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Preamble

1.1 Context

owadays, with the development of electronic instrumentation, computing and communications
N systems, world’s technological capacity to store information has considerably increased, resulting
in the accumulation of a huge amount of heterogeneous and structured data, often issued from sensor
networks or natural phenomena showing up under irregular and complex forms. As long as sensors are
installed everywhere, in urban centers to monitor pollution, noise, traffic, weather parameters, as well
as in industrial, nuclear and high risk areas to track toxicity and radioactivity levels. Such data is par-
ticularly complex and irregular, depending both on the way sensors are deployed and on the adopted
acquisition architecture of the system. Therefore, their analysis and processing require adapted and per-
tinent mathematical tools, such as graphs, which are a generic algebraic structures, useful for describing
complex geometric structures and connections inhered in data. Formally, graphs are composed of nodes
representing entities of interest, connected between them by a set of weighted edges. While connectivities
are either dictated by the physics of the underlying problem or inferred from the data. If the edges have
a physical meaning as in transport networks (roads, rails), communication and energy networks or in
neural networks (i.e. Figure 0.2(b)), graphs are said to be natural. Unlike sensors, for social networks
where edges refer to a virtual and logical relation, graphs are said to be conceptual. For instance, social
networks (i.e. Figure 0.1(a)) are modeled by graphs in which edges represent a sort of social interaction
between users. Whereas, in infrastructure networks (i.e. Figures 0.1(b), 0.2(a)), nodes represent impor-
tant entities like metro stations, electric production plants, electric subways or logistic supply and storage

spots.

The majority of real world graphs are labeled, that is numbers or symbols are associated to their
nodes. Therefore, the emerging field of graph signal processing, D.I. Shuman et al., 2013, aims to develop
suitable tools to explore and analyze such graphs in which nodes are indexed by real/complex numbers.
These tools include Fourier transform A. Sandryhaila and J.M.F. Moura, 2014, filters S. Segarra et al.,

2015, N. Tremblay and P. Borgnat, 2016, adaptive filters S. Chen et al., 2013, sampling algorithms S.
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Figure 0.1: (a) Software developers communities in Neo4j and GitHub platforms [https://neo4j.com/blog/meta-
exploring-neodj-graph-database/|. (b) The French electricity transmission network (high and very high volt-
age lines), as well as the planned structures like the lines, substations and power plants [https://www.rte-

france.com/fr/la-carte-du-reseaul].
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Figure 0.2: (a) A part of the London’s "walk the Tube" map, which reveals the real distance between sta-
tions [https://www.theverge.com/2015/11/11/9712376 /london-walk-tube-underground-map]. (b) Brain’s neural

network [http://www.pollen-multimedia.com/intelligence-artificielle].

Chen et al., 2015a, empirical modal decomposition transform N. Tremblay et al., 2014 and classifiers
A. Sandryhaila and J.M.F. Moura, 2013. Even Time-Frequency analysis techniques are not excluded
from this generalization effort, a spectrogram and a wavelets transform are indeed proposed for graphs
D.I. Shuman et al., 2016, D.K. Hammond et al., 2011. These techniques share the ultimate objective of

processing the structured data taking into consideration the underlying connectivity information between
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their constituent entities. Regardless than the spectral analysis of graphs in the Fourier sense, algebraic
spectral theory has also been widely developed for graphs analysis. Spectral graph theory is concerned
with study, understanding and exploration of the graph’s properties, such as connectivity, complexity and
regularity, and quantifies its information content through the eigenvalues and eigenvectors of matrices
naturally associated with this graph. The set of eigenvalues of the representation matrix of the graph
is called the spectrum of the graph. The basic principle dominating spectral graph analysis is to relate
important invariants of graph to its spectrum. Historically, the first relation between the spectrum and the
structure of a graph was discovered in 1876 by Kirchhoff when he proved his famous matrix-tree theorem
Kirchhoff, 1876. Given a graph, one may associate a variety of matrices with the graph. If we have a
matrix that is naturally associated with a graph, the properties of this matrix, and therefore of the graph
will be revealed, through an eigen-decomposition analysis, by its eigenvalues and eigenvectors Spielman,
2011. Depending on the used matrix, different informations such as the complexity or connectivity
of the graph can be retrieved. Various parameters or measures such as graph energy, entropy and
spectral moments of graph can be extracted or captured from eigenvalues of its representation matrix.
A remarkable application of eigenvalues is in chemistry domain, where there is a close correspondence
between the graph eigenvalues and the molecular orbital levels of m-electrons in conjugated hydrocarbons

B. Zhou et al., 2007.

The effervescence that graph theory is experiencing does not spare the field of machine learning,
which has undergone a real revolution recently, gaining a significant momentum in both academia and
industry. In particular, statistical learning techniques have an enormous impact on several computer
science and engineering fields, including objects recognition, speech recognition, natural language pro-
cessing, robotics, autonomous cars and even drug design in bioinformatics. The real development of
statistical learning came after 1986, when D.E. Rumelhart et al., 1986 proposed the nonlinear backprop-
agation algorithm which allowed the adaptation of all weights in a neural network for minimizing locally
the error in a set of vectors belonging to a given pattern recognition problem. Since that, a variety of
algorithms based on neural neutworks was proposed, like the Convolutional Neural Networks (CNNs)
A. Dosovitskiy et al., 2014, Recurrent Neural Networks (RNNs) I. Sutskever et al., 2011, Deep Boltz-
mann Machines M.A. Coté and H. Larochelle, 2016 and Deep Reinforcement Learning H. Van Hasselt
et al., 2016. Prior to 2006, searching the parameters space of the deep architecture was challenging and
computationally costly. Meanwhile, other learning algorithms were gaining in popularity such as the
Support Vector Machines (SVMs) Vapnik, 1998 and Conditional Random Field (CRF) J. Lafferty et al.,
2001, because of their computational cost compared to neural networks and their success in many real
world problems, like the handwritten pattern recognition problem and others. SVM technique is one of

the most powerful learning techniques, based on the idea of mapping data points to a high dimensional
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feature space where a separating hyperplane can be found by maximizing the distance (margin) between
opposite classes. This mapping can be carried on by applying the so called kernel trick J. Shawe-Taylor
and N. Cristianini, 2004, Vapnik, 2013, which implicitly transforms the input space into another high

dimensional feature space.

Kernel trick permits the adaptation of the SVM algorithm into the structured data, until then
applicable only on vectorial data. It replaces dot products present in the optimization problem by valid
kernel functions, this principle is rather well known for potential function classifiers M.A. Aizerman et al.,
1964, and it was revisited to construct SVMs as a generalization of large margin classifiers, B.E. Boser
et al., 1992. So far, many kernel machines have been built to classify graph data, among them we evoke
S.V.N. Vishwanathan et al., 2010, L. Bai et al., 2015a, N. M. Kriege et al., 2016. The bottleneck in
the design of graph kernels is to determine a way to measure the similarity between graphs. Some of
earliest work in the subject were undertaken by L. G. Shapiro and R. M. Haralick, 1985, who showed
how string edit distance could be extended to graph structures. The idea is to measure the similarity
of graphs by counting the number of graph edit operations required to transform a graph into another.
However, the computational cost of such approach grows fast for larger graphs. More general approaches
using concepts from information and probability theory were indeed proposed, such the work of W. J.
Christmas et al., 1995, that shows how a relaxation labeling technique can be employed to match graphs
by using pairwise attributes modeled by a Gaussian distribution. We should also mention the work of
R. Myers et al., 2000, which uses maximum a posteriori estimation to perform purely structural graph
comparison, but it needs some adequate probabilistic setup to optimize performance. In many cases,
graphs could be labeled by a sort of strings. For instance B. Cao et al., 2013 use the depth-first search
(DFS) algorithm as a graph labeling approach, and measure the similarity by the distance between the
two DFS sequences, hence, by this way, the graph matching problem is turned to a string matching
problem. More other structural comparison approaches were proposed, such as the aligned subtree kernel
L. Bai et al., 2015b which incorporates explicit subtree correspondences between the compared graphs,
assignment kernels N. M. Kriege et al., 2016, which decompose the graphs into smaller sub-graphs and
try to find the optimal bijection between them, or even those based on random walks F. Fouss et al.,

2007 and quantum walks L. Bai et al., 2015a.

In this context section, we have highlighted the scientific framework covered by our research work in
this thesis. Our findings make the junction between the graph spectral theory and kernel based learning

techniques for graph. In the following section, motivations and issues of our research work are presented.
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1.2 Motivation and Issues

So far, in graph signal processing theory, signal values are considered to be the labels associated to
nodes, while the connections and the structure of the graph are encoded in one of representation matrices
(adjacency A, laplacian L or others). Therefore, the graph signal is often handled in two distinct parts,
the vector containing the labels of nodes and the representation matrix associated to its supporting
structure. For instance, D.I. Shuman et al., 2013 define the graph Fourier basis as the eigenvectors of
L matrix and the Fourier transform as the the projection of the vector containing the signal’s values on
that basis. The relationship between the signal and its supporting structure is not clear at least in this
Fourier analysis framework. This prompts us to ask about the way in which the signal interacts
with the graph structure? and is the way how the signal oscillates between nodes through
the structure could be a criteria for graph discrimination? Moreover, A. Sandryhaila and J.M.F.
Moura, 2014 consider the eigenvalues of the adjacency matrix as the graph frequencies, ordered via the
total variation of their corresponding eigenvectors. Given that some graphs are not determined by their
spectrum C.D. Godsil and B.D. McKay, 1982, and could share the same eigenvalues with other graphs,
how can we compare such graphs via their spectra? and is there any way to use both the

eigenspectrum and the signal properties for their comparison?

Recent works of the literature have emphasized the importance of matrix representations for graph
characterization, pointing out the advantages and the drawbacks of some spectra associated to graphs
E.R. Van Dam and W.H Haemers, 2003, I. Jovanovi¢ and Z. Stanié, 2014, including, those of adjacency
(A), Laplacian (L), signless Laplacian | L | and distance (D®) matrices. The spectrum of L matrix
is indeed widely studied in spectral graph theory R.K. Fan Chung, 19964, in reason of the symmetry
and positive semi-definiteness of this matrix, which is useful for determining cuts and inherent graph
components. Otherwise, the spectrum of A matrix is mainly used for the study of regularity J.H. Koolen
and H. Yu, 2011, isomorphisms D. Conte et al., 2004 and bipartition Kunegis, 2015 of graphs. In spite of
the simple linear relationship between them (L = D — A) where D is the degrees matrix, these matrices
seem to reveal informations about the graph in different ways, where it appears that some details are
detected only by one of them, as in the case of cospectral graphs. The question of choosing either A
or L matrix for graph representation is still a subject of debate. Spielman, 2004 argues that, even the
adjacency matrix is the most natural matrix to associate with a graph, it is least useful. Eigenvalues
and eigenvectors are most meaningful when used to understand a natural operator or a natural quadratic
form, the adjacency matrix provides neither. The same observation was made by Lau, 2015 which points
out that it is not clear that the eigenvalues of A should cary any information about the graph properties.
For instance, in graph signal processing theory, D.I. Shuman et al., 2013 define the graph Fourier basis

as the eigenbasis of L matrix, while A. Sandryhaila and J.M.F. Moura, 2014 prefer the eigenbasis of
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A obtained via a Jordan decomposition. This difference can be justified in part by the nature itself of
the decomposition basis, and also by the fact that not all graphs are determined by their spectra and
there is a family of graphs that shares the same spectrum in respect to some matrix representation,
commonly called cospectral graphs C.D. Godsil and B.D. McKay, 1982. Therefore, we wonder about
the best matrix to choose for graphs representation? A or L matrices ? and could we exploit
them jointly for graphs discrimination? which one of them is more suitable for graphs

classification 7

Data are often structured and thus we need to take into account the structure behind the data
A. Ortega et al., 2018. To understand a graph signal the structure of the associated graph must be
considered. The signal is as interesting as the graph or the network itself. We quote as examples brain
connectivity and the fMRI (functional Magnetic Resonance Imaging) signals or Gene regulatory and
gene expression levels. Thus, this places strong emphasis on interaction between data (signal) and graph
structure. This poses the challenging problem of the development of algorithms that fruitfully leverage
from the interaction signal/structure. This raises the question, how to extract valuable information
from the data using innovative approaches that handle the structure of graph via, such as,
the energy of the graph, the connectivity or the complexity of the graph? A graph is an abstract
construct which can model relationships or connections (edges) between entities such as sensors (nodes).
For providing richer information we take advantage of physics of the graph or the network using their
quantum state representation, where quantum information is the physical information that is held in the
state of the quantum system. For example, tools from statistical mechanics can be used to characterize the
degree distribution for different types of complex networks. Also, statistical mechanics and information
theory have been used to understand more deeply variations in network structure J. Wang et al., 2017a.
One of the successes has been to use quantum spin statistics to describe the geometries for complex
networks. A pertinent attribute is the network entropy used to characterize the salient feature of the
network systems Jianjia Wang et al., 2017. For example the Von Neumann entropy has been used as an
effective characterization of network structure, starting from a quantum analogy in which the Laplacian
matrix on graphs plays the role of density matrix. A relevant question is how to exploit the Von
Neumann entropy of graph to quantify its complexity? A key challenge in this regard, is
how to combine tools from spectral graph theory and from quantum mechanics for deeper

understanding and analysis complex networks.

Nowadays the issue of vulnerability and protection of critical infrastructure is attracting a great
deal of attention of scientific community. In general, a critical infrastructure system is represented as a
graph in which nodes represent the main components of the network (power plants,...) and edges are

the physical connections among them (electrical lines,...) P.C. Crucitti et al., 2005. The topology of the
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network or the graph determines an influence structure among the nodes or the agents S. Segarra and
A. Ribeiro, 2016. Following the graph-based approach, different strategies have been proposed with the
purpose to measure the vulnerability of the graph or to find the best nodes to immunize (or equivalently,
remove) to make the remaining nodes to be most robust to virus attack C. Chen et al., 2016. Failure and
attacks can be simulated as the removal of a certain percentage either of nodes of the network. Nodes or
edges immunization is essential to safeguard network systems against, for example, virus attacks and its
propagation. This requires the quantification of importance of individual node (edge) or group of nodes
(edges) in terms of their contribution towards vulnerability. A simple metric to judge the overall graph
vulnerability is the one based on the largest eigenvalue A\ of adjacency matrix of the graph K. Kanwar
et al., 2017. The larger A is, the more vulnerable the whole graph is. However, this global metric or score
cannot be used for identifying or localizing a vulnerable edge or a group of edges that are vulnerable
of the graph. The challenge behind this problem is how to measure the vulnerability of
each edge and to provide a vulnerability map of the graph, that helps to find the effective

immunization strategy to be applied.

1.3 Thesis outline

The outline of this thesis is as follows:

In the Chapter 1, we recall some basic notions about graphs and their spectral analysis. We present
the most well-known representation matrices, as well as notions related to the structure of graphs, such
as regularity, connectivity and bipartition. In addition of some notions related to the eigenspectrum of
the adjacency and laplacian matrices, such as the Fiedler’s value, the largest eigenvalue, the energy, the
Kirchoff index. We included also a reminder about low-rank matrix approximation, and some primary

results about its use in finding a backbone of the structure, which we called thereafter dominant graph.

In Chapter 2, we briefly discuss the problem of machine learning from data and especially super-
vised statistical learning. We detail the idea behind support vector machines and their mathematical
modeling. Then, we show how this algorithm could work nonlinearly and how it could be adapted to
structural data using kernel trick. We explain how to build valid kernel functions and how to combine
them in the support vector machine. In the last sections, we present some important kernels proposed

for graphs and suitable for structured data classification.

In Chapter 3, we discuss the problem of graph similarity. We try to answer the question about

the way in which the signal interacts with the structure and we wonder to know if the manner how
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the signal oscillates between nodes through the structure could discriminate graphs. For this purpose,
we use the total variation of the graph signal as an indicator about oscillatory behaviour and as an
attribute for graphs comparison. We have also been interested in the energies of graphs and how they
can characterize them spectrally, we discuss their properties and their origin. Then we use the energy
based on laplacian matrix to measure the similarity of the graphs and classify them. In addition, we
proposed a joint similarity measure which combines the total variation and the laplacian graph energy
informations in a single measure. The goal is to exploit both the signal information and the structure of

the graph in the discrimination process.

In Chapter 4, we discuss the problem of graph similarity, but from a purely spectral perspective.
We begin by treating the question of graphs representation via the adjacency (A) and laplacian (L)
matrices. We exploit the framework of matrix perturbation theory and the Von Neumann entropy of
quantum systems to reveal the role of each matrix when the edge weights of the graph are perturbed.
Then we propose a similarity measure which combines the spectra of both matrices for comparing graphs
permetting the evaluation of the ability of each matrix to discriminate graphs in a learning process. We
clarify also how the new measure handles the cospectrality problem. In the last sections we present the

classification results on some bioinformatics and time series data.

In Chapter 5, we treat the problem of vulnerability in networks, which is an important problem
in strategic infrastructure networks, since they need to be resilient to failures and damages caused by
eventual malicious attacks. We use the changes in the Von Neumann’s entropy as an indicator about
the sensitivity of a given edge in the graph to perturbations. Then we use it to associate to each edge a

weight indicating its fragility and its importance in the structure viewed from an entropic perspective.

We conclude this dissertation with a general discussion about the outcomes of our work and the promising

perspectives to investigate further in futur researchs.

1.4 Contributions

The main contributions of this thesis are summarized as follows:

= We propose the following new graph similarity measures:

e TVG: is a measure based on total variation (TV) of the graph signal. It quantifies the oscillatory

behaviour of the graph signal and its interaction with the supporting structure. We show that
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it is an interesting informative and simple descriptor for graph signals comparison.

e GE: is a measure based on the laplacian graph energy which is calculated via the laplacian
eigenspectrum of the graph. It is a pertinent information that characterizes well the graph,
and measures the complexity degree of its structure, taking into account both connections

distribution of the network and its density.

e JET: is a joint convex combination between the TVG and GE measures to take advantage from
both. It allows to take into consideration the signal’s properties and the complexity information

about the supporting structure.

e JSS: is our second joint graphs similarity measure, which exploits both spectral informations
from adjacency A and laplacian L matrices. The A matrix characterizes the topological graph
complexity in terms of connections between nodes and underscores the local cohesiveness of
nodes, while L matrix is well suited for recovering some information about clusters and commu-
nities in the graph, thus, capture its inherent structure. The JSS incorporates both advantages

those of A and L.

= We integrate our similarity measures (TVG, GE, JET and JSS) in an exponential kernel, which we
use in the SVM learning algorithm to classify graphs issued from bioinformatics and time series.
Compared to the state-of-art methods, our measures are of low complexity and fast to run. We show
that with simple pertinent global descriptors, we could do better than other complex methods. Via
the (JET and JSS) measures we show that linear combination of multiple measures increases often

the graphs discrimination power and enhances classification performance.

= The JSS measure allow us to confirm our intuition that A and L matrices contribute unequally in
graph characterization task, and to emphasize the fact that they represent differently the structural
information about the underlying graph. In spite of the simple linear relationship between them

(L =D — A), these two matrices give rise to different inferences drawn from the graph.

= We highlight the overlapping and the unequal contributions of (A) and (L) for graph representation,
by comparing them in terms of the so called Von Neumann entropy, connectivity and complexity
measures. The graph is viewed as a quantum system and thus, the calculated Von Neumann entropy

of its perturbed density matrix emphasizes the overlapping in terms of information quantity.

= We illustrate by classification findings on real and conceptual graphs the effectiveness of the JSS
measure in terms of classification accuracies, and by which we highlight the varying information
overlapping rates of A and L via a weighting parameter «, and we point out their different ways in

recovering structural information of the graph.
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= We show that the JET and JSS measures handle the graph cospectrality issue, and they allow

the distinction between graphs that share the same eigenvalues spectrum corresponding to A or L

matrices.

We show that converting time series to graphs using VG algorithm (L. Lacasa et al., 2008) could
enhance the classification accuracy of these series, and permits the application of graph kernels in

the learning process.

We use the Von Neumann entropy to show that the edges of a given graph do not react to pertur-
bations in the same way, and that their sensitivity to noise is not the same. We use the entropy
distortion to score the vulnerability of each edge, and to formalize a graph weighting algorithm
which we called VPV —weighting. For instance, our approach is useful for networks diagnostics and

to study their resilience to malicious attacks and damages due to failures.

We use the Low-Rank matrix approximation to define the salient structure of the graph, which we

refer to as Dominant Graph Component (DGA).



CHAPTER
Reminder about Spectral

Graph Analysis

N this chapter, basics and principal tools of spectral graph analysis R.K. Fan Chung, 1996b related
I to problems tackled in this thesis are presented. Notions of graph theory, some basic definitions
are given and sometimes illustrated with short examples. We recall the theorem of real symmetric
matrices and the properties of the associated eigenvectors and eigenvalues. The most natural matrices
of graphs representation namely the adjacency, the Laplacian and the normalized Laplacian matrices
are presented and their relationships detailed. Proprieties of the eigen-spectrum of these matrices are
analyzed. The spectral moments of the graphs are presented and particularly the concept energy of graph.
The Rayleigh quotient is presented followed by the Courant-Fischer theorem which is a powerful tool for
characterization of eigenvalues of matrices is detailed. Fiedler’s theory of spectral graph partitioning is
recalled and emphasis is placed on the Fiedler value and the Fielder vector with an illustration on graph
clustering. The low rank approximation of matrices is presented. Using this compact represenation,
a Reynolds like-decomposition of graphs is introduced. Furthremore, based on this approximation two
nearest adjacency matrix retrieving strategies are proposed. First strategy is based on the minimization of
the Frobenius norm and the second one is based on the maximization of the Kirchhoff index. This last is
illustrated on communities graph detection. Also, using the low rank approximation a new graph analysis
approach, called Dominant eigenGraph Analysis (DGA), that consists in reaveling the more prominent
substruture of the graph or salient eingengraph is as well proposed. The proposed tools are illustrated
on simulated graphs, and overall, the obtained preliminary results show their interest for graph analysis

purposes.
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1.1 Basic notions

A graph is an abstract construct which can model relationships (edges) between entities (vertices). In this
thesis, the graphs under consideration are simple graphs, namely, finite graphs without loops or parallel

edges.

Definitions 1

Formally, a weighted graph or network is denoted by the triplet G = (V, £, W) with a finite set of
nodes or vertices V = {v1,vs,...,v,} where n =| V' | and a set of edges defined as pairs (v;,v;) noted
E={eij} ={(vi,v5) | i, =1,2,...n;1 # j} CV x V with m =| £ |, where | . | denotes the cardinality
of a set. An edge e;; connects vertices v; and v; if they are adjacent or neighbors. The in-neighbors of
is noted by N (i) = {j € V : (i,) € £}. Matrix of weights W is constructed using the mapping, £ — R,
from the set of edges to scalar w;;, that represents the level of relationship (or strength of relationship)
from ¢ to j. This suppose that there is a weight function, w, mapping every edge to a real number. In
many applications, the weight w;; associated to edge e;; is usually, a non-negative integer. An illustration
of weighted graph is given in figure 1.1. A weighted graph is therefore a special type of labeled graph
in which the labels are numbers. Prototypical examples of weighted graphs or networks can be found in
the world-wide airport network and scientific collaboration network A. Barrat et al., 2004. In the aiport
network, each given weight w;; is the number of available seats on direct flights connections between

the airports ¢ and j. A graph G is unweighed when w;; € {0,1} for all (¢,5) € &, and will be noted as

Figure 1.1: Example of a weighted graph.

G = (V,€). A graph G is called undirected, if (i,j) € £ implies (j, i) € £, w;; = wy; for all (¢,7) € €.

1.1.1 Some particular graphs

Particular relationships between edges and nodes lead to constitute some specific graphs classes. We
recall here, examples of basic graphs. If all the nodes of G have the same degree d(v;), G is a regular

graph. Figure 1.2 illustrates the case of a regular graph of degree '2’, each of its nodes has degree 2. A
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Figure 1.2: Example of a regular graph with d(v;) = 2.

graph G is complete if there is one edge between every pair of vertices. The complete graph on 'n’ nodees
is denoted by K, K, has n x (n —1)/2 edges and is a regular graph of degree (n — 1). As illustrated in

figure 1.3, a K -graph has 6 edges and is a regular graph of degree 3.

(%) VU3

Figure 1.3: Example of a complete graph Kj.

A Bipartite graph (see figure 1.4) is a set of graph nodes such that the nodes that are in the same group
have no edges between them (i.e v; € V and v, € V’). It is a graph in which the nodes can be put into
two separate groups so that only the edges exist between those two groups (V' and V'), and there are no

edges between nodes within the same group.

Figure 1.4: Example of a bipartite graph with n = 6 and m = 9.

An ordered sequence of connected nodes (v;,v;+1,...,v;) that starts with node v; and ends with node
v; forms a path between v; and v;. An example of path starting from v; and ending at vz is shown in

figure 1.5. The graph is connected, if and only if there is a path from any node to any other vertex in the
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Figure 1.5: Example of a Path in a graph. Path (arrows) starting from node v; and ending at node vs.

graph, as shown in figure 1.6. A connected graph may not be complete. A complete graph is a simple

graph that contains exactly one edge between each pair of distinct nodes. The longest distance between

Figure 1.6: Example of a connected graph.

two nodes is called the diameter of the graph. The shortest path between two nodes is called geodesic and
its length is called distance of the two nodes. A connected graph may not be (and often is not) complete.

In this graph, there is a path between any given pair of vertices.

1.1.2 Graph signals

Graph signals are mapping x : V' — R from the nodes of graph G into real (or complex) numbers. We
consider the values of the signals on the set of the graph’s nodes. Graph signals can be represented as

vectors x € R™*™. The signal x is a vector indexed by the graph’s nodes

x = (z(v1),z(va), ..., x(vy)) = (X1, 22, ..., 24)

Notice that this assumes an indexing of the nodes, which coincides with the indexing used in the adjacency

matrix.
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1.1.3 Degree deviation in graphs

Using the degrees of a graph G, Nikiforov Nikiforov, 2006 introduced an irregularity measure referred to

as degree deviation defined as
n

Ireg(G) = Z
eV
This statistic quantifies how much a graph deviates from being regular. Clearly, G is regular if and only

2m
dlvi) = =~

(1.1)

if Ieg(G) = 0, si we say that G is close to regular if I e (G) — 0.

1.2 Graph Spectra

In this section we present some known results, recalling basic facts about eigenvalues, eigenvectors, matrix
diagonalization. We essentially focus on real symmetric matrices. Since most of standard matrices

associated with graph are symmetric, in the following we review some of their important properties.

1.2.1 Spectral theorem of real symmetric matrices

Recall that a matrix M is symmetric if M = M”. This implies that M is square, M € R"*".

Definition 2

An eigenvalue is a root of the characteristic polynomial associated with a matrix M.

Definition 3

The set of all eigenvalues of M matrix is referred to as the spectrum of a graph represented by M matrix.

Definition 4

The trace of a matrix M = [m;;] is the sum of its entries along the main diagonal. Trace of M is
n

Trace(M) = Zmij'
i=1

Theorem 1.2.1. An n X n symmetric matrix M has the following properties:
1. M has an eigendecomposition of the form
M=UAU" (1.2)

where N € R™"*" is a diagonal matriz and U € R™"*™ is an orthogonal matriz. The diagonal entries

of A are the eigenvalues of M and the columns of U are the corresponding eigenvectors:

/\Zdiag(/\l,/\g,...,/\”), U= [u1|u2 | |un]

Mui = Aluz
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By definition an orthogonal matriz U satisfies UT = U~1, which means that the columns of U are

orthogonal (any two of them are orthogonal and each has norm one).

The expression (1.2) of symmetric matriz in terms of eigenvalues and eigenvectors is referred to as
spectral decomposition of M. The set (A1, A2, ..., \n) is called the spectrum of M. Note that this set

of eigenvalues includes multiplicities.
2. Eigenvectors corresponding to distinct eigenvalues are necessarily orthogonal:
Muy = Aug, Mug = Aaug, Ay # Ao = ug.ug =0
Any two distinct eigenvectors from different eigenspaces are orthogonal.

3. M is orthogonally diagonalizable.
Remarks

— Note that if a matrix M is not symmetric, it might not have n eigenvectors. And even if it has n

eigenvalues, their eigenvectors will not be orthogonal Spielman, 2004.

— The eigenvectors are not uniquely determined, although the eigenvalues are. Generally, the eigen-

vectors of a given eigenvalue are only determined up to an orthogonal transformation.

1.2.2 Energy of matrices

Let M be a n x n symmetric matrix with the eigenvalues A1, Aa, ..., A,. The energy of matrix M is given

by Bravo et al., 2017:

n

By=>)

i=1

A — (1.3)

n

Trace(M) ‘

As will be see later, if M is the adjacency matrix of graph, Fy is reduced to the energy of graph introduced
by Gutman Gutman, 1978. As pointed out by Nikiforov, the energies of graphs are special cases of matrix

norms (trace norms, or more generally Ky Fan or Schatten norms) Nikiforov, 2007.

1.2.3 Spectral moments

Let G be a graph without loops and multiple edges, with eigenvalues denoted by A1, Aa, ..., A, and are

assumed to be labelled in a non-increasing way:
A2 A >, 2N\,
For k € N*, the k-th spectral moment of the graph G is defined as B. Zhou et al., 2007

My = M(G) =) |\ (1.4)



1.3. SPECTRAL GRAPH REPRESENTATIONS

Mj, is equal to the number of closed walk of of length &k in G B. Zhou et al., 2007. Note the for k = 1,
My, is reduced to the energy of the graph G introduced by Gutman Gutman, 1978. We quote among
the applications of the spectral moments, the analysis of complex networks V.M. Preciado and M.A.

Rahimian, 2017,Q. Liu et al., 2017, V.M. Preciado and A. Jadbabaie, 2013.

1.3 Spectral graph representations

Recall that graphs are often represented via their adjacency or Laplacian matrices. In this section, these
standard graph representations are presented, and both their properties and also their relationship with

each other are reviewed.

1.3.1 Adjacency matrix

The most natural matrix to be associated with G is its adjacency matrix A(G), whose entries a;; are

given by
1 if (v;,v5) €&
A = [a;;] =
0 otherwise
Thus, for an unweighed graph, A is clearly a symmetric (0, 1)—matrix. A possible notation for adjacency

is v; ~ v;. The row sum of the adjacency matrix is the degrees of the vertices of G' as we can see in figure

1.7. The adjacency matrix is real and symmetric.

Figure 1.7: Example of a graph G with its adjacency matrix A.

0110

1 01 1
A:

1100

0100

1.3.2 Incidence matrix

In the case of an undirected graph, the incidence matrix of a graph G is an (n x m) matrix C = {c¢;;}

where each row corresponds to a vertex v; and each column corresponds to an edge such that if ey is
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an edge between v; and v; then all elements of the column 'k’ are ‘0" except for ¢; = ¢jr = 1. The

expression of C is given by :

1 if (e;;) exists
C=[ey] =
0 otherwise
For such a matrix, each column representing an edge contains two non-zero entries, the rest being zero.
The unit entries in a column identify the nodes of the edge between which it is connected. This is
illustrated in figure 1.8. Most graphs have more edges than vertices. Thus the incidence matrix is usually

bigger than the adjacency matrix requiring especially a larger storage space hence a less use of this

incidence matrix.

