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ABSTRACT

Architectured materials are a rising class of materials that provide tremendous
possibilities in terms of functional properties.

Interest is drawn on the failure of architectured materials in which scale separation
ceases to exist. This directly translates to strong interactions between a crack tip and
the architecture independently of the considered scale. Moreover, under dynamic loadings,
stress-waves come into play and interactions between the crack-tip, the microstructure
(architecture) and the stress-waves eventually pilot together the structural behaviour.

In this thesis, three types of architectured materials are considered: one periodic and
two Penrose-type quasi-periodic lattices of holes. The analysis is broken into three parts.

To study the influence of the microstructure on crack-propagation at different
scales, numerical simulations of failure are analysed; they show improved resistance
to crack propagation in the quasi-periodic materials. At the core of the work is also the
development of a coarse-graining technique that requires no representative volume
element. This technique allows for a physically consistent multi-scale evaluation of
the effective failure properties of the architectures. The inevitability of the consideration
of a non-homogeneous effective medium to accurately model microstructural effects
at larger scales is highlighted.

In dynamics, the influence of the architectures on the stress-wave attenuation shows
improved attenuation properties of the quasi-periodic lattices.

Moreover, to understand the mechanism(s) governing the dynamic branching phe-
nomenon in a homogeneous material, a criterion based on dynamic fracture mechanics
is developed and validated on a novel experimental setup where Ultra-High-Speed-
High-Resolution imaging is combined with Digital Image Correlation to capture
extraordinary phenomena. The unquestionable role of T-stress in dynamic branching is
put forth.

This thesis brings forth the necessary tools towards a multi-scale analysis
of dynamic failure in architectured materials.

Keywords: Architectured materials, coarse-graining, brittle fracture, dynamic fracture,
crack branching
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RÉSUMÉ

Durant ces dernières années, on a vu un intérêt de plus en plus marqué pour de
nouveaux matériaux avancés appelés matériaux architecturés.

On s’intéresse à la fissuration de matériaux architecturés dans lesquels la séparation
d’échelle n’est pas toujours bien établie. Ceci se traduit par de fortes interactions
entre le front de la fissure et l’architecture du matériau indépendamment de l’échelle
considérée. De plus, sous chargements dynamiques, des ondes élastiques entrent en jeu
et les interactions entre le front de la fissure, les ondes élastiques et la microstructure
pilotent ensemble le comportement global de la structure.

Dans cette thèse, trois types de matériaux architecturés (microstructures) sont consid-
érés : un réseau de trous périodique et deux réseaux quasi-périodiques type Penrose.
L’analyse est divisée en trois parties.

Pour étudier l’influence de la microstructure sur la propagation des fissures à différentes
échelles, des simulations numériques de rupture sont analysées ; ces simulations montrent
une meilleure résistance des matériaux quasi-périodiques à la propagation des fissures.
De plus, on développe une approche de changement d’échelle “bottom-up” qui n’a pas
recours à la notion de volume élémentaire représentatif. Celle-ci permet donc
une évaluation multi-échelle cohérente des propriétés effectives à la rupture des
microstructures périodiques et quasi-périodiques. On montre ainsi l’inévitabilité de la
prise en compte d’un milieu effectif non-homogène pour modéliser avec précision la
réponse globale d’un matériau en tenant compte de sa sous-structure.

En dynamique, une analyse de l’influence de l’architecture sur l’atténuation des
ondes élastiques montre une meilleure performance des réseaux quasi-périodiques.

De plus, pour comprendre le ou les mécanismes régissant le phénomène de branche-
ment dynamique dans un milieu homogène, un critère basé sur la mécanique de la
rupture dynamique est développé et validé sur une nouvelle configuration expérimentale où
l’imagerie à ultra haute vitesse et haute résolution est combinée à la corrélation
d’images numériques pour capturer les phénomènes marquants. Le rôle incontestable
que joue la contrainte T dans le branchement dynamique est mis en avant.

Cette thèse fournit ainsi les outils nécessaires à une analyse multi-échelle
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de la rupture dynamique des matériaux architecturés.
Mots-clés : Matériaux architecturés, coarse-graining, rupture fragile, rupture dy-

namique, branchement

6



À ma famille.





REMERCIEMENTS

Mes premiers remerciements vont aux rapporteurs de cette thèse: Delphine Brancherie
et Gilles Pijaudier-Cabot, qui ont accepté la relecture de mon mémoire. Je vous remercie
pour vos commentaires minutieux et vos rapports enrichissants.

Je tiens certainement à remercier Anthony Gravouil, d’avoir accepté la charge de
présider le jury. Je remercie également les deux autres membres du jury, Laurent Ponson
et Laura De Lorenzis, pour leurs questions, remarques et leur intérêt enthousiaste pour
mes travaux.

Je tiens aussi à remercier les membres de mon comité de suivi, Nicolas Moës et Tanguy
Rouxel, les membres de l’équipe outlaw Michel Coret, Adrien Leygue et Erwan Verron,
je vous remercie pour toutes les discussions qui m’ont bien forgé. Je remercie Françoise
Foucher et Laurent Stainier qui m’ont donné l’opportunité d’enseigner pendant ces trois ans.
En outre, je souhaite remercier l’ensemble des membres du GeM, une pensée particulière à
Alexis Salzman.

Mes plus sincères pensées vont à mes encadrants: Julien Réthoré et Rian Seghir.
Julien, je te remercie de m’avoir proposé ce sujet, qui m’était à la fois inconnu et

intrigant. Je te remercie pour ton engagement et ta passion. Tu m’inspires chaque jour,
dans ta sérénité, ton sang-froid et le respet que tu imposes.

Rian, je te remercie pour tous tes encouragements, je me rappelle très bien des fois que
je passais dans ton bureau ou au CRED, en mode panique, et avec ton esprit bien cool,
tu me réconfortais et m’assurais que je suivais la bonne voie. Je te remercie de m’avoir
donné l’opportunité de prendre le rôle de l’expérimentateur à tes côtés. Sache que je serai
toujours navré voire triste que tu n’étais pas présent en personne pour ma soutenance,
celle de l’un de tes deux premiers thésards!

Julien et Rian, vous m’aviez guidé en me laissant m’épanouir et développer mon esprit
critique et tout cela dans le plus grand respect et sans aucune pression. Je vous remercie
pour la liberté que vous m’aviez accordée . . . même si parfois je faisais n’importe quoi,
j’étais sûr que vous alliez m’aider à retrouver le bon chemin, ‘fallait juste le demander’.

Si ces années ont été si belles c’est aussi et surtout grâce aux moments partagés
entre copains et ceux partagés avec les ‘vieux’ et leurs familles: les soirées crêpes, pizzas,

7



bières, foot avec la finale de l’euro, le road-trip Nantes-Giens, etc. Je remercie les anciens
doctorants: Marie, Auriane, Erwan, Pierre, Fabien, Xiaodong, Duc; ceux qui ont commencé
l’aventure un peu après moi, Raphael, Soukaina, Pauline, Audrey, Manisha, Ghita et ceux
qui ont fait le chemin avec moi: Vasu, Raphaël et Adrien avec qui j’ai pas mal discuté et
ainsi pu m’enrichir. Je n’oublierai jamais nos aventures culinaires, ni nos vives discussions,
sur tout et sur rien.

Mes dernières pensées vont à mes deux havres de paix, ma famille, au Liban et en
France. J’espère que vous êtes fières de moi! Papa Maroun, je te remercie pour la belle
âme que tu es, pour ce que tu fais pour notre bien-être, et pour tout ce que tu m’as appris
en grandissant et ce que tu continues à m’apprendre. Je te remercie de m’avoir transmis
ton amour pour la mécanique. Maman Catherine, ma source d’inspiration et de force, sans
toi je ne serais jamais là, je te remercie pour tous tes encouragements, ta croyance en moi
et tous ces sacrifices qui passent inaperçus mais qui font toute la différence, je te remercie
pour tout ce que tu fais pour Peter et moi. Les mots ne suffiront jamais pour exprimer ce
que je ressens. Bien évidemment je remercie mon frère Peter qui m’a toujours soutenu, et
avec qui je passais des moments agréables en ligne - des moments qui ont largement été
indispensables à mon équilibre mental après de longues journées de travail.

Enfin Marie, je te remercie pour ton aide, ta présence, ta belle âme et tes efforts qui
m’inspirent quotidiennement. J’espère que tu assumeras bien cette responsabilité encore
longtemps.

8



TABLE OF CONTENTS

Background and motivations 27

I Literature review 33
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
0.2 Dynamic fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 37

0.2.1 Linear Elastic Fracture Mechanics (LEFM) . . . . . . . . . . . . . . 37
0.2.2 Extension to asymptotic fields near a moving crack-tip . . . . . . . 41

0.3 Numerical crack propagation simulation . . . . . . . . . . . . . . . . . . . 44
0.3.1 Damage models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
0.3.2 Cohesive zone models . . . . . . . . . . . . . . . . . . . . . . . . . . 46
0.3.3 Thick level set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
0.3.4 Phase-field approach to fracture . . . . . . . . . . . . . . . . . . . . 47

0.4 Architectured materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
0.4.1 A new class of materials . . . . . . . . . . . . . . . . . . . . . . . . 49
0.4.2 Periodic microstructures . . . . . . . . . . . . . . . . . . . . . . . . 49
0.4.3 Quasi-Periodic microstructures . . . . . . . . . . . . . . . . . . . . 50
0.4.4 Typical architectures of interest . . . . . . . . . . . . . . . . . . . . 50

0.5 Homogenisation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
0.5.1 The presence of an RV E . . . . . . . . . . . . . . . . . . . . . . . . 53
0.5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
0.5.3 Recent advancement . . . . . . . . . . . . . . . . . . . . . . . . . . 54
0.5.4 The coarse-graining technique . . . . . . . . . . . . . . . . . . . . . 55

II Computational approach: methods and implementation 57

1 Phase Field modelling of brittle failure: the microscopic scale 59
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.2 Regularised representation of free discontinuities . . . . . . . . . . . . . . . 61

9



TABLE OF CONTENTS

1.3 Quasi-static formulation of the phase-field model . . . . . . . . . . . . . . . 62
1.4 Dynamic formulation of the phase-field model . . . . . . . . . . . . . . . . 69
1.5 Unilateral contact formulations . . . . . . . . . . . . . . . . . . . . . . . . 70

1.5.1 Extensive/compressive decomposition of the strain . . . . . . . . . 71
1.5.2 Orthogonal decomposition of strain . . . . . . . . . . . . . . . . . . 72

1.6 Overall phase-field algorithms: implementation and numerical simulation
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1.6.1 Staggered procedure for quasi-static phase-field model . . . . . . . 73
1.6.2 Explicit time-stepping procedure for the phase-field model . . . . . 74

1.7 Influence of the regularisation parameter lc . . . . . . . . . . . . . . . . . . 76
1.8 Influence of the elastic threshold φc . . . . . . . . . . . . . . . . . . . . . . 78
1.9 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1.9.1 Quasi-static benchmark : Uniaxial traction bar . . . . . . . . . . . . 82
1.9.2 Dynamic benchmark : dynamic crack branching . . . . . . . . . . . 85

1.10 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2 Coarse-graining: from the microscopic to the mesoscopic scale(s) 89
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2 Scales of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.3 Coarse-graining technique principles . . . . . . . . . . . . . . . . . . . . . . 92
2.4 Balance of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.4.1 Coarse-Grained velocity . . . . . . . . . . . . . . . . . . . . . . . . 95
2.4.2 Coarse-Grained displacement . . . . . . . . . . . . . . . . . . . . . 95
2.4.3 Coarse-Grained strain and strain rate . . . . . . . . . . . . . . . . . 95

2.5 Balance of linear momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 96
2.5.1 Coarse-Grained stress . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.6.1 Application on a hexagonal distribution of holes . . . . . . . . . . . 98
2.6.2 Application on asymptotic analytical static fields . . . . . . . . . . 101

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

III Multi-scale analysis of fracture and dynamic fracture 109

3 Multi-scale crack propagation in architectured materials 111

10



TABLE OF CONTENTS

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.2 Quasi-static fracture simulation . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.4 Elastic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.5 Crack Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.6 Fracture strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.7 Fracture toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 Damping properties of Periodic and Quasi-Periodic architectured mate-
rials 143
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.2 Numerical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.2.1 Architectured sample . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.2.2 Longitudinal wave-packet excitation . . . . . . . . . . . . . . . . . . 145

4.3 Kinetic energy Envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.4 Energy Attenuation and penetration length . . . . . . . . . . . . . . . . . . 151
4.5 Sound velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.5.1 Long-wavelength (effective) velocity . . . . . . . . . . . . . . . . . . 155
4.5.2 Instantaneous velocity . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.6 From propagative and diffusive regimes . . . . . . . . . . . . . . . . . . . . 158
4.7 Frequency components at outlet . . . . . . . . . . . . . . . . . . . . . . . . 161
4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5 Stress-waves and their role in crack propagation 167
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.1.1 ...and more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.2 Crack branching in an inertial impact test . . . . . . . . . . . . . . . . . . 171

5.2.1 On the shoulders of giants . . . . . . . . . . . . . . . . . . . . . . . 171
5.2.2 Loading and test configuration . . . . . . . . . . . . . . . . . . . . . 172
5.2.3 Experimental and imaging setup . . . . . . . . . . . . . . . . . . . . 173
5.2.4 Post-mortem state of the sample . . . . . . . . . . . . . . . . . . . 175
5.2.5 DIC displacement fields . . . . . . . . . . . . . . . . . . . . . . . . 176
5.2.6 On the crack branching . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.2.7 SIF , T − stress and crack-tip speed . . . . . . . . . . . . . . . . . 180

11



TABLE OF CONTENTS

5.2.8 Experimental campaign summary . . . . . . . . . . . . . . . . . . . 183
5.3 max(σθθ): a growth criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.3.1 Experimental assessment of the instability: classical solution . . . . 185
5.4 Incorporating T − stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.4.1 Application to the inertial impact test . . . . . . . . . . . . . . . . 191
5.5 The (in)stability map: a comprehensive criterion . . . . . . . . . . . . . . . 192

5.5.1 Experimental crack growth . . . . . . . . . . . . . . . . . . . . . . . 195
5.6 Discussion on the (in)stability map . . . . . . . . . . . . . . . . . . . . . . 196
5.7 A phase-field simulation of the inertial impact test . . . . . . . . . . . . . . 199

5.7.1 On the crack patterns . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.7.2 On the crack-tip speeds . . . . . . . . . . . . . . . . . . . . . . . . 200
5.7.3 Crack branching analysis . . . . . . . . . . . . . . . . . . . . . . . . 203

5.8 Validation of the role of T − stress on crack branching in [Borden et al.,
2012]’s benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.8.1 On the crack path history . . . . . . . . . . . . . . . . . . . . . . . 208

5.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

IV Conclusion and perspectives 215

Conclusion 216

Perpsectives 220

V References 223

References 224

VI Appendices 237

Appendices 238

A Dynamic crack branching: the influence of the phase-field parameters 239
A.1 Influence of gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
A.2 Influence of lc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

12



TABLE OF CONTENTS

A.3 Fixing σc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
A.3.1 Fixing the ratio gc

lc
. . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.3.2 Manipulating φc,c and lc . . . . . . . . . . . . . . . . . . . . . . . . 244

B Crack path detection 246

C On the presence of a unique damage law 249

D Stress intensity factors extraction from displacement fields 252
D.1 SIF Theoretical aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
D.2 SIF Extraction procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

E Theoretical aspect of the inertial impact test 255

F Experimental and imaging setup of the inertial impact test 258
F.1 Experimental setup and description of the test bench . . . . . . . . . . . . 258
F.2 On the mesh and DIC parameters . . . . . . . . . . . . . . . . . . . . . . 260

G TAF2 Sample: DIC fields and SIF results 262

H T3DE Sample: DIC fields and SIF results 264

I THOM Sample: DIC fields and SIF results 266

J Influence of rc on the material (in)stability map 268

K Phase-field simulation of the inertial impact test: validation of the model270
K.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
K.2 The phase-field parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
K.3 The boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
K.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

K.4.1 On the crack patterns . . . . . . . . . . . . . . . . . . . . . . . . . 273
K.4.2 On the crack tip speeds . . . . . . . . . . . . . . . . . . . . . . . . 273
K.4.3 Crack branching analysis . . . . . . . . . . . . . . . . . . . . . . . . 275

13





LIST OF FIGURES

1 The holy trinity of this PhD . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Infinite plate subjected to uniform applied tension with defects: an elliptical

defect of semi-axes a and b (a), a slit crack of length 2a (b) . . . . . . . . . 37
3 Three modes of fracture: opening (mode I), in-plane shear (mode II) and

out-of-plane shear (mode III), in this study, only the in-plane modes I &
II are considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The local polar coordinates around a crack-tip . . . . . . . . . . . . . . . . 39
5 The universal function kI(vc) versus the normalised crack-tip speed (vc/cR) 42
6 Thick level set: damage α and level set Λ distribution . . . . . . . . . . . 47
7 Precise shapes of a Penrose kite&dart tiling and the assembled tiles [Penrose,

2013] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8 The microstructures considered for the study: a Periodic lattice of holes (a)

and two types of Quasi-Periodic lattices of holes: distribution at the nodal
positions of a kite&dart Penrose paving (type 1) (b) and on the centroids
of the kite&dart paving (type 2) (c) . . . . . . . . . . . . . . . . . . . . . . 52

1.1 Regularised representation of a crack in a two-dimensional case, sharp crack
(left) and regularised representation through phase-field (right) . . . . . . . 61

1.2 Unidimensional bar under traction for the analysis of the phase-field method
parameters in a homogeneous case. . . . . . . . . . . . . . . . . . . . . . . 77

1.3 Influence of the regularisation parameter lc on the homogeneous (stress,strain)
(a), (damage,strain) (b) and (stress,damage) (c) relations. . . . . . . . . . . 77

1.4 Influence of the threshold coefficient c on the homogeneous (stress,strain)
(a), (damage,strain) (b) and (stress,damage) (c) relations. . . . . . . . . . . 80

1.5 Influence of the threshold coefficient c on the (stress-damage) relation, (a),
the damage state α at which the critical stress occurs (αc) for different
threshold coefficients c (b), and the evolution of the critical stress σc as a
function of the threshold coefficient c (c) . . . . . . . . . . . . . . . . . . . 81

15



LIST OF FIGURES

1.6 iso-σc for different couples of (lc, c) at fixed gc. Evolution of σc as a function
of lc and c (a), the couples (lc, c) that yield the same σc at fixed gc (b) and
the influence of c on the phenomenological stress-strain relation at fixed
(gc, σc) (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

1.7 Unidimensional bar under traction for the quasi-static benchmark to validate
the implementation and analyse the influence of lc and c . . . . . . . . . . 82

1.8 Damage profiles for different length-scales lc and threshold coefficients. . . 84
1.9 The influence of the threshold and length-scale on the load-displacement

curves (a), phase-field profiles (b) and on the crack topology error (c) . . . 84
1.10 Geometry and boundary conditions for the crack branching benchmark

[Borden et al., 2012] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1.11 Fracture patterns and crack tip speeds for different elastic thresholds φc,c.

Comparison with the work of [Borden et al., 2012] (no threshold) . . . . . 87

2.1 The scales of interest for the failure problem of microscopically heterogeneous
materials: the microscopic scale (a) the intermediate mesoscopic scale(s)
with properties obtained upon the length scales considered (b) and the
structural macroscopic scale (c). . . . . . . . . . . . . . . . . . . . . . . . 91

2.2 The coarse-graining function (b) sweeps over the different points in the
domain (c), Information from the particles system (a) is smoothed and
continuous fields are computed . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.3 The Periodic lattice (hexagonal distribution) (a) and its one-unit-cell RV E
(b). The Periodic lattice and the coarse-graining support Ω0 (c) . . . . . . 99

2.4 Effective density fields of the Periodic lattice . . . . . . . . . . . . . . . . 99
2.5 Density conservation through the scales lCG and the evolution of the corre-

sponding coefficient of variation COVR . . . . . . . . . . . . . . . . . . . . 100
2.6 Mean values of the effective stiffness tensor and their deviation at different

coarse-graining scales lCG/d (abscissa) . . . . . . . . . . . . . . . . . . . . 100
2.7 Schematic representation of the problem: the displacement jump and stress

singularity and the application of a Gaussian unidimensional filter to the plots102
2.8 Displacement and stress fields at the vicinity of a horizontal crack. The

discontinuity of the displacement field and the singularity of the stress field
are regularised by the coarse-graining. This regularisation is dictated by lCG 104

16



LIST OF FIGURES

2.9 Coarse-grained stress-strain behaviour of the data points as a function of
their vertical distance to the crack path at two length scales lCG. In the
schematic, the crack path is represented by the green horizontal line, and
the circle represents the coarse-graining function width . . . . . . . . . . . 106

3.1 Full (a) and close-up (b) diagrams of a typical finite element mesh of a
TDCB specimen with the considered coarse-graining support mesh region
(in light blue) allowing the study of large scales lCG up to 10 times the mean
distance between holes d. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2 Phase-field simulation of the fracture of the architectured materials (up),
the data points where the damage α > 0.99 are removed to mimic a crack
opening. Experimental footage showing the crack patterns obtained in-lab . 116

3.3 Load-displacement response from the phase-field simulations of the TDCB
samples embedding the three architectures . . . . . . . . . . . . . . . . . . 117

3.4 Effective density fields of type 1 Quasi-Periodic microstructure for three
different scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.5 Density conservation through mesoscales (a) and the evolution of the corre-
sponding coefficient of variation COVR - defining the heterogeneity of the
effective density - evolution with lCG (b) . . . . . . . . . . . . . . . . . . . 118

3.6 Fields of the C11 component of the effective elasticity tensor of type 1
Quasi-Periodic microstructure at three different scales. . . . . . . . . . . . 120

3.7 Material points distribution based on the elastic anisotropy index ar com-
puted at different coarse-graining scales for the considered microstructures.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.8 The effective Young modulus computed at different lCG for the three mi-
crostructures (a) and the evolution of the corresponding coefficient of
variation COVE - defining the heterogeneity of the effective Young modulus
- with lCG (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.9 The effective Poisson ratio computed at different lCG for the three microstruc-
tures (a) and the evolution of the corresponding coefficient of variation
COVν - defining the heterogeneity of the Poisson ratio - with lCG (b) . . . 123

3.10 Mesoscopic crack paths for the type 1 (b) and type 2 (c) microstructures at
different lCG and the corresponding crack tortuosity evolution with lCG (a). 125

3.11 FFT analysis on the mesoscopic crack path inside the Quasi-Periodic type
1 (a), and Quasi-Periodic type 2 (b) microstructures . . . . . . . . . . . . . 125

17



LIST OF FIGURES

3.12 Upscaled vertical displacement Uy at different lCG. The discontinuity of
the displacement field is regularized by the coarse-graining function and
dictated by its width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.13 Stress-strain behaviour of elements along the crack path and in a neigh-
bourhood of the crack at two length scales lCG . . . . . . . . . . . . . . . 127

3.14 Fracture strength σf evolution along the crack path for the Periodic (a),
Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures. . 129

3.15 Evolution of the mean fracture strength σf as a function of lCG for the
three microstructures (a) and the evolution of the corresponding coefficient
of variation COVσf defining the heterogeneity of the effective strength field
of the continuum (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.16 FFT analysis on the fracture strength σf for the Periodic microstructure
(a), Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures. 132

3.17 Fracture toughness Gd evolution along the crack path for the Periodic (a),
Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures. . 134

3.18 Evolution of the effective fracture toughness Gd as a function of lCG for the
three microstructures (a) and the evolution of the corresponding coefficient
of variation COVGd defining the heterogeneity of the effective fracture
toughness field of the continuum (b) . . . . . . . . . . . . . . . . . . . . . 136

3.19 FFT analysis on the fracture toughness Gd for the Periodic microstructure
(a), Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures. 137

3.20 Mesoscopic energy dissipation Wd, conservation of Wd is noted accross
the scales and is equivalent to the energy dissipation computed from the
load-displacement curve reported in Table 3.2 . . . . . . . . . . . . . . . . 138

4.1 Imposed wave-packet on the left boundary of the sample (green-dashes).
Silent Boundary Conditions (SBC) are set on the four boundaries (orange),
the effective attenuation is studied along the x− direction of the blue frames.
At the right-hand side of the figure are represented the three architectures 145

4.2 Envelope of the kinetic energy at different λin: interactions with the patterns
of the Periodic microstructure . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.3 Envelope of the kinetic energy at different λin: interactions with the patterns
of the Quasi-Periodic type 1 microstructure . . . . . . . . . . . . . . . . . 149

4.4 Envelope of the kinetic energy at different λin: interactions with the patterns
of the Quasi-Periodic type 2 microstructure . . . . . . . . . . . . . . . . . 150

18



LIST OF FIGURES

4.5 Comparison of the kinetic energy envelopes PK in the three microstructures
along the middle of the samples . . . . . . . . . . . . . . . . . . . . . . . . 152

4.6 Schematic of propagative and diffusive energy transportation regimes fol-
lowing the Beer-Lambert and Gaussian law with arbitrary units, displayed
for a qualitative comparison of the simulation results . . . . . . . . . . . . 153

4.7 Penetration length lpen for the smoothened kinetic energy envelopes for the
three microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.8 Evolution of the instantaneous wave-packet speed in the microstructure. . 156
4.9 Microstructure at the core of the sample considered for the analysis of the

input(left)/output(right) (blue dots) wave-packet. Imposed wave-packet on
the left boundary of the sample (green-dashes). Silent Boundary Conditions
(SBC) are set on the four boundaries (orange). At the right-hand side of
the figure are represented the three architectures . . . . . . . . . . . . . . . 158

4.10 Time evolution of the kinetic energy at the outlet (vibrant colours) Kout and
the inlet Kin (faded colours) of the microstructures, each one is normalised
for visualisation purposes. Three wavelengths are represented. The upper
envelope (thick lines) is considered for both the PK and FWHM analysis. 159

4.11 Analysis of the transition from propagative (low-frequency, large wavelength)
to dissipative (high-frequency, small wavelength) regime. . . . . . . . . . . 160

4.12 Velocity evolution in time at the outlet Vout and its FFT analysis for the
Periodic (a), Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) The
velocities Vout are normalised for visualisation purposes. The FFT results
show the contribution of different wavelengths to Vout . . . . . . . . . . . . 163

4.13 Input-output frequency map (IOFM) of the Periodic, Quasi-Periodic type 1
and type 2 architectured materials. . . . . . . . . . . . . . . . . . . . . . . 164

5.1 crack-tip in architectured materials: a schematic representation stress-waves
reflections from the free boundaries of the architecture . . . . . . . . . . . 168

5.2 Sample geometry and dimensions for the inertial impact test [Grégoire et al.,
2007]. The hole converts the compressive wave from the input to a tensile
loading at the notch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.3 A schematic representation of the experimental configuration . . . . . . . . 173
5.4 Experimental set-up for the inertial impact tests . . . . . . . . . . . . . . . 174
5.5 Post-mortem photograph of sample TAF1 (impact velocity Vproj = 30.5m/s 175

19



LIST OF FIGURES

5.6 Sample TAF1 - DIC displacement fields (up), longitudinal (middle) and
transversal (down) strain rates at three time steps. A Savitzky Golay (kernel
size= 5 frames, order 2) filter smoothens the displacements’ first derivative
(velocity fields). Spatial noise is filtered-out via a Tikhonov regularisation
of the DIC problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.7 Experimental apparent crack-tip speeds of TAF1 sample obtained from the
crack opening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.8 Experimental SIF , the higher order term T − stress and the crack-tip
speed in TAF1 sample. The error-bar corresponds to the sensibility to the
extraction zone [Roux and Hild, 2006, Roux et al., 2009], the crack-tip
speed voc corresponds to the one reported in Figure 5.18 (computed from
the crack opening) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.9 Angular distribution of (σθθ) at different vc [Yoffe, 1951] (a), and the
direction θ0 of σ0

θθ = max σθθ as a function of the normalised crack-tip speed
(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.10 Evolution of the predicted fracture direction θ0 from the classical solution
(experimental SIF and vc). The branching is not reflected in the criterion . 186

5.11 The stability criterion ro ≥ rc. rc is a material parameter stating the distance
at which damage may occur. ro can be seen as a representation of the stress
field. In r ≤ ro, a K-dominant zone is omnipresent. The criterion stands for
0 ≤ vc ≤ 0.67cs = 0.72cR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.12 The stability criterion ro ≥ rc. Influence of the crack-tip speeds (a) and the
T − stress (b). At T − stress = 0 , the criterion gives an ever-stable crack
(in the range 0 ≤ 0.67cs = 0.72cR, coherently with the classical solution
[Yoffe, 1951]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.13 Evolution of the predicted fracture direction θ0 along with the maximum
circumferential stress computed at rc = 2mm in TAF1 sample (SIF , T −
stress and vc from DIC experimental fields). The modification of the
fracture angle θ0 at the position of branching and the evolution of σ0

θθ mirror
the experimental branching. . . . . . . . . . . . . . . . . . . . . . . . . . . 191

5.14 Experimental KID and vc (circular markers) with the fit corresponding to
the crack propagation behaviour law following [Kanninen and Popelar, 1985]
KIC = 1.66MPa

√
m and m = 0.465 are found, the colours corresponds to

experimental data from the different samples . . . . . . . . . . . . . . . . . 193

20



LIST OF FIGURES

5.15 (In)stability map of PMMA, constructed from experimental measurements
and fitted to [Kanninen and Popelar, 1985]’s empiric law. The history of
the crack propagation in each sample is displayed; from the initiation at
the notch (circular marker) until the branching position (upward-pointing
arrow) ± 1 frame, the map accurately predicts the (in)stability at the
branching position with the change of θ0 . . . . . . . . . . . . . . . . . . . 197

5.16 Maximum circumferential stress map of the PMMA samples, constructed
from experimental measurements and fitted to [Kanninen and Popelar,
1985]’s empiric law. The history of the crack propagation in each sample
is displayed; from the initiation at the notch (circular marker) until the
branching position (upward-pointing arrow) ± 1 frame . . . . . . . . . . . 198

5.17 DIC displacement field (up) and phase-field simulation results (down)
showing accurate prediction validating the dynamic phase-field model and
accurately reproducing the crack patterns The points where the phase-field
damage α ≥ 0.99 are removed to mimic crack opening . . . . . . . . . . . . 201

5.18 Comparison of the experimental and numerical (phase-field simulation)
crack-tip speeds. Dashed lines correspond to the crack-tip speeds estimated
from the phase-field simulation (Appendix B), full lines correspond to the
apparent experimental crack-tip-speeds previously reported in Figure 5.7
(computed from crack opening) . . . . . . . . . . . . . . . . . . . . . . . . 202

5.19 SIF , the higher order term T − stress and the crack-tip speed in the
simulation of the TAF1 sample test. The error-bar corresponds to the
sensibility to the extraction zone [Roux and Hild, 2006, Roux et al., 2009].
The crack-tip speed vpc corresponds to the one reported in Figure 5.18
computed from the phase-field, via Appendix B . . . . . . . . . . . . . . . 203

5.20 Evolution of the predicted fracture direction θ0 along with the maximum
circumferential stress computed at rc = 2mm in the phase-field simulation
of the TAF1 sample (SIF , T − stress and vc from the numerical fields).
The modification of the fracture angle θ0 at the position of branching and
the evolution of σ0

θθ mirror the experimental branching. . . . . . . . . . . . 205

21



LIST OF FIGURES

5.21 (In)stability map of PMMA, constructed from experimental measurements
and fitted to [Kanninen and Popelar, 1985]’s empiric law. The history of
the crack propagation in each sample is displayed; from the initiation at
the notch (circular marker) until the branching position (upward-pointing
arrow) ± 1 frame, the map accurately predicts the (in)stability at the
branching position with the change of θ0 . . . . . . . . . . . . . . . . . . . 206

5.22 Final damage state of the standard dynamic crack branching test [Borden
et al., 2012], Appendix A, Chapter 1 . . . . . . . . . . . . . . . . . . . . . 208

5.23 SIF , the higher order term T − stress and the crack-tip speed in [Borden
et al., 2012]’s benchmark, the error-bar corresponds to the sensibility to the
extraction zone. The crack-tip speed vpc corresponds to the one reported in
Figure 5.18 computed from the phase-field, via Appendix B . . . . . . . . 209

5.24 Evolution of the predicted circumferential stress σ0
θθ and the fracture di-

rection θ0 along the crack propagation of the benchmark in [Borden et al.,
2012] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.25 (In)stability and maximum circumferential stress maps of the benchmark,
constructed from [Borden et al., 2012]’s simulation results. The history of
the propagation is shown in purple, the initiation from the notch (circular
marker), the two widenings of the damage band (square markers), and the
branching (upward-pointing arrow) are all reported on the maps . . . . . . 212

5.26 Inertial impact test simulations of the Periodic (up), Quasi-Periodic type
1 (middle) and Quasi-Periodic type 2 (down) materials. Coarse-grained
displacement fields at lCG = 2d and 10d are shown (lCG is the radius of the
dark green circles, they’re computed on the coarse-graining support domain
(green rectangle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1 Fracture patterns and crack tip speeds for different gc , comparison with
the work of [Borden et al., 2012] (a) . . . . . . . . . . . . . . . . . . . . . . 240

A.2 Fracture patterns and crack tip speeds for different lc , comparison with the
work of [Borden et al., 2012] (a) . . . . . . . . . . . . . . . . . . . . . . . . 242

A.3 Fracture patterns and crack tip speeds for different (lc, gc) couples yielding
same σc as [Borden et al., 2012] (fixed gc/lc), comparison with the work of
[Borden et al., 2012] (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

A.4 (lc, c) couples yielding equivalent σc. Unidimensional solution from Equation
1.52, Section 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

22



LIST OF FIGURES

A.5 Fracture patterns and crack tip speeds for different (lc, c) couples yielding
same σc as [Borden et al., 2012], from Figure A.4, comparison with the work
of [Borden et al., 2012] (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

C.1 Coarse-grained hydrostatic damage evolution along the vertical direction at
two length scales lCG, non-localisation of the strains via a convolution with
a regular function of support width lNL = 1.5lCG . . . . . . . . . . . . . . . 251

D.1 the pacman-shaped extraction domain . . . . . . . . . . . . . . . . . . . . 254

E.1 Lagrange representation of the inertial impact tests . . . . . . . . . . . . . 256

F.1 Imaging setup: automatic triggering of the camera and the flashes . . . . . 261

G.1 Sample TAF2 - DIC displacement fields (up) and longitudinal strain rates
(down) at three time steps. A Savitzky Golay (kernel size= 5 frames, order 2)
filter smoothens the displacements’ first derivative (velocity fields). Spatial
noise is filtered-out via a Tikhonov regularisation of the DIC problem . . 262

G.2 Sample TAF2 - SIF , the higher order term T − stress and the crack tip
speed. The error-bar corresponds to the sensibility to the extraction zone
[Roux and Hild, 2006, Roux et al., 2009] . . . . . . . . . . . . . . . . . . . 263

G.3 Sample TAF2 - Evolution of the predicted fracture direction θ0 along
with the maximum circumferential stress computed at rc = 2mm. The
modification of the fracture angle at the position of branching and the
evolution of σ0

θθ mirror the branching. . . . . . . . . . . . . . . . . . . . . . 263

H.1 Sample T3DE - DIC displacement fields (up) and longitudinal strain rates
(down) at three time steps. A Savitzky Golay (kernel size= 5 frames, order 2)
filter smoothens the displacements’ first derivative (velocity fields). Spatial
noise is filtered-out via a Tikhonov regularisation of the DIC problem . . 264

H.2 Sample T3DE - SIF , the higher order term T − stress and the crack tip
speed. The error-bar corresponds to the sensibility to the extraction zone
[Roux and Hild, 2006, Roux et al., 2009] . . . . . . . . . . . . . . . . . . . 265

H.3 Sample T3DE - Evolution of the predicted fracture direction θ0 along
with the maximum circumferential stress computed at rc = 2mm. The
modification of the fracture angle at the position of branching and the
evolution of σ0

θθ mirror the branching. . . . . . . . . . . . . . . . . . . . . . 265

23



LIST OF FIGURES

I.1 Sample THOM - DIC displacement fields (up) and longitudinal strain rates
(down) at three time steps. A Savitzky Golay (kernel size= 5 frames, order 2)
filter smoothens the displacements’ first derivative (velocity fields). Spatial
noise is filtered-out via a Tikhonov regularisation of the DIC problem . . 266

I.2 Sample THOM - SIF , the higher order term T − stress and the crack tip
speed. The error-bar corresponds to the sensibility to the extraction zone
[Roux and Hild, 2006, Roux et al., 2009] . . . . . . . . . . . . . . . . . . . 267

I.3 Sample THOM - Evolution of the predicted fracture direction θ0 along
with the maximum circumferential stress computed at rc = 2mm. The
modification of the fracture angle at the position of branching and the
evolution of σ0

θθ mirror the branching. . . . . . . . . . . . . . . . . . . . . . 267

J.1 Influence of rc on the material (in)stability map. A synthetic rc = 100m is
added to validate the limiting velocity at vc = cR. . . . . . . . . . . . . . . 269

K.1 Boundary condition for the inertial impact test. The displacement and
velocity of the experimental boundaries are obtained from DIC and imposed
on the simulation. The time from which the contact between the waveguide
and the specimen is broken is predicted from Appendix E and noted on the
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

K.2 Figure 5.17 - DIC displacement field (up) and phase-field simulation results
(down) showing accurate prediction validating the dynamic phase-field
model and accurately reproducing the crack patterns The points where the
phase-field damage α ≥ 0.99 are removed to mimic crack opening . . . . . 274

K.3 Figure 5.18 - Comparison of the experimental and numerical (phase-field
simulation) crack tip speeds. Dashed lines correspond to the crack-tip speeds
estimated from the phase-field simulation (Appendix B), full lines correspond
to the apparent experimental crack tip-speeds previously reported in Figure
5.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

K.4 Figure - 5.19 SIF , the higher order term T −stress and the crack tip speed
in the simulation of the TAF1 sample test. The error-bar corresponds to
the sensibility to the extraction zone [Roux and Hild, 2006, Roux et al.,
2009]. The crack tip speed vpc corresponds to the one reported in Figure
5.18 computed from the phase-field, via Appendix B . . . . . . . . . . . . . 276

24



LIST OF FIGURES

K.5 Figure 5.20 - Evolution of the predicted fracture direction θ0 and the
maximum circumferential stress σ0

θθ computed at rc = 2mm in the phase-
field simulation of the TAF1 sample (SIF , T − stress and vc from the
numerical fields). The modification of the fracture angle θ0 at the position
of branching and the evolution of σ0

θθ mirror the branching phenomenon . . 277
K.6 Figure 5.21 - (In)stability and maximum circumferential stress map of

PMMA, constructed from experimental measurements and fitted to [Kanni-
nen and Popelar, 1985]’s empiric law. The history of the crack propagation
in each sample and in the phase-field simulation of TAF1 is shown . . . . . 279

25



LIST OF TABLES

1 The microstructures and their geometrical aspects: The Periodic microstruc-
ture presents a unique characteristic length (the distance between the holes);
while the Quasi-Periodic shows two [Penrose, 2013, Glacet, 2018] . . . . . . 52

3.1 Overall phase-field model and material parameters considered for the quasi-
static simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.2 Energy dissipated by the crack propagation in the coarse-graining support
domain computed from the load-displacement curve . . . . . . . . . . . . . 116

4.1 Bulk material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.2 Elasticity moduli, density and the longitudinal wave-speed for the bulk ma-

terial. Effective elasticity moduli, density and the long-wavelength (effective)
speed for the Periodic and Quasi-Periodic type 1 and 2 microstructures,
computed at scale lCG = 10d (converged moduli following Chapter 2 and
3), plane strains are assumed . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.1 Material properties for the PMMA identified from the full-field measure-
ments via the in-house FEMU identification method . . . . . . . . . . . . . 181

5.2 Overall phase-field model and material parameters considered in this simu-
lation of the inertial impact test. . . . . . . . . . . . . . . . . . . . . . . . 200

K.1 Table 5.2 - Overall phase-field model and material parameters considered
in this simulation of the inertial impact test. . . . . . . . . . . . . . . . . . 271

26



GENERAL INTRODUCTION:
BACKGROUND AND MOTIVATIONS

The desire for better-performing materials has long been established, and expansion
of the boundaries of the material property space has already been achieved in multiple
ways, i.e., whether by manipulating the chemistry, through developing new alloys and
polymers, or by manipulating the microstructure through thermomechanical processing
[Fleck et al., 2010]. Innovative materials for aerospace and automotive applications are
recently requiring the improvement of the mechanical properties while reducing the
structure’s weight. Accordingly, engineers have shown interest in architectured materials,
i.e., in controlling the architecture of the materials through thoughtfully designing them in
a certain fashion, to acquire improved mechanical properties over their constituents. With
the developments in additive manufacturing techniques, demands on custom designed
architectures to meet certain specifications have boomed, and with them research activities
around this subject.

However, the real-life use of such highly heterogeneous materials is bridged by some
limitations, in fact, despite the many powerful computational methods that have been
developed in the last few decades, explicitly modelling the architectures for numerical
simulations remains a heavy task. Thus, of course, it’s practically appealing to describe
a simpler nature of those materials to essentially assess their reliability and lifetime. So
aside from determining their effective properties, there’s a relevant need for incorporating
small-scale mechanisms of deformation and damage in the analysis.

As scale-separation is not always well established in architectured materials, classical
homogenisation techniques fall short; plus, a weak scale-separation directly translates to
strong interactions between fracture processes and the architecture independently of the
considered scale. Accordingly, we believe that a consistent micro-meso analysis on the
damage of highly heterogeneous materials’ (architectured materials between them) requires
proceeding through multiple intermediate scales to ensure proper modelling between the
scales.

Besides, Quasi-Periodic architectured materials have attracted increasing attention
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among the scientific community due to their extraordinary acoustic and elastic wave
propagation performances. These microstructures are shown to exhibit complex vibrational
behaviour, including a set of frequency ranges in which no propagative wave exists, i.e.,
band gaps. Based on their wavelengths, the stress-waves’ behaviour inside architectured
materials would vary.

Now imagine a crack immersed in such architectures under dynamic loading; the crack
tip would ’see’ a continuous variation of the stress state at its vicinity coming from the back-
and-forth reflections of the stress-waves at the free boundaries of the architecture. Even
in homogenous materials, the problem is complex, since stress-waves reflected from the
boundaries and others emitted by the crack tip will alternatively load and unload the crack
tip. Evidently, the interactions between the crack-tip, the microstructure (architecture) and
the stress-waves eventually pilot together the structural behaviour. Accordingly, we believe
that transient analysis should always be considered. Further, we believe that understanding
the interaction between stress-waves and crack tips, debuting with homogenous materials,
should build the foundation for future analysis of the dynamic fracture of architectured
materials, i.e., where a range of mixed and complex stress-waves reflections and interactions
with the crack tip are expected.

So what’s the plan?

We aim at analysing the interaction between the microstructure from one side (material),
the stress-wave and crack propagation (loading) from the other, the analysis is followed on
one Periodic and two Penrose-type-Quasi-Periodic architectures. Eventually, the purpose
of the present PhD work is to provide contributions to the above-mentioned challenges
and advance the necessary tools towards a multi-scale analysis of dynamic failure of the
architectured materials.

We first propose a versatile model-free coarse-graining approach (adapted from [Gold-
hirsch and Goldenberg, 2002]’s work in Molecular Dynamics) that is indeed applicable
on cases where the statistical homogeneity of the material ceases to exist (Quasi-Periodic
materials with long-range heterogeneities) and more importantly when sharp localisations
are present.

The problem is then broken down into three sub-problems -as shown in Figure 1- and
we devote one chapter for each.
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Figure 1 – The holy trinity of this PhD

On the crack propagation in architectured materials (Chapter 3), the following questions
are asked:

I How does the architecture influence a propagating crack?
I How to assess the effective failure properties and what determines them (microscopi-

cally)?
I How are the effective failure properties linked to the length-scales?
I To what extent can an effective homogeneous model accurately replace the mi-

crostructural behaviour?

On the stress-wave propagation inside the architectured materials (Chapter 4), the
following questions are addressed:

I How does the stress-waves’ wavelengths influence their propagation inside the archi-
tectured materials?

I How does the architectures damp the stress-waves’ energy?
I How are the stress-waves modified as they propagate inside architectured materials?

On the stress-waves and their role in crack propagation (Chapter 5), the following
questions are addressed:
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I How do stress-waves affect crack propagation?
I Why do cracks branch? and at what crack tip speeds?
I How to explain the limiting velocities observed in the experiments?
I How to explain the limiting velocities observed in the numerical phase-field simula-

tions?
I Why do damage bands sometimes thicken in phase-field models?

Outline of the PhD thesis

The preliminary Chapter 0 presents a concise literature review of the theoretical
concepts relevant to brittle fracture, architectured materials, numerical simulations and
homogenisation techniques. The goal of this chapter is of course to provide the reader with
the concepts at the base of the present work.

After contextualising and motivating the problem and providing the necessary theoret-
ical background, Part II concerns the computational approach considered in this work.
The numerical simulation of failure, based on the phase-field approach to fracture (see
e.g., [Miehe et al., 2010a]), is broadly brought forth and discussed in Chapter 1. After
presenting the phase-field model, an extension is proposed by parametrising the elastic
strain threshold (for the quadratic crack density function), and linking it to other phase-
field parameters. Application and validation of the influence of this parametrisation on
the material response are lead on two benchmarks, one quasi-static and another dynamic.

