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Preface

This PhD thesis presents research conducted from October 2018 to September 2021. It is the

outcome of a scientific collaboration between the music streaming service Deezer, where the

PhD candidate is a permanent employee in the “Deezer Research” team in Paris, France, and

the Laboratoire d’informatique de l’École polytechnique (LIX), in Palaiseau, France.

This project has been entirely funded by Deezer.
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Contributions à l’apprentissage de représentations à partir
d’autoencodeurs de graphes, et applications à la

recommandation musicale

Mandatory abstract in French / Résumé obligatoire en Français

Les graphes sont des structures omniprésentes dans de nombreux domaines de recherche, al-

lant de l’étude des réseaux sociaux à la recommandation automatique de contenu en passant

par la biologie. Cette omniprésence est due à la prolifération de données représentant les re-

lations ou les interactions entre des entités, aussi appelées des nœuds. Dans un graphe, ces

relations et interactions sont résumées sous la forme de liens, aussi appelés des arêtes, qui reli-

ent ces nœuds entre eux.

Extraire de l’information pertinente au sujet des nœuds et des arêtes d’un graphe est essentiel

pour espérer résoudre de nombreux problèmes d’apprentissage machine. Cela inclut notamment

la prédiction de liens manquants entre des paires de nœuds, ainsi que la détection de commun-

autés de nœuds, deux problèmes sur lesquels nous nous concentrons tout particulièrement au

sein de cette thèse. Au cours des dernières décennies, diverses méthodes ont été proposées afin de

résoudre de tels problèmes d’apprentissage. Alors que des approches traditionnelles proposaient

de construire manuellement des indicateurs statistiques résumant les nœuds et leurs connexions,

des améliorations significatives ont récemment été obtenues par des méthodes visant à directe-

ment apprendre, au travers d’un modèle, les meilleures représentations vectorielles des nœuds

d’un graphe selon certains critères prédéfinis.

En particulier, les autoencodeurs de graphes (GAE) et les autoencodeurs variationnels de graphes

(VGAE) se sont récemment imposés comme deux puissants groupes de méthodes permettant de

construire de telles représentations vectorielles de manière non supervisée, avec des applications

prometteuses à de divers problèmes d’apprentissage dont ceux cités précédemment. Au début

de notre recherche, les GAE et VGAE souffraient néanmoins de plusieurs limitations majeures,

que nous détaillons tout au long de cette thèse. Ces limitations entravaient l’utilisation des

GAE et VGAE dans le cadre d’applications industrielles à grande échelle, par exemple liées à la

recommandation musicale au sein du service de streaming musical Deezer, où ce doctorat a été

réalisé.

Dans cette thèse, nous présentons plusieurs contributions permettant d’améliorer les GAE et

VGAE et de faciliter de telles utilisations. Tout d’abord, nous proposons deux stratégies per-

mettant de surmonter les problèmes de passage à l’échelle des GAE et VGAE, et d’entrâıner ces
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modèles sur des graphes ayant des millions de nœuds et d’arêtes tels que ceux disponibles chez

Deezer. Ces stratégies exploitent respectivement des techniques de dégénérescence de graphes

et de décodage stochastique de sous-graphes. Par ailleurs, nous présentons nos GAE et VGAE

inspirés de la gravité (de l’anglais Gravity-Inspired GAE and VGAE ). Il s’agit des premières

extensions de ces modèles destinées aux graphes dirigés, qui sont omniprésents dans les applic-

ations industrielles. Ces extensions obtiennent de meilleurs résultats empiriques que plusieurs

alternatives populaires pour différents problèmes de prédiction de liens manquants dirigés. Nous

étudions également des extensions des GAE et VGAE destinées aux graphes dynamiques, dans

lesquels les nœuds et les arêtes peuvent évoluer au cours du temps. En outre, nous démontrons

que les GAE et VGAE existants, qui reposent en général sur des réseaux convolutifs de graphes

(GCN) multi-couches, sont souvent inutilement complexes. Par conséquent, nous proposons

de les simplifier, en ayant recours à des encodeurs linéaires. Enfin, nous présentons nos GAE

et VGAE informés par la modularité (de l’anglais Modularity-Aware GAE and VGAE ), qui

permettent d’améliorer la détection de communautés de nœuds, tout en préservant de bonnes

performances pour la prédiction de liens manquants.

Dans la dernière partie de cette thèse, nous évaluons nos méthodes sur plusieurs graphes ex-

traits du service de streaming musical Deezer. Nous nous concentrons sur des problèmes de

recommandation musicale à partir de graphes, souvent présentés sous la forme de problèmes de

prédiction de liens manquants ou de détection de communautés de nœuds. En particulier, nous

montrons que nos méthodes permettent d’améliorer la détection de communautés d’entités mu-

sicales à recommander aux mêmes utilisateurs, mais aussi de mieux classer des artistes similaires

dans un contexte de démarrage à froid (de l’anglais cold start), et enfin de mieux modéliser la

perception des genres musicaux à travers différentes cultures. Pour terminer, nous présentons

également deux autres modèles, récemment déployés en production chez Deezer afin de recom-

mander de la musique à des millions d’utilisateurs. Ces deux modèles permettent respective-

ment de personnaliser les carrousels de playlists et d’albums proposés aux utilisateurs sur la

page d’accueil de Deezer et, dans un contexte de démarrage à froid, de recommander du contenu

musical aux nouveaux utilisateurs du service, pour lesquels peu de données sont disponibles.

Bien qu’étant moins directement liés aux GAE et VGAE, ces deux derniers projets fournissent

un point de vue complémentaire sur des sujets de recommandation musicale connexes à ceux

étudiés précédemment.
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• Lun ∈ [−1, n]n×n: the unnormalized Laplacian matrix of G;

• Lrw ∈ [−1, n]n×n: the random-walk normalized Laplacian matrix of G;

• Lsym ∈ [−1, n]n×n: the symmetrically normalized Laplacian matrix of G;

• K ∈ {1, . . . , n}: the number of communities in G;

• C1 ⊆ V, . . . , CK ⊆ V: a partition of V into K communities;

• Ac ∈ {0, 1}n×K : the community membership matrix corresponding to the above partition;

• As ∈ {0, 1}n×K : the s-regular sparsification of the above matrix Ac;

• L ∈ N∗: the number of layers in a GNN, excluding the input layer;

• dl ∈ N∗: the dimension of layer l ∈ {0, . . . , L}, with l = 0 denoting the input layer;

• h
(l)
i ∈ Rdl : the vectorial representation of node i ∈ V at layer l ∈ {0, . . . , L};

• H(l) ∈ Rn×dl : the matrix stacking up all h
(l)
i vectors, for l ∈ {0, . . . , L};

• W (l) ∈ Rdl×dl+1 : in a GCN, the weight matrix from layer l to l+ 1, for l ∈ {0, . . . , L− 1};

• σ : R →]0, 1[: the sigmoid activation function (the notation ]0, 1[ indicates that 0 and 1

are excluded from the set);

• ReLU : R→ R+: the ReLU activation function;

• LMODEL : I → R: the loss/objective function of a model, with input elements in a set I;

• δ∗(G) ∈ {0, . . . , n}: the degeneracy number of G;

• Cδ∗(G) ⊆ Cδ∗(G)−1 ⊆ ... ⊆ C0 = V: the core decomposition of G.

xxi
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1
Context and Scope of this Thesis

This introductory chapter provides a general overview of this PhD thesis. Firstly, we present

the context and objectives of this work, which is at the intersection of graph representation

learning and music recommendation. Then, we detail the scientific contributions as well as the

organization of the remainder of this thesis. We also list the publications that resulted from the

research conducted during these three years.

1.1 Context and Objectives

Graph structures became ubiquitous in various fields ranging from web mining to biology, due to

the proliferation of data representing entities, also known as (a.k.a.) nodes or vertices, connected

by links a.k.a. edges summarizing their relations or their interactions. For instance, web graphs

depict pages of the World Wide Web as nodes, and a node i will point to a node j via an

edge if any hyperlink on page i refers to page j. Social networks such as Facebook and Twitter

are graphs of users, connected through “friendship” or “following” relations. Citation graphs

represent scientific articles connected through citation links. Protein-protein interaction graphs

efficiently summarize biological proteins and their kinetic interactions [128].

At Deezer1, where the research presented in this thesis was conducted, graphs also naturally

emerge on numerous occasions. Deezer is a French music streaming service with, at the time of

writing, more than 15 million active users from 180 countries. These users can “follow” each other

on the service, hence creating a large social graph. They have access to a catalog of 73 million

music tracks, and the musical description of this catalog also involves graph representations.

1https://www.deezer.com/
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1.1. Context and Objectives

Figure 1.1: An example of a similar artists graph. While connections between artists are not naturally given (left),
a graph of similar artists can be constructed, e.g., by connecting artists that are simultaneously listened to or liked
by numerous users (middle). This graph can be used as an abstraction (right), e.g., for music recommendation.

Indeed, music tracks can be connected to artists, albums, music genres, or record labels, that

can themselves be connected together through various semantic links (e.g., the song “Kashmir”

is part of “Physical Graffiti”, an album from the English band “Led Zeppelin”), generating a

large knowledge graph [374] of musical entities. Previous studies emphasized the benefits of

leveraging such representations for music information retrieval [297]. Besides, as we will develop

in Chapter 10, Deezer possesses various graph ontologies [83, 321] that represent music genres.

These are graphs of conceptually related music genres, connected through various relation-

specific edges (e.g., “rap west coast” is a subgenre of “hip hop”; “punk” and “electronic music”

are the origin of “synthpunk”). Lastly, Deezer also constructs similarity graphs from usage

data, e.g., graphs of similar artists. Contrary to the aforementioned ones, these graphs are not

naturally given. As illustrated in Figure 1.1, they are artificially built by connecting artists

that are simultaneously listened to by numerous users on the service. They are subsequently

processed in recommender systems and, as we will further develop in Chapters 8 and 9, they

play a central role to help users discover new musical content on the service. The study of these

similarity graphs, and of their application to industrial-level music recommendation problems,

initially motivated the establishment of this PhD project.

Overall, extracting relevant information from the nodes and edges of a graph is crucial to tackle

a wide range of machine learning problems [128, 348, 386, 398]. This includes the link prediction

task [200, 225], which consists in inferring the presence of new or unobserved edges between

some pairs of nodes, based on observed edges in the graph. This also includes community

detection [31, 248], which consists in clustering nodes into similar subgroups according to a

chosen similarity metric, as well as several other tasks mentioned throughout this thesis. As an

illustration, Deezer often wants to predict new connections in the similar artists graph illustrated

in Figure 1.1, corresponding to new artists pairs that users would enjoy listening to together,

and which could be achieved by performing link prediction in the graph. Deezer would also like

to learn clusters of similar artists, with the aim of providing usage-based recommendations (e.g.,

if users listen to several artists from a cluster, other unlistened artists from this same cluster

could be recommended to them), which could be achieved through community detection.
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Chapter 1. Context and Scope of this Thesis

Addressing such graph-based problems has

been the objective of significant research efforts

over the past decades [200, 213, 223, 225, 248].

Traditional approaches often focused on hand-

engineered features. For instance, locating

missing edges in graphs has been historically

addressed via the construction of node simil-

arity measures, such as the popular Adamic-

Adar, Jaccard or Katz indices [225]. Nonethe-

less, as further detailed in Chapter 2, promising

improvements were recently achieved by meth-

ods aiming to directly learn node representa-

tions [128, 129, 186, 188, 386] summarizing the

graph under consideration. As illustrated in

Figure 1.2, these representation learning meth-

ods compute vectorial representations of nodes
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Figure 1.2: Visualization of node embedding representa-
tions for the Cora citation graph [323] of 2 708 scientific
articles connected through citations, and obtained from
the VGAE detailed in Chapter 7. Each point corres-
ponds to an article, and colors denote their correspond-
ing fields (not provided during training). This visualiza-
tion was obtained by using the t-SNE method [363], per-
mitting visualizing 32-dimensional VGAE embedding
vectors in two dimensions.

in a node embedding space where node positions should reflect and summarize the initial graph

structure. Then, usually, they assess the probability of a missing edge between two nodes, or

their likelihood of belonging to the same community, by evaluating the proximity of these nodes

in the space [55, 187, 370]. As we will explain throughout this thesis, these methods often learn

such node embedding spaces by leveraging either random walk strategies [123, 287], matrix

factorization techniques [43, 276] or graph neural networks (GNNs) [130, 188].

In particular, graph autoencoders (GAEs) and variational graph autoencoders (VGAEs) [187,

356, 370, 371] recently emerged as two powerful families of GNN-based node embedding meth-

ods. They both rely on an encoding-decoding strategy that, in a broad sense, consists of encod-

ing nodes into an embedding space from which decoding, i.e., reconstructing the original graph

should ideally be possible, by leveraging either a deterministic (for a GAE) or a probabilistic (for

a VGAE) approach. The intuition behind this strategy is the following: if, starting from the em-

bedding space, one can reconstruct a graph close to the true one, then one might conclude that

embedding vectors preserve some important characteristics of the initial graph structure. Ori-

ginally mainly designed for link prediction, at least in their modern formulation leveraging GNN

encoders [187], the overall effectiveness of GAEs and VGAEs on this specific task as well as on

several others has been widely experimentally confirmed over the past few years (see Chapter 2).

Besides their empirical performances, GAEs and VGAEs are of particular interest in the context

of this PhD for two key reasons. First and foremost, they are suited for representation learning in

the absence of nodes labels, contrary to many methods that are optimized in a supervised or semi-

supervised fashion and require ground truth node labels during training [130, 188, 386]. This is

desirable as, in most applications developed in this thesis, such labels will be unavailable. For
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1.2. Overview of Scientific Contributions

instance, we do not have access to ground truth groups of artists/nodes that should actually be

recommended together. Secondly, contrary to some popular alternatives [123, 287, 368], GAEs

and VGAEs can process attributed graphs, i.e., graphs in which each node is also described by

its own feature vector. Once again, this is desirable as the graphs under consideration in our

experiments will often be enriched by such descriptions. For instance, on a similar artists graph,

artists could also be described by their own feature vectors providing some additional musical

information, such as the music genres of each artist. GAEs and VGAEs could permit learning

richer artist embedding representations by jointly capturing usage (through edges in the graph)

and musical (through feature vectors) information on these artists. As we will emphasize in

Chapter 8, leveraging feature vectors could also permit generalizing these methods to inductive

settings [128], that require learning representations for new artists/nodes, unseen during training.

Nonetheless, at the beginning of this PhD, leveraging GAEs and VGAEs for industrial-level

applications, e.g., for music recommendation at Deezer, was still a challenging task. Indeed, as we

will explain in the next chapters, these models suffered from scalability issues [307, 308]. In 2018,

in the scientific literature, experiments on GAEs and VGAEs were limited to graphs with at most

a few thousand nodes and edges. The question of how to effectively scale them to larger graphs,

such as those available at Deezer whose catalog includes millions of artists, albums, or music

tracks, remained widely open. Besides, these models were originally designed for undirected and

static graphs [187], while real-world graphs can also be directed (i.e., relations between nodes can

be asymmetric) and/or dynamic (i.e., the graph structure can evolve over time). Moreover, some

recent studies emphasized the relative limitations of standard GAEs and VGAEs for community

detection [55, 56]. Lastly, while existing variants of these models often rely on complex neural

encoders [309, 310], their actual benefit with respect to (w.r.t.) simpler strategies, that might

be preferred in production environments, had never been thoroughly analyzed.

The objective of this PhD thesis is twofold. Firstly, we wish to address these limitations, with the

general aim of improving GAEs and VGAEs, and of facilitating their application to real-world

problems involving node embedding representations. Secondly, we aim to test and evaluate our

proposed approaches on various industrial graphs extracted from the Deezer service. As detailed

in Section 1.2, we will put the emphasis on graph-based music recommendation problems, often

formulated as link prediction or community detection tasks.

1.2 Overview of Scientific Contributions

We now provide an outline of the remainder of this thesis, while simultaneously presenting

our scientific contributions. First of all, in Chapter 2 from this Part I, we will review some key

concepts related to machine learning on graphs. We will particularly focus on link prediction and

community detection, which will be the two main evaluation tasks considered in experiments
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Chapter 1. Context and Scope of this Thesis

throughout the next chapters. We will also provide an introduction to graph representation

learning, focusing on node embedding methods, as well as an introduction to (variational) graph

autoencoders. Then, in Part II, corresponding to Chapters 3 to 7, we will detail our contributions

to improve representation learning with GAEs and VGAEs. Finally, in Part III, corresponding to

Chapters 8 to 12, we will present several applications related to music recommendation at Deezer.

1.2.1 Representation Learning with Graph Autoencoders

The Part II of this thesis, focusing on contributions to node representation learning with graph

autoencoders, will begin with two chapters fully dedicated to scalability concerns. Firstly, in

Chapter 3, we will present the general framework proposed at the beginning of this PhD to scale

GAEs and VGAEs to large graphs with millions of nodes and edges. This framework leverages

graph degeneracy concepts [247] to train models only from a dense subset of nodes instead

of using the entire graph. Together with a simple yet effective propagation mechanism, this

approach improves scalability and training speed while, to some extent, preserving performance

on downstream tasks such as link prediction and community detection. We will report an

evaluation of the framework on several variants of existing GAEs and VGAEs. At the time of

publication of the paper associated with this work, these experiments provided, to the best of

our knowledge, the first application of these models to graphs with millions of nodes and edges.

In Chapter 4, we will subsequently introduce FastGAE, an alternative stochastic strategy to

scale GAEs and VGAEs. FastGAE leverages graph mining-based sampling schemes and an

effective subgraph decoding strategy to significantly lower the computational complexity of graph

autoencoders, while preserving or even slightly improving their performances. We will propose

an in-depth theoretical and experimental analysis of the proposed solution, showing that it

behaves favorably when compared to the degeneracy framework from Chapter 3. FastGAE

constitutes a faster and simpler improvement of our previous efforts.

Then, in Chapter 5, we will extend GAEs and VGAEs to directed graphs. As previously men-

tioned, their original versions were designed for undirected graphs [187]. They ignore the poten-

tial direction of the link when decoding edges from node embedding spaces. As we will argue,

this is limiting for numerous real-life applications. In this chapter, we will present a method

to effectively learn node embedding spaces from directed graphs using the GAE and VGAE

paradigms. We will draw inspiration from physics to introduce a new gravity-inspired decoder

scheme, able to reconstruct asymmetric relations from node embedding spaces. We will achieve

competitive empirical results on three different directed link prediction tasks, for which standard

GAEs and VGAEs perform poorly.

In Chapter 6, we will propose to simplify GAEs and VGAEs. While most existing variants of

these models rely on multi-layer graph convolutional network (GCN) encoders to learn node

embedding vectors, or on more sophisticated neural architectures [309, 310], we will show that
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1.2. Overview of Scientific Contributions

these encoders are actually unnecessarily complex for many applications. We will propose to

replace them by simpler linear models w.r.t. the direct neighborhood (one-hop) adjacency mat-

rix of the graph, involving fewer operations, fewer parameters, and no activation function. In

various experiments, we will show that this simpler approach consistently reaches competitive

performances w.r.t. GCN-based GAEs and VGAEs for numerous real-world graphs. This in-

cludes the Cora, Citeseer and Pubmed benchmark datasets [187, 323] commonly used to evaluate

GAEs and VGAEs in the literature. Based on these results, we will question the relevance of

repeatedly using these same datasets to compare complex graph autoencoders.

Lastly, in Chapter 7, we will focus on community detection. While GAEs and VGAEs emerged as

powerful methods for link prediction, their performances were sometimes less impressive on com-

munity detection problems where, according to recent and concurring studies [55, 56, 307, 308],

they can be outperformed by simpler alternatives such as the Louvain method [31]. At the

beginning of this PhD project, it was still unclear to which extent one could improve community

detection with a GAE or a VGAE, especially in the absence of node features. It was moreover

uncertain whether one could do so while simultaneously preserving good performances on link

prediction. In this chapter, we will show that jointly addressing these two tasks with high

accuracy is possible. For this purpose, we will introduce and theoretically study a community-

preserving message passing scheme, doping our GAE and VGAE encoders by considering both

the initial graph structure and modularity-based prior communities when computing embedding

spaces. We will also propose novel training and optimization strategies, including the introduc-

tion of a modularity-inspired regularizer complementing the existing reconstruction losses for

joint link prediction and community detection. We will demonstrate the effectiveness of our

approach, referred to as Modularity-Aware GAE and VGAE, through in-depth experiments.

1.2.2 Applications to Music Recommendation at Deezer

The Part III of this thesis will provide five additional chapters, focusing on applications to music

recommendation. Firstly, in Chapter 8, we will adopt a graph-based approach to rank similar

artists on Deezer. As illustrated in Figure 1.3, on an artist’s profile page, music streaming

services such as Deezer frequently recommend a ranked list of similar artists that fans also liked.

However, implementing such a feature is challenging for new artists, for which usage data on

the service (e.g., streams or likes) is not yet available. In this chapter, we will model this “cold

start” similar artists ranking problem as a link prediction task in a directed and attributed graph,

connecting artists to their most similar neighbors and incorporating side musical information as

attribute vectors. Then, we will leverage the directed GAE/VGAE from Chapter 5 to learn node

embedding representations from this graph, and to automatically rank the most similar neighbors

of new artists using the gravity-inspired asymmetric decoder. We will empirically show the

flexibility and effectiveness of this method on data extracted from Deezer’s production system.
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Chapter 1. Context and Scope of this Thesis

Figure 1.3: Some examples of “similar artists” recommended on the website version of Deezer.

In Chapter 9, we will give a broader overview of how Deezer has historically leveraged more gen-

eral similarity graphs for music recommendation. While some technical details will be omitted

for confidentiality reasons, we will explain how such graphs played a central role in production-

facing algorithms such as Deezer’s “Flow” feature, notably to detect communities of similar

artists to recommend to users. In this direction, we will show the benefits of adopting GAEs

and VGAEs, integrating advances from previous chapters, to improve community detection in

large graphs of artists and albums with recommendation purposes. Moreover, we will mention

future plans to extend the approach to other graphs such as graphs of music tracks, of users,

or more general knowledge graphs, as well as to culture-specific graphs. Lastly, we will discuss

experimental studies, done with a Master’s intern at Deezer, to extend the proposed methods

to dynamic graphs, incorporating new nodes and edges over time.

In Chapter 10, we will then focus on music genre ontologies. As explained in Section 1.1, these

ontologies are graphs of conceptually related music genres, connected through various relation-

specific edges [321]. In this chapter, we will leverage these graphs to model the music genre

perception across (language-bound) cultures. The problem is the following: the music genre

perception expressed through human annotations of artists or albums varies significantly across

cultures [95]. These variations cannot be modeled as mere translations since we also need to

account for cultural differences in the perception. This is an important issue for music streaming

services such as Deezer, as these variations impact a wide range of tasks, ranging from localized

playlist captioning to genre-driven music recommendation. In this work, we will study the

feasibility of obtaining relevant cross-lingual, culture-specific music genre annotations based only

on language-specific semantic representations, namely on 1) word embeddings of music genres

and 2) graph ontologies [83]. Our study, focused on six languages, will show that unsupervised

cross-lingual music genre annotation is feasible with high accuracy when combining both types

of representations. This combination will concurrently be performed through a GAE/VGAE

approach, and through an alternative simple yet effective method based on retrofitting [87].
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Finally, during the three years of this PhD, several other projects less related to GAEs and

VGAEs were also carried out jointly with colleagues from Polytechnique or Deezer, sometimes

leading to scientific publications [26, 39, 82, 360]. For consistency reasons, we omit most of

these additional projects in this thesis. We nonetheless chose to present two of them in the

last Chapters 11 and 12, for two reasons. Foremost, these two works directly relate to music

recommendation at Deezer, and consider some issues previously introduced in the thesis such

as the cold start problem. Besides, these two projects led, not only to experiments on Deezer’s

data, but also to online A/B tests and subsequently to model deployment on the Deezer service.

They will therefore complement the previous chapters by providing a larger overview of some of

Deezer’s strategies and production-facing algorithms to recommend music.

Specifically, in Chapter 11, we will present

some research on carousel personalization. As

illustrated in Figure 1.4, music streaming ser-

vices frequently leverage swipeable carousels,

i.e., ranked lists of items or cards (albums,

artists, playlists...), to recommend personal-

ized content to users on the homepage. How-

ever, selecting the most relevant items to dis-

play in these carousels is a challenging task,

as items are numerous and users have differ-

ent preferences. In this chapter, we will model

carousel personalization as a contextual multi-

armed bandit problem with multiple plays,

cascade-based updates, and delayed batch feed-

back. We will empirically show the effective-

ness of our framework at capturing charac-

teristics of real-world carousels by addressing

a large-scale playlist recommendation task on

Deezer, through offline and online experiments.

Figure 1.4: An example of a personalized swipeable ca-
rousel on the Deezer mobile app. These carousels, also
referred to as sliders or shelves [252], consist of ranked
lists of items or cards to recommend to users, e.g., playl-
ists’ cover images as in this figure. These playlists were
created by professional curators from Deezer with the
purpose of complying with a specific music genre, cul-
tural area, or mood. A few playlists are initially dis-
played to each user, who can click on them or swipe on
the screen to see some of the additional recommended
playlists from the carousel.

Then, in Chapter 12, we will present the system recently deployed on Deezer to address the

user cold start problem, and thus to recommend music to new users with few to no interactions

with the catalog. The solution leverages a semi-personalized recommendation strategy, based

on a deep neural network architecture and on a clustering of users from heterogeneous sources of

information. We will show the practical impact of this system and its effectiveness at predicting

the future musical preferences of cold start users on Deezer, through both offline and online

experiments. These experiments will include tests on carousels from Chapter 11. We will also

emphasize how this system enables us to provide more interpretable recommendations.
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Chapter 1. Context and Scope of this Thesis

1.3 List of Publications

The research conducted during this PhD led to the publication of several scientific articles,

that are listed thereafter. For the sake of simplicity, this list only mentions my current name

G. Salha-Galvan. Nonetheless, I actually published under my old name G. Salha until 2020,

and older publications are reported in their original form in the bibliography. In the remainder

of this thesis, when a chapter presents some published results, the corresponding publication(s)

will be specified at the beginning of the chapter.

Journals

• G. Salha-Galvan, R. Hennequin, J. B. Remy, M. Moussallam, M. Vazirgiannis, FastGAE:

Scalable Graph Autoencoders with Stochastic Subgraph Decoding. Neural Networks 142

(2021), 1 – 19, Elsevier (impact factor: 8.05).

• G. Salha-Galvan, J. F. Lutzeyer, G. Dasoulas, R. Hennequin, M. Vazirgiannis, Modularity-

Aware Graph Autoencoders for Joint Community Detection and Link Prediction. This

article is currently under review for publication in Neural Networks, Elsevier in 2022.

International Conferences

• G. Salha-Galvan, R. Hennequin, V. A. Tran, M. Vazirgiannis, A Degeneracy Framework

for Scalable Graph Autoencoders. Proceedings of the 28th International Joint Conference

on Artificial Intelligence (IJCAI 2019), 3353 – 3359.

• G. Salha-Galvan, S. Limnios, R. Hennequin, V. A. Tran, M. Vazirgiannis, Gravity-Inspired

Graph Autoencoders for Directed Link Prediction. Proceedings of the 28th ACM Interna-

tional Conference on Information and Knowledge Management (CIKM 2019), 589 – 598.

• G. Salha-Galvan, R. Hennequin, M. Vazirgiannis, Simple and Effective Graph Autoen-

coders with One-Hop Linear Models. Proceedings of the 2020 European Conference on

Machine Learning and Principles and Practice of Knowledge Discovery in Databases

(ECML - PKDD 2020), 319 – 334.

• E. V. Epure, G. Salha-Galvan, M. Moussallam, R. Hennequin, Modeling the Music Genre

Perception across Language-Bound Cultures. Proceedings of the 2020 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP 2020), 4765 – 4779.

• E. V. Epure, G. Salha-Galvan, R. Hennequin Multilingual Music Genre Embeddings for

Effective Cross-Lingual Music Item Annotation. Proceedings of the 21st International

Society for Music Information Retrieval Conference (ISMIR 2020), 803 – 810.
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1.3. List of Publications

• W. Bendada, G. Salha-Galvan, T. Bontempelli, Carousel Personalization in Music Stream-

ing Apps with Contextual Bandits. Proceedings of the 14th ACM Conference on Recom-

mender Systems (RecSys 2020), 420 – 425. Best short paper honorable mention.

• G. Salha-Galvan, R. Hennequin, B. Chapus, V. A. Tran, M. Vazirgiannis, Cold Start

Similar Artists Ranking with Gravity-Inspired Graph Autoencoders. Proceedings of the

15th ACM Conference on Recommender Systems (RecSys 2021), 443 – 452. Best student

paper honorable mention.

• V. A. Tran, G. Salha-Galvan, R. Hennequin, M. Moussallam, Hierarchical Latent Relation

Modeling for Collaborative Metric Learning. Proceedings of the 15th ACM Conference on

Recommender Systems (RecSys 2021), 302 – 309.

• L. Briand, G. Salha-Galvan, W. Bendada, M. Morlon, V. A. Tran, A Semi-Personalized

System for User Cold Start Recommendation on Music Streaming Apps. Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2021),

2601 – 2609.

Workshops and Demonstrations

• G. Salha-Galvan, R. Hennequin, M. Vazirgiannis, Keep It Simple: Graph Autoencoders

Without Graph Convolutional Networks. Workshop on Graph Representation Learning,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019).

• E. V. Epure, G. Salha-Galvan, F. Voituret, M. Baranes, R. Hennequin, Muzeeglot : An-

notation Multilingue et Multi-Sources d’Entités Musicales à partir de Représentations de

Genres Musicaux. Actes de la 27ème Conférence sur le Traitement Automatique des

Langues Naturelles - Démonstrations (TALN 2020), 18 – 21.

Code and Data Releases

• Along with each of these articles, we publicly released our source code on a GitHub re-

pository, for reproducibility and future usage of the proposed methods. Along with five of

these articles, we also publicly released new datasets, that were either directly extracted

from Deezer’s private resources, or scraped and processed from the internet. More details

are provided throughout this thesis, and on: https://github.com/deezer.
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2
Background on Graph Representation Learning

This chapter formally introduces some key concepts related to graph structures and graph repres-

entation learning, mainly focusing on methods learning node embedding representations including

graph neural networks and graph autoencoders. It does not aim to provide an exhaustive review

of the fast-growing graph representation learning field (which could be the objective of an entire

book [128]), but rather to present the important notions that will subsequently be used in the

remainder of this PhD thesis.

2.1 Introduction

We begin this chapter with some general concepts and definitions related to graph structures.

2.1.1 Graph Structures: Generalities and Key Definitions

In its most general formulation, a graph is defined as follows.

Definition 2.1. A graph is an ordered pair G = (V, E) comprising:

• a set of nodes or vertices V. For the sake of simplicity, we assume V = {1, 2, . . . , |V|};

• a set of edges or links E ⊆ V × V connecting these nodes. In essence, they summarize the

relations or interactions between nodes. We denote an edge going from a node i ∈ V to a

node j ∈ V as (i, j) ∈ E . Each edge is equipped with a positive weight wij , normalized to

lie in the [0, 1] set without loss of generality (w.l.o.g.), and indicating the intensity of the

link from i to j. For unweighted graphs, we implicitly set wij = 1 for all (i, j) ∈ E .
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2.1. Introduction

In this thesis, we denote by n the number of the nodes in the graph, i.e., n = |V|, and by m the

number of edges in the graph, i.e., m = |E|.

Remark: graph or network? In this remark, we discuss our choice to refer to the mathem-

atical object defined in Definition 2.1 as a “graph” and not as a “network”, contrary to several

references [31, 34, 240, 267, 323]. Some research studies explicitly present the two terms as

synonyms [4, 49]. Hamilton [128] makes a distinction between their usage. In his book, “graph”

refers to the abstract data structure on which we focus on in this thesis, while “network” de-

scribes real-world instances of this structure, e.g., social networks or computer networks. He also

explains that “network” has been historically favored in the data mining and network science

communities (studying such real-world data), while “graph” is prevalent in the graph theory

(studying theoretical properties of the mathematical abstraction) and in the machine learning

communities. We choose to employ “graph” as well in this thesis for consistency with recent

advances in machine learning, but also to avoid terminological clashes with the term “neural

network”, which will be widely used in our work.

In this thesis, we will often represent a graph G by its adjacency matrix, defined as follows.

Definition 2.2. The adjacency matrix A ∈ [0, 1]n×n of a graph G = (V, E) is defined as:

Aij =

wij , if (i, j) ∈ E ,

0, otherwise,
(2.1)

for all (i, j) ∈ {1, . . . , n}2.

This matrix can represent graphs with various properties, e.g., those illustrated in Figure 2.1:

• if A is a binary matrix, i.e., A ∈ {0, 1}n×n, then G is an unweighted graph;

• if Aii > 0 for any i ∈ {1, . . . , n}, then G includes a self-loop connecting the node i to itself;

• if A is a symmetric matrix, i.e., Aij = Aji for all (i, j) ∈ {1, . . . , n}2, then G is an undirected

graph. It corresponds to cases where all edges are bidirectional. For instance, the Facebook

social network is an undirected graph (if the user i is a “friend” of the user j, then j is also a

“friend” of i) while the Twitter social network is directed (connections can be asymmetric,

i.e., i can “follow” j while j does not “follow” i back);

• if V can be partitioned into two disjoint sets V1 and V2 with Aij > 0 =⇒ i ∈ V1 and

j ∈ V2, then G is a bipartite graph where any two nodes from the same partition set are

unconnected. For instance, if V1 denotes a set of Deezer users, and V2 denotes a set of

music tracks, then an edge (i, j) in such a graph could represent the fact that the user i

likes the track j.
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Figure 2.1: Examples of some different types of graphs.

Definitions 2.1 and 2.2 can also be straightforwardly extended to represent more complex struc-

tures. For instance, in Chapter 9, we will consider dynamic graphs, where nodes and edges can

appear or disappear over time. They are often summarized by T discrete snapshots of standard

graphs G1 = (V1, E1), G2 = (V2, E2), . . . , GT = (VT , ET ) depicting the structural evolution over

time [179], and therefore by T adjacency matrices A1, A2, . . . , AT . Moreover, in Chapter 10, we

will consider structures of the form G = (V, E1, E2, . . . , Ep) where nodes can be connected through

edges of p different natures [83]. They can be summarized as well by p adjacency matrices A1,

A2, . . . , Ap, each of them indicating edges of a particular nature.

We also use A to introduce the concept of neighboring nodes, which will be useful in our work.

Definition 2.3. The incoming neighbors Nin(i) and outcoming neighbors Nout(i) of a node

i ∈ V from a directed graph G = (V, E), with adjacency matrix A, correspond to nodes “pointing

towards i” and “towards which i points” through an edge, respectively. More formally:

Nin(i) = {j ∈ V;Aji > 0} and Nout(i) = {j ∈ V;Aij > 0}. (2.2)

For undirected graphs (where Aij = Aji), we simply denote by N (i) the neighborhood of the

node i, defined as N (i) = Nin(i) = Nout(i). This same set will occasionally be referred to as the

direct neighborhood or the one-hop neighborhood of the node i, in chapters where more general

definitions of neighborhoods will concurrently be introduced.

In addition to the adjacency matrix A, we introduce several other matrices also frequently used

for graph analysis.

Definition 2.4. The in-degree matrix Din and out-degree matrix Dout of a graph G = (V, E),
with adjacency matrix A, are the n× n diagonal matrices defined as:

Din = diag(AT1n) and Dout = diag(A1n), (2.3)

where 1n denotes the n-dimensional vector containing n entries all equal to 1. For undirected

graphs (where AT = A) we simply denote by D the degree matrix defined as D = Din = Dout.
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In a nutshell, the i-th diagonal element of Din (respectively, of Dout) corresponds to the sum

of weights of all edges pointing towards node i (resp., going out of node i) in the graph under

consideration. For unweighted graphs, this coincides with the number of incoming (resp., out-

coming) neighbors of i. In the case of an undirected degree matrix D, diagonal elements equal

the number of neighbors of i.

From Definition 2.4, we subsequently introduce the symmetric normalization of A.

Definition 2.5. The symmetric normalization of the adjacency matrix A of an undirected graph

G = (V, E) with degree matrix D is:

Ã = (D + In)
− 1

2 (A+ In)(D + In)
− 1

2 , (2.4)

where In denotes the n× n identity matrix.

In Ã, each element (i, j) of the original adjacency matrix is re-weighted according to the de-

grees of nodes i and j. Specifically, we have Ãij =
Aij√

(Dii+1)(Djj+1)
for all (i, j) ∈ V × V with

i ̸= j, and Ãii = Aii+1
Dii+1 (= 1

Dii+1 in the absence of self-loop) for all i ∈ V. Ã will often be

preferred to A in the graph neural networks we will introduce thereafter, for reasons related

to information propagation that will be detailed along with the presentation of these methods

(see Section 2.3 and 2.4). Other normalizations of A, such as variants involving Din or Dout for

directed graphs, will also occasionally be mentioned throughout this thesis (see, e.g., Chapter 5).

Besides, other transformations of the adjacency matrix with useful properties have also been

proposed to represent graphs. This includes Laplacian matrices [255, 368], defined as follows.

Definition 2.6. The unnormalized Laplacian matrix of an undirected graph G = (V, E), with
adjacency matrix A and degree matrix D, is defined as:

Lun = D −A. (2.5)

In addition, several matrices are sometimes referred to as normalized Laplacian matrices [368].

This includes the random-walk normalized Laplacian matrix, defined as:

Lrw = D−1Lun, (2.6)

as well as the symmetrically normalized Laplacian matrix, defined as:

Lsym = D−1/2LunD
−1/2. (2.7)

Laplacian matrices are central to spectral graph theory [58] and to numerous related meth-

ods such as Laplacian eigenmaps and spectral clustering [270, 342, 368] that we will introduce
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in Section 2.2 and consider in several experiments throughout this thesis. We refer to Von

Luxburg [368] and Lutzeyer [240] for an in-depth presentation of the differences, the applica-

tions, and the mathematical properties of these Laplacian matrices, ranging from their symmetry

to their positive semi-definiteness and their link to the number of connected components in G.

Lastly, some graphs mentioned in our work will be attributed graphs. Each node will also be

described by its own feature vector, a.k.a. attribute vector or descriptive vector [128]. We will

encapsulate these descriptions in a node feature matrix X.

Definition 2.7. The node feature matrix X of an attributed graph G = (V, E), in which each

node i is also described by its own vector xi ∈ Rf , is the n× f matrix stacking up all xi vectors:

X = [x1, . . . , xn]
T , (2.8)

i.e., the i-th row of X corresponds to the feature vector xi of node i.

2.1.2 Machine Learning on Graphs

A wide range of machine learning problems involve graphs, and require extracting relevant

information from the nodes and edges of such structures [128, 129, 348, 386, 398]. In the

following, we present some of these problems. We primarily focus on link prediction and on

community detection, which will be the two evaluation tasks mainly considered in our exper-

iments, as they are closely related to our applications at Deezer. We refer to several surveys

[97, 128, 200, 248, 328, 386] for a broader overview of graph-based machine learning problems.

Link Prediction The link prediction task [200, 225] consists in inferring the presence of new

or unobserved edges between some pairs of nodes, based on the observed edges in the graph.

Over the past decades, this problem initiated significant research efforts from the scientific

community, with various real-world applications ranging from recommending new “friends” in

social networks to predicting interactions between proteins [49, 187, 200, 225, 226, 328, 392, 402].

More formally, we define a link prediction model as follows.

Definition 2.8. Let us consider a graph G = (V, E) in which some edges would be “missing”,

e.g., masked or yet to appear. A link prediction model for such a graph is a function:

p : V × V \ E → [0, 1]. (2.9)

For a given pair (i, j) of unconnected nodes, it returns an estimated probability p(i, j) of a

missing edge connecting i to j in the graph G = (V, E) under consideration.

Definition 2.8 is very general. For instance, p could correspond to a node similarity measure
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directly computed from the graph, e.g., to the proportion of common edges between two nodes1.

Alternatively, p could also correspond to a more sophisticated model with trainable parameters,

e.g., to a neural network [200]. To assess the performance of such a model, researchers often

adopt an evaluation methodology [187, 279, 402] consisting in:

• firstly, training this model on an (artifically) incomplete version of a graph, for which only

a certain percentage of randomly sampled edges (for instance, 85% in [187]) are visible;

• then, constructing validation and test sets gathering:

– node pairs corresponding to missing edges (5% and 10%, respectively, in [187]);

– the same number of randomly picked unconnected node pairs in the graph;

• finally, evaluating the model’s ability to distinguish edges from non-edges in these sets,

using the model trained on the incomplete graph.

While all node pairs in such validation and test sets are observed to be unconnected, half of

them actually correspond to missing edges from the original graph. Under this formulation,

link prediction acts as a binary classification task, assessing to which extent the model correctly

locates these missing edges despite their absence during training.

Researchers evaluate model performance on this link prediction task through binary classification

metrics [148], such as the popular Area Under the ROC Curve (AUC) [88, 251] and Average

Precision (AP) [301] scores, that we will adopt and discuss as well throughout our work2.

Community Detection Another fundamental problem in graph-based machine learning,

community detection consists in identifying K < n clusters a.k.a. communities of nodes that,

in some sense, are more similar to each other than to the other nodes [97, 314]. As link pre-

diction, this problem initiated significant research efforts [77, 97, 232, 248, 280, 290, 314, 370].

Community detection has numerous real-world applications. This includes the segmentation

of websites in a web graph according to thematic categories [154, 248], as well as the detec-

tion of densely connected subgroups of users (actual “communities”) in online social networks

[77, 280, 290]. More formally, we define a community detection model as follows.

Definition 2.9. Let us consider a graph G = (V, E). Denoting by PK(V) the set of partitions

of V of cardinality K ≤ n, a community detection model is a function:

c : G → PK(V), (2.10)

1Such node similarity measures usually rely on homophily assumptions. This term describes the tendency of
nodes to connect to “similar” nodes in the graph, which is observed in numerous real-world applications [200].

2We will use the implementations provided in the scikit-learn Python library for machine learning [284] and re-
spectively described here: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc auc score.html
and here: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average precision score.html.
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Given the observed graph, it returns a partition of the node set V into K sets, denoted as follows:

C1 ⊆ V, . . . , CK ⊆ V. (2.11)

We denote nk = |Ck|, for k ∈ {1, . . . ,K}.

In the scientific literature, the quality of such

a partition is usually assessed through some

predefined similarity metrics, e.g., unsuper-

vised density-based metrics computed from the

intra- and inter-cluster edge density [248], or

scores such as the Adjusted Mutual Informa-

tion (AMI) [366] and the Adjusted Rand In-

dex (ARI) [159] that compare the partition to

some ground truth node labels (when such la-

bels are available) hidden during training. We

will adopt and discuss these metrics as well

throughout our work3. Figure 2.2 provides a

illustrative example of a graph generated from

a stochastic block model [2], where nodes are

partitioned in K = 4 communities.

Figure 2.2: A graph with four ground truth communit-
ies, denoted by node colors. This synthetic graph was
obtained through a stochastic block model [2], which
generates community-based random graphs.

As is the case for link prediction, Definition 2.9 is voluntarily very general. Specific examples

of community detection methods will be presented in the next sections and chapters. Also,

while this definition implicitly assumes that K is known and fixed, we emphasize that some

community detection methods instead involve an automatic selection of the appropriate number

of communities to detect [31]. Besides, while the above partitioning implies that communities are

disjoint, several overlapping community detection methods were also proposed in the scientific

literature [145, 178, 405]. They are out of the scope of this thesis.

Other Tasks Several other graph-based machine learning problems have also been introduced

and widely studied over the last decades. While they will be less or not discussed in this thesis,

we nevertheless mention several of them in this paragraph along with some indicative references.

Examples of such other problems include: influence maximization, which consists in identifying

the most “influent” nodes in a graph, e.g., the ones that will maximize the spread of a rumor

in a social network according to some information diffusion process [44, 112, 180, 223, 312];

graph-level clustering, where the goal is to partition a set of several entire graphs, into groups of

3Again, we will use the implementations provided in scikit-learn [284] and respectively described
here: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted mutual info score.html and
here: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted rand score.html.
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2.2. Learning Node Embedding Representations

structurally similar ones [65, 78, 129, 273]; graph generation, consisting in generating new graphs

verifying some desirable properties, e.g., new biologically plausible molecules [169, 224, 233, 243,

336]; and several other problems ranging from supervised/semi-supervised node classification

[66, 130, 188, 364, 383] to edge classification [7, 46, 207].

2.2 Learning Node Embedding Representations

To address these machine learning problems, significant efforts were recently devoted to the

development of representation learning methods. In the remainder of this Chapter 2, we propose

an introduction to this learning paradigm. For consistency with the content of this thesis, we

focus on methods learning vectorial representations of nodes in an embedding space, and omit

other existing methods, e.g., those designed for edge-level or graph-level representation learning

[245, 265, 299, 365]. Moreover, at times, we partly draw inspiration from Hamilton’s recent book

on graph representation learning [128] to organize and present some key concepts. We refer to

this book for more details and references on this topic.

Specifically, in this Section 2.2, we present the general objectives of representation learning

on graphs. We also mention several popular methods, referred to as “shallow” by Hamilton

[128], to learn node embedding spaces. In Section 2.3, we will consider representation learning

with graph neural networks (GNNs). Finally, in Section 2.4, we will focus on the two GNN-

based methods at the center of this thesis: graph autoencoders (GAEs) and variational graph

autoencoders (VGAEs).

2.2.1 From Graph Structures to Vectorial Representations

Traditional approaches to tackle machine learning problems such as link prediction and com-

munity detection often directly operate on the graph structure under consideration. For instance,

predicting the most likely locations of missing links has been historically addressed by the con-

struction of hand-engineered node similarity measures [128, 200, 225] derived from the observed

connections. Examples of such measures include the (previously cited) proportion of common

neighbors between nodes in the graph, as well as several refined alternatives such as the popular

Adamic-Adar, Jaccard, or Katz indices [225]. Besides, as of today, one of the most popular

approaches for community detection remains the Louvain algorithm [31], which also directly

operates on the graph. This greedy method clusters nodes by iteratively maximizing a graph-

based measure referred to as the modularity [267, 314]. It will compare the observed density of

connections in communities to the expected density in a configuration model graph, with equal

degree distribution but allocating edges randomly without any specified community structure

(we provide a more complete presentation of the Louvain method in Chapter 7).
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Figure 2.3: Illustration of the node embedding paradigm. The objective is to encode nodes from a graph (left) as
vectors in a low-dimensional vector space (right), where nodes with “structural proximity” in the graph should
be close. In essence, one should be able to subsequently leverage these vectors for downstream applications, such
as link prediction (e.g., by assessing the likelihood of a link from i to j by computing zTi zj or ∥zi − zj∥2) or
community detection (e.g., by running a k-means algorithm to cluster all zi vectors).

Nonetheless, promising improvements on link prediction, community detection, and various other

tasks were recently achieved by methods adopting another strategy. Instead of directly operating

on the graph structure itself, these methods aim to learn node representations summarizing the

graph under consideration [123, 128, 129, 186, 188, 287, 386]. As illustrated in Figure 2.3,

the objective of these representation learning methods is to encode nodes as vectors in a low-

dimensional vector space, called a node embedding space. In such a space, nodes with “structural

proximity” in the graph (which could have various meanings [76]) should be close. More formally,

each node i ∈ V from a graph G will be associated with an embedding vector zi ∈ Rd, where

d ≪ n denotes the dimension of the node embedding space. In the following, we will often

encapsulate these embedding vectors in the node embedding matrix Z defined as follows.

Definition 2.10. The node embedding matrix Z of a graph G = (V, E), in which each node

i ∈ V is associated with an embedding vector zi ∈ Rd, is the n × d matrix stacking up all zi

vectors:

Z = [z1, . . . , zn]
T , (2.12)

i.e., the i-th row of Z corresponds to the embedding vector zi of node i.

Over the last years, various methods, including those described thereafter in this chapter, have

been proposed to learn such zi vectors. Authors of these methods successfully optimized and

leveraged these low-dimensional vectors, which are arguably easier to handle than a complex

graph structure, for various downstream applications [128, 386]. For instance, some methods

manage to directly assess the probability of a missing edge between two nodes by evaluating

the proximity of these nodes in the embedding space, e.g., through pairwise Euclidean distances

or inner products [55, 187, 370]. Similarly, in the presence of node embedding vectors, several

studies reframed community detection as the standard problem consisting in clustering n vectors
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in a d-dimensional vector space into K groups [232, 244]. Such a problem can then be solved

by one of the numerous clustering methods such as the popular k-means algorithm [13, 244].

Based on the promising results of such a paradigm [128, 200, 232, 386, 398], the graph repres-

entation learning field has grown at a fast pace over the past decade [128], notably the sub-field

involving research on graph neural networks (see Sections 2.3 and 2.4). In the last few years,

international conferences on machine learning and data mining often received hundreds of sub-

missions from graph representation learning articles [162, 163], and regularly organized dedicated

workshops on related topics4. Some recent advances were also already successfully transposed

to industrial-level applications ranging from product recommendation to malicious behavior

detection, including on online services such as Alibaba [373], Pinterest [394], and Twitter [40].

2.2.2 Node Embeddings from Matrix Factorization

In the remainder of this chapter, we review several popular approaches aiming to learn node

embedding vectors. Firstly, an important part of the existing literature involves factorization

techniques.

Laplacian Eigenmaps and Spectral Clustering In particular, some seminal approaches

make use of the eigendecomposition of Laplacian matrices introduced in Defintion 2.6 [25, 240,

270, 368]. One can show that these matrices have n non-negative eigenvalues 0 = λn ≤ λn−1 ≤
· · · ≤ λ1, and that the geometric multiplicity of the 0 eigenvalue corresponds to the number of

connected components in the graph. Furthermore, the corresponding eigenvectors5 are indicators

of nodes belonging to each of these components [368]. As a consequence, these eigenvectors can

be used to cluster nodes according to their connected component membership. More interest-

ingly, Laplacian eigenvectors are also useful to cluster nodes into K communities in a connected

graph. In this direction, a fundamental approach referred to as spectral clustering [270, 330]

consists in:

• computing the K eigenvectors corresponding to the K smallest eigenvalues of Lun (or

Lrw or Lsym), and subsequently form the matrix Z ∈ Rn×K , in which the K columns

correspond to these K n-dimensional eigenvectors;

• represent each node i ∈ V by the i-th row of Z, denoted zi;

• run a k-means algorithm [244] to cluster the zi vectors into communities.

4This includes the NeurIPS 2019 workshop on Graph Representation Learning : ht-
tps://nips.cc/Conferences/2019/ScheduleMultitrack?event=13172; the ICML 2020 workshop on Graph
Representation Learning and Beyond : https://icml.cc/Conferences/2020/ScheduleMultitrack?event=5715;
and the KDD 2021 workshop on Deep Learning on Graphs: Methods and Applications: ht-
tps://kdd.org/kdd2021/workshops.

5The eigenvector ui ∈ Rn associated with an eigenvalue λi of Lun verifies: Lunui = λiui.
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Figure 2.4: A comparison of k-means and spectral clustering. Left : three synthetic datasets of 1000 two-
dimensional data points, clustered in two ground truth communities displayed in orange and in blue, respect-
ively. Middle: the communities retrieved by running k-means algorithms in these two-dimensional spaces. Right :
the communities retrieved by instead 1) creating a graph connecting data points (acting as nodes) to their ten
nearest neighbors, and 2) applying spectral clustering on graphs. In 2/3 cases, a standard k-means fails to prop-
erly identify communities. This approach directly relies on Euclidean distances in the input space and extracts
“compact” communities, which is relevant for dataset n°1 but not for datasets n°2 and n°3. On the contrary, the
graph-based spectral clustering approach extracts and leverages the “connectivity” between data points which,
while being more computationally expensive, permits identifying ground truth communities on all three datasets.

One can prove that communities identified via spectral clustering correspond to those obtained

from the relaxation of NP-hard graph partitioning optimization problems, consisting in min-

imizing metrics that explicitly evaluate the quality of a node partition in a graph (specifically,

a RatioCut or NCut metric depending on Laplacian matrices [368]). Spectral clustering can

also interestingly be studied under the lens of perturbation theory [368], bringing additional

theoretical justifications for such an approach. Overall, as illustrated in Figure 2.4, leveraging

point/node-level connections permits identifying cluster structures where, in essence, “connectiv-

ity” is more relevant than “compactness” and where a standard k-means would therefore fail.

Also, while a naive eigendecomposition of a Laplacian matrix incurs a cubic computational com-

plexity O(n3) [128], several approximate methods have been studied to overcome such a cost

[35, 68, 98]. Moreover, besides clustering, the above eigendecomposition procedure has also been

interpreted as an effective way to project nodes in a low-dimensional node embedding space pre-

serving connection information from the initial graph structure. The zi vectors from the above

matrix Z correspond to embedding vectors (hence the same notations as Definition 2.10) and

such an approach is often referred to as Laplacian eigenmaps in the literature [25, 128].
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2.2. Learning Node Embedding Representations

Inner product methods In parallel, several other studies introduced factorization-based

methods that rather leverage the inner product zTi zj , between two node embedding vectors zi

and zj , as an indicator of the structural proximity of nodes i and j in the graph. From a matrix

perspective, these methods aim to learn an n× d node embedding matrix Z such as:

f(A) ≈ ZZT , (2.13)

for some pre-defined function f : Rn×n → Rn×n. Examples of such methods include the dis-

tributed graph factorization model [8] as well as the GraRep [43] and HOPE [276] methods.

As explained by Hamilton [128], these methods primarily differ in how f is defined. While

Ahmed et al. [8] directly leverage the adjacency matrix, i.e., f(A) = A, authors of GraRep and

HOPE exploit more general matrices, based on powers of A [43] or on neighborhood overlap

measures [276]. They aim to minimize loss functions corresponding or proportional to:

L ≈ ∥f(A)− ZZT ∥22, (2.14)

which can be achieved through matrix factorization algorithms such as Singular Value Decom-

position (SVD) [113, 345]. We refer to Klema and Laub [191] for a detailed introduction to SVD

and its applications.

2.2.3 Node Embeddings from Random Walks

We now turn to another family of embed-

ding methods, relying on stochastic strategies.

In such methods, nodes end up with similar

embedding vectors when they frequently co-

occur on short random walks computed over

the graph [287]. As illustrated in Figure 2.5, a

random walk is a list of nodes of length T > 1.

The first node is selected from V, and then

the i-th node for i ∈ {2, ..., T} is subsequently

sampled from the neighbors of the (i − 1)-th

node, either uniformly at random or following

some pre-defined sampling technique [158].

4

531

2 6

Figure 2.5: An example of a random walk of length
T = 3, on the small directed graph from Figure 2.1(b).
This random walk, colored in orange, starts at node n°1,
then “visits” node n°4 and ends at node n°3.

Random walk-based methods often explicitly draw inspiration from word2vec-like models [111,

258] from natural language processing (NLP). These shallow neural network models learn word

embedding representations, ensuring that words appearing in the same contexts, e.g., the same

sentences, end up with close word embedding vectors. Here, nodes and random walks act as the

counterparts of words and sentences, respectively.

23



Chapter 2. Background on Graph Representation Learning

More formally, and albeit under different formulations [123, 128, 158, 287], these node embedding

methods usually encode nodes as zi embedding vectors that should approximately verify:

pT (j|i) ≈
ez

T
i zj∑

k∈V
ez

T
i zk

, (2.15)

where pT (j|i) denotes the probability that the node j ∈ V appears on a random walk of length

T starting from node i ∈ V. Examples of such methods include the popular DeepWalk [287] and

node2vec [123] models. Precisely, DeepWalk and node2vec adopt different strategies to learn zi

vectors from random walks, either based on hierarchical softmax computations involving a fast

binary-tree structure [287] or a noise contrastive learning approach with negative sampling [123]

(we refer to Hamilton [128] as well as to original research articles on these methods [123, 287]

for technical details, that we omit in this brief overview). Moreover, node2vec includes two

additional hyperparameters, the “return” parameter p and the “in-out” parameter q, providing

more flexibility when sampling random walks. They permit interpolating between random walks

more akin to a breadth-first search or a depth-first search [62] over the graph. DeepWalk and

node2vec have been explicitly presented as scalable methods in their original articles, backed by

experimental evaluations on graphs with up to a few million nodes or edges [123, 287], observing

linear increases in running times w.r.t. n in the case of node2vec [123].

Over the last few years, several other random walk-based methods have been proposed, e.g., with

different architectures or sampling schemes. This includes dynnode2vec [246], struct2vec [300]

and Walklets [288]. As explained by Hamilton [128], the popular LINE method [351] is also

often presented among random walk approaches. While it does not explicitly draw random

walks, LINE nonetheless shares strong conceptual motivations with DeepWalk and node2vec

(see [128]). Moreover, related techniques have also been extended to multi-relational data and

knowledge graphs [374]. More recently, Qiu et al. [294] proved that methods such as DeepWalk,

LINE, and node2vec implicitly approximate and factorize some matrices, for which they derived

closed forms. Therefore, to some extent, they unified random walk-based learning with the

matrix factorization framework from Section 2.2.2.

2.2.4 On the Limitations of these Methods

The random walks and matrix factorization methods we presented in this Section 2.2 are referred

to as “shallow” by Hamilton [128]. In his book, this term encompasses node embedding methods

consisting in a simple embedding lookup based on a node’s ID, and where an encoder directly

optimizes a unique embedding vector for each node. While these methods led to promising

applications over the past years [128, 129, 158], they nonetheless suffer from several limitations:

• firstly, the encoding function, which maps nodes into the embedding space, does not share
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parameters between nodes. Hamilton [128] argues that this is inefficient from a statistical

point of view, and that parameter sharing could permit learning representations capturing

properties of the original graph structure more efficiently;

• besides, while attributed graphs are ubiquitous, these methods do not leverage node fea-

tures/attributes. Such additional information, summarized in the matrix X from Defin-

ion 2.7, could however be relevant and useful in the learning process;

• lastly, these embedding methods are transductive [130]. By design, they only learn rep-

resentations of nodes available during training. Without additional optimization steps,

they usually can not provide representations for new nodes. This prevents applying such

methods to inductive settings, that specifically require such generalization to new nodes

after training. Such a generalization would be desirable for several applications mentioned

throughout this thesis.

In the following sections, we review alternative node embedding methods that address these

limitations. They rely on graph neural networks, which emerged as a popular formalism in the

last years [386]. While random walk and matrix factorization methods will still be mentioned

in the following chapters, as relevant baselines for various experimental analyses, graph neural

networks will be at the center of our work, especially through the lens of graph autoencoders.

2.3 Representation Learning with Graph Neural Networks

We now turn to graph neural networks (GNNs), a general framework to extend deep neural

networks [117, 205] to graph structures. As an introduction, it is worth noting that a straight-

forward use of standard deep learning models on graphs is usually a bad idea. For instance,

by directly training a convolutional neural network (CNN) [101, 206] on an adjacency matrix A

treated as a two-dimensional regular grid, one would aggregate information from a node i with

information from nodes corresponding to rows/columns i− 1 and i+ 1 in convolutional layers.

While such an aggregation is relevant for neighboring pixels in an image, it is inappropriate for

graphs as the node ordering in A is usually arbitrary. The node associated with the (i − 1)-th

row/column of A will not necessarily be connected or even “close” to the one associated with the

i-th row/column. Alternatively, one could also want to learn node embedding vectors by directly

processing a flattened version of A using a multi-layer perceptron (MLP) [303]. Again, in such an

approach, the resulting node embedding representations would depend on the arbitrary ordering

of nodes in A [128]. On the contrary, researchers will often favor neural network models that

are permutation equivariant, meaning that a permutation of the node ordering would permute

the output representations in a consistent way [181].
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2.3.1 Neural Message Passing and Graph Neural Network (GNN) Models

Although numerous GNN models have been proposed and theoretically motivated over the last

years, sometimes under different formalisms, most of them actually leverage a neural message

passing process in which vector “messages” are iteratively exchanged between nodes and updated

[107, 128, 274, 388]. Comprehensively, a GNN model usually takes as input:

• an adjacency matrix A, or any variant such as one of those presented in Section 2.1;

• some input vectors providing an initial representation for each node i ∈ V. In numerous

applications, graphs will be attributed and these vectors will correspond to node features

xi ∈ Rf , summarized in the n × f matrix X from Definition 2.7. In the absence of such

features, one can use node-level statistics [128]. Alternatively, another popular approach

consists in simply setting X = In, i.e., the n×n identity matrix6, thus mapping each node

to a one-hot indicator [187, 188].

Then, a GNN usually consists in the succession of L ≥ 1 message passing iterations a.k.a. L lay-

ers by analogy with standard neural networks. At each iteration l ∈ {1, . . . , L}, we will obtain

a hidden embedding vector h
(l)
i ∈ Rdl for each node i ∈ V in the graph7. In particular, we set

dL = d for the last layer. To compute such representations, we adopt a two-step process. Firstly,

we aggregate vectors h
(l−1)
j from nodes in the neighborhood N (i) of node i to derive the message

m
(l−1)
N (i) to pass in layer l. This aggregation can correspond to a sum, an average, a concatena-

tion or to some more complex operation [128]. Also, although N (i) will usually correspond to

nodes directly connected to i, consistently with our notation from Definition 2.3, more general

definitions of neighboring nodes have also been adopted in the scientific literature [130, 193]. To

sum up, in this first step, we derive:

m
(l−1)
N (i) = AGGREGATE(l)

(
{h(l−1)

j ; j ∈ N (i)})
)
. (2.16)

Secondly, we merge m
(l−1)
N (i) with node i’s own previous representation h

(l−1)
i , to obtain h

(l)
i :

h
(l)
i = UPDATE(l)

(
h
(l−1)
i ,m

(l−1)
N (i)

)
. (2.17)

Again, various strategies can be adopted for such an update step [128, 130]. In the above

equations, h
(0)
i corresponds to the input vector representation of node i, i.e., h

(0)
i = xi ∈ Rf

in the presence of node features. Also, the final h
(L)
i ∈ Rd will correspond to the actual node

embedding vector eventually returned by this GNN model for node i, i.e.:

∀i ∈ V, zi = h
(L)
i . (2.18)

6Nonetheless, as we will emphasize in our work, such a choice will also make the GNN model transductive.
7We note that dimensions d1, . . . , dL of these vectors can differ across layers.
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By design, such a process is permutation equivariant [128]. Intuitively, at each layer, a node

i’s representation will aggregate structural and feature information from its direct neighbors

(and itself), assuming N (i) corresponds to the one-hop neighborhood of i. As, at layer n°2,
these neighbors will have already aggregated information from their own neighbors, then h

(2)
i

will indirectly incorporate structural and feature information from the 2-hop neighborhood of i,

i.e., nodes reachable from a path of length 2 starting from i in the graph. More generally, each

h
(l)
i will capture information up to the l-hop neighborhood of i and, in particular, the ultimate

zi vector will capture information up to the L-hop neighborhood.

2.3.2 A Popular GNN: Graph Convolutional Network (GCN)

Since the seminal models of Gori et al. [119], Merkwirth and Langauer [254] and Scarselli et

al. [317], often praised as the first message-passing GNNs [128], several AGGREGATE(·) and

UPDATE(·) functions have been proposed and compared in the scientific literature. We refer to

relevant surveys [128, 386, 406] for an in-depth review. In this section, we focus on one of the

most popular of these GNNs, that we will ourselves often implement in the experiments reported

throughout this thesis: the graph convolutional network (GCN) from Kipf and Welling [188].

To introduce the GCN model consistently with its formulation from Kipf and Welling [188], we

temporarily assume that G is undirected. Consistently with the notation from Definition 2.3,

N (i) denotes the neighborhood of node i ∈ V. For simplicity, we assume that G has no self-loop.

From there, at each layer l ∈ {1, . . . , L}, Kipf and Welling [188] consider the following message

passing operation:

h
(l)
i = f (l)

( ∑
j∈N (i)∪{i}

Ãijh
(l−1)
j

)
= f (l)

( 1

Dii + 1
h
(l−1)
i +

∑
j∈N (i)

Aij√
(Dii + 1)(Djj + 1)

h
(l−1)
j

)
.

(2.19)

In the above equation, f (l) : Rdl−1 → Rdl is a parameterized function combining:

• the multiplication8 of hidden vectorial embedding representations by a trainable weight

matrix W (l−1) ∈ Rdl−1×dl . Several strategies, detailed thereafter, can be adopted to tune

such a matrix, depending on the final application and on data availability;

• the use of a non-linear activation function on top of the above multiplication, analogously

to standard neural networks [205]. Without loss of generality, Kipf and Welling [188]

leverage a Rectified Linear Unit (ReLU) function: ReLU(x) = max(x, 0) [117]. This non-

linear activation is often omitted for the last layer [187, 188].

8This operation also often involves the addition of a bias term [117], that we omit for the sake of clarity.
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Summing up these operations using a matrix-level notation, we end up with the following defin-

ition of (multi-layer) GCN models.

Definition 2.11. A multi-layer graph convolutional network (GCN), with L ≥ 2 layers, is a

function taking as input a symmetrically normalized adjacency matrix Ã ∈ [0, 1]n×n (as defined

in Definition 2.5), potentially equipped with a node feature matrix X ∈ Rn×f (as defined in

Definition 2.7), and returning a node embedding matrix Z ∈ Rn×d such as:
H(0) = X (or In in the featureless case)

H(l) = ReLU(ÃH(l−1)W (l−1)), for l ∈ {1, ..., L− 1}

Z = H(L) = ÃH(L−1)W (L−1),

(2.20)

where each H(l) denotes the n × dl matrix stacking all h
(l)
i vectors, i.e., the i-th row of H(l)

corresponds to the hidden embedding vector of node i at layer l. In particular, d0 = f (in

the presence of node features) or n (in the absence of node features), and dL = d. Also,

W (0) ∈ Rd0×d1 , . . . ,W (L−1) ∈ RdL−1×dL are trainable weight matrices.

Unless explicitly stated otherwise9, we will adopt this definition of the GCN in the remainder of

the thesis. In a nutshell, at each layer l, the GCN computes a vectorial representation for each

node i ∈ V, by averaging the representations from layer l−1 of i’s direct neighbors and of i itself.

This averaging operation is composed with a linear transformation via the weight matrices and

a ReLU activation. In their original work [188], Kipf and Welling tune W (0), . . . ,W (L−1) in

a (semi)-supervised fashion. Specifically, they iteratively minimize, by gradient descent [117],

a cross-entropy classification loss. This loss compares the zi vectors transformed through a

softmax function [117] to d ground truth labels (article/node topics in citation networks in [188]).

Nonetheless, this strategy requires the availability of such labels. In Section 2.4, we will fully

detail how GCNs can alternatively be optimized in an unsupervised fashion, when acting as

encoders in the broader GAE and VGAE frameworks [186, 187].

Leveraging Ã instead of A in a GCN has two main advantages related to information propaga-

tion in the graph. Firstly, using an unnormalized A would lead to a summation of vectorial

representations which, over layers, would change the scale of these vectors, especially for very

connected nodes. Moreover, in the absence of self-loops, multiplication by A would imply a

summation of vectors from all neighboring nodes but not from the node itself, which is nonethe-

less important in practice [188, 383]. Using Ã addresses this problem, thanks to the addition of

the identity matrix In in the normalization (see Definition 2.5). In the last few years, several

9A notable counterexample is the one from Chapters 5, where we will adapt this message passing to directed
graphs. The symmetric normalization of A will be replaced by out-degree normalization Ãout = (Dout+In)

−1(A+
In), so that each node averages representations from neighbors to which it points through a directed edge, i.e.,
the outcoming neighbors. Another example is the one from Chapter 6 where we will consider the case L = 1,
leading to simpler linear models that are no longer multi-layer GCNs.
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studies such as the ones from Klicpera et al. [192] and Wu et al. [383] empirically confirmed

that using Ã for message passing leads to better performance than some alternatives. Wu et

al. [383] also proved that adding self-loops reduces the magnitude of the dominant eigenvalue of

the corresponding Laplacian matrix: in essence, adding self-loops decreases the relative influence

of distant nodes, which might help obtaining more stable representations and might be desirable

for various applications. More recently, Dasoulas et al. [66] proposed a parameterized graph

shift operator for GNN models such as GCNs. Specific parameter values of this operator result

in the most commonly used graph matrices. Authors manage to incorporate these parameters

in the training of GNNs, which permits learning the optimal message passing matrix for some

given data- and task-specific application.

Since its formulation by Kipf and Welling [188] five years ago, the multi-layer GCN architecture

emerged as one of the most popular ones in the graph representation learning community, with

various successful applications to graph data from various domains ranging from biology to web

mining and social networks [128, 320, 389, 406, 409]. As we will develop in Section 2.4, GCNs

also play a central role in the GAE and VGAE models proposed by Kipf and Welling [186, 187]

(see Section 2.4) and in numerous of their extensions [72, 124, 135, 279, 329, 361]. Besides these

experimental successes, the popularity of GCN models can also be explained by their relative

simplicity w.r.t. other GNNs, notably the ones directly based on spectral graph convolutions

[41, 69] discussed in Section 2.3.3. Also, the evaluation of each GCN layer has a linear time

complexity w.r.t. the number of edges m in the graph when leveraging sparse matrix-level

operations [188], which is relatively low compared to several other models. Lastly, as we will

further explain and empirically show in Chapters 8 and 9, GCN models can easily be leveraged

in inductive settings when node features are available [313].

2.3.3 Theoretical Considerations

An active area of research in graph representation learning revolves around the study of potential

theoretical guarantees for existing GNN models such as GCNs, as well as the development of new

theoretically grounded models. As explained by Hamilton [128], GNNs independently emerged

from three distinct theoretical motivations.

First and foremost, several GNN models were (and are still) explicitly conceived from the

graph signal processing theory, generalizing the notion of convolution in a Euclidean space to

graphs [41]. In parallel, other research studies motivated the GNN approach from its relation

to Weisfeiler-Lehman graph isomorphism tests [130, 327, 380]. Lastly, analogies were also made

between neural message passing and inference in probabilistic graphical models [65, 128].

In this section, we provide a brief overview of the first of these aspects, i.e., graph signal pro-

cessing. We refer to Hamilton [128] for a review of the two other ones, that we omit in this

thesis. While they are relevant and linked to active areas of research [250, 261, 264, 388], they
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are less connected to the contributions presented in the next chapters.