Figure 1.8: Example of a graph G and its incidence matrix C.

1100

101 1
C =

0 1. .10

0 0 01

1.3.3 Degree matrix

The number of neighbors of a node v; is called the degree of v; and is denoted by d(v;) where
d(Ui) = Zaij (15)
J€)

The diagonal matrix D contains information about the degree of each vertex, v;, that is the number of

edges, d(v;) attached to this vertex. Let G be an undirected graph. The degree matrix of G is given by :

Pl ; .| = diag(d(v1), d(vz), ... d(vn))
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The degree matrix of graph G, reported in figure 1.7, is given by

2 0 0 0

0 3 00
D=

0 02 0

0 0 01

In the case of a weighted graph, the matrix A is called weighted adjacency matriz and the entries of D

are given now by :
d(v;) =Y wi (1.6)
j=1

Thus, the weighted matrix, W = [w;;] € R™*™, can be written as

W=D'A (1.7)

1.3.4 Laplacian matrices and Signless matrix
1.3.4.1 Difference operator

The Laplacian acts as difference operator on graphs signals. Consider a graph signal x on G and define

a new signal y = Lx where each element y; is computed as

yi = [Lx]; = Z wij(T; — x4) (1.8)

JEN(3)

The output y; measures the difference between the value of the signal x at note 7 and at its neighborhood.

1.3.4.2 Laplacian quadratic form

The most natural quadratic form associated with G is defined in terms of its Laplacian matrix L.

Lemma 1.3.1. Let L be the Laplacian matriz of dimensions n x n and let a vector x € R"™. Then
1
xTLx = 5 Z wij(z(i) — z(5))? > 0, ¥x (1.9)
(i,5)€€
This form measures the smoothness of the function x. It will be small if the function x does not jump
too much over any edge. x'Lx quantifies the local variation of signal x. The matriz defining this form

is the Laplacian matriz of the graph G defined as
-1 if i # jandv; ~ v;
L=D-A=[;]=9 dv) ifi=3j
0 otherwise

where A 1is the adjacency matrix and D is the degree matrix.
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Figure 1.9: Example of a graph G and its laplacian matrix L.

Lemma 1.3.2. Let L be the Laplacian matriz of G. Then the eigenvector coressponding to the eigenvalue

zero is a ones vector, that is [1,1,...,1]T.

Corollary 1.3.1. The multiplicity of the zero ”0” eigenvalue of the Laplacian matriz L corresponding

to a graph G equals the number of its connected components.

The Laplacian has at least one zero eigenvalue, and the number of such eigenvalues is equal to the number

of disjoint parts in the graph.

When studying, for example, random walks on a graph G, it often useful to normalize the Laplacian L

by its degrees. The normalized version of Laplacian matrix, Ly, of G is defined by
LN _ D71/2LD71/2 —I- D71/2AD71/2

The relationships with the normalized Laplacian matrix show matrices A, L, I the identity matrix and

D~'/2 a diagonal matrix with D~1/2(i, i) = 1 .
d(v;)
1 ifi=j:d(v;) #0
1 .
b =ty = Vi) T
0 otherwise

As for the Laplacian of the graph, this matrix is positive semi-definite and so has all eigenvalues greater
than or equal to zero. The normalisation factor means that the largest eigenvalue less than or equal to
2, with equality only when G is bipartite. Again, the matrix has at least one zero eigenvalue. Hence all

the eigenvalues are in the range 0 < A < 2.

The normalized Laplacian is used in various graph analysis tasks, such as graph clustering and random

walks on graphs. The eigenvalues of the normalized Laplacian are in "normalized" form and the spectra
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of the normalized Laplacian relate well to other graph invariants for general graphs in a way that the

other definitions fail to do Spielman, 2011.

1.3.4.3 Graph requencies

It has been shown that the eignvectors of the Laplacian matrix provides a harmonic analysis of graph
signals which in turn provides a Fourier-Like interpretation R.K. Fan Chung, 1996b,Pitas, 2016. The
Lapalcain eigenvalues can be interpreted as frequencies and the eigenvectors act as the natural vibration
modes of the graph G, and the corresponding eignevalues as the associated graph-frequencies R.K. Fan
Chung, 1996b. The frequncy interpretation of eigenvectors can be viewed in terms of number of zero-
crossings (pair of connected nodes with different signs) of an eignevector of graph G. For any finite
graph G, the eigenvectors with large eigenvalues havemore zero-crossingns (hence high frequency) than
eigenvectors with small eigenvalues Pitas, 2016. Consider the case of the normalized laplacian matrix of
G. Thus, A\; € [0,2]. An eigenvector uy is either considered to be a "low-pass" eigenvector if \; € [0, 1]
or "high-pass" eigenvector A; €]1,2]. The graph Fourier transform, denoted as X, is defined in D.K.

Hammond et al., 2011 as the projection of x on the graph G onto the eigenvactors of G:
n
X =<uy,X>= Zx(z)ul (1.10)
i=1

1. The eigenvectors associated with large eigenvalues (high frequency) vary rapidly

= Dissimilar values on vertices connected by edges.

2. The eigenvectors associated with small eigenvalues (low frequency) vary slowly

= Similar values on vertices connected by edges.

1.3.5 Grounded Laplacian matrix

A recent variant of the Laplacian matrix is the grounded Laplacian matrix, obtained by removing certain
rows and columns from the Laplacian. This matrix forms the basis for the classical Matrix Tree Theorem
(characterizing the number of spanning trees in the graph), and also plays a fundamental role in the
study of continuous-time diffusion dynamics where the states of some of the nodes in the network are
fixed at certain values P. Barooah and J.P. Hespanha, 2006. The eigenvalues of the grounded Laplacian
characterize the variance in the equilibrium values for noisy instances of such dynamics, and determine

the rate of convergence to steady state M.Pirani, 2014.
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1.3.6 Signless matrix

Another variant of the Laplacian, is the signless matrix defined by
Ll=D+ A

This matrix seems to have good properties in the sense that it produces fewer cospectral (two graphs are
said to be cospectral if they have the same eigenvalues with respect to the matrix representation being

used) graphs than the Laplacian as we mention in Chapter 4.

Just like the adjacency matrix, the Laplacian matrix L has been widely studied in the spectral graph
theory which attempts to rely the graph’s structure and the eigenvalues of the matrix. That’s why another

properties about this matrix will be given in the following.

1.3.7 Properties of the eigen-spectrum of the Laplacian matrix

The Laplacian eigenvalues obey the well-known relations Merris, 1994:

i=1
>
i=1

o2m+ Yy dy (1.11)
=1

1.3.8 Laplacian energy of graph

The Laplacian is a positive semi-definite matrix with a trivial eigenvalue 0 and the associated eigenvector
of all ones 1. We denote the eigenvalues of matrix L by A1, A2, ..., A,. It is easy to check that the trace

of L is 2m:
> Ai=2m (1.12)

For m > 0 at least one eigenvalue has value greater than the average degree 2m/n. The Laplacian energy
of graph G, LE(G), is defined by I. Gutman and B. Zhou, 2006:

n

LE(G) = E(@) =Y

i=1

2
L

n

(1.13)

The LE(G) value is a broad measure of complexity. Relation (1.15) raises the question which graphs on
n nodes maximizes LE(G) C. Helmberg and V. Trevisan, 2017.

An additional Laplacian-spectrum-based graph invariant was put forward by Liu and Liu J. Liu and B.
Liu, 2008:

LEL(G) = nz_: Vi (1.14)
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and was named Laplacian-energy-like invariant. The motivation for introducing LEL(G) was in its
analogy to the earlier studied graph energy X. Li et al., 2012 and LE(G) I. Gutman and B. Zhou, 2006.

The LEL(G) has many analogous properties as graph energy.

1.3.9 Signless Laplacian energy of graph

Let u1, po, - - ., un be the eigenvalues of the signless Laplacian. The signless Laplacian energy of the graph
G is defined as

(1.15)

1.3.10 Electrical network and Kirchhoff index

We can regard a connected graph G as an electrical network, where each edge can be viewed as a unit
resistor (1 Ohm). The distance between two nodes v; and v; is defined as the length (=number of edges)
of a shortest path connects v; and v;. Klein and Randic D.J. Klein and M. Randic, 1993 conceived the
resistance distance defined in terms of electrical resistance in a network corresponding to the considered
graph G, in which the resistance between any two adjacent nodes is 1 Ohm. An important invariant of
the electrical network is its resistance distance. Given any two vertices v; and v;, the effective resistance
between i and j is the voltage of a battery which, when connected to the two vertices, causes a current
of 1 Ampere to flow. For a pair of vertices v; and v;, the resistance distance is noted R(i,j). The sum
of resistance distance between all pair of vertices of G, is called its Kirchhoff indez, denoted by KF(G),
namely

KF(G)= Y R(ij) (1.16)

1=i<j<n

It has been shown that the Kirchhoff index of G can be determined in terms of eigenvalues of L 1.

Gutman and B. Mohar, 1996.

Theorem 1.3.1. For a connected graph G with order n > 2, the Kirchhoff index of G is given by

KF(G) ni; (1.17)

where 0 = A1 < Ao, ..., A\, are eigenvalues of L.

The resistance distance and Kirchhoff index have received considerable attention in the literature, since

they have useful connection with various fields such as the random walks A. Ghosh et al., 2008.
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1.3.11 Distance matrix

Another matrix to mention is the distance matriz DS corresponding to a square matrix D¢ = [d(vi’vj)h s
where the entry in the (i'” row, j!* column) is the distance or the length of a shortest path between the

v; and v; vertex.

OO
G
SR

Figure 1.10: Example of a distance matrix D¢,

01 2 2 2
10111
D=2 10 2 2
2 1 2 0 2
2 1 2 2 0

1.3.12 Transition matrix

Recall that a random walk is a process that begins at some vertex then moves to random neighbor of that

vertex. The transition matrix of the random walk on graph G is defined as the n x n matrix P = [p;;] in

which
[£%7]
= 1.1
pi] d(’l}z) ( 8)
So
P=D"'A (1.19)

Matrix P is also called walk matrix because it encodes the dynamics of a random walk on G. It is used
to study the evolution of probability distribution of random walk. This matrix is often asymmetric, but

one can define the normalized adjacency matrix of G as
Q=D"'2AD!/? (1.20)

which is similar to

P=D"1/2QD1/? (1.21)
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and thus has the same eigenvalues as P.

1.3.13 Properties of the eigen-spectrum of the adjacency matrix

We have previously introduced the adjacency matrix A(G) of a graph G = (V, &) with n vertices and
m edges. By the spectral theorem, it has an orthonormal basis of eigenvectors with real eigenvalues,
A1 > Ay > ... \,. The eigenvalue A; is called the spectral radius of G. Moreover, this radius is at least
the average vertex degree in G that is

A > (1.22)

n
with equality holding if and only if G is isomorphic to a regular graph K.CH.Das and S.A.Mojallal, 2016.

Some well known properties of graph eigenvalues are

ixi =0; Zn: M\ =2m; detA = ﬁ)\i (1.23)
i=1 =1 =1

The graph G is said to be singular if at least one of its eigenvalues is equal to zero. For singular graphs,

evidently, detA = 0. A graph is non-singular if \; #0, Vi € {1,2,...,n}. Then, detA # 0.

1.3.13.1 The largest eigenvalue, \,,4.

Let dy,q, be the maximum degree of a vertex in G, and let d,,. be the average degree of a vertex in G.

The largest eigenvalue \,q, of A verifies:

dave < )\1 S )\mal‘ (124)

We can strengthen the lower bound by proving that A; is at least the average degree of G.

1.3.13.2 The eigenvalue gap

The gap between the first and the second eigenvalues is an important parameter for graph characterization.
Perron-Frobenuis theorem states that if G is a connected graph then A,,,; of A has multiplicity 1. We
can expect that the gap between \,,,, and the nearest eigenvalue is related to some kind of connectivity

measure of the graph G.

1.3.13.3 Energy of graph

A useful graph-invariant of GG, which we will study later in the Chapter 3, is the sum of the absolute

values of the eigenvalues of A:
n

Ea(G) =) |\ (1.25)

=1
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This quantity, Fa (G), called energy of G was first defined in 1978 by Gutman Gutman, 1978. Nikiforov
first recognized that the energy of graph is equal to the sum of the singular values of its adjacency
matrix Nikiforov, 2007. This spectrum-based graph invariant has been much studied in both chemical
and mathematical literature K.CH.Das and I.Gutman, 2016. What nowadays is referred to as graph
energy, given by relation (1.25), is closely related to the total m-electron energy calculated within the

Huckel molecular orbital approximation B. J. McClelland, 1971.

1.3.13.4 Real-values signal on graphs

When the adjacency operator is applied to a signal x, the resulting value at a vertex v is the sum of the

values of the signal x over all neighbors of v:

y = Ax; y(i) =Y (i) (1.26)

i~j

The quadratic form associated to A is given by

xTAx =Y " x(i)z(j) (1.27)
€ij

Remarks
There is debate, in the literature, as to whether the eigenvalues of the adjacency matrix provide informa-
tion about the graph properties. For example, Spielman argues that, even the adjacency matrix is the
most natural matrix to associate with graph, it is least useful Spielman, 2004. Eigenvalues and eigenvec-
tors are most meaningful when used to understand a natural operator or a natural quadratic form. The
adjacency matrix provides neither. The same observation was made by Lau which points out that it is
not clear that the eigenvalues should any information about the graph properties Lau, 2015. But they
do, and interesting information, using for example E(G), can be obtained from them H.A. Bay-Ahmed

et al., 2018.

1.4 Eigenvalues and optimization

One the reason that the eigenvalues of matrices have meaning is that they arise as the solution to
natural optimization problems Spielman, 2004. More precisely, these eigenvalues are useful because they
constitute the optimal solution of a very basic quadratic optimization problem. The main tool in relating

eigenvalues and eigenvectors to optimization problem is the Rayleigh quotient.

Definition 4
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The Rayleigh quotient of vector x with respect to a symmetric matrix M = [m;;] is the ratio
xTMx 'sz: Y
= — (1.28)
SEID O
Note that if ¢ is an eigenvector of M of eigenvalue A, then the Rayleigh quotient is reduced to
TM T)\ A T
Yy iy pty
Theorem 1.4.1. Let M be a n x n symmetric matriz with eigenvalues \y > Ay >,...,> A, and let x be
a non-zero vector that mazximizes the Rayleigh quotient with respect to M:
xTMx
1.30
xTx ( )

Then, x is an eigenvector equal to the Rayleigh quotient. Moreover, this eigenvalue is the largest eigen-

value of M:
T
x* Mix
A= max (1.31)
Theorem 1.4.2. Let M be a n x n symmetric matriz with eigenvalues A1, Ao, ..., A\, and with corre-

sponding eigenvectors Y1,1a, ..., Y¥y,. Then the sets {1;}7_, and {\;}7_, are retrieved using the Rayleigh

quotient as follows:

. xTMx
PYE— min —F
XL, i1 X5 X
TM
Vv, = arg mi x X (1.32)

xLtbi,ethior XTX

1.4.1 Courant-Fischer Theorem

The Courant-Fischer theorem provides a more powerful characterization of eigenvalues as solutions to
optimization problems. This theorem is useful for proving upper bounds on the largest eigenvalue of
matrix Spielman, 2004. The Courant-Fischer characterization of the eigenvalues of a symmetric matrix
M in terms of the maximizers and minimizers of the Rayleigh quotient plays an important role in spectral

graph theory Spielman, 2011.

Theorem 1.4.3. Let Ml be a n x n symmetric matriz with eigenvalues A1, Ao, ..., A\p. Then
T T
x*' Mx x*' Mx
Ap = min max —— = max min —-— (1.33)
SCR™ xe€S xTx TCR™ xeT xTx
dim/(S)=k *x#0 dim(T)=n—k+1 x#0

For example, the Courant-Fischer theorem tells us that

xTMx o xTMIx
A1 = max 7 and X\, = min 7
xeR” XX xeR” XX

(1.34)
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The minimum in the first expression of relation (1.33) is taken over all subspaces of dimension k, and
the mazimum in the second expression is taken over all subspaces of dimension (n-k+1). For example,
consider the case k = 1. Thus, S is the span of 1 and T is all of R™. For k # 1, the optima will
be achieved when S is the span of V1,9, ..., Y and when T is the span of Vi, Yr11, ..., Y, Spielman,

2011,R.A. Horn and C.R. Johnson, 1985.

Theorem 1.4.4 (Courant-Fischer formula). Let M be a n x n symmetric matriz with eigenvalues

A1, A2, ..., Ay and with corresponding eigenvectors ¥1,vs, ..., Yy
T
M
A1 = min x"Mx = min x = x (1.35)
[1x]|=1 x£0 xTx
\ o xTMx o xTMIx (1.36)
= min = min .
2 x/l=1 xTx x£0 xTx
x L x L
T xTMx
Ap = max x' Mx = max — (1.37)
[1x[|=1 xA0 xIx
Corollary 1.4.1. Let G = (V, &) be a graph with laplacian matriz L
A =0,¢; =[1,1,.,1]T (1.38)
. > (@i —ay)?
L ij
Ay = m;g)l X E X _ m;g (3)65—2 (1.39)
X XX X
x Ly > 2i=0 sz
2%
> (@i — )
T (i,5)€E
Amez = Mmax X' Lx = max (1.40)

#0 x#£0 Z x12

eV
This corollary states that the Rayleigh quotient is useful for bounding graph spectra. In order to get an
upper bound on Ay we need only produce a vector x with small Rayleigh quotient. To get a lower bound

0N Amaz we need only to find a vector x with large Rayleigh quotient.

1.5 Fiedler’s theory of spectral graph partitioning

With the advent of larger instances in applications such as social networks, or road networks, graph
partitioning becomes highly important, multifaceted, and challenging. There are varying methods of
accomplishing this. One method, proposed by Fiedler, is called spectral graph partitioning Fiedler, 1973.
Given a connected graph G, spectral graph partitioning is a method of partitioning G into two subgraphs
in such a way that the subgraphs have a nearly equal number of vertices (as close to equal as is possible)

while also minimizing the number of edges between the two subgraphs.
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1.5.1 Fiedler value

The multiplicity of zero in the spectrum of the Laplacian of graph is equal to the number of connected

components in the graph. If we let the eigenvalues of the Laplacian be
0=XA <A<, .., <\,

then Ay = 0 if and only if the graph is disconnected. Fiedler proved that the further )\ is from zero, the
better connected the graph is Fiedler, 1973. This second smallest eigenvalue of the Laplacian is called the
Fiedler value. This value can be used to determine whether an undirected graph or network is connected
or not. Therefore, A5 is called the algebraic connectivity of the graph or the network Nikiforov, 2013.
However, the multiplicity of the Fiedler eigenvalue depends on the graph’s structure and it is difficult to
analyse.

If a graph G is disconnected, the we partition it into two graphs G; and G5 with no edges between them,

and then write

Ly 0
L=
0 Lo
As the eigenvalues of L are the union, with multiplicity, of the eigenvalues of L; and Lsg, we see that L

inherits a zero eigenvalue from each.

1.5.2 Fiedler vector

The Fiedler vector of a connected undirected graph is the eigenvector corresponding to the second smallest
eigenvalue of the Laplacian matrix L of the graph. After introducing the algebraic connectivity, Fiedler
noticed that the eigenvector associated to Ao indices partitions of the vertices of graph G that are natural
connected clusters Fiedler, 1975, M. Fiedler and V. Nikiforov, 2009, D.A. Spielman and S.H. Teng,
2007. Note that the multiplicity of Ay may be greater than one, in which case there is more than a single

Fiedler vector.

1.5.3 Connectivity and Spectral Clustering

In spectral graph theory, L matrix is often used for structural properties study of graphs. This is
essentially motivated by its algebraic characteristics as the non-negativeness of its eigenvalue spectrum,

or its interesting quadratic form written as yTLy = Y (y(u) — y(v))?, with y is a function that assigns

u~v

to each vertex v of the graph a real value y(v), and ) denotes the sum over all unordered pairs (u,v)

u~v

for which u and v are adjacent. This quadratic form is useful for getting a variational characterizations

of the eigenvalues in terms of Rayleigh quotient R.K. Fan Chung, 1996a. The eigenpairs (Ag,1x) of L
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Figure 1.11: Laplacian’s second eigenvector (Fiedler vector) of a connected random graph with 300 nodes. In the

left: labels associated to nodes before sorting. In the right: After sorting.

can be formulated as convex optimization problems:

> (y(u) —y(v))?

yTLy . oo

Ak = min = min 141
F Ty lfifir YTy ylfiefis > y(v)? ' (1-41)
y#0 y#0 v
1, > (y(w) —y(v)?
Y = argmin T Y argmin ~—~ 5 (1.42)
ylfi,.fi1 Y'Y yLlfi,fi > y()
y#0 y#0 v

It can be easily deduced from equation (1.41) that 0 is an eigenvalue of L corresponding to the constant
eigenvector ¢; = 1. The second eigenvector must be orthonormal to the constant eigenvector ((¢2,1) =
> 1ba(v) = 0). Therefore, a null second eigenvalue implies that the graph is composed of two disconnected
CI())rnponents. This leads to the fundamental result of graph algebra which states that the multiplicity of
zero eigenvalue corresponds to the number of the disconnected clusters in the graph. In connected graphs,
the second eigenvalue is non-zero and corresponds to the minimal cost of the connections which can be
lost in case of segmentation of the graph in two connected sub-graphs. This quantity has been defined by
Fiedler as the algebraic connectivity of the graph, the corresponding second eigenvector is called Fiedler
vector Fiedler, 1973. In the following example, we consider an undirected and unweighed random graph
that contains implicitly two communities. We observe that the A matrix hides almost all indications about
the existence of such communities or at least they remain difficult to detect (Fig. 1.12(a)). Fig. 1.11(b)
shows that the Fiedler vector of L matrix associates to the nodes values of opposite signs in order to
cluster them into subgroups. Using those labels, we reordered the raws and columns of A matrix in a
way that reveals more structural information about the graphs (Fig. 1.12(b)). This example illustrates

the interest of L matrix for recovering homogeneous clusters of nodes.
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Figure 1.12: Adjacency matrix of the connected random graph with 300 nodes. In the left: the original A matrix.

In the right: the reordered A matrix using the Fiedler labels order (From L matrix).

1.6 Low rank approximation and eigenvectors

The problem of low-rank approximation of a given matrix, is to approximate this matrix by a matrix
of low rank so that, for example, the Frobenius norm of the error is minimized. The goal of this
approximation is to obtain more compact representations of the data with limited loss of information
N.K. Kumar and J. Schneider, 2016. One explanation for the utility of the eigenvectors of extreme

eigenvalues of matrices is that they provide low-rank approximations of a matrix.

Consider a n x n symmetric matrix representation M of graph G with eigenvalues \; < Ao <,..., < A\,

The eigenvalue decomposition of M is given by
M = UAU* (1.43)

where A is a diagonal matrix whose i-th diagonal element is the i-th eigenvalue of M. Defining U =
[u1,ug,...,u,] and (U™HT = [ay,1s,...,1u,], where u; and @; are n x 1 column vectors of U and

(U~1T, respectively, one can show that

M=UNUT = Y Nuw/
i=1

> AiB; (1.44)
=1

The rank one matrix B; = u;u] is called the i-th eigengraph and u; the i-th frequency component of M.
Note that the eigengraph B; is a special graph such that MB; = \; B;. If none of the elements of u; and
u; are zero, the corresponding eigengraph is a complete graph, meaning that all vertices are connected
to each other. By defining the B; as the i-th frequency component of the graph G, the value A; in
M = Zn: A B; can be interpreted as the significance of the corresponding component A. Gavili and X.P.

i=1
Zhang, 2017.
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We can measure how well matrix J approximates a matrix M by either the operator norm |M — J||, the

Frobenius norm |M — J||r or Nuclear norm ||M — J||.., where we recall

1Z] % max 12X
(Il

1zl < >z
,J

|Z]||. def Trace(Z)

Using the Courant-Fisher theorem, one can show that every k, the best approximation of M by a rank-k

matrix is given by summing the terms \; B; over the k values of ¢
My =Y \iBi (1.45)
i=k

The measure of the quality of approximation depends on the distortion measure used (Frobenius norm,...).
When ||[M — J|| is small, it explains why the eigenvectors of the largest k eigenvalues of M should provide

a lot of information about M Spielman, 2011.

1.6.0.1 Reynolds decomposition for graphs

Le M be a n x n symmetric matrix representation of graph G with eigenvalues A\ < Ay <,..., < \,. The

Reynolds decomposition of M in terms of rank one matrix B; is given by

ks—1 n
M= Y MB + Y ABi (1.46)
1=1 i=ks

u=Low Frequency  g=High Frequency

where @ and @ can be viewed respectively as the mean component and the fluctuating component. The
index ks corresponds to the pseudo "cut-off frequency" that must be determined using an appropriate
criteria. However, if Ml = Ly, then )\; € [0, 2] and

ks = argmax [\]

{1<i<n|0<X:i<1}
Therefore, M takes the form
M = Z B+ Z \; B; (1.47)
<1 1< <2

—_—— N

u=Low Frequency 4=High Frequency

1.6.0.2 Nearest Adjacency matrix

Instead of the original adjacency matrix, the idea is to represent the graph G with a matrix of low
rank, called nearest adjacency matriz, A with low lost of information. The goal is to approximate the

original graph by a sparse graph and this makes operations on the graph such as clustering or community
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detection easier. The nearest adjacency matrix can be, for example, retrieved using Frobenius norm or

by maximization of the Kirchhoff index as follows:

n
kq = arg min||A — Z A:B;|lr where A(i, k) € {0,1} (1.48)
1<k<n i—k
with t
H=> \B; (1.49)
i=kq

The nearest adjacency matrix is obtained by thresholding the H matrix as follows:

A(i,j) = 0if H(i,j) <

N N | —

A(i,j) = 1if H(i,j) > (1.50)

Using the Kirchhoff index strategy, we first start by determining all low rank approximations of A

Fr=Y MNBike{1,2,. .. n} (1.51)
i=k

Then, these low rank approximated matrices, F}, are thresholded as follows:

Ay(i,j) = 0 if Fy(i,j) <

DO | DD | =

Ay(i,§) = 1if Fy(i,5) >

We retrieve from these thresholded matrices, Ak, the nearest one to A which shows the highest con-
ductivity score according to Kirchhoff index (Eq. 1.17). We illustrate the second strategy on detection
of communities of a graph (Figure 1.13(a)). Results are reported in Figure 1.13. The original graph is
unweighted, and with no a priori about the strength of relationships between nodes. According to Kirch-
hoff index strategy, a set low rank approximation is calculated (1.50). Their corresponding Kirchhoff
index is shown in Figure 1.13(c), where the plot exhibits a prominent peak. Since the Kirchhoff index
is interpreted as a conductivity measure of the network, the nearest adjacency matrix Ak, associated to
this peak corresponds to best approximation of A matrix in terms of conductivity (Figure 1.13(c)). The
graph of this nearest matrix is given in Figure 1.13(b) and results in good partition of the graph, in two

well separated communities (clusters).

1.6.1 Dominant eigen-Graph Analysis (DGA)

The principle of the Dominant eigenGraph Analysis (DGA) is inspired from that of the Dominant Com-
ponent Analysis (DCA) used in image processing J.P. Havlicek et al., 2000. The idea of the DCA is
to estimate at each instant ¢ (or pixel for an image) in multicomponent signal (image), the values of
the modulating functions of the component that dominates the local signal spectrum at that instant.

DCA models the signal’s nonstationary behavior at each instant by exclusively taking into account the
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15 10 5 0 5 10 15 -15 -10 5 0 5 10 15

Figure 1.13: An Example of the nearest adjacency matrix in the sens of Kirchhoff’s index obtained for the two

communities graph, (a) Is the original graph, (b) The graph associated to the nearest adjacency matrix (Ax), (c)

The Kirchhoff index corresponding to all row rank approximations.

component with the strongest response. Following the same principle, we introduce the idea of DGA,
where a narrow band image is represented by an eigengraph: or salient eigengraph. The choice of the

dominant eigengraph, DomG, is estimated, in the sense of a given criteria I'(.), as follows:

DomG(k,l) = max [\I'(B;(k,1))] (1.52)

1<i<n
I'(.) can be the amplitude function.

The DGA is applied on sensors network (Figure 1.14(a)). The original graph is unweighted and
no information is available about the salient structure of the graph. The DGA is applied using relation
(1.52) with I'(.) as the amplitude (entries) function along the eigengraphs B; of the original graph. The
dominent graph is reported in Figure 1.14(b) and highlights dense subgraphs representing the backbone
of the graph. Using different thresholds, multiscale representation of the dominant eigen-Graph (Figure

1.15).



1.6. LOW RANK APPROXIMATION AND EIGENVECTORS

12
1
08
0.6
04
02
o7

0 @17 @18

02
0.2 0 02 04 0.6 08

(a)

08

0.6

04

02

(b)

Figure 1.14: DGA approach applied to sensors graph. (a) The Original unweighted sensors graph, (b) Its corre-

sponding Dominant eigen-Graph (DomG).
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Figure 1.15: Multiscale representation of the dominant eigen-Graph corresponding to the sensors graph. (a), (b),

(c) and (d) are the different backbone scales obtained respectively by the thresholds :0.2, 0.3, 0.5 and 0.7 of the

maximal weight.






CHAPTER
Kernel Techniques for

Graphs Classification

2.1 Introduction

Attern recognition field is on full growth this last decade, driven by the big advances achieved on
P data management and processing techniques. Nevertheless, the efficient representation of data
objects remains a central problem in learning processes, particularly for classification. To remedy this,
two major ways are adopted by the community, vectorial and structural approaches. In the statistical
one, Vapnik, 2013, objects are represented by feature vectors, that are a set of measured attributes. This
offers some useful properties, in particular the mathematical wealth of tools adapted for vector spaces,
such as the computing of a sum, a dot product, a mean or the distance between two instances. However,
the use of feature vectors exhibits some drawbacks. First, as a vector always represents a predefined set
of features, all vectors in a given problem have to preserve the same length regardless of the complexity or
the size of the corresponding objects. Second, there is no direct possibility to describe binary relationships
that might exist among different parts of an object. The structural approach, K. Riesen and H. Bunke,
2010, is based on symbolic data structures, such as strings, trees, or graphs. In fact, from an algorithmic
viewpoint both strings and trees are a particular cases of graphs. The mentioned drawbacks of feature
vectors can be overcome by graph-based representation N.B. Aoun et al., 2014. That is graphs are able
to model inherent relationships of an object by means of edges, representing various connection natures
(spatial, temporal, conceptual,...etc). Furthermore, graphs are not constrained in terms of size, where

the number of nodes and edges can be customized to the target object size and complexity.

A large number of learning algorithms are designed exlusively for vectorial data, such as Support
Vector Machines (SVM), Vapnik, 1998, Haasdonk, 2005 and K-Nearest Neighbors (KNN), J.M. Keller
et al., 1985, and others. Nevertheless, these algorithms can be adapted to the structural data using kernel

trick which replaces dot products by valid kernel functions, J. Shawe-Taylor and N. Cristianini, 2004.
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The principle of use of kernels as dot products is rather well known for potential function classifiers, M. A.
Aizerman et al., 1964, and it was revisited to construct support vector machines as a generalization of
large margin classifiers, B.E. Boser et al., 1992. Futhermore, kernel based methods allow the extention
of basic linear algorithms to complex non-linear ones in efficient way. So far, many kernel machines have
been built to classify graph data, see: S.V.N. Vishwanathan et al., 2010, L. Bai et al., 2015a, N. M.
Kriege et al., 2016, their common idea is to determine a manner for measuring similarity between graphs

without embedding them into a vector space.

