5 vn+l
With Equation (14), the elastic trial von Mises equivalent stress can be computed:

a2 = 33, (s5%) = 33, (1 D)5t = (1- Dy ), (5.16)

where ' = /25" : 5™ is the effective elastic trial von Mises equivalent stress, which is

n+1 n+l * “n+l

evaluated from effective trial deviatoric stress. The yield function in the present case is then

evaluated as

trial

(Dtrial _ l_qultria| -0, (é—‘n;j—irial ) _ qrt:.T -0, (gnp ) (517)

n+1
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If " <0 the step[tn, tml] is an elastic step and the elastic trial state coincides with the

trial

updated state att,,; , i.e., weset(-) = =(-) . Otherwise, we turn to the return-mapping step.

In return-mapping step, the following nonlinear return-mapping equations need to solve:

e — etrial A]/ § Sn+l
Fra=En (D )\ 2 s,

(5.18)

qn+l _

(1 - Dn+1 )

The above system of nonlinear equations is unattractive for numerical implementation
due to its high computational burden. Therefore, some relatively straightforward operations

are performed to reduce the system of equations.

To start with, let us consider the deviatoric/volumetric split of the elastic strain of
Equation (5.18)1. This gives

e ___etrial

vn+l gvn+1 '

gt =gt _ Ay E Sne . (5.19)
10, ) 2 s,

&

According to the elastic law, together with Equation (5.19), the hydrostatic and

deviatoric stress can be updated as

Pri = (1_ Dn+1) r)m—l’

. 3 s (5.20)
s,.,=(1-D,,,)8™ —2GAy, |- —L_,
= D)8 2O 1]
where we have defined
rjml = Kg\?ml = Kg\?:]rjrall = r)rt:ril’
gtrial trial (5'21)
S =26,
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From Equation (5.20),, we can find that§" and s,.,are collinear. This implies that

S ~tr|a|
n+l n+l n+l

the update formula for s, ,, by a straightforward manipulation, which gives

atrial 3 g BGA atrial
(l Dn+1) rtH-lI ZGA]/\/; ST;:I :(1_ Dn+l_Ta|yJ SrtH-lI' (522)

n+l n+l

~tr|aI
n+1

, S0 that we can equivalently rewrite Equation (5.20), and simpler

Thus, with the definition of von Mises equivalent stress, we obtain
Gra =(1-D,,) Gy —3GAY. (5.23)

Consequently, the plastic consistency condition becomes

~ 3GAy _ Ay
®(Ay, trial —o,| EP+ =0. 5.24
( 7 n+1) qn+l 1 Dn+1 y( n 1_ Dn+1J ( )

By introducing Equation (5.23) and (5.20); into the definition of the damage energy
release rate of Equation (5.11), the Equation (5.18)3 can be expressed as:

Y . (Ay,D.)Y
Dn+l - Dn - Ay n+l( 4 n+l) = 0, (525)
1- Dn+1 r

where

~trial 2 e
[(a-0,.)a2 36T (p,,)" (5.26)
6G(1-D,,,)’ 2K

_Yn+l (A7’ Dn+1)

Now, the return-mapping equation system (5.18) has been reduced to a system of two

scalar equations (5.24) and (5.25), which is written as

f1=d;’ii'—1ge§7 —%[5” L J=o,

(5.27)

In this equation system only Ay and D,,, are unknown, other variables have defined
previously. This nonlinear equation system is solved using Newton-Raphson method. There
are two types of coupling can be used: strong coupling and weak coupling. The strong
coupling solves the two equations simultaneously to obtain the two unknowns Ay and D,,,;

While, the weak coupling firstly solves the first equation of the system (5.27) in which we
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assume that D, , is equal to D, , in order to obtain Ay . Then the second equation is solved to
compute the new damage value D, ;.

Table 5.2 Stress update algorithm for elastic-plastic damage model

(i) Elastic predictor

e trial
gn+1

atrial __ etrial . ~trial e trial
Sn+l - Zng n+l? pn+l - ng n+l

—p trial

— gt . —zP
=g, +Ag, i =&,

~trial atrial . xtrial
= S

Uit =45 Snst - Snaa
2

(if) Check plastic admissibility
If ©" = o, (57)<0 Then
Set (-)..,=() andExit

n+l

Else go to (iii)
(iii) Return-mapping (solve the system for the unknowns Ay and D, , )

f=q - g [ar |0
1_Dn+1 ’ 1_Dn+1

_ Dn _ Aj/ (—le(A]/, Dn+1)js — 0
1-D,, r

where o, (Ep)z A(go +§p)n

~trial 2 ~
[(1_ Dn+—l)qr§+lI - 3GA7/:| ( pn+1 )2

-Y _ i
6G(1-D,,,) 2K

n+l (A}/7 Dn+1) =

(iv) Update state

A]/3G gtri
Spi = (l_ Dn+l T trial ]Srtwall

n+1
 trial

P = (1_ Dn+l) Pni1

0-n+1 = Sn+l + pn+lI

atrial

8e _ petrial }/§ Sn+1
n+l — “n+l ~trial
2 (1_ Dn+1)qn+1
3 é—trial

n+l

n#l — ©n Zm

(v) Exit

Even though the strong coupling gives more accurate results, the weak coupling is
generally preferred for computation time reasons in real simulation [103]. Hence, in this
paper weak coupling is used to solve the return-mapping equation system (5.27). After

obtaining Ay and D,,,,, stress and other state variables can be updated. The complete stress
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update algorithm for the numerical implementation of elastic-plastic damage model by
means of the fully implicit elastic predictor/return-mapping scheme is summarized in Table

5.2.

The implementation of the fully implicit elastic predictor/return-mapping scheme is
performed in ABAQUS™ subroutine VUMAT (a user subroutine to define material

behavior) by FORTRAN codes.
5.3 Inverse Method for Parameter Identification

Using numerical techniques to simulate the response of the structure with the given
constitutive model and model parameters is called direct problem. While the parameter
identification (or calibration), which determines model parameters on the basis of
experimental data, is known as inverse problem [104]. The direct and inverse problems are

sketched in Figure 5.1.

Input Output
Model Structure ——»| Direct
P ters P > 1re_c — Response S
ararpe Solution P
Loading F >

(a)
Input Output
Model Structure " |
R S > fverse — Parameters P

esponse "| Solution

Loading F >

(b)

Figure 5.1 lllustration of (a) direct problem and (b) inverse problem
The purpose of parameter identification procedure is to obtain as good agreement as
possible between simulated and experimental responses [105, 106]. In other words, the
parameter identification process is to find a set of parameters which makes the minimum
difference between simulation response and experiment data. Thus, inverse method is a
useful tool for determining material parameters [107]. The inverse method of parameter’s
identification considers the parameter identification as an optimization problem, which is to

find a set of parameters that minimize the difference between the experimental data and the
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numerical simulations. As an optimization problem, the inverse method of parameter
identification basically consists two main parts: the first part is the formulation of the
objective function, f (p), which measures the difference between the experimental data and
numerical results; another part is the selection of an optimization strategy, which is able to

find the minimum of the objective function.

5.3.1 Framework of Inverse Method for Parameter Identification

The general framework of the inverse method for parameter identification is shown in
Figure 5.2. A general optimization problem for the inverse method of parameter
identification can be expressed as

minimize f (p) (5.28)
st. p_<p<py
where f (p)is the objective function which will be defined in subsequent subsection, P, and

py, are the lower and upper bounds of the parameter vectorP .

START
Initial Set of Material Parameters

v

Set of Material Parameters

—P
for Computation ‘

Experimental Data FEM Simulation

v

Objective Function

Optimization
Algorithm —P

Yes

Identified Material Parameters
STOP

Figure 5.2 Framework of inverse method for parameter identification

Evaluation
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Because the objective function is usually implicit and nonlinear, gradient-free global
optimization algorithms are commonly used. However, the main drawback of the inverse
method is its expensive cost in computation, which is due to the expensive evaluation of the
objective function and large number of iterations before convergence. This has promoted the

use of the KA-CMA-ES in inverse method.

5.3.2 Objective Function

In this work, our goal is to find a set of material parameters that yields the simulation
force-displacement response with minimum difference between the experimental force-
displacement curve, as shown in Figure 5.3. The function which provides a scalar
measurement of the error between the experimental data and numerical simulation results is
chosen as the objective function. We use a formulation based on a least square equation
[108], which is expressed as:

f(p) J(F™ (p)-F*) dD
p =
[(F) dD
|:(Fisim (p)_ Fiexp )2 (DI B Dil)}

n

Z[( R )2 (Di - Dil)}

i=1

n

(5.29)

i=1

where P iis the set of material parameters, F'™ (p ) are the numerical simulation responses with
the input parameter of P corresponding to displacement D; , ™ are the experimental
responses corresponding to D;, and nis the number of data points. The second line of
Equation (5.29) is the discrete formulation of the first line. In evaluation of the objective by
its second line (discrete formulation), the simulation and experimental force-displacement
data are interpolated at the same query points (0,D;,D,,---,D, ) and then f (p)is computed

by the discrete formulation.
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Figure 5.3 lllustration of the difference between experimental and simulation results
In strain hardening parameter identification, the objective function f (p)is computed
only on the hardening part, i.e., the integral domain is from D = 0to the necking point. In this
situation, the softening part of force-displacement curve is not considered in objective
function since damage is not included. When dealing with damage parameters, the softening
part of the force-displacement curve needs to be taken into account. In this situation, we need

to give precaution on the softening part, in order to build a right objective function.