GNN Models and Spectral Graph Convolutions Let us consider the orthogonal spectral

decomposition of the symmetric message passing operator Ã used in Equation (2.20),

Ã = UΛUT , (2.21)

where Λ denotes the diagonal matrix containing the eigenvalues λi of Ã (assumed to be ordered),

and where U = [u1, . . . , un]
T denotes the corresponding orthogonal matrix containing the eigen-

vectors ui of Ã. Then, the computation performed in Equation (2.20) can be reformulated as:

ReLU(UΛUTH(l−1)W (l−1)) = ReLU

(
n∑

i=1

λiuiu
T
i H

(l−1)W (l−1)

)
. (2.22)

Therefore, performing one message passing of hidden representations on the graph G defined by

Ã, i.e., ÃH(l−1), can be interpreted as a Fourier transform of these hidden representations called

graph Fourier transform [334]. The eigenvectors of Ã act as a Fourier basis and the eigenvalues

of Ã define the Fourier coefficients. From such a setting, spectral graph convolutions are defined

as element-wise product operations in this Fourier space.

When trying to perform a theoretical analysis of neural message passing steps in GNN models

such as GCNs, it often turns out to be more insightful to instead consider the above decom-

position [314], and therefore analyze eigenvalues and eigenvectors of the corresponding message

passing operator (see, e.g., Chapter 7). Historically, the study of spectral graph theory [58, 342],

and in particular the area of graph signal processing [275, 315], has yielded insights in the study

of graphs. Therefore it is unsurprising that, in the study of the GNNs, the spectral analysis of

these architectures appears as a promising avenue of research as well [21, 66, 102].

Such a spectral perspective has also given rise to a variety of architectures directly relying

on graph signal processing, e.g., by proposing convolutional operations a.k.a. filters based on

learnable functions applied to the diagonal terms of Λ. This includes the seminal model of

Bruna et al. [41] and several more recent ones [69, 140, 214]. In particular, as this spectral ap-

proach is computationally costly10, Defferrard et al. [69] proposed to approximate smooth filters

in the spectral domain using Chebyshev polynomials [131]. Kipf and Welling [188] themselves

mathematically derived their GCN architecture as a faster and localized first-order approxima-

tion of spectral graph convolutions, bringing further simplifications over Defferrard et al. [69].

Their analysis brings some theoretical foundation and motivation to the relatively intuitive

message passing strategy described in Section 2.3.2.

10Filters are directly defined in the Fourier space, and computing the graph Fourier transform involves O(n2)
operations. As already explained, computing the full eigendecomposition of an adjacency or a Laplacian matrix
also itself suffers from an O(n3) complexity, when using a baseline implementation.
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2.3.4 Recent Advances in Representation Learning with GNN Models

As mentioned in our introduction to node embedding methods in Section 2.2, the graph repres-

entation learning field has grown at a very fast pace over the past few years. This is especially

true for the sub-field involving graph neural networks, to such an extent that it becomes increas-

ingly difficult to keep track of all advances from the research community. Before introducing

GAE and VGAE models in the next Section 2.4 and focusing on them in most of this thesis,

this section will nonetheless try to provide a brief summary of some of the most notable other

advances related to representation learning with GNNs.

Besides advances on provably powerful GNN models, e.g., based on the aforementioned spectral

analyses or connections to Weisfeiler-Lehman tests [128, 250, 261, 264, 388], numerous research

studies proposed novel message passing GNN architectures for various applications. Among the

most impactful ones, GraphSAGE models from Hamilton et al. [130] incorporate generalized

neighborhood aggregation schemes, suitable for inductive representation learning. Graph atten-

tion networks (GAT) from Veličković et al. [364] leverage attention mechanisms during message

passing, permitting weighting the influence of each neighbor during information aggregation.

Graph diffusion convolutions (GDC) from Klicpera et al. [193] resort to more general diffusion

functions to identify which nodes one should aggregate information from, which is useful in the

presence of graphs with noisy or arbitrarily defined edges. Jumping knowledge (JK) networks

from Xu et al. [389] use representations from all hidden layers, and not only the last one, to

compute embedding vectors. Graph Transformers from Dwivedi and Bresson [79] generalize

transformer neural networks [382] to graphs. Several other models were additionally designed

for specific structures such as knowledge graphs [320] or dynamic graphs [179], and recent works

also introduced GNN models without message passing procedures [153, 383].

As large graphs with millions (or even billions) or nodes and edges are ubiquitous [307], several

studies also aimed to scale GNN models, typically by using mini-batch sampling or other various

approximate learning strategies. This includes the recent FastGCN [50], Cluster-GCN [53] and

GraphSAINT [397] models, among others [51, 130, 394]. Moreover, while research on GNN

models is often referred to as “deep learning on graphs” [406], we note that the most effective

architectures actually leverage a few layers at most, contrary to other fields such as computer

vision [205]. This is explained by the standard challenges related to training deep architectures,

such as vanishing gradients in backpropagation [117], but also by the nature of real-world graph

data (numerous graphs have a small-world structure [3], i.e., a few hops/layers already permit

reaching any node from another one) and other graph-specific problems such as over-smoothing

and over-squashing (see [11, 221]). While some works proposed techniques to train deeper

GNNs, e.g., based on regularization [302, 407] or residual connections [115, 389], they often fail

to outperform models with a few layers [326]. On the contrary, several other studies tend to show

that simpler models can achieve competitive empirical performances. This includes the one of

31



Chapter 2. Background on Graph Representation Learning

Wu et al. [383] who introduced simple graph convolution (SGC), a variant of GCN removing

nonlinearities and collapsing weight matrices. To finish, we point out that recent articles [150,

151, 326], including the one behind the Open Graph Benchmark initiative [151], also criticized the

current evaluations of GNNs, pointing at discrepancies in experimental procedures and proposing

new relevant tasks or datasets. These last three important aspects (scalability, simplification,

better evaluation) will also be at the center of several of our studies on GAE and VGAE models.

2.4 Representation Learning with Graph Autoencoders

So far, we presented some general concepts and definitions related to graph representation

learning. In this Section 2.4, we now leverage this background to formally introduce the GNN-

based models that will be at the center of our research: graph autoencoders. In its most general

formulation, this term can actually refer to two families of models, learning node embedding

representation from graph data [186, 187, 310, 356, 371]:

• the deterministic graph autoencoders, often simply referred to as graph autoencoders

(GAEs) in the following when there is no ambiguity, and presented in Section 2.4.1;

• the variational graph autoencoders (VGAEs), presented in Section 2.4.2.

They both rely on an encoding-decoding strategy that, in a broad sense, consists of encoding

nodes into an embedding space from which decoding, i.e., reconstructing the original graph

should ideally be possible, by leveraging either a deterministic (for a GAE) or a probabilistic

(for a VGAE) approach. Intuitively, the ability to accurately reconstruct a graph from a node

embedding space indicates that this space preserves some important information from the graph

structure. As explained in the introduction, GAE and VGAE models are specifically suited for

representation learning on graphs in the absence of node labels, i.e., in an unsupervised fashion.

Simultaneously, GAE and VGAE models can process attributed graphs. As VGAEs emerged

as effective alternatives to GAEs in several previous works described throughout this thesis, we

see value in considering both variants of graph autoencoders in our work.

2.4.1 Deterministic Graph Autoencoder (GAE)

Albeit under various formulations, the encoding-decoding strategy has been widely adopted over

the last years to learn embedding spaces in the absence of node labels [186, 187, 356, 370, 371]. In

this thesis, we follow the formulation of Kipf and Welling [187]. While it is not the oldest article,

their work is explicitly mentioned as the seminal reference in the majority of recent advances

involving graph autoencoders, including [55, 56, 73, 124, 135, 156, 216, 217, 279, 329, 361].
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Figure 2.6: Schematic representation of a GAE model, as formulated by Kipf and Welling [187].

Graph autoencoders involve the combination of two building blocks: an encoder and a decoder.

The above Figure 2.6 provides an illustration of a GAE model.

Encoder In its most general formulation, the first of these two components, i.e., the encoder,

is defined as follows.

Definition 2.12. An encoder is a function processing the adjacency matrix A and the node

feature11 matrix X of a graph G = (V, E), and mapping each node i ∈ V from G to a low-

dimensional embedding vector zi ∈ Rd with d≪ n. Adopting the notation from Definition 2.10,

we have:

Z = Encoder(A,X). (2.23)

In practice, a GNN (with weights optimized using the procedure described thereafter) often acts

as the encoder in GAE models. In particular, Kipf and Welling [187] leverage a multi-layer

GCN [188], as defined in Definition 2.11, to encode nodes, i.e.:

Z = GCN(A,X). (2.24)

To this day, multi-layer GCNs remain the most popular encoders in GAE extensions building

upon Kipf and Welling [187], including [55, 124, 135, 156, 279, 307, 311, 329, 361], mainly thanks

to the relative simplicity and reduced complexity of these models w.r.t. several GNN alternatives

(see Section 2.3.2). Nonetheless, they can be replaced by various alternatives, including by faster

[50, 53, 130], by more sophisticated [41, 69, 364] or, on the contrary, by simpler [56, 310] models.

11As in Section 2.3, we simply set X = In when dealing with featureless graphs.
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Decoder The second component of a GAE, i.e., the decoder, aims to reconstruct an n × n
adjacency matrix Â, estimated from the learned embedding vectors. It is defined as follows.

Definition 2.13. Assuming an n × d node embedding matrix Z stacking up node embedding

vectors zi ∈ Rd for nodes of a graph G = (V, E), a decoder is a function reconstructing an n× n
estimated adjacency matrix Â from Z:

Â = Decoder(Z). (2.25)

While another neural network could act as a decoder [218, 282, 371], Kipf and Welling [187] and

most of the aforementioned extensions rely on simpler inner product decoders:

Â = σ(ZZT ), (2.26)

where σ denotes the sigmoid function: σ(x) = 1/(1 + e−x). Therefore, for all node pairs

(i, j) ∈ V × V, we have:

Âij = σ(zTi zj) ∈ ]0, 1[. (2.27)

In such a setting, a large and positive inner product zTi zj in the node embedding space indicates

the likely presence of an edge between nodes i and j in G, according to the model. Again,

the choice of inner product decoders is not restrictive, and recent efforts considered replacing

them with alternatives verifying some desirable properties such as the ability to capture triads

structures [329], to simultaneously reconstruct node features [347], or to reconstruct biologically

plausible graphs in the case of autoencoders for molecular structures [233, 336].

Optimization We recall that GAE models aim to learn node embedding spaces from which

one can accurately reconstruct graphs. The intuition behind this strategy is the following:

if, starting from Z, one can reconstruct a graph close to the true one, i.e., Â ≈ A, then these

embedding vectors should manage to preserve some important characteristics of the initial graph

structure, and should therefore be useful to perform downstream tasks such as link prediction.

Consequently, GAEs are trained to minimize reconstruction losses, which specifically evaluate

the similarity between the decoded adjacency matrix Â and the original one A. For instance,

Kipf and Welling [187] tune weight matrices of their GCN encoders by iteratively minimizing,

by gradient descent12 [117], the following cross-entropy loss:

LGAE =
−1
n2

∑
(i,j)∈V×V

[
Aij log(Âij) + (1−Aij) log(1− Âij)

]
. (2.28)

In the case of sparse graphs where unconnected node pairs significantly outnumber the connected

12Specifically, Kipf and Welling [187] use the Adam algorithm, a prevalent method for first-order gradient-based
optimization in neural networks architectures, fully described in the original work of Kingma and Ba [184].
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ones, i.e., the graph’s edges, it is common to reweight the “positive terms” in Equation (2.28)

by a factor wpos > 1 [187, 307, 371]. We note that an exact evaluation of LGAE requires the

reconstruction of the entire matrix Â, which suffers from a quadratic O(dn2) time complexity.

Such a decoding approach is therefore unsuitable for graphs with more than a few thousand

nodes. Scalability concerns will be thoroughly discussed and addressed in Chapters 3 and 4.

Lastly, we note that this minimization scheme based on reconstruction losses permits optimizing

a GCN, or any encoder, in an unsupervised fashion, i.e., without node-level ground truth labels

(as in Section 2.3.2).

2.4.2 Variational Graph Autoencoder (VGAE)

Kipf and Welling [187] also considered a probabilistic variant of GAE, extending the variational

autoencoder (VAE) from Kingma and Welling [185]. Besides constituting generative models with

promising applications to graph generation [169, 233, 336] (see the next paragraphs), variants

of variational graph autoencoder (VGAE) models also turned out to be effective alternatives

to GAE on several downstream applications such as link prediction or community detection

tasks [56, 135, 187, 311]. In the following, we briefly review key concepts related to VAE, and

subsequently present the VGAE model.

Latent Models and VAE Variational autoencoders are latent variable models. In essence,

these are probabilistic models explaining some observed variable x ∈ X through some unobserved

latent variable z ∈ Z. Denoting by pθ(x) the distribution of x, parameterized by some θ ∈ Θ,

we have:

pθ(x) =

∫
Z
pθ(x|z)p(z)dz. (2.29)

The right-hand side of Equation (2.29) introduces the conditional distribution pθ(x|z), to expli-

citize the unobserved underlying role that z plays in the generation of x. In such latent variable

models, the objective is usually to estimate the parameters of pθ(x|z), referred to as the generat-

ive model, which maximize pθ(x) for some observed data and some known prior distribution p(z)

on z. As explained by Kipf [186], in many applications, one would like to use neural networks

as generative models, e.g., in combination with a Gaussian distribution:

pθ(x|z) = N (x; NN(z),Σ), (2.30)

where this notation refers to the density of a Gaussian distribution, with a mean vector NN(z) de-

termined by a neural network (θ corresponds to its weights), and with a fixed variance matrix Σ.

Unfortunately, in a large number of applications, this formulation of pθ(x) will be intractable13.

13We note that this is not specific to neural networks. For instance, we refer to Blei et al. [30] for a presentation
of the Gaussian Mixture Model (GMM), a famous example of latent variable model. In a GMM, pθ(x) is intractable
due to a sum over the latent variables in the integrand of pθ(x).
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It will be impossible to optimize θ analytically, e.g., via maximum likelihood estimation [74].

To address this issue, variational autoencoders (VAE) from Kingma and Welling [185] leverage

concepts from variational inference [74], and consider the optimization of a tractable lower bound

of pθ(x), referred to as the evidence lower bound (ELBO). It involves an approximate posterior

distribution qϕ(z|x) with parameters ϕ ∈ Φ. Formally, using Jensen’s inequality [166], we have:

log pθ(x) = log

∫
Z

qϕ(z|x)
qϕ(z|x)

pθ(x|z)p(z)dz ≥
∫
Z
qϕ(z|x) log

pθ(x|z)p(z)
qϕ(z|x)

dz. (2.31)

The right-hand side of Equation (2.31) corresponds to the ELBO, that we reformulate as follows:

ELBO =

∫
Z
qϕ(z|x) log

pθ(x|z)p(z)
qϕ(z|x)

dz

=

∫
Z
qϕ(z|x) log pθ(x|z)dz +

∫
Z
qϕ(z|x) log

p(z)

qϕ(z|x)
dz

=

∫
Z
qϕ(z|x) log pθ(x|z)dz −

∫
Z
qϕ(z|x) log

qϕ(z|x)
p(z)

dz

= Eqϕ(z|x)

[
log pθ(x|z)

]
−DKL

(
qϕ(z|x)||p(z)

)
, (2.32)

where Eq denotes the expectation under the distribution q and DKL denotes the Kullback-

Leibler divergence [199]. In the context of VAE models, neural networks often characterize

qϕ(z|x), which is then referred to as the inference model [185]. For instance, assuming two

neural networks NN(µ) and NN(Σ) providing a mean vector and a variance matrix, one can set:

qϕ(z|x) = N (z; NN(µ)(x),NN(Σ)(x)). (2.33)

Here, ϕ would correspond to neural weights. Parameters θ and ϕ are jointly optimized by max-

imizing the ELBO by gradient ascent, using some available data samples x from a dataset. We

underline that the choices of qϕ(z|x) and p(z) are often driven by computational constraints. In

this thesis, we will often assume that they are Gaussian distributions with different paramet-

ers. The Kullback-Leibler divergence between two Gaussian distributions has a closed form (see

Doersch [74]) which facilitates gradient computation. Also, gradients of the above expectation

are usually estimated through Monte Carlo approximations [74, 185], and using a reparameter-

ization trick [185]. This trick consists in positioning all sampling steps from the VAE model in

the input layer, to avoid backpropagating errors through a layer that samples z vectors from

qϕ(z|x), which is a non-continuous operation and has no gradient. For instance, let us assume

the inference model from Equation (2.33). Instead of sampling z ∼ N (NN(µ)(x),NN(Σ)(x)), one

can sample ε ∼ N (0, I) in the input layer, and subsequently compute:

z = NN(µ)(x) + NN(Σ)(x)1/2 × ε. (2.34)
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Figure 2.7: Schematic representation of a VGAE model, as formulated by Kipf and Welling [187].

Once parameters of the VAE are optimized, the inference model can infer latent variables z

of new data samples x. Analogously to previous sections, these latent variables will often act

as embedding vectors summarizing input data. Simultaneously, the generative model can be

used to generate data from a latent variable z, e.g., new unseen data samples drawn from the

prior distribution p(z). For instance, VAE models have been successfully transposed to image

generation problems [74, 277]. We refer to the comprehensive tutorial of Doersch [74] for a

broader introduction to VAE models and a discussion of their foundations and their applications.

From VAE to VGAE As explained at the beginning of Section 2.4.2, Kipf and Welling [187]

extended the VAE framework to graph structures. Their variational graph autoencoder (VGAE)

provides an alternative strategy to learn node embedding vectors in an unsupervised fashion,

assuming that these vectors are drawn from specific distributions. As standard VAE models, a

VGAE incorporates an inference model and a generative model. In the following, by analogy

with the GAE approach, we will also often refer to these components as the VGAE’s encoder

and decoder, respectively. The above Figure 2.7 provides an illustration of a VGAE model.

Encoder In their work, Kipf and Welling [187] assume that each embedding vector zi ∈ Rd

corresponds to the latent vector of a node i ∈ V, following the VAE paradigm. This vector

is a sample drawn from a d-dimensional Gaussian distribution, with mean vector µi ∈ Rd and

variance matrix Σi = diag(σ2i ) ∈ Rd×d (with σi ∈ Rd). They rely on two encoders to learn these

parameters. Denoting the n×d matrices stacking up the d-dimensional mean and (log)-variance

vectors for each node by µ and by log σ14, respectively, they set:

µ = Encoderµ(A,X) and log σ = Encoderσ(A,X). (2.35)

As is the case for GAEs, multi-layer GCNs often act as encoders:

µ = GCNµ(A,X) and log σ = GCNσ(A,X). (2.36)

14We allow a slight clash of notation here (as σ also denotes the sigmoid activation function), for consistency
with the commonly used notation from the literature (see, e.g., [187]), and due to very low risks of confusion.
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Chapter 2. Background on Graph Representation Learning

Then, they adopt a mean-field inference model for Z [187]. With N (·|µi, diag(σ2i )) denoting the

density of a Gaussian distribution with mean vector µi and variance matrix diag(σ2i ), we have:

q(Z|A,X) =
n∏

i=1

q(zi|A,X), where q(zi|A,X) = N (zi|µi,diag(σ2i )), (2.37)

Decoder In the VGAE setting, the actual embedding vectors zi are sampled from the above

normal distributions. From such embedding representations, VGAE models then require a

generative model p(A|Z,X), to act as a graph decoder. As for GAE, Kipf and Welling [187] rely

on simple inner products together with sigmoid activation functions to reconstruct edges:

Âij = p(Aij = 1|zi, zj) = σ(zTi zj), (2.38)

where the embedding vectors zi, zj are sampled from the distribution in Equation (2.37). Then,

the authors assume the following generative model which factorizes over the edges, and is con-

ditionally independent of X for simplicity [186]:

p(A|Z,X) =
n∏

i=1

n∏
j=1

p(Aij |zi, zj). (2.39)

Optimization During training, and similarly to VAE models [185], Kipf and Welling [187]

iteratively maximize the tractable evidence lower bound (ELBO) [185] of the model’s likelihood,

written as follows in the context of a VGAE:

LVGAE = Eq(Z|A,X)

[
log p(A|Z,X)

]
−DKL

(
q(Z|A,X)||p(Z)

)
. (2.40)

This ELBO is iteratively maximized w.r.t. weights of the two GCN encoders, by gradient ascent.

In the above Equation (2.40), p(Z) corresponds to a unit Gaussian prior (i.e., N (0, Id)) on the

distribution of the latent vectors, that can also be interpreted as a regularization term on the

magnitude of the embedding vectors [124, 314]. As is the case for LGAE from Equation (2.28),

an exact evaluation of the ELBO suffers from an O(dn2) time complexity.

2.4.3 Applications and Limitations

The question of how to properly determine the quality of node embedding representations

learned from GAE and VGAE models is crucial. While one could directly report reconstruction

losses [371], recent research articles instead strove to apply the GAE and VGAE models to

downstream evaluation tasks, which permits reporting more insightful metrics [187, 356, 371].

In particular, Kipf and Welling [187] originally evaluated their GAE and VGAE models on

link prediction problems in three popular citation networks (Cora, Citeseer, and Pubmed) [323],
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adopting the train/validation/test methodology described in Section 2.1.2. In their experiments,

GAEs and VGAEs reached competitive link prediction scores w.r.t. DeepWalk [287] and Lapla-

cian eigenmaps [368], that we presented in Section 2.2. They also recalled an additional benefit

of the GAE and VGAE models over these baselines, which is the ability to leverage both the

graph structure and node features when learning embedding spaces.

Over the last five few years, the overall effectiveness of the GAE and VGAE paradigms at

addressing link prediction has been widely confirmed experimentally [28, 73, 124, 133, 135,

156, 279, 299, 307, 310, 311, 329, 359, 361]. Numerous research efforts proposed and evaluated

variants of GAEs and VGAEs designed for this specific task, improving their performances by

considering more refined encoders [133, 135, 217, 308, 385], decoders [124, 135, 311, 329, 347]

or regularization techniques [156, 279, 361]. Most of these extensions were actually published

during the time of this PhD thesis. The exact technical contribution of several of them will be

further detailed in this thesis, when used as baselines for our own proposed methods.

Other research studies on GAE and VGAE models successfully addressed different downstream

tasks that are closely related to link prediction, such as edge classification [299] or graph-

based recommendation [28, 133, 400]. GAE and VGAE models have also be applied to (semi-

supervised) node classification [135, 359], canonical correlation analysis [174] and to community

detection [55, 56, 126, 216, 262, 370]. Last, but not least, researchers were also interested in

leveraging VGAEs as generative models, especially to generate molecular graph data. We refer

for instance to [169, 233, 243, 336] for recent advances in graph generation with VGAE models.

This aspect will not be at the center of our work in this thesis; we will instead mainly focus on

the inference component of VGAEs. As already explained, VGAE models emerged as effective

alternatives to deterministic GAEs on several downstream applications in some of the above

references, which we will further analyze in the next chapters. Consequently, in this thesis, we

saw value in considering both GAE and VGAE models to learn node embedding spaces.

Despite these promising advances, at the beginning of this PhD, i.e., in 2018, transposing these

recent advances to industrial-level applications, e.g., at Deezer, was still a challenging task.

As mentioned in this section, the standard GAE and VGAE methods suffer from scalability

issues. We argue in the next chapters that standard techniques from deep learning, such as

mini-batch sampling, often fail to provide satisfying solutions to this problem [307, 308]. As a

consequence, in 2018, experiments on GAEs and VGAEs were limited to graphs with at most a

few thousand nodes and edges. Among other challenges, standard GAE and VGAE models were

designed for undirected and static graphs [187], and often neglected simple but effective encoding

schemes [310]. Recent studies [55, 56] also emphasized their relative limitations on community

detection applications. The next part of this PhD thesis will present our contributions to improve

GAEs and VGAEs and facilitate their application to real-world problems.
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3
A Degeneracy Framework for

Scalable Graph Autoencoders

This chapter presents research conducted with Romain Hennequin, Viet-Anh Tran, and Michalis

Vazirgiannis, and published in the proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI 2019) [308].

3.1 Introduction

We begin this Part II of the thesis, which presents our contributions to representation learning

with GAE and VGAE models, with two chapters fully dedicated to scalability concerns. Indeed,

while these models emerged as powerful node embedding methods, they also suffer from scalab-

ility issues, preventing them to be applied to large graphs with millions of nodes and edges such

as those available at Deezer. More precisely, we identify two sources of complexity:

• firstly, as explained in Section 2.4.1, GNN models often act as GAE/VGAE encoders.

The encoding step can therefore be computationally costly if the GNN models under

consideration themselves involve complex operations. Nonetheless, at the time of this

work, several scalable GNNs had already been proposed in the scientific literature. To this

day, GCNs remain the most popular encoders for GAE and VGAE models. As explained in

Section 2.3.2, the cost of evaluating each layer of a GCN evolves linearly w.r.t. the number

of edges m [188]. This can be improved by instead encoding nodes with a FastGCN [50],

with a Cluster-GCN [53], or by using simpler graph convolutions [383] or other recently

proposed stochastic strategies [51, 130, 394, 397] for improved scalability;
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• moreover, and more importantly, the decoding step of standard GAE and VGAE models

usually suffers from a high computational complexity. In particular, Kipf and Welling [187]

and numerous extensions of their work leverage inner product decoders Â = σ(ZZT ). They

require the multiplication of the dense matrices Z and ZT , to compute reconstruction losses

at each training iteration. As explained in Section 2.4.1, this decoding scheme has an

O(dn2) complexity, as most of the alternative decoders from the literature, which also re-

quire computing inner products or Euclidean distances [124, 311, 329]. Storing n×n dense

matrices Â can also potentially lead to memory issues for a large n. Some existing decoders

are even more complex: for instance, the VGAE model of Simonovsky and Komodakis [336]

includes a graph matching step with an O(n4) complexity1. As a consequence, the afore-

mentioned efforts to scale GNNs (that were achieved in a supervised setting, and out of the

wider GAE and VGAE unsupervised frameworks where GNN encoders are only a building

block) are not sufficient to scale GAEs and VGAEs. These models will usually still suffer

from (at least) a quadratic complexity due to their costly decoding operations.

As a result, at the time of this work, GAE and VGAE models had only been applied to relatively

small graphs with, at most, a few thousand nodes and edges. While the majority of works were

still aiming to reconstruct entire graphs at each GAE/VGAE training iteration, we acknowledge

that Kipf and Welling [187] and Grover et al. [124] briefly mentioned node sampling and edge

sampling ideas as possible extensions. We will later observe that a direct uniform sampling of

nodes or edges in reconstruction losses is often suboptimal (and, in Chapter 4, we will ourselves

propose some refined stochastic sampling strategies for loss approximation). We note that

Shi et al. [329] also incorporated mini-batch sampling ideas in their GAE/VGAE models, but

rather to reconstruct triads of nodes and improve performances than to provide scalable models.

They did not report running times nor experiments on large graphs. To sum up, the question

of how to effectively scale GAE and VGAE models remained unsatisfactorily addressed.

In this Chapter 3, we present the solution proposed at the beginning of this PhD to address this

issue. More specifically, our contribution is threefold:

• we introduce a general framework to scale GAE and VGAE models to large graphs with

millions of nodes and edges, by optimizing the reconstruction loss (for GAE) or the ELBO

objective (for VGAE) only from a dense and representative subset of nodes, and then

by propagating embedding representations in the entire graph. These nodes are selected

using graph degeneracy [247] concepts. Such an approach considerably improves scalability

while, to some extent, preserving performances on downstream evaluation tasks;

• we apply this framework to five real-world graph datasets and discuss empirical results

on several variants of GAE and VGAE models for two learning tasks: link prediction and

1This is nonetheless acceptable in their work, as they focus on small molecular graphs with fewer than 40
nodes [336].
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community detection. Our implementation of this framework is publicly available [308].

At the time of publication of this work (early 2019), these experiments provided, to the

best of our knowledge, the first application of GAE and VGAE models to graphs with

millions of nodes and edges;

• we show that our models achieve competitive results w.r.t. several popular scalable unsu-

pervised node embedding methods, such as node2vec and DeepWalk from Section 2.2.3. It

emphasizes the relevance of pursuing further research towards scalable graph autoencoders.

This chapter is organized as follows. In Section 3.2, we present our proposed degeneracy frame-

work for scalable graph autoencoders, and we explain how to learn node embedding spaces using

a GAE or a VGAE model trained on a subset of nodes. We report and discuss our experimental

evaluation in Section 3.3, and we conclude in Section 3.4. In Section 3.5, we provide additional

tables and proofs, placed out of the “main” chapter for the sake of brevity and readability.

3.2 Scaling GAEs and VGAEs with Graph Degeneracy

Throughout this paper, we adopt the notation from Chapter 2 and further assume that G = (V, E)
is an undirected graph, without self-loops. Additionally, and for the sake of simplicity, we as-

sume in this section that nodes are featureless, i.e., X = In. Therefore, GAE/VGAE models

only learn node embedding vectors from A. Node features will be re-introduced in Section 3.3.

3.2.1 Overview of the Degeneracy Framework

To deal with large graphs, we propose to optimize the reconstruction loss (for GAE models)

or the ELBO variational lower bound (for VAE models) only from a wisely selected subset

of nodes, instead of using the entire graph G which would be intractable. More precisely, we

proceed as follows:

• Step 1: firstly, we identify the nodes on which the GAE/VGAE model should be trained,

by computing a k-core decomposition [247] of the graph. The selected subgraph is the

so-called k-degenerate version of the original one. We justify this choice in Section 3.2.2,

and explain how we choose the value of k;

• Step 2: secondly, we train a graph autoencoder (a GAE or a VGAE, following the archi-

tecture of Kipf and Welling [187] or any variant/extension) on this k-degenerate subgraph.

Hence, we derive node embedding vectors for the nodes included in this subgraph;

• Step 3: regarding the nodes of G that are not in this subgraph, we infer their embedding

representations using a simple and fast propagation heuristic, presented in Section 3.2.3.
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Figure 3.1: Schematic overview of our degeneracy framework for scalable graph autoencoders. After extracting
the smaller k-core a.k.a. k-degenerate subgraph of G, using the O(max(m,n)) algorithm described in Section 3.2.2
(left), we train a GAE or a VGAE model on this subgraph only (middle). In this figure, the model is trained on
the 3-core subgraph. While this training procedure still suffers from (at least) a quadratic complexity, the input
subgraph is significantly smaller, which makes the training tractable. However, we obtain embedding vectors zi for
nodes belonging to this subgraph, but not for others. We subsequently infer embedding vectors of the remaining
nodes (right), by leveraging the O(m) algorithm described in Section 3.2.3.

In the above Figure 3.1, we illustrate the three steps of this “degeneracy framework” for scalable

graph autoencoders. In a nutshell, the training step (Step 2) still has a potentially high complex-

ity (e.g., a quadratic complexity, when using the GAE or VGAE from Kipf and Welling [187]).

However, the subgraph processed by the autoencoder will be significantly smaller than G, mak-

ing the training tractable. Moreover, we will show in the next sections that Steps 1 and 3 have

linear running times w.r.t. the number of edges m in the graph. Therefore, this framework sig-

nificantly improves speed and scalability and, as we will experimentally confirm in Section 3.3,

can effectively process large graphs with up to millions of nodes and edges.

3.2.2 Graph Degeneracy and k-Core Decomposition

In this section, we detail our Step 1, i.e., the identification of a representative subgraph on which

the GAE or VGAE model should be trained. We resort to the k-core decomposition [24, 247], a

powerful tool to analyze the structure of a graph. Formally, the k-core, or k-degenerate version

of graph G, is defined as follows.

Definition 3.1. The k-core or k-degenerate version of a graph G = (V, E) is the largest subgraph
in which every node has a degree at least equal to k within the subgraph. Therefore, in a k-core,

each node is connected to at least k nodes, that are themselves connected to at least k nodes.

We denote by Ck ⊆ V the set of nodes belonging to the k-core of G.

Definition 3.2. The degeneracy number δ∗(G) ∈ {0, . . . , n} of a graph G = (V, E) is the

maximum k for which the k-core is not empty.

As illustrated in Figure 3.2, nodes from each core C0, . . . , Cδ∗(G) form a nested chain, i.e.:

Cδ∗(G) ⊆ Cδ∗(G)−1 ⊆ ... ⊆ C0 = V. (3.1)
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In Step 2, we train a GAE or a VGAE model,

either only on the δ∗(G)-core version of G, or on
a larger k-core subgraph, i.e., for a k < δ∗(G).
Why do we choose to resort to a core decompos-

ition in the context of GAE and VGAE mod-

els? Our justification for this strategy is two-

fold. The first reason is computational : the

k-core decomposition can be computed in a lin-

ear running time for an undirected graph [24].

Algorithm 1 describes2 the procedure we adopt

in this work. Specifically, to construct a k-core,

the strategy is to recursively remove all nodes

with degree lower than k and their edges from G
until no node can be removed. It involves sort-

ing nodes by degrees, which can be achieved in

O(n) time using a variant of bin-sort, and going

through all nodes and edges once (see [24] for

details). The time complexity of Algorithm 1

is O(max(m,n)), with max(m,n) = m in many

real-world graphs, and with the same space

complexity with sparse matrices, as explained

by Batagelj and Zaversnik [24].

A

B

C

D E

F G H

3-core

2-core

1-core

0-core

Figure 3.2: A graph of degeneracy 3 and its cores. Some
nodes are labeled for the purpose of Section 3.2.3.

Algorithm 1 k-core Decomposition

Input: Graph G = (V, E)
Output: Set of k-cores C = {C0, C1, ..., Cδ∗(G)}
1: Initialize C = {V} and k = minv∈V Dvv

2: for i = 1 to n do
3: v = node with smallest degree in G
4: if Dvv > k then
5: Append V to C
6: k = Dvv

7: end if
8: V = V \{v} and remove edges linked to v
9: end for

Our second reason to rely on the k-core decomposition is that, despite being relatively simple, it

has been proven to be a very useful tool to extract representative subgraphs over the past years,

with numerous applications ranging from community detection [105] to keyword extraction in

graph-of-words [357] and core-based kernels for graph similarity [272]. Our work, therefore,

builds upon these successes. We refer to the recent survey of Malliaros et al. [247] for a broader

overview of the history, theory, extensions, and applications of core decomposition.

On the Selection of k To select k, one must often face an inherent performance/speed trade-

off, that we will illustrate in our experiments. Intuitively, reconstructing very small subgraphs

during the GAE/VGAE training will speed up computations but, as we will later verify, this

might also deteriorate performances. Besides, on large graphs, training a GAE or a VGAE

will usually be impossible on the lowest cores (i.e., on the largest subgraphs) due to overly large

memory requirements. In our experiments from Section 3.3, we will adopt a simple strategy when

dealing with large graphs, consisting in training models on the lowest computationally tractable

cores, i.e., on the largest possible subgraphs. In practice, these subgraphs are significantly smaller

2In Algorithm 1, Dvv denotes the degree of node v, consistently with the notation of Definition 2.4.
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than the original ones (at least 95% of nodes are removed, in the datasets under consideration).

Moreover, when running experiments on medium-size graphs where all cores would be tractable,

we will plainly avoid choosing k < 2 (since V = C0 = C1, or C0 ≈ C1, in all our graphs). As we

will show, setting k = 2, i.e., removing leaves from the graph, will often empirically appear as

a good option, preserving performances w.r.t. models trained on G while significantly reducing

running times by pruning up to 50% of nodes in our graphs.

3.2.3 Propagation of Embedding Vectors

From Steps 1 and 2, we obtain embedding vectors zi ∈ Rd for each node i ∈ Ck of a pre-selected

k-core. Step 3 consists in the inference of such representations for the remaining nodes of G, in
a scalable way. We recall that we consider featureless nodes in this section.

Our strategy starts by assigning embedding representations to nodes directly connected to the

k-core. We average the values of their embedded neighbors and of the nodes being embedded

at the same step of the process. For instance, in the graph of Figure 3.2, to compute zD and zE

we would solve the system:  zD = 1
2(zA + zE)

zE = 1
3(zB + zC + zD)

(3.2)

or a weighted mean, if edges are weighted. Then, we would repeat this process on the neighbors

of these newly embedded nodes, and so on until no new node would be reachable. Taking into

account the fact that nodes D and E are themselves connected is important. Indeed, node A

from the maximal core is also a second-order neighbor of E. Exploiting such a proximity when

computing zE empirically improves performances, as it also strongly impacts all the following

nodes whose latent vectors will then be derived from zE , i.e., nodes F , G and H in Figure 3.2.

More generally, let V1 denote the set of nodes whose embedding vectors are already computed,

V2 the set of nodes connected to V1 and without embedding vectors, A1 the |V1|×|V2| adjacency
matrix linking nodes from V1 to nodes from V2, and A2 the |V2|×|V2| adjacency matrix of nodes

in V2. We normalize A1 and A2 by the total degree in V1∪V2, i.e., we divide rows by row sums of

the (AT
1 |A2) matrix row-concatenating AT

1 and A2. We denote by Ã1 and Ã2 these normalized

versions. We already learned the |V1| × d embedding matrix Z1 for nodes in V1. To implement

our strategy, we want to derive a |V2| × d embedding matrix Z2 for nodes in V2, verifying:

Z2 = Ã1Z1 + Ã2Z2. (3.3)

The solution of this system is:

Z∗ = (I − Ã2)
−1Ã1Z1, (3.4)

which exists since (I − Ã2) is strictly diagonally dominant are thus invertible from the Levy-
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Algorithm 2 Propagation of Embedding Vectors

Input: Graph G, list of embedded nodes V1, node embedding matrix Z1 ∈ R|V1|×d (already
learned), number of iterations t
Output: A d-dimensional node embedding vector for each node in G
1: V2 = set of non-embedded nodes reachable from V1
2: while |V2| > 0 do
3: A1 = |V1| × |V2| adjacency matrix connecting nodes from V1 to nodes from V2
4: A2 = |V2| × |V2| adjacency matrix connecting nodes from V2 together
5: Ã1, Ã2 = normalized versions of A1, A2, with rows divided by row sums of (AT

1 |A2)
6: Randomly initialize Z2 ∈ R|V2|×d (rows of Z2 will be embedding vectors of nodes in V2)
7: for i = 1 to t do
8: Z2 = Ã1Z1 + Ã2Z2

9: end for
10: V1 = V2
11: V2 = set of non-embedded nodes reachable from V1
12: end while
13: Assign random vectors to remaining unreachable nodes

Desplanques theorem [353]. Unfortunately, the exact computation of Z∗ has a cubic complexity.

We approximate it by initializing Z2 with random values in [−1, 1] and iterating:

Z2 ← Ã1Z1 + Ã2Z2 (3.5)

until convergence to a fixed point, guaranteed to happen exponentially fast, as stated below.

Proposition 3.3. Let us denote by Z(t) the |V2| × f matrix obtained by iterating Z(t) =

Ã1Z1 + Ã2Z
(t−1) t times starting from some random initial matrix Z(0). Let ∥ · ∥F be the

Frobenius matrix norm. Then, exponentially fast,

∥Z(t) − Z∗∥F −−−−→
t→+∞

0, (3.6)

where Z∗ is the optimal solution from Equation (3.4).

We prove Proposition 3.3 in Section 3.5. Our propagation process is summarized in Algorithm 2.

If some nodes are unreachable by such a process because G is not connected, then we assign

them random vectors. Using sparse representations for Ã1 and Ã2, the memory requirement for

Algorithm 2 is O(m + nf), and the computational complexity of each evaluation of line 7 also

increases linearly w.r.t. the number of edgesm in the graph. In practice, t is small: we set t = 10

in our experiments (we illustrate the impact of t in Section 3.5). The number of iterations in the

while loop of line 2 corresponds to the size of the longest shortest-path connecting a node to the

k-core, a number bounded above by the diameter of the graph which increases at a O(log(n))

speed in numerous real-world graphs [47]. In the next section, we will empirically confirm that

both Steps 1 and 3 run in linear time, and therefore scale to large graphs.
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3.3 Experimental Analysis

In this section, we empirically evaluate our degeneracy framework for scalable graph autoen-

coders. Although all main results and conclusions are presented and discussed here, we report

additional and more complete tables in the “supplementary” Section 3.5 for the sake of brevity.

An implementation of our framework is publicly available on GitHub3.

3.3.1 Experimental Setting

Datasets In this chapter, we provide experimental results on five graphs of increasing sizes.

First and foremost, for comparison purposes, we study the three medium-size citation networks4

used by Kipf and Welling [187]: Cora (n = 2 708 and m = 5 429), Citeseer (n = 3 327

and m = 4 732), and Pubmed (n = 19 717 and m = 44 338) [323]. In these graphs, nodes

are documents and edges are citation links. As Kipf and Welling [187], we ignored edges’

directions in experiments, i.e., we considered undirected versions of these graphs (we refer to our

Chapter 5 for an extension of GAE and VGAE models to directed graphs). Documents/nodes

have sparse bag-of-words feature vectors, of sizes 3 703, 1 433, and 500 respectively. Each

document also has a class label corresponding to its topic: in Cora (respectively in Citeseer, in

Pubmed), nodes are clustered in six classes (resp. in seven classes, in three classes) that we use

as ground truth communities in the following. Classes are roughly balanced. These datasets are

common benchmarks for evaluating GAEs and VGAEs [124, 135, 187, 279, 329, 359, 361, 370] (we

discuss the relevance and the limitations of these benchmarks in Chapter 6). For these three

medium-size graphs, we can directly compare the performance of our framework to standard

GAEs and VGAEs, as training these standard models is still computationally affordable.

Then, we consider two larger graphs from Stanford’s SNAP project [212]. The first one is the

Google web graph5 (n = 875 713 and m = 4 322 051). Nodes are web pages and edges represent

hyperlinks between these pages. Data do not include ground truth communities. The second one

is the US Patent citation network6 (n = 2 745 762 and m = 13 965 410), originally released by

the National Bureau of Economic Research (NBER) and representing citations between patents.

Nodes belong to one out of six patent categories, that act as ground truth communities; we

removed nodes without categories from the original Patent graph. For both graphs, we once

again ignored edges’ directions.

For these five graphs, we illustrate in Figure 3.3 the number of nodes in each k-core subgraph.

We note that, for Google (resp. for Patent), we were unable to train autoencoders on the 0

to 15-cores (resp. on the 0 to 13-cores) in our machines due to memory errors. Overall, using

3https://github.com/deezer/linear graph autoencoders
4https://linqs.soe.ucsc.edu/data
5https://snap.stanford.edu/data/web-Google.html
6https://snap.stanford.edu/data/cit-Patents.html
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Figure 3.3: Core decomposition of the Cora, Citeseer, Pubmed, Google, and Patent graphs.

our NVIDIA GTX 1080 GPU, we encountered memory errors during the GAE/VGAE training

when we were trying to decode graphs with more than 35 000 nodes.

Tasks We consider two downstream tasks for evaluation. Firstly, we consider link prediction,

following the methodology described in Section 2.1.2. We train all models described thereafter on

masked graphs for which 15% of edges were randomly removed for medium-size graphs (resp. 5%

for large graphs). Then, we create validation and test sets from the removed edges (resp. from

5% and 10% of edges for medium-size graphs, and resp. 2% and 3% for large graphs) and from

the same number of randomly sampled unconnected node pairs. Using the decoder’s predictions

Âij , we evaluate the model’s ability to classify edges from non-edges, using the mean Area Under

the ROC Curve (AUC) and Average Precision (AP) scores (see Section 2.1.2) on test sets. As

explained in Section 2.4.3, link prediction is the most common task to evaluate GAE and VGAE

models in the literature. We, therefore, found it essential to consider it as well in our work.

We also consider community detection experiments, on datasets with ground truth communit-

ies. For this task, after training models on complete versions of the graphs, we run k-means

algorithms [14] in node embedding spaces to cluster the zi vectors. We compare these clusters to

the ground truth using the mean Adjusted Mutual Information (AMI) score (see Section 2.1.2).

Models We apply our framework to ten graph autoencoders: the seminal GAE and VGAE

models from Kipf and Welling [187] with 2-layer GCN encoders and inner product decoder;

two deeper variants of GAE and VGAE with 3-layer GCN encoders, denoted DeepGAE and
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DeepVGAE; the Graphite and Variational Graphite extended models from Grover et al. [124]

incorporating a reverse message passing scheme; Pan et al.’s adversarially regularized variants of

GAE and VGAE (denoted ARGA and ARVGA) [279]; and two other models, denoted ChebAE

and ChebVAE, and consisting in variants of GAE and VGAE with ChebNets [69] of order 3

instead of GCN encoders. All models were trained on 200 epochs to return 16-dimensional

embedding vectors, except for Patent (32-dimensional embedding vectors). We included a 32-

dimensional hidden layer in GCN encoders (two for the DeepGAE and DeepVGAE models),

used the Adam optimizer [184], training models without dropout [343] and with a learning rate

of 0.01. We performed full-batch gradient descent7 and used the reparameterization trick from

Kingma and Welling [185], described in Section 2.4.2. We used the public implementations of

these models (see their respective references).

We also compare our results to the DeepWalk [287], LINE [351] and node2vec [123] methods

mentioned in Section 2.2.3. We focus on these methods because they directly claim scalabil-

ity. For each model, hyperparameters were tuned on AUC scores using validation sets. For

DeepWalk [287], we trained models from 10 random walks of length 80 per node with a window

size of 5, on a single epoch for each graph. We used similar hyperparameters for node2vec

[123], setting p = q = 1, and LINE [351] enforcing second-order proximity. We used the pub-

lic implementations provided by the authors. Due to underperforming results on some graphs

with 16-dimensional embeddings, we had to increase dimensions, up to 64, to compete with au-

toencoders. We also implemented a Laplacian eigenmaps/spectral clustering baseline when this

approach was tractable (embedding axes are the first 64 eigenvectors of G’s Laplacian matrix)

as well as the Louvain method [31] for community detection.

For all models, we used Python8 and especially the TensorFlow library [1], training models on an

NVIDIA GTX 1080 GPU and running other operations on a double Intel Xeon Gold 6134 CPU.

3.3.2 Results and Discussion

Medium-Size Graphs For Cora, Citeseer, and Pubmed, we apply our framework to all

possible subgraphs from the 2-core to the δ∗(G)-core and on entire graphs, which is still compu-

tationally tractable. Table 3.1 reports mean AUC and AP scores and their standard errors on

100 runs (masked edges are different for each run9) along with mean running times, for the link

prediction task on Pubmed with the VGAE model from Kipf and Welling [187]. Sizes of k-cores

vary over runs due to the edge masking process in link prediction; this phenomenon does not

7In these experiments, we omitted two simple heuristics to approximate losses, consisting in 1) reconstruct-
ing “mini-batches” of nodes/edges randomly (uniformly) sampled, and 2) incorporating negative sampling tech-
niques [187]. These two methods will be presented in detail in Chapter 4, where they will be considered as baselines
(including on the same graphs as experiments from this chapter). We will show that they usually fail to effectively
scale GAE/VGAE models while preserving performances, for reasons that will be discussed in Chapter 4.

8Our code notably builds upon Thomas Kipf’s implementation of GAE models: https://github.com/tkipf/gae
9Excluding the validation set, which is only extracted once. Validation edges never appear in test sets.
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Table 3.1: Link prediction on the Pubmed graph (n = 19 717, m = 44 338), using the VGAE model from Kipf
and Welling [187] with 2-layer GCN encoders and inner product decoder, its k-core variants using our degeneracy
framework, and other baselines. All VGAE models learn embedding vectors of dimension d = 16. Scores are
averaged over 100 runs. Bold numbers correspond to the best scores and best running time. Scores in italic are
within one standard deviation range from the best score.

Model Size of input Mean Perf. on Test Set Mean Running Times (in sec.)
k-core AUC (in %) AP (in %) k-core dec. Model train Propagation Total Speed gain

VGAE on G - 83.02± 0.13 87.55± 0.18 - 710.54 - 710.54 -
on 2-core 9, 277± 25 83.97± 0.39 85.80± 0.49 1.35 159.15 0.31 160.81 ×4.42
on 3-core 5, 551± 19 83.92± 0.44 85.49± 0.71 1.35 60.12 0.34 61.81 ×11.50
on 4-core 3, 269± 30 82.40± 0.66 83.39± 0.75 1.35 22.14 0.36 23.85 ×29.79
on 5-core 1, 843± 25 78.31± 1.48 79.21± 1.64 1.35 7.71 0.36 9.42 ×75.43

... ... ... ... ... ... ... ... ...
on 8-core 414± 89 67.27± 1.65 67.65± 2.00 1.35 1.55 0.38 3.28 ×216.63
on 9-core 149± 93 61.92± 2.88 63.97± 2.86 1.35 1.14 0.38 2.87 ×247.57

DeepWalk - 81.04± 0.45 84.04± 0.51 - 342.25 - 342.25 -
LINE - 81.21± 0.31 84.60± 0.37 - 63.52 - 63.52 -

node2vec - 81.25± 0.26 85.55± 0.26 - 48.91 - 48.91 -
Laplacian - 83.14± 0.42 86.55± 0.41 - 31.71 - 31.71 -

occur for community detection. We report similar tables for other datasets/tasks in Section 3.5.

We observe that our framework significantly improves running times w.r.t. training a VGAE

on the entire graph G. Running times decrease when k increases (up to ×247.57 speed gain

in Table 3.1), which was expected since the k-core becomes smaller. Overall, we observe this

improvement on all other datasets, on both tasks, and for other GAE/VGAE variants (see

Section 3.5). In particular, we confirm that Steps 1 and 3 of our framework, i.e., the core de-

composition and the propagation of embedding representations, are computationally efficient.

Simultaneously, for low cores, and especially for 2-cores, performances are consistently compet-

itive w.r.t. models trained on entire graphs, and sometimes even slightly better (e.g., +0.95

point in AUC for link prediction on Pubmed in Table 3.1). This highlights the relevance of our

propagation process, and the fact that training models on smaller graphs is easier. Training a

model on a 2-core actually consists in removing “leaves” in the graph, which might appear as a

simple but effective way to reduce noise during the training phase. Training models on higher

cores leads to even faster results, but at the price of a loss in performance. This corresponds to

what we referred to as the performance/speed trade-off in Section 3.2.2.

Large graphs We now consider the two larger graphs. Table 3.2 reports mean AMI scores

and standard errors over 10 runs, for community detection on Patent with the VGAE model

from Kipf and Welling [187]. Moreover, the two Tables 3.3 and 3.4 provide more summarized

results to compare results obtained with the GAE/VGAE variants. Specifically, in Table 3.3, we

report link prediction results on Google, reporting performances from all variants trained on the

17-core. In Table 3.4 we report community detection results on Patent, reporting performances

from all variants trained on the 15-core. We report more complete tables in Section 3.5.
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Table 3.2: Community detection on the Patent graph (n = 2 745 762, m = 13 965 410), using the VGAE model
from Kipf and Welling [187] with 2-layer GCN encoders and inner product decoder, trained on the 14-core to
18-core subgraphs using our degeneracy framework, and other baselines. All VGAE models learn embedding
vectors of dimension d = 32. Scores are averaged over 10 runs. We omit two baselines: DeepWalk due to too long
running times on our machine, and spectral clustering due to memory errors. Bold numbers correspond to the
best scores and best running time. Scores in italic are within one standard deviation range from the best score.

Model Size of input Mean Performance Mean Running Times (in sec.)
k-core AMI (in %) k-core dec. Model train Propagation Total

VGAE on 14-core 46 685 25.22± 1.51 507.08 6 390.37 120.80 7 018.25 (1h57)
on 15-core 35 432 24.53± 1.62 507.08 2 589.95 123.95 3 220.98 (54min)
on 16-core 28 153 24.16± 1.96 507.08 1 569.78 123.14 2 200.00 (37min)
on 17-core 22 455 24.14± 2.01 507.08 898.27 124.02 1 529.37 (25min)
on 18-core 17 799 22.54± 1.98 507.08 551.83 126.67 1 185.58 (20min)

LINE - 23.19± 1.82 - 33 063.80 - 33 063.80 (9h11)
Louvain - 11.99± 1.79 - 13 634.16 - 13 634.16 (3h47)
node2vec - 24.10± 1.64 - 26 126.01 - 26 126.01 (7h15)

Overall, we reach similar conclusions w.r.t. medium-size graphs, both in terms of good perform-

ance and of scalability. However, comparison with standard models trained on G, i.e., without
using our framework, is impossible on these graphs due to overly large memory requirements.

We therefore only compare performances obtained from several computationally tractable cores,

illustrating once again the inherent performance/speed trade-off when choosing k and validating

previous insights: increasing k accelerates training times, but tends to decrease performances.

Comparison to Baselines While it is impossible to compare our results to GAE and VGAE

models trained on G, we observe that our framework provides competitive results w.r.t. other

popular scalable baselines. Our framework is faster on large graphs while achieving comparable

or outperforming performances in most experiments (e.g., +1.12 AMI point for our VGAE on 14-

core in Table 3.2 w.r.t. node2vec, which is also slower). These competitive performances on large

graphs emphasize the relevance of pursuing research towards more scalable graph autoencoders.

On the other hand, we note that several of these baselines, notably Louvain and node2vec,

are better to cluster nodes in Cora and Pubmed (+10 points in AMI for Louvain on Cora in

Section 3.5) which questions the global ability of existing GAE or VGAE models to identify

communities in a robust way. In Chapter 6, we will provide an in-depth investigation of the

relative limitations of GAE and VGAE models on community detection.

GAE/VGAE variants For both tasks, we observe that the adversarial training strategy

adopted by ARGA/ARGVA, as well as Graphite’s variant decoding schemes, and ChebNet-based

encoders tend to slightly improve predictions w.r.t. standard GAE and VGAE models. However,

results are often very close to those obtained from the standard 2-layer GCN-based GAE and

VGAE models. This questions the relevance of overcomplexifying these graph autoencoders. In

Chapter 5, we will instead consider simpler yet effective variants of GAEs and VGAEs.
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Table 3.3: Link prediction on the Google graph
(n = 875 713, m = 4 322 051) using all GAE/VGAE
variants trained on the 17-core (|C17| = 23 787 ± 208)
using our degeneracy framework, and the best baseline.
Scores are averaged over 10 runs. Bold numbers corres-
pond to the best scores and best running time. Scores
in italic are within one standard deviation range from
the best score.

Model Perf. on Test Set Total

(using framework, k=17) AUC (in %) AP (in %) run. time

GAE 94.02± 0.20 94.31± 0.21 23min

VGAE 93.22± 0.40 93.20± 0.45 22 min

DeepGAE 93.74± 0.17 92.94± 0.33 24min

DeepVGAE 93.12± 0.29 92.71± 0.29 24min

Graphite 93.29± 0.33 93.11± 0.42 23min

Var-Graphite 93.13± 0.35 92.90± 0.39 22 min

ARGA 93.82± 0.17 94.17± 0.18 23min

ARVGA 93.00± 0.17 93.38± 0.19 23min

ChebGAE 95.24± 0.26 96.94± 0.27 41min

ChebVGAE 95.03± 0.25 96.58± 0.21 40min

node2vec on G 94.89± 0.63 96.82± 0.72 4h06

(best baseline)

Table 3.4: Community detection on the Patent graph
(n = 2 745 762, m = 13 965 410) using all GAE/VGAE
variants trained on the 15-core (|C15| = 35 432 ± 208)
using our degeneracy framework, and the best baseline.
Scores are averaged over 10 runs. Bold numbers cor-
respond to the best score and best running time. Scores
in italic are within one standard deviation range from
the best score.

Model Performance Total

(using framework, k=15) AMI (in %) run. time

GAE 23.76± 2.25 56min

VGAE 24.53± 1.51 54min

DeepGAE 24.27± 1.10 1h01

DeepVGAE 24.54± 1.23 58min

Graphite 24.22± 1.45 59min

Var-Graphite 24.25± 1.51 58min

ARGA 24.26± 1.18 1h01

ARVGA 24.76± 1.32 58min

ChebGAE 25.23± 1.21 1h41

ChebVGAE 25.30± 1.22 1h38

node2vec on G 24.10± 1.64 7h15

(best baseline)

Furthermore, in this study, we did not observe any clear empirical distinction between determin-

istic and variational autoencoders. For instance, while various deterministic GAEs outperform

their variational counterparts in Table 3.3 (e.g., 94.02% AUC for a standard GAE vs 93.22% for

a VGAE), variational models reach better results in Table 3.4 (e.g., 24.53% AMI for a standard

VGAE vs 23.76% for a GAE).

Besides, while we mainly focused on featureless graphs, our framework easily extends to attrib-

uted graphs, by adding features from the k-core as input of GAE/VGAE models. In this direc-

tion, we report experiments on GAE and VGAE models with node features (when available, i.e.,

for Cora, Citeseer, and Pubmed) for both tasks in Section 3.5. The addition of node features

improves scores (e.g., from 85.24% to 88.10% AUC for a GAE trained of the 2-core of Cora).

Limitations Despite these promising results, our framework still suffers from several limita-

tions. For instance, in the experiments mentioned in the previous paragraph, features were not

included in Step 3’s propagation. Future work might study more efficient strategies to integ-

rate node features. Moreover, we noticed that our performances tend to deteriorate when our

framework is applied to the highest cores, i.e., the smallest subgraphs. In addition, our work

implicitly assumes the existence of a tractable core subgraph, which might not always exist in

practice. For instance, if a graph G has a k-core subgraph too large for GAE/VGAE training,

and a (k + 1)-core too small (or even empty), our degeneracy framework will fail to provide

relevant node embedding representations. Experiments from Chapter 4 will consider this case.
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3.4 Conclusion

In this chapter, we presented a general framework to scale graph autoencoders and variational

graph autoencoders. This framework leverages graph degeneracy concepts to train models only

from a dense subset of nodes instead of using the entire graph. Together with a simple yet

effective propagation mechanism, our approach improves scalability and training speed while,

to some extent, preserving performances on link prediction and community detection.

We evaluated our framework on ten variants of existing GAE and VGAE, providing the first

application of these models to large graphs with up to millions of nodes and edges. Last, but not

least, we achieved empirically competitive results w.r.t. several popular scalable node embedding

methods such as node2vec and DeepWalk, in a majority of our experiments. This emphasizes

the relevance of pursuing further research towards more scalable GAE and VGAE models.

Simultaneously, in our experiments, we also identified several limitations of our GAE and VGAE

models. Some of them are directly related to our degeneracy framework, such as the potentially

suboptimal use of node features and the assumption, sometimes unverified, that the graph

under consideration includes tractable core subgraphs. In the next Chapter 4, we will introduce

FastGAE, an alternative strategy to scale GAEs and VGAEs, that addresses these limitations.

Some other limitations are not directly related to our degeneracy framework, but rather to the

GAE and VGAE models themselves. This includes the inability of these models to reconstruct

directed graphs, as well as their relatively lower performance in some community detection

experiments. These important aspects will be further discussed and addressed in this thesis,

respectively in Chapters 5 and 7.

3.5 Appendices

This supplementary section provides additional tables related to our experiments. We also prove

our Proposition 3.3, stated in Section 3.2. They were placed out of the main content of Chapter 3

for the sake of brevity and readability.

Proof of Proposition 3.3

We have:

Z(t) − Z∗ = [Ã1Z1 + Ã2Z
(t−1)]− [Ã2Z

∗ + (I − Ã2)Z
∗]

= Ã1Z1 + Ã2Z
(t−1) − Ã2Z

∗ − (I − Ã2)(I − Ã2)
−1Ã1Z1

= Ã2(Z
(t−1) − Z∗). (3.7)
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So, Z(t) −Z∗ = Ãt
2(Z

(0) −Z∗). Then, as a consequence of the Cauchy-Schwarz inequality [344]:

∥Z(t) − Z∗∥F = ∥Ãt
2(Z

(0) − Z∗)∥F ≤ ∥Ãt
2∥F ∥Z(0) − Z∗∥F . (3.8)

Furthermore, Ãt
2 = PDtP−1, with Ã2 = PDP−1 denoting the eigendecomposition of the sym-

metric matrix Ã2. For the diagonal matrix Dt we have:

∥Dt∥F =

√√√√ |V2|∑
i=1

|λti|2 ≤
√
|V2|(max

i
|λi|)t (3.9)

with λi denoting the i-th eigenvalue of Ã2. Since Ã2 has non-negative entries, we derive from

the Perron–Frobenius theorem [238] that:

• the maximum absolute value among eigenvalues of Ã2 is reached by a nonnegative real

eigenvalue;

• maxi λi is bounded above by the maximum degree in Ã2’s graph.

By definition, each node in V2 has at least one connection to V1. Moreover, rows of Ã2 are

normalized by row sums of (AT
1 |A2), so the maximum degree in Ã2’s graph is strictly lower than

1. We conclude, with the above two bullet points, that 0 ≤ |λi| < 1 for all i ∈ {1, ..., |V2|}, so
0 ≤ maxi |λi| < 1. This result implies that:

∥Dt∥F →t 0 (3.10)

exponentially fast, and so does ∥Ãt
2∥F ≤ ∥P∥F ∥Dt∥F ∥P−1∥F , and then ∥Z(t) − Z∗∥F .

Additional Tables

Link Prediction Tables 3.5 to 3.9 provide more complete results for the link prediction task.

For medium-size graphs, we apply our framework to all possible subgraphs from the 2-core to the

δ∗(G)-core and on entire graphs for comparison, for the VGAE model with 2-layer GCN encoders

and inner product decoder [187]. Sizes of k-cores vary over runs due to the edge masking process.

We obtained comparable performance/speed trade-offs for its GAE counterpart and for other

GAE/VGAE variants: for the sake of brevity, we therefore only report results on 2-core for

these models. Also, we only report the best baseline for the sake of brevity, and refer to the

IJCAI paper [308] for exhaustive results. For the Google and Patent graphs, comparison with

full models on G is impossible due to overly large memory requirements. As a consequence,

we apply our framework to the five largest k-cores (in terms of number of nodes) that were

tractable using our machines. We report mean AUC and AP and their standard errors on 10

runs (train incomplete graphs and masked edges are different for each run) along with mean
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(a) Pubmed: VGAE model trained on 8-core
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(b) Google: VGAE model trained on 18-core

Figure 3.4: Impact of the number of iterations t during progagation on mean AUC scores.

running times, for the standard VGAE model [187]. For other models, we only report results

on the second largest cores for the sake of brevity. We chose the second largest cores (17-core

for Google, 14-core for Patent), instead of the largest cores to lower running times.

Community Detection Tables 3.10 to 3.12 provide more complete results for the community

detection task. As explained in Section 3.4, we run k-means over embedding vectors and report

AMI scores w.r.t. ground truth communities. We used scikit-learn’s implementation [284] with

k-means++ initialization [17]. We do not report results for the Google graph, due to the lack of

ground truth communities. Also, we obtained very low scores on Citeseer, which suggests that

node features are more useful than the graph structure to explain labels. As a consequence, we

also omit this graph here (community detection on Citesser will nonetheless be considered later

in this thesis, in Chapters 4 and 7) and focus on Cora, Pubmed, and Patent in Tables 3.10 to 3.12.

Tables are constructed in a similar fashion w.r.t. the previous ones for link prediction. Graph

AE/VAE models and baselines were trained with identical hyperparameters w.r.t. link prediction

task (which we will question in Chapter 7). As link prediction, we only report the best baseline

in tables for the sake of brevity, and refer to the IJCAI paper [308] for exhaustive results.

Impact of the number of iterations t To finish, we illustrate the impact of the number

of iterations t during propagation on performances in Figure 3.4. We display the evolution of

mean AUC on two different graphs and cores w.r.t. the value of t. Overall, all scores stabilize

by setting t > 5 (resp. t > 10) in all medium-size graphs (resp. all large graphs). We specify

that the number of iterations has a negligible impact on running time. In our experiments, we

set t = 10 for all models leveraging our degeneracy framework.

10In this Table 3.5 and in the following ones, we chose not to report numbers in italic, contrary to Section 3.2.
This is due to the fact that several “best” scores are now presented (one for each table subsection), making the
italic notation from Section 3.2 potentially ambiguous in these tables.
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Table 3.5: Link prediction on the Cora graph (n = 2 708, m = 5 429), using the standard VGAE [187] model on
all cores, and GAE/VGAE variants on the 2-core. All GAE/VGAE models learn embedding vectors of dimension
d = 16. Scores are averaged over 100 runs. Bold numbers correspond to the best scores, in each table subsection10.

Model Size of input Mean Perf. on Test Set Mean Running Times (in sec.)
k-core AUC (in %) AP (in %) k-core dec. Model train Propagation Total

VGAE on G - 84.07± 1.22 87.83± 0.95 - 15.34 - 15.34
on 2-core 1 890± 16 85.24± 1.12 87.37± 1.13 0.16 8.00 0.10 8.26
on 3-core 862± 26 84.53± 1.33 85.04± 1.87 0.16 2.82 0.11 3.09
on 4-core 45± 13 72.33± 4.67 71.98± 4.97 0.16 0.98 0.12 1.26

GAE on 2-core 1 890± 16 85.17± 1.02 87.26± 1.12 0.16 8.05 0.10 8.31
DeepGAE on 2-core 1 890± 16 86.25± 0.81 87.92± 0.78 0.16 8.24 0.10 8.50
DeepVGAE on 2-core 1 890± 16 86.16± 0.95 87.71± 0.98 0.16 8.20 0.10 8.46
Graphite on 2-core 1 890± 16 86.35± 0.82 88.18± 0.84 0.16 9.41 0.10 9.67

Var-Graphite on 2-core 1 890± 16 86.39± 0.84 88.05± 0.80 0.16 9.35 0.10 9.61
ARGA on 2-core 1 890± 16 85.82± 0.88 88.22± 0.70 0.16 7.99 0.10 8.25
ARVGA on 2-core 1 890± 16 85.74± 0.74 88.14± 0.74 0.16 7.98 0.10 8.24
ChebGAE on 2-core 1 890± 16 86.15± 0.54 88.01± 0.39 0.16 15.78 0.10 16.04
ChebVGAE on 2-core 1 890± 16 86.30± 0.49 88.29± 0.50 0.16 15.65 0.10 15.91

GAE with node features on 2-core 1 890± 16 88.10± 0.87 89.36± 0.88 0.16 8.66 0.10 8.92
VGAE with node features on 2-core 1 890± 16 87.97± 0.99 89.53± 0.96 0.16 8.60 0.10 8.86

Laplacian eigenmaps - 86.53± 1.02 87.41± 1.12 - 2.78 - 2.78
(best baseline)

Table 3.6: Link prediction on the Citeseer graph (n = 3 327, m = 4 732), using the standard VGAE [187]
model on all cores*, and GAE/VGAE variants on the 2-core. All GAE/VGAE models learn embedding vectors
of dimension d = 16. Scores are averaged over 100 runs. Bold numbers correspond to the best scores, in each
table subsection. * 6-core and 7-core are not reported due to their frequent vanishing after edge masking.

Model Size of input Mean Perf. on Test Set Mean Running Times (in sec.)
k-core AUC (in %) AP (in %) k-core dec. Model train Propagation Total

VGAE on G - 78.10± 1.52 83.12± 1.03 - 22.40 - 22.40
on 2-core 1 306± 19 77.50± 1.59 81.92± 1.41 0.15 4.72 0.11 4.98
on 3-core 340± 13 76.40± 1.72 80.22± 1.42 0.15 1.75 0.14 2.04
on 4-core 139± 13 73.34± 2.43 75.49± 2.39 0.15 1.16 0.16 1.47
on 5-core 46± 10 65.47± 3.16 68.50± 2.77 0.15 0.99 0.16 1.30

GAE on 2-core 1 306± 19 78.35± 1.51 82.44± 1.32 0.15 4.78 0.11 5.04
DeepGAE on 2-core 1 306± 19 79.32± 1.39 82.80± 1.33 0.15 4.99 0.11 5.25
DeepVGAE on 2-core 1 306± 19 78.52± 1.02 82.43± 0.97 0.15 4.95 0.11 5.21
Graphite on 2-core 1 306± 19 78.61± 1.58 82.81± 1.24 0.15 5.88 0.11 6.14

Var-Graphite on 2-core 1 306± 19 78.51± 1.62 82.72± 1.25 0.15 5.86 0.11 6.12
ARGA on 2-core 1 306± 19 78.89± 1.33 82.89± 1.03 0.15 4.54 0.11 4.80
ARVGA on 2-core 1 306± 19 77.98± 1.39 82.39± 1.09 0.15 4.40 0.11 4.66
ChebGAE on 2-core 1 306± 19 78.62± 0.95 83.22± 0.89 0.15 8.87 0.11 9.13
ChebVGAE on 2-core 1 306± 19 78.75± 1.03 83.23± 0.76 0.15 8.75 0.11 9.01

GAE with node features on 2-core 1 306± 19 81.21± 1.86 83.99± 1.52 0.15 5.51 0.11 5.77
VGAE with node features on 2-core 1 306± 19 81.88± 2.23 83.83± 1.85 0.15 5.70 0.11 5.96

Laplacian eigenmaps - 80.56± 1.41 83.98± 1.08 - 3.77 - 3.77
(best baseline)
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Table 3.7: Link prediction on the Pubmed graph (n = 19 717, m = 44 338), using the standard VGAE [187]
model on all cores*, and GAE/VGAE variants on the 2-core. All GAE/VGAE models learn embedding vectors
of dimension d = 16. Scores are averaged over 100 runs. Bold numbers correspond to the best scores, in each
table subsection. * 10-core is not reported due to its frequent vanishing after edge masking.

Model Size of input Mean Perf. on Test Set Mean Running Times (in sec.)
k-core AUC (in %) AP (in %) k-core dec. Model train Propagation Total

VGAE on G - 83.02± 0.13 87.55± 0.18 - 710.54 - 710.54
on 2-core 9 277± 25 83.97± 0.39 85.80± 0.49 1.35 159.15 0.31 160.81
on 3-core 5 551± 19 83.92± 0.44 85.49± 0.71 1.35 60.12 0.34 61.81
on 4-core 3 269± 30 82.40± 0.66 83.39± 0.75 1.35 22.14 0.36 23.85
on 5-core 1 843± 25 78.31± 1.48 79.21± 1.64 1.35 7.71 0.36 9.42

... ... ... ... ... ... ... ...
on 8-core 414± 89 67.27± 1.65 67.65± 2.00 1.35 1.55 0.38 3.28
on 9-core 149± 93 61.92± 2.88 63.97± 2.86 1.35 1.14 0.38 2.87

GAE on 2-core 9 277± 25 84.30± 0.27 86.11± 0.43 1.35 167.25 0.31 168.91
DeepGAE on 2-core 9 277± 25 84.61± 0.54 85.18± 0.57 1.35 166.38 0.31 168.04
DeepVGAE on 2-core 9 277± 25 84.46± 0.46 85.31± 0.45 1.35 157.43 0.31 159.09
Graphite on 2-core 9 277± 25 84.51± 0.58 85.65± 0.58 1.35 167.88 0.31 169.54

Var-Graphite on 2-core 9 277± 25 84.30± 0.57 85.57± 0.58 1.35 158.16 0.31 159.82
ARGA on 2-core 9 277± 25 84.37± 0.54 86.07± 0.45 1.35 164.06 0.31 165.72
ARVGA on 2-core 9 277± 25 84.10± 0.53 85.88± 0.41 1.35 155.83 0.31 157.49
ChebGAE on 2-core 9 277± 25 84.63± 0.42 86.05± 0.70 1.35 330.37 0.31 332.03
ChebVGAE on 2-core 9 277± 25 84.54± 0.48 86.00± 0.63 1.35 320.01 0.31 321.67

GAE with node features on 2-core 9 277± 25 84.94± 0.54 85.83± 0.58 1.35 168.62 0.31 170.28
VGAE with node features on 2-core 9 277± 25 85.81± 0.68 88.01± 0.53 1.35 164.10 0.31 165.76

Laplacian eigenmaps - 83.14± 0.42 86.55± 0.41 - 31.71 - 31.71
(best baseline)

Table 3.8: Link prediction on the Google graph (n = 875 713, m = 4 322 051), using the standard VGAE [187]
model trained on the 16 to 20-cores, and GAE/VGAE variants on the 17-core. All GAE/VGAE models learn
embedding vectors of dimension d = 16. Scores are averaged over 10 runs. Bold numbers correspond to the best
scores, in each table subsection.