In this chapter, we recall some basic principles of statistical learning, focusing on the algorithmic
design of the Support Vector Machines. And then, we explain the idea behind the kernel trick and how
we can combine a kernel function into the SVM algorithm for classification. And finaly, we present some
state-of-art kernels proposed for graphs. The ultimate goal of this chapter is to summarize the basic
background needed to understant how to build a graph kernel and how to use it with an SVM machine

for classifying graph data.

2.2 Learning Problem

Thinking, recognizing objects, learning from experience are the most powerful abilities of human beings.
According to some previous knowledge, he is able to classify and distinguish trends, as well as infer
new rules and new models to apply on completely unprecedented situations. Formulating these tasks in
an algorithmic way using appropriate mathematical concepts provides us with the possibility to delegate
their execution to machines. They are meant to learn autonomously the characteristics of a class, identify
behavioral profiles and discriminate them. Typically, a machine is fed with training samples, coming
from a certain real world process, whereon it tries to uncover hidden trends that fits the samples, and
model the rules that solve a given recognition task. Through these training samples and particularly the
inferred rules, the machine acquires generalization power via learning, making her able to predict and
take decisions about the new unseen samples. Learning approaches are split to three families reffered
to as supervised, unsupervised and semi-supervised learning. All these approaches share in common the
need to a raw data and the fact that they express the behaviour of the process generating the data into

an inclusive mathematical model.

Supervised learning: In supervised learning approach, the machine is fed in data labeled by
another intelligence, often human. The labels designate classes of membership of the elements
composing the data. The role of the machine is to determine a mathematical model of class assign-
ment by learning patterns about classes, relying on the elements provided for training. We note that

the test phase on new unseen data is necessary and it is only performed if the training phase is completed.
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Unsupervised learning: Unlike in the supervised approach, raw data are not labelled in advance by
any kind of intelligence, which justifies the unsupervised aspect of the approach. The machine performs
blind learning looking for groups, affinities between data elements. In the end of the process, the data is
segregated into homogeneous groups called clusters, hence, it is suitable for exploring inter-relationships
among individual patterns. The concept of a cluster is close to that of a class, the difference is that the
class of an object is intrinsic and can never be changed, while belonging to a cluster depends on several

parameters that can be variable.

Semi-Supervised learning: Semi-supervised learning is a mix between supervised and unsupervised
learning. The machine is fed on both labeled and unlabeled data. The aim is to propagate the labels to
cover all the data using some similarity measure and a class attribution criteria. The initial distribution
of labels plays a central role on this approach, and of course in many cases these methods perfom better
than supervised methods. We notice that the approaches presented in this report are part of supervised

learning methods for classification purposes only.

Formally, in the supervised learning approach, the data reside in a representatif space called pattern
space and denoted X, wherein each element x € X' is a candidate for classification. The space X can
contain vectorial data or any other kind of symbolic data like graphs. The other space ) contains all pos-
sible decisions that the classifier can make, therefore all possible labels. )’ can be either the binary space
{—=1,+1} for binary classification, or the space {61, ..., 05} of symbolic labels for multi-class case. As well
as the labelled data samples used for learning are grouped in the set D = {(x1,91), (X2,¥2), .-, (XN, YN) }-
Considering that the correct classes are attributed according to an unknown target function f: X — ),
that maps any instance x € X into the decision space ), then the learning algorithm exploits training
data D to choose a function g : X — ) that approximates as possible the target function f. The
function g could be any appropriate function, however, for practical consideration and to facilitate
the searching processes, the algorithm picks g from a set of candidate functions, called hypothesis set
H. For instance, H could be the set of linear hyperplanes, polynomial, radial basis functions or even

neural networks, see Figure 2.1 for an overview about the learning problem, Y.S. Abu-Mostafa et al., 2012.

The performance of a classifier can not be measured only in the training samples since it could
classify them all correctly, while there is not any guarantee that it would do the same on the unseen data
where it might perform poorly. In this case, the classifier is considered as in owverfitting, because it is

adapted too much to the training samples only. Otherwise, underfitting happens when the classifier fails
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Unknown Target Function
[ X =Y
y— f(x)
Hypothesis Set
Training Examples H
D = {(x1,%1), (Xx2,42), - (XN, Yn) } e.g : Radial Basis Functions
e.g : Neural Network

Learning Algorithm
R [D,H]: Searches for g in H

e.g : Quadratic Programming

e.g : Back Propagation

Final Hypothesis

g=f

Figure 2.1: Basic Diagram of Learning Problem.

to approximate the target function f and to determine appropriate boundaries between classes. Hence,
the machine should establish a compromise between overfitting and underfitting constraints during the
learning (training) process. Consequently, the ultimate goal is to train a classifier using training data,
that could classifiy adequately the bigger part of unseen patterns, or in other words, it shows a good

generalization power to all possible unknown instances.

2.3 Linear Separable Data

Let {(x1,41), - ,(xn,yn)} € R? x {+1,—1} be a training set of a binary classification problem. B
is the subset with labels +1 and C' is the subset with labels -1. B and C' are called linear separable
in R? if there is an hyper-plane (w,x) +b = 0 and 6 > 0 such that (w,x) +b > ¢ for x € B and
(w,x) +b < —0 for x € C. It means that the distance d(B, C) between the two subsets is positive when
they are linearly separable. Suppose X C R? is a compact subset of surface of unit ball, and suppose an
infinite dimensional Hilbert space H%(X), we denote by ¢4 : X — H%(X) the mapping function of X’

into the finite dimensional feature space H%¢(X):
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Theorem 2.3.1 (On Linear Separability). (D. Chen et al., 2007) Suppose X C R? is a compact
subset of the surface of the unit ball and X = BUC, BNC = 0. Then ¢(B) and ¢(C) are linear separable
in HE(X) if and only if the crowed point sets of B and C have empty overlap, i.e., the boundary point
set of B and C is empty, (Figure 2.2).

A binary classification problem can be considered as totally solved in linear way, if there is an hyper-
plane which can separate the classes in the training sample and also correctly classify every possible unseen

data.

HE(X)

Figure 2.2: If X is compact and X = BUC s.t BNC = (), then ¢(B) and ¢(C) are linear separable in feature

space HE(X).

The distance between the two convex hulls of two different classes is equal to zero if they are not
linearly separable. Rather than using a nonlinear learning algorithm, that problem can be solved by
increasing the dimensionality of the input space X using a non-linear mapping of the data to a higher
feature space F. The following theorem formalizes the intuition that increasing the dimensionality of
representation space increases the number of possible linear separators that could separate correctly the

classes, B. Scholkopf et al., 2002.

Cover’s Theorem (Cover, 1965). Given a d-dimensional pattern space X and N points {x1,....,xy} C X
in general position. If N < d + 1, all 2V separations are possible in X. If N > d + 1, the number of

linear separations amounts to:

d( N-1
2>
i=0 )
This theorem provides a way to improve the performance of linear learning algorithms such as Support

Vector Machines.

2.4 Linear Support Vector Machines

Pioneered by Vapnik, 1998, Vapnik, 2013, Support Vector Machine is one of the well known supervised

learning algorithms, based on geometric linear algebra. It acts on data embedded in high dimensional
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vector spaces. Considering a binary classification problem having a set of N labeled instances {x;, y;/i =
1,...,N}, with x; € R? be a d-dimensional real valued vector, labeled by y; from Y = {—1,+1}. The

learning task is to determine a function f : R* — Y that predicts the labels of unclassified data when

satisfying f(x;) = v;.

X2 --== an infinity of linear separators

______

_________

Py Class 2

e 8 0% o
o LY

(-

°
e o0
- %2
° o o
Class 1 o ©
o

X1

Figure 2.3: Linear Learning strategies seek to find the best separation hyperplane.

The SVM algorithm seeks an optimal linear separator maximizing the distance (margin) to the
nearest instances from both classes (Figure 2.4). It takes the form of an hyperplane (w,x) +b = 0, where
w € R? is the slope vector and b € R is the bias. The margin between the nearest data samples and
the optimal hyperplane is inversely proportional to the norm ||w||, as well as the search for this plan is

reduced to the solving of the following optimization problem:
1
min —||w]?
a2

subject to: y;((w,x;) +b) > 1,Vi e {1,...,N}. (2.1)

Figure 2.4: The SVM algorithm picks the hyperplane that maximizes the margin between classes.

This model supposes that data is linearly separable, while such constraint is hard to satisfy in most
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classification problems. C. Cortes and V. Vapnik, 1995 introduced a new relaxed optimization problem
using a set of slack variables £; € R™. These variables introduce some tolerance to misclassification during

the learning phase. Hence, the problem (2.1) becomes:

mm —||W||2 + CZ&

i=1

Subject to: y;((w,x;) +b) >1—¢;, and & >0, Vie {1,..,N}, (2.2)

where C € R is a regularization parameter allowing the weighting of misclassification error (tolerence).

Figure 2.5: The SVM margin becomes larger when the regulation parameter C' decreases. From left to right:

C=1,C=0.15 C=0.04

The solution of the primal problem (2.2) can not be found easily without the use of the powerful
quadratic programming resolvers, hence, we need to put it in a dual form. For this purpose, Lagrange
function from equation (2.2) is introduced using Lagrange multipliers, each constraint is multiplied by a
positive real number and subtracted from initial objective function. The Lagrangian of (2.2) takes then

the form:

L(w,b,& a,B) = -||w|\2 +cZgz Zaz yi((w,x;) +b) — 1+ &) Zm, (2.3)
i=1 i=1
where « is the Lagrange multiplier concerning the separating hyperplane, and 8 concerns the positivity
constraint of slack variables.

The constrained minimization problem in equation (2.2) can be solved by finding the saddle point
of its Lagrange function (2.3). That point corresponds to the minimum of £ according to the primal
problem variables (w,b, &) and to the maximum of £ according to the Lagrange multipliers (o, 3). For
a fixed pair of multipliers (e, 8), the minimum of £ according to (w,b, &) is obtained by canceling the

following partial derivatives:
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L(w,b,€ a, -
w =w — izg 1 a;yx; = 0, (2.4)
/S(W,b,é,a,ﬁ) _ _
= Ce—a—p3=0, (2.5)
C b? b b

(Wu 8§ « /8) _ _aTy _ 07 (26)

N
by inserting w = Y a;y;x; from (2.4) in equation (2.3), as well as equations (2.5) and (2.6), the minimum
i=1

of L for any (a, 3) is:

1
(mlleé) E(W7 ba Ev «, B) = eTa - iaTQav (27)

With Qi,j = yiyj <Xi,Xj>.

The saddle point of £ can then be obtained by maximizing the quantity (2.7) according to a:

N N
1
max { Z =3 Z a; (yiy; (xi, xj>)aj}
i=1 i=1 j=1
N
Subject to: a; > 0, Zaiyi =0. (2.8)

i=1
We notice that only a appears in equation (2.7) and (2.8). Therefore, the maximization must be done

while ensuring that the vector 3 satisfies the equation (2.5). Once the optimal coefficients a are deter-

mined, the weights vector w is computed using the following equation (2.9):

N
w = Z Q3 YiXi (2.9)
i=1
while the scalar b is computed from y;(wx; + b) = 1 for any support vector. The class of a vector x

outside the training samples is given by:

N
f(x)= sign(Z(aiyi(x,xﬁ) + b)) (2.10)

i=1

As we emphasized above, the SVM algorithm assumes that data is linearly separable, which is not the
case of the majority real world learning problems. Moreover, the SVM takes only vectorial data as input,
which is not practical for structural data such as graphs. These problem can be solved by using kernels
instead of dot products in the SVM optimization problem. In the following sections, we give more details

about kernels.
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2.5 Kernel Functions

2.5.1 Kernel Trick

To understand the kernel trick, we need to make a reminder about dot products between a pair of vectors

x,x’ € H in a Hilbert space.

Definition 2.5.1 (Dot Product). A dot product in a vector space H is a function (-,-) : H x H — R

satisfying:

e (x,xX) = (x',x) (Symmeiry)
o (ax+ 0%/, x") = a(x,x") + B{x',x"") (Linearity)
o (x,x) =0 forx=0

o (x,x) >0 forx#0

for vectors x,x',x" € H and scalars o, 3 € R. If H = R?, the standard dot product of two real vectors

d
X = (21, .., 7q), %X = (2}, ..., 7)) € R is given by (x,x') = 3 x;2!.
i=1

In section 1.3, we explained the fact that using a non-linear mapping to map the data from input
space to a higher dimensional feature space could solve learning problems when the data is not linearly
separable. However, applying a non-linear mapping ¢ : X — F to X is often costly, not practical and
not feasible, especially, when the dimensionality of F is very high. Kernel trick offers a solution to this
problem. It makes possible to carry out operations on the data embedded in the new space without
knowing necessarily the mapping function ¢ or effectively access to F. The simplest way to illustrate the
kernel trick is to map data from R? (input space X) to R?® (feature space F) using the direct mapping

function: ¢(x) = (23,23, V2x129), see Figure 2.6.

Therefore, the dot product between two data instances in the new feature space F = R3 is:

(0(x),p(x)) = (d(x1,22), p(2"1,2"2))
= 222" + 222’5 + 2wy w02’ 17
= (z121 + 222'2)?

= <X, Xl>2

It turns out that the dot product in the higher dimensional space F can be deducted by computing the

squared dot product between instances in the input space X, where the function K(x,x’) = (x,x’)? is
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called kernel. The euclidean distance ||¢(x) — ¢(x')|| between two mapped instances ¢(x), p(x’) € F can
be deduced without computing the mapping function ¢ : X — F, as it can directly inferred from kernel

function X in input space X:

[6(x) = ¢(x)[| = V{b(x), 6(x)) + (6(x'), o(x')) — 2{(x), b(x'))

= \/<x,x>2 + (%', %)% — 2(x, x')?

= /K(x,x) + K(x/,x') — 2K(x,x’)

hence the kernel function /C constitutes a shortcut for computing the dot product in F = R3. According
to the following theorem, each kernel K is actually a dot product in some implicit feature space F. Hence,
rather than mapping data from X to F and compute the dot product there, it is easier and faster to

evaluate the value of the kernel function directly in X

Theorem 2.5.1 (J. Shawe-Taylor and N. Cristianini, 2004). Let K : X x X — R be a valid kernel on a
pattern space X. There exists a possibly infinite-dimensional Hilbert space F and a mapping ¢ : X — F
such that

K(x,x') = (¢(x), ¢(x)),

for all x,x’ € X where (.,.) denotes the dot product in a Hilbert space F.

In Figure 2.6, we observe that the data is linearly separable in the new feature space F, something that
was not possible in the original space X'. Moreover, the use of kernel function K(x,x’) = (x,x’)? is

equivalent to the classification of data in feature space F without computing the mapping function ¢(x).

2.5.2 Valid Kernels

Any measure of similarity defined in input space X can be considered as a kernel function. In addition
of being symmetrical and real positive, it must correspond to a dot product in the new feature space
F. This can be checked out via the properties of the kernel matrix containing the mutual similarities

between the data:

Definition 2.5.2 (Kernel Matrix). Given a kernel K and a data set of N patterns {z1,...,zxy} C X,

we are able to form a N X N square matriz

Kiun K -+ Kin o(x1)Td(x1)  o(x1)Td(x2) -+ d(x1)"d(xn)

K= Koi Ky -+ Koy _ d(x2)Tp(x1)  P(x2)Td(x2) -+ (x2) P(xn)

Kni Kn2 -+ Kyn p(xn)To(x1) P(xn)TP(x2) - (xn)TB(xn)



2.5. KERNEL FUNCTIONS 37

mm Classe |
 Classe 2

°® mm Classe |
IR  Classe 2
.

> > ..
2 .":\ ."’, o > ' A: oy
O IRV R ) M - e
g . 5:;" .'3,‘_,.\ o g
s Cgvma’y ’
ool B o255,
. '. . el
dy L 4 ‘i;»'—-"'- L
. Gsed o
'.:.” b . “':.*\ {;;a} y :".'. ¢
e T A
“yor -3‘ X . odo .
- se'e S
S LA s
- e

Iy

(a) Original pattern space X’ (b) Feature space F (z3) vs (23)

mm Classe |
 Classe 2

mm Classe |
 Classe 2

V22

\/il‘l.l‘g
“
3
-

Y4
Ty

(d) Feature space F

(c) Feature space F (z7) vs (v2z122)
Figure 2.6: Example of data mapped from R? (input space X ) to R3 (feature space F), using the mapping function

$(x) = (21, 23, V22122).

of real numbers (Ki;); ;c(y ny commonly refferred to as kernel or Gram matriz. The matriz K =

(Kij) nun contains the kernel function values evaluated on all pairs of patterns in {x1,...,xn}

A kernel function K is said to be valid and admissible, if its corresponding matrix K is positive semi

definite. This fact is stated in the following theorem:

Mercer’s Theorem. (Mercer, 1909) Let X be a compact subset of R™. Suppose K is a continuous

symmetric function such that the integral operator Ty : Lo(X) — Lo(X) defined by

aux»=Anumﬂmw

is positive, which here means Vf € Lo(X),
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/ K(x,x") f(x)f(x) dxdx" > 0,
XxX

then we can expand K(x,x') in a uniformaly convergent series in terms of Ty, ’s eigenfunctions ¢; € Lo(X),

normalized so that ||1||2 = 1, and positive associated eigenvalues \; > 0,
KCGox) = 32 950) 5.
j=1
So we could define an infinite feature map in this way:
() = [V (x), - VA95(x), ]

Involving that K(x,x’) is in fact a kernel function corresponding to the feature mapping ¢. Consequently,
it results from Mercer’s theorem that a matrix is a Gram matrix, if and only if it is positive semi-definite,
which means that it is a dot product matrix in some unknown feature space, N. Cristianini and J.
Shawe-Taylor, 2000. Mercer’s theorem checks out if a built kernel (similarity measure) is a dot product

kernel.

Definition 2.5.3 (Positive Definite Matrix). a matriz A is positive definite (PD) if all its eigenvalues

are positive (Vi \i(A) > 0); i.e, for all x € X:
xTAx >0

from the Rayleigh quotient. We use A > 0 to denote that A is PD.

Definition 2.5.4 (Positive Semi-Definite Matrix). A matrix A is positive semi-definite (PSD) if

all its eigenvalues are non-negative (Vi A\;(A) > 0); i.e, for allx € X:
xT'Ax >0
We denote this by A > 0.

Definition 2.5.5 (Positive Semi-Definite Kernel). A kernel function K : X x X — R is a symmetric
function, i.e. K(x;,%x;) = K(x;,X;), mapping pairs of patterns x;,x; € X to real numbers. A kernel

function K is called positive semi definite, if, and only if, for all N € N,

N
Z aiaiK(x;,%x;) = o’ Ka >0

ij=1

for a € RN, and any choice of N objects {x1,....,xx} C X.

Kernel functions that are positive definite are often called wvalid kernels, admissible kernels or Mercer

kernels.
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2.5.3 Kernels Properties

Kernel functions measure similarity degree between the input objects, and therefore, it should be a way
to combine different similarity measures to build more accurate new kernels. Those combinations are

possible using the following closure properties.

Lemma 2.5.1 (Closure Properties). Let Ky and K2 be valid kernels over X x X, K3 a valid kernel
over HxH,¢: X = H, f: X =R, and a € RT. Then the kernel functions defined by

1. K(x,x') = K1 (x, %) + Ka(x, %)
2. K(x,x') = K1(x,x)Ka(x, x')

3. K(x,x') = aky (x,x')

4- K(x,x') = a+ K1(x, %)

5. K(x,x') = f(x) f(x')

6. K(x,x') = Ks(o(x), p(x'))

are also valid kernels.

2.5.4 Some Kernels for Vectorial Data

In fact, symmetric and positive definite kernel functions measure the similarity between patterns.
Hence, the standard dot product in RY can be interpreted as a kernel function, since it measures the
geometric euclidean distance between data in RY. Some learning algorithms exploit the way how data
is geometrically distributed in input space to separate the classes. Consequently, their mathematical

formulation can be fully edited in terms of dot products.

Kernel Type Definition Parameter
Linear Kernel Ki,y(x,x") = (x,x) -
Polynomial Kernel Kpoly(x,x') = ((x,x) + ¢)? deNand ¢c>0

Sigmoid Kernel Ksig(x,x") = tanh(a(x,x") + 8) | a >0and g <0

RBF Kernel Krpp(x,x") = exp (—v||x — x'||?) v>0

Table 2.1: Examples of some basic kernel functions applied on the vectors x,x’ € H

Table 2.1 shows that other kernels can be derived from dot product kernel using closure properties

such as polynomial and sigmoid kernels. The exponential function can be nearly approximated by poly-
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nomials with positive coefficients. Therefore, the exponentiation exp (K(x,x’)) of a valid kernel K(x,x")
is also valid. The normalized version of that particular kernel is the radial basis function(RBF). We note
that RBF, polynomial and dot product kernels are positive definite, while the sigmoid is not always valid.
Further in our work, we will use the RBF kernel combined with the SVM to classify graphs. Therefore it
is important to know that this particular kernel allows the classification of data in a space with infinite
dimensionality, which increases the probability to linearly separate the classes. Some precisions are given

below :
Radial Basis Function (RBF) is a popular kernel function used in various kernelized learning algo-
rithms. It associates to a pair of vectors x,x’ the similarity score:

x — x'||?
K(x,x') = eacp( — %) (2.11)

The quantity ||x —x'||? refers to as the squared Euclidean distance between the two feature vectors x and

x’, where o is a normalization parameter. The RBF kernel can also be expressed as exp ( —v||x — x| |2),
putting ¥ = 515. It projects data into an infinite dimensional feature space. Let x € R™ and v > 0. In

20

case of n = 1, we have:

e le=a'|I° _ j—ya®+2yza’—y2"?

/ N2 N3
B 77127,Yz/2< 2vxa'  (2yxza)) (2vza’) )
=e 1+ 1 + o + 3 +
2 2 3 3
_ _WQ_Wﬂ(_ 2y 2y, [(29)? 5 [(29) e (29)% 5 [(20)° 3 )
= TR VA TR i T ST T 3 v

= ¢(x)" p(a')

T
where ¢(z) = eV [1, \/21—730, v/ %mz, v/ %1‘3, . } is an infinite dimensional mapping.

2.6 Kernel-based Support Vector Machines

As shown in Table 1, the linear kernel corresponds to a simple dot product (x,x’) between the vectors
representing data in input space X. This same dot product could be determined in the feature space F
between the mapped versions of the vectors via a mapping function ¢, yielding ¢(x)7 ¢(x’). Whereas, the
determination of the mapping function ¢ is not necessary, when the mutual similarities K(x,x’) between
data samples are already known in input space X. The kernel trick allows to transform some linear
classification algorithms to a non-linear ones, when substituting dot products by appropriate kernel
functions. Support Vector Machines take part of those algorithms, since the optimization problem in

equation (2.8) includes dot products between the training samples, as well as in the decision function
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(2.10). Thus, a kernel function can be introduced replacing those dot products, leading to the following

dual optimization problem:

N N N
1
max { Z a3 Z Z o (yiy; K (x4, Xj))a]‘}
=1 i=1 j=1
N
Subject to: a; > 0, Z a;y; =0 (2.12)
i=1
and the new decision function becomes:
N
70) = sign( 3 (@uyik (x, %)) +b) (2.13)
i=1

In Figure 2.7, we show the results from applying the kernelized SVM algorithm on some test data.
We observe the performance of some kernel function when they try to separate the classes using different
decision boundries. Indeed, kernels allow to separate data with a nonlinear boundary, which is useful for

non linearly separable data.

(c) Sigmoid kernel (d) RBF kernel

Figure 2.7: The margin and the separation boundary obtained by integrating some kernels in the SVM algorithm.
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2.7 Graph Kernels

In machine learning, the big part of kernel functions deals with data described by attribute vectors, while
such representation is not adapted for structural data as the graphs. Their pertinence is limited, when
applied to issues like biological sequences classification, R. Durbin et al., 1998, or toxicity prediction of
chemical compounds, S.J Swamidass et al., 2005. Mathematically, standard kernels are applicable to data
embedded in some space X endowed with a dot product only, which is not the case of graph represented
data. As an alternative, many graph kernels have been developed to compare graphs and to generalize
standard attribute based algorithms to structural data. We report in the following sections examples
from the most important families of graph kernels, which we use further in our work as the state-of-art

benchmark kernels.

2.7.1 Random Walk Kernel

A random walk on an undirected connected graph G(V, ) of N nodes is a process that selects a sequence

of k consecutive nodes v(®, v . v® . v®*) randomly, such that v € V and (v®,v(+D) € £. The

(t+1)

walker moves from the node vl(t) to v; according to some transition probability:

Pij = Pz = v; | 2® = v,), (2.14)

The sum of transition probabilities from a node v; to its neighbors (N(v;) = {v; /(vi,v;) € E}) is one,
oo ;Pij = 1). The row stochastic matrix P encodes all transition probabilities between the graph nodes.
We note that in a random walk, the walker can visit a node more than once. Assuming that the walker
goes from a node to the neighboring nodes according to an uniform probability, then the entries of

transition matrix P are given by:

l/d(’ljl), if (’Ui,vj) e&
Py — (2.15)

0, otherwise
and also they can be written as: Pi; = A;;/d(v;) = D;;* A;;. Hence, P becomes nothing more than a
normalized version of the adjacency matrix A, where D;; = d; ;; is the diagonal degree matrix of G' and
d(v;) is the neighbors number of node v;. Let pz(-t) be the probability that a walk is at node v; at moment
(t), then the probability that it will be at node v; in the next moment (¢ + 1) depends on the transition
probabilities within the selected path between them, and it is given by:

)
p§t+l) _ Zpijpz(‘t) _ Z d(lv-)Aij’ (2.16)
; j

K2



2.7. GRAPH KERNELS

43

(t+1)

the probabilities p; are arranged in a vector determined by the matrices stated above:

P = pOP — p®(D1A). (2.17)

equation (2.17) shows that the initial probabilities are multiplied by the transition matrix after each step

of the walk to get the new ones. Hence, after "k” steps, the probabilities vector becomes:

pth) = pPk — (DA, (2.18)

The quantity [(D~1A)*];; is the probability of transition from node v; to node v; via a walk of length
k. In case where p(? is the initial probability distribution over nodes, the probability distribution p(¥)
predicting the position of the random walker after k steps is given by p(*) = (D_lA)kp(O). The j*" entry

of p(¥) is the probability of finishing a k—step walk at node v;.

To measure the similarity between two graphs G' and G’, random walk kernel is based on the simple
idea of counting the number of common walks between the concerned graphs. Noting that two walks are
said to be common, if they have the same length, and that the neighborhood properties of the visited
nodes are preserved in both graphs. Practically, common walks are determined using the adjacency

matrix Ay of the product graph G« between G and G:

Definition 2.7.1 (Direct Product of Graphs). Given two graphs G(V,&) and G'(V',£’), their direct

product G« is a graph with the following node and edge sets:

Vi ={(v,0) eV xV' |jveV,W eV}

Ex = {((u,u'), (v,v")) € Ve x Vi [(u,v) € E, (W/,0") € £}

G is a graph over pairs of vertices from G and G', and two vertices in Gy are neighbors if and only
if the corresponding vertices in G and G’ are simultaneously neighbors. If A and A’ are the respective
adjacency matrices of G and G’, then the adjacency matriz of G« is Ax = A A’, where (Q) is the

Kronecker product.

T. Gaértner et al., 2003a, S.V.N. Vishwanathan et al., 2010, noticed that a random walk in a direct
product graph is equivalent to a simultanieous random walk in the original graphs. Hence a similarity
measure between G and G’ can be defined using the normalized adjacency matrix of G . For every p € N,

the p—step random walk kernel between G and G’ is:

‘Vx‘ p
K66 =Y [ nmitaL)] (2.19)
0

ij=1 1= 4
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G G GG

Figure 2.11: Direct product between the graphs G and G’. Every node of the direct product graph is labeled
with a pair of nodes from G and G’, an edge exists in the direct product if and only if the corresponding nodes
are neighbors in both original graphs. A walk in a direct product graph is equivalent to a simultaneous walk with

the same length in both graphs.

where V5 is the set of the Gx nodes and Dy = D ® D’ its degree matrix. The walks are weighted by
a sequence of positive, real valued weights Ao, A1, A2, ..., Ap. Considering that (D;lAX)0 = I being the

identity matrix, its limit when p tends to oo is the so called random walk kernel (K(G,G")).

2.7.2 Geometric Random Walk kernel

Geometric random walk kernel is a special case of the standard random walk kernel proposed by T.
Gértner et al., 2003a. The difference resides in the weighting parameter );, which takes the form of a
geometric series in the sum, in which is replaced by A!. The advantage is to penalize the contribution
of long walks to the kernel, as well as the limit of the random walk K% when p — oo can be directly

computed using the properties of geometric series, resulting in the following geometric random walk kernel

Vx| Vx|

Kaeo(G.G) = > [SoNDIA)] =3 [@-2A807], (2:20)
=0

=1 = Y=t

where [ is the identity matrix and A, = D;lAX is the normalized adjacency matrix of the direct product

graph G.

Consider the equation (I—AA, )x = 0 for some vector x, then (AA ) x =x,V 1 € N. So if (AA )
converges to 0 when | — oo, then (I — )\AX) is invertible since x becomes 0. Hence, from the formula
(I—=MA ) (T+ XA +A2A2 + ), T. Girtner et al., 2003b, it can be deduced that S NAL = (I-AA )~

1=0

Furthermore, Brualdi, 2011 shows that the geometric series of matrices, commonly called Neumann series

(I—i—)\AX + (/\AX)2 4+ ()\AX )>°) converge only if the maximum eigenvalue of A, denoted by fis Maz>
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is strictly smaller than 1\ A. Hence, the geometric random walk kernel Kq, is well-parametred only if

A< \ ﬂX,Maz-

2.7.3 Graphlet Count kernel

Graphlets are small connected non-isomorphic subgraphs induced from larger networks. They were
introduced for the first time by Przulj, 2007 for designing a new highly sensitive method that measures
local structural similarities of a graph. Formally, given a graph G(V,&), we say that Gy (Vy,&y) is a
subgraph of G, denoted by Gy C G , if and only if there is an injective mapping Qg : Vg — V such that
an edge (v,w) € Ex exists only if (g (v), Qg (w)) € & exists. It is important to precise that for each
particular subgraph Gp, many injective mappings @ = {Qy |Gy C G} can be identified, representing
different possible embeddings that Gy can have in G. The number of such mappings is denoted in the
following by : |©2] or #{Qu|Gy T G}. N. Shervashidze et al., 2009 propose a kernel function that

compares graphs by counting graphlets of p € {3,4,5} nodes.