Chapter 2 provides the detailed development of the coarse-graining method adapted
from [Goldhirsch and Goldenberg, 2002]. At the end of this chapter, the proposed method
is validated and compared to classical upscaling (homogenisation) techniques. The method
is shown to accurately predict the effective elasticity tensor, but more prominently it gives
insights on the effective behaviour of the material at different intermediate scales. The
applicability of the method in cases where sharp localisation exist is indeed validated, and
a bridge between fracture mechanics and damage mechanics is built.

After advancing the computational methods in Part II, the first pillar of this thesis is
tackled: the interaction between a propagating crack and microstructures (architectures)
(Part III, Chapter 3). The proposed scheme relies on simulating the failure process of
architectured materials at the microscopic scale via the Phase field model (from Chapter
1). The acquired information is then upscaled to mesoscopic scale(s) by the means of the
proposed model-free coarse-graining technique.
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The two dynamics thematics are then tackled: the propagation of stress-waves inside
architectured materials and the dynamic propagation of cracks.

Chapter 4 covers the interactions between stress-waves and the microstructure by
applying sinusoidal waves of different wavelengths at one boundary and analysing the
output stress waves from the opposite. Finite element simulations of transient wave
propagation are considered for this purpose, and analysis on the energy damping and
stress-wave scattering is lead.

Chapter 5 wraps up this thesis by analysing the role played by stress-waves in crack
propagation in homogeneous materials. Unlike in previous chapters, where the numerical
simulations of damage are at the core of the developments, this chapter is based on simple
dynamic fracture mechanics concepts applied on a novel experimental setup. By exploiting
Ultra-High-Speed-High-Resolution (UHS-HR) imaging and cutting edge digital image
correlation DIC algorithms, a novel inertial impact experimental configuration would
shed light on the phenomena of branching at limiting velocities. Moreover, the application
of the analysis scheme on a phase-field crack branching benchmark would yield more
comprehension on this phenomenon.
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0.1 Introduction

As a preliminary, this first chapter aims to present a concise literature review. General
concepts relevant to fracture mechanics, architectured materials, numerical sim-
ulations of brittle fracture and homogenisation techniques are put forth. The goal is
to prepare the ground for the upcoming developments and advancements in the following
chapters.
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First, generalities regarding linear elastic fracture mechanics are showcased: the asymp-
totic solutions of the stress and displacement fields are given. Then the asymptotic fields
near a moving crack-tip are described. Crack initiation and propagation criteria are only
exposed briefly, as more details are to be given in Chapter 5, when tackling the dynamic
branching problem.

Second, the available numerical methods for modelling crack propagation in brittle
materials are reviewed and the advantages of considering the phase-field model for this
thesis are stressed.

Third, a historical perspective regarding the expansion of the material property space
with the expanding desire for better-performing materials is given. Focus is shed on the
architectured materials. The Periodic and Quasi-Periodic microstructures in question in
this work are presented.

We finish covering every topic related to this thesis by overviewing the classical
homogenisation techniques and their underlying limitations regarding the requirement
of separation of scales, and dealing with sharp localisations (crack, high heterogeneities)
between others. Moreover, recent advancement in the field of homogenisation of a damage
model are presented. Finally, the bottom-up approach that will be exploited to accurately
portray the failure of architectured materials at larger scales is introduced.

Remark 0.1. The computational methods directly related to this work are detailed in the
next Part. Analysis and investigation on the phase-field model will be presented in Chapter
1, by the end of which an extension to the framework is proposed. The coarse-graining
technique is derived in Chapter 2, and numerically validated on simple examples.
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0.2. Dynamic fracture mechanics

(a) (b)

Figure 2 – Infinite plate subjected to uniform applied tension with defects: an elliptical
defect of semi-axes a and b (a), a slit crack of length 2a (b)

0.2 Dynamic fracture mechanics

0.2.1 Linear Elastic Fracture Mechanics (LEFM)

Based on an energetic approach from the twentieth century, LEFM is a robust theoretical
framework to predicting crack propagation in homogeneous media. We briefly summarize
the main milestones of the fracture mechanics developments along with its fundamental
elements. These elements would constitute the core of Chapter 5, but of course, a starting
point for the numerical methods for crack propagation (Chapter 1) and their application
in Chapter 3.

Basic concepts

[Inglis, 1913] was the first to study the distribution of stress in an infinite plate
containing a defect: an elliptical hole of semi-axes a in the x-direction and b in the
y-direction (Figure 2).

He showed that under a uniform applied tension σ, the opening stress at the defect σO
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is amplified by a certain geometrical factor related to the defect geometry:

σO = (1 + 2a
b

)σ (1)

When the defect becomes sharp, (b << a), the local stresses become singular. The
theory of linear elastic fracture mechanics studied this stress singularity and aimed at
characterising the stress-field near the crack front.

Near-tip asymptotic solution

The stress-field around a crack-tip in a linear elastic isotropic material was first
established by [Westergaard, 1939] and is based on the Airy stress function concept. The
solution is only valid when non-linear and inelastic deformations are small or are confined
in a small zone near the crack-tip compared to the size of the crack. From the near-crack-tip
approximation of the [Westergaard, 1939] solution of the stress-field surrounding the crack,
[Irwin, 1957] defined the so-called ’stress intensity factors’ SIF . The near-tip associated
stresses were re-written in terms of those stress intensity factors and an inverse square
root singularity was found at the crack-tip. For a semi-infinite straight crack in a 2D
elastic body -of shear modulus µ and Poisson ratio ν- subjected to a mechanical load,
[Williams, 1957] proposes higher order analytical solutions of symmetric (opening mode
I) and antisymmetric (in-plane shear mode II) fracture modes. These modes of fracture
would eventually depend on the loading conditions and the geometry of the body. A typical
sketch of the modes is presented in Figure 3, showing the opening and sliding of modes I
and II [Rice, 1968]; the out-of-plane mode III shearing (tearing) is disregarded in our
study.

Here, the leading terms of the in-plane displacement field u at the vicinity of the
crack-tip in Cartesian coordinates are given in terms of the SIF as follows:

u1(r, θ) = KI

2µ

√
r

2π (κ− cos θ) cos θ2 + KII

2µ

√
r

2π (κ+ cos θ + 2) sin θ2

u2(r, θ) = KI

2µ

√
r

2π (κ− cos θ) sin θ2 −
KII

2µ

√
r

2π (κ+ cos θ − 2) cos θ2

(2)

where KI and KII represent the mode I opening and mode II plane shear loading
respectively, r and θ are the polar coordinates with respect to the crack-tip (Figure 4). κ
is the Kolossov’s constant that takes the value κ = (3− 4ν) for plane strain conditions and
κ = (3− ν)/(1 + ν) for plane stress. The expression of the in-plane stresses as a function
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0.2. Dynamic fracture mechanics

Figure 3 – Three modes of fracture: opening (mode I), in-plane shear (mode II) and
out-of-plane shear (mode III), in this study, only the in-plane modes I & II are considered

Figure 4 – The local polar coordinates around a crack-tip

of the leading terms reads:

σ11 = KI

2πr

(
1− sin θ2 sin 3θ

2

)
cos θ2 −

KII

2πr

(
1 + cos θ2 cos 3θ

2

)
sin θ2

σ12 = KI

2πr cos θ2 sin θ2 cos 3θ
2 + KII

2πr

(
1− sin θ2 sin 3θ

2

)
cos θ2

σ22 = KI

2πr

(
1 + sin θ2 sin 3θ

2

)
cos θ2 + KII

2πr sin θ2 cos θ2 cos 3θ
2

(3)

The next terms in the expansion involve the so-called T − stress for mode I and the
rigid body rotation for mode II; those represent the non-singular uniform terms present
in [Williams, 1957]’ expansion. For a semi-infinite crack propagating along the 11 direction
under mixed loading, with the addition of the T−stress, the crack-parallel stress component
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becomes:

σ11 = KI

2πr

(
1− sin θ2 sin 3θ

2

)
cos θ2 −

KII

2πr

(
1 + cos θ2 cos 3θ

2

)
sin θ2 + T (4)

Besides, it’s mentioned that LEFM is found around the notion of small-scale yielding.
This assumes that the processes leading to fracture i.e., coalescence of micro-defects,
mechanisms of deformation, etc., actually happen in a confined zone called fracture process
zone much smaller than the structure. The small scale yielding incorporates the notion
that, even if in the confined vicinity the material no longer exhibits linear elastic behaviour,
the leading SIF terms still govern the deformation state within.

Propagation criterion under mode I loading

Of course, the previous quantitative description of the stress state enables the use of
phenomenological criteria to describe the conditions under which a crack can propagate.
Knowing that the stresses are singular at the crack-tip, a propagation criterion based on a
critical opening stress would be irrelevant. [Irwin, 1958] proposed a propagation criterion
in mode I based on its associated SIF by defining an associated critical SIFc (KIC for
mode I). The criterion can be summarized as follows:

KI < KIC ← crack does not propagate,
KI = KIC ← stable crack propagation,
KI > KIC ← unstable crack propagation.

(5)

It’s noted that the crack extension mode I SIF KI , is associated with a corresponding
strain energy release rate, GI via:

G = K2
I

E ′
(6)

where E ′ = E in plane stress and E ′ = E
1−ν2 in plane strain assumption. E here corresponds

to Young’s modulus of the bulk.
This yields the Griffith-Irwin [Irwin, 1958, Sanders Jr, 1960] fracture theory stating that

a crack propagates when the stress intensity factor reaches a critical value KIC (Equation
5), equivalently, when the energy release rate overcomes a critical value GC (Equation 6).

Remark 0.2. A similar SIF criterion was derived under pure mode II where KII is
compared to its critical counterpart KIIC, and to it is associated an energy release rate
GII = K2

I

E′
compared to a critical value GIIC.
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Propagation criterion under mixed-mode loading

Any loading state is a combination of three independent stress intensity factors, as
stated by [Irwin, 1957], hence the necessity to define a mixed-mode propagation criterion
that can predict when a crack would propagate and along which direction. In this work,
this feature (ability to predict fracture direction) would require the to-be-considered
criterion to be readily and easily extended to dynamics as it will constitute the core of
the developments related to Chapter 5. In the literature, a multitude of criteria were
proposed [Cotterell and Rice, 1980, Erdogan and Sih, 1963, Hussain et al., 1974, Gupta,
1976, Palaniswamy and Knauss, 1978, Williams and Ewing, 1972], that are usually based
on either energy or maximum circumferential-stress criteria. The maximum circumferential
stress σθθ criterion first proposed by [Erdogan and Sih, 1963]) is considered. This criterion
determines the direction of the maximum tensile stress, from one side, and can be used to
compare the stress states and hence predict crack propagation condition from another.
Details about the σθθ criterion are given directly in dynamics in Chapter 5, prior to the
developments.

0.2.2 Extension to asymptotic fields near a moving crack-tip

Dynamic stress intensity factors

Multiple efforts were drawn on the determination of the dynamic counterpart of LEFM.
[Broberg, 1960], [Baker, 1962] and others developed relations for the dynamic stress
intensity factor, and they related the dynamic SIF (KkD) to their static counterparts
through universal functions kk of the instantaneous crack-tip velocity vc as follows:

KkD(t) w kk(vc)Kk(t) (7)

The universal functions -that depend solely on the material parameters through the stress
wave speed- are slightly different in the different solutions, here the following expressions
are considered:

kI(vc) = S

(
− 1
vc

)
1− vc/cR√
1− vc/cd

kII(vc) = S

(
− 1
vc

)
1− vc/cR√
1− vc/cs

(8)
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Figure 5 – The universal function kI(vc) versus the normalised crack-tip speed (vc/cR)

where S(ζ) is given by:

S(ζ) = exp
− 1

π

∫ 1/cs

1/cd
tan−1

((4η2
√

(η2 − c−2
d )(c−2

s − η2)
(c−2
s − 2η2)2

)
× dη
ζ + η

 (9)

Here, cR, cd and cs are Rayleigh, dilatational and shear wave speeds respectively. It’s
apparent that for each fracture mode, in the static configuration (vc/cR = 0 and kI = kII =
1), the unicity of the SIF are recovered Kk = KkD. Figure 5 shows the dimensionless
universal function kI herein considered versus the normalised crack-tip speed vc/cR in
plane strain assumptions.

Asymptotic fields in dynamics

[Freund and Hutchinson, 1992] gave an expression of the stress and displacement fields
around a moving crack-tip that are function of the SIF (the leading terms only) and the
crack-tip speed.

The displacements are given by:

ui =
∑

k=I,II
KkD

√
2
π
Uk
i (θ, vc) (10)

42



0.2. Dynamic fracture mechanics

For mode I opening:

U I
1 (θ, vc) = 1

µD(vc)

[
(1 + β2

s )
√
rd cos θd2 − 2βsβd

√
rs cos θs2

]
U I

2 (θ, vc) =− βd(1 + β2
s )
√
rd sin θd2 + 2βd

√
rs sin θs2

(11)

For mode II plane shear loading:

U II
1 (θ, vc) = 1

µD(vc)

[
2β2

s

√
rd sin θd2 − βs(β

2
s + 1)√rs sin θs2

]
U II

2 (θ, vc) = 1
µD(vc)

[
2βsβd

√
rd sin θd2 − (β2

s + 1)√rs cos θs2

] (12)

The stresses are given by:

σij =
∑

k=I,II

KkD√
2π
Skij(θ, vc) (13)

For mode I opening:

SI11(θ, vc) = 1
D(vc)

[
(1 + β2

s )(1 + 2β2
d − β2

s )
cos θd

2√
rd
− 4βsβd

cos θs
2√
rs

]

SI12(θ, vc) =2βd(1 + β2
s )

D(vc)

[sin θd
2√
rd
−

sin θs
2√
rs

]

SI22(θ, vc) =− 1
D(vc)

[
(1 + β2

s )2 cos θd
2√
rd
− 4βsβd

cos θs
2√
rs

]
(14)

and for mode II plane shear loading:

SII11(θ, vc) =− 2βs
D(vc)

[
(1 + 2β2

d − β2
s )

sin θd
2√
rd
− (1 + β2

s )
sin θs

2√
rs

]

SII12(θ, vc) = 1
D(vc)

[
4βsβd

cos θd
2√

rd)
− (1 + β2

s )
cos θs

2√
rs

]

SII22(θ, vc) =2βs(1 + β2
d)

D(vc)

[sin θd
2√
rd
−

sin θs
2√
rs

]
(15)
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with

D(vc) =− 4βsβd − (1 + β2
s )2

βd =
√

1− (vc
cd

)2

βs =
√

1− (vc
cs

)2

(16)

and

(rd, θd) / rde
iθd = x1 + iβdx2

(rs, θs) / rse
iθs = x1 + iβsx2

(17)

Of course, only the leading terms of the stress-field are considered and the non-singular
uniform term, i.e., T − stress could be added to the expression of the stresses parallel to
the crack path.

For a semi-infinite crack propagating along the 11 direction at crack-tip speed vc under
mixed loading, the stress at location (r, θ) under mixed loading becomes:

σ11 =
∑

k=I,II

KkD√
2π
Sk11(θ, vc) + T (18)

The main contrast with the quasi-static case is the dependence of the dynamic asymp-
totic fields on the crack-tip speed vc, making any crack propagation criterion more difficult
to perceive [Yoffe, 1951, Freund and Hutchinson, 1992].

Details about this modification of the stress distribution around a crack-tip (propagating
at speed vc) via the maximum circumferential stress criterion will be given in Chapter 5 as
a simple yet efficient tool for analysing (in)stabilities of fast running cracks in homogeneous
materials under rapidly varying loadings.

0.3 Numerical crack propagation simulation

As this study mainly focuses on the response of architectured materials (highly hetero-
geneous materials, see Section 0.4) to crack propagation, a robust and versatile numerical
method is required.

The theoretical methods to model brittle fracture [Griffith, 1921, Freund and Hutchin-
son, 1992] permitted the development of criteria for crack propagation in simple configura-
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tions (homogeneous bodies, propagation of a single exisiting crack, etc.). However, such
approaches fail to describe crack initiation or more complex phenomena like coalescence
and branching. Many numerical simulation methods for crack propagation have been
developed in the recent decades, and this section gives a quick overview of the most
relatively popular methods: classical damage models, cohesive zone models, the thick level
set method and the phase-field approach to fracture.

0.3.1 Damage models

The development of damage mechanics began in 1958 with [KACHANOV, 1958].
Beforehand, macroscopic failure criteria based only on fracture mechanics were proposed.
As opposed to fracture mechanics, damage mechanics interest in a progressive deterioration
of the material preceding its fracture [Lemaître and Chaboche, 1990].

§ 0.1. On the differentiation between damage and fracture

Physically speaking, the difference between fracture and damage are recalled as:

— Damage: Discontinuities on the smaller scales of the material (micro-cracks,
micro-voids) that translate to a loss in rigidity of the ’macroscopic’ sample. It’s an
irreversible process.

— Fracture: Discontinuities on the ’macroscopic’ scale, leading to a global failure of
the sample. So of course, from these definitions, one may guess that the former is at
the source of the latter.

[KACHANOV, 1958] published the first paper devoted to a continuous damage
variable, by writing a softening constitutive law:

σ = (1−D)Cε, (19)

σ and ε are the Cauchy stress and strain tensors, respectively and C is the sound elastic
tensor. D is an isotropic damage variable that takes the value of 1 corresponding to
a breaking of the material, 0 in the sound material and 0 ≤ D ≤ 1 to represent the
deterioration of the material. Within the finite element FE context, softening behaviour
is found to cause spurious mesh sensitivity and incorrect convergence when the element
is refined to zero. Cohesive crack models [Xu and Needleman, 1994], crack band models
[Baiant and Cedolin, 1983] and regularised models were considered to overcome these
limitations. Regularised models are based on the general continuum theory where internal
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length and/or higher-order strain gradients are introduced. The focus will be drawn on the
non-local damage theory. The work of [Bažant and Jirásek, 2002] introduces an internal
length into the softening behaviour law; where local internal variables are replaced by
their non-local counterparts, i.e., their spatial average. The size of the non-local zone is
considered as a characteristic of the material:

σ = (1−D)Cε̃, (20)

where ε̃ can be any non-local equivalent estimation of the strain tensor ε. Despite their
ability to remedy the issues encountered in the FE implementations, these methods have
the following drawbacks [Pijaudier-Cabot and Bažant, 1987]:

7 Incorrect prediction of damage initiation
7 Deficiency in simulating branching
7 Diffusion of damage zones even after complete failure

More in-depth information about these models can be found in [Pijaudier-Cabot and
Bažant, 1987, Bažant and Jirásek, 2002]..

0.3.2 Cohesive zone models

Because of its versatility, the cohesive zone model is being increasingly used to simulate
discrete fracture processes in a number of homogeneous and inhomogeneous materials
[Zhou and Molinari, 2004, Xu and Needleman, 1994, Dugdale, 1960]. The model typically
relies on a separation of the crack surfaces - a phenomenon that is considered to take place
across the extension of the physical crack-tip (in a cohesive zone), resisted by cohesive
tractions. The cohesive law defines the constitutive relation between the surface traction
and the relative opening displacement at the crack-tip. However, by constraining the crack
propagation along the element edges, this approach suffers from mesh dependency. An
overview of cohesive elements techniques can be found in [Chandra et al., 2002].

0.3.3 Thick level set

More recently, a Thick Level-Set (TLS) [Moës et al., 2011] damage approach was
developed. Here, the fully degraded material is embedded at the core of a partially
damaged zone of size lc. A level-set Λ is used to separate the undamaged zone from the
damaged zone, it’s perceived as a signed distance function. A schematic representation
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Figure 6 – Thick level set: damage α and level set Λ distribution

from [Moës et al., 2011] is displayed in Figure 6. The damage variable and its evolution
are an explicit function of the level set. This function is a parameter of the model. The
damage increases progressively as the level set value rises following inequalities (Figure 6):

α(Λ) = 0, if Λ ≤ 0
˙α(Λ) ≥ 0, if 0 ≤ Λ ≤ lc

α(Λ) = 1, if Λ ≥ lc

(21)

This method is able to describe complex crack phenomena like branching. Since damage
evolution is dealt with via a level set function, the level set may be solved close only to
the damaged zone which boosts the computational efficiency.

0.3.4 Phase-field approach to fracture

With the expected complex crack networks in our present work, techniques like X-FEM
[Moes et al., 1999] that require the predefinition of a crack and/or cohesive element
methods [Xu and Needleman, 1994] that only allow separations on mesh’s boundary are
discarded. The variational approach [Francfort, 1998] known as phase-field method is
considered for building the micro-mechanical numerical experiments. The robustness and
versatility of the approach regarding its independence of the FE discretisation were decisive
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in the choice of the phase-field model for the micro-mechanical simulations. The phase-field
method is based on a diffuse representation of the localised discontinuity coming from
the presence of a crack. A regularized variational principle describes the evolution of
the mechanical problem from one side, and the evolution of an additional damage field
α describing the damage state from the other. The typical Griffith’s-type problems are
rewritten in a variational framework [Francfort, 1998, Bourdin et al., 2008] leading to an
energy functional resembling the potential presented by [Mumford and Shah, 1989]. The
various advantages of using the phase-field over other methods are summarised as follows:

3 One criterion to rule them all: since phase-field modelling is purely based on
energy minimisation, no artificial criteria for crack initiation, crack coalescence or
crack branching should be added

3 Adaptability to multi-physics: thanks to its variational structure, phase-field
modelling allows to naturally incorporate multi-field physics problems.

3 Straightforward adaptation in 2D and 3D: without sensitivity to mesh (re-
specting the convergence conditions)

3 Γ− convergence to [Griffith, 1921] theory: theoretical proofs exist for the
original theory. [Linse et al., 2017, Bellettini and Coscia, 1994, Chambolle, 2004]

Despite the major advantages of using phase-field modelling, the method suffers from
the following drawbacks:

7 High computational cost: to accurately resolve the gradient term, sufficiently
refined mesh in the expected damage zone is crucial for the simulations

7 Inaccurate location of the crack-tips: just like other continuous approaches,
the phase-field modelling does not explicitly represent the crack (discontinuity).
Arbitrary choices have to be taken, e.g., iso-curves of the phase-field [Borden et al.,
2012], to predict the crack-tip. This leads to slightly inaccurate predictions of the
crack velocity for dynamic fracture.

Despite the presented drawbacks, the relative ease of implementation of the phase-field
model, the ease with which the method handles complex crack networks and extraordinary
phenomena (growth, branching, merging), and the rigorous variational structure, are
decisive in the choice of the phase-field model in this work. The computational framework
as proposed by [Miehe et al., 2010b] is applied and an extension (parametrisation of
the elastic threshold) to the original formulation is suggested (in Section 1.8). Original
applications regarding static and dynamic simulation of fracture are tackled.
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After familiarising the reader with the relevant notions regarding crack propagation,
the next section focuses on presenting the architectured materials that will be investigated
in this study.

0.4 Architectured materials

The desire for better-performing materials has long been established, and expansion of
the boundaries of the material property space has already been achieved in multiple ways,
i.e., whether by manipulating the chemistry, through developing new alloys and polymers,
or by manipulating the microstructure through thermomechanical processing [Fleck et al.,
2010]. Innovative materials for aerospace and automotive applications are recently requiring
the improvement of the mechanical properties while reducing the structure’s weight.

0.4.1 A new class of materials

Accordingly, engineers have shown interest in controlling the architecture of the ma-
terials through thoughtfully designing them in a certain fashion, to acquire improved
mechanical properties over their constituents.

The ability of architectured materials to give a wide range of stiffness, strength and
fracture toughness is provided by the properties of the bulk material and the interplay
between the shape, the periodicity, and the possible association of materials [Bouaziz et al.,
2008].

A general architectured material is made up of a large number of uniform elements
(e.g., holes, inclusions, beams, rods, etc) and is generated by tessellating these elements on
specific plane shapes (e.g., hexagonal, square, kites, darts, etc.) throughout space [Fleck
et al., 2010].

One of the goals of this work is to assess the multi-scale behaviour of such materials
regarding crack propagation. Periodic and Quasi-Periodic microstructures are considered
in the study, with the idea that any material would behave between a perfectly Periodic
one and a Quasi-Periodic material presenting long-range heterogeneities.

0.4.2 Periodic microstructures

Classically, architectured materials are built with regular periodic lattices. Simple
unique unit cells are usually tessellated periodically in space. This implicitly imposes
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strong limitations on geometries of microstructures. Their periodicity also makes them
prone to failure, as their tendency to split along definite structural planes is eased 1.

0.4.3 Quasi-Periodic microstructures

Quasi-periodic structures are well ordered structures that have no translational symme-
try [Fleck et al., 2010, Wang and Sigmund, 2020]. They have been observed in many natural
materials. The geometrical freedom they offer, i.e. over periodic distributions, provides a
larger design space. In this work, focus will be drawn to [Penrose, 2013]’s kite&dart tiling
(Figure 7(a)). De facto, the kite&dart tiling have regained interest after the discovery
of atomistic samples with the same structures which makes this study more prone to
answering the ever-growing interest from the scientific community. The geometrical aspect
of the tiling is as follows: both the kite and dart are composed of two triangles each.

— The kite is a convex quadrilateral (72o, 144o, 72o, and 72o) that can be bisected to
form two triangles (72o, 72o and 36o.

— The dart is a non-convex quadrilateral (36o, 216o, 36o, and 72o) that can be bisected
along its axis of symmetry to form a pair of obtuse triangles (36o, 108o, and 36o) .

Besides, this Kite&Dart Penrose lattice has a 5-fold symmetry leading to isotropic
properties [Glacet, 2018] at the macroscopic scale 2 3.

We note the following interesting properties of the Quasi-Periodic lattice [Penrose,
2013]:

— Any pattern (of any size) can be found an infinite number of times in a lattice.

— Several patterns can coincide, however they are separated by regions that do not
match.

0.4.4 Typical architectures of interest

As previously mentioned one Periodic and two Quasi-Periodic architectured materials
(microstructures) are investigated. The microstructures are based on a hexagonal (for the
Periodic) and kite&dart Penrose (for the Quasi-Periodic) (see Figure 8). Both materials’

1. Drawing a parallel with material sciences (e.g. crystalline materials), such a process is called cleavage
since it corresponds to successive and repeated breaking of bonds along specific ’crystallographic’ plane.

2. A rotation by an angle of (5 × 2π
n ) (rotation by 72o, 144o, 216o, 288o, 360o,) does not change the

object. (see e.g., Figure 7(b))
3. The isotropic property at the macroscopic scale is discussed further in Chapter 3.
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0.4. Architectured materials

(a) Kite and dart from Penrose tiling (b) Assembled Penrose tiling

Figure 7 – Precise shapes of a Penrose kite&dart tiling and the assembled tiles [Penrose,
2013]

symmetry order (6 and 5-fold symmetry respectively) should lead to elastic isotropic equiv-
alent media. We recall that for the hexagonal distribution, there’s only one characteristic
length of the microstructure that is the distance between holes, denoted by d; while for
the Penrose kite&dart paving, there are two characteristic length(s) corresponding to the
opposite sides of the kite and/or dart quadrilateral dk and dd.

In order to meticulously compare the microstructures, the same hole radii rh are
taken, and the mean distances between the holes is fixed to d = mean(dk, dd) = 4 × rh
corresponding to a volume fraction of 78% for the hexagonal lattice and 75% for the Quasi-
Periodic ones. The generated microstructures are shown in Figure 8, and their respective
geometrical aspects are displayed in Table 1. Two types of Quasi-Periodic microstructures
are considered, both based on the kite&dart Penrose paving. Type 1 corresponds to the
holes drilled at the nodes of the paving, while type 2 suggests drilling holes at the centroids
of the kites and darts in the paving, leading thus to same-yet-different perfectly controlled
microstructures each one presenting specific Quasi-Periodic patterns. The different lengths
and dimensions will be related to the characteristic length d for an easier perception and
interpretation of the results.
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(a) Periodic Hexagonal (b) Quasi-Periodic - type 1 (c) Quasi-Periodic - type 2

Figure 8 – The microstructures considered for the study: a Periodic lattice of holes (a)
and two types of Quasi-Periodic lattices of holes: distribution at the nodal positions of a
kite&dart Penrose paving (type 1) (b) and on the centroids of the kite&dart paving (type
2) (c)

.
Typical microstructures properties
Geometry Characteristic length(s) (µm) Hole radius (µm)
Periodic 3000 750
Quasi-Periodic - type 1 2270 and 3670 750
Quasi-Periodic - type 2 2270 and 3670 750

Table 1 – The microstructures and their geometrical aspects: The Periodic microstructure
presents a unique characteristic length (the distance between the holes); while the Quasi-
Periodic shows two [Penrose, 2013, Glacet, 2018]
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0.5 Homogenisation techniques

The use of those highly heterogeneous architectured materials is bridged by some
limitations, de facto, treating the heterogeneities for accurately simulating the complex
behaviour of such structures requires huge computational resources. Thus, of course, it’s
appealing to describe a simpler nature of those materials.

A variety of upscaling methods were proposed to reveal the relations between the
microstructural heterogeneities from one side and the behaviour at higher scales from the
other [Ongaro, 2018].

0.5.1 The presence of an RV E

The underlying principle of existing classical homogenisation techniques lies on the
description of a structure with the help of a much smaller specimen, known as the repre-
sentative volume element - RV E. This implicitly assumes the presence of two separated
scales: (i) the microscopic scale that is small enough to capture the effects of the het-
erogeneities in the material, and (ii) the overall scale of the structure where the effects
of the heterogeneities are expected to be smeared out, and on which effective material
properties are considered [Michel et al., 1999]. The classical (first-order) homogenisation
method is based on the construction of a boundary value problem on the RV E that allows
the determination of the effective material properties at the higher scales [Ongaro, 2018].
In this case, the RV E should be big enough to statistically capture the heterogeneities
and be constitutively valid, yet small enough to be considered as a volume element of
continuum mechanics. More details on the classical homogenisation method can be found
in the literature.

0.5.2 Limitations

The respective work outlines the following limitations: upscaled deformation modes
of an RV E for a first-order homogenisation are linear; the first-order methods cannot
take into account the size effects, nor large gradients of deformation, nor localisation,
i.e., also, in case of large gradients, even materials with small microstructure cannot be
accurately modelled [Geers et al., 2001]. Moreover, the first-order schemes do not work for
softening materials. To surpass these problems, an extension to higher-order approaches
has previously been addressed [Geers et al., 2001, Kouznetsova et al., 2002]. The solution
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of the microscopic boundary-value problem in the case of higher-order computational
homogenisation is effortless, yet allows for an enriched upscaled continuum with higher-
order strain and stress-fields [Geers et al., 2001]. Although the higher-order techniques are
able to treat softening materials, they present their limitations: localisation bands beyond
a quadratic nature for the displacements cannot be resolved, e.g., softening materials
in the presence of sharp localisation regions from the presence of a crack and/or high
heterogeneities [Geers et al., 2010a].

As damage localises in narrow regions in a considered continuum, the length-scale that
determines the variation of the defect falls below the considered scale of the mechanical
fields (RV E) leading thus to what is known as gradient effects [Voyiadjis et al., 2004].
Gradient theories emerging from the multiscale nature of the mechanical framework are
based on the enrichment of the classical continuum description with additional terms;
those allow taking the gradient effects into account [Yang and Misra, 2010]. When the
constitutive equations at the higher scales are difficult to write, general methods based on
concurrent finite element simulations (FE2) can be applied [Feyel, 2003]. FE2 methods do
not require any constitutive equations because all non-linearities come directly from the
homogenisation of microscopic quantities after applying localisation rules to determine
local solutions. Interests are presently concentrating on the development of a continuous-
discontinuous homogenisation scheme, to allow the assessment of the presence of both
micro and macro cracks, and where localisation bands are incorporated at the macroscale
[Geers et al., 2010b]. Along the same line [Brancherie and Ibrahimbegovic, 2009] were able
to describe microcracks by introducing a displacement discontinuity at the element level
coupled with a continuum damage mechanics model, in parallel to assessing the failure
process at the structure’s level essentially due to the propagation of macro-cracks.

0.5.3 Recent advancement

Recently, work has been done on deriving a homogenised cohesive law at the macroscale
from computations of crack propagation in a microscopic sample [Nguyen et al., 2011].
In [Loehnert and Belytschko, 2007], X-FEM approaches are used to incorporate the
discontinuity at the macroscale, but as previous methods, this technique relies heavily on
the principle of separation of scales as well as the presence of an RV E and it remains a
homogenisation technique where a small part of the domain is considered to extract the
full response of the structure; plus, both those methods rely on concurrent multilevel finite
element (FE2) which is computationally expensive, and requires the difficult task of writing
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a consistent homogenisation scheme to link the scales [Feyel, 2003]. Moreover, the need
for enrichment of the description of the multiscale problem is directly perceived [Matous
et al., 2008, Kulkarni et al., 2010, Hirschberger et al., 2009]. Although those methods are
theoretically prominent, their experimental applicability remains questionable. In [Hossain
et al., 2014], a different approach was proposed, where the effective toughness of the
heterogeneous media was directly evaluated a priori (without concurrent computations).
Recently, [Nguyen et al., 2019] followed the work of [Hossain et al., 2014] to identify
the different parameters of a damage model at the mesoscale by fitting a typical force-
displacement response on a heterogeneous structure. Yet, as the effective material properties
are determined macroscopically from force-displacement responses, it’s believed that micro-
cracks and their influence on the structural responses fail to be taken into consideration.

0.5.4 The coarse-graining technique

The above mentioned methods stand as long as the separation of scales is prominent, or
as long as an RV E can be well-defined, which naturally leads to a homogeneous description
of the microstructures at the macroscopic scale. Nonetheless, when the microstructure’s
heterogeneities and/or the damage distribution are not statistically homogeneous, the
effective description is expected to be dependent on the position in space and becomes
influenced by simultaneous interactions between the damage and the microstructure. This
restrains the above mentioned methods from accurately transferring the information from
the microscopic scale to the macroscopic scale. Plus, to the authors’ best knowledge, there’s
no available formulation allowing a consistent transfer of such information between the
scales.

For this purpose, we follow the bottom-up approach of analysis in which information
at the microscale is considered to inform the larger scales under the classical laws. We
use a model-free coarse-graining technique [Goldhirsch and Goldenberg, 2002] - a widely
used technique in Molecular Dynamics studies - where pseudo-molecular systems are
built to reproduce physically consistent behaviour of all-atom with easier and faster
computations. The coarse-graining technique [Goldhirsch and Goldenberg, 2002] is adapted
to evaluate continuum mechanics at different intermediate mesoscales solely from the
gathered data at the microscopic scale and by a manipulation of the inviolable conservation
laws. This establishes effective fields of mechanical properties and opens the door for a
better understanding of the relations between the scales.

The derivation of the proposed coarse-graining method is detailed in Chapter 2.
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Part II, Chapter 1 – Phase Field modelling of brittle failure: the microscopic scale

1.1 Introduction

As previously mentioned, one of the pillars of this work is the simulation of the failure
process of architectured materials at the microscopic scale, i.e., by explicitly taking the
heterogeneities into account. The robustness and versatility of the phase-field model
approach [Francfort, 1998, Bourdin et al., 2013, Wu et al., , Nguyen et al., 2015, Pham
et al., 2017] regarding its independence of the finite element mesh and its ability to model
complex scenarios (initiation, branching, coalescence, etc.) were decisive in its choice for
the simulations.

The phase-field method is based on a diffuse representation of the localised discontinuity
coming from the presence of a crack. A regularised variational principle describes the
evolution of the mechanical problem from one side, and the evolution of an additional
damage field α describing the damage state from the other. The typical Griffith’s-type
problems are rewritten in a variational framework [Francfort, 1998, Bourdin et al., 2008]
leading to an energy functional resembling the potential presented by [Mumford and
Shah, 1989]. Numerical implementation and some examples were provided in [Bourdin
et al., 2000]. [Ambrosio and Tortorelli, 1990] proposed an approximation of this potential
based on the theory of Γ-convergence. More recently, [Miehe et al., 2010a, Miehe et al.,
2010b] have exploited the similarities with gradient-enhanced damage models and re-wrote
phase-field models in a damage format by explicitly utilising notions like the degradation
function, and the history function to set the irreversibility of damage. [Linse et al., 2017].

The overview of this chapter is as follows: first, the regularised representation of free
discontinuities is introduced (Section 1.2), followed by an in-depth exhibition of the quasi-
static (Section 1.3) and dynamic (Section 1.4) formulations of the phase-field problem.
Two unilateral contact formulations are then discussed (Section 1.5). The computational
and algorithmic frameworks based on the finite elements are put-forth (Section 1.6).
In Sections 1.7 and 1.8, the influence of the regularisation parameter is displayed and
most prominently, the role of the elastic threshold on the phenomenological behaviour
is showcased. A validation of the phase-field implementation is complemented with a
numerical study of the influence of the threshold along with the regularisation length on (i)
the fracture of a uniaxial traction bar and on (ii) a dynamic crack branching benchmark
(Section 1.9).
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Figure 1.1 – Regularised representation of a crack in a two-dimensional case, sharp crack
(left) and regularised representation through phase-field (right)

1.2 Regularised representation of free discontinuities

Consider a cracked body Ω ⊂ RD(D ∈ {1, 2, 3}) under arbitrary external loads (Figure
1.1). D is the space dimension and ∂Ω the external boundary of the body. The displacement
field of the body u(x, t) should satisfy the Dirichlet boundary condition (uDi) applied on
∂ΩDi, and the stress field should satisfy the Neumann boundary condition (FNe) on ∂ΩNe.
Let Γ, a curve of dimension D − 1 within Ω, hold an internal discontinuity, i.e., a crack.
Within a regularised framework, the cracks in the phase-field models are approximated by
bands of finite thickness of a continuous phase-field variable α(x) known as the damage
field: α(x) describes the material damage state, i.e., it takes the value 0 in the intact region
of the material and 0 < α ≤ 1 to represent the smeared crack. It’s shown (see e.g. [Miehe
et al., 2010b, Miehe et al., 2010a]) that the damage field can be determined by solving the
following boundary value problem in Ω:

α− l2c∆α =0 in Ω
α(x) =1 , on Γ
∇α(x) · n =0 on ∂Ω

(1.1)

where ∆(.) in the Laplacian, n the outward normal to ∂Ω, lc is a length describing the
actual width of the regularised crack. Refer to Figure 1.1 for a two-dimensional illustration
of this problem. The Euler-Lagrange Equation of Equation (1.1) is associated with the
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following variational problem [Nguyen et al., 2017]:

α(x) = arg{ inf
α∈Lα

Γlc(α)},

with Lα ={α|α(x) = 1 on Γ, ∀x ∈ Γ} and where

Γlc(α) =
∫

Ω
γ(α,∇α, lc)dΩ represents the total crack length.

(1.2)

Various geometric crack functions γ(α,∇α, lc) (or crack density functions) can be found in
the literature. In this study, the quadratic crack surface density function following [Miehe
et al., 2010a] is considered 1 :

γ(α,∇α, lc) = 1
2lc
α2 + lc

2∇α • ∇α (1.3)

It’s recalled that the crack density function γ(α,∇α, lc) smears-out the crack by introducing
a length parameter lc 2. The term in α2 represents the local part and the second term
denotes the non-local part incorporating lc. Combining Equation (1.2) and (1.3), the
phase-field damage variable α(x) becomes the solution of the following variational problem
[Nguyen et al., 2017]:

α(x) = arg{ inf
α∈Lα

∫
Ω
γ(α,∇α, lc)dΩ }. (1.4)

The crack surface density function γ along with the phase-field damage variable α are
consequently considered to approximate the crack by a smeared representation. In the
next sections, the quasi-static and the dynamic formulations are introduced respectively.

1.3 Quasi-static formulation of the phase-field model

As the phase-field model can be seen as a variational formulation of a Griffith-like
problem, we start by recalling Griffith’s theory of quasi-static brittle failure; we then
display its variational formulation.
Griffith proposed an energy-based criterion for a straight crack propagating in an infinite
homogeneous plane subjected to uniform tensile stress. According to the theory of brittle
fracture, the energy required to create a unit area of the fracture surface is equal to a

1. A brief discussion on the choice regarding the crack density function is presented in Paragraph 1.2.
2. The length parameter has been previously assessed in [Borden et al., 2012, Nguyen et al., 2016].

More details are found in Section 1.7
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critical fracture energy density gc also known as the critical energy release rate. Assuming
small strains, [Francfort, 1998, Bourdin et al., 2008] proposed a variational approach with
the following energy functional for a cracked body based on the Griffith criterion:

E(u,Γ) = Eu(u,Γ) + Es(Γ)− Ee(u) (1.5)

Ee(u) is the external potential energy, i.e., the work of external forces on u, given by
Ee(u) =

∫
Ω f · udΩ +

∫
ΩNe FNe · udΩNe, f corresponds to a given body force and FNe to

a load applied to ΩNe. Eu(u,Γ) is the strain energy stored in the cracked body, Es(Γ) is
the energy required to create the crack according to Griffith Criterion - known as the
fracture energy. To circumvent the numerical problems associated with the propagating
discontinuity Γ (the crack set), the discontinuity is approximated by a function written in
terms of a continuous damage field α (Section 1.2), known as the phase field. The function
Γlc(α) =

∫
Ω γ(α,∇α, lc)dΩ (Section 1.2) can reasonably be considered. It’s recalled that

the continuous phase-field variable α describes the material damage state, i.e., it takes
the value 0 in the intact region of the material and 0 < α ≤ 1 to represent the smeared
crack (of width lc). Due to the phase-field regularisation, the stored strain energy Eu(u,Γ)
depends not only on u, but also on the crack phase-field α. Eu(u, α) underlines thus zones
of deterioration of the material (0 < α ≤ 1). Equation (1.5) becomes:

E (u, α) = Eu(u, α) + Es(α)− Ee(u)

=
∫

Ω
W (ε (u) , α) dΩ =

∫
Ω
Wu (ε (u) , α) dΩ + gc

∫
Ω
γ (α,∇α) dΩ− Ee(u)

(1.6)

The term W (ε(u, α)) denotes the total energy density. The term Wu(ε(u, α)) represents
the strain energy density in the deteriorated body (0 ≤ α ≤ 1). ε is the displacement
symmetric gradient. To link the mechanical fields (displacement u, stresses σ,...) to the
damage phase-field (α), different energetic degradation functions g(α) were considered in
the literature, the most common one being g(α) = (1− α)2 (See paragraph 1.4 for more
details). By assuming that the damage occurs equivalently in tension and compression, the
deterioration of the initially elastic strain energy density Wu(ε(u)) = 1

2σ : ε = 1
2ε : C : ε

can be expressed as follows:Wu(ε(u, α)) = g(α)Wu(ε(u)). C is the standard sound isotropic
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Hooke’s elasticity tensor. Equation (1.6) reads:

E (u, α) =
∫

Ω
g(α)(1

2ε : C : ε)dΩ + gc

∫
Ω
γ (α,∇α) dΩ− Ee(u) (1.7)

Veritably, damage occurs more easily in tension than in compression, thus tension-
compression asymmetry formulations are needed [Amor et al., 2009, Miehe et al., 2010a, He
and Shao, 2019]. The elastic strain energy of the deteriorated material is written as
Wu(ε(u, α)) = g(α)W+

u (ε(u)) + W−
u (ε(u)), where W+

u (ε(u)) and W−
u (ε(u)) denote the

positive (active) and negative (passive) parts of the strain energy of the sound material.
Check Section 1.5 for more details regarding the different types of the energy split.

Evolution of phase-field: basics of thermodynamics

By applying the second law of thermodynamics, the thermodynamical allowance of
the constitutive relation is examined [Miehe et al., 2010b, Nguyen et al., 2017]. Assuming
isothermal process, the Clausius-Duhem inequality states:

σ : ε̇− Ẇ ≥ 0, (1.8)

where σ corresponds to the standard Cauchy stress. Equation (1.8) can be rewritten as:

σ : ε̇− Ẇ = σ : ε̇− ∂W

∂ε
: ε̇− ∂W

∂α
α̇ = (σ − ∂W

∂ε
) : ε̇− ∂W

∂α
α̇ ≥ 0 (1.9)

This inequality should be satisfied for any process; if one considers a process without
damage evolution (α̇=0), then there is no dissipation, and the inequality becomes an
equality (σ : ε̇− Ẇ = 0) allowing the definition of the constitutive relation as:

σ = ∂W

∂ε
. (1.10)

Next, a crack phase-field evolution is formulated guaranteeing the irreversibility of the
process. A reduced form of Equation (1.8) reads:

A α̇ ≥ 0 (1.11)

where A is the variational derivative of W (ε(u), α) with respect to the phase-field variable

64



1.3. Quasi-static formulation of the phase-field model

α:
A = −δW

δα
= −∂W

∂α
+∇.( ∂W

∂∇α
), (1.12)

A can be seen as the thermodynamic force associated with α. A threshold function F (A)
such as no damage occurs should then satisfy the following condition (constraint):

F (A) ≤ 0 (1.13)

The principle of maximum dissipation requires the dissipation Aα̇ to be maximal under
the constraint (1.13). This yields the following Lagrangian:

L = −Aα̇ + λLF (A), (1.14)

that satisfies the Kuhn-Tucker conditions as:

∂L

A
= 0, λL ≥ 0, F ≤ 0, λLF = 0 (1.15)

The first inequality in Equation (1.15) gives:

α̇ = λL
∂F (A)
∂A

(1.16)

Assuming F (A) = A, one obtains α̇ = L ≥ 0.
Subsequently, from (α̇ ≥ 0 and F (A) = A), from the third inequality in (1.15) (F ≤ 0),
and from the inequality (1.11) (A α̇ ≥ 0), the functional F becomes null, and the following
Equation is obtained:

F = A = −δW
δα

= 0 (1.17)

Ultimately, the displacement and phase-fields (u,α) are computed by solving the
following minimisation problem:

(u, α) = arg{min(E(u, α))} subjected to α̇ ≥ 0 and 0 ≤ α ≤ 1 (1.18)

As seen, a non-reversible evolution of the damage phase-field is satisfied, while the bound-
edness is to be imposed. Practically, the coupling of the mechanical u and the damage α
problems leads to convergence issues for the solution as the coupled problems appears to
be non-convex.