Model Size of input Mean Perf. on Test Set Mean Running Times (in sec.)
k-core AUC (in %) AP (in %) k-core dec. Model train Propagation Total

VGAE on 16-core 36 854± 132 93.56± 0.38 93.34± 0.31 301.16 2 695.42 25.54 3 022.12 (50min)
on 17-core 23 787± 208 93.22± 0.40 93.20± 0.45 301.16 1 001.64 28.16 1 330.86 (22min)
on 18-core 13 579± 75 91.24± 0.40 92.34± 0.51 301.16 326.76 28.20 656.12 (11min)
on 19-core 6 613± 127 87.79± 0.31 89.13± 0.29 301.16 82.19 28.59 411.94 (7min)
on 20-core 3 589± 106 81.74± 1.17 83.51± 1.22 301.16 25.59 28.50 355.55 (6 min)

GAE on 17-core 23 787± 208 94.02± 0.20 94.31± 0.21 301.16 1 073.18 28.16 1 402.50 (23min)
DeepGAE on 17-core 23 787± 208 93.74± 0.17 92.94± 0.33 301.16 1 137.24 28.16 1 466.56 (24min)
DeepVGAE on 17-core 23 787± 208 93.12± 0.29 92.71± 0.29 301.16 1 088.41 28.16 1 417.73 (24min)
Graphite on 17-core 23 787± 208 93.29± 0.33 93.11± 0.42 301.16 1 033.21 28.16 1 362.53 (23min)

Var-Graphite on 17-core 23 787± 208 93.13± 0.35 92.90± 0.39 301.16 989.90 28.16 1 319.22 (22min)
ARGA on 17-core 23 787± 208 93.82± 0.17 94.17± 0.18 301.16 1 053.95 28.16 1 383.27 (23min)
ARVGA on 17-core 23 787± 208 93.00± 0.17 93.38± 0.19 301.16 1 027.52 28.16 1 356.84 (23min)
ChebGAE on 17-core 23 787± 208 95.24± 0.26 96.94± 0.27 301.16 2 120.66 28.16 2 449.98 (41min)
ChebVGAE on 17-core 23 787± 208 95.03± 0.25 96.82± 0.72 301.16 2 086.07 28.16 2 415.39 (40min)

node2vec - 94.89± 0.63 96.82± 0.72 - 14 762.78 - 14 762.78 (4h06)
(best baseline)
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Table 3.9: Link prediction on the Patent graph (n = 2 745 762, m = 13 965 410), using the standard VGAE [187]
model trained on the 14 to 18-cores, and GAE/VGAE variants on the 15-core. All GAE/VGAE models learn
embedding vectors of dimension d = 32. Scores are averaged over 10 runs. Bold numbers correspond to the best
scores, in each table subsection.

Model Size of input Mean Perf. on Test Set Mean Running Times (in sec.)
k-core AUC (in %) AP (in %) k-core dec. Model train Propagation Total

VGAE on 14-core 38 408± 147 88.48± 0.35 88.81± 0.32 507.08 3 024.31 122.29 3 653.68 (1h01)
on 15-core 29 191± 243 88.16± 0.50 88.37± 0.57 507.08 1 656.46 123.47 2 287.01 (38min)
on 16-core 23 132± 48 87.85± 0.47 88.02± 0.48 507.08 948.09 124.26 1 579.43 (26min)
on 17-core 18 066± 143 87.34± 0.56 87.64± 0.47 507.08 574.25 126.55 1 207.88 (20min)
on 18-core 13 972± 86 87.27± 0.55 87.78± 0.51 507.08 351.73 127.01 985.82 (16min)

GAE on 15-core 29 191± 243 87.59± 0.29 87.30± 0.28 507.08 1 880.11 123.47 2 510.66 (42min)
DeepGAE on 15-core 29 191± 243 87.71± 0.31 87.64± 0.19 507.08 2 032.15 123.47 2 662.70 (44min)
DeepVGAE on 15-core 29 191± 243 87.03± 0.54 87.20± 0.44 507.08 1 927.33 123.47 2 557.88 (43min)
Graphite on 15-core 29 191± 243 85.19± 0.38 86.01± 0.31 507.08 1 989.72 123.47 2 620.27 (44min)

Var-Graphite on 15-core 29 191± 243 85.37± 0.30 86.07± 0.24 507.08 1 916.79 123.47 2 547.34 (42min)
ARGA on 15-core 29 191± 243 89.22± 0.10 89.40± 0.11 507.08 2 028.46 123.47 2 659.01 (44min)
ARVGA on 15-core 29 191± 243 87.18± 0.17 87.39± 0.33 507.08 1 915.53 123.47 2 546.08 (42min)
ChebGAE on 15-core 29 191± 243 88.53± 0.20 88.91± 0.20 507.08 3 391.01 123.47 4 021.56 (1h07)
ChebVGAE on 15-core 29 191± 243 88.75± 0.19 89.07± 0.24 507.08 3 230.52 123.47 3 861.07 (1h04)

node2vec - 95.04± 0.25 96.01± 0.19 - 26 126.01 - 26 126.01 (7h15)
(best baseline)

Table 3.10: Community detection on the Cora graph (n = 2 708, m = 5 429), using the standard VGAE [187]
model trained on all cores, and GAE/VGAE variants on the 2-core. All GAE/VGAE models learn embedding
vectors of dimension d = 16. Scores are averaged over 100 runs. Bold numbers correspond to the best scores, in
each table subsection.

Model Size of input Mean Performance Mean Running Times (in sec.)
k-core AMI (in %) k-core dec. Model train Propagation Total

VGAE on G - 29.52± 2.61 - 15.34 - 15.34
on 2-core 2 136 34.08± 2.55 0.16 9.94 0.10 10.20
on 3-core 1 257 36.29± 2.52 0.16 4.43 0.11 4.70
on 4-core 174 35.93± 1.88 0.16 1.16 0.12 1.44

VGAE with node features on G - 47.25± 1.80 - 15.89 - 15.89
on 2-core 2 136 45.09± 1.91 0.16 10.42 0.10 10.68
on 3-core 1 257 40.96± 2.06 0.16 4.75 0.11 5.02
on 4-core 174 38.11± 1.23 0.16 1.22 0.12 1.50

GAE on 2-core 2 136 34.91± 2.51 0.16 10.02 0.10 10.28
DeepGAE on 2-core 2 136 35.30± 2.52 0.16 10.12 0.10 10.38
DeepVGAE on 2-core 2 136 34.49± 2.85 0.16 10.09 0.10 10.35
Graphite on 2-core 2 136 33.91± 2.17 0.16 10.97 0.10 11.23

Var-Graphite on 2-core 2 136 33.89± 2.13 0.16 10.91 0.10 11.17
ARGA on 2-core 2 136 34.73± 2.84 0.16 9.99 0.10 10.25
ARVGA on 2-core 2 136 33.36± 2.53 0.16 9.97 0.10 10.23
ChebGAE on 2-core 2 136 36.52± 2.05 0.16 19.22 0.10 19.48
ChebVGAE on 2-core 2 136 37.83± 2.11 0.16 20.13 0.10 20.39

Louvain - 46.76± 0.82 - 1.83 - 1.83
(best baseline)
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Table 3.11: Community detection on the Pubmed graph (n = 19 717, m = 44 338), using the standard VGAE [187]
model trained on all cores, and GAE/VGAE variants on the 2-core. All GAE/VGAE models learn embedding
vectors of dimension d = 16. Scores are averaged over 100 runs. Bold numbers correspond to the best scores, in
each table subsection.

Model Size of input Mean Performance Mean Running Times (in sec.)
k-core AMI (in %) k-core dec. Model train Propagation Total

VGAE on G - 22.36± 0.25 - 707.77 - 707.77
on 2-core 10 404 23.71± 1.83 1.35 199.07 0.30 200.72
on 3-core 6 468 25.19± 1.59 1.35 79.26 0.34 80.95
on 4-core 4 201 24.67± 3.87 1.35 34.66 0.35 36.36
on 5-core 2 630 17.90± 3.76 1.35 14.55 0.36 16.26

... ... ... ... ... ... ...
on 10-core 137 10.79± 1.16 1.35 1.15 0.38 2.88

VGAE with node features on G - 26.05± 1.40 - 708.59 - 708.59
on 2-core 10 404 24.25± 1.92 1.35 202.37 0.30 204.02
on 3-core 6 468 23.26± 3.42 1.35 82.89 0.34 84.58
on 4-core 4 201 20.17± 1.73 1.35 36.89 0.35 38.59
on 5-core 2 630 18.15± 2.04 1.35 16.08 0.36 17.79

... ... ... ... ... ... ...
on 10-core 137 11.67± 0.71 1.35 0.97 0.38 2.70

GAE on 2-core 10 404 22.76± 2.25 1.35 203.56 0.30 205.21
DeepGAE on 2-core 10 404 24.53± 3.30 1.35 205.11 0.30 206.76
DeepVGAE on 2-core 10 404 25.63± 3.51 1.35 200.73 0.30 202.38
Graphite on 2-core 10 404 26.55± 2.17 1.35 209.12 0.30 210.77

Var-Graphite on 2-core 10 404 26.69± 2.21 1.35 200.86 0.30 202.51
ARGA on 2-core 10 404 23.68± 3.18 1.35 207.50 0.30 209.15
ARVGA on 2-core 10 404 25.98± 1.93 1.35 199.94 0.30 201.59
ChebGAE on 2-core 10 404 25.88± 1.66 1.35 410.81 0.30 412.46
ChebVGAE on 2-core 10 404 26.50± 1.49 1.35 399.96 0.30 401.61

node2vec - 29.57± 0.22 - 48.91 - 48.91
(best baseline)

Table 3.12: Community detection on the Patent graph (n = 2 745 762, m = 13 965 410), using the standard
VGAE [187] model trained on the 14 to 18 cores, and GAE/VGAE variants on 15-core. All GAE/VGAE models
learn embedding vectors of dimension d = 32. Scores are averaged over 10 runs. Bold numbers correspond to
the best scores, in each table subsection.

Model Size of input Mean Performance Mean Running Times (in sec.)
k-core AMI (in %) k-core dec. Model train Propagation Total

VGAE on 14-core 46 685 25.22± 1.51 507.08 6 390.37 120.80 7 018.25 (1h57)
on 15-core 35 432 24.53± 1.62 507.08 2 589.95 123.95 3 220.98 (54min)
on 16-core 28 153 24.16± 1.96 507.08 1 569.78 123.14 2 200.00 (37min)
on 17-core 22 455 24.14± 2.01 507.08 898.27 124.02 1 529.37 (25min)
on 18-core 17 799 22.54± 1.98 507.08 551.83 126.67 1 185.58 (20min)

GAE on 15-core 35 432 23.76± 2.25 507.08 2 750.09 123.95 3 381.13 (56min)
DeepGAE on 15-core 35 432 24.27± 1.10 507.08 3 007.31 123.95 3 638.34 (1h01)
DeepVGAE on 15-core 35 432 24.54± 1.23 507.08 2 844.16 123.95 3 475.19 (58min)
Graphite on 15-core 35 432 24.22± 1.45 507.08 2 899.87 123.95 3 530.90 (59min)

Var-Graphite on 15-core 35 432 24.25± 1.51 507.08 2 869.92 123.95 3 500.95 (58min)
ARGA on 15-core 35 432 24.26± 1.18 507.08 3 013.28 123.95 3 644.31 (1h01)
ARVGA on 15-core 35 432 24.76± 1.32 507.08 2 862.54 123.95 3 493.57 (58min)
ChebGAE on 15-core 35 432 25.23± 1.21 507.08 5 412.12 123.95 6 043.15 (1h41)
ChebVGAE on 15-core 35 432 25.30± 1.22 507.08 5 289.91 123.95 5 920.94 (1h38)

node2vec - 24.10± 1.64 - 26 126.01 - 26 126.01 (7h15)
(best baseline)
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4
Scalable Graph Autoencoders with

Stochastic Subgraph Decoding

This chapter presents research conducted with Romain Hennequin, Jean-Baptiste Remy, Manuel

Moussallam, and Michalis Vazirgiannis, and published in Elsevier’s Neural Networks journal

(impact factor: 8.05) in 2021 [307].

4.1 Introduction

In this chapter, we introduce an alternative stochastic method to scale GAE and VGAE models.

This method, referred to as FastGAE in the following, was developed in 2020, i.e., a year after

the research presented in Chapter 3. FastGAE constitutes an improvement of our previous

efforts towards more scalable graph autoencoders.

More specifically, we propose to leverage graph mining-based sampling schemes and an effective

subgraph decoding strategy to significantly lower the computational complexity of graph autoen-

coders, while preserving or even slightly improving their performances. We previously argued

that a random (uniform) node sampling is suboptimal in the context of GAE and VGAE models,

which we will experimentally confirm in Section 4.3. In this chapter, we however explain that, by

leveraging graph mining techniques, one can also derive more effective sampling schemes that,

in essence, aim to reconstruct “wisely selected” random subparts of an original graph during

training. We provide an in-depth theoretical and experimental analysis of the proposed solution,

showing that it behaves favorably when compared to the degeneracy framework from Chapter 3.

We also show that FastGAE addresses some of the limitations of this degeneracy framework.
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Chapter 4. Scalable Graph Autoencoders with Stochastic Subgraph Decoding

This chapter is organized as follows. In Section 4.2, we present and analyze FastGAE, our

method for scalable graph autoencoders with stochastic subgraph decoding. We report our

experimental evaluation of this method and a discussion of our results in Section 4.3, and we

conclude in Section 4.4. In Section 4.5, we provide some proofs as well as an additional figure,

placed out of the “main” chapter for the sake of brevity and readability.

4.2 FastGAE: Scaling GAE and VGAE with Stochastic Sub-

graph Decoding

In this section, we introduce our stochastic method to scale GAE and VGAE models. We refer

to it as FastGAE when applied to GAEs, and as variational FastGAE when applied to VGAEs.

4.2.1 A Stochastic Subgraph Decoding Strategy

Encoding the Entire Graph... As detailed in Section 3.1 from the previous chapter, the

encoding step of GAE and VGAE models can be computationally costly, if the GNN encoders

under consideration themselves involve complex operations. Nonetheless, several scalable GNNs

have been proposed in the scientific literature. We explain in this same section that GCN

models [188] and their scalable extensions [50, 53, 383, 397] can effectively process large graphs.

Throughout this chapter, we therefore rely on these models to encode all the nodes from a graph G
into a node embedding space. More precisely, in the following experiments, we implement

standard GCN encoders [188] for the sake of simplicity and an easier comparison to the literature.

This choice is made without loss of generality. The method described in this section would remain

valid for any other encoder producing a node embedding matrix Z, and notably for faster and/or

less complex variants of GCNs [50, 53] in the case of very large graphs (e.g., with hundreds of

millions or with billions of nodes) for which the O(n) complexity of a forward GCN pass would

become unaffordable.

...But Decoding Stochastic Subgraphs However, while computing node embedding vectors

through a forward GCN pass is relatively fast, tuning the weights of this encoder in the GAE and

VGAE settings requires the reconstruction of the entire matrix Â at each training iteration which,

as explained in the previous chapters, suffers from a quadratic complexity and is intractable for

large graphs with more than a few thousand nodes and edges.

To overcome this issue, we propose to approximate reconstruction losses and ELBO objectives,

by computing their values only from wisely selected random subparts of the original graph. More

precisely, at each training iteration, we aim to decode a different sampled subgraph of G with

n(S) nodes, with n(S) < n being a fixed parameter. Let G(S) = (V(S), E(S)) be such a sampled
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subgraph, with V(S) ⊂ V, |V(S)| = n(S), and with E(S) denoting the subset of edges connecting

the nodes in V(S). Instead of reconstructing the n× n matrix Â, we propose to reconstruct the

smaller n(S) × n(S) matrix Â(S) with:

Â(S)ij = σ(zTi zj), ∀(i, j) ∈ V2(S), (4.1)

and to only consider the quality of Â(S) w.r.t. its ground truth counterpart A(S), as measured

by a cross entropy loss for GAEs, and by an ELBO objective for VGAEs. We propose to

use the resulting approximate loss for gradients computations and for GCN weights updates

by gradient descent. We draw a different subgraph G(S) at each training iteration, using the

sampling methods detailed in the next section.

4.2.2 Node Sampling with Graph Mining

(Naive) Uniform Node Sampling A very simple way to obtain such subgraphs would

consist in uniformly sampling n(S) nodes from the set V at each training iteration. However, in

such a strategy, there is no guarantee that the most important links (or absence of links) from

the original graph structure will be preserved in the drawn subgraphs to reconstruct during the

training phase. As we will confirm in Section 4.3, this usually significantly impacts the quality of

the final node embedding, leading to underperforming performances on downstream evaluation

tasks. As a consequence, in the following sections, we propose and study more refined strategies,

aiming to leverage the graph structure to obtain a more effective sampling.

Node Sampling with Graph Mining We propose to consider alternative sampling methods,

that increase the probability of including some particular nodes in the drawn subgraph w.r.t.

some others. Let f : V → R+ denote some measure of the relative importance of nodes in the

graph, obtained through graph mining methods. Assuming such a function is available, we draw

inspiration from word sampling in natural language processing [111, 258] and propose to set the

probability to pick each node i ∈ V as the first element of V(S) as:

pi =
f(i)α∑

j∈V
(f(j)α)

, (4.2)

with α ∈ R+. Then, assuming we sample n(S) distinct nodes without replacement, each remain-

ing node i ∈ V \ V(S) has a probability pi/
∑

j /∈V(S)
pj to be picked as the second element of

V(S), and so on until |V(S)| = n(S). The previous division is a simple normalization to ensure

that
∑

j /∈V(S)
pj = 1 at each sampling step. Alternatively, one could also sample n(S) nodes

with replacement : it simplifies computations, as sampling probabilities are then independent of

previous draws and remain fixed to pi, but a node could then be drawn several times. We stress
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out that, in our implementation, both variants return similar results. We adopt the former.

In a nutshell, important nodes according to f are more likely to be selected for decoding, and

the hyperparameter α helps sharpening (for α > 1) or smoothing (for α < 1) the distribution.

Setting α = 0 leads to the aforementioned uniform node sampling. In our experiments, we will

evaluate two importance measures f from graph mining:

• the degree of each node, i.e., f(i) = Dii =
∑

j∈V Aij following the notation of Definition 2.4;

• the core number of each node, i.e., f(i) = c(i). As presented in Definition 3.1, the k-core

version of a graph is its largest subgraph for which every node has a degree higher or

equal to k within this subgraph. Here, the core number c(i) of a node i corresponds to

the largest value of k for which i is in the k-core. This choice constitutes a more global

importance measure than the local node degree.

Besides their popularity and their complementarity, we also choose to focus on these two metrics

for computational efficiency. Indeed, contrary to other potential importance metrics based on

influence maximization [180], random walks [211] or centrality measures [266], both can be

evaluated in a linear O(m) running time [24]. As we will empirically check in Section 4.3, this

permits fast and scalable computations of probability distributions, which is crucial for our

FastGAE method whose primary objective is scalability. We refer the interested reader to the

work of Leskovec and Faloutsos [211] and of Chiericetti et al. [54] for a broader overview of other

existing graph sampling methods.

4.2.3 Theoretical Considerations

We now briefly present some theoretical considerations related to FastGAE that, for the sake of

readability, will be further developed and proved in the “supplementary” Section 4.5.

On Approximate Losses In the case of degree and core-based sampling strategies, some

node pairs from the graph are more likely to appear in subgraphs than others. The probability

to draw a node i, or an edge incident to i, increases with pi and with f(i) for α > 0. As a

consequence, at each gradient descent iteration, the approximate loss (say LFastGAE) is biased

w.r.t. the standard GAE or VGAE loss that would have been computed on G (say L), i.e.,
E(LFastGAE) ̸= L in general. For completeness, in Propositions 4.1, 4.2 and 4.3 of Section 4.5,

we provide a theoretical analysis, in which we fully explicit the expected loss E(LFastGAE) that

we actually stochastically optimize in FastGAE, as well as the formal probabilities to sample a

given node or node pair at each training iteration. Moreover, we will show in Section 4.4 that,

despite such a bias, optimizing this alternative loss does not deteriorate the quality of node
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embeddings. On the contrary, we will provide insights exhibiting the fact that re-weighting

node pairs from high degree/core nodes can actually be beneficial.

On the Selection of n(S) When selecting n(S), one faces a performance/speed trade-off, as

for our degeneracy framework. Reconstructing very small subgraphs speeds up the training but,

as we later verify, this might also deteriorate performances. While we claimed in the previous

paragraph that stochastically minimizing E(LFastGAE) instead of L might be beneficial, we also

acknowledge that, for small values of n(S), the actual loss LFastGAE computed at a given training

iteration can significantly deviate from its expectation. In this chapter, we propose to use these

deviations as a criterion to select a relevant subgraph size. In Propositions 4.5 and 4.6 of the

“supplementary” Section 4.5, we leverage concentration inequalities to derive a theoretically-

grounded threshold size, denoted n∗(S) in the following, for which, at each training iteration, the

deviation between the evaluation of LFastGAE for each node and its expectation is proven to be

bounded with a high probability. This proposed subgraph size is of the form:

n∗(S) = C
√
n (4.3)

where the constant C > 0 depends on the deviation magnitude and probability, and is explicitly

presented in Section 4.5. Our experiments will confirm the relevance of this choice.

4.2.4 On Complexity and Links to Related Work

Before diving into experiments, we discuss the complexity of FastGAE and its links and differ-

ences w.r.t. some other scalable methods, including our degeneracy from Chapter 3.

Complexity of FastGAE As previously detailed, both the GCN encoder and the sampling

step of FastGAE have a linear time complexity w.r.t. the number of edges m in the graph.

Moreover, our decoder runs in O(n2(S)) time, with n(S) being significantly smaller than n in

practice. In particular, setting n(S) = n∗(S) ensures a O(n) time complexity for decoding (as

n∗2(S) = (C
√
n)2 = C2n) and an overall O(m+n) linear time complexity for a complete FastGAE

training iteration. Faster bounds can also be achieved by lowering n(S) or by replacing GCNs

with another encoder. Therefore, as we will empirically verify in Section 4.3, our framework is

significantly faster and more scalable than standard GAE and VGAE models.

Differences with Related Work At first glance, one might want to compare FastGAE

with the methods aiming to scale the GNN/GCN models mentioned in Section 2.3.4. We

would like to emphasize that FastGAE is not directly comparable to these methods, e.g., to

FastGCN [50] that also samples nodes. FastGCN is a GCN-like model, optimized to classify
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node labels in a (semi) supervised fashion. It samples the neighborhood of each node when

averaging vector representations in forward passes. On the contrary, in this chapter, after full

GCN forward passes, we instead sample subgraphs to reconstruct, in order to approximate the

reconstruction loss/objective of two unsupervised models, in which GCNs are only a building

part (the encoder) of a larger framework (the GAE or the VGAE). Both settings therefore

address different problems. As explained in Section 4.2.1, methods such as FastGCN could

actually be used in conjunction with FastGAE, as alternative encoders replacing GCNs.

Furthermore, FastGAE is also more elaborated than data cleaning methods that simply consist

in removing some nodes from a graph, e.g., the low-degree ones, to reduce its size. Indeed, in

the case of FastGAE with degree sampling, low-degree nodes are still 1) fully used in the GCN

encoder, and 2) might also appear in some subgraphs that we decode (but less often than high-

degree nodes). As we leverage new different subgraphs at each iteration, we explore different

parts of the entire graph during training.

Lastly, we note that effective subset selection for faster learning has already provided promising

results in the machine learning community [116, 358]. Contrary to these works, we focus on an

unsupervised graph-based problem, and our sampling methods remain fixed throughout learning

as we rely on graph mining to select G(S).

Differences with Chapter 3 Overall, FastGAE is more flexible than the degeneracy frame-

work from Chapter 3, and addresses some of its limitations. For instance, as the degeneracy

framework reconstructs one of the cores C0, . . . , Cδ∗(G) during training, it assumes the existence

of at least one tractable core subgraph in G. If none of these cores has an appropriate size

(because they are all either too large or too small), then it will fail to learn relevant embedding

representations. On the contrary, FastGAE does not rely on such an assumption. This method

permits reconstructing subgraphs of any size n(S) < n, where n(S) is a selectable parameter.

In addition, in Chapter 3, we criticized the suboptimal use of node features during the propaga-

tion step. On the contrary, in FastGAE, node features are processed exactly as in standard

GCN-based GAE and VGAE models. Lastly, FastGAE is conceptually simpler (in essence, the

method consists in a “smarter” mini-batch sampling strategy for graph decoding), which we

consider being another advantage, as simple solutions often have the most impact.

4.3 Experimental Analysis

In this section, we present an in-depth experimental evaluation of our proposed method to scale

GAE and VGAE models. We publicly released the code of FastGAE on GitHub1.

1https://github.com/deezer/fastgae
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4.3.1 Experimental Setting

Datasets We provide experiments on seven graphs of increasing sizes. As in Chapter 3, we

study the Cora, Citeseer, Pubmed, Google, and Patent graphs, presented in Section 3.3.1. In

the paper associated with this work [307], we also considered two other large graphs:

• the Youtube social network of users (edges are friendship connections), available on Konect2,

and with n = 3 223 589 nodes and m = 9 375 374 edges;

• a synthetic graph, denoted SBM, generated from a stochastic block model which is a gen-

erative model for random graphs [2]. In this last graph, by design, nodes are clustered in

100 groups of 1000 nodes, acting as ground truth communities. Two nodes from the same

community (resp. from different communities) are connected by an edge with probability

2×10−2 (resp. 2×10−4). The SBM graph has n = 100 000 nodes andm = 1 498 844 edges.

Our evaluation therefore includes graphs with various characteristics, sizes, and from four differ-

ent families (citation networks, social networks, web graphs, and stochastic block model graphs).

As in Chapter 3, we consider undirected versions of these graphs. We refer to Chapter 5 for an

extension of GAE and VGAE models to directed graphs.

Tasks We consider the link prediction and community detection tasks (for nodes with ground

truth communities), already described in Section 3.3.1, with a completely similar setting and

with the same evaluation metrics.

Models: Standard and FastGAE-based GAE/VGAE In the upcoming experiments,

for the seven graphs and the two evaluation tasks, we compare standard GAE and VGAE

models (when they are tractable) to FastGAE-based versions of these models. All GAE and

VGAE models, with and without FastGAE, were optimized for the link prediction task. More

specifically, we selected the best sets of hyperparameters in terms of mean AUC scores on

validation sets. Instructions to easily run a similar validation are provided in our source code.

We trained models for 200 iterations (resp. 300) for graphs with n < 100 000 (resp. n ≥ 100

000), and thoroughly checked the convergence of all models for these values (in terms of loss

stability in the validation set). Other hyperparameters for these models are described thereafter.

Our encoders are 2-layer GCNs3 (we tested models with 1 to 3 layers). They include 32-

dimensional hidden layers, and 16-dimensional output layer, which means that the dimension

2https://konect.cc/networks/
3Experiments for Chapter 3 considered several different encoders but reported few to no empirical difference

w.r.t. 2-layer GCNs. For the sake of brevity and clarity, experiments from this Chapter 4 will only report results
obtained from 2-layer GCN encoders.
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of embedding vectors is equal to d = 16. We emphasize that we also tested models with

d ∈ {32, 64, 128}, reaching similar conclusions w.r.t. d = 16 (the impact of d is further discussed

in Section 4.3.4).

Besides, for all models, we used the Adam optimizer [184], without dropout (we tested models

with dropout values in {0, 0.1, 0.2, 0.3, 0.4, 0.5}). Regarding learning rates for such an optimizer,

we tested values from the grid {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2}. We eventually

picked a learning rate of 0.1 for Patent with uniform sampling, and of 0.01 otherwise as, once

again, these values returned the best mean AUC scores on validation sets. Once again, we

mainly used TensorFlow [1], training models on an NVIDIA GTX 1080 GPU, and running other

operations on a double Intel Xeon Gold 6134 CPU.

Models: Other Baselines For completeness, we also compare standard GAE/VGAE and

FastGAE-based models to the few other existing methods to scale GAE/VGAE:

• we consider a simple negative sampling strategy, briefly mentioned by Kipf andWelling [187].

We reconstruct all edges but only |E| randomly picked unconnected node pairs to compute

losses. We leveraged methods made available in PyTorch Geometric [96] to estimate losses,

with consistent dropout values, learning rates, and architectures w.r.t. the above models;

• we also compare to the degeneracy framework from Chapter 3, denoted as Core-GAE in

the next tables. We used our own implementation [308] with optimal values (regarding

mean AUC scores on validation sets) for the hyperparameter k detailed in next tables, and

with consistent dropout values, learning rates, and architectures w.r.t. the above models;

• besides, while some other sampling ideas were briefly mentioned (as possible extensions) in

the recent literature on graph autoencoders [124, 310], they actually consist in particular

cases of FastGAE, namely with uniform sampling.

Lastly, in addition to an extensive comparison between the different GAE/VGAE models, we

also report results obtained with three non GAE/VGAE-based baselines: the Louvain method

(for community detection) [31], node2vec4 [123] and Laplacian eigenmaps [284, 368]. We adopt

similar hyperparameters w.r.t. experiments from the previous chapter, with the notable excep-

tion that we also set d = 16 for Laplacian eigenmaps and node2vec (again, the impact of d is

further discussed in Section 4.3.4).

4We omit comparison to other random walk-based methods DeepWalk [287] and LINE [351] in this chapter,
due to quite similar performances w.r.t. node2vec on some of our preliminary tests.
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4.3.2 Preliminary Results on High Degree/Core Nodes

Before studying FastGAE we report important insights from preliminary experiments on stand-

ard GAE and VGAE models. They motivated the design of our framework and emphasize the

relevance of sampling high-degree/core nodes. On the medium-size Cora, Citeseer, and Pubmed

graphs, we trained standard GAE and VGAE models, but tried to mask k nodes and their edges

from the computation of reconstruction losses, for different values of k. Such a masking proced-

ure is expected to lower performances, as the model leverages less information about the quality

of the reconstruction for learning.

Figure 4.1 shows that, when these k removed nodes are the top-k highest degrees/cores nodes,

performances on the link prediction task tumble down. On the contrary, removing the k nodes

with minimal degrees or core numbers from the loss leads to almost no drop, and even slightly

better results on Pubmed, which suggests that removing non-informative nodes might even be

beneficial for learning. In Figure 4.2, we report similar results for community detection. These

ablation studies suggest that, when implementing stochastic subgraph decoding strategies for

scalability, sampling high-degree/core nodes is indeed crucial to learn meaningful embeddings.

FastGAE, which explicitly exploits these structural node properties, and optimizes a reconstruc-

tion loss that re-weights high degrees/cores node pairs, behaves consistently w.r.t. such insights.

4.3.3 Results on Medium-Size Graphs

We now evaluate FastGAE and its variational FastGAE variant. Firstly, we focus on medium-

size graphs. For Cora, Citeseer, and Pubmed, we can compare FastGAE to standard graph

autoencoders. The next Table 4.1 details mean AUC and AP scores and standard errors over 100

runs with different train/test splits for link prediction on the (featureless) Pubmed graph with

GAE models. For the sake of brevity, we report more summarized results for other medium-size

graphs, for VGAE and for community detection, in Table 4.3 and Figure 4.3 (for link prediction)

as well as in Table 4.5 (for community detection).

FastGAE vs Standard GAE/VGAE In Table 4.1, we observe that, for sample sizes roughly

20 times smaller than n, FastGAE models with degree and core sampling both achieve competit-

ive or even outperforming5 results w.r.t. standard GAE on Pubmed (e.g., +2.31 AUC points for

FastGAE with degree sampling and n(S) = 5 000). Furthermore, FastGAE models are also sig-

nificantly faster : in Table 4.1 for instance, our approach with degree sampling is up to × 252.78

faster without performance degradation. The additional operation required by our framework,

5At first glance, the fact that FastGAE sometimes even slightly outperforms standard GAE or VGAE models
might be surprising. This improvement is actually consistent with recent research on the benefits of mini-batch-
based GNNs [151, 302]. It comes from the relevance of the two core and degree-based sampling schemes that we
consider and from the stochastic nature of the training, which might tend to avoid local minima more easily [190].
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Figure 4.1: Link prediction on the featureless Cora, Citesser and Pubmed graph using standard VGAE models,
but trained while masking k nodes and their connections from the decoder/reconstruction loss. AUC scores are
averaged over 100 runs with random train/test splits.
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Figure 4.2: Community detection on the featureless Cora, Citesser and Pubmed graphs using standard VGAE
models, but trained while masking k nodes and their connections from the decoder/reconstruction loss. AMI
scores are averaged over 100 runs with random train/test splits.

70



4.3. Experimental Analysis

Table 4.1: Link prediction on the featureless Pubmed graph (n = 19 717, m = 44 338) using a standard GAE,
FastGAE with degree, core and uniform sampling, and other baselines. For degree and core sampling, values of
the hyperparameter α (as defined in Equation (4.2)) were tuned as illustrated in Figure 4.4. All GAE models
learn embedding vectors of dimension d = 16. Scores are averaged over 100 runs. Bold numbers correspond to
the best scores and best running time. Scores in italic are within one standard deviation range from the best
ones. Subgraphs sizes annotated with ∗ correspond to the n∗

(S) threshold, as introduced in Equation (4.3).

Model Subgraphs Average Perf. on Test Set Average Running Times (in seconds)
size n(S) AUC (in %) AP (in %) Compute Train Total Speed gain

pi model w.r.t. GAE

Standard GAE - 82.51 ± 0.64 87.42 ± 0.38 - 811.43 811.43 -

FastGAE with 5 000 84.82 ± 0.32 88.19 ± 0.23 0.01 14.41 14.42 × 56.27
degree sampling 2 500 84.12 ± 0.40 87.56 ± 0.30 0.01 5.72 5.73 × 141.61

(α = 1) 1 187∗ 83.67 ± 0.42 87.01 ± 0.31 0.01 3.20 3.21 × 252.78
500 82.68 ± 0.51 85.89 ± 0.47 0.01 2.98 2.99 × 271.38
250 80.77 ± 0.55 84.05 ± 0.51 0.01 2.83 2.84 × 285.71

FastGAE with 5 000 84.62 ± 0.24 88.09 ± 0.16 1.75 15.98 17.73 × 45.77
core sampling 2 500 83.69 ± 0.34 87.28 ± 0.31 1.75 7.51 9.26 × 87.63

(α = 2) 1 187∗ 82.53 ± 0.46 86.28 ± 0.37 1.75 4.81 6.56 × 123.69
500 80.96 ± 0.52 84.86 ± 0.46 1.75 4.57 6.32 × 128.39
250 79.53 ± 0.53 83.10 ± 0.50 1.75 4.44 6.19 × 131.08

FastGAE with 5 000 81.08 ± 0.48 85.90 ± 0.60 - 13.90 13.90 × 58.37
uniform sampling 2 500 78.72 ± 0.74 83.50 ± 0.75 - 5.48 5.48 × 148.07

1 187∗ 77.28 ± 0.89 81.89 ± 0.91 - 3.10 3.10 × 261.75
500 75.09 ± 2.05 78.53 ± 2.04 - 2.98 2.98 × 271.29
250 74.12 ± 2.07 77.72 ± 1.22 - 2.82 2.82 × 287.74

Core-GAE, k = 2 (best choice) - 84.30 ± 0.27 86.11 ± 0.43 - 168.91 168.91 × 4.80
Core-GAE, k = 9 (fastest choice) - 61.65 ± 0.94 64.82 ± 0.72 - 2.92 2.92 × 277.89

Negative sampling GAE - 81.19 ± 0.68 83.21 ± 0.40 - 111.79 111.79 × 7.28
node2vec - 81.25 ± 0.26 85.55 ± 0.26 - 48.91 48.91 × 16.59

Laplacian eigenmaps - 83.14 ± 0.42 86.55 ± 0.41 - 31.71 31.71 × 25.59

i.e., computing the pi distribution, is efficient in practice, especially for degree sampling. By

further reducing the subgraph size n(S), one can achieve even faster results, while only losing a

few AUC/AP points in performance.

In Table 4.3, Table 4.5 and Figure 4.3, we consolidate our results by reaching similar conclu-

sions on VGAE, on other medium-size graphs (with and without features) and on community

detection. In Figure 4.3, we also illustrate that, even for relatively low n(S)/n proportions, our

proposed method achieves comparable performances w.r.t. baselines.

Comparison of Uniform, Core-based, and Degree-based FastGAE In all our experi-

ments, we observe that FastGAE with core and degree sampling both outperform FastGAE (and

variational FastGAE) with uniform sampling. Furthermore, core and degree sampling also re-

turn more stable scores, i.e., with lower standard errors, especially when the number of samples

n(S) is relatively small. Such results confirm the empirical superiority of strategies that leverage

the graph structure w.r.t. pure random strategies.
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Figure 4.3: Summarized results for link prediction on the featureless Pubmed, Google and Youtube graphs:
relative mean AUC scores of degree-based Variational FastGAE models w.r.t. standard VGAE (for Pubmed) or
w.r.t. the best scalable baseline (for Google and Youtube) depending on the proportion of sampled nodes n(S)/n
in decoders. Even for relatively low n(S)/n proportions, Variational FastGAE achieves comparable or slightly
better performances w.r.t. a standard VGAE or to the best scalable baseline (results above the red line). The
FastGAE paper [307] provides similar figures for all other graphs, reaching comparable conclusions.

FastGAE vs Baselines In Table 4.1, Table 4.3 and Table 4.5, these models also outperform

the other few existing methods to scale GAE and VGAE, usually by a wide margin. For in-

stance, in Table 4.1, we show that, to achieve (almost) comparable link prediction performances

w.r.t. FastGAE on Pubmed, our degeneracy framework Core-GAE [308] requires longer running

times (see Core-GAE with k = 2), and that faster variants significantly underperform (almost

-20 AUC points for Core-GAE with k = 9 w.r.t. FastGAE with degree sampling). As previ-

ously explained, FastGAE is also conceptually simpler than Core-GAE, which we consider to be

another advantage of our approach.

Besides, FastGAE-based models are faster and more effective than the ones leveraging negative

sampling [96] (e.g., +3.63 AUC points for FastGAE with degree sampling and n(S) = 20 000

w.r.t. Negative sampling GAE in Table 4.1). This performance gain might be explained by the

more systematic inclusion of unconnected pairs of important nodes6 in the losses of FastGAE-

based models. Last, but not least, our proposed framework is also competitive w.r.t. the popular

non GAE/VGAE-based baselines in most cases. The only exception concerns the community

detection experiments on Cora and Citeseer (see Table 4.5) where the Louvain baseline [31]

outperforms GAE/VGAE models, which we discuss thereafter.

6Indeed, when performing negative sampling for GAE, we only reconstruct a few random unconnected node
pairs, and ignore the others. However, reconstructing some of these neglected pairs might actually be crucial.
Let us consider two nodes with high core number or centrality: knowing that these two important nodes are not
connected is critical to learn meaningful embeddings. The FastGAE sampling scheme ensures a more systematic
inclusion of these important ”negative pairs” in the decoding step than negative sampling.
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Table 4.2: Link prediction on the Patent graph (n = 2 745 762, m = 13 965 410), using FastGAE with degree, core
and uniform sampling, and other baselines. The standard GAE is intractable for this graph. For degree and core
sampling, values of the hyperparameter α (as defined in Equation (4.2)) were tuned as illustrated in Figure 4.4.
All GAE models learn embedding vectors of dimension d = 16. Scores are averaged over 10 runs. Bold numbers
correspond to the best scores and best running time. Scores in italic are within one standard deviation range from
the best one. Subgraphs sizes annotated with ∗ correspond to the n∗

(S) threshold, as introduced in Equation (4.3).

Model Subgraphs Average Perf. on Test Set Average Running Times (in seconds)
size n(S) AUC (in %) AP (in %) Compute Train Total

pi model

Standard GAE - (intractable) (intractable)

FastGAE with 20 000 92.91 ± 0.22 93.35 ± 0.21 0.30 4 401.67 4 401.97 (1h13)
degree sampling 16 425∗ 93.02 ± 0.23 93.39 ± 0.23 0.30 3 693.32 3 693.62 (1h02)

(α = 2) 10 000 91.76 ± 0.23 91.74 ± 0.21 0.30 1 164.22 1 164.52 (19 min)
2 500 87.53 ± 0.50 87.42 ± 0.51 0.30 537.99 538.29 (9 min)
1 000 85.55 ± 0.62 85.96 ± 0.55 0.30 500.12 500.42 (8 min)

FastGAE with 20 000 90.71 ± 0.21 91.70 ± 0.19 668.05 4 800.58 5 468.63 (1h31)
core sampling 16 425∗ 90.48 ± 0.21 90.85 ± 0.23 668.05 4 027.90 4 695.95 (1h18)

(α = 2) 10 000 89.08 ± 0.25 88.65 ± 0.24 668.05 1 232.03 1 900.08 (32 min)
2 500 82.50 ± 0.51 81.42 ± 0.60 668.05 544.64 1 222.69 (20 min)
1 000 73.99 ± 0.70 75.24 ± 0.74 668.05 503.88 1 171.93 (19 min)

FastGAE with 20 000 85.97 ± 0.26 87.71 ± 0.25 - 4 397.89 4 387.89 (1h13)
uniform sampling 16 425∗ 84.40 ± 0.25 86.11 ± 0.25 - 3 602.66 3 602.66 (1h00)

10 000 83.77 ± 0.28 83.37 ± 0.26 - 1 106.01 1 106.01 (18 min)
2 500 70.66 ± 0.35 71.16 ± 0.38 - 485.03 485.03 (8 min)
1 000 59.34 ± 0.83 58.83 ± 1.30 - 438.02 438.02 (7 min)

Core-GAE, k = 14 (best choice) - 88.06 ± 0.27 88.94 ± 0.23 - 4 805.11 4 805.11 (1h20)
Core-GAE, k = 21 (fastest choice) - 86.94 ± 0.69 87.23 ± 0.71 - 619.01 619.01 (10 min)

Negative sampling GAE - 86.11 ± 0.48 86.70 ± 0.49 - 2 392.96 2 392.96 (40 min)
node2vec - 92.96 ± 0.23 93.36 ± 0.20 - 25 851.39 25 851.39 (7h11)

Laplacian eigenmaps - (intractable) (intractable)

On the hyperparameter α In the “supplementary” Section 4.5, we report optimal values

of α for all graphs. We recall that α ∈ R+ is the hyperparameter introduced in Equation (4.2),

which helps balance important and “less important” nodes during sampling. Setting α = 0 leads

to the uniform sampling setting where all nodes are sampled with an equal probability. On the

contrary, by setting α → ∞ we would always sample the most important nodes. Experiments

from Figure 4.4 in Section 4.5 show that these two extreme cases are usually suboptimal, and

that a careful tuning of α (e.g., α = 2 for core sampling in Table 4.1) improves performances.

On the threshold n∗(S) In Section 4.2.3, we introduced a theoretically-grounded threshold

n∗(S) = C
√
n to select the subgraph size. Overall, in all our tables, selecting the proposed n∗(S)

provided interesting performance/speed trade-offs, leading to fairly competitive results w.r.t.

standard GAE/VGAE models and the best baselines, while being significantly faster.

4.3.4 Results on Large Graphs

We now report the evaluation of FastGAE and variational FastGAE on the four large graphs

from our experiments: SBM, Google, Youtube, and Patent. The above Table 4.2 details mean
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AUC and AP scores and standard errors over 10 runs with different train/test splits for link

prediction on the Patent graph with FastGAE. We also report more summarized results (for

the sake of brevity) for link prediction on SBM, Google, Youtube, and Patent in Table 4.4, and

summarized results for community detection on SBM in Table 4.5. As in Table 4.2, all scores

are averaged over 10 runs with different train/test splits for link prediction.

FastGAE vs Scalable GAE/VGAE Baselines On large graphs, a direct comparison with

standard GAEs and VGAEs is unfortunately impossible. However, our FastGAE and vari-

ational FastGAE models almost always outperform the other existing approaches to scale GAE

and VGAE models, usually by a wide margin. For instance, for link prediction on Patent

(Table 4.2), degree-based and core-based FastGAE models with n(S) = 20 000, 16 425 and

10 000 all outperform the best Core-GAE by up to roughly 5 AUC points (for degree-based

FastGAE with n(S) = 20 000) and with comparable or better running times. Regarding the

Core-GAE baseline [308], we also point out that, in one of our large graphs, namely on the

SBM one, this method was even intractable due to the lack of size decreasing core structure

on this graph. Indeed, the 21-core of SBM includes 95 200 nodes, which is too large to train

a graph AE or VAE on our machines, and the 22-core is empty. Requiring a size decreasing

core structure is a drawback of Core-GAE w.r.t. the more flexible FastGAE approach, which

we already mentioned in Section 4.2.4.

Moreover, as for medium-size graphs, we also observe that core-based and degree-based Fast-

GAE tend to significantly outperform negative sampling (e.g., up to +6.8 AUC points for link

prediction on Patent in Table 4.2. Also, Negative sampling GAE never appears as the best

baseline in Table 4.5 nor in Table 4.4), consolidating our previous conclusions. Besides, as be-

fore, the proposed n∗(S) provides quite effective performance/speed trade-offs and will constitute

an interesting heuristic to help future FastGAE users select subgraph sizes.

Comparison of Uniform, Core-based and Degree-based FastGAE As for medium-

size graphs, core-based sampling and degree-based sampling are empirically more effective than

uniform sampling (e.g., in Table 4.2, +6.94 AUC points for FastGAE with degree sampling

on Patent, with n(S) = 20 000), and associated with lower standard errors. We observe that

computing the pi probabilities through core-based sampling is longer on large graphs, but brings

no empirical benefit w.r.t. degree-based sampling: we therefore recommend using degree-based

sampling for large graphs.

FastGAE vs Non-GAE/VGAE Baselines, and the Case of Community Detection

For the link prediction task, the best FastGAE models usually reach competitive results w.r.t.

node2vec while being significantly faster. However, regarding community detection, we observe

in Table 4.5 that the Louvain baseline outperforms GAE and VGAE models on SBM, a phe-
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nomenon that we also noted on the Cora and Citeseer graphs in the previous section. We

conjecture that current graph autoencoders models might be suboptimal to effectively recon-

struct communities in graph data. This claim is consistent with some of our experiments from

Chapter 3 and elsewhere in the scientific literature [55]. As our objective, in the paper asso-

ciated with FastGAE [307], was to scale existing GAE and VGAE models, but not to ensure

nor to claim their superiority over all other methods for community detection, we did not fur-

ther investigate this limit in this paper. Nonetheless, in Chapter 7, we will propose a method,

referred to as Modularity-Aware Graph Autoencoders [314], to improve the reconstruction of

communities from GAE/VGAE-based node embedding spaces.

On the embedding dimension d Our tables present results for d = 16 for all methods

and all graphs. Nonetheless, we reached similar conclusions for d = 32, 64 and 128: although

performances sometimes slightly improved by increasing d, the ranking of the different models

remained unchanged. We also considered re-optimizing d individually for each model as in

Chapter 3 (to cover potential cases where the impact of d on the performance of each model

would have been different) but, again, it did not modify the ranking of these models in terms of

AUC, AP and AMI scores.

On the number of training iterations As detailed in Section 4.3.1, all GAE and VGAE

models, with or without our FastGAE framework, were trained for 200 iterations (resp. 300)

for graphs with n < 100 000 (resp. n ≥ 100 000). We thoroughly checked the convergence of

all models, by assessing the stabilization of performances in terms of AUC scores on validation

sets. Using a fixed number of iterations is common in recent research on GAE and VGAE

[28, 135, 187]. We nonetheless think that early-stopping [109] would also be a relevant alternative

strategy, that could lead to additional speed-ups, and might deserve further investigations in

future works. Besides, we observed that, for very small values of n(S), increasing the number of

training iterations did not significantly improve our results. To improve scores on such settings,

increasing the sampling size n(S) was overall more effective than increasing the number of training

iterations.

4.4 Conclusion

In this chapter, we introduced FastGAE, a stochastic method to scale GAE and VGAE models.

We publicly released our Python/TensorFlow implementation of this method along with the

paper associated with this work [307]. We demonstrated its effectiveness on several large graphs

with up to millions of nodes and edges, both in terms of speed, scalability, and performance.

We outperformed the few existing approaches to scale GAE and VGAE models, including our

degeneracy framework from Chapter 3. We also showed that FastGAE addresses some of the
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limitations of this framework. As a consequence, we consider that FastGAE constitutes an

improvement of our previous efforts and, in the remainder of this thesis, we will rather resort to

FastGAE when dealing with large graphs.

Besides its empirical superiority over the degeneracy framework from Chapter 3 in a majority

of our experiments, FastGAE is also conceptually simpler. We believe that simple solutions

have the most impact. At the time of writing, the FastGAE method has already been expli-

citly mentioned and used in other research experiments, e.g., in [157, 298, 387]. Xiang Sheng

(xiangsheng1325 on GitHub) also recently developed a PyTorch implementation of FastGAE7.

In addition, we emphasize that our method easily extends to GAE and VGAE models with

alternative GNN encoders. In our experiments, the GCN encoders of standard GAE and VGAE

models [187] and of FastGAE-based models could easily be replaced by any alternative archi-

tecture learning the embedding matrix Z in another way, e.g., by a FastGCN [50], a Cluster-

GCN [53] or a GraphSAGE [130] encoder. Besides, FastGAE easily extends to alternative

decoders. For instance, one could replace the symmetric inner product decoder from our exper-

iments with some more elaborated decoders [124, 329], including the gravity-inspired decoder

that we will ourselves propose in Chapter 5 to reconstruct directed graphs.

Simultaneously, we identify several future research directions for improvements. Apart from the

aforestated limit (see Section 4.3.3) of current GAE and VGAE models on community detection,

which we will investigate in Chapter 7, we underline that the proposed FastGAE method could

underperform on very sparse graphs. Indeed, in such a scenario, the subgraphs to reconstruct

might include a large proportion of isolated nodes, which would negatively impact the learning

process. Moreover, in the case of large graphs with a lot of sparsely connected components,

we recommend applying FastGAE separately on each component. Lastly, in this chapter, we

assumed that the graph was fixed. This aspect might appear as a limit, that could motivate

future interesting studies on extensions of FastGAE for scalable dynamic graph embeddings,

potentially with a dynamic selection of n(S).

7https://github.com/xiangsheng1325/fastgae pytorch
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Table 4.3: Link prediction on all medium-size graphs. For each graph, for brevity, we only report the best
GAE or VGAE model in terms of AUC and AP scores, a few representative degree-based FastGAE versions
of this model, and the best baseline (among Core-GAE/VGAE, Negative sampling GAE/VGAE, node2vec and
Laplacian eigenmaps). Scores are averaged over 100 runs. For degree sampling, values of the hyperparameter α
(as defined in Equation (4.2)) were tuned as illustrated in Figure 4.4. All GAE/VGAE models learn embedding
vectors of dimension d = 16. Bold numbers correspond to the best scores and best running time. Scores in italic
are within one standard deviation range from the best score.

Dataset Model Average Perf. on Test Set Avg. Run. Times (in sec.) Speed
AUC (in %) AP (in %) Comp. Train Total Gain

pi model

Standard GAE 84.79 ± 1.10 88.45 ± 0.82 - 3.87 3.87 -
FastGAE (degree, α = 2)

Cora - with n(S) = 250 84.13 ± 1.20 86.65 ± 1.23 0.002 1.46 1.462 × 2.65

- with n(S) = n∗(S) = 440 84.74 ± 0.81 87.42 ± 0.75 0.002 1.56 1.562 × 2.48

- with n(S) = 1 000 84.75 ± 0.84 87.77 ± 0.81 0.002 1.65 1.652 × 2.34

Best baseline
Laplacian eigenmaps 86.49 ± 0.98 87.42 ± 1.04 - 2.49 2.49 × 1.55

Standard VGAE 91.64 ± 0.92 92.66 ± 0.91 - 4.25 4.25 -
Var. FastGAE (degree, α = 2)

Cora - with n(S) = 250 90.50 ± 1.10 91.10 ± 1.08 0.002 2.30 2.302 × 1.85

with - with n(S) = n∗(S) = 440 90.82 ± 1.07 91.44 ± 1.13 0.002 2.52 2.522 × 1.69

features - with n(S) = 1 000 91.72 ± 0.98 92.36 ± 1.11 0.002 2.87 2.872 × 1.48

Best baseline
Core-VGAE, k = 2 87.94 ± 1.12 89.00 ± 1.11 - 3.09 3.09 × 1.38

Standard GAE 78.25 ± 1.69 83.79 ± 1.24 - 5.25 5.25 -
FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 77.28 ± 1.11 81.29 ± 0.92 0.002 1.47 1.472 × 3.57

- with n(S) = n∗(S) = 488 78.30 ± 1.30 82.42 ± 1.09 0.002 1.58 1.582 × 3.32

- with n(S) = 1 000 78.31 ± 1.25 82.40 ± 0.99 0.002 1.61 1.612 × 3.26

Best baseline
Laplacian eigenmaps 80.42 ± 1.38 83.75 ± 1.12 - 3.50 3.50 × 1.50

Standard VGAE 90.72 ± 1.01 92.05 ± 0.97 - 6.28 6.28 -
Var. FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 89.37 ± 1.69 89.63 ± 1.83 0.002 2.32 2.322 × 2.70

with - with n(S) = n∗(S) = 488 90.10 ± 1.33 90.15 ± 1.50 0.002 2.62 2.622 × 2.40

features - with n(S) = 1 000 90.22 ± 1.14 90.16 ± 1.20 0.002 2.89 2.892 × 2.17

Best baseline
Core-VGAE, k = 2 81.85 ± 1.72 83.65 ± 1.64 - 2.55 2.55 × 2.46

Standard GAE 82.51 ± 0.64 87.42 ± 0.38 - 811.43 811.43 -
FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 82.68 ± 0.51 85.89 ± 0.47 0.01 2.98 2.99 × 271.38

- with n(S) = n∗(S) = 1 187 83.67 ± 0.42 87.01 ± 0.31 0.01 3.20 3.21 × 252.78

- with n(S) = 5 000 84.82 ± 0.32 88.19 ± 0.23 0.01 14.41 14.42 × 56.27

Best baseline
Core-GAE, k = 2 84.30 ± 0.27 86.11 ± 0.43 - 168.91 168.91 × 4.80

Standard GAE 96.28 ± 0.36 96.29 ± 0.25 - 952.63 952.63 -
FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 95.08 ± 0.45 95.24 ± 0.46 0.01 3.53 3.54 × 269.10

with - with n(S) = n∗(S) = 1 187 95.45 ± 0.26 95.70 ± 0.30 0.01 4.01 4.02 × 237.56

features - with n(S) = 5 000 96.12 ± 0.20 96.35 ± 0.19 0.01 19.74 19.75 × 48.23

Best baseline
Core-GAE, k = 2 85.34 ± 0.33 86.06 ± 0.24 - 40.22 40.22 × 23.69
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Table 4.4: Link prediction on all large graphs. For each graph, for brevity, we only report the best GAE or
VGAE model in terms of AUC and AP scores, a few representative degree-based FastGAE versions of this model,
and the best baseline (among Core-GAE/VGAE, Negative sampling GAE/VGAE and node2vec). Scores are
averaged over 10 runs. For degree sampling, values of the hyperparameter α (as defined in Equation (4.2)) were
tuned as illustrated in Figure 4.4. All GAE/VGAE models learn embedding vectors of dimension d = 16. Bold
numbers correspond to the best scores and best running times. Scores in italic are within one standard deviation
range from the best score.

Dataset Model Average Perf. on Test Set Average Running Times (in sec.)
AUC (in %) AP (in %) Compute Train Total

pi model

Standard VGAE (intractable) (intractable)
Var. FastGAE (degree, α = 2)

SBM - with n(S) = 2 000 79.37 ± 0.52 80.68 ± 0.84 0.03 27.36 27.39

- with n(S) = n∗(S) = 2 673 80.96 ± 0.35 83.69 ± 0.60 0.03 30.66 30.69

- with n(S) = 5 000 81.45 ± 0.39 84.30 ± 0.82 0.03 43.86 43.89

Best baseline
node2vec 80.89 ± 0.32 83.51 ± 0.29 - 1 328.82 1 328.82 (22 min)

Standard GAE (intractable) (intractable)
FastGAE (degree, α = 1)

Google - with n(S) = 2 500 94.52 ± 0.26 95.50 ± 0.11 0.14 122.53 122.67

- with n(S) = n∗(S) = 7 911 95.75 ± 0.24 96.62 ± 0.09 0.14 158.63 158.77

- with n(S) = 10 000 95.91 ± 0.19 96.64 ± 0.12 0.14 168.10 168.24

Best baseline
node2vec 94.89 ± 0.63 96.82 ± 0.72 - 14 762.78 14 762.78 (4h06)

Standard VGAE (intractable) (intractable)
Var. FastGAE (degree, α = 5)

Youtube - with n(S) = 3 000 81.14 ± 0.19 86.61 ± 0.16 0.28 453.22 453.50 (8min)

- with n(S) = n∗(S) = 15 179 81.83 ± 0.15 87.21 ± 0.15 0.28 2 964.51 2 964.79 (49min)

- with n(S) = 20 000 82.31 ± 0.18 87.36 ± 0.15 0.28 3 596.03 3 596.31 (1h00)

Best baseline
Core-VGAE, k = 40 80.53 ± 0.23 82.45 ± 0.20 - 12 433.51 12 433.51 (3h27)

Standard GAE (intractable) (intractable)
FastGAE with (degree, α = 2)

Patent - with n(S) = 5 000 90.66 ± 0.25 90.76 ± 0.22 0.30 605.75 606.05 (10min)

- with n(S) = n∗(S) = 16 425 93.02 ± 0.23 93.39 ± 0.23 0.30 3 693.32 3 693.62 (1h02)

- with n(S) = 20 000 92.91 ± 0.22 93.35 ± 0.21 0.30 4 401.67 4 401.67 (1h13)

Best baseline
node2vec 92.96 ± 0.23 93.36 ± 0.20 - 25 851.39 25 851.39 (7h11)
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Table 4.5: Community detection on all graphs with communities. For each graph, for brevity, we only report the
best GAE or VGAE model in terms of AMI, a few representative degree-based FastGAE versions of this model,
and the best baseline. Scores are averaged over 100 runs (except SBM: 10 runs). For degree sampling, values of
the hyperparameter α (as defined in Equation (4.2)) were tuned as illustrated in Figure 4.4. All GAE/VGAE
models learn embedding vectors of dimension d = 16. Bold numbers correspond to the best scores and best
running times. Scores in italic are within one standard deviation range from the best ones.

Dataset Model Average Performance Average Running Times (in sec.) Speed
AMI (in %) Compute Train Total Gain

pi model

Standard GAE 30.88 ± 2.56 - 3.90 3.90 -
FastGAE (degree, α = 2)

Cora - with n(S) = 250 33.32 ± 2.61 0.002 1.51 1.512 × 2.58

- with n(S) = n∗(S) = 440 34.64 ± 2.45 0.002 1.59 1.592 × 2.45

- with n(S) = 1 000 35.56 ± 2.80 0.002 1.67 1.672 × 2.33

Best baseline
Louvain 46.72 ± 0.85 - 1.79 1.79 × 2.18

Standard VGAE 44.84 ± 2.63 - 4.32 4.32 -
Var. FastGAE (degree, α = 2)

Cora - with n(S) = 250 41.35 ± 3.49 0.002 2.40 2.402 × 1.80

with - with n(S) = n∗(S) = 440 42.89 ± 2.72 0.002 2.67 2.672 × 1.62

features - with n(S) = 1 000 45.02 ± 2.81 0.002 2.92 2.922 × 1.48

Best baseline
Louvain 46.72 ± 0.85 - 1.79 1.79 × 2.41

Standard VGAE 9.85 ± 1.24 - 5.44 5.44 -
Var. FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 9.34 ± 1.48 0.002 1.77 1.772 × 3.07

- with n(S) = n∗(S) = 488 10.02 ± 1.42 0.002 2.02 2.022 × 2.69

- with n(S) = 1 000 10.16 ± 1.41 0.002 2.19 2.192 × 2.48

Best baseline
Louvain 16.39 ± 1.45 - 2.41 2.41 × 2.26

Standard VGAE 20.17 ± 3.07 - 6.45 6.45 -
Var. FastGAE (degree, α = 1)

Citeseer - with n(S) = 250 20.49 ± 3.74 0.002 2.80 2.802 × 2.30

with - with n(S) = n∗(S) = 488 20.53 ± 3.45 0.002 2.88 2.882 × 2.24

features - with n(S) = 1 000 20.94 ± 3.21 0.002 3.11 3.112 × 2.07

Best baseline
Cora-Graph VAE, k = 2 16.53 ± 1.95 - 2.76 2.76 × 2.33

Standard VGAE 20.52 ± 2.97 - 856.05 856.05 -
Var. FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 16.86 ± 4.84 0.01 3.17 3.18 × 269.20

- with n(S) = n∗(S) = 1 187 18.84 ± 4.78 0.01 3.61 3.62 × 236.49

- with n(S) = 5 000 22.81 ± 4.80 0.01 14.95 14.96 × 57.22

Best baseline
Core-VGAE, k = 2 23.56 ± 3.12 - 50.11 50.11 × 17.08

Standard VGAE 25.43 ± 1.47 - 970.67 970.67 -
Var. FastGAE (degree, α = 1)

Pubmed - with n(S) = 500 29.04 ± 4.17 0.01 4.03 4.04 × 240.26

with - with n(S) = n∗(S) = 1 187 31.11 ± 3.27 0.01 4.65 4.66 × 208.30

features - with n(S) = 5 000 30.89 ± 3.01 0.01 20.01 20.02 × 48.49

Best baseline
Core-VGAE, k = 2 24.35 ± 1.55 - 57.09 57.09 × 17.00

Standard VGAE (intractable) (intractable) -
Var. FastGAE (degree, α = 2)

SBM - with n(S) = 2 500 30.77 ± 0.32 0.03 52.01 52.04 -

- with n(S) = n∗(S) = 2 673 30.89 ± 0.30 0.03 53.98 54.01 -

-with n(S) = 5 000 32.28 ± 0.26 0.03 61.96 61.69 -

Best baseline
Louvain 35.90 ± 0.14 - 464.11 464.11 -
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4.5 Appendices

This supplementary section provides the theoretical analyses announced in Section 4.2.3 as well

as an additional figure presenting the optimal values of the hyperparameter α in our experiments.

They were placed out of the main content of Chapter 4 for the sake of brevity and readability.

On Approximate Losses

Let us recall that, in our FastGAE framework, at each training iteration we run a full GCN

forward pass and sample a subgraph G(S) = (V(S), E(S)). Then, we evaluate reconstruction losses

only on this subgraph, which involves fewer operations w.r.t. standard decoders, and we use the

resulting approximate loss for GCN weights updates via gradient descent. More precisely, in

standard implementations of GAE/VGAE and assuming an unweighted graph, the cross entropy

loss and the negative of the ELBO’s expectation part are empirically derived by computing the

following node pairs average at each training iteration:

L =
1

n2

∑
(i,j)∈V2

Lij(Aij , Âij), (4.4)

with8: Lij(Aij , Âij) = −[Aij log(Âij) + (1 − Aij) log(1 − Âij)]. In the FastGAE framework, we

instead compute:

LFastGAE =
1

n2(S)

∑
(i,j)∈V2

1((i,j)∈V2
(S)

)Lij(Aij , Âij), (4.5)

with 1((i,j)∈V2
(S)

) = 1 if (i, j) ∈ V2(S) and 0 otherwise. We recall that, for variational FastGAE,

we need to substract the Kullback-Leibler (KL) divergence [199], as in the ELBO of standard

VGAE, to obtain our actual objective function. At this stage, two options are possible:

• computing the KL term only on the nodes in the subgraph;

• or, computing the KL term on all nodes.

We consider that the two options are valid. The first one ensures that the resulting loss is a proper

lower bound of the likelihood computed on this subgraph. The second one, despite violating

this property, can nonetheless be empirically convenient and interpreted as the addition of a

regularization term on all node embedding vectors (penalizing large deviations w.r.t. a N (0, Id)

prior distribution on these vectors) to the performance term LFastGAE. In our experiments, both

8In most implementations, as explained in Section 2.4.1, the terms with Aij = 1 are re-weighted in the loss,
in case of sparse A. They are multiplied by wpos ≥ 1, a positive links re-weighting scalar parameter which is
usually inversely proportional to the graph sparsity. In our analyses, to clarify notations, we omit this scalar
multiplication, which is equivalent to implicitly assuming that wpos = 1. This simplification is made without loss
of generality and all results remain valid for any wpos > 1.
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options returned similar results. In the following propositions, we assume that the KL term is

computed on all nodes for simplicity, and we therefore only approximate the performance term

L, both in the GAE and in the VGAE settings.

Propositions 4.1 and 4.2 detail the formal probabilities to sample a given node or a given node

pair at each training iteration. We consider both sampling variants with and without replacement

(see Section 3.2) for this analysis, as the former significantly simplifies results w.r.t. the latter.

Proposition 4.1. Let G(S) = (V(S), E(S)) be a subgraph of G obtained from sampling n(S) nodes

with replacement using the node sampling strategy of FastGAE. Let i and j denote two distinct

nodes from the original graph G: (i, j) ∈ V2. Then:

P
(
i ∈ V(S)

)
= 1− (1− pi)n(S) . (4.6)

Also:

P
(
(i, j) ∈ V2(S)

)
= 1−

[
(1− pi)n(S) + (1− pj)n(S) − (1− pi − pj)n(S)

]
. (4.7)

Proof. In this setting, sampling probabilities are independent of previous sampling steps, and

remain fixed to pi. Therefore, for node i ∈ V, we have:

P
(
i /∈ V(S)

)
= (1− pi)n(S) .

Indeed, for i not to belong to V(S), it must not be selected at any of the n(S) draws, which

happens with probability 1− pi for each draw. Therefore:

P
(
i ∈ V(S)

)
= 1− (1− pi)n(S) .

Moreover, let i and j denote two distinct nodes from the original graph G: (i, j) ∈ V2. We have:

P
(
(i, j) /∈ V2(S)

)
= P

(
i /∈ V(S) or j /∈ V(S)

)
= P

(
i /∈ V(S)

)
+ P

(
j /∈ V(S)

)
− P

(
i /∈ V(S), j /∈ V(S)

)
with, using the previous result, P(i /∈ V(S)) = (1− pi)n(S) and P(j /∈ V(S)) = (1− pj)n(S) . Using

a similar argument, we also obtain:

P
(
i /∈ V(S), j /∈ V(S)

)
=
(
1− (pi + pj)

)n(S)

.

Therefore:

P
(
(i, j) /∈ V2(S)

)
=
[
(1− pi)n(S) + (1− pj)n(S) − (1− pi − pj)n(S)

]
.
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And:

P
(
(i, j) ∈ V2(S)

)
= 1− P

(
(i, j) /∈ V2(S)

)
= 1−

[
(1− pi)n(S) + (1− pj)n(S) − (1− pi − pj)n(S)

]
.

Lastly, for self-loops:

P
(
(i, i) ∈ V2(S)

)
= P

(
i ∈ V(S)

)
= 1− (1− pi)n(S) .

Proposition 4.2. Let G(S) = (V(S), E(S)) be a subgraph of G obtained from sampling n(S) nodes

without replacement using the node sampling strategy of FastGAE. Let i and j denote two

distinct nodes from G: (i, j) ∈ V2. Then:

P
(
i ∈ V(S)

)
=

∑
U∈U(i)

pu1

n(S)∏
k=2

puk

1−
∑k−1

k′=1 puk′

, (4.8)

where U(i) = {U ⊂ V, |U| = n(S) and i ∈ U} is the set of all ordered subsets of n(S) distinct

nodes including node i. For a given set U ∈ U(i), we denote by (u1, u2, ..., un(S)
) its ordered

elements. Also,

P
(
(i, j) ∈ V2(S)

)
=

∑
U∈U(i)∩U(j)

pu1

n(S)∏
k=2

puk

1−
∑k−1

k′=1 puk′

. (4.9)

Proof. We are looking for the probability that a node i ∈ V from the graph belongs to a drawn

subset V(S), that contains n(S) distinct nodes. For V(S) to include i, V(S) should match any of

the possible ordered subsets of n(S) nodes that include node i. In this setting where we sample

without replacement, the probability to draw node i depends on nodes previously drawn. All

possible orders of sampling the nodes should be considered. Let:

U(i) =
{
U ⊂ V, |U| = n(S) and i ∈ U

}
denote the set of all ordered subsets of n(S) distinct nodes that include node i. With such a

notation, we have:

P
(
i ∈ V(S)

)
= P

(
V(S) ∈ U(i)

)
=

∑
U∈U(i)

P
(
V(S) = U

)
.

The summation comes from the fact that events are disjoint (V(S) can not match two of these

ordered subsets simultaneously).

Now, for a given set U ∈ U(i), let us denote by (u1, u2, ..., un(S)
) its ordered elements. Also,
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let (V(S)1,V(S)2, ...,V(S)n(S)
) be the n(S) ordered nodes of set G(S) (i.e., V(S)1 is the first drawn

node, V(S)2 is the second one, etc). We have:

P
(
V(S) = U

)
= P

(
V(S)1 = u1,V(S)2 = u2, ...,V(S)n(S)

= un(S)

)
= P(V(S)1 = u1)

n(S)∏
k=2

P(V(S)k = uk|V(S)k−1 = uk−1, ...,V(S)1 = u1)

= pu1

n(S)∏
k=2

puk

1−
∑k−1

k′=1 puk′

.

Therefore, by summing elements to come back to P(i ∈ V(S)):

P
(
i ∈ V(S)

)
=

∑
U∈U(i)

pu1

n(S)∏
k=2

puk

1−
∑k−1

k′=1 puk′

.