In the numerical investigation of ductile damage parameters identification by Roux et
al. [108], this problem has been solved by adapting the integration domain of objective
function in Equation (5.29). Let Dy, . represents the simulation fracture displacement value
and Dg .. denotes the experimental fracture displacement. Two particular cases,

fracture

Dy . >D2® and DM <D have to be deal with. For both case, the objective

function is evaluated between D=0 and Dmax:max(Diﬂ?cwre,Diéim) . The force-

displacement data are adapted as following:

e IfDI" >DP experimental data are completed with one new point

fracture fracture ?

defined as: the breaking force (load) remains the same whereas the

fracture * = fracture

displacement value is setasD,,, = max(DSim D: ) which is illustrated

by the green line in the left of Figure 5.4.
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5. Applications in Material Parameter Identification

o IfDyM <D ., simulation data are completed with one new point defined
as: the breaking force (load) remains the same whereas the displacement value
is setasD,,, = max(Di:Q“ere, Di;’iture). This is illustrated by the green line in
the right of Figure 5.4.

With above adaptation of force-displacement data, the objective function (Equation

(5.29)) can be obtained by evaluating the integration in Equation (5.29) using its discrete

formulation.

F Fsim (p) Fi Fexp

Fsim (p)

Force
Force

o
- -

Displacement Dmax D Displacement Dmax D

Figure 5.4 Tensile test force-displacement curve, Left: simulation fracture appears for a larger
displacement than the experimental fracture displacement; Right: numerical fracture appears for a
smaller displacement than the experimental fracture displacement.

5.4 Parameter Identification using Inverse Method

The inverse method presented in the previous section is employed to identify the
material parameters that are used in the ductile damage model presented in Section 5.2. The
KA-CMA-ES using ARP-EI, which has been proven to be the outstanding algorithm among
KA-CMA-ES that have been investigated in previous chapter, is adopted as the optimization
algorithm in inverse method of parameter identification. At the same time, the standard
CMA-ES is also used, in order to validate the results of inverse method using KA-CMA-ES
and evaluate its performance. The objective function, which measures the difference
between simulation and experimental response and is minimized in parameter identification,
is defined in Equation (5.29). The maximum computational budget is set as 600, i.e., the
maximum number of exact objective function evaluations is 600, which is a stopping

criterion of the optimization process. Another used termination criterion for optimization is
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5.4 Parameter Identification using Inverse Method

the tolerance of objective function. We set the tolerance of objective function as
TolFun =107°. If one of these two criteria is satisfied, the optimization procedure stops. The
obtained set of parameters with minimum objective function value are the identified material

parameters.

In the ductile damage model of Section 5.2, there are Swift hardening law’s parameters
(A, & andn), i.e., the strain hardening parameters, and damage parameters (&5 ,r,Sand D;)
need to be identified. Since in Lemaitre’s damage model s 1.0 [91], here we sets=1.0.
Thus, in this paper, we focus on the identification of strain hardening parameters, A, &, and
n, and ductile damage parameters €5 ,rand D. . In order to simplify the identification
process, these two kinds of parameters (strain hardening parameters and damage parameters)
are identified separately. Specifically, the strain hardening parameters ( A, &, andn) are
identified firstly for the elastoplastic model with Swift hardening law and von Mises yield
criterion; then the damage parameters (&5 ,rand D;) are identified for the ductile damage

model.

The parameter identification is carried out according to the standard tensile test of A
2017-T4. The aluminum 2017-T4 has the density of 2.79x10°kg/m?3. Its elastic modulus and
Poisson’s ratio are: E=72.4 GPa and v=0.33. The geometry dimensions of the specimens are
illustrated in Figure 5.5. The force-displacement curves can be directly obtained from the
test system. The first part of the curve is the elastic strain, followed by plastic strain, and
then necking and force decrease till the final fracture. The objective of parameter
identification is to find an appropriate set of material parameters that yields the best force-
displacement response, which has minimum difference with the experimental force-

displacement curve.

In parameters identification process, the tensile test process is firstly modeled by Finite
Element Method (FEM) simulation using the software ABAQUS. The test specimen is
modeled by 3D deformable solid with the element type C3D8R. In the central part, the
element size is 1.5 mm, there two layers in the thickness of the specimen. The FEM model

of the tensile specimen is shown in Figure 5.6. The loads are applied at the two sides of the
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specimen. The left side is fixed in X direction, and the displacement load is applied at the

right side.
! & 2
! -
"H&E Lcw’
i ! o
- 50 - - 50 -
- 210 -
Figure 5.5 Geometry dimension of the test specimen
Y

L

Figure 5.6 FEM model of tensile specimen

5.4.1 Strain Hardening Parameters Identification

The Swift hardening law, which is widely used to model the strain hardening of metallic
material, is used to describe the strain hardening behavior of the material. The yield stress
defined by Swift hardening law is expressed in Equation (5.7). Previously presented inverse

method is used to identify the parameters, A, &;andn, in Swift law.

The inverse parameter identification of strain hardening parameters are independently
carried out with the standard CMA-ES and KA-CMA-ES using ARP-EI. In the identification
process, FEM simulations of tensile test are repeatedly performed to evaluate the objective
function. The lower and upper bounds for the parameters in the identification process and
the identified strain hardening parameters are listed in Table 5.3. The convergence graphs

and iterative history of the parameters are illustrated in Figure 5.7. The force-displacement
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5.4 Parameter Identification using Inverse Method

curves corresponding to identified strain hardening parameters and experimental curve are
shown in Figure 5.8.

Table 5.3 Results and computational costs of strain hardening parameter identification

Parameter A & n FES
Lower Bound 600 0 0.1 -
Upper Bound 900 0.03 0.4 —
The Standard CMA-ES 754.1402 0.0087 0.2264 | 533
KA-CMA-ES using ARP-EI  754.2124  0.0087 0.2264 | 211

Convergence Graph Iteration history of A
o 900
10 ] —a— Standard CMA-ES i —a— Standard CMA-ES
! —s— KA-CMA-ES uisng ARP-EI ] —e— KA-CMA-ES uisng ARP-EI
© 107 850
o}
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= < 750 4
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Figure 5.7 Convergence and iteration graphs of strain hardening parameter identification
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—&— Experimental Data
—e— Standard CMA-ES
—a&— KA-CMA-ES uisng ARP-EI

Force (N)
=
(a]
o
o
]

1

-

o

o
]

|
o 2 4 6 8 10 12 14 16 18

Displacement (mm)

Figure 5.8 Force-displacement curves (before necking) corresponding to identified strain hardening
parameters and experimental data

Firstly, in Figure 5.8, it can be observed that the simulation results using the identified
parameters are very close to the experimental data. Consequently, Swift’s hardening laws
with the identified parameters accurately describe the strain hardening behavior of the
material. Furthermore, from Table 5.3, it can be seen that the parameter identification results
from the inverse method using CMA-ES and those from the inverse method using KA-CMA.-
ES (ARP-EI) are almost the same. This can also be seen in the iteration history of A, &, and
nin Figure 5.7, where these three parameters of the identification process using CMA-ES
and KA-CMA-ES converge at almost the same values. In other words, the inverse method

using KA-CMA-ES gives a reliable solution for parameter identification problems.

The numbers of objective function evaluations (FES) of the identification process using
CMA-ES and KA-CMA-ES are presented in Table 5.3. The identification process using the
standard CMA-ES requires 533 objective function evaluations (533 FEM simulations of
tensile test with different parameters); whereas, only 211 function evaluations are required
in identification using KA-CMA-ES. Obviously, the computational cost of inverse

parameter identification using KA-CMA-ES is significantly lower than that of identification

169



5.4 Parameter Identification using Inverse Method

using the standard CMA-ES. This can be found in the convergence graph in Figure 5.7, too.
The identification using KA-CMA-ES converges faster than that using the standard CMA-
ES. Therefore, efficiency of the parameter identification process has been enhanced by using

the proposed KA-CMA-ES.

5.4.2 Damage Parameters Identification

After the strain hardening parameters are identified in previous subsection, we turn to
the identification of ductile damage parameters, 2 ,rand D, . In the ductile damage model,
von Mises yield criterion and Swift hardening law are used. The above identified parameters
of Swift hardening law are used here. The lower and upper bounds for the parameters in the
identification process and the identified strain damage parameters are listed in Table 5.4.
The convergence graphs and iterative history of the damage parameters are illustrated in
Figure 5.9. The force-displacement curves corresponding to identified elastic-plastic damage

parameters and experimental curve are shown in Figure 5.10.

From the results of damage parameter identification in Table 5.4, the identified damage
parameters from inverse method using CMA-ES and KA-CMA-ES are very closed. This
additionally indicates the KA-CMA-ES gives reliable results. The iteration histories of

damage parameters in Figure 5.9 also demonstrate this.