By introducing a history function H (also claimed to take care of the probable load-
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ing/unloading [Molnár et al., 2020a]), [Miehe et al., 2010a, Miehe et al., 2010b] decoupled
the problems and allowed for a simple alternating minimisation (staggered) solution
following :

u = arg{inf
u

[
∫

Ω
g(α)Wu(ε(u))− f · u]dΩ−

∫
ΩNe

FNe · udΩNe}

α = arg{inf
α

∫
Ω

[gcγ(α,∇α, lc) + g(α)H]dΩ}
(1.19)

while naturally accounting for the positivity of the damage rate. The history function H
represents ’the maximum strain energy obtained in the deformation history of a material
point’, it can be considered as a measure of the maximum active (tensile) part of the
strain energy, i.e., W+

u obtained in history.[Miehe et al., 2010a]. At a time t = t0, it can be
expressed as:

Ht=t0 = max(Ht<t0 ,W+,t=t0
u ) with H0 = 0 (1.20)

More info about Miehe’s history function H and other proposed methods are briefly
stated in Paragraph 1.3

§ 1.1. On the length scale lc
It was shown that this phase-field modelling approach converges to the classical brittle

failure when the regularisation parameter lc approaches 0. The length parameter lc is widely
regarded as a material parameter [Pham et al., 2011a, Nguyen et al., 2016, Linse et al.,
2017, Wu et al., ]. In fact, [Nguyen et al., 2016] -between others-, elaborated analytical
expressions linking the length scale parameter lc to other material parameters, namely
gc, the critical stress σc (maximum stress state reached before softening) and the elastic
modulus (E) 3. Even though the formula for lc is determined for a unidimensional bar
with homogeneous damage field, it was shown that the expressions stand for 2D/3D
samples with notches when lc is small enough compared with the problem’s characteristic
dimensions [Mesgarnejad et al., 2015, Zhang et al., 2017].

§ 1.2. On the crack density function γ

The herein considered crack density function is one of the most commonly used, as the
solution algorithm can be implemented in any standard finite element solver. The absence
of an initial elastic threshold (due to the quadratic nature of the crack surface function)
has lead some authors [Nguyen et al., 2017] to add an artificial initial elastic threshold
(e.g., φc = gc

2lc ). This threshold ensured that no damage occurs at low stress-strain levels.

3. Refer to Section 1.7 for a detailed development of the expressions.
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1.3. Quasi-static formulation of the phase-field model

Explicitly, this energy threshold was added to the history function H. The reader is referred
to Paragraph 1.3 for further details.

Further along,[Pham et al., 2011b] proposed a crack surface density function with a
linear term, knowingly γ(α,∇α) = 3

8lcα + 3lc
8 ∇α • ∇α. This crack density function allows

for the phenomenological behaviour to remain elastic until the maximum stress state is
reached (as opposed to the quadratic crack density function where the elasticity is degraded
before reaching the maximum stress). However, in this case, the natural lower bound of
the damage variable α ≥ 0 is violated and bound-constrained optimisation techniques
are needed. We will restrain our work to the quadratic crack surface density function
undertaking its limitations.

§ 1.3. On the history function H

When implementing a phase-field model, the boundedness 0 ≤ α ≤ 1 and the irre-
versibility conditions α̇ ≥ 0 must be guaranteed. Moreover, it was seen that the solution
of the fully coupled problem suffers from non-convexity [Miehe et al., 2010a, Miehe et al.,
2010b]. Multiple methods are proposed [Molnár et al., 2020a] to overcome these issues,
e.g., bound-constrained non-linear optimisation techniques, augmented Lagrangian or
penalisation methods. However, [Miehe et al., 2010a, Miehe et al., 2010b] proposed a
one-pass staggered algorithm using a local history variable, applicable to the standard
phase-field modelling algorithm with the quadratic geometric function γ. The history
function H represents ’the maximum strain energy obtained in the deformation history of
a material point, which may be considered as a measure for the maximum tensile strain
obtained in history.’ When an initial elastic threshold is added, it ensures that the strain
energy remains null as long as the energy threshold is not surpassed. A modification of
Equation (1.20) can be expressed as follows:

Ht=t0
c = max(Ht<t0

c ,W+,t=t0
u − φc) with H0

c = 0 (1.21)

The modified history function Hc is equal to zero when the strain energy is below the
threshold φc, prohibiting thus damaging at low strains. It’s noted that the threshold is
implemented such that in case of absence of damage, the elastic behaviour is recovered
[Nguyen et al., 2017, Molnár et al., 2020b]. The total energy density (Equation 1.7) is
re-written as:
∫

Ω
W (ε (u) , α) dΩ =

∫
Ω
g(α)(Wu(ε(u))− φc)dΩ +φc + gc

∫
Ω
γ (α,∇α) dΩ−Ee(u) (1.22)
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Leading then to a reformulation of the staggered problem (Equation (1.19)):

u = arg{inf
u

[
∫

Ω
g(α)Wu(ε(u))− f · u]dΩ−

∫
ΩNe

FNe · udΩNe}

α = arg{inf
α

∫
Ω

[gcγ(α,∇α, lc) + g(α)Hc]dΩ + φc}
(1.23)

This formulation verifies that for no damage, the classical form of the elastic behaviour
of the material is recovered. Although there is no clear mathematical proof of how this
herein introduced history function H/Hc enforces damage irreversibly, the numerical
examples and studies show no violation of this criterion [Linse et al., 2017, Molnár et al.,
2020a], moreover, the simplicity of this method and its ease of implementation played a
major role in its widespread in the community. It’s noted that in the following, H and Hc

will be used when addressing the classical and the modified versions (with threshold) of
the history function respectively.

§ 1.4. On the degradation function g(α)
The energetic degradation function g(α) links the mechanical fields, i.e., strain energy,

stress.., to the damage phase-field α; it’s borrowed from damage mechanics concepts.
Different energetic degradation function g(α) were considered in the literature, the most
common one being g(α) = (1 − k)(1 − α)2 + k ' (1 − α)2. The parameter k is a small
numerical parameter introduced in the degradation to ensure the well-conditioning of
the system of equations. Any degradation function should satisfy (i) that the material
is initially undamaged g(α = 0) = 1 and that (ii) the fully damaged material stores no
elastic strain energy g(α = 1) = 0. (iii) g(α) should be a monotonically decreasing function
to represent the deterioration of the material and (iv) dg

dα(1) = 0. The fourth condition
guarantees that the strain energy density function takes a finite value in a locally cracked
domain [Wu et al., 2020, Braides, 1998], and ensures that the localisation band does not
grow orthogonally [Borst and Brekelmans, 1996].

Remark 1.1. In g(α) = (1 − α)2, the damage variable α does not correspond to the
damage in the classical sense of damage mechanics [Bažant and Jirásek, 2002] (see the
introductory Chapter 0, where a softening constitutive law σ = (1−D)Cε is introduced).
But of course, parallels can be drawn and D and α are easily interlinked.

In this section the main ingredients of the quasi-statics phase-field modelling of brittle
failure are reviewed. In the next section, the variational ingredients of Griffith’s theory for
dynamic brittle fracture are recalled, and the phase-field approximation of dynamic brittle
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fracture with the governing equations are put-forth.

1.4 Dynamic formulation of the phase-field model

In Section 1.3, the analysis focuses on the quasi-static failure of brittle material
neglecting thus inertial effects. Here, the variational ingredients of the dynamic phase-field
model are presented. Similarly to the quasi-static case, energy dissipation comes solely
from the damaging process. Starting with a two-dimensional isotropic body Ω, under small
strains assumptions, [Li et al., 2016a] writes the total energy of the body as:

E(u, u̇,Γ) = Eu(u,Γ) + Ek(u̇) + Es(Γ)− Ee(u)

=
∫

Ω
Wu (ε (u) , α) dΩ +

∫
Ω
Ku̇ (u̇) dΩ + gc

∫
Ω
γ (α,∇α) dΩ− Ee(u)

(1.24)

where Ek(u̇) corresponds to the total kinetic energy of the body, mass conservation is
admitted and the material degradation is assumed to have no influence on the local
material density. This leads to the classical definition of the kinetic energy density being
Ku̇ = 1

2ρu̇ · u̇, with ρ the mass density of the material, and u̇ = ∂u
∂t
. The problem reduces

to formulate the displacement-damage evolution as a boundary value problem following
Hamilton’s principle [Li et al., 2016a]. Over an arbitrary interval of time T = [0, T ], an
action-integral is introduced as follows:

A(u, u̇, α) =
∫
T
Eu(u, α) + Es(α)− Ek(u̇)− Ee(u) dt (1.25)

governed by the following principles:

— Damage irreversibility: α̇ ≥ 0 ∀t in T;

— First order stability: A′(u, u̇) ≥ 0 of admissible displacements and damage
evolution;

— Energy balance: Es(α) is responsible of the energy dissipation in the system;

The evaluation of the directional (Gâteaux) derivative of the action integral leads to the
following weak elastic-damage dynamic wave equation:

divσ + f = ρü (1.26)

69



Part II, Chapter 1 – Phase Field modelling of brittle failure: the microscopic scale

with appropriate boundary conditions where f corresponds to a given body force density.
In comparison with the classical elastodynamic solution, the stress state σ is modulated by
the degradation function g(α) due to deterioration of the material following σ = g(α)C : ε.
Moreover, the total energy satisfies a minimum principle constrained by the irreversibility
of the damage:

Eu(ut, αt) + Es(αt) ≤ Eu(ut+, αt+) + Es(αt+) (1.27)

The superscript t and t+ refers to quantities evaluated at time t and t+ respectively.
t+ ≥ t. Here, the displacement field evolution is governed by the damage-dynamic-wave
(Equation (1.26)). Practically, at each time step, damage-dynamic-wave equation is solved
to compute the updated displacement field u while Equation (1.27) is solved for the damage
field α (See section 1.6 for more details on the overall algorithm).

After introducing both the quasi-static and dynamic phase-field model, and before dis-
playing their overall algorithms, we summarise in the next section the tension-compression
asymmetry formulations needed to split the positive (active) and negative (passive) parts
of the strain.

1.5 Unilateral contact formulations

In order to prevent the issue of crack interpenetration in compression mode, and to
account for the tension-compression asymmetry observed in brittle materials, many unilat-
eral contact formulations have been proposed in the literature [Freddi and Royer-Carfagni,
2010]. Damage occurs more easily in tension than in compression, and tension-compression
asymmetry formulations are much needed. This asymmetry is usually translated as a split
of the elastic strain density function into a damaging (tension) partW+

u , and a compression
part W+

u which does not activate damage. The strain energy of a sound body is hence
written as:

Wu(ε(u)) = W+
u (ε(u)) +Wu(ε(u))− , (1.28)

while for a deteriorated body, the split translates to:

Wu(ε(u, α)) = g(α)W+
u (ε(u)) +W−

u (ε(u)) (1.29)

Several formulations for the decomposition to positive/negative parts are proposed [Amor
et al., 2009, Miehe et al., 2010a, He and Shao, 2019]. In this study we focus on two
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1.5. Unilateral contact formulations

formulations: the extensive/compressive decomposition [Miehe et al., 2010a], and a new
formulation based on the orthogonal decomposition of the strain into two complementary
parts [He and Shao, 2019], which are orthogonal in the sense of an inner product, where C
acts as a metric operator [Nguyen et al., 2020a]. The more common extensive-compressive
formulation is considered in the quasi-static case, while the orthogonal more ’clean’
decomposition is considered in the dynamic algorithm where compressive and tensile wave
reflections occur.

1.5.1 Extensive/compressive decomposition of the strain

In [Miehe et al., 2010a], the formulation is based on the spectral decomposition of the
strain tensor into negative (compressive, inactive) and positive (tensile, damageable) parts.

ε = ε+ + ε− (1.30)

The tensile/compressive contributions correspond to the positive/negative parts of the
principal strains written εi = ∑

i ε
ini ⊗ ni. where εi denote the principal strains and ni

the corresponding principal directions. The decomposition writes:

ε = ε+ + ε−

=
∑
i

〈εi〉+ni ⊗ ni +
∑
i

〈εi〉−ni ⊗ ni (1.31)

where the bracket operators denote 〈.〉+ = (.+ |.|)/2, and 〈.〉− = (.− |.|)/2, i.e., 〈.〉+ = .

if . > 0 and 〈.〉+ = 0 if . < 0, while 〈.〉− = . if . < 0 and 〈.〉− = 0 if . > 0. The damage
is then assumed to be created by traction (the positive part) only, and the strain energy
density decomposition reads:

W+/−
u (ε(u)) = λ

2 [〈trε〉+/−]2 + µtr[(ε+/−)2] (1.32)

λ and µ are the corresponding Lamé elastic parameters of the sound material. It’s mentioned
that the spectral decomposition of the strain tensor induces strong nonlinearity for the
mechanical solution. The shifted strain tensor split algorithms is followed [Nguyen et al.,
2015]. Another limitation of this decomposition is that it’s only able to simulate damage in
initially isotropic elastic materials, and has no extension to the anisotropic case according
to [Nguyen et al., 2020b].
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1.5.2 Orthogonal decomposition of strain

An alternative formulation is based on the orthogonal decomposition of the strain into
two complementary parts [He and Shao, 2019], that are orthogonal in the sense of an inner
production where the elastic stiffness tensor C acts as a metric operator. The strain energy
density decomposition is expressed as:

W+/−
u (ε(u)) = 1

2[ε+/− : C : ε+/−] (1.33)

As the negative/positive parts of the energy depend directly on the stiffness tensor C, the
extension of this method to initially anisotropic elastic materials is straightforward. The
orthogonality condition satisfies

ε+ : C : ε− = 0 = ε− : C : ε+ (1.34)

[He and Shao, 2019] proposed a method to impose the orthogonality condition (Equation
(1.34)). A brief summary is presented here: first, the square-root of the elastic tensor C is
introduced via:

C1/2 =
∑
i

C
1/2
i ni ⊗ ni and C−1/2 =

∑
i

C
−1/2
i ni ⊗ ni , (1.35)

where Ci are the eigenvalues of C, and ni are second-order orthonormal eigentensors
associated to Ci. In the case of isotropic case, the square roots of the elastic tensor are
specified by:

C1/2 =


√

κ
2 +

√
µ
2

√
κ
2 −

√
µ
2 0√

κ
2 −

√
µ
2

√
κ
2 +

√
µ
2 0

0 0
√

2µ

 and C−1/2 =


1

2
√

2κ + 1
2
√

2µ
1

2
√

2κ −
1

2
√

2µ 0
1

2
√

2κ −
1

2
√

2µ
1

2
√

2κ + 1
2
√

2µ 0
0 0 1√

2µ


(1.36)

where κ is the bulk modulus. It’s noted that the computation of the square-root of C is
done only once, as it corresponds to the sound material. Following [Nguyen et al., 2020b],
the transformed strain tensor is defined as ε̃ = C1/2 : ε. A spectral decomposition is applied
on the transformed strain tensor ε̃ in this new space as

ε̃ = ε̃+ + ε̃−, where ε̃+/− =
∑
i

〈ε̃i〉+/−ni ⊗ ni (1.37)
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ε̃i are the principal tranformed strains and ni their corresponding orthogonal principal
directions. The brackets are defined in Section 1.5.2. The split in the problem’s space is
obtained once the split of the transformed strains is computed following

ε+/− = C−1/2 : ε̃+/− (1.38)

The herein obtained negative/positive parts of the strain tensor satisfy the orthogonality
condition since ε+ : ε− = 0 [He and Shao, 2019]. Similarly to [Miehe et al., 2010a], the
decomposition of the strain tensor induces strong non-linearity for the mechanical solution
and requires numerical treatment for efficiency. However, since the choice of the split is
only considered for the dynamic problem, and since the dynamic-wave equation is solved
explicitly, this non-linearity does not affect the mechanical problem; and the split can be
efficiently implemented for the dynamic phase-field problem.

1.6 Overall phase-field algorithms: implementation and
numerical simulation method

1.6.1 Staggered procedure for quasi-static phase-field model

In this section, the above reported quasi-static phase-field model is numerically de-
scribed. In the quasi-static case, the time steps tn refer to the load increment. Time stepping
and adaptive load increments are studied in the literature [Nguyen et al., 2015]. Here,
fixed time steps (hence load increments) are considered. The following box summarizes
the overall algorithm of the quasi-static phase-field model. Hc and H are interchangeable
in the algorithm, to take (or not) an elastic threshold into account.
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Staggered procedure for quasi-static phase-field model

Initialise u0, α0 and H0
c = 0

while tn ≤ T , given un, αn and Hn
c

1. Compute the history function Hn+1
c from Equation (1.21) (un)

2. Compute the damage phase-field αn+1 by solving the linear phase-field problem
(Equation (1.23)) at fixed displacement field un

3. Compute the displacement field un+1 via the staggered solving algorithm at fixed
damage field αn+1 (Equation (1.23))

4. n = n+ 1 and go to 2

A classical linear FE implementation is considered. The ideal properties of spatial
discretisation are chosen following [Nguyen et al., 2016]. The mesh size h is usually taken
approximately h w lc/3 to lc/2, (more details will be given for each simulation accordingly).
NotingN andB the respective interpolation and differentiation matrices, the displacement
and damage fields are interpolated as:

u(x) = Nuu
N and ε(x) = Buu

N

α(x) = Nαα
N and ∇α(x) = Bαα

N
(1.39)

where uN and αN are used to denote the current global displacement and damage nodal
vectors.

1.6.2 Explicit time-stepping procedure for the phase-field model

In this section, the above dynamic phase-field model is numerically described. Practi-
cally, it consists of solving the elastic-damage dynamic wave equation along with the total
energy minimisation. An arbitrary time discretisation (tn) is considered. The standard
Newmark-β integrator is adopted:

u̇n+1 = u̇n + ∆t
2 (ün + ün+1) (1.40)

un+1 = un + ∆tu̇n + 1− 2β
2 ∆t2ün + β∆t2ün+1 (1.41)
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The explicit scheme (β = 0) has been chosen for updating the accelerations, velocities
and displacements. The Courant–Friedrichs–Lewy (CFL) time-step is used for the time
stepping. The explicit method is preferred mainly in terms of computational efficiency, as
it turns out, the time evolution of (u, α) is directly decoupled and the two subproblems
can be independently solved, comparably to the quasi-static staggered implementation.
Details on the implicit and explicit implementations can be found in [Li et al., 2016b]. The
following box summarizes the overall algorithm of the explicit time-stepping procedure for
the dynamic phase-field model.

Explicit time-stepping procedure for the phase-field model

Initialise u0, u̇0, α0 and H0
c = 0

Update the damage field α0 from Equation (1.27)
Initialise the acceleration from Equation (1.26)

while tn ≤ T , given un, u̇n, αn, Hn
c and ün

1. Update u̇n+1/2 = u̇n + ∆t
2 ü

n

2. Update un+1 = un + ∆tu̇n+1/2

3. Compute the history function Hn+1
c from Equation (1.21)

4. Compute the damage phase-field αn+1 by solving Equation (1.27)

5. Update the internal forces F int(un+1, αn+1) (following Equation (1.42)) and the
acceleration ün+1

6. Update u̇n+1 = u̇n+1/2 + ∆t
2 ü

n+1

7. n = n+ 1 and go to 2

A classical linear FE implementation is considered. The ideal properties of the spatial
discretisation are chosen following [Nguyen et al., 2016, Li et al., 2016a]. The mesh size h
is usually taken approximately h w lc/3 to lc/2, (more details for each simulation will be
given accordingly). The elastic-damage dynamic wave Equation (1.26) becomes:

M ü = −F int(u, α) (1.42)

where M denotes the classical consistent lumped mass matrix [Li et al., 2016b] and
F int(u, α) denotes the internal forces vector [Li et al., 2016a]. As mentioned, an explicit
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Newmark scheme has been chosen for the update of accelerations, velocities and displace-
ments. Damage irreversibility is ensured as the damage problem is adopted from the
quasi-static one. Time steps (temporal discretisation) have been chosen sufficiently small
to satisfy the conditional stability of the explicit scheme.

The quasi-static and dynamic phase-field algorithms herein described are implemented
using an in-house developed finite element code in MATLAB environment.

Next, an analytical study on the influence of the threshold along with the regularisation
parameter.

1.7 Influence of the regularisation parameter lc
In this section, following [Nguyen et al., 2016, Borden et al., 2012], the influence of the

phase-field regularisation parameter lc is put-forth. The study is extended to the analysis
of the elastic threshold φc coupled with lc when the former is added to recover an initial
elastic phase (Section 1.8). To illustrate these influences, a unidimensional bar under
uniaxial tension is first considered (Figure (1.2)). Assuming that Poisson ratio is 0, and
with the absence of initial defects, the damage distribution is assumed to be homogeneous,
and the non-local part of the crack density function is disregarded ∇α = 0. For uniaxial
monotonic tension, σ = g(α)εE, the degradation function g(α) = (1− α)2 is considered.
The quadratic crack density function is taken and the initial elastic threshold is disregarded
following [Amor et al., 2009, Nguyen et al., 2016]. The irreversibility constraint is imposed
by the history function Ht=t0 = max(Ht<t0 ,W+,t=t0

u ) with H0 = 0.
The second part of Equation (1.19) in 1D gives the following energy expression for a

homogeneous damage distribution:

α = arg{inf
α

∫
Ω

[gc.(
1

2lc
α2 +

��
���lc

2∇ · ∇α) + g(α)H]dΩ}

= arg{inf
α

[gc
1

2lc
α2 + (1− α)2H]}

(1.43)

And damage evolution can thus be written as a solution of the minimisation problem
(1.43) as:

α(ε) = 2H
2H + gc

lc

(1.44)

In the case of monotonic loading (ε̇ ≥ 0) from εt=0 = 0, the constraint of irreversibility
on damage can be dropped and H becomes Ht=t0 = W+,t=t0

u = W t=t0
u . Damage and stress
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Figure 1.2 – Unidimensional bar under traction for the analysis of the phase-field method
parameters in a homogeneous case.

(a) (b)

0 0.2 0.4 0.6 0.8 1

(c)

Figure 1.3 – Influence of the regularisation parameter lc on the homogeneous (stress,strain)
(a), (damage,strain) (b) and (stress,damage) (c) relations.

and can be re-written from Equation (1.44) as:

α(ε, lc) = ε2E

ε2E + gc
lc

σ(ε, lc) = (1− α)2Eε(lc)
(1.45)

For E = 1, gc = 1, the characteristic plots of the (stress,strain) and (damage,strain)
relations for different lc are shown in Figures 1.3(a), (b) and (c). When lc decreases, the
maximum reached stress state (called critical stress σc) increases. In fact, by computing
the maximum value of the stress with respect to α following:

σc = max
α=[0,1]

σ(α(ε, lc), lc),

αc = arg[ max
α=[0,1]

σ(α(ε, lc), lc)]
(1.46)

it’s seen that the critical stress state is reached reached at αc = 0.25 (Figure 1.3(c))
independently of lc and is expressed as σc = 9

16

√
Egc
3lc .

The corresponding evolution of the stress as a function of the damage value is plotted
in Figure 1.3(c). It indeed shows that the critical stress is reached at the same damage
state α = 0.25 independently of lc. The expressions show that the critical stress will tend
to infinity as lc approaches zero, consistently with Griffith’s theory. Note that this relation
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only meticulously holds for uniaxial traction without damage gradient and it expresses a
unique relation linking the different material properties, which pushed some authors to
claim lc itself as a material parameter, as mentioned previously in Paragraph 1.1. The
absence of an initial elastic phase in the stress-strain relation (Figure 1.3(a)), and the
initiation of damage at infinitesimal strain-stress levels (Figure 1.3(b)) are noted.

Next, the addition of an elastic threshold onto the strain energy to prevent damage at
low stress-strain levels is investigated; and the influence of the arbitrary threshold along
the length parameter lc on the damage-stress-strain relation is put-forth.

1.8 Influence of the elastic threshold φc

As seen, the absence of an initial elastic phase (quadratic nature of γ) triggers the
damage at infinitesimal strains ε = εc = 0. To overcome the absence of an initial elastic
threshold, some authors added an artificial initial elastic threshold (e.g., φc = gc

2lc , [Nguyen
et al., 2017]). In this section, we study the influence of an arbitrary threshold φc,c(c) = cgc

lc

on the phenomenological behaviour law of the phase-field model, where the coefficient c is
varied between 0, i.e., no threshold and 1. It’s noted that the classical φc,c(c) = φc occurs
at c = 1

2 .
Equivalently to the previous subsection, a bar under uniaxial monotonic tension is

considered. Poisson ratio is 0, the damage distribution is assumed to be homogeneous. σ =
g(α)εE, the degradation function g(α) = (1−α)2 is considered. The quadratic crack density
function is taken, and an arbitrary threshold φc,c(c) = cgc

lc
is considered. The irreversibility

constraint is imposed by the modified history function Ht=t0
c = max(Ht<t0

c ,W+,t=t0
u − φc,c)

with H0
c = 0. Equivalently: The second part of Equation (1.19) in 1D gives the following

energy expression for a homogeneous damage distribution:

α = arg{inf
α

∫
Ω

[gc.(
1

2lc
α2 +

��
���l

2∇ · ∇α) + g(α)Hc]dΩ + φc,c}

= arg{inf
α

[gc
1

2lc
α2 + (1− α)2Hc] + φc,c}

(1.47)

and damage evolution can thus be written as a solution of the minimisation problem
(1.47) as:

α(ε) = 2Hc

2Hc + gc
lc

(1.48)

with Ht=t0
c = max(Ht<t0

c ,W+,t=t0
u − φc,c) with H0

c = 0.
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In the case of monotonic loading (ε̇ ≥ 0) from εt=0 = 0, damage and stress can be
re-written from Equation (1.48) as:

α(ε, lc) = ε2E − φc,c
ε2E − φc,c + gc

lc

if ε ≥
√
φc,c
E

= 0 else

σ(ε, lc) = (1− α)2Eε(lc)

(1.49)

And to find the critical stress, Equation (1.46) is re-written to take the threshold into
account as:

σc = max
α=[0,1]

σ(α(ε, lc, c), lc, c)

αc = arg[ max
α=[0,1]

σ(α(ε, lc, c), lc, c)]
(1.50)

which yields the following expression of the critical damage αc, or the damage at which
the critical stress σc is reached as a function of the threshold coefficient c:

αc = 8c− 1
8c− 4 (1.51)

And the critical stress σc can be written as:

σc = σ(8c− 1
8c− 4 , lc, c) (1.52)

Only for the admissible 0 ≤ α ≤ 1, with 0 ≤ c ≤ 1/8. For c ≥ 1/8, the maximum stress
state is obtained at α = 0. For c = 0, the standard phenomenological relations (Figure
1.2) are recovered.

Figure 1.4 shows the influence of the threshold coefficient c on the stress-strain-damage
behaviour for fixed lc, E = 1 and gc = 1. The presence of the elastic phase at the beginning
of the loading of the bar is noted for c > 0 (Figure 1.4(a)). When increasing the threshold
coefficient c, the critical stress σc increases. Moreover, it’s obvious how the presence of
a threshold is reflected on the phenomenological behaviour: a more brittle response is
observed at larger threshold coefficients (Figure 1.4(a)) where the softening phase is
much steeper. As mentioned, the problem of damage occurring at low stress-strain levels
was prevented, and the critical strain (εc at which the damage is initiated) is no longer
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(a) (b)

0 0.2 0.4 0.6 0.8 1

(c)

Figure 1.4 – Influence of the threshold coefficient c on the homogeneous (stress,strain) (a),
(damage,strain) (b) and (stress,damage) (c) relations.

infinitesimal (Figure 1.4(b)). The corresponding evolution of the stress as a function of
the damage value is plotted in Figure 1.4(c). It shows that the critical stress is reached at
different damage states for each threshold, and for c ≥ 1/8, the critical stress is reached
at αc = 0 suggesting thus an elastic brittle behaviour until fracture - as opposed to the
case where αc 6= 0 and where the critical stress is reached after some degradation of the
elasticity, e.g., at αc = 0.25.

A more detailed study on the influence of the threshold on the critical stress and the
damage state at which the critical stress is reached is lead. For 0 ≤ c ≤ 1, the evolution of
the stress σ as a function of the damage state α (Equation (1.50)) is shown in Figure 1.5(a).
The critical stress for each threshold coefficient is drawn in ’bittersweet’ colour, and the
evolution of σ as a function of α at for specific thresholds (c = 0, 1/16, 1/8, 1/4, 1/2, 1) are
shown. Figure 1.5(c) shows the αc at which the critical stress σc is reached for 0 ≤ c ≤ 1.
For c ≥ 1

8 , it can be seen that the critical stress is always reached in the sound material
(in the linear elastic phase (Figure 1.5(c)) suggesting thus that the material behaviour is
actually elastic up until failure, a feature that is lost if no threshold is considered.

Additionally, the critical stress (Equation (1.51)) is no longer unique for a set of
material parameters (E = 1, gc = 1) and a specific lc (Figure 1.5(c) shows the evolution of
σc for fixed E; gc and lc) making the internal length lc of the phase-field model a numerical
parameter corresponding solely to the regularisation of the crack.

Moreover, the ability to manipulate the threshold φc,c to simulate more or less brittle
materials is obvious. And that without additional costs on the phase-field problem, i.e.,
without considering perpetually smaller lc and thus finer finite element meshes h to con-
verge to the brittle failure.
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Figure 1.5 – Influence of the threshold coefficient c on the (stress-damage) relation, (a), the
damage state α at which the critical stress occurs (αc) for different threshold coefficients c
(b), and the evolution of the critical stress σc as a function of the threshold coefficient c (c)
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Figure 1.6 – iso-σc for different couples of (lc, c) at fixed gc. Evolution of σc as a function
of lc and c (a), the couples (lc, c) that yield the same σc at fixed gc (b) and the influence
of c on the phenomenological stress-strain relation at fixed (gc, σc) (c)

To illustrate this concept, the critical stress σc is computed for 0 ≤ lc ≤ 20 and
0 ≤ c ≤ 1 and plotted in Figure 1.6(a) for fixed E = 1 and gc = 1. Clearly, different (lc, c)
couples that yield the same critical stress can be found (bittersweet colour which is the
intersection of the σc = σc(lc = 1, c = 0) with the surface σc(lc, c)). Figure 1.6(b) plots the
(lc, c) couples yielding equivalent critical stresses for fixed gc = 1 and E = 1. Of course,
the actual stress-strain relation would differ and it translates into a more brittle behaviour
one as the value of the considered threshold is increased (Figure 1.6(c)). The ability to
simulate more or less brittle material behaviours, and to independently choose σc and
lc provides the phase-field model with even more adaptability for advanced simulations
without adding in complexity.
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Figure 1.7 – Unidimensional bar under traction for the quasi-static benchmark to validate
the implementation and analyse the influence of lc and c

1.9 Numerical examples

To validate the phase-field and check the length scale sensitivity with the influence of
the threshold, a quasi-static uniaxial traction problem with no singularity is considered
[Pham et al., 2011a, Linse et al., 2017, Wu and Nguyen, 2018, Mandal et al., 2019a].
The validation in dynamics is carried-out on the standard dynamic crack branching test
[Borden et al., 2012, Molnár et al., 2020b].

The goal is to study the influence of the different phase-field parameters on the (i)
regularised crack topology and the structural response (ii) in quasi-statics; branching and
crack tip speeds in dynamics (iii).

1.9.1 Quasi-static benchmark : Uniaxial traction bar

The quasi-static benchmark present in [Wu and Nguyen, 2018] is investigated. A bar of
length L = 200mm, of height h = 10mm and unit cross-section under uniaxial traction is
considered Figure 1.7; the left and right edges are stretched by a monotonically increasing
displacement. The following material properties from the literature are assumed; a Young’s
modulus E = 31.25GPa, Poisson ratio ν = 0.25 and gc = 8J/m2.

Plane strain conditions are assumed. In the numerical simulations, three length scales
lc = 5, 10 and 15mm are studied. The mesh size h

min lc = 10 is taken such as mesh-convergent
solutions are guaranteed for all lc [Nguyen et al., 2016, Mandal et al., 2019a, Linse et al.,
2017].

Theoretically, if no imperfections are introduced, the strain and stress fields are strictly
uniform in the bar and it’s impossible to trigger a local damaging band. However, due
to numerical errors / mesh bias, the strain / stress fields are non-uniform allowing thus
the trigger of damage [Wu and Nguyen, 2018]. To overcome crack topology errors coming
from enforcing the irreversibility via the history field Ht=t0

c = max(Ht<t0
c ,W+,t=t0

u − φc,c),
Hc here is not treated as a history function but instead as Ht=t0

c = W+,t=t0
u − φc,c [Linse
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et al., 2017].

As shown in [Wu and Nguyen, 2018, Mandal et al., 2019b], the damage band may occur
on either edges of the bar. To avoid such a case, a Dirichlet condition α = 0 is imposed
on both left and right edges of the bar such that the localisation bands can form in the
interior of the bars as shown in Figure 1.8.

Multiple combinations of length-scales lc and threshold coefficients c are considered
and are shown in Figure 1.8. As expected, the crack bandwidth broadens as the length
scale parameter lc increases; however, no apparent effect from the threshold on the crack
band is observed (observation in Figure 1.9(b) where the damage profiles of the different
lc, c couples are superposed). To quantify the influence of φc,c on the crack topology, the
evolution of the numerically calculated crack surface Γlc (Equation (1.2)) is compared it
to its theoretical value Γ (assuming that the final crack surface Γ = h = 10mm, per unit
thickness). It’s mentioned that the considered mesh leads to around 1 − 3% numerical
errors [Linse et al., 2017, Mandal et al., 2019a]. The following metric is taken to define the
error between the theoretical and numerical crack surface:

εΓlc = |Γlc − Γ|
Γ (1.53)

Figure 1.9(c) shows the errors εΓlc for the three considered length scales with the three
threshold coefficients. The errors are more pronounced at the smaller lc, and it can be
explained by the discretisation. For the larger lc = 10 and 15mm, it’s clear that when
no threshold is considered, the error drops below 2%, and when considering a threshold,
this error increases to around 4% for both cases. It’s recalled that the errors on the crack
topology coming from the imposed irreversibility via the history field H are significantly
larger than the values obtained here [Linse et al., 2017]. As opposed to the length-scale lc,
even though the threshold φc,c was shown to play a major role in the ’brittle’ nature of the
behaviour, no impact from the threshold on the width of the smeared crack is observed.

Figure 1.9(a) shows the load-displacement curves of those simulations. Unsurprisingly,
even for a sufficiently fine mesh, the numerical results are highly dependent on the length
lc, confirming the analytical results presented previously and coherently with literature
findings. The addition of an elastic threshold influences the load-displacement curves. In
fact, when no threshold is considered, the triggering of damage at infinitesimal strains
occurs, which translates to the absence of a linear phase in the displacement-load curve. As
the threshold prohibits the damaging at low strains, the elastic phase prior to damaging is
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Figure 1.8 – Damage profiles for different length-scales lc and threshold coefficients.
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Figure 1.9 – The influence of the threshold and length-scale on the load-displacement
curves (a), phase-field profiles (b) and on the crack topology error (c)
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Figure 1.10 – Geometry and boundary conditions for the crack branching benchmark
[Borden et al., 2012]

reflected on the load-displacement curves.
The proposed parametrisation of the threshold φc,c is thus a robust concept that can

be simply implemented to simulate more or less brittle material without diverging from
the phase-field theoretical aspect.

After validating the quasi-static phase-field implementation on a simple benchmark,
the dynamic implementation is validated on the example proposed by [Borden et al., 2012].
Only the influence of the parametrisation of the threshold φc,c is investigated in the next
section. 4

1.9.2 Dynamic benchmark : dynamic crack branching

To determine the effect of the threshold on the dynamic crack propagation patterns, and
crack tip speeds 5, and to validate our explicit dynamics implementation, the benchmark
example proposed by [Borden et al., 2012] is considered4. It’s a pre-notched rectangular
plate loaded dynamically in tension. The geometry and boundary conditions of the problem
are shown in Figure 1.10.

A constant traction load is applied on the top and bottom boundaries of the specimen.
The other boundaries are free. The following material properties from [Borden et al.,

4. For a more detailed analysis on the influence of lc, gc, and φc,c on the dynamic crack patterns,
interested readers are referred to Appendix A

5. We developed an algorithm that directly computes the crack tip positions and speeds for multiple
cracks in any direction. Interested readers are referred to Appendix B for an schematic representation of
the algorithm
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2012] are assumed; a Young’s modulus E = 32GPa and Poisson ratio ν = 0.2, the length
parameter is set to lc = 0.25mm. gc = 3J/m2. Plane strain conditions are assumed. Three
threshold coefficients c = 0 ([Borden et al., 2012]), 0.25 and 0.5 are compared.

The crack evolution process in this benchmark example is as follows: the crack initiates
from the notch tip and propagates towards the right boundary of the sample. Branching
occurs midway Figure 1.11(a).

The fracture patterns are compared to ones obtained in [Borden et al., 2012]. When
no elastic threshold is considered, i.e., φc,c = 0 (Figure 1.11(a), (d)), the patterns are
in agreement. The crack initiates at around 12µs and branches at 48µs. The branching
occurs at 79mm from the left side of the specimen.

When considering an elastic threshold, and since the material becomes more resistant,
the crack path history is modified;

— for φc,c = 0.25gc
lc

(Figure 1.11(b), (d)), a small modification is observed: the crack
starts to propagate with a delay of a 3µs margin (as compared to [Borden et al.,
2012]) and branching occurs at 52µs instead of 48µs. The crack speed trends 1.11(d)
are similar, however slightly lower than [Borden et al., 2012]’s, making the branching
at 77mm instead of 79mm.

— for φc,c = 0.5gc
lc

(Figure 1.11(c), (d)), the influence of the elastic threshold is more
prominent. The initiation is delayed by around 10µs as compared to [Borden et al.,
2012]. The crack speed reaches lower levels (before t ' 50µs). As the material’s
resistance is increased, the energy provided by loaded boundaries [Broberg, 1996,
Broberg, 1964] is insufficient to create new crack faces as fast as in the previous
cases leading to slower crack propagation. At t ' 50µs, even though the crack tip
speed is comparable to the ones found previously (c = 0 and c = 0.25), the crack
deflects from its original direction of propagation and the emerged branch is directly
arrested. This can also be explained by the higher resistance of the material due to
the addition of the elastic threshold.

As seen, the addition of a threshold on this benchmark influences both the crack paths
and their tip speeds. By making the material more resistant, φc,c slightly slows down the
crack 6; plus, by further increasing the threshold, the second branch is rapidly arrested
leaving the material with a single crack propagating at slightly higher speeds (as compared
to the case where φc,c = 0, and 0.25gc

lc
).

6. The addition of an elastic threshold however does not reduce the maximum reached crack tip speed
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(a) φc,c = 0 (b) φc,c = 0.25gclc (c) φc,c = 0.5gclc

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

1600

1800

(d)

Figure 1.11 – Fracture patterns and crack tip speeds for different elastic thresholds φc,c.
Comparison with the work of [Borden et al., 2012] (no threshold)

Remark 1.2. For interested readers, Appendix A presents further examples showcasing
the influence of the phase-field parameters on the crack paths and crack tip speeds on this
benchmark (lc, gc, fixed gc/lc, fixed resistance σc by manipulating lc and φc,c).

Remark 1.3. In Chapter 5, this benchmark example is re-investigated to analyse the
various mechanisms governing the branching phenomena as a result of dynamic instabilities.
The influence of the instantaneous crack tip speed coupled with the presence of a stress
along the direction of crack propagation on the crack (in)stability is put-forth. Insights
on the damage band thickening are advanced. It’s noted that the analysis in Chapter 5
is restricted to the crack propagation until branching, hence the rapid crack arrest after
branching, i.e., for example in (Figure 1.11(c)) will not be investigated by then.

87



Part II, Chapter 1 – Phase Field modelling of brittle failure: the microscopic scale

1.10 Concluding remarks

In this chapter, we reviewed the phase-field method within its computational framework.
We showcased its quasi-static and dynamic implementations.

Details regarding the regularisation, the crack density function, the strain energy
decomposition, and the history function are given. The overall algorithms for both the
dynamic and quasi-static implementations are put-forward.

We validated our implementation on a unidimensional bar in traction and a dynamic
crack branching problem.

By parametrising the elastic threshold considered for the quadratic crack density
function, we introduced the following contribution to the already robust framework:

(i) the ability to adjust the critical stress σc independently from gc by considering lc as
a modelling parameter (length scale, regularisation parameter) and not a material
parameter. The need for decoupling the toughness gc, the critical stress (equivalently
the strength) σc and the length scale parameter is to be put-forth in Chapter 3, where
we’ll see how in case of microscopically heterogeneous materials, the uniqueness
of the relationship of the effective medium between a length-scale, strength and
toughness is lost;

(ii) the ability to perform simulations on a wider range of more or less brittle materials
by solely manipulating the threshold φc,c, i.e., having elastic behaviour until softening
(without primarily hardening), having different hardening behaviours;

(iii) the ability to perform lighter computations, i.e., for fixed gc and σc; different couples
of (lc, φc,c) can be interplayed to perform simulations, with the ability to always
increase lc and hence reduce mesh size and computational costs by increasing gc, of
course the infleunce on phenomenological (stress-strain) behaviour should be kept in
mind (regarding the drift towards a more brittle or quasi-brittle behaviour);

(iv) the recovery of the theoretical crack topology.

All this is believed to allow the phase-field even more adaptability for advanced
simulations without adding to its implementation complexity.

This approach is implemented to simulate the failure of the architectured materials,
and the results would be upscaled via the coarse-graining technique that is covered in the
next Chapter 2.
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2.1 Introduction

The global response of a material is often governed by its behaviour at the smaller
length scales, e.g., in materials science, the elastic behaviour is influenced by the atomic-
lattices reshaping and resizing in metals, or polymer chains stretching in rubbers/polymers;
strength, toughness and ductility, are influenced by defects at the microscopic scale;
in geotechnics, the permeability of unsaturated soils is influenced by their grain-size
distribution. Predicting the macroscopic behaviour of materials from the mechanics of
their microstructure has been a subject of intensive research.

A variety of upscaling methods were proposed to reveal the relations between the
microstructures from one side and the behaviour at higher scales from the other [Ongaro,
2018]. Aside from determining the effective material properties, there’s a relevant need
for incorporating small-scale mechanisms of deformation and damage to essentially assess
reliability and lifetime of microscopically heterogeneous structures within reasonable
computations.

Accordingly, the coarse-graining technique from [Goldhirsch and Goldenberg, 2002]’s
work in Molecular Dynamics is adapted to evaluate continuum mechanics at different
intermediate mesoscales solely from the gathered data at the microscopic scale and by
a manipulation of the inviolable conservation laws. The effective fields of mechanical
properties are thus established.

This method allows the construction of consistent density, displacement, strain and
stress fields at larger scales based on the actual physics in question at the scale of the
heterogeneities. Without any a priori on the material’s behaviour, the herein proposed
scheme provides a genuine evaluation of the effective material and failure properties at the
considered scales.

The overview of this chapter is as follows: first, we recall the multiple scales of interest
for a failure problem of heterogeneous materials. In Section 2.3, the underlying principles of
the coarse-graining method are showcased, the method’s parameters and briefly discussed.
A continuum mechanics adaptation of the coarse-graining method as seen in [Goldhirsch
and Goldenberg, 2002] is followed in Sections 2.4 and 2.5, and a general application scheme
is forwarded. Finally, two numerical examples are considered (Section 2.6) to validate
the proposed approach: (i) an analysis of a Periodic lattice of holes, for which the coarse-
grained mechanical properties (density and elasticity) can be compared to the standard
RV E-based homogenisation methods. And (ii) an application on analytical solutions for
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(a) microscale

?

(b) mesoscale (c) macroscale

Figure 2.1 – The scales of interest for the failure problem of microscopically heterogeneous
materials: the microscopic scale (a) the intermediate mesoscopic scale(s) with properties
obtained upon the length scales considered (b) and the structural macroscopic scale (c).

the displacement and stress fields around a crack that validates the applicability of the
coarse-graining technique when sharp localisation, i.e., crack, exists.

2.2 Scales of interest

We start this chapter by briefly recalling the multiple scales of interest at which damage
problems can be tackled: the microscopic level, the macroscopic level and the mesoscopic
level(s) in between:

— The microscopic level is the level at which the material’s architecture is prominent.
Continuum mechanics apply; brittle failure occurs and can be simulated by the linear
elastic fracture mechanics or its approximations (Phase-field Modelling [Francfort,
1998], Eigen erosion [Pandolfi and Ortiz, 2012]...).