Moreover, let i and j denote two distinct nodes from the original graph G: (i, j) ∈ V2. Using a

similar notation and reasoning, we get:

P
(
(i, j) ∈ V2(S)

)
= P

(
i ∈ V(S), j ∈ V(S)

)
=

∑
U∈U(i)∩U(j)

P
(
V(S) = U

)
.

Therefore:

P
(
(i, j) ∈ V2(S)

)
=

∑
U∈U(i)∩U(j)

pu1

n(S)∏
k=2

puk

1−
∑k−1

k′=1 puk′

.

And, for self-loops, P((i, i) ∈ V2(S)) = P(i ∈ V(S)).

Despite different formulations, both variants share a similar behavior in practice on most real-

world graphs. In this paper, as explained in Section 4.2.2, we sample nodes without replacement.

One can derive from the above expressions that the probability to draw a node i, or an edge

incident to i, increases with n(S), with pi and with f(i) for α > 0. This also leads to the following

formulation of the expected (re-weighted) loss that FastGAE stochastically optimizes.

Proposition 4.3. Using the expressions of Proposition 4.1 (when sampling with replacement)

or Proposition 4.2 (when sampling without replacement):

E
[
LFastGAE

]
=

1

n2(S)

∑
(i,j)∈V2

P
(
(i, j) ∈ V2(S)

)
Lij(Aij , Âij). (4.10)
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Proof. We have:

E
[
LFastGAE

]
= E

[ 1

n2(S)

∑
(i,j)∈V2

1((i,j)∈V2
(S)

)Lij(Aij , Âij)
]

=
1

n2(S)

∑
(i,j)∈V2

E
[
1((i,j)∈V2

(S)
)

]
Lij(Aij , Âij)

=
1

n2(S)

∑
(i,j)∈V2

P
(
(i, j) ∈ V2(S)

)
Lij(Aij , Âij).

By replacing P((i, j) ∈ V2(S)) by the expressions of Proposition 4.1 (with replacement) or Pro-

position 4.2 (without replacement), we obtain an explicit formulation for E
[
LFastGAE

]
.

On the Selection of n(S)

While our experiments will tend to show that stochastically minimizing E(LFastGAE) (Equa-

tion (4.10)) instead of L (Equation (4.4)) might be beneficial, we also acknowledge that, for

small values of n(S), the actual loss LFastGAE computed at a given training iteration (Equa-

tion (4.5)) might significantly deviate from its expectation.

We propose to use these deviations as a criterion to automatically select a relevant subgraph

size. More precisely, let us rewrite LFastGAE from Equation (4.5) as follows:

LFastGAE =
1

n(S)

∑
i∈V

1(i∈V(S))LFastGAE(i), (4.11)

where the node-level terms LFastGAE(i) are defined as:

LFastGAE(i) =
1

n(S)

∑
j∈V

1(j∈V(S))Lij(Aij , Âij), (4.12)

and where Lij denotes the cross entropy loss as in Equation (4.4). In the following, we lever-

age concentration inequalities [143] to derive a theoretically-grounded threshold size, denoted

n∗(S) in the following, for which, under mild assumptions, the (random) node-level deviation

|LFastGAE(i) − E[LFastGAE(i)]| at each training iteration is proven to be bounded with a high

probability, for any node i. This proposed subgraph size is of the form:

n∗(S) = C
√
n, (4.13)

where the constant C > 0 depends on the deviation magnitude and probability, and is explicitly

presented in Proposition 4.6. In our empirical analysis, this criterion will allow us to signific-

antly improve the scalability and training speed of GAE and VGAE models (see discussion on

complexity in Section 4.2.4), while reaching fairly competitive performances in a majority of
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experiments (see Section 4.3). To prove our bounds, we require a technical assumption on Â:

Assumption 4.4. Let (i, j) ∈ V2. We thereafter assume that Âij = σ(zTi zj) can actually be

capped, and that Âij ∈ [ε, 1− ε], where 0 < ε < 1 is a constant that can be arbitrarily close to 0.

Under this assumption, we derive Propositions 4.5 and 4.6.

Proposition 4.5. Let us consider a training iteration of the FastGAE framework, a sampled

subgraph G(S) = (V(S), E(S)), with |V(S)| = n(S) < n nodes sampled without replacement, and the

corresponding node-level approximate reconstruction computed for a given node i: LFastGAE(i)

from Equation (4.12), with Lij(Aij , Âij) = −[Aij log(Âij) + (1− Aij) log(1− Âij)] in this same

equation. Then, under Assumption 4.4, for any γ ≥ 0, we have:

P
(
|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ

)
≤ 2 exp

(
− 2(

γ

log(ε)
)2
n2(S)

n

)
. (4.14)

Proof. As a preliminary, let us recall Hoeffding’s inequality [143]. Let X1, X2..., Xn be real

independent random variables verifying, for some (ak)1≤k≤n and (bk)1≤k≤n with ak < bk:

∀k,P(ak ≤ Xk ≤ bk) = 1. Let Sn =
∑n

i=1Xi. Then, for all γ > 0, we have:

P
(
|Sn − E(Sn)| ≥ t

)
≤ 2 exp

(
− 2γ2∑n

i=1(bi − ai)2
)
.

Hoeffding [143] also proves that the inequality holds when the Xi are samples without replace-

ment from a finite population (and therefore not independent). In the setting of Proposition 4.5,

that falls into this second case, we have LFastGAE(i) =
∑

j∈V Xij , where, under Assumption 4.4:

Xij =
1

n(S)
1(j∈V(S))Lij(Aij , Âij) = 1(j∈V(S))︸ ︷︷ ︸

∈{0,1}

−1
n(S)

[Aij log(Âij) + (1−Aij) log(1− Âij)]︸ ︷︷ ︸
∈[log(ε),log(1−ε)]︸ ︷︷ ︸

∈[− log(1−ε)/n(S),− log(ε)/n(S)]

∈
[
0,
− log(ε)

n(S)

]
.

We note that − log(ε)
n(S)

> 0, as 0 < ε < 1. Applying [143], at each sampling step and for all γ > 0:

P
(
|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ

)
≤ 2 exp

(
− 2γ2∑

j∈V(
− log(ε)
n(S)

)2

)

= 2 exp
( −2γ2

n (− log(ε))2

n2
(S)

)
= 2 exp

(
− 2(

γ

log(ε)
)2
n2(S)

n

)
.
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We note that it exhibits the link between the loss deviation and the
n2
(S)

n ratio. Also, the

right-hand side term tends to 0 exponentially fast w.r.t. γ and n(S).

Proposition 4.6. For any confidence level α ∈]0, 1[ and node i ∈ V, selecting a subgraph size

n(S) such that:

n(S) ≥ n∗(S) =
√
n

√
− log(α2 ) log(ε)

2

2γ2︸ ︷︷ ︸
denoted C

, (4.15)

guarantees that:

P
(
|LFastGAE(i)− E[LFastGAE(i)]| ≥ γ

)
≤ α. (4.16)

Proof. This is a corollary of Proposition 4.5, from which we derive that, for any α ∈]0, 1[:

2 exp
(
− 2(

γ

log(ε)
)2
n2(S)

n

)
≤ α⇒ P(|LFastGAE − E[LFastGAE]| ≥ γ) ≤ α.

Then:

2 exp
(
− 2(

γ

log(ε)
)2
n2(S)

n

)
≤ α⇔ n(S) ≥

√
n

√
− log(α2 ) log(ε)

2

2γ2
.

As an opening, we note that, while the current bounds are empirically effective (see Section 4.3),

future research will aim to directly bound the deviation of LFastGAE instead of the node-level terms

LFastGAE(i), which would be more ambitious and challenging due to the inherent dependencies

among sampled node pairs in FastGAE. Also, while Propositions 4.5 and 4.6 focus on the case

of the cross entropy loss for consistency w.r.t. the content presented in this chapter, a similar

analysis (omitted here) could be performed to obtain comparable bounds for other bounded

reconstruction losses. For instance, in the case of the Frobenius loss, where Lij(Aij , Âij) =

(Aij − Âij)
2, and without Assumption 4.4, one can obtain similar concentration guarantees as

Proposition 5, with C being replaced by the constant C ′ =
√

− log(α/2)
2γ2 .

Numerical Application In our experiments, all n∗(S) thresholds are computed by evaluating

Equation (4.15), setting γ = 1, α = 0.1 and ε = 0.001.

On the hyperparameter α

To finish, we report the additional Figure 4.4 presenting the optimal values of the hyperparameter

α, for all graphs, and for both core-based and degree-based sampling.
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Figure 4.4: Optimal values of the hyperparameter α for degree-based and core-based node sampling w.r.t. mean
AUC scores on validation sets, for Variational FastGAE models and for all graphs.
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5
Gravity-Inspired Graph Autoencoders

for Directed Link Prediction

This chapter presents research conducted with Stratis Limnios, Romain Hennequin, Viet-Anh

Tran, and Michalis Vazirgiannis, and published in the proceedings of the 28th ACM International

Conference on Information and Knowledge Management (CIKM 2019) [311].

5.1 Introduction

While GAEs and VGAEs emerged as powerful node embedding models, their original versions

were designed for undirected graphs [187] and ignore the potential direction of edges during the

decoding step. As we will explain in Section 5.2, if a standard GAE/VGAE model predicts

that a node i ∈ V is connected to a node j ∈ V, then the same model will also predict that j

is connected to i with the same probability. As a consequence, in our own experiments from

Chapters 3 and 4, we also only analyzed undirected versions of the graphs under consideration.

This is limiting for numerous real-world applications, as directed graphs are ubiquitous. For

instance, web graphs are made up of directed hyperlinks. In social networks such as Twitter,

opinion leaders are usually followed by many users, but only few of these connections are recip-

rocal. Moreover, directed graphs are efficient abstractions in many domains where data are not

explicitly structured as graphs. For instance, in Chapter 8, we will study top-k similar artists

graphs, that artificially connect Deezer artists to their top-k most similar ones according to

usage-based similarity metrics, e.g., the proportion of the artist’s fans that also listened to these

other artists. By nature, such a graph is directed. While most fans of a little known reggae band
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might listen to Bob Marley (Marley thus appearing among their top-k similar artists according

to the aforestated criterium), Bob Marley’s fans will rarely listen to this band, which is unlikely

to appear back among Bob Marley’s own top-k most similar artists.

In this chapter, we aim to extend GAEs and VGAEs to directed graphs, with a particular focus

on applications to directed link prediction tasks. Predicting the location of directed links has been

historically performed by leveraging graph mining-based asymmetric measures [103, 318, 396]

and, recently, a few attempts at capturing asymmetric proximity when learning node embedding

spaces were proposed [259, 276, 408]. However, the question of how to reconstruct directed

graphs from vector space representations to effectively perform directed link prediction remains

widely open. In particular, at the time of this work, i.e., in 2019 [311], it was unclear how

to extend GAE and VGAE models to directed graphs, and to which extent the promising

performances of these models on undirected graphs could also be achieved on directed link

prediction tasks.

In this chapter, we address these research questions. We present a new method, referred to as

Gravity-Inspired GAE or VGAE, to effectively learn node embedding representations from dir-

ected graphs using the GAE and VGAE frameworks. We draw inspiration from Newton’s theory

of universal gravitation [269] to introduce a new decoding scheme, able to reconstruct asymmet-

ric relations from embedding vectors. We empirically evaluate our method on three different

directed link prediction tasks, for which standard GAE and VGAE models perform poorly. We

achieve competitive results on three real-world datasets, outperforming popular baselines. To

the best of our knowledge, our work provided the first GAE/VGAE experiments on directed

graphs. Our implementation of Gravity-Inspired GAE and VGAE is publicly available [311].

This chapter is organized as follows. In Section 5.2, we explain why standard GAEs and VGAEs

are not suitable for directed link prediction. In Section 5.3, we introduce our proposed Gravity-

Inspired GAE and VGAE models. We present and discuss our experimental analysis in Sec-

tion 5.4, and we conclude in Section 5.5.

5.2 Extending Graph Autoencoders to Directed Graphs

In this section, we present the limitations of standard GAE and VGAE models in the presence

of directed graphs. We also mention the “source-target” paradigm, a strategy previously used

in the scientific literature to reconstruct asymmetric links from an embedding space [276, 408].

5.2.1 On the Limitations of Standard Decoders for Directed Graphs

The GAE and VGAE models presented in Section 2.4.1 and 2.4.2 from Chapter 2 respectively,

as well as the extensions of these models cited in Section 2.4.3 from this same chapter, all assume
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that the input graph G is undirected. By design, these GAEs and VGAEs are not suitable for

directed graphs, as they are ignoring directions when reconstructing the adjacency matrix from

an embedding space. In particular, due to the symmetry of the inner product decoder, we have:

Âij = σ(zTi zj) = σ(zTj zi) = Âji. (5.1)

In other words, if the inner product decoder predicts the existence of an edge (i, j) from a node

i ∈ V to a node j ∈ V, then it also necessarily predicts the existence of the reverse edge (j, i),

with the same probability. This is undesirable for directed graphs, where Aij ̸= Aji in general.

Replacing inner product decoders by any Lp distance in the embedding (e.g., the Euclidean

distance, if p = 2) or by existing more refined decoders [124, 329] would lead to the same

problem, as they are symmetric functions as well.

Therefore, as we will empirically show in Section 5.4, standard GAE and VGAE models signi-

ficantly underperform on link prediction tasks in directed graphs. In 2019, Zhang et al. [403]

proposed D-VAE, a variational autoencoder for small Directed Acyclic Graphs (DAG) such as

neural networks architectures or Bayesian networks, focusing on neural architecture search and

structure learning. However, at the time of this work, the question of how to extend GAE and

VGAE to general directed graphs, such as citation graphs or web graphs, remained open.

5.2.2 The Source-Target Paradigm

Out of the GAE and VGAE frameworks, a few recent studies did tackle directed link prediction

tasks using node embedding methods [276, 408]. These studies actually proposed to learn, not

one, but two embedding vectors for each node i ∈ V of the graph: a source vector z
(s)
i ∈ Rd and

a target vector z
(t)
i ∈ Rd. More precisely:

• HOPE, short for High-Order Proximity preserved Embedding [276], aims to preserve high-

order node-level proximity and to capture asymmetric transitivity. Nodes are represented

by source vectors, stacked up in an n× d matrix Z(s), and by target vectors stacked up in

another n×d matrix Z(t). For a given n×n node-level similarity matrix S, Ou et al. [276]

learn these vectors by approximately minimizing:

∥S − Z(s)Z(t)T ∥F (5.2)

using a generalized SVD (we refer to Section 2.2.2 from Chapter 2 for an introduction to

node embeddings from matrix factorization). For directed graphs, an usual choice for S is

the Katz matrix [177]:

SKatz =

∞∑
i=1

βiAi, (5.3)
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with SKatz = (I − βA)−1βA if the parameter β > 0 is smaller than the spectral radius of

A [177]. It computes the number of paths from a node to another one, these paths being

exponentially weighted according to their length. Then, for directed link prediction, one

can assess the likelihood of a missing edge from node i to node j using the asymmetric

reconstruction:

Âij = σ(z
(s)T
i z

(t)
j ), (5.4)

with verifies Âij ̸= Âji = σ(z
(s)T
j z

(t)
i ) in general;

• APP, for Asymmetric Proximity Preserving, is a related node embedding method [408],

that instead aims to conserve the Rooted PageRank score [278] for any node pair. APP

leverages random walk with restart strategies to learn, as HOPE, a source vector and a

target vector for each node (we refer to Section 2.2.3 from Chapter 2 for an introduction

to node embeddings from random walks). As above, one can predict whether node i is

connected to node j through a directed edge by computing the inner product of the source

vector of i with the target vector of j, with a sigmoid activation.

We can derive a straightforward extension of this source/target vectors paradigm for GAE and

VGAE models. Indeed, considering GCN encoders returning d-dimensional embedding vectors

zi, with d being even, we can assume that the d/2 first dimensions (respectively the d/2 last

dimensions) of zi actually correspond to the source (resp. to the target) vector of node i, i.e.:

z
(s)
i = zi[1 :

d

2
] and z

(t)
i = zi[(

d

2
+ 1) : d]. (5.5)

Then, we can replace the symmetric decoder Âij = Âji = σ(zTi zj) by Âij = σ(z
(s)T
i z

(t)
j ) and

Âji = σ(z
(s)T
j z

(t)
i ) as in APP and HOPE, to reconstruct directed links from GAE/VGAE-based

encoded representations. In Section 5.4, we will provide an experimental evaluation of such an

approach, which we will refer to as Source/Target GAE (or VGAE).

Nonetheless, in most of this chapter, we will consider a different approach. We will come back

to the original idea consisting in learning a single node embedding space, and therefore repres-

ent each node by a single embedding vector. Such an approach has a stronger interpretability

power. It permits to better visualize representations, and is preferable for other tasks than link

prediction (e.g., for community detection, as one can directly run a k-means algorithm on such

representations). Besides, we will show in Section 5.4 that this single vector approach signific-

antly outperforms Source/Target GAE and VGAE on various directed link prediction tasks.
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5.3 Gravity-Inspired GAE and VGAE

In this section, we introduce our proposed method to learn node embedding spaces from directed

graphs, and subsequently perform directed link prediction, using the GAE and VGAE frame-

works. Our main challenge is the following: how to effectively reconstruct asymmetric relations

from encoded representations that are (unique) vectors in a node embedding where inner product

and common distances are symmetric?

To overcome this challenge, we resort to classical mechanics and especially to Newton’s theory

of universal gravitation [269]. We propose an analogy between vectors in a node embedding

space and celestial objects in space. Specifically, even if the Earth-Moon distance is symmetric,

the acceleration of the Moon towards the Earth due to gravity is larger than the acceleration of

the Earth towards the Moon. As explained below, this is due to the fact that the Earth is more

massive. In the remainder of this section, we transpose these notions of mass and acceleration

to node embedding spaces, to build up our asymmetric graph decoding scheme.

5.3.1 From Physics to Node Representations

Newton’s Theory of Universal Gravitation According to Newton’s theory of universal

gravitation [269], each particle in the universe attracts the other particles through a force called

gravity. This force is proportional to the product of the masses of the particles, and inversely

proportional to the squared distance between their centers. More formally, let us denote by m1

and m2 the positive masses of two objects 1 and 2 and by r the distance between their centers.

Then, the gravitational force F attracting the two objects is:

F =
Gm1m2

r2
, (5.6)

where G is the gravitational constant [45]. Then, using Newton’s second law of motion [269],

we derive a1→2, the acceleration of object 1 towards object 2 due to gravity:

a1→2 =
F

m1
=
Gm2

r2
. (5.7)

Likewise, the acceleration a2→1 of 2 towards 1 due to gravity is:

a2→1 =
F

m2
=
Gm1

r2
. (5.8)

We note that a1→2 ̸= a2→1 whenm1 ̸= m2. More precisely, we have a1→2 > a2→1 whenm2 > m1

and conversely, i.e., the acceleration of the least massive object towards the most massive object

due to gravity is higher.

Despite being superseded in modern physics by Einstein’s theory of general relativity [80], de-
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scribing gravity not as a force but as a consequence of spacetime curvature, Newton’s law of

universal gravitation is still used in many applications, as the theory provides precise approxim-

ations of the effect of gravity when gravitational fields are not extreme. In this chapter, we draw

inspiration from this theory, notably from the formulation of acceleration, to build our proposed

autoencoders. We highlight that Newtonian gravity concepts were already successfully leveraged

for graph visualization [22] and to build symmetric node similarity scores [369].

From Physics to Node Embedding Spaces We come back to our initial analogy between

celestial objects in space and node embedding representations. In this paragraph, let us assume

that we have at our disposal a model that is able to learn, for each node i ∈ V of a directed graph:

• a node embedding vector zi ∈ Rd, of dimension d≪ n, as before;

• but also a new mass parameter mi ∈ R+.

. We explain how to learn mi in the next sections. Such a parameter mi would capture the

propensity of i to attract other nodes from its neighborhood in this graph, i.e., to make them

point towards i through a directed edge. From such an augmented model, we could apply

Newton’s equations in the resulting embedding. Specifically, we propose to use the acceleration

ai→j =
Gmj

r2
of a node i towards a node j due to gravity in the embedding as an indicator of the

likelihood that i is connected to j in the directed graph, with r2 = ∥zi − zj∥22. In a nutshell:

• the numerator captures the fact that some nodes are more influential than others in the

graph. For instance, in a citation network of scientific publications, seminal groundbreak-

ing articles are more influential and should be more cited than others. Here, the larger mj

the more likely i will be connected to j via the (i, j) directed edge;

• the denominator highlights that nodes with structural proximity in the graph, typically

with a common neighborhood, are more likely to be connected, provided that the model

effectively manages to embed these nodes close to each other in the embedding space. For

instance, in a scientific publications citation network, an article i will more likely cite an

article j if it comes from a similar field of study.

More precisely, instead of directly dealing with ai→j , we use log ai→j in the remainder of this

chapter. Using the logarithm has two advantages. Firstly, thanks to its concavity we limit

the potentially large values resulting from the acceleration towards very central nodes. Also,

log ai→j can be negative, which is more convenient to reconstruct an unweighted edge using a

sigmoid activation function, as follows:

Âij = σ(log ai→j) = σ( logGmj︸ ︷︷ ︸
denoted m̃j

− log ∥zi − zj∥22). (5.9)
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5.3.2 Gravity-Inspired GAE

For pedagogical purposes, we assumed that we had, at our disposal, a model providing the mi

masses. In this section, we detail how to actually learn them, using graph autoencoders.

Encoder For the GAE encoder, we still leverage a multi-layer GCN, as defined in Defin-

ition 2.11 and processing an adjacency matrix A potentially combined with a node features

matrix X. However, such a GCN will now assign a vector of size (d + 1) to each node of the

graph, instead of d as in standard GAE models. The first d dimensions correspond to the

embedding vector of the node, i.e., zi, where d ≪ n still denotes the dimension of the node

embedding space. The last dimension will correspond to the model’s estimate of m̃i = logGmi.

To sum up, we have:

Z̃ = (Z, M̃) = GCN(A,X), (5.10)

where, as in previous chapters, Z is the n × d node embedding matrix, and where M̃ is the

n-dimensional vector of all values of m̃i. Z̃ = (Z, M̃) denotes the n × (d + 1) matrix row-

concatenating Z and M̃ . We note that learning m̃i is equivalent to learning mi, but is also more

convenient since we get rid of the gravitational constant G and of the logarithm.

In this GCN encoder, as we process directed graphs, we need to differentiate between incoming

and outcoming edges during message passing. In this chapter, we therefore replace the usual

symmetric normalization of A from Definition 2.5 by the out-degree normalization Ãout:

Definition 5.1. The out-degree normalization of the adjacency matrix A of a graph G = (V, E)
with diagonal out-degree matrix Dout (as defined in Definition 2.4) is:

Ãout = (Dout + In)
−1(A+ In). (5.11)

Therefore, at each layer of the GCN, the vector of a node becomes a weighted average of hidden

vectors from the previous layer of the neighbors to which it points, together with its own vector.

Decoder and Optimization We leverage the previously defined logarithmic version of ac-

celeration, together with a sigmoid activation, to reconstruct an estimation of the adjacency

matrix A from Z and M̃ . Denoting Â the reconstruction of A, we have:

Âij = σ(m̃j − log ∥zi − zj∥22). (5.12)

For weighted graphs, Âij is an estimation of some true normalized weight on the edge connecting

i to j. For unweighted graphs, it corresponds to the probability of a missing edge from i to j.
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Contrary to the inner product decoder, we generally have Âij ̸= Âji. This approach is therefore

suitable for directed graph reconstruction. During the training phase, we tune the GCN weights

of this model in a similar fashion w.r.t. standard GAEs (see Section 2.4.1), i.e., we iteratively

minimize a weighted cross entropy reconstruction loss [187], by gradient descent [117].

5.3.3 Gravity-Inspired VGAE

In this chapter, we also extend our proposed decoder to variational graph autoencoders.

Encoder We extend the VGAE inference model from Kipf and Welling [187]. Formally, using

the same notation as in Section 2.4.2 from Chapter 2, we set:

q(Z̃|A,X) =

n∏
i=1

q(z̃i|A,X), with q(z̃i|A,X) = N (z̃i|µi, diag(σ2i )), (5.13)

where z̃i = (zi, m̃i) is the (d+ 1)-dimensional vector concatening the d-dimensional embedding

vector zi and the scalar m̃i. As is the case for standard VGAE, Gaussian parameters are learned

from two GCNs, i.e., µ = GCNµ(A,X), with µ denoting the n × (d + 1) matrix stacking up

mean vectors µi for each node. Similarly, log σ = GCNσ(A,X).

Decoder and Optimization As in Section 2.4.2, the actual embedding vectors z̃i are sampled

from the above distributions. Then, we incorporate our gravity-inspired decoding scheme into

the generative model attempting to reconstruct A:

p(A|Z̃) =
n∏

i=1

n∏
j=1

p(Aij |z̃i, z̃j), (5.14)

with:

p(Aij |z̃i, z̃j) = Âij = σ(m̃j − log ∥zi − zj∥22). (5.15)

During training, weights of the two GCN encoders are tuned by iteratively maximizing, by

gradient ascent, the corresponding ELBO objective acting as a reconstruction quality measure.

5.3.4 Generalization of the Decoding Scheme

One can improve the flexibility of our decoders, both in the GAE and in the VGAE settings, by

introducing an additional parameter λ ∈ R+ and by reconstructing Âij as follows:

Âij = σ(m̃j − λ log ∥zi − zj∥22). (5.16)
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Decoders from Sections 5.3.2 and 5.3.3 correspond to special cases of Equation (5.16) where we

set λ = 1. Such a parameter can be tuned by cross-validation on link prediction tasks (See

section 5.4). Our interpretation of λ is twofold. Firstly, it balances the relative importance

of distances in the embedding for reconstruction w.r.t. the mass attraction parameter. Then,

from a “physics” point of view, it is equivalent to replacing the squared distance in Newton’s

formula with a distance to the power of 2λ. In our experimental analysis on link prediction, we

will provide insights on when and why deviating from Newton’s actual theory (i.e., λ = 1) is

relevant.

5.3.5 On Complexity and Scalability

Assuming featureless nodes, a sparse representation of the adjacency matrix A with m non-zero

entries, and considering that our models return a dense n×(d+1) embedding matrix Z̃, then the

space complexity of our approach is O(m+n(d+1)), both in the GAE and VGAE frameworks. If

nodes also have features summarized in the n×f matrix X, then the space complexity becomes

O(m+ n(f + d+ 1)), with d≪ n and f ≪ n in practice. Therefore, as is the case for standard

GAE and VGAE models [187], space complexity increases linearly w.r.t. the size of the graph.

Moreover, due to the pairwise computations of L2 distances between all d-dimensional vectors

zi and zj involved in our gravity-inspired decoding scheme, our models have a quadratic time

complexity O(dn2) w.r.t. the number of nodes in the graph, similarly to standard GAE and

VGAE models. As our experiments from Section 5.4 will focus on medium-size graphs, such a

quadratic complexity will be computationally affordable.

One can extend our method to larger graphs, e.g., with millions of nodes and edges, by applying

the degeneracy framework proposed in Chapter 3, or a variant of this approach involving directed

graph degeneracy a.k.a. “D-Cores” concepts [106]. One can also apply the FastGAE method

from Chapter 4, either with degree-based or core-based sampling, or alternatively with a refined

sampling strategy taking into account the directionality of edges. Floyd Everest (fleverest on

GitHub) recently combined FastGAE with Gravity-Inspired GAE/VGAE models in one of his

own repositories1. In Chapter 8, we will also mention a similar combination when leveraging

Gravity-Inspired GAE and VGAE models for graph-based similar artists ranking on Deezer.

5.4 Experimental Analysis

5.4.1 Three Directed Link Prediction Tasks

We consider the following three learning tasks for our experimental evaluation of our models.

1https://github.com/fleverest/Gravity FastGAE
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Task 1: General Directed Link Prediction The first task is referred to as general directed

link prediction. Similarly to experiments from Chapter 3 and 4, we train models on incomplete

versions of graphs where 15% of edges were randomly removed. We take directionality into

account in the masking process. In other words, if a link between node i and j is reciprocal,

we can possibly remove the (i, j) edge but still observe the reverse (j, i) edge in the training

graph. Then, we create validation and test sets from removed edges and from the same number

of randomly sampled pairs of unconnected nodes. In the following, the validation set contains

5% of edges, and the test set contains 10% of edges. As in previous chapters, we evaluate the

performance of our models on a binary classification task consisting in discriminating the actually

removed edges from the fake ones, and we compare results using the AUC and AP scores.

This setting corresponds to the most general formulation of link prediction. However, due to

the large number of unconnected pairs of nodes in numerous real-world graphs, we expect the

impact of directionality on performances to be limited. Indeed, for each actual unidirectional

edge (i, j) from the graph, it is unlikely to retrieve the reverse (unconnected) pair (j, i) among

negative samples in the test set. As a consequence, models focusing on graph proximity and

ignoring the direction of the link, such as standard GAEs and VGAEs, might still perform fairly

well on such a task. For this reason, in the remainder of this section, we also propose and study

two additional learning tasks, designed to reinforce the importance of directionality learning.

Task 2: Biased Negative Samples (B.N.S.) Link Prediction For the second task, we

also train models on incomplete versions of graphs where 15% of edges were removed: 5%

initially extracted as a validation set, and 10% acting as a test set. However, the removed edges

are all unidirectional, i.e., (i, j) exists but not (j, i). In this task, the reverse node pairs are

included in validation and test sets and constitute negative samples. In other words, all node

pairs from validation and test sets are included in both directions. As for Task 1, we evaluate

the performance of our models on a binary classification task consisting in discriminating actual

edges from fake ones, and therefore evaluate the ability of our models to correctly reconstruct

Aij = 1 and Aji = 0 simultaneously.

This task has been presented by Zhou et al. [408] under the name biased negative samples link

prediction. It is more challenging than Task 1, as the ability to reconstruct asymmetric relations

is more crucial. Models ignoring directionality, such as standard GAEs and VGAEs who always

predict Ãij = Ãji, will fail in such a setting.

Task 3: Bidirectionality Prediction As a third task, we evaluate the ability of our models

to discriminate bidirectional edges, i.e., reciprocal connections, from unidirectional edges. We

create a training graph by removing at random one of the two directions of all bidirectional edges

for an initial graph. Therefore, the training graph only has unidirectional connections. Then, we

once again consider a binary classification problem, aiming to retrieve bidirectional edges in a
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test set composed of their removed direction and of the same number of reverse directions from

unidirectional edges (that are therefore fake edges a.k.a. negative samples). In other words, for

each pair of nodes (i, j) from the test set, we observe a connection from j to i in the incomplete

training graph, but only half of them are reciprocal. This third evaluation task, referred to as

bidirectionality prediction in this chapter, also strongly relies on directionality learning. As a

consequence, as for Task 2, standard GAEs and VGAEs are expected to perform poorly.

5.4.2 Experimental Setting

Datasets We provide experiments on three publicly available real-world directed graphs.

Firstly, we consider the Cora and Citeseer citation graphs already described in Chapter 3,

and consisting of scientific publications citing one another. Contrary to experiments from

Chapters 3 and 4, we deal with the original directed versions of these graphs.

We also consider the Google directed web graph from Konect2. The 15 763 nodes of this graph

are web pages, and its 171 206 directed edges represent hyperlinks between these pages. We

point out that this graph is different from the large Google web graph from SNAP, that we

mentioned in Chapter 3 and 4. To avoid confusion, we refer to it as “Google-Medium” in the

remainder of this chapter, due to its smaller size w.r.t. the Google graph from previous chapters.

The Google-Medium graph is denser than Cora and Citeseer. It also has a higher proportion

of bidirectional edges. Specifically, we have 2.86%, 1.20%, and 14.55% of bidirectional edges

in Cora, Citeseer, and Google-Medium respectively. The three graphs are unweighted and

featureless.

Models: Standard and Gravity-Inspired GAE and VGAE We train Gravity-Inspired

GAE and VGAE models for each graph. For comparison purposes, we also train standard GAE

and VGAE from Kipf and Welling [187]. Each of these four models includes a two-layer GCN

encoder with a 64-dimensional hidden layer and with out-degree left normalization ofA as defined

in mentioned in Section 5.3.2. All models are trained for 200 epochs and return 32-dimensional

embedding vectors (i.e., d = 32). We used the Adam optimizer [184], apply a learning rate of 0.1

for Cora and Citeseer and 0.2 for Google-Medium, trained models without dropout, performing

full-batch gradient descent (or ascent for VGAE), and using the reparameterization trick [185]

in the case of VGAEs. Also, for Task 1 and Task 3 we picked λ = 1 (respectively λ = 10)

for Cora and Citeseer (resp. for Google-Medium). For Task 2 we picked λ = 0.05 for all three

graphs, which we interpret and discuss in the next subsections. All hyperparameters were tuned

from validation AUC scores on Task 1, i.e., on the general directed link prediction task.

2https://konect.cc/networks/
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Models: Other Baselines Besides standard GAEs and VGAEs, we also compare the per-

formance of our models to the graph embedding methods introduced in Section 5.2.2:

• our own Source/Target GAE and VGAE, extending the source/target paradigm to GAE

and VGAE, and trained with similar settings w.r.t. standard and gravity-inspired models;

• HOPE [276], setting β = 0.01 and with source and target vectors of dimension 16, in order

to learn 32-dimensional node representations.

• APP [408], training models over 100 iterations to learn 16-dimensional source and target

vectors, i.e., 32-dimensional node representations. We adopted a similar setting and similar

hyperparameters w.r.t. Zhou et al. [408]’s public implementation.

• for comparison purposes, in our experiments we also train node2vec models [123] that, while

dealing with directionality in random walks, only return one 32-dimensional embedding

vector per node. We rely on symmetric inner products with sigmoid activation for link

prediction, and we therefore expect node2vec to underperform w.r.t. APP and HOPE on

Tasks 2 and 3. We trained models with consistent hyperparameters w.r.t. Chapter 3.

We used Python and especially the TensorFlow library [1], except for APP where we used the

authors’ Java implementation [408]. We trained models on an NVIDIA GTX 1080 GPU and

ran other operations on a double Intel Xeon Gold 6134 CPU.

5.4.3 Results and Discussion

We now present our experimental results. Our source code is publicly available on GitHub3.

Results Table 5.1 reports mean AUC and AP scores, along with standard errors over 100 runs

with different test sets, for each dataset and the three tasks under consideration. Overall, our

Gravity-Inspired GAE and VGAE models achieve very competitive results.

On Task 1, standard GAE and VGAE models, despite ignoring directionality for graph recon-

struction, still perform fairly well (e.g., with an 82.79% AUC score for the standard VGAE on

Cora). This emphasizes the limited impact of directionality on performances for such a task,

as expected in Section 5.4.1. Nonetheless, our gravity-inspired models significantly outperform

their standard counterparts (e.g., with a 91.92% AUC score for our Gravity-Inspired VGAE

on Cora), confirming the relevance of capturing both proximity and directionality for general

directed link prediction. Moreover, our models often reach comparable results w.r.t. the other

baselines specifically designed for directed graphs. Among them, APP is the best on the three

datasets, together with the Source/Target GAE on the Google-Medium graph.

3https://github.com/deezer/gravity graph autoencoders
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Table 5.1: Directed link prediction on the Cora, Citeseer, and Google-Medium graphs, using our Gravity-Inspired
GAE/VGAE, standard GAE/VGAE, and other baselines. Scores are reported for the three tasks described in
Section 5.4.1, and are averaged over 100 runs. All models learn embedding vectors of dimension d = 32. Bold
numbers correspond to the best scores. Scores in italic are within one standard deviation range from the best ones.

Dataset Model Task 1: General Link Prediction Task 2: B.N.S. Link Prediction Task 3: Bidirectionality Prediction
AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Cora Gravity-Inspired VGAE (ours) 91.92± 0.75 92.46± 0.64 83.33± 1.11 84.50± 1.24 75.00± 2.10 73.87± 2.82
Gravity-Inspired GAE (ours) 87.79± 1.07 90.78± 0.82 83.18± 1.12 84.09± 1.16 75.57± 1.90 73.40± 2.53

Standard VGAE 82.79± 1.20 86.69± 1.08 50.00± 0.00 50.00± 0.00 58.12± 2.62 59.70± 2.08
Standard GAE 81.34± 1.47 82.10± 1.46 50.00± 0.00 50.00± 0.00 53.07± 3.09 54.60± 3.13

Source/Target VGAE 85.34± 1.29 88.35± 0.99 63.00± 1.05 64.62± 1.37 75.20± 2.62 73.86± 3.04
Source/Target GAE 82.67± 1.42 83.25± 1.51 57.81± 2.64 57.66± 3.35 65.83± 3.87 63.15± 4.58

APP 93.92± 1.01 93.26± 0.60 69.20± 0.65 67.93± 1.09 72.85± 1.91 70.97± 2.60
HOPE 80.82± 1.63 81.61± 1.08 61.84± 1.84 63.73± 1.12 65.11± 1.40 64.24± 1.18

node2vec 79.01± 2.00 84.20± 1.62 50.00± 0.00 50.00± 0.00 66.97± 1.41 67.61± 1.80

Citeseer Gravity-Inspired VGAE (ours) 87.67± 1.07 89.79± 1.01 76.19± 1.35 79.27± 1.24 71.61± 3.20 71.87± 3.87
Gravity-Inspired GAE (ours) 78.36± 1.55 84.75± 1.10 75.32± 1.53 78.47± 1.27 71.48± 3.64 71.50± 3.62

Standard VGAE 78.56± 1.43 83.66± 1.09 50.00± 0.00 50.00± 0.00 47.66± 3.73 50.31± 3.27
Standard GAE 75.23± 2.13 75.16± 2.04 50.00± 0.00 50.00± 0.00 45.01± 3.75 49.79± 3.71

Source/Target VGAE 79.45± 1.75 83.66± 1.32 57.32± 0.92 61.02± 1.37 69.67± 3.12 67.05± 4.10
Source/Target GAE 73.97± 3.11 75.03± 3.37 56.97± 1.33 57.62± 2.62 54.88± 6.02 55.81± 4.93

APP 88.70± 0.92 90.29± 0.71 64.35± 0.45 63.70± 0.51 64.16± 1.90 63.77± 3.28
HOPE 72.91± 0.59 71.29± 0.52 60.24± 0.51 61.28± 0.57 52.65± 3.05 54.87± 1.67

node2vec 71.02± 1.78 77.70± 1.22 50.00± 0.00 50.00± 0.00 61.08± 1.88 63.63± 2.77

Google Gravity-Inspired VGAE (ours) 97.84± 0.25 98.18± 0.14 88.03± 0.25 91.04± 0.14 84.69± 0.31 84.89± 0.30
Medium Gravity-Inspired GAE (ours) 97.77± 0.10 98.43± 0.10 87.71± 0.29 90.84± 0.16 85.82± 0.63 85.91± 0.50

Standard VGAE 87.14± 1.20 88.14± 0.98 50.00± 0.00 50.00± 0.00 40.03± 4.98 44.69± 3.52
Standard GAE 91.34± 1.13 92.61± 1.14 50.00± 0.00 50.00± 0.00 41.35± 1.92 41.92± 0.81

Source/Target VGAE 96.33± 1.04 96.24± 1.06 85.30± 3.18 84.69± 4.42 75.11± 2.07 73.63± 2.06
Source/Target GAE 97.76± 0.41 97.74± 0.40 86.16± 2.95 86.26± 3.33 82.27± 1.29 80.10± 1.80

APP 97.04± 0.10 96.97± 0.11 83.06± 0.46 85.15± 0.42 73.43± 0.16 68.74± 0.19
HOPE 81.16± 0.67 83.02± 0.35 74.23± 0.80 72.70± 0.79 70.45± 0.18 70.84± 0.22

node2vec 83.11± 0.27 85.79± 0.30 50.00± 0.00 50.00± 0.00 78.99± 0.35 76.72± 0.53

On Task 2, our models consistently achieve the best performances (e.g., with a top 76.19%

AUC score on Citeseer, 11+ points above the best baseline). Models ignoring directionality for

prediction, i.e., node2vec and standard GAE/VGAE, totally fail (50.00% AUC and AP scores

on all graphs, corresponding to the random classifier level) which was expected since test sets

include both directions of each node pair. Experiments on Task 3 confirm the superiority of

our approach when dealing with challenging tasks where directionality learning is crucial. On

this last task, gravity-inspired models also outperform alternative approaches (e.g., with a top

85.82% AUC score for Gravity-Inspired GAE on Google-Medium).

We hardly found any consistent and significant performance gap between determinic GAEs

and their variational counterparts. This result is in phase with previous empirical results in

the literature [187, 279] on undirected graphs, as well as in our own previous insights from

Chapters 3 and 4. In futures studies, we might investigate alternative prior distributions for

VGAE, to challenge the Gaussian hypothesis that, despite being convenient for computations,

might not be optimal [187]. Last, we note that all GAE and VGAE models required a comparable

training time of roughly 7 seconds (respectively 8 seconds, 5 minutes) for Cora (resp. for Citeseer,

for Google-Medium) on our machine. Baselines were faster: for instance, on Google-Medium,

1 minute (resp. 1.30 minutes, 2 minutes) were required to train HOPE (resp. APP, node2vec).
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Figure 5.1: Visualization of the Cora graph based on node embedding representations learned from our Gravity-
Inspired VGAE model. In this graph, nodes are scaled using the mass parameters m̃i. The node separation is
based on distances in the embedding, using the method described by Fruchterman and Reingold [100] on Gephi.

More insights on m̃i To pursue our experimental analysis, we propose a discussion on the

nature of m̃i (in this paragraph), followed by discussions on the role of λ to balance node

proximity and influence and on some possible extensions of our work (in the next paragraphs).

Figure 5.1 provides a visualization of the Cora graph, using node embedding representations and

m̃i masses learned by our Gravity-Inspired VGAE model. In such a visualization, we observe

that nodes with smaller masses tend to be connected to nodes with larger masses from their

embedding neighborhood, which was expected by the design of our decoding scheme.
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From Figure 5.1, one might argue that m̃i tend to reflect the node centrality in the graph. In

this direction, we compared m̃i to the most common graph centrality measures. Specifically,

in Table 5.2 we report Pearson correlation coefficients of m̃i w.r.t. the following measures,

computed using the NetworkX [127] Python library:

• the in-degree and out-degree of the node, i.e., the number of edges coming into and going

out of the node respectively;

• the betweenness centrality, which is, for a node i ∈ V, the sum of the fraction of shortest

paths between node pairs going through i, i.e., cB(i) =
∑

(s,t)∈V2
sp(s,t|i)
sp(s,t) ,where sp(s, t) is

the number of shortest paths from node s to node t, and sp(s, t|i) is the number of those

paths going through the node i [37];

• the PageRank [278], computing a node “importance” ranking based on the structure of

incoming links. It was originally designed to rank web pages;

• the Katz centrality, a generalization of the eigenvector centrality [177]. The Katz centrality

of a node i ∈ V is: cK(i) = α
∑

j∈V AijcK(j) + β, where A is the adjacency matrix with

largest eigenvalue λmax. Usually, β = 1 and α < 1
λmax

[177].

We observe in Table 5.2 that m̃i is positively

correlated to all of these centrality measures,

except for the out-degree where the correlation

is negative (or almost null for Google-Medium),

meaning that nodes with few edges going out of

them tend to have larger values of m̃i. Correl-

ations are not perfect, which emphasizes that

our models do not exactly learn one of these

measures. We also note that centralities are

lower for Google-Medium, which might be due

to the structure of this graph and especially to

its density. In our experiments, we tried to re-

place m̃i by any of these (normalized) centrality

measures when performing link prediction.

Table 5.2: Pearson correlation coefficients of m̃i w.r.t.
common centrality measures, for our Gravity-Inspired
VGAE model. Correlation w.r.t. the Katz score is not
reported on the Google-Medium graph due to its com-
putational complexity.

Centrality Cora Citeseer Google

Measures Medium

In-degree 0.5960 0.6557 0.1571

Out-degree −0.2662 −0.1994 0.0559

Betweenness 0.5370 0.4945 0.2223

Pagerank 0.4143 0.3715 0.1831

Katz 0.5886 0.6428 -

Specifically, we tried to learn optimal vectors zi while these scores were fixed as masses values,

achieving underperforming results. For instance, we reached an 89.05% main AUC score by

using betweenness centrality on Cora instead of the actual m̃i learned by the VGAE, which is

above standard VGAE (82.79% AUC) but below the Gravity-Inspired VGAE with optimal m̃i

(91.92% AUC). Also, using centrality measures as initial values for m̃i before model training did

not significantly impact performances in experiments.
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Figure 5.2: Optimal values of the hyperparameter λ w.r.t. validation AUC scores, for the Gravity-Inspired VGAE
model, for all three tasks and for all three graphs under consideration.

Impact of λ In Equation (5.16), we introduced the hyperparameter λ ∈ R+ to tune the

relative importance of node proximity in the embedding space w.r.t. mass attraction, leading

to the reconstruction scheme Âij = σ(m̃j − λ log ∥zi − zj∥22). In Figure 5.2, we show the impact

of λ on mean AUC scores for the Gravity-Inspired VGAE model and for all three graphs. For

Cora and Citeseer, on Task 1 and Task 3, λ = 1 is an optimal choice, consistently with Newton’s

formula. However, for Google-Medium, on Task 1 and Task 3, we obtained better performances

for higher values of λ, notably for λ = 10 that we used in our experiments. Increasing λ reinforces

the relative importance of the node pair’s (symmetric) distance, measured by log ∥zi − zj∥22, in
the decoder w.r.t. parameter m̃j capturing the global influence of a node on its neighbors

and therefore asymmetries in links. Since the Google-Medium graph is denser than Cora and

Citesser, and has a higher proportion of symmetric relations (see Section 5.4.2), putting the

emphasis on node proximity appears as a relevant strategy.

On a contrary, on Task 2 we achieved optimal performances by setting λ = 0.05, for all three

graphs. As λ < 1, we improved scores by assigning more relative importance to the mass

parameter m̃j . Such a result is not surprising as, for biased negative samples link prediction
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task, capturing the directionality is more crucial than the proximity, as nodes pairs from test

sets are all included in both directions. As illustrated in Figure 5.2(b), increasing λ significantly

deteriorates performances.

Extensions Throughout these experiences, we focused on featureless graphs, to fairly compete

with the HOPE, APP, and node2vec methods (see Section 2.2). However, as explained in

Section 5.3.2, our models can easily leverage node features X, in addition to the graph structure

summarized in A. Moreover, we recall that the Gravity-Inspired GAE and VGAE models are

not limited to GCN encoders, and can be generalized to any alternative GNN models. However,

so far, we assumed a fixed graph structure. Future research on directed link prediction in

dynamic graphs [179] could definitely improve our approach. Also, while we focused on directed

link prediction, we neglected the community detection problem in this chapter. Community

detection in directed graphs is a challenging problem [248], which could deserve further attention

in our future research studies.

5.5 Conclusion

In this chapter, we extended GAEs and VGAEs to directed graphs. We drew inspiration from

physics to introduce a new gravity-inspired decoder, that can effectively reconstruct asymmetric

relations from node embedding spaces. We achieved competitive experimental results on three

different directed link prediction tasks, for which standard GAE and VGAE models perform

poorly. We also pinpointed several research directions that, in the future, should lead to the

improvement of our approach.

Since the publication of this work in late 2019 [311], various recent papers explicitly mentioned

our Gravity-Inspired GAE and VGAE models. Several of them included these models into

their own experiments, including [142, 299, 304, 395, 401]. In Chapter 8, we will ourselves

leverage these models once again, to address music recommendation problems. Specifically, in

this chapter, we will model the cold start similar artists ranking problem [313] as a link prediction

task in a directed and attributed graph, connecting music artists to their top-k most similar

neighbors and incorporating side musical information as node features. We will show how the

gravity-inspired decoder can be used to automatically rank the top-k most similar neighbors of

new artists. Such an application will also emphasize how Gravity-Inspired GAE/VGAE models,

when equipped with node features, can be used in inductive settings that involve generalizing

representations to new unseen nodes after training.
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6
Simplifying Graph Autoencoders

with One-Hop Linear Models

This chapter presents research conducted with Romain Hennequin and Michalis Vazirgiannis, and

published in the proceedings of the 2020 European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Databases (ECML-PKDD 2020) [310]. A prelim-

inary version of this work has also been presented at the “Graph Representation Learning” work-

shop of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) [309].

6.1 Introduction

Despite the prevalent use of multi-layer GCN encoders in the recent literature (see Section 6.2),

at the time of this work the relevance of this architecture choice had never been thoroughly

studied nor challenged. The actual benefit of incorporating multi-layer GCNs, or even more

complex GNNs, in GAE and VGAE models remained unclear. This is an important question,

as simpler encoding strategies are easier to understand, to train, to deploy in production, and

to debug, and might therefore be preferred for real-world industrial applications.

In this chapter, we propose to tackle this important aspect, showing that GCN-based GAE and

VGAE models are often unnecessarily complex for numerous applications. Our work falls into a

family of recent efforts questioning the systematic use of complex deep learning methods without

a clear comparison to less fancy but simpler baselines [93, 228, 326].

More precisely, in this chapter, we introduce simpler versions of the GAE and VGAE models,

referred to as Linear GAE and Linear VGAE. We propose to replace multi-layer GCN encoders
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with linear models w.r.t. the direct neighborhood (one-hop) adjacency matrix of the graph,

involving a unique weight matrix to tune, fewer operations, and no activation function.

Then, through an extensive empirical analysis on 17 real-world graphs with various sizes and

characteristics, we show that these simplified models consistently reach competitive perform-

ances w.r.t. GCN-based GAE and VGAE models on link prediction and community detection

tasks. We identify the settings where simple linear encoders appear as an effective alternative to

GCNs, and as a first relevant baseline to implement before considering more complex models. In

this chapter, we also question the relevance of the current benchmark datasets (Cora, Citeseer,

Pubmed) commonly used in the literature to evaluate GAE and VGAE models.

This chapter is organized as follows. In Section 6.2 we introduce our proposed Linear GAE and

VGAE models, and mention some related work aiming to simplify GCNs. In Section 6.3, we

present our experimental results, and provide discussions on the simplification and the evaluation

of GAE and VGAE models. We conclude in Section 6.4.

6.2 Simplifying Graph Autoencoders

We adopt a consistent notation with respect to previous chapters but, for the sake of simplicity,

we assume in this section that the graph G is undirected. Ã therefore denotes the symmetric

normalization of A, consistently with Definition 2.5 from Chapter 2.

Nonetheless, our models could be straightforwardly extended to directed graphs by replacing

Ã by the out-degree normalization Ãout, as in Chapter 5, in all equations of this section. Our

analysis from Section 6.3 will include experiments related to such an extension, in order to

simplify as well our Gravity-Inspired GAE and VGAE models from Chapter 5.

6.2.1 One-Hop Linear Encoders

To this day, multi-layer GCNs remain the most popular encoders for GAE and VGAE models

building upon the seminal work of Kipf and Welling [187], including (but not limited to) the

recent research of [55, 72, 124, 135, 156, 187, 279, 299, 329, 361]. We ourselves mainly considered

multi-layer GCN encoders in our previous experiments from Chapters 3, 4, and 5, although our

contributions are not restricted to this architecture choice.

We recall that, in a multi-layer GCN [188] with L ≥ 2 layers, with an input layer H(0) = In (in

the absence of node features) or H(0) = X, and with an output layer H(L) (with H(L) = Z for
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a GAE, and H(L) = µ or log σ for a VGAE), embedding vectors are computed as follows:
H(0) = X (or In)

H(l) = ReLU(ÃH(l−1)W (l−1)), for l ∈ {1, ..., L− 1}

H(L) = ÃH(L−1)W (L−1),

(6.1)

using the notation from Definition 2.11. In this chapter, we consider a simpler linear model

w.r.t. the normalized one-hop (i.e., direct neighborhood) adjacency matrix of the graph. More

precisely, the term linear encoder will refer to the following function.

Definition 6.1. A linear encoder is a function taking as input an adjacency matrix A, poten-

tially equipped with a node feature matrix X ∈ Rn×f , and returning an output matrix Z ∈ Rn×d

computed as follows:

Z = Linear(A,X) = ÃXW, (6.2)

for some trainable weight matrix W ∈ Rf×d. In particular, in the absence of node features (i.e.,

X = In), we have:

Z = Linear(A, In) = ÃW, (6.3)

and the weight matrix W is then of dimension n× d.

In Sections 6.2.2 and 6.2.3, we incorporate this straightforward one-hop linear encoder in the

GAE and VGAE frameworks, and discuss the implications of such a modification.

6.2.2 Linear GAE

In this chapter, we propose to replace the multi-layer GCN encoder of standard GAE and VGAE

models with the linear encoder from Definition 6.1. Firstly, in the GAE framework, we set:

Z = Linear(A,X) = ÃXW, then Â = σ(ZZT ). (6.4)

In the absence of node features X, the model is simplified as follows:

Z = ÃW, then Â = σ(ZZT ). (6.5)

We refer to this model as Linear Graph Autoencoder (Linear GAE). In the absence of node

features, embedding vectors are obtained by multiplying the n×n normalized adjacency matrix

Ã by a unique n× d weight matrix W . In the presence of node features, the linear encoder also

simply consists in multiplying ÃX with a unique f × d weight matrix W .

We tune this matrix W in a similar fashion w.r.t. standard GAE models considered in the pre-

vious chapters, i.e., we iteratively minimize a weighted cross-entropy loss capturing the quality
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A,X
Linear
encoder

Z
Inner product

decoder Â

Figure 6.1: Schematic representation of a Linear GAE model.

of the reconstruction Â w.r.t. the original matrix A, by gradient descent [187].

This encoder is a straightforward linear mapping. It can be interpreted as the simplest possible

GCN (with a single layer). Each element of the zi embedding vector is a weighted average from

node i’s direct one-hop connections. Contrary to multi-layer GCN encoders (with L ≥ 2 layers):

• we ignore the higher-order information from the k-hop neighborhood with k > 1;

• also, we do not include any non-linear activation function.

In Section 6.3, we will highlight the very limited impact of these two simplifications on empirical

performances. The above Figure 6.1 provides an illustration of a Linear GAE model.

Our proposed linear encoder runs in a linear time w.r.t. the number of edges m of the graph

using a sparse representation for Ã, and involves fewer matrix operations than a multi-layer

GCN. It includes nd parameters in the absence of node features (resp. fd parameters with node

features), i.e., fewer than the nd + (L − 1)d2 parameters (resp. fd + (L − 1)d2 parameters)

required by a L-layer GCN where all layers are of dimension d.

As is the case for standard GAEs, the inner product decoder has a O(dn2) complexity, as it

involves the multiplication of the two dense matrices Z and ZT . Such a complexity can be signi-

ficantly reduced by leveraging the scalable methods we proposed in Chapter 3 and 4. Our evalu-

ation from Section 6.3 will include experiments on large graphs requiring the use of such methods.

To emphasize that the Linear GAE model is not restricted to inner product decoders, the evalu-

ation from Section 6.3 will also consider two alternative decoders to replace inner products [124,

311], including our proposed gravity-inspired decoder from Chapter 5.

6.2.3 Linear VGAE

We adopt a similar approach to replace the two multi-layer GCN encoders of standard VGAE

models [187] by:

µ = Linearµ(A,X) = ÃXWµ and log σ = Linearσ(A,X) = ÃXWσ, (6.6)

108



6.2. Simplifying Graph Autoencoders
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Figure 6.2: Schematic representation of a Linear VGAE model.

with f × d weight matrices Wµ and Wσ. In the absence of node features X, the encoding step

is simplified as follows:

µ = ÃWµ and log σ = ÃWσ, (6.7)

with n× d weight matrices Wµ and Wσ. Then:

∀i ∈ V, zi ∼ N (µi,diag(σ
2
i )), (6.8)

with a similar decoder a.k.a. generative process w.r.t. standard VGAEs (see Section 2.4.2 from

Chapter 2). We refer to this model as Linear Variational Graph Autoencoder (Linear VGAE).

During the learning phase, as is the case for standard VGAEs, we iteratively optimize the ELBO

variational lower bound from Equation (2.40), w.r.t. Wµ and Wσ, by gradient ascent [187].

Figure 6.2 provides a schematic representation of the proposed Linear VGAE model.

6.2.4 Related Work

Our work falls into a family of research efforts aiming to challenge and question the prevalent

use of complex deep learning methods without a clear comparison to simpler baselines [93, 228,

326]. In particular, in a concurrent study, Wu et al. [383] also recently proposed to simplify

GCN models, notably by removing non-linearities between layers and collapsing some weight

matrices during training. Their simplified model, referred to as Simple Graph Convolution

(SGC), empirically rivals standard GCNs on several large-scale classification tasks [383]. While

our work also focuses on simplifications of GCNs, we argue that the two research studies actually

tackle different and complementary problems:

• Wu et al. [383] focus on supervised and semi-supervised settings. They consider the GCN

as the model itself, optimized to classify node-level labels. On the contrary, we con-

sider two unsupervised settings, in which GCNs are only a building part (the encoder)

of a larger framework (the GAE or the VGAE), and where we optimize reconstruction

losses/objectives from GCN-based embedding vectors (for GAE) or from vectors drawn

from distributions learned through two GCNs (for VGAE);
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• besides, our encoders only capture one-hop interactions, i.e., nodes only aggregate inform-

ation from their direct neighbors during message passing. On the contrary, Wu et al. [383]

still rely on a stacked layers design that, although simplified, permits learning from higher-

order interactions. Contrary to us, considering such relations is crucial in their model for

good performances [383]. We will show in Section 6.3 that, in our setting, it would mainly

increase running times while bringing few to no improvement.

6.3 Experimental Analysis

In this section, we propose an in-depth empirical evaluation of our Linear GAE and VGAE mod-

els. Our Python/TensorFlow implementation of these models is publicly available on GitHub1.

6.3.1 Experimental Setting

Tasks We consider two tasks. Firstly, we focus on link prediction, similarly to Chapters 3 to 5.

As in these chapters, we train models on incomplete versions of graphs where 15% of edges

were randomly removed, and used for validation (5%) and test (10%), together with the same

number of randomly sampled pairs of unconnected nodes. We evaluate the ability of our models

to classify edges from non-edges in these sets using, as in previous chapters, the mean AUC and

AP scores averaged over 100 runs (resp. 10 runs for datasets with n > 100 000). Models were

trained on 100 (resp. 10) different random train/test splits.

As a second task, we perform community detection. When datasets include node-level ground

truth communities. Similarly to experiments from Chapters 3 and 4, we train models on complete

graphs, then run k-means algorithms in node embedding spaces. We compare the resulting

clusters to ground truth communities via mean AMI scores.

Datasets We provide experiments on 17 publicly available real-world graphs. For each graph,

Tables 6.1 and 6.2 report the number of nodes n, the number of edges m, and the dimension f

of node feature vectors, when such vectors are available:

• we first consider the Cora, Citeseer, and Pubmed citation graphs2 [323], with and without

node features corresponding to f -dimensional bag-of-words vectors. These three graphs

were used in the original experiments of Kipf and Welling [187], and subsequently in the

wide majority of recent works on GAE and VGAE models including (but not limited to)

[124, 135, 279, 282, 308, 329, 359, 361, 370], becoming the de facto benchmark datasets

for evaluating GAE and VGAE. We ourselves considered these citation networks in our

1https://github.com/deezer/linear graph autoencoders
2https://linqs.soe.ucsc.edu/data
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own experiments from Chapters 3 to 4. Therefore, we saw value in comparing Linear and

GCN-based models on these graphs;

• we also report results on 14 alternative graphs, including some of those from the previous

chapters. We consider four other citations networks: Patent3 from Chapters 3 and 4,

DBLP4, Arxiv-HepTh3, and a larger version of Cora4, that we denote Cora-larger. We

add the WebKD2, Blogs4 and Stanford4 web graphs, where hyperlinks connect web pages,

as well as two Google web graphs: the medium-size one4 from Chapter 5, denoted Google-

Medium, and the larger one3 from Chapters 3 and 4, denoted Google. We complete the list

with two social networks (Hamsterster4 and LiveMocha4), the Flickr4 image graph (nodes

represent images, connected when sharing metadata), the Proteins4 network of proteins

interactions and the Amazon4 products co-purchase network. Therefore, in these experi-

ments, we consider a wide variety of real-world graphs of various origins, characteristics

and sizes (from 877 to 2.7 million nodes, from 1 608 to 13.9 million edges).

Models In all experiments, we compare the Linear GAE and VGAE models to 2-layer and

3-layer GCN-based graph GAE and VGAE models. We do not report performances of deeper

models, due to a significant deterioration of all scores. For a comparison to other methods

and notably to non-GAE/VGAE methods, which is out of the scope of this study, we refer to

experiments from the previous chapters, as well as to experiments from the next Chapter 7 for

a stronger emphasis on community detection.

All models were trained for 200 epochs (resp. 300 epochs) for graphs with n < 100 000 (resp.

n ≥ 100 000). We thoroughly checked the convergence of all models, in terms of mean AUC per-

formances on validation sets, for these epochs numbers. As in Chapters 3 and 4, we ignored edges

directions when initial graphs were directed, as we focus on symmetric inner product decoders

in most of this chapter5. For Cora, Citeseer, and Pubmed, we set identical hyperparameters

w.r.t. Kipf and Welling [187] to reproduce their results, i.e., we had d = 16, 32-dimensional

hidden layer(s) for GCNs, and we used the Adam optimizer [184] with a learning rate of 0.01.

For other datasets, we tuned hyperparameters by performing a grid search on the validation

set. We adopted a learning rate of 0.1 for Arxiv-HepTh, Patent, and Stanford; of 0.05 for

Amazon, Flickr, LiveMocha, and Google; of 0.01 for Blogs, Cora-larger, DBLP, Google-Medium,

Hamsterster, and Proteins (GAE models); of 0.005 for WebKD (except Linear GAE and VGAE

where we used 0.001 and 0.01) and Proteins (VGAE models). We set d = 16 (but we reached

similar conclusions with d = 32 and 64), with 32-dimensional hidden layer(s) and without

dropout.

3https://snap.stanford.edu/data/index.html
4https://konect.cc/networks/
5We will nonetheless relax this restriction and consider directed edges during training and decoding later in

Section 6.3.2, when we will extend our linear encoders to Gravity-Inspired GAE and VGAE models.

111

https://snap.stanford.edu/data/index.html
http://konect.cc/networks/


Chapter 6. Simplifying Graph Autoencoders with One-Hop Linear Models

Table 6.1: Link prediction on the Cora, Citeseer, and Pubmed common benchmark datasets, with Linear GAE
and VGAE models, and with their multi-layer GCN-based counterparts. We report details on hyperparameters
for each model and dataset in Section 6.3.1. Cells are colored in blue when Linear GAE/VGAE models are
reaching competitive results w.r.t. standard GCN-based models, i.e., results that are at least as good as GCN-
based models ± 1 standard deviation. Note: as we aim to evaluate whether linear models are as good as others,
and not necessarily better, we do not report bold numbers in this table contrary to tables from previous chapters.

Cora Citeseer Pubmed
Model (n = 2 708, m = 5 429) (n = 3 327, m = 4 732) (n = 19 717, m = 44 338)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 83.19 ± 1.13 87.57 ± 0.95 77.06 ± 1.81 83.05 ± 1.25 81.85 ± 0.32 87.54 ± 0.28
2-layer GCN-based GAE 84.79 ± 1.10 88.45 ± 0.82 78.25 ± 1.69 83.79 ± 1.24 82.51 ± 0.64 87.42 ± 0.38
3-layer GCN-based GAE 84.61 ± 1.22 87.65 ± 1.11 78.62 ± 1.74 82.81 ± 1.43 83.37 ± 0.98 87.62 ± 0.68

Linear VGAE (ours) 84.70 ± 1.24 88.24 ± 1.02 78.87 ± 1.34 83.34 ± 0.99 84.03 ± 0.28 87.98 ± 0.25
2-layer GCN-based VGAE 84.19 ± 1.07 87.68 ± 0.93 78.08 ± 1.40 83.31 ± 1.31 82.63 ± 0.45 87.45 ± 0.34
3-layer GCN-based VGAE 84.48 ± 1.42 87.61 ± 1.08 79.27 ± 1.78 83.73 ± 1.13 84.07 ± 0.47 88.18 ± 0.31

Cora, with features Citeseer, with features Pubmed, with features
Model (n = 2 708, m = 5 429, (n = 3 327, m = 4 732, (n = 19 717, m = 44 338,

f = 1 433) f = 3 703) f = 500)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 92.05 ± 0.93 93.32 ± 0.86 91.50 ± 1.17 92.99 ± 0.97 95.88 ± 0.20 95.89 ± 0.17
2-layer GCN-based GAE 91.27 ± 0.78 92.47 ± 0.71 89.76 ± 1.39 90.32 ± 1.62 96.28 ± 0.36 96.29 ± 0.25
3-layer GCN-based GAE 89.16 ± 1.18 90.98 ± 1.01 87.31 ± 1.74 89.60 ± 1.52 94.82 ± 0.41 95.42 ± 0.26

Linear VGAE (ours) 92.55 ± 0.97 93.68 ± 0.68 91.60 ± 0.90 93.08 ± 0.77 95.91 ± 0.13 95.80 ± 0.17
2-layer GCN-based VGAE 91.64 ± 0.92 92.66 ± 0.91 90.72 ± 1.01 92.05 ± 0.97 94.66 ± 0.51 94.84 ± 0.42
3-layer GCN-based VGAE 90.53 ± 0.94 91.71 ± 0.88 88.63 ± 0.95 90.20 ± 0.81 92.78 ± 1.02 93.33 ± 0.91

Lastly, due to the prohibitive cost of decoding the entire matrix Â for large graphs (i.e., Amazon,

Flickr, Google, LiveMocha, Patent, and Stanford that all verify with n > 100 000), we adopted

a stochastic sampling strategy for these graphs. At each training iteration, we estimated losses

by only reconstructing a subgraph of 10 000 nodes from the original graph. These 10 000 nodes

were randomly picked during training at each iteration. This strategy corresponds to a special

case of the FastGAE method from Chapter 4, with n(S) = 10 000 and with uniform sampling6.

6.3.2 Results and Discussion

Cora, Citeseer, and Pubmed benchmarks Table 6.1 reports link prediction results for

Cora, Citeseer, and Pubmed. For standard 2-layer GAEs and VGAEs, we reproduce similar

performances w.r.t. Kipf and Welling [187]. We show that Linear GAE and VGAE models

consistently reach competitive performances w.r.t. 2-layer and 3-layer GCN-based models, i.e.,

they are at least as good (± 1 standard deviation). In some settings, Linear GAE and VGAE

models are even slightly better (e.g., +1.25 points in AUC for the Linear VGAE on Pubmed

6Experiments from this chapter and from the papers associated with this work [309, 310] were actually done
before our study of FastGAE from Chapter 4. We acknowledge that using FastGAE with a non-uniform sampling,
e.g., with degree-based sampling as in Section 4.2.2, should improve results w.r.t. a uniform sampling.
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with features, w.r.t. a 2-layer GCN-based VGAE). These results emphasize the effectiveness of

our proposed simple encoder on these datasets, where the empirical benefit of multi-layer GCNs

is very limited. In Table 6.3, we consolidate our results by reaching similar conclusions on the

community detection task. As explained in Chapter 3, in these graphs nodes are documents

clustered in respectively 6, 7, and 3 topic classes, acting as communities. In almost all settings,

Linear GAE and VGAE models rival their multi-layer GCN-based counterparts (e.g., +4.31

AMI points for the Linear VGAE on Pubmed with features, w.r.t. 2-layer GCN-based VGAE).

Alternative graph datasets Table 6.2 reports link prediction results for all other graphs.

Linear GAE models are competitive in 13 cases out of 15, and sometimes even achieve better

performances (e.g., +1.72 AUC points for Linear GAE on the largest dataset, Patent, w.r.t. 3-

layer GCN-based GAE). Moreover, Linear VGAE models rival or outperform GCN-based models

in 10 cases out of 15. Overall, Linear GAE and VGAE models also achieve very close results

w.r.t. GCN-based models in all remaining datasets (e.g., on Google-Medium, with a mean AUC

score of 96.02% ± 0.14 for Linear GAE, only slightly below the mean AUC score of 96.66%

± 0.24 of 2-layer GCN-based GAE). This confirms the empirical effectiveness of simple node

encoding schemes, that appear as a suitable alternative to more complex multi-layer encoders

for many real-world applications. Regarding community detection in Table 6.3, Linear GAE

and VGAE models are competitive on the Cora-larger graph, in which nodes are documents

clustered in 70 topic classes. However, 2-layer and 3-layer GCN-based models are significantly

outperforming on the Blogs graph, where political blogs are classified as either left-leaning or

right-leaning (e.g., −23.42 AMI points for Linear VGAE w.r.t. 2-layer GCN-based VGAE).

On running times and extensions to k-hop linear encoders While this work puts the

emphasis on performance and not on training speed, we also note that Linear GAE and VGAE

models are 10% to 15% faster than their GCN-based counterparts. For instance, on our NVIDIA

GTX 1080 GPU, we report a 6.03 seconds (vs 6.73 seconds) mean running time for training

our Linear VGAE (vs a 2-layer GCN-based VGAE) on the featureless Citeseer dataset, and

roughly 800 seconds (vs 900+ seconds) on the Patent dataset, using our sampling strategy from

Section 6.3.1. This gain comes from the fewer parameters and matrix operations required by

one-hop linear encoders and from the sparsity of the one-hop matrix Ã in our graphs.

Besides, while in this work we only learn embedding vectors from direct neighbors, variants of

our models could capture higher-order links by considering polynomials of the matrix A. For

instance, we could learn node embedding representations from one-hop and two-hop links by

replacing Ã by the normalized version of A + αA2 (with α > 0), or simply A2, in the linear

encoders of Section 6.2. However, we observed few to no improvement for our graphs in some

preliminary tests, consistently with our claim on the effectiveness of simple one-hop strategies.

Such variants also tend to increase running times, as A2 is usually denser than A.
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Table 6.2: Link prediction on alternative datasets, with Linear GAE and VGAE models, and with their multi-layer
GCN-based counterparts. We report details on hyperparameters for each model and dataset in Section 6.3.1. Cells
are colored in blue when Linear GAE/VGAE models are reaching competitive results w.r.t. standard GCN-based
models, i.e., results that are at least as good as GCN-based models ± 1 standard deviation. Note: as we aim to
evaluate whether linear models are as good as others, and not necessarily better, we do not report bold numbers
in this table contrary to tables from previous chapters.