In Figure 5.10, the force-displacement curve from the numerical simulation using the
presented elastic-plastic damage model with the identified parameters is consistent with that
from the tensile test. Additionally, the simulation results of the elastic-plastic model and
elastic-plastic damage model, and the experimental data are also plotted in Figure 5.11.
Obviously, since damage effect is not considered in the elastic-plastic model, the difference
between the experimental response and the elastic-plastic model results is significant after
the occurrence of necking. In conclusion, the presented elastic-plastic damage model is
capable of, and appropriate for, modeling material behavior with consideration of strain
hardening and damage effect, and the proposed KA-CMA-ES using ARP-EI is reliable and

efficient in inverse method of parameter identification.
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Fitness Function Value

Table 5.4 Results and computational costs of damage parameter identification

Parameter &y r DX FES
Lower Bound 0.1 2 0 -
Upper Bound 0.18 10 0.8 —
The Standard CMA-ES 0.1306 6.1575 0.0874 | 295

KA-CMA-ES using ARP-EI  0.1303

6.1583  0.0898 | 167
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Figure 5.9 Convergence and iteration graphs of damage parameter identification
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Figure 5.10 Force-displacement curves corresponding to identified damage parameters and
experimental data.
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Figure 5.11 Comparison of force-displacement curves of elastic-plastic and elastic-plastic damage
models with the identified parameters.
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5.5 Summary

This chapter presents a ductile damage model and applies a previously proposed KA-
CMA-ES algorithm (KA-CMA-ES using ARP-EI) in inverse method of parameter
identification. The ductile damage model, which combines the von Mises yield criterion,
Swift’s hardening law and Lemaitre’s damage model, is implemented by the fully implicit
elastic predictor/return-mapping scheme in ABAQUS through the subroutine VUMAT. The
numerical implementation algorithm is comprehensively detailed in this chapter. In order to
improve the efficiency of the inverse method for parameter identification, previously
proposed KA-CMA-ES (ARP-EI) algorithm is used. The proposed ductile damage model is
employed for A 2017-T4 and the inverse method using ARP-EI is applied to identify the

material parameters based on standard tensile test data.

The results show that Swift’s law is adequate to describe the strain hardening behavior
of A 2017-T4. With the incorporation of Lemaitre’s ductile damage into the elastoplastic
model, ductile damage effect can be modeled. The mechanical behavior of A 2017-T4 under

tension is accurately model by the presented elastic-plastic damage model.

Applications of the KA-CMA-ES algorithm prove that this algorithm is useful and
promising for parameter identification. It enhances the efficiency of the parameter

identification process and also gives reliable results.
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6. R&uméde la Thése en Franis

6. Résumé de la These en Francais

6.1 Introduction Générale

L'optimisation est largement demandé& et appliquée en science de I’ingénieur.
Motivees par les demandes industrielles et de la recherche scientifique, beaucoup de
techniques d'optimisation ont &é& développees. L'algorithme choisi pour un probléne
d'optimisation déend en grande partie du type de problame, de la qualitéde la solution
souhaités, des ressources informatiques disponibles, du temps CPU et de I'expertise des

de&ideurs.

6.1.1 Motivation

Une problame d'optimisation est dit difficile s’il est coteux en temps CPU. Ce co(t est

géné&alement dO

* La fonction objectif est é&alué sur la base d'une simulation numé&ique, qui peut
é@re coQteuse (requiert de quelques minutes ades heures voire des jours de temps

de calcul pour chaque cycle de simulation).

* 1l n'existe pas d'expression analytique explicite pour la fonction objectif ou ses
dé&ivees. Ainsi, les algorithmes sans dé&ivation sont né&essaires pour résoudre ce
type de probléne d'optimisation. Ces derniers né&essitent plusieurs éaluations de

la fonction objectif que celles utilisant les d&ivés.

e  Pour de nombreux problémes d'optimisation de CAO, la nature de la fonction
objectif peut &re non lisse, multimodale, discontinue et mal conditionné&. Ces

difficulté entrament un coQt de calcul éevépour trouver l'optimum.

Nous nous concentrons sur les problémes d'optimisation coteux sous contraintes

de&rits comme suit :
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ot f(x):R* >R est la fonction objectif qui est éalué en exéutant la simulation
- T ~ - .

numeique, le vecteur x = [xl,---,xd] représente les d variables de conception, les vecteurs

| et U sont les limites inf&ieure et sup&ieure, respectivement. Les contraintes limitent

I'espace de recherche & [l,,u, | x[l,,u, ] x---x[1y,uq].

En raison de la forme implicite de la fonction objectif, les algorithmes &volutifs (EAS),
qui sont une classe d'optimiseurs globaux sans dé&ivees et puissants, sont approprié€s pour
résoudre des problémes d'optimisation coteux. Cependant, la principale difficultéautiliser
les EAs est que ces derniers ont habituellement besoin d'un grand nombre d'évaluation de la
fonction objectif avant d'obtenir un réultat satisfaisant. Par consé&juent, les EAs assisté&s

par modée de substitution ont &émotivés par la réluction des cotts du temps de calcul.

6.1.2 Objectif

L’objectif de cette these est de développer des algorithmes d'optimisation puissants

qui peuvent traiter plus efficacement les problémes d'optimisation coGeux.

Ce travail se concentre sur la stratégie d'éolution (ES) assist& par modde de
substitution pour des problé@mes d'optimisation coCteux. La stratéie d’évolution avec
adaptation de matrice de covariance (CMA-ES) et le modée de krigeage sont choisis comme
les deux composantes de la stratégie d'éolution assisté par modéde de substitution. Cette
CMA-ES assisté par le modéde de krigeage est abrégee par KA-CMA-ES dans ce manuscrit.
Notre objectif est d'éudier la CMA-ES existante et de développer de nouveaux algorithmes

efficaces de KA-CMA-ES pour des problémes coGteux.
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6.2 Organisation de la Theése

6.2.1 Premier Chapitre: Etat de 1'Art des Techniques d’Optimisation

Ce chapitre présente un bref aperqi des techniques d'optimisation et de |I'&at de I'art de
I'algorithme de I'éolution assistée par modéde substitutif. On commence par introduire les
concepts d'optimisation. Ensuite, on donne un aperqi des algorithmes d'optimisation, y
compris les algorithmes avec dé&iveées et ceux sans dé&ivees. Enfin, nous présentons
l'algorithme de I'éolution assist& par modde substitutif. Nous examinons le
dérveloppement d'algorithmes évolutifs (EAS) assistés par substitution. Dans I'optimisation
é/olutive assisté par substitution, la fonction objectif est remplacée par des modées de
substitution. Les mé&anismes d'incorporation des substituts dans les EAs peuvent &re divis&s
en mé&hodes de remplacement direct et indirect, c'est-adire les styles directs et indirects,
comme le montre la Figure 6.1. Cette figure montre le panorama de I'optimisation

é/olutionnaire assistée par modee substitutif.

Les mécanismes d'incorporation des substituts }

les styles directs: les styles indirects:
Les valeurs de fonction objectives Tous les individus portant des valeurs
approximatives remplacent exactes de fonctions objectives dans
directement les valeurs exactes de la les évaluations de fonction, des
fonction objective, seules les valuerus valeurs objectives approximatives
de la fonction objective des individuel sont utilisés dans l'initialisation, la
contrélées sont exactes. mutation ou la recombinaison.

‘ Les opérateurs informés}

L Le contrdle de I'évalution

[ | I |
initialisati . .
‘ pas de ’ t controle fixe 1 (conlr(")le adaptatiﬂ [ ntansaon J ‘ mutation J recombinaison

contréle informés informés informés

Figure 6.1 Les méanismes d'incorporation des modées de substitution dans les EAs
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6.2.2 Deuxiéme Chapitre: Les Stratégies d'Evolution

Ce chapitre donne une description compléte des strategies d'éolution (ES). Une breve
introduction des ES est fournie en premier lieu. Ensuite, les principes et les opé&ateurs
&olutifs utilisés dans les ES, c'est-adire la sé@ection, la recombinaison et la mutation, sont
deéerits dans ce chapitre. Par la suite, nous préentons trois algorithmes typiques de ES,
(1+1)-ES, (u/m, ,2)-ES avec adaptation cumulative de taille d'éhelon et stratégie

d'éolution avec l'adaptation de matrice de covariance (CMA-ES).

