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Abstract 

Optimization is widely required and applied in science and in engineering. Many 

powerful optimization techniques (algorithms) have been developed for different kinds of 

optimization problems. An emerging class of challenging optimization problems is known 

as expensive optimization problems. The high computational cost of solving this kind of 

problems can arise due to the high expense in objective function evaluations, unavailability 

of derivative information, and complex landscape of objective function. In order to reduce 

the cost of solving expensive problems, this thesis devoted to Kriging-Assisted Covariance 

Matrix Adaptation Evolution Strategy (KA-CMA-ES). 

In this thesis, several propositions for the open questions in surrogate-assisted 

evolutionary optimization have been developed and applied in KA-CMA-ES. The developed 

KA-CMA-ES algorithms were analyzed and evaluated by experiments on forty test problems. 

Applications of the proposed KA-CMA-ES algorithm were carried out in material parameter 

identification of an elastic-plastic damage constitutive model.  

The results of experimental studies demonstrate that the developed KA-CMA-ES 

algorithms are more efficient than the standard CMA-ES and that the KA-CMA-ES using 

modified approximate ranking procedure with Expected Improvement as metric (ARP-EI) 

has the best performance among all the investigated KA-CMA-ES algorithms in this work. 

The results of engineering applications of the algorithm ARP-EI in inverse method of 

material parameter identification show that the presented elastic-plastic damage model is 

adequate to describe the plastic and ductile damage behavior of the used material and also 

prove that the proposed KA-CMA-ES apparently improve the efficiency of the standard 

CMA-ES. Therefore, the KA-CMA-ES is more powerful and efficient than CMA-ES for 

expensive optimization problems. 

 

Keywords: expensive optimization problem, evolution strategy, CMA-ES, Kriging model, 

pre-selection, evolution control, approximate ranking procedure, parameter identification. 
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Résumé 

L'optimisation est une problématique largement demandée et appliquée en science et 

en ingénierie. Beaucoup d’algorithme d'optimisation sont développées pour les différents 

types de problèmes dont un type classique et connu est le Problème d'Optimisation Couteuse. 

Les coûts pour résoudre ce type de problème peut se produire en raison de la dépense dans 

l’évaluations de la fonction d’objectif, de l'indisponibilité de fonction dérivée et du contexte 

complexe pour la fonction objective. Afin de réduire le coût de calcul pour des Problèmes 

d’Optimisation Coûteuse, cette thèse a été consacrée à la Stratégie d’Evolution avec 

Adaptation de Matrice de Covariance assistée par modèle de Krigeage (KA-CMA-ES). 

Dans cette thèse, plusieurs propositions pour les questions ouvertes dans l'optimisation 

évolutive assistée par substitution sont développées et appliquées dans KA-CMA-ES. Les 

algorithmes KA-CMA-ES développés sont analysés et évalués par 40 cas-test. Les 

applications de l'algorithme KA-CMA-ES développé sont réalisées par l’identification des 

paramètres matériels avec un modèle constitutif d’endommagement élastoplastique. 

Les résultats expérimentaux démontrent que les algorithmes KA-CMA-ES développés 

sont plus efficaces que le CMA-ES standard. Ils justifient également que le KA-CMA-ES 

couplé avec ARP-EI est le plus performant algorithme par rapport aux autres méthodes 

étudiées dans ce travail. Les résultats obtenus par l'algorithme ARP-EI dans l'identification 

des paramètres matériels montrent que le modèle d’endommagement élastoplastique utilisé 

est satisfait pour décrire le comportement d’endommage plastique et ductile. D’ailleurs, ils 

prouvent que le KA-CMA-ES proposée améliore l'efficace de la CMA-ES. Par conséquent, 

le KA-CMA-ES est plus puissant et efficace que CMA-ES pour des Problèmes 

d'Optimisation Coûteuse. 

 

Mots-clés: problème d'optimisation coûteuse, stratégie d'évolution, CMA-ES, modèle de 

Krigeage, présélection, contrôle d'évolution, procédure de classement approximatif, 

identification des paramètres. 
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General Introduction 

Optimization is extensively required and applied in almost all disciplines, whether 

economics, sciences, or engineering. Commonly, in engineering design and management, 

we almost always try to optimize something, for instance, to minimize the cost and energy 

consumption, or to maximize the profit, performance and efficiency. In real life, resources, 

time and money are always limited; consequently, optimization is far more important. 

Motivated by industrial and research demands, many powerful optimization techniques 

(algorithms) have been developed. The algorithm chosen for an optimization task largely 

depend on the type of the problem, the nature of the algorithm, the desired quality of solution, 

the available computing resource, time limit, availability of the algorithm implementation, 

and the expertise of the decision-makers [1]. This thesis devotes to a class of challenging 

optimization problems known as expensive optimization problems [2]. In this introductory 

chapter, the scope and motivation of our study are firstly explained. Then, we give a brief 

outline of the whole thesis.  

Aim and Scope 

With the development of numerical methods and computing technology, contemporary 

engineering design is heavily based on computer simulations, such as finite element method 

(FEM) and computational fluid dynamics (CFD) simulations. Correspondingly, computer-

aided design optimization is now involved in a wide range of applications, for instance, 

optimization of automotive components and shape optimization of wind turbine blades. 

However, computer-aided design optimization is accompanied by several difficulties, which 

bring high computational cost in optimization. Thus, computer-aided design optimization 

generally belongs to the so-called expensive optimization problems. The computational 

challenge arises in this class of expensive optimization problems generally are due to: 
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 Objective function is evaluated based on computer simulation, which can be 

expensive (require anywhere from minutes to hours even days of computation 

time for each run of simulation). Therefore, in this case, the computational cost 

would be very expensive, because usually a large number of objective function 

evaluations is needed in the optimization process.  

 There is no explicit analytical expression for the objective function or its 

derivatives. Thus, derivative-free algorithms are required to solve this black-box 

type of optimization problem. Generally, without the aid of derivative 

information, derivative-free algorithms require more evaluations of objective 

function than derivative-based algorithms. 

 For many computer-aided design optimization problems in industry and 

engineering, the landscape of objective function may be non-smooth, 

multimodal, discontinuous and ill-conditioned. These difficulties also bring 

about high computational cost in finding the optimum.  

In this thesis, our objective is to develop powerful optimization techniques that can 

efficiently deal with the expensive optimization problems subject to the box constraints. This 

kind of problems can be described as 

 
 minimize

subject to   

f

 

x

l x u
   

where   : df x is the objective function which is evaluated by running computer 

simulation, vector  
T

1, , dx xx is the collection of d design variables, vectors l and u are 

called lower and upper bounds, respectively. Box constraints restrict the search space to the 

hyperrectangle      1 1 2 2, , ,d dl u l u l u   .  

Because of the black-box property and complex landscape of objective function in 

expensive optimization problems, evolutionary algorithms (EAs), which is a class of 

derivative-free and powerful global optimizers, are appropriate for solving expensive 

optimization problems. However, the main difficulty in applying EAs to solve expensive 

optimization problems is that EAs usually need a large number of fitness function (objective 
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function) evaluations before obtaining a satisfying result. Consequently, surrogate-assisted 

evolution algorithms were motivated from reducing computational costs in evolutionary 

optimization of expensive problems. Optimization using surrogate-assisted evolutionary 

algorithms is also known as surrogate-assisted evolutionary optimization or surrogate-

assisted evolutionary computation in the optimization community.  

This work concentrates on surrogate-assisted evolution strategy (ES) for expensive 

optimization problems. The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 

and Kriging model are chosen as the two components of surrogate-assisted evolution 

strategy. This Kriging-Assisted Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) is abbreviated as KA-CMA-ES in the thesis. Our goal is to investigate the existed 

surrogate-assisted ES and develop new efficient algorithms of KA-CMA-ES for expensive 

problems.  

A comprehensive study on KA-CMA-ES are performed in this thesis. New training set 

selection methods, pre-selection strategy, evolution control and approximate ranking 

procedure have been modified or developed, and the corresponding KA-CMA-ES 

algorithms are formulated. Then, experimental studies of KA-CMA-ES algorithms using 

existed training set select methods, pre-selection and evolution control, and our new 

developed KA-CMA-ES algorithms are carried out to analyze and evaluate the performance 

of the algorithms. 

Thesis Outline 

This thesis is organized in six chapters. After this general introduction, Chapter 1 gives 

the state of the art of optimization. Some basic concepts of optimization and a brief overview 

of optimization algorithms are firstly presented in Chapter 1. Then, a review of surrogate-

assisted evolutionary computation based fitness approximation is offered.  

Chapter 2 systematically presents the evolution strategies (ESs), from the main 

principles and evolutionary operators to strategy parameter control and algorithms. The 
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CMA-ES, which is one of the most successful evolution strategies and is chosen as the 

representative of ESs, is completely introduced.  

Chapter 3 introduces the surrogate modeling of computer experiments. Design of 

experiments, surrogate models (including polynomial regression model, Kriging model, 

radial basis function model, multi-layer perceptron networks and support vector regression), 

and model validation are successively described in this chapter.  

Chapter 4 dedicates to the Kriging-Assisted CMA-ES (KA-CMA-ES) algorithms, 

which combine the Kriging model and CMA-ES to reduce the computational cost of ES for 

expensive optimization problems. A brief survey of surrogate-assisted evolution strategies 

and some open issues in this topic are firstly provided. We focus on dealing with these open 

questions and developing new KA-CMA-ES algorithms for expensive optimization 

problems. Then, a series of KA-CMA-ES algorithms using pre-selection strategy, 

individual-based control, approximate ranking procedure and generation-based control are 

illustrated in mathematical formulations. Finally, experimental studies on KA-CMA-ES 

algorithms are performed on forty test problems (including twelve benchmarking functions), 

to analyze and evaluate the performance of existed and our newly developed algorithms. 

Chapter 5 provides an engineering application of the KA-CMA-ES algorithm using 

approximate ranking procedure in material parameter identification of an elastic-plastic 

damage model.  

Chapter 6 gives a brief summary of the whole thesis in French.  

Lastly, the conclusion and perspective part concludes the thesis and summarizes our 

contributions to surrogate-assisted evolution strategies for expensive optimization problems.  
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1. State of the Art of Optimization 

This chapter presents a brief overview of optimization techniques and the state of the 

art of surrogate-assisted evolutionary optimization. Firstly, basic concepts of optimization 

are concisely introduced in Section 1.1. An overview of optimization algorithms is given 

subsequently in Section 1.2, including derivative-based and derivative-free algorithms. 

Section 1.3 reviews the development of surrogate-assisted evolutionary algorithms (EAs) 

for optimization. 

1.1 Basic Concepts of Optimization 

Optimization means finding the best solution, which is specified by certain goals, such 

as minimizing the cost of a process or maximizing the efficiency of a system from all feasible 

solutions [1]. Feasible solutions are those that satisfy all the conditions or constraints in the 

optimization problem. Nowadays, optimization is required and applied in almost all 

disciplines, whether economics, science, or engineering. In this section, some basic notions 

of optimization are presented.  

In an optimization problem, a function that mathematically represents the problem is to 

be minimized or maximized. The function that is being optimized is referred to as the 

objective function. Generally, the objective function is a quantity such as cost, profit, 

efficiency, size, weights, output, and so on. The variables in the objective function are 

denoted as the design variables. For example, for a structural optimization problem, design 

variables could be the dimensions of a structure or its material parameters. In some problems, 

design variables take on values from a discrete set, often a subset of integers, whereas in 

other problems, design variables can take on any real values. Problems with discrete design 

variables are called discrete optimization problems; similarly, problems with continuous 

variables are continuous optimization problems. In some optimization problems, there are 

some constraints on design variables, which restrict the domain from which design variables 
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can be taken values. In other words, the values that design variables taken should satisfy the 

constraints, if constraints exist. In this work, only the continuous optimization problems with 

box constraints are considered.  

The standard mathematical form of an (continuous) optimization problem is 

 

 

 

 

minimize

subject to   0, 1, ,

0, 1, ,

i

j

f

g i m

h j p

 

 

x

x

x

  (1.1) 

where   : df x is the objective function to be minimized over the design variables 

that are collected in a vector  
T

1, , dx xx ,   0ig x are called inequality constraints, and

  0jh x are called equality constraints. Conventionally, the standard form defines a 

minimization problem. A maximization problem can be treated by negating the objective 

function. The constraints on design variables define the set or domain 

     0, 1, , and 0, 1, , ,d

i jS g i m h j p     x x x   (1.2) 

which is called feasible set (also called feasible region) or search domain, and any element 

from this set is called a feasible point. A feasible point 
x is called global minimum (global 

optimum) solution, if  

     for all .f f f S   x x x   (1.3) 

Conversely, it is called a local minimum (local optimum) if the above inequality holds for x

only within its neighborhood [3]. The global and local optimum are simply illustrated in 

Figure 1.1. 

The optimization problem described in formulation (1.1) is called a constrained 

optimization problem since there are constraints on design variables. Optimization problem 

without constraints are correspondingly referred to as unconstrained optimization problems. 

Unconstrained optimization problems arise directly in many practical applications. They are 

also the basis for constrained optimization problems in which the constraints can be replaced 

by a penalty term in the objective function. Constrained optimization problems come from 

applications in which there are explicit constraints on the variables. The constraints on the 
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variables can vary widely from simple bounds to systems of equalities and inequalities that 

model complex relationships among the variables. Constrained optimization problems can 

be furthered classified according to the nature of the constraints (e.g., linear, nonlinear, 

convex) and the smoothness of the functions (e.g., differentiable or non-differentiable). 

Different kinds of optimization problems usually call for distinct approaches to solve them.  

 

Figure 1.1 Illustration of local and global minimum 

In optimization, after an problem is modeling as a mathematical form similar as (1.1), 

the next essential step is to use the proper algorithm to solve the optimization problem. A 

brief review of optimization algorithms is given in the following section.  

1.2 Overview of Optimization Algorithms 

1.2.1 Classification of Optimization Algorithms 

Optimization algorithms, which try to find the minimum values of mathematical 

functions, are essential in optimization. There are many optimization algorithms in the 

literature and no single algorithm is suitable for all problems. Thus, the right choice of an 

optimization algorithm is crucially important in solving a given optimization problem. 

Optimization algorithms can be classified in many ways, depending on the focus or the 

characteristics we are trying to compare [4]. For instance, optimization algorithms can be 
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classified as derivative-based and derivative-free, deterministic and stochastic, trajectory-

based and population-based, and so on. In this section, the derivative-based and derivative-

free algorithms classification is considered. Derivative-based methods (or gradient-based 

algorithms) use the derivative information in the search process, while the derivative-free 

methods (gradient-free algorithms) only use use the values of the objective, not any 

derivatives.  

Derivative-based methods generally require a much smaller number of iterations to 

converge to an optimum compared to derivative-free methods. However, only convergence 

to local minimum is guaranteed for derivative-based methods, while derivative-free methods 

are able to find global minimum. In addition, derivative-based methods are limited in cases 

where the objective function is always differentiable and has continuous derivatives over the 

search domain. Derivative-free methods do not place limitations on objective functions. 

Several typical and popular algorithms including both derivative-based and derivative-free 

algorithms for multi-variable/multi-dimensional unconstrained optimization problems are 

introduced subsequently.  

1.2.2 Derivative-based Algorithms 

Since derivative-based algorithms require the first-order and second-order derivatives 

of the objective function, firstly, some concepts about the derivative are given. The first-

order derivative or so-called gradient of a function  f x at a point  
T

1, , dx xx is 

  
     

T

1 2

, , , .
d

f f f
f

x x x

   
   

   

x x x
x   (1.4) 

The gradient represents the slope of the tangent of the graph of the function. More precisely, 

the gradient points in the direction of the greatest rate of increase of the function [1]. It is 

obvious that  f x decreases fastest in the direction of its negative gradient. Thus, gradient 

information provides the search direction to locate the minimum of the function.  

The Hessian matrix or Hessian  H x , which represents the second-order partial 

derivatives of  f x , is written as 
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    

2 2 2

2

1 1 2 1

2 2 2

2 2

2 1 2 2

2 2 2

2

1 2

.

d

d

d d d

f f f

x x x x x

f f f

f x x x x x

f f f

x x x x x

   
 

    
 
   
 

        
 
 
   
 
     

H x x   (1.5) 

For unconstrained design space, the conditions for optimal solution can be formulated 

via the first and the second partial derivatives. The necessary conditions for 
x to be a 

minimum of  f x are   0f  x and the Hessian matrix  
H x is positive definite [1, 5] 

( T 0x Hx for any non-zero column vectors dx ).   

In practice, for most optimization problems in which the objective functions  f x are 

nonlinear, the derivatives have to be evaluated numerically. Finite difference methods, 

including forward difference, backward difference, and central difference methods, can be 

used to calculate the derivative of a function at a point. Because the central difference method 

for computing the derivative is more accurate than forward/backward difference methods, it 

is preferable in applications.  

1.2.2.1 Steepest Descent Method 

The steepest descent or gradient descent algorithms choose search direction as the 

negative gradient, i.e.,
    k k

f d x based on the idea that f decreases fastest in the 

direction of this negative gradient [6]. In successive iterations, the design variables are 

updated as 

 
              1

,
k k k k k k k

f 


    x x d x x   (1.6) 

where  k
 is called step length, which is a positive scalar parameter that can be determined 

using the line search algorithm such as the golden section method [1]. The iterative process 

terminates until the convergence criteria are fulfilled. The algorithm for the steepest descent 

method is described in Algorithm 1.1. 
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The steepest descent method ensures a reduction in the objective function value at every 

iteration. Generally, when the search point is far away from the minimum, the gradient will 

be higher and the function reduction will be large for an iteration. As approaching the 

minimum, the gradient value usually decreases, i.e., the method becomes sluggish (slow 

convergence) near the minimum. To overcome this, the conjugate gradient method was 

proposed, which selects successive descent directions in a conjugate direction to previous 

descent directions [7].  

Algorithm 1.1 Steepest Descent 

1: input: objective function  f x , initial point  0
x , tolerance , set 0k  . 

2: repeat 

3: compute the search direction
    k k

f d x  

4: determine the step length  k
 by minimizing

      k k k
f x d using line search 

5: update candidate        1k k k k



 x x d  

6: 1k k   

7: until 
  k

f  x  

1.2.2.2 Newton’s Method 

Newton’s method uses the search direction, which is based on the first-order and 

second-order derivative information, given by        
1

k k k
f



   
 

d H x x . 

Correspondingly, Newton’s method updates candidate solutions at each iteration via 

              
1

1
,

k k k k k k
f


      

 
x x d x H x x   (1.7) 

where  f x and    2 f H x x denotes the gradient vector and Hessian matrix of  f x , 

respectively. The algorithm for Newton’s method is described in Algorithm 1.2. 

From Equation (1.7), for updating candidate solution at each iteration, the inverse of 

Hessian matrix need to be computed, which can be expensive. To ease the computational 

cost, approximations to the Hessian and its inverse are used. This has brought about the so-

called quasi-Newton methods, in which the DFP and BFGS methods are popular [6, 8].  
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Algorithm 1.2 Newton’s method 

1: input: objective function  f x , initial point  0
x , tolerance , set 0k  . 

2: repeat 

3: compute the search direction        
1

k k k
f



   
 

d H x x   

4: update candidate      1k k k
 x x d  

5: 1k k   

6: until 
  k

f  x  

1.2.2.3 Levenberg-Marquardt Method 

The advantage of the steepest descent method is that it reaches closer to the minimum 

of the function in a few iterations even when the starting point is far away from the optimum 

[1]. However, the method shows sluggishness near the optimum point. On the contrary, 

Newton’s method shows a faster convergence if the starting point is close to the minimum 

point. Newton’s method may not converge if the starting point is far away from the optimum 

point. These have driven the development of the so-called hybrid methods that take 

advantages of different methods. 

Algorithm 1.3 Levenberg-Marquardt (LM) method 

1: input: objective function  f x , initial point  0
x , tolerance , set 0k  . 

2: repeat 

3: compute
     ,
k k

f fx x and
  k

H x  

4: compute the search direction        
1

k k k
f



    
 

d H x I x   

5: update candidate      1k k k
 x x d  

6: If 
     1k k

f f


x x  then 

7: 2   (change the value of  ) 

8: else 

9: 2   (change the value of  ) 

10: end if 

11: 1k k   

12: until 
  k

f  x  

The Levenberg-Marquardt (LM) method is a hybrid method that combines the strength 

of both the steepest descent and Newton’s methods. The search direction in LM method is: 
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        
1

,
k k k

f


    
 

d H x I x   (1.8) 

where Ι is an identity matrix and  is a scalar that is set to a high value at the start of the 

algorithm. The value of  is altered during every iteration depending on whether the function 

value is decreasing or not. If the function value decreases in the iteration,  decreases by a 

factor. On the other hand, if the function value is increase in the iteration,  increases by a 

factor. The algorithm for the LM method is described in Algorithm 1.3. 

1.2.3 Derivative-free Algorithms 

Algorithms using derivative information are generally efficient, but these algorithms 

pose limitations on objective functions. In many real-world optimization problems, the 

objective function is evaluated by performing computer experiments and there is no 

analytical expression for the objective function or its derivatives. In these case, derivative-

free algorithms are required. Additionally, when discontinuity exists in objective function, 

derivative-free algorithms may be more efficient and proper. Subsequently, several 

derivative-free algorithms are presented. 

1.2.3.1 Nelder-Mead Simplex Algorithm 

The Nelder-Mead algorithm [9] solves the optimization problem by containing the 

solution within a simplex. Simplex refers to a geometric figure formed by 1d  points in a d-

dimension space, which is the generalization of a polygon to d-dimension. For simplicity, 

simplex in the d-dimension space is referred to as d-simplex, which has 1d  vertices. The 

Nelder-Mead algorithm starts with a set of points in d forming a simplex and at each 

iteration, the objective function is evaluated at the vertice of the simplex. Using this 

information, the simplex is moved in the search space. The process of moving the simplex 

is continued until the optimum value of the function is reached. Three basic operations are 

required to move the simplex in the search space: reflection, contraction, and expansion [1]. 
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Algorithm 1.4 Nelder-Mead Simplex Algorithm 

1: input: objective function  f x , initial simplex      1 2 1
, , ,

d 
x x x , coefficients , ,   and  , 

tolerance . 

2: repeat  

3: re-order the vertices according to 
        1 2 1d

f f f


  x x x  

4: compute the centroid point 
 1

1

d i

d i
 x x  

5: generate a trial point through reflection 
    1r d




  x x x x  

6: if 
     1r

f fx x  then 

7: compute expansion point 
      e r r

  x x x x  

8: if 
     e r

f fx x  then 

9: accepted the expansion point    1d e
x x  

10: else  

11: accept the reflection point    1d r
x x  

12: end if  

13: else if 
     r d

f fx x then 

14: accept reflection point    1d r
x x  

15: else if 
     r d

f fx x  then 

16: contraction 
      1 1c d d


 

  x x x x  

17: if 
     1c d

f f


x x  then 

18: accept the contraction point    1d c
x x  

19: else  

20: reduction (shrink) 
        1 1

, 2,3, ,
i i

i d   x x x x  

21: end if 

22: end if 

23: until     
2

1
1

1 1

d i

d i
f f 



 
  
  x x  

The fundamental procedure of Nelder-Mead algorithm is described in the following. 

The first step is to construct an initial d-simplex with 1d  vertices and to evaluate the 

objective function at the vertices. Then, the 1d  vertices are ordered according to their 

corresponding objective function values as 

 
        1 2 1

,
d

f f f


  x x x   (1.9) 
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where      1 2 1
, , ,

d 
x x x are ordered vertices of the simplex, whose objective function values 

are in ascending order. Apparently,  1d 
x  is the worse point (solution) and  1

x is the best 

solution, which is the convention in simplex method for minimization problem. At each 

iteration, similar ranking manipulations are performed. 

Then, the centroid point x of simplex is computed using all the vertices but with the 

exclusion of the worst vertex  1d 
x . That is 

 
 

1

1
.

d
i

id 

 x x   (1.10) 

Using the centroid point as the basis point, the reflection point of the worse point  1d 
x is 

computed as 

 
    1

, 0,
r d

 


   x x x x   (1.11) 

where is the so-called reflection coefficient. The typically value of 1  is often used. 

Whether the new trial solution is accepted or not and how to update the new vertex, 

depends on the objective function value at  r
x . There are three possibilities [10]:  

 If
        1 r d

f f f x x x , then replace the worst vertex  1d 
x by  r

x , i.e.,

   1d r
x x . 

 If
     1r

f fx x which means the objective improves, then it is possible to 

move the vertex further along the line of reflection to seek an expand point that 

can improve the objective even further. The expansion point is computed as 

 
       ,
e r r

  x x x x   (1.12) 

where  is the expansion coefficient. Typically, 2  is adopted. Now, we have to 

check if
  e

f x improves even better. If
     e r

f fx x , it is accepted and the 

vertex is updated as    1d e
x x ; otherwise, the result of reflection is used, i.e., 

   1d r
x x . 

 If the reflect point is not better than the second worst point, i.e.,
     r d

f fx x , 

the contraction operation, which reduce the size of the simplex while maintaining 

the best sides, is performed. The contraction point is computed as 
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      1 1

, 0 1,
c d d

 
 

    x x x x   (1.13) 

where  is the so-called contraction coefficient and 1 2  is usually used. If

     1c d
f f


x x is true, we then update    1d c

x x . 

If all the above steps fail, we should reduce (shrink) the size of the simplex towards the 

best vertice  1
x . This is called the reduction (or shrink) step, which is expressed by 

 
        1 1

, 2,3, , ,
i i

i d   x x x x   (1.14) 

where is called the shrink coefficient, and usually 1 2  is used. The preceding operations 

are continued until the the standard deviation of the objective function values computed at 

the vertices of the simplex becomes less than the tolerance , i.e., 

     
1 2

1

1
.

1

d
i

i

f f
d






  
 

 x x   (1.15) 

Above described Nelder-Mead simplex algorithm is described in Algorithm 1.4.  

1.2.3.2 Trust-Region Method 

The so-called trust-region method is one of the most widely used optimization 

algorithms. This method uses a model, which is usually smooth, easy to evaluate, and 

presumed to be accurate in a neighborhood (trust-region) about the current iteration, to 

approximate the objective function [11]. The next trial solution is then found by using the 

approximate model of objective function. Since the approximate model of objective function 

is smooth and easy to evaluate, finding the next solution based on approximation is cheaper 

than that from original function.  

The fundamental step in trust-region algorithm is to approximate the objective function. 

The commonly used approximate model is the quadratic model [12], which is of the form: 

 
                   

TT 1
,

2

k k k k k k k
f       

 
x x g x x x x H x x   (1.16) 

and this approximation is valid only in a small neighborhood of  k
x , which is the so-called 

trust-region, defined by 

 
      ,
k k kd     x x x   (1.17) 
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where  k
x is the solution of current iterate,  k dg and symmetric matrix  k d dH are 

parameters for the approximate model
   k

 x , and  k
 is the trust-region radius. Different 

methods can be used to determine  k
g and  k

H . Usually,  k
g and  k

H are determined by the 

first and second order derivatives of  f x . However, considering trust-region algorithm as 

a derivative-free method,  k
g and  k

H can be estimated by approximate derivatives (e.g., 

through finite difference methods) or by requiring
   k

 x to interpolate a set of sample 

points as in [12].  

Let  
x denotes the minimum of approximation model  k

 in the trust-region  k
 , that 

is 

 

 

 

   

               
TT

arg min

1
.

2

k

k

k k k k k k
f








      
 

x

x x

x g x x x x H x x

  (1.18) 

How good the approximate model
   k

 x is to the actual objective function  f x in the 

trust-region can be measured by the ratio between the actual reduction and the predicted 

reduction 

 
 

     
         

.

k

k

k k k

f f
r

 










x x

x x
  (1.19) 

Now, the two key questions are how to update the new solution  1k 
x , which is the 

center of the newly updated trust region, and the radius  1k


 of the trust region for next 

iteration. The scheme for these updating are as following: 

 If
 

1 20 1
k

r     , which means the approximate model is appropriate, we 

accept  
x as the next solution, i.e.,    1k  

x x , and keep the size of the trust 

region, that is    1k k
 


 .  

 If
 

1

k
r  , which implies that the approximate model is not appropriate in the 

region, thus, we do not accept the solution  
x and the radius of the trust region is 

reduced by a factor 1 1  . That is,    1k k
x x ,

   1

1

k k
  


 . 
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 If  
2

k
r  , which denotes that the approximate model is very appropriate, 

correspondingly, we do accept the solution  
x and enlarge the trust region by a 

factor 2 1  , i.e.,    1k  
x x and    1

2

k k
  


 . 

Typical values for constants in the algorithm are 1 0.25  , 2 0.75  , 1 0.5  and

2 3.  According to above described procedure, the trust-region moves and updates 

iteratively until the optimality is found or a fixed number of iterations is reached, which is 

presented in Algorithm 1.5.  

Algorithm 1.5 Trust-Region Algorithm 

1: input: objective function  f x , initial point  0
x , initial trust-region radius  0

 , initial 

algorithm constants 1 20 1     and 1 20 1    , and tolerance ; set 0k  . 

2: repeat 

3: construct an approximate model
   k

 x in Equation (1.16) for the objective function  f x

in current trust-region 
      k k kd     x x x .  

4: find the minimum of
   k

 x in  k
 , 

 
 

   arg min k

k







x
x x . 

5: compute the ratio 
                 k k k k k

r f f  
      

   
x x x x . 

6: if 
 

1

k
r   then 

7: reject the step and reduce the trust-region:        1 1

1,
k k k k

  
 

 x x  

8: else if 
 

2

k
r   then 

9: accept the step and keep the trust-region:        1 1
,

k k k
 

  
 x x  

10: else if 
 

2

k
r   then  

11: accept the step and enlarge the trust-region :        1 1

2,
k k k

  
  

 x x  

12: end if 

13: 1k k   

14: until 
  k

f  x  

1.2.3.3 Evolutionary Algorithms 

Evolutionary algorithms (EAs) are a class of stochastic derivative-free optimization 

methods. EAs use mechanisms inspired by biological evolution, such as reproduction, 

mutation, recombination, and selection. Among EAs, genetic algorithms (GAs), evolution 

strategies (ESs) and differential evolution (DE) are popular and commonly applied in 

research and engineering problems. 
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EAs use population-based search mechanism. The general framework of an 

evolutionary algorithm is presented in Algorithm 1.6.In the initialization of an EA, the first 

generation (parent population), consisting of one or more individuals, is created, and the 

fitness values (the objective function value is called fitness in EAs) of its individuals are 

evaluated. Then, the so-called evolution loop is entered, which consists of the evolution 

operators recombination (also known as crossover), mutation, evaluation, and selection [3]. 

Recombination creates new individuals, also called offspring, from the parent population. 

Mutation adds random changes to the newly created offspring. Subsequently, the fitness of 

the offspring is evaluated. Based on the fitness, selection identifies a subset of individuals 

which form the new parent population for the next iteration of the evolution loop. The loop 

is stopped when the termination criterion is fulfilled.  

Algorithm 1.6 General Framework of an Evolutionary Algorithm 

1: initialization 

2: repeat 

3: Recombination  

4: Mutation  

5: Evaluation  

6: Selection  

7: until termination criterion fulfilled 

1.2.3.4 Other Derivative-free Methods 

In addition to the Nelder-Mead method, Trust-region method and EAs that we 

introduced above, there are numerous other derivative-free optimization methods. As 

deterministic methods, there are direction search methods including Generalized pattern 

search method [13], Mesh adaptive direct search method [14], Lipschitzian-based methods, 

such as DIRECT algorithm [15] and Brand-and-bound search, and multilevel coordinate 

search [16], etc. For methods that mimic natural processes or some other physical analogies, 

besides EAs, there are simulated annealing (SA) algorithm, particle swarm optimization 

(PSO) algorithm, ant colony optimization (ACO) algorithm, harmony search (HS) algorithm, 

and so forth.  
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1.3 Review of Surrogate-Assisted Evolutionary Optimization 

Surrogate-assisted evolutionary algorithms are mainly motivated from reducing 

computational cost in evolutionary optimization of expensive problems. In surrogate-

assisted evolutionary algorithms, the so-called surrogate models or metamodels are 

constructed to simulate the behavior of the original (true) fitness function. Because surrogate 

models are much cheaper to evaluate, the computational costs are reduced with the assist of 

surrogate models. In recent years, surrogate-assisted evolution methods based on fitness 

approximation are preferable and popular in real-world applications, especially in expensive 

optimization problems. Mainly based on the review papers [17–19] and book [2], this section 

briefly reviews surrogate-assisted evolutionary optimization based on fitness approximation. 

Three main aspects of surrogate-assisted evolutionary optimization are: types of fitness 

approximation methods, the working styles and the management schemes of the fitness 

approximation [20]. The following of this section expands these three aspects successively. 

1.3.1 Fitness Approximation Methods 

The popular and most commonly used fitness approximation methods are using so-

called surrogate models or metamodels that are constructed based on a set of evaluated points 

from the evaluation history. Based on machine learning and statistical learning techniques, 

so far, several models have been used for fitness approximation. The most popular ones 

including polynomial regression, Kriging model, radial basis functions, neural networks and 

support vector machines. A comprehensive description of surrogate modeling techniques are 

presented in Chapter 3.  

1.3.2 Working Styles of Fitness Approximation 

The working style of fitness approximation denotes the mechanism of incorporating the 

fitness approximation models (surrogate models) into evolutionary algorithms (EAs). 

Surrogate models can be embedded in almost every operations of evolutionary algorithms, 

such as initialization, mutation, recombination and fitness evaluations [18]. According to 
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[20], the incorporation mechanisms of surrogate in EAs can be divided into direct and 

indirect fitness replacement methods, i.e., direct and indirect styles, as shown in Figure 1.2. 

The direct fitness replacement method is to use the approximate fitness to directly replace 

the original (exact) fitness during the evolutionary optimization. Individuals mostly have the 

approximate fitness during the optimization. Only a few individuals are evaluated by original 

fitness function for control purpose. The indirect fitness replacement method is to use the 

approximate fitness only for some but not all processes in the EAs, such as population 

initialization and EA operators. The original fitness is kept for each individual and the 

approximate fitness is not used to directly replace the original fitness.  

 

Figure 1.2 Working styles of fitness approximation 

1.3.2.1 Direct Style 

Direct style, i.e., direct fitness replacement method, is a straightforward strategy to use 

fitness approximation models. Individuals are evaluated by surrogate models and then the 

estimated fitness is assigned to each individual. In other words, the fitness approximation 

model (surrogate model) undertakes the role of the original fitness function, and thus the 

original fitness is replaced by approximate fitness. However, the obvious drawback is that 

the evolutionary algorithm may be misled to false optimum due to the inaccuracy of the 
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surrogates of the original fitness function [21]. A false optimum is an optimum of the 

surrogate model, which is not an optimum of the original fitness function [18]. Therefore, in 

most cases, surrogates should be used together with the original fitness function in order to 

prevent the optimization process from being misled by false optima introduced by surrogates. 

This is termed as model management [22, 23] or evolution control [21, 24], which is of 

significant importance in direct fitness replacement methods. The details of model 

management will be described below in Section 1.3.3. 

1.3.2.2 Indirect Style 

In indirect style, i.e., indirect fitness replacement method, the exact fitness of each 

individual is computed during EA process and the approximate fitness is used in other ways. 

For example, the approximate fitness can be used for population pre-selection. In [25], the 

Gaussian process model was used to pre-select the most promising solutions, which were 

then actually evaluated by the original fitness function. In this method, based on a standard 

 , -ES  ,    new offspring individuals are firstly created from  parents. Then, 

individuals out of these  individuals are pre-selected according the merit function values 

evaluated by Gaussian process model to generate the offspring population. The pre-selected

 offspring are evaluated by original fitness function for selection and recombination.  

According to [20, 26, 27], indirect fitness replacement method uses approximate fitness 

in mutation and recombination (crossover) operators through a technique known as Informed 

Operators. In this approach, the approximate models are used to evaluated the fitness of 

candidates only during the mutation and/or recombination process. After the mutation and/or 

mutation process, the exact fitness is still computed for each individuals. The advantage is 

that using the approximate fitness indirectly in the form of informed operator rather than 

direct fitness replacement is expected to keep the optimization moving toward the true global 

optima and to reduce the risk of convergence to suboptimal solutions or false optima because 

each individual in the population still carries its exact fitness [27]. Some of the informed 

operators in [26, 27] are described as follows: 
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 Informed initialization: An individual in the initial population is generated by 

selecting the best individual from a number of uniformly distributed individuals 

in the design space according to the approximate fitness.  

 Informed mutation: The informed mutation is best mutation from several 

random mutations according to the approximate fitness. Specifically, several 

random mutations of the base point are firstly generated ; these mutations then are 

evaluated by the surrogate model; the mutation with the best approximate fitness 

is returned as the result.  

 Informed recombination: Two parents are selected randomly according to the 

usual selection strategy. These two parents are not changed in the course of the 

informed recombination (crossover) operation. Several recombinations are 

conducted by randomly selecting a crossover method, randomly selecting its 

internal parameters and applying it to the two parents to generate a potential child. 

The surrogate is used to evaluate every potential child, and the best child is 

selected as the outcome. 

1.3.3 Model Management 

The direct working style of fitness approximation uses surrogate model for fitness 

evaluations and may reduce the number of fitness evaluations significantly [18]. However, 

the application of surrogate models to evolution computation is not as straightforward as one 

may expect. Apparently, there are two principles in direct fitness replacement strategy. First, 

it should be ensured that the evolutionary algorithm converges to the global optimum or a 

near-optimum of the original fitness function. Second, the computational cost should be 

reduced as much as possible. In other words, the number of evaluating the expensive original 

fitness function should be decreased as much as possible.  

Due to the lack of data and the high dimensionality of design space, it is very difficult 

to construct a perfect global approximate model of the original fitness function. The 

inaccuracy of the approximate model may lead the EA to inferior local optimum or false 
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optimum. To tackle this problem, two main aspects are considered. Firstly, the approximate 

model should be used together with the original fitness function. This is known as evolution 

control in evolutionary computation [21]. Secondly, the quality of surrogate model should 

be improved as much as possible with the given limited data. Several aspects are important 

to improve the model quality, such as selection of the model, selection of surrogate model 

training method and selection of error measures [17]. Therefore, model management, which 

consists of above two aspects, is essential for direct fitness replacement methods.  

1.3.3.1 Evolution Control 

Evolution control means that, in surrogate-assisted evolutionary computation, the 

original fitness function is used to evaluate some/all individuals in some/all generations [21]. 

An individual that is evaluated using original fitness function is called a controlled individual. 

Similarly, a generation in which all its individuals are evaluated using the original fitness 

function is called a controlled generation [17]. The evolution control in surrogate-assisted 

evolutionary computation generally can be divided into three main approaches [17, 18]. 

No Evolution Control 

When the built surrogate model is assumed of high-fidelity, the original fitness function 

is not used in evolutionary computation, i.e., no individual or generation is controlled. This 

is known as no evolution control. In this case, after the surrogate model is constructed, the 

original fitness function is not at all used in evolutionary computation.  

Fixed Evolution Control 

Fixed evolution control implies that the frequency of evolution control is fixed. There 

are two approaches to fixed evolution control: individual-based evolution control and 

generation-based evolution control. Individual-based evolution control means that in each 

generation, some of the individuals are evaluated by surrogate model and the others are 

evaluated using the original fitness function, which is illustrated in Figure 1.3. In individual-

based evolution control, the individual selection can be random or using some strategy, e.g., 

selecting the best individual (based on the prediction of surrogate model) for evolution 
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control. In generation-based evolution control, all individuals in a selected generation will 

be evaluated by the original fitness function. The generation selection can be random or with 

a fixed frequency. A generation-based evolution control is shown in Figure 1.4. 

The main drawback of fixed evolution control methods is that the frequency of 

evolution control is fixed. This is not very practical because the fidelity of the surrogate 

model may vary significantly during optimization process. As a matter of fact, a predefined 

fixed evolution control frequency may cause strong oscillation during optimization due to 

large model error [28]. 

Adaptive Evolution Control 

It is intuitive and reasonable to assume that the frequency of evolution control should 

depend on the fidelity of the surrogate model. This strategy is called adaptive evolution 

control. In adaptive evolution control, individuals are iteratively controlled to update the 

surrogate model until the fidelity (or quality) of the surrogate model is acceptable.  

1.3.3.2 Off-line Model Training 

Off-line model training denotes the training process before the model is used in 

evolutionary computation [17]. Off-line model training constructs surrogate models based 

on data sampling (design of experiments) or previous optimization history data. In this case, 

either the surrogate model is of high fidelity or the original fitness function is expensive to 

evaluate, so that the original fitness is not used after the model training [20].  