Consider G, = {G;(V;,&)|i = 1,2,..., M} be the set of size p graphlets and G be a graph of size
N, proceeding to a matching between the p—graphlets and the graph G, a feature vector fg of length
M can be defined, whose i-th component corresponds to the occurence frequency of the graphlet G; in
G, which is equal to #{Q;|G; C G}. The feature vector fg is called the p—spectrum of G, and is used
to measure similarity between graphs. Given two graphs G and G’ of size N, N’ > p, the graphlet kernel
Kg4 is defined as :

Ky(G.G') = fa, fer) = [& 16 (2.21)

In order to evaluate the kernel Ky, a prior definition of all possible p—graphlets is needed, which is a hard
task when p becomes big. Therefore, the kernel is basically studied using the 3,4, and 5—spectra of the
compared graphs. A graph that contains N nodes, has the quantity (%7)\1 ) as number of p—graphelets, which
is a hard task to enumerate. Hence, conceptors resorted to sampling in a way to reach a given confidence
with a small probability of error. Unfortunately, the sampling algorithms proposed in the litterature:
Przulj, 2007, N. Kashtan et al., 2004, Wernicke, 2005 are ad-hoc and do not show restrictions about sam-

pling rate, therefore N. Shervashidze et al., 2009 defined a bound involving some probability distributions.

Let S = {1,2,...,a} denotes a finite set of elements. Given a multiset X := {X;}2; of independent

identically distributed random variables X; drawn from some distribution 7 (X; ~ n), the empirical
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estimate of 7 via the m variables is given by :

7m(i) = — > 6(X; =1), (2:22)
where 7 € S.

Theorem 2.7.1. Let n be a probability distribution on the finite set S = {1,2,...,a}. Let X := {X;}7",

with (X; ~ ). For a given £ >0 and 7 > 0,

2(log2-a +log (1))
= @

samples suffice to ensure that P{|| n— 7™ |1> & < T.

(2.23)

The theorem (2.7.1) can be applied in graphlets sampling problem, considering the set S as the set of all
p—graphlets and suppose that their distribution follow some unknown probability law 7, and m being the
number of sampled graphlets for a given size of graphs. The quantity (2.23) bounds the minimum number
of samples necessary for that 77" gets closer to the real distribution 7, with an error £ and confidence 1—7.
As a particular case, the class of bounded degree graphs shows an opportunity to effectively identify all
possible graphelets, hence, N. Shervashidze et al., 2009 present an algorithm for counting all connected

graphlets that can be present in low degree graphs and established the following theorem :

Theorem 2.7.2. (N. Shervashidze et al., 2009) Let G be a bounded degree graph, and let d,,q. denotes

the mazimum degree. Then all connected graphlets of G with size p € {3,4,5} can be enumerated in

O(N (dpmaz)P~ 1) time.

DD IN LT

O—O0 O——0 O ®)

®) O O——0 O o O ®)

Figure 2.12: All possible graphlets with 4 nodes.

2.7.4 Ramon and Gartner Subtree kernel

As stated in the previous section, the computation of kernels based on Random walks can be done in

efficient manner by using direct product graphs and a form of power series of their adjacency matrices
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(A ). However, some graphs can not be distinguished in feature space using only walk based maching
kernels, thus, J. Ramon and T. Gértner, 2003 proposed a kernel that counts the number of common

subtree patterns between two graphs.

Consider a labeled graph G(V,&,¢) € G with £(v;) the label of v;. Therefore, any node r € V of G
can be seen as a subtree pattern rooted at r and of height h = 0. Considering a set of subtree patterns
{t1,t2,....tn} of G rooted at {ri,ro,...,rn|7m; # 7;Vi,j € {1,2,...,n}} respectively, if these nodes are
connected to an unique other node r such that : (r,r1), (r,7r2), ..., (r,7,) € £, then their combination in a

new tree rooted at r is also a subtree pattern of GG, where r is called the parent node of the root nodes r;.

Each subtree pattern is characterized by a particular signature that distinguishes it from other
subtrees, like in random walks which are described by the sequence of labels associated to the visited
nodes during the walk. Otherwise, the numbers that refer to the occurrences of these signatures in the

graph can be used as features that describe and distinguish the graph from other similar graphs.

Let G(V,&,£),G'(V',E',¢') € G be two labeled graphs. We denote by K, ; the weighted count
of subtrees pairs from both graphs that share the same signature, and that have a height not exceeding
the value h, also, the subtrees are rooted respectively at r € V(G) and s € V(G'). K, s, value is given

iteratively by :

o(l(r),£(s)), ifh=1
Krsn(r,s) = ), €s)) (2.24)

ArAs 0(L(r), £(8)) 22 rermr,s) Hworyer Krsn—1(v,0"), i h>1,

where :

M(r,s) = {R CN () x N(8)|(V(w, ), (v,v') €E R u=v & =)0 (V(u,u) € R : £(u) = Z(u'))},
(2.25)
and A, \; are positive numbers less than one, used to ponderate and penalize the contribution of higher
trees in the overall sum. The final subtree kernel of height A comparing all pairs of trees rooted at nodes

from both G(V,&,¢) and G'(V', &', ¢) is given by :

Kipree (G G) =D Krsn(r,s), (2.26)

reV seV’
For more precision, the set M (r, s) contains all the exact subsets matchings between the neighbor-

hoods of r and s. Every subset R of M(r,s) contain pairs of nodes from the neighborhoods N (r) and
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N(s), such that their labels are the same and that no node belongs to more than one pair. In other
words, K, s, takes into account all possible machings M(r, s) between the neighborhoods of two nodes

r from G and s from G’ that share the same label.

subtree pattern of height 2 A subtree pattern of height 2

rooted at node 1 rooted at node 4

Figure 2.13: Examples of subtree patterns from the graph G.

2.7.5 Weisfeiler-Lehman Edge kernel
2.7.5.1 The Weisfeiler-Lehman Test of Isomorphism

The Weisfeiler-Lehman graph kernels are based on a concept developped by Weisfeiler and Lehman B.
Weisfeiler and A.A. Lehman, 1968 to test the isomorphism of graphs using an iterative algorithm. In
each iteration, the algorithm relables the graph nodes using the labels of their neighbors. We note that
an isomorphism between two graphs G and G’ is a bijective mapping between their respective node sets
g: V(G) = V(G'), such that any two nodes v and v are adjacent in G, if and only if g(v) and g(u) are

adjacent in G’.

The key idea of the algorithm consists of adding to the original node label, the sorted neighboring
labels as an extension, and then compressing it into a short one. These steps are repeated until that the
label sets of G and G’ mismatches, or the number of iterations becomes big. Label compression can be
done by any function f satisfying injectivity condition and permitting a compact representation of the
labels after extension, thus it ensures that the strings are distinguishable after compression. The sorting
step is important, it permits the convergence of the labels sets to a unique set in case of isomorphic

graphs.

The Weisfeiler-Lehman algorithm stops when the condition ({¢;(v)jv € V} # {£;(v))|v/ € V'}) is
satisfied, meaning that the sets of the newly obtained labels of G and G’ are different, and the graphs
are then not isomorphic. Otherwise, after a large number of iterations, the graphs can be considered

as isomorphic. However, J.Y. Cai et al., 1992 showed that the algorithm can miss in some cases the
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Algorithm 1 One iteration of 1-D Weisfeiler-Lehman test of graph isomorphism

1. Neighboring-Labels Set determination
- For i =0, set M;(v) = £y(v).
- For i > 0, assign a set of neighboring labels M;(v) to each node v in G and G’

which consists of the set {£;_1(u)|u € N(v)}

2. Sorting the elements of each Neighboring-Labels Set
- Sort elements in M;(v) in ascending order and concatenate them into a string s;(v).

- Add ¢;_1(v) as a prefix to s;(v) ans call the resulting string s;(v).

3. Label compression
- Sort, all of the strings s;(v) for all v from G and G’ in ascending order.
- Map each string s;(v) to a new compressed label, using a function f : ¥* — 3 such that
f(si(v)) = f(si(w)) if and only if s;(v) = s;(w) / X : is the set of all possible strings, ¥* = N.
4. Relabeling

- Set £;(v) = f(s;(v)) for all nodes in G and G’.

detection of the non isomorphism. Nevertheless, L. Babai and L. Kucera, 1979 have shown that the

algorithm remains a valid test of isomorphism for the majority of graphs.

e b g O® ©CF

Steps 1 and 2 : Determination and sorting of nodes
Two non-isomorphic labeled graphs G and G’
Neighboring-Labels
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G

Step 3 : Example of Label compression and shortening Step 4 : Relabeling

Figure 2.18: Example of Weisfeiler-Lehman graphs isomorphism test (One iteration).

2.7.5.2 The Weisfeiler-Lehman General Kernels

The Weisfeiler-Lehman kernels framework exploits the isomorphism testing algorithm presented above
to measure the similarity between graphs. The relabeling procedure associates to the original graphs
new labels ¢;(v) for all nodes V after each iteration, where these label-sets converge if the graphs are
similar or identical. So, the idea is to associate to a given graph G a set of new graphs {G;|i = 1,2, ..., h}
that takes ¢; as labels and keeps the same structure of G. Every iteration of the Weisfeiler-Lehman
relabeling process can be seen as a function 7 that generates a new graph from the previous one :
w((V,E,4;)) = (V,€,¢;+1), and behaves depending on the underlying graph properties. The following
definitions formulate the WL-kernel idea based on the sequences of attribute graphs generated from the

original compared graphs.

Definition 2.7.2 (N. Shervashidze et al., 2011). Define the Weisfeiler-Lehman graph at height i of the
graph G = (V,E,4y) as the graph G; = (V,&,¢;). We call the sequence of Weisfeiler-Lehman graphs of G

up to height h the set :
{Gov Gy, ..., Gh} = {(‘/7 57 60)7 (Vv 5’61)7 X (Vva ga gh)}v
where Gy = G, G1 = w(Gy) and by = L. G is the graph resulting from the first relabling iteration.

Definition 2.7.3 (N. Shervashidze et al., 2011). Let K be any wvalid positive semidefinite kernel for
graphs, that is called the base kernel. Then the Weisfeiler-Lehman kernel up to h iterations based on K
is given by :

Kiw1(G.G') = K(Go,G0) + K(G1,G"1) + -+ + K (G, '), (227)
where h is the number of Weisfeiler-Lehman iterations and {Gy, ..., Gr}, {G'o, ..., G'v} are the Weisfeiler-

Lehman sequences of G and G’ respectively.

Theorem 2.7.3 (N. Shervashidze et al., 2011). Let the base kernel K be any positive semidefinite kernel
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on graphs. Then the corresponding Weisfeiler-Lehman kernel IC%)L is valid and positive semidefinite.

IC%})L kernel generalizes basic kernel functions defined for discrete node-labeled graphs to different levels

of node-labeling.

2.7.5.3 The Weisfeiler-Lehman Edge Kernel

The Weisfeiler-Lehman edge kernel is a particular instance of the Weisfeiler-Lehman kernels family defined
by N. Shervashidze et al., 2011. It uses a base kernel Kgqq4e that counts the number of edges that have

the same labels in endpoints between two graphs, and it is defined mathematically as :

ICEdge = <®Edge(G)7 q)Edge(G/»a (228)

where ®pgqe(G) is an attributes vector containing the occurrences of ordered label pairs

(£(vi), £(v)))/ (vi,v;) € &, whith £ is the edges set of G. Denoting (£(v;), £(v;)) and (£ (v}),€ (v})) the

7

ordered labels of endpoints concerning edges (v;,v;) and (v;,v;) from G and G’ respectively, the base

kernel Kgg4ge can be expressed as :

Yo D S L)) 8(Ewy), £ (). (2.29)

(vi,v;)€E (v,v))EE
In the case of weighted edges via a weighting function W, the base kernel Kgq4e take then the form :

ST DT a0 () 8((wy), £ (v) Kw(W(vi,v;), W), v))), (2.30)
(vi,vs)€EE (vi,v})€EE’

where Ky is a similarity function that compares edge weights. By introducing (2.29) or (2.30) in equation

(2.27), we obtain the following new Weisfeiler-Lehman Edge kernel :

IC%/I};)L edge(G7 G/) = ’CEdge(GO, GIO) + ICE’dge(Gh Gll) + -+ }CEdge(Ghy G/h)- (231)

2.8 Conclusion

In this chapter, we reviewed the essential of mathematical concepts that make support vector machines
classify data in efficient manner in a large range of linear and non-linear learning problems. Via kernel
functions, support vector machines are able to separate non-linearly separable data in a higher dimen-
sional space. Their computational attractiveness is due to the fact that they can be applied in high

dimensional feature spaces without suffering from the high cost of explicitly computing the feature map.



52

CHAPTER 2. KERNEL TECHNIQUES FOR GRAPHS CLASSIFICATION

One advantage of kernel techniques among others is that they allow to run a large range of learning
algorithms on structured data, so far restricted only for attribute-indexed data. As state of art, we pre-
sented some of these kernels developed particularly for graphs comparison and classification. Integrated
in support vector machines, they show good performance on many applications as in bioinformatics,
chemoinformatics and other real-world learning problems. Other than their expressitivity power, they
hold several weaknesses. As many of them are NP-hard or at least complex to compute for large graphs,
as well as being local and not include any kind of spectral information about the compared graphs.
Therefore, we address thereafter the problem of graph similarity measure for classification, while ensur-
ing that the measures be applicable over a wide range of graphs, less complex and easy to implement and

adequately captures the topology of the underlying graphs.



CHAPTER
Energy and Total Variation

for Graphs Classification

3.1 Introduction

Ue to their ability to modelize complex relations in high-dimensional structured data, graphs
D constitute a potential tool for the analysis and the recovery of information from such data. One
major interest in graph theory is to explore the structural differences between graphs, that is in the sense
of graph isomorphism. However, from computational complexity perspective, the subgraph isomorphism
problem is hard to solve, like many combinatorial problems in graph theory. Therefore, methods that
gives quick and accurate estimate of the differences between two graphs are suitable for many applications,
0. Macindoe and W. Richards, 2010, such as, the study of social media networks, Y. Shi and M. Macy,
2016, the detection of cyber attacks and anomalies in computer networks G.S. Bopche and B.M. Mehtre,
2017, the study of the brains connexions A. Mheich et al., 2015, and for pattern recognition tasks Y.
Zhou et al., 2009, A. Sandryhaila and J.M.F. Moura, 2013. Some of earliest work in the subject were
undertaken by L. G. Shapiro and R. M. Haralick, 1985, who showed how string edit distance could be
extended to graph structures. The idea is to measure the similarity of graphs by counting the number
of graph edit operations (i. e. node, edge insertions and deletions) required to transform a graph into
another. However, the computational cost of such approach grows fast for larger graphs. More general
approaches using concepts from information and probability theory was indeed proposed, such the work
of W. J. Christmas et al., 1995, that show how a relaxation labeling technique can be employed to match
graphs by using pairwise attributes modeled by a Gaussian distribution. Or the one of R. Myers et al.,
2000, which uses maximum a prosteriori estimation to perform purely structural graph comparison, but
it needs some adequate probabilistic setup to optimize performance. In many cases, graphs could be
labeled by a sort of strings, for instance, B. Cao et al., 2013 use the depth-first search (DFS) algorithm

as a graph labeling approach, and they measure the similarity by the distance between the two DFS
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sequences, hence, by this way, the graph matching problem is turned to a string matching problem. More
other structural compaison approaches was proposed, such as the aligned subtree kernel L. Bai et al.,
2015b which incorporates explicit subtree correspondences between the compared graphs. Or assignment
kernels N. M. Kriege et al., 2016, which decomposes the graphs into smaller sub-graphs and try to find the
optimal bijection between them, or even those based on random walks F. Fouss et al., 2007 and quantum
walks L. Bai et al., 2015a. So far, the majority of these methods, aims to sort the graphs using some
structural similarity criteria without explicitly resorting to their spectral properties. While the spectrum
of graphs has been widely used in graph theory to characterise their structural attributes, and it has also
been employed for graph based pattern matching because of its invariance to labels changing. Therefore,
spectral similarity measures remain attractive and hold many strengths for graphs discrimination, I.
Jovanovi¢ and Z. Stani¢, 2014, and many approaches have been proposed in this framework, we cite
for instance, those based on spectral eccentricity, Dirac distance and Wasserstein distance, J. Gu et al.,

2015.

In this chapter, we focus on the problem of graph-signals classification, using new similarity mea-
sures based on two discriminants, the total variation (TV) and laplacian graph energy (Fpr). The first
one, is a structural attribute, which measures how the signal values changes (oscillate) upon the underly-
ing graph structure. While the second one, is a spectral attribute, which measures the complexity degree
of the graph and its connectivity, H.A. Bay-Ahmed et al., 2017b. We start by describing the advantages
of the two concepts for graph characterization, then we propose three new similarity measures, which are
of low complexity and easy to implement. The first one is based on TV, the second on Fy, and the third
is a weighted combination of the first ones. The measurements are then integrated into an exponential
kernel adapted for an C'— SV M machine, in order to classify graph data from five different bioinformatics

problems.

3.2 Total Variation Information

The characteraziation of continuous and discrete functions using the Total Variation (T'V') concept was
estabilished firstly by Jordan, 1881, in order to prove the convergence of Fourier series describing discon-
tinuous periodic functions with bounded variation. In mathematics, the total variation refers to several
closely related concepts, addressing local and global structural behaviour of a function f in his respec-
tive codomain. In the case of real valued continuous function f that takes the interval [a,b] C R as a
definition domain, its corresponding total variation on [a, b] measures the one-dimensional arclength of
the curve described by f: z — f(x), for © € [a,b]. Other than this geometric interpretation, in signal

processing, the total variation is used to characterize the oscillatory behaviour of a signal according to
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one variable or more. Based on differential operators, the TV quantifies high variations, transitions and
local fluctuations of a given signal. For instance, in image restoration problem, the TV —based approach
use the /1 —norm of the magnitude corresponding to the image’s intensity gradient to restor corners and
outlines, when minimizing the geometric oscillations of features in the reconstructed image L. I. Rudin
and S. Osher, 1994. Total variation has been indeed used for image filtering for recovering piecewise-
constant signals and for noise reduction while preserving prominent contours and edges in the underlying
signal L.I. Rudin et al., 1992, Chambolle, 2004, I. W. Selesnick and P. Y. Chen, 2013. Furthermore,
a wider range of TV —based approaches were proposed for sparse signal processing applications, such as
deconvolution J. Oliveira et al., 2009, image reconstruction Y. Wang et al., 2008, compressed sensing

W. Yin et al., 2008, interpolation and others.

3.2.1 Total Variation of 1D Signals

The total variation computed on 1D-signals, measures the total amplitude of oscillations and the rough-
ness degree of their envelope. It applies a first, second or higher order derivatives to the signal in
order to quantify fast variations and express them in a unique value that gives an indication about how
smooth /rough the signal is. Let f be a one-dimensional differentiable continuous function, then its total

variation is given by:

+oo
TV(f) = / ) | dt (3.1)

where f’ refers to the first order derivative of f. For a given set of M local extrema and minima of f
indexed by the abscissa {t, : p = 1,..., M}, in which f’(¢,) = 0, then its total variation can as well be
defined as:

M—-1

TV(f) =Y | f(tpr1) = f(tp) | (3-2)

p=1
Compared via their TV value, the gaussian-like function f(t) = exp(—t?) seems to be smoother than the
cardinal sine function f(t) = sin(nt)/(nt) which exhibits an infinite series of oscillations. The first one
have a finite total variation (TV(f) = 2), while it is infinite for the second one (TV(f) = +00), since
the cardinal sine has a local extrema at t, € [p,p + 1], and | f(tp,+1) — f(t,) |~| p |7'. In the case of
non-differentiable functions, the total variation can not be calculated using equation (3.1). But even so,

it can be defined alternatively in the sense of distributions, by approximating the derivative through a
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finite difference on an interval A which tends towards zero:

h—0

+oo
TV (f) = lim / [ /®) _| }’:(f —M g (3.3)

The function f is said to have bounded variation if its total variation converges (T'V (f) < +o00). Although
the total variation is well defined in the time domain, it remains difficult to evaluate in the spectral
domain. Whether f’ is the classical derivative of f or its derivative in the sense of distributions, its
Fourier transform in general is given by: f’ (w) =iw f (w), hence a relation between the spectrum module

and the total variation of f in time can be established:

—+oo
wilf@ < [ 1r01a=1v(), (3.4)
leading to:
| fw) 1< T (55

Although that | f(w) |= O(] TV(f) || w |71), it is not guaranteed that f has bounded variation. That
observation is argumented by the case of cardinal sinus f(t) = sin(nt)/(nt), which has a constant
spectrum f = 1;_x ] in the interval [—7, 7] and inwhich, it satisfies the unequality | fw <7 |w |t
despite the divergence of its corresponding total variation || f ||y = +oo. In general, the total variation

of f can not be deduced directly from | f(w) |.

Furthermore, in the case of discrete signals, the discrete total variation is defined as the accumula-
tion of the differences between consecutive signal samples. Let fas[n] be a discrete signal obtained from
a continuous function f sampled uniformly at intervals of length 1/M. The discrete TV is obtained by
approximating the first order derivative by a finite difference over the sampling interval h = 1/M, and

then approximate the integral in equation (3.3) by a Riemann sum, which gives:

TV(fa) =Y | fuln] = fuln =17 | (3.6)

The discrete signal is said to have a bounded wariation if its TV (fa) is bounded by a constant
value independent of the sampling rate. By putting the discrete signal in a column vector fy; =

[far(0), far(1), ..o, far(M —1)] € RM | the total variation of fj; can also be written as:

TV (fa) =l Viu s (3.7)
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where || - ||1 is the £;—norm and V is the first-order derivative operator taking the form:
-1 1
-1 1
vV — , (3.8)
-1 1

and having a size (M — 1) x M corresponding to a signal of M-samples. The shape of the derivation

operator V plays an important role in total variation generalization approaches.

3.2.2 Total Variation of 2D Signals

Ostensibly, the total variation of 2D signals or images preserves the same interpretation that the one in
1D signals. Its strength depends on the magnitude of the variations as well as the length of the contours
where the transition occurs. Let f(z1,22) be a two-dimentional continuous differentiable function, then

its total variation can be written as:

+o0o +o0o

V(= [ [ 195w2) | dordes (3.9)

— 00 —O0

where the operator ?() is the 2D gradient vector, having a modulus of the form:

R ST (e e (3.10)

Similar to the one-dimentional TV, the total variation (3.9) can be generalized to include the case of
discontinuous 2D signals, by defining once again the derivatives in the general sense of distributions.
Therefore, an equivalent expression is obtained by using finite differences over small intervals to approx-

imate the partial derivatives:

f(w1,20) — f(z1 — ha$2)‘2 n ’f(ffla@) — f(z1,20 — h) ‘2)1/2

| Apf(w1,22) |= <’ A 5

, (3.11)

where h is a narrow interval and | Ay f(x1,z2) | is an approximation of | ?f(.’l)l,fg) |. Moreover, the

error of the approximated total variation is bounded by an upper and lower bounds Mallat, 1999:

+00 +oo

TV(f) < lim / / | A f(@r,20) | derdaes < V2 TV(S), (3.12)

h—0

—00 —0O0
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The finite difference integral in (3.12) gets larger when the 2D signal exibits discontinuities along the
diagonal of the plane f(x1,z3). In the particular case of images, the sensor captures light intensity in
discrete way, by averaging the intensity in a small region and by sampling the covered space uniformly,
forming a grid of equally spaced samples. The sampled image is thus denoted by fuy[n1,ns], resulting
from a discretisation and averaging process of the original analog image f(z1, z2), with N is the distance
between two neighboring samples (resolution). The total variation is then defined by approximating the
derivatives along the two axes as a finite differences over the distance (interval) N, and by expressing the

integral of inequality (3.12) as a Riemann sum:

1

V(i) =

ZZ (‘fN[nhnz] — fnlny — 1,n2]‘2 + ‘fN[’Nd,TlQ] — fn[ni,ne — 1]‘2> 1/2. (3.13)

nl n2

In digital image processing, total variation based denoising techniques, often expressed as regular-
ization problems, are very effective in noise removal and image restoration. Initiated by L.I. Rudin et al.,
1992, these approaches manage to smooth and remove noise in rough areas, while preserving important
edges and features. The basic idea is that signals having high total variation values, contain often exor-
bitant details due to noise presence, which increases the modulus of the variation gradient. Therefore ,
TV —based denoising techniques aim to reduce the total variation of noisy signal subject to approach as
possible the original signal, by removing irrelevant details and keeping the important ones as edges and

contours.

3.2.3 Total Variation of Graph Signals

The central element in the calculation of the total variation of a signal is the derivation operator which
quantifies local variations of the signal. As equations (3.6) and (3.13) show, a first order derivation of
a discrete signal is approximated by a difference between neighbouring samples, that is, a difference
between the original version of the signal and its shifted version. In the case of conventional 1D and
2D signals, the samples are distributed uniformly on a regular lattice and the shifting operation is well
defined. Yet very often, graph signals are supported on an irregular and non-uniform structure, which
opens the way to several forms of shifting operators. The basic non-trivial operator is called graph shift
and is defined on a graph signal G(V, A, f) as a local operation that substitute the signal’s value f, at

node v, by a linear combination of the values of its neighbors (v, € N,,) fo:

meN,
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Therefore, the resultant shifted signal is nothing else than the input signal multiplied by the adjacency

matrix of the graph:

f=1[fo,..fv_1]T = AT, (3.15)

where N is the number of nodes, N, is the set of v,’s neighbors and A is the adjacency matrix of the

graph.

The total variation of equations (3.6) and (3.13) are adapted for time series and spacial signals. In
(3.6), the total variation compares every adjacent samples and cumulates the difference between them
over time, that is equivalent to compare the input signal f to its shifted version f. Hence, the bigger
is the difference between them, the higher is the total variation of f. In the case of a graph signal,
the difference is supposed to be between the signal value at every node and its neighbors, therefore, a
generalization of the total variation (3.6) from the particular case of regular graphs to the general case is
done by using the adjacency matrix as a shifting operator (3.15) and measuring the similarity between

the graph signal and its shifted version:

Definition 3.2.1. (S. Chen et al., 2015b): The total variation of a graph signal G(V, A,f) is defined

as:

TVe(f) =| £ — Af |1, (3.16)

where A is the adjacency matriz of G, Af = f is the shifted version of the signal £ and || - || is the

{1—mnorm.

Moreover, the 1D total variation defined in (3.6) is no more than a particular case of the one
defined for graphs in (3.16). For intance, for a finite/periodic time series f of length N, i.e. Figure 3.1,
the periodicity constraint f,, = f,, mod N implies a modification of the total variation definition to take

the form:

N—-1
n=0

Hence, such time series can be modeled by a directed cyclic graph as shown in Figure 3.1. The
orientation of the edges indicates the time evolution from the past to the future, while the edge that links
the first and the last node (vy_1,vp) captures the periodicity of the signal (fx = fo). Consequently, the
N x N adjacency matrix of such graph ( Figure 3.1) is non-symmetric. More precisely, it is a cyclic

permutation matrix having the form:
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A=C= ' , (3.18)

Using the cyclic permutation matrix (3.18), the total variation (3.17) can be written as:

TV(E)=||f-Cf ;. (3.19)
g 1
Cell, sl
S apelllllie, - lllle
e
8
£ 4
0 1 2 3 4 5 6
t [s] U V2 U3 U4 Us Vg U7z Ug Vg Uio Vi1 Uiz V13 V4 U5 Vie
sin(2wvt), v =0.32 Directed cyclic graph representing the sampled sine wave:

G(V,A,f) : V — R such that: v, — f, = sin(27v [n])

Figure 3.1: A discrete periodic series satisfying f, = fnmod N (N = 16) can be modelized using a directed graph.
The node values are the series samples, the edges represent the time flow and the edge (vn,v1) illustrates the

periodicity of the series.

The intuition behind the graph total variation (3.16) comes from discrete mathematical models. While
the discretized derivative of a signal f is defined as a simple local difference V,,(f) = f, — fn—1, the

derivative (gradient) of a graph signal G(V, A, f) at a particular node v, is given by:

meN,

The magnitude of the gradient | V,(f) | at node v, corresponds to the variation of the signal f in
that node, and the total variation is the sum of all variations over the totality of nodes Mallat, 2008
D.I. Shuman et al., 2013. Furthermore, as a generalization, the discrete p—Dirichlet form of the total

variation can be considered:

Sp(s) == [ Vnls) I, (3.21)
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where, for the value p = 1, the equation (3.21) corresponds to the initial one (3.16):
N-1
S1(f) = ) | Va() | (3.22)
n=0
N-1

Jo= Y Anmtn| =l £ - AL

meN,

In Discrete Graph Signal Processing DSP¢ theory, the expression of the total variation (3.22) could
be generalized to all graph signal by using any shifting operator that is valid for such signals, hence, more
shifting operators are defined in the litterature (see B. Girault et al., 2015). Figures 3.2 and 3.3
illustrate the sensitivity of the total variation (T'Vg) to oscillations and the fluctuations of the signal
upon the structure. We choosed the heat propagation model to generate a graph signal that behaves in
an ondulatory way accross the structure, thus making it possible to evaluate the response of the total
variation to this change in behaviour. We notice that the form of the 1D-wave showed in Figure 3.3
depends on the order initially chosen for nodes. In this case of grid graph, we ordered nodes from left to

right beginning from above to below.
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Figure 3.2: A graph signal f associated to a 12 x 12 grid structure, in which it diffuses according to the heat
propagation model: f(t+1) = exp (—7tL)f(¢), L being its laplacian matrix. During diffusion, the signal’s values

oscillate more and more, leading a higher total variation values.
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Figure 3.3: Diffused graph signals indexed by nodes, corresponding to diffusion states showed in Figure 3.2. From

left to right, we observe that the more heat propagates wider across the network, the more oscillations occurs.
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3.2.4 TV -—based Signals Denoising

Among the various applications of total variation, we invoke the one concerning the denoising of signals,
whether they are uni- or bi-dimensional. The TV —based noise reduction approach has the ability of
restoring prominent and sharp edges characterizing the original signal L.I. Rudin et al., 1992. The
denoising process consists of looking for a solution to an optimization problem, wherein total variation
is introduced as a regularization term. Therefore, the T'V —filter is obtained after minimizing a certain
objective function which includes a measure of distortion between the input signal and its estimated
version. In the paper L.I. Rudin et al., 1992, total variation was introduced for the first time to
regularize a filtering algorithm dedicated mainly for piecewise smooth images denoising. Its performance
is due probably to the good tradeoff that T'V —regularizer can establish between the description level of
that particular class of piecewise smooth signals and the computational complexity of the algorithm. The
goal of TV —regularization is to bound as possible the signal’s amplitude variations, without penalizing
extensively discontinuities, moreover, the introduction of the TV —regularization term in the objective

function does not affect its convexity J. M. Bioucas-Dias et al., 2006.