Algorithme 6.1 Le( 2/ 14,,, 2)-CMA-ES
1 Donnés:deN,, 2=4+|3In(d) |, u=| /2],

In(4/2+1/2)—1In(i)

W = fori=1---,u /
! ' . v My = , | i i '
Z’jzl[ln(/i/2+]/2)—ln(1)] 1 2
2 —
U—L, d0:1+2max£0, Fu 1—1J+cg,
d+py,+5 d+1
4 d 2
C=—+ﬂW/ , G=——"5 —, ¢,=min 1—c1,2—yW 2+,
d+4+2u,/d (d +1.3) + U, (d +2) +u,
2: initialiser m® eR®, 6 >0,p” =0,p” =0,C” =1, g « 0
3 rééer
4: Pour k=1,---,4 faire
5: z, =N, (0,1) , //i.i.d. pour chaque Z,
2
6: xkzm(9)+a<g)(c(g)) z, //mutation
7: fo=f(x)
8: fin pour

o: mY «m® 49 (! ) Z :
10:  pY e e, (2-c, \/ZZ Wz

(g+1)

P

1 oY oWexp| 2 [ }
B(lv (o))

4 1
122 p e« (1-c,)pl¥ + hgm\/Ei“wi (C(g))2 Z,,

i=1

:
13 9 (1-g —c,)C +C1(pcg+1( 9+1>)T+5(ha)c‘g))+cpzu:vw(c(g));zm((c(g));qu
i=1

14: g«g+1
15: Test d’arrét vérifié
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Parmi les ES, la strategie d'&olution avec I'adaptation de matrice de covariance (CMA-
ES) est une stratggie d'éolution tres développee et est devenue une norme pour
I'optimisation &volutive continue. Il s'agit d'un puissant algorithme d'optimisation et se
comporte particulieeement bien dans des problemes de back-box multimodaux non lisses.
Le CMA-ES adopte l'op&ateur de mutation corrédeée, ce qui en fait un algorithme de haut
niveau comparéad'autres algorithmes qui utilisent la mutation isotrope. Dans CMA-ES,
deux techniques, asavoir l'adaptation de la matrice de covariance (CMA) et I'adaptation
cumulative des €helons (CSA), sont utilisés pour adapter respectivement la matrice de
covariance de la mutation et la taille de I'éhelon. Le CMA-ES est choisi comme la stratégie
d'éolution de la base pour les ES assistées par substitution dans ce travail, en raison de sa
puissance et de son succes dans l'optimisation continue avec des fonctions objectifs

implicites. L'algorithme CMA-ES est donnédans 1’ Algorithme 6.1.

6.2.3 Troisiéeme Chapitre: Modélisation de Substitution
Ce chapitre examine la mé&hode de mod@isation substitutive, qui est une approche pour
dé&rire le comportement (entrée-sortie) du modéle de simulation. Les trois éapes de la

modé@isation de substitution sont déerites dans ce chapitre : (i) la conception des exp&iences

(DOE) ; (ii) la formation du modée de substitution et (iii) la validation du modéde.

La conception des Le modéle de substitution

expériences (DOE)
\ ; . A

0o C ey ™ = f(x®)
o © I \__y(z) = F(x®)

XZ N o o 00 9

S b = /(x)

\. /

Figure 6.2 Processus de modé@isation de substitution
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La mod@isation substitutive est liée ala construction de moddes mathénatiques pour
deerire les relations entre les entrées et les sorties speifiques exposees par le modée de
simulation (ou le systéme), basée sur un ensemble de donnéss limitées acquises en exéutant
le modée de simulation avec une entré intelligemment choisie. Le processus de

modé@isation de substitution est illustrépar la Figure 6.2.

Avec un modée subrogéformé la sortie des points non testés peut @re prélite a
moindre coGt par le modde. Par cons&juent, les modées de substitution peuvent &re utilisés
dans l'optimisation évolutive en remplacgnt I'éaluation coGeuse de la fonction de fitness
par la prédiction du modéde de substitution moins coeux que I'éaluation exacte de la

condition physique.

En se basant sur I'apprentissage meeanique et les techniques d'apprentissage statistique,
jusqu'a preésent, plusieurs modées de substitution ont é&é utilisés dans le calcul
éolutionnaire assisté Les modées de substitution les plus populaires, y compris la
regression polynomiale, le modée de krigeage, les fonctions de base radiales, les ré&seaux de

neurones et les machines de vecteurs de soutien.

Modzéle de krigeage

Le modée de krigeage est une méhode de mod@&isation basée sur le processus de Gauss
pour interpoler des données déerministes sans bruit et s'est rév@éutile dans une grande
variééde domaines. La caracté&istique distinctive du modée de Krigeage est qu'il fournit
non seulement une réponse preédite (moyenne de préliction) aun point non &hantillonné
mais aussi une estimation de la variance de préliction (ou €xart type de pré&liction). Cette
variance donne une indication de I'incertitude dans le modée de krigeage, qui résulte de la
construction de la fonction de covariance. Cette derniee est basee sur I'idée que lorsque les
points d'entreée sont proches l'un de l'autre, la corrdation entre leurs sorties correspondantes
sera devee. Par cons&juent, I'incertitude associee aux predictions du modée sera faible pour
les points d'entré qui sont prés des points de formation, et augmentera amesure que I'on
s'@oigne des points de formation. L'éart-type de la pré&liction et la moyenne de la prédiction

fournissent des informations preeieuses pour eguilibrer I'exploitation et donc bén&ique pour
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le calcul évolutionnaire assisté Compte tenu de cet avantage, le modée de krigeage est

utilis€comme substitut dans la stratégie d'éolution assisté par substitution.

6.2.4 Quatriéme Chapitre: CMA-ES Assistée par Modéle de Krigeage

Ce chapitre se concentre sur les stratégies d'&olution avec I'adaptation de matrice de
covariance assistee par le modée de krigeage (KA-CMA-ES), dans le cadre de I'optimisation
éolutive assistee par substitution. Une bréve introduction de la stratégie d'éolution assistee
par modée est pré&enté en premier lieu. Ensuite, nous deérivons les meanismes
d'incorporation du modée de substitution dans ES. Ensuite, de nouvelles mé&hodes de
séection d'ensembles d'apprentissage, de pré&éection, du contrde d'é&olution ont &é
développées et des algorithmes concrets de KA-CA-ES sont formulé. En outre, nous
effectuons des éudes exp&imentales de KA-CMA-ES pour éudier et analyser la

performance des algorithmes proposeés.
6.2.4.1 Algorithmes de KA-CMA-ES

Le meéanisme d'incorporation du modée de krigeage dans CMA-ES est la partie
essentielle de KA-CMA-ES. Dans cette these, on adopte les quatre méanismes
d'incorporation suivants ou les stratégies d'exploitation du modéde : la pré&éection, le
contrde individuel, le classement approximatif et le contrde basésur la géné&ation. Dans le
contrde individuel, diffé&ents critées qui sont utilisé& pour séectionner les individus a
contrder et sont appelé& mériques dans ce travail, sont éudiés. Les stratégies d'exploitation

et de mesure des moddes sont deéerites ci-dessous.

6.2.4.2 Pré&dection

La pré&d@ection de solutions prometteuses (basés sur un modéde approximatif) est une
stratégie populaire d'exploitation de I'information &partir du modéle de substitution f dans
les straté&gies d'&olution. Dans la stratégie de pré&dection, 4., > A (Aest la taille de la
population de ES) les individus sont gén&& achaque éape, puis tous les 4, individus sont

&alué par modéle approximatif f, aprés que A parmi les A, meilleurs individus sont
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sdectionné pour éaluer par la fonction de fitness d'origine f. L'idé de base de cette
approche est que seuls les individus les plus prometteurs avec une bonne préliction de la
condition physique sont éalués avec la fonction de remise en forme, ce qui entrame une

réluction du nombre d'appels de remise en forme reels codieux. La pré&dection est illustree

ala Figure 6.3.
( Initialisation ) ( Initialisation )
1 s T T~ IVT vy T N
r utation
| Mutation | | : |
7 Individuels Arre Individuels
A 4

Evaluation de la

\
|
|

5 > o [

| Modéle de substitution | |
|

|

|

]

fonction | Sélectionner 2 Individuels |

v \ A Individuels y

| Sélection | T I
L Parents Présélection | Evaluation de la fonction |
'

A ’ .

| Recombinaison | | Sélection |
4 Parents

A 4

| Recombinaison |

Non

Critere d'arrét ?

Critere d'arrét ?

Figure 6.3 lllustration de la pré&@ection dans la strat&gie d'&solution assisté& par modée de substitution:
(1) la norme (u,1)-ES et (2) I'ES assistés par la présdection.

Il existe deux stratégies de pré&d@ection : (1) la pré&dection sans contr@e de I'impact
du modée (PS), et (2) la pré&sé&ection avec contrde de I'impact du modée (CPS) utilisédans
KA-CMA-ES. Dans PS, la taille de la population de pré&dection 4, reste constante pendant
le processus d'optimisation &olutive. En CPS, 4,.a &écontrdédynamiquement sur la base

de la mesure de la qualitédu modéde.

6.2.4.3 Contrde Personnaliséde ’Evolution
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Le contrde de I'é&olution est populaire dans les algorithmes évolutifs assisté& par
substitution, y compris les stratégies d'&olution. Le contrde de I'é&olution signifie que, dans
le calcul évolutif assistépar substitution, la fonction d'aptitude initiale est utilisé& pour
&valuer certains/tous les individus dans certaines/toutes les géné&ations. Un individu qui est
&aluéal'aide de la fonction d'aptitude d'origine est appel€un individu contrdé De méne,
une gené&ation dans laquelle tous ses individus sont éalués en utilisant la fonction de fitness
d'origine est appelé géné&ation contrdee. Le contrde basésur individuel et le contrde basé

sur la géné&ation sont illustré ala Figure 6.4.