1.3.3.3 On-line Model Updating 

On-line model training (updating) denotes rebuilding or updating the model during the 

evolutionary process. In surrogate-assisted evolutionary computation, surrogate model may 

be constructed at an early stage of the EA process. Because the set of sample points, which 

are used to train the model, is limited and does not cover the whole search space, the 

surrogate may concentrate on the region spanned by the existing sample points and not cover 

the rest of the search space well. As the EA continues and new individuals enter into the 

population, the accuracy of the previously built surrogate model will decrease. By evolution 
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control, new points are added into the training data set. Thus the surrogate model needs to 

be retrained using the old sample points together with the new sample points. This is the 

typical on-line model updating technique in surrogate-assisted evolutionary computation.  

 

 

Figure 1.3 Illustration of fixed individual-based control 
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Figure 1.4 Illustration of fixed generation-based control 
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2. Evolution Strategies 

 This chapter gives a comprehensive description of evolution strategies (ESs). A short 

introduction of ESs is provided in Section 2.1. Then the main principles and evolutionary 

operators used in ESs are introduced in Section 2.2. Subsequently, Section 2.3 presents 

parameter control of ESs with three ES algorithms, (1+1)-ES,  , -ESI   with 

Cumulative Step-Size Adaptation, and Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES).  

2.1 Introduction 

Evolution strategies (ESs) are stochastic, derivative-free optimization methods. It has 

been proven that ESs are appropriate and successful for continuous black-box optimization, 

i.e., for optimization scenarios, where no analytical expressions of the objective functions 

are explicitly given and derivatives are unavailable [29]. Additionally, ESs have the 

capability of accessing the global optimum for multimodal problems [30]. Therefore, ESs 

are increasingly popular in solving real-world optimization problems.  

ESs are search paradigms inspired by the principles of biological evolution. They 

belong to the family of evolutionary algorithms (EAs) that address optimization problems 

by implementing a repeated process of stochastic variations followed by selection. In each 

generation (iteration), new offspring (candidate solutions) are generated from their parents 

(candidate solutions that have already been visited), their fitness are evaluated, and then the 

better offspring are selected to become the parents for the next generation [31].  

ESs most commonly address the problem of continuous black-box optimization. The 

search space is the continuous domain, d , and solutions in search space are d-dimensional 

vectors, denoted as dx . The objective or fitness function  : ,df f x x is 

considered to be minimized. In the field of evolutionary algorithms, the objective function 
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is often called fitness function, correspondingly, the objective function value is called the 

fitness value. High fitness means low fitness function values in the convention minimizing 

problem. There is no specific assumptions on fitness function f , except that the fitness 

function f can be evaluated for each x . This kind of search problem is referred to as black-

box optimization. The objective is to generate solutions ( x vector) with small fitness values 

while using a small number of fitness function evaluations.  

2.2 Main Principles and Evolutionary Operators 

Inspired by the principles of biological evolution, evolution strategies use a repeated 

process that consist of evolutionary operators which mimics the mechanisms of the 

Darwinian theory of evolution to address optimization problems. A population consists of 

the so-called individuals is undergoes evolution cycles during each generation (iteration) of 

evolutionary search. Each individual consists of a candidate solution or vectors of input 

parameters dx , an associated fitness value  f x , and of the so-called endogenous 

parameters, which are strategy parameters for the mutation operator [3]. In some cases, the 

population contains only one individuals. Individuals are also denoted as parents or offspring, 

depending on the context. Generally, a generation loop can be described as : 

1. One or several parents are selected from the population (mating selection) and new 

offspring are generated by recombination of these parents. 

2. The new offspring undergo mutation and become new members of the population. 

3. Environmental selection reduces the population to its original size by choosing better 

individuals.  

The sequence of generations is continued until a termination criterion is met. Typical 

termination criteria are set as reaching a maximum number of evaluations, reaching a target 

fitness value, or stagnation of the search process. 
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The main principles within above generational procedure of evolution strategies are 

firstly presented below. Then the corresponding evolutionary operators, which are 

implementations of main principles in algorithms, used in evolution strategies are described.  

2.2.1 Main Principles 

2.2.1.1 Environmental Selection 

In evolution strategies, environmental selection is applied as so-called truncation 

selection. Specifically, based on the individuals’ fitness  f x , only  best individuals from 

the population survive. In other words, only  individuals that have best fitness are selected 

and kept in the population. In contrast to roulette wheel selection in genetic algorithms [32], 

only fitness ranks are used in truncation selection. In evolution strategies, environmental 

selection is deterministic. Environmental selection, on average, increases the fitness of the 

population and at the same time reduces diversity as some individuals are discarded. Overage 

individuals can also removed by environmental selection.  

2.2.1.2 Mating Selection and Recombination 

In biological filed, recombination, also known as crossover, mixes the genetic material 

of parents. Similarly, in evolution strategies, recombination combines information from 

several parents to generate a new offspring. Firstly, mating selection picks individuals from 

the population to become new parents. These parents are then used to generates a single new 

offspring by recombination. There are two common scenarios for mating selection and 

recombination [31]: 

 Fitness-independent mating selection and recombination do not depend on the 

fitness values of the individuals and can be either deterministic or stochastic. In this 

scenario, environmental selection is essential to drive the evolution toward better 

solutions.  

 Fitness-based mating selection and recombination, where the recombination 

operator utilizes the fitness ranking of the parents. Thus, recombination performs in 
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a deterministic way. Environmental selection can be potentially be omitted in this 

case.   

2.2.1.3 Mutation and Parameter Control 

Mutation introduces small, random, and unbiased changes (perturbations) to an 

individual. This provides the main source of variation (evolutionary changes) of individuals 

in evolution strategies. Thus, mutation plays an important role in evolution strategies. The 

average size of these changes introduced by mutation, depends on endogenous parameters 

that change over time, for example, the step-size  and covariance matrix C . These 

parameters are also called control parameters, or endogenous strategy parameters. In contrast, 

exogenous strategy parameters are fixed once and for all, for example, the parent number  . 

Parameter control, i.e., how to control the endogenous parameters, is not always directly 

inspired by biological evolution, but it is an indispensable and central feature of evolution 

strategies.  

2.2.2  Evolutionary Operators in Evolution Strategies 

In order to realize algorithms of evolution strategies, principles described in above 

subsection need to be specified in concrete evolutionary operators so that to form 

evolutionary search schemes. The selection, recombination and mutation operators used in 

evolution strategies are explained below.  

2.2.2.1 Selection Operators 

Selection operator, which relates directly to the environmental selection concept of 

survival of the fittest, gives the evolutionary search a direction. In each generation, the 

selection operator emphasizes better solutions by selecting a subset of individuals based on 

their fitness to form the new parent population used in the next generation. Usually, we use

 to denotes the number of individuals in parent population (also called the size of parent 

population), and  to denotes the number of offspring generated in each generation. In 
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evolution strategies, the commonly used selection strategies are the comma (indicated by ,) 

selection and plus (indicated by +) selection:  

 Plus selection selects the  -best solutions from the union of the last parent 

population (  individuals in parent population) and the current offspring 

population (  individuals in offspring population), and is correspondingly 

denoted as   -ES  .  

 Comma selection, i.e.,  , -ES  , selects -best solutions exclusively from the 

offspring population (   individuals in offspring population), neglecting the 

parent population, even if the parents have a superior fitness.  

Neglecting superior solutions, in comma selection, may sound irrational. However, 

good solutions can be only local optimum. By using comma selection, the evolutionary 

process could escape from the local optimum and reach a better optimum [29]. In contrast, 

when using plus selection, the search process may fail to leave the local optimum without 

the ability to neglect [30]. Thus, comma selection is advantageous in the case of multimodal 

problems.  

2.2.2.2 Recombination Operators 

In evolution strategies, recombination combines information from several parents to 

generate a new offspring. Usually, multi-parent recombination is used, where more than two 

parents are combined. Here we use  to denotes the number of parent individuals used in 

recombination (i.e.,  out of  parent individuals are used to generate a new offspring by 

recombination, where   ). The most important and commonly used types of 

recombination in evolution strategies include: 

 Dominant recombination, denoted by  ,D   , is also known as discrete 

recombination. In dominant recombination, a property of a parent individual is 

inherited by the offspring, i.e., this property dominates the corresponding property 

of other parent individuals. Specifically, for each variable (component of the 

design variable vector x ), a single parent is drawn randomly from all  parents 
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to inherit the variable value. With  parents 1, , x x , dominant recombination 

creates the offspring  
T

1, , dx x  x by randomly choosing the j-th component  

  , random 1, , ,j ijx x j       (2.1) 

where ijx is the j-th component of the i-th parent individual.  

 Intermediate recombination, denoted by  ,I   , takes the average value of 

all the parents. Given  parents 1, , x x , each component of the offspring

 
T

1, , dx x  x is the arithmetic mean of the corresponding components of all 

parents, i.e., 

 
1 1

1 1
, or .j ij i

i i

x x
 

  

   x x   (2.2) 

In this case, the offspring is the centroid of  parents. 

 Weighted recombination, denoted by  ,W   , is the generalization of 

intermediate recombination, usually with   in ES. Weighted recombination 

takes a weighted average of all  parents 1, , x x as the offspring  
T

1, , dx x  x , 

i.e., 

 
1

,i i

i

w




  x x   (2.3) 

where , 1, ,iw i  are the weights, which usually have
1

1ii
w




 . In ES, the 

weight values depend on the fitness ranking such that parents with higher fitness 

never get smaller weights than lower ones. With equal weights, weighted 

recombination recovers to intermediate recombination.  

In evolution strategies, the intermediate or weighted recombination with   is often 

used. Thus, the result of selection and recombination is often deterministic. This means that 

eventually all offspring are generated by mutation from the same single solution vector (the 

parent centroid, generated by recombination).  

2.2.2.3 Mutation Operators 
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The mutation operator, which introduces variations by adding perturbation to the result 

of recombination, provides the main source of variation (evolutionary changes) of offspring 

in evolution strategies. According to [33, 34], a mutation operator is supposed to fulfill three 

rules, namely: 

 Reachability: from an arbitrary solution, any point in the search space can be 

reachable with probability strictly larger than zero by means of a finite number of 

applications of the mutation operator. 

 Unbiasedness: the mutation operator should be unbiased, unless knowledge 

about the problem has been gathered. This can be achieved by using the maximum 

entropy distribution that obeys knowledge about the problem as constraints. 

 Control: the mutation operator should have parameters that affect the mutation 

strength (shape of the distribution), such that the extent of variation can be 

controlled. As known from theory, when approaching the optimal solution, the 

strength of mutation must be weakened steadily.  

In continuous search space d , these principles are fulfilled by the famous Gaussian 

mutation operator [3], which uses the multivariate normally distributed random vector as the 

variation for individual. Before presenting the commonly used Gaussian mutation in 

algorithms of evolution strategy, basic concepts about multivariate Gaussian distribution 

(also called multivariate normal distribution) are given firstly. 

A d-dimensional random vector  
T

1, , dY YY under multivariate normal distribution 

with mean vector dm and covariance matrix d dC is typically written as

 ,dY m C , where  ,d m C denotes a d-dimensional multivariate normal distribution 

in its general form. Correspondingly, the random vector Y has the probability density 

function 

  
   

   
T 1

1 22

1 1
exp ,

22 det
d

f


 
    

   
Y

y y m C y m
C

  (2.4) 
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where
dy R is the realization of the random vector Y and  det C is the determinant of the 

covariance matrix C . In mathematical equations,  ,d m C is sometimes used like a vector 

which is actually sampled according the distribution given. Since the covariance matrix C is 

symmetric and positive definite, the following eigendecomposition exists: 

 
1
22 T Tand , C BD B C BDB   (2.5) 

where B is an orthogonal matrix (i.e., T T B B BB I where I is identity matrix), the columns 

of which are the eigenvectors of C , D is a diagonal matrix with square roots of eigenvalues 

ofC as diagonal elements, and
1
2 d dC is the symmetric square root matrix ofC such that

 
1 1 1 1
2 2 2 2

T

 C C C C C . With above eigendecomposition and considering the properties of 

multivariate normal random vector [35], the multivariate normal distribution  ,d m C can 

be written as 

 
   

 
1
2

, ,

, ,

d d

d





m C m 0 C

m C 0 I
  (2.6) 

where
1
2 TC BDB is given in Equation (2.5).   

In evolution strategies, the Gaussian mutation operator generates a mutated individual

x from an individual dx by adding a multivariate normally distributed vector on x . This 

can be expressed generally as 

    
1
2, , .d d

    x x 0 C x C 0 I   (2.7) 

Based on multivariate normal distribution, the three different mutation operators that 

are commonly used in evolution strategies are:  

(a) Isotropic or Spherical Gaussian mutation generates the mutation x from x by 

using B I and D I for matrices B and D in Equation (2.7), where is called 

step-size, that is, 

  , .d  x x 0 I   (2.8) 

This corresponds with spheres with individual radii defined by , as indicated in 

Figure 2.1 (a). 
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(b) Anisotropic or Axis-parallel Gaussian mutation generates the mutation x from

x by using B I and    1diag diag , , d  D  be a diagonal matrix with 

different entries on the main diagonal, i.e.,  

       2diag , ,diagd d
    x x I 0 I x 0    (2.9) 

This turns the spheres into anisotropic ellipsoids with main axes parallel to the 

coordinate axes, as shown in Figure 2.1 (b). 

(c) Correlated Gaussian mutation denotes the situation that matrix B is not just an 

identity matrix and    1diag diag , , d  D  is a diagonal matrix, i.e., 

         2diag , ,diag ,d d d
      x x B 0 I x B 0 x 0 C    (2.10) 

This rotates the hyperellipsoids with respect to the coordinate axes, as shown in the 

right part of Figure 2.1 (c). 

The choice of the mutation operator from above described three cases has a direct 

impact on the complexity of the endogenous parameters that control the multivariate normal 

distribution. For a problem of d-dimensional search space, the number of endogenous 

strategy parameter in case of Equation (2.8) is  1O , i.e., constant. In case of Equation (2.9), 

a vector of endogenous parameters with size  O d  is required. To adapt an arbitrary 

covariance matrix C in Equation (2.10),  2O d  endogenous parameters are required [3].   

 

Figure 2.1 Gaussian mutation operators in evolution strategies  
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2.3 Parameter Control and Algorithms 

Controlling the parameters of mutation operator is essential to the design of evolution 

strategies. Consider an evolution strategy using the isotropic mutation operator, where the 

step-size is a scaling factor for the random vector perturbation. The step-size controls to 

a large extent the convergence speed. In situations where larger step-sizes lead to larger 

expected improvements, a step-size control technique should aim at increasing the step-size 

(and decreasing it in the opposite scenario) [31]. Generally, the goal of parameter control is 

to drive the endogenous strategy parameters close to their optimal values. The research on 

ESs mainly focuses on question of adaptation of parameters of mutation operators. Different 

parameter control strategies bring about different algorithms for evolution strategies. In the 

following, three specific ESs are outlined, each of them representing an important 

achievement in parameter control.  

2.3.1 The 1/5th Success Rule 

The 1/5th success rule is a basic step-size control strategy for evolution strategies. It is 

based on an important discovery made by Rechenberg [36] in early research of evolution 

strategies. The (1+1)-ES using 1/5th success rule is the first evolution strategy and the basis 

of the evolutionary algorithm in the field of ES. This algorithm is implemented in Algorithm 

2.1.  

As the first and simplest evolution strategy, (1+1)-ES only use mutation and selection 

operators to guide the search. We denotes a generation (iteration) of the search by the 

generation counter g  ( 0,1, 2,g  ). In generation g , a single offspring 1

dx is 

generated from a single parent individual  g dm by isotropic mutation i.e., 

     1 ,
g g

d x m 0 I (Line 4 in Algorithm 2.1). If the offspring has higher fitness (lower 

fitness function value) than its parent, it becomes the new parent; otherwise, the parent 

remains (Lines 5~9 of the algorithm). The loop is terminated until termination criterion is 

satisfied.   



2. Evolution Strategies 

37 

Algorithm 2.1 The  1 1 -ES with 1/5th Success Rule 

1: given: , 1d d d    

2: initialize
   0 0

, 0, 0d g  m  

3: repeat 

4: 
     1 ,
g g

d x m 0 I   //mutation 

5: if     1

g
f fx m  then  

6:  1

1

g 
m x         //selection of 1x as the new parent if it is better than  t

m  

7: else 

8:    1g g
m m  

9: end if 

10: 
         1

1

1 1
exp

5

g g g
f f

d

 
            

x m     //step-size update 

11: 1g g    

12: until termination criterion is fulfilled 

In (1+1)-ES, the adaptation of the step-size, which is the only one strategy parameter 

of (1+1)-ES, is of crucial importance for reliable results and efficiency of the algorithm. The 

step-size significantly affects the convergence speed. The step-size has to be adapted in order 

to speed up the optimization process. Usually, in situations where larger step-size lead to 

larger expected improvements, a step-size control technique should aim at increasing the 

step-size, and decrease it in the opposite situations. The step-size in (1+1)-ES is adapted 

according to the 1/5th success rule. 

The idea of the 1/5th success rule is to increase the mutation rate (step-size in isotropic 

mutation), if the success probability (i.e., the empirical probability that     1

g
f fx m ), 

which refers to the ratio between successful mutations and all mutations, is larger, and to 

decrease it, if the success probability is smaller. Specifically, if about 1/5 of all mutations 

are successful, the step-size is optimal and no adaptation is required. The step-size needs to 

be reduced, if the success rate is smaller than 1/5, and needs to be increased, if the success 

rate is larger than 1/5. The new step-size  1g


 is updated according to Line 10 in Algorithm 

2.1. In the algorithm, the empirical probability that     1

g
f fx m is expressed by

     1

g
f f 

  
x m , where   denotes the expected value function, and   is the 

indicator function such that      1 1
g

f f x m only if     1

g
f fx m and
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     1 0
g

f f x m otherwise. The success probability information is obtained from 

previous iterations.  

2.3.2 Cumulative Step-Size Adaptation (CSA) 

The Cumulative Step-Size Adaptation Evolution Strategy (CSA-ES) developed by 

Ostermeier et al. [37] adapts the step-size by using a so-called evolution path that records 

information accumulated from the preceding generations instead of using information from 

the current generation only. The evolution path records the sum of consecutive successful 

mutation steps to make a decision about possible corrections of the step-size. This 

information can improve the adaptation and search procedure remarkably [31]. When 

successful steps are towards the same direction, the evolution path which records the sum of 

mutation steps will be relatively long in this direction. Because the same distance in this 

direction can be covered with larger steps, the step-size should be increased [38]. On the 

contrary, if the orientations of successful steps are opposite to each other, they sum up 

making the evolution path relatively short. In this case, the used step-size is too large and 

should be decreased.  

Algorithm 2.2 outlines the  , -ESI   with Cumulative Step-Size Adaptation (CSA). 

In this algorithm, comma selection, isotropic mutation and intermediate recombination are 

used. The step-size is adapted by using the evolution path p . In the evolution loop, at 

generation g ,  offspring  1, , x x are generated by adding a isotropic Gaussian mutation 

on the solution vector  g
m (also known as the mean of mutation distribution), which is 

described in Lines 4~6. The fitness of these  individuals then are evaluated (Line 7). The 

selection operator chooses  best individuals to form the new parent population according 

to their fitness values. Then, the intermediate recombination of the  parents generates a 

single new solution vector  1g 
m , which is the new mean vector of the mutation distribution 

(Line 9).  

The evolution path p is updated (Line 10) using local information about a successful 

mutation step 1
:1 ii



  z , a decay factor c is used to decrease the importance of previously 
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performed steps with time, and the factor  2c c   is set to normalize the variance of

p such that
   1

,
g

d


p 0 I . Finally, the step-size is updated by using the evolution path

p as expressed in Line 11. The step-size increases if the length of the evolution path
 1g




p

is longer than the expected length of the evolution path under random selection

  ,d 0 I , and decreases otherwise. The expectation of  ,d 0 I , i.e.   ,d 0 I , 

is approximated by  2

1 1
4 21

1
d d

d   . The damping factor d is used to control the change of 

the step-size.  

Algorithm 2.2 The  , -ESI   with Cumulative Step-Size Adaptation 

1: given:  , 4 3ln , 2d d            , 

        2 5 , 1 2max 0, 1 1 1 .c d d d c               

2: initialize 
     0 0 0

, 0, , 0d g   m p 0  

3: repeat 

4: for 1, ,k   do 

5:  ,k dz 0 I           //i.i.d. for each kz  

6:    g g

k k x m z        //mutation 

7:  k kf f x  

8: end for 

9: 
 1 1

:1

g

ii








 m x     //intermediate recombination 

10:          1 1

:

1

1 2
g g g

i

i

c c c


     





 



    p p z m    //update evolution path 

11: 
   

 

  

1

1
exp 1

,

g

g g c

d






 





  
   
   

  

p

0 I
     //step-size update 

12: 1g g   

13: until termination criterion is fulfilled 

2.3.3 Covariance Matrix Adaptation (CMA) 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [39, 40], is a highly 

developed evolution strategy and has become a standard for continuous black-box 

evolutionary optimization. It is a powerful optimization algorithm and performs especially 

well in non-smooth, multimodal back-box problems. The CMA-ES adopts the correlated 

mutation operator, which makes it a high-level algorithm compared with previous described 
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algorithms that use isotropic mutation. In CMA-ES, two techniques, namely the covariance 

matrix adaptation (CMA) and the cumulative step-size adaptation (CSA), are used for 

adapting the covariance matrix of mutation and the step-size, respectively.  

The  , -CMA-ESw   is detailed in the remaining part of this subsection. Briefly 

speaking, in generation loop of the  , -CMA-ESw   (simply denoted as CMA-ES 

hereafter),  offspring are generated by mutation based on a single solution vector (the mean 

vector of mutation distribution), comma selection is then performed to select  (   ) best 

individuals according to their fitness, the weighted recombination of selected individuals 

creates the single new solution. The generation loop stops until the termination criterion is 

fulfilled. This generation loop of CMA-ES is presented in details in the following. 

Mutation or Sampling 

In  , -CMA-ESw   , the  offspring are generated by correlated mutation from the 

same single solution vector, i.e., 

              
1

2, , for 1, , ,
g g g g g g

k d k k      x m 0 C m C z   (2.11) 

where: 
0g  is the counter of generation. 

 is the number of offspring. Its default value is  4 3ln d      ( d is the dimension 

of the problem). 

d

k x is the k-th offspring (individual, search point, solution). 

 g dm is the mean of mutation distribution (a solution vector), which is formed 

by weighted recombination of selected  best individuals after initialization. Its 

initial value  0
m is given by the user.  

 g
  denotes the step-size (overall standard deviation) at generation g . Its initial 

values  0
  is given according to the bounds of search space. 

 g d dC is a symmetric positive definite covariance matrix at generation g . Its 

default initial value is  0
C I .   

1
2t d dC is the symmetric square root matrix 
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of  g
C such that              

1 1 1 1
2 2 2 2

T

g g g g g 
 

  
C C C C C , which can be 

obtained according to Equation (2.5) 

d

k z are random vectors (mutation vector) sampled from  ,d 0 I , i.e.

 ,k dz 0 I . 

From Equation (2.11), the  offspring also can be viewed as sampling from a 

multivariate normal distribution with mean vector  g
m and covariance matrix     

2
g g

 C , 

i.e.,
       

2

,
g g g

k d x m C . To define the complete iteration procedure, the remaining 

question is how to calculate  1g 
m ,  1g 

C and  1g


 for the next generation 1g  .  

Selection and Recombination 

After generating  offspring, their fitness function values are evaluated. According to 

their fitness,  (   ) best individuals from  offspring are selected to become the parent 

population and undergo weighted recombination to generate a single new solution vector

 1g 
m . Thus, the new solution  1g 

m is computed as a weighted average of the selected points: 

         
1

1 2
: :

1 1

u
g g g g

i i i i

i i

w w


 


 

   m x m C z   (2.12) 

 1 21
1, 0ii

w w w w



       (2.13) 

where:  is the number of selected individuals. Its default value is 2     . 

iw , 1, ,i  are positive weights for recombination. When 1 , 1, ,iw i   , it 

corresponds to the intermediate recombination. In the standard CMA-ES, the 

super-linear decrease weights are used, that is 

       
1

ln 2 1 2 ln ln 2 1 2 lni j
w i j


 


           , 1, ,i  . 

:i x signifies the i-th best individual out of 1 2, , , x x x from Equation (2.11). The 

index :i  denotes the index of the -thi ranked individual and

     1: 2: :f f f     x x x where f is the objective function. 

:i z is the mutation vector associated with :i x . 

Adaptation of Step-size and Covariance Matrix 
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The CMA-ES uses accumulative step-size adaptation (CSA) to adapt the step-size

and the covariance matrix adaptation (CMA) to update the covariance matrix C . These two 

techniques (CSA and CMA) use so-called evolution paths for accumulating strategy 

parameter information across several generations [3]. Two evolution paths,
d

 p for 

adaptation of step-size and c

dp for covariance matrix C adaptation, are used in CMA-

ES.  

The evolution path p and the step-size are recursively computed [3, 41] according to 

the equations below: 

 

          
   

 

     

1 1
1 2

:

1

1 2

1 2

g g
g g t

w t

g

w i i

i

c c c

c c c w

    



    














   

    

m m
p p C

p z

  (2.14) 

 

 
   

 

  

1

1
exp 1

,

g

g g

d

c

d






 





  
   
  

  

p

0 I
  (2.15) 

where:
 g d

 p is the evolution path for global step-size at generation g , its default initial 

value is
 0

 p 0 . 

 0,1c  is the time constant for the adaptation of the step-size, its default value [41] 

is    2 5w wc d      .  

w is the so-called variance effective selection mass, which is defined by:

 
2

2

1 1
.w i ii i

w w
 


 

    If equal weights 1iw  are used, w is equal to  . 

  
1

2g


C is the inverse of   
1
2g

C which is the symmetric square root matrix of  g
C . 

d is the damping factor, its default value is
1

1 2max 0, 1
1

wd c
d

 

 
      

. 

  ,d 0 I is the expectation of the Euclidean norm of a  ,d 0 I distributed 

random vector, which can be approximated by 

   2

1 11
, 2 1

2 2 4 21
d

d d
d

d d

     
          

     
0 I  
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The evolution path cp and covariance matrix C are updated [3, 41] according to the 

equations below: 

 

       
   

 

        

1
1

c c c c c

1

2
c c c c :

1

1 2

1 2

g g
g g

w t

g g

w i i

i

c h c c

c h c c w





 












   

    

m m
p p

p C z

  (2.16) 

 

 

               
     

T
1 1 1

1 1 c c

T
1 1

2 2
: :

1

1
g g g g g

u

u
g g

i i i

i

c c c h

c w



  


  



    

  
     

  


C C p p C

C z C z

  (2.17) 

where:  
c

g dp is the evolution path for covariance matrix at generation g , its default initial 

value is  0

c p 0 . 

 c 0,1c  is the constant for covariance matrix adaptation. c1 c is the backward time 

horizon of the evolution path cp . The default value of cc is: 

   4 4 2c w wc d d d      

h is a Heaviside function defined by: 

 

 

 
 

  
1

2 1

2
1 if 1.4 ,

11 1

0 otherwise

g

d
g dh c











     

    



p
0 I

 

The purpose of function h is to avoid an update of cp to take information of the 

current generation into account, when
 1g




p is too large [42]. This prevents a 

too fast increase of axes ofC when the step-size is far too small.  

1c and c are the learning rate for rank-one-update and rank--update, respectively. 

Their default values are:  

 
1 2

2

1.3 w

c
d 


 

, and
 

1 2

2 1
min 1 ,2

2 2

w w
u

u w

c c
d

 

 

  
  

   

with 2  . 

     c c1 2h h c c     is of minor relevance. In the unusual case of 0h  , it 

substitutes for the second summand from Equation (2.16) in (2.17) [41]. 
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In summary, for CMA-ES iteration, the new offspring population of search points is 

generated by Equation (2.11), the selection and recombination is defined by Equation (2.12), 

the adaptation of step-size is given by Equations (2.14) and (2.15), and the covariance 

matrix is updated with Equations (2.16) and (2.17). The iteration defined above is 

repeatedly executed until the termination criterion fulfilled. Putting it all together, the 

pseudocode of  ,w   -CMA-ES is given in Algorithm 2.3. 

Algorithm 2.3 The  , -CMA-ESw    

1: given:  , 4 3ln , 2d d           , 

   

   
1

ln 2 1 2 ln
for 1, ,

ln 2 1 2 ln
i

j

i
w i

j








 
 

   
,  

2
2

1 1w i ii i
w w

 


 
   , 

2 1
, 1 2max 0, 1

5 1

w w

w

c d c
d d

  

 



  
         

 

   
1 12 2

4 2 12
, , min 1 ,2 .

4 2 1.3 2

w w w

c u

w w w

d
c c c c

d d d d

  

  

   
    
       

 

2: initialize          0 0 0 0 0

c, 0, , , , 0d g     m p 0 p 0 C I  

3: repeat 

4: for 1, ,k   do 

5:  ,k dz 0 I                //i.i.d. for each kz  

6: 
      

1 2
g g g

k k x m C z       //mutation 

7:  k kf f x   

8: end for 

9:         
1

1 2
:

1

g g g g

i i

i

w







  m m C z   

10: 
       1

:

1

1 2
g g

w i i

i

c c c w


     




    p p z   

11: 
   

 

  

1

1
exp 1

,

g

g g

d

c

d






 





  
   
   

  

p

0 I
  

12:           
1

1 2
c c c c c :

1

1 2
g g g

w i i

i

c h c c w


 




    p p C z   

13:                      
T

1 1
T

1 1 1 2 2
1 1 c c : :

1

1
u

g g g g g g g

u i i i

i

c c c h c w   
  



 
        

 
C C p p C C z C z   

14: 1g g    

15: until termination criterion is fulfilled 
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3. Surrogate Modeling of Computer 

Experiments 

This chapter reviews the surrogate modeling method, which is an approach to model 

the (input-output) behavior of the simulation model. Computer simulation tools, such as 

finite element analysis (FEA) and computational fluid dynamics (CFD), are more and more 

widely applied in engineering problems. Many engineering design problems require a 

number of simulations to evaluate design objective. However, for many read world problems, 

a single simulation can take many minutes, hours, or even days to complete. Consequently, 

computation-intensive tasks, such as design optimization, sensitivity analysis and reliability 

analysis, become impractical or impossible because they require doing hundreds, thousands 

or even millions of simulations. One way of reducing this computational burden is by 

constructing approximation models, known as surrogate models, or metamodels, that 

approximate the input-output relationship of the simulation model as closely as possible 

while being computationally cheap to evaluate [43]. Then, many tasks can be implemented 

by using the built surrogate model. Computational cost is thus apparently reduced owing to 

the aid of cheap-evaluated surrogate model. 

Main issues about surrogate modeling are presented in the following of this chapter. In 

Section 3.1, the general process of surrogate modeling is introduced. The three steps of 

surrogate modeling, (i) design of experiments; (ii) training of the surrogate model; and (iii) 

model validation, are respectively addressed in Section 3.2, 3.3 and 3.4. 

3.1 Surrogate Modeling Process 

Surrogate modeling is concerned with the construction of mathematical models to 

describe the relationships between specific inputs and outputs exhibited by the simulation 

model, based on a set of limited data acquired by running the simulation model with 
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intelligently chosen input variables. Since simulation models usually generate multiple (a 

set of) responses (outputs), a surrogate model can be constructed for each of the outputs of 

interest. Without loss of generality, only one response of interest is considered in this chapter. 

Let 

      
T

1 1, , , , , ,d

d dy f f x x x x S    x x   (3.1) 

denotes a simulation model which models a physical system, where  
T

1, , dx xx is a 

vector of d design variables or input variables (input), y is a response (output), S is referred 

to as the design space or input variable space, and the function f signifies the computer 

simulation model, such as FEA and CFD model of a problem, that maps the d-dimensional 

inputs into a scalar output. Model (3.1) generally can be regarded as a solution of a set of 

equations, including linear, nonlinear, ordinary and/or partial differential equations, and it is 

often impossible to obtain an analytic solution for the equations.  

Then, the general surrogate modeling problem can be stated as follows: “Given a set of 

samples (observations)    
T

1
, ,

n 
 

X x x in the design space and the corresponding 

response values          
TT

1 1
, , , ,

n n
y y f f   

   
y x x , the goal is to obtain an 

approximation model  ˆy f x that adequately represents the input-output relationship 

exhibited by simulation model over a given design domain.” The set of sampling points X

is determined by design of experiments (DOE), and the corresponding responses y are 

generated by the experiments conducted under that DOE. Thus, design of experiments is the 

first step in the construction of surrogate models. The samples (sample points) used to 

construct the surrogate models are generally called training points. The set of data that 

includes input data and the corresponding output data is called training data set, while the 

construction of the surrogate models based on training data set is often called model training. 

With the training data set, a variety of surrogate models can be trained. Before the trained 

surrogate model is used in lieu of the original simulation model, it is necessary to evaluate 

the performance or expected accuracy of the surrogate model.  

Therefore, the typical process of surrogate modeling mainly involves three steps (i) 

design of experiments; (ii) construction or training of the surrogate model; and (iii) model 
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validation. This process is illustrated in Figure 3.1. These three issues for surrogate modeling 

are discussed separately in following sections.  

 

Figure 3.1 Process of surrogate modeling 

3.2 Design of Experiments 

Design of experiments (DOE, or experimental design) refers to the techniques that are 

used for guiding the choice of experiments to be performed in an efficient way. DOE 

techniques were originally developed to study the behavior of systems through physical 

experiments [44]. The basic objective of DOE is to determine multiple combinations of the 

controlled parameters (or conditions) at which the experiments will be conducted. Each 

combination of controlled parameters, in mathematical terms, can be considered a sample. 

Although DOE originally referred to physical experiments, in modern times, it would 

includes both physical and computer experiments. This section only focus on the design of 

computer experiments. 

In computer experiments, DOE is a strategy for allocating samples (points) in the design 

space that aims at maximizing the amount of information acquired [4]. Computer simulations 

(experiments) are performed at these points to create the training data set that is subsequently 

used to construct the surrogate model. Obviously, there is a trade-off between the number of 

samples and the amount of information that can be extracted from these samples. Thus, a 
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good experimental design should minimize the number of samples needed to acquire enough 

information.  

In following part of this section, the factorial designs, which are usually referred to as 

classical DOE techniques, and several space-filling or modern DOE techniques are presented. 

Before giving descriptions of these DOE techniques, some terminology in design of 

computer experiments are introduced. The controllable variables that are of interest in 

computer experiments are usually called design variables or input variables or simply called 

inputs. Design space or input variable space is the space where the input variables take values. 

A point in design space or an input setting, which is a combination of input variables, is 

called a sample (sample point). A run is the implementation of an experiment (computer 

simulation) with the input variables given in a sample. Output(s) or response(s) is the result 

of a run based on the purpose of the experiment.  

3.2.1 Factorial Designs 

Factorial designs, which are classical DOE techniques [45], are straightforward 

techniques for experimental design. In factorial designs, the range of each design variable is 

divided into different levels between the upper and lower limits of the design space. Factorial 

designs allocate samples at combinations of different levels of all the design variables. In 

other words, a factorial design is a set of level-combinations of the factors. A factorial design 

is called symmetric if all factors have the same number of levels ; otherwise, it is called 

asymmetric.  

When samples are located at all the combinations of the different levels of all the design 

variables, the design is called full factorial design. Obviously, the number of sample points 

in a full factorial design should be
1

d

jj
n q


  , where jq is the number of levels of the design 

variable j . When all the design variables have the same number of levels q , the number of 

samples are
dn q . Figure 3.2 illustrates a full factorial design of three-dimensional design 

space with three level for all variables. The number of sample points of full factorial design 

increases exponentially with the number of design variables. Thus, in high-dimensional 
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problems, the full factorial design approach may be cost/time prohibitive. Therefore, we 

consider implementing a subset of all the level-combinations that have a good representation 

of the complete combinations. 

 

Figure 3.2 A 3-level and 3-dimensional full factorial design (27 points) 

In situations that the running of an experiment is expensive and the number of design 

variables is large, fractional factorial design (FFD) can be used. Fractional factorial design 

(FFD) uses a fraction of the full factorial design sample points, i.e., a FFD is a subset of all 

level-combinations of the design variables. Consequently, how to choose a good subset is 

the most important issue in FFD. A carefully selected combination known as the orthogonal 

array is recommended in the literature and has been widely used in practice. In practice, 

other alternative factorial designs, such as central composite design, star design, and Box-

Behnken design, can be used.  

3.2.2 Latin Hypercube Designs 

This subsection discusses some modern DOE techniques [45] for planning computer 

experiments, which tend to allocate samples throughout the design space as uniformly as 

possible. Such designs are broadly referred to as space-filling designs.  
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Because of the deterministic feature of computer experiments, i.e., samples with the 

same input setting will yield identical outputs, the basic principles of experimental design 

for controlling noise and bias, replication, blocking, and randomization, are irrelevant to 

computer experiments [46]. The exact functional form of the relationship between inputs 

and the response is unknown and often very complicated, although the response can be 

computed at any given inputs. Various surrogate models can be built using different 

techniques. However, before data are collected, quite often little priori or background 

knowledge is available about which model would be appropriate, and designs for computer 

experiments should facilitate diverse modeling methods [47]. For this purpose, a space-

filling design is the best choice. The design region in which to make prediction may be 

unspecified at the data collection stage. Therefore, it is appropriate to use designs that 

represent all portions of the design space. When the primary goal of experiments is to make 

prediction at unsampled points, space-filling designs allow us to build a predictor with better 

average accuracy.  

A variety of space-filling designs are available. One of the most popular category of 

space-filling designs techniques is the Latin hypercube design, which is based on Latin 

hypercube sampling. Basic Latin hypercube design and its variants are presented in the 

following.  

Basic Latin Hypercube Designs 

Designs generated by Latin hypercube sampling are called Latin hypercube designs 

(LHD) in computer experiments design. Latin hypercube sampling (LHS) was proposed by 

McKay et al. (1979) specifically for computer experiments in which inputs are chosen 

randomly from some specified distribution. Latin hypercube designs have one-dimensional 

uniformity in that, when projected on each dimension, each interval of the dimension has 

exactly one observation.  

In order to allocate n sample points in d-dimensional design space with LHS, the range 

of each variable is firstly divided into n on-overlapping intervals with equal probability, 

which yields a total number of dn bins in the design space. The samples are randomly 
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selected in the design space so that (i) each sample is randomly placed inside a bin, and (ii) 

for all one-dimensional projections of the n samples and bins, there is exactly one sample in 

each bin [4]. Figure 3.3 shows a LHS realization of 10 samples for two design variables.  

 

Figure 3.3 LHS realization of 10 samples in a two-dimensional design space 

Mathematically, the algorithm for generating LHS samples in design space  0,1
d

is 

  
   

, 1 ,1

i i

i j j

j

U
x i n j d

n

 
       (3.2) 

where d is the number of design variables, n is the number of samples,
   1

, ,
n

j j  are 

independent uniform random permutations of the integers 1 to n , and
 i
jU are independent 

random numbers from  0,1 . The subscript j denotes the dimension index and the superscript

 i denotes sample number. Then the sampling plan    
T

1
, , ,

n 
 

X x x where

     
T

1 , ,
i i i

dx x 
 

x , is a LHD denoted by  ,LHD n d . If each ijU in Equation (3.2) is taken 

to be 0.5, the corresponding LHS is called midpoint Latin hypercube sampling or centered 

Latin hypercube sampling. For each variable, Latin hypercube designs have exactly one 

point in each of the n intervals. This property is referred to as one-dimensional uniformity.  

One drawback of Latin hypercube sampling is that there is more than one possible 

arrangement of bins and samples that meets the LHS criteria. So, a randomly generated Latin 
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hypercube design does not necessarily perform well with respect to criteria of uniformity. 

For example, samples allocated along the design space diagonal satisfy conditions of LHS, 

but they are non-uniformly distributed. Fortunately, there are extensions to the basic LHS 

technique that can improve the uniformity of Latin hypercube designs. In extensions of basic 

LHS, the Latin hypercube designs based on distance are of desirable properties. 

Latin Hypercube Designs based on Measures of Distance 

To construct space-filling Latin hypercube designs, one natural approach is to make use 

of distance criteria. One of the most widely-used measures to evaluate the uniformity 

(‘space-fillingness’) of a sampling plan is the maximin metric introduced by Johnson et al. 

(1990). The criterion based on this may be defined as follows. 

Let  1ix and  2ix be two design points in the design space  0,1
d

D  . For 0p  , the 

distance between  1ix and  2ix is defined as 

         1 2 1 2

1

1

  ,  .

p
d p

i i i i

j j

j

d x x


 
  

 
x x   (3.3) 

When 1p  and 2p  , the measure in Equation (3.3) becomes the rectangular and Euclidean 

distance, respectively. Let 1, , md d be the list of unique values of distances between all 

possible pairs of points in a design X , sorted in ascending order. Further, let 1, , mJ J be 

defined such that jJ is the number of pairs of points in X separated by the distance jd .  

The simple maximin distance criterion seeks a design X in the design space S that 

maximizes the smallest inter-point distance 1d among all available designs. This criterion 

attempts to place the design points such that no two points are too close to each other.  