Mathematically the T'V —denoising algorithm is formulated as an optimization problem defined in

a continuous domain L.I. Rudin et al., 1992:

X =ar mln ))2dt + ATV (x) (3.23)
arg Q/ }

TV (x) is the regularization term corresponding to the continuous 1D total variation of x, defined by
formula (3.1). The minimization operation spans the set ) of all square integrable functions. Otherwise,
the discrete version of the approach assumes that the signal y(n) is distorted by an additive white Gaussian
noise w(n) such that y(n) = z(n) + w(n) and N is the number of samples. The goal is to approximate

y(n) with a piecewise constant signal 2(n) by solving the following discrete domain optimization problem:

X:argm}in{ Z\y |2dt+AZ\x —mn—1)|} (3.24)

The regularization \ parameter controls the degree of smoothing to be performed on z(n) to further
minimize its quadratic error via compared to y(n). High values of A give more importance to the total
variation of x(n), therefore, to the details level of the output signal. According to the equation (3.7), the
first order derivative of an N—sample signal x is given by Vx, while its total variation is || Vx ||;. Using

this notation, the TV —based denoising problem can be expressed in a compact form as:

. (1
x:argm}zn{§ Iy —x |2 +X] Vx|, } (3.25)
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To solve the optimization problem (3.25), an efficient algorithm was used by M. A. T. Figueiredo
et al., 2006, called the Majorization-Minimization (M M) algorithm, which consists on the solving of
simpler optimization problems instead the initial problem difficult to solve. Instead of minimizing a
complex cost function F'(x), the MM algorithm minimizes a sequence of easier problems described by
the objective functions F},(x) /k € N. The MM algorithm yields a sequence of solutions x;, each being
issued from the minimization of the function G_;(x). The functions Gj(x) are chosen so that they are
easy to minimize and they approximate at best F'(x). Formally, G (x) must upper-bound F'(x) such that
Gr(x) > F(x)/ Vx, and that it meets F'(x) at point x = xj. Moreover, the functions Gj(x) should be
convex, giving the set of solutions x;y; determined by M M algorithm. Therefore, when F(x) is convex
too, the obtained sequence of solutions xj, converges to the global solution (minimizer) of F(x), (see M.
A. T. Figueiredo et al., 2006). One way to solve the T'V —based denoising problem (3.25) by the MM
algorithm is to use a quadratic function to majorize the total variation || Vx ||1, so as to also majorize
the total objective function F(x), which can be in turn to be minimized by solving a system of linear
equations. According to this approach, the sequence of consecutive solutions x; are then linked by the

following update function:

1 -1
Xpp1 =y — V7T (X diag(| Vi, |) + VVT) Vy. (3.26)

where V is the first order derivation operator given by the matrix (3.8). See Selesnick, 2012 for more

details about this result.

0 0
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Original signal Noisy signal, 0 = 0.4, RMSFE = 0.368
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0 50 100 150 200 250 300 0 50 100 150 200 250 300
t [s] t [s]
TV-Denoised Signal A = 0.4, RMSE = 0.153 TV-Denoised Signal A = 0.8, RMSE = 0.123

Figure 3.4: Denoising example of a 1D-signal based on T'V and on the (M M) algorithm (Selesnick, 2012). The
signal is destorted by an additive Gaussian White Noise ~ N (0, o). X si the regularization parameter of equation

(3.26). The denoising performance is measured by the Root Mean Sequare Error (RMSE).

The TV —based denoising example of Figure 3.4 shows that the algorithm is able to recover important
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edges and features of the signal, as well that the total variation via the parameter A controls pretty well
the degree of details allowed in the output signal. However, it is clear that the algorithm is adapted for

piecewise constant smooth signals, because it does not tolerate fast variations of the envelope.

3.2.5 TV -—based Graph Frequencies Ordering

In classical discrete signal processing theory, the concept of low and high frequencies is well defined
and has an intuitive interpretation, since these signals including time series and images are analysed
in Fourier’s sense by decomposing them into a certain weighted sum of sinusoidal functions oscillating
in different ways Mallat, 2008. The oscillation rate of each component gives an indication about its
energy, therefore a physical interpretation about the concept of "high" and "low" frequencies. The faster
the oscillation is, the higher its corresponding frequency is. However, this observation is valid only for
signals uniformally sampled, that oscillate in a regular lattice, unlike graph signals that are supported on

irregular and complex structures.

A graph signal is commonly expressed in terms of graph Fourier functions, corresponding to the
Jordan eigen-decomposition of its adjacency matrix A. Where, distinct eigenvalues of A are interpreted
as the graph frequencies forming the spectrum, and the m—th Jordan eigenvector v,, is interpreted as a
frequency component associated to the m—th frequency A,, of the graph. Since the Jordan decomposition
yields a generalized eigenvectors, a particular graph frequency could be associated to several frequency
components. Hence, the ordering of graph frequencies is not trivial, it needs an objective criteria equivalent
to the oscillation rate in classical DSP, to rank them appropriately. One possible criteria is total variation,
proposed by A. Sandryhaila and J.M.F. Moura, 2014. They order the graph frequencies according to
the oscillatory rate of the corresponding spectral components upon the underlying graph structure. They
use the graph total variation function defined in (3.16) to measure the changes of signal values from
individual nodes towards their neighbors, leading to a definition of "low" and "high" frequencies on
graphs. Furthermore, they show that the resultant order is unique for graphs having real valued spectra

(undirected graphs).

As mentioned previously, the Jordan eigen-decomposition of adjacency matrix A yields a
Fourier basis for the corresponding graph signal G(V,A,f). Let A be an eigenvalue of A, and let
V = Vg, Vy,...,vg — 1 be a Jordan chain of generalized eigenvectors associated to A. Then, the following

indicator function
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0, ifr=0
iy = (3.27)

1, ifl<r<R

points out whether v,. is a generalized or a specific eigenvector of A. Thus, the generalized eigen-problem

associated to the matrix A is then formulated as:

Av, = \v, + 1, v,_1. (3.28)

The Fourier analysis of the graph signal G(V, A,f) consists on the projection of f over the Jordan
eigenbasis. Hence, each frequency component v, is seen as a signal supported on the same structure than
that of f, and thus, the total variation of the generalized eigenvector v, on the structure of G can be

calculated using equation (3.16):

TVa(v,) =|| vi. — A" v, |1
’ 1

where A™°"™ is a normalized version of the adjacency matrix A, scaled up by the highest eigenvalue to

v, — Av,

(3.29)

| )\maa: ‘ 1

guarantee the non scaling of the shifted resultant signal (A/ | Anas |). By substituting equation (3.28)

in (3.29), the total variation of v, becomes:

A iy

V.. —
Amaz | " | Amaz |

TVG(vr) = ‘

Vrfl

Vr‘lHl' (3.30)

If v, is a specific eigenvector of A, with r =0, v = v,. = v and igp = 0, then the total variation (3.30)

corresponding to the eigenvector v is written as:

A
ﬂ@wy:p—rr—f

max |

vl (3.31)

The expression (3.31) indicates that the total variation of a frequency component indexed by a specific
eigenvector of A, is determied straightforwardly by its corresponding eigenvalue . This leads to the fact
that all specific eigenvectors associated to the same frequency exhibit identical total variation. When
the eigenvectors are generalized ones, then equation (3.29) is used to measure their variation towards

other frequency components. After normalization, the norm of v becomes unity (|| v ||1= 1) and its total
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variation has an upper bound of two as stated by the following inequality:

A
1+ ‘7’§ 2. (3.32)

TV =|1-—
G(V) | )\mam |

A
—\s
|)\ma$|

Therefore, the total variation of a normalized specific eigenvector does not exceed 2 and obviously does
not go under 0. As result, the total variation defined by equations (3.29) and (3.31), and calculated for
every frequency component of G, is an appropriate tool to order frequencies in ascending way. Thus, "low"
frequencies are those that have a slow variation, while fast variation corresponds to "high" frequencies.
Moreover, the total variation (3.31) is valid uniquely for graphs that have diagonalizable adjacency
matrix and only have specific eigenvectors, otherwise, equation (3.29) can be used for graphs having

non-diagonalizable adjacency matrices with generalized eigenvectors.

Theorem 3.2.1. (A. Sandryhaila and J.M.F. Moura, 201/) Consider two distinct real eigenvalues
Ams An € R of the adjacency matriz A with corresponding eigenvectors v, and v,. If the eigenvalues are

ordered as A\, < Ay, then the total variation of their eigenvectors satisfy

TVG (Vm) > TVG (Vn),

it follows from the theorem 3.2.1 that if a graph signal possess a spectrum of eigenvalues ordered in this
way: A\g > A1 > -+ > Ap—1, then the eigenvalue Ag is the lowest possible oscillation of the signal in the
given graph and Aj; — 1 is the highest one. In addition, that ordering is unique for each individual graph.

Otherwise, for graph that have complex eigenvalues, the ordering is given by the following theorem:

Theorem 3.2.2. (A. Sandryhaila and J.M.F. Moura, 201/) Consider two distinct complex eigenvalues
Ams An € C associated to the adjacency matriz A. Let v,, and v, be thier corresponding eigenvectors.

Then the total variation of these eigenvectors satisfy

TVG(Vm) < TVG(Vn),
if the eigenvalue A, is located closer to the value | Mpqq | 0n the complex plane then the eigenvalue A,,.

The theorem 3.2.2 states that for complex frequencies, the order is done according to their relative
distance from the point | Ajyqe |- Unlike the order of real frequencies, this order is not unique, because
the distinction between frequency components associated to distinct frequencies is not guaranteed, since
they may have the same total variation. Concretely, all complex frequencies lying on a circle of radius o

centered at the point | Apqz | on the complex plane share the same total variation o/ | Apaz |-
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3.2.6 Total Variation as Similarity Measure

Graph total variation TV (3.16) characterizes the oscillations of the signal values upon the structure
of the graph, where high variations illustrate the presence of high frequency components in the graph
A. Sandryhaila and J.M.F. Moura, 2014. These frequencies depend directly on both signal values on
each node and their corresponding degrees. A high local oscillation corresponds to abrupt variation of the
signal value with respect to its neighbours. The more the neighbourhood is large, the more important the
oscillation is. This observation is illustrated in Figure 3.6, where the signal associated to the structure
of the graph is a one single value positionned in a particular node every time and equals zero in other
nodes.The total variation of this signal is proportional to the difference between their original values and
shifted ones. Hence, the T'Vi; increases when the neighborhood of the initial node gets wider. The last
subfigure of Figure 3.6 shows that an oscillation in the graph its a local property and depends on the

neighborhood where it occurs. We mean by §;;, the kronecker function associating one to the node having

ij

index ¢ = j and a zero to other nodes:

1, ifi=j
6ij =

0, ifi#j
l Sy o 1
$ <] 5
3 \ . 0.6 5 ‘(\ 3 ‘\ . 0.6
! 04 i/ ° F < 04
’ \ ': « : 02 I \ 7 ’ \ 7 02

" 8 * 11 8 " 8

(a) f=dir (b) f=6is, TVg =2 (a) f=0dn (b) f=06ia+0i3, TVg =3

Given the structure of the graph and the signal values on his nodes, the T'Vz can be considered as
a good and informative descriptor for graph discrimination. More precisely, TV is well suited for graph
signals comparison. Consider a set of two graph-signals {G;(V;, A;, f;), G;(V;, A, f;)} € G where A; and
f; are respectively the adjacency matrix and the signal supported on the graph’s nodes, with G being the
domain of graph signals. We use the relation (3.16) to write the mean total variation of the graph signal

indexed by k € {1,2}

_ TWalt) [ fr — Axfill,

TVe(fe)
N ng

(3.33)

where ny is the number of the nodes in the graph Gj.. We use the formula (3.33) to measure the similarity
between the graph signals, we suppose that two graphs go closer to each other, probably when their total

variation tends to be the same. In other words, a two graph signals oscillate the same manner often when
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(b) f = i3 + di5 + dis (b) =
TVg =4 02 + i3 + 0ia + dis + di7 +
0;8+0i0+0di10+0i11+6i12+

0;13 + 6i1a, TVe =13

Figure 3.6: The total variation increases when the oscillation from a node towards its neighbors is high in amplitude
and range. The left hand figures ”(a)” show initial state of the graph signal f composed of a single peak located
at one of the nodes {v7, v1,v4,v6}. The right hand figures ” (b)” show the shifted version of the signal according to
equation (3.15). The TV measures the variation between f and f, therefore, it increases when the neighborhood

is large.

they share the same structural properties. Hence, as a distance between G;(f;, A;) and G;(f;, A;), we
consider the simple difference between their respective mean total variations defined in (3.33), which we

denote by

TVG(Gi,Gy) =| TVa(f:) — TVa(£)) | . (3.34)

Thus, small TVG value means high similarity. More, among the advantages of this distance (3.34), it
compares graph signals while involving both, the signal’s values on nodes and the structural information
of the graph included in the adjacency matrix A. Thereafter, this distance is used to compare molecular

data for classification.

3.3 Graph Energy Information

3.3.1 Energy of Signals

Signals may represent a broad variety of phenomena. In many applications, signals are directly related
to physical quantities capturing energy and power in a physical system. The concept of signal energy
is of primary importance in the design of continuous and discrete domain systems. In the real world,
we always transmit signals with finite energy 0 < F, < +o0o where E, is the total energy signal that
represents the amount of energy contained in signal z(t). Engineers refer to such signals as having finite

energy, although FE, is not necessarily the physical energy of the signal x(t). The measure E,, analogue
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to the squared length of multidimensional vectors, is proportional to energy (physical quantity) when
x(t) is a velocity, current, voltage or pressure. The total energy of the signal should be independent of
the method used to calculate it. Alternatively, in frequency domain, the energy spectral density is given
by | X(f) |?, where X (f) is the Fourier transform of x(¢). The quantity | X (f) |? expresses the energy
contribution of a given frequency to E,. The estimation of E, is an important part of physics and signal
processing and can be equivalently computed in either the time or frequency domain. For a continuous

real time signal x(t), the energy is expressed as:

+oo +oo
E, = (a(t), 2*(1)) = / () [P dt = / | X(f) | df. (3.35)

The Parserval’s or Rayleigh’s theorem, which connects the total energy in time and frequency domains
(conservation of energy), states that the total energy contained in the signal x(¢) across all time is equal
to the total energy of the signal’s Fourier transform X(f) over all of its frequency components. The
quantity E, can also be calculated from wavelet coefficients of x(t) or its time-frequency representation
and particularly for the study of nonstationary signals Boashash, 2015. This estimation of E, is applied
across different domains of signal processing such as communications, speech processing, Radar, Sonar
or biomedical engineering. However, it is not easy to see from the identity (3.35) how signal frequencies
affect the energy measures. More precisely, neither the time domain description of x(t) and its energy
density | z(t) |?, nor the frequency domain description, X (f), and the spectral energy density | X (f) |?,
reveal explicitly the frequency spectrum at a particular time or the time at which a particular frequency
component occurs. Furthermore, the estimate E, does not ever refer to what the signal z(t) physically
represents and, generally, it is unclear how this estimate relates to the physical energy in the system
or the process that produced z(t) J.F. Kaiser, 1990,Fang and L.E. Atlas, 1995,A.0. Boudraa and

Salzenstein, 2015,Cohen, 1994.

As pointed out in Cohen, 1994, signal analysis has been extended to many diverse types data
including economical and sociological nature. Thus it is certainly not obvious that in those cases we can

meaningfully talk about the instantaneous energy per unit time and take | z(t) |? to be its value. For
example, the total energy of the source system modeled as a mass suspended by a spring of a constant
stiffness required to produce a simple undamped harmonic oscillation is calculated by the sum of the
kinetic energy of the mass and the potential energy in the spring. By studying the second order differential
associated to this harmonic oscillator, it is easy to show that a simple sinusoidal varies as a function of

both amplitude and oscillation frequency of the signal, which is quite different from simple squaring of

the signal magnitude Moshinsky and Y.F. Smirnov, 1996. It is this source modeling that is used for



70

CHAPTER 3. ENERGY AND TOTAL VARIATION FOR GRAPHS CLASSIFICATION

characterizing signals by amplitude and frequency. In their work on non-linear speech modelling, Herbert
and Shushan Teager pointed out the dominance of modulation as a process in the speech production
Teager and Teager, 1983, Teager and Teager, 1990. Based on the Teager’s work, Kaiser proposed an
energy measure that includes both the amplitude and the frequency of the signal J.F. Kaiser, 1990.
This measure is often referred to as the Teager-Kaiser (TK) energy operator. Using the conventional
view of the energy, it is easy to see that two tones at 10Hz and 1000Hz of unit-amplitude have the same
energy. However, the energy required to produce the signal of 1000Hz is much greater than that for the
10Hz signal J.F. Kaiser, 1990. Using TK definition of energy, the two tones show different energy. This
definition highlights the concept of signal energy from the point of view of the generation of the signal and
emphasizes the importance of analyzing signals from the energy aspect of the system needed to produce
them. In its continuous form, TK energy operator, noted ¥, when operating on continuous-time signal

x(t) is given by:

= &2(t) — x(t) i(t), (3.36)

where &(t) and Z(t) are the first and the second derivative of z(t) with respect to time ¢ respectively. When
U is applied to signals generated by a simple harmonic oscillator (mass-spring oscillator of constant
stiffness), it can track the oscillator’s energy (per half unit mass) which is proportional to the squared
product of the oscillation amplitude and frequency. For narrowband signal z(¢) and under realistic
conditions, Ue[x(t)] approximately estimates the energy of the source producing the oscillation x(t).
The matrix framework of the operator has been introduced in [13] by interpreting it as the determinant

of a Toeplitz matrix containing the signal and its derivatives:

Uolz(t)) = . (3.37)

The determinant is time-invariant for a signal with constant frequency [13]. Using this matrix framework,
the output of the TK operator is interpreted as the measured energy corresponding to the square of the

eigenvalue of its underlying energy matrix, a notion analogous to that seen in quantum mechanics [15].

3.3.2 On the Energy of Graphs

In quantum mechanics, the Schrédinger equation describes the changes over time of a physical system

in which quantum effects occur. The time-independent version of the equation, written as H¥ = EW,
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predicts the energy of stationary states (called "orbitals", as in atomic orbitals or molecular orbitals)
when the Hamiltonian operator H of the system is time-invariant. The stationary state is represented
by the wave function ¥, having the energy E. The solution of Schréodinger’s equation is nothing else
then the eigenpair (E, ¥). On the other hand, Hiickel Molecular Orbital (HMO) theory, I. Gutman and
O.E. Polansky, 2012, is a field of theoretical chemistry where approximations of the m-electron energies
are established for single conjugated hydrocarbon molecules, inwhich the Hamiltonian operator takes the
form H = al + SA, where A is the adjacency matrix of the graph associated to the molecule structure
and «, f are real constants. Hence, it results that the solution to the eigenvalue problem associated to
H can be reduced the one of A. The eigenvectors of H /(A) describe the orbitals of the molecule, in
which 0,1, or 2 m-electrons could exist. Often, 2p orbitals contain a pair of 7-electrons with a positive
energy E > 0, and no m-electrons otherwise (E < 0). In chemistry, a m-electron occupies an orbital which
forms a 7-bond in the molecule. Such bond is created between two atoms by overlapping orbitals having
a secondary quantum number superior or equal to one ( orbitals p and d). The overlap is lateral, and the
two lobes of the concerned two orbitals are parallel. Unlike in the case of o-bonds where the lobes of the
two atomic orbitals point towards each other. Each of these atomic orbitals has zero electron density in
the connection axis. Figure 3.7 illustrates the form of some atomic orbitals and their overlapping when

forming a m-bond/o-bond in ethylene molecule.
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Figure 3.7: In an atom, electrons orbit the nucleus, while occupying a well defined orbits with quantified levels of
energy. In (a), the s and p type orbitals are illustrated. While (b) shows the overlap of atomic orbitals to form
the ethylene molecule. The lateral overlap of parallel p orbitales forms a m-bound (connexion), while a frontal

overlap forms a o-bound.

Given that the energy E corresponds to the eigenvalues of the eigenproblem H¥ = EW¥,  where
H = oI + BA, and that the trace of adjacency matrix is zero (Trace(A) = 0) (eigenvalues cancel each

other), then the total energy of m-electron could be quantified by:

)= lml, (3.38)
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where n is the number of carbon atoms in the molecule (graph nodes), p; ~ E; is the i*" eigenvalue
of adjacency matrix A of the graph G associated to the carbon structure of the molecule. Given the
energy Fa(G) of G, the m-electron energy is defined by E. = an. + SEA(G), where a and § are the
HMO parameters, n. is the number of m-electrons. Moreover, Gutman argues that by means of E, it is
possible to calculate accurately the values of thermodynamic functions of conjugated hydrocarbons such
as enthalpy of combustion. The wide adoption of E, in physico-chemical community is explained by the
fact that L. J. Schaad and B. A. Hess, 1972 showed that also the o-electron energy is proportional to
EA(G) and not only m-electron energy. The quantity (3.38) is then generalized to any arbitrary connected
graph as the sum of its eigenvalues in absolute value Gutman, 2001, I. Gutman et al., 2007. In spectral

graph theory, each graph G having m edges and n nodes fullfils the following relations:

Zn:m =0, zn:m? =2m, Y X\ =2m, Zn:Aﬁ =2m+ Y (d(v))?, (3.39)
=1 =1 =1

i=1 v; €V
where 11 > p2 > -+ > py are the eigenvalues of adjacency matrix (A), \y = Ay = -+ > A, are those
of laplacian matrix (L) and d(v;) is the degree of the node v;. Moreover, if the graph is segmented to
k components (k > 1), then A\,,_; = 0 fori € {0,1,...,k — 1} and A\,—x > 0. Using these relation, the

following properties about Ea hold:

e EA(G) = 0, equality is obtained if and only if the graph is empty, such that m = 0.
e If GG is the union of the disconnected components G7 and Gs, then Ea(G) = Ea(G1) + Ea(G2).

o If G contains a non-empty component G; and all others are isolated nodes, then Ea (G) = Ea(G1).

This spectrum-based graph invariant has been largely studied in both chemical and mathematical liter-
ature. Some other interesting algebraic properties are investigated so far, defined on Fa-like quantities.
Among them, there is the one associated to the laplacian matrix (L). Instead of formula (3.38), a Ea-like
quantity defined in terms of laplacian matrix eigenvalues and preserving the main features of Fa has

been proposed by I. Gutman and B. Zhou, 2006:

n

EL(G) = Z

i=1

2m

T T by 4
A= (3.40)

where )\; are the eigenvalues of the laplacian matrix of G and 2m/n is its average node degree. Since the
sum of the nodes degrees in a graph is 2m and equals to the trace of L, the quantity 2m/n is nothing

more than the mean value of the L’s eigenvalues. Otherwise, by introducing the auxiliary eigenvalues

v =X — 22 for i € {1,2,...,n} and by analogy with relations (3.39), the following expressions can be

n
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deduced:
=0, 2 _ 90\ where M =m + - (dvi ——). 3.41
;7 ;7 5 ; (v:) — = (341)
Based on alternative graph representation matrices, other graph energies are proposed in the lit-
terature. Instead of laplacian matrix L, a signless laplacian matrix is defined by | L |= D + A, with

V1 2 Vg = -+ 2 U, its eigenvalues. Then similiraly to (3.40), the signless laplacian energy of G is given

by:

(3.42)

The distance matrix associated to a graph is the symmetric matrix D%, that have as entry DGij
the length of the shortest path between the nodes v; and v;. In case where the node vy, is isolated, then
the entries DS ; for all j are set to be zero instead of infinity (c0). Considering a simple graph (without
loops), then the diagonal entries of D are all zero, and the mean of eigenvalues is also zero. Therefore,

the energy of the distance matrix is similar to the expression of Ea in (3.38):

n
Epe =Y |nil, (3.43)
1=1

with 11 > 19 > --- > 7, are the eigenvalues of DS,

Overall, the graph energies presented above are often considered as special cases of matrix norms
(e.g. Ky Fan or Schatten norms), defined over the space of n x n complex matrices M, (C). For more

details, see Nikiforov, 2016. More precisely, the trace norm of B € M,,(C) is defined as || B ||.= >, 03,

where 01 > 09 > --- > 0, > 0 are the singular values of B. Therefore, if B € M, (C) is an Hermitian
matrix with Trace(B) and eigenvalues &1, .. .,&,, then the matrix (B - TT%G(B)IH) is also Hermitian
__ Trace(B)

with singular values ’51

= N F TT%S(B) ‘ As result, the norm of the new matrix is written

as:

Trace(B)
n

‘ ’B _ Trace(B) L

1=

& — (3.44)

*

Hence, each of the graph energies presented above can be seen as the trace norm of B — T’“%e(B)In

corresponding to a particular Hermitian matrix B. For exemple, in case where B is the adjacency matrix

A of a graph G, then:

n
Bg =) |&|=llAll, (3.45)
i=1
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with Trace(A) = 0. Similarly, if B is the laplacian matrix L of G with trace equals 2m (tr(L) = 2m),

where m is the number of edges, then:

2m

G-t = (3.46)

Eg=>)_

i=1

*

Likewise holds for the signless laplacian energy, the normalized laplacian energy and the distance energy.
The right side expression in (3.44) is an alternative approach to extend the concept of energy to the set
of all n x n matrices M, (C). It worth to note that this expression was conceived by V. Consonni and R.

Todeschini, 2008, where B is a molecular matrix.

3.3.3 Bounds for Adjacency Energy Invariant

Among the many goals behind the study of graph energy is that of formulating some interesting bounds
corresponding to some extremal examples of graphs. The first main step towards the understanding Eo’s
dependency on the structure of molecular graphs was established by B. J. McClelland, 1971, defining an

upper and a lower bounds of E in terms of simple graph invariants:

\/2m 4 nln — 1) | det(A) [2/" < Ea < V2mn, (3.47)

where n and m are the number of nodes and edges of a molecular graph, and A is its associated adjacency
matrix. Precisely, in the case of molecular graphs representing conjugated hydrocarbons, n represents
the number of carbon atoms and m is the number of carbon-carbon bonds (¢ and 7 bonds). It should
be noted that this bound (3.47) is not defined exclusively for molecular graphs, and it can be checked
on any other connected graph. The superior bound Fa = v/2mn, often referred to as the McClelland
upper bound, plays a crucial role in the theory of total m-electron energy and in the characterisation of
m-bonds in conjugated hydrocarbons. This bound is attained exactly in the cases where G is either an

empty graph or a 1-regular graph.

In the meantime, several other bounds for F 4 were proposed in the litterature. The following upper
and lower limits have been established for the purpose of relying only on the number of edges or nodes

of the molecular graph, G. Caporossi et al., 1999:

2y/m < Ea < 2m, (3.48)

Ep >2Vn—1, (3.49)
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where m and n are respectively the number of edges and nodes of G. The equality Fa = 24/m holds if
G has no isolated nodes, in addition, if and only if G is a complete bipartite graph. While the equality
Ea = 2m holds if and only if G is regular of degree 1. Furthermore, the lower bound (3.49) applies only
to graphs with no isolated nodes. Unlike the bounds (3.48) and (3.49), the following theorem gives an

upper bound of Ea which have a physical interpretation related to the energy of the m-electron:

Theorem 3.3.1. (J. H. Koolen and V. Moulton, 2001). Let G be a graph with n nodes and m edges.

If n and m satisfy 2m > n, then the inequality

Ea<?™ 4 Jtm-1) [2m - (—)2} (3.50)

n

holds. With equality, if and only if G is either 5 Ko, Ky, or a non-complete connected strongly reqular

graph with two non-trivial eigenvalues, both with absolute value \/(2m —(Z2)2)/(n —1).

Recall that K, is a complete graph on n nodes, and 5 K> is a multi-components graph built by the union
of § complete graphs K, having 2 nodes. The inequality (3.50) represents an important upper bound of

the total 7-electron energy, and it holds for all conjugated hydrocarbons.

Otherwise, the following theorem defines an upper bound of Ep concerning bipartite graphs, espe-

cially those which arise from chemistry studying alternant hydrocarbons:

Theorem 3.3.2. (J. H. Koolen and V. Moulton, 2003). Let G be a bipartite graph on n > 2 nodes,
then

Ea < M (3.51)

V8
. . . . . o . . . v+/v v+2y/v
holds, with equality holding if and only if n = 2v and G is the incidence graph of a 2—<V, T‘F, T\f) -

design.

The bound (3.50) is sharp, and it provides an infinite family of maximal energy bipartite graphs. It is
very useful in the study of hyper-energetic graphs. See X. Yang et al., 2016 for more details on incidence
graphs constructed from t-designs. Moreover, in the following theorem, Gutman, 2005 stated that the
upper bound (3.52) of Ea is the best known bound in terms of the number of nodes, even better than

the bound (3.49), except for graph with n = 64,256, 1024, 4096, ...:
Theorem 3.3.3. (J. H. Koolen and V. Moulton, 2001). Let G be a graph on n nodes, then

Ea <

(1++vn) (3.52)

|3

holds, with equality if and only if G is a strongly regular graph with parameters (n,(n + \/n)/2,(n +

2y/n) /4, (n+ 2v/n)/4).
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We recall that a k-regular graph G on n nodes is called strongly reqular with parameters (n, k, A, ) if the
following conditions hold. Every pair of adjacent nodes has the same number A > 0 of common neighbors,
and every pair of non-adjacent nodes has the same number of x> 0 of common neighbors. If ;4 = 0, then
G is non-complete, then the eigenvalues of G are k (the trivial eigenvalue) and r, s are the roots of the

quadratic equation 2% + (g — \)x + (u — k) = 0.

The question of how the energy of a bipartite graph can be small has been addressed by I. Gutman
et al., 2012 via a particular family of graphs. Let G be a bipartite graph with n nodes and m edges,

satisfying n < m < 2n — 4, then

EA22\/m+2\/(mfn+2)(2n7m74), (3.53)

holds. The equality is achieved by the bipartite graph G having two node sets V; and V5 with cardinalities
| Vi |= 2, | Vo |=n — 2. The graph G is built by joining one node from V; to all nodes in V3, and then

the construction is completed by connecting the remaining node of V; to the (m —n — 2) nodes of V5.

3.3.4 Bounds for Laplacian Energy Invariant

Unlike adjacency based graph energy, laplacian energy does not have a clear connection to chemical prob-
lems. Nevertheless, it attracted much attention of mathematicians for its interesting algebraic properties.
Ea and Ep, energies have many similar properties, but also some differences. I. Gutman and B. Zhou,
2006 pointed out these aspects and established the following upper and lower bounds of Ey, associated

to particular graph families:

2
1 2m
v eV
2 2 ’
Er< =4 | (n—1) lQM - <m> ] (3.55)
n n
2V/M < Er, < 2M. (3.56)

Theorem 3.3.4. (I. Gutman and B. Zhou, 2006). Inequality (3.54) holds for any (n,m)-graph G.
Equality is atteined if and only if G is either reqular of degree 0 or consists of « copies of complete graphs

of order k and a(k —2) isolated nodes, o > 1,k > 2. (Recall that in the case k = 2, G is reqular of degree

1),

Theorem 3.3.5. (I. Guiman and B. Zhou, 2006). Let G be an (n,m)-graph and p the number of its
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components (p > 1), then

By < %mer (n—p) [2M —p<2;n> 1 (3.57)

holds. For p = 1, equality is attained if and only if G is either a reqular graph of degree 0,1, or n — 1,

or a non-complete connected strongly reqular graph with two non-trivial eigenvalues both having absolute

value \/[2m — (2m/n)2]/(n —1). For p = n, G consists of isolated nodes, thus Ey, = 0. For any p,
equality holds for graphs consisting of « copies of complete graphs of order k and «a(k — 2) isolated nodes,
a> 1,k > 2, provided a(k —2) = p. (Recall that in the case p =n/2, if k = 2, then G is regular of degree

1),

Theorem 3.3.6. (I. Gutman and B. Zhou, 2006). The left-hand side inequality (3.56) holds for
any (n,m)-graph. Equality Ey, = 2V M is attained if and only if G is the complete bipartite graph
Ky /2.m/2- The right-hand side inequality (3.56) holds for graphs without isolated nodes. For such graphs,

the inequality Ey, = 2M is attained if and only if G is reqular of degreel.