Initialisation Initialisation

A Individuels A Individuels
Contréle d'évolution Controle de I'évolution
individuel basé sur la génération
Sélectionner 7,
Individuels (A-n) .
Individuels ontroler cette
. ) P s N
Evaluation de la .:pprer;it;]s:ge & _ 2 Individuels generation 2 Individuels
fonction R ,| Modele de | Evaluation de la Modéle de
| substitution fonction substitution
T T
| Sélection | | Sélection |
l 11 Parents 1 1 Parents
| Recombinaison | | Recombinaison |

Critére d'arrét ? Critére d'arrét ?

Figure 6.4 lllustration du contrde de I'éolution dans la strat€gie d'éolution assistée par substitution :
(1) contrdle basé sur I’individuel et (2) contr@e basésur la génération.

Dans le contrde basésur I’individuel, une partie des individuels dans la population sont
choisis et éalué avec la fonction d'objectif. Les individuels contrdés peuvent &re choisis
au hasard ou par la stratégie «best > Si la fréguence du contrde d'é&olution individuel est
fixe, c'est-adire qu'un nombre fixe d'individus est contrdédans chaque gééation, on
I'appelle contrde individuel fixe (FIC). Si la fré&uence du contrde de I'éolution dépend de
la fidditédu modée de substitution. Cette stratégie est appelé& contrde de I'éolution

adaptative.
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Dans le but de tirer les avantages du contrde d'éolution individuel et adaptative basé
sur l'individu, une stratégie de contrde basee sur des individus appelé& contrde individuel
mixte (MIC) qui combine les deux fonctions du contrde fixe et adaptif d'une certaine

maniére, est proposee dans ce travail.
6.2.4.4 Procé&lure du Classement Approximatif

En 2004, Runarsson a propos€la proceélure de classement approximatif (ARP) pour
&aluer la qualitédes moddes de substitution et servir de contrde de I'éolution dans I'ES
assistée. La procé&lure de classement approximatif évalue la qualité du modée de
substitution par sa cohé&ence dans le classement de la population plut&@ que par sa preeision
statistique. La procé&lure de classement approximatif déermine le nombre d'individus
contrdé dans chaque généation de la fagn suivante : les individus sont successivement
séectionnés pour &re éalués en fonction de leur aptitude approximative et ensuite ajoutés
al'ensemble d'entramement jusqu'ace que la séection de substitution des parents reste

inchangé dans deux ité&ations cycles.
6.2.4.5 Contrde d'Evolution basésur la Géné&ation

Dans le contr@e de I'&olution basé sur la généation, tous les individus d'une
géné&ation séectionnée seront é&alué par la fonction d'aptitude initiale. La séection de
généation peut &re al&toire ou avec une fr&uence fixe. Si la fréuence du contrde de
généation est fixe, on l'appelle contrde de gééation fixe (FGC). Si la fré&uence du
contrde de géné&ation déend de la qualitédu modée de substitution, elle est connue sous

le nom de contrde adaptatif basésur la géné&ation (AGC).

Dans cette section, il est proposéd'utiliser la qualitédu modée pour déerminer si la
prochaine géné&ation est le contr@e ou non. La qualitédu modée de substitution est estimé
dans chaque géné&ation contrdée, si Q>Q™ (Q™ est la valeur critique ou le seuil de
qualitédu modéle), la prochaine géné&ation est &/alué par le modée de substitution ; sinon,
la prochaine géné&ation est contrdeée et éalué par la fonction de fitness d'origine. Les

mesures de la qualitédu modée peuvent &re la mesure de qualitéde modée de séection
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proposés al'aide de poids de recombinaison Q,,, la mesure de qualitédu modéle fondé sur

la s@ection Qg..in Proposé par Ulmer et al., et le ceefficient de corrdation de rang p,., -

Résumé des Algorithmes KA-CMA-ES dans ce Travail

En combinant le modée de krigeage et CMA-ES atravers la gestion de modde dé&rite
ci-dessus, les diffé&ents algorithmes peuvent &re formulé. Quatre groupes d'algorithmes

KA-CMA-ES ont éédéveloppés :

1) KA-CMA-ES en utilisant la pré&édection. Ce groupe comprend KA-CMA-ES
utilisant PS (pré&sdection sans contrde d'impact de modée) et CPS (pré&dection

avec contrde d'impact de modéee).

2) KA-CMA-ES en utilisant un contrde individuel. Ce groupe inclut KA-CMA-ES
utilisant FIC (contrde individuel fixe avec mérique) et MIC (le contrde

individuel mixte proposé.
3) KA-CMA-ES en utilisant la procélure de classement approximatif (ARP).

4) KA-CMA-ES utilisant le contrde basésur la géné&ation, qui comprend KA-
CMA-ES utilisant FGC (contrde basésur la géné&ation fixe) et AGC (contrde

adaptatif basésur la géné&ation).
6.2.4.6 Etudes Expé&imentales de KA-CMA-ES

En utilisant diffé&ents moddes d'exploitation dans KA-CMA-ES, diffé&ents
algorithmes ont &éédéreloppé&. Ceux éudié dans cette theése peuvent &re divisés en quatre
groupes : KA-CMA-ES utilisant la pré&sdection qui comprend KA-CMA-ES utilisant PS et
CPS, KA-CMA-ES en utilisant un contrde individuel qui comprend KA-CMA-ES utilisant
FIC et MIC, KA-CMA-ES en utilisant une procélure approximative de classement, et KA-
CMA-ES utilisant un contrde basésur la gené&ation qui comprend KA-CMA-ES utilisant
FGC et AGC. Dans les @udes exp&imentales de KA-CMA-ES, diff@ents aspects des
algorithmes KA-CMA-ES ont &éexaminé en exeeutant les exp&iences sur 40 problames

de benchmark (dont 12 fonctions de test avec des dimensions diffé&entes). Le taux de succes
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(SR), la performance de succes (SP) et/ou la performance d'accé&é&ation (SPU) des

expé&iences sont trois mesures pour éaluer et analyser la performance des algorithmes.
6.2.4.7 Ré&ultats Expé&imentaux

Dans I'éude de KA-CMA-ES en utilisant la pré&dection sans contrde d'impact de
modde (PS), diffé&entes mé&hodes de sdection d'ensembles d'entramement, y compris
'‘Re&emment’ (les points re&eemment &alues), 'kNN' Moyenne basé sur la distance de
Mahalanobis), et 'Interval’ (la mé&hode proposee d'intervalle de confiance), ont éeéudiés.
Les ré&ultats sont montré dans la Figure 6.5. Les résultats de cette &ude ont dénontréque
la mé&hode d'intervalle de confiance proposee pour la séection d'ensembles d'apprentissage
semble supé&ieure aux méhodes «Ré&emment>et «kNN>>pour la séection d'ensembles
d'apprentissage. KA-CMA-ES utilisant PS avec 'Interval’ a un taux de reussite plus devéet
une meilleure performance de succes que celle utilisant 'Ré&emment’ et '’kNN'. Ainsi, la
méhode de l'intervalle de confiance est suggé&é pour la sdection des ensembles

d'entramement dans la strategie d'é&olution assistee.

SR moyenne de KA-CMA-ES en utilisant la SPU moyenne de KA-CMA-ES en utilisant la
présélection sans contréle d'impact de modéle présélection sans contréle d'impact de modéle
(PS) (PS)
PS-Recemment-e-PS-kKNN-PS-Interval-~-CMA-ES PS-Récemment -#-PS-kNN PS-Interval

D=2 D=2

Overall . S D=5 Overall -~ V2~ N~ D=5

Multimodal *~%& A D=10 Multimodal®. % 0 D=0

Unimodal Unimodal D=20

Figure 6.5 Taux de réussite moyen et des performances d'accdé&ation de KA-CMA-ES en utilisant la
pré&dection sans contrde de I'impact du modée (PS).

Dans I'é@ude de KA-CMA-ES en utilisant la pré&séection avec le modde de contrde
d'impact (CPS), trois mesures de qualitéde modde Q,,, Quicion €t Prank » SONt Utilisées et
comparéss. Les ré&ultats (voir Figure 6.6) montrent que, si la performance du succes ou de

la performance d'acc@é&ation est prise en considéation, CPS-Q,, est préé&able ; si un taux
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de réussite plus éevéet la stabilitéde I'algorithme sont attendus, CPS-p,,, est suggé&é De
plus, les performances de KA-CMA-ES utilisant PS et CPS sont comparees. 1l est &/ident
que CPS surpasse PS pour la plupart des problénes de test en fonction de la performance
d'accé@é&ation. Ainsi, le contrde d'impact de modée est sugg&édans KA-CMA-ES en

utilisant la prééection (voir Figure 6.7).

SR moyenne de KA-CMA-ES en utilisant la SPU moyenne de KA-CMA-ES en utilisant la
présélection avec le controle d'impact de modéle présélection avec le controle d'impact de modéle
(CPS) {CPS)
+CPS-QW --CPS- Qse]ection -+-CPS- QW --CPS- Qselection CF’S—prank
CPS-Prank --CMA-ES D=2
D=2 s
1.00 2.
e 7160

Overall .~ .~

Overall ..