Clearly, this definition could be applied to any set of sampling plans, but, since we 

would like to keep the appealing stratification properties of Latin hypercube, we restrict our 

scope to that class of designs. Nonetheless, even across this narrower domain, Definition 1.1 

might still yield several maximin designs. Therefore, we shall use the more complete ‘tie-

breaker’ definition of Morris and Mitchell (1995). Thus, we call design X a maximin design 

among all available designs if it maximizes 1d , among designs for which this is true, 
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minimizes 1J , among designs for which this is true, maximizes 2d , among designs for which 

this is true, minimizes 2J ,…, minimizes mJ . 

An extended definition of a maximin design was given by Morris and Mitchell (1995). 

In order to rank competing designs, based on above definition, they introduced a 

computationally efficient scalar-value criterion  

 

1

1

q
m

i
q q

i i

J

d

 
   

 
   (3.4) 

where q is a positive integer. The smaller the value of q , the better the space-filling 

properties of X will be. This scalar value distills the cumbersome definition of the maximin 

criterion into a rather neat and compact form, but it raises the question of how to choose the 

value of q in Equation (3.4). Values of q are chosen depending on the size of the design 

searched for, ranging from 5 for small designs to 20 for moderate-sized designs to 50 for 

large designs [47]. The idea of above described maximin design sounds simple and desirable. 

However, generating maximum Latin hypercube designs is a challenging task particularly 

for large designs.  

3.2.3 Other Space-filling Designs 

Besides Latin hypercube designs, other space-filling design techniques including 

orthogonal array, quasi-Monte Carlo sampling, and uniform design can be found in literature. 

A good summary of space-filling designs for computer experiments can be found in [45] and 

Chapter 5 of [48]. Sampling techniques can be improved by minimizing a specific non-

uniformity measure with optimization techniques. The above described maximin Latin 

hypercube design is a typical instance for this.  

3.3 Surrogate Models 

Once the training data set has been collected from an experiment, the next step is to 

construct a surrogate model which describes the relationship between the inputs and 

output(s). Generally, the n samples in d-dimensional design space from DOE can be 
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represented by a n d matrix X and their corresponding responses are expressed by a 1n

vector y as 
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  (3.5) 

where  
, 1, ,

i
i nx denotes the i-th sample, which is a combination of d design variables, 

and
 

, 1, , , 1, ,
i

jx i n j d  denotes the j-th component of the i-th sample, and function f

signifies the computer simulation model that can calculate the response with any given inputs,

 
, 1, ,

i
y i n signifies the corresponding response with inputs  i

x . With the training data 

set             1 1
, , , , ,

n n
y y X y x x , our goal is to construct a cheap-to-evaluate 

surrogate model f̂ that emulates the response of expensive computer model f and thus we 

can use the surrogate model to predict the output of the simulation model for any untried site

x . In this section, we describe several popular surrogate modeling techniques. 

3.3.1 Polynomial Regression Model (PR) 

Polynomial regression (PR) models have been widely used by researchers for modeling 

computer experiments. PR model uses a polynomial form model to approximate the input-

output relationship. The number of terms included in a PR model depends on the desired 

accuracy of the surrogate and the exact functional form of the relationship between inputs 

and the response [49, 50]. The general PR model with p basis functions can be expressed as 

      T

1

ˆ
p

j j

j

f b


 x x b x    (3.6) 

where , 1, ,j j p  are regression coefficients,   , 1, ,jb j px are basis functions of the 

PR model,
T

1, , p     is the vector of regression coefficients and

     
T

1 , , pb b   b x x x is the vector of basis functions. Given the training data set 

            1 1
, , , , ,

n n
y y X y x x defined in Equation (3.5), the PR model in Equation 

(3.6) for n samples in X can be written in matrix notion as 

 ˆ ,y B   (3.7) 
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where ŷ is the vector of responses given by PR model and B is the so-called design matrix or 

Vandermonde matrix, which are respectively defined by Equation (3.8) and (3.9). 

          
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1 1ˆ ˆˆ ˆ ˆ, , , ,
n n
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A commonly used approach to estimate the regression coefficients  is the least squares 

method (LSM). The least squares approach is to minimize the sum of squared residuals at 

the points in the training data set [43], i.e., to minimize 

          
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If n p and matrix B is full rank, the least squares estimator of regression coefficients

 is given by 

  
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

 B B B y   (3.11) 

Let  
T

1, , dx xx be the d-dimensional design variables, the p polynomial basis 

functions of first-order (linear) and second-order (quadratic) PR models are: 

Linear, 1p d  : 

      1 2 1 11, , , d db b x b x  x x x   (3.12) 

Quadratic,   1
2

1 2p d d   : 
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The number of polynomial basis functions dramatically increases with the number of 

input variables and the order of the polynomial. Thus, lower-order polynomials such as first-
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order and second-order (or quadratic) PR models are commonly used in practice, in order to 

simplify the modeling process. 

With the estimator of regression coefficients ̂ , the approximate response  f̂ x at any 

untried x can be predicted by the PR model (3.6). It is worth mentioning that the resulting 

PR model does not necessarily pass through the training sample data [50], i.e., does not 

necessarily have a zero error at the training points.  

3.3.2 Kriging Model (KG) 

Kriging is a Gaussian process [51] based modeling method to interpolate deterministic 

noise-free data [52] and has proven to be useful in a wide variety of fields [53, 54]. Kriging 

model is also referred to as “Design and Analysis of Computer Experiments” (DACE) model 

[46]. The distinctive feature of Kriging model is that it provides not only a predicted response 

at an unsampled point but also an estimate of the prediction variance. This variance gives 

indication of the uncertainty in the Kriging model, which results from the construction of 

the covariance function. The covariance function is based on the idea that when input points 

are near one another, the correlation between their corresponding outputs will be high. As a 

result, the uncertainty associated with the model’s predictions will be small for input points 

which are near the training points, and will increase as one moves further from the training 

points.  

The Kriging model consists of two components: a regression function (also known as 

global trend function)  g x which is constructed based on the training data set, and a 

Gaussian process  Z x which accounts for the local deviation of the data from the trend 

function. Thus, the general form of Kriging surrogate model is given as 

      f̂ g Z x x x   (3.14) 

where  g x is a regression function and  Z x is assumed to be a realization of Gaussian 

process with zero mean, variance 2 and correlation matrix  .  
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Depending on the form of the regression function, Kriging has been prefixed with 

different names. Simple Kriging assumes the regression function to be a known constant. A 

more popular version is ordinary Kriging, which assumes a constant but unknown regression 

function. In general, universal Kriging treats the trend function as a polynomial regression 

model, namely, 

      T

1

p

j j

j

g b


 x x b x β   (3.15) 

where    and , 1, ,j jb j p x are basis functions and corresponding coefficients,

     
T

1 , , pb b   b x x x is the vector of the basis functions, and
T

1, , p     is the 

vector of coefficients.  

The idea is that regression function captures the largest variance in the data (the general 

trend) and that the Gaussian process interpolates the residuals. The covariance matrix of

 Z x is defined as 

      2Cov , ,Z Z R   x x x x   (3.16) 

where    Cov ,Z Z   x x is the covariance of  Z x between any two points x and x ,

 ,R x x is the correlation function between x and x , and 2 is the stochastic process 

variance. The correlation function in Equation (3.16) affects the both the range of influence 

and the smoothness of the model [55]. The most commonly used correlation function is 

Gaussian correlation function, which is defined by 
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where , 1, ,k j d  are unknown parameters of the correlation function and can be contained 

in a column vector  
T

1, , d  , d is the dimension of design space (number of design 

variables), kx and kx denote the k-th component of the samples x and x , respectively, and

k kx x is the absolute distance between kx and kx .  

Consider on the training data set             1 1
, , , , ,

n n
y y X y x x , where
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1
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1
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n
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y are 
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the corresponding responses. The prediction mean and prediction variance of Kriging [46] 

can be respectively given by 

        T T 1 T

f̂
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where      
T

1 , , pb b   b x x x is the regression basis function vector of the predicting 

point x ,
T

1, , p     is the regression coefficients,  r x is the vector of correlation 

functions between the untried point and the n sampled (observed) points (defined in Equation 

(3.20)), R is the n n matrix of correlation functions for the sampled data (defined by 

Equation (3.21)), and F is the n p model matrix defined by (3.22). 
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From above description, in order to build Kriging surrogate model, the regression 

coefficients β in Equation (3.15), the correlation parameter θ in Equation (3.17), and the 

stochastic process variance 2 in Equation (3.16) need to be determined. The maximum 

likelihood estimate method is used to determine the unknown model parameters β , 2 and

θ . 

Since the Kriging method assumes that the observed responses are from a Gaussian 

process, the responses at sampling sites are considered to be correlated random functions 

with the corresponding likelihood function given by 
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To simplify above likelihood function, we take the natural logarithm and gives 
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By taking derivatives of Equation (3.24) with respect to β and 2 respectively, and 

setting to zero, we obtain maximum likelihood estimates (MLEs) for  and 2  
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By substituting Equation (3.25) and (3.26) into Equation (3.24), we obtain the ln-

likelihood function only in terms of parameter vectorθ , which is known as the concentrated 

ln-likelihood function: 
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ˆln ln 2 ln ln

2 2 2

n n
L L       Rθ   (3.27) 

The estimator θ̂ of parameter vectorθ is obtained by maximize Equation (3.27) under 

the constraint 0, 1,2, ,l l d   . In other words, parameter vectorθ is achieved by solving 

the following optimization problem: 
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θ

  (3.28) 

This optimization problem can be carried out using numerical optimization technique. 

A global search method such as a genetic algorithm or simulated annealing usually produce 

good result. After getting θ̂ , the estimators β̂ and 2̂ can be calculated by Equation (3.25) 

and (3.26). So far, we have determined the values of all unknowns in Kriging model, i.e., 

the Kriging model has been completely built. The prediction at any untried point can be 

estimated by Equation (3.18). 
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3.3.3 Radial Basis Function Model (RBF) 

Radial basis function (RBF) model, which is also called Radial basis function network, 

can be interpreted as an artificial neural network that uses radial basis functions as activation 

functions, as shown in Figure 3.4. A RBF network consists of three layers: an input layer, a 

hidden layer with a non-linear RBF activation function, and a linear output layer [56]. 

Usually, the neurons (nodes) in the hidden layer use the RBF in form of 

     ,
i

i  x x c 1, ,i m , where x is the input, m is the number of neurons in hidden 

layer,  i
c is the center or prototype of the i-th radial basis function  i x , and  is usually a 

Euclidean norm. For input  
T

1, , dx xx , the output of the RBF network  f̂ x is given by 

a linear combination of a set of radial basis functions 

     
1

ˆ
m

i

i

i

f w


 x x c   (3.29) 

where iw is the weight for i-th radial basis function. The RBFs
  i

 x c , 1, ,i m

transform the input in terms of the distance between the input x and the center  i
c . For the 

generalized RBF network, the center  i
c are also unknown and have to be learned by other 

methods such as the k-means method [2].  

Commonly used non-parametric basis functions are [50] (writing r  x c ): 

 Linear:  r r  , 

 Cubic:   3r r  , and 

 Thin plate spline:    2 lnr r r  . 

To improve the generalization properties of RBF model (3.29), parametric basis 

functions can be adopted. Commonly used types of parametric basis functions include: 

 Gaussian:  
 2 22r

r e





 , 

 Multi-quadric:    
1 2

2 2r r   , and 

 Inverse multi-quadric:    
1 2

2 2r r 


  . 
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 Whether we choose a set of parametric basis function or non-parametric ones, the 

weights  
T

1, , mw ww  can be evaluated via the interpolation condition [54]. With the 

training points    
T

1
, ,

n 
 

X x x and their corresponding responses    
T

1
, ,

n
y y 

 
y , the 

interpolation condition [57] can be written in matrix form as 

 Φw y   (3.30) 

where  

 

              
              

              

1 1 1 2 1

2 1 2 2 2

1 2

m

m

n n n m

  

  

  

   
 
 

   


 
 
 

    

x c x c x c

x c x c x c
Φ

x c x c x c

  (3.31) 

It is easy to see that if m n and the centers of the radial basis functions coincide with the 

training points    
, 1, ,

i i
i n c x  ,Φ is a regular square matrix and the matrix equation 

(3.30) has unique solution
1w Φ y .  

 

Figure 3.4 Structure of RBF network models 

It is important to keep in mind that RBFs are essentially interpolating functions (i.e., a 

trained RBF model will pass through all the training points). This property enables RBFs to 
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represent highly nonlinear data, which is otherwise often challenging to accomplish using 

low order PR models [50]. 

3.3.4 Multi-layer Perceptron Networks (MLP) 

Multi-layer perceptron (MLP) network, which is a feedforward artificial neural network 

(ANN) model that maps sets of input data onto a set of appropriate outputs, is a more recent 

and increasingly popular choice of surrogate model. A MLP network consists of an input 

layer, several hidden layers, and an output layer. The neuron or node which includes a 

summation and activation function is the basis structure of ANN.  

A simple MLP network (shown in Figure 3.5), that consists of one input layer, one 

hidden layer with nonlinear activation function, and one output layer with linear activation 

function, approximates the inputs and outputs as follows: 

   0 0

1 1

ˆ
m d

j ij i j

j i

f g w x w 
 

 
   

 
 x   (3.32) 

where  
T

1, , dx xx is the input, m is the number of nodes (neurons) of the hidden layer, j

is the weight connect between the output and the j-th note in the hidden layer, the function

 g  is the activation function of the hidden layer, ijw is the weight connection between the 

i-th component of the input and the j-th note in the hidden layer. The most commonly used 

activation function is the logistic function (or called Sigmoid function), which has the form: 

  
 
1

1 exp
g net

net


  
  (3.33) 

where  is a constant and 01

d

i ii
net w x w


  is the so-called net input signal to the neuron. 

A comprehensive study can be found in [58, 59]. 

Then, training a network is to estimate the unknown parameters in (3.32). Usually, 

MLP utilizes a supervised learning technique called backpropagation for training the 

network [2, 59]. One of the drawbacks associated with neural networks for function 

approximation is the fairly large number of parameters that need to be prescribed by the user, 

thereby demanding adequate user experience in implementing MLP. These prescribed 
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parameters include the number of neurons, the number of layers, the type of activation 

function, and the optimization algorithm used to train the network. In addition, the training 

process generally needs to be supervised in order to avoid “over-fitting” [50]. 

 

Figure 3.5 Structure of a three-layer MLP network 

3.3.5 Support Vector Regression (SVR) 

Support vector machines (SVM) are popular models for solving classification and 

regression problems in recent years. An important and favorable property of SVM models is 

that the determination of the model parameters corresponds to a convex optimization 

problem [60], i.e., there is no local minima during training SVM models, and thus the 

optimization process does not depend on the problem dimensions and overfitting is seldom 

an issue [18, 20]. In support vector regression (SVR), the goal is to construct a model  f̂ x

that has at most an deviation from the actual targets  i
y for all the training data, and at the 

same time is as flat as possible [61]. In other words, the errors are not considered if they are 

less than , but any deviation larger than this will not be accepted.  

Given the training data set             1 1
, , , , ,

n n
y y X y x x where dx and

,y  a general SVR model can be given as  
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    Tf̂ b x w x  (3.34) 

where   x is a map (or transform) that transforms the input space (when dx , is d ) 

to some feature space , i.e., map   : x , w is the column vector of weights,

b  is the bias. A small w in Equation (3.34) means that the regression is flat [61]. One 

way to ensure the flatness is to minimize the norm,
2 T, w w w w w where ,  denotes 

the dot product. Considering minimizing this norm under the restriction of deviation, the 

construction of the SVR model is reduced to the following convex optimization problem: 

     
    

2

T

T

1
minmize

2

subject to

i i

i i

y b

b y

 

 

   



  


w

w x

w x

 (3.35) 

Note that the tacit assumption in Equation (3.35) is that a function  f̂ x exists that 

approximates all pairs
    ,
i i

yx in training data set with precision , or in other words, that 

the convex optimization problem in (3.35) is feasible [57]. However, sometimes such a 

solution may not actually exist and it is also likely that better predictions will be obtained if 

we allow for the possibility of outliers. This is achieved by introducing slack variables

 
0

i



 for

    T i i
b y   w x and  

0
j

  for
    Tj j

y b   w x . Thus, the 

optimization problem in (3.35) can be rewritten as: 

 

    
      

      

   

2

1

T

T

1
minmize

2

subject to

, 0, 1, ,

n
i i

i

i i i

i i i

i i

C

y b

b y

i n

 

  

  

 









 

    



   


 


w

w x

w x

 (3.36) 

The minimization in Equation (3.36) is a trade-off between the flatness of  f̂ x (model 

complexity) and the degree to which deviations larger than are tolerated. This trade-off is 

controlled by the user defined constant 0C  . This method of tolerating errors is known as 

-insensitive loss function [62]. The linear -insensitive loss function is described by 

Equation (3.37),, which is shown in the right part of Figure 3.6. Points that lie inside the -
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insensitive tube (the region between two red dashed lines in the left part of Figure 3.6) have 

no loss associated with them, only points outside contribute to the loss of the function.  

     
   

   

ˆ0,
ˆ,

ˆ , otherwise

f y
L y f

f y






  


 
 



x x
x x

x x
 (3.37) 

 

Figure 3.6 The -insensitive loss function for SVR 

The constrained optimization problem of Equation (3.36) can be solved more easily in 

its dual formulation based on Lagrange multipliers. By introducing Lagrange multipliers, 

 
,

i
  

,
i


  i and  

,
i




the Lagrange function (or Lagrangian) L is given as 

 

             

         
         
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1 1
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1
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n n
i i i i i i

i i

n
i i i i

i

n
i i i i

i

L C

y b

y b
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   

   

  

 



 



    

     
  

     
  

 





w

w x

w x

 (3.38) 

The Lagrangian L must be minimized with respect to ,w ,b  i and  i


(the primal 

variables) and maximized with respect to  
,

i
  

,
i


  i and  i

  (the dual variables), where

       
, , , 0

i i i i
   

 
 . Then, the minimization of L with respect to the primal variables ( ,w

,b  
,

i
  i


) and the maximization with respect to dual variables involves finding the saddle 

point, at which the derivatives of L with respect to the primal variables have to vanish, i.e., 
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       

1

0
n

i i i

i

L
  





     
 

w x
w

 (3.39) 

 
    

1

0
n

i i

i

L

b
 






  


  (3.40) 

  

   
0

i i

i

L
C  




   


 (3.41) 

  

   
0

i i

i

L
C  



 




   


 (3.42) 

Substituting Equations (3.39), (3.40), (3.41) and (3.42) into Equation (3.38) to 

eliminate  i and  
,

i



 finally yields the dual optimization problem: 
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 (3.43) 

where                 
T

, ,
i j i j i j

k      
 

x x x x x x is the kernel function. This 

maximize problem usually solved by quadratic programming algorithms, and thus  i and

 i
 are obtained. 

From Equation (3.39) we can obtain 

 
       

1

n
i i i

i

  




  
 w x  (3.44) 

Thus, the prediction of SVR for any new input point is computing by 

          
1

ˆ ,
n

i i i

i

f k b 




  x x x  (3.45) 

where
            

T

, ,
i i i

k        x x x x x x is the kernel function between the new 

input x and sampled point  i
x in training data set. The constant term b , known as the bias, is 

obtained by exploiting the so-called Karush-Kuhn-Tucker (KKT) conditions[61, 63].  

The use of kernel functions (or kernels)  ,k   make SVR models have the capability of 

capturing complicated landscape. The kernel is related to the transformation   x , which 

maps the input space to the so-called feature space (i.e.   : x ), by



3. Surrogate Modeling of Computer Experiments 

67 

          , ,
i j i j

k  x x x x . In other words, the kernels are the inner products (also 

known as dot products) of input points. Conventionally, kernels need to satisfies continuous, 

symmetric and positive definite conditions. Popular choices for  ,k   are:  

 Linear:
        

, ,
i j i j

k x x x x  

 p degree homogeneous polynomial:          , ,
p

i j i j
k x x x x  

 p degree inhomogeneous polynomial:          , ,
p

i j i j
k c x x x x  

 Gaussian:
         

2
2, exp

i j i j
k   x x x x  

3.4 Model Validation/Model Performance Assessment 

The accuracy of a surrogate model is affected by the type of surrogate model and the 

quality and quantity of the dataset from which it is constructed [64]. Before we use the built 

surrogate models, the performance of the surrogate model need to be assessed and validated. 

This section discusses several measures and methods to assess the accuracy of a surrogate 

model. 

3.4.1 Fitting Error and Prediction Error 

The most popular and simple way to evaluate the accuracy of a surrogate model is to 

examine its residual errors, i.e., the difference between the output from original simulation 

model and that predicted by the surrogate model. Let  
T

1, , dx xx denotes the vector of 

input variables, y denotes the output from simulation model  f x , and ŷ signifies the output 

predicted by surrogate model  f̂ x built on training data set
          1 1

, , , ,
n n

y y x x . 

The residual error thus can be expressed as    ˆf fx x . Residual error evaluated on the 

training points is referred to as the fitting error, while residual error at the set of points which 

are randomly generated and not be touched during the surrogate model constructing stages 

is called prediction error. In the following, several popular measures of model accuracy that 

are based on residual error and thus can be evaluated on whether fitting error or prediction 

error are presented.  
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The first two measures are the root mean squared error (RMSE) and the maximum 

absolute error (MAE) [65], separately defined by 

     
2

1

1
ˆ

m
i i

i

RMSE y y
m 

    (3.46) 

 
   ˆmax , 1,2, ,
i i

MAE y y i m     (3.47) 

where m is the number of validation points,  i
y is output from experiment, and  ˆ i

y is the 

output predicted by surrogate model. When RMSE and MAE are calculated on fitting error, 

the training points are used as validation points. While, a set of untried points are used when 

we assess the surrogate model by prediction error.  

An additional error measure based on the residual is the coefficient of determination

2R , which is defined by 
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 

 
  (3.48) 

where m is the number of training pints (sampling points),  
,

i
y

 ˆ i
y and y respectively 

represent the (or experimental) response, the prediction and the mean of responses. The value 

of coefficient of determination
2R is between 0 and 1, i.e.,

20 1.R  If
2R is near to 1, 

generally, it indicates the model fit well the sampled data.  

For surrogate models that interpolate the training points, there are no residual error on 

training points, i.e., the fitting error is zero. Consequently, measures based on fitting error 

are not relevant for interpolating surrogate models. In this case, the prediction error or the 

cross validation described in next subsection can be used to assess the performance of the 

model. Usually, prediction error, which assesses the ability of the surrogate model to predict 

responses in unknown design points, is a more useful measure than fitting error.  

3.4.2 Cross Validation 

In many situations, computer experiments are computationally expensive. Thus, in such 

situations, evaluation of the prediction error is expensive or time-consuming. To alleviate 
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this problem, a general strategy is to estimate the prediction error of a surrogate model using 

the cross validation (CV) procedure [43].  

In cross validation (CV), the sample data is divided into training and test points. The 

training points are used to build the surrogate model, while the test points are used to test the 

performance of the model. The cross-validation technique operates through the following 

five steps [50]: 

1) Splits the sample points randomly into p (approximately) equal subsets; 

2) Removes each of these subsets in turn (one at a time); 

3) Trains a surrogate model according to the remaining 1p  subsets; 

4) Computes the error of the built surrogate model using the omitted subset; 

5) Once each one of the p subsets has been used as the omitted subset, the p sets of 

errors are generally aggregated to yield a global error measure. 

Above described CV technique, which splits the sampling data into p subsets, is known 

as p-fold CV. A variation of p-fold CV is the leave-k-out approach, in which all possible 

subsets of size k are left out, and the surrogate model is constructed to the remaining set. 

Each time, the error measure is evaluated at the omitted points. If 1k  , the cross validation 

in this special case is called leave-one-out CV. Leave-one-out CV is probably the simplest 

and most widely used method for surrogate model validation when additional validation 

points are not available. The root mean squares prediction error for the one-leave-out CV is 

calculated by: 

     
2

1

1
ˆ

n
i i

CV i

i

RMSE y y
n





    (3.49) 

where
 i

y is the response at
 i

x from sample data and  ˆ i

iy  is the prediction at
 i

x from the 

surrogate model constructed by using the sample points except     ,
i i

yx . The leave-one-out 

CV is a measure of how sensitive the surrogate model is to lost information at its data points. 

However, an insensitive surrogate model is not necessarily accurate and an accurate model 

is not necessarily insensitive to lost information. Therefore, the leave-one-out CV is not 
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sufficient to measure surrogate model accuracy, and the validation with an additional data 

set is hence recommended [66].  

CV is an extremely popular method for verifying the prediction capability of a surrogate 

model, when additional validation points are unavailable or expensive. The disadvantage of 

this method is that the surrogate model has to be constructed more than once. For example, 

in a leave-one-out CV with n samples, the surrogate model need to be trained for n times. If 

the construction of the surrogate model is expensive, CV would be impractical.  
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4. Kriging-Assisted CMA Evolution Strategy 

This chapter focuses on Kriging-assisted evolution strategies, under the framework of 

surrogate-assisted evolutionary optimization. A brief introduction of surrogate-assisted 

evolution strategy is presented at Section 4.1. Then, the incorporation mechanisms of 

surrogate model into ES and challenges exist in this domain are described in Section 4.2, 

based on reviewing of literature. In Section 4.3, new methods about training set selection, 

pre-selection, evolution control have been developed. Correspondingly, concrete algorithms 

of Kriging-assisted CMA-ES algorithms are detailed in Section 4.4. In Section 4.5, 

experimental studies of Kriging-assisted CMA-ES are performed to investigate and analyze 

the performance of Kriging-assisted CMA-ES algorithms. Finally, a summary of this chapter 

is provided in Section 4.6. 

4.1 Introduction 

For continuous optimization problems, evolution strategy (ES) generally works better 

than other evolutionary algorithms, such as genetic algorithm (GA) [67]. In recent black-box 

optimization benchmarking (2009 and 2010 GECCO), CMA-ES shows its outstanding 

performance and has proven to be one of the best-performing search strategies for real-

valued black-box optimization [68]. Therefore, in this thesis, we adopt ES to solve expensive 

optimization problems. However, ES, like other population based EAs, require a large 

number of fitness function evaluations before obtaining a satisfying solution. Additionally, 

in expensive optimization problems of real world applications, such as engineering design 

optimization, no analytical fitness function exists and the evaluations of fitness function are 

by means of expensive numerical simulations or experiments. Thus, large number of fitness 

evaluations is not practical or prohibitive. Computational cost, consequently, has been a 

crucial challenge in application of ES (and other EAs) to expensive optimization problems.  
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This challenge has stimulated the advent and development of surrogate-assisted ES 

( also called fitness approximation in ES), which becomes a promising solution to reduce 

the computation cost of ES. In surrogate-assisted evolution strategies, generally, with the 

evaluated points, a surrogate model is trained to approximate the real (or original) fitness 

function and then used together with the real fitness function to guide the search of promising 

solutions. In this way, the computational cost is reduced because the evaluation of a 

surrogate is much cheaper than that of the expensive fitness function.  

Among the ESs, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a 

highly developed evolution strategy and has become a standard for continuous black-box 

evolutionary optimization. It is a powerful optimization algorithm and performs especially 

well in non-smooth, multimodal back-box problems. The CMA-ES adopts the correlated 

mutation operator, which makes it a high-level algorithm compared with other algorithms 

that use isotropic mutation. In CMA-ES, two techniques, namely the covariance matrix 

adaptation (CMA) and the cumulative step-size adaptation (CSA), are used for adapting the 

covariance matrix of mutation and the step-size, respectively. The CMA-ES is selected as 

the basis evolution strategy for surrogate-assisted ES in this work owing to its powerfulness 

and success in continuous black-box optimization. 

Compared with other surrogate models like RBF, MLP model, the advantage of Kriging 

model is that it not only predicts fitness value but also provides the standard deviation for 

the predicted fitness without additional computational cost. The standard deviation of 

predicted fitness indicates the uncertainty in fitness approximation. This information is 

valuable for evolution control and improving the quality of surrogate in evolutionary 

computation process. That is the reason for selecting Kriging model for surrogate-assisted 

evolution strategy. Consequently, this chapter concentrates Kriging-Assisted Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES), which is abbreviated as KA-CMA-ES in 

the thesis. 
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4.2 A Brief Survey of Surrogate-Assisted Evolution Strategies 

The essential goal of surrogate-assisted evolutionary optimization is to use one or 

several surrogate models f̂ of the fitness function (objective function) f to improve the 

quality of the search especially in terms of number of functions evaluations required to reach 

the optimum. It is usually assumed that the evaluation of f is expensive in terms of time or 

money and the learning (or training) of f̂ is relatively cheap. Surrogate model f̂ is trained 

(learned/built) from a set of pairs   , fx x which is known as training data set or simply 

training set. Thus, the selection of training set has influence on the quality of the surrogate 

model developed thereof. Generally speaking, a surrogate model with good quality ensures 

good performance in surrogate-assisted optimization. In this section, a short overview of 

existed works on surrogate-assisted evolution strategies (ES) is presented and some 

challenges in this field are described subsequently.  

4.2.1  Surrogate-Assisted Evolution Strategies 

The first surrogate-assisted ES, very likely, were proposed by M. Papadrakakis in [69], 

where a hidden-layer ANN was used to predict the objective and constraint functions values 

of an expensive structural optimization problem using  , -ES  and   -ES  . This 

hybrid optimization procedure based on the combination of ES and ANN was found to be 

very effective in shape and sizing structural optimization problems.  

Individual-based and generation-based evolution control methods were proposed in [70] 

for surrogate-assisted evolution strategies with CMA-ES. Evolution control is popular in 

surrogate-assisted evolutionary algorithms, including evolution strategies. In individual-

based control, part of the individuals in the population are chosen and evaluated with the 

original fitness function. The controlled individuals can be chosen by random or best 

strategies. In generation-based control, the whole population of  generations will be 

evaluated with original fitness function in every p generations, where p  . Reference [70] 

focused on generation-based evolution control and proposed a strategy to determine the 

control frequency p . Specifically, the current model error was used to estimate the local 
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fidelity of the approximate model and the local model fidelity was adopted to determine the 

control frequency. After each generation control, new data points were added to training data 

set and then the approximate model was updated. In the on-line learning of approximate 

model, the weighted learning using covariance matrix was proposed and used in this work. 

In [71], generation-based evolution control was adopted in surrogate-assisted CMA-ES, 

where Gaussian process and random forests models were used as surrogates.  

Pre-selection (pre-screening) of promising solutions (based on approximate model) is 

another popular strategy of exploiting information from the surrogate model f̂ in Evolution 

Strategies. In pre-selection strategy, Pre  (  is the population size of ES) individuals are 

generated each generation, then all Pre individuals are evaluated by approximate model f̂ , 

after that,  out of Pre best individuals are selected to evaluate by the original fitness function. 

The basic idea behind this approach is that only the most promising individuals with a good 

fitness prediction are evaluated with the true fitness function, which results in a reduction of 

the number of expensive true fitness calls. The Model-Assisted Evolution Strategy (MAES) 

using pre-selection strategy for  , -ES  was described in [72]. 

Applications of Kriging model based pre-selection strategy in ES were studied in [25, 

72–74]. The authors suggested to use criteria that based on both the model prediction  f̂ x

and estimated standard deviation  ŝ x to identify the most promising individuals in pre-

selection. This is based on the opinion that the key issue of using approximate models for 

evolutionary computation lies in the trade-off between the exploitation of the approximate 

model by sampling where it is optimized and the need to improve the approximate model by 

sampling where the model confidence is low [72, 74]. 

In 2004, Runarsson [75] proposed the so-called approximate ranking procedure to 

evaluate the quality of the surrogate models. The approximate ranking procedure, which is 

described in Algorithm 4.1, evaluates the quality of the surrogate model by its consistency 

in ranking the population rather than its statistical accuracy. The approximate ranking 

procedure in Algorithm 4.1 can be seen as an adaptive evolution control mechanism to 

determine the number of controlled individuals in every generation as follows: individuals 
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are successively selected to be evaluated according to their approximate fitness and then are 

added to the training set until the surrogate-based selection of the parents remains unchanged 

in two iteration cycles. Then, based on approximate ranking procedure and using locally 

weighted regression as surrogate, the local meta-model CMA-ES (lmm-CMA-ES) was 

firstly proposed by Kern et al. [76] and later extended for large population size by 

Bouzarkouna et al. [77]. The lmm-CMA-ES is a carefully designed surrogate-assisted CMA-

ES algorithm.  

Algorithm 4.1 Approximate Ranking Procedure 

1: given:    
1
, , ,k k

f t



x x (archive which save all evaluated data points). 

2: approximate: build surrogate models f̂ based on , and predict  ˆ , 1, ,k kf f k  x  

3: rank and determine the parent set  1 : 1i i



 
 x where      1: 2: :

ˆ ˆ ˆf f f     x x x  

4: select the best individual: 1t t  , 
:

argmin for
i

t ii


 
x

x x  

5: evaluate the selected individual  tf x and update set   ,t tf x x  

6: for 2 :m  do 

7: approximate: build surrogate f̂ based on , and predict  ˆ , 1, ,k kf f k  x  

8: determine the parent set  : 1m i i



 
 x where      1: 2: :

ˆ ˆ ˆf f f     x x x  

9: if 1m m  then (the parent set has changed) 

10: select an individual by
:

1, argmin for
i

t it t i


   
x

x x  

11: evaluate  tf x and update   ,t tf x x  

12: else (parent set remains unchanged) 

13: break (exit for loop) 

14: end if 

15: give the parent set for next generation  1g

m


  

16: end for 

17: output:  
1

, , ,k k k
t f




x  

Recently, comparison-based surrogate models [78], such as ordinal regression [79] and 

ranking Support Vector Machine [80], are used in surrogate-assisted ES. The rank-based 

Support Vector Machines (SVM) was used to learn the surrogate model for CMA-ES in [78–

80]. The experimental validation demonstrated the invariance of monotonous transformation 

of the fitness by using rank-based SVM. However, the main weakness of comparison-based 

surrogates assisted ES is that it can not handle well multi-modal diversity, i.e., comparison-
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based surrogate models easily fail in accounting for multi-modal landscapes of fitness 

functions[38, 78].  

4.2.2 Some Open Issues in Surrogate-Assisted ES 

Even though surrogate-assisted ES has achieved considerable improvements over the 

past decade, there are still many open issues need to be addressed. These open issues mainly 

lies in i) surrogate model learning, i.e. how to use the previously evaluated data and training 

the surrogate model, ii) model quality measure, i.e. how to evaluate the quality of the 

surrogate model, and iii) model exploitation, i.e., how to exploit the built surrogate model.  

Surrogate model learning is an essential step for surrogate-assisted ES. In surrogate 

model learning, the key task is learning one or several appropriate surrogate models from 

the evaluated candidates. Training data set selection has influence on the quality and the 

training cost of surrogate model f̂ (besides, the modeling method also has significant on the 

training cost of f̂ ). Thus, it is an important issue in surrogate model learning.  

Another issue that relate to both design and use of surrogate models for evolutionary 

computation is their quality. A surrogate with poor quality may guides the search to false 

optimum and thus, model quality assessment is of importance.  

After surrogate model has been trained, the key aspect of surrogate-assisted ES is to 

exploit information from the surrogate model f̂ . The two main strategies of surrogate model 

exploitation applied in surrogate-assisted ES are pre-selection and evolution control. There 

are several open questions for strategies of surrogate model exploitation, i.e., pre-selection 

and evolution control. The following will briefly describe some open issues of training set 

selection and model exploitation, which will be investigated and addressed in this work in 

subsequent sections.  

4.2.2.1 Training Set Selection 

Let trainingn denotes the number of data points in training set training . Three popular ways 

to select the training set (points/individuals for model training) are: 
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1. All Previously Evaluated Points One can use all the previously evaluated points as 

training set to construct surrogate models. Generally, for the same problem and using 

same modeling techniques, the size of training set is larger, the performance of the 

trained model is better. A model learned from all previously points may have better 

performance than one learned from just a part of existed points. However, when all 

the evaluated points are taken as training data, the size of training set increases 

during the evolutionary search, and this require higher computational cost for model 

training. In surrogate-assisted ES, usually, surrogate model need to retrained for 

large number of times, so the high training cost of the surrogate model is not 

desirable.  

2. Recently Evaluated Points A simple but efficient strategy is to choose trainingn the 

most recently evaluated points as training data set. This is a reasonable strategy 

because that the recently evaluated points are relatively close to the actual search 

subspace. However, in some cases, this strategy may be insufficiently “greedy” 

because it may “forgets” promising individuals generated more than trainingn

evaluations ago [38].  

3. k-Nearest Neighbor Points Selecting evaluated points that are more relevant to 

current search space is reasonable. Considering that ES use Gaussian mutation, the 

k-nearest neighbor points ( trainingk n ) to the mean of the Gaussian distributionm

best represent the actual search space and are good candidates for model training. 

The Euclidean distance is usually used as similarity measure metric. However, when

f is a multi-modal function, it may happen thatm is located around a local optimum 

which has been visited by the evolutionary search many generations ago, and many 

of trainingn closest points to m are correspond to a smaller cluster of this local optimum. 

Thus, in this case, the built model would be very precise for the smaller cluster near 

the local optimum, but may not perform well in other place. This is undesirable in 

surrogate-assisted evolutionary search. When surrogates are built for each 
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individuals (such as in [81]), usually the k-nearest neighbor points of each individual 

are used to train a surrogate model for corresponding individual.  

4.2.2.2 Model Quality Assessment 

Without no doubt, the most popular measure for model quality is the Mean Square Error 

(MSE) which assesses the mean squared difference between the individual’s original fitness 

function  f x and the output of the surrogate model  f̂ x , that is 

     
2

1

1 ˆMSE .
n

i i

i

f f
n 

  x x  (4.1) 

The MSE is evaluated over n different individuals that are taken into account for the 

estimation of the model quality, for instance, the n  offspring individuals in one 

generation. 

The MSE is widely used to evaluate the approximation accuracy of surrogate models. 

In the investigation of quality measures for surrogate model in evolutionary computation by 

Jin et al. [82], it has been stated that the Mean Square Error (MSE) of the model only weakly 

correlates with the ability to correctly select individuals in evolutionary computation, and 

selection based or ranking based model quality measurements were suggested to use. 

From the perspective of evolutionary computation, the correct selection is of 

importance. In [82], Jin et al. proposed model quality measures that focus primarily on the 

correct model-based selection rather than the approximation accuracy of surrogate model. 

Some of these measures are presented below.  

Let us consider the case of the (,)-selection. The model-based selection process 

(selection based on surrogate model) selects  out of the   individuals with the best 

predicted fitness. An individual is correctly selected, if it would also be selected by a 

selection process based on the original (true) fitness of the individuals. The first selection 

based measure is about the number of individuals that have been selected correctly using the 

surrogate model: 

 select ,
 


 





 (4.2) 
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where   0    is the number of correctly selected individuals, i.e., the number of 

individuals that have would also been selected if the original fitness function had been used 

in fitness evaluation. The expectation of in case of random selection, that is 
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is used as a normalization in Equation (4.2). If all  parents individuals are selected correctly, 

the measure select reaches its maximum value of select 1  . The negative values of select

indicate that the selection based on the surrogate (model-based selection) is worse than a 

random selection. The measure select only evaluates the absolute number of correctly selected 

individuals. However, this measure does not consider the rank of the selected individuals. In 

case of select 1  , the measure select does not indicate whether the ()-th best individual or 

the worst individual has been selected, which may have significant influence on the 

evolution process. Therefore, the measure select is extended to include the rank of the selected 

individuals that are determined based on the original fitness function values.  

In the extended measure select , the surrogate model gets a grade of m  , if the m-th 

best individual based on the original fitness function is selected. Thus, the quality of the 

surrogate model can be indicated by summing up the grades of the selected individuals, 

which is demoted by . Apparently, if all  individuals are selected correctly, reaches its 

maximum: 

  max

1

1
.

2m

m
 

   


 
    

 
  (4.4) 

Similar to Equation (4.2), the measure select is defined by transforming linearly using the 

maximum max and the expectation 2  for the case of a purely random selection, 

expressed as: 

 select max
.

 


 





 (4.5) 

Moreover, Jin et al. [82] suggested to use the rank correlation coefficient [83] (also 

known as Spearman’s rank correlation coefficient), given by 
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is a measure of the monotonic relation between the ranks of two variables, to evaluate the 

quality of the surrogate model. In the case of using rank to measure the monotonic relation 

between the individual’s rank based on surrogate model and that based on original fitness 

function, id is the difference between the ranks of the i-th offspring (among  ) individual 

based on the original fitness function and on the surrogate model. The rank has the range

rank1 1   . The higher the value of rank , the stronger the monotonic relation with a 

positive slope between the ranks of the two variables. When the model predicts correct 

ranking of all  individuals, we have rank 1  . Inversely, when the model predicts inverse 

ranking of individuals, rank 1   . The rank calculated by Equation (4.6) takes the ranks of 

all individuals rather than only take the ranking of the selected individuals into account.  