3.3.5 Relation between F, and Ef,

Let B be a real and symmetric square matrix of size n. Let 0;(B),i € {1,2,...,n}, be its singular values
and p;(B),i € {1,2,...,n} its eigenvalues. Then, the relation between them is given by: ¢;(B) =| p;(B) |
for i € {1,2,...,n}. This relation is important in the theory of graph energy, since Nikiforov, 2016 defined
the energy of a graph as the sum of the singular values corresponding to its adjacency matrix A. Another
important tool is the following Ky Fan’s theorem, which establishes the relationship between the singular
values of a sum of two matrices and those of the resulting matrix, which is indeed widely used to define

some bounds for graph energies:

Theorem 3.3.7. (Fan, 1951). Let By, Ba and B be square matrices of size n (€ M,(R)), such that

B1 + B2 = B, then

Zai(Bl) +Zoi(B2) > Zoi(B), (3.58)

holds. Equality occurs if and only if there exists an orthogonal matriz P, such that the matrices PBy and

PBs are both positive semi-definite.

As a first consequence of the theorem (3.3.7), one can conclude that for a set of graphs G1,Gs and
G, whose adjacency matrices satisfy the condition: A; + As = A, their energies verify the inequality:
Ea, + Ea, > Ea. Moreover, some special cases of this inequality are given by the following corollaries

(3.3.1) and (3.3.2):
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Corollary 3.3.1. (W. So et al., 2010). Let G be a graph on n nodes and let G denotes its complement,

then

Ea+FEx 22(n—1), (3.59)
holds, with equality if and only if either G = K,, or G = K,,.

Corollary 3.3.2. (W. So et al., 2010). Let G be a graph with n nodes and m edges, and let A be the

highest degree among all node degrees, then
Ea <2m—2(A —VA), (3.60)

holds, with equality if and only if G is a union of the star graph Say1, with m — A isolated edges and

n —2m + A — 1 isolated nodes.

Furthermore, W. So et al., 2010 have proved using the Ky Fan theorem (3.3.7) that the laplacian based
graph energy Fjp, is upper bounded by the adjacency based energy Ea adjusted by a quantity dependent

on the degrees of nodes, as stated by the following corollary (3.3.3):

Corollary 3.3.3. (W. So et al., 2010). Let G be a non-empty graph with n nodes and m edges, with

node degrees di,ds, ...,d,, then

L 2m

ELgEA+;d,»—7, (3.61)
holds, where 2m/n is the average node degree of G.
Proof (W. So et al., 2010).
Note that:
L—z—mIn:D—A—Q—mIn:—A—i—[D—2—m1n] (3.62)
n n n

And by applying Ky Fan theorem (3.3.7) on equation (3.62), the following inequalities are deduced:

(- A+ [p- L))

i=1

<Sotar Sa(p- 2))

i=1 =
< i(n(A) +i0¢([D — 2%14),
i=1 i=1

" 2m
<EA+Zdi_7a
i=1

n

knowing that (D — QTmIn) is a diagonal matrix whose eigenvalues are ( P — 277") ,i€{1,2,...,n}.
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Despite this result, I. Gutman et al., 2008 conjectured that the laplacian based energy is always
greater than or equal to the one based on adjacency Ey, > Fa. However, the validity of this conjecture
was eventually disproved by means of counter-examples in J. Liu and B. Liu, 2009, D. Stevanovi¢ et al.,
2009. Additionally, W. So et al., 2010 show by the following theorem that the conjecture at least remains

valid for bipartite graphs:

Theorem 3.3.8. (W. So et al., 2010). Let G be a bipartite graph with n nodes and m edges, with node

degrees dy,ds, ..., dy, then

n

max{EA,Z

i=

2m
d; — - I (3.63)

2
di—*m }SELéEA+
n

holds, with 2m/n is the average node degree of G.

3.3.6 FEy1, Measures Complexity

Due to its practical importance, graph complexity quantification has attracted significant attention in
various domains such as pattern recognition, control theory or network analysis, F. Escolano et al.,
2008a. The measure of this complexity is important for different applications including embedding, A.
Robles-Kelly and E.R. Hancock, 2007, classification, A. Shokoufandeh et al., 1999 and filtering of image
description hierarchies Y.Z. Song et al., 2010. Such a quantification not only allows the complexity of
different graph structures to be compared, but also allows it to be measured versus the enhancement
of fitting quality of data when a structure is being learned. The graph complexity can be measured in
different ways. Among them there is the number of spanning trees and its connections with the laplacian
spectrum, methods based on path-length chromatic decomposition and others, see F. Escolano et al.,
2008a for more details. An attractive measure of complexity is the laplacian graph energy Fr, (3.40),
applied by Y.Z. Song et al., 2010 in image processing, allowing to measure images similarity by comparing
their textures represented on graphs. They show that laplacian graph energy is a broad measure of graph
complexity. They observe that regular structures which tend to be connected and monoton, such as
polygons, exhibit lower laplacian graph energy than structures comprising randomly selected edges and

in which some irregularities occur.

To reinforce their observations, we conducted a simulation to show that effectively, the complexity of
a graph is correlated with its energy. This fact is shown by using Erdés-Rényi random graphs parametrized
with the connectivity probability parameter p. As p increases from zero to one, the model becomes
more and more likely to include graphs with more edges and less and less likely to include graphs with
fewer edges. The figure 3.8 shows that the quantities Et, and Ea are both relevant for measuring the
complexity of graphs, their respective curves take a smooth upward rate when the Erdés-Rényi probability

increases, which indicates an augmentation in complexity of the generated graphs. Furthermore, the
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Figure 3.8: Ea and Ej, evolution when the structural complexity of the graphs increases, illustrated in Erdés-Rényi

random graphs, having 700 nodes. A. is the algebraic connectivity of the graph, called the Fiedler eigenvalue.

growth tendency is not the same, revealing a difference in the sensitivity of these energies (Eyr, and Fa)
to structural changes in the graph. Overall, this may mean that the matrices A and L recover in different
manner morphological characteristics of the graphs, thus their underlying complexity. We specify that
all generated graphs are connected except for the first one corresponding to p = 0. We observe also the
increase of the algebraic connectivity (A\2) measured by the second eigenvalue of L, as well as that the
energy Ei, estimate it in smoother and precise way. It is worth also mentioning that the connectivity and

complexity concepts become close when it comes to connected graphs.

3.4 Laplacian Graph Energy as Similarity Measure

As explained above, the graphs energy is an interesting quantity that can characterize a wide range
of structural data. Its link with the total m-electron energy, which is a physical invariant characterizing
chemical molecules is of great advantage. In addition to its ability to measure the structural complexity of
the graph in an affine way, we exploit the inherent information embedded in its eigenspectrum. Our idea
is to compare the complexity of the graphs, by comparing their respective Laplacian energies, assuming
that two graphs are probably to be the same or close when their energies go closer. Let G; and G; be two
graphs having comparable sizes (n; ~ n;). We define GE as the quantity that indicates their similarity

degree, and given by:

GE(G;,G;) = |EL(G:i) — BL(G))|. (3.64)

GE is the 1D-euclidean distance between laplacian energies of the compared graphs. Er,(G;) is computed
using equation (3.40). The GE distance is a spectral measure of similarity, which considers the eigen-

spectrum of laplacian matrix as an invariant, assuming that is unique and specific to each graph. But,
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this is not true for all graphs. There are some particular graphs that share the same laplacian spectrum
despite their structural differences, called cospectral graphs, which are hard to separate based only on
the GE measure. Otherwise, the GE is a global measure but does not include explicit local information
about the structure of the compared graphs and even their node labels (Signal values). However, these
weaknesses can be overcomed by combining in the same measure both the GE and TVG measures. For
this purpose, we use a convex combination to define some trade-off between the two quantities, in which a
better discrimination of the graphs is achievable. The new measure is called Joint Total variation Energy

(JET), and it is denoted by:

JET(G“ GJ) =a X GE(G“ G]) + (1 — Ot) X TVG(G/L7 Gj), (365)

where « € [0, 1] is a weighting parameter which controls the contributions of each measure, while taking
into account both the global complexity of the graph and the interaction of the node values with its
underlying structure. The effectiveness of these new measures is illustrated in classification tasks, by
integrating them in an exponential function to have a valid kernel similar to the Radial Basis Function
kernel (RBF)(B. Schélkopf and A.J. Smola, 2002). This kernel associates to each pair of graphs (G;,

G;) the quantity:

o0

Koy = Y - (7 8(Gi, Gy))" = exp (—7 S(G1, Gy), (3.66)

n=0
where K is the square kernel matrix of size M x M representing the number of graphs to be compared,
and S(G;, G;) is one of the similarity measures (TVG, GE, JET), defined by formulas (3.34), (3.64) and
(3.65) respectively. ~ is a smoothing factor, which controls the decreasing rate of the exponent and

guarantees that high order terms of the sum vanishes gradually.

3.5 Graphs Classification using (TVG, GE, JET) Measures

3.5.1 Graph Datasets

To show the effectiveness of the proposed similarity measures, five data sets are used, all concerning

chemical /biological compounds. We have thus:

e MUTAG: In genetics, a mutagen is a physical or chemical agent that changes the genetic material,
usually DNA, of an organism. It interacts with the DNA resulting on the creation of a corrupted
sequence by addition or deletion of specific sections. Therefore, mutagenic molecules have a

high risk of toxicity, especially for humans. The Chemical Carcinogenicity Research Information
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System (CCRIS) database contains scientifically tested data for 7,000 molecules almost. MUTAG
dataset was prepared by A.K. Debnath et al., 1991, containing 188 mutagenic aromatic and
heteroaromatic nitro compounds labeled according to whether or not they have mutagenic effect on
the Gram-negative bacterium Salmonella typhimurium. K. Riesen and H. Bunke, 2008 converted

them to a graph represented compounds.

NCI1, NCI109: represent two balanced datasets of chemical compounds screened for activity
against non-small cell lung cancer and ovarian cancer cell lines, N. Wale and G. Karypis, 20006, S.
Kim et al., 2015. Discovery, design and development of new drugs is an expensive and challenging
process. Any new drug should not only produce the desired response to the disease but should do
so with minimal side effects. One of the key steps in the drug design process is the identification
of the chemical compounds (hit compounds or just hits) that display the desired and reproducible
behavior against the specific biomolecular target. This represents a significant hurdle in the early
stages of drug discovery. Therefore, computational techniques that build models to correctly assign
chemical compounds to various classes or retrieve compounds of desired class froma database have
become popular in the pharmaceutical industry. The NCI1, NCI109 datasets are derived from the
PubChem website (S. Kim et al., 2015) that contains twelve datasets selected from the bioassay
records for cancer cell lines. NCI1 deals with the Non-Small Cell Lung human tumor, while
NCI109 deals with the Ovarian human tumor, both labeled either active or inactive via the cell line
growth inhibition assay. Each compound is represented by a molecular graph, nodes correspond to
the various atoms (e. g. carbon, nitrogen, oxygen, etc), and edges correspond to the bonds between
the atoms (o-bond, m-bond,...etc). K.M. Borgwardt et al., 2005 labeled the nodes by real numbers

characterizing each type of atom.

ENZYMES: represent the largest and most diverse group of all proteins, catalysing all chemical
reactions in the metabolism of all organisms. They play a key role in the regulation of metabolic
steps within the cell. With the development and progress of projects of structural and functional
genomics and metabolomics, the collection and processing of enzyme data becomes even more
important in order to analyse and understand biological processes. BRENDA database (I. Schom-
burg et al., 2004) represents a comprehensive relational database containing all enzymes classified
according to the EC system of the Enzyme Nomenclature Committee (IUBMB). This classification
is based on the type of reaction (e. g. oxidation, reduction, hydrolysis, group transfert) catalysed by
the enzyme. BRENDA holds information on 4200 EC numbers, which represent more than 83000

different enzyme molecules. The ENZYMES database consists on a labeled graphs representing
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600 enzymes from BRENDA, built by K.M. Borgwardt et al., 2005 to classify them into one of
the 6 top-level classes. The proteins were modeled by labeled an undirected graphs. Nodes in each
graph represent SSEs within the protein structure, (i. e. a-helix, S-sheet, S-turn,...etc), while the
SSE means the Estimated Secondary Structure using a spectral modeling procedure based on the
analysis of the infrared protein spectra. Edges connect nodes if those are direct neighbors along
the secondary structure (Figure 3.13) or if they are neighbors spacially in the protein structure.
The node structure gives a type label, stating whether they represent a helix, sheet or turn, and
physical/chemical information about hydrophobicity, the van der Waals volume, the polarity and
polarizability of the SSE represented by this node. One total normalized van der Waals value is
determined for each node. Additionaly, each node is labeled with the total number of its residues
with low, medium or high normalized van der Waals volume. The length of each SSFE in secondary
structure and the distance between the C,, atom of its first and last residue in Angstréms constitute
further node attributes. Every edge is labeled with its type, i. e. structural or sequential. Sequential
edges are labeled with their length. The length of a structural edge between two SEFE's is calculated
to be the distance between their centers, where the center of an SSE is the midpoint of the line
between the C,, atom of its first and the C,, of its last residue. For precision, the alpha carbon (C,)

in organic molecules refers to the first carbon atom that attaches to a functional group.

e D&D: The ability to predict protein function from structure is of increasing importance, as the
number of structures resolved is growing more rapidly than our capacity to determine their function.
The protein function can be predicted as enzymatic or not without resorting to alignments, which
is at the basis of a big part of prediction methods. D&D is a graph dataset built by P.D. Dobson
and A.J. Doig, 2003, that describes 1178 high-resolution proteins in a structurally non-redundant
subset from the Protein Data Bank. The dataset is split into two functional classes, enzymes and
non-enzymes. Each protein is represented by a graph, in which the nodes are amino acids (Figure
3.12) and two nodes are connected by an edge if they are separated by less than 6 Angstrom. The

graphs were built from the primary structural level of proteins, (Figure 3.13).

3.5.2 Experimental Configuration

The kernel defined in equation (3.66) is integrated in a Support Vector Machine (C-SVM) as a kernel,
then the classification is done following the 10-fold cross-validation outline, in which 9 folds are used
for training and 1 for testing. All the datasets are randomly shuffled before partitioning and the whole

experiment is repeated 10 times to avoid random effects of fold assignments, while the kernel parameter
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Figure 3.11: Examples of chemical compounds get from the MUTAG dataset, the left compound is mutagen,
while the right one is non-mutagen, (https://pubchem.ncbi.nlm.nih.gov).
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Figure 3.12: Basic Amino Acids that represent the alphabet to create
(http://www.gustrength.com/amino-acids).

proteins,

Table 3.1: Some statistics about the used bioinformatics datasets.

Methode/Dataset MUTAG | NCI1 | NCI109 | ENZYMES | D&D
Number of graphs 188 4110 4127 600 1178
Maximum number of nodes 28 111 111 126 5748
Average number of nodes 17.93 29.87 | 29.68 32.63 284.32
Number of labels 7 37 38 3 82
Number of classes 2 2 2 6 2
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Figure 3.13: The four levels of the protein structure (Primary, Secondary, Tertiary and Quaternary structures),

(http://ib.bioninja.com.au/higher-level /topic-7-nucleic-acids/73-translation/protein-structure.html).

~ is set to 1. The performance of the JET measure in terms of classification accuracy is optimized by
tuning the parameter « € [0, 1], and picking out the value that maximizes performance. However, the
best value of « is not known a-priori and not universal, hence, its value depends on the dataset at hand.
Average classification accuracies and their associated standard deviations are summarized in Table 3.2.
The performances of the kernel based on TVG, GE and JET measures are compared to some kernels of
the literature, in terms of prediction accuracy and computation runtime on graphs benchmark datasets.
Some known graph kernels are tested: those based on walks, Weisfeiler-Lehman isomorphism and limited-
size subgraphs. Thus, our similarity measures are compared to the fast geometric random walk kernel
proposed by S.V.N. Vishwanathan et al., 2010, which counts the common labelled walks and also with p-
random walk kernel that compares random walks up to length p in two graphs (a special case of random
walk kernels: H. Kashima et al., 2003, Géartner, 2003). In the case of limited-size subgraphs family,
we compare with an extension of the graphlet kernel proposed by Shervashidze and Borgwardt, 2009
that counts common induced labelled connected subgraphs of size 3. From Weisfeiler-Lehman kernels,
we chosed the Weisfeiler-Lehman edge kernel N. Shervashidze et al., 2011,Shervashidze and Borgwardt,
2009, which counts matching pairs of edges with identically labeled endpoints (incident nodes) in two
graphs. Concerning computing set-ups, the accuracy and runtime values of the benchmark kernels are
performed and reported by N. Shervashidze et al., 2011, while the runtime in minutes and seconds of
our methods (Table 3.3) are measured in Anaconda2 4.1.1 Python 2.7.12 Lab, installed on a Windows

machine endowed with a 3 GHz-Intel 8-Core processor and 16GB of RAM.

3.5.3 Results Evaluation

Overall, as shown in Table 3.2, on NCI1, NCI109, ENZYMES and D&D, Weisfeiler-Lehman edge kernels
reach the highest accuracy but perform less than JET kernel on MUTAG. Indeed, as shown in Table
3.2, on MUTAG, NCI1, NCI109, and D&D, the TVG, GE, JET based kernels reach good accuracy and
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are competitive with other kernels. On MUTAG, the GE and JET based kernels give the second best
accuracy and perform better than random walk and Weisfeiler-Lehman edge kernels. On NCI1, NCI109,
ENZYMES, and D&D, the JET kernel reaches the third best accuracy and performs better than random
walk kernels. In terms of computation runtime, on all data sets the JET, TVG and GE kernels are
more faster than all other kernels and particularly compared to Ramon and Gértner kernel. As shown
in Table 3.3, our similarity measures outperform state-of-the-art graph kernels in terms of computation
runtime. The best computational time over all the data sets and all the considered methods is provided
by the TVG kernel. This result highlights the low complexity of this kernel. Note that the JET kernel
is faster (x2000) than Weisfeiler-Lehman edge kernel in D&D data set with almost the same accuracy
(75% vs 78%). By combining TVG and GE similarity measures, we improve their individual performance
about 7% for ENZYMES, 3% for NCI1/NCI109 and 1% for MUTAG. Regarding D&D, no improvement
is obtained with the combination, the best accuracy is reached by TVG alone. Figure 4.4 shows the
behaviour of prediction performance of JET kernel according to the weighting factor «. We note that
the maximum accuracy is obtained between the limit values of o (« € [0, 1]), which confirms that with

the contribution of both TVG and GE measures, higher accuracy rates can be reached.
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Figure 3.14: Variation of the accuracy achieved by the JET based kernel in function of the weighting parameter

Q.

3.6 Conclusion

In this chapter we have discussed the problem of similarity measurement of graphs, and their utility
for learning applications, like the classification tasks. In addition, we reviewed the notions of the total
variation (TV) of a signal and particularly of a signal on a graph, and the energy (Fp,) associated with
its structure. By being calculated via one of the eigen-spectra associated with the graph, the energy
is a pertinent information that characterizes well the graph, and measures the complexity degree of its
structure, taking into account both connections distribution of the network and its density. While the total

variation quantifies the oscillatory behaviour of the graph-signal and its interaction with the supporting
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Table 3.2: Classification accuracy on some bioinformatics data (+ standard deviation).

Methode /Dataset

MUTAG

NCI1

NCI109

ENZYMES

D&D

Graph Signal Total Variation TVG

77.88 (+1.43)

55.91 (£0.38)

56.62 (+0.10)

20.36 (40.91)

75 (+0.10)

Graph Signal Energy GE

82.34 (£1.25)

61.81 (40.40)

62.22 (£0.35)

23.33 (+1.44)

64.45 (+£0.61)

Energy and Total Variation JET

83.51 (+1.14)

64.43 (£0.21)

64.88 (£0.16)

31 (£0.53)

75 (+0.04)

Ramon and Gartner

85.72 (40.49)

61.86 (+0.27)

61.67 (40.21)

13.35 (40.87)

57.27 (£0.07)

[T. Gértner et al., 2003b]

p-random walk

79.19 (£1.09) | 58.66 (£0.28) | 58.36 (0.94) | 27.67 (£0.95) | 66.64 (+0.83)

[H. Kashima et al., 2003]

Random walk

80.72 (+0.38) | 64.34 (40.27) | 63.51 (+£0.18) | 21.68 (40.94) | 71.70 (£0.47)

[S.V.N. Vishwanathan et al., 2010]

Graphlet count

75.61 (£0.49) | 66.00 (£0.07) | 66.59 (£0.08) | 32.70 (£1.20) | 78.59 (+0.12)

[Shervashidze and Borgwardt, 2009]

Weisfeiler-Lehman edge

81.06 (+1.95) | 84.37 (£0.30) | 84.49 (£0.20) | 53.17 (£2.04) | 77.95 (+0.70)

[N. Shervashidze et al., 2011]

Table 3.3: CPU runtime for kernel computation on some bioinformatics data.

Methode/Dataset ‘ MUTAG ‘ NCI1 ‘ NCI109 ‘ ENZYMES ‘ D&D ‘
Graph Signal Total Variation TVG | 0.036” 17" 174" 0.4” 1.4”
Graph Signal Energy GE 0.12” 20.6" 21.8” 17 2/19”
Energy and Total Variation JET 0.18” 51" 51.2" 1.6” 2/21”
R d Gart
Ao and Garimer 40'6" | 81 days | 81 days | 38 days | 103 days
[T. Gértner et al., 2003b]
-rand 1k
prrandom wa 4'42" 5 days | 5 days 10/ 4 days
[H. Kashima et al., 2003]
Rand 1k
ancom wa 12 9 days | 9 days 1219 48 days
[S.V.N. Vishwanathan et al., 2010]
Graphlet count 3// 1/27// 1/27// 25// 30/21//
[Shervashidze and Borgwardt, 2009]
‘Weisfeiler-Lehman edge 3 s 58/ 117 3 days
[N. Shervashidze et al., 2011]

structure. Given these properties, we proposed new graph-signals similarity measures based on the total
variation and the laplacian graph energy, adapted for labeled weighted and unweighted graphs, which
we called respectively (TVG) and (GE). These two measures integrated in an exponential kernel show
competitive performance on binary and multiclass graph-signals classification. To take advantage from
both measures, we combined them in a new joint measure called JET. Applied on some bioinformatics
classification problems, our measures yield competitive accuracy levels on all considered data sets and
outperform some state-of-the-art graph kernels in terms of computation runtime. The results of the

JET measure show the benefits of hybrid approaches on discriminating graph signals without significant
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increase of complexity. In spite of the new perspectives related to the optimization of the JET measure
and its generalization to other types of data, we wondered about the choice of the graph energy that
permits a better characterization and discrimination of its intrinsic structure? According to the different
definitions of graph energy depending directly on the eigen-spectra, this leads us to ask the question
about which matrix (A, L,...,| L |) could represent the graph at best? This question is addressed in the

next chapter.



CHAPTER
A Joint Spectral Similarity
Measurement for Graphs

Classification

4.1 Introduction

Raph spectral analysis is one of the hot topics in data processing community, motivated by the
G prominent need to develop new mathematical tools to process networked and structured data.
These data are generated from various sources, as sensor, social, biological or transportation networks,
where the information resides in complex and irregular structures. For this purpose, eigen-spectrum
of matrices associated with graphs are often closely studied. Recent works of the literature have
emphasized the importance of matrix representations for graph characterization, pointing out the
advantages and the drawbacks of some spectra associated to graphs E.R. Van Dam and W.H Haemers,
2003, 1. Jovanovi¢ and Z. Stani¢, 2014, including, those of adjacency (A), Laplacian (L), signless
Laplacian | L | and distance (DY) matrices. The spectrum of L matrix is indeed widely studied in
spectral graph theory, R.K. Fan Chung, 1996a, in reason of the symmetry and positive semi-definiteness
of the matrix, which is useful for determining cuts and inherent graph components. Otherwise, the
spectrum of A matrix is mainly used for the study of regularity J.H. Koolen and H. Yu, 2011,
isomorphisms D. Conte et al., 2004 and bipartition Kunegis, 2015 of graphs. The question of choosing
either A or L matrix for graph representation is still a subject of debate. For instance, in graph
signal processing theory, D.I. Shuman et al., 2013 define the graph Fourier basis as the eigenbasis of
L matrix, while A. Sandryhaila and J.M.F. Moura, 2014 prefer the eigenbasis of A obtained via a
Jordan decomposition. This difference can be justified in part by the nature itself of the decomposition
basis, and also by the fact that not all graphs are determined by their spectra and there is a family

of graphs that shares the same spectrum in respect to some matrix representation, commonly called



90

CHAPTER 4. A JOINT SPECTRAL SIMILARITY MEASUREMENT FOR GRAPHS
CLASSIFICATION

cospectral graphs, C.D. Godsil and B.D. McKay, 1982. The distinction between these cospectral graphs
or between very similar graphs via their spectra is a tough task as stated by E.R. Van Dam and W.H
Haemers, 2003. A big part of graph comparison algorithms aims to sort them using some structural
similarity criteria without implicitly resorting to spectral analysis. In spite that, spectral invariants
remain suitable for graphs discrimination, H.A. Bay-Ahmed et al., 2017a, we argued their strengths
in chapter 3. We propose in this chapter to tackle the problem of graph classification using a spectral
similarity measurement called Joint Spectral Similarity (JSS), which compares two graphs using jointly
the spectra of A and L. Such measure is interesting to distinguish graphs that have close spectral
properties or even for sorting cospectral graphs which is a hard task when using only the spectrum of
A or L at once. To understand the contribution of each matrix in graph information recovering, we
investigate the framework of structural complexity measurements of graphs, more specifically, entropic
measurements, K. Anand et al.;, 2011. Inspired from information theory and statistical mechanics,
these measures capture similarities and differences between networks and quantify the organization
level of the underlying graph structure. Among them, we focus on Von Neumann (VN) entropy, which

can be interpreted in some cases as a measure of regularity in graphs, Neumann, 1955,L.. Han et al., 2012a.

In this chapter, we show the effectiveness of the JSS similarity measure for graphs classification.
We highlight the graph’s representation disparity between A and L matrices, illustrated via VN entropy
measure. Integrated in an exponential kernel, the JSS measure shows promising results in real world
graph data, built from chemical components and from real time series. These results are compared to

the state-of-art graph kernels in terms of classification accuracy and computing CPU time.

4.2 A-Spectrum or L-Spectrum?

There is debate, in the literature, as to whether the eigenvalues of the adjacency matrix provide informa-
tion about the graph properties. For example, Spielman argues that, even the adjacency matrix is the
most natural matrix to associate with graph, it is least useful Spielman, 2004. Eigenvalues and eigenvec-
tors are most meaningful when used to understand a natural operator or a natural quadratic form. The
adjacency matrix provides neither. The same observation was made by Lau which points out that it is
not clear that the eigenvalues should any information about the graph properties Lau, 2015. But they

do, and interesting information are obtained from them as shown in the following sections.
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4.3 Graphs representation in quantum domain

Characterisation of graphs using the number of nodes or edges can express some properties of graphs,
but they are not sufficient to reflect their complexity. Tools developed in statistical mechanics can be
exploited to provide more meaningful measures of graphs complexity, by mapping them into quantum
states R. Alberta and A.L. Barabasi, 2002. The graph is viewed as a physical system. The first way of
mapping is to use the node and edge to represent quantum state and the interaction between quantum
states respectively X.B. Chen and Y.X. Yang, 2015. The second way, introduced by S.L. Braunstein
et al., 2006, is based on a faithful mapping between discrete Laplacian and quantum states. Ideas from
quantum information theory are also useful in the understanding of the structure of a graph J. Wang
et al., 2017b,G. Bianconi and A.L. Barabasi, 2001. Quantum information is the physical information
that is held in the state of a quantum system. Thus, network entropy has been extensively used to
characterize the salient features of the structure of network systems arising in various domains such
biology or physics and the social sciences. An example of measure to quantify the quantum information
is the Von Neumann entropy, introduced to describe the uncertainty of a quantum state, Neumann, 1955.
This measure distinguishes between different graph structures. For example, it is maximal for random
graphs, minimal for complete ones and takes on intermediate values for star graphs L. Han et al., 2012b.
In the following, basics of the graph representation in quantum domain are presented. We introduce
the density matrix used in quantum mechanics to describe a quantum state and its equivalent in graph
domain, the normalized Laplacian matrix. The idea of Hamiltonian operator on graph and its link to

normalized Laplacian with associated Von Neumann entropy are introduced.

4.3.1 Density operator

In quantum mechanics, objects modify their states according to the presence or not of an observer. They
take only one state among other possible states, called pure states. But, it happens also that the observer
measures a mixture of states, then the object is said to be in a mixed state or in a superposition. Such
phenomenon is described by a density operator (or density matrix) p, in state space H. This space is
a complex Hilbert space of dimension n. The density operator describes a system whose state is an
ensemble of pure quantum states |¥;), each with probability p;, M.A. Nielsen and I.LL. Chuang, 2000.
|¥;) is an eigenstate of p and {|¥;)}?_, forms an orthonormal basis of H. The density operator is defined

as

p= Zpi|‘1’i><‘1’z‘|- (4.1)

Note that if p; is associated to eigenvalue )\;, such decomposition is the standard spectral decomposition
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of p.

Necessary and sufficient conditions to describe a statistical ensemble with density operator p are as

follows:

1. Normalization: Trace(p) =1
2. Positivity: p > 0

3. Hermitian operator: p = pf

These conditions are helpful for deriving density operator from graph. Denote by D(H) the set of
all density operators. Thus, p € D(H)) if and only if p verifies the conditions (1)-(3). With proper
construction, the faithful mapping between quantum state and graph is established J.Q. Li and Y.X.
Yan, 2015. Using relation (4.1), Severini et al. S.L. Braunstein et al., 2006,F. Passerini and S. Severini,
2009 have extended this idea to the graph domain by scaling the normalized version of L matrix by the

number of nodes n of the graph.

4.3.2 Hamiltonian operator of a graph

In quantum mechanics, the Hamiltonian operator contains the operations associated with kinetic and
potential energies of all the particles in a given system. Each particle is represented by a wave-function
U(z,t) such that U*(x,t)¥(z,t) is the probability of finding this particle at that position z and that
time t. Let denote by m’ the mass of this particle and by (x1,x2,x3) its coordinates. The Hamiltonian

operator describes the particle propagation, according the Schrédinger equation, and is given by :

. h?
H= —-——V* + V@ ., (4.2)
2m N~

R P ial
Operator associated otential energy

with kinetic energy

where

32
2 _

(4.3)

is the Laplacian and A is the reduced Planck constant, as defined in S.L. Braunstein et al., 2006 et al.

We can write down the characteristic equation for the energy in this representation; it takes the form

HU = EV, (4.4)
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where F is the eigenvalue energy of the system for H corresponding to the eigenstate ¥. The Hamiltonian
acts upon the wave-function ¥ to generate the evolution of the wave-function in time and space. This
equation yields the allowed energies and corresponding amplitude (wave) functions. Rearranging equation

(4.2) in the form

52
2m/

V20 + (B —V(x))¥ =0, (4.5)

we obtain the Schrodinger equation. The solution of this equation is a wave that describes the quantum
aspects of a system. We recall that the Schriodinger equation plays the role of the Newton’s laws and
conservation energy in classical mechanics, that predicts the future behaviour of a dynamic system,
Lawden, 1995. While Schréedinger equation (4.5) predicts both the allowed energies of a system as well
as the probability of finding a particle in a given region of space.