— At the macroscale, the material is seen as a homogeneous bulk (Figure 2.1(c)),
where linear elastic fracture mechanics elements can be implemented, and microstruc-
tural features give rise to resistance-curve behaviour. Effective macroscopic physical
parameters shall be determined.

In between those scales are the mesoscales.

— At the mesoscales, the literature suggests considering a homogeneous material (Figure
2.1(b)), and the effects of the microstructural heterogeneities are implemented in
the modelling with the introduction of a process zone of size related to a certain
length parameter to which damage spreads. Phase-Field Modelling, Eigen Erosion
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and Thick Level Set applied to quasi-brittle failure are examples of models considered
at this scale.

The homogeneity of the fields at the intermediate mesoscales is put into question in this
study and the bottom-up approach is considered to answer the arisen questions.

2.3 Coarse-graining technique principles

The goal of the coarse graining is to produce continuum equations out of information
from the smaller scales. When seeking to find continuum mechanics for the fracture process,
out of information gathered at the microscopic scale, the challenge is to find an appropriate
technique that takes into consideration the real solicitation of the material as well as
the singularities coming from crack propagation and the presence of the heterogeneities.
The micromechanical fields (that can be generated from phase-field simulations, or from
analytical solution, or experimentally gathered, etc.) are upscaled by adapting the method
from [Goldhirsch and Goldenberg, 2002]’s work in Molecular Dynamics: a physically
consistent upscaling coarse-graining method that allows going from discrete probability
density into an upscaled continuum (Figure 2.2).

The parameters of this method are:

— the convolution or the coarse-graining function φ that can be any sufficiently regular
function with a local support: a variety of forms were studied and similar results
were obtained; in this work, the normalised Gaussian distribution (Figure 2.2(b)) of
zero mean µ and a standard deviation σ is considered. It takes the following form:

φ(x, σ, µ) = 1
σ
√

2π
e
−(x−µ)2

2(σ)2 (2.1)

— the width of the convolution function lCG = w/2. In Equation2.1, w = 2× 3σ: it’s
the most important parameter that defines the different length-scales at which the
problem is inspected. The normalised Gaussian function can be rewritten as follows:

φlCG(x, lCG) = 1
lCG

3

√
2π
e

−x2

2( lCG3 )2 (2.2)

— the discretisation H considered for the coarser mesh (the support for the coarse-
graining): this parameter defines the resolution of the coarse-grained fields (Figure
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(a) Random particle system (b) Gaussian Distribution (c) Mesh support

Figure 2.2 – The coarse-graining function (b) sweeps over the different points in the
domain (c), Information from the particles system (a) is smoothed and continuous fields
are computed

2.2(c)) and does not affect their distribution. Identical results are obtained from
investigations on multiple discretisation sizes validating thus the mesh objectivity of
the proposed upscaling technique.

In [Goldhirsch and Goldenberg, 2002], a system of particles indexed by e is considered
(Figure 2.2(a)), with known masses me(t) and centres of masses re(t) at time t. The
coarse-grained mass density at position r and time t is given by:

ρ(r, t) ≡
∑
i

meφ[r − re(t)] (2.3)

Unlike in [Goldhirsch and Goldenberg, 2002], continuum data is considered at the fine-
scale from the micromechanical simulations. Let Ω0 be the domain of interest in the
microstructure, a discretisation of Ω0 into finite elements serves as a support for the
coarse-graining computations. Unlike in [Glasser and Goldhirsch, 2001], here only spatial,
and not temporal coarse graining, is invoked. The coarse-grained mass density R(x, t) at
position x in Ω0, at time t, is defined as the convolution between the microscopic density
function ρ and the predefined coarse-graining function φ:

R(x, t) =
∫

Ω0

ρ(x− x′, t)φ(x′, t)dx′ (2.4)

For the sake of simplicity, the following notation is considered to replace the convolution:
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〈ρ(x, t)〉φ =
∫

Ω0

ρ(x− x′, t)φ(x′, t)dx′ (2.5)

and the coarse-grained mass density R(x, t), at position x and time t, would be as follows:

R(x, t) = 〈ρ(x, t)〉φ (2.6)

From this spatial/temporal definition of the coarse-grained mass density, and by imposing
the mechanical conservation laws at both the microscopic and coarse-grained scale, expres-
sions for the impulsions, velocities, displacements and stresses are obtained at different
positions x and times t, at the coarse-grained scale. We start by recalling the conserva-
tion laws written at the microscopic scale; i and j denote the different directions in the
considered space:

— Balance of Mass
∂ρ

∂t
+ ∂(ρu̇i)

∂xi
= 0 (2.7)

— Balance of Momentum

∂

∂t
ρu̇i + ∂

∂xi
ρu̇iu̇j = ∂

∂xj
σij (2.8)

2.4 Balance of mass

A simple manipulation of Equation (2.7) allows the computation of the expression for
the velocity at the coarse-grained scale. Computing the convolution of both sides of the
equation, one can obtain:

〈∂ρ
∂t
〉φ = −〈∂(ρu̇i)

∂xi
〉φ (2.9)

The left side of the equation denotes the time derivative of the coarse-grained density
R(x, t):

∂R

∂t
= −〈 ∂

∂xi
ρu̇i〉φ (2.10)

Using the basic rule of the derivation of convolution, one can write:

∂R

∂t
+ ∂

∂xi
〈ρu̇i〉φ = 0 (2.11)
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Writing the balance of mass at the coarse-grained scale, with RU̇i denoting the impulsion
Pi at the coarse-grained scale:

∂R

∂t
+ ∂

∂xi
RU̇i = 0 (2.12)

and by identification between Equation (2.11) and Equation (2.12), we can conclude that

RU̇i = 〈ρu̇i〉φ (2.13)

2.4.1 Coarse-Grained velocity

Identifying the coarse-grained impulsion, Pi = RU̇i, and the microscopic impulsion,
pi = ρu̇i, one can see that the coarse-grained impulsion is equal to the coarse-graining of
the microscopic impulsion, which is not the case for the velocity field. The velocity at the
coarse-grained scale is the ratio between the upscaled impulsion and the coarse-graining
mass density:

U̇i = 〈ρ u̇i〉φ
R

= 〈 pi〉φ
R

= Pi
R

(2.14)

2.4.2 Coarse-Grained displacement

In this study, continuum mechanics is assumed to hold in all length scales involved; the
derivation is restricted to small displacement gradients and the discussion is confined to
analysis on perfectly solid materials. The displacement Ui can be obtained by integrating
the coarse-grained velocity U̇i over time.

In quasi-static problems, the coarse-grained displacement Ui and velocity U̇i fields have
similar expressions, from Equation (2.14):

Ui = 〈ρ ui〉φ
R

(2.15)

2.4.3 Coarse-Grained strain and strain rate

Next, it is natural to proceed with a strain calculation based on the coarse-grained
velocities, and displacements:

E = 1
2(∇U +∇TU) (2.16)
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Ė = 1
2(∇U̇ +∇T U̇) (2.17)

2.5 Balance of linear momentum

At the microscopic scale, the balance of linear momentum states:

∂

∂t
ρu̇i + ∂

∂xi
ρu̇iu̇j = ∂

∂xi
σij (2.18)

at the mesoscopic scale, a similar expression is expected with coarse-grained mechanical
fields, to be written as:

∂

∂t
RU̇i + ∂

∂xi
RU̇iU̇j = ∂

∂xi
Sij (2.19)

From the time derivative of the coarse-grained impulsion Pi = RU̇i = 〈ρu̇i〉φ (Equation
(2.13)), and using the basic rule of derivation, the expression of the stresses at the coarse-
grained scale is determined:

∂Pi
∂t

= 〈 ∂
∂t
ρu̇i〉φ (2.20)

from the balance of momentum at the microscopic scale Equation (2.8), we can write
Equation (2.20) as:

∂Pi
∂t

= 〈 ∂
∂xi

(σij − ρu̇iu̇j)〉φ (2.21)

It’s here interesting to introduce what is called ’fluctuating velocity’ u̇i′ = u̇i − U̇i. This
velocity does not add any impulsion to the system, and the coarse-grained fluctuation
impulsion vanishes as:

〈ρu̇i′〉φ =
∫
ρ(u̇i(x− x′, t)− U̇i(x, t))φ(x)dx′ = 〈ρu̇i〉φ − U̇i〈ρ〉φ = Pi −RU̇i = 0 (2.22)

Once, u̇i is replaced in Equation (2.21) by u̇i′ + U̇i, the following equation can be written:

∂Pi
∂t

+ ∂

∂xi
RU̇iU̇j = ∂

∂xi
〈σij − ρu̇i′u̇j ′〉φ (2.23)

2.5.1 Coarse-Grained stress

Now writing the coarse-grained balance of linear momentum as a function of the
coarse-grained variables, and by identification between Equation (2.23) and (2.19) the
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expression of the stress at the coarse-grained scale is obtained:

Sij = 〈σij − ρu̇i′u̇j ′〉φ (2.24)

In quasi-statics, the dynamic terms u̇i′u̇j ′ will be neglected and the stress at the coarse-
grained stress field S scale is found to be equivalent to the convolution of the microscopic
stress field with the coarse-graining function: S = 〈σ〉φ.

Finally, from equations Equation (2.15), Equation (2.16) and Equation (2.24), displace-
ment, strain and stress fields are constructed out of micromechanical fields. As seen, this
upscaling technique requires no condition on the geometrical aspect of the microstructure,
nor on the micromechanical fields, nor puts any a priori on the behaviour at the mesoscopic
scales. It’s indeed applicable on arbitrary heterogeneous (e.g., non-periodic) materials even
when sharp localisation is present. The following box summarizes the overall algorithm of
the application of the proposed coarse-graining method.
A general scheme of analysis based on the proposed coarse-graining method
within the finite element configuration

Acquire the microscopic displacement, stress and strain (numerical simulations, analytical
solutions, etc.)
Choose the domain of interest Ω0, the coarse-graining support mesh H and the coarse-
graining scales lCG
Coarse-grain the mechanical fields for each lCG

1. Map microscopic finite elements to their corresponding grain(s), and compute Equa-
tion 2.2

2. From the definition of the coarse-grained density, compute R (Equation 2.6)

3. From the balance of mass, compute the coarse-grained velocity field V (Equation
2.14) and deduce the coarse-grained displacement field U

4. From the balance of momentum, compute the coarse-grained stress field S (Equation
2.24)

Remark 2.1. The general scheme of analysis is herein presented within the framework of
this study (application on mechanical fields coming from simulations), of course it can be
adapted to other cases, e.g., the coarse-graining of full-field experimental measurements
(digital image correlation DIC) to obtain consistent coarse-grained displacement, strains
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and strain-rates.

Remark 2.2. It’s mentioned that all the computations are made using an in-house
MATLAB finite element code.

https: // github. com/ dengwirda/ find-poly provided an efficient grain-element
mapping algorithm. (up to 500% efficiency boost as compared to built-in MATLAB function.)

2.6 Numerical examples

In this section, the implementation of the coarse-graining scheme is validated on a
Periodic lattice of holes, for which the coarse-grained mechanical properties (density and
elasticity) are compared to the standard RV E-based homogenisation methods. Of course,
the conditions of applicability and validity of the standard homogenisation method are
sought for thorough comparison, hence the application on simple Periodic lattice under
the condition that no large gradients of deformation nor localisation occur. The second
application validates the applicability of the herein proposed coarse-graining technique
when sharp localisation, i.e., presence of crack, exists.

2.6.1 Application on a hexagonal distribution of holes

First, a validation on a hexagonal distribution of holes (Figure 2.3(a)) is sought. The
microstructure’s symmetry order (6) should lead to elastic isotropic equivalent media
[Auffray, 2008]. The holes’ spacing is of d = 300µm; they have a radius rh = 750µm
leading to a volume fraction of the bulk of 78%. The unit-cell RV E is shown in figure
2.3(b). For this application, the following mechanical properties are considered: E = 3GPa,
ν = 0.35 and ρ = 1200kg/m3. A rectangular architectured sample is considered. Within
the finite element framework, the specimen is meshed with triangular finite elements of
size h = 20µm. The coarse-graining support domain is put at the core at the specimen
and coarser elements H = 1mm are considered (Figure 2.4).

From Equation 2.6, the coarse-grained density field in the support domain can be
determined. Figure 2.4 shows the evolution of the density fields R(x) at three coarse-
graining scales lCG/d = 1/2, 2 and 4. As the implemented coarse-graining method is based
on the inviolable conservation laws - mass continuity between them -, it can be seen that
the mean effective density in the studied domain (Figure 2.5) is conserved through the
scales and only the homogeneity of the field is altered. The volume fraction (78%) is
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(a) Periodic lattice (b) RV E (c) Coarse-graining support

Figure 2.3 – The Periodic lattice (hexagonal distribution) (a) and its one-unit-cell RV E
(b). The Periodic lattice and the coarse-graining support Ω0 (c)
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Figure 2.4 – Effective density fields of the Periodic lattice

recovered. It’s observed that heterogeneities of the effective density of the material are
smeared-out at lCG/d = 1. It’s considered that the homogeneity of a field is attained
once its corresponding coefficient of variation COV drops below the ≤ 1% threshold. The
arithmetic mean is calculated as the sum of the sampled values (whether at the nodes
or the Gaussian points of the coarse elements in the coarse-graining support domain
Ω0) divided by the total number of samples (nodes and Gaussian points respectively).
The standard deviation is found by taking the square root of the average of the squared
differences of the values from their mean value. The coefficient of variation is defined
as the ratio of the standard deviation to the arithmetic mean. (More details about this
’homogenisation’ of the mechanical fields can be found in Chapter 3).

The focus is now turned to the ability of the coarse-graining technique to determine the
effective elasticity tensor at the different scales. The obtained elasticity tensor is compared
to results coming from the periodic homogenisation technique.
Two tensile and one shear test simulations are conducted on the specimen. From the
microscopic mechanical fields, coarse-grained displacements, strains and stresses can be
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Figure 2.5 – Density conservation through the scales lCG and the evolution of the corre-
sponding coefficient of variation COVR
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Figure 2.6 – Mean values of the effective stiffness tensor and their deviation at different
coarse-graining scales lCG/d (abscissa)

evaluated for different lCG. Coarse-grained strain and stress couples obtained from the
three tests, provide an evaluation of the nine components Cij of the stiffness tensor C,
representative of the elastic behaviour. The reduced expression for the effective elasticity
tensor in 2D is adopted: 

S11

S22

S12

 =


C11 C12 C16

C21 C22 C26

C61 C62 C66



E11

E22

2E12

 (2.25)

Figure 2.6 shows the evolution of the different components of the stiffness tensor of the
material points with the considered coarse-graining scale lCG. The mean values (at each
lCG) of the components of the effective stiffness tensor converge towards their long-scale
effective limit starting from considerably small scales (lCG/d ≥ 1, half the size of the
unit-cell RV E). Moreover, These results converge rapidly (lCG/d ≥ 1.5) to the values
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obtained from the periodic homogenisation CP.H. technique applied on the RV E with one
unit cell (Figure 2.3(b)):

[
CP.H.

]
=


2.374 1.053 0
1.053 2.375 0

0 0 1.321

GPa, (2.26)

within a relative mean square error of 0.6%. More details about the parameters considered
for this application can be found in Chapter 3 where we detail the influence of the scale
on the material behaviour.

As outlined, the coarse-graining implementation was successfully validated on a Periodic
lattice of holes, and results are found to be consistent with the standard techniques found
in the literature.
Next, the ability of the proposed method to smear-out sharp localisations is put to the
test.

2.6.2 Application on asymptotic analytical static fields

To validate the applicability of this method in cases where sharp localisations exist,
the coarse-graining scheme is applied on analytical displacement and stress fields around
a crack tip. As seen in the introduction, the presence of a crack induces a discontinuity
of the mechanical fields. The coarse-graining technique is expected to smear-out the
sharp localisation, see e.g., Figure 2.7, that shows a schematic representation of the stress
distribution and the displacement jump smoothened by a Gaussian filter, while conserving
mass, energy and momentum balance.

A semi-infinite straight crack in a 2D elastic body -of shear modulus µ and Poisson
ratio ν - is considered. The expression of the in-plane stresses and in-place displacement
fields are given in Chapter 0.

Generation of the analytical fields

The theory of linear elastic fracture mechanics characterises the stress state near the
crack front for a linear elastic isotropic material (Chapter 0). The presence of a crack
induces a discontinuity of the mechanical fields which is at the origin of the singularity
at the crack tip (the stresses tend to infinity). In order to generate the analytical fields
on which the coarse-graining technique will be applied, a grid of data points representing
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Figure 2.7 – Schematic representation of the problem: the displacement jump and stress
singularity and the application of a Gaussian unidimensional filter to the plots

a body is considered. A crack tip is assumed to be propagating horizontally along the
middle of the grid at each stepping. For each position of the crack tip, the leading term
(KI) is considered to generate a displacement field in the domain at the vicinity of the
crack tip. The ingredients can be summarised as follows:

— Grid data (dimension and size)

— Material elastic properties

— Plane strain / plane stress assumption

— Position of the crack tip

— SIF and higher order terms, i.e., T − stress.

In a 2D elastic body (ρ = 1200kg/m3) of E = 3GPa, ν = 0.35 elastic properties,
within the plane strain configuration, a horizontal crack travelling in pure mode I at
KI = 1.5MPa

√
m, yields the displacement fields at the vicinity of the crack tip depicted

in Figure 2.8(a). The corresponding stress distribution is shown in Figure 2.8(b). The
visualised domain corresponds to the coarse-gaining support domain Ω0, i.e., the zone in
which the upscaled fields will be computed.

After acquiring the evolution of the stress and displacement fields along the advancement
of the horizontal crack inside the domain (left to right), the coarse-graining technique is
applied.

102



2.6. Numerical examples

Coarse-grained displacement and stress fields

Delaunay triangulation of the discretized data enables the application of the proposed
coarse-graining technique. As previously established, the density field is first computed
on a coarse-graining support mesh. For this exercise, the coarse mesh size H is set to
H = lCG/5.
Of course, the density R accross the scales is conserved and is equivalent to R = ρ =
1200kg/m3 (homogeneous body). The analysis is then followed on the displacement fields,
strain fields and stress fields. Figure 2.8 shows the upscaled fields at two different coarse-
graining scales corresponding to lCG = 500µm and lCG = 1000µm respectively.

The regularisation of the localisation by the coarse-graining technique is noted. In
fact, both the displacement and the stress singularity were regularised. The smoothening
of the fields depends directly on the considered coarse-graining scale. In the following
Chapter 3, the influence of the coarse-graining scale on heterogeneous materials at different
transitional scales (from scale of heterogeneities towards an " effective " representation of
the material) is exhibited. An in-depth analysis based on the coarse-graining technique is
to be lead.

As seen in this section, displacement and stress fields at the vicinity of a horizontal
crack are upscaled; hence, "equivalent" coarse-grained displacements, strains and stresses
can be obtained.

On the coarse-grained stress-strain behaviour

The jump on the crack faces is smoothed as the observation scale (lCG) increases and
the sharpness of the crack is smeared-out. Being able to link the LEFM , knowingly, the
stress and displacement solution to damage mechanics has always been a challenge in the
community. With the ability to link discontinuous/singular mechanical fields related to
LEFM , via the coarse-graining scale, to effective continuous fields; damage mechanics
components naturally emerge, and an effective stress-strain relation can be forecasted.

The coarse-grained strains and stresses are confronted. Thanks to the symmetry
properties of the considered simple crack-propagation case, the stress-strain history of
the different points along a horizontal line are precisely equivalent. The history of the
coarse-grained stresses for each point in the coarse-graining support are plotted against
their corresponding coarse-grained strains in Figure 2.9 at two lCG. A stress-strain relation
at the coarse-graining scale naturally emerges.
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Figure 2.8 – Displacement and stress fields at the vicinity of a horizontal crack. The
discontinuity of the displacement field and the singularity of the stress field are regularised
by the coarse-graining. This regularisation is dictated by lCG
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For the two considered length scales, the effective material behaviour appears to
undergo a linear elastic trend before its degradation. Non-uniqueness of the stress-strain
response is noted when studying the response in a neighbourhood around the crack. The
curve reaching the maximum stress corresponds to the response of the points along the
crack path. As the distance to the crack path dc increases, the stress-strain response of
the corresponding points reach lower maximum stress states. When the points are much
further to the crack path (dc > lCG), they remain undamaged and show typical linear
elastic stress- strain response. When observing the behaviour of the data points closest to
the crack path, it’s obvious how the linear elastic region at the initial states of loading are
followed by a non-linear region before reaching the critical stress where softening occurs:
this suggests typical quasi-brittle effective behaviour. The critical stress σf (the maximum
stress state reached at the mesoscopic scales from the mesoscopic stress-strain equivalent
response) reached at each lCG depends unsurprisingly on the considered scale. Of course
it’s expected to tend to infinity when lCG tends to zero (to coincide with the analytical
solution provided by [Williams, 1957] without coarse-graining). In fact, a tendency stating
σf ∼ 1√

lCG
is found. Similar expressions relating the tensile strength σf to the characteristic

length lc, E and gc are found in [Nguyen et al., 2016, Benallal and Marigo, 2007, Pham
et al., 2011b, Amor et al., 2009] for gradient and non-local damage models, and in the
findings from the previous Chapter 1 (unidimensional solution of the phase-field model).
Interested readers are also referred to Section 3.7 in Chapter 3 for similar findings also on
heterogeneous phase-field simulation results.

On the presence of a damage law

As the quasi-brittle behaviour under mode I loading of the effective material is set -
independently of lCG- an attempt to write a damage evolution law based on the effective
stress-strain (Figure 2.9) results and the standard degradation function g(α) = (1− α)2

(found in Chapter 1) was made. Interested readers are referred to Appendix C. However,
difficulties were encountered when extending the scheme to a combined mode I mode II
loading, even for mode I with T − stress loading. Future prospects require building on
these findings to further advance on linking damage mechanics to fracture mechanics.
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Figure 2.9 – Coarse-grained stress-strain behaviour of the data points as a function of their
vertical distance to the crack path at two length scales lCG. In the schematic, the crack path
is represented by the green horizontal line, and the circle represents the coarse-graining
function width

2.7 Concluding remarks

In this chapter, we introduced the coarse-graining technique as an upscaling method
that does not require specific boundary conditions (as opposed to classical homogenisation
schemes) and that should be indeed applicable to non-periodic structures presenting high
strain localisation.

It’s a bottom-up approach adapted from Molecular Dynamics studies, and it allows
the evaluation of continuum quantities at different scales starting from the scales of
heterogeneities.

The coarse-graining method is solely based on a definition of a coarse-grained mass
density and a manipulation of the inviolable conservation laws:

(i) The balance of mass

(ii) The balance of linear momentum

It allows the consistent computation of continuous fields across the scales without any a
priori on the behaviour at the larger scales:

(i) Densities,

(ii) Velocities,

(iii) Displacements,
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(iv) Strains and strain rates, and

(v) Stresses

We validated our implementation to determine the effective elastic properties of
a Periodic lattice of holes and compared the results with other standard RV E-based
homogenisation method. The second application validates the applicability of this method
in cases where sharp localisation exists, by coarse-graining mechanical displacement and
stresses obtained from near-tip asymptotic solution ([Westergaard, 1939]).

Successful bridging between fracture mechanics and damage mechanics is achieved:
Quasi-brittle behaviour The coarse-graining method introduces a length scale which
implies softening of the material - and thus an equivalency to a softening behaviour with
a process zone, without any a priori on the behaviour at the larger scales. Plotting the
stresses against the strains shows a typical response of quasi-brittle materials where a
linear elastic region is followed by a non-linear region before softening. The notion of
strength is thus notable.

Non-local effects Without any assumption on the material behaviour, the absence
of a unique behaviour law that links the local variables, i.e., local strains and local stresses,
is illustrated. The stress-strain history of the elements at different distances to the crack
path is different suggesting thus non-locality of the behaviour.

After advancing the computational methods, introducing our contribution and vali-
dating their implementation on benchmark cases / simple examples, the following part
tackles the multi-scale analysis of failure in architectured materials. The analysis would
evolve from phase-field modelling at the microscopic scale (scale of heterogeneities in the
architectured materials) to simulate brittle failure, towards the estimation of the effective
elastic, toughness and strength properties of the material at the mesoscopic scale, via the
herein proposed coarse-graining technique.
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Part III, Chapter 3 – Multi-scale crack propagation in architectured materials

3.1 Introduction

The ability of architectured materials to give a wide range of stiffness, strength and
fracture toughness popularised their use. Demands on custom-designed architectures to
meet certain specifications have boomed, and with them research activities around this
subject. In this chapter, we address the crack propagation behaviour of three architectured
materials: a hexagonal lattice of holes and two Penrose-type-Quasi-Periodic distributions.

The remarkable properties of general architectured materials regarding crack initiation
and propagation were put forth by [Glacet et al., 2018]. In fact, previous work shows
how toughness heterogeneities [Dalmas et al., 2009, Chopin et al., 2011, Patinet et al.,
2013, Lebihain, 2019], elastic inclusions [Xia et al., 2013, Wang and Xia, 2017] or residual
stresses[Bower and Ortiz, 1993, Lacondemine, 2019] induce trapping mechanisms, i.e., the
crack is attracted to the architectures’ patterns and trapped inside the tessellation. A
new initiation is then required for the cracking to advance. This trapping mechanism is
responsible for the better performances of the architectured materials regarding fracture.

However, the real-life use of such highly heterogeneous materials is bridged by some
limitations, in fact, despite the many powerful computational methods that have been
developed in the last few decades, explicitly modelling the architectures for numerical
simulations remains a heavy task. Thus, of course, it’s appealing to describe a simpler
nature of those materials.

In this spirit, this chapter tackles the crack propagation inside architectured materials.
A multi-scale analysis of the propagation via the coarse-graining approach proposed

in Chapter 2 is applied on crack propagation simulations. The coarse-grained mechanical
response is investigated at multiple intermediate scales lCG, i.e., between the scale of
heterogeneities and the supposedly effective material.

This application elaborates on the indispensable ingredients for accurately accounting
for the microtructural influence at larger scales (e.g., scales of the part). By analysing the
coarse-grained mechanical response before fracture and through the crack propagation, the
effective crack path, fracture strength and fracture toughness of the architectured material
regarding the propagating crack are established. The ’homogeneity’ of these properties are
analysed across the scales, and discussions regarding the inevitability of considering an
effective non-homogeneous material in which the influence of substructures is preserved at
the mesoscopic scales are advanced.

This chapter is organised as follows: first, the numerical model for the micromechanical
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3.2. Quasi-static fracture simulation

simulations is advanced. Results from the phase-field simulations are presented in Section
3.2. After acquiring the microscopic fields (fields from simulation in which the microstruc-
tures are explicitly modelled), the coarse-graining technique is initiated. The analysis of
the effective density and effective elasticity fields are presented in Sections 3.3 and 3.4. A
multi-scale analysis of the effective crack path shows a conservation of the crack tortuosity
in the Quasi-Periodic material even for large observation scales (Section 3.5). The notion
of strength emerging from the obtained coarse-grained stress-strain response is analysed
across the scales in Section 3.6. Last, the evolution of the effective toughness is analysed
in Section 3.7.

Remark 3.1. Parts of this chapter are published in [Eid et al., 2021].

3.2 Quasi-static fracture simulation

For the micro-mechanical simulations, the microstructures (Section 0.4, Figure 8,
Table 1) are put at the core of a Tapered Double Cantilevered Beam (TDCB) fracture
geometry to provide crack growth stability from the tapered profile of the specimen
[Brown, 2011, Grabois et al., 2018]; the microstructure is surrounded by a homogeneous
bulk material, the dimensions are put forth in Figure 3.1. Displacement boundary conditions
are applied for the phase-field micro-mechanical simulation. In fact, the stability in crack
growth provided by the TDCB specimen is believed to match the stability provided by
the application of a surfing boundary condition [Hossain et al., 2014]. In both cases, the
crack evolves as it pleases inside the microstructure. In this study, the former - more
straightforward - approach is adopted.

We recall that in this chapter, we confine ourselves to the quasi-static evolution of
cracks neglecting thus dynamics effects. The numerical discretization h = 200µm is
thoughtfully adapted to the heterogeneities sizes and distributions inside the domain and
based on [Nguyen et al., 2016]; the internal parameter of the phase-field model lc is set
to 400µm. Both lengths are much smaller than the structures’ heterogeneities leading to
mesh-independent crack initiation and propagation. Table 3.1 resumes the overall model
and material parameters considered for the simulation.

Figures 3.2 displays the phase-field simulation results. A comparison with some ex-
perimental results 1 is also reported. The influence of the microstructures on the crack

1. Within a first year engineering project, three students worked on an experimental study of crack
propagation in matching samples. Samples were cut-out via a laser-cutting machine from a commercial
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Figure 3.1 – Full (a) and close-up (b) diagrams of a typical finite element mesh of a TDCB
specimen with the considered coarse-graining support mesh region (in light blue) allowing
the study of large scales lCG up to 10 times the mean distance between holes d.
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3.2. Quasi-static fracture simulation

Crack density function Equation 1.3 ([Miehe et al., 2010a])
Strain split Extensive/compressive ([Miehe et al., 2010a])
Plane strain assumption
Boundary condition Imposed u
E (Young’s Modulus) 3GPa
ν 0.35
gc 250J/m2

lc 2× mesh size = 2× h = 400µm ([Nguyen et al., 2016])
c (threshold) 0.25

Table 3.1 – Overall phase-field model and material parameters considered for the quasi-
static simulations

propagation is prominent. For the Periodic material, a simple linear crack path is ob-
tained (both numerically and experimentally) suggesting thus the presence of weak planes
[Glacet, 2018, Réthoré et al., 2017]. For the Quasi-Periodic materials, each type proposes
different-more tortuous paths suggesting more complexity of the damaging process. Even
though experimental and numerical patterns don’t exactly fit, (for reasons reported in the
footnote 1) the influence of the microstructure is reflected on both paths and is fundamen-
tally similar: cracks tend to deviate around ’resilient patterns’, an effect systematically
reproduced at different locations inside the specimen both numerically and experimentally.
A more detailed investigation on the crack paths is found in Section 3.5.

From the phase-field simulations, the macroscopic response -knowingly the load-
displacement curve- was acquired. This give insight on the effective ’macroscopic’ be-
haviour of the different microstructures’ response. Unsurprisingly, the influence of the
microstructure is reflected on the load-displacement response (Figure 3.3). Periodic oscil-
lations are found in the Periodic microstructure and arbitrary oscillations are found in
the Quasi-Periodic microstructures. The maximum load and the imposed displacement at
which the maximum load is reached are virtually similar.

The energy dissipated in the respective materials, when the crack propagates inside
a domain of interest Ω0 inside the TDCB are given in the Table 3.2. Ω0 is defined in
Chapter 2 as the zone of interest for the coarse-graining computations. Considering only

PolyMethyl Methacrylate (PMMA) plate manufactured by Arkema. A reproduction of the exact specimens
was of extreme difficulty due to the imprecision of the laser-cutting machine. Cut holes were more or less
skewed. The laser beam cutting the PMMA generated residual stresses in the material. These uncontrolled
phenomena lead to discrepancies in the fracture process making it hard to be numerically reproduced.
Despite these difficulties, the simulation managed to qualitatively reproduce the crack patterns.
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(a) Periodic (b) Quasi-Periodic type 1 (c) Quasi-Periodic type 2

Figure 3.2 – Phase-field simulation of the fracture of the architectured materials (up),
the data points where the damage α > 0.99 are removed to mimic a crack opening.
Experimental footage showing the crack patterns obtained in-lab

the dissipation in this zone (coarse-graining support domain) allows a later-on comparison
with the energy dissipation at the coarse-grained scales (in Section 3.7). The energy
dissipated during the crack growth is defined as the difference between the variation of
the work done by the external loads and the work of the internal forces during the growth
of the crack area. The architectured materials actually dissipate less energy than the
full material; however, when related to the effective density and rigidity modulus, the
hexagonal Periodic shows an improved toughness of 14% over the homogeneous materials
while the Quasi-Periodic 1&2 show an overwhelming 30% improvement in their capacity

.

Geometry Dissipated energy (mJ)
Homogeneous 347
Periodic 229
Quasi-Periodic - type 1 230.6
Quasi-Periodic - type 2 228.5

Table 3.2 – Energy dissipated by the crack propagation in the coarse-graining support
domain computed from the load-displacement curve

116



3.3. Density

Figure 3.3 – Load-displacement response from the phase-field simulations of the TDCB
samples embedding the three architectures

to dissipate energy for a crack of same overall length as in the bulk material.
After acquiring the simulation results, the coarse-graining is resumed. The domain

of interest Ω0 is considered for the study and then subdivided into finite constant-stress-
constant-strain elements of size H = 1mm without loss of generality (Figure 3.1(b)).The
considered coarse-graining function then sweeps over the mesh support constructing a
database of mechanically and physically consistent fields at multiple larger scales to be
analysed without any a priori on the model at each scale and by considering the physics
happening at the scale of heterogeneities. Ω0 is at the core of the microstructure which
allows the use of large lCG and therefore large observation scales.

Exploiting the adapted coarse-graining method, one is able to investigate the microstruc-
ture at different transitional scales by building physically consistent density, displacement,
strain and stress fields at each scale.

3.3 Density

As established in the method, the density field R(x) is first computed. Effective density
fields of the Quasi-Periodic type 1 microstructure at different coarse-graining scales lCG
are presented in Figure 3.4. Results actually show the ability of the method to construct
heterogeneous/homogeneous continuous density fields depending on the scale of interest
without any a priori on the effective field’s homogeneity. To analyse the ’homogenisation’ of
the effective density as the coarse-graining scale lCG is increased, we plot the evolution of the
mean and the coefficient of variation of R for the three considered microstructures (Figure
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(a) lCG/d = 1 (b) lCG/d = 4 (c) lCG/d = 8

Figure 3.4 – Effective density fields of type 1 Quasi-Periodic microstructure for three
different scales.
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Figure 3.5 – Density conservation through mesoscales (a) and the evolution of the corre-
sponding coefficient of variation COVR - defining the heterogeneity of the effective density
- evolution with lCG (b)
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3.5 (a)). It’s considered that the homogeneity of a field is attained once its corresponding
coefficient of variation COV drops below the ≤ 1% threshold. The arithmetic mean is
calculated as the sum of the sampled values (whether at the nodes or the Gaussian points
of the coarse elements in Ω0) divided by the total number of samples (nodes and Gaussian
points respectively). The standard deviation is found by taking the square root of the
average of the squared differences of the values from their mean value. The coefficient of
variation is defined as the ratio of the standard deviation to the arithmetic mean (Chapter
2).

As the implemented coarse-graining method is based on the inviolable conservation
laws - mass continuity between them -, it can be seen that the mean effective density in
the studied domain is conserved through the scales and only the homogeneity of the field is
altered. The heterogeneities of the effective density of the material are smeared-out much
faster when considering a Periodic microstructure at lCG/d = 1, while the Quasi-Periodic
microstructures require higher coarse-graining scales for the density heterogeneities to
smear-out at lCG/d = 4 (Figure 3.5 (b)).

3.4 Elastic Properties

Once the density fields are computed, manipulating the balance of mass at the fine
and the coarser scale leads to the computation of the effective displacement fields that
can be differentiated to determine the strain fields. The balance of linear momentum
allows the evaluation of the effective stress fields. First, we aim to determine the behaviour
of the material prior to damaging. For this purpose, we put the microstructure at the
core of a rectangular specimen on which two tensile and one shear test simulations are
conducted. From the microscopic mechanical fields, coarse-grained displacements, strains
and stresses can be evaluated for different lCG. Coarse-grained strain and stress couples in
Ω0 (obtained from the three tests) provide an evaluation of the nine components Cij of the
effective stiffness tensor C, representative of the elastic behaviour, at each material point
for the considered scales. It was observed that in the specimen coordinate system, the
shear-extension coupling terms vanish; the reduced expression for the effective elasticity
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(a) lCG/d = 1 (b) lCG/d = 4 (c) lCG/d = 8

Figure 3.6 – Fields of the C11 component of the effective elasticity tensor of type 1
Quasi-Periodic microstructure at three different scales.

tensor written in (3.1) is thus adopted:

S11

S22

S12

 =


C11 C12 0
C21 C22 0
0 0 C66



E11

E22

2E12

 (3.1)

Fields of the C11 component of the effective elasticity tensor of the Quasi-Periodic type
1 microstructure at three different coarse-graining scales lCG are presented in Figure 3.6;
the heterogeneity of C11 is shown to persist for large regularisation scales and thus the
influence of the distribution of holes on the effective stiffness fields. From the computed
effective elasticity tensors, both the anisotropy and homogeneity can be evaluated. As
mentioned previously, the symmetry order of the studied Periodic and Quasi-Periodic
microstructures (6 and 5-fold symmetry respectively) are expected to lead to an equivalent
isotropic response. From here, we aim to determine the scale from which the symmetry
orders actually governs the elastic isotropy. To do so, the two-dimensional elastic anisotropy
index ar - defined in [Li et al., 2020] - is analysed at each material point for each observation
scale. An explicit expression of ar as a function of Cij and SCij can be written as follows:

ar =
[1

4(C11 + C22 + 2C12)(SC11 + SC22 + 2SC12)− 1
]2

+ 2
[ 1
16(C11 + C22 − 2C12 + 4C66)(SC11 + SC22 − 2SC12 + SC66)− 1

]2
 1

2

(3.2)

Where SCij represent the components of the compliance tensor SC defined as SC = C−1.

120



3.4. Elastic Properties

ar takes the value of 0 in the case of perfect isotropy. Otherwise, ar increases as the
anisotropy strengthens. The main advantage of ar over other anisotropy indices (Kube
[Kube, 2016], Zener [Zener, 1947],...) is its direct applicability in 2D, for any symmetry
type, and its direct evaluation from the elasticity tensor. In this study, ar is computed
from the evaluated elasticity tensors C and SC at each material point of the domain for
each coarse-graining scale lCG. The distribution of these indices is shown in Figure 3.7.
It’s observed that for the Periodic material, all the points present an isotropic response
(with an error lower than 1% ) once lCG is larger than the characteristic length d of the
microstructure. Although the material symmetry order of the Quasi-Periodic materials
considered suggests elastic isotropic behaviour, it’s quite clear that this isotropy of the
elasticity tensor cannot be reached at small scales but in fact, suggests a required scale
of observation of at least 3 times the characteristic length d of the microstructure where
the anisotropy indices of all the material points fall within 1% to 0 corresponding to the
isotropy of the elasticity tensor in the whole domain.

Next, the homogeneity of the elastic moduli is put forth at different lCG. Only the
observation scales at which the effective elasticity in the whole domain is isotropic (within
1% error) are considered in the study (Figure 3.7), i.e., lCG/d ≥ 1 for the Periodic mi-
crostructure and lCG/d ≥ 3 for the two Quasi-Periodic microstructures. From the isotropic
elasticity tensors fields, effective Young modulus (E) and Poisson ratio (ν) are computed
for different lCG on each element in the domain Ω0. Statistical analysis is conducted on
the evaluated effective elastic moduli to identify their possible ’homogenisation’ for each
microstructure. The mean and standard deviation of the two material properties are
plotted in Figures 3.8 and 3.9 as well as the evolution of the coefficient of variation of each
property with the coarse-graining scale. The Poisson ratio converges and homogenises at
considerably low length scales of observation. For the Periodic microstructure, the effective
Young modulus is homogenised at considerably small observation scales (lCG/d = 1.5).
The average effective Young modulus for the different microstructures rapidly converges,
contrary to its variation, especially for the Quasi-Periodic microstructures where the effec-
tive Young modulus field requires larger length scales, at least 7 times the characteristic
length d, to homogenise. Next, we proceed with the multi-scale damage analysis, starting
with the influence of the observation scale on the crack path towards the effect on the
strength and toughness fields as the crack advances inside the microstructures.
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(b) Quasi-periodic type 1
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(c) Quasi-periodic type 2

Figure 3.7 – Material points distribution based on the elastic anisotropy index ar computed
at different coarse-graining scales for the considered microstructures.
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Figure 3.8 – The effective Young modulus computed at different lCG for the three mi-
crostructures (a) and the evolution of the corresponding coefficient of variation COVE -
defining the heterogeneity of the effective Young modulus - with lCG (b)
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Figure 3.9 – The effective Poisson ratio computed at different lCG for the three microstruc-
tures (a) and the evolution of the corresponding coefficient of variation COVν - defining
the heterogeneity of the Poisson ratio - with lCG (b)
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3.5 Crack Path

Displacement and stress fields from the phase-field simulations of fracture on the
TDCB are upscaled, and coarse-grained displacements, strains and stresses with damage
consideration are obtained. As the crack advances in the microstructure, interactions
between the crack and the structure of the material are observed, especially in the Quasi-
Periodic microstructures. The crack can be expected to follow the path that would allow
the maximum dissipation of energy. For type 1 Quasi-Periodic distribution, ’resilient
patterns’ (bittersweet circles in Figure 3.10(b)) impose the deviation of the crack. For
the type-2 Quasi-Periodic distribution, kinking of the crack is present, and due to the
high amount of elastic energy stored in the specimen before kinking (bittersweet circles in
Figure 3.10(c)), failure becomes unstable. The question arising here regards the ability
to replace the complex crack path (at the microscopic scale) by an equivalent failure
band (at larger scales of observations) represented by an effective straight crack path. To
answer that question, the effective crack path at the coarse-grained scale is determined.
Without loss of generality, we define the effective crack tip at time t = t0 as the local zone
where the maximum stress occurs at this time t = t0. By considering different criteria
(Rankine, Maximum Volumetric Stress, ...) to evaluate the position of maximum stress,
identical results were obtained; that is of course due to the stress singularity at the crack
tip. The choice of the Rankine criterion naturally emerges for the description of brittle and
quasi-brittle failure. From here, the effective ’mesoscopic’ crack tip position is defined as the
local zone where the maximum mesoscopic Rankine stress is reached for each microscopic
crack tip position. The length scale introduced via the coarse-graining lCG method suggests
softening of the material (Figure 3.13 - more details about the stress-strain response is
found in Section 3.6)- and an equivalency to a process zone is present suggesting that the
critical stress before softening happens at a distance to the true crack tip (the crack tip
determined from the micromechanical simulations). The evolution of the crack paths and
their corresponding tortuosity at different scales in the Quasi-Periodic microstructures are
shown in Figure 3.10. Counter intuitively, one can observe prominent tortuosity of the crack
path even at large scales. In fact, for the type 1 Quasi-Periodic microstructure, the crack
tortuosity only drops of less than 6% at lCG/d = 10 while the type 2 crack path tortuosity
drops around 9% from its microscopic value (Figure 3.10(a)). The conservation of the
tortuosity across the considered scales drops the idea of the consideration of an effective
straight failure band to replace complex crack paths. FFT analysis on the crack paths
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Figure 3.10 – Mesoscopic crack paths for the type 1 (b) and type 2 (c) microstructures at
different lCG and the corresponding crack tortuosity evolution with lCG (a).
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Figure 3.11 – FFT analysis on the mesoscopic crack path inside the Quasi-Periodic type 1
(a), and Quasi-Periodic type 2 (b) microstructures
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at different observation scales offers an insight on the amplitudes and wavelengths that
contribute to the effective crack deflection. Later, the interaction between the wavelengths
driving the crack deflection and the wavelengths driving the variations of the critical
stresses and energy dissipation along the crack path are confronted. Figure 3.11 shows the
FFT analysis results on the crack path inside the two Quasi-Periodic microstructures. As
expected, small wavelengths λ/d ≤ 3 are smeared-out as the coarse-graining scale increases
and more weight on the larger wavelengths is observed λ/d ≥ 10. The type 1 response
shows decaying amplitudes at wavelengths λ/d = 2− 3 with a drop of about 62% (Figure
3.11(a)). The contribution of the wavelengths around λ/d = 5 corresponding to the distance
between zones of ’resilient patterns’ (Figure 3.10(b)) is conserved through the scales and is
responsible for 80% of the crack deflection. For the type 2 Quasi-Periodic microstructure,
one clearly observe the absence of uniquely conserved high amplitude wavelengths across
the scales (Figure 3.11(b)), except for λ/d = 2− 3 that actually corresponds to the kinking
spots. The crack path, in comparison with the type 1 -except for the kinking spots- does
not conserve the same wavelengths suggesting a more easily smoothed crack path. Next,
we focus on the influence of the microscopic heterogeneity on the resistance and toughness
fields at different coarse-graining scales, and we confront the wavelengths controlling the
heterogeneities with the wavelengths present in the crack paths.

3.6 Fracture strength

Displacement and stress fields from the phase-field simulations of fracture on the
TDCB specimens with the microstructures at their cores are upscaled, and coarse-grained
displacements, strains and stresses with damage consideration are obtained. Figure 3.12
shows the vertical displacement field at different coarse-graining scales. The jump on the
crack faces are smoothed as the observation scale increases and the sharpness of the crack
at these scales is expected to be smeared out. A plot of the stress-strain relation computed
at the coarse-grained scales of a TDCB test corresponds to a stress-strain response of a
quasi-brittle behaviour (Figure 3.13, analysis similar to Chapter 2, Section 2.6.2). Here,
the history of the hydrostatic stresses as a function of hydrostatic strains is plotted for
different points in Ω0.