4.2.2.3 Issues in Model Exploitation 

The pre-selection and evolution control for model exploitation have already been 

mentioned in Section 4.2.1. As previously description, in pre-selection strategy, for each 

generation, Pre  individuals are generated (through mutation) and evaluated by surrogate 

model f̂ , then  out of Pre best individuals are selected (based on the fitness value estimated 

by f̂ ) to re-evaluate by the original fitness function f . Thus, all the  parent for next 

generation selected from  offspring are evaluated by real fitness function f . The pre-

selection strategy can be illustrated in Figure 4.1. Evolution control takes place when 

surrogate model f̂ is used in fitness evaluation of ES. In individual-based evolution control, 

 individuals are firstly evaluated using the surrogate f̂ , then    individuals are selected 

to re-evaluated using the original fitness function f . As a result, the fitness values of 

parent for next generation can be based on surrogate f̂ or on real fitness f . In generation-

based evolution control, evolution control is carried out at a specific frequency, where the 

whole population of the controlled generation are evaluated using the original fitness 

function f , while in other generations the whole population are evaluated by surrogate ˆ.f  

Surrogate-assisted ES using individual-based and generation-based evolution control are 
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illustrated in Figure 4.2. Some open issues in pre-selection and evolution control are 

described in the following. 

 

Figure 4.1 Illustration of standard (,)-ES and the surrogate-assisted ES using pre-selection. 

In Pre-selection, the number Pre , which is called the size of pre-selection population 

(or pre-selection population size) hereafter, has influence on evolutionary search. The size 

of pre-selection population Pre controls the impact of the surrogate model f̂ on the 

evolutionary optimization process. For Pre  , the algorithm performs like a standard ES 

and the surrogate model f̂ has no impact on the ES. Increasing Pre brings about a larger 

selection pressure and results in a stronger impact of the model f̂ on the convergence of the 

optimization process [74]. In [25, 72–74], the pre-selection population size Pre was set as a 

constant during the optimization. The concept of model impact control was proposed by 

Ulmer et al. [84], where the value of Pre was dynamically controlled by model quality 

measurement based on the number of correctly pre-selected individuals. It was demonstrated 

in [84] that controlling the impact of model impact ( Pre ) enhances the performance of model 
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assisted Evolution Strategies (MAES) with fixed model influence (fixed Pre ). The concept 

of model impact control will attract much more attention in MAES.  

Another issue in pre-selection is the pre-selection criterion which is used to identify the 

most promising individuals. For Gaussian process (Kriging) model assisted ES, several pre-

selection criteria have been applied in literature. For other surrogate model assisted ES, 

usually, the model prediction is used to pre-screen the most promising individuals. However, 

no precise conclusion on performance of different pre-selection criteria has been drawn so 

far. Comprehensive study of existed pre-selection criteria is still needed. And more 

sophisticated pre-selection criterion may be developed in the future.  

In Evolution Control, the main issues is to determine the control frequency, which 

denotes the number of individuals controlled in individual-based control and frequency of 

controlled generation in generation-based control. The control frequency plays important 

role in guaranteeing the correct convergence of the surrogate-assisted evolutionary 

optimization. 

Specifically, for individual-based evolution control, in each generation individuals are 

selected from   (  is the size of population of the standard ES) offspring for control purpose, 

i.e, to be evaluated by original fitness function. If the controlled individuals are chosen 

randomly, it is called a random strategy. If the best individuals are selected to be controlled, 

we called it a best strategy. In generation-based evolution control, the whole population of

 generations will be evaluated with original fitness function in every p generations, where

p  . Then, the control frequency in individual and generation-based evolution control can 

be presented by the fraction  and p , respectively. Commonly, in evolution control, the 

number is set by the users. For example, in [74] generation-based evolution control was 

carried out every third generation. Empirical investigation on individual-based evolution 

control has performed in [21], which showed that more than half of the individuals in 

population need to be controlled when the random selection strategy is used and about 40% 

of the individuals should be controlled when using best strategy, in order to guarantee a 

correct convergence. To manage the control frequency of generation-based control, Jin et al. 
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[70] introduced a framework to adapt the control frequency based on the fidelity of the 

surrogate model.  

 

Figure 4.2 Individual-based generation-based evolution control in surrogate-assisted ES 

4.3 Address Some Open Issues of Surrogate-Assisted ES 

4.3.1 Training Set Selection 

Training set selection affects both the quality of surrogate model learned from it and 

the cost of model training. Thus, it is a subject worth studying. In previous section, selecting 

training set as all previously evaluated points, the recently evaluated points, and nearest 

neighbor points are already described. In this work, we propose a new approach for training 

set selection based on properties of multivariate normal random variables.  

Keep in mind that our goal of learning surrogate models is to predict fitness values of 

current offspring population. Therefore, it is rational to choose points that are relevant to 

current offspring population or current search subspace. The previously mentioned Recently 

Evaluated Points and k-Nearest Neighbor Points for training set selection are based on this 
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principle. However, in Recently Evaluated Points approach, no measurement is used to 

assess the relevance between recently evaluated points and current search subspace. So, it 

cannot guarantee that the selected recently evaluated points all are relevant to current search 

subspace. In selection of training set by the k-Nearest Neighbor Points, the Euclidean 

distance is usually used as a measurement to indicate the similarity between evaluated points 

and the query point in such a way that previously evaluated points with smaller Euclidean 

distance to the query point are chosen. For evolution strategy algorithms using isotropic 

mutation (uncorrelated mutation), using Euclidean distance as similarity measure metric is 

appropriate. When correlated mutation operator is used in evolution strategy algorithms, 

such as the CMA-ES, the Euclidean distance may not be useful on correlated data since there 

is no adjustment for the covariance. In this situation, the Mahalanobis distance becomes a 

more proper similarity measure metric. Therefore, we firstly suggest to use the Mahalanobis 

distance instead of Euclidean distance in k-Nearest Neighbor Points approach for training 

set selection and another approach of using confidence interval is proposed.  

4.3.1.1 k-Nearest Neighbor Points to Distribution Mean based on Mahalanobis 

Distance 

Without loss of generality, we consider the  , -CMA-ESw   (this algorithm has 

presented in Section 2.3.3) which uses a general (or correlated) mutation operator. In the 

evolution loop of CMA-ES, for generation g ,  offspring are generated by mutation as:

      , for 1, ,
g g g

k d k   x m 0 C . Obviously, it can also be stated that the 

offspring are from a multivariate normal (MVN) distribution with mean vector  g
 m and 

covariance matrix     
2

g g
 C , i.e.  ,k dx   . Correspondingly, the Mahalanobis 

distance from a point x to current distribution mean  g
 m is calculated by 

                  
1T 2T 1, .

g g g g



      x x x x m C x m    (4.7) 

Generally speaking, data points with smaller Mahalanobis distance to current mean of 

mutation distribution are more relevant to current offspring population. Thus, we can select 
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the k-Nearest Neighbor Points according to the Mahalanobis distance to current distribution 

mean  g
m as the training set. 

4.3.1.2 Confidence Interval for Training Set Selection 

Considering the  offspring are from a MVN distribution with mean vector  g
 m and 

covariance matrix     
2

g g
 C , i.e.  ,k dx   , the actual (current) search subspace 

(the region that the distributed offspring can reach) is determined by current distribution of 

offspring  ,d   . It is apparent that the sampled offspring probably lie in the region with 

high probability of the multivariate normal distribution. Consequently, the region yielded by 

the confidence interval of the multivariate normal distribution can be used to represent the 

actual subspace with a given probability.  

The confidence interval for the multivariate normal distribution  ,d   yields a 

region consisting of those vectors dx satisfying 

      
T 1 2 ,d p  x x   (4.8) 

where  2

d p is the quantile function for probability p  0 1p  of the chi-squared 

distribution with d degrees of freedom. The inequality (4.8) provides the confidence region 

containing p of the probability mass of the MVN distribution  ,d   . In other words, a 

random vector from distribution  ,d   has probability p of satisfying the inequality 

(4.8).  

Since  offspring , 1, ,k k x are from MVN distribution  ,d   (where  g
 m

and     
2

g g
 C ), the region defined by inequality (4.8) has a probability p that it cover 

the offspring. Put another way, this region is the subspace that the offspring generated from 

the MVN distribution  ,d   can reach with a probability p . The probability p indicates 

the extent that the confidence region covers the actual search subspace. Therefore, we 

propose to select the training data set training by  

                 
1T 2

2

training training, ,
g g g g

i i i i df p 
  

     
  

x x x m C x m  (4.9) 
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where is a set stores all the previously evaluated points (individuals, candidates) and 

associated fitness function values, i.e.    evaluated, , 1, ,i if i n x x ( evaluatedn is the 

number of evaluated points),  2

trainingd p is the quantile function for probability trainingp of the 

chi-squared distribution with d degrees of freedom, and the probability trainingp signifies the 

confidence of selected training set  training0 1p  . When we use a large trainingp , evaluated 

points which lie in an interval with high confidence are selected to form the training set

training . While small trainingp is used, the training set training only select evaluated points 

contained in a low confidence interval. Usually, training selected with large trainingp could 

include more points than that with small trainingp . The value of trainingp is set by the user and 

can be chosen as 95.45% or 99.73% or any other values. The surrogate models build on

training selected by Equation (4.9) are local models around the distribution mean  t
m for 

current offspring population.  

4.3.2 Pre-Selection Strategy with Model Impact Control 

4.3.2.1 Introduction of Pre-Selection with Model Impact Control (CPS) 

The size of pre-selection population size Pre controls the impact of the surrogate model

f̂ on the evolutionary optimization process. Thus, the search procedure would benefit from 

the appropriate control of Pre . Simply, the pre-selection population size is set as a constant 

by users during the optimization. Recently, researchers attempt to adapt Pre during the 

evolutionary search process. It is intuitive to use the model quality to control the pre-

selection population size Pre . In [84], the value of Pre was controlled by model quality 

measurement based on the number of correctly pre-selected individuals. This idea gives 

significant guidance for us in pre-selection population size control. 

In this paragraph, we briefly present the model quality measurement and adaptation of

Pre that were proposed by Ulmer et al. [84]. Since in optimization by evolution strategies, 

only the correct selection is of importance, the authors used a selection based model quality 

which was similar to that proposed by Jin et al. [82]. Consider the model based selection 

process selects  out of  individuals with the best predicted fitness. An individual is 
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correctly selected, if it would also be selected by a selection process based on the original 

(true) fitness of the individuals. Thus, the number of correctly selected individuals can be 

used to measure the quality of the model based selection process. The authors assumed that 

the selection quality determined for a selection of  out of  individuals, for which we known 

the predicted and the true fitness, is equivalent to the selection quality of the pre-selection. 

If the individual with the i-th best true fitness is correctly selected, a rank (grade) of  i 

is given to this individual (this rank could be considered as the grade of the individual in 

selection). The summed rank of all correctly selected individuals is defined as the quality

selectionQ of the model based selection process. The difference between selectionQ and  in 

Equation(4.4) is that selectionQ only counts the grades of correctly selected individuals but

counts the grades of all selected individuals including both correctly and incorrectly selected 

individuals. When none individual is correctly selected, selectionQ has its minimum value

 min

selection 0Q  . If all individuals are correctly selected, the maximum model quality is 

  
 max

selection

1

1
.

2i

Q i
  

 



     (4.10) 

The expectation value of selectionQ for a purely random selection process is given as the 

product of the expectation value of the number of correctly selected individuals and the 

expectation value of the rank of a correctly selected individual : 

  
2

rand

selection

1 1

1 2 1
.

2i i

i i
Q i i

 

  

   


  



 

    
   

                
  

  

   (4.11) 

After each generation t the actual model quality
 
selection

g
Q is evaluated and compared to the 

expected quality of the random selection process
rand

selectionQ . For
  rand

selection selection

g
Q Q the model 

based selection is better than a random selection, and Pre should be increased. On the 

contrary, for
  rand

selection selection

g
Q Q the Pre should be decreased. When   randg

Q Q the value of

Pre is kept. Therefore, the update procedure for Pre is the following: 
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 (4.12) 

where Pre is the adaptation rate. It was demonstrated in [84] that controlling the impact of 

model impact ( Pre ) enhances the performance of model assisted Evolution Strategies 

(MAES) with fixed model influence (fixed Pre ).  

4.3.2.2 Proposed Pre-Selection with Model Impact Control 

Proposed Selection-based Model Quality Measure using Recombination Weights 

In evolutionary algorithms, the selection operator choosing the best individuals to enter 

next evolution loop and thus gives the evolutionary search a direction. Specially, in evolution 

strategies, the selection is based on fitness ranks and deterministic. The recombination after 

selection is also deterministic in ES. Thus, selection is particularly important in evolution 

strategies. Consequently, in surrogate-assisted evolutionary computation, the quality of 

model-based selection (selection by using surrogate model) is of importance, particularly in 

surrogate-assisted evolution strategies.  

In the investigation of quality measures for surrogate model in evolutionary 

computation by Jin et al. [82], it has been stated that the the Mean Square Error (MSE) of 

the model only weakly correlates with the ability to correctly select individuals in 

evolutionary computation, and selection based or ranking based model quality 

measurements were suggested to use. In [84], a selection based model quality was used to 

control the size of pre-selection population for surrogate-assisted evolution strategies. This 

method for updating Pre has pointed out a direction for pre-selection population size control, 

i.e., dynamically controlling Pre based on model quality. In this thesis, a variant of the 

selection based model quality measurement, which was proposed by Ulmer et al. in [84] and 

described above, is defined based on the weights used in recombination operator in an 

evolution strategy.  
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We consider an evolution strategy that use weighted recombination operator, denoted 

by  , -ESw   . In weighted recombination, the weight values depend on the fitness 

ranking, in that better parents get larger weights than inferior ones. The widely used super-

linear decrease weights are given by 

 

   

1

, for 1, ,

1
with ln ln rank , for 1, ,

2

k
k

ii

k k

w
w k

w

w f k










 



 
    

 



x

 (4.13) 

where   rank kf x is the fitness ranking of individual kx in all  offspring 1 2, , , x x x . The 

weighted recombination generates a single solution vector
 1

1 :

g

ii i
w








 m x , which is the 

new mean vector of mutation distribution. It apparent that individuals with high fitness 

ranking have larger weights and thus contribute more to the search step. 

Considering the model based selection process selecting  out of the  individuals with 

the best predicted fitness, an individual is correctly selected, if it would also be selected by 

a selection process based on the original (true) fitness of the individuals. Usually, the number 

of correctly selected individuals can be used to measure the quality of the surrogate model. 

We define a selection based model quality that takes in account not only the number of 

correctly selected individuals but also the real fitness ranking of individuals. Our idea is that, 

for each model-based selected individual (individual that is selected according to their 

prediction fitness), if it is also selected by selection process using real fitness, its associated 

recombination weights calculated by real fitness ranking is assigned to this individual as the 

score it obtains in model selection; otherwise, it has score zero. The measurement of 

selection based model quality wQ is defined as the summed score of all model selected 

individuals. Obviously, a larger value of wQ means the surrogate model has higher quality of 

correctly selecting individuals, and vice versa. If the model selects none correct individual,

wQ reaches its minimum value
min 0
w

Q  . When all individuals are correctly selected, wQ takes 

its maximum value
max

1
1w ii

Q w



  . In other cases, i.e., only part of model selected 

individuals are correct, 0 1wQ  . From the definition of wQ , it can be found that when 
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individuals with higher real fitness ranking and/or more individuals are selected correctly, 

wQ obtains higher value and the model quality is better.  

Similar to Equation (4.11), the expectation value of wQ for a purely random selection 

process is simply given as the product of the expectation value of the number of correctly 

selected individuals and the expectation value of the score of a correctly selected individual : 

 

2
rand

1 1

1 1
.w i

i i

i i
Q i w

 

  

 

   



 

    
   

             
  

  

   (4.14) 

In surrogate-assisted evolution strategies using pre-selection strategy, to measure the 

quality of the pre-selection process with above defined wQ , we need to know the true fitness 

of all Pre individuals. However, only the true fitness of  most promising pre-selected 

individuals is known. We also taken the assumption in [84] that the model quality wQ for a 

selection of  out of the  individuals, for which we know the predicted and the true fitness, 

is equivalent to that of the pre-selection process.  

Controlling the Size of Pre-selection Population (Model Impact) 𝝀𝐏𝐫𝐞 

The evolutionary search can benefit from the surrogate model assistance if the model 

selection process performs better than a purely random selection and correspondingly model 

selection quality is better than the quality of a purely random selection.  

After each generation in the surrogate-assisted ES with pre-selection, the actual 

measured selection quality
 g

wQ is computed and compared with the expected quality of the 

random selection
rand

wQ (given in (4.14)).  

If
  randg

w wQ Q the model based selection is better than a random selection, and Pre should 

be increased. On the contrary, for
  rand

w w

g
Q Q the Pre should be decreased. When 

  rand

w w

g
Q Q

the value of Pre is kept. Therefore, Pre is adapted similarly as (4.12), i.e., 
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 (4.15) 

where
Pre is the adaptation rate, which is set by the user.  

Model Impact Control based on Different Model Quality Measures 

In pre-selection with model impact control, different model quality measures can be 

used. In our work, three model quality measures are included. These three model quality 

measures are: 1) proposed selection-based model quality measure using recombination 

weights wQ ; 2) selection-based model quality measure selectionQ proposed by Ulmer et al. [84]; 

3) rank correlation coefficient rank proposed by Jin et al. [82]. The strategy of updating the 

pre-selection population size Pre is expressed by Equation (4.12) or (4.15). In the model 

impact control rule, three critical values of model quality measures and the model quality 

evaluated at current generation are used. These three critical values are the minimum, 

maximum and a threshold value of model quality, which are respectively noted by
minQ , 

maxQ and
TSQ . The size of pre-selection population Pre is increased when the model quality 

of current generation is larger than the threshold value, i.e.,   TSg
Q Q ; and Pre is decreased 

if   TSg
Q Q . The uniform formulation of model impact control based on model quality 

measure Q , which includes wQ , selectionQ and rank , can be given as: 
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 (4.16) 

The critical values of model quality measures are listed in Table 4.1. For model quality 

measure rank , rank 0.5  indicates a moderate monotonic relationship between the predicted 

fitness and exact fitness. Thus, we choose rank 0.5  as the threshold value of rank . 
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Table 4.1 Critical values of model quality measures 

Model quality measure Q  Minimum value minQ  Maximum value maxQ  Threshold value TSQ  

wQ  0 1    

selectionQ  0  1 2        2 2 1 2       

rank  -1 1 0.5 

4.3.2.3 Algorithm of Pre-Selection Strategies 

The pre-selection concept has been introduced in Section 4.2.1. In pre-selection 

procedure, Pre  individuals are generated, then all Pre individuals are evaluated by 

surrogate model f̂ and the estimated fitness values are used to pre-select the  best 

individuals, which will be evaluated by the original fitness function. After the initial 

sampling, the pre-selection procedure can be performed in each iteration of the evolution 

loop. The module of pre-selection for evolution loop is expressed in Algorithm 4.2. 

Algorithm 4.2 Pre-Selection Procedure 

1: given:
       

Pre, , , ,
g g g g

 m C  

2: training set selection:  T training_set_selection  

3: model training:  T
ˆ model_trainingf   

4: for
 
Pre1, ,

g
k  do 

5:  ,k ds 0 I  

6: 
      

1 2
g g g

k k y m C s    // ky represents individuals in pre-selection population 

7:  ˆ ˆ
k kf f y  

8: end for 

9: select promising individuals according to ˆ
kf :

pre pre: :,k k k k  x y z s for 1, ,k  . 

10: output:  
1

ˆ, ,k k k
k

f



x z   //offspring for re-evaluation using original fitness function 

In Algorithm 4.2, the current distribution mean vector  g
m , step-size  g

 , covariance 

matrix  g
C ,and the archive which contains all previously evaluated data points are used 

in pre-selection (Line 1). The pre-selection population size for current generation
 
Pre

g
 is the 

parameter of pre-selection procedure. With the inputs, training set T is firstly selected by 

the training set selection method (Line 2), which can be the recently evaluated points, k-

nearest neighbor points to distribution mean and confidence interval method proposed in 

Section 4.3.1, and the surrogate model f̂ is trained from the selected training set (Line 3). 
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Then,  
Pre

g
 individuals are generated and subsequently evaluated by the surrogate (Line 4~8). 

According to the estimated fitness values,  best individuals are selected for re-evaluation 

using the original fitness function (Line 9). The  pre-selected offspring are exported for 

original fitness evaluation and strategy parameters adaptation.  

The size of pre-selection population Pre can be constant or be controlled during the 

evolution loop. For pre-selection without model impact control (PS), the pre-selection 

population Pre keeps constant during the evolution loop, i.e.,      1 2

Pre Pre Pre .
g

      While, 

for pre-selection with model impact control (CPS), Pre is updated during evolutionary search 

according to the model quality. The updating rule of Pre is given in Equation (4.16) based 

on the model quality measures including wQ , selectionQ and rank have been described previously. 

4.3.3 Individual-based Evolution Control 

In surrogate-assisted evolution strategies with evolution control, the control frequency, 

which is described in Section 4.2.2.3, is of significance. On one hand, in order to prevent the 

evolutionary search from being misled by a false optimum introduced by the surrogate model 

[85], the surrogate model should be used together with the original fitness function. On other 

hand, the original fitness function should be used sparsely such that computational cost on 

(original) fitness evaluation is saved as much as possible. Evolution control could be 

regarded as a scheme to make balance between saving the computational cost of fitness 

evaluation and ensuring the evolutionary search converging to the global optimum or a near-

optimum of the original fitness function. This subsection and next subsection devote to 

putting forward strategies for individual-based and generation-based evolution control, 

respectively.  

The concepts of evolution control have already introduced in Section 1.3.3. In 

surrogate-assisted evolutionary computation, the evolution control means that the original 

fitness function is used to evaluate some/all individuals in some/all generations. An 

individual that is evaluated using original fitness function is called a controlled individual. 

Similarly, a generation in which all its individuals are evaluated using the original fitness 
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function is called a controlled generation. Correspondingly, evolution control can be divided 

into two approaches: individual-based and generation-based evolution control. In individual-

based evolution control, a certain number of individuals within a generation are selected to 

be evaluated using the original fitness function, and other individuals in the generation use 

the surrogate model for fitness evaluation. Generation-based evolution control is carried out 

at a certain frequency. In a controlled generation, all individuals are evaluated with the 

original fitness function. The most important question for evolution control, both of 

individual-based and generation-based evolution control, is how to determine the control 

frequency, which signifies the number of controlled individuals and generations for 

individual-based and generation-based evolution control, respectively, in order to guarantee 

the correct convergence of the evolutionary search when false optima are present in the 

surrogate model of fitness function.  

For individual-based evolution control, both fixed and adaptive control methods can be 

used. In fixed individual-based evolution control, the number of controlled individuals is 

fixed, i.e., a fixed number of individuals are selected to re-evaluated by using the original 

fitness function. While, for adaptive individual-based evolution control, the number of re-

evaluated individuals is adaptive, usually depend on the fidelity (quality) of the surrogate 

model. The controlled individuals can be selected randomly or by a best strategy, which 

selects best individuals based on predicted fitness. Obviously, fixed individual-based control 

is simpler and thus more easily to implement than adaptive control. However, adaptive 

individual-based evolution control may require less number of re-evaluated individuals 

owing to the adaptive control frequency, and thus may save more computational cost on 

fitness evaluation and consequently would be more efficient.  

4.3.3.1 Fixed Individual-based Control (FIC) using Metric 

In individual-based control (FIC), usually, the individuals with best predicted fitness 

are selected to be controlled. Compared with other surrogate models like RBF, MLP model, 

the advantage of Kriging model (or Gaussian process model) is that it not only predicts 

fitness value but also provides the standard deviation for the predicted fitness without 
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additional computational cost. In this work, we comprehensively investigate the criteria 

which based on the model prediction  f̂ x or/and estimated standard deviation  ŝ x to select 

individuals for re-evaluation. The criteria used to select individuals which will be controlled 

are called metrics hereafter in this thesis. Five different metrics, which have been used in 

surrogate-based optimization [54, 57] but relatively new in surrogate-assisted evolution 

computation, including the mean of model prediction (Mean), estimated standard deviation 

(SD) of prediction, statistical lower bound (SLB), probability of improvement (POI), and 

expected improvement (EI), are introduced and studied in KA-CMA-ES using fixed 

individual-based control. These five metrics are defined by 

    Mean
ˆC fx x  (4.17) 

    SD
ˆC sx x  (4.18) 

      SLB
ˆ ˆC f A s  x x x  (4.19) 
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 
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        




x
x

xx

x

 (4.20) 

 

  
  

 

 
 

 

 
 

 

min min

min

EI

ˆ ˆ
ˆ ˆ ˆ, if 0

ˆ ˆ

ˆ0, if 0

f f f f
f f s s

s sC

s


     

                




x x
x x x

x xx

x

 (4.21) 

where A is a constant and in this work we set 2A  ,    and    are respectively the 

probability distribution function and cumulative distribution function of standard normal 

distribution, and minf is the current minimal fitness function value.  

In fixed individual-based control, a fixed fraction of the individuals (  ) in each 

generation are selected to be controlled according to above five metrics. Specifically, for 

fixed individual-based control using metric Mean,   individuals which have the smaller 

predicted mean fitness are selected for controlling. When the SD metric is used, individuals 

with larger estimated standard deviation are controlled. If the SLB is adopted, individuals 

with the smaller SLB values are controlled. For POI and EI metrics, individuals that have 
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the larger POI or EI values are selected and then controlled. Above described fixed 

individual-based control (FIC) can be illustrated by Algorithm 4.3.  

Empirical investigations on evolutionary computation with approximate fitness 

functions [21] showed that the number of the controlled individuals should be larger than 

50% of the population size if individual-based control is used and that the best strategy was 

recommended by the authors. The best strategy based on metric  C x (including Mean, SD, 

SLB, POI and EI), which have been given from Equation (4.17) to (4.21), is used in fixed 

individual-based control to select the controlled individuals. As for the fraction of controlled 

individuals, we set 0.5  , i.e., half of the individuals in each generation is controlled.  

Algorithm 4.3 Fixed Individual-based Control (FIC) using Metric 

1: given:            
1

, , , , , , , , ,
g g g

k k k
t f C


 


z x m C x x  

2: training set selection:  T training_set_selection  

3: model training:  T
ˆ model_trainingf   

4: for 1, ,k  do 

5:   ˆmetric computing by model k kC C f x  //compute the metric values of individuals 

6: end for 

7:    controlled 1: 2: uncontrolled :: 1:
, , , , , ,            

 x x x x x  //best strategy based on  C x  

8: for controlledk x do 

9:  k kf f x     //evaluated by original fitness function 

10: 1t t   

11:  ,k kf x  

12:  T T ,k kf x  

13: end for 

14:  T
ˆ train_modelf      //update surrogate model 

15: for uncontrolledk x do 

16:  ˆ
k kf f x     //evaluated by surrogate model 

17: end for 

18: output:  
1

, , , ,k k k k
t f




x z  

4.3.3.2 Mixed Individual-based Control (MIC) 

With the efforts of drawing the advantages of both fixed and adaptive individual-based 

evolution control, an individual-based control strategy called mixed Individual-based control 
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(MIC) which combines both features of fixed and adaptive control in some way, is proposed 

and presented below. Similarly to fixed individual-based control, in this mixed individual-

based evolution control strategy,   individuals are chosen by a best strategy for re-

evaluation in each generation. However, the value of is vary between the user defined lower 

bound min and upper bound max , i.e. min max0 1      , which is mainly different from 

the FIC. In each generation, min  individuals selected by a best strategy are unconditionally 

re-evaluated using original fitness function  .f x Up to  max min   more offspring which 

take on better fitness values (estimated by surrogates  f̂ x ) than the current best solution 

can be re-evaluated too. With these newly evaluated points, the surrogate model is retrained 

(updated) and the fitness values of uncontrolled individuals are re-estimated by the updated 

surrogate model.  

Furthermore, since Kriging model is used as the surrogate model, a metric function

 C x that is based on both the model prediction  f̂ x and estimated standard deviation  ŝ x

to identify the most promising individuals whose fitness are probably better than the current 

best fitness. Evidently, besides the mean of prediction (Mean), the statistical lower bound 

(SLB) can be used in above described mixed individual-based control without any other 

change of the control method. 

Above described mixed individual-based control strategy can be regarded as a 

combination of fixed control with control frequency of min  and an adaptive control that 

controls up to  max min   offspring individuals that has predicted fitness better than 

current best solution. In addition, after the re-evaluation of controlled individuals, on-line 

model updating is performed by retraining the surrogate model based on training set that 

adds these newly evaluated points. This could improve the quality of surrogate model and is 

good to the evolutionary computation.  

Above proposed mixed individual-based control (MIC) is implemented here and given 

in Algorithm 4.4. The metric Mean and SLB can be used in MIC. The lower bound min and 

upper bound max are set as min 0.4  and max 0.8  . This means that at least 40% and up to 

80% individuals are controlled in each generation. Too small min may lead to the algorithm 
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fail of converging to the global optimum and too large min would require more exact fitness 

function evaluations.  

Algorithm 4.4 Mixed Individual-based Control (MIC) 

1: given:            min max1
, , , , , , , , , ,

g g g

k k k
t f C


  


z x m C x x  

2: training set selection:  T training_set_selection  

3: model training:  T
ˆ model_trainingf   

4: for 1, ,k  do  

5:   ˆmetric computing by model k kC C f x  //compute the metric values of individuals 

6: end for 

7:    
min min

controlled 1: 2: uncontrolled :: 1:
, , , , , ,              

 x x x x x //best strategy using  C x  

8: for  min max1 , ,k            do 

9: if : minkC f  then    // minf is the minimum fitness in  

10:  controlled controlled : uncontrolled 1: :, , ,k k    x x x  

11: end if 

12: end for 

13: for controlledk x do 

14:  k kf f x     //evaluated by original fitness function 

15: 1t t   

16:  ,k kf x  

17:  T T ,k kf x  

18: end for 

19:  T
ˆ train_modelf      //update surrogate model 

20: for uncontrolledk x  do 

21:  ˆ
k kf f x     //evaluated by surrogate model 

22: end for 

23: output:  
1

, , , ,k k k k
t f




x z  

 

4.3.4 Modified Approximate Ranking Procedure (ARP) 

The original approximate ranking procedure proposed by Runarsson [75] has been 

presented in Algorithm 4.1. In the iteration of the original approximate ranking procedure, 

one individual is selected to be re-evaluated by original fitness function, and then the 
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surrogate model is updated and the parent set is selected based on the updated surrogate. 

This loop is stop until the parent set does not change or all the individuals in the generation 

have been re-evaluated. However, when the population size is large, which is often required 

in solving difficult multimodal problems or high dimensional problems, the amount of 

information added in one iteration may result in insignificant changes even of a surrogate 

model with bad ranking predictions [76]. To overcome this deficiency, we make some 

modifications for the original approximate ranking procedure. 

Algorithm 4.5 Modified Approximate Ranking Procedure (ARP) 

1: given:            
1

, , , , , , , ,
g g g

k k k
t f C





z x m C x x  

2: 
approximate:  T training_set_selection , 

 T
ˆ model_trainingf  and predict  ˆ , 1, ,k kf f k  x  

3: rank and determine the parent set  1 : 1i i



 
 x where      1: 2: :

ˆ ˆ ˆf f f     x x x  

4: select the initn best individuals based on metric   
1k k

C



x computed by model f̂  

5: evaluate the initn selected individuals by  f x and add to the set , initt t n   

6: for  init b2 :m n n  do 

7: 
approximate:  T training_set_selection , 

 T
ˆ model_trainingf  and predict  ˆ , 1, ,k kf f k  x  

8: determine the parent set  : 1m i i



 
 x where      1: 2: :

ˆ ˆ ˆf f f     x x x  

9: if 1m m  then (the parent set has changed) 

10: select bn best individuals based on metric   
1k k

C



x computed by model f̂  

11: evaluate the bn selected individuals by  f x and add to the set , bt t n   

12: else (parent set remains unchanged) 

13: break (exit for loop) 

14: end if 

15: end for 

16: output:  
1

, , , ,k k k k
t f




x z  

Firstly, instead of selecting only one individual for re-evaluation and updating the 

surrogate before entering the iteration loop of approximate ranking procedure, we select

 init max 1, 0.3n     individuals to be re-evaluated by  f x for updating the model. 

Obviously, more information would be added through this change. Secondly, in the iteration 

loop of approximate ranking procedure, we use a batch size  b max 1, 10n     which is 
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proportional to  , which is similar to that in [76]. Furthermore, since Kriging model is used, 

the metric (including Mean, SD, SLB, POI and EI) can be adopted in selecting individuals 

for re-evaluation and updating the model. With the aid of metric, the individuals with which 

the model can be significantly improved can be selected for re-evaluation and added to the 

training data set. Therefore, with above modifications, the efficiency of approximate ranking 

procedure could be enhanced. The modified approximate ranking procedure is expressed by 

Algorithm 4.5. 

4.3.5 Generation-based Evolution Control 

For generation-based evolution control, both fixed and adaptive control frequency can 

be used. In fixed generation-based evolution control, the control frequency is fixed, i.e., 

generation control is carried out once in a fixed number of generations. While, for adaptive 

generation-based evolution control, the frequency of generation control is adaptive, usually 

depend on the fidelity (quality) of the surrogate model. An appropriate generation control 

frequency can ensure the evolutionary computation converge to correct optimum and, at the 

same time, reduce the computational cost as much as possible.  

In [74], generation control was performed in every third generation in the comparative 

studies of surrogate-assisted ES with pre-selection strategy and generation-based control. Jin 

et al. [70, 85] proposed a strategy for adapting the generation control frequency based on the 

fidelity of the surrogate model. This adapting strategy for control frequency is presented 

below.  

It is intuitive that the higher the fidelity of the surrogate model is, the more often the 

fitness evaluation can be made using the surrogate model [70]. Because it is very difficult to 

estimate the global fidelity of the surrogate model, the authors proposed to use a local 

estimation of the model fidelity. Since the evolution strategy generally proceeds with small 

steps, the current error can be used to estimate the local fidelity of the model and then to 

determine the frequency at which the original fitness function is used and the surrogate 

model is updated. Consider there are p generations within an evolution control cycle, and
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generations need to be controlled. The , which indicates the control frequency, is adapted 

by 

  
 

 min max min

max

1 ,
E k

k
E

   
 

    
 

 (4.22) 

where x   denotes the largest integer that is smaller than x , max is the maximal value of ,

max p  , and the minimum min usually equals 1 so that the information on the model fidelity 

is always available, maxE is the allowed maximal model error and  E k is the current model 

error estimation, k denotes the k-th evolution control cycle of p generations. The current 

model error, which is estimated before the next control cycle, is measured as follows: 

       
2

1

1 ˆ
i i

i

E k f f


 

  x x  (4.23) 

where  is the population size of ES, , 1, 2, ,i i x are individuals that are evaluated 

using original fitness function in current control cycle. Apparently,  E k is the mean square 

error of evaluated points. To make sure that the information on the model fidelity is 

always available, at least one generation should be controlled within one evolution control 

cycle. Besides, since the model fidelity is estimated locally based on the error information 

from the last cycle, p should not be too large.  

4.3.5.1 Proposed Adaptive Generation-based Control (FGC) based on Model Quality 

In previous sections, the model quality has been used to control the model impact of 

pre-selection strategy. In this section, it is proposed to use the model quality to determine 

whether next generation is control or not. The quality of the surrogate model Q is estimated 

in every controlled generation, if
TSQ Q (

TSQ is the critical value or threshold of model 

quality), the next generation is evaluated by surrogate model; otherwise, the next generation 

is controlled and evaluated by original fitness function. The model quality measurements 

can be the proposed selection-based model quality measure using recombination weights wQ , 

selection-based model quality measure selectionQ proposed by Ulmer et al. [84], and the rank 

correlation coefficient rank . The threshold of model quality measurements have been given 

in Table 4.1.  
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4.4 Kriging-Assisted CMA-ES (KA-CMA-ES) Algorithms 

In this section, these issues described in previous section including training set selection, 

pre-selection with model impact control (CPS), fixed individual-based control using metrics 

(FIC), mixed individual-based control (MIC), modified approximate ranking procedure 

(ARP) and adaptive generation-based control (AGC) are incorporated into CMA-ES to 

compose several different KA-CMA-ES algorithms. In training and using the surrogate 

model, variable transformation of correlated variables is performed firstly. Before the 

evolution loop of KA-CMA-ES, a number of solutions (candidates or points) are initially 

sampled such that surrogate model can be built at the beginning of evolution loop. At the 

same time, the best candidate in initial sampling are chosen as the start point for evolution 

loop in KA-CMA-ES rather than set the start point randomly. All these are described in the 

remaining part of this section. 

4.4.1 Variable Transformation for Model Learning and Prediction 

Recently, the covariance matrix information has been used in model training so that the 

correlations between variables are taken into account during model learning. In lmm-CMS-

ES (local-meta-model CMA-ES) [76] and its relevant studies [77, 86], the covariance matrix

C that is adapted in CMA-ES was used as a metric in the calculation of distance between 

two variable vectors      
T

1,i j i j i jd   x x x x C x x , where
d

i x and
d

j x are two 

variable vectors (search points, candidates or individuals), and d dC is the current 

covariance matrix of the CMA-ES. This covariance matrix based distance takes into account 

the correlations of the data.  

In this work, a transformation of variables which transforms correlated variables into 

uncorrelated is suggested to be performed before the model training and prediction. The 

CMA-ES, which uses general (or correlated) mutation operator, is considered. In each 

generation of the CMA-ES,  offspring are generated by mutation

      , , 1, ,
g g g

k d k   x m 0 C . In other words, the  offspring are from MVN 

distribution with mean vector  g
 m and covariance matrix     

2
g g

 C , i.e.,
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         
2

, ,
g g g

k d d x m C  . Thus, for the original variable vector
d

i x , the 

following transformation T is used 

            
1 2

2
1 2T ,

g g g

i i i i


      
  

x x x C x m   (4.24) 

where
d

i
 x is the associated vector of

d

i x obtained by the defined transformation. This 

transformation uses the inverse of the covariance matrix of MVN distribution and has the 

effects of (1) standardizing all variables in the vector to the same variance and (2) eliminating 

correlations between variables [35]. It is worth mentioning that standardization of data set is 

a common requirement for many machine learning implementations. With transformation in 

Equation (4.24), the Mahalanobis distance in Equation (4.7) can be rewritten as 

             
TT T1, T T .i i i i

       x x x x x x x    (4.25) 

This shows that the Mahalanobis distance between original variable vectors can be viewed 

as the Euclidean distance on transformed vectors.  

Therefore, each time before training a surrogate model and making predictions by the 

model, we firstly transform all the input vectors of previously evaluated points and the 

current  offspring individuals using Equation (4.24). Then, the training set is selected by 

using the k-Nearest Neighbor Points based on Mahalanobis Distance, the confidence interval 

of MVN or other methods. That is to say, model learning and prediction are performed on 

transformed variables.  

4.4.2 Initial Sampling and Informed Start Point 

For surrogate-assisted ES, a set of evaluated points is indispensable before the starting 

of surrogate assistance. Usually, the surrogate model is trained at the beginning with a 

randomly created initial population (or initial sampling), which can be found in [25, 72–74]. 

In this work, a different way is used to create initial population for constructing the initial 

surrogate mode. As stated in Chapter 3, space-filling design is appropriate to represent all 

portions of the design space. Thus, in this work, the initial sampling is created by the space-

filling Latin hypercube designs described in Section 3.2.2 rather than by randomly sampling. 
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In other words, before the evolution loop of KA-CMA-ES, an initial design of experiments 

(DOE) is carried out by using Latin Hypercube Designs (LHD) based on maximin distance 

criterion. As for the size of the DOE, DOEn , the DOE 10n D rule of thumb which was studied 

in [87] is adopted. Specifically, DOE 10n D ( D is the dimension of the problem) sampling 

points are generated by LHD. However, in KA-CMA-ES using pre-selection, the size of pre-

selection population is set as Pre 2  . In order to runs pre-selection after the initial sampling,

DOEn should not smaller than Pre . Thus, we correspondingly set  DOE max 10 , 2n D  in all 

the KA-CMA-ES algorithms which are expressed and investigated subsequently.  

It is apparent that smaller number of iterations are needed to reach the optimum when 

the start point  0
m for the evolution loop is near the location of the optimum, and vice versa. 

However, for black-box problem, usually no prior knowledge about the global optimum is 

available before we solve the optimization problems. Thus, the start point  0 dm is 

generally initialized uniformly and randomly within the search space. Fortunately, 

information can be extracted from the samples of initial sampling (DOE). Therefore, we 

proposed to choose the best point in initial sampling (the point with minimum fitness 

function value) as the start point for subsequent evolution loop, after the evaluation of the

DOEn points in DOE. This strategy for start point selection is referred to as informed start 

point in this work. In this work, the initial sampling and informed start point are performed 

before the evolution loop for all surrogate-assisted evolution algorithms. 