WebKD WebKD, with features Hamsterster
Model (n = 877, m = 1 608) (n = 877, m = 1 608, f = 1 703) (n = 1 858, m = 12 534)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 77.20 ± 2.35 83.55 ± 1.81 84.15 ± 1.64 87.01 ± 1.48 93.07 ± 0.67 94.20 ± 0.58
2-layer GCN-based GAE 77.88 ± 2.57 84.12 ± 2.18 86.03 ± 3.97 87.97 ± 2.76 92.07 ± 0.63 93.01 ± 0.69
3-layer GCN-based GAE 78.20 ± 3.69 83.13 ± 2.58 81.39 ± 3.93 85.34 ± 2.92 91.40 ± 0.79 92.22 ± 0.85

Linear VGAE (ours) 83.50 ± 1.98 86.70 ± 1.53 85.57 ± 2.18 88.08 ± 1.76 91.08 ± 0.70 91.85 ± 0.64
2-layer GCN-based VGAE 82.31 ± 2.55 86.15 ± 2.03 87.87 ± 2.48 88.97 ± 2.17 91.62 ± 0.60 92.43 ± 0.64
3-layer GCN-based VGAE 82.17 ± 2.70 85.35 ± 2.25 89.69 ± 1.80 89.90 ± 1.58 91.06 ± 0.71 91.85 ± 0.77

DBLP Cora-larger Arxiv-HepTh
Model (n = 12 591, m = 49 743) (n = 23 166, m = 91 500) (n = 27 770, m = 352 807)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 90.11 ± 0.40 93.15 ± 0.28 94.64 ± 0.08 95.96 ± 0.10 98.34 ± 0.03 98.46 ± 0.03
2-layer GCN-based GAE 90.29 ± 0.39 93.01 ± 0.33 94.80 ± 0.08 95.72 ± 0.05 97.97 ± 0.09 98.12 ± 0.09
3-layer GCN-based GAE 89.91 ± 0.61 92.24 ± 0.67 94.51 ± 0.31 95.11 ± 0.28 94.35 ± 1.30 94.46 ± 1.31

Linear VGAE (ours) 90.62 ± 0.30 93.25 ± 0.22 95.20 ± 0.16 95.99 ± 0.12 98.35 ± 0.05 98.46 ± 0.05
2-layer GCN-based VGAE 90.40 ± 0.43 93.09 ± 0.35 94.60 ± 0.20 95.74 ± 0.13 97.75 ± 0.08 97.91 ± 0.06
3-layer GCN-based VGAE 89.92 ± 0.59 92.52 ± 0.48 94.48 ± 0.28 95.30 ± 0.22 94.57 ± 1.14 94.73 ± 1.12

LiveMocha Flickr Patent
Model (n = 104 103, m = 2 193 083) (n = 105 938, m = 2 316 948) (n = 2 745 762, m = 13 965 410)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 93.35 ± 0.10 94.83 ± 0.08 96.38 ± 0.05 97.27 ± 0.04 85.49 ± 0.09 87.17 ± 0.07
2-layer GCN-based GAE 92.79 ± 0.17 94.33 ± 0.13 96.34 ± 0.05 97.22 ± 0.04 82.86 ± 0.20 84.52 ± 0.24
3-layer GCN-based GAE 92.22 ± 0.73 93.67 ± 0.57 96.06 ± 0.08 97.01 ± 0.05 83.77 ± 0.41 84.73 ± 0.42

Linear VGAE (ours) 93.23 ± 0.06 94.61 ± 0.05 96.05 ± 0.08 97.12 ± 0.06 84.57 ± 0.27 85.46 ± 0.30
2-layer GCN-based VGAE 92.68 ± 0.21 94.23 ± 0.15 96.35 ± 0.07 97.20 ± 0.06 83.77 ± 0.28 83.37 ± 0.26
3-layer GCN-based VGAE 92.71 ± 0.37 94.01 ± 0.26 96.39 ± 0.13 97.16 ± 0.08 85.30 ± 0.51 86.14 ± 0.49

Blogs Amazon Google
Model (n = 1 224, m = 19 025) (n = 334 863, m = 925 872) (n = 875 713, m = 5 105 039)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 91.71 ± 0.39 92.53 ± 0.44 90.70 ± 0.09 93.46 ± 0.08 95.37 ± 0.05 96.93 ± 0.05
2-layer GCN-based GAE 91.57 ± 0.34 92.51 ± 0.29 90.15 ± 0.15 92.33 ± 0.14 95.06 ± 0.08 96.40 ± 0.07
3-layer GCN-based GAE 91.74 ± 0.37 92.62 ± 0.31 88.54 ± 0.37 90.47 ± 0.38 93.68 ± 0.15 94.99 ± 0.14

Linear VGAE (ours) 91.34 ± 0.24 92.10 ± 0.24 84.53 ± 0.08 87.79 ± 0.06 91.13 ± 0.14 93.79 ± 0.10
2-layer GCN-based VGAE 91.85 ± 0.22 92.60 ± 0.25 90.14 ± 0.22 92.33 ± 0.23 95.04 ± 0.09 96.38 ± 0.07
3-layer GCN-based VGAE 91.83 ± 0.48 92.65 ± 0.35 89.44 ± 0.25 91.23 ± 0.23 93.79 ± 0.22 95.12 ± 0.21

Stanford Proteins Google-Medium
Model (n = 281 903, m = 2 312 497) (n = 6 327, m = 147 547) (n = 15 763, m = 171 206)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear GAE (ours) 97.73 ± 0.10 98.37 ± 0.10 94.09 ± 0.23 96.01 ± 0.16 96.02 ± 0.14 97.09 ± 0.08
2-layer GCN-based GAE 97.05 ± 0.63 97.56 ± 0.55 94.55 ± 0.20 96.39 ± 0.16 96.66 ± 0.24 97.45 ± 0.25
3-layer GCN-based GAE 92.19 ± 1.49 92.58 ± 1.50 94.30 ± 0.19 96.08 ± 0.15 95.10 ± 0.27 95.94 ± 0.20

Linear VGAE (ours) 94.96 ± 0.25 96.64 ± 0.15 93.99 ± 0.10 95.94 ± 0.16 91.11 ± 0.31 92.91 ± 0.18
2-layer GCN-based VGAE 97.60 ± 0.11 98.02 ± 0.10 94.57 ± 0.18 96.18 ± 0.33 96.11 ± 0.59 96.84 ± 0.51
3-layer GCN-based VGAE 97.53 ± 0.13 98.01 ± 0.10 94.27 ± 0.25 95.71 ± 0.28 95.10 ± 0.54 96.00 ± 0.44
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Table 6.3: Community detection on graphs with communities, with Linear GAE and VGAE models, and with
their multi-layer GCN-based counterparts. We report details on hyperparameters for each model and dataset in
Section 6.3.1. Cells are colored in blue when Linear GAE/VGAE models are reaching competitive results w.r.t.
standard GCN-based models, i.e., results that are at least as good as GCN-based models ± 1 standard deviation.
Note: as we aim to evaluate whether linear models are as good as others, and not necessarily better, we do not
report bold numbers in this table contrary to tables from previous chapters.

Cora Cora with features Citeseer Citeseer with features
Model (n = 2 708, (n = 2 708, m = 5 429, (n = 3 327, (n = 3 327, m = 4 732,

m = 5 429) f = 1 433) m = 4 732) f = 3 703)

AMI (in %) AMI (in %) AMI (in %) AMI (in %)

Linear GAE (ours) 26.31 ± 2.85 47.02 ± 2.09 8.56 ± 1.28 20.23 ± 1.36
2-layer GCN-based GAE 30.88 ± 2.56 43.04 ± 3.28 9.46 ± 1.06 19.38 ± 3.15
3-layer GCN-based GAE 33.06 ± 3.10 44.12 ± 2.48 10.69 ± 1.98 19.71 ± 2.55

Linear VGAE (ours) 34.35 ± 1.42 48.12 ± 1.96 12.67 ± 1.27 20.71 ± 1.95
2-layer GCN-based VGAE 26.66 ± 3.94 44.84 ± 2.63 9.85 ± 1.24 20.17 ± 3.07
3-layer GCN-based VGAE 28.43 ± 2.83 44.29 ± 2.54 10.64 ± 1.47 19.94 ± 2.50

Pubmed Pubmed with features Cora-larger Blogs
Model (n = 19 717, (n = 19 717, m = 44 338, (n = 23 166, (n = 1 224, m = 19 025)

m = 44 338) f = 500) m = 91 500)

AMI (in %) AMI (in %) AMI (in %) AMI (in %)

Linear GAE (ours) 10.76 ± 3.70 26.12 ± 1.94 40.34 ± 0.51 46.84 ± 1.79
2-layer GCN-based GAE 16.41 ± 3.15 23.08 ± 3.35 39.75 ± 0.79 72.58 ± 4.54
3-layer GCN-based GAE 23.11 ± 2.58 25.94 ± 3.09 35.67 ± 1.76 72.72 ± 1.80

Linear VGAE (ours) 25.14 ± 2.83 29.74 ± 0.64 43.32 ± 0.52 49.70 ± 1.08
2-layer GCN-based VGAE 20.52 ± 2.97 25.43 ± 1.47 38.34 ± 0.64 73.12 ± 0.83
3-layer GCN-based VGAE 21.32 ± 3.70 24.91 ± 3.09 37.30 ± 1.07 70.56 ± 5.43

Experiments on more complex decoders So far, we compared different encoders but the

standard inner product decoder was fixed. As a robustness check, in the next Table 6.4, we

report complementary link prediction experiments, on variants of GAE and VGAE models with

two more complex decoders:

• the “Graphite” GAE and VGAE models from Grover et al. [124] for iterative generative

modeling of graphs, and already mentioned in our experiments from Chapter 3. Graph-

ite models still process undirected graphs only. They rely on an iterative graph refine-

ment strategy inspired by low-rank approximations for decoding, instead of a simple inner

product with a sigmoid activation as in Section 6.2;

• our own Gravity-Inspired GAE and VGAE models from Chapter 5 that, contrary to

the other models, incorporate an asymmetric decoder, i.e., Âij ̸= Âji. As explained in

Chapter 5, this model is designed for directed link prediction. Therefore, contrary to pre-

vious experiments, we do not ignore edges directions when initial graphs were directed.

The models from Table 4 all process the out-degree normalization of A a.k.a. Ãout instead

of the symmetric normalization Ã.

Overall, we draw similar conclusions w.r.t. Tables 6.1 and 6.2, consolidating our findings. For
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Table 6.4: Link prediction with Linear GAE and VGAE models incorporating the “Graphite” [124] and Gravity-
Inspired [311] decoders, and with their multi-layer GCN-based counterparts. We report details on hyperparameters
for each model and dataset in Section 6.3.1. Cells are colored in blue when Linear GAE/VGAE models are
reaching competitive results w.r.t. standard GCN-based models, i.e., results that are at least as good as GCN-
based models ± 1 standard deviation. Note: as we aim to evaluate whether linear models are as good as others,
and not necessarily better, we do not report bold numbers in this table contrary to tables from previous chapters.

Cora Citeseer
Model (n = 2 708, m = 5 429) (n = 3 327, m = 4 732)

AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear Graphite GAE (ours) 83.42 ± 1.76 87.32 ± 1.53 77.56 ± 1.41 82.88 ± 1.15
2-layer Graphite GAE 81.20 ± 2.21 85.11 ± 1.91 73.80 ± 2.24 79.32 ± 1.83
3-layer Graphite GAE 79.06 ± 1.70 81.79 ± 1.62 72.24 ± 2.29 76.60 ± 1.95

Linear Graphite VGAE (ours) 83.68 ± 1.42 87.57 ± 1.16 78.90 ± 1.08 83.51 ± 0.89
2-layer Graphite VGAE 84.89 ± 1.48 88.10 ± 1.22 77.92 ± 1.57 82.56 ± 1.31
3-layer Graphite VGAE 85.33 ± 1.19 87.98 ± 1.09 77.46 ± 2.34 81.95 ± 1.71

Linear Gravity-Inspired GAE (ours) 90.71 ± 0.95 92.95 ± 0.88 80.52 ± 1.37 86.29 ± 1.03
2-layer Gravity-Inspired GAE 87.79 ± 1.07 90.78 ± 0.82 78.36 ± 1.55 84.75 ± 1.10
3-layer Gravity-Inspired GAE 87.76 ± 1.32 90.15 ± 1.45 78.32 ± 1.92 84.88 ± 1.36

Linear Gravity-Inspired VGAE (ours) 91.29 ± 0.70 93.01 ± 0.57 86.65 ± 0.95 89.49 ± 0.69
2-layer Gravity-Inspired VGAE 91.92 ± 0.75 92.46 ± 0.64 87.67 ± 1.07 89.79 ± 1.01
3-layer Gravity-Inspired VGAE 90.80 ± 1.28 92.01 ± 1.19 85.28 ± 1.33 87.54 ± 1.21

Pubmed Google-Medium
Model (n = 19 717, m = 44 338) (n = 15 763, m = 171 206)

AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear Graphite GAE (ours) 80.28 ± 0.86 85.81 ± 0.67 94.30 ± 0.22 95.09 ± 0.16
2-layer Graphite GAE 79.98 ± 0.66 85.33 ± 0.41 95.54 ± 0.42 95.99 ± 0.39
3-layer Graphite GAE 79.96 ± 1.40 84.88 ± 0.89 93.99 ± 0.54 94.74 ± 0.49

Linear Graphite VGAE (ours) 79.59 ± 0.33 86.17 ± 0.31 92.71 ± 0.38 94.41 ± 0.25
2-layer Graphite VGAE 82.74 ± 0.30 87.19 ± 0.36 96.49 ± 0.22 96.91 ± 0.17
3-layer Graphite VGAE 84.56 ± 0.42 88.01 ± 0.39 96.32 ± 0.24 96.62 ± 0.20

Linear Gravity-Inspired GAE (ours) 76.78 ± 0.38 84.50 ± 0.32 97.46 ± 0.07 98.30 ± 0.04
2-layer Gravity-Inspired GAE 75.84 ± 0.42 83.03 ± 0.22 97.77 ± 0.10 98.43 ± 0.10
3-layer Gravity-Inspired GAE 74.61 ± 0.30 81.68 ± 0.26 97.58 ± 0.12 98.28 ± 0.11

Linear Gravity-Inspired VGAE (ours) 79.68 ± 0.36 85.00 ± 0.21 97.32 ± 0.06 98.26 ± 0.05
2-layer Gravity-Inspired VGAE 77.30 ± 0.81 82.64 ± 0.27 97.84 ± 0.25 98.18 ± 0.14
3-layer Gravity-Inspired VGAE 76.52 ± 0.61 80.73 ± 0.63 97.32 ± 0.23 97.81 ± 0.20

brevity, in Tables 6.4 we only report results for the Cora, Citeseer, and Pubmed graphs, where

linear models are competitive, and for the Google-Medium graph, where GCN-based GAE and

VGAE models slightly outperform their linear counterparts. We stress out that scores from

Graphite and Gravity-Inspired GAEs/VGAEs are not directly comparable, as the former ignores

the directionality of edges while the latter processes directed graphs, i.e., the learning task is a

directed link prediction problem for Gravity-Inspired GAEs/VGAEs.

When (not) to use multi-layer GCN encoders? Linear GAE and VGAE models reached

strong empirical results on all graphs under consideration in this work despite their various

sizes and characteristics, and rival or outperform GCN-based GAE and VGAE models in a
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majority of experiments. These models are also simpler and more interpretable, each element

of zi being interpreted as a weighted average from node i’s direct neighborhood. We recall that,

in Chapter 3, we also showed that multi-layer GCNs are themselves often competitive (or very

close) to more complex GNN encoders. Therefore, we recommend the systematic use of Linear

GAE and VGAE models as a first baseline, before diving into more complex encoding schemes

whose actual benefit might be unclear.

From our experiments, we also conjecture that multi-layer GCN encoders can bring an empirical

advantage in the presence of graphs with intrinsic non-trivial high-order interactions. Notable

examples of such graphs include the Amazon co-purchase graph (+5.61 AUC points for 2-

layer GCN-based VGAE) and web graphs such as Blogs, Google, and Stanford, in which two-

hop hyperlinks connections of pages usually include relevant information on the global network

structure. On such graphs, capturing this information tends to improve results, especially 1)

for the probabilistic VGAE framework, and 2) when evaluating embeddings via the community

detection task (e.g., 20+ AMI points on Blogs for 2-layer GCN-based GAE and VGAE) which

is, by design, a more global learning task than the quite local link prediction problem.

On the contrary, in citation graphs such as Cora, Citeseer, and Pubmed, the relevance of two-

hop links is more limited. Indeed, if a reference A in an article B cited by some authors is

relevant to their work, authors will likely also cite this reference A, thus creating a one-hop link.

Lastly, while the impact of the graph size is unclear in our experiments (linear models achieve

strong results even on large graphs, such as Patent), we note that graphs where multi-layer GCN

encoders tend to outperform linear models are all relatively dense.

As a consequence, we conjecture that denser graphs with intrinsic high-order interactions (e.g.,

the aforestated web graphs) should be better suited than the sparse Cora, Citeseer, and Pubmed

citation networks to evaluate and compare complex GAE and VGAE models. Our recommend-

ation to the scientific community is not to completely avoid these three graphs, but rather to

stop using them exclusively in experiments.

6.4 Conclusion

In this chapter, we proposed to simplify GAE and VGAE models. While most existing variants

of these methods rely on multi-layer GCNs encoders to learn embedding vectors, we emphasized

that these encoders are unnecessarily complex for many applications. We suggested repla-

cing them with simpler linear models w.r.t. the (one-hop) normalized adjacency matrix of the

graph, involving fewer operations, fewer parameters, and no activation function. We provided

an in-depth experimental evaluation of such an approach, showing that our simplified models

consistently reach competitive or very close performances w.r.t. multi-layer GCN-based GAE

and VGAE models on link prediction and community detection, and on numerous real-world
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graphs. We also aimed to identify the settings where simple one-hop linear encoders appear as

an effective alternative to multi-layer GCNs.

Based on these experiments, and on previous results from Chapter 3 showing that multi-layer

GCNs can themselves be empirically close to more complex GNN encoders, we recommended

the systematic use of Linear GAE and VGAE models as a first baseline, before diving into more

complex encoding schemes whose actual benefit might be unclear. Since the publication of this

research in late 2019 (for the NeurIPS workshop paper [309]) and then in mid-2020 (for the

ECML-PKDD conference paper [310]), several recent articles including [9, 56, 73, 142, 332, 385]

considered Linear GAE and VGAE models in their own experiments, either as a baseline or as

a component of a larger model. These experiments confirmed that one-hop linear models often

reach comparable results w.r.t. multi-layer GCNs.

Besides research papers, we emphasize that such a result is valuable in the context of an industrial

PhD thesis. Indeed, in the industry, e.g., for music streaming services, simple models are

often preferred in production environments, as they are easier to understand, to deploy, and

to debug. In Chapters 9 and 10, we will provide a broader overview of how Deezer internally

leverages similarity graphs and graph ontologies for music recommendation, involving Linear

GAE and VGAE models. Moreover, to encourage the future usage of our method, we also

recently implemented a PyTorch version of Linear GAE and VGAE, now available in the popular

PyTorch-Geometric7 library [96], in addition to our initial TensorFlow implementation8.

Last, but not least, in this chapter we also questioned the relevance of repeatedly using the

same sparse medium-size citation networks (Cora, Citeseer, Pubmed) to evaluate and compare

complex GAE and VGAE models. In Section 6.3.2, we recommended to stop using these three

graphs exclusively in experiments. While we admit that finding “challenging” alternative data-

sets might be difficult, we also praise the recent efforts from the graph learning community to

release large, various, and realistic benchmark datasets. This includes the Open Graph Bench-

mark [151] initiative, aiming to provide challenging datasets for various graph-based machine

learning problems, together with standardized dataset splits and evaluators to properly compare

the performances of different models.

7https://github.com/pyg-team/pytorch geometric
8https://github.com/deezer/linear graph autoencoders
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7
Improving Community Detection

with Graph Autoencoders

This chapter presents research conducted with Johannes F. Lutzeyer, George Dasoulas, Romain

Hennequin, and Michalis Vazirgiannis, and currently under review for publication in Elsevier’s

Neural Networks journal in 2022 [314].

7.1 Introduction

GAE and VGAE models were originally mainly designed for link prediction, at least in their

modern formulation [187]. The overall effectiveness of GAE and VGAE models and of their

extensions on this specific task has been widely experimentally confirmed over the past few

years [124, 135, 279, 329, 359, 361], including in our own experiments from Chapters 3 to 6.

On the other hand, several concurring studies [55, 56, 307] have simultaneously pointed out the

limitations of these models on community detection. They emphasized that standard GAEs and

VGAEs are often outperformed by simpler clustering alternatives, such as the popular Louvain

method [31]. We ourselves observed and discussed this limitation in some of our community

detection experiments from Chapters 3, 4 and 6.

While some recent studies worked on this issue (see Section 7.2 for an overview), their solutions

strongly relied on clustering-oriented probabilistic priors that only fit the VGAE setting and can

not be directly transposed to deterministic GAEs. They also benefited greatly from the presence

of node features complementing the graph structure, but provided only little to no empirical gain

on featureless graphs that are nonetheless ubiquitous. Thirdly, they did not explicitly try to
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preserve the good performances of GAE and VGAE models on link prediction. In practice,

as we will argue in this chapter, learning node embedding spaces that jointly enable good

link prediction and community detection performances is often desirable, both for real-world

applications and in pursuit of learning accurate and general representations of a graph structure.

In summary, the question of how to improve community detection with GAE and VGAE models

remains incompletely addressed, especially in the absence of node features, and it is still unclear

to which extent one can improve community detection with these models without simultaneously

deteriorating link prediction. In this chapter, we propose to tackle these important problems by

investigating the following two research questions:

• Question 1: can we improve community detection for both the GAE and VGAE settings?

And does this improvement persist for featureless graphs?

• Question 2: do improvements on the community detection task necessarily incur a loss

in the link prediction performance or can they be jointly addressed with high accuracy?

In this chapter we propose several novel contributions to both the GAE and VGAE frameworks,

which allow us to answer both of these research questions positively. More precisely, our contri-

butions are listed as follows. We first diagnose the reasons why GAE and VGAE models tend to

perform well on link prediction but to underperform on community detection. Then, based on

insights from this diagnosis, we improve GAE and VGAE models for graph-based community

detection while preserving their ability to identify missing edges. Our strategy leverages con-

cepts inspired by modularity-based clustering [31, 38, 333]. Specifically, we first present and

theoretically study a novel community-preserving message passing scheme, doping our GAE

and VGAE encoders by considering both the initial graph structure and modularity-based prior

communities when computing embedding spaces. We also introduce revised training and optim-

ization strategies w.r.t. current practices in the scientific literature, including the introduction

of modularity-inspired losses complementing the existing reconstruction losses with the aim of

jointly ensuring good performances on link prediction and community detection. Backed by

in-depth experiments on several real-world graphs, we demonstrate the empirical effectiveness

of our approach at addressing 1) pure community detection problems, and 2) joint community

detection and link prediction problems. We publicly release our source code on GitHub.

The remainder of this chapter is organized as follows. In Section 7.2, we point out the limitations

of current GAE and VGAE models on community detection. In Section 7.3, we diagnose the

reasons explaining these limits. We subsequently introduce and theoretically study our proposed

solution, referred to as Modularity-Aware GAE and VGAE, to overcome these limitations. We

report and discuss our experimental evaluation in Section 7.4, and we conclude in Section 7.5.

We provide additional proofs in Section 7.6, placed out of the “main” chapter for the sake of

brevity and readability.
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7.2 On the Limitations of GAE/VGAE-Based Community De-

tection

While link prediction remains the most prominent evaluation task for GAE and VGAE models,

they have also shown promising results on (semi-supervised) node classification [135, 359], ca-

nonical correlation analysis [174] and, in the case of VGAE, graph generation especially in the

context of molecular graph data [233, 243, 336]. However, their performances are less impressive

on community detection [55, 56], on which we focus in this section.

7.2.1 Community Detection with GAE and VGAE

Throughout this chapter, we consider the community detection problem formulated in Sec-

tion 2.1.2 from Chapter 2, which we briefly remind in this paragraph. Among the fundamental

problems in graph-based machine learning, community detection consists in identifying K < n

clusters a.k.a. communities of nodes that, in some sense, are more similar to each other than to

the other nodes [55, 248]. More formally, we aim to obtain a partition of V into K sets:

C1 ⊆ V, . . . , CK ⊆ V, (7.1)

with cardinality |Ck| = nk ≤ n for k ∈ {1, . . . ,K}. The quality of such a partition is usually

assessed through some predefined similarity metrics, e.g., unsupervised density-based metrics

calculated from the intra- and inter-cluster edge density [248], or scores such as the Adjusted

Mutual Information (AMI) [366] and Adjusted Rand Index (ARI) [159] scores, that compare the

partition to some ground truth node labels hidden during training.

In the presence of node embedding representations, community detection boils down to the more

standard problem of clustering n vectors in a d-dimensional Euclidean space into K groups [244].

With this goal in mind, several studies specifically tried to perform community detection with

GAE and VGAE by:

• learning an embedding vector zi for each i ∈ V, as described in the previous chapters;

• clustering the resulting vectors zi into K groups, through one of the numerous clustering

methods for Euclidean data, such as the popular k-means algorithm [244].

However, concurring experimental evaluations [55, 56, 307, 308] recently pointed out the limit-

ations of such an approach. They emphasized its lower performance w.r.t. simpler community

detection alternatives, that sometimes even directly operate on the graph structure without

considering node features, such as the popular Louvain method [31].

For instance, Choong et al. [56] show that, on the (featureless) Cora citation network [323],
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a VGAE+k-means strategy reaches a mean normalized mutual information score of 23.84%,

way below the Louvain method (43.36%). In the previous Chapter 4 on FastGAE, we showed

that, on the same graph, a GAE+k-means also reaches an underwhelming 30.88% mean AMI

score. We reached comparable conclusions from experiments on several other graphs, such as the

featureless versions [323] of Citeseer (9.85% AMI for VGAE+k-means vs 16.39% for Louvain,

in our Chapter 4) and Pubmed (20.41% for VGAE+k-means in the study of Choong et al. [56],

which is comparable to Louvain, but significantly below the 29.46% obtained by running a

k-means on node embedding vectors learned via DeepWalk [287]).

7.2.2 Community Detection with Extensions of GAE and VGAE

Several studies have worked on the issue of the underwhelming performance of GAE and VGAE

models in the community detection task [55, 56, 217, 262]. Choong et al. [55] introduced

VGAECD, a VGAE for Community Detection (CD) model that replaces Gaussian priors by

learnable Gaussian mixtures. Such a choice permits recovering communities from node embed-

ding spaces without relying on an additional k-means step. In a subsequent study [56], the same

authors proposed VGAECD-OPT, an improved version of VGAECD. Specifically, VGAECD-

OPT replaces GCN encoders with the simpler linear models we proposed in Chapter 6. It

also adopts a different optimization procedure based on neural expectation-maximization [122],

which guarantees that communities do not collapse during training [56] and experimentally leads

to better performances.

More recently, Li et al. [217] introduced Dirichlet Variational Graph Autoencoder (DVGAE),

another extension of VGAE which uses Dirichlet distributions as priors on latent vectors, act-

ing as indicators of community memberships. The Marginalized GAE (MGAE) model from

Wang et al. [370] is also evaluated on community detection. However, the MGAE model does

not explicitly leverage embedding representations for this task; instead the spectral clustering

[368] is applied to the decoded graphs. Last, while community detection was not the main focus

in [156, 279, 282, 329, 361], these works all proposed various encoding-decoding methods that,

to different extents, seem to outperform standard GAE and VGAE models on the community

detection task, in the reported evaluations. They consider alternatives encoders or training

choices, which we further discuss and investigate in Section 7.3.

7.2.3 Current Limitations

While the models discussed in Section 7.2.2 will constitute relevant baselines in our experiments

(see Section 7.4), they still suffer from several fundamental limitations that motivate our work:

• firstly, all extensions explicitly designed for community detection [55, 56, 217] rely on

clustering-oriented probabilistic priors. They are only applicable in the VGAE paradigm,
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Table 7.1: Normalized mutual information scores (in %) for community detection on the Cora and Pubmed
citation networks, with and without node features. Results are directly taken from the evaluation of Choong et
al. [56]. Bold numbers correspond to the best score for each graph. This table emphasizes that, in the absence of
node features, VGAECD and VGAECD-OPT bring little (to no) advantage w.r.t. standard VGAE, and remain
below the Deepwalk and/or Louvain baselines. Scores of VGAECD and VGAECD-OPT significantly increase
when adding features to the graph. Recall: in this table, Deepwalk and Louvain both ignore node features.

Dataset VGAE VGAECD VGAECD-OPT DeepWalk Louvain

Cora without node features 23.84 28.22 37.35 37.96 43.36
Pubmed without node features 20.41 16.42 25.05 29.46 19.83

Cora with node features 31.73 50.72 54.37 37.96 43.36
Pubmed with node features 19.81 32.53 35.52 29.46 19.83

and cannot be directly transposed to the deterministic GAE setting. The question of how

to design clustering-efficient GAE models thus remains widely open;

• more importantly, a closer look at these models reveals that their empirical gains often

mostly stem from the addition of node features to the graph. As an illustration, Table 7.1

displays the reported performances of VGAECD and VGAECD-OPT on the featureless

versions of two graphs [56]. We observe that they offer little to no empirical advantage

when features are absent. This draws into question the extent to which these models are

able to capture communities from (only) graph data.

The important role of node features has subsequently been confirmed (e.g., Park et al. [282]

show that, on the Pubmed dataset, a straightforward k-means on the node features alone

reaches comparable AMI scores w.r.t. VGAE and MGAE). On the other hand, most of the

aforementioned other studies with empirical improvements [156, 262, 279, 282, 329, 361]

only reported results on graphs equipped with node features. This motivates the need for

a proper investigation of the featureless case where models cannot rely on the additional

node feature information;

• lastly, previous studies centered around community detection [55, 56, 217, 370] did not ex-

plicitly try to preserve the good performances of GAE and VGAE models on link prediction.

Overall, most of the aforementioned existing works learn node representations specific to a

particular learning task. Therefore, it is still unclear whether one can improve community

detection with these models without simultaneously deteriorating link prediction. With

the general aim of learning high-quality node embedding representations, one can wonder

to which extent these models can learn representations that are jointly useful for several

tasks. Besides providing a more accurate summary of the graph structure under consid-

eration, such representations could also lead to significant resource savings in real-world

applications, as we will illustrate in Section 7.4.

In conclusion to this section, the question of how to effectively improve community detection

with GAE and VGAE remains incompletely addressed.
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Figure 7.1: Overview of our proposed Modularity-Aware GAE and VGAE. Firstly, input graph data A and X
are combined with the s-regular sparsified prior community membership matrix As, derived through iterative
modularity maximization via the Louvain algorithm, as described in Section 7.3.2. Then, they are processed
by our revised community-preserving (linear or multi-layer GCN) encoders, encoding each node i ∈ V as an
embedding vector zi of dimension d ≪ n. Neural weights of encoders are optimized through a procedure combining
reconstruction and modularity-inspired losses, and described in Section 7.3.3. Furthermore, other hyperparameters
from this model are tuned via the method described in Section 7.3.3 and designed for joint link prediction and
community detection applications.

7.3 Modularity-Aware Graph Autoencoders

We now introduce our approach, referred to as Modularity-Aware GAE and VGAE in the fol-

lowing, to address the aforementioned limitations. In Section 7.3.1, we first provide a general

overview of the key components of our solution. They transpose concepts from modularity-based

clustering [31, 38, 333] to GAEs and VGAEs, and are illustrated in Figure 7.1. We subsequently

detail these solution components in Sections 7.3.2 and 7.3.3.

7.3.1 Diagnostic and Overview of our Framework

Based on our literature review, we diagnose three main reasons that can explain why previous

GAE and VGAE models still suffer from the limitations described in Section 7.2.3:

• firstly, they leveraged encoders that were not specifically designed to preserve the intrinsic

communities from the graph structure under consideration in the node embedding space.

This includes the popular GCN, as well as refined neural models that rather aimed to

preserve clusters from node features (but not necessarily the actual communities from the

graph under consideration). In Modularity-Aware GAE and VGAE, we overcome this issue

by incorporating a novel encoding scheme for graph community-preserving representation

learning. It consists in an improvement of the GCN message passing operator, boosting
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both GAE and VGAE models by simultaneously considering the initial graph structure

and modularity-based node communities when computing node embedding spaces. We

present and theoretically study this encoder in Section 7.3.2;

• besides the encoder’s architecture, previous models were often optimized in a fashion that,

by design, favors link prediction over community detection. In particular, the standard

cross-entropy and ELBO losses, used to learn neural weight matrices, directly involve

the reconstruction of node pairs from the embedding space1. However, as we will detail,

a good reconstruction of local pairwise connections does not necessarily imply a good

reconstruction of the global community structure. In Modularity-Aware GAE and VGAE,

we instead optimize an alternative loss inspired by the modularity [31]. Such a loss acts

as a simple yet effective global regularization over pairwise reconstruction losses, with

desirable properties for joint link prediction and community detection. It will empirically

enable a refined optimization of the weight matrices from our encoders. We present this

aspect in detail in Section 7.3.3;

• lastly, in addition to these weight matrices, GAE and VGAE models involve several other

hyperparameters, ranging from the number of training iterations to the learning rate [187].

While they also impact the model’s performance, the selection procedure for such hyper-

parameters was sometimes omitted in previous works [56] or based on link prediction

validation sets, as in experiments from our previous chapters (while, intuitively, the best

hyperparameters for community detection might differ from those for link prediction).

For the Modularity-Aware GAE and VGAE, we adopt an alternative graph-based model

selection procedure. It completes the previous two aspects, by providing the most relev-

ant GAE/VGAE hyperparameters for joint link prediction and community selection. We

present and discuss this procedure in Section 7.3.3 as well.

7.3.2 Community-Aware Encoders for GAE and VGAE

Following this diagnosis and overview, we now detail the first of the three bullet points from

Section 7.3.1, i.e., our proposed revised encoding strategy. We recall that our proposed solution

aims to encode nodes as embedding vectors zi more suitable for community detection. Essentially,

intrinsic communities in the graph under consideration should be easily retrievable from these

representations, e.g., from their L2 distances via a straightforward k-means clustering. These

vectors should also simultaneously remain relevant for link prediction, i.e., as for existing GAE

1In the case of the probabilistic VGAE paradigm, another limitation of the ELBO loss - and of the underlying
generative decoder - lies in the use of standard Gaussian priors. Replacing these priors by for example Gaussian
mixtures as in [55, 56], appears to be an intuitive approach for community-based learning. However, as this
approach 1) does not extend to deterministic GAE, and 2) has been extensively studied in [55, 56], we do
not further develop it in this work. We will nonetheless compare to [55, 56] in experiments, and will argue
in Section 7.3.3 that Gaussian mixtures could straightforwardly be incorporated in our proposed Modularity-
Aware VGAE.
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and VGAE models, the likelihood of a missing edge between two nodes should also be inferred

from the learned representations zi.

Preliminary remark on the notation In the following, for simplicity, we mainly consider

undirected graphs and continue using the symmetric inner product Âij = σ(zTi zj) as the prob-

ability of an edge between nodes i and j. Also, in this chapter, we will use F(·) to denote the

symmetrically normalized adjacency matrix of a graph, i.e.:

F(A) = (D + In)
− 1

2 (A+ In)(D + In)
− 1

2 (7.2)

instead of Ã as in Definition 2.5 and other chapters of the thesis. This slight discrepancy is due

to the fact that, in this chapter, the symmetric normalization will be simultaneously applied to

several matrices and to sums of matrices, which makes the “tilde” notation too heavy.

7.3.2.1 Revising the Message Passing Operator

Existing graph encoders usually involve normalized versions of the adjacency matrix A, or some

generalized message passing operator matrix that also captures each node’s direct connections

in the graph under consideration [66]. For instance, in the popular multi-layer GCN from

Definition 2.11, the symmetric normalization Ã a.k.a. F(A) from Definition 2.5 is used such

that at each layer l a vectorial representation for each node is computed by averaging the

representations from layer l − 1 of its direct neighbors and of itself. In this chapter, we adopt

an alternative strategy that consists in averaging, at each layer:

• representations from the direct neighbors of each node, as above;

• but also representations from other unconnected nodes that, according to some prior avail-

able knowledge and criteria, belong to the same graph community.

More precisely, let us assume that we have, at our disposal, a pre-processing graph mining

technique that, based on the graph structure and on some fixed criteria, learns an initial prior

partition of the node set V into K sets C1, . . . , CK , with |Ck| = nk for k ∈ {1, . . . ,K}. Here,
K acts as a hyperparameter, that can differ from the actual number of communities eventually

used for the community detection downstream evaluation task (i.e., the number of clusters in

the k-means operated on the final vectors zi). A concrete example of such a technique will be

provided in the upcoming Subsection 7.3.2.3. We simply assume its availability at this stage.

We propose to leverage such an initial partition as a prior node clustering signal from which

the GAE/VGAE encoder should benefit, but also can deviate during training, when learning

the embedding space. Specifically, we propose to replace the standard input adjacency matrix
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A by:

A+ λAc, (7.3)

where λ ≥ 0 is a scalar hyperparameter, and where Ac is the community membership matrix

defined as follows:

Definition 7.1. Let us consider a partition of the node set V into K sets C1, . . . , CK . The

corresponding community membership matrix is defined as:

Ac =MMT − In, (7.4)

with M ∈ {0, 1}n×K denoting the n ×K matrix where elements Mik = 1 if and only if i ∈ Ck

according to the prior clustering.

We interpret Ac as the adjacency matrix of an alternative graph in which each cluster of our

prior partition is represented by a fully connected graph, without self-loops. Since nodes are only

allocated to one cluster, there exists a node ordering such that the matrix Ac is block-diagonal.

In essence, A + λAc aims to capture refined node similarities, by simultaneously considering

some local information from direct neighborhoods, and some global information from prior node

communities. The hyperparameter λ helps to balance these two aspects. In particular, setting

λ = 0 results in the standard adjacency matrix.

7.3.2.2 From Message Passing Operators to Encoding Schemes

At first glance, A + λAc could straightforwardly be incorporated as a refined message passing

operator in popular GAE and VGAE encoders. For instance, one could consider its direct

incorporation in:

• variants of 2-layer GCN encoders, as initially proposed by Kipf and Welling [187], since

this neural architecture remains the most popular GAE/VGAE encoder in the literature

(see Chapters 2 and 6 for a review). Specifically, one could consider:

– a version incorporating A + λAc in both layers. Then, in the case of a GAE2 as

described in Section 2.4.1, we would have: Z = GCN(1)(A + λAc, X) = F(A +

λAc)ReLU(F(A+ λAc)XW
(0))W (1);

– a version incorporating the prior communities only on the first layer, i.e., Z =

GCN(2)(A+ λAc, X) = F(A)ReLU(F(A+ λAc)XW
(0))W (1);

2For clarity of exposition we discuss the deterministic GAE framework (Section 2.4.1). However, the changes
are equally applicable to the VGAE framework (Section 2.4.2), for which Z has to be replaced by µ and log σ as
in Equation (2.35).
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• or, a variant of the linear encoder proposed in Chapter 6, as this simplified one-hop

GCN without activation reached competitive performances w.r.t. multi-layer GCNs for

GAE/VGAE-based community detection in this previous Chapter 6 as well as in the

study of Choong et al. [56]. In this case: Z = Linear(A+ λAc, X) = F(A+ λAc)XW
(0).

However, the computational cost of evaluating each layer of a GCN or a linear encoder depends

linearly on the number of edges |E| = m in the message passing operator [188]. As the graph

represented by A+λAc contains at least
∑K

k=1 n
2
k edges, such a direct incorporation of A+λAc

in encoders could incur a large computational expense.

To alleviate this cost, we will instead consider a s-regular sparsification of Ac, denoted by As

in the following. In As, each node i ∈ Ck is only connected to s < nk randomly selected nodes

in Ck (instead of all other nodes in Ck). Therefore, the A+ λAs message passing operator still

contains some of the prior clustering information without necessarily incurring the cost implied

by the use of Ac. In particular, selecting s ≈ m
n ensures that A + λAs has O(2m) non-null

elements, preserving the linear complexity w.r.t. m of the aforementioned encoders. Note that

we only sample As once at the beginning of the model training and then keep it fixed throughout

training and testing. To sum up, in our upcoming experiments in Section 7.4 we will instead

consider the following two3 encoding schemes:

• Z = GCN(2)(A+ λAs, X) = F(A)ReLU(F(A+ λAs)XW
(0))W (1);

• Z = Linear(A+ λAs, X) = F(A+ λAs)XW
(0).

In these encoders, our altered message passing scheme allows practitioners to incorporate inform-

ation from prior communities in the resulting node embedding space. A given node i ∈ Ck ⊂ V,
for k ∈ {1, ...,K}, will aggregate information from its direct neighbors and from some nodes in

Ck. By design, i will thus have an embedding vector zi more similar to the embedding vectors

of the other nodes in Ck than would be the case for the standard encoders based on F(A). We

recall that the choice of linear and 2-layer GCN encoders is made without loss of generality.

A + λAs could be incorporated into other encoders including deeper GCNs, ChebNets [69] or

graph attention networks [364].

The remainder of this Section 7.3.2 on encoders is organized as follows. In Subsection 7.3.2.3

we detail how we derive the matrix Ac (that has loosely been assumed to be “available” so

far) in our work. Then, in Subsection 7.3.2.4, we provide a theoretical analysis of our novel

encoding strategy. It notably aims to better understand our newly introduced operators Ac and

As in terms of the spectral filtering they induce, as well as to assess the impact of the s-regular

sparsification of Ac.

3We will favor GCN(2) over GCN(1) in the remainder of this work, as the former outperformed the latter in
our experiments. To simplify the notation GCN(2) will be referred to as GCN in experiments.
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7.3.2.3 Learning Ac and As with Modularity-Based Clustering

So far, for pedagogical purposes, we loosely assumed the availability of the Ac and As prior

community membership matrices. In practice, how these matrices are learned plays an important

role, as the empirical performance of our strategy will directly depend on the quality of the

underlying prior node clusters. Throughout this chapter, we will rely on modularity concepts to

learn Ac - hence the name Modularity-Aware GAE and VGAE. Specifically, we will leverage the

popular Louvain algorithm [31].

In the absence of node feature information, the Louvain greedy algorithm remains a popular and

powerful approach for community detection [31]. It iteratively aims to maximize the modularity

value [267], defined as follows:

Definition 7.2. Let us consider a graph G = (V, E) with adjacency matrix A and nodes i ∈ V
of degree di = Dii =

∑n
j=1Aij . We denote a partition of these nodes into K ≤ |V| communities

by {C1, ..., CK}. Then, the modularity associated with this partition is:

Q =
1

2m

n∑
i,j=1

[
Aij −

didj
2m

]
δ(i, j), (7.5)

where m is the sum of all edge weights in the graph, i.e., the number of edges for unweighted

graphs, and where δ(i, j) = 1 if nodes i and j belong to the same community and 0 otherwise.

In essence, the modularity compares the density of connections inside communities to connections

between communities. More specifically, Equation (7.5) returns a scalar Q in the range [−1
2 , 1],

that measures the difference between the observed fraction of (potentially weighted) edges that

occur within the same community and the expected fraction of edges in a configuration model

graph, which matches our observed degree distribution but allocates edges randomly without

any specified community structure.

The Louvain algorithm In the Louvain greedy algorithm, aiming to maximize the modu-

larity of a graph over the set of possible cluster assignments, each node is initialized in its own

community. Then, the algorithm iteratively completes two phases:

• in phase 1, for each node i ∈ V, one computes changes in modularity occurring from

placing i into the community of each of its neighbors. Then, i is either placed into the

community leading to the greatest modularity increase, or remains in its original group if

no increase is possible;

• in phase 2, a new graph is constructed. Nodes correspond to communities obtained in

phase 1 and edges are formed by summing edge weights occurring between communities.
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Edges within a community are represented by self-loops in this new graph. One repeats

phase 1 on this new graph until no further modularity improvement is possible.

Our justification for the use of this method to derive Ac is threefold. First and foremost, it

automatically selects the relevant number of prior communities K, by iteratively maximizing

the modularity value. Secondly, it runs in O(n log n) time [31]. It therefore scales to large graphs

with millions of nodes. Thirdly, such a modularity criterion complements the encoding-decoding

paradigm of standard GAE and VGAE models. We argue that learning node embedding spaces

from complementary criteria is beneficial. Our experiments will confirm that leveraging prior

modularity-based node clusters in the GAE/VGAE outperforms the individual use of the Louv-

ain or of the GAE/VGAE alone.

Note that, the use of the Louvain method is made without loss of generality as our framework

remains valid for alternative graph mining methods deriving Ac and As.

7.3.2.4 Theoretical Analysis of the Encoder’s Message Passing Operator

We now conduct a theoretical analysis of our newly introduced message passing operator, which

we begin by motivating the spectral analysis of the matrices involved. We recall that the

computations performed by a GCN at a given layer are the following:

ReLU(F(A)H(l−1)W (l−1)). (7.6)

If we consider the spectral decomposition of the message passing operator that is used in Equa-

tion (7.6), F(A) = UΘUT , where U = [u1, . . . , un]
T denotes the matrix containing the eigen-

vectors ui of F(A) and Θ is a diagonal matrix containing the eigenvalues θi of F(A). Then, the
computation performed in Equation (7.6) can be reformulated as follows:

ReLU(UΘUTH(l−1)W (l−1)) = ReLU

(
n∑

i=1

θiuiu
T
i H

(l−1)W (l−1)

)
. (7.7)

Therefore, performing one message passing step of the hidden states H on a graph given by

F(A), i.e., F(A)H(l−1), can be interpreted as a Fourier transform of H, called graph Fourier

transform [334], where the eigenvectors of F(A) act as a Fourier basis and the eigenvalues of

F(A) define the Fourier coefficients.

When trying to perform a theoretical analysis of the message passing step in Equation (7.6)

it often turns out to be more insightful to consider Equation (7.7) instead and analyze the

eigenvalues and eigenvectors of the used message passing operator. Such a spectral perspective

has given rise to a variety of architectures proposing learnable functions applied to the diagonal

terms of Θ [41, 69, 214]. Historically, the study of spectral graph theory [58, 342], and in
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particular the area of graph signal processing [275, 315], has yielded much insight in the study

of graphs. Therefore, it is somewhat unsurprising that also in the study of the GNNs the spectral

analysis of these architectures is a promising avenue of analysis [21, 66, 102].

Therefore, we now provide spectral results allowing us to gain a better understanding of our

proposed message passing operator and compare our proposed message passing operator to the

standard message passing operators. To characterize the eigenvectors of our newly introduced

F(Ac) we rely on the concept of 2-sparse eigenvectors.

Definition 7.3. (from Teke and Vaidyanathan [354]) The entries of 2-sparse eigenvectors are

all equal to 0 except for the ith and jth entry which equal to 1 and −1, where i and j denote

two nodes which share all their neighbors, i.e., Aih = Ajh for h ∈ {1, . . . , n}\{i, j}.

An extended discussion of the literature related to such 2-sparse eigenvectors and their corres-

ponding vertices, which are sometimes referred to as twin vertices, can be found in the thesis of

Lutzeyer [240]. We are now able to characterize the spectrum and eigenvectors of F(Ac).

Proposition 7.4. The matrix F(Ac) has eigenvalues {{1}K , {0}n−K}, where we denote the

multiset containing a given element x, y times, by {x}y. Each non-zero eigenvalue has an as-

sociated eigenvector vk, with k ∈ {1, . . . ,K}, with entries (vk)i = 1 for i ∈ Ck and (vk)i = 0

for i ̸∈ Ck. The eigenspace corresponding to the zero eigenvalue has dimension n − K and is

spanned by, for example, a set of two-sparse eigenvectors on each of the connected components

in the graph.

The proof of Proposition 7.4 can be found in Section 7.6. The informal take-away from Proposi-

tion 7.4 is that the cluster membership of nodes is encoded clearly and compactly in the spectrum

and eigenvectors of F(Ac). More formally, in Proposition 7.4 we observe that in the spectral

domain the operator F(Ac), which we introduce to the encoder’s message passing scheme, dir-

ectly encodes the cluster membership of the different nodes and all other signals are filtered out

by the 0 eigenvalues. Also in the graph domain the matrix F(Ac) encodes the cluster structure

by representing each cluster by a fully connected component of the graph. Therefore, the matrix

F(Ac) is an appropriate choice to introduce cluster information into the message passing scheme

and does so clearly in both the graph and spectral domains.

In general, the spectral filtering steps performed by our message passing operator, F(A+ λAc),

and the standard message passing operator, F(A), are different. F(A + λAc) accounts for the

clustering information which we introduce. In the following theorem, we provide a result allowing

us to establish under which conditions the spectral filtering performed by F(A) and F(A+λAc)

are equal, to gain a better understanding of the action of F(A+ λAc).

Proposition 7.5. If G is composed of regular connected components, i.e., connected components

containing only vertices of equal degree, and the partition of the node set defining these regular
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components equals the partition defining Ac, then the matrices F(Ac) and F(A+ λAc) have a

shared set of eigenvectors and the spectrum of F(A+ λAc), denoted by S(F(A+ λAc)), can be

expressed in terms of the eigenvalues of F(A) and F(Ac), denoted by θ and η, respectively, as:

S(F(A+ λAc)) = {g1(θ1) + g2(ηs(1)), . . . , g1(θn) + g2(ηs(n))}, (7.8)

for affine functions g1, g2 parameterized by the node degrees and some permutation s(·) defined
on the set {1, . . . , n}.

The proof of Proposition 7.5 can be found in Section 7.6 as well. Hence, we observe that for

graphs consisting of regular connected components the spectral filtering performed by our pro-

posed message passing operator F(A + λAc) is equal to that of the standard operator F(A).
For graphs consisting of regular connected components the clustering information is already con-

tained in the spectrum of F(A) and therefore its further addition does not affect the eigenvectors

of our proposed message passing operator.

Note that in general the spectrum of the sum of two matrices cannot be characterized by the

individual spectra of the two matrices, meaning that, in general, there does not exist an exact

relation between the spectra of F(A) and F(Ac) to F(A+ λAc). We can, however, make direct

use of existing results such as Weyl’s inequality [381] and the extended Davis–Kahan theorem

[241], which, respectively, upper bound the distance of the eigenvalues and spaces spanned by

the eigenvectors of the sum of matrices and the individual matrices.

s-regular sparsification We now turn to the analysis of our sparsified message passing op-

erator As, which, as we will see now, still contains the external cluster information without

incurring the large computation cost implied by the use of Ac.

Proposition 7.6. If the partition defining the connected components of As is a refinement of

the partition defining the components of Ac, then the multiplicity of the largest eigenvalue of

F(As) is greater or equal to the multiplicity of the largest eigenvalue of F(Ac). Further, the

largest eigenvalue of both F(As) and F(Ac) equals 1 and the eigenvectors corresponding to the

eigenvalue 1 of F(Ac) are also eigenvectors corresponding to the eigenvalue 1 of F(As).

The proof of Proposition 7.6 can be found in Section 7.6. Informally, Proposition 7.6 can be

interpreted to show that the sparsification of Ac producing As does not impact the “informative”

part of the spectrum. We recall that the eigenvectors corresponding to the largest eigenvalue of

F(Ac) and F(As) are indicator vectors of our introduced cluster membership. Since the remain-

ing eigenvectors are orthogonal to these indicator vectors we know that none of them encode our

cluster membership as compactly as the eigenvectors corresponding to the largest eigenvalue.

For F(As) the eigenvalues corresponding to the less informative eigenvectors correspond to

nonzero eigenvalues in general and we expect the choice of s to influence the impact of this
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uninformative part of the spectrum. This uninformative part of the spectrum can be upper

bounded by adapting the bound by Friedman [99] to our message passing operator. However,

in our work, we choose a more practice-oriented approach by treating s as a hyperparameter of

our model and find its optimal values using the procedure which is described in Section 7.3.3.2.

7.3.3 Modularity-Inpired Loss and Training Strategy

So far, our work considered improvements of the encoder’s architecture. While this aspect

is crucial, we also argue that previously proposed models were often optimized in a fashion

that, by design, favors link prediction over community detection. With this in mind, this

Section 7.3.3 now complements our contributions from Section 7.3.2 with revised training and

optimization strategies.

7.3.3.1 Modularity-Inspired Losses for GAE and VGAE

As explained in Section 2.4 from Chapter 2, neural weight matrices of standard GAE and

VGAE encoders were tuned by optimizing reconstruction losses/objectives, capturing the sim-

ilarity between the decoded graph and the original one. Usually, these losses directly evaluate

the quality of reconstructed node pairs Âij w.r.t. their ground truth counterpart Aij . This

includes the cross-entropy loss LGAE from Equation (2.28) and the ELBO loss LVGAE from

Equation (2.40). We argue that this optimization strategy also contributes to explaining the

underwhelming performance of some GAE and VGAE models on community detection tasks:

• by design, existing optimization strategies favor good performances on link prediction

tasks, that precisely consist in accurately reconstructing connected/unconnected node

pairs. However, some recent studies emphasized that a good reconstruction of local pair-

wise connections does not always imply a good reconstruction of the global community

structure from the graph under consideration [235, 376]. This motivates the need for a

revised loss function capturing some global community information;

• besides, GAE/VGAE-based community detection experiments often consisted in running

k-means algorithms in the final node embedding space (and, as stated at the beginning of

Section 7.3.2, we also adopt this strategy). However, this results in clustering embedding

vectors based on their L2 distances ∥zi− zj∥2, whereas the aforementioned reconstruction

losses instead often involve inner products (Âij = σ(zTi zj)). There is thus a discrepancy

between the criterion ultimately used for k-means clustering, and the one used during

training to assess node similarities.

133



Chapter 7. Improving Community Detection with Graph Autoencoders

To address these issues, we propose to complement standard GAE and VGAE losses with an

additional loss term, involving L2 distances and inspired by the modularity4 from Equation (7.5).

In the case of the GAE, we will iteratively minimize by gradient descent:

L̃GAE = LGAE −
β

2m

n∑
i,j=1

[
Aij −

didj
2m

]
e−γ∥zi−zj∥22 , (7.9)

with hyperparameters β ≥ 0, γ ≥ 0. Also, for VGAE we will maximize5:

L̃VGAE = LVGAE +
β

2m

n∑
i,j=1

[
Aij −

didj
2m

]
e−γ∥zi−zj∥22 . (7.10)

In Equations (7.9) and (7.10), the exponential term (taking values in [0, 1]) acts as a soft coun-

terpart of the common community indicator δ(i, j) ∈ {0, 1} from Equation (7.5). It tends to 1

when nodes i and j get closer in the embedding space, and tends to 0 when they move apart.

In essence, we expect the addition of such a global regularizer to LGAE and LVGAE to encourage

closer embedding vectors (in the L2 distance) of densely connected parts of the original graph,

and therefore to permit a k-means-based detection of communities with higher modularity values.

On the other hand, the remaining presence of the original LGAE or LVGAE term6 in the loss

aims to preserve good performances on link prediction. The hyperparameter β balances the

relative importance of the modularity regularizer w.r.t. the pairwise node pairs reconstruction

loss, while the hyperparameter γ regulates the magnitude of ∥zi− zj∥22 in the exponential term.

Our experiments will show that proper tuning of β and γ permits us to improve community

detection while jointly preserving performances on link prediction.

The use of a modularity-inspired regularizer in the loss of the Modularity-Aware GAE and

VGAE builds upon several studies, which were not studying the GAE/VGAE frameworks but

emphasized the benefits of various modularity-inspired losses for learning community-preserving

node embedding representations [237, 376, 391]. In our setting, we favor the use of a soft

modularity instead of the term in Equation (7.5), as it permits 1) to obtain a differentiable loss,

and 2) to avoid the actual reconstruction of node communities at each training iteration, which

would incur a larger computational expense.

To conclude we note that, as for a complete evaluation of LGAE and LVGAE, computing the

modularity-inspired terms in Equations (7.9) and (7.10) on the entire graph would be of quadratic

4We emphasize that this new term does not involve the prior Louvain clusters used in Ac.
5We recall that LGAE is minimized while LVGAE is maximized, hence the occurrence of a minus term in

Equation (7.9) but a plus term in Equation (7.10).
6Our experiments will consider the original LGAE or LVGAE from Equations (2.28) and (2.40) and originally

formulated by Kipf and Welling [187]. Nonetheless, one can observe that our modularity-inspired global regularizer
term could be optimized in conjunction with other reconstruction losses. For instance, modularity-inspired terms
could be added to the variant formulation of ELBO loss from Choong et al. [55], that incorporates Gaussian
mixtures in the Kullback-Leibler divergence.
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complexity w.r.t. the number of nodes in the graph. In some of our experiments where such

a complexity would be unaffordable (roughly, when n ≥ 30 000), we will rely on the FastGAE

method from Chapter 4 to approximate modularity-inspired terms on random subgraphs and

scale our method to larger graphs with up to millions of nodes and edges.

7.3.3.2 On the Selection of Hyperparameters

We expect our modularity-inspired losses to improve the training of our Linear/GCN encoders

for community detection, i.e., the tuning of their weight matrices. However, in addition to

these weight matrices, our Modularity-Aware GAE and VGAE models involve several other

hyperparameters, that also play a key role. This includes the standard hyperparameters of GAE

and VGAE models (e.g., the number of training iterations, the learning rate, the dimensions

of encoding layers, and, potentially, the dropout rate [343]), but also our newly introduced

hyperparameters: λ and s from our encoders, as well as β and γ from our losses.

In previous research, the selection procedure for such important hyperparameters was sometimes

omitted [55, 56]. In our previous community detection experiments from Chapters 3, 4 and 6, it

was solely based on the optimization of AUC scores on link prediction validation sets, following

the train/validation/test splitting procedure initially adopted by Kipf and Welling [187] and

described in Section 2.1.2 from Chapter 2. However, intuitively, the best hyperparameters

for community detection might differ from the best ones for link prediction. Such a selection

procedure might therefore be suboptimal for community detection problems.

To tackle this issue, and to complement our novel encoders (Section 7.3.2) and losses (Subsec-

tion 7.3.3.1), we propose an alternative hyperparameters selection procedure w.r.t. previous

practices. As community detection is an unsupervised downstream task, we cannot rely on

train/validation/test splits as for the supervised link prediction binary classification task7. Con-

sistently with our already described contributions, we rather propose to rely on modularity

scores, as it is an unsupervised criterion computed independently of the unobserved ground

truth clusters. More precisely, to select relevant hyperparameters, we will:

• firstly, construct link prediction train/validation/test sets, as in Section 2.1.2;

• then, select hyperparameters that maximize the average of:

– the AUC score obtained for link prediction on the validation set;

– the modularity score Q defined in Equation (7.5). This score is obtained from the

communities extracted by running a k-means on the final vectors zi, learned from the

train graph (all nodes are visible but edges from validation and test sets are masked).
7We recall that the ground truth communities of each node will be unavailable during training. They will only

be ultimately revealed for model evaluation, to compare the agreement of the node partition proposed by our
GAE or VGAE model to the ground truth partition.

135



Chapter 7. Improving Community Detection with Graph Autoencoders

We expect this dual criterion to facilitate the identification of hyperparameters that will be

jointly relevant for link prediction and community detection downstream applications.

7.4 Experimental Analysis

We now present an in-depth experimental evaluation of our proposed Modularity-Aware GAE

and VGAE models together with relevant baselines. In Section 7.4.1 we first describe our

experimental setting. Then in Section 7.4.2, we report and discuss our results.

7.4.1 Experimental Setting

Datasets In the following, we provide an experimental evaluation on seven graphs of various

origins, characteristics, and sizes. First and foremost, we consider the Cora (n = 2 708 and m =

5 429), Citeseer (n = 3 327 and m = 4 732), and Pubmed (n = 19 717 and m = 44 338) citation

networks already used in previous chapters and described in Chapter 3. As in our previous

experiments, we study two versions of each of these datasets, with and without node features

that correspond to bag-of-words vectors of dimensions f = 1433, 3703, and 500, respectively.

We recall that, in these datasets, nodes are clustered in 6, 7, and 3 topic classes. As these three

citations networks remain the most commonly used graph datasets to evaluate GAE and VGAE

models (see our review in Chapter 6), we see value in studying them as well, especially in their

featureless version where, as explained in Section 7.2.3, previous GAE and VGAE extensions

fall short on community detection.

Consistently with our concluding recommendation from Chapter 6, we complete our experi-

mental evaluation with four other datasets. Firstly, we consider the ten times larger version

of Cora already used in Chapter 6 for community detection, and referred to as Cora-Larger in

the following (n = 23 166 and m = 91 500). Nodes are documents clustered in 70 topic-related

communities. Additionally, we consider the Blogs web graph (n = 1 224 and m = 19 025) also

used in Chapter 6, where nodes correspond to webpages of political blogs connected through

hyperlinks. The blogs are clustered in two communities corresponding to politically left-leaning

or right-leaning blogs. Thirdly, we examine the SBM graph (n = 100 000 and m = 1 498 844)

presented in Chapter 4, and generated from a stochastic block model [2]. We recall that nodes

from this graph are clustered in 100 ground truth communities of 1 000 nodes each.

Lastly, in the paper associated with this work [314], we also considered an industrial-scale private

graph provided by Deezer. As we will further emphasize in Part III of this thesis, graph-based

methods are at the core of Deezer’s recommender systems. In the graph under consideration in

this study, denoted Albums (n = 2 503 985 and m = 25 039 155) nodes correspond to music

albums available on the service. They are connected through an undirected edge when they
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are regularly co-listened by Deezer users (as assessed by internal usage metrics computed from

millions of users, but undisclosed in this work for privacy reasons). Deezer is jointly interested

in 1) predicting new connections in the graph corresponding to new albums pairs that users

would enjoy listening to together, and is achieved by performing the link prediction task; and

2) learning groups of similar albums, with the aim of providing usage-based recommendations

(i.e., if users listen to several albums from a community, other unlistened albums from this same

community could be recommended to them), which is achieved by performing the community

detection task. In such an industrial application, learning high-quality album representations

that would jointly enable effective link prediction and community detection would therefore be

desirable. For evaluation, node communities will be compared to a ground truth clustering

of albums in 20 groups defined by their main music genre, allowing us to assess the musical

homogeneity of the node communities proposed by each model.

Tasks For each of these seven graphs, we assess the performance of our models on two tasks:

• Task 1: we first consider a pure community detection task, consisting in the extraction

of a partition of the node set V which ideally agrees with the ground truth communities

of each graph. This task corresponds to the community detection problem considered in

experiments from the previous Chapters 3, 4 and 6. Communities are retrieved by running

the k-means algorithm (with k-means++ initialization [17]) in the final embedding space

of each model to cluster the vectors zi (with k matching the true number of communities);

except for some baseline methods that explicitly incorporate another strategy to partition

nodes (see thereafter). We compare the obtained partitions to the ground truth using the

AMI score already used in previous chapters, that we complete in this study (more focused

on community detection than others) by the Adjusted Rand Index (ARI).

• Task 2: we also consider a joint link prediction and community detection task. In such a

setting, we learn all node embedding spaces from incomplete versions of the seven graphs,

where 15% of edges were randomly masked. We create a validation and a test set from

these masked edges (resp. from 5% and 10% of edges, as in Chapters 3 to 6) and the same

number of randomly picked unconnected node pairs acting as “non-edge” negative pairs.

Then, as in previous chapters, we evaluate the ability to distinguish edges from non-edges,

i.e., link prediction, from the embedding space, using once again the AUC and AP scores

on test sets. Jointly, we also evaluate the community detection performance obtained from

such incomplete graphs, using the same methodology and AMI/ARI scores as in Task 1.

In the case of Task 2, we expect AMI and ARI scores to slightly decrease w.r.t. Task 1, as

models will only observe incomplete versions of the graphs when learning embedding spaces.

Task 2 will further assess whether empirically improving community detection inevitably leads

to deteriorating the original good performances of GAE and VGAE models on link prediction.
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Table 7.2: Complete list of optimal hyperparameters of Modularity-Aware GAE and VGAE models.

Dataset Learning Number of Dropout Use of FastGAE λ β γ s
rate iterations rate (if yes: subgraphs size)

Blogs 0.01 200 0.0 No 0.5 0.75 2 10
Cora (featureless) 0.01 500 0.0 No 0.25 1.0 0.25 1

Cora (with features) 0.01 300 0.0 No 0.001 0.01 1 1
Citeseer (featureless) 0.01 500 0.0 No 0.75 0.5 0.5 2

Citeseer (with features) 0.01 500 0.0 No 0.75 0.5 0.5 2
Pubmed (featureless) 0.01 500 0.0 No 0.1 0.5 0.1 5

Pubmed (with features) 0.01 700 0.0 No 0.1 0.5 10 2
Cora-Large 0.01 500 0.0 No 0.001 0.1 0.1 10

SBM 0.01 300 0.0 Yes (10 000) 0.5 0.1 2 10
Albums 0.005 600 0.0 Yes (10 000) 0.25 0.25 1 5

As our proposed modularity-inspired GAE and VGAE models are designed for joint link pre-

diction and community detection, we expect them to 1) reach comparable (or, ideally, identical)

link prediction scores w.r.t. standard GAE and VGAE models, while 2) reaching better com-

munity detection scores.

Details on Models For the aforementioned evaluation tasks and graphs, we will compare the

performances of our proposed Modularity-Aware GAE and VGAE models to standard GAE and

VGAE and to several other baselines. All results reported below will verify d = 16, i.e., all node

embedding models will learn embedding vectors zi of dimension 16. We also tested models with

d ∈ {32, 64} by including them in our grid search space and reached similar conclusions to the

d = 16 setting (we report and further discuss the impact of d in Section 7.4.2):

• Modularity-Aware GAE and VGAE models: we trained two versions of Modularity-

Aware GAE and VGAE: one with the linear encoder described in Section 7.3.2, and one

with the 2-layer GCN encoder (GCN(2)). The latter encoder includes a 32-dimensional hid-

den layer. We recall that link prediction is performed from inner product decoding Âij =

σ(zTi zj), and that community detection is performed via a k-means on the final vectors zi

learned by each model. During training, as in previous chapters, we used the Adam optim-

izer [184], without dropout (but we tested models with dropout values in {0, 0.1, 0.2} in

our grid search optimization). All hyperparameters were carefully tuned following the pro-

cedure described in Section 7.3.3.2. For each graph, we tested learning rates from the grid

{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}, number of training iterations in {100, 200, 300, ..., 800},
with λ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, ..., 1.0}, β ∈ {0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0},
γ ∈ {0.1, 0.2, 0.5, 1.0, 2, 5, 10} and s ∈ {1, 2, 5, 10}. The best hyperparameters for each

graph are reported in Table 7.2. We adopted the same optimal hyperparameters for GAE

and VGAE variants (a result which is consistent with the literature [187]). Lastly, as

exact loss computation was computationally unaffordable for our two largest graphs, SBM

and Albums, their corresponding models were trained by using the FastGAE method from
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Chapter 4, approximating losses by reconstructing degree-based sampled subgraphs of

n(S) = 10 000 nodes, with α = 1.

As in previous chapters, we used Tensorflow [1], training our models (as well as GAE/VGAE

baselines described below) on an NVIDIA GTX 1080 GPU, and running other operations

on a double Intel Xeon Gold 6134 CPU8. Along with the publication of our paper [314]

(which is still under review), we will publicly release our source code on GitHub.

• Standard GAE and VGAE: we compare these models to two variants of GAEs and

VGAEs: one with 2-layer GCN encoders with a 32-dimensional hidden layer (which is

equal to the standard GAE and VGAE models from Kipf and Welling [187]) and one with

a linear encoder (corresponding to our models from Chapter 6). We note that these are

particular cases of our Modularity-Aware GAE/VGAE with GCN or linear encoder and

with λ = 0 and β = 0. As for our Modularity-Aware models, link prediction is performed

from inner product decoding, and community detection via a k-means on vectors zi. We

also adopt a similar model selection procedure as for our Modularity-Aware GAE and

VGAE to select hyperparameters (see Section 7.3.3.2). We selected similar learning rates

and number of iterations to the values reported in Table 7.2.

• Other baselines: for completeness, we also compare the standard and Modularity-Aware

GAE/VGAE to several other relevant baselines. First and foremost, we report experiments

on the VGAECD [55] and VGAECD-OPT [56] models, designed for community detection

and discussed in Section 7.2.2. We use our own Tensorflow implementation of these mod-

els9. We set similar hyperparameters to the above other GAE/VGAE-based models. In

all models, the number of Gaussian mixtures matches the ground truth number of com-

munities of each graph. Besides, we also report experiments on the DVGAE [217] model

also discussed in Section 7.2.2, setting similar learning rates and layer dimensions to the

above GAE/VGAE-based models, and using the authors’ public implementation. In the

case of DVGAE, we use 2-layer GCN encoders for consistency with other models of our

experiments; we nonetheless acknowledge that Li et al. [217] also proposed another en-

coding scheme, denoted Heatts in their paper (but unavailable in their public code at the

time of writing) that could replace GCNs both in DVGAE and in Modularity-Aware GAE

and VGAE. We also report experiments on the ARGA and ARVGA models from Pan et

8On our machines, running times of the Modularity-Aware GAE and VGAE models were comparable to
running times of their standard GAE and VGAE counterparts. For example, training each variant of VGAE on
the Pubmed graph for 500 training iterations and with s = 5 approximately takes 25 minutes on a single GPU
(without the FastGAE method which significantly speeds up training [307]). This is consistent with our claims
on the comparable complexity of Modularity-Aware and standard models.

9Authors of VGAECD/VGAECD-OPT did not release any public implementation of their models, and we
were unable to reach them by e-mail. We note that we obtained some inconsistent results w.r.t. their original
performances (specifically, we reached better performances on featureless graphs, and lower performances on
graphs with node features), even when adopting their set of hyperparameters. Authors followed an experimental
setting and pure community detection task similar to ours.
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al. [279] that incorporate an adversarial regularization scheme, with similar hyperpara-

meters, and using the authors’ implementation. We already considered these models in

Chapter 3. While they were not specifically introduced for community detection, Pan et

al. [279] reported empirical gains on this task w.r.t. standard GAE/VGAE (on graphs

with node features).

We furthermore consider three additional baselines not utilizing the autoencoder paradigm.

Firstly, we report results from node2vec [123] and DeepWalk [287], using similar settings

w.r.t. Chapter 3. We use a similar strategy to our aforementioned GAE/VGAE models

(k-means/inner products) for community detection and link prediction from embedding

spaces. Lastly, we also compare to the Louvain community detection method, using the

authors’ implementation [31]. We see value in comparing our methods to a direct use

of Louvain, as this method 1) often emerged as a simple but competitive alternative to

GAE/VGAE for community detection (see Section 7.2), and 2) is directly leveraged in

our proposed Modularity-Aware GAE and VGAE models as a pre-processing step for the

computation of Ac and As (see Section 7.3.2).

7.4.2 Results and Discussion

We now present our experimental results. Firstly, we analyze the impact of our proposed hyper-

parameter selection procedure. Then, we discuss results on Task 1 and then on Task 2. Finally,

we mention the limitations and possible extensions of our approach.