If we consider a graph as a physical system, there are number of ways to define the Hamiltonian operator
of this graph. If we specify the node potential energy as V(z) = D, and replace the Laplacian by its

combinational counterpart L =D — A, J. Wang et al., 2017b,J. Wang et al., 2016, we obtain :

h? 5
-V?, then H = —A. (4.6)

2m

L=-

This operator is often used in the Hiickel molecular orbital method, A. Streitwieser, 1961.

Another way is to consider the graph to be in contact with a heat reservoir, J. Wang et al., 2017b. In this
case the eigenvalues of the L matrix can be viewed as the energy eigenstates, and these determine the
Hamiltonian operator and hence the relevant Schréedinger equation which governs a system of particles,
J. Wang et al., 2017b. The graph is considered as a thermodynamic system composed of N particles
with energy states given by the network Hamiltonian and immersed in a heat bath at temperature 7', J.
Wang et al., 2016. More precisely, the particles occupy the energy states of the Hamiltonian subject to
thermal agitation by the heat bath.

If the eigenvalues of graph with the L matrix can be viewed as the energy eigenstates, we then take the

;Z, V2 to be the negative of the normalized adjacency matrix, i.e. —A, and

kinetic energy operator —
the potential energy V() to be identity matrix I. The Hamiltonian operator is viewed as the normalized

form of Laplacian matrix on graph :

H=I-A=L (4.7)

In this case the energy states of the network are then the eigenvalues of the Hamiltonian

H|V;) = L|W;) = E; |¥)) (4.8)
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Furthermore, the density matrix p commutes with the Hamiltonian, that is the associated Poisson bracket

is zero, J. Wang et al., 2017D :

=0 (4.9)

which means that the network is in equilibrium when there is no change in the density matrix p which

describes the system.

4.3.3 Von Neumann entropy

The entropy is an effective way to measure the uncertainty associated with classical probability and is
also a means of characterizing the structure of graphs or complex networks. There have been many
attempts to compute the entropy of graph, K. Anand et al., 2011, S. Perseguers et al., 2009, D. Hu
et al., 2017. When it comes to quantum world, the Von Neumann entropy corresponding to the entropy
of quantum state is used, Neumann, 1955. This entropy was originally introduced by Von Neumann
around 1927 for proving the irreversibility of a quantum measurement processes in mechanics, Neumann,
1955, D. Hu et al., 2017. The Von Neumann entropy is a quantitative measure of mixedness of the
density matrix p. The interpretation of the scaled normalized Laplacian matrix as a density operator of
a physical system, opens up the possibility of characterizing a graph using the Von Neumann entropy
from the quantum information theory, J. Wang et al., 2016. More precisely, it is natural to interpret the
Von Neumann entropy of such density matrix as the Von Neumann entropy of the graph, with a view
towards characterizing the information content of the graph, M. Dairyko et al., 2017,S.L.. Braunstein
et al., 2006.

The Von Neumann entropy of p € D(H)) is defined as:

S(p) = —KgTrace(plog p), (4.10)

where Trace(B) is the trace of matrix B and Kp is the Boltzmann constant. The density matrix p of
a graph G has a zero eigenvalue whose multiplicity is equal to the number of components of G. S.L.

Braunstein et al., 2006 defined the density matrix of a graph G as:

=i (4.11)

i

Suppose that Ay > A >, ..., A, = 0 are the eigenvalues of the density operator p describing the graph
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(or quantum-mechanical system), then :

= Ailogy A; (4.12)
1=1

is called the Von Neumann entropy of graph G. By convention 0log, 0 = 0. The Von Neumann entropy
can be viewed as the Shannon entropy of the probability distribution represented by the eigenvalues of
the density operator. It can be interpreted as a measure of regularity, S.L. Braunstein et al., 2006, F.
Passerini and S. Severini, 2009, and can be used as a measure of graph complexity, L. Han et al., 2012b.

A graph G has zero Von Neumann entropy if and only if one eigenvalue is 1 and the others are 0.

4.4 Relationship Between A and L via VN-Entropy

Since the Von Neumann entropy is interpreted as a measure of the information content in a graph G,
we wonder about the contribution of each matrix (A and L) in the measured quantity of information.
A part of the answer comes from quantum perturbation theory, where the sensitivity of eigenvalues to
density matrix perturbations has been studied. Some of these studies have been extended by Chen to
include the case of perturbations on VN-entropy, Chen, 2010. This opens the way to project the study
on to the general case of graphs. The goal is to determine the cost of structural modifications of the
graph in terms of information quantity, and to clearly understand the relationship between A and L in
a purely entropic framework. To this end, A matrix is perturbed and the VN-entropy of the perturbed

density matrix p is then computed.

Proposition 1. Let G be a weighted graph whose the unperturbed density matriz is po. If po undergoes
a perturbation p*, the VN-entropy of the resulting perturbed matriz, p = py + & p*, expanded up to the

second order is given by

S(p) = S(po) + Npiagonal(P*) + Nof - Diagonat(P*) (4.13)
where
NDiagonal(P") =—§ Z P n log2 % Z o(€?)
A
10g-pigona(07) =€ 3 Y- L L “m' ~log .+ o(€?). (4.14)

n m;ﬁn
with ¢ is a scalar parameter supposed to be small, and A #+ Am ¥V 10 # m are the eigenvalues of pj.

Proof :
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Since p is a density matrix, the perturbations are introduced in such way that

Tr(p) =1and p = p’.

(4.15)

Restricting Taylor expansion to the second order, L. Han et al., 2012a, the corrections to the eigenvalues

are written as :
A® =X, + W + 20D 4 0(¢2),
where the first and second order eigenvalue perturbations are given by

Y(2) |p*nm|2
AP =y

5\%1) _ P*
m#n >\n - /\m

nn )

Therefore, the perturbed VN-entropy can be written as
S(p) = ~Tr(plog, p) = — > _ A log, AP

On the other hand, the Taylor expansion of S(p) around zero up to second order is written as

dS(py) | 1 2d25(Po) 2

S(p) = S(po) + ¢

Chen, 2010 gives the first and second order derivatives of S(p,):

ds . .
(pO) = 7Zp nn 10g2 /\77«7

dg

d2S(pO) ( *nn)2 (2 3
T&“?:_ZT_QZ)\%)log2)\"

By substituting (5.12), (5.16) and (5.17) in equation (5.14), we get

e 2
S(0) = S(p0) — €Y 0" logah— 32 30 Lenk

M Diagonal

L2 .
L ey y mloggx\n+0(§2)~

n m#n "1

MNOff — Diagonal

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

A careful examination of equation (4.22) shows that the corrective terms 1piagonar and N0 — Diagonals

include respectively both diagonal and off-diagonal perturbation elements. Since changes in edge weights

of A lead to changes in node degrees, perturbations affect at first place off-diagonal elements of A. Thus,

it is expected that changes in weights introduce only off-diagonal elements in the entropy expression

(4.22). But, diagonal elements related to node degrees changes appear also. Due to the linear relationship

L =D — A, these diagonal elements are introduced to L via D and thus they may explain why L matrix

is more sensitive to structural changes of the graph than A.
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4.5 Graphs Cospectrality Issue

The spectrum of different matrix representations associated to graphs holds a variety of informations
that differs from one matrix to another, A.E. Brouwer and W.H. Haemers, 2011. This is seen in the
existence of cospectral graphs, or graphs that share the same spectrum for a particular matrix, whether
A, L or others. They are called non-DS graphs referring to "Non Determined by the Spectrum". Among
many graph families, Schwenk, 1973 stated that almost all trees are non-DS graphs in respect to A.
Furthermore, C.D. Godsil and B.D. McKay, 1982 proposed a method based on edge switching to make
two non-isomorphic graphs A-cospectral. Likewise, many families of L-cospectral graphs were defined in
the literature, such those defined by Merris, 1997. W.H. Haemers and E. Spence, 2004 have invetigated
the cospectrality of graphs up to size 11, extending a previous survey done by C.D. Godsil and B.D.
McKay, 1982. Above 11 nodes, it becomes computationally costly to enumerate all possible cospectral
graphs. In their study, they considered the adjacency matrix A, the laplacian L and the signless laplacian
| L |. A part of these results is summarized in Table 4.1. They show that the adjacency matrix appears
to be the worst representation allowing a large number of cospectral graphs. The laplacian is superior
and the signless laplacian even better. The signless laplacian, laplacian and adjacency matrices produce

3.8%, 9% and 21% respectively of cospectral graphs with 11 nodes.

(a) (b)

Figure 4.1: Two A-cospectral graphs: o4(A) = 05(A) = [-1.9,-1,-1,0.2,1,2.7], 0o(L) = [0, 1,1, 3,3, 6], (L) =

[0,0.5,1.2,3.4,4,4.7], where o(B) means the eigen spectrum of the matrix B.

We show in Figure 4.2 an example of two graphs that share the same laplacian spectrum despite
of their structural differences. As cospectrality appears to be a challenge to distinguish graphs via their
spectra, it remains nevertheless surmountable by using a variety of spectral metrics simultaneously in
the graph identification process. Figure 4.1 shows that it is possible to recognize A-cospectral graphs via
their L spectrum, and inversely in Figure 4.2. This convinces us that combining both spectra of A and

L in JSS measure for comparing graphs.
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(a)

Figure 4.2: Two L-cospectral graphs: o,(L) = op(L) =

oy(A) = [-2.5

Table 4.1: Number of cospectral graphs when using different spectra in combination, knowing that the number

of possible n-node undirected graphs is on(n=1)/2,

(b)

[0,0.7,2,3,3,5.2], 0a(A) = [-2.1,—1,-0.5,0,1.2,2.5],

,—0.7,0,0,0.7,2.5], where o(B) means the eigen spectrum of the matrix B.

Graph Size (n) | AorL | AandL | Land |L| | |L|and A
6 112 0 0 0
7 853 0 16 0
8 11117 0 232 0
9 261080 82 4139 8
10 11716571 13864 107835 10716

4.6 Joint Spectral Similarity Measure

Let G be a set of undirected graphs, and consider two graphs G;(A1,L;) and G2(As,Ly) € G with Ay,
A, their adjacency matrices and L, Lo their laplacian matrices where (A1;,A2;) and (u14,140;) are the
eigenspectra of their Laplacian and adjacency matrices ordered in descending order. Information about
the degree distribution is encoded mainly in the eigenvalues of L as well as the number of components of
the graph, while information about walks, paths and the bipartition of the graph are in the eigenvalues of
A, E.R. Van Dam and W.H Haemers, 2003. Also to avoid the problem of cospectrality when comparing
graphs via A and L spectra, we quantify the associated spectral similarity of the graphs as the trade-off
between them. The introduced JSS measure aims to exploit both A and L spectral informations to better
discriminate graphs. This measure, sum of two weighted spectral components, is given by the following

convex linear combination :

JSS(Gl,Gg) = OéJSSA(Gl, GQ) + (1 — a)JSSL(Gl, Gz) (423)
with a € [0, 1], a weighting factor and where the components are given by :
k k
JSSL(G1,G2) = > (A — A2i)®, JSSA(G1,Go) = > (m1i — prai)’ (4.24)
i=1 i=1
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where £ = min(N;,N3) and Ni,No are the numbers of eigenvalues corresponding to each graph. 'k’
represents the important common eigenvalues between the graphs, however, this criterion is particularly
suitable for graphs of similar and comparable sizes. The weighting factor « controls the significance of
each distance and allows more importance to be given to the A-spectral distance or to the L-spectral

distance.

4.7 Experimental Results

We illustrate the performance of the JSS measure on real world graphs from bioinformatics and on
conceptual graphs obtained by mapping time series to the graph domain using the Graph Visibility (VG)
algorithm proposed by L. Lacasa et al., 2008. There are altogether nine benchmark real data sets used

in our experiment.

4.7.1 Bioinformatics Data

We use the same graph datasets presented in chapter 3, which are derived from chemical/biological
molecular databases. Asareminder, MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic
nitro compounds labeled according to whether or not they have mutagenic effect on the Gram-negative
bacterium Salmonella typhimurium, A.K. Debnath et al., 1991. NCI1 and NCI109 represent two data
sets of chemical compounds screened for activity against non-small cell lung cancer and ovarian cancer
cell lines, N. Wale and G. Karypis, 2006. ENZYMES is a data set of protein tertiary structures
obtained by K.M. Borgwardt et al., 2005, consisting of 600 enzymes from BRENDA enzyme database,
I. Schomburg et al., 2004, where the task is to assign each enzyme to one of the 6 top-level classes. D&D
is a data set of 1178 protein structures, P.D. Dobson and A.J. Doig, 2003, the classification task is to

distinguish protein structures between enzymes and non-enzymes.

4.7.2 Time Series Data

Four problems are considered namely, A. Bagnall et al., 2002:

e Computers: This dataset was made from data recorded as part of government sponsored study
called Powering the Nation. The idea was to collect behavioural data in order to know how consumers
use electricity within the home to help reduce the UK’s carbon footprint. The data contains readings
from 251 households, sampled in two-minute intervals over a month. Each series is length 720 (24
hours of readings taken every 2 minutes). Here the purpose is to know if it is a Desktop or a Laptop

computer. We specify that the data was prepared and donated by J. Lines and A. Bagnall, 2015.
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e ToeSegmentationl: This data is derived from the CMU Graphics Lab Motion Capture
Database(CMU). Motions in the database containing the keyword walk are classified by their motion
descriptions into two categories. The first category is the normal walk, with only walk in the motion
descriptions. The other is the abnormal walk, with the motion descriptions containing hobble walk,
walk wounded leg, walk on toes bent forward, hurt leg walk, drag bad leg walk, or hurt stomach
walk. In the abnormal walks, the actors are pretending to have difficulty walking normally. ToeSeg-
mentationl is the X-Axis. The purpose is to classify walks by their nature, whether they are normal

or abnormal, L.Ye and E. Keogh, 2011.

e SonyAIBORobotSurfacel: is a dataset donated by Manuela Veloso and Douglas Vail of Carnegie
Mellon University and it is used by A. Mueen et al., 2011. AIBO (Artificial Intelligence Robot) is
a series of robotic pets designed and manufactured by Sony. Sony announced the first prototype of
AIBO in mid-1998, and in 2006, AIBO was added into the Carnegie Mellon University Robot Hall of
Fame. The robot has roll/pitch /yaw accelerometers whose task is to detect the surface being walked

on whether is cement or carpet, these time series representing the X-axis records.

e Lightning?2: is a dataset containing signals captured by the FORTE satellite, that detects transient
electromagnetic events associated with lightning using a suite of optical and radio-frequency (RF)
instruments. Data is collected with a sample rate of 50 MHz for 800 microseconds. Spectrograms
were calculated from the input data and then they were collapsed in frequency to produce a power
density time series, with 3181 samples in each time series, these are smoothed to produce series of
length 637. Here, the aim is to classify power densities into two different categories of lightning, D.

Eads et al., 2002.

4.7.3 Convert Time Series to Graphs

In order to map time series into complex networks on the graph domain, we use Visibility graph (VG)
algorithm, proposed by L. Lacasa et al., 2008. The advantage is that the obtained network inherits many
interesting properties, and reveals nontivial information about the series itself. VG algorithm is becoming
an emerging technique for the analysis of long-range dependency, fractality and dynamical properties of
time series data. S. Supriya et al., 2016, used it to study EEG time series classification problem, and they
showed that VG is efficient to distinguish different dynamical structures in the EEG recording of healthy
and epileptic patients. In our experiment, we use the same weighting and graph building strategy defined
by S. Supriya et al., 2016. VG algorithm determines the connections between nodes and the weights of
the graph. Every node of the graph corresponds, in the same order, to a sample from the series data,

and two nodes are connected, if visibility exists between the corresponding samples. More formally: two
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arbitrary time series samples (¢4, yq) and (¢p,yp) will have visibility and become two connected nodes in

the associated graph, if any other sample (¢.,y.) placed between them fulfills:

ty — tc
b (4.25)

yc<yb+(ya7yb) .
tb_ta

S. Supriya et al., 2016 consider the edge weight between two nodes as the absolute value of the angle

between the straight line that connects them and the horizontal axis, and is denoted by:

9 y“) ’ (4.26)

arctan
tb - ta

Wap =

The weights wg, are the entries of the adjacency matrix (A) corresponding to the constructed visibility

graph.
An example of a visibility graph is given in figure 4.3.
1
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Figure 4.3: Example of a visibility graph, Lacasa, 2009. The green is built using Horizontal Visibility Graph

(HVG) algorithm, B. Luque et al., 2009, and the red one using the general Visibility Graph (VG) algorithm, L.

Lacasa et al., 2008.

4.7.4 Experimental Configuration
As the experiment in chapter 3, the Joint Spectral Similarity measure is integrated in an exponential

function giving the following distance between the graphs G;, Gj;:
(4.27)

K; j = exp(—7s(Gi, Gj)),

where K is the kernel matrix and s(Gj,G;) can be here the JSS, JSSa or JSSy, measure, and the parameter
v is a smoothing factor which we set to one. The kernel matrix is integrated in a support vector machine
(SVM). Then, 10-fold cross-validation strategy is performed using 9 folds for training and 1 for testing.

Datasets are randomly shuffled before partitioning and the whole experiment is repeated 10 times to avoid



CHAPTER 4. A JOINT SPECTRAL SIMILARITY MEASUREMENT FOR GRAPHS
102 CLASSIFICATION

random effects of fold assignments. Average classification accuracies and their corresponding standard

deviations are summarized in Tables 4.2 and 4.4. For molecular data, the measures JSS, JSSp and
JSSy, are compared to some kernels of the literature in terms of prediction accuracy and computation
runtime. For time series data, only prediction accuracies are reported. Otherwise, the well-known
graph kernels are tested: those based on walks, sub-trees and Weisfeiler-Lehman isomorphism. Else,
the measures are compared to the fast geometric random walk kernel S.V.N. Vishwanathan et al., 2010,
that counts common labelled walks and to p-random walk kernel that compares random walks up to
length p in two graphs, H. Kashima et al., 2003. From sub-tree kernels, we chose Ramon-Gértner kernel,
T. Gartner et al., 2003b, which compares all pairs of nodes from two graphs by iteratively comparing
their neighbourhoods. From Weisfeiler-Lehman kernels, we picked up the Weisfeiler-Lehman edge kernel,
N. Shervashidze et al., 2011: it counts matching pairs of edges with identically labeled endpoints in two
graphs. For molecular data, computing set-up, accuracy and runtime values of the benchmark kernels
are performed by N. Shervashidze et al., 2011. We followed the same procedures to compute random
walk and Weisfeiler-Lehman edge kernels for time series data, without Ramon-Gértner and p-random
walk kernels because of runtime constraint. The time series results are also compared to Linear and RBF
kernels, applied directly on the samples of time series without converting them to graphs. As reported
in Table 4.3, runtime in minutes and seconds of our method is measured using Anaconda2 4.1.1 Python

2.7.12 Lab installed on a Windows machine with 3 GHz Intel 8-Core processor and 16GB of RAM.

4.7.5 Results Analysis

As expected, the obtained results confirm the unequal contribution of both A and L matrices and their
overlapping in terms of graphs representation. The reported results in Tables 4.2 and 4.4, and in figure 4.4
show that the achieved classification accuracies of JSS measure are promising with respect to some state-
of-the-art methods. The JSS based kernel performs well in the majority of datasets. In molecular data, it
reaches second best accuracy in all datasets (MUTAG, NCI1, NCI109, ENZYMES and D&D) compared
to the benchmark kernels. But in terms of CPU time, the JSS based kernel is faster than other kernels in
many cases, such as in MUTAG, ENZYMES and mostly in D&D, where JSS kernel performs almost as
well as Weisfeiler-Lehman edge kernel (75.75 Vs 77.95), while execution time is 600 times faster. In Table
4.4, the JSS based kernel provides good results applied to time series classification problems. Especially
in the Lightning2, ToeSegmentationl and Computers databases, it performs better than other graph
kernels, and even better than kernels applied directly to time series. The representation of time series as
VG allowed a clear improvement of the classification accuracy, approaching 12% for ToeSegmentationl,
8% for Lightning2 and 6% for Computers. The reported results, on different data sets with varying

complexity and heterogeneity, in terms of classification accuracy and computational cost, demonstrate
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the effectiveness and the interest of the proposed JSS measure. This spectral similarity generalizes the

spectral distance between graphs based on purely A (JSSa) or L (JSSy,) matrix.

As reported in Tables 4.2 and 4.4, and figure 4.4, JSS is well sensitive to these graph properties
and allows to effectively handle them. Figure 4.4 shows that the JSS-based method highly outperforms
the method purely based on JSSa or JSSy,. Indeed a careful examination of figure 4.4 shows that for
both = 0 and « = 1, corresponding respectively to JSSy, and JSSa, neither of JSSa nor JSSy, is able
to perform better than JSS. However, overall, JSSa achieves better results than JSSy, and this can be
attributed, as expected, to the less sensitivity of A to structural changes, compared to L matrix, but more
efficient for graph discrimination. According to these results, the weighting parameter lies in ]0; 1[, showing
that L and A are complementary and thus carry different information about the underlying graph. For all
data sets, we have the parameter a # 0.5, which indicates that JSSt, and JSSa are unequally contributed
and highlights that the A and L representation matrices recover different structures of the graph. Also,
these results show that JSS effectively captures information conveyed by A and L matrices. The fact
that the assigned weighting parameter « varies from one data set to another emphasizes that each graph

has its own structure and also that both A and L matrices convey different information.
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Figure 4.4: Accuracy variation of JSS based kernel as function of a.

4.8 Conclusion

The representation of graphs using matrices plays an important role in graph spectral theory and in many
other applications dealing with graphs. In this chapter, a new joint spectral similarity (JSS) measure for
graphs classification is introduced. We have shown that both adjacency and Laplacian matrices carry

different structures information of the underlying graph. The adjacency matrix characterizes the topolog-
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Table 4.2: Classification accuracy on some bioinformatics data (+ standard deviation).

Method/Data MUTAG NCI1 NCI109 ENZYMES D&D
JSSa 83.67 £0.22 | 67.74 £0.14 | 66.21 +£0.28 | 32.35 £1.15 | 75.71 £0.14
JSSy. 82.48 +£0.36 | 63.07 £0.25 | 62.07 £0.26 | 24.86 £0.93 | 75.49 £0.24
JSS 83.81 +0.48 | 68.10 +0.16 | 66.22 +0.13 | 36.35 £0.90 | 75.75 £0.19
Ramon and Gdartner
85.72 +£0.49 | 61.86 +0.27 | 61.67 £0.21 | 13.35 £0.87 | 57.27 £0.07
[T. Gértner et al., 2003b]
p-random walk
79.19 £1.09 | 58.66 £0.28 | 58.36 £0.94 | 27.67 £0.95 | 66.64 £0.83
[H. Kashima et al., 2003]
Random walk
80.72 +0.38 | 64.34 +0.27 | 63.51 £0.18 | 21.68 £0.94 | 71.70 £0.47
[S.V.N. Vishwanathan et al., 2010]
Weisfeiler-Leh d
ereiereliman edee 81.06 +1.95 | 84.37 £0.30 | 84.49 +0.20 | 53.17 +£2.04 | 77.95 £0.70
[N. Shervashidze et al., 2011]
Table 4.3: CPU runtime for kernel computation on some bioinformatics data.
Method /Data MUTAG NCI1 NCI109 | ENZYMES D&D
JSSa 0.32" 2/29" 2/27" 3" 324"
JSSy, 0.88" 2/28" 2/30" 3.50” 3'34"
JSS 1.30” 414" 419" 5.88" 6'53"
R. d Ga
amon and Gartner 406" | 81 days | 81 days | 38days | 103 days
[T. Gértner et al., 2003Db]
-rand 1k
prrandom wa 442" 5 days | 5 days 10/ 4 days
[H. Kashima et al., 2003]
Rand 1k
andom wa 12" 9 days | 9 days 12/19" 48 days
[S.V.N. Vishwanathan et al., 2010]
Weisfeiler-Lehman edge 3 15/ 58/ 11" 3 days
[N. Shervashidze et al., 2011]

ical graph complexity in terms of connections between nodes and their intensities, and also underscores
the local cohesiveness of nodes. These properties explain why the good classification accuracies achieved
by JSS measure are more attributed to adjacency matrix (o > 0.5). Through VN entropy, it is easy to
see that Laplacian matrix brings out changes in node degrees information. Furthermore, this matrix is
well suited to recover information about clusters of the graph and thus capture its inherent structure.
The obtained results highlight the fact that JSS combines both advantages of Laplacian and adjacency

matrices. Also, these findings confirm that these matrices contribute unequally and emphasize the fact
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Table 4.4: Classification accuracy on some time series data (+ standard deviation).
Method /Data ToeSegmentationl | SonyAIBORobotSurfacel | Computers | Lightning2
JSSa 80.94 +0.82 76.50 +0.41 80.97 £0.67 | 80.52 +£1.76
JSSL 81.08 +0.52 79.01 +£0.46 78.76 £0.42 | 66.63 +1.07
JSS 82.61 +0.79 80.52 +0.34 83.21 +0.60 | 80.68 +1.71
Rand 1k
andom wa 59.03 £0.64 55.70 £0.48 60.50 £0.01 | 60.30 £2.30
[S.V.N. Vishwanathan et al., 2010]
isfeiler-Leh
Weisfetler-Lehman edge 61.08 +£1.68 56.46 +1.01 76.22 £1.02 | 49.15 +2.65
[N. Shervashidze et al., 2011]
Linear-SVM 54.10 £2.05 97.43 +0.23 53.42 £1.67 | 59.54 £3.21
RBF-SVM 71.11 +1.64 99.08 £0.07 56.28 +£0.65 | 72.99 +£1.06

that they represent differently information about structures of the underlying graph. Additionally, these

results show the interest of the VG approach for classification of time series. As a result of this work, we

hope to have increased the awereness about the importance of the properly choice of the representation

matrix for graph spectral analysis purposes. Even the JSS measure handles cospectral graphs with re-

spect to both A and L, it can be extended to the case of graphs that are cospectral in regard to a large

class of graph representation matrices. At last, the optimal value of « is in general not known and is

determined only through experimentation. It is suitable to develop a strategy for finding automatically

its optimal value.







CHAPTER

Graph Vulnerability in the
Sense of Von Neumann’s

Entropy

5.1 Introduction

Eal-world networks are critical infrastructure systems that function collaboratively and synergis-
R./ tically to produce essential services and facilitate human interaction C. Nan and I. Eusgeld,
2011,S. Wang et al., 2018. Examples of such systems include powers systems, water supply systems,
natural gas supply systems, transportation systems and telecommunication systems S. Wang et al., 2018.
The growth in generation and demand without networks expansion further increases of these systems and
creates various security issues S. Gupta et al., 2018. In general, such systems are complex interconnected
networks. This, is the case of the power networks that are particularly important because a lot of infras-
tructure systems are very dependent on the reliable supply of electricity to ensure their normal operations
S. Wang et al., 2018 M. Ouyang, 2014. These networks are threatened by many factors which increase
their vulnerabilities X. Yuan et al., 2017,J. Gao et al., 2016. Recent events, such as 2012 India blackout
and 2003 North American blackout have highlighted the vulnerability of power networks and thus, the
necessity for their assessment is of great importance. Nowadays the issue of vulnerability and protection
of critical infrastructure is attracting a great deal of attention of scientific community. In general, a
critical infrastructure system is represented as a graph in which nodes represent the main components of
the network (power plants,...) and edges are the physical connections among them (electrical lines,. . .)
P.C. Crucitti et al., 2005. The topology of the network or the graph determines an influence structure
among the nodes or the agents S. Segarra and A. Ribeiro, 2016. During a vulnerability assessment of
networks, graph theory techniques allow both representation and analysis; the theory being based on a

set of measurements that evaluates networks and includes spectral measures J.A. Gutierrez-Perez et al.,
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2013. Metrics derived from the spectrum of the network adjacency matrix quantify network invariants,
thereby revealing pertinent information about the well-connectedness or not of the network in terms of
connectivity intensity and failure tolerance J.A. Gutierrez-Perez et al., 2013. Following the graph-based
approach, different strategies have been proposed with the purpose to measure the vulnerability of the
graph or to find the best nodes to immunize (or equivalently, remove) to make the remaining nodes to
be most robust to virus attack C. Chen et al., 2016. In the literature, for example, failure and attacks
have been simulated as the removal of a certain percentage either of nodes R. Albert et al., 2000,P.
Holme et al., 2002,P. Crucitti et al., 2003,R. Albert et al., 2004,P. Crucitti et al., 2004 or edges P.
Holme et al., 2002,A.E. Motter et al., 2002 of the network. Nodes immunization is essential to safeguard
network systems against, for example, virus attacks and its propagation. This requires the quantification
of importance of individual node or group of nodes in terms of their contribution towards vulnerability.
A simple metric to judge the overall graph vulnerability is the one based on the largest (first) eigenvalue
A of adjacency matrix of the graph C. Chen et al., 2016,K. Kanwar et al., 2017. The larger A is, the
more vulnerable the whole graph is. However, this global metric or score cannot be used for identifying
or localizing a vulnerable edge or a group of edges that are vulnerable of the graph. The challenge behind
this problem is to measure the vulnerability of each edge and to provide a vulnerability map of the graph
that helps to find the effective immunization strategy to be applied. By using results from the theory of
matrix perturbation combined with Von Neumann entropy, we propose a metric to quantify the vulner-
ability of each edge. The aim is also to guard high-risk edges. The vulnerability is measured by the Von

Neumann entropy distortion produced by each perturbed edge.

5.2 Eigenvalue Sensitivies to Matrix Perturbations

Consider a square matrix A € M,,, associated to a graph or a physical system with distinct eigenvalues
Ai, (1=1,2,...,n) arranged in a column vector. We would like to understand how eigenvalues of A change
under perturbations of its elements. Thus it is useful to see how an eigenvalue \; is sensitive to changes
of an individual element ag; of A, (k, I =1,2,...,n). This can be done by perturbing the matrix element
ar; by a quantity Aag;. We begin with equations relating the right eigenvalues A; to their corresponding

right eigenvectors u; of A :

Alli = )\iui. (51)

Similarly, the left eigenvalues A’ are related to the left eigenvectors wj of A (Or to the right eigenvectors
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of AT) by the equation :

ATW_j = )\.;WJ (52)

The eigenvectors u; and wj are orthogonal and can be scaled such that:

ijui = (Si]', (53)

where J;; is the Kronecker function. Note that the left and right eigenvalues/eigenvectors are the same
for symmetric matrices. By differentiating both sides of equation (5.1) with respect to a parameter 3 of

interest, we get:

0A 8ui o 8/\Z 8ui
%ui + A% = %u1 + )\z%' (5.4)

Then pre-multiplying equation (5.4) by w;” and using equation (5.3) and the transpose of equation (5.2),

we obtain :

0A oy O\ Ouy
oo AW = w g+ Awy 5.5
w 85u+ w 5 w 85u+ w 95 (5.5)
and after simplification, we get :
0A O\
T2 g = 22
Wi g% = a5 (5.6)

Equation (5.6) implies that the eigenvalue sensitivity to a parameter 8 is described by the changes of the

matrix A according to this parameter.