4.4.3 KA-CMA-ES using Pre-Selection 

This subsection dedicates to the KA-CMA-ES using pre-selection, where pre-selection 

without model impact control (PS) and pre-selection with model impact control (CPS) are 

incorporated into CMA-ES. The standard  , -CMA-ESw   , which has already presented 

in Section 2.3.3, is not repeated here. The KA-CMA-ES using pre-selection can be easily 

developed by introducing initial sampling and informed start point before the evolution loop, 

and then runs the pre-selection procedure before the evaluation of offspring population 
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(using original fitness function f ) in the standard evolution loop of the  , -CMA-ESw  

algorithm.  

Algorithm 4.6 The KA-CMA-ES using Pre-Selection 

1: given: strategy parameters of CMA-ES, pre-selection method (PS or CPS) and parameters ( Pre

for PS,
 

Pre

0

Pre ,   and model quality measure Q for CPS). 

2: initialize
       0 0 0 0

c T0, , , , = , , 0, 0g t         p 0 p 0 C I  

3: initial sampling:  
DOE

T
T

DO D1 EE Olhsdes, ign ,, n n d   X x x  

4: evaluate initial samples:    , ,k k k kf f f x x where DOE DOE, 1, ,k k n x X  

5: informed start point:
 

T
DOE

0
arg min

k

kf



x X

m  

6: repeat 

7: training set selection:  T training_set_selection  

8: model training:  T
ˆ model_trainingf   

9: if PS is used then 

10: 
        Pre

1

ˆ, , pre-selection_procedure , , , ,
g g g

k k k
k

f


 


x z m C  

//pre-selection without model impact control 

11: elseif CPS is used then 

12: 
          Pre

1

ˆ, , pre-selection_procedure , , , ,
g g g g

k k k
k

f


 


x z m C  

//pre-selection with model impact control 

13: end if 

14: for 1, ,k   do    //evaluate by original fitness function 

15:  k kf f x   

16:  ,k kf x  

17: 1t t   

18: end do 

19: if CPS is used then 

20: model quality estimate:
     

11

ˆmodel_qualtiy_estimate , , ,
g

k k k k kk
Q f f

 



   
 

x x  

21: 
 

 
 

 

 
 

TS
TS

Pre Premax TS

1

Pre
TS

Pre PreTS min

, if

, otherwise

g
g g

g

g
g

Q Q
Q Q

Q Q

Q Q

Q Q

 



 



 
 


 


 

     //update Pre  

22: end if 

23: update      1 1 1
, ,

g g g


  
m C (the same as standard CMA-ES algorithm Line 9~13) 

24: 1g g   

25: until termination criterion is fulfilled 
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In each evolution iteration, the pre-selection procedure is firstly performed. After the 

pre-selection step, the evaluation, selection and recombination are performed on the  pre-

screened offspring in the same way as in standard CMA-ES. If there is no model impact 

control in pre-selection (PS), the size of pre-selection population Pre is set by user and keeps 

constant during the computation. For pre-selection with model impact control (CPS), the 

model qualityQ (including wQ , selectionQ and rank ) need to be estimated after the evaluation of

 offspring by original fitness function, and then the size of pre-selection population Pre is 

updated according to Equation (4.16). The pseudocode of KA-CMA-ES using Pre-Selection 

without and with model impact control is given in Algorithm 4.6. This algorithm contains 

two methods: KA-CMA-ES using PS, which presents Kriging-assisted CMA-ES using pre-

selection without model impact control, and KA-CMA-ES using CPS,which stands for 

Kriging-assisted CMA-ES using pre-selection with model impact control. The pre-selection 

procedure used in Line 10 and 12 has been given in Algorithm 4.2. 

4.4.4 KA-CMA-ES using Individual-based Evolution Control 

For Kriging-Assisted CMA-ES using individual-based evolution control, fixed 

individual-based control (FIC) using metric and our proposed mixed individual-based 

control (MIC) can be used. In fixed individual-based control (FIC), metric is used for 

selecting the most promising individuals for re-evaluation. The details about metrics (Mean, 

SD, SLB, POI and EI) for FIC have been discussed in Section 4.3.3.1. In mixed individual-

based control (MIC), two metrics, i.e., the Mean (mean of prediction) and SLB (the statistical 

lower bound), are provided. The pseudocode of KA-CMA-ES using individual-based control, 

including FIC and MIC, is presented in Algorithm 4.7.  

The initial sampling and informed start point are firstly introduced in KA-CMA-ES 

using individual-based control (Line 3~5), before the evolution loop. In each evolution 

iteration,  individuals (offspring) are generated by mutation operator (Line 7~10). Then, the 

fixed individual-based control (FIC) or mixed individual-based control (MIC) is performed 
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(Line 13~17). With the results of FIC or MIC, the distribution mean, step-size and 

covariance matrix can be updated (Line 18) the same as the standard CMA-ES. 

Algorithm 4.7 The KA-CMA-ES using Individual-based Control 

1: given: strategy parameters of CMA-ES, individual-based control method (FIC or MIC) and 

parameters ( for FIC, min max,  for MIC), and metric  C x used in individual control. 

2: initialize
       0 0 0 0

c T0, , , , = , , 0, 0g t         p 0 p 0 C I  

3: initial sampling:  
DOE

T
T

DO D1 EE Olhsdes, ign ,, n n d   X x x  

4: evaluate initial samples:    , ,k k k kf f f x x where DOE DOE, 1, ,k k n x X  

5: informed start point:
 

T
DOE

0
arg min

k

kf



x X

m  

6: repeat 

7: for 1, ,k   do    //generate  offspring 

8:  ,k dz 0 I     //i.i.d. for each kz  

9: 
      

1 2
g g g

k k x m C z     //mutation 

10: end for 

11: training set selection:  T training_set_selection  

12: model training:  T
ˆ model_trainingf   

13: if FIC is used then 

14:  
       

   
1

1

, , , , ,
, , , , fixed_individual_control

, , , ,

g g g

k k k
k k k k

t f
t f C



 







 
 
 
 

z x m C
x z

x x
 

15: elseif MIC is used then 

16:  
       

   
1

1

min max

, , , , ,
, , , , mixed_individual_control

, , , , ,

g g g

k k k
k k k k

t f
t f C



 

 





 
 
 
 

z x m C
x z

x x
 

17: end if 

18: update      1 1 1
, ,

g g g


  
m C (the same as standard CMA-ES algorithm Line 9~13) 

19: 1g g    

20: until termination criterion is fulfilled 

 

4.4.5 KA-CMA-ES using Approximate Ranking Procedure (ARP) 

Previously described modified approximate ranking procedure, which has been 

illustrated in Algorithm 4.5, is embedded into CMA-ES. The pseudocode of KA-CMA-ES 
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using approximate ranking procedure (ARP) is given in Algorithm 4.8. The initial sampling 

and informed start point are firstly performed (Line 3~5). In each evolution loop, the 

approximate ranking procedure is called after  individuals have been generated. 

Algorithm 4.8 The KA-CMA-ES using Approximate Ranking Procedure (ARP) 

1: given: strategy parameters of CMA-ES, parameters for approximate ranking procedure ( init b,n n

and metric  C x ). 

2: initialize
       0 0 0 0

c T0, , , , = , , 0, 0g t         p 0 p 0 C I  

3: initial sampling:  
DOE

T
T

DO D1 EE Olhsdes, ign ,, n n d   X x x  

4: evaluate initial samples:    , ,k k k kf f f x x where DOE DOE, 1, ,k k n x X  

5: informed start point:
 

T
DOE

0
arg min

k

kf



x X

m  

6: repeat 

7: for 1, ,k   do     //standard mutation and evaluation of CMA-ES 

8:  ,k dz 0 I      //i.i.d. for each kz  

9: 
      

1 2
g g g

k k x m C z  

10: end for 

11:               1 1
, , , , approximate_ranking_procedure , , , , , , , ,

g g g

k k k k kk k
t f t f C

 


 
x z z x m C x x  

12: update      1 1 1
, ,

g g g


  
m C (the same as standard CMA-ES algorithm Line 9~13) 

13: 1g g   

14: until termination criterion is fulfilled 

 

4.4.6 KA-CMA-ES using Adaptive Generation-based Control (AGC) 

The CMA-ES is further combined with the adaptive generation-based control (AGC) 

strategy described in Section 4.3.5, in which the model quality is used to control the 

frequency of generation control. Specifically, in adaptive generation-based control, if the 

model quality  g
Q of current controlled generation exceeds the threshold value

TSQ , next 

generation is evaluated using the surrogate model; otherwise, next generation is controlled. 

The pseudocode of KA-CMA-ES using adaptive generation-based control (AGC) is 

expressed in Algorithm 4.9. The model quality measures wQ , selectionQ and rank can be used in 

AGC. In Algorithm 4.9, 
 
control

g
I indicates the generation g is controlled or not. If

 
control 1

g
I  , 
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generation g is controlled (evaluated by the original fitness function), otherwise, generation

g is evaluated by the surrogate model.  

Algorithm 4.9 The KA-CMA-ES using Adaptive Generation-based Control (AGC) 

1: given: strategy parameters of CMA-ES, model quality Q for AGC 

2: initialize
         0 0 0 0 0

c T control0, , , , = , , 1, 0, 0I g t          p 0 p 0 C I  

3: initial sampling:  
DOE

T
T

DO D1 EE Olhsdes, ign ,, n n d   X x x  

4: evaluate initial samples:    , ,k k k kf f f x x where DOE DOE, 1, ,k k n x X  

5: informed start point: 
 

T
DOE

0
arg min

k

kf



x X

m  

6: repeat 

7: for 1, ,k   do     //standard mutation and evaluation of CMA-ES 

8:  ,k dz 0 I     //i.i.d. for each kz  

9: 
      

1 2
g g g

k k x m C z   

10: end for 

11: training set selection:  T training_set_selection  

12: model training:  T
ˆ model_trainingf   

13: prediction:  ˆ ˆ , 1, ,k kf f k  x   

14: If 
 
control

g
I is equal 1 then 

15: evaluation:   , 1, ,k kf f k  x  

16: model quality estimate:
     

11

ˆmodel_qualtiy_estimate , , ,
g

k k k k kk
Q f f

 



   
 

x x  

17: if 
  TSg

Q Q  then 

18:  1

control 0
g

I


     //mark next generation as model-evaluated 

19: else 

20:  1

control 1
g

I


     //mark next generation as controlled 

21: end if 

22: esleif 
 
control

g
I is equal 0 then 

23:  ˆ , 1, ,k kf f k  x  

24:  1

control 1
g

I


     //mark next generation as controlled 

25: end if 

26: update      1 1 1
, ,

g g g


  
m C (the same as standard CMA-ES algorithm Line 9~13) 

27: 1g g    

28: until termination criterion is fulfilled 
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4.5 Experimental Studies 

The validation and the performance evaluation of optimization algorithms is commonly 

carried out by using a chosen set of benchmarks or test functions. In this section, the 

proposed Kriging-assisted CMA-ES algorithms in Section 4.4 are validated using a set of 

test functions and their performance are evaluated and analyzed. 

4.5.1 Experimental Setup 

4.5.1.1 Test Functions 

Test functions are important in performance validation and comparison of optimization 

algorithms. In order to comprehensively evaluate an algorithm, the used set of test functions 

should includes enough functions with different characteristics, such as continuous, 

discontinuous, unimodal, multi-modal, separable, non-separable. In this work, we focus on 

continuous optimization problems. In the experimental studies of proposed Kriging-Assisted 

CMA-ES (KA-CMA-ES) algorithms, a set of 12 continuous benchmark functions is 

carefully selected from [88–90].  

All the test functions are minimization problems defined as follows : 

 
   

 

T

1 2

LB UB

minimize , , , ,

subject to ,

Df x x x

S



 

x x

x x x
 (4.26) 

where  f x is objective or fitness function, D is the dimension of the problem (the number 

of parameters or variables), and S is the search space (search domain) defined by the lower 

bounds LB

Dx and upper bounds UB

Dx . For handling the box constraints, the re-

sampling method, i.e. re-sampling any infeasible solution x until it becomes feasible, is 

adopted. 

The name, expression and the search space of 12 test functions are listed in Table 4.2, 

in which 1 7f f are unimodal functions and 8 12f f are multimodal problems. All these test 

functions have the global optimum   0f  x , and the global optimum are located at 

T[0,0, ,0] x except Rosenbrock function, whose optimum is at
T[1,1, ,1] x . In our 
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studies, for 1 5f f , the dimensionality of search space are 2,5,10 and 20D  ; for 6 11f f , 

we take 2,5 and 10D  , and 12f has dimension 2 and 5.D   Each test function with each 

dimension can be considered as an optimization problem. Totally, there are 40 test problems. 

Table 4.2 Test functions for experimental studies 

Name Function 
Search 

Space 

Sphere   2

1

1

D

i

i

f x


 x   5, 5
D

  

Bent Cigar   2 4 2

2 1

2

10
D

i

i

f x x


  x   100,100
D

  

Sum Squares     2

3

1

D

i

i

f i x


 x   10,10
D

  

Schwefel 1.2   
2

4

1 1

D i

j

i j

f x
 

 
  

 
 x   100,100

D
  

Powell Sum  
1

5

1

D
i

i

i

f x




 x   1,1
D

  

Schwefel 

Absolute 
 6

1 1

DD

i i

i i

f x x
 

  x   100,100
D

  

Rosenbrock      
1

2 22

7 1

1

100 1
D

i i i

i

f x x x






    
  x   5, 5

D
  

Ackley      2

8

1 1

1 1
20exp 0.2 exp cos 2 20 exp 1

D D

i i

i i

f x x
D D


 

   
            

 x   32, 32
D

  

Levy 
       

   

1
22 2

9 1

1

2 2

sin 1 1 10sin 1

1 1 sin 2

D

i i

i

D D

f z z z

z z

 







      

    

x
  10,10

D
  

Weierstrass 
      

max max

10

1 0 0

cos 2 0.5 cos 2 0.5
D k k

k k k k

i

i k k

f a b x D a b 
  

 
          

 
  x  

where 0.5, 3, max 20a b k    

 0.5, 0.5
D

  

Bohachevsky      
1

2 2

11 1 1

1

2 0.3cos 3 0.4cos 4 0.7
D

i i i i

i

f x x x x 


 



      x   15,15
D

  

Rastrigin    2

12

1

10 10cos 2
D

i i

i

f D x x


    x   5, 5
D

  

 

4.5.1.2 Experimental Setting 

For each test problem, 25 independent runs are performed using the algorithm which 

are chosen to be investigated. The initial mean is set as: for CMA-ES, the initial mean  0
m

is uniformly sampled within the search domain of the problem (given in Table 4.2) ; for KA-
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CMA-ES, the initial mean  0
m of the evolution loop is the best candidate in initial sampling 

(informed start point), where  DOE max 10 ,2n D  samples are generated by LHD within the 

search space. A single run of the algorithm is terminated, when the target function (fitness) 

value
10

target 10f  is reached or one of the following termination conditions is satisfied: 

maxFES: maximum number of exact fitness function evaluations, for CMA-ES,

4maxFES 10 D ; for KA-CMA-ES, 4maxFES 10 . 

ConditionCov: the condition number of  g
C exceeds 1410 . 

TolFun: stop if the range of the best objective function values of the last10 30 D    

generations and all function values of the recent generation is below 10TolFun 10 . 

TolX: stop if all components of  g

cp and all square roots of diagonal components of  g
C , 

multiplied by    0g
  , are smaller than 12TolX 10 . 

4.5.1.3 Evaluation Criteria 

For each run of the problems, the number of exact function evaluations (FES) and 

current best fitness function values are recorded. All the best fitness function values should 

be from solutions that are evaluated using original fitness function. In other words, in KA-

CMA-ES, the number of exact function evaluations (evaluating using original fitness 

function) and corresponding current best function values of evaluated individuals are 

recorded.  

In experimental study, the performance of an algorithm is evaluated according to the 

success rate (SR), the success performance (SP) and the speedup performance (SPU). The 

optimization runs which reach the target objective function value targetf are known as 

successful runs. While, these runs that do not reach targetf are considered unsuccessful. A 

successful run is rated with the number of function evaluations to reach targetf , i.e., the FES 

of successful run. The success rate (SR) is the ratio of number of successful runs to total 

runs, which is computed as 

 
#  of successful runs

SR
#  of total runs

  (4.27) 
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The success performance (SP) can be regarded as the expected number of FES to reach 

targetf , and is given by 

  
#  of total runs

SP mean FES of successful runs
#  of successful runs

   (4.28) 

Based on success performance (SP), the speedup performance (SPU) of KA-CMA-ES 

is defined as the ratio between SP of CMA-ES and that of the investigated KA-CMA-ES 

algorithm, i.e., 

 
SP of CMA-ES

SPU
SP of KA-CMA-ES

  (4.29) 

The speedup performance (SPU) denotes the degree of improvement in performance 

(according to number of exact function evaluations) of the KA-CMA-ES algorithm. 

Obviously, the SPU of an algorithms is larger than one (SPU>1) means the algorithm makes 

improvement in success performance. On the contrary, SPU<1 indicates the algorithm 

performs worse than standard CMA-ES.  

4.5.2 Experiments on KA-CMA-ES using Pre-Selection 

4.5.2.1 Pre-Selection without Model Impact Control (PS) 

Three training set selection methods, including Recently Evaluated Points, k-Nearest 

Neighbor Points to distribution mean based on Mahalanobis distance and Confidence 

Interval, have been investigated in KA-CMA-ES using pre-selection without model impact 

control (PS). The size of training set is set as T 2n  for Recently Evaluated Points and k-

Nearest Neighbor Points methods, and training 99.73%p  for Confidence Interval methods. 

The size of pre-selection population is set as Pre 2  and keeps as constant during the 

computation. For simplification reason, we use ‘Recently’ to represents the Recently 

Evaluated Points method of training set selection, ‘kNN’ to stand for the k-Nearest Neighbor 

Points to distribution mean based on Mahalanobis distance, and ‘Interval’ to signify the 

proposed Confidence Interval method. The goal of running KA-CMA-ES using PS (KA-

CMA-ES using pre-selection without model impact control) with different training set 

selection methods is to investigate the performance of training set selection methods and 
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thus to determine which method is used in subsequent experiments of other KA-CMA-ES 

algorithms. Additionally, the performance of PS algorithms will be compared with the pre-

selection with model impact control (CPS) which are studied in next subsection.  

The experimental results of KA-CMA-ES using pre-selection without model impact 

control (including success rate (SR), success performance (SP) and speedup performance 

(SPU)), in which training set selection methods ‘Recently’, ‘kNN’ and ‘Interval’ are adopted, 

are listed in Table 4.3. In this table, PS-Recently indicates the pre-selection using Recently 

Evaluated Points method for training set selection, PS-kNN stands for the pre-selection 

where training set is selected as k-Nearest Neighbor Points to distribution mean based on 

Mahalanobis distance, and PS-Interval signifies pre-selection using the proposed Confidence 

Interval method as training set selection.  

From Table 4.3, it can be found that, for large majority of the test problems, the speedup 

performance (SPU) of PS-Interval is larger than that of PS-Recently and PS-kNN, which 

indicates better performance of PS-Interval. Additionally, PS-Interval can get higher success 

rate (SR) values on difficult problems such as 11f and 12f . It can be initially concluded that 

the proposed Confidence Interval method for training set selection, generally, work better 

than ‘Recently’ and ‘kNN’ methods.  

Furthermore, in order to analyze the performance of different training set selection 

methods, we have classified the total 40 test problems into different categories (or groups) 

according to their dimensionality and modality, and then evaluate the performance of PS 

using different training selection methods on each category and overall problems. The total 

test problems are grouped into: 2 dimensional problems (D=2), 5 dimensional problems 

(D=5), 10 dimensional problems (D=10), 20 dimensional problems (D=20), unimodal 

problem, and multimodal problems. For each category of problems and the overall problems, 

we compute the average success rate (SR) and average speedup performance (SPU). This is 

also used in subsequent investigation of other KA-CMA-ES algorithms. The average success 

rate and speedup performance are listed in Table 4.4 and plotted in radar charts (also known 

as spider chats or start plots) of Figure 4.3.   
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Table 4.3 Results of KA-CMA-ES using pre-selection without model impact control (PS) 

Function D λ 
PS-Recently PS-kNN PS-Interval CMA-ES 

SR SP SPU SR SP SPU SR SP SPU SR SP 

f1 

2 6 1 253 1.31  1 255 1.30  1 257 1.29  1 331 

5 8 1 718 1.24  1 708 1.25  1 705 1.26  1 888 

10 10 1 1535 1.16  1 1521 1.17  1 1410 1.27  1 1784 

20 12 1 3110 1.06  1 3090 1.07  1 2902 1.13  1 3292 

f2 

2 6 1 326 1.19  1 323 1.20  1 319 1.21  1 387 

5 8 1 971 1.16  1 998 1.13  1 1004 1.12  1 1128 

10 10 1 2632 1.12  1 2422 1.21  1 2509 1.17  1 2941 

20 12 0.96 6422 1.16  1 6742 1.11  0.96 6634 1.13  1 7470 

f3 

2 6 1 279 1.28  1 283 1.26  1 274 1.30  1 356 

5 8 1 796 1.23  1 801 1.22  1 760 1.29  1 980 

10 10 1 1850 1.12  1 1808 1.14  1 1661 1.25  1 2070 

20 12 1 4416 0.98  1 4223 1.02  1 4194 1.03  1 4327 

f4 

2 6 1 325 1.28  1 336 1.24  1 326 1.28  1 417 

5 8 1 979 1.25  1 995 1.23  1 941 1.30  1 1224 

10 10 1 2535 1.13  1 2530 1.13  1 2307 1.24  1 2858 

20 12 1 7172 1.04  1 7114 1.04  1 6825 1.09  1 7431 

f5 

2 6 1 202 1.37  1 219 1.26  1 216 1.28  1 277 

5 8 1 878 1.31  1 888 1.29  1 912 1.26  1 1149 

10 10 1 2866 1.24  0.92 3173 1.12  1 2794 1.27  1 3556 

20 12 0.72 12036 1.16  0.88 9843 1.42  0.84 10444 1.34  0.76 14014 

f6 

2 6 1 578 1.35  1 574 1.36  1 578 1.35  1 778 

5 8 1 1745 1.29  1 1699 1.33  1 1599 1.41  1 2253 

10 10 1 4133 1.23  1 4109 1.24  1 3709 1.37  1 5078 

f7 

2 6 1 470 1.41  1 456 1.45  1 449 1.48  1 663 

5 8 1 1744 1.42  1 1809 1.36  0.96 1675 1.47  0.96 2468 

10 10 0.88 6503 1.27  0.96 5895 1.40  0.96 5073 1.63  0.8 8248 

f8 

2 6 1 553 1.30  1 560 1.28  1 557 1.29  1 717 

5 8 1 1464 1.39  0.96 1513 1.35  1 1414 1.44  0.92 2040 

10 10 0.96 3163 1.19  1 3052 1.23  1 2810 1.34  0.96 3753 

f9 

2 12 1 390 1.25  1 381 1.28  1 376 1.29  1 486 

5 16 1 1141 1.30  1 1137 1.31  1 1137 1.31  0.96 1489 

10 20 1 2492 1.22  0.96 2596 1.17  1 2440 1.25  1 3049 

f10 

2 12 1 846 1.25  1 852 1.24  0.96 901 1.17  1 1054 

5 16 1 2354 1.33  1 2399 1.31  1 2362 1.33  0.96 3137 

10 20 1 5144 1.34  1 5136 1.34  1 4924 1.40  0.92 6893 

f11 

2 12 1 454 1.31  1 461 1.30  1 460 1.30  1 597 

5 16 0.8 1618 1.05  0.92 1405 1.21  1 1299 1.31  0.96 1700 

10 20 0.88 3152 1.41  0.76 3673 1.21  0.92 2949 1.51  0.76 4457 

f12 
2 50 0.92 1508 1.57  0.96 1452 1.63  0.92 1496 1.59  0.68 2372 

5 140 0.6 9722 1.03  0.76 8338 1.20  0.84 7452 1.34  0.8 10020 
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Table 4.4 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using pre-

selection without model impact control (PS). 

Category 
Average Success Rate (SR) Average Speedup Performance (SPU) 

PS-Recently PS-kNN PS-Interval CMA-ES PS-Recently PS-kNN PS-Interval 

D=2 0.993 0.997 0.990 0.973 1.322 1.316 1.318 

D=5 0.950 0.970 0.983 0.963 1.251 1.267 1.321 

D=10 0.975 0.964 0.989 0.949 1.221 1.216 1.335 

D=20 0.936 0.976 0.960 0.952 1.080 1.133 1.145 

Unimodal 0.983 0.991 0.989 0.982 1.221 1.230 1.277 

Multimodal 0.940 0.951 0.974 0.923 1.282 1.290 1.347 

Overall 0.968 0.977 0.984 0.961 1.242 1.251 1.302 

 

 

Figure 4.3 Radar charts of average success rate and speedup performance of KA-CMA-ES using pre-

selection without model impact control (PS). 

From the radar chart of average success rate (SR) in left of Figure 4.3 and Table 4.4, 

for each category of problems, the KA-CMA-ES using PS have average success rate exceeds 

0.9. Specifically, the PS-kNN has the highest average success rate on problems with D=2 

and D=20, and unimodal problems. PS-Interval has the highest average success rate on 

problems with D=5, D=10, multimodal problems, and on overall problems. The PS-Recently 

method has the lowest average success rate among three methods. PS-kNN and PS-Interval 

has higher average success rate than the standard CMA-ES on all categories of problems. In 

terms of speedup performance (SPU) or success performance, PS-Interval has the best 

success performance on all other category problems except 2 dimensional problems. Thus, 

it can also be found that the ‘Interval’ method is superior to ‘Recently’ and ‘kNN’ methods.  
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From the experimental study of KA-CMA-ES using pre-selection without model 

impact control (PS), it can be found that the proposed Confidence Interval method for 

training set selection in KA-CMA-ES is appropriate. Considering the success rate and 

success performance as a whole, it is can be concluded that the ‘Interval’ (Confidence 

Interval) method for training set selection has better performance than ‘Recently’ and ‘kNN’ 

methods. By all accounts, the proposed Confidence Interval method clearly superior to the 

commonly used ‘Recently’ and ‘kNN’ methods for training set selection. Consequently, 

Confidence Interval method of training set selection is adopted for training set selecting in 

the remaining KA-CMA-ES algorithms owing to its superiority.  

4.5.2.2 Pre-Selection with Model Impact Control (CPS) 

In KA-CMA-ES using pre-selection with model impact control (CPS), three model 

impact control approaches, in which three different model quality measures including wQ ,

selectionQ and rank are used, are investigated. In experiments of KA-CMA-ES using CPS, we 

set the initial pre-selection population size  0

Pre 2  and the adaptation rate
Pre

2  .  

The experiments results of KA-CMA-ES using pre-selection with model impact control 

(CPS), i.e., the success rate (SR), success performance (SP) and speedup performance (SPU), 

are listed in Table 4.5. In the table, CPS- wQ indicates pre-selection with model impact control 

using wQ as model quality measure, selectionCPS-Q represents pre-selection with model impact 

control using selectionQ as model quality measure, and rankCPS- signifies pre-selection with 

model impact control using rank as model quality measure. 

According to the values of SP and SPU in Table 4.5, for most problems, CPS- wQ

performs better than selectionCPS-Q and rankCPS- . However, the values of SR of rankCPS- are 

generally higher than that of CPS- wQ and selectionCPS-Q . For the problems of 20 dimensional

3f and 4f , and 2 dimensional 10f , the performance of rankCPS- significantly overweights

CPS- wQ and selectionCPS-Q . It is worth to note that rankCPS- and CPS- wQ perform worsen than 

CMA-ES on the problems of 20 dimensional 3f and 4f and 2 dimensional 10f . Thus, it can be 

said that rankCPS- is more stable and reliable than CPS- wQ and selectionCPS-Q , and that

CPS- wQ generally has better success performance and speedup performance.   
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Table 4.5 Results of KA-CMA-ES using pre-selection with model impact control (CPS). 

Function D λ 
CPS- wQ  selectionCPS-Q  rankCPS-  CMA-ES 

SR SP SPU SR SP SPU SR SP SPU SR SP 

f1 

2 6 1 206 1.61  1 209 1.58  1 202 1.64  1 331 

5 8 1 541 1.64  1 544 1.63  1 545 1.63  1 888 

10 10 1 1122 1.59  1 1159 1.54  1 1220 1.46  1 1784 

20 12 1 2767 1.19  1 2756 1.19  1 2871 1.15  1 3292 

f2 

2 6 1 256 1.51  1 264 1.47  1 258 1.50  1 387 

5 8 1 797 1.42  1 753 1.50  1 814 1.39  1 1128 

10 10 1 1864 1.58  1 1829 1.61  1 1782 1.65  1 2941 

20 12 1 3778 1.98  1 3974 1.88  1 4330 1.73  1 7470 

f3 

2 6 1 220 1.62  1 216 1.65  1 222 1.60  1 356 

5 8 1 589 1.66  1 598 1.64  1 595 1.65  1 980 

10 10 1 1342 1.54  1 1389 1.49  1 1468 1.41  1 2070 

20 12 1 5307 0.82  1 5422 0.80  1 4140 1.05  1 4327 

f4 

2 6 1 254 1.64  1 256 1.63  1 252 1.65  1 417 

5 8 1 710 1.72  1 719 1.70  1 723 1.69  1 1224 

10 10 1 2102 1.36  1 2084 1.37  1 2224 1.29  1 2858 

20 12 0.6 15281 0.49  0.6 14963 0.50  1 6754 1.10  1 7431 

f5 

2 6 1 163 1.70  1 165 1.68  1 163 1.70  1 277 

5 8 1 572 2.01  1 594 1.93  1 596 1.93  1 1149 

10 10 1 1588 2.24  1 1693 2.10  1 1712 2.08  1 3556 

20 12 1 4279 3.28  1 4548 3.08  1 4852 2.89  0.76 14014 

f6 

2 6 1 448 1.74  1 461 1.69  1 466 1.67  1 778 

5 8 1 1236 1.82  1 1291 1.75  1 1358 1.66  1 2253 

10 10 1 2881 1.76  1 2853 1.78  1 3305 1.54  1 5078 

f7 

2 6 1 308 2.15  1 311 2.13  1 320 2.07  1 663 

5 8 0.96 1104 2.24  1 1105 2.23  0.96 1222 2.02  0.96 2468 

10 10 0.96 4013 2.06  0.92 4444 1.86  0.96 4555 1.81  0.8 8248 

f8 

2 6 1 431 1.66  1 438 1.64  0.96 463 1.55  1 717 

5 8 1 1043 1.96  1 1067 1.91  1 1070 1.91  0.92 2040 

10 10 1 2096 1.79  1 2153 1.74  1 2364 1.59  0.96 3753 

f9 

2 12 1 342 1.42  1 341 1.43  1 344 1.41  1 486 

5 16 1 977 1.52  1 985 1.51  1 989 1.51  0.96 1489 

10 20 1 2046 1.49  0.96 2180 1.40  1 2198 1.39  1 3049 

f10 

2 12 0.52 1493 0.71  0.4 1878 0.56  0.92 865 1.22  1 1054 

5 16 1 1899 1.65  1 1946 1.61  1 2141 1.47  0.96 3137 

10 20 1 3946 1.75  1 4058 1.70  1 4717 1.46  0.92 6893 

f11 

2 12 1 399 1.50  1 404 1.48  1 416 1.44  1 597 

5 16 0.96 1134 1.50  1 1089 1.56  0.92 1204 1.41  0.96 1700 

10 20 0.92 2460 1.81  0.88 2635 1.69  0.8 2970 1.50  0.76 4457 

f12 
2 50 0.8 1700 1.40  0.88 1532 1.55  0.96 1417 1.67  0.68 2372 

5 140 0.64 9092 1.10  0.8 7376 1.36  0.84 7222 1.39  0.8 10020 
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Table 4.6 Average success rate (SR) and speedup (SPU) performance of KA-CMA-ES using pre-

selection with model impact control (CPS). 

Category 
Average Success Rate (SR) Average Speedup (SPU) 

CPS- wQ  
selectionCPS-Q  

rankCPS-  CMA-ES CPS- wQ  
selectionCPS-Q  

rankCPS-  

D=2 0.943 0.940 0.987 0.973 1.554 1.540 1.594 

D=5 0.963 0.983 0.977 0.963 1.687 1.695 1.637 

D=10 0.989 0.978 0.978 0.949 1.724 1.662 1.561 

D=20 0.920 0.920 1.000 0.952 1.549 1.490 1.581 

Unimodal 0.982 0.982 0.997 0.982 1.706 1.669 1.651 

Multimodal 0.917 0.923 0.957 0.923 1.518 1.510 1.493 

Overall 0.959 0.961 0.983 0.961 1.640 1.614 1.596 

 

 

Figure 4.4 Average success rate and outperform rate of pre-selection with model impact control using 

different model quality measures. 

The average success rate and speedup performance of CPS are listed in Table 4.6 and 

plotted in Figure 4.4. For problems with D=2 and D=20, unimodal problems and multimodal 

problems, the rankCPS- has the highest average success rate. The CPS- wQ has highest average 

success rate on 10 dimensional problems, and selectionCPS-Q has highest success rate on 5 

dimensional problems. However, according to the speedup performance, CPS- wQ generally 

outperforms selectionCPS-Q and rankCPS- according to the overall average SPU.  

With above results, it is hard to state which one in the three investigated CPS algorithms 

is outstanding. If the success performance or speedup performance is considered, CPS- wQ is 

preferable. When higher success rate and the stability of algorithm are expected, rankCPS-  

is suggested. From the performance of pre-selection with model impact control using wQ , it 
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can be found that the proposed model quality measure wQ is an appropriate measurement of 

surrogate model quality in KA-CMA-ES.  

4.5.2.3 Comparison of Pre-Selection with and without Model Impact Control 

The results of KA-CMA-ES using pre-selection without model impact control using 

‘Interval’ training set selection method (PS-Interval) and KA-CMA-ES using pre-selection 

with model impact control are summarized in Table 4.7. It is apparent that pre-selection with 

model impact control (CPS) outperforms pre-selection without model impact control (PS) 

for most of the test problems according to the speedup performance. Thus, model impact 

control is suggested in KA-CMA-ES using pre-selection. 

The average success rate and speedup performance of PS-Interval, CPS- wQ , 

selectionCPS-Q and rankCPS- for different categories of problems are also presented in Table 

4.8 and plotted in Figure 4.5. In the radar chart of speedup performance in the right of Figure 

4.5, the CPS- wQ obviously performs better than other pre-selection methods. It is clear that 

the pre-selection with model impact control outperforms pre-selection without model impact 

control. All the pre-selection methods have average success rate larger than 0.9. The

rankCPS- generally has the highest and stable success rate for all categories of test problems, 

especially on 20 dimensional problems and multimodal problems. Yet the average success 

performance (or speedup performance) of rankCPS- is not so good as that of CPS- wQ .  

As discussed above, taking the success rate, speedup performance and the reliability 

into accounts, rankCPS- is preferable in all the investigated algorithms of KA-CMA-ES using 

pre-selection strategy. If only the success performance or speedup performance is considered,

CPS- wQ is outstanding in the investigated algorithms of pre-selection.   
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Table 4.7 Comparison of KA-CMA-ES using pre-selection without and with model impact control, 

including PS-Interval, CPS- wQ , selectionCPS-Q and rankCPS- . 

Function D λ 
PS-Interval CPS- wQ  

selectionCPS-Q  
rankCPS-  

SR SPU SR SPU SR SPU SR SPU 

f1 

2 6 1 1.29  1 1.61  1 1.58  1 1.64  

5 8 1 1.26  1 1.64  1 1.63  1 1.63  

10 10 1 1.27  1 1.59  1 1.54  1 1.46  

20 12 1 1.13  1 1.19  1 1.19  1 1.15  

f2 

2 6 1 1.21  1 1.51  1 1.47  1 1.50  

5 8 1 1.12  1 1.42  1 1.50  1 1.39  

10 10 1 1.17  1 1.58  1 1.61  1 1.65  

20 12 0.96 1.13  1 1.98  1 1.88  1 1.73  

f3 

2 6 1 1.30  1 1.62  1 1.65  1 1.60  

5 8 1 1.29  1 1.66  1 1.64  1 1.65  

10 10 1 1.25  1 1.54  1 1.49  1 1.41  

20 12 1 1.03  1 0.82  1 0.80  1 1.05  

f4 

2 6 1 1.28  1 1.64  1 1.63  1 1.65  

5 8 1 1.30  1 1.72  1 1.70  1 1.69  

10 10 1 1.24  1 1.36  1 1.37  1 1.29  

20 12 1 1.09  0.6 0.49  0.6 0.50  1 1.10  

f5 

2 6 1 1.28  1 1.70  1 1.68  1 1.70  

5 8 1 1.26  1 2.01  1 1.93  1 1.93  

10 10 1 1.27  1 2.24  1 2.10  1 2.08  

20 12 0.84 1.34  1 3.28  1 3.08  1 2.89  

f6 

2 6 1 1.35  1 1.74  1 1.69  1 1.67  

5 8 1 1.41  1 1.82  1 1.75  1 1.66  

10 10 1 1.37  1 1.76  1 1.78  1 1.54  

f7 

2 6 1 1.48  1 2.15  1 2.13  1 2.07  

5 8 0.96 1.47  0.96 2.24  1 2.23  0.96 2.02  

10 10 0.96 1.63  0.96 2.06  0.92 1.86  0.96 1.81  

f8 

2 6 1 1.29  1 1.66  1 1.64  0.96 1.55  

5 8 1 1.44  1 1.96  1 1.91  1 1.91  

10 10 1 1.34  1 1.79  1 1.74  1 1.59  

f9 

2 12 1 1.29  1 1.42  1 1.43  1 1.41  

5 16 1 1.31  1 1.52  1 1.51  1 1.51  

10 20 1 1.25  1 1.49  0.96 1.40  1 1.39  

f10 

2 12 0.96 1.17  0.52 0.71  0.4 0.56  0.92 1.22  

5 16 1 1.33  1 1.65  1 1.61  1 1.47  

10 20 1 1.40  1 1.75  1 1.70  1 1.46  

f11 

2 12 1 1.30  1 1.50  1 1.48  1 1.44  

5 16 1 1.31  0.96 1.50  1 1.56  0.92 1.41  

10 20 0.92 1.51  0.92 1.81  0.88 1.69  0.8 1.50  

f12 
2 50 0.92 1.59  0.8 1.40  0.88 1.55  0.96 1.67  

5 140 0.84 1.34  0.64 1.10  0.8 1.36  0.84 1.39  
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Table 4.8 Average success rate and speedup performance of KA-CMA-ES using pre-selection without 

and with model impact control, including PS-Interval, CPS- wQ , selectionCPS-Q and rankCPS- . 

Category 
Average Success Rate (SR) 

PS-Interval CPS- wQ  selectionCPS-Q  rankCPS-  

D=2 0.990 0.943 0.940 0.987 

D=5 0.983 0.963 0.983 0.977 

D=10 0.989 0.989 0.978 0.978 

D=20 0.960 0.920 0.920 1.000 

Unimodal 0.989 0.982 0.982 0.997 

Multimodal 0.974 0.917 0.923 0.957 

Overall 0.984 0.959 0.961 0.983 

Category 
Average Speedup (SPU) 

PS-Interval CPS- wQ  selectionCPS-Q  rankCPS-  

D=2 1.318 1.554 1.540 1.594 

D=5 1.321 1.687 1.695 1.637 

D=10 1.335 1.724 1.662 1.561 

D=20 1.145 1.549 1.490 1.581 

Unimodal 1.277 1.706 1.669 1.651 

Multimodal 1.347 1.518 1.510 1.493 

Overall 1.302 1.640 1.614 1.596 

 

 

Figure 4.5 Average success rate and speedup of pre-selection without and with model impact control. 
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4.5.3 Experiments on KA-CMA-ES using Individual-based Control 

4.5.3.1 Fixed Individual-based Control (FIC) using Different Metrics 

The results of KA-CMA-ES using Fixed Individual-based Control (FIC) with different 

metrics (Mean, SD, SLB, POI and EI) are given in Table 4.9. In all the tables of experiments 

results in this chapter, we mark the SPU that do not exceed one (SPU 1 ) in red bold format, 

which means the corresponding algorithm does not improve the success performance on the 

corresponding test problem, and mark the maximum SPU of each row in bold number, which 

represents the best success performance among the investigated algorithms on the 

corresponding problem. Additionally, the average success rate and speedup performance of 

FIC using five different metrics on each category problems and overall problems are 

presented in Table 4.10 and plotted in Figure 4.6. In the tables, FIC-Mean stands for fixed 

individual-based control using Mean as metric, FIC-SD denotes FIC using SD as metric, 

FIC-SLB means using SLB as metric in fixed individual-based control, FIC-POI signifies 

the FIC using POI metric, and FIC-EI represents fixed individual-based control using EI as 

metric. 