Multimodal - D=10

Unimodal® D=20 Unimodal

Figure 6.6 Taux moyen de réussite et taux de pré&@&ection sup€&ieur acelui du contrde de I'impact du
modée al'aide de difféentes mesures de la qualitédu modée.

SR moyenne de KA-CMA-ES en utilisant PS5 et CPS SPU moyenne de KA-CMA-ES en utilisant PS et CPS
-+ PS-Interval --CPS-Q,, -i-PS-Interval ---CPS-Q,,
CPs- Qselection —~+-CPS8- Prank CPs- Qselection —-CPS- Prank
D=2 D=2

Overall -~ = D=5

Multimodal & % D=10 Multimodal » D=10

=20 UnimOdél“ """"""""""""""""" D=20

Unimoda

Figure 6.7 Taux moyen de reaussite et accééation de la pré&sdection sans et avec le contrde de I'impact
du modée.

Pour les KA-CMA-ES utilisant un contrde abase individuelle fixe (FIC), cing
paramétres (moyenne, &art-type, SLB, POI et IE) sont &udiés. Les résultats sont pré&sentés

ala Figure 6.8. Parmi les cinqg mériques, ces mériques (SLB, POI et EI) qui &uilibrent
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I'exploitation du substitut et I'exploration de I'espace de recherche sont meilleures que les
meériques qui ne concilient que I'exploitation ou I'exploration (moyenne et SD). On prend

en considé&ation SR et SP, FIC-EI préente des avantages par rapport aux autres parametres.

SR moyenne de KA-CMA-ES en utilisant la contrdle SPU moyenne de KA-CMA-ES en utilisant la contrdle
individuel fixe (FIC) individuel fixe (FIC)
FIC-Mean-e-FIC-SD FIC-SLB FIC-Mean-e-FIC-SD FIC-SLB
—+-FIC-PCl -%FIC-EI —+CMA-ES —-FIC-POl -FIC-El

D=2
1.00 %

Overall o Y D=5

Multimodal R | [ ¥ p=10 * D=10

Unimodal

Unimoda“

Figure 6.8 Taux moyen de réussite (SR) et performance d'accéé&ation (SPU) de KA-CMA-ES en
utilisant un contrde individuel fixe avec diffé&entes mesures.

Dans notre contrde individuel mixte (MIC), deux paramétres possibles, la moyenne et
la SLB, sont examinés. Les résultats exp&imentaux (voir Figure 6.9) ont prouvégue le MIC-
SLB a un taux de succeés plus éevéque celui de MIC-Mean, en particulier sur des problénes
multimodaux. De plus, en géné&al, MIC-SLB a une meilleure performance d'accé&é&ation
moyenne que MIC-Mean. En tenant compte ala fois du taux de reussite et des performances
d'acc@é&ation, on peut conclure que MIC-SLB surpasse MIC-Mean. A partir de la
comparaison (voir Figure 6.10) de KA-CMA-ES en utilisant FIC et MIC, le FIC-EI a
géné&alement le taux de réussite le plus éevé D'autres algorithmes de contrde individuels
ont un taux de réussite moyen modé&ésupé&ieur a85 %. Cependant, KA-CMA-ES utilisant
la MIC surpasse de maniére significative FIC en fonction de la performance d'acc&é&ation
et de la réussite. En particulier, MIC-SLB a la moyenne la plus éevé& SPU et le taux de
raussite acceptable. Par consé&juent, MIC-SLB est préé&able parmi les algorithmes de KA-

CMA-ES en utilisant un contrde individuel.
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SR moyenne de KA-CMA-ES en utilisant la contrdle SPU moyenne de KA-CMA-ES en utilisant la contrdle
individuel mixte (MIC) individuel mixte (MIC)
“+MIC-Mean -o-MIC-SLB CMA-ES -*MIC-Mean -e-MIC-SLB
D=2 D=2
1.00 a. 240
L 0gs 2

Overall 7 s L. D=5 overal 2% D=5

Multimodal S p=10 Multimodal . ' - D=10

Unimodal D=20 Unimodal D=20

Figure 6.9 Taux moyen de réussite (SR) et performance d'accéé&ation (SPU) de KA-CMA-ES en
utilisant un contrde mixte individuel (MIC).

SR moyenne de KA-CMA-ES en utilisant FIC et MIC 5PU moyenne de KA-CMA-ES en utilisant FIC et MIC
-+-FIC-Mean -e-FIC-SD FIC-SLB -e-FIC-POI -4-FIC-Mean -e-FIC-SD FIC-SLB --FIC-POI
-FIC-EIl —+MIC-Mean -%-MIC-SLB -¢FIC-El —+MIC-Mean-%-MIC-SLB

D=2

Multimodal 'A% D=10 . D=10

UnimodaP “D=20

Figure 6.10 Moyenne SR et SPU de KA-CMA-ES en utilisant un contrde individuel fixe et mixte (FIC
et MIC).

Nous avons modifi€la procélure de classement approximatif et I'avons ensuite intéreée
au CMA-ES, appeléKA-CMA-ES en utilisant la proc&lure de classement approximative
(ARP). Outre la mérique Mean, EI mérique suggée prealemment est utilisés dans KA-
CMA-ES al'aide de I'ARP. Il a montréque (voir Figure 6.11) I’ARP-EI a une meilleure

performance que I’ARP-Mean, selon le taux de réussite et le performance d'accéé&ation.
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SR moyenne de KA-CMA-ES en utilisant ARP SPU moyenne de KA-CMA-ES en utilisant ARP
-+-ARP-Mean -e-ARP-EI CMA-ES -+~ARP-Mean -e-ARP-EI
D=2 D=2

Overall . ~.-D=5 Overall - T D=5

Multimodal = ®_ - | ./ D=10 Multimodal * . D=10

Unimodal — D=20 Unimodal

Figure 6.11 Taux moyen de réussite et performance d'accé&ération de KA-CMA-ES en utilisant ARP.

De plus, le KA-CMA-ES utilisant un contrde basésur la géné&ation a éééudi€ ou
I'on examine et compare le contrde basésur la géné&ation fixe (FGC) et le contrde de
géné&ation basésur la géné&ation adapté (AGC) (voir Figure 6.12). Géné&alement, le KA-
CMA-ES utilisant AGC est plus performant que celui utilisant FGC. Le contrde de
géé&ation adaptatif utilisant o, (AGC-p..) comme qualit€de modde a le taux de
raussite moyen le plus &eveé sur tous les problames. Considé&ant les performances
d'accdé&ation, le contrde de gééation adaptatif en utilisant Q, et Qgon ONt de
meilleures performances. Dans I'ensemble, AGC-p,.,. est pré&é&able en fonction du taux de
raussite et de la stabilit& et est pré&able lorsque les performances d'acc&é&ation sont prises

en considé&ation.

SR moyenne de KA-CMA-ES en utilisant SPU moyenne de KA-CMA-ES en utilisant
FGC et AGC FGC et AGC
-+FGC -#-AGC-@,, "AGC- Uselection “+AGC-Prank -+FGC #-AGC-0y, = AGC- Uselection ~#+AGC-Prank
D=2 D=2
1.00 4 240 -
ST AR, 220
200

overall " ks ~_ D=5 Overall D=5

g -

Multimodal #  D=10 Multimodal - . D=10

Unimodal D=20 Unimodal D=20

Figure 6.12 Taux moyen de réussite et accdé&ation de KA-CMA-ES en utilisant FGC et AGC.
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Enfin, tous les algorithmes éudi& de KA-CMA-ES sont analysés. Sur la base de la
discussion preeélente et les résultats, seuls les meilleurs algorithmes de chaque categorie
sont choisis comme les repré&entants et utilisés dans l'analyse et la comparaison ici.
L'intervalle PS est pris comme repré&entant de la pré&@&ection sans contrde de I'impact du
modée (PS). CPS-Q, et CPS-p., sont consid&& comme des algorithmes typiques de
pré&dection avec le contrde d'impact modée (CPS). Le FIC-EI est utilisépour représenter
le contrde individuel fixe (FIC). L'ARP-EI d&signe le KA-CMA-ES en utilisant la procé&lure
de classement approximatif (ARP). Pour le contrde basésur la généation, AGC-Q,, et
AGC-p,... sont consid&& comme les repréentants. A partir des réultats exp&imentaux,
il est é&ident que I'ARP-EI pré&ente des performances d'acc&é&ation exceptionnelles parmi
tous les algorithmes éudié (voir Figure 6.14). Les valeurs SPU de PS-Intervalle, CPS-Q,,,
CPS-p...., FIC-El et MIC-SLB sur tous les problémes de test sont sup&ieures aun (voir
Figure 6.13). Ceci montre une amé@ioration stable de la performance du succes de ces
algorithmes. Les stabilités de AGC-Q, et AGC-p,.,. sont inf&ieurs ad'autres. Il n'y a
qu'un seul problame sur lequel I'ARP-EI se déé&iore plus que le CMA-ES. Par cons&juent,
on peut affirmer que I'ARP-EI est exceptionnelle parmi tous les algorithmes KA-CMA-ES
éudié&, en fonction de la performance d'accéé&ation ou de la performance de succes.
Compte tenu ale taux de reussite et le performance de I'accdé&ation, on peut conclure que

I’ ARP-EI est pré&é&able parmi tous les algorithmes KA-CMA-ES é&udié& dans cette thése.
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SR moyenne des algorithmes KA-CMA-ES
—-PS-Interval -e-CPS-0Q,, CPS- Prank -¢-FIC-EI

MIC-SLB —+ARP-EI “#AGC-Q,, —AGC-Prank
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Overall .
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Figure 6.13 Comparaison du taux de reéussite moyen (SR) des algorithmes KA-CMA-ES.