On the Selection of Hyperparameters In Subsection 7.3.3.2, we proposed an alternative

hyperparameter selection procedure w.r.t. previous practices in the literature. Based on the joint

maximization of AUC validation scores for link prediction and modularity scores Q, it aims to

identify more relevant GAE/VGAE hyperparameters for joint link prediction and community

detection. We recall that the resulting optimal hyperparameters are displayed in Table 7.2.

In our experiments, this procedure did not modify our choices of learning rates and dropout

rates for the different GAE/VGAE models under consideration, w.r.t. a standard selection

solely relying on AUC validation scores. It had a more noticeable impact on the choices of

clustering-related hyperparameters in Modularity-Aware GAE and VGAE (i.e., λ, β, γ, and s)

as well as on the required number of training iterations in the gradient descent/ascent.

Figure 7.2 provides an example of this phenomenon, for the number of training iterations required

to train Modularity-Aware VGAE models on the featureless Cora and Pubmed graphs. The

figure shows that, unlike our proposed procedure jointly based on AUC and Q, a hyperparameter

selection based solely on AUC validation scores leads to earlier stopping of the model training

and suboptimal performances on community detection. This reaffirms the empirical relevance
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Figure 7.2: Identification of the required number of training iterations, for Modularity-Aware VGAE with linear
encoders trained on the featureless (a) Cora, and (b) Pubmed graphs. The plots report the evolution of the
modularity Q (dark blue) and AUC link prediction scores on validation sets (red) w.r.t. the number of model
training iterations in gradient descent. By looking at the red curves only, one might choose to stop training models
after 200 iterations as Kipf and Welling [187], as the AUC validation scores have almost stabilized. However,
the dark blue curves emphasize that Q still increases up to 400-500 training iterations for both graphs. By also
using Q for hyperparameter selection (as we proposed), one will therefore continue training VGAE models up
to 400-500 iterations. The light blue curves confirm that such a strategy eventually leads to better AMI final
scores w.r.t. ground truth communities. Note, that the light blue curves could not be directly used for tuning, as
ground truth communities are assumed to be unavailable at training time.

of our proposed procedure, and that optimal hyperparameters for joint link prediction and

community detection might differ from those for link prediction only. Moreover, we note that,

while Figure 7.2 focuses on two Modularity-Aware VGAE models, our procedure also leads to

the selection of a larger number of training iterations for the other GAE/VGAE-based methods

under consideration in this work (values are similar to those in Table 7.2), which explains why,

on some occasions, we will report slightly improved results w.r.t. those obtained in the original

papers for these models (for instance, some results on Linear GAE and VGAE models will be

slightly better than those reported in Chapter 6).

Results for Community Detection on Original Graphs (Task 1) We now focus on the

“pure” community detection task (Task 1), performed by models trained on graphs where no

edges are removed for model training, as previously introduced in Section 7.4.1. The second

and third columns of Table 7.3 report mean AMI and ARI scores on Cora for this task along

with standard deviations over 100 runs, for Modularity-Aware GAE and VGAE models (with

linear or with 2-layer GCN encoders), their standard counterparts and other baselines. We

draw several conclusions from Table 7.3. Foremost, previous conclusions [55, 56, 307, 308] on

the limitations of standard GAE and VGAE models for community detection are confirmed:
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Table 7.3: Results for Task 1 and Task 2 on the featureless Cora graph, using Modularity-Aware GAE and VGAE
with Linear and GCN encoders, their standard GAE and VGAE counterparts, and other baselines. All node
embedding models learn embedding vectors of dimension d = 16, with other hyperparameters set as described
in Section 7.4.1. Scores are averaged over 100 runs. For Task 2, link prediction results are reported from test
sets (edges masked for the original graph in addition to the same number of randomly picked unconnected node
pairs). Bold numbers correspond to the best performance for each score. Scores in italic are within one standard
deviation range from the best score.

Model Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models

Linear Modularity-Aware VGAE 46.65 ± 0.94 39.43 ± 1.15 42.86 ± 1.65 34.53 ± 1.97 85.96 ± 1.24 87.21 ± 1.39
Linear Modularity-Aware GAE 46.58 ± 0.40 39.71 ± 0.41 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33

GCN-based Modularity-Aware VGAE 43.25 ± 1.62 35.08 ± 1.88 41.03 ± 1.55 33.43 ± 2.17 84.87 ± 1.14 85.16 ± 1.23
GCN-based Modularity-Aware GAE 44.39 ± 0.85 38.70 ± 0.94 41.13 ± 1.35 35.01 ± 1.58 86.90 ± 1.16 87.55 ± 1.26

Standard GAE/VGAE Models

Linear VGAE 37.12 ± 1.46 26.83 ± 1.68 32.22 ± 1.76 21.82 ± 1.80 85.69 ± 1.17 89.12 ± 0.82
Linear GAE 35.05 ± 2.55 24.32 ± 2.99 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

GCN-based VGAE 34.36 ± 3.66 23.98 ± 5.01 28.62 ± 2.76 19.70 ± 3.71 85.47 ± 1.18 88.90 ± 1.11
GCN-based GAE 35.64 ± 3.67 25.33 ± 4.06 31.30 ± 2.07 19.89 ± 3.07 85.31 ± 1.35 88.67 ± 1.24

Other Baselines
Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –

VGAECD 36.11 ± 1.07 27.15 ± 2.05 33.54 ± 1.46 24.32 ± 2.25 83.12 ± 1.11 84.68 ± 0.98
VGAECD-OPT 38.93 ± 1.21 27.61 ± 1.82 34.41 ± 1.62 24.66 ± 1.98 82.89 ± 1.20 83.70 ± 1.16

ARGVA 34.97 ± 3.01 23.29 ± 3.21 28.96 ± 2.64 19.74 ± 3.02 85.85 ± 0.87 88.94 ± 0.72
ARGA 35.91 ± 3.11 25.88 ± 2.89 31.61 ± 2.05 20.18 ± 2.92 85.95 ± 0.85 89.07 ± 0.70

DVGAE 35.02 ± 2.73 25.03 ± 4.32 30.46 ± 4.12 21.06 ± 5.06 85.58 ± 1.31 88.77 ± 1.29
DeepWalk 36.58 ± 1.69 27.92 ± 2.93 30.26 ± 2.32 20.24 ± 3.91 80.67 ± 1.50 80.48 ± 1.28
node2vec 41.64 ± 1.25 34.30 ± 1.92 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

in Table 7.3, these methods are notably outperformed by a direct use of the Louvain method

(e.g., 42.70% vs 34.36% mean AMI scores for Louvain vs GCN-based VGAE). We also observe

that previous GAE/VGAE extensions, reported as baselines, actually provide few empirical

benefits w.r.t. standard GAE and VGAE models for this featureless graph (e.g., only +1.81

AMI points for VGAECD-OPT10 vs Linear VGAE). Such a result, in conjunction with the

improved performances of these same baselines on graphs with features (see thereafter), tends

to confirm our initial diagnosis that various GAE/VGAE extensions for community detection

mainly benefit from the presence of node features.

On the contrary, our proposed Modularity-Aware GAE and VGAE models, incorporating Louv-

ain clusters as a prior signal in the GAE’s and VGAE’s encoders, significantly outperform both

the use of the Louvain method alone, and the use of GAE and VGAE alone (e.g., with a top

46.65% mean AMI for Modularity-Aware VGAE with linear encoders, and a top 39.71% mean

ARI score for Modularity-Aware GAE with linear encoders). Modularity-Aware models also

compare favorably to the baselines under consideration (e.g., with +12.1 ARI points for Linear

Modularity-Aware GAE w.r.t. VGAECD-OPT), while also providing less volatile results w.r.t.

standard GAE/VGAE models. Furthermore, we note that Modularity-Aware models with linear

10The increase is even smaller when replacing AMI scores obtained via our re-implementation of VGAECD
and VGAECD-OPT (i.e., 36.11% and 38.93%, respectively) by AMI scores originally reported in [56] for these
methods (i.e., 28.22% and 37.35%, respectively), which are lower than ours.
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(b) Linear Modularity-Aware VGAE

Figure 7.3: Visualization of node embedding representations for the featureless Cora graph, learned by (a) Stand-
ard VGAE, and (b) Modularity-Aware VGAE, with linear encoders. The plots were obtained using the t-SNE
method for high-dimensional data visualization. Colors denote ground truth communities, that were not avail-
able during training. Although community detection is not perfect (both methods return AMI scores < 50%
in Table 7.3), node embedding representations from (b) provide a more visible separation of these communities.
Specifically, in Table 7.3, using Linear Modularity-Aware VGAE for community detection leads to an increase of
9 AMI points (Task 1) to 10 AMI points (Task 2) for community detection w.r.t. Linear Standard VGAE, while
preserving comparable performances on link prediction (Task 2).

encoders tend to outperform their GCN-based counterparts and that GAE and VGAE reach

comparable scores. In addition to these results, Figure 7.3 visualizes the representations learned

by our models using t-SNE11 [363].

Overall, we obtain similar conclusions from the other graph datasets. Following the format of

Table 7.3, columns two and three of Table 7.4 present detailed community detection results

for the featureless Pubmed graph. Table 7.5 reports more summarized results for all other

graph datasets under consideration, with and without node features (when available). While

Louvain outperforms standard GAE/VGAE models in 5 featureless graphs out of 7 in Table 7.5

(e.g., 19.81% vs 15.79% mean AMI scores for Louvain vs GCN-based VGAE on Albums), our

Modularity-Aware models manage to achieve either comparable or better performances w.r.t.

standard models, Louvain and other baselines in the wide majority of experiments. Furthermore,

throughout Table 7.5, we observe that linear encoders outperform their GCN-based counterparts

in 8/10 experiments, and that VGAE models outperform GAE models in 8/10 experiments (even

though performances are often relatively close, as for Cora). Lastly we emphasize that, while all

tables report results for fixed embedding dimensions of d = 16, we reached similar conclusions

for d ∈ {32, 64}. Although performances sometimes improved by increasing d, the ranking of

methods under consideration remained similar. Such a result is consistent with experiments

from previous chapters. For instance, by setting d = 64, Deepwalk’s mean AMI score increased

from 36.58% to roughly 41% on the featureless Cora graph, while the mean AMI score from our

11We used the scikit-learn [284] implementation of this data visualization method: https://scikit-
learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

143

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html


Chapter 7. Improving Community Detection with Graph Autoencoders

Table 7.4: Results for Task 1 and Task 2 on the featureless Pubmed graph, using Modularity-Aware GAE and
VGAE with Linear and 2-layer GCN encoders, their standard GAE and VGAE counterparts, and other baselines.
All node embedding models learn embedding vectors of dimension d = 16, with other hyperparameters set as
described in Section 7.4.1. Scores are averaged over 100 runs. For Task 2, link prediction results are reported
from test sets (edges masked during training + same number of randomly picked unconnected node pairs). Bold
numbers correspond to the best performance for each score. Scores in italic are within one standard deviation
range from the best score.

Model Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models

Linear Modularity-Aware VGAE 28.12 ± 0.29 29.01 ± 0.51 25.93 ± 0.65 23.76 ± 0.49 85.76 ± 0.37 87.77 ± 0.31
Linear Modularity-Aware GAE 28.54 ± 0.24 26.36 ± 0.34 26.38 ± 0.43 21.30 ± 0.59 84.39 ± 0.32 87.92 ± 0.40

GCN-based Modularity-Aware VGAE 28.08 ± 0.27 28.14 ± 0.33 25.70 ± 0.86 22.65 ± 0.80 84.70 ± 0.24 86.64 ± 0.15
GCN-based Modularity-Aware GAE 28.74 ± 0.28 26.71 ± 0.47 25.52 ± 0.45 20.52 ± 0.31 85.07 ± 0.35 88.27 ± 0.39

Standard GAE/VGAE Models

Linear VGAE 22.16 ± 2.02 13.90 ± 3.47 21.78 ± 2.57 13.81 ± 3.17 84.57 ± 0.51 88.31 ± 0.44
Linear GAE 12.61 ± 4.61 6.37 ± 3.86 12.60 ± 4.67 6.21 ± 1.75 82.03 ± 0.32 87.71 ± 0.24

GCN-based VGAE 20.11 ± 3.05 13.12 ± 3.10 17.34 ± 2.99 8.71 ± 3.05 82.19 ± 0.88 87.51 ± 0.55
GCN-based GAE 20.12 ± 2.89 14.21 ± 2.78 16.75 ± 3.36 9.18 ± 2.71 82.33 ± 1.32 87.20 ± 0.58

Other Baselines
Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –

VGAECD 20.32 ± 2.95 13.54 ± 2.98 17.39 ± 3.04 9.21 ± 3.12 82.05 ± 0.90 87.30 ± 0.53
VGAECD-OPT 22.50 ± 1.99 14.58 ± 2.86 21.98 ± 2.46 15.22 ± 2.92 82.03 ± 0.82 87.41 ± 0.53

ARGVA 20.73 ± 3.10 13.94 ± 3.12 17.63 ± 3.19 9.19 ± 3.09 84.07 ± 0.55 87.73 ± 0.49
ARGA 20.98 ± 2.90 14.79 ± 2.80 17.21 ± 3.01 9.59 ± 2.76 83.73 ± 0.53 87.90 ± 0.45

DVGAE 23.15 ± 2.52 15.02 ± 3.33 22.10 ± 2.50 14.62 ± 2.96 83.21 ± 0.92 88.17 ± 0.49
DeepWalk 28.53 ± 0.43 29.61 ± 0.33 15.80 ± 1.05 16.16 ± 1.75 80.63 ± 0.42 81.03 ± 0.54
node2vec 28.52 ± 1.12 30.63 ± 1.14 23.88 ± 0.54 25.90 ± 0.65 81.03 ± 0.30 82.33 ± 0.41

Linear Modularity-Aware GAE model simultaneously increased from 46.58% to 47.80%.

Interestingly, we also observe that combining the Louvain method and GAE/VGAE in our

Modularity-Aware models might be empirically beneficial even when standard GAE/VGAE mod-

els initially outperform the Louvain method. For instance in Table 7.4, our Linear Modularity-

Aware VGAE outperforms the Linear Standard VGAE (e.g., with 28.12% vs 22.16% mean AMI

scores), despite the fact that this standard model initially outperformed the Louvain method

(20.06% mean AMI score). This tends to confirm that modularity-based clustering à la Louvain

complements the encoding-decoding paradigm of GAE and VGAE models, and that learning

node embedding spaces from complementary criteria is empirically beneficial. On a more negat-

ive note, we nonetheless acknowledge that, on Cora, Citeseer, and Pubmed in Table 7.5, empirical

gains of Modularity-Aware models are less visible on graphs equipped with node features than

on featureless graphs, which we will further discuss in our limitation section.

As our Modularity-Aware models include two main novel components (namely our community-

preserving encoders from Section 7.3.2 and our revised loss from Section 7.3.3), one might wonder

what the contribution of each of these components to the performance gains is. To study this

question, we report in Figure 7.4 the results of an ablation study, that consisted in training

variant versions of our models leveraging one of these components only12 (i.e., the encoder but

12A Modularity-Aware GAE or VGAE model that leverages the novel encoder only (respectively, the novel
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Figure 7.4: Comparison of two “complete” Modularity-Aware VGAE, trained on (a) featureless Cora and (b)
Albums with variants of these models only leveraging the new encoder from Section 7.3.2, or the new loss from
Section 7.3.3. We observe that incorporating any of these two components improves community detection on these
two graphs w.r.t. Standard VGAE. Moreover, using both components simultaneously leads to the best results.
Note, the optimal pair (λ, β) for complete models might differ from the optimal λ (resp. β) when incorporating
the new encoder (resp. loss) only.

not the loss, or the loss but not the encoder). Figure 7.4 shows that incorporating any of these

two individual components into the model improves community detection. The gain is larger for

the loss in the Cora example from Figure 7.4(a), while it is larger for the encoder in the Albums

example from Figure 7.4(b). A simultaneous use of the encoder and the loss leads to the best

results in both examples, which we also confirmed on the other graphs under consideration.

Results for Joint Link Prediction and Community Detection (Task 2) We now study

results for Task 2, the joint link prediction and community detection task described in Sec-

tion 7.4.1, and performed on incomplete versions of the graph datasets where 15% of edges are

randomly masked. Results for this task (i.e., AMI and ARI scores from community detection

on incomplete graphs, and AUC and AP scores from link prediction on test sets) are reported

in the four rightmost columns of Tables 7.3, 7.4 and 7.5. AMI and ARI scores from this task

are also included in the ablation study in Figure 7.4.

We draw several conclusions from these additional experiments. First of all, we confirm that

AMI and ARI scores decrease slightly w.r.t. Task 1, which was expected due to the absence of

loss only) corresponds to a particular case of a “complete” Modularity-Aware GAE or VGAE model, where the
hyperparameter β (respectively, the hyperparameter λ) is set to 0.
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part of the graph structure during the training phase (e.g., from 46.65% to 42.86% mean AMI, for

Linear Modularity-Aware VGAE on Cora in Table 7.3). Nonetheless, the ranking of the different

methods under consideration remains consistent with Task 1. In particular, our Modularity-

Aware models still outperform baselines in cases where they were already outperforming in

Task 1 (e.g., with a top 43.48% mean AMI for Linear Modularity-Aware GAE on Cora in

Table 7.3, vs 28.41% for the standard Linear GAE and 39.09% for the Louvain method).

Besides these confirmations, the main goal of Task 2 was to address our second research question

stated in Section 7.1: do improvements on the community detection task necessarily incur a loss

in the link prediction performance or can they be jointly addressed with high accuracy? Indeed,

as GAE and VGAE models were originally recognized as effective link prediction methods, im-

proving community detection while deteriorating link prediction might be undesirable, especially

in problems requiring effective node embedding representations for multitask applications (see

the Deezer example from Section 7.4.1). By design, our proposed encoders, losses, and selection

procedure specifically aimed to avoid such a deterioration.

Empirical results confirm the ability of Modularity-Aware models to preserve comparable link

prediction performances w.r.t standard GAE and VGAE models. For instance in Table 7.3,

our Linear Modularity-Aware GAE model reaches mean AUC and AP scores of 87.18% and

88.53%, respectively, which is comparable (or even slightly better in the case of AUC) to Linear

Standard GAE (84.46% and 88.42%, respectively). We reach similar results for the three other

Modularity-Aware models in Table 7.3, while scores of several baselines deteriorate by a few

points. Overall, all other Modularity-Aware models reported in the complete Table 7.5 achieve

comparable (either better, identical, or only a few points below) AUC and AP scores w.r.t. their

GAE or VGAE counterparts.

Limitations and Possible Extensions As observed in the previous paragraphs, empirical

gains of Modularity-Aware models are less pronounced on graphs equipped with node features

(although non null in 2/3 cases). In Table 7.5, for Cora with features, we “only” report increases

in Task 1 AMI scores of +2.63 points w.r.t. the corresponding standard VGAE model. For

comparison, in the featureless case, we reported increases in Task 1 AMI scores of +11.53 points.

Furthermore, our Modularity-Aware VGAE model does not surpass standard VGAE models at

all on Pubmed with features. We hypothesize that the incorporation of Louvain-based prior

clusters in Modularity-Aware models might be less relevant for these attributed graphs. Indeed,

while Louvain only leverages the graph structure for node clustering, node features seem to play

a strong role in the identification of ground truth communities for these graphs.
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Table 7.5: Summarized results for Tasks 1 and 2 on all graphs. For each graph, for brevity, we only report
the best Modularity-Inspired model (best on Task 2, among GCN or linear encoder, and GAE or VGAE),
its standard counterpart, and a comparison to the Louvain baseline as well as the best other baseline (among
VGAECD, VGAECD-OPT, ARGA, ARGVA, DVGAE, DeepWalk and node2vec). All node embedding models
learn embedding vectors of dimension d = 16, with other hyperparameters set as described in Section 7.4.1. Scores
are averaged over 100 runs except for the larger SBM and Albums graphs (10 runs). Bold numbers correspond to
the best performance for each score. Scores in italic are within one standard deviation range from the best score.

Dataset Model Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

GCN-based Modularity-Aware VGAE 74.23 ± 0.95 83.13 ± 0.79 70.42 ± 1.28 79.80 ± 1.12 91.67 ± 0.39 92.37 ± 0.41
GCN-based Standard VGAE 73.42 ± 0.65 82.58 ± 0.52 66.90 ± 3.32 77.23 ± 3.89 91.64 ± 0.42 92.52 ± 0.51

Blogs Louvain 63.43 ± 0.86 76.66 ± 0.70 57.25 ± 1.67 73.00 ± 1.56 – –
Best other baseline:

node2vec 72.88 ± 0.87 82.08 ± 0.73 67.64 ± 1.23 77.03 ± 1.85 83.63 ± 0.34 79.60 ± 0.61

Linear Modularity-Aware GAE 46.58 ± 0.40 39.71 ± 0.41 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33
Linear Standard GAE 35.05 ± 2.55 24.32 ± 2.99 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

Cora Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –
Best other baseline:

node2vec 41.64 ± 1.25 34.30 ± 1.92 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

Linear Modularity-Aware VGAE 52.61 ± 1.41 45.74 ± 2.02 49.70 ± 2.04 43.64 ± 3.51 93.10 ± 0.88 94.06 ± 0.75
Cora Linear Standard VGAE 49.98 ± 2.40 43.15 ± 4.35 46.90 ± 1.43 38.24 ± 3.56 93.04 ± 0.80 94.04 ± 0.75
with Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –

features Best other baseline:
VGAECD-OPT 50.32 ± 1.95 43.54 ± 3.23 47.83 ± 1.64 39.45 ± 3.53 92.25 ± 1.07 92.60 ± 0.91

Linear Modularity-Aware VGAE 21.28 ± 1.03 15.39 ± 1.06 19.05 ± 1.47 12.19 ± 1.38 80.84 ± 1.64 84.21 ± 1.21
Linear Standard VGAE 13.83 ± 1.00 8.31 ± 0.89 11.11 ± 1.10 5.87 ± 0.87 78.26 ± 1.55 82.93 ± 1.39

Citeseer Louvain 24.72 ± 0.27 9.21 ± 0.75 22.71 ± 0.47 7.70 ± 0.67 – –
Best other baseline:

node2vec 18.68 ± 1.13 14.93 ± 1.15 14.40 ± 1.18 12.13 ± 1.53 76.05 ± 2.12 79.46 ± 1.65

Linear Modularity-Aware VGAE 25.11 ± 0.94 15.55 ± 0.60 22.21 ± 1.24 12.59 ± 1.25 86.54 ± 1.20 88.07 ± 1.22
Citeseer Linear Standard VGAE 17.80 ± 1.61 6.01 ± 1.46 17.38 ± 1.43 6.10 ± 1.51 89.08 ± 1.19 91.19 ± 0.98
with Louvain 24.72 ± 0.27 9.21 ± 0.75 22.71 ± 0.47 7.70 ± 0.67 – –

features Best other baseline:
DVGAE 20.09 ± 2.84 12.16 ± 2.74 16.02 ± 3.32 10.03 ± 4.48 86.85 ± 1.48 88.43 ± 1.23

Linear Modularity-Aware GAE 28.54 ± 0.24 26.36 ± 0.34 26.38 ± 0.43 21.30 ± 0.59 84.39 ± 0.32 87.92 ± 0.40
Linear Standard GAE 12.61 ± 4.61 6.37 ± 3.86 12.60 ± 4.67 6.21 ± 1.75 82.03 ± 0.32 87.71 ± 0.24

Pubmed Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –
Best other baseline:

node2vec 28.52 ± 1.12 30.63 ± 1.14 23.88 ± 0.54 25.90 ± 0.65 81.03 ± 0.30 82.33 ± 0.41

Linear Modularity-Aware VGAE 30.09 ± 0.63 29.11 ± 0.65 29.60 ± 0.70 28.54 ± 0.74 97.10 ± 0.21 97.21 ± 0.18
Pubmed Linear Standard VGAE 29.98 ± 0.41 29.05 ± 0.20 29.51 ± 0.52 28.50 ± 0.36 97.12 ± 0.20 97.20 ± 0.17
with Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –

features Best other baseline:
VGAECD-OPT 32.47 ± 0.45 29.09 ± 0.42 29.46 ± 0.52 28.43 ± 0.61 94.27 ± 0.33 94.53 ± 0.36

Linear Modularity-Aware VGAE 48.55 ± 0.18 22.21 ± 0.39 46.10 ± 0.29 20.53 ± 0.38 95.76 ± 0.17 96.31 ± 0.12
Linear Standard VGAE 46.07 ± 0.54 20.01 ± 0.90 43.38 ± 0.37 18.02 ± 0.66 95.55 ± 0.22 96.30 ± 0.18

Cora-Larger Louvain 44.72 ± 0.50 19.46 ± 0.66 43.41 ± 0.52 19.29 ± 0.68 – –
Best other baseline:

DVGAE 46.63 ± 0.56 20.72 ± 0.96 43.48 ± 0.61 18.45 ± 0.67 94.97 ± 0.23 95.98 ± 0.21

Linear Modularity-Aware VGAE 36.08 ± 0.13 8.11 ± 0.10 35.85 ± 0.20 8.06 ± 0.11 82.34 ± 0.38 86.76 ± 0.41
Linear Standard VGAE 35.01 ± 0.21 7.88 ± 0.15 30.79 ± 0.21 6.50 ± 0.13 80.11 ± 0.35 83.40 ± 0.36

SBM Louvain 36.06 ± 0.12 8.11 ± 0.10 35.84 ± 0.18 8.03 ± 0.09 – –
Best other baseline:

DVGAE 35.90 ± 0.18 8.07 ± 0.15 35.53 ± 0.23 7.95 ± 0.19 82.59 ± 0.36 87.08 ± 0.40

GCN-Based Modularity-Aware VGAE 21.64 ± 0.18 13.19 ± 0.09 19.10 ± 0.21 12.00 ± 0.17 85.40 ± 0.14 86.38 ± 0.15
GCN-Based Standard VGAE 15.79 ± 0.32 9.75 ± 0.21 13.98 ± 0.35 8.81 ± 0.32 85.37 ± 0.12 86.41 ± 0.11

Albums Louvain 19.81 ± 0.19 12.21 ± 0.09 17.68 ± 0.20 11.02 ± 0.13 – –
Best other baseline:

node2vec 20.03 ± 0.24 12.20 ± 0.19 18.34 ± 0.29 11.27 ± 0.28 83.51 ± 0.17 84.12 ± 0.15
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Nevertheless, we recall that the use of the Louvain method was made without loss of general-

ity. As explained in Section 7.3.2, our revised message passing operators would remain valid

for other methods that alternatively derive a prior clustering signal. Future experiments on

such alternatives (e.g., methods processing node features) could therefore improve community

detection performances on these three attributed graphs. Overall, the empirical performance of

our method directly depends on the quality of the underlying prior clustering method used to

compute Ac and As, which should therefore be carefully selected.

More broadly, our framework could also straightforwardly incorporate alternative encoders (be-

sides linear and multi-layer GCN encoders), alternative decoders (e.g., decoders replacing in-

ner products by more refined graph reconstruction methods [124, 329] including our gravity-

inspired decoder from Chapter 5) and alternative losses (for instance, as explained in Sec-

tion 7.3.3, our modularity-inspired regularizer could be optimized in conjunction with the ELBO

loss from VGAECD and VGAECD-OPT [55, 56] involving Gaussian mixtures). One could also

replace our k-means step, to cluster vectors zi, with another method such as k-medoids [281]

or spectral clustering [368] (although our preliminary experiments in this direction did not

reach significantly better results). Future work considering such alternative architectures for

Modularity-Aware GAE/VGAE could definitely lead to the improvement of our models.

Lastly, we would also need to extend Modularity-Aware GAE and VGAE to dynamic graphs.

Indeed, while our work considered fixed graph structures, real-world graphs often evolve over

time. For instance, as we will further explain and study in Chapter 9, on the Deezer service, new

albums regularly appear in the musical catalog. New nodes will therefore appear in the Albums

graph. Capturing such changes, e.g., through dynamic embedding methods [271], might permit

learning more refined representations and provide effective dynamic community detection.

7.5 Conclusion

In this chapter, we introduced an effective method for simultaneous link prediction and com-

munity detection, compatible with both the GAE and VGAE frameworks. This approach,

referred to as Modularity-Aware GAE and VGAE, is based on a rigorous diagnosis of the short-

comings of existing approaches to this problem.

Modularity-Aware GAE and VGAE take advantage of two elements: a theoretically grounded

variant of message passing operator in the GAE and VGAE encoders, that incorporates prior

cluster information, and the addition of a modularity-based loss component to the usual existing

loss functions. Both elements were experimentally shown to have an individual impact on

the community detection performances. We furthermore introduced a revised hyperparameter

selection procedure specifically designed for joint link prediction and community detection. We

experimentally demonstrated the effectiveness of the approach on several real-world datasets,
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both with node features and, crucially, featureless graphs. The results are consistently on par

or better than popular baselines for both link prediction and community detection.

Last, but not least, we identified several research directions that, in future studies, should

lead to the extension and the improvement of our work. In particular, we mentioned potential

extensions of our approach to dynamic graphs. In Chapter 9, we will present some applications

of Modularity-Aware GAE and VGAE models to recommendation problems on Deezer, that

inherently incorporate a dynamic aspect.

7.6 Appendices

In this supplementary section, we prove the propositions of Subsection 7.3.2.4. These proofs

were placed out of the main content of Chapter 7 for the sake of brevity and readability.

Preliminaries

We begin by introducing several theoretical results which we will use in our proofs. The specific

formulations of the results in this section, i.e., Definition 7.7 and Propositions 7.8, 7.9 and

7.10, are adapted from Lutzeyer [240]. When considering regular graphs, i.e., graphs containing

only nodes of equal degree, their different graph representation matrices, such as the adjacency

matrix, Laplacian matrices, and the GCN’s message passing operator, are related via polynomial

matrix transformations. These are now defined.

Definition 7.7. Horn and Johnson [147] define the evaluation of a polynomial p(x) = clx
l +

cl−1x
l−1 + . . .+ c1x+ c0 at a matrix Φ as

p(Φ) = clΦ
l + cl−1Φ

l−1 + . . .+ c1Φ+ c0I. (7.11)

Horn and Johnson [147] further include a discussion of the influence of a polynomial matrix

transformation on the matrices’ eigenvalues and eigenvectors, which we reproduce below.

Proposition 7.8. Let p(·) be a given polynomial. If ϕ is an eigenvalue of Φ ∈ Rn×n, while u is

an associated eigenvector, then p(ϕ) is an eigenvalue of the matrix p(Φ) and u is an eigenvector

of p(Φ) associated with p(ϕ).

Since we consider graphs consisting of several connected components in a multitude of our

propositions, we now provide a theorem which relates the eigenvalues and eigenvectors of the

whole graph to those of its connected components.

Proposition 7.9. Let G be a graph with corresponding adjacency matrix A and assume G
to consist of K connected components each with corresponding adjacency matrix Ak for k ∈
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{1, . . . ,K}. Then, the eigenvalues of F(A) are equal to the union of the eigenvalues of F(Ak) over

k ∈ {1, . . . ,K}. Further, a set of eigenvectors of F(A) can be constructed from the eigenvector

sets of F(Ak) for k ∈ {1, . . . ,K}.

We refer to [314] for the proof of Proposition 7.9. To allow us to relate the spectra and eigen-

vectors of A to the more novel GCN message passing operator F(A) we frequently make use of

the matrix similarity relationship. The consequence of a matrix similarity relationship between

matrices on their eigenvalues and eigenvectors is discussed in Proposition 7.10.

Proposition 7.10. [147] If two matrices Φ and Ψ are related via a nonsingular matrix S as

follows, Φ = S−1ΨS. Then, Φ and Ψ have the same multiset of eigenvalues. Further, for

eigenvector v with corresponding eigenvalue ϕ of Φ gives rise to an eigenvector Sv of Ψ with

equal corresponding eigenvalue ϕ.

Equipped with such a background, we can now prove the propositions of Subsection 7.3.2.4.

Proof of Proposition 7.4

Teke and Vaidyanathan [354], among others, state that the unnormalized Laplacian matrix L =

D−A corresponding to a complete graph has eigenvalue 0 with multiplicity 1 and eigenvalue n

with multiplicity n−1. Furthermore, the eigenspace corresponding to the eigenvalue n is spanned

by a 2-sparse set of orthogonal eigenvectors [354]. In addition, the eigenvector corresponding

to the eigenvalue 0 of the unnormalized graph Laplacian describing a connected graph is well

known to be the constant eigenvector [368].

Since the complete graph is regular, its degree matrix is a multiple of the identity matrix, i.e.,

D = (n− 1)In. Therefore, for complete graphs the following relationship holds F(A) = In− 1
nL.

Hence, from Proposition 7.8 the eigenvectors of F(A) and L are equal and F(A) has the eigen-

value 1 with multiplicity 1 and eigenvalue 0 with multiplicity n− 1. Now, since Ac corresponds

to a graph composed of several complete graphs, we can invoke Proposition 7.9 to construct

the spectrum and eigenvectors of F(Ac) from the the spectrum and eigenvectors of F(A) cor-

responding to a complete graph, which we just derived. Consequently, F(Ac) has eigenvalues

{{1}K , {0}n−K} and a set of eigenvectors as described in the statement of Proposition 7.4.

Proof of Proposition 7.5

Proposition 7.9 can be used to extend the required result from one connected component of G to

the full graph. Therefore, we consider only one connected component on the graph from now on.

Let A′ denote the adjacency matrix of this connected component, containing nodes of degree b,

and A′
c denote the corresponding complete component of Ac, containing nodes of degree n′ − 1.
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Then, the adjacency matrix of our connected component under consideration A′+λA′
c is related

to F(A′ + λA′
c) as follows:

F(A′ + λA′
c) =

1

b+ λ(n′ − 1) + 1

(
A′ + λA′

c + I
)
. (7.12)

Therefore, from Proposition 7.8 it follows that A′ + λA′
c and F(A′ + λA′

c) share eigenvectors.

Similarly, the relations F(A′) = 1
b+1(A

′ + I) and F(A′
c) =

1
n′ (A′

c + I) together with Proposition

7.8 allow us to establish that both F(A′) and A′ as well as F(A′
c) and A

′
c each have a common

set of eigenvectors.

We now make use of a result by Godsil [110], which states that the adjacency matrix of a

graph commutes with the matrix of all ones, i.e., Ac + In, if and only if the graph under

consideration is regular. Further, a family of matrices is a commuting family if and only if they

are simultaneously diagonalizable, i.e., they share a set of eigenvectors [147]. Hence, A′ and

A′
c share a set of eigenvectors. Furthermore, this shared set of eigenvectors is also a valid set

of eigenvectors for A′ + λA′
c, which, in conjunction with the above polynomial relationships,

establishes the needed eigenvector relation.

In addition the eigenvalues of the sum of two simultaneously diagonalizable matrices Φ,Ψ with

eigenvalues denoted by ϕ and ψ, respectively, are related [147] as follows

S(Φ + Ψ) = {ϕ1 + ψs(1), . . . , ϕn + ψs(n)}, (7.13)

for some permutation s(·) defined on the set {1, . . . , n}. Since A′ and A′
c+ In are simultaneously

diagonalizable their eigenvalues follow the relation in Equation (7.13). Now the above polynomial

relationships of the GCN message passing operators to the corresponding adjacency matrices

gives us the desired eigenvalue result and establish that g1(µ) =
b+1

b+λ(n′−1)+1(µ− 1) and g2(η) =
λ(n′−1)+1

b+λ(n′−1)+1(η − 1) + 1.

Proof of Proposition 7.6

Hoory et al. [146] state that for s-regular graphs the largest eigenvalue of the corresponding

adjacency matrix A′ equals s and the corresponding eigenvector is constant. Now the relation

F(A′) = 1
o+1 (A

′ + In) in conjunction with Proposition 7.8 establish that the largest eigenvalue

of F(A′) equals 1 with a corresponding constant eigenvector. This spectrum and eigenvectors

can be extended to the matrix F(As) corresponding to a graph of several s-regular connected

components using Proposition 7.9. The comparison of the derived spectrum and eigenvectors to

those derived in Proposition 7.4 completes this proof.
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8
Graph-Based Cold Start Similar Artists Ranking

This chapter presents research conducted with Romain Hennequin, Benjamin Chapus, Viet-Anh

Tran, and Michalis Vazirgiannis, and published in the proceedings of the 15th ACM Confer-

ence on Recommender Systems (RecSys 2021) [313] where it received a “best student paper”

honorable mention.

8.1 Introduction

The previous Chapter 7 concluded the second part of this thesis, which detailed our technical

contributions to improving node representation learning with GAE and VGAE models. In this

Chapter 8, we now start the Part III, which provides five additional and more “applied” chapters,

presenting several industrial applications to music recommendation problems arising on music

streaming services such as Deezer. Firstly, in this Chapter 8, we propose a graph-based approach

to tackle the cold start similar artists ranking problem.

Music streaming services heavily rely on recommender systems to help users discover and enjoy

new musical content within large catalogs of millions of songs, artists, and albums, with the

general aim of improving their experience and engagement [39, 253, 319]. In particular, these

services frequently recommend, on an artist’s profile page, a ranked list of related artists that fans

also listened to or liked [75, 170, 189]. Referred to as “Fans Also Like” on Spotify and Soundcloud

and as “Related” or “Similar Artists” on Amazon Music, Apple Music and Deezer, such a feature

typically leverages learning to rank models [175, 296, 319]. It retrieves the most relevant artists

according to similarity measures usually computed from usage data, e.g., from the proportion

of shared listeners across artists [75, 170], or from more complex collaborative filtering models
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[165, 195, 319] that predict similarities from the known preferences of an artist’s listeners. It has

been described as “one of the easiest ways” to let “users discover new music” by Spotify [170].

However, filling up such ranked lists is especially challenging for new artists. Indeed, while music

streaming services might have access to some general descriptive information on these artists,

listening data will however not be available upon their first release. This prevents computing the

aforementioned usage-based similarity measures. As a consequence of this problem, which we

refer to as cold start similar artists ranking, music streaming services usually do not propose any

“Fans Also Like” section for these artists, until (and if ever) a sufficiently large number of usage

interactions, e.g., listening sessions, has been reached. Besides new artists, this usage-based

approach also excludes from recommendations a potentially large part of the existing catalog

with too few listening data, which raises fairness concerns [61]. Furthermore, while we will focus

on music streaming applications, this problem encompasses the more general cold start similar

items ranking issue, which is also crucial for media recommending other items such as videos [63].

In this chapter, we address this problem by exploiting the fact that, as detailed in Section 8.3,

such “Fans Also Like” features can naturally be summarized as a directed and attributed graph,

that connects each item node, e.g., each artist, to their most similar neighbors via directed links.

Such a graph also incorporates additional descriptive information on nodes from the graph, e.g.,

musical information on artists. In this direction, we model cold start similar items ranking as a

directed link prediction problem [311], for new nodes gradually added into this graph.

Then, we solve this problem by leveraging our recent advances from Chapter 5, and specifically

our Gravity-Inspired GAEs and VGAEs. We propose a flexible framework which permits retriev-

ing similar neighbors of new items from GAE/VGAE-based node embedding spaces, and where

the gravity-inspired decoder acts as a ranking mechanism. Backed by in-depth experiments on

industrial data from Deezer, we show the effectiveness of our approach at addressing a real-world

cold start similar artists ranking problem, outperforming several popular baselines for cold start

recommendation. We publicly released our code and the industrial data from our experiments.

This chapter is organized as follows. In Section 8.2, we introduce the cold start similar items

ranking problem more precisely and mention previous works on related topics. In Section 8.3,

we present our graph-based framework to address this problem. We report and discuss our

experiments on Deezer’s data in Section 8.4, and we conclude in Section 8.5.

8.2 Ranking Similar Artists/Items on Music Streaming Services

In this section, we introduce our ranking problem more precisely, and mention some related

efforts to address cold start item recommendation problems. We voluntarily use a notation

that heavily overlaps the one from the previous chapters, as the concepts introduced in this

Section 8.2 will be transposed to graphs in the remainder of the chapter (e.g., n, which denotes
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Figure 8.1: Some examples of “similar artists” recommended on the website version of Deezer. The mobile app
proposes identical recommendations.

the number of items to recommend, will correspond to the number of nodes in Section 8.3).

8.2.1 Problem Formulation

Throughout this chapter, we consider a catalog of n recommendable items on an online service,

such as music artists in our application. Each item i is described by some side information

summarized in an f -dimensional vector xi. For artists, such a vector could for instance cap-

ture information related to their country of origin or their music genres. These n items are

assumed to be “warm”, meaning that the service considers that a sufficiently large number of

interactions with users, e.g., likes or streams, has been reached for these items to ensure reliable

usage data analyses.

From these usage data, the service learns an n × n similarity matrix S, where the element

Sij ∈ [0, 1] captures the similarity of item j w.r.t. item i. Examples of some possible usage-based

similarity scores1 Sij include the percentage of users interacting with item i that also interacted

with item j (e.g., users listening to or liking both items [170]), mutual information scores [324],

or more complex measures derived from collaborative filtering [165, 195, 319]. Throughout this

chapter, we assume that similarity scores are fixed over time, which we later discuss.

Leveraging these scores, the service proposes a similar items feature comparable to the “Fans

Also Like/Similar Items” described in the introduction, and illustrated in Figure 8.1. Specific-

ally, along with the presentation of an item i, it recommends a ranked list of k similar items to

1Details on the computation of similarities at Deezer are provided in Section 8.4.1 - without loss of generality,
as our framework is valid for any Sij ∈ [0, 1].
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users. They correspond to the top-k items j such as j ̸= i and with the highest scores Sij .

On a regular basis, “cold” items will appear in the catalog. While the service might have access

to descriptive side information on these items, no usage data will be available upon their first

online release. This hinders the computation of usage-based similarity scores, thus excluding

these items from recommendations until they become warm - if ever.

In this chapter, we study the feasibility of effectively predicting their future similar items ranked

lists, from the delivery of these items, i.e., without any usage data. This would enable offering

such an important feature quicker and on a larger part of the catalog. More precisely, we answer

the following research question: using only 1) the known similarity scores between warm items,

and 2) the available descriptive information, how, and to which extent, can we predict the future

“Fans Also Like” lists that would ultimately be computed once cold items become warm?

8.2.2 Related Work

While collaborative filtering methods effectively learn item proximities, e.g., via the factoriza-

tion of user-item interaction matrices [195, 362], these methods usually become unsuitable for

cold items without any interaction data and thus absent from these matrices [362]. In such a

setting, the simplest strategy for similar items ranking would consist in relying on popularity

metrics [319], e.g., to recommend the most listened artists. In the presence of descriptive in-

formation on cold items, one could also recommend items with the closest descriptions [161].

These heuristics are usually outperformed by hybrid models, leveraging both item descriptions

and collaborative filtering on warm items [137, 149, 362, 373]. They consist in:

• learning a vector space representation (an embedding) of warm items, where proximity

aims to reflect user preferences;

• then, projecting cold items into this embedding, typically by learning a model to map

descriptive vectors of warm items to their embedding vectors, and then applying this

mapping to cold items’ descriptive vectors.

Albeit under various formulations, this strategy has been transposed to Matrix Factorization [39,

362], Collaborative Metric Learning [149, 209] and Bayesian Personalized Ranking [23, 137]; in

practice, a deep neural network often acts as the mapping model. The retrieved similar items are

then the closest ones in the embedding. Other deep learning approaches were also recently pro-

posed for item cold start, with promising performances. DropoutNet [367] processes both usage

and descriptive data, and is explicitly trained for cold start through a dropout [343] simulation

mechanism. MeLU (for Meta-Learned User preference estimator) [208] deploys a meta-learning

paradigm to learn embeddings in the absence of usage data. CVAE (for Collaborative Vari-

ational Autoencoder) [222] leverages a Bayesian generative process to sample cold embedding
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vectors, via a variational autoencoder.

While they constitute relevant baselines, these models do not rely on graphs, contrary to our

work. Graph-based recommendation has recently grown at a fast pace (see the surveys of

[375, 384]), including in industrial applications [373, 394]. Existing research widely focuses on

bipartite user-item graphs [375]. Notably, STAR-GCN [399] addresses cold start by reconstruct-

ing user-item links using STAcked and Reconstructed GCNs, enhancing ideas from the GCN of

Kipf and Welling [188] and a related extension for graph convolutional matrix completion by

Berg et al. [28]. Instead, recent efforts [292] emphasized the relevance of leveraging - as we will -

graphs connecting items together, along with their attributes. In this direction, the work closest

to ours might be the recent DEAL (for Dual-Encoder graph embedding with ALignment) model

by Hao et al. [133]. Thanks to an alignment mechanism, DEAL predicts links in such graphs for

new nodes having only descriptive information. We will also compare to DEAL; we nonetheless

point out that their work focused on undirected graphs, and did not consider ranking settings.

8.3 A Graph-Based Framework for Cold-Start Similar Items

Ranking

In this section, we present our graph-based framework to address this cold start ranking problem.

8.3.1 Similar Items Ranking as a Directed Link Prediction Task

We argue that “Fans Also Like” features can naturally be summarized as a graph structure with

n nodes and n × k edges. Nodes are warm recommendable items from the catalog, e.g., music

artists with enough usage data according to the service’s internal rules. Each item node points

to its k most similar neighbors via a link, i.e., an edge. This graph is:

• directed : edges have a direction, leading to asymmetric relations. For instance, while most

fans of a little known reggae band might listen to Bob Marley (Marley thus appearing

among their similar artists), Bob Marley’s fans will rarely listen to this band, which is

unlikely to appear back among Bob Marley’s own similar artists.

• weighted : among the k neighbors of node i, some items are more similar to i than others

(hence the ranking). We capture this aspect by equipping each directed edge (i, j) from the

graph with a weight corresponding to the similarity score Sij . More formally, we summarize

our graph structure by the n× n adjacency matrix A, where the element Aij = Sij if j is

one of the k most similar items w.r.t. i, and where Aij = 0 otherwise2.

2Alternatively, one could consider a dense matrix where Aij = Sij for all pairs (i, j). However, besides acting
as a data cleaning process on lowest scores, sparsifying A speeds up computations for the encoder introduced
thereafter, whose complexity evolves linearly w.r.t. the number of edges (see Section 8.3.3).
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• attributed : as explained in Section 8.2.1, each item i is also described by a vector xi ∈ Rf .

In the following, and consistently with previous chapters, we denote by X the n×f matrix

stacking up all descriptive vectors a.k.a. feature vectors from the graph, i.e., the i-th row

of X is xi.

Then, we model the release of a cold recommendable item in the catalog as the addition of a

new node in the graph, together with its side descriptive vector. As usage data and similarity

scores are unavailable for this item, it is observed as isolated, i.e., it does not point to k other

nodes. In our framework, we assume that these k missing directed edges - and their weights -

are actually masked. They point to the k nodes with the highest similarity scores, as would

be identified by the service once it collects enough usage data to consider the item as warm,

according to the service’s criteria. These links and their scores, ultimately revealed, are treated

as ground truth in the remainder of this work.

From this perspective, the cold start similar items ranking problem consists in a directed link

prediction task [239, 318]. Specifically, we aim to predict the locations and weights - i.e., estim-

ated similarity scores - of these k missing directed edges, and at comparing predictions with the

actual ground truth edges ultimately revealed, both in terms of:

• prediction accuracy: do we retrieve the correct locations of missing edges in the graph?

• ranking quality: are the retrieved edges correctly ordered, in terms of similarity scores?

8.3.2 From Similar Items Graphs to Directed Node Embeddings

As explained in Chapter 2, locating missing links in graphs has been the objective of significant

research efforts from various fields [225, 239, 318]. While this problem has been historically

addressed via the construction of hand-engineered node similarity metrics [225], we explained

in this same chapter that significant improvements were recently achieved by methods directly

learning node representations summarizing the graph structure [128, 386]. This includes the

GAE and VGAE models at the center of this thesis, representing each node i as a vector zi ∈ Rd

(with d≪ n) in a node embedding space where structural proximity should be preserved.

In this work, we build upon these advances and propose to learn node embeddings to tackle link

prediction in our similar items graph. Specifically, we leverage our Gravity-Inspired GAEs and

VGAEs from Chapter 5. These models are doubly advantageous for our application:

• foremost, they can effectively process node attribute vectors in addition to the graph,

contrary to some popular alternatives such as DeepWalk [287] and standard Laplacian

eigenmaps [25]. As we explain thereafter in Section 8.3.3, this will help us add some

cold nodes, isolated but equipped with some descriptions, into an existing warm node
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embedding. In other words, these models will be used in an inductive setting that involves

generalizing representations to new unseen nodes after training;

• simultaneously, our Gravity-Inspired GAE and VGAE models were specifically designed

to address directed link prediction from node embedding spaces, contrary to the aforemen-

tioned alternatives or to standard GAE and VGAE models from Kipf and Welling [187].

8.3.3 Cold Start Similar Items Ranking using Gravity-Inspired GAE/VGAE

In this section, we now explain how we build upon our Gravity-Inspired GAE and VGAE models

to address the cold start similar items ranking problem. As VGAEs emerged as competitive

alternatives to GAEs on some link prediction experiments, including some of those from Part II,

we therefore saw value in considering both deterministic GAEs and VGAEs in this chapter.

We assume a good understanding of these models, and we refer in particular to our previous

Chapter 5 for a broader introduction to our Gravity-Inspired GAE and VGAE models.

Encoding Cold Nodes with GCNs In this chapter, and consistently with Chapter 5, our

encoders (both for Gravity-Inspired GAEs and VGAEs) will be 2-layer GCNs [188], incorporating

the out-degree normalized3 version of A denoted Ãout and a ReLU activation function [311].

Therefore, adopting the notation from Chapter 5, we have:

Z̃ = ÃoutReLU(ÃoutXW
(0))W (1), (8.1)

in the GAE setting. We recall that the i-th row of Z̃ ∈ Rn×(d+1) is a (d + 1)-dimensional

vector z̃i. The d first dimensions of z̃i correspond to the embedding vector zi of node i; the last

dimension corresponds to the mass m̃i as defined in Section 5.3.2.

Regarding the gravity-inpired VGAEmodel, and consistently with Chapter 5 once again, we have

µ = ÃoutReLU(ÃoutXW
(0)
µ )W

(1)
µ , log σ = ÃoutReLU(ÃoutXW

(0)
σ )W

(1)
σ , and Z̃ is then sampled

from µ and log σ.

As all outputs are n × (d + 1) matrices and X is an n × f matrix, then W (0) (or, W
(0)
µ and

W
(0)
σ ) is an f × dhidden matrix, with dhidden the hidden layer dimension, and W (1) (or, W

(1)
µ

and W
(1)
σ ) is a dhidden × (d + 1) matrix. These GCN weights are optimized from the graph of

warm recommendable items, in a similar fashion w.r.t. Chapter 5, i.e., by iteratively optimizing

a cross-entropy reconstruction loss (for Gravity-Inspired GAE) or an ELBO variational lower

bound objective (for Gravity-Inspired VGAE), by gradient descent.

We rely on GCN encoders as they permit incorporating new nodes, attributed but isolated in the

3We recall that Ãout = (Dout + In)
−1(A+ In) where In is the n× n identity matrix and Dout is the diagonal

out-degree matrix of A.
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graph, into an existing embedding. Indeed, let us consider a model already trained on a graph

of warm items with some A and X, leading to optimized weights W (0) and W (1) for some GCN

encoder. If m ≥ 1 cold nodes appear, along with their f -dimensional descriptive vectors, then:

• A becomes A′, an (n +m) × (n +m) adjacency matrix4, with m new rows and columns

filled with zeros;

• X becomes X ′, an (n+m)× f attribute matrix, concatenating X and the f -dimensional

descriptions of the m new nodes;

• we derive embedding vectors and masses of new nodes through a forward pass5 into the

GCN previously trained on warm nodes, i.e., by computing the (n + m) × (d + 1) new

embedding matrix Z̃ ′ = Ã
′
out ReLU(Ã

′
out X

′W (0))W (1).

We emphasize that the choice of GCN encoders is made without loss of generality. Our frame-

work remains valid for any inductive encoder processing new attributed nodes. In our experi-

ments, 2-layer GCNs reached better or comparable results w.r.t. some considered alternatives,

namely deeper GCNs, graph attention networks [364] and our linear encoders from Chapter 6.

Ranking Similar Items After projecting cold nodes into the warm embedding, we use the

gravity-inspired decoder to predict their masked connections. More precisely, in our experiments,

we add the hyperparameter λ ∈ R+ from Equation (5.16) for flexibility. The estimated similarity

weight Âij between some cold node i and another node j is thus:

Âij = σ( m̃j︸︷︷︸
influence of j

−λ× log ∥zi − zj∥22︸ ︷︷ ︸
proximity of i and j

). (8.2)

Then, the predicted top-k most similar items of i will correspond to the k nodes j with the

highest estimated weights Âij .

As in Chapter 5, we interpret Equation (8.2) in terms of influence/proximity trade-off:

• the influence part of Equation (8.2) indicates that, if two nodes j and l are equally close

to i in the embedding space (i.e., ∥zi − zj∥2 = ∥zi − zl∥2), then i will more likely points

towards the node with the largest mass (i.e., the largest “influence”; we will compare these

masses to popularity metrics in experiments from Section 8.4.3);

4Its (n+m)× (n+m) out-degree normalized version is Ã′
out = (D

′
out + I(n+m))

−1(A′ + I(n+m)), where D
′
out

is the diagonal out-degree matrix of A′.
5We note that such GCN forward pass is possible since dimensions of weight matrices W (0) and W (1) are

independent of the number of nodes. In the case of featureless nodes, i.e., with X = In as in Equation (2.20) from
Chapter 2, the dimension of W (0) becomes n × dhidden which therefore depends on n. This prevents computing
forward passes in the presence of new nodes, thus making the GCN encoder transductive by design.
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• the proximity part of Equation (8.2) indicates that, if j and l have the same mass (i.e.,

m̃j = m̃l), then i will more likely points towards its closest neighbor, which could, e.g.,

capture a closer musical similarity for artists.

As illustrated in Section 8.4.3, tuning λ will help us flexibly balance between these two aspects,

and thus control for popularity biases [319] in our recommendations.

On Complexity As extensively explained throughout this thesis, training GAE/VGAE mod-

els via full-batch gradient descent requires reconstructing the entire matrix Â at each training

iteration, which has an O(dn2) time complexity due to the evaluation of pairwise distances [311].

While we will follow such a full-batch training strategy in Section 8.4, our released code also

implements the FastGAE method from Chapter 4 to approximate losses by decoding random

subgraphs of O(n) size. This permits scaling our method to large graphs with millions of nodes

and edges. In our experiments, using FastGAE with degree-based sampling permits reducing

training times from roughly 30 minutes to 1 minute on our machine and for the Deezer graph

presented in Section 8.4.1, while preserving performances on the task presented in Section 8.4.2.

Moreover, projecting cold nodes in an embedding only requires a single forward GCN pass, with

linear time complexity w.r.t. the number of edges [188, 310]. This is another advantage of using

GCNs w.r.t. more complex encoders. Lastly, retrieving the top-k accelerations boils down to a

nearest neighbors search in a O(ndk) time, which could even be improved in our future research

with approximate search methods [161].

8.4 Experimental Analysis

We now present the experimental evaluation of our graph-based framework on music artists

data from the Deezer production system. We publicly released the private graph dataset used

in these experiments on GitHub6, as well as our source code for the experiments described

thereafter. Besides making our results reproducible, such a release publicly provides a new

benchmark dataset to the research community, permitting the evaluation of comparable graph-

based recommender systems on real-world resources.

8.4.1 Ranking Similar Artists on Deezer

Dataset We consider a directed graph of 24 270 artists with various musical characteristics

(see below), extracted from the Deezer service. Each artist points towards k = 20 other artists.

They correspond, up to internal business rules, to the top-20 artists from the same graph that

6https://github.com/deezer/similar artists ranking
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would be recommended by our production system on top of the “Fans Also Like/Similar Artists”

feature illustrated in Figure 8.1. Each directed edge (i, j) has a weight Aij normalized to lie in

the [0, 1] set; for unconnected pairs, Aij = 0. It corresponds to the similarity score of artist j

w.r.t. i, computed on a weekly basis from usage data of millions of Deezer users. More precisely,

weights are based on mutual information scores [324] from artist co-occurrences among streams.

Roughly, they compare the probability that a user listens to the two artists, to their global

listening frequencies on the service, and they are normalized at the artist level through internal

heuristics and business rules (some details on exact score computations are voluntarily omitted

for confidentiality reasons). In the graph, edges correspond to the 20 highest scores for each

node. In general, Aij ̸= Aji. In particular, j might be the most similar artist of i while i does

not even appear among the top-20 of j.

We also have access to descriptions of these artists, either extracted through the musical content

or provided by record labels. Here, each artist i will be described by an attribute vector xi of

dimension f = 56, concatenating:

• a 32-dimensional genre vector. Deezer artists are described by music genres [83], among

more than 300. 32-dimensional embedding vectors are learned from these genres, by fac-

torizing a co-occurrence matrix based on listening usages with SVD [196]. Then, the genre

vector of an artist is the average of embedding vectors of his/her music genres.

• a 20-dimensional country vector. It corresponds to a one-hot encoding vector, indicating

the country of origin of an artist, among the 19 most common countries on Deezer, and

with a 20th category gathering all other countries.

• a 4-dimensional mood vector. It indicates the average and standard deviations of the

valence and arousal scores across an artist’s discography. In a nutshell, valence captures

whether each song has a positive or negative mood, while arousal captures whether each

song has a calm or energetic mood [70, 305]. These scores are computed internally, from

audio data and using a deep neural network inspired by the work of Delbouys et al. [70].

While some of these features are quite general, we emphasize that the actual Deezer app also

gathers more refined information on artists, e.g., from audio or textual descriptions. They are

undisclosed and unused in these experiments.

Problem We consider the following similar artists ranking problem. Artists are split into a

training set, a validation set, and a test set gathering 80%, 10%, and 10% of artists, respectively.

The training set corresponds to warm artists. Artists from the validation and test sets are the

cold nodes: their edges are masked, and they are therefore observed as isolated in the graph.

Their 56-dimensional descriptions are available.
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We evaluate the ability of our models at retrieving these edges, with correct weight ordering.

As a measure of prediction accuracy, we will report Recall@K scores. They indicate, for various

K, which proportion of the 20 ground truth similar artists appear among the top-K artists with

the highest estimated weights. Moreover, as a measure of ranking quality, we will also report the

widely used Mean Average Precision at K (MAP@K ) and Normalized Discounted Cumulative

Gain at K (NDCG@K ) scores7.

8.4.2 List of Models and Baselines

We now describe all methods considered in our experiments. All embedding vectors have d = 32,

which we will discuss. Also, all hyperparameters mentioned thereafter were tuned by optimizing

NDCG@20 scores on the validation set.

Gravity-Inspired GAE/VGAE We follow our framework from Section 8.3 to embed cold

nodes. For both GAE and VGAE, we use 2-layer GCN encoders with a 64-dimensional hidden

layer, and a 33-dimensional output layer (i.e., a 32-dimensional zi vectors, plus the mass),

trained for 300 epochs. We use the Adam optimizer [184], with a learning rate of 0.05, without

dropout, performing full-batch gradient descent, and using the reparameterization trick [185] for

VGAE. We set λ = 5 in the decoder of Equation (8.2) and discuss the impact of λ thereafter.

Our adaptation of these models builds upon the Tensorflow code that we developed for the

experiments of Chapter 5, which is publicly available on GitHub8.

Other Methods based on the Directed Artist Graph We compare our Gravity-Inspired

GAE and VGAE models to the standard GAE and VGAE models from Kipf and Welling [187],

with a similar setting as above. These models use symmetric inner product decoders, i.e.,

Âij = σ(zTi zj), therefore ignoring directionalities. Moreover, we implement the Source-Target

GAE and VGAE models used as a baseline in Chapter 5. We recall that these models are similar

to standard GAE and VGAE, except that they decompose the 32-dimensional zi vectors into a

source vector z
(s)
i = zi[1:16] and a target vector z

(t)
i = zi[17:32], and then decode edges as follows:

Âij = σ(z
(s)T
i z

(t)
j ) and Âji = σ(z

(s)T
j z

(t)
i ) (̸= Âij in general). They reconstruct directed links, as

gravity-inspired models, and are therefore relevant baselines for our evaluation. Lastly, we also

test the recent DEAL model [133] mentioned in Section 8.2.2, and designed for inductive link

prediction on new isolated but attributed nodes. We used the authors’ PyTorch implementation,

with similar attribute and structure encoders, alignment mechanism, loss and cosine predictions

as their original model [133].

7MAP@K and NDCG@K are computed as in Equation (4) of [319] (averaged over all cold artists) and in
Equation (2) of [378] respectively.

8https://github.com/deezer/gravity graph autoencoders
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Other Baselines In addition, we compare our framework to four popularity-based baselines.

Popularity recommends the K most popular9 artists on Deezer (with K as in Section 8.4.1);

Popularity by Country recommends the K most popular artists from the country of origin of

the cold artist; In-Degree recommends the K artists with the highest in-degrees in the graph,

i.e., sum of weights pointing to them; lastly, In-Degree by Country proceeds as In-Degree, but

on warm artists from the country of origin of the cold artist.

We also consider three baselines only or mainly based on descriptions xi and not on usage data.

Firstly, K-NN recommends theK artists with closest xi vectors, from a nearest neighbors search

with Euclidean distance. Besides, K-NN + Popularity and K-NN + In-degree retrieve the 200

artists with closest xi vectors, then recommends the K most popular ones among these 200

artists, ranked according to popularity and in-degree values respectively.

We also implement SVD+DNN, which follows the “embedding+mapping” strategy from Sec-

tion 8.2.2 by 1) computing an SVD [196] of the warm artists similarity matrix, learning 32-

dimensional zi vectors, 2) training a 3-layer neural network (with layers of dimension 64, 32 and

32, trained with Adam [184] and a learning rate of 0.01) to map warm xi vectors to zi vectors,

and 3) projecting cold artists into the SVD embedding through this mapping.

Lastly, among deep learning approaches from Section 8.2.2 (CVAE, DropoutNet, MeLU, STAR-

GCN), we report results from the two best methods on our dataset, namely DropoutNet [367]

and STAR-GCN [399], using the authors’ implementations with careful fine-tuning on validation

artists10. Similar artists ranking is done via a nearest neighbors search in embedding spaces.

8.4.3 Results and Discussion

Performances Table 8.1 reports mean performance scores for all models, along with standard

deviations over 20 runs for models with randomness due to weights initialization in GCNs

or neural networks. Popularity and In-degree appear as the worst baselines. Their scores

significantly improve by focusing on the country of origin of cold artists (e.g., with a Recall@100

of 12.38% for Popularity by country, v.s. 0.44% for Popularity).

Besides, we observe that methods based on a direct K-NN search from xi attributes are out-

performed by the more elaborated cold start methods leveraging both attributes and warm

usage data. In particular, DropoutNet, as well as the graph-based DEAL, reach stronger results

than SVD+DNN and STAR-GCN. They also surpass standard GAE and VGAE (e.g., with a

+6.46 gain in average NDCG@20 score for DEAL w.r.t. GAE), but not the GAE/VGAE ex-

9Our dataset includes the popularity rank (from 1st to nth) of warm artists. It is out of the xi vectors, as it is
usage-based and thus unavailable for cold artists.

10These last models do not process similar artists graphs, but raw user-item usage data, either as a bipartite
user-artist graph or as an interaction matrix. While Deezer can not release such fine-grained data, we nonetheless
provide embedding vectors from these baselines along with our code, to reproduce our scores.
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Table 8.1: Cold start similar artists ranking with Gravity-Inspired GAE and VGAE and with all baselines.
Performances are computed on test set, and averaged over 20 runs. All embedding methods verify d = 32.
Bold numbers correspond to the best scores.

Method Recall@K (in %) MAP@K (in %) NDCG@K (in %)
(d = 32) K = 20 K = 100 K = 200 K = 20 K = 100 K = 200 K = 20 K = 100 K = 200

Popularity 0.02 0.44 1.38 ¡0.01 0.03 0.12 0.01 0.17 0.44
Popularity by country 2.76 12.38 18.98 0.80 3.58 6.14 2.14 6.41 8.76

In-degree 0.91 3.43 6.85 0.15 0.39 0.86 0.67 1.69 2.80
In-degree by country 5.46 16.82 23.52 2.09 5.43 7.73 5.00 10.19 12.64

K-NN on xi 4.41 13.54 19.80 1.14 3.38 5.39 4.29 8.83 11.22
K-NN + Popularity 5.73 15.87 19.83 1.66 4.32 5.74 4.86 10.03 11.76
K-NN + In-degree 7.49 17.29 18.76 2.78 5.60 6.18 7.41 12.48 13.14

SVD + DNN 6.42 ± 0.96 21.83 ± 1.21 35.01 ± 1.41 2.25 ± 0.67 6.36 ± 1.19 11.52 ± 1.98 6.05 ± 0.75 12.91 ± 0.92 17.89 ± 0.95
STAR-GCN 10.03 ± 0.56 31.45 ± 1.09 43.92 ± 1.10 3.10 ± 0.32 10.64 ± 0.54 16.62 ± 0.68 10.07 ± 0.40 21.17 ± 0.69 25.99 ± 0.75
DropoutNet 12.96 ± 0.54 37.59 ± 0.76 49.93 ± 0.82 4.18 ± 0.30 13.61 ± 0.55 20.12 ± 0.67 13.12 ± 0.68 25.61 ± 0.72 30.52 ± 0.78

DEAL 12.80 ± 0.52 37.98 ± 0.59 50.75 ± 0.72 4.15 ± 0.25 14.01 ± 0.44 20.92 ± 0.54 12.78 ± 0.53 25.70 ± 0.62 30.69 ± 0.70
GAE 7.30 ± 0.51 25.92 ± 0.95 40.37 ± 1.11 2.81 ± 0.29 7.97 ± 0.47 14.24 ± 0.67 6.32 ± 0.39 15.54 ± 0.66 20.94 ± 0.72

VGAE 10.01 ± 0.52 34.00 ± 1.06 49.72 ± 1.14 3.53 ± 0.27 11.68 ± 0.52 19.46 ± 0.70 10.09 ± 0.58 21.37 ± 0.73 27.31 ± 0.75
Sour.-Targ. GAE 12.21 ± 1.30 39.52 ± 3.53 56.25 ± 3.57 4.62 ± 0.81 14.67 ± 2.33 23.60 ± 2.85 12.42 ± 1.39 25.45 ± 3.37 31.80 ± 3.38

Sour.-Targ. VGAE 13.52 ± 0.64 42.68 ± 0.69 59.51 ± 0.76 5.19 ± 0.31 16.07 ± 0.40 25.48 ± 0.55 13.60 ± 0.73 27.81 ± 0.56 34.19 ± 0.59

Gravity GAE 18.33 ± 0.45 52.26 ± 0.90 67.85 ± 0.98 6.64 ± 0.25 21.19 ± 0.55 30.67 ± 0.68 18.64 ± 0.47 35.77 ± 0.66 41.42 ± 0.68
Gravity VGAE 16.59 ± 0.50 49.51 ± 0.78 65.70 ± 0.75 5.66 ± 0.35 19.07 ± 0.57 28.66 ± 0.59 16.74 ± 0.55 33.34 ± 0.66 39.29 ± 0.64

tensions that explicitly model edges directionalities, i.e., source-target GAE/VGAE and, even

more, Gravity-Inspired GAE/VGAE, that provide the best recommendations. It emphasizes the

effectiveness of our framework, both in terms of prediction accuracy (e.g., with a top 67.85%

average Recall@200 for Gravity-Inspired GAE) and of ranking quality (e.g., with a top 41.42%

average NDCG@200 for this same method).

Moreover, while all embedding methods from Table 8.1 verify d = 32, we point out that gravity-

inspired models remained superior on our tests with d = 64 and d = 128. Also, VGAE methods

tend to outperform their deterministic counterparts for standard and source-target models,

while the contrary conclusion emerges on gravity-inspired models. This confirms the value of

considering both settings when testing these models on novel applications.

On the mass parameter In Figure 8.2, we visualize some artists and their estimated masses.

At first glance, one might wonder whether nodes i with the largest masses m̃i, as Bob Marley

in Figure 8.2, simply correspond to the most popular artists on Deezer. Table 8.2 shows that,

while masses are indeed positively correlated to popularity and to various graph-based node

importance measures, these correlations are not perfect, which highlights that our models do

not exactly learn any of these metrics.

Furthermore, as in Chapter 5, replacing masses m̃i by any of these measures during training

(i.e., by optimizing zi vectors with the mass of i being fixed, e.g., as its PageRank [278] score)

diminishes performances (e.g., more than -6 points in NDCG@200, in the case of PageRank),

which confirms that jointly learning embedding vectors and masses is optimal.

Lastly, qualitative investigations also tend to reveal that masses, and thus relative node attrac-

tions, vary across the location in the graph. Local influence correlates with popularity but is

also impacted by various culture or music-related factors such as countries and genres. As an
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Figure 8.2: Visualization of embedding representations of some music artists from the Gravity-Inspired GAE
model. Nodes are scaled using masses m̃i, and node separation is based on distances in the embedding, using
multidimensional scaling and with [100]. Red nodes correspond to Jamaican reggae artists, appearing in the same
neighborhood.

illustration, the successful samba/pagode Brazilian artist Thiaguinho, out of the top-100 most

popular artists from our training set, has a larger mass than American pop star Ariana Grande,

appearing among the top-5 most popular ones. While numerous Brazilian pagode artists point

towards Thiaguinho, American pop music is much broader and all pop artists do not point

towards Ariana Grande despite her popularity.

Popularity/diversity trade-off The gravity-inspired decoder from Equation (8.2) enables

us to flexibly address popularity biases when ranking similar artists. More precisely:

• setting λ → 0 increases the relative importance of the influence part of equation (8.2).

Thus, the model will highly rank the most massive nodes. As illustrated in Figure 8.3,

this results in recommending more popular music artists;

• on the contrary, increasing λ diminishes the relative importance of masses in predictions,

in favor of the actual node proximity. As illustrated in Figure 8.3, this tends to increase

the recommendation of less popular content.
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Table 8.2: Pearson and Spearman correlation coeffi-
cients of masses m̃i from the Gravity-Inspired GAE
model, w.r.t. artist-level reversed popularity ranks
(i.e., the higher the more popular) on Deezer and to
three node importance measures: the in-degree (i.e.,
the sum of edges coming into the node), the between-
ness centrality [311] and the PageRank [278]. Coeffi-
cients were computed on the training set.

Node-level Pearson Spearman
measures correlation correlation

Popularity Rank 0.208 0.206
Popularity Rank by Country 0.290 0.336

In-degree Centrality 0.201 0.118
Betweenness Centrality 0.109 0.079

PageRank Score 0.272 0.153
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Figure 8.3: Popularity rank of the most popular artist re-
commended to each test artist, among their top-20. Distri-
butions obtained from Gravity-Inspired GAE models with
varying hyperparameters λ.