It is no doubt that the FIC-EI, on the whole, has the highest success rate among the 

algorithms of FIC using five metrics. With regards to the success performance and speedup 

performance, FIC-EI also has the best performance. Among the five metric, these metric 

(SLB, POI and EI) which balances the exploitation of the surrogate and exploration of search 

space performs better than metrics that only consider exploitation or exploration (Mean, and 

SD). Taking both SR and SP into consideration, FIC-EI has advantages over other metrics 

and thus is suggested to be used in other KA-CMA-ES algorithms using metric, such as KA-

CMA-ES using approximate ranking procedure which will be investigated in section 4.5.4. 
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Table 4.9 Results of KA-CMA-ES using Fixed Individual-based Control (FIC) with different metrics.  

Function D λ 
FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI CMA-ES 

SR SP SPU SR SP SPU SR SP SPU SR SP SPU SR SP SPU SR SP 

f1 

2 6 1 171 1.94  1 182 1.82  1 180 1.84  1 177 1.87  1 174 1.90  1 331 

5 8 1 487 1.82  1 546 1.63  1 481 1.85  1 490 1.81  1 475 1.87  1 888 

10 10 1 1102 1.62  1 1429 1.25  1 1085 1.64  1 1100 1.62  1 1087 1.64  1 1784 

20 12 1 2462 1.34  1 3295 1.00  1 2499 1.32  1 2512 1.31  1 2492 1.32  1 3292 

f2 

2 6 1 203 1.91  1 209 1.85  1 204 1.90  1 202 1.92  1 204 1.90  1 387 

5 8 1 578 1.95  1 669 1.69  1 648 1.74  1 569 1.98  1 620 1.82  1 1128 

10 10 1 1440 2.04  1 1578 1.86  1 1659 1.77  1 1557 1.89  1 1543 1.91  1 2941 

20 12 1 3909 1.91  1 4129 1.81  1 3824 1.95  1 3793 1.97  1 3668 2.04  1 7470 

f3 

2 6 1 188 1.89  1 195 1.83  1 186 1.91  1 192 1.85  1 187 1.90  1 356 

5 8 1 535 1.83  1 605 1.62  1 530 1.85  1 544 1.80  1 544 1.80  1 980 

10 10 1 1338 1.55  1 1737 1.19  1 1274 1.62  1 1289 1.61  1 1281 1.62  1 2070 

20 12 1 3797 1.14  1 4178 1.04  1 3553 1.22  1 3490 1.24  1 3466 1.25  1 4327 

f4 

2 6 1 222 1.88  1 227 1.84  1 226 1.85  1 225 1.85  1 215 1.94  1 417 

5 8 1 660 1.85  1 743 1.65  1 653 1.87  1 652 1.88  1 661 1.85  1 1224 

10 10 1 1892 1.51  1 2238 1.28  1 1804 1.58  1 1772 1.61  1 1810 1.58  1 2858 

20 12 1 6251 1.19  1 6887 1.08  1 5829 1.27  1 5733 1.30  1 5788 1.28  1 7431 

f5 

2 6 1 157 1.76  1 157 1.76  1 155 1.79  1 152 1.82  1 154 1.80  1 277 

5 8 1 634 1.81  1 672 1.71  1 625 1.84  1 614 1.87  1 649 1.77  1 1149 

10 10 1 1891 1.88  0.92 2301 1.55  0.96 1977 1.80  0.96 2030 1.75  0.96 1957 1.82  1 3556 

20 12 0.72 7843 1.79  0.8 8390 1.67  0.6 9279 1.51  0.76 7520 1.86  0.84 7038 1.99  0.76 14014 

f6 

2 6 1 407 1.91  1 410 1.90  1 398 1.95  1 422 1.84  1 399 1.95  1 778 

5 8 0.96 1817 1.24  1 1734 1.30  1 1347 1.67  1 1276 1.77  1 1341 1.68  1 2253 

10 10 0.16 37375 0.14  0.92 7477 0.68  0.92 5287 0.96  0.8 6229 0.82  1 4503 1.13  1 5078 

f7 

2 6 1 360 1.84  1 335 1.98  1 348 1.91  1 365 1.82  1 342 1.94  1 663 

5 8 0.96 1284 1.92  0.96 1402 1.76  0.92 1343 1.84  0.96 1289 1.91  0.92 1372 1.80  0.96 2468 

10 10 0.84 5455 1.51  0.92 4925 1.67  0.88 4639 1.78  0.76 5055 1.63  0.96 4240 1.95  0.8 8248 

f8 

2 6 1 383 1.87  1 382 1.88  1 374 1.92  0.92 401 1.79  1 373 1.92  1 717 

5 8 0.96 1023 1.99  0.96 1193 1.71  0.96 1038 1.97  1 977 2.09  1 991 2.06  0.92 2040 

10 10 0.84 2630 1.43  0.92 3273 1.15  0.84 2583 1.45  0.76 2875 1.31  1 2221 1.69  0.96 3753 

f9 

2 12 1 250 1.94  1 263 1.85  1 247 1.97  1 261 1.86  1 256 1.90  1 486 

5 16 1 745 2.00  1 812 1.83  1 736 2.02  0.96 788 1.89  1 747 1.99  0.96 1489 

10 20 0.92 1775 1.72  0.88 2408 1.27  0.88 1876 1.63  0.92 1732 1.76  0.88 1846 1.65  1 3049 

f10 

2 12 0.96 612 1.72  1 580 1.82  1 557 1.89  1 549 1.92  1 560 1.88  1 1054 

5 16 0.96 1653 1.90  1 1845 1.70  1 1548 2.03  1 1611 1.95  1 1595 1.97  0.96 3137 

10 20 0.64 5384 1.28  0.92 5427 1.27  0.68 5081 1.36  0.88 3970 1.74  0.92 3880 1.78  0.92 6893 

f11 

2 12 0.96 320 1.87  1 312 1.91  0.96 314 1.90  1 301 1.98  1 294 2.03  1 597 

5 16 0.84 999 1.70  0.76 1194 1.42  1 824 2.06  0.88 967 1.76  0.8 1046 1.63  0.96 1700 

10 20 0.56 3310 1.35  0.8 3098 1.44  0.84 2153 2.07  0.56 3263 1.37  0.96 1880 2.37  0.76 4457 

f12 
2 50 0.8 1361 1.74  0.96 1240 1.91  0.92 1186 2.00  0.84 1345 1.76  0.92 1203 1.97  0.68 2372 

5 140 0.4 9520 1.05  0.56 9777 1.02  0.4 10675 0.94  0.72 5947 1.68  0.72 6066 1.65  0.8 10020 
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Table 4.10 Average success rate and speedup performance of KA-CMA-ES using fixed individual-

based control (FIC) with different metrics. 

Category 
Average Success Rate (SR) Average Speed (SPU) 

FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI CMA-ES FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI 

D=2 0.977  0.997  0.990  0.980  0.993  0.973  1.857  1.862  1.902  1.858  1.920  

D=5 0.923  0.937  0.940  0.960  0.953  0.963  1.757  1.587  1.806  1.866  1.824  

D=10 0.815  0.935  0.909  0.876  0.971  0.949  1.456  1.327  1.606  1.554  1.738  

D=20 0.944  0.960  0.920  0.952  0.968  0.952  1.473  1.319  1.455  1.536  1.576  

Unimodal 0.948  0.982  0.972  0.971  0.988  0.982  1.661  1.554  1.701  1.716  1.747  

Multimodal 0.846  0.911  0.891  0.889  0.943  0.923  1.683  1.584  1.800  1.775  1.892  

Overall 0.912  0.957  0.944  0.942  0.972  0.961  1.669  1.564  1.736  1.737  1.798  

 

 

Figure 4.6 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using fixed 

individual-based control with different metrics. 

4.5.3.2 Mixed Individual-based Control (MIC) 

In the proposed mixed individual-based control (MIC), two metrics, Mean and SLB, 

can be used. The results of KA-CMA-ES using MIC are given in Table 4.11. The average 

success rate and speedup performance on each category of problems are listed in Table 4.12 

and shown in Figure 4.7. In these tables, MIC-Mean represents mixed individual-based 

control using Mean as metric, and MIC-SLB means using SLB as metric in mixed 

individual-based control.  
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Table 4.11 Results of KA-CMA-ES using Mixed Individual-based Control (MIC). 

Function D λ 
MIC-Mean MIC-SLB CMA-ES 

SR SP SPU SR SP SPU SR SP 

f1 

2 6 1 131 2.53  1 131 2.53  1 331 

5 8 1 395 2.25  1 449 1.98  1 888 

10 10 1 1007 1.77  1 1140 1.56  1 1784 

20 12 1 2387 1.38  1 2590 1.27  1 3292 

f2 

2 6 1 148 2.61  1 147 2.63  1 387 

5 8 1 473 2.38  1 459 2.46  1 1128 

10 10 1 1208 2.43  1 1256 2.34  1 2941 

20 12 1 3251 2.30  1 3664 2.04  1 7470 

f3 

2 6 1 143 2.49  1 143 2.49  1 356 

5 8 1 428 2.29  1 505 1.94  1 980 

10 10 1 1318 1.57  1 1342 1.54  1 2070 

20 12 1 4146 1.04  1 3624 1.19  1 4327 

f4 

2 6 1 165 2.53  1 163 2.56  1 417 

5 8 1 535 2.29  1 617 1.98  1 1224 

10 10 1 1882 1.52  1 1987 1.44  1 2858 

20 12 1 6982 1.06  1 6258 1.19  1 7431 

f5 

2 6 1 114 2.43  1 115 2.41  1 277 

5 8 1 500 2.30  1 506 2.27  1 1149 

10 10 0.84 1889 1.88  0.84 1986 1.79  1 3556 

20 12 0.6 8093 1.73  0.6 8140 1.72  0.76 14014 

f6 

2 6 0.96 323 2.41  1 340 2.29  1 778 

5 8 1 1812 1.24  1 1270 1.77  1 2253 

10 10 0   0.0 0.96 4176 1.22  1 5078 

f7 

2 6 1 265 2.50  1 280 2.37  1 663 

5 8 0.92 1138 2.17  0.92 1251 1.97  0.96 2468 

10 10 0.84 6086 1.36  0.96 4293 1.92  0.8 8248 

f8 

2 6 0.88 313 2.29  0.96 308 2.33  1 717 

5 8 0.92 835 2.44  1 842 2.42  0.92 2040 

10 10 0.56 3573 1.05  0.96 2189 1.71  0.96 3753 

f9 

2 12 1 218 2.23  1 234 2.08  1 486 

5 16 1 587 2.54  0.96 667 2.23  0.96 1489 

10 20 0.88 1590 1.92  0.92 1654 1.84  1 3049 

f10 

2 12 0.64 763 1.38  1 501 2.10  1 1054 

5 16 0.84 1464 2.14  0.96 1349 2.33  0.96 3137 

10 20 0.2 15116 0.46  0.52 5870 1.17  0.92 6893 

f11 

2 12 0.96 270 2.21  1 263 2.27  1 597 

5 16 0.84 770 2.21  0.8 840 2.02  0.96 1700 

10 20 0.52 3029 1.47  0.64 2584 1.72  0.76 4457 

f12 
2 50 0.84 1181 2.01  0.84 1165 2.04  0.68 2372 

5 140 0.24 12172 0.82  0.4 8568 1.17  0.8 10020 
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Table 4.12 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using mixed 

individual-based control. 

Category 
Average Success Rate (SR) Average Speedup (SPU) 

MIC-Mean MIC-SLB CMA-ES MIC-Mean MIC-SLB 

D=2 0.940  0.983  0.973  2.302  2.341  

D=5 0.897  0.920  0.963  2.090  2.046  

D=10 0.713  0.891  0.949  1.449  1.661  

D=20 0.920  0.920  0.952  1.503  1.483  

Unimodal 0.929  0.972  0.982  1.961  1.957  

Multimodal 0.737  0.854  0.923  1.798  1.960  

Overall 0.862  0.931  0.961  1.904  1.958  

 

 

Figure 4.7 Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES using mixed 

individual-based control (MIC). 

In Table 4.11, in terms of speedup performance, MIC-Mean (mixed individual-based 

control using metric Mean) performs worsen than standard CMA-ES on 10 dimensional 6f

and 10f and 2 dimensional 12f . While, MIC-SLB (mixed individual-based control using 

metric SLB) has better success performance than standard CMA-ES on all the test problems. 

Form this, it can be found that MIC-SLB is more stable and reliable than MIC-Mean.  

From Figure 4.7, it is apparent that MIC-SLB has higher success rate (SR) than that of 

MIC-Mean, especially on multimodal problems. Furthermore, generally, MIC-SLB has 

better average speedup performance (SPU) than MIC-Mean on all categories of problem 

except problems with D=5. Taking both the success rate and speedup performance into 

consideration, it can be concluded that MIC-SLB outperforms MIC-Mean.  
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4.5.3.3 Comparison of Fixed and Mixed Individual-based Control 

We compare the performance of KA-CMA-ES using Fixed Individual-based Control 

(FIC) and KA-CMA-ES using Mixed Individual-based Control (MIC). The success rate (SR) 

and speedup performance (SPU) of KA-CMA-ES using FIC and MIC are listed and 

compared in Table 4.13. The average SR and SPU of each category problems of KA-CMA-

ES using FIC and MIC are given in Table 4.14 and shown in Figure 4.8.  

From Table 4.13, it can be seen that, for most of the problems, KA-CMA-ES using MIC 

(the proposed mixed individual-based control) has higher speedup performance (better 

success performance) than using FIC (fixed individual-based control). It worth to note that 

for 10 dimensional 6f , only FIC-EI and MIC-SLB perform better than the standard CMA-

ES, and MIC-SLB also outperforms FIC-EI on this problem. Therefore, the proposed mixed 

individual-based control (MIC) has better success performance than fixed individual-based 

control (FIC).  

Additionally, from the radar chart of average SR in the left of Figure 4.8, generally, 

KA-CMA-ES using FIC have higher success rate than that using MIC. The FIC-Mean and 

MIC-Mean has the lowest success rate among all the investigated algorithms using 

individual-based control. The FIC-EI generally has the highest success rate. Other 

algorithms have moderate average success rate larger than 0.85. However, KA-CMA-ES 

using MIC significantly outperform FIC according to the speedup performance and success 

performance. Particularly, MIC-SLB has the highest average SPU and acceptable success 

rate. Therefore, MIC-SLB is preferable among algorithms of KA-CMA-ES using individual-

based control. 
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Table 4.13 Success rate (SR) and speedup performance (SPU) comparison of KA-CMA-ES using Fixed 

Individual-based Control (FIC) and Mixed Individual-based Control (MIC). 

Function D λ 
FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI MIC-Mean MIC-SLB 

SR SPU SR SPU SR SPU SR SPU SR SPU SR SPU SR SPU 

f1 

2 6 1 1.94  1 1.82  1 1.84  1 1.87  1 1.90  1 2.53  1 2.53  

5 8 1 1.82  1 1.63  1 1.85  1 1.81  1 1.87  1 2.25  1 1.98  

10 10 1 1.62  1 1.25  1 1.64  1 1.62  1 1.64  1 1.77  1 1.56  

20 12 1 1.34  1 1.00  1 1.32  1 1.31  1 1.32  1 1.38  1 1.27  

f2 

2 6 1 1.91  1 1.85  1 1.90  1 1.92  1 1.90  1 2.61  1 2.63  

5 8 1 1.95  1 1.69  1 1.74  1 1.98  1 1.82  1 2.38  1 2.46  

10 10 1 2.04  1 1.86  1 1.77  1 1.89  1 1.91  1 2.43  1 2.34  

20 12 1 1.91  1 1.81  1 1.95  1 1.97  1 2.04  1 2.30  1 2.04  

f3 

2 6 1 1.89  1 1.83  1 1.91  1 1.85  1 1.90  1 2.49  1 2.49  

5 8 1 1.83  1 1.62  1 1.85  1 1.80  1 1.80  1 2.29  1 1.94  

10 10 1 1.55  1 1.19  1 1.62  1 1.61  1 1.62  1 1.57  1 1.54  

20 12 1 1.14  1 1.04  1 1.22  1 1.24  1 1.25  1 1.04  1 1.19  

f4 

2 6 1 1.88  1 1.84  1 1.85  1 1.85  1 1.94  1 2.53  1 2.56  

5 8 1 1.85  1 1.65  1 1.87  1 1.88  1 1.85  1 2.29  1 1.98  

10 10 1 1.51  1 1.28  1 1.58  1 1.61  1 1.58  1 1.52  1 1.44  

20 12 1 1.19  1 1.08  1 1.27  1 1.30  1 1.28  1 1.06  1 1.19  

f5 

2 6 1 1.76  1 1.76  1 1.79  1 1.82  1 1.80  1 2.43  1 2.41  

5 8 1 1.81  1 1.71  1 1.84  1 1.87  1 1.77  1 2.30  1 2.27  

10 10 1 1.88  0.92 1.55  0.96 1.80  0.96 1.75  0.96 1.82  0.84 1.88  0.84 1.79  

20 12 0.72 1.79  0.8 1.67  0.6 1.51  0.76 1.86  0.84 1.99  0.6 1.73  0.6 1.72  

f6 

2 6 1 1.91  1 1.90  1 1.95  1 1.84  1 1.95  0.96 2.41  1 2.29  

5 8 0.96 1.24  1 1.30  1 1.67  1 1.77  1 1.68  1 1.24  1 1.77  

10 10 0.16 0.14  0.92 0.68  0.92 0.96  0.8 0.82  1 1.13  0 0.0 0.96 1.22  

f7 

2 6 1 1.84  1 1.98  1 1.91  1 1.82  1 1.94  1 2.50  1 2.37  

5 8 0.96 1.92  0.96 1.76  0.92 1.84  0.96 1.91  0.92 1.80  0.92 2.17  0.92 1.97  

10 10 0.84 1.51  0.92 1.67  0.88 1.78  0.76 1.63  0.96 1.95  0.84 1.36  0.96 1.92  

f8 

2 6 1 1.87  1 1.88  1 1.92  0.92 1.79  1 1.92  0.88 2.29  0.96 2.33  

5 8 0.96 1.99  0.96 1.71  0.96 1.97  1 2.09  1 2.06  0.92 2.44  1 2.42  

10 10 0.84 1.43  0.92 1.15  0.84 1.45  0.76 1.31  1 1.69  0.56 1.05  0.96 1.71  

f9 

2 12 1 1.94  1 1.85  1 1.97  1 1.86  1 1.90  1 2.23  1 2.08  

5 16 1 2.00  1 1.83  1 2.02  0.96 1.89  1 1.99  1 2.54  0.96 2.23  

10 20 0.92 1.72  0.88 1.27  0.88 1.63  0.92 1.76  0.88 1.65  0.88 1.92  0.92 1.84  

f10 

2 12 0.96 1.72  1 1.82  1 1.89  1 1.92  1 1.88  0.64 1.38  1 2.10  

5 16 0.96 1.90  1 1.70  1 2.03  1 1.95  1 1.97  0.84 2.14  0.96 2.33  

10 20 0.64 1.28  0.92 1.27  0.68 1.36  0.88 1.74  0.92 1.78  0.2 0.46  0.52 1.17  

f11 

2 12 0.96 1.87  1 1.91  0.96 1.90  1 1.98  1 2.03  0.96 2.21  1 2.27  

5 16 0.84 1.70  0.76 1.42  1 2.06  0.88 1.76  0.8 1.63  0.84 2.21  0.8 2.02  

10 20 0.56 1.35  0.8 1.44  0.84 2.07  0.56 1.37  0.96 2.37  0.52 1.47  0.64 1.72  

f12 
2 50 0.8 1.74  0.96 1.91  0.92 2.00  0.84 1.76  0.92 1.97  0.84 2.01  0.84 2.04  

5 140 0.4 1.05  0.56 1.02  0.4 0.94  0.72 1.68  0.72 1.65  0.24 0.82  0.4 1.17  

  



4.5 Experimental Studies 

130 

Table 4.14 Average success rate and speedup performance of KA-CMA-ES using Fixed and Mixed 

Individual-based Control (FIC and MIC) 

Category 
Average Success Rate (SR) 

FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI MIC-Mean MIC-SLB 

D=2 0.977 0.997 0.990 0.980 0.993 0.940 0.983 

D=5 0.923 0.937 0.940 0.960 0.953 0.897 0.920 

D=10 0.815 0.935 0.909 0.876 0.971 0.713 0.891 

D=20 0.944 0.960 0.920 0.952 0.968 0.920 0.920 

Unimodal 0.948 0.982 0.972 0.971 0.988 0.929 0.972 

Multimodal 0.846 0.911 0.891 0.889 0.943 0.737 0.854 

Overall 0.912 0.957 0.944 0.942 0.972 0.862 0.931 

Category 
Average Speedup Performance (SPU) 

FIC-Mean FIC-SD FIC-SLB FIC-POI FIC-EI MIC-Mean MIC-SLB 

D=2 1.857 1.862 1.902 1.858 1.920 2.302 2.341 

D=5 1.757 1.587 1.806 1.866 1.824 2.090 2.046 

D=10 1.456 1.327 1.606 1.554 1.738 1.403 1.661 

D=20 1.473 1.319 1.455 1.536 1.576 1.503 1.483 

Unimodal 1.661 1.554 1.701 1.716 1.747 1.941 1.957 

Multimodal 1.683 1.584 1.800 1.775 1.892 1.798 1.960 

Overall 1.669 1.564 1.736 1.737 1.798 1.891 1.958 

 

 

Figure 4.8 Average SR and SPU of KA-CMA-ES using fixed and mixed individual-based control (FIC 

and MIC). 

4.5.4 Experiments on KA-CMA-ES using Approximate Ranking 

Procedure 

The experimental results of KA-CMA-ES using FIC with different metrics have proved 

that the metric EI is outstanding among the five metrics. Thus, in KA-CMA-ES using 
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modified approximate ranking procedure (ARP), only two metrics, Mean and EI, are used. 

The results of KA-CMA-ES using ARP are listed in Table 4.15. The average success rate 

and speedup performance are given in Table 4.16 and plotted in Figure 4.9. In the tables, 

ARP-Mean indicates in Mean is used as metric in the ARP, and ARP-EI represents ARP 

using EI as metric.  

From Table 4.15, we can find that ARP-EI (approximate ranking procedure using EI 

metric) outperforms that using ARP-Mean. On problem of 6f with D=10, both ARP-Mean 

and ARP-EI perform worsen than CMA-ES.  

According to the the radar chart of average success rate (SR), the average SR of ARP-

EI are higher that of ARP-Mean on all categories of problems. In terms of the speedup 

performance, ARP-EI also performs better than ARP-Mean. Therefore, it can be concluded 

that ARP-EI outperforms ARP-Mean.  

 

 

Figure 4.9 Average success rate and speedup performance of KA-CMA-ES using ARP. 
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Table 4.15 Results of KA-CMA-ES using Approximate Ranking Procedure (ARP) 

Function D λ 
ARP-Mean ARP-EI CMA-ES 

SR SP SPU SR SP SPU SR SP 

f1 

2 6 1 82 4.04  1 86 3.85  1 331 

5 8 1 351 2.53  1 352 2.52  1 888 

10 10 1 1053 1.69  1 1014 1.76  1 1784 

20 12 1 2453 1.34  1 2444 1.35  1 3292 

f2 

2 6 1 84 4.61  1 87 4.45  1 387 

5 8 1 345 3.27  1 365 3.09  1 1128 

10 10 1 1067 2.76  1 996 2.95  1 2941 

20 12 1 2530 2.95  1 2563 2.91  1 7470 

f3 

2 6 1 84 4.24  1 90 3.96  1 356 

5 8 1 393 2.49  1 387 2.53  1 980 

10 10 1 1272 1.63  1 1233 1.68  1 2070 

20 12 1 3875 1.12  1 3540 1.22  1 4327 

f4 

2 6 1 100 4.17  1 104 4.01  1 417 

5 8 1 490 2.50  1 484 2.53  1 1224 

10 10 1 1832 1.56  1 1667 1.71  1 2858 

20 12 1 6660 1.12  1 5815 1.28  1 7431 

f5 

2 6 1 76 3.64  1 74 3.74  1 277 

5 8 1 424 2.71  1 397 2.89  1 1149 

10 10 0.96 1452 2.45  0.96 1471 2.42  1 3556 

20 12 0.44 9849 1.42  0.64 6437 2.18  0.76 14014 

f6 

2 6 1 258 3.02  1 193 4.03  1 778 

5 8 0.8 1462 1.54  1 1225 1.84  1 2253 

10 10 0.12 41047 0.12  0.88 6148 0.83  1 5078 

f7 

2 6 1 172 3.85  1 157 4.22  1 663 

5 8 0.84 1163 2.12  0.92 968 2.55  0.96 2468 

10 10 0.84 5658 1.46  0.88 4249 1.94  0.8 8248 

f8 

2 6 0.84 225 3.19  0.96 191 3.75  1 717 

5 8 0.8 906 2.25  1 726 2.81  0.92 2040 

10 10 0.88 2400 1.56  0.96 2164 1.73  0.96 3753 

f9 

2 12 1 150 3.24  1 149 3.26  1 486 

5 16 0.88 558 2.67  0.96 501 2.97  0.96 1489 

10 20 0.92 1717 1.78  1 1585 1.92  1 3049 

f10 

2 12 0.4 980 1.08  1 368 2.86  1 1054 

5 16 0.64 1813 1.73  0.96 1146 2.74  0.96 3137 

10 20 0.56 6724 1.03  0.96 3903 1.77  0.92 6893 

f11 

2 12 0.88 199 3.00  0.96 182 3.28  1 597 

5 16 0.72 752 2.26  0.96 569 2.99  0.96 1700 

10 20 0.8 2264 1.97  0.8 2260 1.97  0.76 4457 

f12 
2 50 0.88 1042 2.28  0.96 916 2.59  0.68 2372 

5 140 0.72 6363 1.57  0.8 5884 1.70  0.8 10020 
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Table 4.16 Average success rate and speedup of KA-CMA-ES using ARP. 

Category 
Average Success Rate (SR) Average Speedup (SPU) 

ARP-Mean ARP-EI CMA-ES ARP-Mean ARP-EI 

D=2 0.917 0.990 0.973 3.362 3.667 

D=5 0.867 0.967 0.963 2.304 2.597 

D=10 0.825 0.949 0.949 1.637 1.881 

D=20 0.888 0.928 0.952 1.590 1.788 

Unimodal 0.923 0.972 0.982 2.475 2.633 

Multimodal 0.780 0.949 0.923 2.114 2.597 

Overall 0.873 0.964 0.961 2.349 2.620 

 

4.5.5 Experiments on KA-CMA-ES using Generation-based Control 

For generation-based control, the Fixed Generation-based Control (FGC) where one 

generation is controlled in each two generations and the proposed Adaptive Generation-

based Control (AGC) are investigated. The results of generation-based control are listed in 

Table 4.17. The average success rate and speedup performance are presented in Table 4.18 

and Figure 4.10. In these tables, FGC stands for fixed generation-based control, AGC- wQ

indicates the adaptive generation-based control based on model quality wQ , selectionAGC-Q

signifies adaptive generation-based control based on model quality measure selectionQ , and

rankAGC- represents AGC based on model quality measure rank .  

In Table 4.17, we mark the SPU that do not exceed one (SPU 1 ) in red bold format, 

which means the corresponding algorithm does not improve the success performance on the 

corresponding test problem. In other words, we can say that the investigated algorithm 

performs worsen than standard CMA-ES on the test problem if the SPU of the algorithm on 

a test problem is not larger than 1. For FGC, the number of problems on which SPU is not 

larger than one is 6. This number for AGC- wQ is 5, for selectionAGC-Q is 7, and for rankAGC-

is 5. The smaller this number is, the corresponding algorithm is more stable and reliable. 

From this perspective, AGC- wQ and rankAGC- are slightly more stable and reliable than 

FGC and selectionAGC-Q .  
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Table 4.17 Results of KA-CMA-ES using FGC and AGC 

Function D λ 
FGC AGC- wQ  selectionAGC-Q  rankAGC-  CMA-ES 

SR SP SPU SR SP SPU SR SP SPU SR SP SPU SR SP 

f1 

2 6 1 179 1.85 1 148 2.24 1 151 2.19 1 156 2.12 1 331 

5 8 1 523 1.70 1 499 1.78 1 473 1.88 1 586 1.52 1 888 

10 10 1 1308 1.36 1 1264 1.41 1 1289 1.38 1 1589 1.12 1 1784 

20 12 1 3127 1.05 1 3205 1.03 1 3202 1.03 1 3376 0.98 1 3292 

f2 

2 6 1 213 1.82 1 164 2.36 1 164 2.36 1 170 2.28 1 387 

5 8 1 654 1.72 1 477 2.36 1 460 2.45 1 523 2.16 1 1128 

10 10 1 1675 1.76 1 1181 2.49 1 1168 2.52 1 1523 1.93 1 2941 

20 12 1 4584 1.63 1 4068 1.84 1 4018 1.86 1 4820 1.55 1 7470 

f3 

2 6 1 195 1.83 1 158 2.25 1 153 2.33 1 172 2.07 1 356 

5 8 1 588 1.67 1 549 1.79 1 533 1.84 1 650 1.51 1 980 

10 10 1 1635 1.27 1 1630 1.27 1 1616 1.28 1 1925 1.08 1 2070 

20 12 1 4958 0.87 1 4914 0.88 1 4838 0.89 1 4523 0.96 1 4327 

f4 

2 6 1 232 1.80 1 179 2.33 1 176 2.37 1 195 2.14 1 417 

5 8 1 724 1.69 1 672 1.82 1 658 1.86 1 793 1.54 1 1224 

10 10 1 2295 1.25 1 2361 1.21 1 2384 1.20 1 2636 1.08 1 2858 

20 12 1 8347 0.89 1 8530 0.87 1 8030 0.93 1 7536 0.99 1 7431 

f5 

2 6 1 155 1.79 1 134 2.07 1 128 2.16 1 145 1.91 1 277 

5 8 1 667 1.72 0.96 584 1.97 1 561 2.05 1 659 1.74 1 1149 

10 10 0.8 2588 1.37 0.92 1844 1.93 0.88 1978 1.80 0.92 2530 1.41 1 3556 

20 12 0.64 10132 1.38 0.72 7362 1.90 0.64 8377 1.67 0.8 9835 1.42 0.76 14014 

f6 

2 6 1 444 1.75 1 349 2.23 1 353 2.20 1 432 1.80 1 778 

5 8 1 2098 1.07 0.84 2342 0.96 0.84 2182 1.03 1 1802 1.25 1 2253 

10 10 0.04 1.19E+05 0.04 0   0.0 0   0.0 1 4881 1.04 1 5078 

f7 

2 6 1 375 1.77 1 296 2.24 1 296 2.24 1 309 2.15 1 663 

5 8 0.88 1594 1.55 0.84 1642 1.50 0.8 1692 1.46 0.88 1762 1.40 0.96 2468 

10 10 0.92 6283 1.31 0.88 6980 1.18 0.96 6248 1.32 0.92 6686 1.23 0.8 8248 

f8 

2 6 1 401 1.79 0.96 329 2.18 0.96 337 2.13 1 377 1.90 1 717 

5 8 1 1091 1.87 0.96 1045 1.95 0.68 1451 1.41 0.96 1288 1.58 0.92 2040 

10 10 0.64 4173 0.90 0.8 3422 1.10 0.64 4314 0.87 1 3181 1.18 0.96 3753 

f9 

2 12 1 256 1.90 1 214 2.27 1 216 2.25 1 253 1.92 1 486 

5 16 0.88 896 1.66 1 643 2.32 0.96 685 2.17 0.96 1058 1.41 0.96 1489 

10 20 0.8 2241 1.36 0.8 2094 1.46 0.8 2115 1.44 0.96 2880 1.06 1 3049 

f10 

2 12 0.92 665 1.58 0.84 631 1.67 0.96 555 1.90 0.96 908 1.16 1 1054 

5 16 0.8 2207 1.42 0.48 3054 1.03 0.4 3841 0.82 1 2714 1.16 0.96 3137 

10 20 0.24 16028 0.43 0   0.0 0.2 18420 0.37 0.88 6927 1.00 0.92 6893 

f11 

2 12 0.96 322 1.85 0.88 275 2.17 0.96 256 2.33 1 299 2.00 1 597 

5 16 0.72 1208 1.41 0.76 926 1.84 0.72 997 1.71 0.88 1271 1.34 0.96 1700 

10 20 0.64 3146 1.42 0.52 3530 1.26 0.4 4690 0.95 0.64 4814 0.93 0.76 4457 

f12 
2 50 0.92 1186 2.00 0.8 1184 2.00 0.92 1033 2.30 0.84 1219 1.95 0.68 2372 

5 140 0.28 14143 0.71 0.12 27611 0.36 0.44 7839 1.28 0.8 7858 1.28 0.8 10020 
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Table 4.18 Average success rate and speedup of KA-CMA-ES using FGC and AGC. 

Category 
Average Success Rate (SR) Average Speedup (SPU) 

FGC AGC- wQ  selectionAGC-Q  rankAGC-  CMA-ES FGC AGC- wQ  selectionAGC-Q  rankAGC-  

D=2 0.983 0.957 0.983 0.983 0.973 1.810 2.168 2.230 1.949 

D=5 0.880 0.830 0.820 0.957 0.963 1.516 1.640 1.662 1.490 

D=10 0.735 0.720 0.716 0.938 0.949 1.133 1.210 1.194 1.187 

D=20 0.928 0.944 0.928 0.960 0.952 1.166 1.304 1.276 1.179 

Unimodal 0.934 0.929 0.928 0.982 0.982 1.458 1.689 1.704 1.553 

Multimodal 0.771 0.709 0.717 0.920 0.923 1.450 1.543 1.566 1.418 

Overall 0.877 0.852 0.854 0.960 0.961 1.455 1.638 1.656 1.505 

 

 

Figure 4.10 Average success rate and speedup of KA-CMA-ES using FGC and AGC. 

 

From the radar charts in Figure 4.10, rankAGC-  (adaptive generation control using

rank ) has the highest average success rate on all the problems. On multimodal problems, the 

average success rate of FGC, AGC- wQ and selectionAGC-Q are lower than 0.8. Considering the 

speedup performance, adaptive generation control using wQ and selectionQ have better 

performance. There is slight difference between the average SPU of AGC- wQ and

selectionAGC-Q . However, as stated in previous paragraph, AGC- wQ seems more stable than 

the selectionAGC-Q . Thus, AGC- wQ is preferable to selectionAGC-Q . Overall, rankAGC- is 

preferable according to success rate and stability, and AGC- wQ is preferable when speedup 

performance is considered.  
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4.5.6 Performance Analysis of All the Investigated KA-CMA-ES 

Algorithms 

In previous three subsections, the KA-CMA-ES using pre-selection, individual-based 

control, approximate ranking procedure and generation-based control are separately 

investigated and analyzed. This subsection dedicates to comparing all the investigated 

algorithms of KA-CMA-ES. Based on previously discussion and results, only the best 

algorithms of each category of algorithms are chosen as the representatives and used in 

analysis and comparison here. The PS-Interval is taken as the representative of pre-selection 

without model impact control (PS). The CPS- wQ and rankCPS- are considered as typical 

algorithms of pre-selection with model impact control (CPS). The FIC-EI is used to represent 

the fixed individual-based control (FIC). The ARP-EI stands for the KA-CMA-ES using 

approximate ranking procedure (ARP). For generation-based control, AGC- wQ and

rankAGC- are regarded as the representatives.  

The success rate (SR) and speedup performance of above selected KA-CMA-ES 

algorithms are listed in Table 4.19. Additionally, the average success rate (SR) and speedup 

performance (SPU) of each category of problems are given in Table 4.20 and illustrated by 

Figure 4.11 and Figure 4.12. 

For most test problems, ARP-EI has the best speedup performance. It is apparent that 

ARP-EI has outstanding speedup performance among all the investigated algorithms. The 

SPU values of PS-Interval, CPS- wQ , rankCPS- , FIC-EI and MIC-SLB on all the test 

problems are larger than one. This shows a stable improvement in success performance of 

these algorithms. The stabilities of AGC- wQ and rankAGC- are lower than others. There is 

only one problem on which ARP-EI performs worsen than CMA-ES. Therefore, it can be 

stated that the ARP-EI is outstanding among all the investigated KA-CMA-ES algorithms, 

according to the speedup performance or success performance. 

  



4. Kriging-Assisted CMA Evolution Strategy 

137 

Table 4.19 Performance comparison of KA-CMA-ES algorithms, including PS-Interval, CPS- wQ , 

rankCPS- , FIC-EI, MIC-SLB, ARP-EI, AGC- wQ and rankAGC- . 

Function D λ 
PS-Interval CPS- wQ  rankCPS-  FIC-EI MIC-SLB ARP-EI AGC- wQ  rankAGC-  

SR SPU SR SPU SR SPU SR SPU SR SPU SR SPU SR SPU SR SPU 

f1 

2 6 1 1.29  1 1.61  1 1.64  1 1.90  1 2.53  1 3.85  1 2.19  1 2.12  

5 8 1 1.26  1 1.64  1 1.63  1 1.87  1 1.98  1 2.52  1 1.88  1 1.52  

10 10 1 1.27  1 1.59  1 1.46  1 1.64  1 1.56  1 1.76  1 1.38  1 1.12  

20 12 1 1.13  1 1.19  1 1.15  1 1.32  1 1.27  1 1.35  1 1.03  1 0.98  

f2 

2 6 1 1.21  1 1.51  1 1.50  1 1.90  1 2.63  1 4.45  1 2.36  1 2.28  

5 8 1 1.12  1 1.42  1 1.39  1 1.82  1 2.46  1 3.09  1 2.45  1 2.16  

10 10 1 1.17  1 1.58  1 1.65  1 1.91  1 2.34  1 2.95  1 2.52  1 1.93  

20 12 0.96 1.13  1 1.98  1 1.73  1 2.04  1 2.04  1 2.91  1 1.86  1 1.55  

f3 

2 6 1 1.30  1 1.62  1 1.60  1 1.90  1 2.49  1 3.96  1 2.33  1 2.07  

5 8 1 1.29  1 1.66  1 1.65  1 1.80  1 1.94  1 2.53  1 1.84  1 1.51  

10 10 1 1.25  1 1.54  1 1.41  1 1.62  1 1.54  1 1.68  1 1.28  1 1.08  

20 12 1 1.03  1 0.82  1 1.05  1 1.25  1 1.19  1 1.22  1 0.89  1 0.96  

f4 

2 6 1 1.28  1 1.64  1 1.65  1 1.94  1 2.56  1 4.01  1 2.37  1 2.14  

5 8 1 1.30  1 1.72  1 1.69  1 1.85  1 1.98  1 2.53  1 1.86  1 1.54  

10 10 1 1.24  1 1.36  1 1.29  1 1.58  1 1.44  1 1.71  1 1.20  1 1.08  

20 12 1 1.09  0.6 0.49  1 1.10  1 1.28  1 1.19  1 1.28  1 0.93  1 0.99  

f5 

2 6 1 1.28  1 1.70  1 1.70  1 1.80  1 2.41  1 3.74  1 2.16  1 1.91  

5 8 1 1.26  1 2.01  1 1.93  1 1.77  1 2.27  1 2.89  1 2.05  1 1.74  

10 10 1 1.27  1 2.24  1 2.08  0.96 1.82  0.84 1.79  0.96 2.42  0.88 1.80  0.92 1.41  

20 12 0.84 1.34  1 3.28  1 2.89  0.84 1.99  0.6 1.72  0.64 2.18  0.64 1.67  0.8 1.42  

f6 

2 6 1 1.35  1 1.74  1 1.67  1 1.95  1 2.29  1 4.03  1 2.20  1 1.80  

5 8 1 1.41  1 1.82  1 1.66  1 1.68  1 1.77  1 1.84  0.84 1.03  1 1.25  

10 10 1 1.37  1 1.76  1 1.54  1 1.13  0.96 1.22  0.88 0.83  0 0.0 1 1.04  

f7 

2 6 1 1.48  1 2.15  1 2.07  1 1.94  1 2.37  1 4.22  1 2.24  1 2.15  

5 8 0.96 1.47  0.96 2.24  0.96 2.02  0.92 1.80  0.92 1.97  0.92 2.55  0.8 1.46  0.88 1.40  

10 10 0.96 1.63  0.96 2.06  0.96 1.81  0.96 1.95  0.96 1.92  0.88 1.94  0.96 1.32  0.92 1.23  

f8 

2 6 1 1.29  1 1.66  0.96 1.55  1 1.92  0.96 2.33  0.96 3.75  0.96 2.13  1 1.90  

5 8 1 1.44  1 1.96  1 1.91  1 2.06  1 2.42  1 2.81  0.68 1.41  0.96 1.58  

10 10 1 1.34  1 1.79  1 1.59  1 1.69  0.96 1.71  0.96 1.73  0.64 0.87  1 1.18  

f9 

2 12 1 1.29  1 1.42  1 1.41  1 1.90  1 2.08  1 3.26  1 2.25  1 1.92  

5 16 1 1.31  1 1.52  1 1.51  1 1.99  0.96 2.23  0.96 2.97  0.96 2.17  0.96 1.41  

10 20 1 1.25  1 1.49  1 1.39  0.88 1.65  0.92 1.84  1 1.92  0.8 1.44  0.96 1.06  

f10 

2 12 0.96 1.17  0.52 0.71  0.92 1.22  1 1.88  1 2.10  1 2.86  0.96 1.90  0.96 1.16  

5 16 1 1.33  1 1.65  1 1.47  1 1.97  0.96 2.33  0.96 2.74  0.4 0.82  1 1.16  

10 20 1 1.40  1 1.75  1 1.46  0.92 1.78  0.52 1.17  0.96 1.77  0.2 0.37  0.88 1.00  

f11 

2 12 1 1.30  1 1.50  1 1.44  1 2.03  1 2.27  0.96 3.28  0.96 2.33  1 2.00  

5 16 1 1.31  0.96 1.50  0.92 1.41  0.8 1.63  0.8 2.02  0.96 2.99  0.72 1.71  0.88 1.34  

10 20 0.92 1.51  0.92 1.81  0.8 1.50  0.96 2.37  0.64 1.72  0.8 1.97  0.4 0.95  0.64 0.93  

f12 
2 50 0.92 1.59  0.8 1.40  0.96 1.67  0.92 1.97  0.84 2.04  0.96 2.59  0.92 2.30  0.84 1.95  

5 140 0.84 1.34  0.64 1.10  0.84 1.39  0.72 1.65  0.4 1.17  0.8 1.70  0.44 1.28  0.8 1.28  
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Table 4.20 Comparison of Average success rate (SR) and speedup performance (SPU) of KA-CMA-ES 

algorithms, including PS-Interval, CPS- wQ , rankCPS- , FIC-EI, MIC-SLB, ARP-EI, AGC- wQ and

rankAGC- . 