SPU moyenne des algorithmes KA-CMA-ES

-4-PS-Interval -e-CPS-Q,, CPS-Prank -#-FIC-EI
*MIC-SLB —+ARP-EI “#AGC-Q,, —AGC-Prank
D=2
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Figure 6.14 Comparaison de la performance d'acc@é&ation moyenne (SPU) des algorithmes KA-CMA-
ES.
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6.2.5 Cinquiéme Chapitre: Application dans I'ldentification des

Paramétres du Matériau

Ce chapitre présente les applications de l'algorithme KA-CMA-ES proposé dans
I'identification des paraméres maté&iels qui est un probléne d'optimisation coteux. Un
modée d'endommagement @astique-plastique, dans lequel le comportement de
durcissement de la matiére est deerit par la loi de Swift et le dommage ductile est moddisé
par le modée de Lemaitre, est pré&entéet implénentédans la simulation numé&ique par le
sous-programme VUMAT dans ABAQUS. Ensuite, le KA-CMA-ES utilisant la méhode de
classement approximatif avec mérique ElI (ARP-EIl) est appliquéen meéhode inverse

d'identification de paramétre de matéiau.
6.2.5.1 Modée d’Endommagement Elastique-Plastique

En géné&al, un modde constitutif dastique-plastique normal contient les composants

de base suivants :
1) Laloi @astique, qui donne la relation entre la contrainte et la contrainte &astique ;
2) Le critée de rendement, qui définit la limite du comportement plastique ;
3) Laregle d'é&oulement, qui déerit I'éolution de la déformation plastique ;

4) La loi de durcissement, qui caracté&ise le déeloppement du critée de rendement

ult&ieur.

En conséquence, le modéle d’endommagement @astique-plastique contient une loi

d'évolution des variables d’endommagement en plus des quatre composants ci-dessus.

Dans ce travail, le criteére de rendement de Von Mises couramment utilisé la loi
d'érouissage de Swift et la loi d’endommagement ductile de Lemaitre sont inclus dans le
modde @dastique-plastique avec endommagement. Les éjuations constitutives du modee

dastique-plastique acev endommagement sont pré&entees au Tableau 6.1.
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Tableau 6.1 Equations constitutives du modée d’endommagement dastique-plastique

Dé&omposer de tenseur e=¢e*+¢’

Loi dastique avec endommagement o=(1-D)E: &

La régle d'éoulement ®=q/(1-D)-o,

. . . . — —p\N

loi de durcissemen (loi de Swift) o, (g p): A(e0 +& p)

Evolution de la déormation plastique oo 738
(1-D)V2]s

. ) . v (=YY s, -

Bvolution des endommagement s D =—[—j H(z"-20)
1-D\r

Conditions de chargement/déshargement ~ ®<0,7>0,®y =0

6.2.5.2 Méthode Inverse d’Identification

Le but de la procé&lure d'identification des parameétres est de reuire le plus possible la
distance entre les réonses simulées et exp&imentales. En d'autres termes, le processus
d'identification des paramétres consiste atrouver un ensemble de parameétres qui fait la
diffé&ence minimale entre la réponse de simulation et les données d'expé&ience. Ainsi, la
meéthode inverse est un outil utile pour déerminer les paramétres du maté&iau. La méhode
inverse d'identification du paramétre considere l'identification des paramétres comme un
probléne d'optimisation, qui consiste atrouver un ensemble de paramétres qui minimisent
la diffé&ence entre les données exp&imentales et les simulations numé&iques en norme. Le

cadre de la méhode inverse d'identification du paramére est illustrépar la Figure 6.15.
6.2.5.3 Identification des Parametres

Identification des Paramétres de Durcissement

L'identification inverse des paramétres de durcissement est effectuee indégendamment
avec le CMA-ES standard et le KA-CMA-ES en utilisant I'ARP-EI. Dans le processus
d'identification, des simulations FEM du test de traction sont effectuéss aplusieurs reprises
pour éaluer la fonction objectif. Les limites infé&ieure et sup€&ieure des paramékres dans le
processus d'identification et les paramétres de durcissement de contrainte identifiés sont
donnéss dans le Tableau 6.2. Les graphiques de convergence et I'historique it&atif des

parametres sont illustrés ala Figure 6.16. Les courbes force-délacement correspondant aux
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parameétres de durcissement de contrainte identifiés et &la courbe exp&imentale sont

pré&entees ala Figure 6.17.

Début

Ensemble initial de paramétres de
matériau

v

Ensemble des paramétres

—P
de matériau pour le calcul
Donnees FEM Simulation
expérimentales ¢
Algorithme ]
L Evaluation de la
d'optimisation .

fonction objectif

Converger ?

Paramétres matériels identifiés

Arrétez

Figure 6.15 La procédure d'identification des paramétres

Tableau 6.2 Ré&ultats et codts de calcul de I'identification des paramétres de durcissement

Paramaire A & 0 N(I)mbre d_‘é/alugtiops de
a fonction objective
Limites infé&ieures 600 0 0.1 -
Limites sup€&ieures 900 0.03 0.4 -
La CMA-ES 754.1402  0.0087  0.2264 533
ut}ﬁ@éit'leAR-E-SEl 754.2124  0.0087  0.2264 211

195



6.2 Organisation de la Thése
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Figure 6.16 Graphes de convergence et d'itéation de I'identification des paraméres de durcissement
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Figure 6.17 Courbes de déplacement de force (avant éranglement) correspondant ades paramétres de
durcissement de contrainte identifié& et données exp&imentales

Identification des Paramétres d’Endommagement
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Apres que les paramétres de durcissement de contrainte sont identifiés dans la sous -

section pre&é&lente, nous nous inté&essons a lidentification des paraméres d'
endommagement ductiles&}, r et D.. Dans le modéle d’endommagement ductile, on
utilise le critere de rendement de Von Mises et la loi de durcissement de Swift. Les
paramétres identifiés dans la paragraphe pr&élente sont utilisés ici. Les limites inf&ieure et
sup&ieure pour les paraméres dans le processus d'identification et les paramétres
d’endommagement de contrainte identifié sont donnees dans le Tableau 6.3.

Tableau 6.3 Résultats et co(ts de calcul de l'identification des paraméres d’endommagement

N —p Nombre d'é&aluations de
Paramétre & r D : .
la fonction objective
Limites infé&ieures 0.1 2 0 -
Limites sup€&ieures 0.18 10 0.8 -
La CMA-ES 0.1306 6.1575 0.0874 295
KA-CMA-ES
. 0.1303 6.1583 0.0898 167
utilisant ARP-EI
, Graphique de convergence Histoire d'itération de E_g
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Figure 6.18 Graphes de convergence et d'itéation de I'identification des paraméres d'endommagement
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Figure 6.19 Courbes de force-dénlacement correspondant aux paramétres d'endommagement identifiés
et données exp&imentales
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Figure 6.20 Comparaison des courbes force-dénlacement des modées @astique-plastique et dastique-
plastique avec les paraméres identifiés

Les graphiques de convergence et [lhistorique it&atif des paramétres

d’endommagement sont illustrés & la Figure 6.18. Les courbes force-déolacement
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correspondant aux parametres d'endommagement @astique-plastique identifiés et ala courbe
exp&imentale sont présentées par la Figure 6.19. De plus, les ré&ultats de la simulation du
modde @&astique-plastique et du modde @&astique-dégradation plastique ainsi que les

donnéss exp&imentales sont éyalement représentées dans la Figure 6.20.

En conclusion, le modde d'endommagement &astique-plastique préenté&est approprié
pour la moddisation du comportement du maté&iau en tenant compte du durcissement et des
effets de dé&ioration, et le KA-CMA-ES proposéal‘aide d'ARP-EI est fiable et efficace en

meéthode inverse d’identification des paraméres.

6.3 Conclusions et perspectives

Nous avons déelopp€de nouveaux algorithmes qui combinent la stratégie d'éolution
d'adaptation de matrice de covariance (CMA-ES) et le modde de substitution de krigeage
afin de ré&luire le nombre d'é&aluations de la fonction de condition physique (fonction

objectif) et ainsi d'am@iorer l'efficacitéde ré&soudre des problénes coteux.