Setting λ = 5 leads to optimal scores in our application (e.g., with a 41.42% NDCG@200 for

our AE, v.s. 35.91% and 40.31% for the same model with λ = 1 and λ = 20 respectively).

Balancing between popularity and diversity is often desirable for industrial-level recommender

systems [319]. Gravity-inspired decoders flexibly permit such a balancing.

Impact of attributes So far, all models processed the complete 56-dimensional attribute

vectors xi, concatenating information on music genres, countries, and moods.

In Figure 8.4, we assess the actual impact of

each of these descriptions on performances, for

our Gravity-Inspired GAE. Assuming only one

attribute (genres, countries or moods) is avail-

able during training, genres-aware models re-

turn the best performances, in terms of MAP,

NDCG, and Recall scores.

Moreover, we observe that adding moods to

country vectors leads to larger gains than

adding moods to genre vectors. This could

reflect how some of our music genres, such

as speed metal, already capture some valence

or arousal characteristics. Lastly, Figure 8.4

confirms that gathering all three descriptions

provides the best performances, corresponding

to those reported in Table 8.1.
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Figure 8.4: Performances of Gravity-Inspired GAE,
when only trained from subsets of artist-level attrib-
utes, among countries, music genres and moods.
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Possible Improvements (on Models) Despite promising results in this chapter, assuming

fixed similarity scores over time might sometimes be unrealistic, as some user preferences could

actually evolve. Capturing such changes, e.g., through dynamic graph embeddings, might permit

providing even more refined recommendations. Also, during training we kept k = 20 edges for

each artist, while one could consider varying k at the artist level, i.e., adding more (or fewer)

edges, depending on the actual musical relevance of each link. One could also compare different

metrics, besides mutual information, when constructing the ground truth graph. Lastly, we

currently rely on a single GCN forward pass to embed cold artists which, while being fast

and simple, might also be limiting. Future studies on more elaborated approaches, e.g., to

incrementally update GCN weights when new nodes appear, could also improve our framework.

Possible Improvements (on Evaluation) Our evaluation focused on the prediction of

ranked lists for cold artists. This permits filling up their ”Fans Also Like/Similar Artists” sec-

tions, which was our main goal in this chapter and of the paper associated with this work [313].

On the other hand, future internal investigations could also aim to measure to which extent the

inclusion of new nodes in the embedding space impacts the existing ranked lists for warm artists.

Such an additional evaluation, e.g., via an online test on Deezer, could assess which cold artists

actually enter these lists, and whether the new recommendations 1) are more diverse, according

to some music or culture-based criteria, and 2) improve user engagement on the service.

8.5 Conclusion

In this chapter, we modeled the challenging cold start similar items ranking problem as a link

prediction task, in a directed and attributed graph summarizing information from “Fans Also

Like” features. We presented an effective framework to address this task, transposing our recent

advances on Gravity-Inspired GAE and VGAE models to recommender systems.

Backed by in-depth experiments on artists available on the Deezer service, we emphasized the

practical benefits of our approach, both in terms of recommendation accuracy, ranking quality,

and flexibility. As a consequence, we plan to A/B test such models in production on the actual

Deezer app in 2022, in combination with the FastGAE method from Chapter 4 to address

scalability concerns.

Last, but not least, along with the paper associated with this work [313], we publicly released

our source code, as well as the industrial data from our experiments. We hope that this release

of industrial resources will benefit future research on graph-based cold start recommendation.

In particular, we already identified several directions that, in future studies, should lead to the

improvement of our approach.
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9
Music Graph Embedding and

Clustering for Recommendation

This chapter provides a broader overview of how Deezer internally leverages similarity graphs

for music recommendation. It presents and discusses practical (ongoing and future) applications

of GAE and VGAE models.

9.1 Introduction

In Chapter 8, we focused on quite specific top-k directed graphs. In this Chapter 9, we now

give a more general overview of how Deezer leverages other pre-processed similarity graphs

to recommend musical content to users on the service. Unlike the previous chapters of this

thesis, the work presented below is not associated with a research publication. It rather aims to

discuss more practical industrial applications and, as a consequence, some technical details on

production-facing algorithms will be voluntarily omitted for confidentiality reasons.

Firstly, in Section 9.2, we explain how these similarity graphs have historically played a central

role in Deezer’s recommender systems, to detect communities of similar artists. Then, in Sec-

tion 9.3, we show the benefits of adopting GAEs and VGAEs, integrating our advances from

previous chapters. We focus on community detection in graphs of artists and albums with re-

commendation purposes, through offline experiments on data extracted from Deezer. At the

end of Section 9.3, we also mention several ongoing and future plans to A/B test these methods,

but also to extend them to other graphs, e.g., to graphs of music tracks and of users, as well as

to culture-specific graphs and to dynamic graphs. We conclude in Section 9.4.
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Figure 9.1: An example of a similar artists graph. While connections between artists are not naturally given (left),
a graph of similar artists can be constructed, e.g., by connecting artists that are simultaneously listened to or liked
by numerous users (middle). This graph can be used as an abstraction (right), e.g., for music recommendation.

9.2 Music Graph Representations at Deezer

In this section, we describe how, at the beginning of this PhD project, similar artists graphs

were already used at Deezer to recommend music to millions of users.

9.2.1 Connecting Artists based on Usage Data

Deezer historically leveraged two types of similar artists graphs computed from usage data:

• the first ones correspond to the top-k directed graphs previously described in Section 8.4

from Chapter 8. We recall that, in such graphs, each node is an artist, pointing towards

its k most similar neighbors (for a pre-selected k, e.g., k = 20 in Chapter 8, and up to

k = 150 in Deezer’s internal databases) in terms of co-listening data. As described in

this previous chapter, each directed edge (i, j) has a weight corresponding to a “similarity

score” for the artist j w.r.t. the artist i;

• the second ones are refined versions of the above top-k directed graphs. The Deezer team

performs several pre-processing operations, consisting in adding or removing edges between

artists from these graphs. The general objective of these operations is to facilitate the use

of these graphs for recommendation purposes and, in particular, to ease the extraction of

homogeneous artist communities (see Section 9.2.2). Among others, several internal heur-

istics permit consolidating the existing links through external information, e.g., by using

“likes” or the country of origin of each artist. Moreover, some pre-processing steps aim to

limit popularity biases [319] and to ensure that node degrees are relatively homogeneous1.

The exact procedure will not be detailed in this thesis. We nonetheless emphasize that the

graphs resulting from these operations are undirected, contrary to those from Chapter 8

but consistently with the illustrative example reported in the above Figure 9.1.

1This objective contrasts with the ranking problem from Chapter 8 where, on the contrary, having nodes of vari-
ous degrees was desirable and was (explicitly or implicitly) leveraged by several methods considered in this chapter.
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Figure 9.2: Visualization of a similar artists graph, computed internally at Deezer and based on the “3D Force-
Directed Graph” visualization tool, using the ThreeJS and WebGL JavaScript libraries and available on GitHub:
https://github.com/vasturiano/3d-force-graph. By clicking on a node, one can display information about the
corresponding artist. In this figure, colors denote the popularity rank of each artist on Deezer, in Germany.

These graphs are computed and updated on a

weekly basis, from the usage data of millions of

active users on Deezer. While the catalog in-

cludes millions of artists2, at the beginning of

this PhD project the Deezer team had only con-

sidered smaller versions of these graphs, with

roughly 100 000 nodes corresponding to the

most popular artists. Such a restriction was

due to scalability constraints, but also to the

desire to focus on the most reliable data for

the recommendation applications described in

the next sections. Figures 9.2 and 9.3 provide

some illustrative 3D visualizations of such sim-

ilar artists graphs (specifically, of the refined

undirected graphs described in the second bul-

let point of the previous page).

Figure 9.3: Zoom on an isolated group of interconnected
artists, extracted from the similar artists graphs visual-
ized in Figure 9.2. All nodes from this group correspond
to Turkish pop-folk artists, such as Tarkan and Yavuz
Bingöl. They are connected in the graph under consid-
eration as they are simultaneously listened to and liked
by the same users on Deezer.

2While Deezer publicly advertises a catalog of 73 million tracks, the exact number of artists on the service
remains a private and undisclosed information at the time of writing (i.e., in late 2021).
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9.2.2 Artist Community Detection for Music Recommendation

The undirected graphs described in Section 9.2.1 have historically played a central role in

Deezer’s recommender systems. At the time of writing, the Deezer team still leverages these

graphs to extract clusters of similar artists using graph-based community detection methods,

with the general aim of providing recommendations based on usage data. The intuition behind

this strategy is the following: if some users already listened to several artists from a cluster (i.e., a

community), then other unlistened artists from this same cluster could be recommended to them.

For instance, graph-based artist communit-

ies are a key component of Deezer’s “Flow”

feature. As illustrated in Figure 9.4, the

Flow takes the appearance of a button on the

homepage. A click on this button launches

a virtually infinite playlist mixing the user’s

favorite music tracks with some recommen-

ded new tracks. Tracklists are generated by

a recommendation algorithm processing the

aforementioned artist communities, through a

pipeline involving several operations and other

data sources. While technical details on the

Flow are omitted in this thesis, we emphasize

that previous internal investigations at Deezer

revealed the benefits of relying on graph-based

methods to learn these communities, w.r.t.
Figure 9.4: The “Flow” feature on Deezer, along with
other daily mixes of recommended music tracks.

more standard methods, e.g., some strategies consisting in clustering artists from some usage-

based input features via a k-means algorithm3. Specifically, at Deezer, artist communities are

currently computed using the Louvain algorithm [31], that we presented in Chapter 7.

Such a choice has several advantages. As explained in Chapter 7, the Louvain algorithm is

relatively fast and scalable, as it runs in O(n log n) time [31]. Besides, its iterative modularity

maximization procedure permits retrieving a hierarchical clustering of artists. This is conveni-

ent as Deezer often wants to merge or, on the contrary, to split some artist communities in

post-processing steps, for recommendation purposes. Using the Louvain algorithm for artist

community detection also suffers from several limitations, which will be presented and discussed

in Section 9.3. In Figure 9.5, we provide an example of an artist community, visualized through

an internal tool developed by data scientists from Deezer’s Recommendation team.

3We refer to the examples of Figure 2.4 from Chapter 2 for an illustration of how graph-based methods
(specifically, spectral clustering, in this figure) can leverage the “connectivity” between data points and identify
community structures in settings where a standard k-means would fail.
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Figure 9.5: An example of an artist community, computed at Deezer using the Louvain algorithm [31] on a similar
artists graph, and visualized through an internal tool developed by our Recommendation team. This community
mainly gathers DJs and “house music” artists. This internal tool also generates a playlist mixing music tracks
from artists of the community under consideration, using algorithms that we do not describe in this thesis.

9.2.3 Graphs of Albums, Users, Songs

At the beginning of this PhD project, Deezer had mainly studied graphs of similar artists.

Nonetheless, we emphasize that the general approach from Section 9.2.1, consisting in connecting

artists based on usage data (e.g., artists simultaneously listened to by numerous users), can be

extended to create other graphs. For instance, one could consider different granularity levels

from the musical catalog, and aim to create usage-based graphs of similar albums or similar

music tracks. One could also study graphs of similar users, e.g., by connecting users with the

most similar listening histories on the service. As explained in Chapter 1, Deezer users can also

“follow” each other on the service, hence creating a large social graph. These two graphs could

be used in conjunction, e.g., to derive graph-based communities of similar users. While we did

not examine such an approach so far, it constitutes a relevant direction for future work4.

9.3 Improving Music Recommendation with GAE and VGAE

In this section, we study the potential benefits of leveraging the GAE and VGAE models de-

veloped in Part II of this thesis for music recommendation.

4We refer in particular to the two projects presented in Chapters 11 and 12. Both of them will directly rely
on clusters of users, and could therefore benefit from such graph-based user communities.
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9.3.1 From Music Graphs to Node Embedding Spaces

We consider the replacement of the Louvain algorithm by a GAE/VGAE-based detection of com-

munities in the similarity graphs described in Section 9.2. In addition to obtaining communities,

running GAE and VGAE models instead of the Louvain algorithm would permit learning low-

dimensional node embedding representations of the musical entities under consideration (e.g., of

artists or albums). These representations could act as feature vectors for these entities in other

machine learning problems, and be helpful for data visualization.

More importantly, the standard Louvain algorithm only relies on the graph structure to extract

communities, which is limiting as our similarity graphs are often enriched by node-level descrip-

tions. For instance, in the graph of Chapter 8, artists were also described by their own vectors

providing information on their music genres, moods, and countries of origin.

On the other hand, as explained in previous chapters, GAE and VGAE models can process

such node attributes a.k.a. node features. Chapter 8 already emphasized how GAE and VGAE

models can effectively learn artist embeddings that simultaneously capture usage (through edges

in the graph) and musical (through node features) information on artists. In this section, we

now aim to analyze to which extent this aspect could also improve the detection of communities

of artists, or of other musical entities, and enhance Deezer’s recommender systems.

9.3.2 Experimental Setting

In this direction, we now present the experimental setting of some offline community detection

experiments, conducted on data extracted from Deezer’s production system.

Task and Datasets As is the case for the previous community detection experiments from this

thesis, our task will consist in extracting a partition of nodes from a graph into K communities,

for a given value of K. We consider two undirected graphs:

• a similar artists graph, including n = 77 656 artists from the Deezer catalog, connected

via m = 377 591 edges. This graph was computed in September 2021 from usage data of

millions of active users, and using the pre-processing steps from Section 9.2.1;

• a larger similar albums graph, including n = 2 503 985 albums from the Deezer catalog,

connected via m = 25 039 155 edges. This graph was also computed in September 2021.

It corresponds to the “Albums” graphs used in the experiments of Chapter 7.

Artists and albums are also described by 128-dimensional vectors xi, which will act as node

features in GAE/VGAE models. We obtained these vectors from the factorization of a pointwise

mutual information matrix among music tracks, using singular value decomposition (SVD). The
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matrix is constructed from the co-occurrences of music tracks in diverse musical collections on

Deezer, e.g., music playlists, listening sessions, and lists of favorite tracks. The SVD returns

a 128-dimensional vector for each track; we subsequently derive the 128-dimensional vector of

each artist/album by averaging the vectors from their corresponding music tracks.

Evaluation Metrics We do not have access to a list of artist/album communities that should

actually be recommended together to users. As a consequence, in this chapter, we assume the

unavailability of ground truth node labels for evaluation. This prevents computing AMI and

ARI scores, as we did in Part II of this thesis. In these offline experiments, we instead report

three alternative metrics, to evaluate the models described in the next paragraph:

• first and foremost, we report the modularity score Q associated with each node partition

into K communities. The modularity, defined in Definition 7.2 from Chapter 7, acts as

an unsupervised graph-based measure of the quality of a node partition, in terms of intra-

and inter-community edge density;

• then, we evaluate the musical homogeneity of each community, in terms of music genres.

As in Section 8.4.1 from Chapter 8, nodes are associated with 32-dimensional music genre

embedding vectors, computed internally at Deezer. For each community detection method,

we compute H, the average intra-community standard deviation of these vectors, as a

measure of intra-community musical homogeneity;

• lastly, we consider the artists and albums liked by a set of 2 000 Deezer users in October

2021, i.e., the month after computing the two similarity graphs of this study. We denote

by Fu the set of artists (or, of albums) liked by the user u during the period. Furthermore,

we denote by Nuk =
∑

i∈Fu
1(i∈Ck) the number of artists (or albums) from Fu belonging

to the community Ck, with k ∈ {1, . . . ,K}. We compute:

Pu =
1

K

K∑
k=1

1Nuk>0, (9.1)

i.e., the percentage of communities including at least one favorite artist (or album) of u.

A low value of Pu indicates that a few communities summarize the musical preferences

of u. This is desirable in the context of our recommender systems (see Section 9.2), as

unlistened artists/albums from the same few communities would more likely constitute

relevant recommendations for this user. Specifically, in our experiments, we consider

P = 1
2000

∑
u Pu, the average value of Pu over the set of users.

Models Using these evaluation metrics, we compare the communities obtained from the Louv-

ain method [31] to those obtained via several GAE and VGAE models:
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• the standard GAE and VGAE models from Kipf and Welling [187] with two-layer GCN

encoders and inner product decoders;

• their simplified counterparts, Linear GAE and VGAE, introduced in Chapter 6;

• our improved models for community detection, Modularity-Aware GAE and VGAE, with

consistent decoders/losses w.r.t. Chapter 7. We consider two variants of these models, with

either 1) the linear encoders from Chapter 6, or 2) 2-layer GCN encoders, incorporating

our revised message passing operator A+ λAs on the first layer only, as in Chapter 7.

All hyperparameters were optimized according to the model selection procedure proposed in

Section 7.3.3 from Chapter 7. We set d = 32 for all models. Multi-layer GCN encoders include

a 64-dimensional hidden layer. We trained models for 500 iterations (resp., 600 iterations), with

a learning rate of 0.01 (resp., of 0.005) for the similar artists graph (resp., for the similar albums

graph), without dropout and using the Adam optimizer [184]. For all Modularity-Aware GAE

and VGAE models and for both graphs, we used the same values of λ, β, γ and s as those

reported in Table 7.2 from Chapter 7. To overcome scalability issues, we used the FastGAE

method from Chapter 4, and trained all models by decoding stochastic subgraphs of size n(S) =

10 000, with degree-based sampling and with α = 1 for both graphs. Our experiments therefore

incorporate and combine several of the technical contributions presented throughout this thesis.

9.3.3 Offline Evaluation of GAE and VGAE Models

Table 9.1 reports our results on the two graphs. For the sake of readability, we report relative

scores w.r.t. the Louvain method, currently used in our production systems. We recall that, in

these experiments, we aim to maximize Q but to minimize H and P .

Results The Louvain method produces the communities associated with the highest modular-

ity (Q) values. We underline that Q is the criterion explicitly optimized by the Louvain greedy

algorithm [31]. While the GAE and VGAE models underperform according to this criterion,

most of them reach better H and P scores. Better H scores indicate that the GAE/VGAE-based

communities are more homogeneous in terms of music genres. Better P scores indicate that user

preferences tend to be summarized by fewer GAE/VGAE-based communities.

We now compare the different GAE and VGAE models. Firstly, we observe that our Modularity-

Aware GAEs and VGAEs, specifically designed for improved community detection, provide the

best H and P scores. They also obtain better Q scores than standard GAEs and VGAEs. Such

a result is not surprising, as these models incorporate the Louvain method as a pre-processing

step (see Section 7.3.2) as well as a modularity-inspired regularization term (see Section 7.3.3).

Moreover, as in Chapter 6, the results obtained using linear encoders are either on par or
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Table 9.1: Community detection on similar Deezer artists/albums graphs, using the Louvain method and several
GAE and VGAE models. All GAE and VGAE models learn embedding vectors of dimension d = 32, with other
hyperparameters described in Section 9.3.2. All models learn K = 100 (resp., K = 1000) communities of artists
(resp., of albums). Scores are averaged over 10 runs. We report relative scores (in %) w.r.t. the Louvain baseline.
We recall that we aim to maximize Q but to minimize H and P . Bold numbers correspond to the best scores.

Model Artists Albums
Modularity Q Homogeneity H Coverage P Modularity Q Homogeneity H Coverage P

Louvain 100 100 100 100 100 100

Linear Standard GAE 88.2 96.9 97.6 78.3 101.4 95.1
Linear Standard VGAE 89.4 96.8 97.4 80.1 98.5 94.8

GCN-based Standard GAE 89.4 96.6 97.6 79.7 100.9 95.4
GCN-based Standard VGAE 90.9 96.0 97.5 80.6 98.2 94.7

Linear Mod.-Aware GAE 93.6 96.0 97.1 92.4 98.9 94.3
Linear Mod.-Aware VGAE 94.2 96.0 96.9 92.7 97.8 93.7

GCN-based Mod.-Aware GAE 93.9 95.3 97.2 92.6 98.7 94.1
GCN-based Mod.-Aware VGAE 94.6 94.4 97.0 93.1 97.5 93.6

relatively close to those obtained using 2-layer GCN encoders. Lastly, on both graphs, VGAE

models tend to slightly outperform their GAE counterparts, although most results are still close

as in our previous experiments from this thesis.

In our experiments, all GAE and VGAE models processed the aforementioned SVD-based node

features. In future tests, these features could be completed with some additional information on

artists and albums. For instance, one could incorporate information on music genres, as we did

in Chapter 8 (in this Chapter 9, music genres were alternatively used for evaluation). We would

expect the addition of music genres into node features to improve the homogeneity scores H.

Lastly, while our experiments set K = 100 or 1000 in Table 9.1, we note that we obtained

consistent conclusions with other values, in our preliminary tests. At the time of writing, Deezer

selects the optimal number and sizes of communities through heuristics undisclosed in this thesis.

Discussion Overall, these results are promising. The best communities for music recommend-

ation (see Section 9.2) are not always the densest ones, e.g., the ones associated with the highest

modularity. At the price of a lower modularity, GAEs and VGAEs from Table 9.1 manage to

learn artist/album communities with a slightly higher musical homogeneity. More importantly,

their lower P scores suggest that GAE/VGAE-based communities are more in phase with our

recommendation strategy, i.e., that if users already listened to several artists from a community,

then other unlistened artists from the same community could be recommended to them.

Undoubtedly, these results remain very preliminary. To verify whether GAEs and VGAEs indeed

learn “better” communities for recommendation, the Deezer team might try to incorporate them

into production-facing recommender systems such as the Flow. For instance, an online A/B test

could measure whether the GAE/VGAE-based communities improve some key performance

indicators (e.g., whether Deezer users listen to the recommended tracks longer, or, skip the

recommended tracks less often) w.r.t. Louvain-based communities. At the time of writing, such
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investigations were still undone. They open the way for some future work and online tests, that

might lead to a model deployment on the Deezer service in 2022.

Extensions In addition to these online A/B tests on Deezer, we also plan to extend these

analyses to graphs of users, previously mentioned in Section 9.3.1. As the FastGAE method

permits scaling GAE and VGAE models to large graphs with millions of nodes and edges, future

work could also aim to train models on graphs with a larger number of artists or of albums, as

well as on large similar music tracks graphs with up to 73 million nodes, and on more general

knowledge graphs of musical entities. In such graphs, as detailed in Chapter 1, music tracks

would be connected to artists, albums, music genres, or record labels, that would themselves be

connected together through various semantic links.

Another research direction could consist in learning country-specific or culture-specific music

graph representations. As we will develop in Chapter 10, people from different countries and/or

different cultures perceive music differently [340]. This can result in different listening beha-

viors on music streaming services. For instance, two similar artists graphs, constructed only

from the usage data of French users and Japanese users, respectively, might be structurally

different. Taking into account these differences by considering country/culture-specific graphs

might permit providing more refined recommendations. In a similar fashion, future work could

also consider context-specific similarity graphs. As music consumption highly depends on the

listening context [360], some node pairs (e.g., some artist pairs) might only be connected (i.e.,

co-listened) in some contexts (e.g., based on the activity, mood, or time of the day).

9.3.4 Towards Dynamic Music Graph Embedding and Clustering

In this section, we continue to discuss extensions of our methods. We provide more details on

an ongoing project, related to GAE/VGAE-based dynamic node embedding and clustering.

From Static to Dynamic Graphs In the experiments of Section 9.3.3, the graph structures

under consideration were fixed. In reality, as previously mentioned in Chapter 8, new artists (as

well as new albums, music tracks, etc) regularly appear on the Deezer service. As a consequence,

new nodes should be frequently incorporated into the corresponding similarity graphs. On the

contrary, some artists (or albums, music tracks, etc) are sometimes removed from the catalog. In

addition, users’ listening habits on Deezer might evolve over time, resulting in new or removed

edges between these nodes. Therefore, these similarity graphs are dynamic by nature.

Our (static) definition of a graph from Definition 2.1 can be straightforwardly extended to

represent dynamic structures. In the scientific literature, dynamic graphs are often summarized
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by T discrete snapshots of standard graphs, depicting the structural evolution over time [179]:

G1 = (V1, E1), G2 = (V2, E2), . . . , GT = (VT , ET ), (9.2)

They are associated with T adjacency matrices A1, A2, . . . , AT . As an illustration, Deezer

computes similarity graphs on a weekly basis (see Section 9.2). Hence, each similar artist graph

Gt corresponds to a snapshot of the Deezer catalog and users’ listening data during the t-th week.

Dynamic Music Graph Clustering Currently, our production system computes artist com-

munities every week from scratch, by running the Louvain algorithm on every new similarity

graphs. In a similar fashion, one could consider training a completely new GAE/VGAE model

every week. While being simple, this approach suffers from two limitations:

• firstly, this approach is computationally inefficient. In our applications, Gt will often be

relatively similar to Gt−1. For instance, the new nodes (e.g., the new artists) appearing

during a week usually represent much less than 1% of the catalog. Intuitively, the inform-

ation learned on Gt−1 should still be relevant to extract communities from Gt. Training an

entire model from scratch every week might not be necessary;

• secondly, this approach is not stable over time. By training a new model on Gt, there is no
theoretical guarantee that the resulting communities will be “close” to those obtained at

week t− 1. Yet, for consistency reasons, ensuring relatively stable recommendations over

time is usually desirable for music streaming services such as Deezer.

Extending GAE and VGAE Models to Dynamic Graphs In 2020, the research intern-

ship of Raphaël Ginoulhac [108], that we supervised at Deezer with Benjamin Chapus, aimed

to address these limitations. During his internship at Deezer, Raphaël reviewed the recent ad-

vances on dynamic node embedding and clustering (we refer the interested reader to the recent

survey of Kazemi et al. [179]). He subsequently investigated several strategies to extend GAEs

and VGAEs to dynamic graphs. Through an experimental analysis on similar artists graphs, he

revealed the empirical effectiveness of two simple methods:

• HotStart GAE/VGAE: this method is inspired by the work of Goyal et al. [120]. It

consists in 1) training a GAE/VGAE model on an initial graph G0, then 2) using the

optimized weights of such a model as the initial weights of the GAE/VGAE model associ-

ated with a new graph G1, and 3) fine-tuning this new model for a few training iterations

only5. The procedure is repeated over time, i.e., the final weights of the (t− 1)-th model

correspond to the initial weights of the t-th model, for any t > 1;

5In Chapter 8, we trained our models on a graph of “warm” artists, and used the same model to learn
embeddings for new “cold” nodes from this graph. This approach actually constitutes a particular case of HotStart
GAE/VGAE, where the model is not fine-tuned after a modification of the graph structure.
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• KL-Reg VGAE: this alternative method for VGAE models consists in modifying the

ELBO objective from Equation (2.40), so that the Kullback-Leibler divergence [199] term

forces the posterior distribution at time t, say q(t), to be close to the one computed at time

t − 1, say q(t−1), instead of the unit Gaussian prior N (0, Id). Specifically, we firstly train

a VGAE model, with a standard ELBO objective, on an initial graph G0. Then, when

training the t-th VGAE on Gt with t > 0, we maximize, by gradient ascent:

L(t)VGAE = Eq(t)(Z|A,X)

[
log p(t)(A|Z,X)

]
−DKL

(
q(t)(Z|A,X)||q(t−1)(Z|A,X)

)
. (9.3)

Raphaël’s experiments tend to confirm that both methods are computationally efficient, i.e., that

only a few training iterations are required for the t-th model to converge when Gt is relatively

similar to Gt−1. Simultaneously, and in a comparable way, both methods are more stable than

the standard approach consisting in training new models from scratch every week. Specifically,

in a majority of experiments, the AMI scores of communities extracted from Gt w.r.t. those

extracted on Gt−1 increase when using the HotStart GAE/VGAE or KL-Reg VGAE methods.

Nonetheless, such results still require further theoretical analyses, as well as an empirical valid-

ation on external datasets and a proper comparison to existing baselines [120, 179]. While we

chose not to fully report these results in their preliminary state in this thesis, they will motiv-

ate more investigations in the upcoming months, potentially leading to a scientific publication

and/or to a model deployment on the Deezer service.

9.4 Conclusion

In this chapter, we provided a broader overview of how Deezer has historically leveraged sim-

ilarity graphs for community-based music recommendation. Then, through offline experiments

on data extracted from Deezer’s production system, we showed the benefits of adopting GAE

and VGAE models, integrating our technical contributions from Part II.

While our conclusions are promising, we acknowledge that the results presented in this chapter

are the most preliminary of this thesis. They still require further empirical validation, including

through online A/B tests on the service. With the Deezer team, we will consider launching such

tests in the upcoming months, i.e., after the end of this PhD project.

Lastly, in this chapter, we mentioned several ongoing and future plans to extend our methods

and our analyses to other graphs. This includes our graphs of users, which have been quite

neglected so far, as well as more general knowledge graphs, culture-specific graphs, and context-

specific graphs. As the structures under consideration in our work are dynamic by nature, we

also aim to pursue our efforts towards more efficient dynamic node embedding methods.
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10
Modeling the Music Genre Perception across

Language-Bound Cultures

This chapter presents research conducted with Elena V. Epure, Manuel Moussallam, and Romain

Hennequin, and published in the proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP 2020) [83]. This chapter also mentions the Muzeeglot

prototype [84], internally developed with Felix Voituret and based on this research.

10.1 Introduction

The first two chapters of this Part III, i.e., Chapters 8 and 9, presented several applications

of GAE and VGAE models to similarity graphs. In this Chapter 10, we now focus on quite

different graph structures, that correspond to music genre ontologies. As explained in Chapter 1

and further detailed in the following sections, these ontologies are graphs of conceptually related

music genres, connected through various relation-specific edges [321]. In this chapter, we propose

to leverage these representations to model the music genre perception across cultures.

Specifically, we consider the following problem: the music genre perception expressed through

human annotations of artists or albums varies significantly across (language-bound) cultures [95].

As we will show, these variations cannot be modeled as mere translations since we also need to

account for cultural differences in the music genre perception [83]. This is an important issue

for music streaming services such as Deezer, as these variations impact a wide range of music

information retrieval and recommendation tasks, ranging from language-aware music genre auto-

tagging to localized playlist captioning and music genre-driven recommendations [82]. To address

181



Chapter 10. Modeling the Music Genre Perception across Cultures

this problem, we would need to tag music items, such as artists, albums, or tracks, with music

genre representations that capture such differences in perception, which is challenging [83, 85].

Previous research works at Deezer already studied the relations between music genres and the

way music items are associated with music genres. Hennequin et al. [141] managed to learn

music genre embedding representations from audio data, with application to audio-based dis-

ambiguation of music genre annotations (i.e., identifying situations where different tags actually

refer to the same genre, or, on the contrary, where the same genre is identified by different tags).

Epure et al. [81] proposed to use knowledge bases and parallel annotations for music genre

“translation” across several inconsistent genre tag systems, but only considered English genres.

In this work, published in a more NLP-focused venue (EMNLP 2020), we aim to complement

these studies, by analyzing the feasibility of obtaining relevant cross-lingual, culture-specific

music genre annotations based only on language-specific semantic representations, namely on

1) graph ontologies, and 2) NLP-based distributed word embeddings of music genres, acting as

attribute vectors of genres/nodes in these graphs. Our study, focused on six languages and on

genre annotations obtained from the Wikipedia online encyclopedia, shows that unsupervised

cross-lingual music genre annotation is feasible with high accuracy when combining both types

of representations, using either GAE/VGAE-inspired models or retrofitting [87]. Besides, along

with the paper associated with this work [83], we publicly released our source code, as well as

the dataset (scraped and processed from the internet) that we used for our experiments.

This chapter is organized as follows. In Section 10.2, we introduce the problem of subjectivity

in the music genre perception in detail. We also formally describe the cross-lingual music genre

annotation problem we aim to solve in this work. To address this problem, we subsequently

present, in Section 10.3, our methods to learn music genre representations by combining graph

ontologies and word embeddings. We report and discuss our experimental setting and our results

in Section 10.4. At the end of this same section, we also mention the Muzeeglot prototype [84],

internally developed at Deezer to visualize our multilingual music genre embedding representa-

tions. We conclude in Section 10.5. In Section 10.6, we provide an additional proof, placed out

of the “main” chapter for the sake of brevity and readability.

10.2 The Cross-Lingual Music Genre Annotation Problem

In this section, we detail the research problem we aim to address in this chapter.

10.2.1 Modeling the Music Genre Perception

A prevalent approach to culturally study music genres starts with a common set of music items,

e.g., artists, albums, or music tracks, and assumes that the same music genres would be asso-
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ciated with the items in all cultures [95, 337]. However, music genres are subjective. Cultures

themselves and individual musicological backgrounds influence the music genre perception, which

can differ among individuals [210, 340]. For instance, a Westerner may relate funk to soul and

jazz, while a Brazilian to baile funk, which is a type of rap [141]. Thus, accounting for cultural

differences in the music genre perception could give a more grounded basis for such cultural

studies. It could also help music streaming services associate their musical catalog with more

relevant music genres tags, and, among other applications, provide better genre-driven recom-

mendations to users (see, e.g., our experiments from Chapters 8 and 9, that both involved music

genre-related data). However, ensuring both a common set of music items and culture-sensitive

annotations with a broad coverage of music genres is strenuous [33].

To address this challenge, we study the feasibility of cross-culturally annotating music items with

music genres, without relying on a parallel corpus. In this work, culture is related to a community

speaking the same language1 [198]. The specific research question we build upon is: assuming

consistent patterns of music genres association with music items within cultures, can a mapping

between these patterns be learned by relying on language-specific semantic representations? It is

worth noting that, since music genres fall within the class of Culture-Specific Items [10, 268],

cross-lingual annotation, in this case, cannot be framed as standard translation, as one also

needs to model the dissimilar perception of music genres across cultures.

Our work focuses on six languages from four language families: Germanic (English and Dutch),

Romance (Spanish and French), Japonic (Japanese), and Slavic (Czech); and on two types of

language-specific semantic representations: music genre ontologies and word embeddings. In the

following Section 10.2.2, we formalize the cross-lingual annotation task. Then, in Section 10.2.3,

we describe the Wikipedia-based test corpus we used in this work, to evaluate the music genre

representations that we will subsequently present in Section 10.3.

10.2.2 Problem Formulation

Our cross-lingual music genre annotation task consists of inferring, for music items, tags in a tar-

get language Lt, knowing tags in a source language Ls according to some source (e.g., Wikipedia,

in this study). For instance, knowing the English music genres of Fatboy Slim (big beat, electron-

ica, alternative rock), the goal is to predict rave and rock alternativo in Spanish. As shown in this

example and in the one from Section 10.2.1, the problem goes beyond translation and instead

targets a model able to map concepts, potentially dissimilar, across languages and cultures.

Formally, given S a set of tags in a language Ls, P the partitions of S and T a set of tags in

a language Lt, a mapping scoring function f : P(S) → R|T | can attribute a prediction score to

each target tag, relying on subsets of source tags drawn from S [81, 83, 141]. The produced score

1This assumption conveniently frames the problem. Nonetheless, we acknowledge that it is quite strong for
some languages, e.g., French and Spanish, if the origin of music genres annotators is not specified.
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Figure 10.1: Wikipedia infoboxes of Puerto Rican artist Milton Cardona, in English, Spanish, and Japanese.
Some music genre annotations are culture-specific, such as World/ワールドミュージック which is present in
English and Japanese but not in Spanish, or 実験音楽 (Experimental Music) in Japanese only.

incorporates the degree of relatedness of each particular input source tag to the target tag. A

common approach to compute relatedness in distributional semantics relies on cosine similarity.

Thus, for some source tags {s1, ..., sK} and a target tag t, f can be defined as:

ft({s1, s2, . . . , sK}) =
K∑
k=1

zsk
T zt

||zsk ||2||zt||2
, (10.1)

where zsk and zt are some d-dimensional embedding vectors representing each sk and t, respect-

ively (see Section 10.3), and where || · ||2 denotes the Euclidean norm.

10.2.3 Evaluation Corpus

We identify Wikipedia2, the online multilingual encyclopedia, to be particularly relevant to

our study. Indeed, Wikipedia records worldwide music artists and their discographies, with a

frequent mention of their music genres. By manually checking the Wikipedia pages of music

items, we observed that their music genres vary significantly across languages. For instance,

Knights of Cydonia, a single by Muse, was annotated in Spanish as progressive rock, while in

Dutch as progressive metal and alternative rock. In Figure 10.1, we provide another example of

different annotations in English, Spanish, and Japanese from Wikipedia infoboxes.

2https://en.wikipedia.org
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Table 10.1: Number of music items for each language pair.

Language Dutch French Spanish Czech Japanese

English 12 604 28 252 32 891 4 772 14 752
Dutch 7 139 7 689 1 885 3 426
French 15 616 3 046 8 622
Spanish 3 245 7 644
Japanese 2 065

As Wikipedia’s writing is localized, the various cultures of its contributors can lead to differences

in the multilingual content on the same topic, particularly for subjective matters. We refer the

interested reader to the study of Pfeil et al. [289], arguing that Wikipedia’s contributions expose

cultural differences aligned with the real-world ones. Therefore, Wikipedia appears as a suitable

source for assembling a test corpus.

Using DBpedia [19] as a proxy to Wikipedia, we collected music items such as artists and

albums, annotated with music genres in at least two of the six languages (English, Dutch,

French, Spanish, Czech, and Japanese). We targeted the MusicalWork, MusicalArtist and Band

DBpedia resource types, and we only kept music items that were annotated with music genres

which appeared at least 15 times in the corpus. Our final corpus includes 63 246 music items,

and was publicly released along with the paper associated with this work [83]. The number of

annotations for each language pair is presented in Table 10.1. We also show in Table 10.2 the

number of unique music genres per language in the corpus and the average number of tags for

each music item.

The English and Spanish languages use the most diverse tags. This can be because more

annotations exist in these languages, in comparison to Czech, which has the least annotations

and least diverse tags. However, the mean number of tags per item appears relatively high for

Czech, while Japanese has the smallest average number of tags per item.

10.3 Learning Music Genre Representations

This work assesses the possibility of obtaining relevant cross-lingual music genre annotations,

able to capture cultural differences too, by relying on language-specific semantic representations.

Again, such representations would be valuable for music streaming services such as Deezer, e.g.,

to improve localized content tagging and music genre-driven recommendation.

10.3.1 General Overview

The first step of our method consists in obtaining initial embedding representations for mu-

sic genres by leveraging pre-trained multilingual word embeddings (Section 10.3.2). However,
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directly using these embeddings for cross-lingual genre annotation is prone to underperform, as:

• the embeddings often correspond to the most common word senses (e.g., country can refer

to nation, and rock could be closer in meaning to stone), and not to their musical senses;

• some music genres could contain rare words which are absent from the pre-trained model

vocabulary, resulting in potentially unknown tag embeddings.

To address these issues, we complement our word embeddings with semantics from knowledge

bases that expose concept relations. Specifically, in a second step, we assemble graph ontologies

to represent music genre relations, as described in Section 10.3.3. Then, we aim to adjust the

initial genre embeddings to encode relations from these graphs, ensuring the domain adaptation.

For this, but also to learn embeddings for concepts with unknown vocabulary words, we con-

sider two different approaches based on retrofitting and on GAE/VGAE-inspired models, and

presented in Sections 10.3.4 and 10.3.5, respectively.

We note that, in contrast to our unsupervised approach, mapping patterns of associating music

genres with music items could have also been enabled with a parallel corpus [81]. However,

gathering a corpus that includes all music genres for each pair of languages is challenging [83].

10.3.2 Initializing Music Genre Embedding Representations

Multilingual Word Embeddings Under the formalism introduced in Section 10.2.2, our

main goal relates to quantifying the degree of relatedness of two textual tags. This task is

widely popular in the NLP community and contemporary approaches resort to expressing their

relatedness via the distance between their corresponding word embeddings [121, 256, 285]. The

mapping of words with embedding vectors is guided by the distributional hypothesis [134], which

states that words occurring in similar contexts are likely to have similar meanings.

To measure the relatedness of multilingual words using embeddings obtained from monolin-

gual corpora, an alignment [171] between the language-specific embedding spaces is required.

Through this alignment, we ensure that multilingual word embeddings are projected into a com-

mon space where they are comparable. Practically, a mapping function between two monolingual

word embedding spaces is learned, for instance by using a bilingual lexicon [257].

In the experiments reported in this chapter, we leverage word embeddings obtained from the

multilingual fastText (FT) model proposed by Grave et al. [121], which we aligned by using

the method described by Joulin et al. [172]. Embedding vectors are of dimension d = 300. We

emphasize that this choice is not restrictive. In our EMNLP 2020 paper, we provide additional

results for music genre word embeddings obtained from the recent BERT [71], LASER [16]

and XLM [60] models, together with a comparison of these different methods. We omit these

additional results in this thesis, for the sake of brevity.

186



10.3. Learning Music Genre Representations

Music Genre Embeddings Starting from these multilingual fastText word vectors, we now

discuss our strategy to initialize our music genre embedding representations. Music genres can

contain multiple words. We claim that the compositionality principle, stating that the meaning

of a multi-word expression is dictated by the meaning of each word, often holds for our case. For

instance, Dance pop is related to dance and pop or Balada romántica is a type of ballad which

is romantic3. The contemporary approach for compositional embeddings consists in learning a

function which derives the embeddings of a multi-word expression from the embeddings of its

words [335]. In this work, we consider two music genre initialization strategies:

• the first one, denoted avg, simply consists in averaging word embeddings. Formally, let

V = {c1, c2, . . . , cn} be the multilingual vocabulary, ci being a concept (i.e., a genre)

composed of at least one word. We aim to compute Q̂ ∈ Rn×d, the embedding matrix

for the vocabulary V, where the i-th row q̂i ∈ Rd denotes the embedding of ci. If ci is

composed of the following words, {w1, w2, . . . , wM}, q̂i can be computed as 1
M

∑M
m=1 zwm ,

where zwm is the embedding vector of wm. We note that, if ci contains words absent from

the pretrained fastText vocabulary, the d-dimensional null vector 0d is used by default;

• the second one, denoted sif, exploits the fact that some words in a compounded expres-

sion may be more illustrative than others. The more frequently a word is observed in a

corpus, the more likely it is that the word is common for a language and semantically

less informative (e.g., music in post industrial music). Thus, the compositional embed-

ding computation of a multi-word expression can be modified such that the contribution

of each word embedding is inversely proportional to its frequency. Pre-trained word em-

beddings are generally released sorted by decreasing word corpus frequency. Let rwm be

the rank of wm in this vocabulary. Then, based on Mandelbrot’s generalization [249] of

Zipf’s law [411], its frequency fwm can be estimated as follows: fwm = 1/(rwm + 2.7).

In the following, we rely on the smooth inverse frequency (sif ) based averaging proposed

by Arora et al. [15] to compute the multi-word expression embeddings. This method

is aligned with our previous observations and proven highly effective compared to more

complex neural network-based models on a large diversity of NLP tasks [15]. Given fwm

the estimated frequency of the word wm and a a fixed hyperparameter4, q̂i is computed as:

qi =
1

M

M∑
m=1

a

a+ fwm

zwm , (10.2)

q̂i = qi − uuT qi, (10.3)

where u is the first singular vector from the SVD of Q obtained with the Equation (10.2).

3Exceptions from the principle also exist, e.g., hard rock.
4Arora et al. [15] argue that a = 10−3 is a suitable choice for various pre-trained models.
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Using one of these two methods, we can derive initial music genre embedding representations.

In the remainder of Section 10.3, we will improve these (avg- or sif -based) embeddings using

retrofitting or GAE/VGAE-inspired models, to encode relations from the ontologies presented

in the next Section 10.3.3.

10.3.3 Music Genre Graph Ontologies

Conceptually, music genres are interconnected entities. Researchers often use ontologies to

represent music genre relations and enrich the music genre definitions [230, 297, 321]. These on-

tologies are graphs of conceptually related music genres, acting as nodes and connected through

various relation-specific edges. For instance, rap west coast is a subgenre of hip hop, while punk

and electronic music are the origin of synthpunk.

In this chapter, we consider Wikipedia-based

ontologies, extracted from the internet using

the procedure described below. Wikipedia ex-

tensively documents worldwide music genres,

relating them through a coherent set of relation

types across languages, including the aforemen-

tioned subgenre and origin relations. Though

the relations types are the same per language,

the actual music genres and the way they are

related can differ and expose cultural differ-

ences in the music genre perception, as emphas-

ized by Pfeil et al. [289]. We further describe

how we crawled these ontologies, by relying on

DBpedia as in Section 10.2.3.

Table 10.2: Number of unique music genres in the eval-
uation corpus (presented in Section 10.2.3) and in the
graph ontologies (presented in Section 10.3.3).

Number of unique music genres

Language in the evaluation in the

corpus (avg. per item) ontologies

English 558 (2.12 ± 1.34) 10 748

Dutch 204 (1.71 ± 1.06) 1 529

French 364 (1.75 ± 1.06) 2 905

Spanish 525 (2.11 ± 1.34) 3 988

Czech 133 (2.23 ± 1.34) 1 418

Japanese 192 (1.51 ± 1.11) 1 609

Firstly, for each language, we constituted a seed list using two sources: the DBpedia resources

of type MusicGenre and their aliases linked through the wikiPageRedirects relation; the music

genres discovered when collecting the evaluation corpus (introduced in Section 10.2.3) and their

aliases. Then, music genres were fetched by visiting the DBpedia resources linked to the seeds

through the relations: wikiPageRedirects, musicSubgenre, stylisticOrigin, musicFusionGenre and

derivative5. The seed list was updated each time, allowing the crawling to continue until no

new resource was found. In DBpedia, resources are sometimes linked to their equivalents in

other languages through the relation sameAs. In most experiments, we will rely on monolingual

music genres ontologies (i.e., on six isolated graphs). However, we also collected the cross-lingual

links between music genres to include a translation baseline for cross-lingual annotation, i.e., for

5We present these relations by their English names, which may be translated in DBpedia in other languages.
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each music genre in a source language, we predicted its equivalent in a target language using

DBpedia’s sameAs (see Section 10.4).

The number of unique music genres discovered in each language is presented in Table 10.2. As

our evaluation corpus from Section 10.2.3, these graphs were publicly released along with the

paper associated with this work [83]. We note that the number of nodes is significantly larger

than the number of genres in the evaluation corpus, emphasizing the challenge of constituting a

parallel corpus that would cover all language-specific music genres.

10.3.4 Improving Music Genre Representations with Retrofitting

In this section, and in the following one, we present our two strategies to improve the initial music

genre embedding vectors from Section 10.3.2, by encoding information from the graph ontologies

of Section 10.3.3 into these vectors. Firstly, we present a method referred to as retrofitting [87]

in this section, while the following one will focus on GAE/VGAE-inspired approaches.

Retrofitting [87] is a method to refine word embedding vectorial representations by considering

the relations between words as defined by a graph, e.g., an ontology. It consists in modifying

the word embeddings to become closer to the representations of the concepts to which they are

related. Ever since the original work of Faruqui et al. [87], many uses of retrofitting have been

explored to semantically specialize word embeddings in relations such as synonyms or antonyms

[182, 183], in other languages than a source one [291] or in specific domains [132].

Formally, let G = (V, E) be a graph including the concepts V and the semantic relations between

these concepts E ⊆ V × V. The goal of retrofitting is to learn new concept embeddings qi ∈ Rd,

stacked up in the matrix Q ∈ Rn×d, with n = |V| and d the embedding dimension. The learning

starts by initializing each qi, i.e., the new embedding vector for a concept i ∈ V, to q̂i, the initial
embedding vector. Then, it consists in iteratively updating qi until convergence, as follows:

qi ←
∑

j:(i,j)∈E (βij + βji)qj + αiq̂i∑
j:(i,j)∈E (βij + βji) + αi

. (10.4)

The α and β terms are positive scalars weighting the importance of the initial embedding vector

and of the ones from related concepts in computations, respectively. Equation (10.4) was reached

through the minimization of the convex retrofitting loss:

Φ(Q) =
∑
i∈V

αi||qi − q̂i||22 +
n∑

i=1

∑
(i,j)∈E

βij ||qi − qj ||22, (10.5)

using the Jacobi method [306]. We note that Equation (10.4) is actually a corrected version of

the iterative procedure initially proposed by Faruqui et al. [87]. For a concept i, not only βij

appears in it, but also βji (which was omitted in the original formula of Faruqui et al [87]).
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The further modifications that we make regard the parameters α and β. For each i ∈ V, Faruqui
et al. [87] originally fixed αi to 1, and βij to 1

Dii
(with Dii the degree of i, as in Definition 2.4)

for (i, j) ∈ E or 0 otherwise. However, while many word embedding models can handle unknown

words, some concepts may still have unknown initial vectors, depending on the model’s choice.

For this case, expanded retrofitting [341] has been proposed, considering αi = 0, for each concept

i with unknown initial distributed vector, and αi = 1 for the other ones: qi is initialized to 0d

and updated by averaging the embeddings of its related concepts at each iteration.

We adopt the same approach to initialize the αi parameters. We also adjust the βij to weight the

importance of each related concept embedding depending on the relation semantics in our genre

ontologies. Specifically, we distinguish between “equivalence” and “relatedness” as follows:

βij =


1 : (i, j) ∈ Eequi ⊂ E ,
βij : (i, j) ∈ Erel = E \ Eequi,
0, : (i, j) ̸∈ E ,

(10.6)

where Eequi contains the “equivalence” relation type wikiPageRedirects, and Erel contains the

“relatedness” relation types stylisticOrigin, musicSubgenre, derivative and musicFusionGenre.

Finally, we want to highlight an important aspect of retrofitting. Previous studies [86, 136, 341]

claim that, while the retrofitting updating procedure converges, the results depend on the order

in which the updates are made. We prove in the supplementary Section 10.6 that the retrofitting

loss is actually strictly convex when at least one initial concept vector is known in each connected

component. Hence, with this condition satisfied, retrofitting always converges to the same

solution, independently of the ordering of updates.

10.3.5 Improving Music Genre Representations with GAE and VGAE

In essence, the retrofitting procedure consists in learning reinforced embedding representations

of some nodes (corresponding to some music genres), by jointly leveraging 1) their connections in

a graph, and 2) some initial vectorial representations of these nodes, in an unsupervised fashion.

In the previous chapters, and on numerous occasions, we also achieved such a combination by

training GAE and VGAE models. Therefore, while our EMNLP 2020 paper [83] mainly focused

on improving genre representations with retrofitting, leveraging GAE and VGAE models appears

as a natural alternative strategy to consider, in the context of this PhD thesis. Formally:

• the graph G = (V, E), on which the GAE or VGAE model should be trained, is the one

gathering all music genres from the six languages under consideration, as nodes, and their

connections in the six ontologies, as edges. For consistency with the previous retrofitting

method, we consider the wikiPageRedirects, stylisticOrigin, musicSubgenre, derivative and

musicFusionGenre links, but not the DBpedia’s sameAs links. Therefore, G actually
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includes six isolated subgraphs, corresponding to our six monolingual genre ontologies;

• the feature vector xi ∈ Rf of each node i ∈ V, which acts as the input layer representation

of i in the context of a GAE or VGAE model, corresponds, in this application, to the

initial word embedding vector of the music genre i, i.e., xi = q̂i ∈ Rd. We observe that, in

this application, we have f = d, i.e., the input and output representations will have the

same dimension;

• the final embedding representation zi ∈ Rd of each node i ∈ V corresponds to the vector

denoted as qi ∈ Rd in the previous section.

Nonetheless, as we argue in the next two paragraphs, a direct use of standard GAEs or VGAEs

is prone to underperform in this setting. This motivates several modifications of the encoder

and decoder components of these models, which we describe in the same paragraphs.

Encoder Unlike previous chapters, in our training graph ontologies, nodes can be connected

through edges of five different natures. Our definition of a graph from Definition 2.1 can be exten-

ded to represent such structures, by replacing the notation G = (V, E) by: G = (V, E1, E2, . . . , E5),
where each Ei ⊂ E (with i ∈ {1, . . . , 5} and

⋃
i Ei = E) only includes the edges of a particular type,

among wikiPageRedirects, stylisticOrigin, musicSubgenre, derivative andmusicFusionGenre. For

the sake of simplicity, and as in Section 10.3.4, we can also alternatively consider:

G = (V, Eequi, Erel), (10.7)

where, as previously defined, Eequi contains edges of “equivalence” relation type wikiPageRedir-

ects, and Erel contains edges of the “relatedness” relation types stylisticOrigin, musicSubgenre,

derivative and musicFusionGenre. Then, extending our Definition 2.2, we summarize G by two

adjacency matrices Aequi and Arel, indicating edges of each subgroup.

In this work, we aim to capture the dichotomy of Equation (10.7) in the message passing oper-

ations of our GAE/VGAE encoders. We expect such an aspect to improve our representations,

w.r.t. a standard encoding scheme ignoring the different natures of edges. Specifically, in our

experiments, we employ the linear encoders from Chapter 6 (both for the sake of simplicity, and

as they returned comparable results w.r.t. multi-layer GCNs in our preliminary tests). However,

we replace the operation from Definition 6.1 of Chapter 6 (i.e., Z = ÃXW ) by6:

Z = ÃrelXWrel + ÃequiXWequi, (10.8)

for some weight matrices Wrel ∈ Rd×d and Wequi ∈ Rd×d, tuned by gradient descent/ascent to

optimize the loss/objective presented in the next paragraph. Consistently with the notation

6Here, for clarity of exposition, we discuss the deterministic GAE framework. However, the changes are equally
applicable to the VGAE framework, for which Z has to be replaced by µ and log σ as in Equation (6.6).
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adopted throughout this thesis, X ∈ Rn×d is the node feature matrix, stacking up all xi (i.e.,

q̂i) vectors, and Z ∈ Rn×d is the node embedding matrix, stacking up all zi (i.e., qi) vectors. We

adopt an out-degree normalization (see Definition 5.1) for the two adjacency matrices.

Decoder In this chapter, our main goal is not to precisely reconstruct our graph ontologies

from a music genre embedding space. In particular, consistently with Equation (10.1), we would

want the music genres of a given music item in different languages to have large inner products

in the embedding space. As these genres are not connected in G, a standard GAE/VGAE with

an inner product decoder and a reconstruction loss/objective based on the observed edges in G
is unlikely to achieve such a result. As a consequence, we also adapt our decoding schemes, by

instead incorporating the retrofitting loss function presented in Section 10.3.4.

Specifically, we propose a modified GAE-inspired model7. After encoding nodes as in Equa-

tion (10.8), the “decoder” of such a model does not reconstruct the entire graph. It only eval-

uates Φ(Z), as defined in Equation (10.5), from the node embedding matrix Z. Then, during

training, we tune Wrel and Wequi by iteratively minimizing Φ(Z), by gradient descent.

In a similar fashion, we also propose a modified VGAE-inspired model. After encoding nodes

as above (and sampling the node embedding matrix Z, in this probabilistic setting), we tune

weight matrices by iteratively maximizing, by gradient ascent, the following modified objective,

that replaces the standard ELBO from Equation (2.40) of Chapter 2:

LVGAE-insp = −Φ(Z)− λDKL

(
q(Z|A,X)||p̃(Z)

)
. (10.9)

In Equation (10.9), the −Φ(Z) term replaces the “reconstruction-based” expectation of the

standard ELBO from Equation (2.40). We also modify the Kullback-Leibler divergence term.

In Equation (10.9), p̃ corresponds to N (xi, Id) priors on the distribution of each zi vector.

They replace the unit Gaussian priors, and aim to ensure that the zi embedding vectors remain

relatively close to the initial vectors xi (i.e., q̃i), consistently with the retrofitting loss. The

scaling hyperparameter λ ≥ 0 permits ensuring that both terms are comparable8.

10.4 Experimental Analysis

In this section, we present and discuss our experimental analysis of the proposed methods, using

the evaluation corpus scraped from DBpedia and presented in the previous Section 10.2.3.

7One could wonder whether the models proposed in this section should be referred to as graph autoencoders.
On the one hand, they do not aim to reconstruct an original graph, which was the key objective of standard
autoencoders. On the other hand, they remain conceptually very close to GAE and VGAE models [187]. For
these reasons, we chose to refer to them as “GAE-inspired” and “VGAE-inspired” models, throughout this chapter.

8Is anyone reading this? Send me a message! I would be glad to hear that someone has read my thesis
so meticulously.
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10.4.1 Experimental Setting

Cross-lingual music genre annotation, as formalized in Section 10.2.2, is a multi-label prediction

task. For evaluation, we report the mean and standard deviations of AUC scores, macro-

averaged [36], using 3-fold cross-validation. For each language, we apply an iterative split [322]

of the test corpus that balances the number of samples and the tag distributions across the

folds. We pre-process the music genres by either replacing special characters with space ( -/,)

or removing them (()’:.!$ ). For Japanese, we introduce spaces between tokens obtained with

Mecab9. Embedding vectors are then computed from pre-processed tags.

We test two translation baselines, one based on Google Translate10 and one directly leveraging

the aforementioned DBpedia’s SameAs relations for genre translation. In this case, the source

music genres are mapped to a single or no target music genre. Furthermore, we consider both

avg-based and sif -based variants of our fastText (FT) word embeddings, together with their cor-

responding retrofitted versions, adopting the hyperparameters described in the above sections.

We also train GAE-inspired and VGAE-inspired models (with the modified linear encoders and

loss/objective of Section 10.3.5) on both variants, using the Adam optimizer, without dropout,

with a learning rate of 0.01 and for 200 training iterations. We released our source code on Git-

Hub, along with datasets including our ontologies, embedding vectors, and evaluation corpus11.

Disclaimer: the data pre-processing operations and retrofitting experiments were conducted by

Elena V. Epure, lead author of the paper associated with this work. The GAE/VGAE-inspired

experiments, absent from this paper, were subsequently designed and added for this thesis.

10.4.2 Results and Discussion

Results Table 10.3 reports our results for cross-lingual music genre annotation, for all possible

“source → target” language pairs. We observe that a standard translation via Google Translate

leads to the lowest results, being outperformed by a knowledge-based translation using DBpedia’s

SameAs links, more adapted to this music domain. The results confirm that a naive translation

fails to capture the dissimilar music genre perception across cultures.

On the contrary, the sif -based fastText initial word embedding representations (FTsif) can

model quite well the varying music genre annotation across languages, w.r.t. the aforemen-

tioned baselines. FTsif embeddings also consistently outperform their FTavg counterparts for

all language pairs, which confirms the relevance of smooth inverse frequency averaging for this

application. In the experiments reported in [83], we reached consistent conclusions when con-

sidering vectors obtained from the BERT, LASER, and XLM models, instead of fastText.

9https://taku910.github.io/mecab/
10https://translate.google.com
11https://github.com/deezer/CrossCulturalMusicGenrePerception
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Table 10.3: Macro-AUC scores (in %) for cross-lingual music genre annotation on our DBpedia-based evaluation
corpus, presented in Section 10.2.3. The first part corresponds to baselines. The second part corresponds to
(initial) fastText embedding vectors, with avg or sif averaging. The third part corresponds to methods combining
graph ontologies and sif -based fastText embedding vectors. Bold numbers correspond to the best scores.

Language Pair Google DBpedia’s FTavg FTsif VGAE Retrofitting
Source → Target Translate “SameAs” + FTsif + FTsif

English → Dutch 59.9 ± 0.3 72.2 ± 0.2 75.2 ± 0.2 86.5 ± 0.1 89.4 ± 0.2 90.0 ± 0.1
English → French 58.4 ± 0.1 70.0 ± 0.2 78.6 ± 0.2 87.4 ± 0.3 90.8 ± 0.2 90.8 ± 0.2
English → Spanish 56.9 ± 0.0 65.4 ± 0.2 77.5 ± 0.1 86.9 ± 0.2 90.0 ± 0.2 89.9 ± 0.1
English → Czech 60.6 ± 0.6 78.4 ± 0.6 74.5 ± 0.6 88.6 ± 0.4 90.0 ± 0.4 90.4 ± 0.3

English → Japanese 60.9 ± 0.1 70.4 ± 0.2 69.6 ± 0.5 80.8 ± 0.3 86.1 ± 0.3 86.7 ± 0.3

Dutch → English 53.5 ± 0.1 56.7 ± 0.3 73.8 ± 0.5 79.8 ± 0.4 84.3 ± 0.3 84.3 ± 0.1
Dutch → French 54.4 ± 0.2 60.0 ± 0.4 63.9 ± 0.5 79.3 ± 0.8 81.0 ± 0.8 81.5 ± 0.7
Dutch → Spanish 53.1 ± 0.2 56.8 ± 0.2 63.7 ± 0.4 77.7 ± 0.5 79.9 ± 0.5 80.5 ± 0.4
Dutch → Czech 57.8 ± 0.1 50.0 ± 0.0 65.1 ± 0.3 80.6 ± 0.2 82.6 ± 0.6 83.4 ± 0.5

Dutch → Japanese 57.5 ± 0.4 62.7 ± 0.4 64.8 ± 0.2 74.9 ± 1.0 79.1 ± 0.9 80.0 ± 0.7

French → Dutch 58.6 ± 0.1 65.3 ± 0.4 67.7 ± 1.0 81.9 ± 0.4 83.7 ± 0.4 84.7 ± 0.3
French → English 55.3 ± 0.0 59.7 ± 0.2 76.2 ± 0.2 83.0 ± 0.2 87.4 ± 0.2 87.7 ± 0.1
French → Spanish 54.1 ± 0.1 59.0 ± 0.1 71.0 ± 0.2 81.8 ± 0.3 84.9 ± 0.3 85.3 ± 0.2
French → Czech 59.1 ± 0.3 70.0 ± 0.6 70.4 ± 0.8 83.9 ± 0.4 86.5 ± 0.5 87.2 ± 0.3

French → Japanese 59.1 ± 0.2 64.7 ± 0.5 71.1 ± 0.3 77.9 ± 0.1 80.5 ± 0.5 81.4 ± 0.3

Spanish → Dutch 59.8 ± 0.3 67.2 ± 0.2 68.5 ± 0.5 82.8 ± 0.9 85.2 ± 0.6 85.9 ± 0.6
Spanish → French 57.4 ± 0.2 64.8 ± 0.3 70.8 ± 0.4 85.0 ± 0.3 87.6 ± 0.5 87.5 ± 0.3
Spanish → English 57.0 ± 0.1 61.7 ± 0.0 75.3 ± 0.1 84.7 ± 0.2 88.8 ± 0.3 88.8 ± 0.3
Spanish → Czech 60.3 ± 0.2 72.2 ± 0.4 68.9 ± 0.8 85.6 ± 0.6 87.1 ± 0.6 88.0 ± 0.4

Spanish → Japanese 60.9 ± 0.1 67.0 ± 0.5 65.2 ± 0.4 78.3 ± 0.6 82.5 ± 0.6 83.1 ± 0.6

Czech → Dutch 57.6 ± 0.6 50.0 ± 0.0 68.5 ± 1.0 78.3 ± 0.9 79.9 ± 1.0 81.1 ± 1.2
Czech → French 54.2 ± 0.2 60.0 ± 0.3 64.5 ± 0.9 78.5 ± 0.2 80.4 ± 0.7 81.4 ± 0.3
Czech → Spanish 53.7 ± 0.4 56.9 ± 0.3 65.3 ± 0.9 77.7 ± 0.8 80.7 ± 0.8 81.6 ± 0.9
Czech → English 54.2 ± 0.2 57.1 ± 0.1 70.3 ± 0.5 78.9 ± 0.1 83.4 ± 0.6 84.5 ± 0.4
Czech → Japanese 58.6 ± 0.2 64.0 ± 0.3 67.1 ± 1.1 76.9 ± 0.1 79.3 ± 0.6 80.5 ± 0.5

Japanese → Dutch 54.8 ± 0.4 61.6 ± 1.1 62.0 ± 0.5 72.8 ± 1.0 74.0 ± 0.7 76.9 ± 0.3
Japanese → French 53.3 ± 0.2 58.4 ± 0.2 66.0 ± 1.1 73.7 ± 0.6 76.4 ± 0.4 77.8 ± 0.1
Japanese → Spanish 52.7 ± 0.1 55.9 ± 0.4 63.2 ± 0.3 73.9 ± 0.4 77.5 ± 0.6 78.8 ± 0.5
Japanese → Czech 56.1 ± 0.5 65.7 ± 0.7 61.7 ± 1.3 77.5 ± 0.2 78.7 ± 0.7 80.7 ± 0.4
Japanese → English 52.5 ± 0.1 55.8 ± 0.1 72.1 ± 1.0 75.6 ± 0.3 80.2 ± 0.8 81.6 ± 0.8

The last two columns of Table 10.3 report the results of cross-lingual annotation when using

the FTsif vectors retrofitted to monolingual music genre ontologies, and when combining FTsif

vectors and ontologies using the VGAE-inspired approach. The latter reaches comparable results

w.r.t. its GAE-inspired counterpart, which is therefore not reported in Table 10.3 for brevity. In

a nutshell, for all three methods (GAE-inspired, VGAE-inspired, and retrofitting), the domain

adaptation of initial word embeddings improves our scores across all pairs of languages.

Nonetheless, in this application, retrofitting tends to outperform our GAE/VGAE-inspired mod-

els. Such a result emphasizes the effectiveness of the (arguably simpler) retrofitting approach.

We also postulate that some of our current design choices might hurt the performances of

GAE/VGAE-inspired models. In particular, in future experiments, one might try to improve

the results of Table 10.3 by including DBpedia’s sameAs cross-lingual links, instead of train-

ing GAE/VGAE-inspired models on a graph consisting of six monolingual isolated subgraphs.
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Also, while we only separated “equivalence” edges from “relatedness” edges in our encoders,

one might instead optimize different weight matrices for each of our five (or six, with sameAs)

relation types.

Modeling the Music Genre Perception: Discussion Our results confirm that using trans-

lation to produce cross-lingual music genre annotations is limited, as it does not consider the cul-

turally divergent perception of music genres. Instead, by leveraging language-specific semantic

representations, combined with GAE/VGAE or retrofitting, one can model this phenomenon

rather well. For instance, from Milton Cardona’s music genres in Spanish, salsa and jazz, our

Retrofitting+FTsif model correctly predicts the equivalent of fusion (フュージョン) in Japanese.

Yet, while a thorough qualitative analysis requires more work, preliminary exploration suggests

that larger gaps in perception might still be inadequately modeled. For instance, for Santana’s

album Welcome tagged with jazz in Spanish, it does not predict pop in French.

Regarding the scores per language, we obtained the lowest ones for Japanese as the source.

We could explain this by either a more challenging test corpus or still incompatible embed-

dings in Japanese, possibly because of the quality of the individual embedding models for this

language and the completeness of the Japanese music genre ontology. Also, we did not notice

improvements for pairs of languages from the same family, e.g., French and Spanish. However,

we would need a sufficiently large parallel corpus exhaustively annotated in all languages to

reliably compare the performance for pairs of languages from the same family or different ones.

Finally, we noticed that given two languages L1 and L2, with more music genre embeddings in

L1 than in L2 (from both the ontologies and the corpus), the results of mapping annotations

from L1 to L2 seem always better than the results from L2 to L1. This observation explains

two trends in Table 10.3. Firstly, the scores achieved for English or Spanish as the source, the

languages with the largest number of music genres, are the best. Secondly, the results for the

same pair of languages could vary a lot, depending on the role each language plays, i.e., source

or target. One possible explanation is that the prediction from languages with fewer music genre

tags such as L2 towards languages with more music genre tags such as L1 is more challenging

because the target language contains more specific or rare annotations. For instance, when

checking the results per tag from Dutch to English, we observed that among the tags with the

lowest scores, we found moombahton, zeuhl, or candombe. However, other common music genres,

such as latin music or hard rock, were also poorly predicted, showing that other causes exist too.

Is the unbalanced number of music genres used in annotations a cultural consequence? Related

work [95] seems to support this hypothesis. Then could we design a better mapping function

that leverages the unbalanced numbers of music genres in cross-cultural annotations? We will

dedicate a thorough investigation of these questions as future work.
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Figure 10.2: The Muzeeglot web interface. Visualization of the music genres associated with the English band
Pink Floyd on DBpedia, in English and in Japanese (two pre-selected source languages), together with their
Retrofitting+FTsif embedding representations. By clicking on the “Predicting genres” tab, one would display the
predicted music genres in French (the pre-selected target language).

10.4.3 The Muzeeglot Web Interface

To support the research presented in this chapter, and in addition to our source code and data-

sets, our team publicly released the Muzeeglot12 prototype [84]. As illustrated in Figure 10.2,

Muzeeglot is a web interface. Based on a REST API developed in Python with FastAPI and

on a frontend developed with VueJS [84] by our research engineer Felix Voituret, and incor-

porating our models from this research, Muzeeglot permits visualizing multilingual music genre

embeddings representations. For some pre-selected music entities from our corpus, and for some

pre-selected source and target languages, Muzeeglot displays the corresponding “ground truth”

music genres according to DBpedia, along with our predicted genres in the target language(s).

10.5 Conclusion

In this chapter, we aimed to model the music genre perception across language-bound cultures,

to address a cross-lingual music genre annotation problem. Our study focused on six languages

from four language families, and two common approaches to semantically represent concepts:

music genre graph ontologies, and distributed word embeddings. We empirically showed that

unsupervised cross-lingual music genre annotation is feasible with high accuracy when combining

both types of semantic representations, using either a GAE/VGAE-inspired approach, or an

alternative simple yet effective method based on retrofitting.

12https://github.com/deezer/muzeeglot
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This is an important result for music streaming services such as Deezer. Indeed, in future work,

our embedding representations could permit tagging music items with genre representations

that capture cultural differences, which could improve several genre-related music information

retrieval and music recommendation tasks, including the ones mentioned in Section 10.1. Be-

sides, our work also provides a methodological framework to study the annotation behavior

across language-bound cultures in other domains. Hence, the effectiveness of language-specific

concept representations to model the culturally diverse perception could be further probed.

10.6 Appendices

In this supplementary section, we prove the strict convexity of the retrofitting loss function, as

claimed at the end of Section 10.3.4, This result was placed out of the main content of Chapter 10

for the sake of brevity and readability.

Proposition 10.1. Let V be a finite vocabulary with |V| = n. Let G = (V, E) be an ontology

represented as a directed graph which encodes semantic relationships between vocabulary words.

Further, let V̂ ⊆ V be the subset of words which have non-zero initial distributed representations,

q̂i. The goal of retrofitting is to learn the matrixQ ∈ Rd, stacking up the new embeddings qi ∈ Rd

for each i ∈ V. The loss function to be minimized is:

Φ(Q) =
∑
i∈V̂

αi||qi − q̂i||22 +
n∑

i=1

∑
(i,j)∈E

βij ||qi − qj ||22, (10.10)

where the αi and βij are positive scalars. Assuming that each connected component of G includes

at least one word from V̂, the loss function Φ is strictly convex w.r.t. Q.