One of the applications of equation (5.6) is to find the sensitivity with respect to a particular entry
ag; of A. We know that the derivative of A with respect to ay; equals one at its corresponding entry and

zeros otherwise, which is written as :

0A

= [ai] = [6ir0], 5.7
Dan; [cvij] = [0ir5] (5.7)
where a;; = 1 if the pair (4, ) equals (k,1), and «;; = 0 otherwise. By substituting equation (5.7) in
equation (5.6) and by using equation (5.2) and equation (5.3), the eigenvalue sensitivity with respect to

any entry ay; of A is given by:

N g OA .
= Wi 75— Uj = WikU4 7kal 1727"'7 ) .
Dar, w 8aklu Wikl /1 e{ n} (5.8)
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where w;y is the k" component of the left eigenvector w; and ;) the [th component of the right eigenvector
u;.The relation (5.6) shows that the eigensensitivity with respect to a given entry ay; of A is quantified
by the product of some compnents of its corresponding right and left eigenvectors. The right side of

equation (5.6) corresponds to the entries of the sensitivity matrix I'; :

T, = {mi} =wiw! /i k1€ {1,2,...,n}. (5.9)
Jayy

The elements in T'; relate changes of the eigenvalue \; to the changes in the entries ag; of A. The sensitivity
is the local slope of A; as a function of ay;. If the elements ay; are perturbed to ax; = ax; + Aay, then

the eigenvalue \; is perturbed to ):i = \; + 0\, as follows :

. Yoo al
+ kgl Dar agl + kgl Wik Uil A g ( )

5.3 Impact of Edge Perturbations on the Von Neumann Entropy

The perturbation of the weight associated to an edge ey; in a graph G is equivalent to the perturbation of
two symmetric elements (ax; and ajx) of its corresponding adjacency matrix A. In order to quantify the
effect of these perturbations on the graph’s entropy, we introduce a small modifications in A, by adding
for example, to the elements a;o and as; a quantity £. Therefore, we get the following new perturbed

adjacency matrix:

0 a2 +& - ap

- as + & - :

A=layl=| | (5.11)
anp1 0

(X a1y) +€ 0 0
D = [d;;] = (? (2= o2) 4 ' . (5.12)
0 Y

Likewise, using these perturbed adjacency A and degree D matrices, we obtain the perturbed laplacian
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matrix (L=D — A) :

(Luu+8&) —(Li2+&) -+ —Lin
—(Lor +&) (L2 +9§)

=
I

(5.13)

— L1 e v Lom
By modifying two elements of the adjacency matrix, we make appear two additional elements in the
Laplacian matrix. Therefore, by normalizing it using its trace Trace(ﬂ), we get its corresponding density
matrix p, having the eigenvalues \ € [0,1], where 31" | \; = 1:

. L
p= Trace(L)’ (5:14)

According to equation (5.10), the eigenvalues associated to the perturbed density matrix g are given by:

- n i
= — |\ + AL 5.15
Trace [ k;1 kl} ( )
- ! Zn: (5.16)
- Trace(L) + > p_, Aka )

k,l=
where Lj; and A; are respectively the entries and the eigenvalues of original laplacian matrix L. Fur-
thermore, we observe in the perturbed laplacian matrix L (5.13), that only four entries are changed,

therefore, the expression (5.16) can be reduced to:

« 1 oN; oN; oN; o\
M= i+ AL 4+ 2 ALy + 2 ALy + S2EAL 5.17
Trace(L) [ 0L 1 0L 22 0L12 2 0Lay 21] ( )
Knowing that : ALj; = ALjg = ALy = ALy = &, the equation (5.17) becomes:
< 1 ON; O\ O\ O\
ANi=———— |\ i R R 5.18
Trace(L) [ <3L11 0Lz OLa 8L21> ] ( )
The Von Neumann entropy of the perturbed density matrix p is given by:
— Z 5\1‘ 10g2 S\i, (519)
i=1

thus, by substituting (5.18) in (5.19), we get:

n
|:)\ + Wi Uiz + Wiz U1 + Wi Uix + w22u12)§

Trace(L) 4+ 2¢

] |:)\i + (win wiz + Wiz w1 + win i + Wiz ti2)€
xlog,

P Trace(L) 4 2¢

(5.20)
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(5.20) Illustrates the changes in the graph’s entropy due to the perturbation of one edge e in its
structure. At this stage, we can not confirm either the increase or decrease in the value of the entropy,
it depends on the concerned components of the eigenvectors. In spite of the fact that the increase in
entropy is often interpreted as due to the creation of information, we show later that this is not always
the case, and that the deletion of an edge may cause an increase in entropy. In the next section, we
exploit the changes in Von Neumann’s entropy to measure the importance of edges in a given structure,

and thus measure their vulnerability to changes and to attacks that distort the graph.

5.4 Graph Edges Vulnerability

In an unweighted graph, the evaluation of the importance that could be accorded to every edges in the
structure remains a problematic issue, especially when it comes to graphs that model infrastructure or
logistic networks for example. In the previous section, we showed that the weight perturbation of an
edge in the graph affects directly its Von Neumann entropy. Nevertheless, the impact differs from one
edge to another. The sensitivity of the entropy to changes varies according to the neighborhood and
the local properties of the area where the edge affected by the perturbation is located. In order to
quantify practically this sensitivity to perturbations, we measure the entropy distortion before and after

the changes by the following difference:

Aij = 5(po) — S(PlEis]), (5.21)

where p;, is the density matrix of G before perturbation, and p[¢; ;| is the density matrix after perturbation
of the entries a; ;,a;; € {0,1}/e; ; € £ in the adjacency matrix by the quantity & ; € [0,1]. We scale
up the obtained entropic difference by an exponential function, thus, we get the following distortion in

entropy relative to the edge e; ; € &:

i = exp (D). (5.22)

In Figures 5.1, 5.3, 5.5, 5.7 and 5.10, we illustrate in some particular graphs, the sensitivity of the
distance 1 (5.22) to different perturbation values introduced in the edges. Therefore, we notice three major
observations: the first one is that the perturbation of edges does not affect in the same manner the entropy
or the structural information contained in the graph. Some edges exhibit higher sensitivity compared to
others, due to their role in the structure. The second one is that the perturbation or the deletion of an
edge (£ = 1) does not decrease always the entropy, contrariwise, in some cases it increases the entropy,

yielding values of 1 smaller than 1 (red curves), which means that in the sense of Von Neumann entropy,



5.4. GRAPH EDGES VULNERABILITY 113

the deletion of some edges does not imperatively mean a destruction of information. The third one is that
the behaviour of the distortion is monotonous as the value of perturbation increases. Our intuition proves
right and argues the fact that the Von Neumann entropy is suitable for measuring in smooth manner the
local changes that occur in the graph’s structure. Therefore, the entropic distortion could represent an
interesting tool to measure the edges vulnerability in the graph, especially for unweighted graphs, the
idea being to associate the distortion value 7 to each edge as a weight, calculated after perturbation. We

summarize this weighting approach in the following algorithm called VPV —weighting:

Algorithm: VPV —weighting (Von Neumann-Perturbation-Vulnerability)

Let G = (V,€) be an unweigthed graph, with V€ are respectively the nodes and edges sets. Let A, D be

its adjacency and degrees matrices. Its new weighted adjacency matrix W can be computed following these

steps:
1.L=D-A
L
2. Po = Trace(L)

3. S(py) = —Trace(py Logz py)
4. Choose a perturbation value £ € [0, 1]

5. Choose an edge to perturbate, ex; = (vg,v;) € €
- ai; — &, ifi,je{k}
6. A =[a;] =
0 Otherwise

7. i:ﬁ—AWith&i: Zdu
j=1

~ L
8. p Trace(L)

9. S(p) = —Trace(p Logs p)
10. Wy = Wy, = exp(S(py) — S(p[€]))

11. Tterate steps from 5 to 10 for all edges, ey € €

In Figure 5.1, we present the TowBalls graph and the entropic response of its edges to perturbations.
The particularity of this graph is that it contains two highly connected regions (complete subgraphs of
size 5) attached between them by a unique edge ess = (vs, vg), which guarantees the access to all nodes
in the graph. We expect this edge to be the most sensitive to perturbations and the most vulnerable
among other edges. As we observe in the entropy distortion curves (Figure 5.1(b)) where there are three

types of edges corresponding to three levels of vulnerability.

We obtain in Figure 5.2 (a) the weighted version of TwoBalls graph using the VPV —weighting
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Figure 5.1: TowBalls graph, (a) is the original unweighted graph, (b) Curves representing changes of the entropy

according to different perturbation values introduced to edges. Each curve corresponds to a particular edge, 21

in total.
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Figure 5.2: (a) Weighted TwoBalls graph using the VPV —weighting algorithm. The edges are grouped into three

levels (b), (¢) and (d) according to their importance in the network.

algorithm. As expected the edge esg is qualified as the most vulnerable in the structure, because it links
two important communities in the graph and its deletion causes a disconnection of the network. We
observe that the edges that have the same role in the graph, have the same level of vulnerability, as we

see in Figures 5.2 (c) and (d).

In Figures 5.3 and 5.4, we show that the VPV —weighting algorithm gives coherent results also
on unconnected graphs. As well as the algorithm is very sensitive to discontinuities in the structure, it
puts the Star part edges in red (Figure 5.4 (a)), because their disappearance isolates some nodes and
makes the graph disconnected. On the other hand, we also show in the graph of the Figure 5.5 (a), that
the algorithm is sensitive to several levels of discontinuity risk. We added the edge e46 = (v4,vg) in the
graph of Figure 5.3(a) to make it connected. The algorithm classified that edge as highly vulnerable node
because it guarantees the access to all the nodes in the graph. However, we observe that the edges in
the Star part (Figure 5.6 (b)) remain the most vulnerable, even more than the edge e46. The reason is

that deleting one of the edges eg7, egs, ey Or eg1g isolates some nodes, causing an abrupt rupture in the
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Figure 5.3: Complete-Star disconnected graph of size 10, (a) is the original unweighted graph, (b) Curves rep-

resenting changes of the entropy according to different perturbation values introduced to edges. Each curve

corresponds to a particular edge, 14 in total.

structure. While the deletion of the edge esq disconnects the graph, but into two coherent subgraphs
with comparable sizes, which we qualify as a smooth discontinuity. Hence, the VPV —weighting algorithm

seem to make well the difference between these two levels of discontinuity risks (Figure 5.6 (b) vs Figure

5.6 (¢)).
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Figure 5.4: (a) Weighted Complete-Star disconnected graph using the VPV —weighting algorithm. The edges are

grouped into two levels (b) and (c) according to their importance in the network.

Furthermore, we tested the VPV —weighting algorithm on some more complex graphs. In Figures
5.7 (a) and (b), we show the unweighted Sensors graph with its entropy distortion due to perturbations.
While we show in Figure 5.8 (a) the resultant weighted graph. Overall, the attributed weightes seems to
be coherent with the properties of the structure. By setting four levels of vulnerability, we obtained the
subgraphs illustrated in Figures 5.9 (a), (b), (c¢) and (d). Therefore, the most interesting observation,
is that the first level (Figure 5.9 (a)) contain only one edge (ei5.4s) connecting the nodes v15 and vys.
This edge is the most vulnerable because its deletion disconnects the graph and isolates the node wvyg.
While edges in the second level (Figure 5.9 (b)) links the important regions in the structure, the deletion

of one of them does not isolate individual nodes. We observe also that the lowest vulnerable edges are

located in the most dense zone of the structure (Figure 5.9 (d)), inwhich the access to nodes in this zone
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Figure 5.5: Complete-Star connected graph of size 10, (a) is the original unweighted graph, (b) Curves representing
changes of the entropy according to different perturbation values introduced to edges. Each curve corresponds to

a particular edge, 15 in total. The red curves indicate a decrease of the entropy after the perturbation, compared

to its initial value.
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Figure 5.6: (a) Weighted Complete-Star connected graph using the VPV —weighting algorithm. The edges are

grouped into four levels (b), (c), (d) and (e) according to their importance in the network.
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Figure 5.7: Sensors graph of size 64, (a) is the original unweighted graph, (b) Curves representing changes of the
entropy according to different perturbation values introduced to edges. Each curve corresponds to a particular

edge, 236 in total. The red curves indicate a decrease of the entropy after the perturbation, compared to its initial

value.

is redundent by many paths.

Like in Sensors graph, the VPV —weighting algorithm gives coherent results in Karate Club graph,
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Figure 5.8: Weighted Sensors graph using the VPV —weighting algorithm, (a) vulnerability map of edges, (b) four

bins histogram of edge weights, allowing the segmentation of the graph’s structure into four vulnerability levels.

1 @
.‘omw .10.‘.6 0.9 P @ 09
.s 08 &7.; 08
) ®: ou 5 o 5
- o Sheo ; . W §
& Qizs @7 } &2 ‘5 @ )

S, et (M o, wt |
ol wo | eg. ‘“‘50« > "

(a) (b)

&0 O O 0.9 .‘0%&, ®0 e ) 0.9
o 08 P ®: ®: g - 08

.e 0.6 o2 & “‘5 P 0.6
0.5 O30 0.5
. - G, et ‘
&‘ﬁt‘ 3 03 .5.1:‘3;5 .&g‘:o ® s&sa 03
043 ’ L o

7@ ‘ ®7 @

() (d)

Figure 5.9: Using a four bins histogram, the Sensors graph is segmented into four vulnerability levels (a), (b), (c)

and (d). In each level, edges share roughly the same importance in the graph’s structure.

see Figures 5.10 (a) and 5.11 (a). We observe as a first vulnerability level (Figure 5.12 (a)), edges that risk
to isolate some nodes once they are deleted, as in the case of the edges e; 12, €6,17 and ez 17. Furthermore,
we observe that the algorithm behaves in a particular manner with nodes of degree two, which we rank

into two groupes: {vi3,ver} and {vis, V16, V19, Vo1, Vo3 }.
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Figure 5.10: Karate Club graph of size 34, (a) is the original unweighted graph, (b) Cuves representing changes of
the entropy according to different perturbation values introduced to edges. Each curve correspond to a particular
edge, 78 in total. The red curves indicate a decrease of the entropy after the perturbation, compared to its initial

value.
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Figure 5.11: Weighted Karate Club graph using the VPV —weighting algorithm, (a) vulnerability map of edges,
(b) four bins histogram of edge weights, allowing the segmentation of the graph’s structure into four vulnerability

levels.

In the first case, the two edges that permits the access to v13 and vo7 do not have the same score
of vulnerability, depending on the importance of the source nodes. For example, in node vo7, the edge
e27,30 is more vulnerable then the edge ea7 34, because the node v34 is more central and of high degree in
the network, compared to the node vgg. Thus, the algorithm priorize the access to smaller degree nodes
to avoid isolation risk. Likewise, concerning the node v;3, the edge ey 13 seems to be more vulnerable

than e 13, because the node vy is less important in the network than the node v;.

In the second case, the nodes from the second group are connected to the network via two edges
that share similar vulnerability level, because the source nodes have comparable centralities and degrees
in the structure. For example, the node vg; is connected to the nodes vs3 and v34 via ez1,33 and e2 34,
both nodes vs3 and vs4 are of high degree and have similar neighborhood, therefore, the edges e2; 33 and

e21,34 encounter the same risk level. We observe the same thing for nodes v;5,v16,v19 and vag.
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Figure 5.12: Using a four bins histogram, the Karate Club graph is segmented into four vulnerability levels (a),

(b), (c) and (d). In each level, edges share roughly the same importance in the graph’s structure.

5.5 Conclusion

In this chapter, we have proposed a new algorithm based on Von Neumann entropy to measure the
vulnerability of connections in a network. The idea was to perturbe edges individualy and quantify
its impact on the overall entropy of the graph. The algorithm has proved relevant in some simple and
complex graphs, attributing weights in a coherent manner adapted to the local properties of the structure.
The algorithm is sensitive to disconnection risks that could occur in the structure, by classifying as highly
vulnerable the edges that connect fragile areas and easy to isolate. Our algorithm is useful especially for
applications related to the fragility of infrastructure and logistics networks in terms of accessibility and
resilience against attacks and failures. The VPV —weighting based vulnerability map will allow a better
security of the network and guarantee a minimal service in case of partial damage, by ensuring permanent

redundancy of access. Nevertheless, additional tests on a wider range of real graphs are required.






Conclusions and

Perspectives

He main purpose of this thesis was to develop new spectral similarity measures for graphs
T comparison, and adapt them to be used with the SVM algorithm for learning purposes and
classification of real world graphs. Moreover, we aimed to understand the nature of the relationship
between the adjacency (A) and the laplacian (L) matrices beyond the simple linear relationship between

them : L=D — A.

We remind the main contributions of this dissertation:

= We proposed the following new graph similarity measures:

e TVG: is a measure based on total variation (TV) of the graph signal, it quantifies the oscillatory
behaviour of the graph signal and its interaction with the supporting structure. We showed

that it is an interesting informative and simple descriptor for graph signals comparison.

e GE: is a measure based on the laplacian graph energy which is calculated via the laplacian
eigenspectrum of the graph. It is a pertinent information that characterizes well the graph,
and measures the complexity degree of its structure, taking into account both connections

distribution of the network and its density.

e JET: is a joint convex combination between the TVG and GE measures to take advantage from
both. It allows to take into consideration the signal’s properties and the complexity information

about the supporting structure.

e JSS: is our second joint graphs similarity measure, which exploits both spectral informations
from adjacency A and laplacian L matrices. The A matrix characterizes the topological graph
complexity in terms of connections between nodes and underscores the local cohesiveness of

nodes, while L matrix is well suited for recovering some information about clusters and commu-
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nities in the graph, thus, capture its inherent structure. The JSS incorporates both advantages

those of A and L.

= We integrated our similarity measures (TVG, GE, JET and JSS) in an exponential kernel, which we

use in the SVM learning algorithm to classify graphs issued from bioinformatics and time series.
Compared to the state-of-art methods, our measures are of low complexity and fast to run. We show
that with simple pertinent global descriptors, we could do better than other complex methods. Via
the (JET and JSS) measures we show that linear combinations of multiple measures increases often

the graphs discrimination power and enhances classification performance.

The JSS measure allowed us to confirm our intuition that A and L matrices contribute unequally in
graph characterization task, and to emphasize the fact that they represent differently the structural
information about the underlying graph. In spite of the simple linear relationship between them

(L =D — A), these two matrices give rise to different inferences drawn from the graph.

We highlighted the overlapping and the unequal contributions of (A) and (L) for graph representa-
tion, by comparing them in terms of the so called Von Neumann entropy, connectivity and complexity
measures. The graph is viewed as a quantum system and thus, the calculated Von Neumann entropy

of its perturbed density matrix emphasizes the overlapping in terms of information quantity.

We illustrated by classification findings on real and conceptual graphs the effectiveness of the JSS
measure in terms of classification accuracies, and by which we highlight the varying information
overlapping rates of A and L via a weighting parameter «, and we point out their different ways in

recovering structural information of the graph.

We showed that the JET and JSS measures handle the graph cospectrality issue, and they allow
the distinction between graphs that share the same eigenvalues spectrum corresponding to A or L

matrices.

We showed that converting time series to graphs using VG algorithm (L. Lacasa et al., 2008) could
enhance the classification accuracy of these series, and permits the application of graph kernels in

the learning process.

We used the Von Neumann entropy to show that the edges of a given graph does not react to
perturbations the same way, and that their sensitivity to noise is not the same. We used the entropy
distotion to score the vulnerability of each edge, and to formalize a graph weighting algorithm which
we called VPV —weighting. For instance, our approach is useful for networks diagnostics and to

study their resilience to malicious attaques and damages due to failures.
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= We used the Low-Rank matrix approximation to define the salient structure of the graph, which we

refer to as Dominant Graph Component (DGA).

In Chapter 1, we recall some basic notions about graphs and their spectral analysis. We present
the most well-known representation matrices, as well as notions related to the structure of graphs, such
as regularity, connectivity and bipartition. In addition of some notions related to the eigenspectrum of
the adjacency and laplacian matrices, such as the Fiedler’s value, the largest eigenvalue, the energy, the
Kirchoff index. We included also a reminder about low-rank matrix approximation, and some primary

results about its use in finding a backbone of the structure, which we called thereafter dominant graph.

In Chapter 2, we briefly discussed the problem of machine learning from data and especially
supervised statistical learning. We detailed the mathematical model describing the functioning of
support vector machines (SVMs). They classify data efficiently in a wide range of linear and non-linear
learning problems. Through kernel functions, they are able to separate non-linearly separable data in a
higher dimensional space. Their computational attractiveness is due to the fact that they can be applied
in high dimensional feature spaces without suffering from the high cost of explicitly computing the
feature map. One advantage of kernel techniques among others is that they allow to run a large range
of learning algorithms on structured data, so far restricted only for attribute-indexed data. This is why
it is interesting to develop kernels adapted for graphs to take advantage of the framework of classical

statistical learning algorithms, which is already mature and well developed.

In Chapter 3, we have discussed the problem of similarity measurement of graphs, and their utility
for learning applications, like the classification tasks. In addition, we reviewed the notions of the total
variation (TV) of a signal and particularly of a signal on a graph, and the energy (Fp) associated with
its structure. By being calculated via one of the eigen-spectra associated with the graph, the energy
is a pertinent information that characterizes well the graph, and measures the complexity degree of its
structure, taking into account both connections distribution of the network and its density. While the total
variation quantifies the oscillatory behaviour of the graph-signal and its interaction with the supporting
structure. Given these properties, we proposed new graph-signals similarity measures based on the total
variation and the laplacian graph energy, adapted for labeled weighted and unweighted graphs, which
we called respectively (TVG) and (GE). These two measures integrated in an exponential kernel show
competitive performance on binary and multiclass graph-signals classification. To take advantage from
both measures, we combined them in a new joint measure called JET. Applied on some bioinformatics
classification problems, our measures yield competitive accuracy levels on all considered data sets and

outperform some state-of-the-art graph kernels in terms of computation runtime. The results of the
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JET measure show the benefits of hybrid approaches on discriminating graph signals without significant

increase of complexity.

In Chapter 4, a new joint spectral similarity (JSS) measure for graphs classification was introduced.
We have shown that both adjacency (A) and laplacian (L) matrices carry different structures information
of the underlying graph. The adjacency matrix characterizes the topological graph complexity in terms
of connections between nodes and underscores their local cohesiveness. These properties explain why
the good classification accuracies achieved by JSS measure are more attributed to adjacency matrix
(a > 0.5). Through VN entropy, it is easy to see that laplacian matrix brings out changes in node
degrees information. Furthermore, this matrix is well suited to recover information about clusters of
the graph and thus capture its inherent structure. The obtained results highlight the fact that JSS
combines both advantages of Laplacian and adjacency matrices. Also, these findings confirm that these
matrices contribute unequally and emphasize the fact that they represent differently information about
structures of the underlying graph. Additionally, these results show the interest of the VG approach for
classification of time series. As a result of this work, we hope to have increased the awereness about
the importance of the properly choice of the representation matrix for graph spectral analysis purposes.

Even the JSS measure handles cospectral graphs with respect to both A and L.

In Chapter 5, we have proposed a new algorithm based on Von Neumann entropy to measure the
vulnerability of connections in a network. The idea was to perturbe edges individualy and quantify
its impact on the overall entropy of the graph. The algorithm has proved relevant in some simple and
complex graphs, attributing weights in a coherent manner adapted to the local properties of the structure.
The algorithm is sensitive to disconnection risks that could occur in the structure, by classifying as highly
vulnerable the edges that connect fragile areas and easy to isolate. Our algorithm is useful especially
for applications related to the fragility of infrastructure and logistics networks in terms of accessibility
and resilience against attacks and failures. The VPV —weighting based vulnerability map will allow a
better security of the network and guarantee a minimal service in case of partial damage, by ensuring

permanent redundancy of access.

This research work and proposed approaches presented in this thesis open the following new promising

research directions:

e We intend to expand the tests of our similarity measures (TVG, GE, JET and JSS) to other classi-
fication problems, different than bioinformatics problems. For example, use them for studying the
profiles and behaviors in social networks, or detect behavioural patterns and habits of the population

when they use transport networks.
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e The JET measure seeks to establish a sort of trade-off between the total variation attribute and the
graph’s energy. This lets us envisage an optimization approach to determine the optimal value of

the weighting factor a which maximizes the classification performance.

e As we highlighted in Chapter 3, the graph energy does not have an unique expression, depending
on the mathematical formalism and on the representation matrix that we choose to associate to the
graph. Hence, we wonder about the form of graph energy that could discriminate it at best. We
plan to test other varieties of the JET measure including the adjacency graph energy (FEa ), signless

laplacian graph energy (Ejr|) and others.

e We used in our joint similarity measures JET and JSS a linear convex combination between two
quantities. We are curious about combining more than two attributes in one measure. For instance,
F. Escolano et al., 2008b used convex Birkhoff combinations to quantify the complexity of graphs.

In our framework, this combination could take the form:

v Bl
Y AT —anyasa,

p=1 i=1
where + is the number of attributes to be combined, «; are the weighting parameters and A; are the

combined attributes.

e We highlighted in Chapter 2 some facts about the relationship between the adjacency (A) and
laplacian (L) matrices beyond the linear expression between them L = D — A. We are interested by

the so called generalized adjacency matrix of a graph defined as:

A,=aD - (1-a)A.

Such form allow us to tune the contribution of degrees and individual connections for representing the
graph at best. We notice that the laplacian matrix is a particular case of this generalized adjacency

matrix, for o = 0.5, the matrices contribute equally and we get A% = %L.

e We explained in Chapter 4 that the JSS measure handles the problem of cospectral graphs, and
allows to discriminate them even if they share the same eigenspectrum according to one of the
representation matrices. We showed in Table 4.1 that the number of cospectral graph decreases
significantly when combining the matrices A and L. However, we see in the table that the | L |
matrix does better than L. Therefore, we plan to test for classification another version of the JSS

measure which includes the signless laplacian matrix | L |.

e In Chapter 5, we presented the VPV —weighting algorithm, which associates to the edges of a graph

appropriate vulnerability scores according to their importance in the structure. We plan to generalize
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this approach to nodes. We consider that the vulnerability of a node is closely related to that of the
edges connecting it to the neighbors. Therefore, as a first idea we can use the simple degree of the
node as a vulnerability score, computed in the new weights matrix obtained via the VPV —weighting

algorithm:

V’U,l(’l)i) = Z Mi,j

Vi~V

where 7); ; is the entropic distortion corresponding to the edge e; ; € &, defined by the formula (5.22).

The second option is to compute the new weighted centrality score of the node:

Vaul(v;) = nm_’jl ,

Vi~V

where n — 1 is the number of remaining nodes without v;, that is the set {v;/v; € V andv; # v;}.

We plan to use the dominant graph component obtained by the DG A approach in spectral clustering
in graphs. Because it corresponds to the salient graph. We observe that they are often weakened,
while they had the same weight as all the other edges. This is likely to improve the clustering

performance and community detection.
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Résumé : De nos jours, le développement de
linstrumentation électronique, de linformatique et des
systtmes de communications conduit a une collecte de
données realisée a partir de réseaux de capteurs (réseau de
bouées acoustiques en mer, capteurs de température des
stations météorologiques, capteurs de surveillance des
niveaux de pollution et de bruit ...). La complexité de ces
réseaux de capteurs et leur interaction font que ces données
sont portées par des structures complexes et irréguliéres qui
ne peuvent étre traitées efficacement par les outils standards.
Les graphes constituent un modéle mathématique pour la
représentation de telles données en tenant compte de leur
complexité. L’objectif principal de ce travail de thése est
d’étudier la question de la pertinence de cette représentation
en se focalisant sur l'interaction données-structure d’'une part,
et d’autre part sur la modélisation matricielle de la structure du
graphe portant ces données. Ces questions sont traitées dans
le cadre de la classification des signaux et des graphes en
utilisant des outils de la théorie spectrale des graphes. De
nouvelles mesures de similarités spectrales entre graphes ont
été proposées et testées sur des données synthétiques et
réelles donnant de bons résultats en termes de temps de
calculs et de taux de bonne classification par rapport a I'état

Malgré la simple relation linéaire associant les matrices
Laplacienne et d’adjacence, les résultats obtenus mettent en
évidence le fait que ces matrices expriment différemment
linformation structurelle du graphe. Cette différence de
représentation a été analysée et illustrée via des mesures de
complexité et de connectivité a partir du graphe associé, ainsi
qu’en mesurant la déviation de I'entropie de Von Neumann du
graphe, considéré alors comme un systéeme quantique. Dans
le cadre de la représentation et de I'analyse spectrale des
graphes, nous nous sommes intéressés au cas particulier des
graphes co-spectraux, graphes partageant le méme spectre.
De plus, en considérant la théorie de la décomposition en
matrices de rang faible, I'analyse en graphe propre dominant,
appelé DGA (pour Dominant eigenGraph Analysis), a été
introduite et illustrée par la décomposition multi-échelle de la
structure du graphe. En utilisant une reconstruction partielle
de la matrice d’adjacence par ses graphes propres, une
stratégie facilitant la détection de communautés au sein d’'un
graphe a été proposée. Concernant la représentation
quantique du graphe, nous avons exploité I'entropie de Von
Neumann pour mesurer la vulnérabilitt du graphe aux
perturbations  structurelles. Un nouvel algorithme de
pondération des connections a été ainsi proposé.
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Abstract Nowadays, the development of electronic
instrumentation, data processing and communications systems
leads to a collection of data carried out from networks of sensors
(network of acoustic buoys at sea, temperature sensors of
meteorological stations, sensors monitoring pollution and noise
levels, etc.). The complexity of these sensor networks and their
interaction mean that these data are carried by complex and
irregular structures which cannot be processed efficiently by
standard tools. The graphs constitute a mathematical model for
the representation of such data taking into account their
complexity. The main objective of this thesis is to study the
question of the relevance of this representation by focusing on
the data-structure interaction on the one hand, and on the other
hand on the matrix modeling of the structure of the graph.
carrying this data. These questions are addressed within the
framework of the classification of signals and graphs using tools
of spectral graph theory. New measurements of spectral
similarities between graphs have been proposed and tested on
synthetic and real data giving good results in terms of calculation
time and good classification rate compared to the state of the art.

Despite the simple linear relationship between the Laplacian
and adjacency matrices, the results obtained highlight the fact
that these matrices express the structural information of the
graph differently. This difference in representation was
analysed and illustrated by measuring the complexity and
connectivity of the associated graph, as well as by measuring
the deviation of the Von Neumann entropy of the graph, which
was then considered as a quantum system. In the context of
the representation and spectral analysis of graphs, we are
interested in the particular case of co-spectral graphs, graphs
sharing the same spectrum. Moreover, considering the theory
of low rank matrix decomposition, the dominant eigengraph
analysis, called DGA (for Dominant eigenGraph Analysis), has
been introduced and illustrated by the multi-scale
decomposition of the graph structure. Using a partial
reconstruction of the adjacency matrix by its eigengraphs, a
strategy facilitating the detection of communities within a graph
was proposed. Concerning the quantum representation of the
graph, we exploited the Von Neumann entropy to measure the
vulnerability of the graph to structural perturbations. A new
algorithm of connection weighting has been proposed.