As shown in Figure 3.13, the material undergoes a linear elastic trend followed by a
non-linear region before reaching the critical stress where softening occurs. For small length
scales, the increased width of the pack in the linear elastic region suggests heterogeneity
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3.6. Fracture strength

(a) lCG/d = 1 (b) lCG/d = 4 (c) lCG/d = 8

Figure 3.12 – Upscaled vertical displacement Uy at different lCG. The discontinuity of the
displacement field is regularized by the coarse-graining function and dictated by its width
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Figure 3.13 – Stress-strain behaviour of elements along the crack path and in a neighbour-
hood of the crack at two length scales lCG

of the modulus, to confirm the previous results regarding the homogenization of the
elastic properties of the materials. The curve reaching the maximum stress corresponds to
the response of the elements along the crack path. As the distance to the crack path dc
increases, the stress-strain response of the corresponding elements reach lower maximum
stress states followed by some softening. When the elements are much further to the
crack path, they remain undamaged and show typical linear elastic stress-strain response
(Section 2.6.2). For instance Figure 3.13 shows the stress-strain response of a material in
the neighbourhood of a crack at a specific abscissa in the domain, at lCG/d = 1 which
corresponds to lCG = d = 3mm. As the coarse-graining mesh size H is equal to 1mm, we
find 6 different stress-strain responses of the elements corresponding to the discretization
of the damageable zone. The same trend is found at different coarse-graining scales lCG
(Figure 3.13(a)) where a unique relation between the local stress and local strain states
does not exist. Instead, as we move further from the crack path, and due to the regularizing
nature of the coarse-graining, softening persists yet starts at lower critical stress levels
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Part III, Chapter 3 – Multi-scale crack propagation in architectured materials

leading thus to non-unique relations between the stresses and strains.

Remark 3.2. If in Chapter 2, Figure 2.9 we didn’t have different numbers of (stress-strain)
curves for different coarse-graining scales lCG, it is because in that case we adapted the
coarse-graining mesh size H as a function of lCG, fixed at H = lCG/5. This of course would
alter the resolution of the mesoscopic fields. Here, we fix the coarse-graining mesh size H
and analyse the influence of lCG without altering the resolution of the fields.

Moreover, when following the stress-strain response of the elements along the crack
path, especially at low scales, and as the crack propagates through different patterns in
the microstructure, the critical stress state reached before softening is found to differ from
one position to another along the path. We define the maximum Rankine stress reached
at each position of the crack tip as the fracture strength or simply strength denoted σf ,
without abuse of language. The evolution of the critical Rankine stress at different scales
of observation is plotted in Figure 3.14 for the Periodic (a), Quasi-Periodic type 1 (b)
and Quasi-Periodic type 2 (c). The below figures thus show the significant influence of
the local differences inside the microstructure - distribution of holes - on the fracture
strength of the effective continuum. As the crack gets trapped inside the holes, much higher
loading is required for the crack re-initiation, this phenomenon is mainly observed on the
Periodic geometry at the smallest scales, while for the Quasi-Periodic geometries, not only
crack trapping influence the critical stress state reached, but also the crack deflection and
deviation around the special ’resilient patterns’.

The strength fields at different coarse-graining scales lCG are studied and both the
average critical stress and its coefficient of variation over the crack path for each length
scale lCG are plotted in Figure 3.15. It’s clear that the critical stress σf decreases when
lCG increases.

In Figure 3.15, one observes higher strength for the Periodic microstructure in com-
parison with the two Quasi-Periodic microstructures. A study on the evolution of the
’homogeneity’ of the strength is also conducted. Here, the coefficient of variation is evalu-
ated by considering the squared differences of the values from the normalised values of a
homogeneous response - allowing the study of the deviation of the strength surpassing
the geometrical influences of the TDCB geometry and the loading conditions. Unlike the
elasticity, the effective strength of the microstructures remains highly heterogeneous even
at large lCG. From Figure 3.15(b), it’s clear that the coefficient of variation stabilizes nay
slightly increases at large scales of observations independently of the microstructure. The
coefficient of variation of the strength of type 1 and the type 2 microstructures stagnates
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(a)

(b)

(c)

Figure 3.14 – Fracture strength σf evolution along the crack path for the Periodic (a),
Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures.
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Figure 3.15 – Evolution of the mean fracture strength σf as a function of lCG for the three
microstructures (a) and the evolution of the corresponding coefficient of variation COVσf
defining the heterogeneity of the effective strength field of the continuum (b)

at about 2% and 3% respectively. The Periodic’s COVσf converges to 0.6%. Counter-
intuitively, the coefficient of variation of the effective strength of the type 1 microstructure
is lower than that of type 2 even though the path is more complex, but this may be caused
by the presence of kinking in specific places leading to a huge increase of the loadings
before the crack saps in comparison to the rest of domain where the crack path is smooth
and straight.

Looking at Figure 3.14, it’s hard to quantify both the microstructural effects and the
influence of lCG on the fracture strength evolution in the material. For this purpose, the
fracture evolution is studied in the frequency domain, and FFT analysis allows to display
the wavelengths and amplitudes to better depict the interactions of the microstructures
and the coarse-graining impacting the strength. Figure 3.16 compares the wavelength
spectrum of the FFT analysis transformed from the fracture strength’s deviation Dσf .
The amplitude is computed as the ratio of the amplitude of each wavelength to the RMS

(root mean square) amplitude of the input signal. The Periodic microstructure analysis
shows a dominant peak occurring at a wavelength λ = d corresponding to the length
scale of the microstructure. The relatively low (30%) drop of the contribution from the
small scale to the largest considered scale of λ = d suggests that the variation of the
strength σf of the material is controlled mainly by the distance d between the holes even
on large observation scales for a Periodic microstructure. This observation could explain
the stagnation of COVσf across the scales. As seen previously on the crack path analysis,
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more weight is put on the larger wavelengths as the coarse-graining scales increase. The
size of the holes does not present any influence on the strength variations. Regarding
the type 1 Quasi-Periodic microstructure in Figure 3.16(b), one clearly observes the drop
of the contributions of the small lengths scales and the rise of the contributions of the
larger wavelengths as the coarse-graining scales increase. The peaks on the wavelengths
around λ/d = 2− 3 persist with increased influence as the scale of observation enlarges.
Comparing the FFT analysis of the crack path and the strength offers insights on the
link between the wavelengths controlling the crack inside the microstructure and the
effective strength. As the crack deflects mainly every λ/d = 5, it would have travelled two
’resilient patterns’ zones. This reflects the periodicity of the crack path that is twice the
periodicity of the mechanical response. Once again, we can see that the main variation
of the strength of the material is directly controlled by the distribution of holes. For the
type 2 Quasi-Periodic microstructure (Figure 3.16(c)), even at the smallest scales, the
heterogeneity of the strength comes from the long-range variations. At the smallest scale,
50% of the deviation comes from the larger wavelengths, which is due to the kinking that
happen for the crack inside this microstructure at wide distances in the domain. Moreover,
the small peak present at the small scale at λ/d = 1 corresponds to the crack travelling
from one hole to another in a straight path between the kinking zones. The other small
peak at λ/d = 2− 3 (also met in type 1 microstructure) decays as the scale is increased.
As the coarse-graining scale enlarges, the small wavelengths contributions are smeared out
leading to the extreme rise of the influence of the large scales onto the strength variations.

3.7 Fracture toughness

The difference in the loading history of the material points inside the microstructure
- whether distributed along their crack path or in the neighbourhood of a crack (Figure
3.13) - is directly related to the total amount of energy absorbed by the material points
until fracture. Here, the focus is on the energy absorbed by the material points along the
crack path. The effective toughness Gd is defined as the energy to total failure evaluated
as:

Gd =
∫ tf

0
S : Ėdt (3.3)

allowing thus the measure of the energy dissipated per unit volume from the start of the
loading (t = 0) until the fracture of the specimen (t = tf). S is the mesoscopic stress
tensor and Ė is the mesoscopic strain rate tensor. The evolution of Gd at different scales
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Figure 3.16 – FFT analysis on the fracture strength σf for the Periodic microstructure (a),
Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures.
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of observation is plotted in Figure 3.17 for the Periodic (a), Quasi-Periodic type 1 (b) and
Quasi-Periodic type 2 (c). The below figures thus show the significant influence of the local
differences inside the microstructure -holes distribution- on the overall dissipated energy
along the crack path of the obtained continuum. As the crack gets trapped inside the
holes, much higher energy is required for the crack re-initiation, this phenomenon is mainly
observed on the Periodic geometry at the smallest scales, while for the Quasi-Periodic
geometries, not only crack trapping influence the energy dissipation, but also the crack
deflection and deviation around the special ’resilient patterns’.

A similar analysis to the one in Section 3.6 is conducted: a study of the evolution
of this toughness parameter Gd at different coarse-graining scales followed by an FFT
analysis to better understand the relationship between the microstructure and the effective
toughness.

The average toughness Gd is inversely proportional to the coarse-graining scale lCG
(Figure 3.18(a)), and we find Gd ∼ 1

lCG
. Indeed, coarse-graining admits that the displace-

ment, stress and strain fields on a material point actually depend on the state variables
distribution in a neighbourhood of the point under consideration. The size of the neigh-
bourhood is depicted by lCG. To emphasize, we recall that all the results presented in
this paper are found without any a priori on the material behaviour at the coarse-grained
scales.

Remark 3.3. Here, we find Gd ∼ 1
lCG

and σf ∼ 1√
lCG

. As previously stated, similar
expressions relating the tensile strength σf (equivalently σc) to the characteristic length lc,
gc and E can be found in [Nguyen et al., 2016, Benallal and Marigo, 2007, Pham et al.,
2011b, Amor et al., 2009]. The expression derived from the uniaxial bar under traction
with homogeneous damage distribution in Chapter 1 states σc = 9

16

√
Egc
3lc . This suggests

that for a fixed toughness gc (Gd), the same relation between σc and lc (σf and lCG) holds.
However, we mention that no consensus on the relation linking E, σf , lc and gc taking
into account the different loading conditions, and/or specimen geometries can be found
in the literature. Further, we believe that the parametrisation of the elastic threshold in
Chapter 1 may enable an additional degree of freedom in linking these quantities, and it
may give the community the ability to incorporate geometric/loading factors within the
framework without additional costs.

A study on the evolution of the ’homogeneity’ of the effective toughness is conducted.
In Figure 3.18, we plot the evolution of the effective fracture toughness Gd as a function
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(a)

(b)

(c)

Figure 3.17 – Fracture toughness Gd evolution along the crack path for the Periodic (a),
Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures.
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of lCG for the three microstructures (a) and the evolution of the corresponding coefficient
of variation COVGd defining the heterogeneity of the effective toughness field (b).

As compared to the strength σf , one notices that the heterogeneity of the toughness
field Gd is higher than the one of the strength field at the same scales. Yet no stability
of the coefficient of variation of this quantity is observed at the large scales. As long
as the crack path is straight, both the strength and the toughness evolve in the same
manner at different coarse-graining scale. Regarding the Quasi-Periodic microstructures,
one observes inversion of ’homogeneity’ of the toughness in comparison with the strength,
i.e., when comparing the plots in both Figure (a) and Figure (b), the blue and green
curves corresponding to the coefficients of variation of σf and Gd are inverted; COVσf
is greater for the Quasi-Periodic type 2 microstructure as compared to Quasi-Periodic
type 1, while COVGd is smaller. In fact, the crack might deflect to maximize its energy
dissipation. This raises questions on the drift from LEFM where the notions of critical
stress intensity factors and the critical energy release rate are somehow two faces of the
same coin. Again, FFT analysis transformed from the effective toughness deviation DGd

is presented in Figure 3.19.
For all three microstructures, small wavelengths λ/d ≤ 3 are smeared-out as the

coarse-graining scale increases and more weight on the larger wavelengths is observed
λ/d ≥ 10. In comparison with the strength responses, we can see that the larger wavelengths
contributions to the heterogeneity of the toughness fields significantly increase as lCG
increases (a rise of more than 100%) for all the microstructures). The peak on λ/d = 2− 3
observed at the smallest scale for the type 1 microstructure (in both the strength and
the toughness responses) is decreasing as the coarse-graining increases to give way to the
larger wavelengths (see Figure 3.19). As compared to the FFT analysis of the fracture
strength, the dominant peaks observed at smaller scales are no longer present through
the observation scales and this suggests the following: as the regularization via coarse-
graining increases, the influence of the microstructure on Gd is smeared-out and the local
phenomena intervening in the energy dissipation process are smoothed, which can lead to
an actual homogenisation of this parameter in comparison with the strength σf where the
microstructural influence persists even for larger coarse-graining scales.

§ 3.1. On the mesoscopic energy dissipation
The total dissipated energy Wd due to crack propagation can be computed following:

Wd(lCG) =
∫

Ω0
GdΩ, (3.4)
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Figure 3.18 – Evolution of the effective fracture toughness Gd as a function of lCG for the
three microstructures (a) and the evolution of the corresponding coefficient of variation
COVGd defining the heterogeneity of the effective fracture toughness field of the continuum
(b)

where G is the energy to total failure evaluated at each point in Ω0 computed from
G =

∫ tf
0 S : Ėdt. Wd thus corresponds to a measure of the energy dissipated in the

coarse-graining volume (per unit thickness). Figure 3.20 shows the evolution of the total
dissipated energy Wd for the different microstructures across the different mesoscopic
scales lCG. The dissipation is unsurprisingly conserved through the different mesoscopic
scales. Even though Gd was found to be inversely proportional to lCG (computed at the
material points along the crack path), it’s clear that the diffusion of damage on a larger
zone thanks to the coarse-graining counterweights the decrease in Gd along the crack
and conserves the overall dissipated energy across the scales. Unsurprisingly, the energy
dissipation computed from the macroscopic (load-displacement) responses (Table 3.2)
and the mesoscopic dissipations herein computed are equivalent, as the coarse-graining
technique is based on the inviolable conservation laws.
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Figure 3.19 – FFT analysis on the fracture toughness Gd for the Periodic microstructure
(a), Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) microstructures.
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Figure 3.20 – Mesoscopic energy dissipation Wd, conservation of Wd is noted accross the
scales and is equivalent to the energy dissipation computed from the load-displacement
curve reported in Table 3.2
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3.8 Concluding Remarks

In this chapter, we tackled the first of the three main branches of this thesis: the
quasi-static crack propagation in architectured materials, analysed at multiple scales.
Phase-field simulation (Chapter 1) of failure on three architectures was considered for
the micromechanical simulations. The obtained data are upscaled at different mesoscopic
scales lCG via the proposed coarse-graining technique (Chapter 2). Density, displacement,
stresses and strain fields at the mesoscopic scales are constructed and analysis on the
established database is lead. We summarise the main findings from this analysis:

Elastic properties From the micromechanical simulations before failure, coarse-
grained elastic stresses and strains allow the computation of elasticity fields. Although the
anisotropy of a microstructure is depicted by its symmetry order, the proposed scheme
shows that a relatively large observation scale is needed for the symmetry order to reveal
its influence. From the scale lCG/d = 1, isotropic behaviour is obtained for the Periodic
microstructure while the isotropy of the Quasi-Periodic structure requires lCG/d = 3. The
heterogeneities found at the microscopic scale influence the equivalent elastic properties at
the mesoscopic scale. We show that in order to consider a homogeneous isotropic elastic
equivalent medium, the required lCG exceeds the values considered in the literature and
in fact is much larger when considering non-periodic microstructures with long-range
heterogeneities. For the Periodic distribution, an equivalent isotropic homogeneous elastic
medium is found starting lCG/d = 1.5, while for both Quasi-Periodic distributions, an
lCG/d = 7 is required to obtain an equivalent elastic homogeneous medium.

Crack propagation At the microstructural level, we show the presence of a preferen-
tial weak plane for propagation in the Periodic microstructure (similar to [Réthoré et al.,
2017, Glacet, 2018]), and the presence of ’resilient zones’ in the Quasi-Periodic material.
As the crack gets trapped inside the holes, a much higher loading is required for the crack
re-initiation, this phenomenon is mainly observed on the Quasi-Periodic microstructures.
This phenomenon is reflected on the performances of each microstructure regarding the
crack propagation.

The evolution of the crack paths shows prominent tortuosity across the observation
scales. FFT analysis on the crack paths offers insight on the amplitudes and wavelengths
that contribute to the effective crack paths deflections. For the type 1 Quasi-Periodic
microstructure, peaks at similar wavelengths for different coarse-graining scales persist
suggesting thus that the microstructural distribution of holes underlines the conservation
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of the tortuosity and prohibits the consideration of a smooth effective failure band. For
the type 2 microstructure, one clearly observes the absence of uniquely conserved high
amplitude wavelengths across the scales which suggests a more readily smoothed crack
path between the kinking spots.

Fracture strength The notion of strength emerging from the obtained coarse-grained
stress-strain response was analysed. We define the fracture strength as the critical equivalent
Rankine stress state reached at each effective crack tip position. The effective fracture
strength is found to vary from one position of the crack tip to another along the crack
path. This is explained by different phenomena including the trapping, re-nucleation, and
deflection of the cracks after advancing inside the microstructure. This property is found
to be the hardest to smear-out; in fact, the influence of the microstructure persists in all
three microstructures even for relatively large coarse-graining scales. The stagnation of
the coefficient of variation of the strength for the considered microstructures suggests the
inability of the consideration of a homogeneous strength field for an effective medium that
takes into account the heterogeneities at the smaller scales and that has a dominant role
in stress concentration, crack initiation and general propagation. To better understand the
microstructure’s influence coupled with the scales, FFT of the crack paths and the fracture
strengths are confronted. Even at large coarse-graining scales, i.e., where smoothing of
local phenomena is expected, the strength remains highly influenced by the relatively small
scales of the microstructures and large wavelengths do not have a significant influence on
this quantity. This, with the evolution of the coefficient of variation of σf leads to believe
in the impossibility to completely smear-out the heterogeneities involved in the fracture
strength field of locally heterogeneous material.

Fracture Toughness We also propose a definition of the fracture toughness. Follow-
ing the evolution of the coefficient of variation for the different microstructures, coarse-
graining shows good ability to smear-out the microstructural effects on the equivalent
toughness with no stagnation of the coefficient of variation at the large scales. FFT
analysis of the fracture toughness evolution in the domain shows the large wavelengths
contributions suggesting more easily smoothed parameter in comparison with the fracture
strength, whereas the small wavelength amplitudes related to the microstructures are
smeared-out.

This leads us to believe that considering a homogeneous model for simulating quasi-
brittle failure in highly heterogeneous materials requires the consideration of extremely
large scales to always be on the safe side when considering equivalent isotropic homogeneous
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properties. We also show the inevitability of the consideration of a non-homogeneous
material in which the influence of substructures is preserved at the mesoscopic scales.

Open issues and extensions The examples presented herein are limited to quasi-
static crack propagation with imposed displacement. The absence of branching and multi
cracks limited the analysis to a single crack propagation.

The consideration of the phase-field model at the microscopic scale to build the ground
for the multi-scale analysis presented some limitations, especially regarding the calculation
times. The arbitrary mesoscopic discretization choice H did not influence on the overall
results and only alters the resolution of the coarse-grained fields. The maximum observation
scale lCG is bounded by the size of the considered TDCB geometry.
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4.1 Introduction

In the previous chapter, the quasi-static failure of the architectures shows interactions
between the crack and the microstructures. Since the crack tends to follow the path
that would allow maximum energy dissipation, it’s found that the crack avoids ’resilient
patterns’ in the Quasi-Periodic material and follows ’weak’ planes in the Periodic material.

When moving to dynamic fracture, a new player enters the game: the stress waves.
How? Any applied loading will induce disequilibrium of the medium, which induces the
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different portions of a material to move and adjust towards their equilibrium state, this
adjustment propagates from the loading application towards the bulk, this phenomenon
constitutes the general basis of ’stress-wave propagation’.

At low strain-rates, the adjustment ’has sufficient time’ to attain equilibrium before any
subsequent external change occurs, quasi-static conditions may apply. At high strain-rates,
there isn’t sufficient time for stress equilibrium to be achieved before subsequent changes,
so the analysis of the inertial effects is prominent, and the stress-wave propagation must
be followed.

In recent years, architectured materials have attracted increasing attention among the
scientific community due to their extraordinary acoustic and elastic wave propagation
performances. In fact, after the wide studies regarding the atomic dynamics, photonic,
magnetic, electronic wave propagation and band-gaps properties in Quasi-Periodic ma-
terials, efforts were undertaken to transport these features to larger scale architectured
materials.

Understanding the attenuation of stress-waves in model Periodic and Quasi-Periodic
architectured materials is sought in this chapter.

To study the influence of the microstructure on stress-wave propagation and dynamic
properties of the architectured materials (the Periodic and Quasi-Periodic type 1 & 2),
2D finite element (FE) simulations are performed on out-of-equilibrium stress-wave packet
propagation. A direct comparison is established between the Periodic and Quasi-Periodic
microstructures vis-à-vis their acoustic (stress-wave propagation) and effective behaviour.

The chapter is organized as follows: first, the numerical tools required for the analysis
are advanced: the rectangular sample embedding the architectures and the boundary
conditions are presented; stress-wave packets of different wave-lengths are followed along
the samples embedding the architectures. From here, different points are tackled: (i)
the kinetic energy envelope and the penetration lengths are studied and related to the
attenuation performances; (ii) the effective (long-wavelength) and instantaneous stress-
wave speeds are estimated and related to the transportation regimes; (iii) the transition
from propagative to diffusive regimes with increasing excitation wavelengths is tackled;
(iv) FFT analysis on the velocity at the outlet of the microstructure to offer insights on
the amplitudes and wavelengths that are passed/rejected by the microstructure.
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Figure 4.1 – Imposed wave-packet on the left boundary of the sample (green-dashes).
Silent Boundary Conditions (SBC) are set on the four boundaries (orange), the effective
attenuation is studied along the x− direction of the blue frames. At the right-hand side of
the figure are represented the three architectures

4.2 Numerical tools

4.2.1 Architectured sample

FE simulations are considered for the study of vibrational properties of the typical
microstructures (Section 0.4, Figure 8,Table 1). The samples are of a simple rectangular
shape of dimensions 55d× 40d. The microstructures are embedded by bulk material zones
of width 0.5d as shown in Figure 4.1. The wave-packet is generated by imposing a velocity
on the left side following the work in [Luo et al., 2021]:

V (λin, t) = V0 exp(−(t− 3t0)2

2t20
)sin(2π cd

λin
t) (4.1)

V0 is a constant value, ωin is the frequency of the quasi-monochromatic excitation and
relates to the wavelength λin of the wave-packet via the stress-wave speed ωin = (2π cd

λin
),

and t0 = 3π
ωin

is the half period of the excitation.

4.2.2 Longitudinal wave-packet excitation

Excitation perpendicular to the boundary corresponds to a longitudinal one while the
imposed velocity parallel to the boundary corresponds to a transverse excitation. Here,
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the focus is shed on the longitudinal wave propagation imposed at the left-hand boundary
of the specimen. It’s noted that the remaining boundaries are set to Silent Boundary
Conditions (SBC). Technical details about the SBC can be found in [Rossmanith, 2002].
The application of (SBC) reduces unwanted reflections that may affect the analysis by
mimicking an infinite medium. Once the full wave-packet is imposed, the left boundary is
also set to a non-reflective one (SBC). Of course, periodic boundary conditions could be
considered for the analysis [Luo et al., 2021, Glacet, 2018, Glacet, 2019], for the Periodic
microstructure, and for a periodic approximation of the Quasi-Periodic ones. However, as
the approximation might induce some unwanted bias, the decision to consider the same
numerical model for the different microstructures was carried-out. Regarding the material
in question, it is linearly elastic with an isotropic homogeneous behaviour characterised by
the typical mechanical properties presented in Table 4.1. Plane strains are assumed.

ρ 1180kg/m3 cd 2278m/s
E 2.4GPa cs 846m/s
ν 0.42 cR 800m/s

Table 4.1 – Bulk material properties

ρ corresponds to the mass density, E and ν denote respectively Young’s Modulus and
Poisson ratio. cd, cs and cR designate the longitudinal, shear and Rayleigh stress-wave
speeds.

Transient simulations of wave propagation (λin = d, ...10d) are conducted using explicit
dynamic FEM. The time step is taken to be equal to dt = 47ns, smaller than the Courant
time step (i.e., the time taken by a sound wave to travel across an element) for increased
precision. The technical details about the time integration scheme can be found in [Sun
et al., 2000].

4.3 Kinetic energy Envelope

As mentioned, the wave-packet is imposed on the left boundary of the sample. Its
propagation inside the microstructure is then followed along the x-direction. As the wave-
packet travels inside the sample, it’s scattered due to the reflections on the free boundaries
of the holes. To understand how such scattering affects the energy transfer, we compute
the envelope of the kinetic energy PK

m for each material point m at each input frequency
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(ωin) of the FE simulation set as:

PK
m (ωin) = max

t
Km(ωin, t) (4.2)

where Km(ωin, t) is the kinetic energy at material point m, for the simulation of the
excitation of frequency ωin at time t.

Figure 4.2 shows results of the attenuation of the kinetic energy at different λin for
the Periodic microstructure. In Figure 4.2(a), the spatial attenuation of the kinetic energy
at the middle of the sample along the x− direction (principal direction of stress-wave
propagation) is showcased. It’s mentioned that the energy is normalised by its value at the
inlet (near the boundary on which the wave-packet is imposed). It’s clear that the energy
attenuation is much more pronounced at higher excitation frequencies (small wavelengths),
and inversely, the wave-packet seems to be unaffected by the microstructure at excitation
wavelengths larger than λin/d = 5. Surprisingly, at λin/d = 3, this trend is distorted, as the
envelope shows higher energy as compared to envelope obtained at the larger λin/d = 4.

For a comprehensive analysis, a larger zone of the microstructure is put-forth in
Figure 4.2(b), showing the envelope of the kinetic energy at some interesting wavelengths
(λin = d, ...6d), and separating the microstructure into zones of high/low kinetic energies.
Here, the results are normalised by the mean value of the energy envelope inside the
sample for better visualisation and to allow for a cleaner interpretation of the zones.
Different energy patterns are present and it is clear that this is the result of different
interactions between the wave-packet λin and the microstructural holes distribution. At
small wavelengths, the energy is localised near the boundary on which the wave-packet
is imposed. At λin = 3d, a special pattern of the energy envelope is observed, and this
interaction between the periodic distribution of holes and the wavelength of the input
wave-packet might explain the higher energy recovered at the right of the specimen at
this frequency. At λin/d = 4 and λin/d = 5, the energy is localised along horizontal lines
between the holes.

The same analysis is performed on the Quasi-Periodic microstructures (Figures 4.3 and
4.4). Differently from the Periodic type microstructure, no disturbance in the trend of the
overall attenuation varying in opposition of the wavelength is observed. However, regarding
the attenuation along the x− direction, It is clear that the envelope presents much more
pronounced oscillations correlated with the presence of varying hole distribution, without
any clear periodicity (as compared to the periodic patterns found in Figure 4.2(a)). In
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(a) Envelope of the attenuation of the kinetic energy

(b) Separation of the Periodic microstructure into zones of high/low kinetic energy envelopes
for interesting λin values

Figure 4.2 – Envelope of the kinetic energy at different λin: interactions with the patterns
of the Periodic microstructure
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(a) Envelope of the attenuation of the kinetic energy

(b) Separation of the Quasi-Periodic type 1 into zones of high/low kinetic energy envelopes
for interesting λin values

Figure 4.3 – Envelope of the kinetic energy at different λin: interactions with the patterns
of the Quasi-Periodic type 1 microstructure
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(a) Envelope of the attenuation of the kinetic energy

(b) Separation of the Quasi-Periodic type 2 into zones of high/low kinetic energy envelopes
for interesting λin values

Figure 4.4 – Envelope of the kinetic energy at different λin: interactions with the patterns
of the Quasi-Periodic type 2 microstructure
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the previous Chapter 3, studies on this typical microstructures in quasi-static simulations
of failure show the presence of what is known as "resilient patterns", i.e., zones in the
Quasi-Periodic distribution around which the crack always deviates and rarely travels
through (refer to Section 3.5 to recall the influence of these zones on the quasi-static
crack propagation). As seen in Figure 4.3(b), the energy envelope inside those typical
patterns are in the low-energy zones even at the largest wavelengths λin = 5d, ...10d. We
recall that these maps actually represent a spatial distribution of the maximum kinetic
energy ’viewed’ by each material point in time, so these low energy-zones prohibit the
passage of the wave-packet within. In the case of the Quasi-Periodic type 2 microstructure
(Figure 4.4), similar influence on the energy attenuation is observed as for the type 1
microstructure, moreover, the presence of "resilient patterns" is noted across the studied
range of wavelengths (Figure 4.4(b)). The Quasi-Periodic microstructures appear as more
efficient for energy attenuation; intuitively, one might suggest more efficient scattering
around these "resilient patterns". Further on this point is to be found in the following
sections.

4.4 Energy Attenuation and penetration length

Since the FE simulations are performed at constant energy (no damping - except at
the silent non-reflective boundaries SBC, that are far enough from the region of interest
and that do not affect the analysis), the attenuation in the energy envelope actually comes
from the redistribution of the kinetic energy in directions different than the principal
direction of propagation (namely the x− direction). This is a direct result of the scattering
of the wave-packet that happens at the interfaces of the microstructures. The effective
attenuation along the x-direction is studied by following energy transport at the middle of
the sample at x = xf in consecutive frames of width lCG = d (Figure 4.1)):

PK(ωin, xf ) = max
t
K(ωin, xf , t) (4.3)

Where K(xf , t) is the kinetic energy supported by the frame located at x = xf of width
lCG = d at time t. Figure 4.5 shows a comparison of the envelopes between the three
microstructures at different excitation frequencies. Figures 4.5(a), 4.5(b) and 4.5(c) show
the envelope of the kinetic energy at different λin related to the characteristic length d of
the Periodic, Quasi-Periodic type 1 and 2 microstructures respectively. Due to the effective
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(a) Periodic Hexagonal (b) Quasi-Periodic - type 1 (c) Quasi-Periodic - type 2

Figure 4.5 – Comparison of the kinetic energy envelopes PK in the three microstructures
along the middle of the samples

rigidity contrast at the right and left boundaries of the microstructure (due to the presence
of a full-band of width 0.5d), the attenuation analysis is started at the position of the first
holes and ended at xf = 38d.

For the Periodic microstructure, at least half of the energy is transported throughout
the sample when the excitation wavelengths exceed 5 times the characteristic length d of the
microstructure. At smaller wavelengths, scattering of the stress waves strongly attenuates
the wave-packet. In the studied range of small wavelengths, the energy fails to travel across
the sample, e.g., at λin = d, PK ≤ 0.01 at the outlet. A peak in the transported energy at
λin = 3d is noted, meeting well with previous observations on the special energy envelope
patterns found at this frequency. For the Quasi-Periodic microstructures, oscillations in
the energy envelope are observed. As mentioned previously, this notable oscillation (as
compared to results on the Periodic microstructures) is a direct result of the "resilient
patterns" inside this type of microstructures. No energy transport across the microstructure
is observed at excitation wavelengths λin ≤ 5d, where (PK ≤ 0.01 at the outlet). Even
for larger λin, the entirety of the wave-packet could not be totally recovered at the right
boundary of the sample. The long-range pattern heterogeneities in the Quasi-Periodic
materials could provide continuous source of scattering leading to more efficient kinetic
energy attenuation.

As seen, for the considered sample geometry and microstructural holes distribution, the
strength of the attenuation inside the architecture depends on two main parameters: the
wave-packet frequency and the hole distribution. For instance, in case of large wavelengths,
the attenuation is similar to a Beer-Lambert law [Beltukov et al., 2018, Swinehart, 1962]
(see Figure 4.6 for a schematic of the law, using arbitrary units), where the envelope of
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Figure 4.6 – Schematic of propagative and diffusive energy transportation regimes following
the Beer-Lambert and Gaussian law with arbitrary units, displayed for a qualitative
comparison of the simulation results

the energy transportation is written:

P prop,K(ωin, xf ) = ε0(ωin)
πv2τ 2

exc

e−xf/l (4.4)

with a mean free path l, ε0(ωin being the total kinetic energy introduced to the sample
from external excitations of duration τexc and v corresponding to the stress-wave speed
cs or cd). The maximum kinetic energy moves (left to right) and gradually decreases due
to the scattering by the structural disorder (Figure 4.6). This is a typical signature of a
propagative regime [Beltukov et al., 2018].

In the case of small wavelengths, the kinetic energy envelopes read:

P diff,K(ωin, xf ) = ε0(ωin)
2πe

1
xf

(4.5)

which is a signature of a diffusive process[Beltukov et al., 2018]. The maximum of the
kinetic energy decays exponentially (Figure 4.6).

By qualitatively analysing the trends of the kinetic envelopes, one observes pinning
of the wave-packet at the inlet of the microstructure (left) at small wavelengths. By
fitting the envelopes (Figure 4.5) to the Equations 4.4 and 4.5, insights on the dominant
transportation regime in each architecture at each λin is obtained. As the wavelength
increases, the transition occurs smoothly for the Periodic microstructure at intermediate
wavelengths 4 < λin/d ≤ 5. At larger wavelengths, the propagative regime appears
dominant until minor to no attenuations are reached at largest studied wavelengths. At
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Figure 4.7 – Penetration length lpen for the smoothened kinetic energy envelopes for the
three microstructures

the special wavelength λin = 3d, propagative regime is predominant.

For the Quasi-Periodic materials, the transition appears much later, around 6 <

λin/d ≤ 7 for the type 1 and type 2 microstructures.

After comparing the kinetic energy envelopes of the three microstructures at different
wavelengths and observing the sound interactions between the wave-packet and the mi-
crostructures, the attenuation is now quantified by investigating the long-time penetration
length. The penetration length lpen is defined as the distance above which the kinetic
energy stays below the maximum excitation kinetic energy, i.e., provided energy at the
boundary, divided by e (Euler’s number): PK

lpen(ωin) = 1
e
PK

0 (ωin). Figure 4.7 reports the
penetration-lengths for the three architectures at different excitation wavelengths. The
dashed-lines correspond to the wavelengths from which the kinetic energy is no more
attenuated below the (1/e) threshold of its initial value. At the smallest wavelengths, the
Periodic microstructure shows better performance in attenuating the wave-packet. At the
special wavelength λin = 3d, a local maximum of the penetration length in the Periodic
material is observed mirroring previous results; here the Quasi-Periodic architectures
show a better performance in attenuating this wavelength. Around, λin/d = 4, the more
efficient attenuation of the Periodic microstructures are recovered. But from λin/d ' 5, no
attenuation below 1

e
PK

0 (ωin) is observed in the Periodic architecture.

In the Quasi-Periodic microstructures, the penetration lengths increase gradually with
the wavelengths suggesting an improved efficiency in attenuating the wave-packet starting
λin/d = 5 over the Periodic microstructures, and of course, earlier at λin/d = 3.
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4.5 Sound velocity

After qualitatively analysing the different regimes of energy transport in the specific
range of wavelengths, the effect of the diffusive contribution to the energy transport is
investigated via an analysis on the stress-wave speeds. In highly heterogeneous linearly
elastic materials, wave-propagation is mainly influenced by two factors, the effective rigidity
of the medium (i) and the interfaces features at the heterogeneities(ii) [Luo et al., 2021].
Indeed, as the wave-packet travels inside the microstructure, its scattering leads to a
redistribution of the kinetic energy in directions different than the principal direction of
propagation changing thus the apparent wave-packet speed.

First, the effective wave-speed at larger wavelength is determined (i), then, the instan-
taneous waves-speeds reported at different positions of the wave-packet average position
are computed (ii).

4.5.1 Long-wavelength (effective) velocity

To estimate the effective wave-speed at large wavelength, the effective elasticity moduli
and density are computed following the coarse-graining method suggested in Chapter 2.
In Chapter 3, we showed the ease of convergence towards a mean (converged) effective
isotropic elasticity tensor from relatively small coarse-graining scales. Table 4.2 summarizes
the effective material properties, namely the effective density and elastic properties of
the Periodic and Quasi-Periodic types 1 and 2 microstructures, along with the bulk
(homogeneous) material properties (as seen in Table 1). The effective longitudinal wave-
speed is then computed for each microstructure from their corresponding effective converged
material properties.

However, this calculation cannot transcribe the diversity of behaviour of the stress waves
in the highly heterogeneous microstructures in transient state, i.e., energy redistribution.
In consequence, the instantaneous speed of the wave-packet must be studied. This should
give more insights on the transient properties of the architectures.

4.5.2 Instantaneous velocity

The different patterns and heterogeneities’ distribution suggest a big impact on the
stress-wave propagation - as seen in the previous sections. At wavelengths comparable
to the microstructures’ characteristic length(s), this influence is most pronounced and
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Typical microstructures effective properties

Geometry Young Modulus (GPa) Poisson ratio density (kg/m3) cdeff
(m/s)

Bulk 2.400 0.420 1180 2279

Periodic 1.395 0.354 931 1563
Quasi-Periodic type 1 1.244 0.348 892 1489
Quasi-Periodic type 2 1.220 0.354 892 1495

Table 4.2 – Elasticity moduli, density and the longitudinal wave-speed for the bulk
material. Effective elasticity moduli, density and the long-wavelength (effective) speed for
the Periodic and Quasi-Periodic type 1 and 2 microstructures, computed at scale lCG = 10d
(converged moduli following Chapter 2 and 3), plane strains are assumed
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Figure 4.8 – Evolution of the instantaneous wave-packet speed in the microstructure.

the stress-waves scattering is accompanied by an attenuation of the wave-packet speed
as it travels different zones in the microstructure. To further quantify this scattering and
attenuation, the instantaneous wave-speed is assessed. The instantaneous wave speed
reported at each position of the wave-packet inside the microstructure is computed as
follows [Luo et al., 2021, Luo et al., 2019]:

xw(ωin, t) =
∑
m xmKm(ωin, t)∑
mKm(ωin, t)

cdinst(ωin, t) =∂xw(ωin, t)
∂t

(4.6)

Due to scattering, the energy transport is not monotonous and the energy is expected to
bounce back and forth as the stress-waves are scattered inside the microstructures between
the holes patterns. Consequently, the instantaneous velocity, especially of the wave-packets
of small wave-lengths, ricochets from negative to positive values and vice-versa; hence
the need to smoothen the obtained values of xw(ωin, t) and cdinst(ωin, t). A Savitzky-Golay
filter is considered.
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4.5. Sound velocity

Figure 4.8 shows the evolution of the instantaneous wave-speed in the three considered
microstructures as the wave-packet travels inside the sample for different excitation
wavelengths. As the wave-packet is establishing in the sample, we note an initial speed
rise time (mainly visible at large-wavelengths wave-packets). Only the velocity values after
this initial increase should be considered for the analysis. Moreover, the silent boundary
condition at the right of the sample reduces the zone in which the instantaneous velocity
estimation is lucid. In fact, the wave-packet approaches the right boundary of the sample,
it’s absorbed by the imposed silent boundary condition and thus the computation of xw
following Eq. 4.6 becomes erroneous (mainly at large-wavelengths). Hence the reduction of
the studied zone width to 20d (instead of 40d) corresponding to a width of 60mm (instead
of 120mm).

As shown, with increased λin, the value of the established instantaneous velocity
increases.
This is especially true for the Periodic microstructure where a typical convergence towards
the effective value found in Section 4.5.1 suggests a clear establishment of the wave-packet
inside the architecture with minimal scattering. The absence of a plateau at the smallest
wavelength λin/d = 1 is a signature of a diffusive-localized regime in total agreement with
the penetration lengths reported previously. From λin/d = 4, one observes a plateau in
the instantaneous velocity suggesting thus the dominance of the propagative regime of
the energy transport [Luo et al., 2021]. At the special wavelength of λin = 3d, we can
see a peak in the instantaneous velocity mirroring the previous results on the Periodic
microstructure at this specific excitation frequency. It’s mentioned that these results are
in accordance with the penetration length results reported in Figure 4.7.
For the Quasi-Periodic microstructures, the instantaneous speed is always lower than
the estimated long-wavelength values reported in Table 4.1. This indicates a persistent
attenuation of the energy transport in total agreement with the penetration lengths
analysis reported previously. It’s noted that the Quasi-Periodic type 1 microstructure
appears to be the most efficient in scattering the wave-packet from this interpretation
on the instantaneous wave-speeds; a result observed in Section 4.3. The instantaneous
speed in the Periodic architecture is found to be systematically larger than the one in
the Quasi-Periodic architectures, showcasing the higher efficiency of the Quasi-Periodic
microstructures in slowing down and reducing energy transport.

In the next section, we follow [Beltukov et al., 2018] and proceed to analyse the
transition from propagative to diffusive regime.
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Figure 4.9 – Microstructure at the core of the sample considered for the analysis of
the input(left)/output(right) (blue dots) wave-packet. Imposed wave-packet on the left
boundary of the sample (green-dashes). Silent Boundary Conditions (SBC) are set on the
four boundaries (orange). At the right-hand side of the figure are represented the three
architectures

4.6 From propagative and diffusive regimes

For a given position m, the kinetic energy evolution in time Km(ωin, t) gives insights
either on the coexistence of propagative and diffusive energy transfer, or the dominance of
one over the other. The analytical method proposed by [Beltukov et al., 2018] is followed to
analyse the transportation of energy. For this, we consider the microstructure (40d× 55d)
embedded at the core of a rectangular sample of 70d× 55d (Figure 4.9).

This allows the analysis of (i) the input signal (wave-packet) with no reflection/scattering
from the microstructures at the left of the sample, and of (ii) the wave-packet at the
outlet (right) as the wave travels across the sample (Figure 4.9). The input and output
wave-packet will subsequently be analysed in the frequency domain to offer insights on the
amplitudes and wavelengths that are passed/rejected by the microstructure (Section 4.7).

Figure 4.10 shows the time evolution of the kinetic energy Kout at the outlet (vibrant
colours) and Kin at the inlet (faded colours) of the three microstructures for three exci-
tation wavelengths. The upper envelope (thick lines) is considered here for the analysis.
It’s noted that for each i-wavelength, the plots were rescaled by i−3 and normalised by
their corresponding maxima for a better visualisation. The focus is shed on Kout. For
the three microstructures, most prominently at large wavelengths, a narrow peak PKprop

out

is observed at first (at time t = t0out), followed by a broader peak PKdiff
out (or multiple
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(a) Periodic Hexagonal (b) Quasi-Periodic type 1 (c) Quasi-Periodic type 2

Figure 4.10 – Time evolution of the kinetic energy at the outlet (vibrant colours) Kout and
the inlet Kin (faded colours) of the microstructures, each one is normalised for visualisation
purposes. Three wavelengths are represented. The upper envelope (thick lines) is considered
for both the PK and FWHM analysis.

superposing peaks) of the energy. As mentioned in previous works [Beltukov et al., 2018],
the first peak in the kinetic energy corresponds to the so-called propagative peak; the
following peak(s) is(are) formed by the diffusive spreading of the scattered energy and
is(are) known as the diffusive peak(s). From Figure 4.10, the propagative peak is shown to
be very different for each microstructure, and especially at intermediate wavelengths (e.g.,
λin/d = 5). For small wavelengths, there’s no clear and distinguishable propagative peak:
the diffusive energy transfer regime is predominant. As the regime shifts from a diffusive
to propagative one with increasing λin, the contribution of the propagative peak increases;
the contribution of the diffusive peak is in its turn reduced. Following [Beltukov et al.,
2018], the ratio between the propagative peak (PKprop

out at t = t0out) to the diffusive peak
(PKdiff

out at t > t0out ) can be used as a criterion to identify the dominant regime of energy
transfer at each λin for each microstructure. We recall that the herein shown peaks cannot
represent by any mean any sort of attenuation between the inlet and outlet since each
plot is normalised by its own maxima for visualisation purposes, as we focus solely on the
kinetic energy at the outlet, and we analyse its trends.

The evolution of the peaks ratio PKprop
out

PKdiff
out

(propagative to diffusive) with the excitation
wavelength λin is plotted in Figure 4.11(a) for the three microstructures. The transition
from diffusive to propagative regime occurs for the Quasi-Periodic type 1 and 2 at
λin/d = 7 and λin/d = 5 respectively. For the Periodic microstructure, around the special
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(a) Contribution of the propagative and dissi-
pative peaks to the kinetic energy at the outlet
of the microstructures.
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(b) FWHM of the kinetic energy at the outlet
suggesting transfer regime transition

Figure 4.11 – Analysis of the transition from propagative (low-frequency, large wavelength)
to dissipative (high-frequency, small wavelength) regime.

wavelength of λin = 3d, a peak in the ratio suggests a dominant propagative regime. From
λin/d = 5, only propagative regime is observed. At large wavelengths, namely λin/d ≥ 5,
the propagative regime is predominant in the three microstructures, and this dominance is
mostly pronounced in the Periodic microstructure.

A comparison of the width of the signal, computed as the full width at half maximum
FWHM of the energy packet at the outlet with the width of the excitation (the wave-packet
at the inlet) also describes the effective diffusivity of the energy inside the microstructures.
The broadenining of the energy peak is signature of the diffusive transfer regime, while a
constant width corresponds to a dominant propagative regime.