Conclusions

Les résultats de cette &ude ont démontréque la mé&hode de I'intervalle de confiance
proposé& pour la séection des ensembles d'apprentissage semble sup€&ieure aux méhodes
couramment utilisées <Ré&emment>et <kkNN>pour la séection d'ensembles d'apprentissage.
Ainsi, la méhode de l'intervalle de confiance est suggé&ée pour la séection de I'ensemble
d'apprentissage dans le calcul évolutif assisté par substitution. A partir des réultats
exp&imentaux, on peut affirmer que I'ARP-EI est remarquable parmi tous les algorithmes

KA-CMA-ES éudié&, en fonction de la performance d'acc@é&ation ou de réussite.

L'application de KA-CMA-ES en utilisant 'ARP-EI en mé&hode inverse d'identification
des parametres pour le modeée d’endommagement dastique-plastique montre &alement que
le KA-CMA-ES améiore significativement I'efficacité de CMA-ES et ré&luit ainsi

considérablement le cott de calcul lors de I’identification des paramétres maté&iels.

Perspectives
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Les algorithmes KA-CMA-ES dé&seloppé& ont permis d'am@iorer I'efficacitéde la
norme CMA-ES. Cependant, il y a encore des questions ouvertes. Ici, nous aimerions

mentionner les problémes de recherche future, &partir de notre point de vue.

Tout d'abord, il n'existe aucune conclusion claire quant asavoir quel modde de
substitution est meilleur dans I'optimisation &olutionnaire assistée par modées substitut.
Par conséguent, d'autres modées substituts doivent &re éudié dans I'optimisation

éolutionnaire assisté par un substitut.

En ce qui concerne le KA-CMA-ES dé&loublédans ce travail, I'é@ude exp&imentale et
I'application sur des problénes dimensionnels &evé (plus de 20 dimensions) pourraient &re

r&lisés dans les travaux futurs.

Pour les problénes de dimension devee, le cott de calcul de la formation du modée
de substitution augmenterait apparemment. Cela peut devenir un inconvéient des
algorithmes d'évolution assistée par substitution. Par conseéguent, I'optimisation d’évolution

assistée par substitution pour le probléne dimensionnel éevéest un sujet digne d'éude.
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Conclusions and Perspectives

In this thesis, we have comprehensively explored the Kriging-Assisted Covariance
Matrix Adaptation Evolution Strategy (KA-CMA-ES) for expensive optimization problems.
Furthermore, engineering application of the developed new algorithm is performed in
material parameter identification. This final chapter gives a summary of what we have

learned from our works and points out the most promising direction for future research.

Conclusions

We have developed new algorithms, which combine Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) and Kriging surrogate model, to reduce the number of fitness
function (objective function) evaluations and thus to improve the efficiency of solving
expensive problems. In Kriging-Assisted CMA-ES (KA-CMA-ES), Kriging models are
repeatedly learned based on previously evaluated data points and then used to predict the
fitness of new individuals instead of original fitness function evaluations. In this way, the
number of expensive fitness function evaluations is significantly decreased and thus the
computational cost is cut down. Different methods of model exploitation (the different ways
of incorporating Kriging model into the standard CMA-ES), which brings about different
KA-CMA-ES algorithms, have been investigated in our work. The KA-CMA-ES algorithms
investigated in this thesis can be divided into four groups: KA-CMA-ES using pre-selection,
KA-CMA-ES using individual-based control, KA-CMA-ES using approximate ranking
procedure, and KA-CMA-Es using generation-based control. In the experimental studies of
KA-CMA-ES, different aspects of KA-CMA-ES algorithms have been examined by running
the experiments on 40 benchmarking problems (including 12 test function with different

dimensions).

In the study of KA-CMA-ES using pre-selection without model impact control (PS),

different training set selection methods, including ‘Recently’ (the Recently Evaluated
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Points), ‘kNN” (the k-Nearest Neighbor Points to distribution mean based on Mahalanobis
distance), and ‘Interval’ (the proposed Confidence Interval method), have been investigated.
The results of this investigation demonstrated that the proposed confidence interval method
for training set selection apparently superior to the commonly used ‘Recently’ and ‘kNN’
methods for training set selection. KA-CMA-ES using PS with ‘Interval’ has higher success
rate and better success performance than that using ‘Recently’ and ‘kNN’. Thus, the
confidence interval method is suggested for training set selection in surrogate-assisted

evolutionary computation.

In the study of KA-CMA-ES using pre-selection with model impact control (CPS),
three model quality measures, Q,,, Qujecion aNd Py » are used and compared. The results show
that, if the success performance or speedup performance is considered, CPS-Q,, is preferable;
if higher success rate and the stability of algorithm are expected, CPS-p,,, is suggested.
Additionally, the performance of KA-CMA-ES using PS and CPS are compared. It is
apparent that pre-selection with model impact control outperforms pre-seleciton without
model impact control for most of the test problems according to the speedup performance.

Thus, model impact control is suggested in KA-CMA-ES using pre-selection.

For KA-CMA-ES using fixed individual-based control (FIC), five metrics (Mean, SD,
SLB, POI, and EI) are studied. Among the five metric, these metric (SLB, POl and EI) which
balances the exploitation of the surrogate and exploration of search space performs better
than metrics that only consider exploitation or exploration (Mean, and SD). Take both SR

and SP into consideration, FIC-EI has advantages over other metrics.

In our proposed mixed individual-based control (MIC), two possible metrics, Mean and
SLB, are examined. The experimental results proved that MIC-SLB has higher success rate
than that of MIC-Mean, especially on multimodal problems. Furthermore, generally, MIC-
SLB has better average speedup performance than MIC-Mean. Taking both the success rate
and speedup performance into consideration, it can be concluded that MIC-SLB outperforms
MIC-Mean. From the comparison of KA-CMA-ES using FIC and MIC, the FIC-EI generally

has the highest success rate. Other individual-based control algorithms have moderate
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average success rate larger than 0.85. However, KA-CMA-ES using MIC significantly
outperform FIC according to the speedup performance and success performance. Particularly,
MIC-SLB has the highest average SPU and acceptable success rate. Therefore, MIC-SLB is

preferable among algorithms of KA-CMA-ES using individual-based control.

We have modified the approximate ranking procedure and then embedded it into the
CMA-ES, which is referred to as KA-CMA-ES using approximate ranking procedure (ARP).
Besides the Mean metric, the previously suggested metric El is used in KA-CMA-ES using
ARP. It has been concluded that ARP-EI outperforms ARP-Mean, considering both the

success rate and success performance.

Moreover, the KA-CMA-ES using generation-based control has been investigated,
where the fixed generation-based control (FGC) and the proposed adaptive generation-based
control (AGC) are examined and compared. Generally, the KA-CMA-ES using AGC
performs better than that using FGC. The adaptive generation control using fu (AGC-p,, )
as model quality has the highest average success rate on all the problems. Considering the
speedup performance, adaptive generation control using Q, and Qs have better
performance. Overall, AGC-p,,..is preferable according to success rate and stability, and

AGC-Q,, is preferable when speedup performance is considered.

Finally, all the investigated algorithms of KA-CMA-ES are analyzed. Based on
previously discussion and results, only the best algorithms of each category of algorithms
are chosen as the representatives and used in analysis and comparison here. The PS-Interval
is taken as the representative of pre-selection without model impact control (PS). The
CPS-Q,, and CPS-p,,, are considered as typical algorithms of pre-selection with model
impact control (CPS). The FIC-EI is used to represent the fixed individual-based control
(FIC). The ARP-EI stands for the KA-CMA-ES using approximate ranking procedure (ARP).
For generation-based control, AGC-Q, and AGC-p,,,, are regarded as the representatives.
From the experimental results, it is apparent that ARP-EI has outstanding speedup
performance among all the investigated algorithms. The SPU values of PS-Interval, CPS-Q,,,

CPS-p,, , FIC-El and MIC-SLB on all the test problems are larger than one. This shows a
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stable improvement in success performance of these algorithms. The stabilities of AGC-Q,,
and AGC-p,,, are lower than others. There is only one problem on which ARP-EI performs
worsen than CMA-ES. Therefore, it can be stated that the ARP-EI is outstanding among all
the investigated KA-CMA-ES algorithms, according to the speedup performance or success
performance. Considering both the average SR and SPU, it can be concluded that ARP-EI

is preferable among all the investigate KA-CMA-ES algorithms in this work.

The application of KA-CMA-ES using ARP-EI in inverse method of parameter
identification for the elastic-plastic damage model also shows that the KA-CMA-ES improve
the efficiency of CMA-ES significantly and thus greatly reduce the computational cost of

material parameter identification.
Perspectives

The developed KA-CMA-ES algorithms have apparently improve the efficiency of the
standard CMA-ES. However, there are still some open questions. Here we would like to

mention several issues of future research, from our view of points.

Firstly, with respect to the surrogate models used in surrogate-assisted evolutionary
computation, there is still no clear conclusion on which model is better than others. Thus,

more surrogate models need to be investigated.

Regards to the KA-CMA-ES developed in this work, the experimental study and
application on high dimensional problems (larger than 20 dimension) could be carried out in

future works.

For high dimensional problems, the computational cost of surrogate model training
would increase apparently. This may become a disadvantage of surrogate-assisted evolution
algorithms. Therefore, surrogate-assisted evolutionary optimization for high dimensional

problem is a topic worthy of studying.
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