Category 
Average Success Rate (SR) 

PS-Interval CPS- wQ  rankCPS-  FIC-EI MIC-SLB ARP-EI AGC- wQ  rankAGC-  

D=2 0.990 0.943 0.987 0.993 0.983 0.990 0.957 0.983 

D=5 0.983 0.963 0.977 0.953 0.920 0.967 0.830 0.957 

D=10 0.989 0.989 0.978 0.971 0.891 0.949 0.720 0.938 

D=20 0.960 0.920 1.000 0.968 0.920 0.928 0.944 0.960 

Unimodal 0.989 0.982 0.997 0.988 0.972 0.972 0.929 0.982 

Multimodal 0.974 0.917 0.957 0.943 0.854 0.949 0.709 0.920 

Overall 0.984 0.959 0.983 0.972 0.931 0.964 0.852 0.960 

Category 
Average Speedup (SPU) 

PS-Interval CPS- wQ  rankCPS-  FIC-EI MIC-SLB ARP-EI AGC- wQ  rankAGC-  

D=2 1.318 1.554 1.594 1.920 2.341 3.667 2.168 1.949 

D=5 1.321 1.687 1.637 1.824 2.046 2.597 1.640 1.490 

D=10 1.335 1.724 1.561 1.738 1.661 1.881 1.210 1.187 

D=20 1.145 1.549 1.581 1.576 1.483 1.788 1.304 1.179 

Unimodal 1.277 1.706 1.651 1.747 1.957 2.633 1.689 1.553 

Multimodal 1.347 1.518 1.493 1.892 1.960 2.597 1.543 1.418 

Overall 1.302 1.640 1.596 1.798 1.958 2.620 1.638 1.505 

 

 

Figure 4.11 Comparison of average success rate (SR) of KA-CMA-ES algorithms. 
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Figure 4.12 Comparison of average speedup performance (SPU) of KA-CMA-ES algorithms. 

 

In Figure 4.11, it can be found that AGC- wQ generally has the lowest average success 

rate. The average success rates of PS-Interval, CPS- wQ , rankCPS- , FIC-EI, ARP-EI and

rankAGC- of overall test problems are higher than 0.9. From Figure 4.12, it is no doubt that 

ARP-EI significantly outperforms other algorithms with respect to average SPU. 

Considering both the average SR and SPU, it can be concluded that ARP-EI is preferable 

among all the investigate KA-CMA-ES algorithms in this work. Additionally, the proposed 

MIC-SLB has the second best performance, and FIC-EI has the third best performance. 

These three algorithms are suggested in KA-CMA-ES.  

In order to illustrate the improvement in efficiency of KA-CMA-ES compared with the 

standard CMA-ES, the convergence graphs are presented. The graphs show the median 

performance of the 25 runs on each problems. Since so many algorithms are studied in this 

work, only the convergence graphs of several representative algorithms are plotted. Here we 
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given the convergence graphs on each problem of the standard CMA-ES, rankCPS- , MIC-

SLB, ARP-EI and rankAGC- . The convergence graphs of 12 functions (40 test problems) 

are given from Figure 4.13 to Figure 4.24. It can be apparently found that the KA-CMA-ES 

algorithms converge more quickly than the standard CMA-ES for almost all the test 

problems. It can be stated that KA-CMA-ES algorithms have better convergence rate and 

outperform the standard CMA-ES. In other words, KA-CMA-ES algorithms are more 

efficient than CMA-ES. Therefore, for expensive optimization problems, KA-CMA-ES can 

significantly reduce the computational cost. Furthermore, it can also be found that, among 

the KA-CMA-ES algorithms, ARP-EI generally has the best performance. 

 

 

Figure 4.13 Convergence graphs of function 1 
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Figure 4.14 Convergence graphs of function 2 

 

Figure 4.15 Convergence graphs of function 3 
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Figure 4.16 Convergence graphs of function 4 

 

Figure 4.17 Convergence graphs of function 5 
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Figure 4.18 Convergence graphs of function 6 

 

Figure 4.19 Convergence graphs of function 7 
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Figure 4.20 Convergence graphs of function 8 

 

Figure 4.21 Convergence graphs of function 9 
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Figure 4.22 Convergence graphs of function 10 

 

Figure 4.23 Convergence graphs of function 11 
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Figure 4.24 Convergence graphs of function 12 

4.6 Summary  

This chapter focused on Kriging-Assisted CMA-ES (KA-CMA-ES) for expensive 

optimization problems. New approaches for training set selection and evolution control have 

been proposed, and the corresponding KA-CMA-ES algorithms are formulated. 

Experimental studies on 40 test problems are performed to evaluate the performance of the 

developed KA-CMA-ES algorithms.  

The results of experiments on KA-CMA-ES using PS have shown that the proposed 

confidence interval method for training set selection is superior to the commonly used 

‘Recently’ and ‘kNN’ methods for training set selection. The experimental results of KA-

CMA-ES using CPS have proven that CPS- wQ has the highest average speedup performance 

among the investigated algorithms of CPS, while rankCPS- is more stable and has higher 

success rate. With comparison of KA-CMA-ES using PS and CPS, it is apparent that KA-

CMA-ES using CPS significantly perform better than that using PS.  

In the experiments of fixed individual-based control (FIC), five different metrics have 

been investigated. The results demonstrated that the EI metric has the best performance 

among these five, considering both the success rate and success performance. For the 

proposed mixed individual-based control (MIC), the MIC using SLB metric outperforms 

that using Mean as metric. By comparing KA-CMA-ES using FIC and MIC, KA-CMA-ES 

using MIC significantly outperform FIC according to the speedup performance and success 



4. Kriging-Assisted CMA Evolution Strategy 

147 

performance. Particularly, MIC-SLB has the highest average speedup performance and 

acceptable success rate. 

Furthermore, in KA-CMA-ES using the modified approximate ranking procedure 

(ARP), the Mean and EI metrics have been studied. The results show that ARP-EI clearly 

outperforms ARP-Mean. This also proves that EI is the most promising metric in evolution 

control.  

The results of experiments of KA-CMA-ES using generation-based control, including 

fixed generation-based control (FGC) and the proposed adaptive generation-based control 

(AGC), indicate that the proposed AGC have better performance than FGC. rankAGC- has 

the highest average success rate on all the problems. Considering the speedup performance, 

adaptive generation control using wQ and selectionQ have better performance. Overall, 

rankAGC- is preferable according to success rate and stability, and AGC- wQ is preferable 

when speedup performance is considered.  

Considering all the investigated algorithms, it is apparent that ARP-EI has outstanding 

speedup performance. The SPU values of PS-Interval, CPS- wQ , rankCPS- , FIC-EI and MIC-

SLB on all the test problems are larger than one. This shows a stable improvement in success 

performance of these algorithms. The stabilities of AGC- wQ and rankAGC- are lower than 

others. There is only one problem on which ARP-EI performs worsen than CMA-ES. 

Therefore, it can be stated that the ARP-EI is outstanding among all the investigated KA-

CMA-ES algorithms, according to the speedup performance or success performance. 
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5. Applications in Material Parameter 

Identification 

This chapter presents applications of the proposed KA-CMA-ES algorithm in material 

parameter identification, which involves expensive optimization problems. An elastic-

plastic damage model, in which material’s strain hardening behavior is described by Swift 

law and ductile damage is modeled by Lemaitre’s damage model, is presented and 

implemented in numerical simulation through VUMAT subroutine in ABAQUS. Then, the 

KA-CMA-ES using Approximate Ranking Procedure with metric EI (ARP-EI) is applied in 

inverse method of material parameter identification.  

5.1 Introduction 

Constitutive model and parameter identification can be seen as the two main aspects of 

material modeling. Specifically, constitutive model describes material’s behavior by the use 

of mathematical equations or formulations under the framework of constitutive theories; 

while parameter identification determines the unknown parameters in the constitutive model 

on the basis of experimental data. Both the constitutive model and parameter identification 

play important roles in material modeling, and neither of the two aspects could be neglected.  

5.1.1 Constitutive Model 

The material’s constitutive model has experienced huge development during last 

decades with the improvements both in constitutive theories and their applications. The 

descriptions of elasticity and plasticity have been comprehensively investigated and 

theorized in elastic-plastic theories (or elastoplastic theories). Even the more complicated 

material’s behavior, such as viscoplasticity, fatigue, damage and anisotropy, can be modeled 

at present. With regard to damage, which is a critical and popular issue in engineering 
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material modeling, currently, continuum damage mechanics (CDM) provides a 

comprehensive framework for the modeling of material’s behavior with consideration of 

damage from a point view of continuum mechanics [91]. Since an aluminum material is 

examined in this paper, the ductile damage behavior of the material is modeled by the 

application of continuum damage mechanic theories. 

Damage is defined as the presence and evolution of cracks and cavities at microscopic, 

mesoscopic or macroscopic level of materials which result deterioration in mechanical 

properties and may, eventually, lead to failure [92]. According to the difference in materials 

and loading conditions, damage may be generally divided into: ductile damage, brittle 

damage, creep damage, and fatigue damage. Ductile damage, occurring simultaneously with 

large plastic deformation, is the most typical damage in engineering fracture problems. So, 

in this work, ductile damage is considered and coupled into an elastic-plastic model.  

In the theory of damage mechanics, the deterioration of ductile damaged material is 

generally assumed to be a process of voids nucleation, growth and coalescence. In the phase 

of voids nucleation, the micro-defects nucleate and germinate, i.e., the deterioration appears. 

However, it has no significant effects on load-carrying capability of the material, and the 

damage effects of the material can be neglected. In the following phase of voids growth, the 

voids and cracks grow considerably as the plastic strain accumulating. The material 

properties are strongly affected in this phase and damage effects in mechanical properties 

cannot be ignored. During last phase of voids coalescence, the coalescence of voids and 

cracks arise and, eventually, the macroscopic crack if formed. The ductile fracture is induced 

at the end of this phase. The load-carrying capability of the material is reduced as the 

accumulation of ductile damage in the last two phases until the material losing its loading 

capability [93]. 

The continuum mechanics approach to ductile damage problems can be divided into 

the following two approaches: micromechanical approach and phenomenological approach. 

In the first approach, the mechanical effect of damage is represented by the void volume 

fraction f . Then the plastic constitutive equation of voided material and the evolution law 
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of the void development are derived by means of micromechanics analysis [94]. The Gurson-

Tvergaard-Needleman (GTN) model is the representative model of this approach. The 

second approach to ductile damage analysis, called phenomenological approach, is based on 

the CDM theory proposed by Lemaitre [95], who has described the ductile damage 

phenomenon by a phenomenological model with the combination of continuum mechanics 

and irreversible thermodynamics. Using the method of local state and internal variables, 

Lemaitre’s model strongly coupled damage and elastoplasticity at the constitutive level. In 

this paper, Lemaitre’s model is used to study the ductile damage of the material. 

5.1.2 Material Parameter Identification 

In the aspect of parameter identification, inverse techniques have become popular in 

nowadays. In the past, the hand fitting method and the trial and error method are commonly 

used in material parameter identification [96]. However, the inverse method has become a 

promising method since optimization techniques and simulation are widely applied. The 

inverse method considers parameter identification as an optimization problem and generally 

gives satisfy results [97]. This method tries to find a set of parameters which yields the 

simulated responses as closely as possible to the experimental response, in other words, 

inverse method aims at obtaining the set of material parameters by solving the optimization 

problem which minimize the difference between simulation results and experiment data. 

Commonly, in the process of parameter identification by inverse method, the 

parameters are driven by optimization algorithm, and the objective function, which measures 

the difference between the simulated and experimental responses, is repeatedly evaluated by 

numerical simulation until the computational scheme converges. Since optimization 

algorithm (or optimization technique), which is used to find the solution to the optimization 

problem, has influences on the convergence speed and the solution of the optimization 

problem [98], appropriate algorithm should be chosen in the inverse problem of parameter 

identification.  
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Generally, optimization algorithms can be divided into two main categories: non-

gradient methods (or called direct search methods), which do not employ gradients and 

involve only evaluations of the objective function, and gradient-based methods, which 

require computations of the derivatives of the objective function [99]. Gradient-based 

methods, generally, require a much smaller number of design cycles to converge to an 

optimum compared to non-gradient methods. However, only convergence to a local 

minimum is guaranteed for gradient-based methods, while non-gradient methods are able to 

find global minimum. In addition, gradient-based methods are limited in cases that the 

objective function is always differentiable and has continuous derivatives over the design 

domain due to the requirements of computations of derivatives of the objective function. 

Non-gradient methods do not have limitations on objective function and their convergence 

speeds are enhanced significantly with the developments of non-gradient optimization 

techniques.  

In the optimization problem of parameter identification using inverse method, the 

objective function is, normally, a highly nonlinear function and may possess many local 

minima [100]. Furthermore, the analytical form of the objective function is not known and 

the evaluation of the objective function is performed by numerical simulation (generally 

finite element method simulation), in other words, derivatives of the objective function are 

not available. Taking above aspects into account, a non-gradient global optimization 

algorithm is preferred to solve the optimization task in parameter identification.  

As above mentioned that the objective function in parameter identification problem is 

not explicitly known and need to be evaluated by repeatedly running numerical simulations, 

this brings bout heavy computational burden and makes parameter identification process 

time-consuming. Therefore, in this chapter, the previously proposed KA-CMA-ES using 

ARP-EI, which has the best success performance among the investigated KA-CMA-ES 

algorithms, is applied in inverse method of parameter identification.  
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5.2 Elastic-Plastic Damage Model 

In general, a normal elastic-plastic constitutive model contains the following basic 

components [92]:  

(1) The elastic law, which gives the relation between stress and elastic strain;  

(2) The yield criterion, which define the limit of plastic behavior;  

(3) The flow rule, which describes the evolution of the plastic strain; and  

(4) The hardening law, which characterizes the development of the criterion for 

subsequent yielding.  

Accordingly, the elastic-plastic damage model, which considers damage in elastic-

plastic material, contains an evolution law of damage variables in addition to these above 

four components. 

In this work, the commonly used von Mises yield criterion, the Swift strain hardening 

law and Lemaitre’s ductile damage are included in the elastic-plastic damage model. The 

basic components of the elastic-plastic damage model are detailed in this section. In first 

place, the basic concept of damage variable is introduced. 

5.2.1 Damage Variable 

The notion of continuum damage mechanics was firstly proposed by Kachanov [101] 

when he studied on the brittle creep rupture of metal. The first damage variable with physical 

significance was given later by Rabotnov [92] who proposed the reduction of the cross-

sectional area due to micro-cracking as a suitable measure of the state of internal damage. 

According to the concepts proposed by these authors, the damage variable, D , can be 

modeled by effective area reduction: 

 ,
S S

D
S


n

  (5.1) 
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where S is the overall area of the element defined by this normal vector n , and S is the 

effective resisting area. When 0D n corresponds to the undamaged state, and CD Dn  ( CD

is a critical value, 0.2 0.8CD  for metals) corresponds to the rupture of the element [102]. 

From Equation (5.1), the damage variable Dn is associated with n when cracks and 

cavities are oriented, which leads to tensorial nature of damage variable. However, if cracks 

and cavities are equally distributed in all directions, Dn does not depend on nand it becomes 

a scalar D , which is called scalar damage variable. In this paper, the damage state is taken 

to be isotropic and the scalar damage variable D is used in damage model. 

In the case that the state of damage is isotropic, the definition of damage by effective 

area reduction has allowed to define the so-called effective stress: 

 ,
1 D





   (5.2) 

where is the effective stress, D is the scalar damage variable, and is the second-order 

Cauchy stress tensor. The effective stress of Equation (5.2) simplifies the damage theory, 

and is employed in a number of damage problems, including ductile damage especially. 

5.2.2 Constitutive Model 

Lemaitre’s ductile damage model is based on CDM theory and in the framework of 

thermodynamics of irreversible processes. The constitutive equations are derived from 

thermodynamic (or state) potentials and the evolution equations are given by dissipation 

potentials, which are detailed in Lemaitre’s original model and CDM theory [91]. The 

elastic-plastic damage model used in this paper (with von Mises yield criterion, Swift 

hardening law and Lemaitre’s ductile damage) are presented in the following.  

To begin with, the strain tensor additive split is given: 

 ,e p      (5.3) 
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where is the total strain tensor, the tensor e and p are known, respectively, as the elastic 

strain tensor and the plastic strain tensor. Correspondingly, the rate form of the additive 

decomposition reads, 

 .e p      (5.4) 

The elastic law (coupled with damage) is expressed as: 

  1 : ,eD  E   (5.5) 

whereE is the isotropic elasticity tensor, is stress tensor and D is the scalar damage variable.  

Since von Mises yield criterion is used, the yield function for elastic-plastic damage 

model is given by 

 ,
1

y

q

D
  


  (5.6) 

where q is the von Mises equivalent stress and y is the yield stress which is defined by Swift 

hardening law as: 

    0 ,
n

p p

y A       (5.7) 

where A , 0 and n are material parameters.  

The evolution of plastic strain is expressed by 
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  (5.8) 

where is the plastic multiplier, s is the deviatoric stress tensor. Accordingly, the evolution 

of accumulated (equivalent) plastic strain p is: 

 .
1

p

D


 


  (5.9) 

The evolution equation of damage variable is  

  ˆ ,
1

s

p p

D

Y
D H

D r


 

 
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  
  (5.10) 

where r and s are material’s damage parameters,  Ĥ  is the Heaviside step function,
p

D is the 

damage threshold, and Y  is the so-called damage energy release rate, which is defined as 
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whereE is Young’s modulus, v is Poisson ratio,G is shear modulus, K is bulk modulus,  tr 

denotes the trace, q is the von Mises equivalent stress and p is the hydrostatic stress. 

The loading /unloading conditions 0, 0, 0      must be satisfied.  

The equations of the elastic-plastic damage model in this chapter are summarized in 

Table 5.1. 

Table 5.1 Equations of elastic-plastic damage model 

Strain tensor additive split e p     

Elastic law (coupled with damage)  1 : eD  E  

Yield function   1 yq D      

Strain hardening law (Swift law)    0

n
p p

y A      

Evolution of plastic strain 
 

3

1 2

p

D







s

s
 

Evolution of damage  ˆ
1

s

p p

D

Y
D H

D r


 

 
  

  
 

Loading/unloading conditions 0, 0, 0       

5.2.3 Numerical Implementation of the Constitutive Model 

The fully implicit elastic predictor/return-mapping scheme is commonly used in the 

numerical implementation of constitutive model [92]. Given the increment of strain

1n n     corresponding to a pseudo-time increment  1,n nt t  , and given the variables n ,

n ,
p

n ,
p

n and nD at nt , the goal of the algorithm is to find the update values of 1n , 1n , 1

p

n ,

1

p

n  and 1nD  at 1nt  . 
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The elastic predictor/return-mapping algorithm starts with the so-called elastic trial step. 

In the elastic trial step, we assume that the step  1,n nt t  is elastic; hence, neither damage nor 

strain hardening evolution takes place at this stage. Therefore, the elastic trial solution is 

given by: 
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  (5.12) 

The corresponding trial stress can be evaluated by the deviatoric/hydrostatic split of the 

stress tensor 
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where
trial trial

1 d 12 e

n nG s and
trial trial

1 v 1

e

n np K  are the effective trial deviatoric and hydrostatic 

stresses, respectively, I is the identity tensor,
trial

d 1

e

n  and
trial

v 1

e

n  are deviatoric part and volumetric 

part of the elastic trial strain
trial

1

e

n , defined as: 

 

 trial trial

v 1 1

trial trial trial

d 1 1 v 1

tr ,

1
.

3

e e

n n

e e e

n n n





 

  



  I



 
  (5.15) 

With Equation (14), the elastic trial von Mises equivalent stress can be computed: 

       trial trial trial trial trial trial

1 2 1 2 1 1 1 13 3 1 1 ,n n n n n nq J J D D q         s s   (5.16) 

where trial trial trial3
1 1 12

:n n nq    s s is the effective elastic trial von Mises equivalent stress, which is 

evaluated from effective trial deviatoric stress. The yield function in the present case is then 

evaluated as 
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If trial 0  the step 1,n nt t  is an elastic step and the elastic trial state coincides with the 

updated state at 1nt  , i.e., we set    
trial

1 1n n 
   . Otherwise, we turn to the return-mapping step. 

In return-mapping step, the following nonlinear return-mapping equations need to solve: 
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  (5.18) 

The above system of nonlinear equations is unattractive for numerical implementation 

due to its high computational burden. Therefore, some relatively straightforward operations 

are performed to reduce the system of equations.  

To start with, let us consider the deviatoric/volumetric split of the elastic strain of 

Equation (5.18)1. This gives 
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According to the elastic law, together with Equation (5.19), the hydrostatic and 

deviatoric stress can be updated as 
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where we have defined 
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From Equation (5.20)2, we can find that
trial

1ns and 1ns are collinear. This implies that

trial trial

1 1 1 1n n n n   s s s s , so that we can equivalently rewrite Equation (5.20)2 and simpler 

the update formula for 1ns by a straightforward manipulation, which gives 
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Thus, with the definition of von Mises equivalent stress, we obtain  

   trial
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Consequently, the plastic consistency condition becomes 
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By introducing Equation (5.23) and (5.20)1 into the definition of the damage energy 

release rate of Equation (5.11), the Equation (5.18)3 can be expressed as: 
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where  
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Now, the return-mapping equation system (5.18) has been reduced to a system of two 

scalar equations (5.24) and (5.25), which is written as 
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In this equation system only  and 1nD  are unknown, other variables have defined 

previously. This nonlinear equation system is solved using Newton-Raphson method. There 

are two types of coupling can be used: strong coupling and weak coupling. The strong 

coupling solves the two equations simultaneously to obtain the two unknowns  and 1nD  . 

While, the weak coupling firstly solves the first equation of the system (5.27) in which we 
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assume that 1nD  is equal to nD , in order to obtain  . Then the second equation is solved to 

compute the new damage value 1nD  . 

Table 5.2 Stress update algorithm for elastic-plastic damage model 

(i) Elastic predictor 
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(ii) Check plastic admissibility 

If  trial trial
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n y nq       Then 
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(v) Exit 

Even though the strong coupling gives more accurate results, the weak coupling is 

generally preferred for computation time reasons in real simulation [103]. Hence, in this 

paper weak coupling is used to solve the return-mapping equation system (5.27). After 

obtaining  and 1nD  , stress and other state variables can be updated. The complete stress 
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update algorithm for the numerical implementation of elastic-plastic damage model by 

means of the fully implicit elastic predictor/return-mapping scheme is summarized in Table 

5.2.  

The implementation of the fully implicit elastic predictor/return-mapping scheme is 

performed in ABAQUSTM subroutine VUMAT (a user subroutine to define material 

behavior) by FORTRAN codes. 

5.3 Inverse Method for Parameter Identification 

Using numerical techniques to simulate the response of the structure with the given 

constitutive model and model parameters is called direct problem. While the parameter 

identification (or calibration), which determines model parameters on the basis of 

experimental data, is known as inverse problem [104]. The direct and inverse problems are 

sketched in Figure 5.1. 

 

Figure 5.1 Illustration of (a) direct problem and (b) inverse problem 

The purpose of parameter identification procedure is to obtain as good agreement as 

possible between simulated and experimental responses [105, 106]. In other words, the 

parameter identification process is to find a set of parameters which makes the minimum 

difference between simulation response and experiment data. Thus, inverse method is a 

useful tool for determining material parameters [107]. The inverse method of parameter’s 

identification considers the parameter identification as an optimization problem, which is to 

find a set of parameters that minimize the difference between the experimental data and the 
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numerical simulations. As an optimization problem, the inverse method of parameter 

identification basically consists two main parts: the first part is the formulation of the 

objective function,  f p , which measures the difference between the experimental data and 

numerical results; another part is the selection of an optimization strategy, which is able to 

find the minimum of the objective function. 

5.3.1 Framework of Inverse Method for Parameter Identification 

The general framework of the inverse method for parameter identification is shown in 

Figure 5.2. A general optimization problem for the inverse method of parameter 

identification can be expressed as 

 
 minimize

s.t. L U

f

 

p

p p p
 (5.28) 

where  f p is the objective function which will be defined in subsequent subsection, Lp and

Up are the lower and upper bounds of the parameter vector p .  

 

Figure 5.2 Framework of inverse method for parameter identification 
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Because the objective function is usually implicit and nonlinear, gradient-free global 

optimization algorithms are commonly used. However, the main drawback of the inverse 

method is its expensive cost in computation, which is due to the expensive evaluation of the 

objective function and large number of iterations before convergence. This has promoted the 

use of the KA-CMA-ES in inverse method. 

5.3.2 Objective Function 

In this work, our goal is to find a set of material parameters that yields the simulation 

force-displacement response with minimum difference between the experimental force-

displacement curve, as shown in Figure 5.3. The function which provides a scalar 

measurement of the error between the experimental data and numerical simulation results is 

chosen as the objective function. We use a formulation based on a least square equation 

[108], which is expressed as: 

 

 
  

 

    

   

2
sim exp

2
exp

2
sim exp

1

1

2
exp

1

1

F F D

F D

F F D D

F D D

n

i i i i

i

n

i i i

i

d
f

d












  
  


 
  









p
p

p
  (5.29) 

where p is the set of material parameters,  simFi p are the numerical simulation responses with 

the input parameter of p corresponding to displacement Di ,
expFi are the experimental 

responses corresponding to Di , and n is the number of data points. The second line of 

Equation (5.29) is the discrete formulation of the first line. In evaluation of the objective by 

its second line (discrete formulation), the simulation and experimental force-displacement 

data are interpolated at the same query points ( 1 20,D ,D , ,Dn ) and then  f p is computed 

by the discrete formulation.  



5.3 Inverse Method for Parameter Identification 

164 

 

Figure 5.3 Illustration of the difference between experimental and simulation results 

In strain hardening parameter identification, the objective function  f p is computed 

only on the hardening part, i.e., the integral domain is from D 0 to the necking point. In this 

situation, the softening part of force-displacement curve is not considered in objective 

function since damage is not included. When dealing with damage parameters, the softening 

part of the force-displacement curve needs to be taken into account. In this situation, we need 

to give precaution on the softening part, in order to build a right objective function.  

In the numerical investigation of ductile damage parameters identification by Roux et 

al. [108], this problem has been solved by adapting the integration domain of objective 

function in Equation (5.29). Let
sim

fractureD represents the simulation fracture displacement value 

and
exp

fractureD denotes the experimental fracture displacement. Two particular cases,

sim exp

fracture fractureD >D and
sim exp

fracture fractureD <D , have to be deal with. For both case, the objective 

function is evaluated between D 0 and  sim exp

max fracture fractureD max D ,D . The force-

displacement data are adapted as following: 

 If sim exp

fracture fractureD >D , experimental data are completed with one new point 

defined as: the breaking force (load) remains the same whereas the 

displacement value is set as  sim exp

max fracture fractureD max D ,D , which is illustrated 

by the green line in the left of Figure 5.4. 
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 If sim exp

fracture fractureD <D , simulation data are completed with one new point defined 

as: the breaking force (load) remains the same whereas the displacement value 

is set as  sim exp

max fracture fractureD max D ,D . This is illustrated by the green line in 

the right of Figure 5.4. 

With above adaptation of force-displacement data, the objective function (Equation 

(5.29)) can be obtained by evaluating the integration in Equation (5.29) using its discrete 

formulation.  

 

Figure 5.4 Tensile test force-displacement curve, Left: simulation fracture appears for a larger 

displacement than the experimental fracture displacement; Right: numerical fracture appears for a 

smaller displacement than the experimental fracture displacement. 

5.4 Parameter Identification using Inverse Method 

The inverse method presented in the previous section is employed to identify the 

material parameters that are used in the ductile damage model presented in Section 5.2.  The 

KA-CMA-ES using ARP-EI, which has been proven to be the outstanding algorithm among 

KA-CMA-ES that have been investigated in previous chapter, is adopted as the optimization 

algorithm in inverse method of parameter identification. At the same time, the standard 

CMA-ES is also used, in order to validate the results of inverse method using KA-CMA-ES 

and evaluate its performance. The objective function, which measures the difference 

between simulation and experimental response and is minimized in parameter identification, 

is defined in Equation (5.29). The maximum computational budget is set as 600, i.e., the 

maximum number of exact objective function evaluations is 600, which is a stopping 

criterion of the optimization process. Another used termination criterion for optimization is 
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the tolerance of objective function. We set the tolerance of objective function as 

6TolFun 10 . If one of these two criteria is satisfied, the optimization procedure stops. The 

obtained set of parameters with minimum objective function value are the identified material 

parameters.  

In the ductile damage model of Section 5.2, there are Swift hardening law’s parameters 

( A , 0 and n ), i.e., the strain hardening parameters, and damage parameters (
p

D , r , s and CD ) 

need to be identified. Since in Lemaitre’s damage model 1.0s  [91], here we set 1.0s  . 

Thus, in this paper, we focus on the identification of strain hardening parameters, A , 0 and

n , and ductile damage parameters
p

D , r and CD . In order to simplify the identification 

process, these two kinds of parameters (strain hardening parameters and damage parameters) 

are identified separately. Specifically, the strain hardening parameters ( A , 0 and n ) are 

identified firstly for the elastoplastic model with Swift hardening law and von Mises yield 

criterion; then the damage parameters (
p

D , r and CD ) are identified for the ductile damage 

model. 

The parameter identification is carried out according to the standard tensile test of A 

2017-T4. The aluminum 2017-T4 has the density of 32.79 10 kg/m3. Its elastic modulus and 

Poisson’s ratio are: E=72.4 GPa and v=0.33. The geometry dimensions of the specimens are 

illustrated in Figure 5.5. The force-displacement curves can be directly obtained from the 

test system. The first part of the curve is the elastic strain, followed by plastic strain, and 

then necking and force decrease till the final fracture. The objective of parameter 

identification is to find an appropriate set of material parameters that yields the best force-

displacement response, which has minimum difference with the experimental force-

displacement curve.   

In parameters identification process, the tensile test process is firstly modeled by Finite 

Element Method (FEM) simulation using the software ABAQUS. The test specimen is 

modeled by 3D deformable solid with the element type C3D8R. In the central part, the 

element size is 1.5 mm, there two layers in the thickness of the specimen. The FEM model 

of the tensile specimen is shown in Figure 5.6. The loads are applied at the two sides of the 
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specimen. The left side is fixed in X direction, and the displacement load is applied at the 

right side.  

 

Figure 5.5 Geometry dimension of the test specimen 

 

 

Figure 5.6 FEM model of tensile specimen 

5.4.1 Strain Hardening Parameters Identification 

The Swift hardening law, which is widely used to model the strain hardening of metallic 

material, is used to describe the strain hardening behavior of the material. The yield stress 

defined by Swift hardening law is expressed in Equation (5.7). Previously presented inverse 

method is used to identify the parameters, A , 0 and n , in Swift law.  

The inverse parameter identification of strain hardening parameters are independently 

carried out with the standard CMA-ES and KA-CMA-ES using ARP-EI. In the identification 

process, FEM simulations of tensile test are repeatedly performed to evaluate the objective 

function. The lower and upper bounds for the parameters in the identification process and 

the identified strain hardening parameters are listed in Table 5.3. The convergence graphs 

and iterative history of the parameters are illustrated in Figure 5.7. The force-displacement 
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curves corresponding to identified strain hardening parameters and experimental curve are 

shown in Figure 5.8.  

Table 5.3 Results and computational costs of strain hardening parameter identification 

Parameter A  0  n  FES 

Lower Bound 600 0 0.1 – 

Upper Bound 900 0.03 0.4 – 

The Standard CMA-ES 754.1402 0.0087 0.2264 533 

KA-CMA-ES using ARP-EI 754.2124 0.0087 0.2264 211 

 

 

Figure 5.7 Convergence and iteration graphs of strain hardening parameter identification 
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Figure 5.8 Force-displacement curves (before necking) corresponding to identified strain hardening 

parameters and experimental data 

Firstly, in Figure 5.8, it can be observed that the simulation results using the identified 

parameters are very close to the experimental data. Consequently, Swift’s hardening laws 

with the identified parameters accurately describe the strain hardening behavior of the 

material. Furthermore, from Table 5.3, it can be seen that the parameter identification results 

from the inverse method using CMA-ES and those from the inverse method using KA-CMA-

ES (ARP-EI) are almost the same. This can also be seen in the iteration history of A , 0 and

n in Figure 5.7, where these three parameters of the identification process using CMA-ES 

and KA-CMA-ES converge at almost the same values. In other words, the inverse method 

using KA-CMA-ES gives a reliable solution for parameter identification problems. 

The numbers of objective function evaluations (FES) of the identification process using 

CMA-ES and KA-CMA-ES are presented in Table 5.3. The identification process using the 

standard CMA-ES requires 533 objective function evaluations (533 FEM simulations of 

tensile test with different parameters); whereas, only 211 function evaluations are required 

in identification using KA-CMA-ES. Obviously, the computational cost of inverse 

parameter identification using KA-CMA-ES is significantly lower than that of identification 
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using the standard CMA-ES. This can be found in the convergence graph in Figure 5.7, too. 

The identification using KA-CMA-ES converges faster than that using the standard CMA-

ES. Therefore, efficiency of the parameter identification process has been enhanced by using 

the proposed KA-CMA-ES. 

5.4.2 Damage Parameters Identification 

After the strain hardening parameters are identified in previous subsection, we turn to 

the identification of ductile damage parameters,
p

D , r and CD . In the ductile damage model, 

von Mises yield criterion and Swift hardening law are used. The above identified parameters 

of Swift hardening law are used here. The lower and upper bounds for the parameters in the 

identification process and the identified strain damage parameters are listed in Table 5.4. 

The convergence graphs and iterative history of the damage parameters are illustrated in 

Figure 5.9. The force-displacement curves corresponding to identified elastic-plastic damage 

parameters and experimental curve are shown in Figure 5.10.  

From the results of damage parameter identification in Table 5.4, the identified damage 

parameters from inverse method using CMA-ES and KA-CMA-ES are very closed. This 

additionally indicates the KA-CMA-ES gives reliable results. The iteration histories of 

damage parameters in Figure 5.9 also demonstrate this.  

In Figure 5.10, the force-displacement curve from the numerical simulation using the 

presented elastic-plastic damage model with the identified parameters is consistent with that 

from the tensile test. Additionally, the simulation results of the elastic-plastic model and 

elastic-plastic damage model, and the experimental data are also plotted in Figure 5.11. 

Obviously, since damage effect is not considered in the elastic-plastic model, the difference 

between the experimental response and the elastic-plastic model results is significant after 

the occurrence of necking. In conclusion, the presented elastic-plastic damage model is 

capable of, and appropriate for, modeling material behavior with consideration of strain 

hardening and damage effect, and the proposed KA-CMA-ES using ARP-EI is reliable and 

efficient in inverse method of parameter identification.  
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Table 5.4 Results and computational costs of damage parameter identification 

Parameter 
p

D  r  CD  FES 

Lower Bound 0.1 2 0 – 

Upper Bound 0.18 10 0.8 – 

The Standard CMA-ES 0.1306 6.1575 0.0874 295 

KA-CMA-ES using ARP-EI 0.1303 6.1583 0.0898 167 

 

 

Figure 5.9 Convergence and iteration graphs of damage parameter identification 
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Figure 5.10 Force-displacement curves corresponding to identified damage parameters and 

experimental data. 

 

Figure 5.11 Comparison of force-displacement curves of elastic-plastic and elastic-plastic damage 

models with the identified parameters.  
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5.5 Summary  

This chapter presents a ductile damage model and applies a previously proposed KA-

CMA-ES algorithm (KA-CMA-ES using ARP-EI) in inverse method of parameter 

identification. The ductile damage model, which combines the von Mises yield criterion, 

Swift’s hardening law and Lemaitre’s damage model, is implemented by the fully implicit 

elastic predictor/return-mapping scheme in ABAQUS through the subroutine VUMAT. The 

numerical implementation algorithm is comprehensively detailed in this chapter. In order to 

improve the efficiency of the inverse method for parameter identification, previously 

proposed KA-CMA-ES (ARP-EI) algorithm is used. The proposed ductile damage model is 

employed for A 2017-T4 and the inverse method using ARP-EI is applied to identify the 

material parameters based on standard tensile test data. 

The results show that Swift’s law is adequate to describe the strain hardening behavior 

of A 2017-T4. With the incorporation of Lemaitre’s ductile damage into the elastoplastic 

model, ductile damage effect can be modeled. The mechanical behavior of A 2017-T4 under 

tension is accurately model by the presented elastic-plastic damage model. 

Applications of the KA-CMA-ES algorithm prove that this algorithm is useful and 

promising for parameter identification. It enhances the efficiency of the parameter 

identification process and also gives reliable results.  
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6. Résumé de la Thèse en Français 

6.1 Introduction Générale 

L'optimisation est largement demandée et appliquée en science de l’ingénieur. 

Motivées par les demandes industrielles et de la recherche scientifique, beaucoup de 

techniques d'optimisation ont été développées. L'algorithme choisi pour un problème 

d'optimisation dépend en grande partie du type de problème, de la qualité de la solution 

souhaitée, des ressources informatiques disponibles, du temps CPU et de l'expertise des 

décideurs. 

6.1.1 Motivation 

Une problème d'optimisation est dit difficile s’il est coûteux en temps CPU. Ce coût est 

généralement dû: 

 La fonction objectif est évaluée sur la base d'une simulation numérique, qui peut 

être coûteuse (requiert de quelques minutes à des heures voire des jours de temps 

de calcul pour chaque cycle de simulation).  

 Il n'existe pas d'expression analytique explicite pour la fonction objectif ou ses 

dérivées. Ainsi, les algorithmes sans dérivation sont nécessaires pour résoudre ce 

type de problème d'optimisation. Ces derniers nécessitent plusieurs évaluations de 

la fonction objectif que celles utilisant les dérivés. 

 Pour de nombreux problèmes d'optimisation de CAO, la nature de la fonction 

objectif peut être non lisse, multimodale, discontinue et mal conditionnée. Ces 

difficultés entraînent un coût de calcul élevé pour trouver l'optimum. 

Nous nous concentrons sur les problèmes d'optimisation coûteux sous contraintes 

décrits comme suit : 
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 Min

s.c.   

f

 

x

l x u
   

où   : df x  est la fonction objectif qui est évaluée en exécutant la simulation 

numérique, le vecteur  
T

1, , dx xx représente les d variables de conception, les vecteurs 

l  et u  sont les limites inférieure et supérieure, respectivement. Les contraintes limitent 

l'espace de recherche à      1 1 2 2, , ,d dl u l u l u   . 

En raison de la forme implicite de la fonction objectif, les algorithmes évolutifs (EAs), 

qui sont une classe d'optimiseurs globaux sans dérivées et puissants, sont appropriés pour 

résoudre des problèmes d'optimisation coûteux. Cependant, la principale difficulté à utiliser 

les EAs est que ces derniers ont habituellement besoin d'un grand nombre d'évaluation de la 

fonction objectif avant d'obtenir un résultat satisfaisant. Par conséquent, les EAs assistées 

par modèle de substitution ont été motivés par la réduction des coûts du temps de calcul.  