Figure 4.11 shows the evolution of the ratio between the inlet width of the wave-packet
and the outlet width of the wave-packet FWHMin

FWHMout
. An S shape trend is observed for the

three microstructures. At high frequencies (small λin), the broadening of the wave-packet is
the most pronounced for the three microstructures, thus the dominance of the dissipative
regime. For the Periodic microstructure around λin/d = 3, a peak in the FWHM ratio is
observed suggesting a transition from dissipative to propagative regime.From λin/d = 5 to
λin/d = 7, coexistence of both diffusive and propagative regimes is proposed. For the Quasi-
Periodic type 1 microstructure, no widening of the wave-packet occurs starting λin/d = 8,
for wavelengths λin/d ≤ 7, dominance of the diffusive transportation regime is observed.
For the Quasi-Periodic type 2 microstructure, no widening of the wave-packet occurs
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starting λin/d = 8, for wavelengths λin/d ≤ 7, dominance of the diffusive transportation
regime is observed.

Combining the different proposed criteria draws the line on the transition from the
diffusive to the propagative regime.

To shed more light on the amplitudes and wavelengths at stake in the microstructures’
as the wave-packet travels within, the velocity at the output Vout is analysed in the
frequency domain for the whole range of λin.

4.7 Frequency components at outlet

In this section, a study on the wavelengths components of the output velocity Vout is
carried-out. The goal is to reveal the role played by the microstructural hole distribution,
not only on the attenuation of the stress-waves as seen previously, but also on the individual
wavelengths contributing to the velocity of the material points at the outlet. The choice of
considering the velocity instead of the kinetic energy is to ensure a more straightforward
physical interpretation of the results.

Figure 4.12 shows the evolution of the material velocity as the stress-wave packet reaches
the right side of the sample (the outlet, after it travelled through the microstructure). Since
the considered geometry consists of the microstructure embedded inside a rectangular
sample (Figure 4.9), the outlet velocity can be analysed in space, i.e., the evolution in time
of the velocity at the outlet can be transferred to an evolution in space via the known
wave-speed of the bulk material; this allows an analysis of the wavelengths recomposing
the outlet velocity.

It’s noted that for each i-wavelength, the plots are normalised by their corresponding
maximum for a better visualisation. The lower row of images (Figure 4.12) shows typical
FFT analysis results on the outlet velocity reported in terms of the characteristic wave-
length d of the materials. Three wavelengths of interest are shown for each microstructure.
For the Periodic microstructure (Figure 4.12(a)), λin/d = 4, 7 and 9 are shown. FFT
analysis on Vout of the smallest wavelength shows two dominant peaks at two wavelengths
λout/d = 3, 4.66 on each side of the input wavelength λin/d = 4. Similar response is
obtained at λin/d = 7. At λin/d = 9, it’s clear that the same frequency as the excitation
is recovered at the output.
For the Quasi-Periodic type 1 microstructure (Figure 4.12(b)), λin/d = 4, 6 and 9 are
considered. FFT analysis on Vout of the smallest wavelength shows the same frequency

161



Part III, Chapter 4 – Damping properties of Periodic and Quasi-Periodic architectured materials

at the output as the excitation frequency. At λin/d = 6, the dominant wavelength at the
outlet of the microstructure is shifted to λout/d = 7. At λin/d = 9, the same frequency
is recovered at the outlet. It’s recalled that the influence of the attenuation is not taken
into consideration in this analysis since the amplitudes are normalised by their maximum
value.
For the Quasi-Periodic type 2 microstructure (Figure 4.12(c)), λin/d = 4, 6 and 9 are
considered. Contrary to the type 1 microstructure,the smallest wavelength λin/d = 4 is
not recovered and the dominant peak at the outlet is shifted to λout/d = 5. The dominant
frequency at λin/d = 6 is recovered, and another peak emerges at λout/d = 6.66. At
λin/d = 9, it’s clear that the same frequency as the excitation is recovered at the output.

By analysing input wavelengths ranging from λin = d to λin = 10d, the FFT results
can be juxtaposed in a (λin − λout) space, along with the contribution of each output
frequency into Vout creating thus an extensive input-output frequency map (IOFM) relative
to each microstructure.

The IOFM of the Periodic, Quasi-Periodic type 1 and 2 microstructures are shown in
Figure 4.13. The excitation wavelengths studied previously (Figure 4.12) are represented
by the yellow dashed-lines; plus, the identity (y = x) function in the (λin − λout) space is
represented by the dashed green lines.
The IOFM of the Periodic microstructure (Figure 4.13(a)) shows a large complete band-
gap around λ/d = 3.5− 4.5, a result coherent with [Saleh, 2017]. For smaller wavelengths
λ/d = 1− 3, although the previously shown scattering of the wave-packet, the frequency at
the outlet is similar to the excitation frequency. We recall that the attenuation is dismissed
by means of the normalisation. For input wavelengths λ/d = 2.5− 4, the dominant output
wavelengths are centred at λout/d = 3, it’s mentioned that the input wavelength λin/d = 3
had a special behaviour inside the Periodic microstructure. For λ/d = 2.5− 3, a complete
band-gap appears. Partial band-gaps are also present at different wavelengths, with the
largest partial bandgap shown at λout/d = 2.5−3. At partial band-gaps, the corresponding
frequencies are not blocked entirely and only a small amount of the energy is transported.
As shown, in the IOFM, with increasing the excitation wavelength, the output frequencies
are separated by partial bandgaps (e.g., λout/d = 5, 5.5, 7, 7.66− 8.66, 9.66, etc.) and are
centred at specific wavelengths (e.g., λout/d = 4.66, 6, 7.5, 9, 10.5, etc.).
The IOFM of the Quasi-Periodic type 1 microstructure (Figure 4.13(b)) shows two large
complete band-gaps between λ/d = 1 up to λ/d = 4 and then from λout/d = 4 to λ/d = 6.
It’s noted that the specific wavelength λout/d is the common dominant wavelength for
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Figure 4.12 – Velocity evolution in time at the outlet Vout and its FFT analysis for the
Periodic (a), Quasi-Periodic type 1 (b) and Quasi-Periodic type 2 (c) The velocities Vout are
normalised for visualisation purposes. The FFT results show the contribution of different
wavelengths to Vout

excitation wavelengths going from λin/d = 2.5 to λin/d = 5. A similar unique dominant
wavelength appears at λout/d = 6.5. A thinner bandgap appears around λ/d = 7. A partial
band-gap appears around λ/d = 9− 10.
The IOFM of the Quasi-Periodic type 2 microstructure (Figure 4.13(c)) shows two large
complete band-gaps between λ/d = 2 and 3. A thinner bandgap appears around λ/d = 7.
A partial band-gap appears around λ/d = 7 − 7.5. A partial band-gap appears around
λ/d = 5.5 − 6. Unique dominant wavelength appears at λout/d = 5 and λ/d = 7.8 for
excitation wavelengths going from λin/d = 3 to λin/d = 5 and λin/d = 6 to λin/d = 9
respectively.

As seen, more light is shed on the amplitudes and wavelengths at stake in the mi-
crostructure as wave-packets travel through. The presence of different band-gaps for each
microstructure is observed, as well as the presence of partial bandgaps in all three mi-
crostructures. If the output frequencies in the Periodic microstructure are aligned along
the identity function with broadening as the excitation wavelength increases, the response
of the Quasi-Periodic microstructures shows a horizontal shift that can be explained by
the larger amount of scattering and thus high frequency (low wavelength) in the output
velocity.
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(a) Periodic Hexagonal (b) Quasi-Periodic type 1

(c) Quasi-Periodic type 2

Figure 4.13 – Input-output frequency map (IOFM) of the Periodic, Quasi-Periodic type 1
and type 2 architectured materials. 164



4.8. Concluding remarks

4.8 Concluding remarks

The attenuation of the stress-waves inside the Periodic and Quasi-Periodic architectures
is put-forth in this chapter. 2D FE simulations follow the evolution of wave-packets of
different wavelengths through the samples. The kinetic energy attenuation performance
is compared between the Periodic hexagonal architecture and the two kite&dart Quasi-
Periodic architectures. The amazing capabilities of the Quasi-Periodic microstructure
to damp the stress-waves is noted; in fact, unlike in the hexagonal architecture (where
only one length characterises the structure (d)), the long-range pattern heterogeneities in
the Quasi-Periodic microstructures provide continuous source of scattering leading to an
increase in the diffusivity and attenuation accompanied with a decrease in the penetration
length.

Besides, separate regimes of energy transport are found and well established; those
transport regimes evolve as the excitation wavelength changes. The identification of the
transport regimes has been possible by relating the energy at the outlet to the spreading
of the initial excitation into coherent and incoherent vibrations: the propagative part
being the coherent contribution to the transfer, and the diffusive one being the incoherent
part.

Moreover, we show how the instantaneous wave-speed is reduced at small wavelengths,
due to the scattering and the redistribution of the kinetic energy in directions different
than the principal direction of propagation. No plateau is reached in neither Quasi-Periodic
microstructures (in the studied range of wavelengths of course).

Note that the system is purely harmonic here (except for the silent boundary conditions
SBC), which means that the dissipation of energy between the inlet and the outlet is only
an effective dissipation of energy resulting from waves spreading due to scattering inside
the architecture between the inlet and outlet. The imposed SBC being away from the
analysed zone do not contribute to the studied part of the energy dissipation, and are
only considered to mimic an infinite medium reducing boundary effects and preventing
unwanted reflection. So one can see the architecture as a filter embedded in an infinite
medium and modifying the stress-wave packet as it wishes.

Further, this chapter shed light on the wavelengths components of the wave-packet
exiting the considered microstructures. Bandgaps are shown to exist in the three mi-
crostructures, with an increase in the Quasi-Periodic microstructures, a signature of their
long-range heterogeneities in their patterns. Herein shown results join recent findings by
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[Glacet, 2019] that show the possible existence of band-gaps in the vibrational response of
Periodic and Quasi-Periodic beam lattices.

The superiority of the Quasi-Periodic microstructures is once again advanced as we
relate their overall better dynamic properties (stress-wave scattering, attenuation, bandgaps,
etc.) compared to the Periodic microstructure.

It’s believed that these results are of high relevance as they allow the microscopic un-
derstanding of the influence of the architecture’s periodicity on the transport of mechanical
energy. More importantly, in the context of this thesis, regarding the analysis of fracture
in architectured materials, this chapter elaborates on the stress-waves’ behaviour a crack
would encounter if it were to advance dynamically within such materials.

The next and final chapter, is devoted to the study of the influence of stress-waves on
crack propagation.

Open issues and extensions

— In this study, a single rh/d ratio is studied which means that the comparison was
restrained to the influence of the periodicity of the microstructure on the damping
properties and vibrational properties.

— The consideration of a finite element method to analyse the dynamic properties of the
Periodic and Quasi-Periodic architectures required huge computational resources. Of
course analytical solutions exist for the Periodic architecture, and numerical methods
based on the construction of boundary value problems on RV E exist. However, since
an RV E cannot be accurately defined in the case of non-periodic microstructures,
and to overcome any probable bias coming from the consideration of approximate
RV Es, we restricted the study to d ≤ λin ≤ 10d.

— As mentioned in the chapter, periodic boundary conditions can be considered for
the analysis [Luo et al., 2021, Glacet, 2019], for the Periodic microstructure on an
RV E, and for periodic approximation of the Quasi-Periodic ones. However, as the
approximation might induce some unwanted bias, the decision to consider the same
numerical model for the different microstructures was carried-out.
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STRESS-WAVES AND THEIR ROLE IN
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Figure 5.1 – crack-tip in architectured materials: a schematic representation stress-waves
reflections from the free boundaries of the architecture
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5.1 Introduction

In Chapter 3, the quasi-static propagation of a crack inside the architectured materials
is studied. At the microstructural level, it shows the attraction of the crack-tip to the holes,
it shows also the presence of a preferential weak plane for propagation in the Periodic
microstructure, and the presence of ’resilient zones’ in the Quasi-Periodic material. In
the previous Chapter 4, the stress-wave interaction with the architectures’ microstructure
is studied. Attenuation of the stress-waves resulting from wave spreading due to the
continuous scattering at the free boundaries of the architecture is put forth.

Imagine a crack-tip immersed in such architectures (Figure 5.1). Under dynamic loading
(rapidly varying loads, high strain rates, etc.), the crack-tip would ’see’ continuous variation
of the stress states in its vicinity coming from the back-and-forth reflections of the stress-
waves at the free boundaries of the architecture. To be able to understand the dynamic
crack propagation in such materials, the influence of stress-waves on the stress-state at
the crack-tip and eventually on the crack growth must be carefully characterised.

Even in homogenous materials, the problem is complex since stress-waves load the
crack-tip. Therefore the stress-field at the crack-tip is continuously changing as the stress-
waves travel inside the material. And depending on the boundary conditions, the crack
can alternatively, be loaded and unloaded.

168



5.1. Introduction

We believe that understanding the interaction between stress-waves and crack-tip(s),
debuting with homogenous materials, should build the foundation for future analysis of
the dynamic fracture of architectured materials, i.e., where a range of mixed and complex
stress-waves reflections and interactions with the crack-tip and the microstructures are
expected.

5.1.1 ...and more

If in statics, fracture mechanics relies on the balance between fracture energy and the
strain energy release rate, the game in dynamics is much more complex and this inherent
difficulty arises from the strong interactions between the crack-tip stresses, crack-tip
speeds, but also with the stress-waves reflected from the boundaries and those emitted
by the crack-tip itself. Dynamics fracture mechanics thus relies on the balance between
the fracture energy from one side and the dynamic energy release rate from the other;
the latter being affected by the redistribution of the stresses at the crack-tip [Bleyer
et al., 2017]. Dynamic fracture mechanics also predicts that the Rayleigh wave speed
cR is the limiting velocity of a mode I stable crack propagation. However, experimental
observations show the existence of limiting velocities typically around 40% of cR, above
which instabilities emerge and eventual branching occurs 1. Besides, phase-field approaches
to dynamic fracture are shown to successfully reproduce experimental crack patterns, i.e.,
initiation, coalescence, branching positions and branching angles. In the same spirit as in
the experiments, it is found that the tip speed of stable cracks in phase-field simulations
are also limited around the same order of magnitudes (∼ 40% of cR) as the experiments
(with some discrepancy). However, accurate experimental setups to validate the phase-field
predictions regarding the crack history and tip speeds are usually insufficient, and the
predictions are usually validated post-mortem on the crack patterns only.

The instantaneous crack (in)stabilities, i.e., branching, turning and limiting velocities
under mode I are at the core of this chapter; more specifically, the ability to explain crack
branching at slower tip speeds than the ones predicted via the dynamic fracture mechanics
is sought.

Unlike in previous chapters, where the numerical simulations of damage are at the core
of the developments, this chapter is based on dynamic fracture mechanics concepts applied
on a novel experimental setup. Interesting phenomena regarding the crack propagation’s

1. The limiting velocity is found to depend on the material, the geometry and boundary conditions.
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interaction with stress-waves are expected. The amazing technologies at Ecole Centrale
de Nantes: an Ultra-High-Speed-High-Resolution UHS-HR camera and digital image
correlation DIC skills, offer insights on the extraordinary phenomena governing crack
propagation and crack (in)stabilities, and enable the definition of what we call ’material
(in)stability map’, a comprehensive criterion for crack branching.

This chapter is organised as follows: the novel experimental setup is briefly introduced.
The DIC displacement fields, the derived crack-tip speeds and post − mortem crack
patterns are then presented. Here, questions related to the crack path history and branching
conditions are asked: when and why does the crack branch? If the first answer can be
easily answered by following the opening of the crack directly from the images, the second
question is a bit more tricky.

As mentioned, the answer is sought following the basic dynamic fracture mechanics
concepts; therefore the influence of the crack-tip speeds on the angular stress distribution
from [Yoffe, 1951] is first recalled, and the inability to explain branching at low crack-tip
speeds is stressed. The analysis of the angular stress distribution as a criterion for crack
(in)stability is retained, however, we build on the work of [Ramulu and Kobayashi, 1983]
and introduce higher order terms in the analysis.

To elaborate on the experimental instabilities, quantities relevant to fracture mechanics
knowingly SIF , higher order terms and crack-tip positions in time are extracted from the
displacement fields via the method proposed by [Roux and Hild, 2006, Roux et al., 2009].
The angular stress distribution is investigated from the elastodynamics solution of the
stress field. At branching, this shows indeed a deviation of the maximum circumferential
stress from its principal direction along the crack extension, which can clearly account for
the branching.

From here, we build a material (in)stability map that embodies a criterion for the
transition between stable and unstable crack propagation. The criterion is valid under all
crack-tip speeds 0 ≤ vc ≤ cR, with the unquestionable role of T − stress (higher order
term) on crack instability at its core.

A methodology to experimentally (and numerically) advocate the instability source at
the bifurcation position is hence proposed. To wrap-up this chapter, we get back to [Borden
et al., 2012]’s benchmark in which -unlike the proposed experiment- no external loading
along the direction of crack propagation is considered, yet branching occurs. Unsurprisingly,
the methodology successfully predicts the (in)stability conditions and the branching angle,
but also gives insights on the damage band thickening in phase-field.
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Figure 5.2 – Sample geometry and dimensions for the inertial impact test [Grégoire et al.,
2007]. The hole converts the compressive wave from the input to a tensile loading at the
notch

,

5.2 Crack branching in an inertial impact test

This first section briefly describes the experimental and imaging setup of the inertial
impact test. The experiments were performed at CRED : Centre de Ressources en
Essais Dynamiques, in Ecole Centrale de Nantes.

The specimen geometry from [Grégoire et al., 2007] is combined with the test configu-
ration from [Pierron et al., 2014] to enable interesting crack propagation interaction with
stress-waves; knowingly:

I compressive waves from the impact are converted to tensile ones and initiate the
crack propagation;

I the propagating crack meets reflected stress-waves from the boundaries and bifurcates
into two symmetric branches.

I the two branches propagate at similar velocities.

All these phenomena and more will be investigated in details.

5.2.1 On the shoulders of giants

[Grégoire et al., 2007] analysed a Split Hopkinson Pressure Bar (SHPB) test (low impact
velocity ∼ 10m/s) via numerical simulations. For this, he used a distinctive geometry that
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enabled compelling crack propagation behaviour: a rectangular plate (140mm× 70mm)
with a hole of diameter dh = 30mm. The circular hole is vertically centred at a distance
dh = 45mm from the border. A 15mm notch is cut out as in (Figure 5.2). The impact
should induce compressive waves; however, the presence of the hole creates a tensile
zone sideways of the hole opening thus the notch and enabling the fracture. Different
propagation phases were observed in his work showing compelling interactions between
stress-wave and the crack: (i) the crack is initiated and propagates at a constant velocity,
(ii) it stops (arrested), (iii) and then restarts at a constant velocity (slower than in the
first phase).

Conversely, [Pierron et al., 2014] went ’beyond Hopkinson’s bar’ and provided a seminal
test configuration called the inertial impact test. In this type of tests, the specimen is
impacted and ’left on its own’; indeed, the specimen is loaded by a short pulse (due to
compressive waves from the impact). By exploiting advancements in full-field measurements,
identification of material properties is possible from camera recordings and full-field
measurements without the need for external forces 2.

The available cutting edge technologies (gas gun, UHS-HR camera) combined with
advanced DIC skills 3 (in-lab-developed state-of-the-art calibration methodology [Vinel
et al., 2021]), at Ecole Centrale de Nantes, enabled the investigation on advanced ex-
perimental configurations inspired from [Pierron et al., 2014] and [Grégoire et al., 2007]:
where full-field measurements of a high-velocity impact (∼ 30m/s) are exploited to extract
meaningful fracture mechanics quantities (SIF , T − stress, crack-tip position, crack-tip
speeds, etc.) and to analyse the fracture behaviour.

5.2.2 Loading and test configuration

The specimen shown in Figure 5.2 is to be loaded dynamically via an impact on the
edge perpendicular to the notch as schematised in Figure 5.3. The impact should induce
a compressive wave; however, the presence of the hole creates a tensile zone sideways
opening thus the notch and enabling the fracture [Grégoire et al., 2007]. As compared to
[Grégoire et al., 2007], the absence of an impedance at the right-hand side boundary (in
his case, the use of Hopkinson’s bars with similar mechanical properties to those of the

2. As advanced, [Pierron et al., 2014], inertial effects are usually a burden for the measurement of
external forces, altering the identification of the material behaviour

3. The open-source in-lab-developed software UFreckles is provided via https://zenodo.org/record/
1433776
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5.2. Crack branching in an inertial impact test

Figure 5.3 – A schematic representation of the experimental configuration

specimen), stress-waves will be reflected from the right-hand side boundary and will deliver
new loading-unloading conditions of the crack-tip probably modifying its advancement (as
we’ll see shortly). The specimen is mounted on a waveguide to ensure proper compressive
wave entering the specimen [Van Blitterswyk et al., 2018, Vinel et al., 2021], and to hold
the sample while keeping all other boundaries free.

Remark 5.1. To give the reader more insights on the global phenomena happening after
the impact, the Lagrange representation of the impact (projectile-waveguide-specimen)
is detailed in Appendix E. And of course, the main focus will consequently be drawn on the
last part of the impact, i.e., the loading of the specimen.

5.2.3 Experimental and imaging setup

The sample is laser-cut from a commercial PolyMethyl Methacrylate (PMMA) manu-
factured by Arkema; to apply the DIC, a synthetic speckle pattern is laser-engraved into
the sample following [Vinel et al., 2021].

The projectile and the waveguide are machined from a polyoxymethylene (POM)
cylinder of diameter dproj = dwg = 40mm; both are 80mm long. POM is used because
it has similar material properties as PMMA (More on the identification of the elastic
properties of PMMA in Subsection 5.2.7). The projectile is fired by a gas gun to reach a
velocity of Vproj just before the impact (impact with the waveguide on which the specimen
is mounted). A shock absorber is needed to neutralize the impact.

All images are captured using the UHS-HR Cordin Model 580 (at 400k fps with a
resolution of 3296× 2472px). To provide enough lighting for the camera sensors, additional
lighting is provided by two Pro-10 Profoto flashes (2× 2400J provided in 1000µs). The
flashes are triggered via an infrared light-gate system (SPX1189 series Honeywell) mounted
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Figure 5.4 – Experimental set-up for the inertial impact tests

at the end of the gas gun.
At such 400k fps and 3296 × 2472px resolution, the camera records the entire test:

from the first compressive waves induced by the impact to the total failure of the specimen
(about 200µs, 78 frames). A photo of the test bench can be found in Figure 5.4. One
identifies:

1. The gas gun

2. The shock absorber

3. The specimen mounted on the waveguide

4. The PMMA support bed on the optical positioners

5. The flash lights

6. The UHS-HR camera: the Cordin Model 580

7. A light-gate: the SPX1189 series Honeywell infrared sensor

8. The delay generator (to synchronise the flashes, more details in Appendices F.1)

Details about the experimental and imaging setup can be found in the Appendices
F.1 to avoid overloading the chapter.

A series of impact tests (Figure 5.3) were performed at Ecole Centrale de Nantes.
Four representative samples are analysed (designated TAF1, TAF2, T3DE and THOM).
In this chapter, only results and full-field measurements of the TAF1 sample will be
detailed. Related material to TAF2, T3DE and THOM are showcased in Appendices G, H
I, respectively.
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Figure 5.5 – Post-mortem photograph of sample TAF1 (impact velocity Vproj = 30.5m/s

5.2.4 Post-mortem state of the sample

By precautionarily setting the gas guns pressure to 1.49atm and 1.55atm, the projectile’s
speed 4 just before the impact was respectively around 20m/s and 30m/s (22m/s for TAF2
and THOM, 30.5m/s for TAF1, and 31.8m/s for T3DE).

Figure 5.5 shows the crack(s) paths on the sample TAF1 (post-mortem). As seen,
a first crack is observed at the left-hand side of the hole. Undoubtedly, Poisson effect
coming from the horizontal compression is responsible for the initiation. A little curve
on the crack suggests a small misalignment in the mounting of the specimen on the
waveguide. On the right, a crack is initiated from the notch, it travels horizontally (24mm)
before branching into two branches (at an angle θ = +40o and θ = −15o). Each branch
displays two convexities; stress-wave reflection at the free boundaries are expected to play
a predominant role on these deviations. Two vertical cracks are also present at each side
of the hole.

The samples consistently show the same crack patterns (Appendix G for TAF2 and H
for T3DE) suggesting a repeatability of the setup, and interesting phenomena waiting to

4. The projectile’s speed is computed from images taken at lower frame rate, (10000fps) with a
standard high speed camera
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be explored.
Highly resolved ultrafast imaging combined with DIC enables the validation of the

big role played by the stress-waves on the cracks patterns.
Before exploring the measurements, we give some remarks regarding the DIC data

processing.

Remark 5.2. Unlike in statics where standard cameras are used and where DIC yields
accurate measurements, in dynamics, especially when recording with an UHS-HR rotating
camera at 400kfps, neat imaging cannot be achieved. Despite the application of the novel
calibration method from [Vinel et al., 2021] to suppress apparatus induced distortions,
residual distortions may remain introducing a bias in the DIC measurements.

Remark 5.3. The displacement fields are filtered in time with a Savitzky Golay (kernel
size= 5 frames, order 2) filter to smoothen the first derivative (velocity fields); moreover,
spatial noise is filtered out via a Tikhonov regularisation of the DIC problem.

Remark 5.4. The strain-rate fields are derived by spatial differentiation of the velocities;
velocities are derived from temporal differentiation of the displacement fields.

Remark 5.5. The time origin (t = 0) corresponds to the camera trigger.

Remark 5.6. The initiation and the bifurcation frames are determined from the opening
of the crack lips (twin nodes along the crack path) in the images from the UHS-HR camera.

Remark 5.7. The opening of the crack lips along the crack path (twin nodes along the
crack path) allows the computation of an apparent crack-tip speed.

Remark 5.8. The apparent speed computed from the opening of the twin nodes along the
crack path is only a rough estimation of the actual crack-tip speed since it can be affected
by local noise, lighting of the crack lips and pixel resolution. A more precise estimation
will be determined following [Roux and Hild, 2006, Roux et al., 2009] in the next section.
His method is based on the analysis of the elastic fields in the sample, determining thus
more accurately the crack-tip position (sub-pixel precision) and derivating its speed. The
methodology for the estimation is given in Appendix D.

5.2.5 DIC displacement fields

Figure 5.6 shows displacement fields, longitudinal and transverse strain rate fields of
the TAF1 specimen at three different time steps. The following phenomena occur around
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these time steps: at 10µs (figures on the left), the first stress-waves entering the specimen
are shown, at 60µs (figures in the middle), the crack on the right-hand side of the hole
is initiated from the notch, at 95µs (figures on the right), the crack bifurcates into two
branches.

For the other specimens, see Appendices G, H, I
The ability to register 78 snapshot at 400kfps enables capturing never-seen-before

details regarding stress-wave and crack propagation. The apparent crack-tip speeds are
shown in Figure 5.7. The most compelling phenomena are listed under I.

I The initiation of the impact and the first compressive waves enter the specimen (at
500s−1strain− rates, shown at t = 10µs in Figure 5.6(d);

I The role of the hole in creating traction zones sideways (at t = 10µs in Figure
5.6(g)),

As seen in the previous section 5.2.4, two main cracks are observed sideways of the hole (a
first one at left-hand side of the hole and another one from the notch). Observation from
the DIC displacement fields show that surprisingly,

I the crack at the left-hand side of the hole is first initiated (t = 40µs). Once its length
reaches 15mm,

I the second crack initiates from the notch at the right-hand side of the hole (at around
t = 60µs).

After initiating from the notch around (t = 60µs), the crack accelerates to around velocity
of roughly 700m/s corresponding to 0.55cR.

I Compressive stress-waves are reflected as traction waves from the right-hand side
boundary, and they overlap the tip of the crack.

The crack decelerates and reaches the branching position while travelling at around
vc = 650m/s = 0.5cR.

I Bifurcation of the crack into two branches happen at t = 95µs.

I The two branches advance at particularly close velocities.

I Complex stress-wave orthogonal to the crack branches supposedly deviate the
branches.

Even though the same geometry as [Grégoire et al., 2007] is used, it’s clear that the
stress-wave propagation history is fundamentally different (the absence of an impedance
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Figure 5.6 – Sample TAF1 - DIC displacement fields (up), longitudinal (middle) and
transversal (down) strain rates at three time steps. A Savitzky Golay (kernel size= 5
frames, order 2) filter smoothens the displacements’ first derivative (velocity fields). Spatial
noise is filtered-out via a Tikhonov regularisation of the DIC problem
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Figure 5.7 – Experimental apparent crack-tip speeds of TAF1 sample obtained from the
crack opening

at the right-hand side of the specimen). Stress-wave reflections from the right-hand side
boundary deliver new loading-unloading events of the crack-tip, which indeed enables
distinctive crack patterns.

5.2.6 On the crack branching

The ability to quantify the rich dynamical behaviour of the cracks (initiation, accelera-
tion, deceleration, branching) was enabled thanks to the novel experimental setup and the
advanced DIC skills.

The focus is shed on the branching phenomenon. As observed, the branching occurs
after a certain duration of time in which the main crack appears to be decelerating.
Questions regarding the presence of a limiting velocity from one side and regarding the
crack branching at lower crack-tip speeds from the other are asked.

As mentioned, the answers are sought using a simple dynamic fracture mechanics
concept: the angular distribution of the stresses.

It is assumed that fracture is driven by the stress, and that the crack will propagate in
the direction of maximum circumferential stress [Erdogan and Sih, 1963, Streit and Finnie,
1980, Finnie and Saith, 1973]. The aim is to successfully predict the crack propagation
direction only via fracture-mechanics-related quantities.

For this purpose, we estimate the SIF , T − stress, the crack-tip position and derivate
the crack-tip speed vc from the experimental full-field kinematics following [Roux and
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Hild, 2006, Roux et al., 2009] 5. This enables the assessment of the angular distribution of
the stresses along the crack propagation (between the notch and the branching position)
through the following steps:

uDIC → SIF, T − stress, crack-tip position, and vc → σ

where uDIC is the DIC displacement field from which fracture mechanics relevant
quantities can be extracted. SIF, T − stress, crack-tip position, and vc are then injected
in the analytical solution of the asymptotic fields [Freund and Hutchinson, 1992] to compute
σ.

We’ll see how adding the higher-order term T−stress in the stress solution is reflected on
the modification of the direction of crack propagation at the branching position
(where the crack advances at vc lower than the threshold predicted by the classical solution)
which eventually translates to branching (crack instability). From there, we generalise
this finding by constructing an (in)stability map that embodies a criterion for crack
instability.

In the next section, we commence by showcasing the SIF , T − stress and crack-tip
speed results computed directly from the DIC displacement fields, as intermediate results
from the analysis scheme.

5.2.7 SIF , T − stress and crack-tip speed

Having full-field measurement of the kinematics of a specimen, one can estimate the
crack-tip position (and crack-tip velocity), the SIF and higher order terms (e.g., T−stress)
from Williams’ expansion automatically following [Roux and Hild, 2006, Roux et al., 2009].
In brief, by projecting displacement fields in a zone around the crack-tip on the analytical
solution proposed by [Williams, 1957], relevant quantities can be estimated. We recall that
the methodology, its parameters and its application scheme are described in Appendix D;

The elastic properties of the material are required to be known to estimate these
quantities. The elasticity tensor is determined via an in-house FEMU (Finite Element
Model Updating Method) identification method. Table 5.1 summarises the identified
material properties under the plain strain assumption. Interested readers are referred to
Subsection 5.2.7 for a brief note on the PMMA properties.

5. The methodology is briefly introduced in Section 5.2.7, and detailed in the Appendix D for interested
readers
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ρ 1200kg/m3 cd 2594m/s
E 6GPa cs 1387m/s
ν 0.3 cR 1287m/s

Table 5.1 – Material properties for the PMMA identified from the full-field measurements
via the in-house FEMU identification method

Discussion on the behaviour of PMMA

Even though PMMA exhibits viscoelastic material properties, it is hard to identify
the effective viscoelastic parameters due to the complexity of loading and unloading
(inertial effects). From here, it is assumed that the samples exhibit linear elastic behaviour,
with a modification on the elastic properties to take the viscoelastic effects into account.
An in-house FEMU is considered. The advantage of this method as implemented over
other methods (the virtual fields method [Grédiac, 1989] for example) is that it allows
the direct identification of the full elasticity tensor C of the material with no a priori
on the plane strain plane stress assumptions, and is also applicable for coarse temporal
discretisation. The effective elasticity tensor is then identified from full-field measurements
from the time of impact until the time steps preceding the initiation of the first crack. The
identified material properties are summarised in Table 5.1. This identification procedure is
repeated for the different samples TAF1, TAF2, T3DE, THOM and similar properties are
determined.

SIF , T − stress and crack-tip speed

Figure 5.8 shows the extraction results, namely SIF , T − stress and the crack-tip
speed vc. The robustness of the extraction (vis-à-vis its parameter, i.e. sizes of extraction
zones, Appendix D) is also reported by the error-bars .

The relatively wide error-bar of crack-tip velocity (purple) at the initiation (around
t = 60µs) suggests a high sensibility of the estimation to the extraction zone size. After
t ' 95µs, the different error-bars also broaden. These widenings can be explained by the
following: before t = 60µs there are no cracks in the region of interest (right-hand side of
the hole); after t ' 95µs, crack branching occurs.

Remark 5.9. The extraction (SIF , T − stress, vc) holds solely between the moment of
crack initiation (around t = 60µs) and the moment of branching around 95µs. Afterwards,
a redistribution of the stress states occurs due to the coexistence of two neighbouring
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Figure 5.8 – Experimental SIF , the higher order term T − stress and the crack-tip speed
in TAF1 sample. The error-bar corresponds to the sensibility to the extraction zone [Roux
and Hild, 2006, Roux et al., 2009], the crack-tip speed voc corresponds to the one reported
in Figure 5.18 (computed from the crack opening)

crack-tips. The extraction become erroneous.

From Figure 5.8, the following observations can be drawn:

I From t = 60µs (crack initiation from the notch) to t = 95µs, KID increases from
KID ' 2.68MPa

√
m to a plateau at KID ' 6MPa

√
m.

I The velocity of the elastic crack-tip on the other hand reaches a plateau around
vc = 0.5cR at t = 70µs, oscillations around this plateau are observed and the
maximum velocity vc = 0.55cR is reached at 90µs. Afterwards, the crack-tip starts
decelerating until it reaches vc ' 0.52cR at the moment of branching, around
t = 95µs.

I Regarding the first higher order term, knowingly the T −stress, an initial decrease is
observed from 11MPa initially to a minimum of T − stress = 2.46MPa at t = 77µs.
Afterwards, T − stress rockets through T − stress = 13.46MPa at the moment of
branching.

The rapid increase of T −stress before the crack branching echoes the tensile stress-wave
reflected from the right-hand side boundary that was observed in Figure 5.6 and discussed

182



5.2. Crack branching in an inertial impact test

in Section 5.2.5. The increase of T − stress before branching is also observed in TAF2,
T3DE and THOM samples (Appendices G, H, I).

5.2.8 Experimental campaign summary

— Inertial impact test on a distinctive geometry allowing compelling crack propagation
- stress-wave phenomena

— UHS-HR recording of the experiments and application of DIC to obtain full-field
kinematic measurements

From here,

— Data processing of the DIC fields enables the rough description of the crack patterns
and crack history

— Extraction of meaningful quantities relative to SIF directly from the DIC displace-
ment fields

From DIC and the extractions, it’s observed that:

— The hole of the specimen creates traction zones sideways

— The crack at the left-hand side of the hole is first initiated (t = 40µs)

— A second crack initiates from the notch at the right-hand side of the hole (at
t = 60µs), with KID = 2.68MPa

√
m

— The crack accelerates to around velocity of vc = 0.55cR

— A plateau at KID ' 6MPa
√
m is observed

— Tensile stress-waves parallel to the crack meet the crack-tip, the crack bifurcates
into two branches at vc = 0.52rR (at t = 95µs) with KID = 6.45MPa

√
m and

T − stress = 13.46MPa;

— The rapid increase of the T − stress (extracted from the DIC displacement fields)
reflects the tensile stress-waves meeting the crack (previous point).

We mainly focus on the last two points namely the branching and the role of the
crack-tip speed and the increase of T − stress. We aim at quantifying the role that
is played by a tensile stress parallel to the crack path (fancy name for T − stress) on
the crack instability and branching. To do so, we propose a method to advocate the
instability source at the branching position in the experiments.
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Part III, Chapter 5 – Stress-waves and their role in crack propagation

First, we show how [Yoffe, 1951, Freund and Hutchinson, 1992]’s derivation regarding the
angular variations of the circumferential tensile stress cannot explain the branching observed
in this experiment, and more importantly, how building on [Ramulu and Kobayashi, 1983]’s
work by adding higher order terms T − stress to the solution succeeds in yielding a change
in the fracture direction and thus explains the instabilities and subsequent phenomena.

5.3 max(σθθ): a growth criterion

A multitude of criteria were proposed for crack extension and fracture [Cotterell and
Rice, 1980, Erdogan and Sih, 1963, Hussain et al., 1974, Gupta, 1976, Palaniswamy and
Knauss, 1978, Williams and Ewing, 1972]. The most fundamental ones assumes that the
crack should advance in the direction that maximises the energy release rate [Hussain
et al., 1974, Gupta, 1976, Palaniswamy and Knauss, 1978]. An alternative theory suggests
that locally, the crack will choose the direction at which the local stress field at the tip
is symmetric (similar to mode I, no mode II sliding). The maximum circumferential
tensile stress criterion (σθθ) is first proposed in quasi-statics by [Erdogan and Sih,
1963], and adopted in dynamics by many authors [Williams and Ewing, 1972, Streit and
Finnie, 1980, Finnie and Saith, 1973]. Its success rests on its simplicity: an analysis of the
stress state near the crack-tip is sufficient to predict its extension behaviour.

The maximum circumferential stress criterion in the vicinity of a moving crack-tip (vc)
has previously been analysed by considering the leading term ([Freund and Hutchinson,
1992, Yoffe, 1951]), i.e., SIF ; Figure 5.9(a) shows the variation of the maximum circum-
ferential tensile stress with angle θ around the crack-tip for a material of Poisson ratio
ν = 0.3 for several values of normalised crack speeds vc ([Freund and Hutchinson, 1992]).
This feature was first observed by [Yoffe, 1951] 60 years ago.

Figure 5.9(b) shows the evolution of the direction of maximum circumferential stress
σθθ that is computed as follows:

θ0(vc) = arg
θ

max σθθ(θ, vc), with σθθ > 0 (5.1)

Consequently the circumferential stress reaches a maximum σ0
θθ at a θ0 6= 0 angle when

the crack-tip speed exceeds a critical velocity threshold.
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Figure 5.9 – Angular distribution of (σθθ) at different vc [Yoffe, 1951] (a), and the direction
θ0 of σ0

θθ = max σθθ as a function of the normalised crack-tip speed (b)

But how does the angular distribution of the stresses relate to crack instabili-
ties relate to branching?

As the crack-tip speeds increase (see Figure 5.9), the direction of maximum σθθ stays
primarily in the extension of the crack growth, however, a sort of plateau is reached
around a crack-tip speed of vc = 0.7cR; this suggests a homogenisation of the maximum
stress along multiple critical directions. Essentially, as a result of the crack-tip fields, the
coalescence of micro-defects in the vicinity of the tip leads to crack growth in a direction
close to any direction of maximum σ0

θθ this translates to what is known as directional
instability. At higher crack-tip speeds, the plateau vanishes and the directional instability
is mainly bounded to the two symmetric directions ±θ0 of maximum σθθ, which yields
branching.

Although this derivation was able to predict that the limiting velocity for a stable crack
is lower than cR, unfortunately, this cannot explain the lower critical velocities observed
in the experiments.

5.3.1 Experimental assessment of the instability: classical solu-
tion

In this inertial impact test previously presented, the crack reaches a top speed of 0.55cR
yet bifurcation occurs at 0.52cR. The theory of dynamic fracture mechanics characterises
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Part III, Chapter 5 – Stress-waves and their role in crack propagation

Figure 5.10 – Evolution of the predicted fracture direction θ0 from the classical solution
(experimental SIF and vc). The branching is not reflected in the criterion

the stress state near the crack front for a linear elastic isotropic material Chapter 0.
Assuming that the PMMA sample is a linear elastic isotropic material (Subsection 5.2.7,
Table 5.1), the experimentally determined crack-tip velocities vc and KID (no T − stress)
are injected into the elastodynamics solution of the stress-field in the vicinity of the moving
crack-tip. The fracture direction ±θ0 is subsequently computed for each frame of the
advancing crack, based on the criterion of maximum circumferential stress. The scheme of
analysis is summarised as follows:

uDIC → SIF, crack-tip position and vc → σ → σθθ → σ0
θθ & θ0

where σθθ corresponds to the circumferential stress which maximum value σ0
θθ is along the

fracture angle (propagation direction) θ0.

From here, the evolution of the direction ±θ0 at different positions of the crack-tip
inside the material is reported in Figure 5.10. A criterion should be able to reproduce
a modification in the direction of propagation at the branching position. Observing the
obtained trend of θ0, it’s clear how the fracture direction is always along the crack growth,
even at the branching position.

As it is, this criterion fails to assess the crack (in)stability. The same exercise is repeated
in the next section, but this time by considering the higher order term T − stress from
the experimental estimation to the solution.
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5.4 Incorporating T − stress

The same exercise (injecting experimental SIF and crack-tip speeds in the asymptotic
solution of the stress fields and determining the directions of maximum circumferential
stress at each position of the crack) is repeated in this section under one modification:
adding the first non-singular term T − stress to the stress solution. First we recall one
foundation of LEFM and we evoke the need for higher-order terms in the asymptotic
solutions as they play a major role in fracture (static crack path stability, isochromatic
fringes pattern, plastic zone influence, etc.) [Gupta et al., 2015]. [Ramulu and Kobayashi,
1983, Ramulu and Kobayashi, 1985]’s criterion is recalled and is built upon for accurately
addressing the instabilities.

LEFM and its dynamic counterpart are found around the notion of small-scale yielding.
The small scale yielding incorporates the notion that the leading SIF terms still govern
the deformation state inside a fracture process zone at the crack-tip. However, it is
becoming more recognised that non-singular stresses can become significant depending
on the geometry and loading of the specimen, and the role of T − stress for example has
been extensively studied [Gupta et al., 2015], especially in quasi-static.

When incorporating higher order terms, it’s assumed that fracture growth occurs at a
given distance rc ahead of the crack-tip where the contribution of the higher-order terms
become significant to the fracture process. Beyond enabling the assessment of higher-order
terms, the assumption of such given distance was shown to be physically reasonable by
many authors [Rice, 1970, Ritchie et al., 1973, Streit and Finnie, 1980] arguing that rc
corresponds to a distance from a crack-tip at which micro-defects can coalesce as en
extension of the crack. Of course, this rc would depend on each materials’ heterogeneities
at the microscopic levels.

When adding the T − stress to the stress solution, Equation 5.1 can be rewritten as
at any distance r from the crack-tip:

θ0(r, vc, T ) = arg
θ

maxσθθ(r, θ, vc, T,KID), with σθθ > 0 (5.2)

and when analysing crack growth, r = rc is set to assess the relevant angular distribution
of the stresses at the distance from the tip at which a crack would grow.

Within this context, [Ramulu and Kobayashi, 1983] proposed a criterion that predicts
the instabilities for crack-tip speeds vc < 0.67cs = 0.72cR 6 based on the introduction of a

6. The classical solution (without non-singular terms) would give stable crack propagation (θ0 = 0) in
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Part III, Chapter 5 – Stress-waves and their role in crack propagation

reference distance scale ro that is a function of T − stress, KID and the crack-tip speed
vc. ro represents a distance below which the crack propagation is dominated by the SIF ,
i.e., the direction of propagation is along the extension of the crack, which means that
the directional stability of a mode I propagating crack is maintained. For a material of
critical distance rc, the stability condition requires rc to be in a SIF−dominated zone,
i.e., rc ≤ ro. Interested readers are referred to the following subsection for more details
about [Ramulu and Kobayashi, 1983] ’s criterion, incidentally skipping the next subsection
does not affect the overall flow. Our derivations are pursued in Section 5.4.1.

Computation and significance of ro

From the elastodynamics solution and Equation 5.2, by finding the expression of θ0, and
setting it to zero (stable), a sufficient condition for stability emerges as a function of KI ,
T − stress, and the crack velocity vc. Indeed, the crack propagation is considered stable
when it tends to propagate along its direction of growth, i.e., at θ0 = 0. This condition
brings forth a unique reference distance r = ro as a function of KID, T − stress and the
crack velocity vc, valid in 0 ≤ vc ≤ 0.67cs = 0.72cR:

ro = 1
128π [(KID

σ0x
)V0(vc, cd, cs)]2 (5.3)

where V0 is defined as:

V0(vc, cd, cs) =Bd(vc)(−(1 + S2
s )(2− 3S2

d)

− 4SdSs
1 + S2

s

(14 + 3S2
s )− 16Sd(Sd − Ss) + 16(1 + S2

d))
(5.4)

where

Bd(vc) = 1 + S2
s

4SdSs − (1 + S2
s )2

S2
d = 1− v2

c

c2
d

S2
s = 1− v2

c

c2
s

(5.5)

this range of crack-tip speeds 0 ≤ vc ≤ 0.67cs = 0.72cR
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(a) (b) (c)

Figure 5.11 – The stability criterion ro ≥ rc. rc is a material parameter stating the distance
at which damage may occur. ro can be seen as a representation of the stress field. In r ≤ ro,
a K-dominant zone is omnipresent. The criterion stands for 0 ≤ vc ≤ 0.67cs = 0.72cR

σ0x is equivalent to T − stress, i.e., a far-field stress acting parallel to the direction of
crack extension.