Proof. First of all, let Q̂ denote the n× d matrix whose i-th row corresponds to q̂i if i ∈ V̂, and
to the d-dimensional null vector 0d otherwise. Let A denote the n×n diagonal matrix verifying

Aii = αi if i ∈ V̂ and Aii = 0 otherwise. Let B denote the n× n symmetric matrix such as, for

all (i, j) ∈ {1, ..., n}2 with i ̸= j, Bij = Bji = −1
2(βij + βji) and Bii =

∑n
j=1,j ̸=i |Bij |. With such

a notation, and with Tr(·) denoting the trace operator for square matrices, we have:∑
i∈V̂

αi||qi − q̂i||22 = Tr
(
(Q− Q̂)TA(Q− Q̂)

)
= Tr

(
QTAQ− Q̂TAQ−QTAQ̂+ Q̂TAQ̂

)
.

Also:
n∑

i=1

∑
(i,j)∈E

βij ||qi − qj ||22 = Tr
(
QTBQ

)
.
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Therefore, as the trace is a linear mapping, we have:

Φ(Q) = Tr
(
QT (A+B)Q

)
+Tr

(
Q̂TAQ̂− Q̂TAQ−QTAQ̂

)
.

Then, we note that A+B is a weakly diagonally dominant matrix (WDD) as, by construction,

∀i ∈ {1, ..., n}, |(A + B)ii| ≥
∑

j ̸=i |(A + B)ij |. Also, for all i ∈ V̂, the inequality is strict, as

|(A+B)ii| = αi +
∑

j ̸=i |Bij | >
∑

j ̸=i |(A+B)ij | =
∑

j ̸=i |Bij |, which means that, for all i ∈ V̂,
row i of A+B is strictly diagonally dominant (SSD). Assuming that each connected component

of the graph G includes at least one node from V̂, we conclude that A+ B is a weakly chained

diagonally dominant matrix [20], i.e., that:

• A+B is WDD;

• for each i ∈ V such that row i is not SSD, there exists a walk in the graph whose adjacency

matrix is A+B (two nodes i and j are connected if (A+B)ij = (A+B)ji ̸= 0), starting

from i and ending at a node associated with a SSD row.

Such matrices are nonsingular [20], which implies that Q → QT (A + B)Q is a positive-definite

quadratic form. As A+B is a symmetric positive-definite matrix, there exists a matrix M such

that A+B =MTM . Therefore, denoting || · ||2F the squared Frobenius matrix norm:

Tr
(
QT (A+B)Q

)
= Tr

(
QTMTMQ

)
= ||QM ||2F

which is strictly convex w.r.t. Q due to the strict convexity of the squared Frobenius norm [67].

Since the sum of strictly convex functions of Q (first trace in Φ(Q)) and linear functions of Q

(second trace in Φ(Q)) is still strictly convex w.r.t. Q, we conclude that the loss function Φ is

strictly convex w.r.t. Q.

Corollary 10.2. The retrofitting update procedure is insensitive to the order in which nodes

are updated.

Proof. The aforementioned update procedure for Q [87] is derived from the Jacobi iteration

procedure [27, 306] and converges for any initialization. Such a convergence result is discussed

in Bengio et al. [27]. It can also be directly verified in our specific setting by checking that each

irreducible element of A+B, i.e., each connected component of the underlying graph constructed

from this matrix, is irreducibly diagonally dominant (see Section 4.2.3 in Saad [306]) and then

by applying Theorem 4.9 from Saad [306] on each of these components. Besides, due to its

strict convexity w.r.t. Q, the loss function Φ admits a unique global minimum. Consequently,

the retrofitting update procedure will converge to the same embedding matrix regardless of the

order in which nodes are updated.
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11
Carousel Personalization with Contextual Bandits

This chapter presents research conducted with Walid Bendada and Théo Bontempelli, and pub-

lished as a short paper in the proceedings of the 14th ACM Conference on Recommender Systems

(RecSys 2020) [26] where it received a “best short paper” honorable mention.

11.1 Introduction

As explained in the introduction, several other projects less related to GAE and VGAE models

were also carried out during the last three years. We chose to present two of them in these

last two chapters, as they directly relate to music recommendation, and as they led to online

A/B tests and subsequently to model deployment on the Deezer service. They complement the

previous chapters by providing a larger overview of some of Deezer’s strategies and production-

facing algorithms to recommend music. Specifically, in this Chapter 11, we present some research

on carousel personalization at Deezer.

Many mobile apps and websites, notably from the music streaming industry, leverage swipeable

carousels to display recommended content on their homepages. These carousels, also referred to

as sliders or shelves [252], consist in ranked lists of items or cards (albums, artists, playlists...).

A few cards are initially displayed to the users, who can click on them or swipe on the screen to

see some of the additional cards from the carousel. Selecting and ranking the most relevant cards

to display is a challenging task [125, 155, 242, 252], as the catalog size is usually significantly

larger than the number of available slots in a carousel, and as users have different preferences.

While being close to slate recommendation [160, 173, 350] and to learning to rank settings

[234, 286, 295], carousel personalization also requires dealing with user feedback to adaptively
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improve the recommended content via online learning strategies [12, 52, 144], and integrating

that some cards from the carousel might not be seen by users due to the swipeable structure.

Figure 11.1 provides an illustration of a swipeable carousel on Deezer.

In this chapter, we model carousel personal-

ization as a multi-armed bandit with multiple

plays [12] learning problem. Within our frame-

work, we account for important characteristics

of real-world carousels, notably by considering

that services have access to contextual inform-

ation on user preferences, that they might not

know which cards are actually seen by users,

and that feedback data from carousels might

not be available in real time. We show the

effectiveness of our approach by addressing a

large-scale carousel-based playlist recommend-

ation task on Deezer. With the paper associ-

ated with this work [26], we released industrial

data from our experiments and an open-source

environment to simulate comparable carousel

personalization learning problems.

Figure 11.1: An example of a personalized swipeable
carousel on the Deezer mobile app, to recommend playl-
ists. These playlists were created by professional cur-
ators from Deezer with the purpose of complying with
a specific music genre, cultural area, or mood. A few
playlists are initially displayed to each user, who can
click on them or swipe on the screen to see some of the
additional recommended playlists from the carousel.

This chapter is organized as follows. In Section 11.2, we introduce and formalize our multi-armed

bandit framework for carousel personalization. We detail our data, our playlist recommenda-

tion task and our experimental setting in Section 11.3. We present and discuss our results in

Section 11.4, and we conclude in Section 11.5.

11.2 A Contextual Multi-Armed Bandit Framework for Carou-

sel Personalization

In this section, we review key notions on multi-armed bandits and introduce our framework. We

note that this Chapter 11, as the upcoming Chapter 12, will introduce quite different concepts

w.r.t. those studied in previous chapters on GAE and VGAE models. We will therefore need to

introduce a new notation for several of these concepts. Nonetheless, when possible, we will try

to remain consistent w.r.t. previous chapters (e.g., K will still denote the number of clusters; d

will denote the dimension of embedding vectors, etc).
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11.2.1 Background on Multi-Armed Bandits with Multiple Plays

Multi-armed bandits are among the most famous instances of sequential decision making prob-

lems [338, 349]. Multi-armed bandits with multiple plays [12, 194] involve Narm entities called

arms. At each round t = 1, 2, ..., T , a forecaster has to select a set St ⊂ {1, ..., Narm} of L < Narm

arms (while L = 1 in the single play version of the problem [338]). The forecaster then receives

some rewards from the selected arms, that we assume to be binary. The reward associated

with an arm i ∈ St is a sample drawn from a Bernoulli(pi) distribution, with pi ∈ [0, 1] being

an unknown parameter. Bernoulli distributions of arms 1, ..., Narm are assumed independent,

which we later discuss.

The objective of the forecaster is to maximize the sum of rewards received from the selected

arms over time. It requires identifying the optimal set:

Ω∗(L) ⊂ {1, ..., Narm} (11.1)

of the L arms associated with the top-L highest Bernoulli parameters, i.e., the L highest expected

rewards, as fast as possible.

In such problems, the forecaster faces an exploration-exploitation dilemma. As the environment

does not reveal the rewards of the unselected arms, the forecaster needs to try all arms over time

to identify the best ones (exploration). However, selecting underperforming arms also leads to

lower expected rewards, which encourages the forecaster to repeatedly select the assumed best

ones (exploitation). Over the past years, several strategies have been proposed and studied,

providing efficient trade-offs between these two opposite objectives when sequentially selecting

sets St. Notable examples include the Upper Confidence Bound (UCB) [18, 52, 203, 379] and

Thompson Sampling (TS) [48, 194, 355] algorithms (see Section 11.3). The expected cumulative

regret :

Reg(T ) =

T∑
t=1

( ∑
i∈Ω∗(L)

pi −
∑
i∈St

pi

)
, (11.2)

which represents the expected total loss endured by the forecaster by selecting non-optimal sets

of arms at rounds 1 to T , is a common measure to compare the performances of strategies

addressing this top-L best arms identification problem [12, 52, 194, 338, 349, 379].

11.2.2 Carousel Personalization with Multi-Armed Bandits

Throughout this chapter, the Narm arms will correspond to a list of Narm cards/items, such as a

catalog of albums or playlists in a music streaming app. They can be recommended to n users

through a swipeable carousel containing L ≪ Narm slots. As users have various preferences,

different cards can be displayed to different users. The L recommended cards from the carousel
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of each user, i.e., the L selected arms for each user, are updated at regular intervals or rounds,

whose frequency depends on the technical constraints of the platform.

We aim to optimize display-to-stream rates, i.e., to identify the L cards for which each user is the

most likely to click and then to stream the underlying content, at least once during the round.

When a card i is displayed to a user u, such streaming activity, i.e., a reward of 1, occurs during

the round with an unknown probability pui ∈ [0, 1]. Here, we assume that the number of cards,

the number of users, and the display-to-stream probabilities pui are fixed. We later discuss these

assumptions.

A naive way to tackle this problem would consist in simultaneously running n standard bandit

algorithms, aiming to individually identify the top-L cards with the highest pui probabilities for

each user u. This approach is actually unsuitable and would require a too long training time

to reach convergence. Indeed, the number of display-to-stream parameters to estimate would

be Narm × n, which is very large in practice as platforms often have millions of active users.

In Section 11.2.3, we describe two strategies to address this problem by leveraging contextual

information on user preferences.

11.2.3 Leveraging Contextual Information on User Preferences

Semi-Personalization via User Clustering Firstly, let us assume that we have access to a

clustering of users, constructed from users’ past behaviors on the platform. Each user belongs

to one of the K groups C1, C2, ..., CK with K ≪ n. For instance, on a music streaming app,

users from the same group would have homogeneous musical tastes. We propose to assume that

users from the same group have identical expected display-to-stream probabilities for each card:

∀c ∈ {C1, ..., CK}, ∀u ∈ c,∀i ∈ {1, ..., Narm}, pui = pci. (11.3)

Then, we run K bandit algorithms, one for each cluster, to identify the top-L best cards to

recommend to each group. This strategy reduces the number of parameters to estimate to

Narm × K, which is significantly fewer than Narm × n in practice. Moreover, thanks to such

users gathering, platforms receive more feedback on each displayed card w.r.t. the previous

naive setting. This ensures a faster and more robust identification of optimal sets. However, the

empirical performance of this strategy also strongly depends on the quality of the underlying

user clustering.

Contextual Multi-Armed Bandits Instead of relying on clusters, let us now assume that we

directly have access to a d-dimensional attribute vector xu ∈ Rd for each user u. These vectors

aim to summarize user preferences on the platform, e.g., their musical tastes (in terms of genres,

moods, countries...) for a music streaming app. We assume that the expected display-to-stream
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probabilities of a user u are functions of his/her attribute vector:

∀i ∈ {1, ..., Narm}, pui = σ(xTu θi), (11.4)

where the θi ∈ Rd are d-dimensional weight vectors to learn for each of the Narm arms, and

where σ(·) is the sigmoid function: σ(x) = 1/(1 + e−x). This corresponds to the contextual

bandit setting [6, 57, 219], a popular learning paradigm for online recommender systems [125,

219, 220, 252, 293, 352, 377, 410, 412]. Strategies to learn weight vectors are detailed, e.g., in

[48, 252]. As d≪ n in practice, such strategy also significantly reduces the number of parameters,

to Narm×d. By design, users with similar preferences will have close expected display-to-stream

probabilities. Moreover, all n users can end up with different optimal carousels, contrary to the

semi-personalized clustering approach.

11.2.4 Capturing Characteristics of Real-World Carousels

In our framework, we also aim to capture other important characteristics of real-world swipeable

carousels. In particular, while standard bandit algorithms usually consider that the forecaster

receives rewards (0 or 1) from each of the L selected arms at each round, in our setting some

selected cards might actually not be seen by users. As illustrated in Figure 11.1, only a few

cards, say Linit < L, are initially displayed on a user’s screen. The user needs to swipe right

to see additional cards. As we later verify, ignoring this important aspect, and thus returning

a reward of 0 for all unclicked cards at each round whatever their rank in the carousel, would

lead to underestimating display-to-stream probabilities.

In this chapter, we assume that we do not exactly know how many cards were seen by each user.

Such an assumption is consistent with Deezer’s actual usage data and is realistic. Indeed, on

many real-world mobile apps carousels, users do not click on any button to discover additional

cards, but, instead, need to continuously swipe left and right on the screen. As a consequence,

the card display information is ambiguous, and is technically hard to track with accuracy.

To address this problem, we consider and later evaluate a cascade-based arm update model. We

draw inspiration from the cascade model [64], a popular approach to represent user behaviors

when facing ranked lists of recommended items in an interface, with numerous applications and

extensions [176, 201, 202, 413]. At each round, we consider that:

• an active user who did not stream any card during the round only saw the Linit first ones;

• an active user who streamed the ith card, with i ∈ {1, ..., L}, saw all cards from ranks 1 to

max(Linit, i).

For instance, let Linit = 3 and L = 12. The reward vectors obtained from users who a) did not

stream during the round, b) only streamed the 2nd card, and c) streamed the 2nd and 6th cards,
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are as follows, with X denoting no reward:

a : [0, 0, 0, X,X,X,X,X,X,X,X,X]

b : [0, 1, 0, X,X,X,X,X,X,X,X,X]

c : [0, 1, 0, 0, 0, 1, X,X,X,X,X,X] (11.5)

Lastly, to be consistent with real-world constraints, we assume that rewards are not processed

on the fly but by batch, at the end of each round, e.g., every day. We study the impact of such

delayed batch feedback in our upcoming experiments.

11.2.5 Related Work

Bandits are very popular models for online recommendation [219, 220, 271, 286, 293, 295, 352,

377, 410]. In particular, McInterney et al. [252] and Gruson et al. [125] also recently studied

carousel personalization in mobile apps. McInterney et al. [252] introduced a contextual bandit

close to ours. However, their approach focuses more on explainability, they do not model cascade-

based displays as we did in Section 11.2.4, and do not integrate semi-personalized strategies.

Gruson et al. [125] also considered contextual bandits inspired by [252] for playlist recommend-

ation in carousels, but did not provide details on their models. They instead aimed to predict

the online ranking of these models from various offline evaluations. Last, other different sets of

ordered items have been studied [160, 168, 173, 350, 413].

11.3 Application to Carousel Personalization on Deezer

In the following, we empirically evaluate and discuss the effectiveness of our framework.

11.3.1 Experimental Setting: Carousel-Based Playlist Recommendation

We study a large-scale carousel-based playlist recommendation task on the Deezer mobile app.

We consider Narm = 862 playlists, that were created by professional curators from Deezer with

the purpose of complying with a specific music genre, cultural area, or mood, and that are

among the most popular ones on the service. Playlists’ cover images constitute the cards that

can be recommended to users on the app homepage in a carousel, updated on a daily basis, with

L = 12 available slots and Linit = 3 cards initially displayed.

To determine which method would best succeed in making users click and stream the displayed

playlists, extensive experiments were conducted in two steps. Firstly, offline experiments sim-

ulating users’ responses to carousel-based recommendations were run, on a simulation environ-
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ment and on data that we both publicly release1 with our paper (see Section 11.3.2). We believe

that such industrial data and code release will benefit the research community. Then, an online

large-scale A/B test was run on the Deezer app to validate the findings of offline experiments.

11.3.2 A Simulation Environment and Dataset for Offline Evaluation

For offline experiments, we designed a simulated environment in Python based on 974 960 fully

anonymized Deezer users. We release a dataset in which each user u is described by a feature

vector xu of dimension d = 97, computed internally by factorizing the interaction matrix between

users and songs as described in [152] and then adding a bias term. A k-means clustering with

K = 100 clusters was also performed to assign each user to a single cluster. In addition, for

each user-playlist pair, we release a “ground truth” display-to-stream probability pui = σ(xTu θi)

where, as in the work of Chapelle and Li [48], the d-dimensional vectors θi were estimated by

fitting a logistic regression on a click data history from January 2020.

Simulations proceed as follows. At each round, a random subset of users (20 000, in the following)

is presented to several sequential algorithms a.k.a. policies to be evaluated. These policies must

then recommend an ordered set of L = 12 playlists to each user. Streams, i.e., positive binary

rewards, are generated according to the aforementioned display-to-stream probabilities and to

a configurable cascading browsing model capturing that users explore the carousel from left to

right and might not see all recommended playlists. At the end of each round, all policies update

their model based on the set of users and on binary rewards received from displayed playlists.

Expected cumulative regrets of policies [349] w.r.t. the optimal top-L playlists sets according

to pui probabilities are computed.

11.3.3 List of Multi-Armed Bandit Algorithms

In our experiments, we evaluate semi-personalized versions of several popular sequential decision

making algorithms/policies, using the provided K = 100 clusters, and compare their perform-

ances against fully-personalized methods. As detailed in Section 11.2.3, users within a given

cluster share parameters for all semi-personalized policies; they are the ones whose names end

with -seg in the following list. We consider the following methods:

• random: a simple baseline that randomly recommends L playlists to each user.

• ϵ-greedy-seg : recommends playlists randomly with probability ϵ, otherwise recommends

the top-L with the highest mean observed rewards. Two versions, ϵ-greedy-seg-explore

(ϵ=0.1) and ϵ-greedy-seg-exploit (ϵ=0.01) are evaluated.

1 Data and code are available at: https://github.com/deezer/carousel bandits
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• etc-seg : an explore then commit strategy, similar to random until all arms have been played

n times, then recommends the top-L playlists. Two versions, etc-seg-explore (n = 100)

and etc-seg-exploit (n = 20) are evaluated.

• kl-ucb-seg : the Upper Confidence Bound (UCB) strategy [18, 52, 203], that tackles the

exploration-exploitation trade-off by computing confidence intervals for the estimation of

each arm probability, then selecting the L arms with the highest upper confidence bounds.

Here, we use KL-UCB bounds [104], tailored for Bernoulli rewards.

• ts-seg : the Thompson Sampling (TS) strategy [48, 355], in which estimated display-to-

stream probabilities are samples drawn from Beta distributions [355], whose parameters

are updated at each round in a Bayesian fashion, such that variance tends towards zero

and expectation converges to empirical mean as more rewards are observed. Two versions,

ts-seg-naive (prior distributions are Beta(1, 1), i.e., Uniform(0, 1)) and ts-seg-pessimistic

(priors are Beta(1, 99)) are evaluated. As the UCB algorithm [52], TS is backed by strong

theoretical guarantees [194] on speeds of expected cumulative regrets in the multi-armed

bandit with multiple plays setting.

• ts-lin: an extension of TS [48] to the linear contextual framework from Section 11.2.3. We

follow the method of Chapelle and Li [48] to learn θi vectors for each arm i from Gaussian

prior distributions. Two versions, ts-lin-naive (0 means for all dimensions of the prior)

and ts-lin-pessimistic (-5 mean for the bias dimension prior) are evaluated.

By default, policies always abide by the cascade model introduced in Section 11.2.4, meaning

they do not update the parameters relative to recommended playlists that the cascade model

labels as unseen. For comparison, we also implemented versions of these policies that do not

abide by this behavior. In the following, they are labeled no-cascade.

11.4 Experimental Results

11.4.1 Offline Evaluation

Semi-Personalization vs Personalization Figure 11.2 provides cumulative regrets over 100

rounds for the different policies, recommending playlists via our offline environment. Both etc-

seg-explore and etc-seg-exploit behave as badly as random in the exploration phase, then, shortly

after starting to exploit, they both reach competitive performances as illustrated by the brutal

flattening of their cumulative regret curves, with etc-seg-exploit transitioning 50 rounds earlier.

The latter strategy also outperforms kl-ucb-seg , which shape suggests slow learning throughout

the whole experiment. Moreover, both ts-lin-pessimistic and ts-lin-naive appear to stabilize to

non-flat linear cumulative regret curves after only a few rounds. Pessimistic policies are overall
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Figure 11.2: Offline evaluation of top-12 playlist recommendation using our simulation environment: expected
cumulative regrets of policies over 100 simulated rounds. The empirical gain of ts-seg-pessimistic w.r.t. others is
statistically significant at the 1% level (p-value < 0.01).

more effective than their naive counterparts, which is due to their lower prior display-to-stream

probabilities, which are more realistic. Overall, several semi-personalized policies eventually

outclassed fully-personalized alternatives, with ts-seg-pessimistic already outperforming them

all at the end of the first 25 rounds2. This method manages to effectively exploit information

and to quickly rank playlists, which is an interesting result, as fully-personalized contextual

models were actually the only ones able to learn the exact display-to-stream probabilities (see

generative process in Section 11.3.2), and as both frameworks have comparable numbers of

parameters (Narm ×K vs Narm × d). While fully-personalized methods have been the focus of

previous works on carousel recommendation [125, 252], our experiments emphasize the empirical

benefit of semi-personalization via user clustering that, assuming good underlying clusters, might

appear as a suitable alternative for such large-scale real-world applications.

Impact of Delayed Batch Feedback In our experiments, to be consistent with real-world

constraints, rewards are not processed on the fly but by batch, at the end of each round. We

observe that, for semi-personalization, such setting tends to favor stochastic policies, such as

the ts-seg or ϵ-greedy-seg ones, w.r.t. deterministic ones such as kl-ucb-seg . Indeed, as kl-ucb-

seg selects arms in a deterministic fashion, it always proposes the same playlists to all users of

the same cluster until the round is over. On the contrary, stochastic policies propose different

playlists sets within the same cluster, ensuring a wider exploration during the round, which

might explain why kl-ucb-seg underperforms in our experiments.

2We point out that, in a recent work based on our data and simulation environment, Jeunen and Goethals [167]
nonetheless managed to improve the performance of ts-lin-pessimistic by adopting different hyperparameters.
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Cascade vs No-Cascade All policies from

Figure 11.2 abide by the cascade model intro-

duced in Section 11.2.4. In Figure 11.3, we re-

port results from follow-up experiments. They

measure the empirical benefit of taking into ac-

count this cascading behavior of users when

browsing a sequence of playlists. We compared

policies to alternatives that ignored the cascade

model, and thus returned a 0 reward for all

unstreamed playlists at each round, whatever

their rank in the carousel. Only two policy

pairs are displayed in Figure 11.3 for brevity.
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Figure 11.3: Offline evaluation using our simulation en-
vironment: comparison of cascade vs no-cascade, over
100 simulated rounds. Differences at final round are
statistically significant at the 1% level (p-value < 0.01).

For both of them, the no-cascade variant is outperformed by policies integrating our proposed

cascade-based update model from Section 11.2.4. This result validates the relevance of capturing

such a phenomenon for our carousel-based personalization problem.

11.4.2 Online Evaluation

An industrial-scale A/B test has been run in

February 2020 on millions of users, to verify

whether results from the simulations would

hold on the actual Deezer mobile app. The 12

recommended playlists from each user’s carou-

sel were updated on a daily basis on the Deezer

app. Due to industrial constraints, only a sub-

set of policies, from (naive) TS, were tested in

production. Also, for confidentiality reasons,

we do not report the exact number of users in-

volved in each cohort, nor the precise display-

to-stream rates. Instead, results are expressed

in Figure 11.4 in relative terms.
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Figure 11.4: Online A/B test evaluation on Deezer:
relative display-to-stream gains w.r.t. random-top-100
baseline (see Section 11.4.2). Differences are statistic-
ally significant at the 1% level (p-value < 0.01).

Specifically, results are expressed in terms of relative display-to-stream rates gains w.r.t. random-

top-100, an internal baseline that randomly recommends 12 playlists from a subset of 100, pre-

selected for each cluster from internal heuristics. Results confirm the superiority of the proposed

multi-armed bandit framework for personalization, notably the semi-personalized strategy, and

the empirical benefit of integrating a cascade model for arms updates, although users might

actually have more complex behaviors on the platform.
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11.5 Conclusion

In this chapter, we modeled carousel personalization as a contextual multi-armed bandit problem

with multiple plays. By addressing a challenging large-scale playlist recommendation task on

Deezer, we highlighted the benefits of our framework, notably the integration of the cascade

model and semi-personalization via user clustering.

Along with the paper associated with this work [26], we publicly released a private dataset of

user preferences for curated playlists on Deezer, and an open-source environment to recreate

comparable learning problems. At the time of writing, this release already benefited research on

carousel personalization. Several articles explicitly mentioned our study [90, 91, 94, 236, 390]

and/or used our code and data [59, 167] to address various other carousel-based problems.

Despite the promising results presented in this chapter, there is still room for improvement. In

particular, we assumed that the number of users and cards was fixed throughout the rounds,

which is a limit. In Chapter 12, we will consider the user cold start problem and explain how

Deezer handles the arrival of new users on the service.

Moreover, future work could also benefit from the advances in GAE and VGAE models presented

in previous chapters. For instance, our clustering of users, currently done through a standard

k-means, could be improved by applying community detection techniques from Chapters 7 and 9

to a graph of users (e.g., an artificial graph of “similar” users with a comparable listening history,

or a social graph of users connected together through “follow” connections on the service). The

d-dimensional vector characterizing each user in Section 11.2.3 could also correspond to GAE-

based or VGAE-based node embedding representations.

Lastly, in this chapter, we assumed that arms/cards distributions were fixed and independent,

which might be unrealistic. A playlist’s relative interest might depend on its neighbors in the

carousel, and individually selecting the top-L playlists does not always lead to the best set of

L playlists, e.g., in terms of musical diversity. Future research in this direction would definitely

lead to the improvement of carousel personalization.
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12
A Semi-Personalized System for

User Cold Start Recommendation

This chapter presents research conducted with Léa Briand, Walid Bendada, Mathieu Morlon,

and Viet-Anh Tran, and published in the proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD 2021) [39].

12.1 Introduction

A prevalent approach to recommend personalized content on online services such as Deezer

is collaborative filtering which, broadly, consists in predicting the preferences of a user within

a set of items by leveraging the known preferences of some similar users [63, 195, 319, 346].

In particular, several recent works emphasized the empirical effectiveness of latent models for

collaborative filtering at addressing industrial-level challenges [63, 114, 164, 339]. Analogously

to the node embedding methods developed throughout this thesis, these models aim to directly

learn vector space representations, i.e., embeddings of users and items where proximity should

reflect user preferences, typically via the factorization of a user-item interaction matrix [139,

195, 196] or with neural networks architectures processing usage data [63, 260, 372].

However, the performances of these models tend to significantly degrade for new users who only

had few interactions with the catalog [42, 227, 319]. They might even become unsuitable for

users with no interaction at all, who are absent from user-item matrices in standard algorithms

[32, 118, 208]. This is commonly referred to as the user cold start problem [32, 208, 227, 319, 367].

Yet, recommending relevant content to these new users is crucial for online services. Indeed, a

210



12.2. User Cold Start Recommendation on Music Streaming Apps

new user facing low-quality recommendations might have a bad first impression and decide to

stop using the service.

In this last chapter, we present the system recently deployed on Deezer to address this problem.

The solution starts from an existing large-scale latent model for collaborative filtering, period-

ically trained on Deezer’s warm users (see Section 12.3). It automatically integrates cold users

into the existing embedding space, by collecting heterogeneous sources of demographic and in-

teraction information on these users at registration day, processed by a deep neural network, and

by leveraging a segmentation of warm users to strengthen the final representations and provide

semi-personalized recommendations to cold users by the end of their registration day.

The proposed system is suitable for an online production use on a large-scale app such as

Deezer. Throughout this chapter, we show its practical impact and its empirical effectiveness at

predicting the future musical preferences of cold users, through both offline experiments on data

extracted from Deezer and an online A/B test on carousels from the previous Chapter 11. We

also emphasize how this system enables us to provide more interpretable music recommendations.

Along with the paper associated with this work [39], we publicly released our source code as

well as anonymized usage data of Deezer users from our offline experiments.

This chapter is organized as follows. In Section 12.2, we introduce the user cold start problem

more precisely and mention previous research efforts on this topic. In Section 12.3, we present

our semi-personalized recommender system. We report and discuss our experimental setting,

our data, and our results in Sections 12.4 and 12.5, and we conclude in Section 12.6.

12.2 User Cold Start Recommendation on Music Streaming Apps

In this section, we provide a precise formulation of the problem we aim to address. We also

give an overview of the existing related work. Some of the mentioned approaches will constitute

relevant baselines to evaluate the effectiveness of our system.

12.2.1 Problem Formulation

Throughout this paper, we consider a catalog of m music tracks available on Deezer. We assume

that the catalog remains fixed over time, which we later discuss. At time t, Deezer gathers

nt warm users who, according to some criteria internally fixed by our data scientists, had a

sufficiently large number of interactions with the catalog, e.g., enough listening sessions, to be

used in the training of our recommender systems. We consider a latent model for collaborative

filtering [63, 195, 196, 260]. From the observed warm user-track interactions and following the

processes described in Section 12.3, this model learns a vector space representation of both users

and tracks. In this embedding space, each user i and track j are represented by d-dimensional
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vectors (with d≪ m and d≪ nt), say ui ∈ Rd and vj ∈ Rd, capturing musical preferences. To

recommend relevant new tracks to the user i, we leverage user-item similarity measures f(ui, vj)

in this space, encoding user-item affinities. These measures are typically based on an inner-

product or a cosine similarity [196]. The model is updated at regular time intervals to take into

account the evolution of preferences.

Everyday, new users, referred to as cold (analogously to cold artists from Chapter 8), will

register to the service. They will only have few to no interactions with the catalog during their

registration day. As explained in the introduction, a straightforward inclusion of these cold

users in the aforementioned latent model is unsuitable [32, 118, 208, 227]. Waiting for them to

become warm users, according to internal criteria, is also undesirable: indeed, recommending

relevant content as soon as possible is crucial, as new users facing low-quality recommendations

might make up their mind on this first impression and quickly stop using the service.

As a consequence, we aim to address the following problem: given an existing latent model

for collaborative filtering learning an embedding space from a set of warm users, how can we

effectively include new cold users into this same space, by the end of their registration day on

Deezer? In this chapter, we will evaluate the estimated embedding vectors of cold users by

assessing their ability at predicting the future musical preferences of these users on Deezer after

their registration day, through the evaluation tasks and metrics presented in Section 12.4.

12.2.2 Related Work

The user cold start problem has initiated significant research efforts over the past decade. In

the following, we provide an overview of the most relevant work w.r.t. our approach. We refer

the interested reader to some recent surveys [118, 263, 404] for a more exhaustive review of the

existing literature, and to [263, 339, 362, 373] as well as Chapter 8 for a presentation of the

related item cold start problem, which will be out of our scope in most of this Chapter 12.

A prevalent strategy to address the user cold start problem in the total absence of usage data

consists in relying on metadata related to new users, and notably on demographic information

(such as the age or country of the user) collected during registration [92, 204, 227, 263, 393].

In particular, various approaches aim to cluster warm users, and subsequently assign cold users

to existing clusters by leveraging these metadata [42, 89, 227, 263, 346, 393]. Building upon

these works, the model we present in Section 12.3 will also leverage demographic information

and incorporate a clustering component.

Besides, one can enrich such systems by explicitly asking new users to rate items from the catalog

through interview processes, leading to hybrid models based on preferences and side information

[118, 263, 331]. On the industry side, Netflix [114] and Spotify [164] are famous examples of

services implementing such onboarding session for new users. As explained in Section 12.3,
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Deezer also adopted this strategy. As the inclusion of an onboarding is not always possible in

production, Feĺıcio et al. [89] propose to use bandit algorithms to assign cold users to warm user

segments, while other studies [229, 325] resort to social media data to connect similar users.

Sometimes, cold users do have a few interactions with the catalog on their registration day.

In this case, exploiting such usage signal, in addition to side information, can significantly

improve recommendations [32, 138, 319, 346]. In particular, several recent works emphas-

ized the effectiveness of deep learning models at dealing with such heterogeneous settings

[29, 32, 63, 208, 263, 367, 404]. Notably, Covington et al. [63] explain how a deep neural net-

work, processing various user-item interactions (including watched videos, search queries...) and

demographic information to learn embedding vectors, improved the YouTube recommender sys-

tem. To represent interactions, they average various latent representations of watched/searched

items from the same user session, allowing features to have the same dimension for each user.

In Section 12.3, we will draw inspiration from their approach to pre-process the user features

serving as input to our own model. However, a direct comparison to [63] will be impossible,

as no complete description nor implementation of the YouTube recommender system was made

publicly available. Several other deep learning approaches were already mentioned in Chapter 8.

Here, we provide more details on two of these methods that will be used in our experiments:

• DropoutNet [367] emerged as one of the most powerful latent collaborative filtering models,

addressing cold start while preserving performances for warm users. This neural network

takes into account usage and content data, and explicitly simulates the cold start situation

during training by applying dropout [343], alternatively to user and item embedding layers.

DropoutNet relies on the assumption that data is missing at random, with the risk of

introducing biased predictions [231]. Also, it equally considers different types of positive

feedback; in Section 12.3, we will furthermore consider negative feedback. Besides, both

warm and cold users’ embeddings are learned during training, whereas our system will

directly incorporate cold users in an existing and fixed embedding space of warm users;

• recently, meta-learning methods for cold start have also been proposed [29, 208, 404]. Not-

ably, optimization-based algorithms consider each user as a learning task. From a set of

global parameters ensuring an initialization of the recommender system, other local para-

meters are progressively updated while the user interacts with items to capture his/her

preferences. In particular, Lee et al. [208] introduce MeLU (for Meta-Learned User prefer-

ence estimator, already mentioned in Chapter 8), a neural network architecture following

such a meta-learning paradigm and learning preferences from the concatenation of user and

item information. When new users interact with some items, then local parameters of the

neural network are updated to refine predictions for these users. In the absence of usage

data, users will still be associated with an embedding vector and receive a recommended

list of items, thanks to global updates of all layers of MeLU.
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Figure 12.1: The semi-personalized user cold start recommendation framework available for online requests in our
production environment, and described throughout Section 12.3. (1 ) Demographics and user-item interactions of
a new user are concatenated, as described in Section 12.3.2, to (2 ) predict a user embedding vector from warm
user embeddings described in Section 12.3.1. From the estimated user preferences, the new user is assigned to a
segment of warm users. (3 ) Combining the online predicted segment with the pre-computed top items by segment,
cold users benefit from semi-personalized recommendations.

12.3 A Semi-Personalized System to Address User Cold Start

In this section, we present the system deployed in 2020 on Deezer to address the user cold start

problem, as formulated in Section 12.2.1. The architecture of our framework is summarized in

Figure 12.1, and discussed thereafter.

12.3.1 Representing Musical Preferences of Warm Users

We recall that our objective is to effectively incorporate, by the end of their registration day, a

set of cold users in an existing embedding space trained on warm users. In the following, we

introduce two different strategies to learn such a space on Deezer’s data. Although some technical

details on computations are omitted for confidentiality reasons, some embedding vectors from

both models will be released with this paper (see Section 12.4). Moreover, experimental results

on both spaces will be reported in the next section.

UT-ALS Embeddings Latent models for collaborative filtering can approximate a preference

matrix between users and items from the product of two low-rank matrices, respectively stacking

up latent vector representations, a.k.a. embedding vectors, of users and items [195, 346]. At

Deezer, we consider a user-track (UT) interaction matrix summarizing interactions between
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millions of active users and music tracks from the catalog. The affinity score between user i and

music track j, i.e., the entry (i, j) of the matrix, is computed from various signals, including the

number of streams and the potential addition of the music track (or the corresponding album or

artist) to a playlist of favorites. The final entry is refined in accordance with internal heuristic

rules. Then, we rely on a weighted matrix factorization, specifically by using the alternating

least squares (ALS) method [196], to map both users and music tracks to a joint latent space of

dimension d = 256. These vector representations will be referred to as UT-ALS embeddings in

the remainder of this paper.

TT-SVD Embeddings Models inspired by word2vec [256] rely on the distributional hypo-

thesis [285] to map items co-occurring in similar contexts to geometrically close embedding

vectors. Levy and Goldberg [215] show that word2vec with negative sampling implicitly fac-

torizes a shifted pointwise mutual information (PMI) matrix using singular value decomposition

(SVD) [196]. In this paper, we also consider a PMI matrix, based on the co-occurrences of

music tracks in diverse music collections on Deezer, such as music playlists. Then, we factorize

this track-track (TT) matrix using a distributed implementation of SVD1, leading to embedding

vectors of dimension d = 128 for each music track2. Finally, we derive embedding vectors for

warm users, by averaging music track vectors over their listening history on Deezer. These vector

representations, different from UT-ALS embeddings, will be referred to as TT-SVD embeddings

in the remainder of this paper.

Warm User Segmentation On top of UT-ALS or TT-SVD user embeddings, our system

also computes a segmentation of warm users, by running a k-means algorithm, with k = 1 000

clusters/segments, in the embedding space. Each user segment is represented by its centroid,

i.e., by the average of its user embedding vectors. In production, a list of the most popular

music items to recommend among each warm user segment is also pre-computed.

12.3.2 Predicting the Preferences of Cold Users

In the following we present our model, illustrated in Figure 12.2, to integrate cold users into

these embedding spaces, and subsequently predict their future musical preferences on Deezer.

Overall Strategy Firstly, we gather data from various sources, presented in the next para-

graph and referred to as input features. They can be collected for warm users and (at least

1https://github.com/criteo/Spark-RSVD
2Embedding dimensions of UT-ALS and TT-SVD have been optimized independently for recommendation,

and are therefore different (256 vs 128). The choice of SVD vs ALS factorization is also driven by internal
optimizations on Deezer’s data. In experiments, we will simply exploit these vectors, independently, for cold
start.
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Figure 12.2: Prediction of user embeddings from heterogeneous data. Top left : embedding vectors of activated
items in usage data, including onboarding (Figure 12.3), are aggregated as described in Section 12.3.2. Top right :
we enrich representations with demographic information. Bottom: after pre-processing the dense input features
vector, a deep neural network model, trained as in Section 12.3.2, predicts user embedding vectors in either the
UT-ALS embedding space or the TT-SVD embedding space from Section 12.3.1.

partially for) cold users. Then, we train a neural network (see the “Model Training” paragraph

thereafter) to map input features of warm users to their (either UT-ALS or TT-SVD) embedding

vectors. Last, through a forward pass on this trained neural network, we predict embedding

vectors for cold users from their input features. Cold users are therefore integrated into the

existing latent space alongside warm users and each track of the catalog. This will permit com-

puting cold user-track similarities, and even similarities between cold and warm users, which we

leverage for clustering (see the “Semi-Personalization” paragraph thereafter).

Input features During registration on Deezer, all users specify their age and country of

origin, which we include in input features. This information is enriched with country embedding

and age embedding vectors which, as illustrated in Figure 12.2, are the average of embedding

vectors of warm users from respectively the same country and age class. As hybrid models

mentioned in Section 12.2.2, we complement this side information with data retrieved from

user-item interactions, limiting to interactions at registration day (if any). These interactions

include positive or negative) explicit and implicit signals, including streaming activity, searches,
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skips and likes. As the granularity of items is crucial in music [319], we also compute such signals

at the album, artist, and playlist levels, deriving embedding vectors for such music entities by

averaging the relevant track embeddings (e.g., by averaging the tracks of an album, or part of

the discography of an artist).

Then, for each type of interaction and music

entity, embedding vectors are averaged, as il-

lustrated in Figure 12.2. We obtain fixed-size

representations for both demographics and in-

teractions, i.e., independent of the number of

modalities or interactions, which is crucial for

scalability in a production environment. For

some new users, some (or possibly all) types of

interactions at registration day may be missing;

the corresponding representations are replaced

arbitrarily by null vectors. To avoid such a situ-

ation, Deezer proposes an onboarding process

for newly registered users, proposing them to

add artists from various music genres to their

list of favorites, as illustrated in Figure 12.3.
Figure 12.3: Overview of the onboarding process, dis-
played to new users on the Deezer service.

Model Training Fixed-size representations of demographics and interactions are concaten-

ated to form a unique dense input vector of dimension 5139 (when considering UT-ALS embed-

dings) or 2579 (TT-SVD embeddings). It constitutes the input layer of a feedforward neural

network, with three hidden layers of dimensions 400, 300, and 200, respectively, and an output

layer of dimension d = 256 (when considering UT-ALS embeddings) or 128 (TT-SVD embed-

ding). We use ReLU activations at each layer except the output, followed by batch normalization

[117]. We train the model on warm users, by iteratively minimizing the mean squared error

between the predicted user embeddings and their actual value in UT-ALS or TT-SVD spaces,

by stochastic gradient descent [117] with a learning rate of 0.001, batch sizes of 512, and 100

(respectively 130) epochs for TT-SVD (resp. UT-ALS).

Semi-Personalization Our model integrates cold users into the existing embedding space

alongside warm users and music tracks. Therefore, one could provide fully personalized music

recommendation to each of those cold users, by retrieving the most similar tracks for each user

via an exact or an approximate nearest neighbors search and some similarity measure. However,

as we will empirically show in our experiments, such a strategy can still lead to noisy results

for users with very few to no usage data. As a consequence, our system instead adopts a semi-

personalized recommendation strategy. On top of our neural network predictions, we include
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cold users into the pre-computed warm user segmentation previously described. Specifically,

each cold user is assigned to the warm cluster whose centroid is the closest w.r.t. the predicted

embedding vector of this cold user. We subsequently recommend the pre-computed most popular

tracks among warm users from the cluster. Our framework is summarized in Figure 12.1.

Model Deployment This system is suitable for online production use. At Deezer, the real-

time inference service to predict user embeddings is a Golang web server, deployed in a Kuber-

netes cluster. The web service wraps the onnxruntime library3, a fast engine for running ONNX

machine learning models. It permits fast predictions of cold users’ embeddings via forward

passes on already trained neural networks. Models are trained offline using PyTorch, on an

NVIDIA GTX 1080 GPU and an Intel Xeon Gold 6134 CPU, and then exported to ONNX

format and stored on Hadoop. Embeddings of music tracks (from which we also derive embed-

dings of artists, albums, or playlists), as well as warm segment centroids, are exported weekly

in tables in a Cassandra cluster, exposed via a JSON REST service. Embeddings and serialized

models are weekly updated to take into account changes in the catalog and preferences, and

weekly exported as well.

12.4 Application to Offline Prediction of Listening Data on Deezer

In the remainder of this chapter, we evaluate the performance and impact of our system on our

data. Firstly, in this section, we focus on offline experiments.

12.4.1 Experimental Setting: Predicting Future Preferences of Cold Users

Our system permits recommending musical content to cold users. Through experiments on an

offline dataset of Deezer active users, described thereafter, we evaluate to which extent the pro-

posed recommendations at registration day would have matched the actual musical preferences

of a set of users on their first month on the service. Specifically, we compute the 50 most relevant

music tracks for each user of the dataset, from our model and registration day’s input features

(described in the previous section). We compare them to the tracks listened to by each user

during their next 30 days on Deezer, using three standard recommendation metrics: the Preci-

sion, the Recall, as well as the Normalized Discounted Cumulative Gain (NDCG) as a measure

of ranking quality [319].

3https://www.onnxruntime.ai/
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12.4.2 Dataset and List of Models

Dataset For offline experiments, we extracted a dataset of 100 000 fully anonymized Deezer

users. Among them, 70 000 are warm users. They are associated with demographic information

(country and self-reported age), as well as their respective UT-ALS and TT-SVD embedding

vectors. These vectors correspond to those actually computed by our latent collaborative filtering

models on the Deezer production system on November 1st, 2020, from millions of active warm

users. Our dataset also includes the UT-ALS and TT-SVD embedding representations of the

50 000 most popular anonymized music tracks on Deezer.

The remaining 30 000 users are cold users, who registered on Deezer on the first week of Novem-

ber 2020, and subsequently listened to at least 50 music tracks on their first month on the service

(excluding registration day). They are split into a validation set and a test set of respectively

20 000 and 10 000 users. For each cold user, we collected demographic information as well

as the list of artists selected during the onboarding, and the lists of available streams, skips,

bans, searches, additions to favorites relative to music tracks, artists, albums, and playlists at

registration day only. 77% of cold users from this dataset streamed at least once at registration

day, whereas 95% of cold users fulfilled one of the aforementioned interactions. Thus, for the

remaining 5%, only demographic information is available at registration day. Lastly, the dataset

includes the tracks listened to by cold users during their next 30 days on Deezer, among the

50 000 tracks.

Along with our paper [39], we publicly released4 this dataset, as well as the code corresponding to

our offline experiments. Besides making our results reproducible, it publicly provides a relevant

real-world benchmark dataset to evaluate and compare future cold start models on actual (albeit

anonymized) usage data. We, therefore, hope that this open-source release of industrial resources

will favor and benefit future research and applications on user cold start problems.

Models We report results from two versions of our system (one trained on the UT-ALS em-

beddings of the 70 000 warm users, and one trained on their TT-SVD embeddings) on the task

presented in Section 12.3.1. For each embedding space, we simultaneously evaluate:

• the semi-personalized recommendations, which are actually used in production at Deezer.

In this case, the 50 recommended tracks of each user will correspond to the 50 most popular

tracks of his/her user segment, as detailed in 12.3.2;

• the fully-personalized ones, which directly leverage the predicted embedding vectors of each

cold user from the neural network. In this case, we recommend, for each cold user, the 50

nearest neighbors music tracks w.r.t. his/her vector in the embedding space, according to

a cosine similarity.

4Data and code are available on: https://github.com/deezer/semi perso user cold start
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Moreover, although the main objective of the applied paper associated with this work [39] was

to show the very practical impact of a deployed system and not to chase the state of the art, we

also report the performances of several baseline methods as a point of comparison. Foremost,

we consider a Popularity baseline. This chart-based method recommends the most popular

songs to cold users. Besides, to motivate the need for a careful modeling of user cold start, we

consider the Registration Day Streams method, which includes cold users in the embedding in a

more straightforward way. It estimates a cold user’s embedding vector by averaging embedding

vectors of music tracks listened to at registration day (and relying on popularity in the absence

of any stream), then recommends 50 tracks to each cold user via a nearest neighbors search.

Moreover, a third ablation baseline, denoted Input Features Clustering in the following, will

consist in getting rid of our neural network model and directly rely on the input features of

Section 12.3.2. This method will also cluster all users into segments via a k-means, but from

their stacked input features, i.e., the large vector illustrated in Figure 12.2. Recommended tracks

will correspond to the 50 most popular among warm users of each cluster; as users are no longer

in the same space as tracks, we do not evaluate any fully-personalized version of this baseline.

Lastly, we evaluate DropoutNet [367] and MeLU [208], two deep learning models described

in Section 12.2.2. We selected these two methods as they are simultaneously 1) among the

most promising approaches, to the best of our knowledge, 2) scalable to large datasets, and

3) publicly available online5. They process the same input features as our model, with the

notable exception that DropoutNet only processes positive user-track interactions (i.e., not skips

nor bans, representing approximately 12% of all interactions in our dataset). We carefully

tuned each model using the validation set. For each model, we simultaneously evaluate fully-

personalized recommendations where, as for our system, we recommend to each cold user his/her

50 most similar music tracks, as well as semi-personalized recommendations leveraging a warm

user segmentation similar to ours. We consider two variants of each model from the last two

paragraphs, respectively trained on UT-ALS and TT-SVD embeddings.

12.4.3 Offline Evaluation

Table 12.1 reports performance scores of all models on the UT-ALS and TT-SVD embeddings,

along with standard deviations over ten iterations. As the Popularity baseline is independent of

embedding vectors, it obtains the same scores for the two embeddings. In both settings, Popular-

ity is the worst method, although performances are still fairly good for such a simple strategy.

We first focus on TT-SVD embeddings. The Registration Day Streams baseline hardly beats

Popularity for these embeddings, which emphasizes the limits of a direct use of sparse usage

data in cold start settings. On the contrary, our proposed semi-personalized system provides

5Public implementations are available on https://github.com/layer6ai-labs/DropoutNet and ht-
tps://github.com/hoyeoplee/MeLU respectively.
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Table 12.1: Offline prediction of the future musical preferences of cold users on Deezer.

Model TT-SVD Embeddings UT-ALS Embeddings
Precision@50 (in %) Recall@50 (in %) NDCG@50 (in %) Precision@50 (in %) Recall@50 (in %) NDCG@50 (in %)

Popularity 8.92 ± 0.21 3.01 ± 0.08 9.72 ± 0.20 8.92 ± 0.21 3.01 ± 0.08 9.72 ± 0.20
Registration Day Streams 9.30 ± 0.22 3.48 ± 0.06 9.73 ± 0.23 16.88 ± 0.46 5.99 ± 0.11 17.72 ± 0.43
Input Features Clustering 8.84 ± 0.22 2.97 ± 0.08 9.75 ± 0.23 8.85 ± 0.22 2.98 ± 0.08 9.75 ± 0.22
DropoutNet Full-Pers. 10.04 ± 0.27 3.75 ± 0.11 10.46 ± 0.29 16.30 ± 0.50 5.77 ± 0.50 17.62 ± 0.54
DropoutNet Semi-Pers. 20.85 ± 0.35 7.55 ± 0.12 22.61 ± 0.36 19.83 ± 0.32 6.93 ± 0.16 21.55 ± 0.44

MeLU Full-Pers. 15.00 ± 0.40 5.12 ± 0.17 16.79 ± 0.45 13.92 ± 0.36 4.71 ± 0.12 15.49 ± 0.39
MeLU Semi-Pers. 19.66 ± 0.36 6.87 ± 0.15 21.63 ± 0.40 19.35 ± 0.43 6.71 ± 0.14 21.33 ± 0.45

Deezer Full-Pers. (ours) 9.58 ± 0.18 3.53 ± 0.03 9.77 ± 0.17 18.50 ± 0.43 6.63 ± 0.10 20.22 ± 0.41
Deezer Semi-Pers. (ours) 22.75 ± 0.32 8.26 ± 0.15 24.59 ± 0.30 19.00 ± 0.42 6.93 ± 0.10 20.38 ± 0.45

significant improvements (e.g., a +14.86 NDCG points increase w.r.t. Registration Day Streams),

and even reaches competitive results w.r.t. DropoutNet and MeLU. Overall, semi-personalized

methods outperform their fully-personalized variants (e.g., a +13.17 precision points increase

for Deezer Semi-Pers. vs Deezer Full-Pers.). This confirms the empirical relevance of our user

segmentation strategy, and that, while the studied methods could provide fully personalized

recommendations to cold users, this strategy can lead to noisier results on real-world applications

such as ours. Lastly, our system provides better results than a direct use of the input features

vector (Input Features Clustering baseline), which confirms the relevance of our modeling step

on top of this vector. We considered replacing our 3-layer neural network with alternative

architectures between Input Features Clustering and Deezer Semi-Pers., notably with a 1-layer

neural network, i.e., a simpler linear regression model, but did not reach comparable results.

Regarding the UT-ALS embeddings, most conclusions are consistent w.r.t. TT-SVD. Deezer

Semi-Pers. reaches quite comparable or better results w.r.t. alternatives. Among the key differ-

ences, we highlight that, while Deezer, DropoutNet and MeLU Semi-Pers. are overperforming,

the fully-personalized Registration Day Streams, DropoutNet Full-Pers. and Deezer Full-Pers.

obtain significantly stronger results than on TT-SVD embeddings (e.g., a 18.50% precision score

for Deezer Full-Pers. on UT-ALS, vs 9.58% on TT-SVD). UT-ALS embeddings are construc-

ted from a user-item interaction matrix, an approach appearing as better suited for nearest

neighbors search.

To conclude on Table 12.1, we emphasize that, while all scores might seem relatively low, they are

actually encouraging considering the intrinsic complexity of the evaluation task (predicting a few

listened tracks, among 50 000). Overall, the TT-SVD version of Deezer Semi-Pers. reaches the

best results. We note that the choice of @50 metrics is not restrictive. We reached consistent

model rankings for @25 and @100 scores; the number of items to recommend is a selectable

parameter in our public implementation.

To go further, Figure 12.4 reports the mean precision@50 scores obtained by our semi-personalized

system trained on TT-SVD embeddings, depending on available interactions at registration day.
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We observe that our model returns better res-

ults for users who streamed (positive signal) or

skipped (negative signal) more tracks at regis-

tration day. Liking at least three artists during

the onboarding session also improves recom-

mendations, which tends to confirm the relev-

ance of this strategy. On the contrary, our ex-

periments show that users without any interac-

tion (5% of them, for which only demographics

are available) get a lower average precision@50

score of 17.74%, 5.01 points below the global

average.

Lastly, Figure 12.5 reports the popularity dis-

tribution of recommended tracks from our sys-

tem, trained on TT-SVD embeddings and for

users from the top 5 countries on Deezer. We

aim to assess whether better performance in-

evitably means recommending popular tracks,

which is referred to as the popularity bias [283].

Our semi-personalized system stands out from

the popularity baseline, and mainly recom-

mends tracks among the 5 000 most popular

in the dataset, out of 50 000.
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Figure 12.4: Precision@50 scores of Deezer Semi-Pers.
depending on the number of artists liked during the on-
boarding, of streams, and of skips at registration day.
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Figure 12.5: Distribution of music tracks recommended
to cold users, by popularity rank on Deezer.

The fully-personalized variant of our system permits recommending even less mainstream tracks,

but, as we showed, this might come at the price of noisier recommendations.

12.5 Application to Online Recommendation on Deezer via Per-

sonalized Carousels

We now report our online evaluation on the Deezer app, leveraging carousels from Chapter 11.

12.5.1 Experimental Setting: Cold Start Carousel Personalization

In addition to these experiments on data extracted from Deezer, online tests were run to check

whether our conclusions would hold on the actual Deezer app. On our homepage, we do not

directly recommend music tracks, as in our offline experimental setting, but instead musical col-

lections such as albums and music playlists. As a consequence, our online tests will rather consist
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in recommending playlists to cold users, using the carousels [26] fully described in Chapter 11.

We recall that carousels are ranked and swipeable lists of playlists cards. Deezer displays 12

recommended playlists to each user through these carousels. They are updated on a daily basis

on the app. The embedding vectors of these playlists are computed from averages of the TT-SVD

embeddings of music tracks from each playlist and from internal heuristics. They are leveraged in

carousels through a TS extension now in production (technical details are voluntarily omitted).

All playlists were created by professional curators from Deezer, with the purpose of complying

with a specific music genre, cultural area, or mood.

12.5.2 Online Evaluation and Interpretation of Recommendations

A large-scale A/B test has been run for a month on Deezer in 2020, on new cold users register-

ing during this period. Due to industrial constraints, testing all model variants in production

was impossible. Also, for confidentiality reasons, we do not report the exact number of users

involved in each cohort.

Results are expressed in relative terms w.r.t.

the performance of Deezer Default, a previ-

ous production system estimating cold user em-

beddings by countries and from internal heur-

istics. We observe in Figure 12.6 that our

new (TT-SVD-based) semi-personalized sys-

tem leads to significant improvements of the re-

lative display-to-stream and display-to-favorite

rates, i.e., it permits selecting playlists on

which cold users are more likely to click on

and then to stream the underlying content or

add it to their list of favorite content. Such

results validate the relevance of our proposed

system, and emphasize its practical impact on

industrial-scale applications in a global music

streaming app such as Deezer. In 2021, the

system is still used in production at Deezer.
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Figure 12.6: Online A/B test: relative display-to-stream
and display-to-favorites rates w.r.t. internal baseline.
Differences are statistically significant at the 1% level
(p-value < 0.01).

Our semi-personalized system also enables us to provide interpretable recommendations on

Deezer. Indeed, carousel personalization relies on user embedding vectors that, for cold users,

are linked to centroids of warm user segments. Therefore, recommended playlists can be de-

scribed via the characteristics of these segments, such as the most common country or age class

of warm users from each segment, or the most common music genres among their favorite artists.
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Table 12.2: Examples of user segments from Deezer’s production system, described by most common country, age
class and music genres among favorite tracks, together with some playlists recommended on the service.

Description of the segment Playlists recommended on Deezer

France
18-24 y.o.

Rap, Hip-Hop

Brazil
25-34 y.o.
Sertanejo

Germany
35-49 y.o.

Schlager, Pop

Table 12.2 reports a few illustrative examples of descriptions of user segments, along with music

playlists that were actually recommended to cold users from these segments on the Deezer app.

Providing interpretable recommendations is often desirable for industrial applications, both for

data scientists dealing with opaque model predictions, and for users as a way to improve their

satisfaction and trust in the system [5].

12.6 Conclusion

In this chapter, we presented the semi-personalized system recently deployed in production

at Deezer to address the challenging user cold start problem. We demonstrated the tangible

impact of this system, through both offline and online experiments on music recommendation

tasks. Moreover, although the main focus of our work [39] was on practical impact and not on

chasing the state of the art, we also showed that our approach is competitive w.r.t. powerful

user cold start models from the recent scientific literature.

Along with the paper associated with this work [39], we publicly released our code, as well as the

dataset used in our offline experiments, providing information on 100 000 anonymized users and

their interactions with the Deezer catalog. We hope that this open-source release of industrial

resources will enable future research on user cold start recommendation.

For instance, in this paper, we assumed that, while the number of users increases over time,

the musical catalog remains fixed, which is a limit, currently addressed at Deezer via internal
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heuristics extending our system. Future studies on a more effective incorporation of new releases

in our semi-personalized system would decidedly improve its empirical effectiveness. In this dir-

ection, leveraging the GAE and VGAE models from Chapter 8, combined with the FastGAE

method from Chapter 4 for scalability, seems to be a promising approach, especially consid-

ering the recent successes of graph-based recommender systems on large-scale services such as

Alibaba [373] or Pinterest [394], including in cold start settings.

Besides, future studies could also consider different embedding sizes for users and items [138], or

the inclusion of temporal and contextual information in our neural network. Lastly, as we rely

on user segments, we also believe that future work on a more effective user clustering, e.g., by

leveraging graph-based methods, could strengthen our system and permit providing even more

refined recommendations to new users.
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Conclusion

Graph autoencoders (GAEs) and variational graph autoencoders (VGAEs) emerged as two

powerful families of node embedding methods. Nonetheless, at the beginning of this PhD project,

i.e., in 2018, existing variants of GAEs and VGAEs were still suffering from several fundamental

limitations. As a consequence, leveraging these models for industrial-level applications, e.g., for

music recommendation at Deezer, was still a challenging task. The primary objective of this

thesis was to address these limitations, with the general aim of improving GAEs and VGAEs,

and of facilitating their use for real-world problems involving node embedding representations.

Specifically, we firstly aimed to improve their scalability. While standard GAE and VGAE

models were limited to medium-size graphs with a few thousand nodes and edges, due to their

quadratic computational complexity, we proposed two effective methods to overcome this is-

sue. They are based on graph degeneracy and stochastic subgraph decoding, respectively. We

provided the first application of these models to graphs with up to millions of nodes and edges.

Besides, while standard variants of GAEs and VGAEs were limited to undirected graphs, we in-

troduced Gravity-Inspired GAEs and VGAEs, an effective extension to process directed graphs

that are ubiquitous in real-world problems. Our models achieved competitive empirical results

w.r.t. popular alternatives on several directed link prediction tasks.

Throughout this thesis, we also considered extensions of GAEs and VGAEs for dynamic graphs

and graphs with edges of different natures. Furthermore, by introducing Linear GAEs and

VGAEs, we emphasized that multi-layer GCN-based GAEs and VGAEs are often unnecessar-

ily complex, and we subsequently proposed to simplify them. This is an important aspect in

the context of an industrial thesis, as simpler models are often preferred in production envir-

onments. Simultaneously, we provided some recommendations to improve the evaluation of

complex GAE and VGAE models. Lastly, we introduced Modularity-Aware GAEs and VGAEs

to improve community detection using these models, while jointly preserving their initially good

performances on link prediction.

The second objective of this thesis was to evaluate our proposed approaches on industrial graphs

extracted from the Deezer service. We put the emphasis on graph-based music recommendation

problems, often formulated as link prediction or community detection tasks. In particular, we

explained how, to this day, Deezer leverages similarity graphs constructed from usage data for

music recommendation. We highlighted how this music streaming service can benefit from the

GAE and VGAEmodels introduced in this thesis, e.g., to improve the detection of artists/albums

communities to recommend to users. We also proposed a graph-based approach to rank similar
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artists on Deezer, leveraging our Gravity-Inspired GAEs and VGAEs. Using this approach,

we successfully addressed the challenging cold start similar artists ranking problem, with an

experimental evaluation on data extracted from Deezer’s production system. In another research

study, we leveraged music genres graph ontologies to effectively model the music genre perception

across language-bound cultures. To finish, in the last two chapters of this thesis, we presented

two additional projects, less related to GAEs and VGAEs but providing a larger overview of

music recommendation at Deezer. We introduced, described, and analyzed some production-

facing algorithms developed during the period covered by this PhD project. To this day, they

are still running on the Deezer service and recommend music to millions of active users.

Overall, the majority of our experiments led to promising results. We believe and hope that the

research conducted over the last three years will benefit some future projects and, in particular,

will ease the application of graph autoencoders to large-scale real-world problems involving the

use of node embedding representations. To encourage the usage of our methods, we publicly

released our code along with each article published in the context of this thesis. Along with five

of these articles, we also publicly released new datasets, that were either directly extracted from

Deezer’s private resources, or scraped and processed from the internet.

Moreover, at the end of each chapter of this thesis, we aimed to describe the potential limitations

of our methods. They open the way for future research on the corresponding topics. For instance,

we acknowledged that the FastGAE method could underperform on very sparse graphs, and

on directed graphs if the method relies on (undirected) core-based or degree-based sampling

probabilities. We explained how our recommender systems from Chapters 11 and 12 could be

improved by considering the inclusion of graph-based methods in the learning process, and how

the ones from Chapters 8 and 9 still require online A/B tests and deployments, undone at the

time of writing. Another aspect that we consistently noticed in our experiments regards the

absence of clear empirical differences between GAE and VGAE models. While VGAE models

seem to slightly outperform their deterministic counterparts in the majority of our community

detection experiments, scores of GAE models are nonetheless fairly close. As we conclude this

PhD thesis, the question of when one should favor VGAEs over GAEs remains quite open and

deserves future research. Lastly, we recall that the GAE and VGAE frameworks are very general.

Therefore, in the upcoming years, one could most likely improve our empirical results, e.g., by

replacing our encoders (mostly, linear or multi-layer GCN models) with novel GNN architectures

from the scientific literature, or by investigating better-suited prior latent distributions and

generative models in the case of VGAEs.

The above considerations admittedly constitute relevant research directions for future work.

Nonetheless, we believe that the most interesting improvements should come, not necessarily

from more complex encoders, but rather from better data and better evaluations. Experiments

from this thesis tend to suggest that a better initial representation of nodes could improve the res-

ulting GAE/VGAE-based node embeddings at least as much as a more powerful GNN encoder.
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As an illustration, the performances of our GAE and VGAE models from Chapters 8 and 9

strongly depend on how artists or albums are connected in the training graphs under consider-

ation. Therefore, we believe that music streaming services, and other media aiming to leverage

such graph-based methods, should redouble their efforts to define better “similarity” scores. As

argued throughout this thesis, enriching these training graphs, e.g., with culture-specific inform-

ation or with contextual information, could also decidedly improve our recommender systems.

An even more ambitious direction for future research would consist in developing models that

directly learn such initial graph connections from the massive amounts of usage data and item

descriptions collected on online services, i.e., without any arbitrary pre-processing step or any

business-driven assumption on what “similarity” should mean. Concurrently, several of our

studies could also benefit from more extensive evaluations. For instance, in the aforementioned

Chapter 8, we did not assess the impact of the inclusion of cold nodes in embedding spaces on

the “Fans Also Like” lists of warm artists. In a future study, one could aim to assess whether

these cold artists emerge on the recommended lists of warm artists, and therefore to which

extent GAE and VGAE models could permit recommending more diverse musical content on

music streaming services.

At the beginning of this PhD project three years ago, the graph representation learning field

was already growing at a fast pace. As we are now concluding this thesis, we observe a gain

of interest for graph representation learning methods in the music streaming industry and,

overall, in the research communities working on the specific domains of applications covered

at Deezer, i.e., recommender systems and music information retrieval. For instance, at the

recent 15th ACM Conference on Recommender Systems (RecSys 2021) where our work received

a “best student paper” honorable mention [313], the opening session was marked by a keynote

presentation from Max Welling, one of the co-authors of the GCN, GAE and VGAE models [187,

188], on graph neural networks for recommendation. A month later, at the 22nd International

Society for Music Information Retrieval Conference (ISMIR 2021) which occurred during the

writing of this thesis, researchers from the music streaming service Pandora presented a graph-

based approach to compute artist similarities, using a GNN model [197]. Their work also

received a “best paper” honorable mention. At the same conference, researchers from the music

streaming service Spotify presented another multi-task graph-based model, with application to

music recommendation [316]. These recent studies complement this thesis, which mainly focused

on GAE/VGAE-based node embedding representations and their applications to link prediction

and community detection tasks. In agreement with our research, they confirm the impact, the

relevance, and the potential of graph representation learning methods to tackle numerous real-

world problems emerging on music streaming services, and, more broadly, on large-scale media

providing and recommending content to millions of users.
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Titre : Contributions à l’apprentissage de représentations à partir d’autoencodeurs de graphes, et applications à la re-
commendation musicale

Mots clés : Autoencodeurs de graphes, Réseaux de neurones de graphes, Représentations vectorielles de nœuds,
Prédiction de liens manquants, Détection de communautés, Recommandation musicale

Résumé : Les autoencodeurs de graphes (GAE) et les au-
toencodeurs variationnels de graphes (VGAE) se sont im-
posés comme deux puissants groupes de méthodes per-
mettant de construire des représentations vectorielles des
nœuds d’un graphe de manière non supervisée, avec des
applications à divers problèmes d’apprentissage tels que la
prédiction de liens manquants et la détection de commu-
nautés de nœuds. Néanmoins, au début de ce projet de
thèse, les GAE et VGAE souffraient de limitations majeures.
Ces dernières entravaient l’utilisation de ces modèles dans
le cadre d’applications industrielles. Dans cette thèse, nous
présentons plusieurs contributions permettant d’améliorer
les GAE et VGAE afin de faciliter de telles utilisations.
Tout d’abord, nous proposons deux stratégies permettant
de surmonter les problèmes de passage à l’échelle des
GAE et VGAE, et d’entraı̂ner ces modèles sur des graphes
ayant des millions de nœuds et d’arêtes. Ces stratégies ex-
ploitent respectivement des techniques de dégénérescence
de graphes et de décodage stochastique de sous-graphes.
Par ailleurs, nous présentons nos GAE et VGAE inspirés
de la gravité (de l’anglais Gravity-Inspired GAE and VGAE),
qui constituent les premières extensions de ces modèles
destinées aux graphes dirigés, qui sont omniprésents dans
les applications industrielles. Nous étudions également des
extensions destinées aux graphes dynamiques. En outre,

nous démontrons que les GAE et VGAE existants sont sou-
vent inutilement complexes, et nous proposons donc de les
simplifier en ayant recours à des encodeurs linéaires. En-
fin, nous présentons nos GAE et VGAE informés par la
modularité (de l’anglais Modularity-Aware GAE and VGAE),
qui permettent d’améliorer la détection de communautés de
nœuds, tout en préservant de bonnes performances pour la
prédiction de liens manquants.
Dans la dernière partie de cette thèse, nous évaluons
nos méthodes sur plusieurs graphes extraits du service
de streaming musical Deezer. Nous nous concentrons sur
des problèmes de recommandation musicale à partir de
graphes. En particulier, nous montrons que nos méthodes
permettent d’améliorer la détection de communautés d’en-
tités musicales à recommander aux mêmes utilisateurs,
mais aussi de mieux classer des artistes similaires dans un
contexte de démarrage à froid (de l’anglais cold start), et en-
fin de mieux modéliser la perception des genres musicaux à
travers différentes cultures. Pour terminer, nous présentons
également deux autres modèles, récemment déployés en
production chez Deezer afin de recommander de la mu-
sique à des millions d’utilisateurs. Bien qu’étant moins di-
rectement liés aux GAE et VGAE, ils fournissent un point
de vue complémentaire sur des sujets de recommandation
musicale connexes à ceux étudiés précédemment.

Title : Contributions to Representation Learning with Graph Autoencoders and Applications to Music Recommendation

Keywords : Graph Autoencoders, Graph Neural Networks, Node Embedding Representations, Missing Link Prediction,
Community Detection, Music Recommendation

Abstract : Graph autoencoders (GAE) and variational
graph autoencoders (VGAE) emerged as two powerful
groups of unsupervised node embedding methods, with va-
rious applications to graph-based machine learning pro-
blems such as link prediction and community detection. No-
netheless, at the beginning of this PhD project, GAE and
VGAE models were also suffering from key limitations, pre-
venting them from being adopted in the industry. In this the-
sis, we present several contributions to improve these mo-
dels, with the general aim of facilitating their use to address
industrial-level problems involving graph representations.
Firstly, we propose two strategies to overcome the scalabi-
lity issues of previous GAE and VGAE models, permitting
to effectively train these models on large graphs with mil-
lions of nodes and edges. These strategies leverage graph
degeneracy and stochastic subgraph decoding techniques,
respectively. Besides, we introduce Gravity-Inspired GAE
and VGAE, providing the first extensions of these models
for directed graphs, that are ubiquitous in industrial applica-
tions. We also consider extensions of GAE and VGAE mo-

dels for dynamic graphs. Furthermore, we argue that GAE
and VGAE models are often unnecessarily complex, and
we propose to simplify them by leveraging linear encoders.
Lastly, we introduce Modularity-Aware GAE and VGAE to
improve community detection on graphs, while jointly pre-
serving good performances on link prediction.
In the last part of this thesis, we evaluate our methods on
several graphs extracted from the music streaming service
Deezer. We put the emphasis on graph-based music recom-
mendation problems. In particular, we show that our me-
thods can improve the detection of communities of similar
musical items to recommend to users, that they can effec-
tively rank similar artists in a cold start setting, and that
they permit modeling the music genre perception across
cultures. At the end of this thesis, we present two additional
models, recently deployed in production on the Deezer ser-
vice to recommend music to millions of users. While being
less directly linked to GAE and VGAE models, they provide
a complementary perspective on music recommendation to-
pics related to the ones we previously studied.
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