6.1.2 Objectif 

L’objectif  de cette thèse est de développer des algorithmes d'optimisation puissants 

qui peuvent traiter plus efficacement les problèmes d'optimisation coûteux. 

Ce travail se concentre sur la stratégie d'évolution (ES) assistée par modèle de 

substitution pour des problèmes d'optimisation coûteux. La stratégie d’évolution avec 

adaptation de matrice de covariance (CMA-ES) et le modèle de krigeage sont choisis comme 

les deux composantes de la stratégie d'évolution assistée par modèle de substitution. Cette 

CMA-ES assistée par le modèle de krigeage est abrégée par KA-CMA-ES dans ce manuscrit. 

Notre objectif est d'étudier la CMA-ES existante et de développer de nouveaux algorithmes 

efficaces de KA-CMA-ES pour des problèmes coûteux. 
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6.2 Organisation de la Thèse 

6.2.1 Premier Chapitre: État de l'Art des Techniques d’Optimisation 

Ce chapitre présente un bref aperçu des techniques d'optimisation et de l'état de l'art de 

l'algorithme de l'évolution assistée par modèle substitutif. On commence par introduire les 

concepts d'optimisation. Ensuite, on donne un aperçu des algorithmes d'optimisation, y 

compris les algorithmes avec dérivées et ceux sans dérivées. Enfin, nous présentons 

l'algorithme de l'évolution assistée par modèle substitutif. Nous examinons le 

développement d'algorithmes évolutifs (EAs) assistés par substitution. Dans l'optimisation 

évolutive assistée par substitution, la fonction objectif est remplacée par des modèles de 

substitution. Les mécanismes d'incorporation des substituts dans les EAs peuvent être divisés 

en méthodes de remplacement direct et indirect, c'est-à-dire les styles directs et indirects, 

comme le montre la Figure 6.1. Cette figure montre le panorama de l'optimisation 

évolutionnaire assistée par modèle substitutif. 

 

Figure 6.1 Les mécanismes d'incorporation des modèles de substitution dans les EAs 
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6.2.2 Deuxième Chapitre: Les Stratégies d'Evolution 

Ce chapitre donne une description complète des stratégies d'évolution (ES). Une brève 

introduction des ES est fournie en premier lieu. Ensuite, les principes et les opérateurs 

évolutifs utilisés dans les ES, c'est-à-dire la sélection, la recombinaison et la mutation, sont 

décrits dans ce chapitre. Par la suite, nous présentons trois algorithmes typiques de ES, 

(1+1)-ES,  , -ESI    avec adaptation cumulative de taille d'échelon et stratégie 

d'évolution avec l'adaptation de matrice de covariance (CMA-ES).  

Algorithme 6.1 Le  , -CMA-ESw    
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Parmi les ES, la stratégie d'évolution avec l'adaptation de matrice de covariance (CMA-

ES) est une stratégie d'évolution très développée et est devenue une norme pour 

l'optimisation évolutive continue. Il s'agit d'un puissant algorithme d'optimisation et se 

comporte particulièrement bien dans des problèmes de back-box multimodaux non lisses. 

Le CMA-ES adopte l'opérateur de mutation corrélée, ce qui en fait un algorithme de haut 

niveau comparé à d'autres algorithmes qui utilisent la mutation isotrope. Dans CMA-ES, 

deux techniques, à savoir l'adaptation de la matrice de covariance (CMA) et l'adaptation 

cumulative des échelons (CSA), sont utilisées pour adapter respectivement la matrice de 

covariance de la mutation et la taille de l'échelon. Le CMA-ES est choisi comme la stratégie 

d'évolution de la base pour les ES assistées par substitution dans ce travail, en raison de sa 

puissance et de son succès dans l'optimisation continue avec des fonctions objectifs 

implicites. L'algorithme CMA-ES est donné dans l’Algorithme 6.1. 

6.2.3 Troisième Chapitre: Modélisation de Substitution 

Ce chapitre examine la méthode de modélisation substitutive, qui est une approche pour 

décrire le comportement (entrée-sortie) du modèle de simulation. Les trois étapes de la 

modélisation de substitution sont décrites dans ce chapitre : (i) la conception des expériences 

(DOE) ; (ii) la formation du modèle de substitution et (iii) la validation du modèle.  

 

Figure 6.2 Processus de modélisation de substitution 



6.2 Organisation de la Thèse 

180 

La modélisation substitutive est liée à la construction de modèles mathématiques pour 

décrire les relations entre les entrées et les sorties spécifiques exposées par le modèle de 

simulation (ou le système), basée sur un ensemble de données limitées acquises en exécutant 

le modèle de simulation avec une entrée intelligemment choisie. Le processus de 

modélisation de substitution est illustré par la Figure 6.2. 

 Avec un modèle subrogé formé, la sortie des points non testés peut être prédite à 

moindre coût par le modèle. Par conséquent, les modèles de substitution peuvent être utilisés 

dans l'optimisation évolutive en remplaçant l'évaluation coûteuse de la fonction de fitness 

par la prédiction du modèle de substitution moins coûteux que l'évaluation exacte de la 

condition physique. 

En se basant sur l'apprentissage mécanique et les techniques d'apprentissage statistique, 

jusqu'à présent, plusieurs modèles de substitution ont été utilisés dans le calcul 

évolutionnaire assisté. Les modèles de substitution les plus populaires, y compris la 

régression polynomiale, le modèle de krigeage, les fonctions de base radiales, les réseaux de 

neurones et les machines de vecteurs de soutien. 

Modèle de krigeage 

Le modèle de krigeage est une méthode de modélisation basée sur le processus de Gauss 

pour interpoler des données déterministes sans bruit et s'est révélé utile dans une grande 

variété de domaines. La caractéristique distinctive du modèle de Krigeage est qu'il fournit 

non seulement une réponse prédite (moyenne de prédiction) à un point non échantillonné, 

mais aussi une estimation de la variance de prédiction (ou écart type de prédiction). Cette 

variance donne une indication de l'incertitude dans le modèle de krigeage, qui résulte de la 

construction de la fonction de covariance. Cette dernière est basée sur l'idée que lorsque les 

points d'entrée sont proches l'un de l'autre, la corrélation entre leurs sorties correspondantes 

sera élevée. Par conséquent, l'incertitude associée aux prédictions du modèle sera faible pour 

les points d'entrée qui sont près des points de formation, et augmentera à mesure que l'on 

s'éloigne des points de formation. L'écart-type de la prédiction et la moyenne de la prédiction 

fournissent des informations précieuses pour équilibrer l'exploitation et donc bénéfique pour 
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le calcul évolutionnaire assisté. Compte tenu de cet avantage, le modèle de krigeage est 

utilisé comme substitut dans la stratégie d'évolution assistée par substitution. 

6.2.4 Quatrième Chapitre: CMA-ES Assistée par Modèle de Krigeage 

Ce chapitre se concentre sur les stratégies d'évolution avec l'adaptation de matrice de 

covariance assistée par le modèle de krigeage (KA-CMA-ES), dans le cadre de l'optimisation 

évolutive assistée par substitution. Une brève introduction de la stratégie d'évolution assistée 

par modèle est présentée en premier lieu. Ensuite, nous décrivons les mécanismes 

d'incorporation du modèle de substitution dans ES. Ensuite, de nouvelles méthodes de 

sélection d'ensembles d'apprentissage, de présélection, du contrôle d'évolution ont été 

développées et des algorithmes concrets de KA-CA-ES sont formulés. En outre, nous 

effectuons des études expérimentales de KA-CMA-ES pour étudier et analyser la 

performance des algorithmes proposés. 

6.2.4.1 Algorithmes de KA-CMA-ES 

Le mécanisme d'incorporation du modèle de krigeage dans CMA-ES est la partie 

essentielle de KA-CMA-ES. Dans cette thèse, on adopte les quatre mécanismes 

d'incorporation suivants ou les stratégies d'exploitation du modèle : la présélection, le 

contrôle individuel, le classement approximatif et le contrôle basé sur la génération. Dans le 

contrôle individuel, différents critères qui sont utilisés pour sélectionner les individus à 

contrôler et sont appelés métriques dans ce travail, sont étudiés. Les stratégies d'exploitation 

et de mesure des modèles sont décrites ci-dessous. 

6.2.4.2 Présélection 

La présélection de solutions prometteuses (basée sur un modèle approximatif) est une 

stratégie populaire d'exploitation de l'information à partir du modèle de substitution f̂ dans 

les stratégies d'évolution. Dans la stratégie de présélection, Pre  (  est la taille de la 

population de ES) les individus sont générés à chaque étape, puis tous les Pre individus sont 

évalués par modèle approximatif ˆ ,f  après que  parmi les Pre meilleurs individus sont 
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sélectionnés pour évaluer par la fonction de fitness d'origine .f  L'idée de base de cette 

approche est que seuls les individus les plus prometteurs avec une bonne prédiction de la 

condition physique sont évalués avec la fonction de remise en forme, ce qui entraîne une 

réduction du nombre d'appels de remise en forme réels coûteux. La présélection est illustrée 

à la Figure 6.3. 

Initialisation

Mutation

Évaluation de la 
fonction

Sélection

Recombinaison

Critère d'arrêt ?

Fin

 Individuels

 Parents

Oui

Non
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Évaluation de la fonction

Modèle de substitution 

Sélection

Recombinaison

Critère d'arrêt ?

Fin

Pre Individuels

 Individuels
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Sélectionner  Individuels

Présélection
 

Figure 6.3 Illustration de la présélection dans la stratégie d'évolution assistée par modèle de substitution: 

(1) la norme (,)-ES et (2) l'ES assistée par la pré-sélection. 

Il existe deux stratégies de présélection : (1) la présélection sans contrôle de l'impact 

du modèle (PS), et (2) la présélection avec contrôle de l'impact du modèle (CPS) utilisé dans 

KA-CMA-ES. Dans PS, la taille de la population de présélection Pre reste constante pendant 

le processus d'optimisation évolutive. En CPS, Pre a été contrôlé dynamiquement sur la base 

de la mesure de la qualité du modèle. 

6.2.4.3 Contrôle Personnalisé de l’Evolution  
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Le contrôle de l'évolution est populaire dans les algorithmes évolutifs assistés par 

substitution, y compris les stratégies d'évolution. Le contrôle de l'évolution signifie que, dans 

le calcul évolutif assisté par substitution, la fonction d'aptitude initiale est utilisée pour 

évaluer certains/tous les individus dans certaines/toutes les générations. Un individu qui est 

évalué à l'aide de la fonction d'aptitude d'origine est appelé un individu contrôlé. De même, 

une génération dans laquelle tous ses individus sont évalués en utilisant la fonction de fitness 

d'origine est appelée génération contrôlée. Le contrôle basé sur individuel et le contrôle basé 

sur la génération sont illustrés à la Figure 6.4. 
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Figure 6.4 Illustration du contrôle de l'évolution dans la stratégie d'évolution assistée par substitution : 

(1) contrôle basé sur l’individuel et (2) contrôle basé sur la génération. 

Dans le contrôle basé sur l’individuel, une partie des individuels dans la population sont 

choisis et évalués avec la fonction d'objectif. Les individuels contrôlés peuvent être choisis 

au hasard ou par la stratégie « best ». Si la fréquence du contrôle d'évolution individuel est 

fixe, c'est-à-dire qu'un nombre fixe d'individus est contrôlé dans chaque génération, on 

l'appelle contrôle individuel fixe (FIC). Si la fréquence du contrôle de l'évolution dépend de 

la fidélité du modèle de substitution. Cette stratégie est appelée contrôle de l'évolution 

adaptative. 
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Dans le but de tirer les avantages du contrôle d'évolution individuel et adaptative basé 

sur l'individu, une stratégie de contrôle basée sur des individus appelée contrôle individuel 

mixte (MIC) qui combine les deux fonctions du contrôle fixe et adaptif d'une certaine 

manière, est proposée dans ce travail. 

6.2.4.4 Procédure du Classement Approximatif 

En 2004, Runarsson a proposé la procédure de classement approximatif (ARP) pour 

évaluer la qualité des modèles de substitution et servir de contrôle de l'évolution dans l'ES 

assistée. La procédure de classement approximatif évalue la qualité du modèle de 

substitution par sa cohérence dans le classement de la population plutôt que par sa précision 

statistique. La procédure de classement approximatif détermine le nombre d'individus 

contrôlés dans chaque génération de la façon suivante : les individus sont successivement 

sélectionnés pour être évalués en fonction de leur aptitude approximative et ensuite ajoutés 

à l'ensemble d'entraînement jusqu'à ce que la sélection de substitution des parents reste 

inchangée dans deux itérations cycles. 

6.2.4.5 Contrôle d'Evolution basé sur la Génération 

Dans le contrôle de l'évolution basé sur la génération, tous les individus d'une 

génération sélectionnée seront évalués par la fonction d'aptitude initiale. La sélection de 

génération peut être aléatoire ou avec une fréquence fixe. Si la fréquence du contrôle de 

génération est fixe, on l'appelle contrôle de génération fixe (FGC). Si la fréquence du 

contrôle de génération dépend de la qualité du modèle de substitution, elle est connue sous 

le nom de contrôle adaptatif basé sur la génération (AGC). 

Dans cette section, il est proposé d'utiliser la qualité du modèle pour déterminer si la 

prochaine génération est le contrôle ou non. La qualité du modèle de substitution est estimée 

dans chaque génération contrôlée, si 
TSQ Q  (

TSQ est la valeur critique ou le seuil de 

qualité du modèle), la prochaine génération est évaluée par le modèle de substitution ; sinon, 

la prochaine génération est contrôlée et évaluée par la fonction de fitness d'origine. Les 

mesures de la qualité du modèle peuvent être la mesure de qualité de modèle de sélection 
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proposée à l'aide de poids de recombinaison wQ , la mesure de qualité du modèle fondée sur 

la sélection selectionQ  proposée par Ulmer et al., et le cœfficient de corrélation de rang rank . 

Résumé des Algorithmes KA-CMA-ES dans ce Travail 

En combinant le modèle de krigeage et CMA-ES à travers la gestion de modèle décrite 

ci-dessus, les différents algorithmes peuvent être formulés. Quatre groupes d'algorithmes 

KA-CMA-ES ont été développés : 

1) KA-CMA-ES en utilisant la présélection. Ce groupe comprend KA-CMA-ES 

utilisant PS (présélection sans contrôle d'impact de modèle) et CPS (présélection 

avec contrôle d'impact de modèle). 

2) KA-CMA-ES en utilisant un contrôle individuel. Ce groupe inclut KA-CMA-ES 

utilisant FIC (contrôle individuel fixe avec métrique) et MIC (le contrôle 

individuel mixte proposé). 

3) KA-CMA-ES en utilisant la procédure de classement approximatif (ARP). 

4) KA-CMA-ES utilisant le contrôle basé sur la génération, qui comprend KA-

CMA-ES utilisant FGC (contrôle basé sur la génération fixe) et AGC (contrôle 

adaptatif basé sur la génération). 

6.2.4.6 Études Expérimentales de KA-CMA-ES 

En utilisant différents modèles d'exploitation dans KA-CMA-ES, différents 

algorithmes ont été développés. Ceux étudiés dans cette thèse peuvent être divisés en quatre 

groupes : KA-CMA-ES utilisant la présélection qui comprend KA-CMA-ES utilisant PS et 

CPS, KA-CMA-ES en utilisant un contrôle individuel qui comprend KA-CMA-ES utilisant 

FIC et MIC, KA-CMA-ES en utilisant une procédure approximative de classement, et KA-

CMA-ES utilisant un contrôle basé sur la génération qui comprend KA-CMA-ES utilisant 

FGC et AGC. Dans les études expérimentales de KA-CMA-ES, différents aspects des 

algorithmes KA-CMA-ES ont été examinés en exécutant les expériences sur 40 problèmes 

de benchmark (dont 12 fonctions de test avec des dimensions différentes). Le taux de succès 
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(SR), la performance de succès (SP) et/ou la performance d'accélération (SPU) des 

expériences sont trois mesures pour évaluer et analyser la performance des algorithmes. 

6.2.4.7 Résultats Expérimentaux 

Dans l'étude de KA-CMA-ES en utilisant la présélection sans contrôle d'impact de 

modèle (PS), différentes méthodes de sélection d'ensembles d'entraînement, y compris 

'Récemment' (les points récemment évalués), 'kNN' Moyenne basée sur la distance de 

Mahalanobis), et 'Interval' (la méthode proposée d'intervalle de confiance), ont été étudiés. 

Les résultats sont montrés dans la Figure 6.5. Les résultats de cette étude ont démontré que 

la méthode d'intervalle de confiance proposée pour la sélection d'ensembles d'apprentissage 

semble supérieure aux méthodes «Récemment» et «kNN» pour la sélection d'ensembles 

d'apprentissage. KA-CMA-ES utilisant PS avec 'Interval' a un taux de réussite plus élevé et 

une meilleure performance de succès que celle utilisant 'Récemment' et 'kNN'. Ainsi, la 

méthode de l'intervalle de confiance est suggérée pour la sélection des ensembles 

d'entraînement dans la stratégie d'évolution assistée. 

 

Figure 6.5 Taux de réussite moyen et des performances d'accélération de KA-CMA-ES en utilisant la 

présélection sans contrôle de l'impact du modèle (PS). 

Dans l'étude de KA-CMA-ES en utilisant la présélection avec le modèle de contrôle 

d'impact (CPS), trois mesures de qualité de modèle wQ , selectionQ  et rank , sont utilisées et 

comparées. Les résultats (voir Figure 6.6) montrent que, si la performance du succès ou de 

la performance d'accélération est prise en considération, CPS- wQ  est préférable ; si un taux 
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de réussite plus élevé et la stabilité de l'algorithme sont attendus, rankCPS- est suggéré. De 

plus, les performances de KA-CMA-ES utilisant PS et CPS sont comparées. Il est évident 

que CPS surpasse PS pour la plupart des problèmes de test en fonction de la performance 

d'accélération. Ainsi, le contrôle d'impact de modèle est suggéré dans KA-CMA-ES en 

utilisant la présélection (voir Figure 6.7). 

 

Figure 6.6 Taux moyen de réussite et taux de présélection supérieur à celui du contrôle de l'impact du 

modèle à l'aide de différentes mesures de la qualité du modèle. 

 

 

Figure 6.7 Taux moyen de réussite et accélération de la présélection sans et avec le contrôle de l'impact 

du modèle. 

Pour les KA-CMA-ES utilisant un contrôle à base individuelle fixe (FIC), cinq 

paramètres (moyenne, écart-type, SLB, POI et IE) sont étudiés. Les résultats sont présentés 

à la Figure 6.8. Parmi les cinq métriques, ces métriques (SLB, POI et EI) qui équilibrent 
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l'exploitation du substitut et l'exploration de l'espace de recherche sont meilleures que les 

métriques qui ne concilient que l'exploitation ou l'exploration (moyenne et SD). On prend 

en considération SR et SP, FIC-EI présente des avantages par rapport aux autres paramètres. 

 

Figure 6.8 Taux moyen de réussite (SR) et performance d'accélération (SPU) de KA-CMA-ES en 

utilisant un contrôle individuel fixe avec différentes mesures. 

Dans notre contrôle individuel mixte (MIC), deux paramètres possibles, la moyenne et 

la SLB, sont examinés. Les résultats expérimentaux (voir Figure 6.9) ont prouvé que le MIC-

SLB a un taux de succès plus élevé que celui de MIC-Mean, en particulier sur des problèmes 

multimodaux. De plus, en général, MIC-SLB a une meilleure performance d'accélération 

moyenne que MIC-Mean. En tenant compte à la fois du taux de réussite et des performances 

d'accélération, on peut conclure que MIC-SLB surpasse MIC-Mean. À partir de la 

comparaison (voir Figure 6.10) de KA-CMA-ES en utilisant FIC et MIC, le FIC-EI a 

généralement le taux de réussite le plus élevé. D'autres algorithmes de contrôle individuels 

ont un taux de réussite moyen modéré supérieur à 85 %. Cependant, KA-CMA-ES utilisant 

la MIC surpasse de manière significative FIC en fonction de la performance d'accélération 

et de la réussite. En particulier, MIC-SLB a la moyenne la plus élevée SPU et le taux de 

réussite acceptable. Par conséquent, MIC-SLB est préférable parmi les algorithmes de KA-

CMA-ES en utilisant un contrôle individuel. 
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Figure 6.9 Taux moyen de réussite (SR) et performance d'accélération (SPU) de KA-CMA-ES en 

utilisant un contrôle mixte individuel (MIC). 

 

 

Figure 6.10 Moyenne SR et SPU de KA-CMA-ES en utilisant un contrôle individuel fixe et mixte (FIC 

et MIC). 

Nous avons modifié la procédure de classement approximatif et l'avons ensuite intégrée 

au CMA-ES, appelé KA-CMA-ES en utilisant la procédure de classement approximative 

(ARP). Outre la métrique Mean, EI métrique suggérée précédemment est utilisée dans KA-

CMA-ES à l'aide de l'ARP. Il a montré que (voir Figure 6.11) l’ARP-EI a une meilleure 

performance que l’ARP-Mean, selon le taux de réussite et le performance d'accélération. 
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Figure 6.11 Taux moyen de réussite et performance d'accélération de KA-CMA-ES en utilisant ARP. 

De plus, le KA-CMA-ES utilisant un contrôle basé sur la génération a été étudié, où 

l'on examine et compare le contrôle basé sur la génération fixe (FGC) et le contrôle de 

génération basé sur la génération adaptée (AGC) (voir Figure 6.12). Généralement, le KA-

CMA-ES utilisant AGC est plus performant que celui utilisant FGC. Le contrôle de 

génération adaptatif utilisant rank  ( rankAGC- ) comme qualité de modèle a le taux de 

réussite moyen le plus élevé sur tous les problèmes. Considérant les performances 

d'accélération, le contrôle de génération adaptatif en utilisant wQ  et selectionQ  ont de 

meilleures performances. Dans l'ensemble, rankAGC-  est préférable en fonction du taux de 

réussite et de la stabilité, et est préférable lorsque les performances d'accélération sont prises 

en considération. 

 

Figure 6.12 Taux moyen de réussite et accélération de KA-CMA-ES en utilisant FGC et AGC. 
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Enfin, tous les algorithmes étudiés de KA-CMA-ES sont analysés. Sur la base de la 

discussion précédente et les résultats, seuls les meilleurs algorithmes de chaque catégorie  

sont choisis comme les représentants et utilisés dans l'analyse et la comparaison ici. 

L'intervalle PS est pris comme représentant de la présélection sans contrôle de l'impact du 

modèle (PS). CPS- wQ  et rankCPS-  sont considérés comme des algorithmes typiques de 

présélection avec le contrôle d'impact modèle (CPS). Le FIC-EI est utilisé pour représenter 

le contrôle individuel fixe (FIC). L'ARP-EI désigne le KA-CMA-ES en utilisant la procédure 

de classement approximatif (ARP). Pour le contrôle basé sur la génération, AGC- wQ  et 

rankAGC-  sont considérés comme les représentants. A partir des résultats expérimentaux, 

il est évident que l'ARP-EI présente des performances d'accélération exceptionnelles parmi 

tous les algorithmes étudiés (voir Figure 6.14). Les valeurs SPU de PS-Intervalle, CPS- wQ , 

rankCPS- , FIC-EI et MIC-SLB sur tous les problèmes de test sont supérieures à un (voir 

Figure 6.13). Ceci montre une amélioration stable de la performance du succès de ces 

algorithmes. Les stabilités de AGC- wQ  et rankAGC-  sont inférieurs à d'autres. Il n'y a 

qu'un seul problème sur lequel l'ARP-EI se détériore plus que le CMA-ES. Par conséquent, 

on peut affirmer que l'ARP-EI est exceptionnelle parmi tous les algorithmes KA-CMA-ES 

étudiés, en fonction de la performance d'accélération ou de la performance de succès. 

Compte tenu à le taux de réussite et le performance de l'accélération, on peut conclure que 

l’ARP-EI est préférable parmi tous les algorithmes KA-CMA-ES étudiés dans cette thèse. 
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Figure 6.13 Comparaison du taux de réussite moyen (SR) des algorithmes KA-CMA-ES. 

 

Figure 6.14 Comparaison de la performance d'accélération moyenne (SPU) des algorithmes KA-CMA-

ES. 
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6.2.5 Cinquième Chapitre: Application dans l'Identification des 

Paramètres du Matériau 

Ce chapitre présente les applications de l'algorithme KA-CMA-ES proposé dans 

l'identification des paramètres matériels qui est un problème d'optimisation coûteux. Un 

modèle d'endommagement élastique-plastique, dans lequel le comportement de 

durcissement de la matière est décrit par la loi de Swift et le dommage ductile est modélisé 

par le modèle de Lemaitre, est présenté et implémenté dans la simulation numérique par le 

sous-programme VUMAT dans ABAQUS. Ensuite, le KA-CMA-ES utilisant la méthode de 

classement approximatif avec métrique EI (ARP-EI) est appliqué en méthode inverse 

d'identification de paramètre de matériau. 

6.2.5.1 Modèle d’Endommagement Elastique-Plastique  

En général, un modèle constitutif élastique-plastique normal contient les composants 

de base suivants : 

1) La loi élastique, qui donne la relation entre la contrainte et la contrainte élastique ; 

2) Le critère de rendement, qui définit la limite du comportement plastique ; 

3) La règle d'écoulement, qui décrit l'évolution de la déformation plastique ;  

4) La loi de durcissement, qui caractérise le développement du critère de rendement 

ultérieur. 

En conséquence, le modèle d’endommagement élastique-plastique contient une loi 

d'évolution des variables d’endommagement en plus des quatre composants ci-dessus. 

Dans ce travail, le critère de rendement de Von Mises couramment utilisé, la loi 

d'écrouissage de Swift et la loi d’endommagement ductile de Lemaitre sont inclus dans le 

modèle élastique-plastique avec endommagement. Les équations constitutives du modèle 

élastique-plastique acev endommagement sont présentées au Tableau 6.1. 
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Tableau 6.1 Equations constitutives du modèle d’endommagement élastique-plastique 

Décomposer de tenseur  e p     

Loi élastique avec endommagement  1 : eD  E  

La règle d'écoulement   1 yq D      

loi de durcissemen (loi de Swift)    0

n
p p

y A      

Evolution de la déformation plastique 
 

3

1 2

p

D







s

s
 

Évolution des endommagement s  ˆ
1

s

p p

D

Y
D H

D r


 

 
  

  
 

Conditions de chargement/déchargement 0, 0, 0       

6.2.5.2 Méthode Inverse d’Identification 

Le but de la procédure d'identification des paramètres est de réduire le plus possible la 

distance entre les réponses simulées et expérimentales. En d'autres termes, le processus 

d'identification des paramètres consiste à trouver un ensemble de paramètres qui fait la 

différence minimale entre la réponse de simulation et les données d'expérience. Ainsi, la 

méthode inverse est un outil utile pour déterminer les paramètres du matériau. La méthode 

inverse d'identification du paramètre considère l'identification des paramètres comme un 

problème d'optimisation, qui consiste à trouver un ensemble de paramètres qui minimisent 

la différence entre les données expérimentales et les simulations numériques en norme. Le 

cadre de la méthode inverse d'identification du paramètre est illustré par la Figure 6.15. 

6.2.5.3 Identification des Paramètres 

Identification des Paramètres de Durcissement 

L'identification inverse des paramètres de durcissement est effectuée indépendamment 

avec le CMA-ES standard et le KA-CMA-ES en utilisant l'ARP-EI. Dans le processus 

d'identification, des simulations FEM du test de traction sont effectuées à plusieurs reprises 

pour évaluer la fonction objectif. Les limites inférieure et supérieure des paramètres dans le 

processus d'identification et les paramètres de durcissement de contrainte identifiés sont 

données dans le Tableau 6.2. Les graphiques de convergence et l'historique itératif des 

paramètres sont illustrés à la Figure 6.16. Les courbes force-déplacement correspondant aux 
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paramètres de durcissement de contrainte identifiés et à la courbe expérimentale sont 

présentées à la Figure 6.17. 

 

Figure 6.15 La procédure d'identification des paramètres 

 

Tableau 6.2 Résultats et coûts de calcul de l'identification des paramètres de durcissement  

Paramètre A  0  n  
Nombre d'évaluations de  

la fonction objective 

Limites inférieures 600 0 0.1 – 

Limites supérieures 900 0.03 0.4 – 

La CMA-ES 754.1402 0.0087 0.2264 533 

KA-CMA-ES 

utilisant ARP-EI 
754.2124 0.0087 0.2264 211 

 



6.2 Organisation de la Thèse 

196 

 

Figure 6.16 Graphes de convergence et d'itération de l'identification des paramètres de durcissement 

 

Figure 6.17 Courbes de déplacement de force (avant étranglement) correspondant à des paramètres de 

durcissement de contrainte identifiés et données expérimentales 

Identification des Paramètres d’Endommagement 
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Après que les paramètres de durcissement de contrainte sont identifiés dans la sous - 

section précédente, nous nous intéressons à l'identification des paramètres d' 

endommagement ductiles
p

D , r  et CD . Dans le modèle d’endommagement ductile, on 

utilise le critère de rendement de Von Mises et la loi de durcissement de Swift. Les 

paramètres identifiés dans la paragraphe précédente sont utilisés ici. Les limites inférieure et 

supérieure pour les paramètres dans le processus d'identification et les paramètres 

d’endommagement de contrainte identifiés sont données dans le Tableau 6.3.  

Tableau 6.3 Résultats et coûts de calcul de l'identification des paramètres d’endommagement 

Paramètre 
p

D  r  CD  
Nombre d'évaluations de  

la fonction objective 

Limites inférieures 0.1 2 0 – 

Limites supérieures 0.18 10 0.8 – 

La CMA-ES 0.1306 6.1575 0.0874 295 

KA-CMA-ES 

utilisant ARP-EI 
0.1303 6.1583 0.0898 167 

 

 

Figure 6.18 Graphes de convergence et d'itération de l'identification des paramètres d'endommagement 
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Figure 6.19 Courbes de force-déplacement correspondant aux paramètres d'endommagement identifiés 

et données expérimentales 

 

Figure 6.20 Comparaison des courbes force-déplacement des modèles élastique-plastique et élastique-

plastique avec les paramètres identifiés 

Les graphiques de convergence et l'historique itératif des paramètres 

d’endommagement sont illustrés à la Figure 6.18. Les courbes force-déplacement 
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correspondant aux paramètres d'endommagement élastique-plastique identifiés et à la courbe 

expérimentale sont présentées par la Figure 6.19. De plus, les résultats de la simulation du 

modèle élastique-plastique et du modèle élastique-dégradation plastique ainsi que les 

données expérimentales sont également représentées dans la Figure 6.20.  

En conclusion, le modèle d'endommagement élastique-plastique présenté est approprié 

pour la modélisation du comportement du matériau en tenant compte du durcissement et des 

effets de détérioration, et le KA-CMA-ES proposé à l'aide d'ARP-EI est fiable et efficace en 

méthode inverse d’identification des paramètres. 

6.3 Conclusions et perspectives 

Nous avons développé de nouveaux algorithmes qui combinent la stratégie d'évolution 

d'adaptation de matrice de covariance (CMA-ES) et le modèle de substitution de krigeage 

afin de réduire le nombre d'évaluations de la fonction de condition physique (fonction 

objectif) et ainsi d'améliorer l'efficacité de résoudre des problèmes coûteux. 

Conclusions 

Les résultats de cette étude ont démontré que la méthode de l'intervalle de confiance 

proposée pour la sélection des ensembles d'apprentissage semble supérieure aux méthodes 

couramment utilisées «Récemment» et «kNN» pour la sélection d'ensembles d'apprentissage. 

Ainsi, la méthode de l'intervalle de confiance est suggérée pour la sélection de l'ensemble 

d'apprentissage dans le calcul évolutif assisté par substitution. A partir des résultats 

expérimentaux, on peut affirmer que l'ARP-EI est remarquable parmi tous les algorithmes 

KA-CMA-ES étudiés, en fonction de la performance d'accélération ou de réussite. 

L'application de KA-CMA-ES en utilisant l'ARP-EI en méthode inverse d'identification 

des paramètres pour le modèle d’endommagement élastique-plastique montre également que 

le KA-CMA-ES améliore significativement l'efficacité de CMA-ES et réduit ainsi 

considérablement le coût de calcul lors de l’identification des paramètres matériels. 

Perspectives 
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Les algorithmes KA-CMA-ES développés ont permis d'améliorer l'efficacité de la 

norme CMA-ES. Cependant, il y a encore des questions ouvertes. Ici, nous aimerions 

mentionner les problèmes de recherche future, à partir de notre point de vue. 

Tout d'abord, il n'existe aucune conclusion claire quant à savoir quel modèle de 

substitution est meilleur dans l'optimisation évolutionnaire assistée par modèles substitut. 

Par conséquent, d'autres modèles substituts doivent être étudiés dans l'optimisation 

évolutionnaire assistée par un substitut. 

En ce qui concerne le KA-CMA-ES dédoublé dans ce travail, l'étude expérimentale et 

l'application sur des problèmes dimensionnels élevés (plus de 20 dimensions) pourraient être 

réalisées dans les travaux futurs. 

Pour les problèmes de dimension élevée, le coût de calcul de la formation du modèle 

de substitution augmenterait apparemment. Cela peut devenir un inconvénient des 

algorithmes d'évolution assistée par substitution. Par conséquent, l'optimisation d’évolution 

assistée par substitution pour le problème dimensionnel élevé est un sujet digne d'étude. 
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Conclusions and Perspectives 

In this thesis, we have comprehensively explored the Kriging-Assisted Covariance 

Matrix Adaptation Evolution Strategy (KA-CMA-ES) for expensive optimization problems. 

Furthermore, engineering application of the developed new algorithm is performed in 

material parameter identification. This final chapter gives a summary of what we have 

learned from our works and points out the most promising direction for future research.  

Conclusions 

We have developed new algorithms, which combine Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) and Kriging surrogate model, to reduce the number of fitness 

function (objective function) evaluations and thus to improve the efficiency of solving 

expensive problems. In Kriging-Assisted CMA-ES (KA-CMA-ES), Kriging models are 

repeatedly learned based on previously evaluated data points and then used to predict the 

fitness of new individuals instead of original fitness function evaluations. In this way, the 

number of expensive fitness function evaluations is significantly decreased and thus the 

computational cost is cut down. Different methods of model exploitation (the different ways 

of incorporating Kriging model into the standard CMA-ES), which brings about different 

KA-CMA-ES algorithms, have been investigated in our work. The KA-CMA-ES algorithms 

investigated in this thesis can be divided into four groups: KA-CMA-ES using pre-selection, 

KA-CMA-ES using individual-based control, KA-CMA-ES using approximate ranking 

procedure, and KA-CMA-Es using generation-based control. In the experimental studies of 

KA-CMA-ES, different aspects of KA-CMA-ES algorithms have been examined by running 

the experiments on 40 benchmarking problems (including 12 test function with different 

dimensions). 

In the study of KA-CMA-ES using pre-selection without model impact control (PS), 

different training set selection methods, including ‘Recently’ (the Recently Evaluated 
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Points), ‘kNN’ (the k-Nearest Neighbor Points to distribution mean based on Mahalanobis 

distance), and ‘Interval’ (the proposed Confidence Interval method), have been investigated. 

The results of this investigation demonstrated that the proposed confidence interval method 

for training set selection apparently superior to the commonly used ‘Recently’ and ‘kNN’ 

methods for training set selection. KA-CMA-ES using PS with ‘Interval’ has higher success 

rate and better success performance than that using ‘Recently’ and ‘kNN’. Thus, the 

confidence interval method is suggested for training set selection in surrogate-assisted 

evolutionary computation. 

In the study of KA-CMA-ES using pre-selection with model impact control (CPS), 

three model quality measures, wQ , selectionQ and rank , are used and compared. The results show 

that, if the success performance or speedup performance is considered, CPS- wQ is preferable;  

if higher success rate and the stability of algorithm are expected, rankCPS- is suggested. 

Additionally, the performance of KA-CMA-ES using PS and CPS are compared. It is 

apparent that pre-selection with model impact control outperforms pre-seleciton without 

model impact control for most of the test problems according to the speedup performance. 

Thus, model impact control is suggested in KA-CMA-ES using pre-selection. 

For KA-CMA-ES using fixed individual-based control (FIC), five metrics (Mean, SD, 

SLB, POI, and EI) are studied. Among the five metric, these metric (SLB, POI and EI) which 

balances the exploitation of the surrogate and exploration of search space performs better 

than metrics that only consider exploitation or exploration (Mean, and SD). Take both SR 

and SP into consideration, FIC-EI has advantages over other metrics.  

In our proposed mixed individual-based control (MIC), two possible metrics, Mean and 

SLB, are examined. The experimental results proved that MIC-SLB has higher success rate 

than that of MIC-Mean, especially on multimodal problems. Furthermore, generally, MIC-

SLB has better average speedup performance than MIC-Mean. Taking both the success rate 

and speedup performance into consideration, it can be concluded that MIC-SLB outperforms 

MIC-Mean. From the comparison of KA-CMA-ES using FIC and MIC, the FIC-EI generally 

has the highest success rate. Other individual-based control algorithms have moderate 
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average success rate larger than 0.85. However, KA-CMA-ES using MIC significantly 

outperform FIC according to the speedup performance and success performance. Particularly, 

MIC-SLB has the highest average SPU and acceptable success rate. Therefore, MIC-SLB is 

preferable among algorithms of KA-CMA-ES using individual-based control. 

We have modified the approximate ranking procedure and then embedded it into the 

CMA-ES, which is referred to as KA-CMA-ES using approximate ranking procedure (ARP). 

Besides the Mean metric, the previously suggested metric EI is used in KA-CMA-ES using 

ARP. It has been concluded that ARP-EI outperforms ARP-Mean, considering both the 

success rate and success performance. 

Moreover, the KA-CMA-ES using generation-based control has been investigated, 

where the fixed generation-based control (FGC) and the proposed adaptive generation-based 

control (AGC) are examined and compared. Generally, the KA-CMA-ES using AGC 

performs better than that using FGC. The adaptive generation control using rank ( rankAGC- ) 

as model quality has the highest average success rate on all the problems. Considering the 

speedup performance, adaptive generation control using wQ and selectionQ have better 

performance. Overall, rankAGC- is preferable according to success rate and stability, and

AGC- wQ is preferable when speedup performance is considered.  

Finally, all the investigated algorithms of KA-CMA-ES are analyzed. Based on 

previously discussion and results, only the best algorithms of each category of algorithms 

are chosen as the representatives and used in analysis and comparison here. The PS-Interval 

is taken as the representative of pre-selection without model impact control (PS). The

CPS- wQ and rankCPS- are considered as typical algorithms of pre-selection with model 

impact control (CPS). The FIC-EI is used to represent the fixed individual-based control 

(FIC). The ARP-EI stands for the KA-CMA-ES using approximate ranking procedure (ARP). 

For generation-based control, AGC- wQ and rankAGC- are regarded as the representatives. 

From the experimental results, it is apparent that ARP-EI has outstanding speedup 

performance among all the investigated algorithms. The SPU values of PS-Interval, CPS- wQ ,

rankCPS- , FIC-EI and MIC-SLB on all the test problems are larger than one. This shows a 
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stable improvement in success performance of these algorithms. The stabilities of AGC- wQ

and rankAGC- are lower than others. There is only one problem on which ARP-EI performs 

worsen than CMA-ES. Therefore, it can be stated that the ARP-EI is outstanding among all 

the investigated KA-CMA-ES algorithms, according to the speedup performance or success 

performance. Considering both the average SR and SPU, it can be concluded that ARP-EI 

is preferable among all the investigate KA-CMA-ES algorithms in this work. 

The application of KA-CMA-ES using ARP-EI in inverse method of parameter 

identification for the elastic-plastic damage model also shows that the KA-CMA-ES improve 

the efficiency of CMA-ES significantly and thus greatly reduce the computational cost of 

material parameter identification.  

Perspectives 

The developed KA-CMA-ES algorithms have apparently improve the efficiency of the 

standard CMA-ES. However, there are still some open questions. Here we would like to 

mention several issues of future research, from our view of points.  

Firstly, with respect to the surrogate models used in surrogate-assisted evolutionary 

computation, there is still no clear conclusion on which model is better than others. Thus, 

more surrogate models need to be investigated. 

Regards to the KA-CMA-ES developed in this work, the experimental study and 

application on high dimensional problems (larger than 20 dimension) could be carried out in 

future works. 

For high dimensional problems, the computational cost of surrogate model training 

would increase apparently. This may become a disadvantage of surrogate-assisted evolution 

algorithms. Therefore, surrogate-assisted evolutionary optimization for high dimensional 

problem is a topic worthy of studying.  
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