The sufficient stability condition relating the material critical distance rc to the
(in)stability reference distance ro reads:

ro ≥ rc (5.6)

Figure 5.11 shows a schematic representation of the criterion. Stable and an unstable
cases are shown, based on [Ramulu and Kobayashi, 1983]’s criterion. The red zone cor-
responds to a zone where K is not dominant, and far-field stresses play a major role in
determining the angular distribution of the crack direction. The blue zone corresponds to
the stability zone, in which K is dominant.

For an arbitrary material of critical crack growth distance rc, Figure 5.12 shows the
evolution of ro at fixed T − stress as a function of the crack-tip speeds. It also shows
the influence of T − stress on ro at two fixed speeds (one comparable to a quasi-static
propagation and another one at vc = 0.5cR). As Equation 5.6 states the stability condition
being ro ≥ rc, in Figure 5.12(a), this translates to an unstable crack growth for a crack
starting vc ' 0.68cR - for the considered arbitrary material, under an arbitrary T − stress.
Of course, T − stress = 0 would yield an ever-stable crack under this criterion (within its
range of application 0 ≤ 0.67cs = 0.72cR), coherently with the classical solution [Yoffe,
1951].

In Figure 5.12(b), [Ramulu and Kobayashi, 1983]’s criterion predicts unstable crack
propagation even under negative T−stress at low crack-tip speeds, which is in contradiction
with multiple works (see e.g., [Gupta et al., 2015] for a review of the influence of T −stress
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Figure 5.12 – The stability criterion ro ≥ rc. Influence of the crack-tip speeds (a) and the
T − stress (b). At T − stress = 0 , the criterion gives an ever-stable crack (in the range
0 ≤ 0.67cs = 0.72cR, coherently with the classical solution [Yoffe, 1951])

on crack propagation). Moreover, it’s evident how a faster running crack (e.g., vc = 0.5cR
versus vc = 1e−4cR) is more prone to instabilities at lower T − stress levels.

Further, this criterion suffers from some limitations:

— The inability to incorporate branching at fast running cracks from the classical
solution, for example, under complex stress-wave propagation and reflection, T −
stress would be extremely volatile and building a criterion that is able to predict
instabilities in the absence and presence of T − stress is crucial;

— Prediction of crack instability at negative T − stress under near quasi-static loading,
which was contradicted by various authors [Gupta et al., 2015].

Remark 5.10. In [Ramulu and Kobayashi, 1983, Ramulu and Kobayashi, 1985]’s work, the
determination of the critical distance rc is made across multiple experiments by determining
rinsto , which is the value of ro just before the instability, and noting rc = rinsto . In the 1980s,
the ability to estimate highly resolved (in time) SIF , T − stress and crack-tip speeds
experimentally was lacking, so rc was considered as the smallest ro computed across the
experiments. With the advancement in ultra-high speed imaging and DIC procedures, we
believe that a more accurate identification of rc hence a more accurate criterion can be
obtained.
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Figure 5.13 – Evolution of the predicted fracture direction θ0 along with the maximum
circumferential stress computed at rc = 2mm in TAF1 sample (SIF , T − stress and vc
from DIC experimental fields). The modification of the fracture angle θ0 at the position
of branching and the evolution of σ0

θθ mirror the experimental branching.

5.4.1 Application to the inertial impact test

Back to the experiments now, since the DIC provides good estimates of the frame
(± one frame) at which the branching occurs, the sample’s critical distance rc can be
obtained by computing rinsto as being ro at the branching frame, and setting the (in)stability
condition rc = rinsto . Since rc = ro preconises the limit of instability, one can foresee that
for any ro ≥ rinsto = rc, the propagation is also unstable so rc = rinsto should be a first
candidate at estimating rc. rc can then be manually optimised (trial and error) to accurately
reproduce the experimental branching angles.

The critical value rc = 2± 0.16mm is consistently found across the four experiments,
which proves it to be a material constant as previously preconised [Rice, 1970, Ritchie
et al., 1973, Ramulu and Kobayashi, 1983]. The identification is directly obtained from
rc = rinsto without manual optimisation.

Experiment assessment of the instability: incorporating T − stress

The evolution of the direction ±θ0 at different positions of the crack-tip inside the
material is reported in Figure 5.13.

Observing the obtained trend of θ0, it’s clear how:
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I the fracture direction is always along the crack growth along the crack propagation
from the notch till before the branching position;

I at the branching position, the direction of propagation is accurately predicted by
the change of θ0 (increase from θ0 ' ±0 to ±10o to ±32o);

I σθθ increases and reaches a plateau around 55MPa before branching.

General results of the four samples

The following observations are drawn from analysis of the samples TAF1, TAF2, T3DE
and THOM:

I For the 4 samples, the maximum circumferential stress before branching reaches
55MPa± 8MPa.

I The branching angles are reflected on the change in the direction of fracture θ0 at
the branching position; at velocities around vc = 0.52cR for TAF1 and T3DE, and
around vc = 0.4cR for TAF2 and THOM.

I rc = 2± 0.16mm is consistently found across the four experiments.
Hence the unquestionable role played by T − stress on the branching instability at

relatively low crack-tip speeds (vc = 0.4 − 0.52cR) is highlighted via simple fracture
mechanics concepts combined with advanced imaging and experimental technologies.

5.5 The (in)stability map: a comprehensive criterion

After putting-forth the unquestionable role of T − stress on crack (in)stability, we
wrap-up this experiential study by constructing a comprehensive (in)stability criterion
called the material (in)stability map. It is built based on experimental findings. It
is a map that embodies a criterion for the transition between stable and unstable crack
propagation for crack-tip speeds 0 ≤ vc ≤ cR with the unquestionable role of T − stress
at its core. The goal is to determine, for a given material (knowing its density ρ, its elastic
properties E, ν, its fracture toughness KIDC - or crack propagation behaviour - , and its
material constant rc) the loadings (in terms of fracture mechanics, i.e., KID, T − stress,
vc) under which crack growth is stable and the loadings under which crack growth is not.

We proceed as follows: as it’s assumed that fracture is driven by the stress field in the
local neighbourhood, we sweep a large range of T − stress and crack-tip speeds
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Figure 5.14 – Experimental KID and vc (circular markers) with the fit corresponding
to the crack propagation behaviour law following [Kanninen and Popelar, 1985] KIC =
1.66MPa

√
m and m = 0.465 are found, the colours corresponds to experimental data

from the different samples

and find the direction θ0 of maximum circumferential stress σ0
θθ at distance rc

from the crack-tip. This allows the construction of a 2D surface that gives θ0 and σ0
θθ

as a function of a crack-tip speed vc and T − stress. The construction is as follows:

— the materials elastic properties are experimentally determined via the in-house
FEMU (Subsection 5.2.7) and reported in Table 5.1;

— the material constant rc is experimentally computed from the application of [Ramulu
and Kobayashi, 1983]’s criterion on SIF , T−stress and vc information from full-field
measurements

— The full-field measurements provide SIF and vc data on the relationship between
the stress intensity factor and the velocity of the crack-tip. Assuming that the
crack advances at KIDC = KID, where KID is the instantaneous dynamic stress
intensity factor estimated from full-field measurements, it’s found that the empiric
law proposed by [Kanninen and Popelar, 1985] Equation 5.7 relating the critical
dynamic stress intensity factor KIDC , to its static counterpart KIC and the eventual
crack-tip speed fits well the experimental data:

KIDC = KIC

1− ( vc
cR

)m (5.7)

where KIC is the static counterpart of the fracture toughness and m is a material constant.
Figure 5.14 shows the behaviour law of the crack propagation fitted on data from the
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4 samples. The determined parameters KIC = 1.66MPa
√
m and m = 0.465 accurately

portray the dynamic crack propagation behaviour in the PMMA samples.
Having all the required information, the material (in)stability map is constructed and

showcased in Figure 5.15(a) in the (vc, T − stress) space. We analyse an arbitrary range
of T − stress between −30MPa and +30MPa. Figure 5.15(b) shows the equivalence in
the (KID, T − stress) space. In this range of T − stress, 5.15(a), one can observe the
following:

I At T − stress = 0, the classical solution is recovered (Figure 5.9(b))

I For crack-tip speeds 0 ≤ vc ≤ 0.8cR, a negative T − stress stabilises the crack.

I Even at slow crack-tip speeds, e.g., vc = 0.05cR, the presence of a T − stress can
foster instabilities and eventual branching.

I Above vc = 0.8cR, independently of the values of T − stress, instability is prominent.

I Dependently of the intensity of tensile stress along the direction of the crack (T −
stress), different limiting velocities can be reached.

I The sharpness of the transition zone between the stable and unstable crack growth
varies with the crack-tip speed and T − stress. Since we do not have access to
accurate SIF , T − stress and crack-tip speeds after branching, and since our
temporal discretisation is not fine enough to register more data points around the
branching, we are restricted from further investigating the smoothening/sharpening
of the transition zone. But we believe that a more careful inspection is required to
understand the sharp/smooth transition on the crack instability.

Remark 5.11. These observations only stand for the (in)stability map herein considered,
i.e., for the PMMA, of course each material would have a different (in)stability map, e.g.,
a material with the same mechanical properties as PMMA, but which critical distance
rc is much bigger than 2mm would withstand even less T − stress at stable propagation,
since more weight would be given on the higher-order terms. Follow up in Appendix J
where the influence of rc on the (in)stability map of an arbitrary material is highlighted
for demonstration purposes. Obtained results can be generalised.

Remark 5.12. A commonly used scheme to ensure directional stability at high crack-tip
speeds is to side groove the test pieces. This would normally allow the cracks to reach
near-sonic crack-tip speeds. Regarding the fact that the (in)stability map Figure 5.15(a)
shows a limiting velocity always smaller than cR, in the case of a side-groove, complex
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state of stress on the specimen that cannot be taken into account in the (in)stability map
are created. So this side grooving exercise is out of the scope of thus study.

In Figure 5.15(b), one can especially observe the broadening of the transition zone with
the increase in KIDC . It’s mentioned that KIDC = 10MPa

√
m corresponds to a crack-tip

speed vc = 0.672cS = 0.72cR so the broadening of the transitional zone is also recovered in
the previous figure, as normal.

5.5.1 Experimental crack growth

The history of the crack propagation from the notch until its branching for the 4
samples are displayed on both Figures 5.15(a) and 5.15(b). The circular marker on the
curves corresponds to the (frame ± 1 frame) at which the crack initiates from the notch
(usually most south-west point in these experiments) and the arrowhead corresponds to
the frame at which the crack branches (± 1 frame) (usually most north-east point in these
experiments) .

In the (vc, T − stress) space (Figure 5.15(a)), the 4 growth patterns are similar, where
a decrease in T − stress with an accelerating crack are observed followed by a increase in
T − stress. Two different crack propagation behaviours are observed for two couples of
samples:

I the cracks TAF1 and T3DE branch at vc = 0.52 ± 2e−4cR in the presence of a
T − stress = 14.23± 1MPa

I the cracks TAF2 and THOM branch at lower crack-tip speeds vc = 0.41± 0.1cR, in
the presence of a T − stress = 13.46± 0.3MPa

The transition from the stable zone to the unstable zone coincides well with the branching
position.

In the (KIDC , T − stress) space (Figure 5.15(b)), the 4 growth patterns are similar,
where a decrease in T − stress with an increase in KID are observed followed by a increase
in T − stress, reflecting well the stress-waves ’seen’ by the moving crack-tip. Two different
crack propagation behaviours are observed for two couples of samples:

I a plateau (in KID) reached for TAF1 and T3DE; while
I a small decrease in KID is observed for TAF2 and THOM.
I the branching (equivalently the transition from the stable to the unstable zone in

the map) occurs at KID = 6.45, 6, 7.8 and 5.51MPa
√
m for TAF1, TAF2, T3DE

and THOM respectively.
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Remark 5.13. The similarity in the crack scenarios (by pair) is probably due to the fact
that the impact velocities (Section 5.2.4) are similar for TAF1 and T3DE (Vproj = 30.5m/s
and 31.8m/s) from one side, and for TAF2 and THOM from the other (Vproj = 22m/s).

The transition from the stable zone to the unstable zone coincides well with the
branching position. An increase in KID does not necessarily foster branching as we’ve seen
in some cases branching occurs at a plateau of KID, and others at a slight drop in this
value. So KID reaching a certain critical value is a necessary condition, while the change
of the fracture direction θ0 is a sufficient condition.

We plot in Figure 5.16 the evolution of the maximum circumferential stress, i.e., along
the direction θ0 in the (vc, T − stress) and the (KIDC , T − stress) spaces. From Figure
5.16, one observes that the maximum value of σ0

θθ does not necessarily account for crack
branching as one would expect (the maximum value of σ0

θθ is reached prior to the branching
moment, i.e., before the arrowhead). In fact, as long as the crack propagation direction
is θ0 = 0, the maximum stress (whatever its value) is along the extension of the crack,
stabilising thus the propagation. However, if the crack direction diverges from the direction
of the extension of the crack, instabilities and eventual branching occur. The deviation
from θ0 = 0 is hence a sufficient condition to foster the instabilities, while the stress value
is a necessary condition.

5.6 Discussion on the (in)stability map

The material (in)stability as presented here constitutes a great tool for understanding
causes of crack instabilities and limiting velocities. Here we present a summary around it:

— The (in)stability map is constructed from highly resolved experimental full-field
measurements recorded at ultra-high speeds.

— It constitutes a straightforward visual tool for assessing crack (in)stabilities, based
on the crack-tip speed vc and the presence of higher order terms (T − stress).

— In a 2D space (vc, T −stress or KIDC , T −stress), a surface representing the fracture
angles devides the space into stable and unstable crack growth zones.

— The map shows how T − stress’ role is prominent on limiting the velocity of stable
growth, and on crack (in)stabilities at low crack-tip speeds

— For T − stress ≤ 0, the classical solutions are recovered and the crack-tip speeds
control the (in)stabilities. No length-scale effect is observed (the angular distribution
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(a)

(b)

Figure 5.15 – (In)stability map of PMMA, constructed from experimental measurements
and fitted to [Kanninen and Popelar, 1985]’s empiric law. The history of the crack
propagation in each sample is displayed; from the initiation at the notch (circular marker)
until the branching position (upward-pointing arrow) ± 1 frame, the map accurately
predicts the (in)stability at the branching position with the change of θ0
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Figure 5.16 – Maximum circumferential stress map of the PMMA samples, constructed
from experimental measurements and fitted to [Kanninen and Popelar, 1985]’s empiric law.
The history of the crack propagation in each sample is displayed; from the initiation at the
notch (circular marker) until the branching position (upward-pointing arrow) ± 1 frame
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5.7. A phase-field simulation of the inertial impact test

is conserved at different distances from the crack-tip)

— With T − stress ≤ 0, rc cannot be computed from [Ramulu and Kobayashi, 1983],
hence if one were to determine rc for a certain material, alternate experimental
configurations should be considered, i.e., in which positive T − stress is present and
in which an unstable crack is present.

— In the presence of T − stress, the material critical distance rc plays a major role in
the crack growth. Accurately assessing rc is crucial for crack angle predictions

— The transition zone between stable and unstable crack growth is well defined, however,
its sharpness seems to depend on both T − stress and the crack-tip speed vc.

— Of course, we couldn’t cover the ever-growing wide range of dynamic configurations,
and many crack branching scenarios have not been explored. However, never have
we ever been able to extract such meaningful information as we did from a brisk
200µs-long (short) test. We believe that the ability to experimentally assess crack
(in)stabilities via the proposed analysis is an ambitious finding in quest for further
understanding the rich dynamic phenomena.

5.7 A phase-field simulation of the inertial impact
test

After successfully assessing the role played by T − stress on crack (in)stabilities, we
check the ability of the phase-field model to replicate the experimental crack propagation
in the inertial impact test (Section 5.2). More prominently, we apply the analysis scheme
on the simulation displacement fields to further elaborate on the mechanisms of branching
in the phase-field models. A detailed version of this section is available in Appendix K for
interested readers.

We briefly recall the ingredients of the phase-field model used, and the material
properties that allowed a loyal reproduction of the crack paths:

5.7.1 On the crack patterns

Figure 5.17 shows both experimental (DIC measurements) and simulation results
(phase-field simulations) of the inertia impact test TAF1. The crack patterns are clearly
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Time stepping Explicit ([Li et al., 2016b])
Crack density function Quadratic (Equation 1.3) ([Miehe et al., 2010a])
Strain split Orthogonal ([Nguyen et al., 2020b])
Plane strain assumption
Boundary condition Experimental u [Vinel et al., 2021], check Appendix K
E (Young’s Modulus) 6GPa , previously addressed in Section 5.2.7
ν 0.3, previously addressed in Section 5.2.7
gc 1100J/m2

lc 2× mesh size = 2× h = 1mm ([Nguyen et al., 2016])
c (threshold) 1

Table 5.2 – Overall phase-field model and material parameters considered in this simulation
of the inertial impact test.

reproduced by the phase-field simulation: the branching position and the branch turning
are accurately predicted.

We note the widening of the damage band in the simulation before the moment of
branching, similarly to other phase-field simulations reported in [Borden et al., 2012],
[Schlüter et al., 2014], and to non-local integral damage model [Pereira et al., 2017] 7. To
further investigate the branching and damage band widening, the (in)stability criterion is
applied. Beforehand, let us briefly describe the crack path history and crack-tip speeds
from the simulation and compare them with the experimental results from DIC.

5.7.2 On the crack-tip speeds

In Figure 5.18, we superpose the crack-tip velocities from the simulation and the
crack-tip velocities obtained experimentally. Even though the crack patterns are accurately
reproduced, the crack path history and crack-tip speeds are not.

This can be caused by various reasons, possibly and not exclusively;

— Viscous effects: even though PMMA is THE model material for in-lab studying
the brittle elastic failure, its viscous behaviour has already been documented and
quantified, e.g., in [Seghir and Pierron, 2018].

7. From a more physical point of view, damage widening could be the signature of roughening of the
crack surface experimentally observed to occur prior to branching [Ramulu and Kobayashi, 1985]. [Bleyer
and Molinari, 2017] showed that the micro-branching process is indeed a three-dimensional instability and
is directly linked to surface patterns observed prior to macro-branching in PMMA [Sharon and Fineberg,
1996].
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5.7. A phase-field simulation of the inertial impact test

Figure 5.17 – DIC displacement field (up) and phase-field simulation results (down)
showing accurate prediction validating the dynamic phase-field model and accurately
reproducing the crack patterns The points where the phase-field damage α ≥ 0.99 are
removed to mimic crack opening
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Figure 5.18 – Comparison of the experimental and numerical (phase-field simulation)
crack-tip speeds. Dashed lines correspond to the crack-tip speeds estimated from the
phase-field simulation (Appendix B), full lines correspond to the apparent experimental
crack-tip-speeds previously reported in Figure 5.7 (computed from crack opening)

— Wrong phase-field parameters: as seen in Chapter 1 and Appendix A, comparable
crack paths can be obtained for different combinations of parameters lc, gc and c,
however, discrepancy in the crack-tip speeds are often present. With the contribution
to the phase-field modelling in Chapter 1, the parametrisation of the threshold
(Chapter 1) allows for a triplet of parameters to be optimised for accurately repro-
ducing experimental scenarios by elegantly balancing the energy dissipation, energy
release-rate and fracture strength. This yields more freedom in the choice. Even
though this parametrisation offers a wider range of material behaviour, it is crucial
to span the triplets in the search for the optimum phase space.

Remark 5.14. Without the UHS-HR imaging and the cutting edge DIC algorithms, the
obtained simulation results would be satisfactory. However, these technological advancements
offer sound ground for a more rigorous estimation of the phase-field parameters that should
yield a more precise reproduction not only of the patterns, but also crack-tip speeds and
crack history.

Next, we advocate instabilities on the phase-field simulation results based on the
proposed method.
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Figure 5.19 – SIF , the higher order term T − stress and the crack-tip speed in the
simulation of the TAF1 sample test. The error-bar corresponds to the sensibility to the
extraction zone [Roux and Hild, 2006, Roux et al., 2009]. The crack-tip speed vpc corresponds
to the one reported in Figure 5.18 computed from the phase-field, via Appendix B

5.7.3 Crack branching analysis

Indeed, since only displacement fields are required for the analysis, the proposed scheme
is readily applicable on displacement fields coming from numerical simulations.

uSIMU → SIF, T − stress, crack-tip position, and vc → σ → σθθ → σ0
θθ & θ0

Figure 5.19 shows the estimations of the crack-tip speed, SIF and T − stress; the
following observations can be drawn:

I The estimations show similar trends to the experimental estimations.

I From t = 70µs (crack initiation from the notch) to t = 80µs, KID increases from
KID = 6.28MPa

√
m to KID = 7.91MPa

√
m.

I The velocity of the elastic crack-tip on the other hand reaches a maximum vc =
0.8cRat t = 85µs. Afterwards, the crack-tip starts decelerating until it reaches
vc ' 0.72cR at the moment of branching (branching detected from Figure 5.18 ),
around t = 95µs.
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Remark 5.15. On the difference between the computed crack-tip speeds: the phase-
field model introduces a damaged zone in which the dissipative processes are diffused
to regularise a sharp crack (via the length-scale lc). The methodology proposed in
Appendix D is founded on LEFM that suggests that all non-linear and dissipative
processes are well confined to the near-tip vicinity. The equivalent elastic crack-tip
(extracted from Appendix D) would eventually not coincide with a phenomenologically
captured crack-tip (e.g., iso-curves of the phase-field), the equivalent elastic crack-tip
is expected to accelerate as the damage band widens/lengthens and dissipates energy.
A delay/deviation between those two computed speeds is natural as it comes from
their inherent differences.

I Regarding the first higher order term, knowingly the T − stress, an initial decrease
is observed to a negative T −stress = −15MPa at t = 80µs. Afterwards, T −stress
rockets.

I As mentioned in Remark 5.2, neat imaging could not be achieved. Despite the appli-
cation of the novel calibration method from [Vinel et al., 2021], residual distortions
may remain introducing a bias in the DIC measurements. An estimation of potential
biases hiding within the SIF , vc and T − stress identification showed discrepancies
of 1MPa

√
m, 0.1cR and 3MPa respectively.

Remark 5.16. From the experimental extraction on TAF1, the T − stress remains
positive, however, a negative T − stress is obtained in the simulation, the difference
might find its roots in the difference of the crack-tip speeds which makes the crack-tip
’see’ different loading/unloading histories. It’s mentioned that in the other samples
(Appendices G, H and I) a negative T − stress is estimated after the initiation.

From here, we report the evolution of the direction of ±θ0 at different positions of the
crack-tip inside the simulation in Figure 5.20. rc = 2mm is also considered consistently
with the presvious experimental findings.

Observing the obtained trend of θ0, we see the following:

I the fracture direction is first along the crack growth;

I instabilities are predicted to occur earlier than in the experiment (a question arises
here: can these instabilities relate to damage band widening before branching?)

I σθθ increases to around 70MPa and drops as the direction of propagation θ0 becomes
different than zero.
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Figure 5.20 – Evolution of the predicted fracture direction θ0 along with the maximum
circumferential stress computed at rc = 2mm in the phase-field simulation of the TAF1
sample (SIF , T−stress and vc from the numerical fields). The modification of the fracture
angle θ0 at the position of branching and the evolution of σ0

θθ mirror the experimental
branching.

Simulation results on the (in)stability map

By superposing the crack propagation history (vc, T − stress) on the experimentally-
built material instability map from Figure 5.15, we obtain the patterns in Figure 5.21.

Evidently, the history of crack propagation is much different than that in the experi-
ments, even though it was accurately able to reproduce the crack patterns. The instability
map shows the initiation of the propagation from the notch (circle marker) through the
square marker corresponding to the damage band widening, until the moment of detection
of branching (arrowhead). The map accurately shows a transition between the stable and
unstable zones at the widening of the phase-field damage band: at negative T − stress
but at a high tip speeds. Afterwards, as the damage continues its straight propagation
and reaches the branching position, T − stress is closer to the experimental T − stress,
but the crack-tip speed is always larger. The predicted stress (Figure 5.21) is larger in
the phase-field simulation. We believe that a more robust identification of the phase-field
parameters is required to enable a better reproduction of the experimental crack patterns,
crack-tip speeds and eventually crack growth in the (vc, T − stress) space.

.

Remark 5.17. We’re not sure how/if phase-field’s length scale lc is linked to this rc, more
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(a)

(b)

Figure 5.21 – (In)stability map of PMMA, constructed from experimental measurements
and fitted to [Kanninen and Popelar, 1985]’s empiric law. The history of the crack
propagation in each sample is displayed; from the initiation at the notch (circular marker)
until the branching position (upward-pointing arrow) ± 1 frame, the map accurately
predicts the (in)stability at the branching position with the change of θ0
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5.8. Validation of the role of T − stress on crack branching in [Borden et al., 2012]’s benchmark

investigations should be lead to further elaborate on this point.

We summarise this application on the phase-field simulation by drawing the following
points regarding:

— The phase-field model is able to accurately reproduce the crack patterns even in
cases where the stress-waves play a major role on the crack propagation. However,

— UHS-HR imaging couples with the cutting-edge DIC algorithms allow a meticulous
comparison of the crack propagation histories, and

— Unfortunately, the parameters herein used might not be the most accurate, as they
are obtained by trial and error on the simulations to fit the pattern, the crack-tip
speeds couldn’t be recovered.

— The proposed methodology to assess the (in)stabilities shows how the history of
the crack growth, despite the accurate replication of the crack patterns, is not
reproduced.

— Most prominently, the (in)stability map accurately predicts the crack branching
and damage band thickening in the phase-field model as an interplay between the
crack-tip speed and T − stress

After validating the applicability of the proposed criterion on a phase-field simulation,
the next section wraps-up this final chapter by repeating the analysis on the benchmark
proposed by [Borden et al., 2012]. This would further validate the robustness of the
criterion thanks to the distinctive branching phenomenon in this benchmark.

5.8 Validation of the role of T−stress on crack branch-
ing in [Borden et al., 2012]’s benchmark

After numerically advocating the dynamic crack instabilities on the phase-field simula-
tion of the inertial impact test, we turn into an application of this analysis scheme on the
benchmark [Borden et al., 2012].

Unlike the inertial impact test, in [Borden et al., 2012]’s benchmark there is:

— no external loading along the direction of crack propagation is present ,

— yet the crack branches at

— relatively low crack-tip speeds.
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Figure 5.22 – Final damage state of the standard dynamic crack branching test [Borden
et al., 2012], Appendix A, Chapter 1

And we aim to understand

(i) Why does the crack not branch at its peak speed (t ' 31mus)?

(ii) Why does it branch after, at lower speeds? and finally,

(iii) What does the broadening of the phase-field at the branching position and beforehand
actually mean?

And the answers to these questions of course are sought by applying the methodology
to assess the instability source thoroughly discussed in the previous section.

As we’ll see, the estimation of SIF , T − stress and vc would show an emergence
of a positive T − stress. And the co-action of this T − stress with the rapid running
crack enables the methodology to successfully predict the (in)stability conditions and
the branching angle. And more importantly, the (in)stability maps gives insights on the
damage band thickening observed in the phase-field simulation.

Figure 5.22 shows the final damage state of the material.

5.8.1 On the crack path history

The description of the crack path history can be found in Section 1.9.2. We recall some
of the main points:
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Figure 5.23 – SIF , the higher order term T − stress and the crack-tip speed in [Borden
et al., 2012]’s benchmark, the error-bar corresponds to the sensibility to the extraction
zone. The crack-tip speed vpc corresponds to the one reported in Figure 5.18 computed
from the phase-field, via Appendix B

I the crack is initiated after t = 12µs of constant loading

I no branching occurs at its maximum speed (t = 31µs), only broadening of the
damage band (until t = 36µs)

I the crack decelerates and two branches bifurcate at an angle θ0 = ±25o at t = 48µs

Regarding the damage band width:

I The damage band broadens from t = 31µs to t = 36µs; the crack propagates stably

I The damage band broadens from t = 43µs before branching at t = 48µs.

Remark 5.18. Also in this simulation, branching is preceded by a widening of the damage
band.

To advocate these distinctive phenomena we apply the scheme of analysis proposed
previously on the simulated displacement fields usim.

The intermediate step requires the evaluation of SIF , T − stress and the crack-tip
speed from the application, its results are shown in Figure 5.23.

Instability prediction

From x = 0.05m to the position of branching, both KID and T − stress are increasing
but the crack-tip speed is oscillating. A peak in the crack-tip velocity is found at t = 31µs.
The errorbar shows inaccuracy of the extraction results (KID, T − stress, and crack-tip
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Figure 5.24 – Evolution of the predicted circumferential stress σ0
θθ and the fracture direction

θ0 along the crack propagation of the benchmark in [Borden et al., 2012]

speed) after t = 50µs, suggesting thus that the branching may have occured around this
time step 8.

Of course, the critical distance rc should be determined next. Following previous
developments, rc is to be set as the value of ro [Ramulu and Kobayashi, 1983] at the
branching frame. Since the phase-field modelling does not explicitly represent the crack
(regularisation of the discontinuity), the exact frame of branching cannot be accurately
determined, this might lead to slightly inaccurate predictions of rc.

In phase-field models, branching might be preceded by a widening of the damage
band, this widening starts earlier (earlier than the time the branches are detected). The
computation of the critical distance rc for instabilities at the damage band broadening just
before branching (Section 5.3) seems a reasonable speculation. This estimates rc around
600µm. This value yields accurate predictions of the branching angles.

Using this value of rc, Figure 5.24 shows the fracture angle θ0 and σ0
θθ along the crack

propagation from the notch to its branching position. For the crack-tip between x = 0.05m
and the position of branching, the predicted fracture direction from these data is obtained
in the elongation of the crack, consistently with the simulation observation. The maximum
σ0
θθ stress in this region of propagation increases rapidly from 6MPa at vc = 0.23cR to a

plateau at 8MPa along the stable crack propagation before branching. σθθ increases as
the direction of fracture θ0 deviates from 0o to 25o at the branching position.

The arisen instability at this location (the increase in the maximum stress with a
change in the fracture angle) induces the branching. Consistently, the measured branched

8. From the simulation’s damage field, branching is found to occur at t = 48µs, after some widening of
the damage band
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angle from the simulation is equal to θ = 55o ' 2θ0. Branching occurs at a relatively low
crack-tip speed (vc =∼ 0.4cR) in the presence of a positive T − stress ' 1.3MPa.

Once again, the direction of maximum circumferential stress computed at rc from the
crack-tip from the asymptotic solution successfully predicts the crack branching angle.

We then construct the material (in)stability map and superpose the history of the
dynamic loading. To do so, we assume that the evolution of KIDC follows Equation 5.7,
KIC and m are fitted on [Kanninen, ]’s model from the extracted SIF along the dynamic
crack propagation before the branching. We obtain:

KID = 0.445MPa
√
m

m = 3.2
(5.8)

The (in)stability map is given in Figure 5.25. The focus will be shed on the (vc, T − stress)
space. The crack propagation history is superposed on the map. From the notch, the
crack propagates at increasing vc and T − stress. It heads towards the transition zone
around vc = 0.54cR and T − stress = 1.07MPa at t = 31µs This time corresponds to
the beginning of crack widening observed in Figure 5.22. The propagation history then
shows a decelerating crack that would enter the transitional zone at vc = 0.38cR and
T − stress = 2.49MPa, corresponding to t = 43µs, the time at which the damage band is
observed to broaden just before its branching.

The (in)stability map also predicts that maximum stress would occur at the first
widening of the damage band (t = 31µs). Once again, the maximum value of σ0

θθ herein
reached does not necessarily account for crack branching. Here, the closeness to the
transition zone destabilises the crack and broadens the damage band but without inducing
branching. Then as the crack propagation history curve enters the transitional zone,
the damage band is observed to broadens before branching. Having θ0 6= 0 is a sufficient
condition for branching while having the stress surpass a certain threshold is only necessary.
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(a)

(b)

Figure 5.25 – (In)stability and maximum circumferential stress maps of the benchmark,
constructed from [Borden et al., 2012]’s simulation results. The history of the propagation
is shown in purple, the initiation from the notch (circular marker), the two widenings of
the damage band (square markers), and the branching (upward-pointing arrow) are all
reported on the maps
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5.9. Concluding remarks

5.9 Concluding remarks

The unquestionable influence of the stress-waves on the crack propagation and their
interactions with a moving crack-tip in a homogeneous material were highlighted in this
final chapter. The analysis is lead in the SIF (dynamic fracture mechanics) concepts.

We combined UHS-HR imaging technologies with cutting edge DIC algorithms on a
novel experimental inertial impact test. A distinctive geometry that would yield interesting
crack propagation and branching phenomena is considered. This configuration allowed
the measurement of never-seen-before 400kfps full-field kinematics. The most compelling
captured phenomena are the compressive stress-waves entering the specimen, the cracks
initiation and propagation, and of course crack branching as tensile stress-waves lengthwise
of the crack meet its tip.

DIC measurements allowed the extraction of relevant information regarding the fracture
process, knowingly SIF , T − stress and the crack-tip speeds. From here, we showcase the
role played by T − stress on the crack branching phenomena by analysing the direction of
maximum circumferential stress at a reference distance rc from the crack-tip along the
propagation. Indeed instabilities are fostered as a co-action between the rapid propagating
crack and the presence of a stress lengthwise of the crack direction T − stress.

Afterwards, we build a comprehensive (in)stability map that enables the assessment
of the unquestionable role held by T − stress on crack branching and instabilities at
relatively low crack-tip speeds. Indeed, this criterion predicted crack instabilities at lower
crack-tip speeds than elaborated in the classical dynamic fracture theory. A validation of
the analysis scheme is also lead on crack-branching phase-field simulations.

The most compelling findings are summarised as follows:

(i) T − stress plays a major role in dynamic (in)stabilities and limiting crack velocities.
This role is put forth both experimentally (highly resolved ultra-high-speed imaging
+ DIC) and numerically (phase-field simulations).

(ii) The (in)stability map constitutes a straightforward visual tool for assessing dynamic
(in)stabilities based on simple fracture mechanics concepts. The modification of the
angular distribution of the stresses at a distance from the crack-tip due to its speed
and the presence of T − stress are at its core.

(iii) A phase-field simulation of the inertial impact test, although accurately predicts the
crack patterns, fails in exactly reproducing the crack-tip speeds and crack history.
Despite that, the superposition on the experimental (in)stability map accurately
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predicts the branching phenomenon, and illustrates how the underlying mechanisms
(experiment versus its simulation) are fundamentally different.

(iv) Before branching, damage bands are observed to widen. From the instability map,
we see how the widening coincides well with a deviation into the transition zone
(between stable and unstable crack propagation)

(v) After validating the capability of the proposed method to predict branching in phase-
field simulation results, we went back to a crack branching benchmark in which
no loading along the crack propagation exist, and hence intuitively no T − stress
should appear. Surprisingly, the observed branching develops as a positive T −stress
appears at the crack-tip.

(vi) Further, the (in)stability map of the benchmark shows how damage bands widening
can also be explained via the proposed analysis scheme by noticing tilting into the
unstable zone.

We believe that the insights given here on the crack-branching as a result of the interplay
between a moving crack-tip vc and T − stress in homogenous materials, should build the
foundation for future prospectives regarding numerical simulations and investigations of
dynamic failure in more complex materials.
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Conclusion and perspectives
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CONCLUSION

This study sets up the foundations for the multi-scale analysis of dynamic fracture
in architectured materials. We aimed at analysing the interaction between architectured
materials, stress-wave and crack propagation, through analysis on three model architectured
materials.

We broke-down the problem into three sub-problems Eventually, bringing forth
the necessary tools towards a multi-scale analysis of dynamic fracture of ar-
chitectured materials.

After providing the necessary theoretical background relevant to brittle fracture,
architectured materials, numerical simulations and homogenisation techniques, we first
presented the phase-field model that was used for the micromechanical simulations. An
extension was proposed via a parametrisation of the elastic strain threshold. We showed
how this contribution enabled the phase-field model even more versatility without adding
to its complexity. It allowed the decoupling of the regularisation scale, the strength and
the toughness of the material model. Application and validation of the influence of this
parametrisation on the material response in a quasi-statics and in a dynamics benchmark
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validate the applicability of this extension within the consistent framework.
Secondly, we proposed a versatile model-free coarse-graining approach that is indeed

applicable on cases where the statistical homogeneity of the material ceases to exist (Quasi-
Periodic materials with long-range heterogeneities) and more importantly when sharp
localisations are present. The method bridged the brittle behaviour at the microscopic
scale to the quasi-brittle behaviour at the mesoscopic scale. The notion of strength and
toughness naturally emerges. This method validates the use of the quasi-brittle models
and suggests non-locality of the softening process.

Next, we debuted the multi-scale analysis of dynamic fracture of architectured materials
by analysing the crack propagation inside architectured materials at multiple scales. We
started by simulating the failure process of architectured materials at the microscopic scale
via the phase-field model and followed by coarse-graining the obtained micromechanical
fields to mesoscale fields.

I We’ve seen how the crack tends to follow the path that would allow it maximum
energy dissipation, it’s found that the crack avoids ’resilient patterns’ in the Quasi-
Periodic material and follows ’weak’ planes in the Periodic material.

I The effective fields of mechanical properties are established at different coarse-
graining scales, from here, and without any a priori on the material’s behaviour,
a genuine evaluation of the effective material and failure properties was provided
(density, elasticity, strength, toughness and effective crack path).

I By definition, the mean density is conserved across the scales.

I We show that in order to consider a homogeneous isotropic elastic equivalent medium,
the required length scale exceeds the values considered in the literature and in
fact is much larger when considering non-periodic microstructures with long-range
heterogeneities.

I The fracture strength computed as the critical stress along the crack propagation is
found to be the hardest to smear-out; in fact, the influence of the microstructure
persists in all three microstructures even for relatively large coarse-graining scales.

I Coarse-graining shows good ability to smear-out the microstructural effects on the
effective toughness.

This analysis lead us to believe in the inevitability of the consideration of a non-
homogeneous material in which the influence of substructures is preserved at the meso-
scopic scales. Moreover, the discrepancy between the ’homogeneity’ of the failure properties
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dismantles the unique relation relating the fracture toughness, the length scale and the
strength.

We continued the analysis by tackling the damping of stress-waves inside architectured
materials; we did so through analysing finite element simulations of transient wave-packet
propagation. The kinetic energy attenuation performance was compared between the three
microstructures.

Further, we shed light on the wavelengths components of the wave-packet exiting the
considered microstructures. The periodicity of the microstructure and the wavelengths
of the stress-waves play a major role on the propagation and/or scattering of the stress
waves.

I For different wavelengths, the energy localisation inside the architectured materials
shows different patterns, in the Quasi-Periodic materials 1, the resilient patterns
normally avoided by the crack path are also avoided by the stress-waves.

I The effective attenuation/damping/dissipation of energy actually results from waves
spreading due to scattering inside the architecture at the free boundaries and the
amazing capabilities of the Quasi-Periodic microstructure to damp the stress-waves is
noted (probably due to the long-range pattern heterogeneities in the Quasi-Periodic
microstructures providing continuous source of scattering).

I Bandgaps are shown to exist in the three microstructures, with an increase in the
Quasi-Periodic microstructures, a signature of their long-range heterogeneities in
their patterns.

The superiority of the Quasi-Periodic is once again advanced regarding its overall better
dynamic properties (stress-wave scattering, attenuation, bandgaps, etc.) as compared to
the Periodic one.

Finally, we analysed the role of stress-waves on the crack propagation and their
interactions with a moving crack tip in a homogeneous material, as a first step towards
the dynamic analysis on architectured materials.

For this sub-problem, We combined UHS-HR imaging with cutting edgeDIC algorithms
on a novel experimental inertial impact test on a distinctive geometry. We followed the
stress-waves and crack propagation inside the material. The analysis is lead in the stress
intensity (dynamic fracture mechanics) concepts, based on the maximum circumferential
stress.

We built a comprehensive (in)stability criterion that enables the assessment of the
unquestionable role held by T − stress on crack branching and instabilities at relatively
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low crack tip speeds. Validation of the analysis scheme was also lead on crack-branching
phase-field simulations.

I As stress-waves are reflected back and forth from the free boundaries, the crack tip
is loaded and unloaded alternatively.

I By introducing a length scale, we analyse the role played by T − stress on crack
instabilities, and

I We experimentally built a comprehensive (in)stability map that separates the stable
from the unstable crack growth as a function of the couple (vc, T − stress).

I Indeed, this map was able to explain the crack branching at lower crack tip speeds
than elaborated in the classical theory.

I A phase-field simulation of the inertial impact test, although accurately predicts the
crack patterns, fails in exactly reproducing the crack tip speeds and crack history.
Despite that, the superposition on the experimental (in)stability map accurately
predicts the branching phenomenon, and illustrates how the underlying mechanisms
(experiment versus its simulation) are fundamentally different.

I Before branching, damage bands are observed to widen. From the instability map,
we saw how the widening coincides well with a deviation into the transition zone
(between stable and unstable crack propagation).

I After validating the capability of the proposed method to predict branching in
phase-field simulation results, we went back to a crack branching problem in which
no loading along the crack propagation direction exists, and hence intuitively no
T − stress should appear. Surprisingly, the observed branching develops as the
co-action of a positive T − stress at moving crack tip speed.

I Further, the (in)stability map of the benchmark shows how damage bands widening
can also be explained via the proposed analysis scheme by noticing tilting into the
unstable zone.

We believe that the insights given here on the crack-branching as a result of the interplay
between a moving crack tip vc and a T − stress in homogenous materials, should build
the foundation for future prospectives regarding numerical simulations and investigations
of dynamic failure.
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PERPSECTIVES

The present thesis has explored the vast field of the multiscale dynamic failure in
architectured materials with a special attention on a set of Periodic and Quasi-Periodic
lattices of holes. It also tackled the branching phenomenon in homogeneous materials.

Yet, there are many potential research directions from the results and methodologies
developed in this work, and some questions remain to be answered.

Future work could be perused in the same spirit for applications on the dynamic
failure of architectured materials. This should further validate our most recent simulations
regarding an inertial impact test on architectured materials (Figure 5.26), where it’s clear
how the lattices of holes impact the dynamic crack propagation, similarly to the static
crack propagation.

Also, coarse-graining of the field can yield a continuum description of the dynamic
failure of such materials. And a multi-scale analysis of the branching can then be achieved.
One might expect the small branches emerging at the microscopic scale to translate
to damage band thickening or actual branching at the mesoscopic scales (Figure 5.26).
Constructing coarse-grained (in)stability maps might give insights on the influence of the
coarse-graining on the branching response, and elaborates on the role of the heterogeneities
in increasing the critical distance rc making the cracks more prone to branching.

The experimental work initiated in this thesis didn’t get the importance it deserved in
the manuscript, since we only exploited it as a tool not as a purpose.

We mention that in the inertial impact test, the impact wave’s width is related to the
size of the projectile and the waveguide, hence the wavelengths in-play are much bigger
than the microstructure’s lengths, so attenuation of the stress-waves from the scattering
(following Chapter 4) is improbable. From here, finding a configuration in which stress-wave
damping plays a major role in reducing the energy available in the vicinity of a crack and
hence modifying its growth behaviour is essential. This should lead to further exposure on
the performances of the architectured materials.
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Figure 5.26 – Inertial impact test simulations of the Periodic (up), Quasi-Periodic type 1
(middle) and Quasi-Periodic type 2 (down) materials. Coarse-grained displacement fields at
lCG = 2d and 10d are shown (lCG is the radius of the dark green circles, they’re computed
on the coarse-graining support domain (green rectangle)
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From DIC algorithms, coupled with UHS-HR imaging, one can propose a sound
strategy that would allow a more rigorous identification of the phase-field parameters
based on a coupling between the crack tip speed, extractions of SIF and higher order
terms. With the extension proposed to the phase-field model, more freedom is granted on
the choice of phase-field parameters, and we believe that an application similar to the one
where the crack tip positions are directly confronted with the simulations’ (inspired from
[Réthoré and Estevez, 2013]) should help the phase-field modelling community in their
quest in accurately simulating failure without adding to the complexity of the problem.

Even though the phase-field modelling is a robust approach that requires no artificial
criteria for crack initiation, crack coalescence or crack branching, the resolution is usually
made over the whole domain which naturally makes simulations computationally heavy.
From the material (in)stability a simple criterion for crack branching naturally emerges.
We expect computationally efficient methods like X-FEM [Moes et al., 1999] to be enriched
with such an effective criterion to judge crack branching. Instead of the more costly
methodologies, knowingly the ones based on enriching the classical displacement field to
model a multiple branched crack (via ‘junction’ functions [Daux et al., 2000] to relate two
or more cracks), or the ones based on the loss of hyperbolicity [Belytschko et al., 2003],
we believe that the herein proposed criterion can be a lighter alternative to study the
branched crack using X-FEM. Evaluating T − stress via an interaction integral method
for example ([Paulino and Kim, 2004]) is a relatively straightforward task, and by carefully
incorporating the critical distance rc, the (in)stability map enables an effortless analysis of
the (in)stabilities and crack branching.

Can rc be linked to the notion of a process zone? We believe that rc, as a critical
distance that explains phenomena near the crack tip that couldn’t be explained from
fracture mechanics otherwise, is a philosophically sound concept to be related to the notion
of a process zone. In PMMA, in stress-controlled static brittle fracture of PMMA the
process zone size has been suggested to be 0.5mm [Chao and Zhang, 1997]. Much smaller
than what we found in our analysis. We believe that linking these two quantities is an
interesting avenue to be explored.
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Appendix A

DYNAMIC CRACK BRANCHING: THE

INFLUENCE OF THE PHASE-FIELD

PARAMETERS

Further examples showcasing the influence of the phase-field parameters on the crack
paths and crack tip speeds for the benchmark proposed by [Borden et al., 2012] are
showcased in this appendix.

After we’ve seen the influence of the elastic threshold φc,c on the outcome of the
phase-field simulation, we showcase examples demonstrating the effect of the length scale
parameter lc and the fracture toughness gc. Moreover, we fix the resistance (or critical
stress) σc (via Equation 1.52) and analyse the phase-field simulation results. All cases
will be compared to the standard result, i.e., [Borden et al., 2012] with the benchmark’s
parameters: E = 32GPa, ν = 0.2, lc = 0.25mm, gc = 3J/m2 and no threshold. Plane
strain conditions are assumed.

When varying a parameter, the others are fixed to the benchmark’s. For each in-
vestigated parameter, two values are considered and the results are compared to the
benchmark’s. The three crack paths are showcased side-by-side; [Borden et al., 2012]’s
result are put on the left. The crack tip speeds are then superposed on the same plot. The
dark plots correspond to the main crack, blue (and green when available) represent the
branches in the lower half of the sample.
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A.1 Influence of gc

(a) gc = 3J/m2 (standard) (b) gc = 1J/m2 (c) gc = 4J/m2
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Figure A.1 – Fracture patterns and crack tip speeds for different gc , comparison with the
work of [Borden et al., 2012] (a)

Results of three gc are displayed with lc = 0.25mm and no elastic threshold.
For a smaller gc = 1J/m2 (Figure A.1(b)), the two branches are longer than the branches
in the standard gc = 3J/m2 (Figure A.1(a)). For gc = 4J/m2, the branches are no more
identical nor symmetrical (Figure A.1(c)). Figure A.1(d) shows the crack tip speeds for
the three cases. The crack at gc = 1J/m2 is initiated in advance as compared to the
standard one, and is systematically faster and reaches a higher maximum speed. At smaller
gc, the creation of new surfaces from the available energy is easier and faster [Broberg,
1996, Broberg, 1964]. The crack also branches earlier (−20µs). The two branches propagate
at similar speeds. At gc = 4J/m2, the crack initiation is delayed of about 5µs as compared
to the standard gc = 3J/m2. The speeds are slightly slower. The bigger gc translates to
a slower damaging of the material, i.e., the creation of new crack surface require more
energy [Broberg, 1996, Broberg, 1964] that should subsequently be available (from the
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boundaries). The branches are no longer travelling at similar tip speeds and their symmetry
is lost.
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A.2 Influence of lc

(a) lc = 0.25mm (standard) (b) lc = 0.375mm (c) lc = 0.5mm
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(d)

Figure A.2 – Fracture patterns and crack tip speeds for different lc , comparison with the
work of [Borden et al., 2012] (a)

Results of three lc are displayed with gc = 3J/m2 and no elastic threshold.
To overcome mesh-related bias, only two bigger lc are considered. At lc = 0.375mm (Figure
A.2(b)), the crack branches twice; however, its first branch is directly arrested, afterwards,
even though the main crack is no longer along the middle of the sample, the symmetry of
the two branches after the second branching are recovered. At larger lc = 0.5mm (Figure
A.2(c)), the crack branches after travelling a shorter distance but the two branches are
not symmetrical. One of the branches also undergoes a late branching phenomenon. The
speeds at which the cracks travel in the three cases have similar trends. For lc = 0.25 and
0.375mm, the branching occurs at similar times and positions. For the largest lc = 0.5mm,
the earlier branching (−10µs) slows down the branches that would travel afterwards
unsymmetrically and at different speeds .
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A.3 Fixing σc

A.3.1 Fixing the ratio gc
lc

(a) lc = 0.25mm (standard) (b) lc = 0.375mm (c) lc = 0.5mm
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(d)

Figure A.3 – Fracture patterns and crack tip speeds for different (lc, gc) couples yielding
same σc as [Borden et al., 2012] (fixed gc/lc), comparison with the work of [Borden et al.,
2012] (a)

In Section 1.7, an expression of the critical stress σc was derived on a unidimensional
bar under uniaxial tension; the expression states that a fixed ratio gc

lc
yields the same σc.

Although this derivation is computed for a homogeneous unidimensional solution, following
[Nguyen et al., 2016] we consider the derived expression to be a faithful estimation of
the relation linking σc, lc and gc. We check the influence of fixing σc in the absence of a
threshold by conserving the ratio gc

lc
on the benchmark results.

Results of three lc are displayed with gc
lc

fixed and no elastic threshold.
Previous results (Section A.1 and A.2) show similar crack tip velocities for different lc and
a big differences in velocities for different gc in all cases, the crack patterns are different.
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When increasing gc and fixing the gc
lc

ratio, (Figure A.3(b), A.3(c)), the three simulations
yield fundamentally similar crack patterns. At the smallest gc, both crack branches reach
the left boundary. The corresponding crack tip speeds are shown in Figure A.3(d). Larger
gc tend to delay the crack initiation and the branching, while maintaining fairly lower
crack tip speeds. The maximum reached crack speed is also smaller at bigger gc.The higher
speeds after t = 70µs are supposedly due to the fact that the branches are still propagating
at the largest gc and did not reach the right boundary yet.

A.3.2 Manipulating φc,c and lc

0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

Figure A.4 – (lc, c) couples yielding equivalent σc. Unidimensional solution from Equation
1.52, Section 1.8

In Section 1.8, an expression of the critical stress σc was derived on a unidimensional
bar under uniaxial tension as a function of the threshold coefficient c, lc and gc. We check
the influence of fixing σc (Figure A.4) by manipulating lc and φc,c, thus by eliminating
the influence of gc 1. To do so, two couples of lc, φc,c that yield similar σc at fixed gc are
obtained from Figure A.4. And simulations at fixed σc for three couples lc, c are run.
Surprisingly, the three crack paths (Figure A.5(a),A.5(b) and A.5(c)) are relatively similar.
Moreover, Figure A.5(d) shows that the cracks branch in the three cases have identical
histories, i.e., initiation and branching at close times, reaching similar maximum speeds,
same deceleration and acceleration.

The influence of the different parameters of the phase-field model is showcased in this
appendix. The additional freedom granted by the parametrisation of the elastic threshold

1. The influence of gc was shown to be most prominent in Section A.1 and A.2, especially on crack tip
speeds, as compared to the influence of lc
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(a) lc = 0.25mm (standard) (b) lc = 0.375mm (c) lc = 0.5mm
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(d)

Figure A.5 – Fracture patterns and crack tip speeds for different (lc, c) couples yielding
same σc as [Borden et al., 2012], from Figure A.4, comparison with the work of [Borden
et al., 2012] (a)

is seen as a promising addition to the phase-field modelling. It allows the phase-field
even more adaptability for advanced simulations without adding to its implementation
complexity. With the ability to consider a larger lc for the simulations without affecting
the critical stress σc or the toughness gc, i.e., by manipulating the elastic threshold φc,c,
computational times can be improved.
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Appendix B

CRACK PATH DETECTION

In this appendix an algorithm that allows for the automatic detection of multiple
cracks is presented. In phase-field models (and any other continuous approach that does
not explicitly represent the crack) determining the crack tips in not straightforward; since
the crack is represented by a damage band of finite width related to lc. This leads to
inaccurate predictions of the crack tips translated to inaccurate predictions of the velocity
for dynamic fracture [Wu et al., 2020]. With that in mind, we developed this algorithm
to automatically detect crack initiation, propagation, and branching independently of the
direction of propagation, number of cracks and crack arrest phenomena. Although crack
coalescence is an interesting and widely encountered phenomenon, its detection was not
implemented here. The algorithm requires the damage fields α at different time steps
(loading steps) and the mesh data. It can be summarised by the following steps:
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Crack tip detection from phase-field simulation results

For each time step tn

— Find the newly damaged points pnα / α(pn−1) ≤ 0.99 & α(pn) ≥ 0.99

— Regroup the newly damaged points pnα into i clusters cni of maximum width 4lc (see
Remark B.2)

— Compute the distance between each cluster

— Combine clusters within a distance 2lc into one cluster (see Remark B.1)

— Determine the number of unique clusters Nn
c corresponding to actual crack tips cn

— If Ṅn
c < 0, find arrested crack tips. cni=a = cn−1

i=a . Update Nn
c . Repeat. (see Remark

B.3)

Here, at each time step tn, Nn
c random crack tips cni corresponding to the newly damaged

points are detected, α is the damage phase-field (Chapter 1) representing the damage state
of the material. (α = 0 when intact, α = 1 for a full damaged material, and 0 ≤ α < 1 in
the degraded zone.)
Next, the crack tips (accross different time steps tn) forming a single crack branch are
combined. The history of each crack is thus computed from from the position of its
corresponding crack tips accross the propagation.

For each time step tn, under the condition Ṅn
c < 0 For each crack tip cni ,

— Compute the distance between cni and each new cluster cn+1
i=1...Nn+1

c

— Obtain crack propagation history for each crack i

Remark B.1. The chosen distance, here 2lc of course conditions the branching detection,
e.g., for a distance under 2lc, the crack tips are merged.

Remark B.2. The distances conditioning crack branching (here 2lc) and crack propa-
gation (here lc) can be modified per the simulation’s requirements, i.e., if relatively large
time steps are analysed (cracks advance by jumps), less conservative condition on crack
arrest/initiation should apply.

Remark B.3. If the number of new cni damaged points decreases (if Ṅn
c < 0), this may

suggest a crack arrest. The cluster corresponding to an arrested crack cni=a is conserved at
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upcoming iterations cn+1
i=a = cni=a. A tip is considered arrested if no new crack tips appear

in its vicinity, i.e., the distance between cn−1
i=a and the closest cni=1...Nn

c
is larger than lc
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Appendix C

ON THE PRESENCE OF A UNIQUE

DAMAGE LAW

As the quasi-brittle behaviour of the effective material is set - independently of lCG, an
attempt to write a damage evolution law based on the coarse-grained stress-strain results
(Figure 2.9) and the standard degradation function g(α) = (1− α)2 found in Chapter 1
was made. However it only worked-out under pure mode I loading. Of course, more work
is required on this part to be able to link the two pillars of crack propagation: damage
mechanics and fracture mechanics.

We follow the work of [François, 2012] by describing damage as a decay of the Kelvin
moduli of the elasticity tensor. For a 3D isotropic material, the Kelvin decomposition
yields two isotropic subspaces: a unidimenisonal hydrostatic one and a 5-dimensional
deviatoric one. 6 Kelvin moduli exist (1 hydrostatic and 5 deviatoric). In 2D, only 3 Kelvin
moduli exist λI = K, λII = µ, λIII = µ. K is the bulk modulus, µ is the shear modulus.
(1 hydrostatic and 2 deviatoric).

Thanks to the symmetry properties of the mechanical fields at the vicinity of a pure
mode I propagating crack, and due the regularizing nature of the coarse-graining, it’s
found that the deviatoric parts of the stresses and strains are omitted, and damage can
only be observed in the hydrostatic subspace, and the degradation function will link the
hydrostatic coarse-grained stress to the hydrostatic coarse-grained strain via

Sh = g(α)KEh = (1− α)2KEh (C.1)

where Sh and Eh correspond to the hydrostatic parts of the coarse-grained stresses and
strains respectively, and K is the bulk modulus of the sound material. α is the damage.

Figures C.1(a) and C.1(c) show the evolution of the damage α in the vicinity of the
crack at two length scales lCG. As seen, the non-uniqueness of the damage behaviour
persists.
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We were able to experiment with a non-localisation of the strains (Ẽh = 〈Eh〉φlNL , a
convolution with a regular function φlNL of support lNL 1) to find a unique law relating
the damage evolution to the non-local strains. In Figures C.1(b) and C.1(d), the non-local
strains are computed within a non-local zone of size lNL, and a unique damage evolution
curve is obtained for the different points in the vicinity of the crack.

Even though a unique damage evolution law is obtained, its extension to combined mode
I and II or with the addition of higher order terms, i.e., T − stress is more complicated.
Future prospects require building on these intriguing findings to further advance on linking
damage mechanics to fracture mechanics.

1. lNL is to be related to lCG. Based on our work, lNL ' 1.5lCG is a fair estimation of the size of the
non-local zone yielding a unique non-local damage evolution law.
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(a) lCG = 500µm
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(b) lCG = 500µm, lNL = 1.5lCG
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(c) lCG = 1000µm
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(d) lCG = 1000µm, lNL = 1.5lCG

Figure C.1 – Coarse-grained hydrostatic damage evolution along the vertical direction
at two length scales lCG, non-localisation of the strains via a convolution with a regular
function of support width lNL = 1.5lCG
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Appendix D

STRESS INTENSITY FACTORS

EXTRACTION FROM DISPLACEMENT

FIELDS

D.1 SIF Theoretical aspect

The SIF and T − stress measurement is essential for validating the role of non-
singular terms on crack branching at low crack tip speeds. In this section, the considered
methodology for the simultaneous detection of the crack path, the crack tip, the SIF and
higher order terms from displacement fields is put forth. The extraction scheme in [Roux
and Hild, 2006, Roux et al., 2009] is considered; it overcomes the inevitable sensitivity
to noise found in previous methods; it can be indeed applied for extractions on curved
cracks, and most prominently, is robust enough to be considered for analysing experimental
displacement fields obtained via DIC on Ultra-High-Speed-High-Resolution images.

For a semi-infinite straight crack in a 2D elastic body subjected to a mechanical
load, [Williams, 1957] proposes analytical solutions of symmetric (mode I) (Eq. D.1) and
antisymmetric (mode II) (Eq. D.2 ) fracture modes. The elementary solutions are indexed
by n, and i is the pure imaginary number

√
−1.

Φn
I (r, θ) = rn/2

(
κeinθ/2 − n

2 e
i(4−n)θ/2 + (n2 + (−1)n)e−inθ/2

)
(D.1)

Φn
II(r, θ) = irn/2

(
κeinθ/2 + n

2 e
i(4−n)θ/2 − (n2 − (−1)n)e−inθ/2

)
(D.2)

The displacement field for a stationary crack around its tip can be written as:

u(r, θ) =
∑

k=I,II

∞∑
n=−∞

ankΦ̄n
k(r, θ) (D.3)
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r and θ are the polar coordinates in the local frame of the crack tip (x′1, x′2). κ is the
Kolossov’s constant. Φ̄n

k are the projection of Φn
k onto the (x1, x2) coordinate system, ank

represent different coefficients in the solution, i.e., for n = 1, a1
I relates to KI , and a1

II

relates to KII . Following [Roux and Hild, 2006, Roux et al., 2009], the displacement fields
u -whether experimentally or numerically obtained-, are projected onto what is known
as a truncation of the Williams’ series [Williams, 1957]. The solutions that are used for
projecting the displacement fields and extracting the fracture parameters are truncated
between n = nm = −3 and n = nM = 7 lowering the degrees of freedom of the inverse
problem while maintaining a family of solutions that contains sufficient information about
the crack features:

n = 0, rigid body translation,
n = 1, asymptotic terms (KI , KII),
n = 2, T − stress and rigid body rotations,
In practice, especially in the experimental case, potential non-linear behaviour (plas-

ticity, damage) close to the crack tip takes place. Since the methodology is based on an
elastic description of the solid, only the mechanical behaviour outside a confined zone near
the crack tip (Figure D.1) should thus be studied. This bridging of the far-field elastic
loading to the local crack tip happens without any issues regarding probable non-linear
behaviour near the crack tip.

D.2 SIF Extraction procedure

The extraction as proposed [Roux and Hild, 2006, Roux et al., 2009] proceeds as
follows:

(i) a crack path is proposed - in the numerical simulations the crack path is easily
tracked thanks to the damage variable α. During actual experiments, crack path is obtained
from images of the deformed sample transformed back to the Lagrangian configuration
(see e.g. [Vinel et al., 2021]).

(ii) the size of the pacman-shaped extraction domain is defined by a circular area of
radius rext from which a small band of width rint is removed around the crack tip (Figure
D.1).

(iii) the choice of the loading conditions (plane strain/plane stress) through κ is made.
It’s noted that κ can be added as a degree of freedom of the problem further validating
the choice on the loading conditions.
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Figure D.1 – the pacman-shaped extraction domain

Throughout the extraction, the elastic crack tip position is updated using the first
super-singular term n = −1, and the instantaneous SIF and T − stress are detected. The
crack tip velocity vc can be calculated consequently.
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Appendix E

THEORETICAL ASPECT OF THE INERTIAL

IMPACT TEST

This Appendix gives the reader more insights on the theoretical aspect of the global
impact phenomena as the projectile hits the waveguide on which the specimen is mounted.
Figure E.1 shows the interaction between the projectile, the waveguide and the sample,
via a Lagrange representation of the impact, assuming that the projectile, waveguide and
the specimen are made of the same material and that stress-waves travel at cd inside each
of them.

§ E.1. Drawing the Lagrange representation of the impact: a unidimenisonal wave
propagation analysis in stepped rods is considered. The respective cross sections of the
rods are modified to correspond to the cross-sections of the components of the ensemble.
Initial velocity Vproj = 30m/s condition is applied on the rod corresponding to the
projectile, to mimic the experimental impact. FE analysis identifies the expected loading
histories. Since the actual propagation is tridimensional, correction would be required
on the Lagrange representation (Figure E.1) to accurately model the three-dimensional
stress-wave propagation and interactions with the boundaries.

§ E.2. Reading a Lagrange representation of wave interactions: at fixed time, the
horizontal line gives the state of the stress inside the system. The slopes of the showed
lines actually represent the inverse of the speed of the stress wave, i.e., 1/cw where cw,
w ≡ d if longitudinal waves are considered and w ≡ s if shear waves. It’s noted that this
representation also gives approximations on the loading/contact times.

Generally, several zones of interaction can be identified:

1. The projectile of length 80mm travels at Vproj = 30m/s. It hits an immobile
waveguide at t = t1 of same length on which a sample is mounted.

2. Directly after impact, two similar compression waves (dark blue) are generated in
each element, and they propagate away from the impact surface. A clean impact is
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Figure E.1 – Lagrange representation of the inertial impact tests
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assumed and the stress waves travel at cd.

3. At t=t1 + 80mm/cd, the compressive stress waves in each rod reach the opposed
surface. In the projectile, the boundary is free, and the compressive wave is reflected
and returns inside the projectile as a tensile wave. The overlapping of the compressive
and tensile waves gradually unloads the projectile (sky blue) until discharged. In
the waveguide however, a part of the stress wave travels through the glue to the
specimen and another part is reflected from the boundary as a tensile wave that
partially unloads the waveguide for the previously mentioned reasons.

4. The specimen is now loaded in a compressive wave (dark blue colour).

5. At t=t1 + 2× 80mm/cd, the projectile is totally unloaded. The contact between the
waveguide and the projectile is broken (bittersweet colour).

6. The compressive stress wave inside the specimen reaches the free boundary of the
hole and is reflected back as a tensile wave that re-enters the compressed projectile.
A range of mixed complex wave interactions happen afterwards.

Of course, the main interest is drawn to the last Point 6 corresponding to the stress-waves
propagation inside the sample and their interaction with the geometry of the sample and
the induced crack paths.
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Appendix F

EXPERIMENTAL AND IMAGING SETUP OF

THE INERTIAL IMPACT TEST

In this appendix, the experimental and imaging setup considered to capture the dynamic
crack propagation, e.g., crack initiation, crack branching, stress-wave propagation, etc. are
presented. Information already available in Chapter 5 are recalled.

F.1 Experimental setup and description of the test
bench

The sample is laser-cut from a commercial PolyMethyl Methacrylate (PMMA) manu-
factured by Arkema. A synthetic speckle pattern is laser-engraved into the sample following
[Vinel et al., 2021] (for the application of the DIC procedure).

The laser’s beam diameter (dlaser = 200µm) in taken into account for the dimensioning.
The pre-crack’s width matches the beam’s.

The projectile and the waveguide are machined from a polyoxymethylene (POM)
cylinder of diameter dproj = dwg = 40mm; both are 80mm long. POM is used because it
has similar material peoperties as PMMA

— The specimen is mounted to the waveguide 3© with the help of a machined wooden
sleeve. It’s then glued before removing the sleeve.

— The ensemble is systematically positioned on a PMMA support bed 4© at the end of
the gun to secure the proper alignment with the projectile at the moment of impact
(mounted on optical positioners 4© ).

— A projectile is fired by a gas gun 1© to reach a velocity of Vproj just before the impact.
The sudden expansion of the gas inside the barrels is what impels the projectile
towards the waveguide.
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Figure 5.4 - Experimental set-up for the inertial impact tests

— The test is recorded with a Cordin Model 580 6©, DIC procedure is then applied
(more in the next section)

A shock absorber 2© is needed to neutralize the impact of the 0.12kg travelling at
∼ 30m/s from the gun end.

The purpose of using a waveguide instead of directly having the projectile impact the
specimen is to ensure cleaner compressive waves at the boundary of the specimen, from
one side, and holding the sample while keeping all other boundaries free.

A photo of the test bench can be found in Figure 5.4. One identifies:

1. The gas gun

2. The shock absorber

3. The specimen mounted on the waveguide

4. The PMMA support bed on the optical positioners

5. The flash lights

6. The UHS-HR camera: the Cordin Model 580

7. A light-gate: the SPX1189 series Honeywell infrared sensor

8. The delay generator (to synchronise the flashes)

To capture the extraordinary phenomena happening in vicinity of high velocity cracks,
a highly resolved rotating mirror camera was used: the Cordin Model 580.

— The Cordin Model 580 6© is set to capture a total of 78 images at 400k fps with a
resolution of 3296× 2472px.

— To provide enough lighting for the camera sensors, additional lighting is provided by
two Pro-10 Profoto flashes 5© (2× 2400J provided in 1000µs).
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At such 400k fps and 3296 × 2472px resolution, the camera records the entire test 3©:
from the first compressive waves induced by the impact to the total failure of the specimen
(about 200µs, 78 frames). A schematic representation of the triggering of the camera and
flashes (Figure 5.4) is plotted in Figure F.1.

— The flashes are triggered via an infrared light-gate system (SPX1189 series Honeywell)
7© mounted at the end of the gas gun 1©. When obscured by the projectile 0), it
sends a 5V TTL signal 1) (rise time = 5µs). The signal is then delayed by 200µs 2)
via a delay generator 8© before igniting the flashes 3). The delay takes into account
for the air-travel time of the projectile (from the outlet of the gas gun to the impact)
+ the time it takes the stress waves induced in the waveguide to reach the specimen -
the warm-up time of the flashes (Figure F.1).

— Two pieces of aluminium film are bonded onto the waveguide 3© and connected to
a circuit (open) between a 5V generator and the camera trigger 6© , so that when
the projectile hits the waveguide, it contacts 4) both pieces of film closing thus the
circuit and providing the triggering signal for the camera.

— The camera is then triggered with a delay of 40µs, which corresponds to the time
the stress waves (generated at the impact with the projectile) take to reach the
boundary of the specimen through the waveguide.

F.2 On the mesh and DIC parameters

Since a crack is propagating in the sample during the test, the DIC requires meshing
the samples in two steps, (see [Vinel et al., 2021] for more details). An unstructured mesh
(of size h = 2mm) with twin nodes along crack paths is considered (from the final frame,
in the un-deformed configuration). The mesh is refined in the zone near the crack path
to hd = 1mm. At 400k fps with a resolution of 3296× 2472px, the finite element size is
around 22px on average in the refined region, 44px elsewhere. (each pixel corresponds to
47µm).

We also recall some remarks regarding the processing of DIC data:

Remark F.1. Unlike in statics where standard cameras are used and where DIC yields
accurate measurements, in dynamics, especially when recording with an UHS-HR rotating
camera at 400kfps, neat imaging cannot be achieved. Despite the application of the novel
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Figure F.1 – Imaging setup: automatic triggering of the camera and the flashes

calibration method from [Vinel et al., 2021] to suppress apparatus induced distortions,
residual distortions may remain introducing a bias in the DIC measurements.

Remark F.2. The displacement fields are filtered in time with a Savitzky Golay (kernel
size= 5 frames, order 2) filter to smoothen the first derivative (velocity fields); moreover,
spatial noise is filtered-out via a Tikhonov regularisation of the DIC problem.

Remark F.3. The strain-rate fields are derived by spatial differentiation of the velocities;
velocities are derived from temporal differentiation of the displacement fields.

Remark F.4. The time origin (t = 0) corresponds to the camera trigger.

Remark F.5. The initiation and the bifurcation frames are determined from the opening
of the crack lips (twin nodes along the crack path) in the images from the UHS-HR camera.

Remark F.6. The opening of the crack lips along the crack path (twin nodes along the
crack path) allows the computation of an apparent crack tip speed.
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Appendix G

TAF2 SAMPLE: DIC FIELDS AND SIF

RESULTS
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Figure G.1 – Sample TAF2 - DIC displacement fields (up) and longitudinal strain rates
(down) at three time steps. A Savitzky Golay (kernel size= 5 frames, order 2) filter
smoothens the displacements’ first derivative (velocity fields). Spatial noise is filtered-out
via a Tikhonov regularisation of the DIC problem
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Figure G.2 – Sample TAF2 - SIF , the higher order term T − stress and the crack tip
speed. The error-bar corresponds to the sensibility to the extraction zone [Roux and Hild,
2006, Roux et al., 2009]

Figure G.3 – Sample TAF2 - Evolution of the predicted fracture direction θ0 along with
the maximum circumferential stress computed at rc = 2mm. The modification of the
fracture angle at the position of branching and the evolution of σ0

θθ mirror the branching.
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Appendix H

T3DE SAMPLE: DIC FIELDS AND SIF

RESULTS
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Figure H.1 – Sample T3DE - DIC displacement fields (up) and longitudinal strain rates
(down) at three time steps. A Savitzky Golay (kernel size= 5 frames, order 2) filter
smoothens the displacements’ first derivative (velocity fields). Spatial noise is filtered-out
via a Tikhonov regularisation of the DIC problem
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Figure H.2 – Sample T3DE - SIF , the higher order term T − stress and the crack tip
speed. The error-bar corresponds to the sensibility to the extraction zone [Roux and Hild,
2006, Roux et al., 2009]

Figure H.3 – Sample T3DE - Evolution of the predicted fracture direction θ0 along with
the maximum circumferential stress computed at rc = 2mm. The modification of the
fracture angle at the position of branching and the evolution of σ0

θθ mirror the branching.
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Appendix I

THOM SAMPLE: DIC FIELDS AND SIF

RESULTS
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Figure I.1 – Sample THOM - DIC displacement fields (up) and longitudinal strain rates
(down) at three time steps. A Savitzky Golay (kernel size= 5 frames, order 2) filter
smoothens the displacements’ first derivative (velocity fields). Spatial noise is filtered-out
via a Tikhonov regularisation of the DIC problem
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Figure I.2 – Sample THOM - SIF , the higher order term T − stress and the crack tip
speed. The error-bar corresponds to the sensibility to the extraction zone [Roux and Hild,
2006, Roux et al., 2009]

Figure I.3 – Sample THOM - Evolution of the predicted fracture direction θ0 along with
the maximum circumferential stress computed at rc = 2mm. The modification of the
fracture angle at the position of branching and the evolution of σ0

θθ mirror the branching.
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Appendix J

INFLUENCE OF rc ON THE MATERIAL

(IN)STABILITY MAP

This appendix covers the influence of the critical distance rc on the (in)stability map
of an arbitrary material: we recall that rc is considered to be the distance at which crack
growth occurs when incorporating higher order terms (e.g., T − stress).

Consider three arbitrary materials of mechanical properties equivalent to the ones
in Table 5.1. Let KIC = 1.66MPa

√
m, and m = 0.465 the parameters representing the

fracture behaviour following [Kanninen and Popelar, 1985]’s empiric law (5.7).
Assume the critical distance rc for each material is different (rc = 2mm, 500µm, 8mm),

e.g., due to microstructural defects distribution. Figure J.1 shows the limiting boundary
between a stable crack growth and an unstable one for each of the materials.

The boundary divides the (vc − T − stress) space into a zone where the direction of
crack growth is along the extension of the crack (θ0 = 0o), and a zone where θ0 > 0. This
yields a well-defined curve separating stable and unstable crack growth.

The following observations can be drawn:

— At T − stress = 0, the classical solution [Yoffe, 1951, Freund and Hutchinson, 1992]
is recovered independently of the distance rc.

— For smaller rc, the crack withstands larger T − stress without branching.

— For larger rc, the stability is improved at high crack tip speeds under larger negative
T − stress.

— A negative T − stress does not prohibit branching, even though it ensures more
stability large crack tip speeds.
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Figure J.1 – Influence of rc on the material (in)stability map. A synthetic rc = 100m is
added to validate the limiting velocity at vc = cR.
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Appendix K

PHASE-FIELD SIMULATION OF THE

INERTIAL IMPACT TEST: VALIDATION OF

THE MODEL

K.1 Introduction

After successfully assessing the role played by T − stress on crack (in)stabilities and
crack branching on a novel experimental configuration, and after building the material
(in)stability map that shows the loadings under which a crack growth can be stable or
unstable, we check the ability of the phase-field model presented in Section 1.4 to replicate
experimental crack propagation of the inertial impact test, in which, as we’ve seen, the
stress waves play a crucial role in the crack path history.

We first recall the ingredients of the phase-field model used, then the material properties
considered in the simulation.

It is assumed that the sample exhibits linear elastic behaviour. Details about the
identification of the the elastic properties by taking the viscoelastic effects into account
are given in Section 5.2.7.

The boundary condition (the impact) is then showcased, it’s modelled thanks to the
full-field measurements of DIC.

’Post-mortem’ results of the phase-field simulations are presented, and the ability to
accurately replicate the branching is noted. Although ’post-mortem’ comparison with the
experiment shows accurate prediction of the crack patterns and branching angles, we’ll
see ( on the (in)stability map) (Figure 5.15) how the phenomenon leading the fracture is
not the same as in the experiment (in the experiment it’s mainly a running crack under
positive T − stress ' 10MPa).

We show how phase-field modelling, although pretty accurate in predicting crack
patterns, are haphazard in terms of replicating crack history and tip speeds. From the
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analysis of the fracture angle, we see how the instability is initiated at early stages in the
propagation where the crack is at relatively high crack tip speeds typically as the damage
band in phase-field starts broadening.

K.2 The phase-field parameters

Table 5.2 resumes the overall model and material parameters considered in this simula-
tion of the inertial impact test.

Time stepping Explicit ([Li et al., 2016b])
Crack density function Quadratic, Equation 1.3 ([Miehe et al., 2010a])
Strain split Orthogonal ([Nguyen et al., 2020b])
Plane strain assumption
Boundary condition Experimental u [Vinel et al., 2021]
E (Young’s Modulus) 6GPa Section 5.2.7
ν 0.3
gc 1100J/m2

lc 2× mesh size = 2× h = 1mm ([Nguyen et al., 2016])
c (threshold) 1

Table K.1 – Table 5.2 - Overall phase-field model and material parameters considered in
this simulation of the inertial impact test.

K.3 The boundary condition

Accurate determination of the boundary condition is crucial for the phase-field simula-
tion to accurately replicate crack patterns.

From the DIC, the full-field kinematics allow the capture of the experimental displace-
ment fields around the boundary. This boundary displacement condition is then prescribed
to the loaded boundary phase-field simulation.

Figure K.1(a) shows the impacted boundary, i.e., the surface on the left-hand side of
the specimen, on which the waveguide is glued to the specimen. The other boundaries are
free [Pierron et al., 2014]. From DIC, the evolution of the average u1 displacement of the
boundary and its velocity (average at each time step along the nodes of the boundary) in
time are shown in Figure K.1(b) (for visualisation purposes).
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(a) (b)

Figure K.1 – Boundary condition for the inertial impact test. The displacement and velocity
of the experimental boundaries are obtained from DIC and imposed on the simulation.
The time from which the contact between the waveguide and the specimen is broken is
predicted from Appendix E and noted on the plot

Remark K.1. Attention is drawn to imposing both displacement components u1 and u2 of
the DIC in the simulation, to accurately assess the slight dissymmetry in the experimental
crack pattern (Figure 5.5).

Since the simulation’s Finite Element Mesh is much finer, interpolation of the nodal
displacement was required.

Remark K.2. In the inertial impact test, as contact is established between the projectile
and the waveguide, compressive stress-waves are generated in each element, and they
propagate away from the impact surface. The compressive stress waves reach the specimen,
the boundary is now loaded. The return travel of the stress-waves (tensile, reflected from
the free boundaries) along the waveguide and specimen breaks contact (Appendix E).
This contact breaking should be taken into account in the boundary condition, i.e., the
displacement boundary condition from DIC should be removed at the time of contact loss.
However, the finely synced material properties and stress-wave propagation removes the
need for freeing the boundary of impact when the contact is lost, as the simulation perfectly
reproduces the big lines in the stress-wave propagation.
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K.4 Simulation results

K.4.1 On the crack patterns

Figure 5.17 shows both experimental (DIC measurements) and simulation results
(phase-field simulations) of the inertia impact test TAF1. The crack patterns are clearly
reproduced by the phase-field simulation: the branching position and the branch turning
are accurately predicted.

We note the widening of the damage band in the simulation before the moment of
branching, similarly to other phase-field simulations reported in [Borden et al., 2012],
[Schlüter et al., 2014], and to non-local integral damage model [Pereira et al., 2017] 1. To
further investigate the branching and damage band widening, the (in)stability criterion is
applied. Beforehand, let us briefly describe the crack path history and crack tip speeds
from the simulation and compare them with the experimental results from DIC.

K.4.2 On the crack tip speeds

In Figure 5.18, we superpose the crack tip velocities from the simulation and the crack
tip velocities obtained experimentally. Even though the crack patterns are accurately
reproduced, the crack path history and crack tip speeds are not.

This can be caused by various reasons, possibly and not exclusively;

— Viscous effects: even though PMMA is THE model material for in-lab studying
the brittle elastic failure, its viscous behaviour has already been documented and
quantified, e.g., in [Seghir and Pierron, 2018].

— Wrong phase-field parameters: as seen in Chapter 1 and Appendix A, comparable
crack paths can be obtained for different combinations of parameters lc, gc and c,
however, discrepancy in the crack tip speeds are often present. With the contribution
to the phase-field modelling in Chapter 1, the parametrisation of the threshold
(Chapter 1) allows for a triplet of parameters to be optimised for accurately repro-
ducing experimental scenarios by elegantly balancing the energy dissipation, energy
release-rate and fracture strength. This yields more freedom in the choice. Even

1. From a more physical point of view, damage widening could be the signature of roughening of the
crack surface experimentally observed to occur prior to branching [Ramulu and Kobayashi, 1985]. [Bleyer
and Molinari, 2017] showed that the micro-branching process is indeed a three-dimensional instability and
is directly linked to surface patterns observed priori to macro-branching in PMMA [Sharon and Fineberg,
1996].
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Figure K.2 – Figure 5.17 - DIC displacement field (up) and phase-field simulation results
(down) showing accurate prediction validating the dynamic phase-field model and accurately
reproducing the crack patterns The points where the phase-field damage α ≥ 0.99 are
removed to mimic crack opening
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Figure K.3 – Figure 5.18 - Comparison of the experimental and numerical (phase-field
simulation) crack tip speeds. Dashed lines correspond to the crack-tip speeds estimated from
the phase-field simulation (Appendix B), full lines correspond to the apparent experimental
crack tip-speeds previously reported in Figure 5.7

though this parametrisation offers a wider range of material behaviour, it is crucial
to span the triplets in the search for the optimum phase space.

Remark K.3. Without the UHS-HR imaging and the cutting edge DIC algorithms, the
obtained simulation results would be satisfactory. However, these technological advancements
offer sound ground for a more rigorous estimation of the phase-field parameters that should
yield a more precise reproduction not only of the patterns, but also crack tip speeds and
crack history.

Next, we advocate instabilities on the phase-field simulation results based on the
proposed method.

K.4.3 Crack branching analysis

Indeed, since only displacement fields are required for the analysis, the proposed scheme
is readily applicable on displacement fields coming from numerical simulations.

uSIMU → SIF, T − stress, crack tip position, and vc → σ → σθθ → σ0
θθ & θ0

Figure 5.19 shows the estimations of the crack-tip speed, SIF and T − stress; the
following observations can be drawn:
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Figure K.4 – Figure - 5.19 SIF , the higher order term T − stress and the crack tip speed
in the simulation of the TAF1 sample test. The error-bar corresponds to the sensibility
to the extraction zone [Roux and Hild, 2006, Roux et al., 2009]. The crack tip speed
vpc corresponds to the one reported in Figure 5.18 computed from the phase-field, via
Appendix B

I The estimations show similar trends to the experimental estimations.
I From t = 70µs (crack initiation from the notch) to t = 80µs, KID increases from
KID = 6.28MPa

√
m to KID = 7.91MPa

√
m.

I The velocity of the elastic crack tip on the other hand reaches a maximum vc = 0.8cRat
t = 85µs. Afterwards, the crack tip starts decelerating until it reaches vc ' 0.72cR at
the moment of branching (branching detected from Figure 5.18 ), around t = 95µs.

Remark K.4. On the difference between the computed crack tip speeds: the phase-
field model introduces a damaged zone in which the dissipative processes are diffused
to regularise a sharp crack (via the length-scale lc). The methodology proposed in
Appendix D is founded on LEFM that suggests that all non-linear and dissipative
processes are well confined to the near-tip vicinity. The equivalent elastic crack tip
(extracted from Appendix D) would eventually not coincide with a phenomenologically
captured crack tip (e.g., iso-curves of the phase-field), the equivalent elastic crack tip
is expected to accelerate as the damage band widens/lengthens and dissipates energy.
A delay/deviation between those two computed speeds is natural and as it comes from
their inherent differences.
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Figure K.5 – Figure 5.20 - Evolution of the predicted fracture direction θ0 and the maximum
circumferential stress σ0

θθ computed at rc = 2mm in the phase-field simulation of the
TAF1 sample (SIF , T − stress and vc from the numerical fields). The modification of the
fracture angle θ0 at the position of branching and the evolution of σ0

θθ mirror the branching
phenomenon

I Regarding the first higher order term, knowingly the T − stress, an initial decrease
is observed to a negative T −stress = −15MPa at t = 80µs. Afterwards, T −stress
rockets.

I As mentioned in Remark 5.2, neat imaging could not be achieved. Despite the appli-
cation of the novel calibration method from [Vinel et al., 2021], residual distortions
may remain introducing a bias in the DIC measurements. An estimation of potential
biases hiding within the SIF , vc and T − stress identification showed discrepancies
of 1MPa

√
m, 0.1cR and 3MPa respectively.

Remark K.5. From the experimental extraction on TAF1, the T − stress remains
positive, however a negative T − stress is obtained in the simulation, the difference
might find its roots in the difference of the crack tip speeds which makes the crack tip
’see’ different loading/unloading histories. It’s mentioned that in the other samples
(Appendices G, H and I) a negative T − stress is estimated after the initiation.

From here, we report the evolution of the direction of ±θ0 at different positions of the
crack tip inside the simulation in Figure 5.20. rc = 2mm is also considered consistently
with the presvious experimental findings.

Observing the obtained trend of θ0, we see the following:
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I the fracture direction is first along the crack growth;
I instabilities are predicted to occur earlier than in the experiment (a question arises:

can these instabilities relate to damage band widening before branching?)
I σθθ increases to around 70MPa and drops as the direction of propagation θ0 becomes

different than zero.

Simulation results on the (in)stability map

By superposing the crack propagation history (vc, T − stress) on the experimentally-
built material instability map from Figure 5.15, we obtain the patterns in Figure 5.21.

Evidently, the history of crack propagation is much different than that in the experi-
ments, even though it was accurately able to reproduce the crack patterns. The instability
map shows the initiation of the propagation from the notch (circle marker) through the
square marker corresponding to the damage band widening, until the moment of detection
of branching (arrowhead). The map accurately shows a transition between the stable and
unstable zones at the widening of the phase-field damage band: at negative T − stress
but at a high tip speeds. Afterwards, as the damage continues its straight propagation
and reaches the branching position, T − stress is closer to the experimental T − stress,
but the crack tip speed is always larger. The predicted stress (Figure 5.21) is larger in
the phase-field simulation. We believe that a more robust identification of the phase-field
parameters is required to enable a better reproduction of the experimental crack patterns,
crack tip speeds and eventually crack growth in the (vc, T − stress) space.

.

Remark K.6. We’re not sure how/if phase-field’s length scale lc is linked to this rc, more
investigations should be lead to further elaborate on this point.

We summarise this application on the phase-field simulation by drawing the following
points regarding:
— The phase-field model is able to accurately reproduce the crack patterns even in

cases where the stress-waves play a major role on the crack propagation. However,
— UHS-HR imaging couples with the cutting-edge DIC algorithms allow a meticulous

comparison of the crack propagation histories, and
— Unfortunately, the parameters herein used might not be the most accurate, as they

are obtained by trial and error on the simulations to fit the pattern, the crack-tip
speeds couldn’t be recovered.
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(a)

(b)

Figure K.6 – Figure 5.21 - (In)stability and maximum circumferential stress map of PMMA,
constructed from experimental measurements and fitted to [Kanninen and Popelar, 1985]’s
empiric law. The history of the crack propagation in each sample and in the phase-field
simulation of TAF1 is shown
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— The proposed methodology to assess the (in)stabilities shows how the history of
the crack growth, despite the accurate replication of the crack patterns, is not
reproduced.

— Most prominently, the (in)stability map accurately predicts the crack branching
and damage band thickening in the phase-field model as an interplay between the
crack-tip speed and T − stress
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Titre : Vers une analyse multi-échelle de la fissuration dynamique des matériaux architecturés 

Mots-clés :  Matériaux architecturés, coarse-graining, rupture fragile, rupture dynamique, branchement 

Résumé :   Durant ces dernières années, on a vu un 

intérêt de plus en plus marqué pour de nouveaux 

matériaux avancés appelés matériaux architecturés. On 

s’intéresse à la fissuration de matériaux architecturés 

dans lesquels la séparation d'échelle n’est pas toujours 

bien établie. Ceci se traduit par de fortes interactions 

entre le front de la fissure et l’architecture du matériau  

indépendamment de l'échelle considérée. De plus, sous 

chargements dynamiques, des ondes élastiques entrent en 

jeu et les interactions entre le front de la fissure, les 

ondes élastiques et la microstructure pilotent ensemble le 

comportement global de la structure. Dans cette thèse, 

trois types de matériaux architecturés (microstructures) 

sont considérés : un réseau de trous périodique et deux 

réseaux quasi-périodiques type Penrose.  L'analyse est 

divisée en trois parties.  
Pour étudier l'influence de la microstructure sur la 

propagation des fissures à différentes échelles, des 

simulations numériques de rupture sont analysées ;  

ces simulations montrent une meilleure résistance des 

matériaux quasi-périodiques à la propagation des 

fissures. De plus, on développe une approche de 

changement d’échelle “bottom-up” qui n’a pas recours à 

la notion de volume élémentaire  représentatif.  

Celle-ci  permet donc une évaluation multi-échelle 

cohérente des propriétés effectives à la rupture des 

microstructures périodiques et quasi-périodiques. On 

montre ainsi l’inévitabilité de la prise en compte d'un 

milieu effectif non-homogène pour modéliser avec 

précision la réponse globale d’un matériau en tenant 

compte de sa sous-structure.  

En dynamique, une analyse de l'influence de 

l'architecture sur l'atténuation des ondes élastiques 

montre une meilleure performance des réseaux quasi-

périodiques. 

De plus, pour comprendre le ou les mécanismes régissant  

le phénomène de branchement dynamique dans un milieu 

homogène, un critère basé sur la mécanique de la rupture 

dynamique est développé et validé sur une nouvelle 

configuration expérimentale où l'imagerie à haute vitesse 

et haute résolution est combinée à la corrélation d'images 

numériques pour capturer les phénomènes marquants.  

Le rôle incontestable que joue la contrainte T dans le 

branchement dynamique est mis en avant. Cette thèse 

fournit ainsi les outils nécessaires à une analyse multi-

échelle de la rupture dynamique des matériaux 

architecturés. 

Title:  Towards a multi-scale analysis of dynamic failure in architectured materials  

Keywords:  Architectured materials, coarse-graining, brittle fracture, dynamic fracture, crack branching  

Abstract:   Architectured materials are a rising class of 

materials that provide tremendous possibilities in terms 

of functional properties. Interest is drawn on the failure 

of architectured materials in which scale separation 

ceases to exist. This directly translates to strong 

interactions between a crack tip and the architecture 

independently of the considered scale. Moreover, under 

dynamic loadings, stress-waves come into play and 

interactions between the crack-tip, the microstructure 

(architecture) and the stress-waves eventually pilot 

together the structural behaviour. In this thesis, three 

types of architectured materials are considered: one 

periodic and two Penrose-type quasi-periodic lattices of 

holes.  The analysis is broken into three parts. To study 

the influence of the microstructure on crack-propagat ion  

at different scales, numerical simulations of failure are 

analysed; they show improved resistance to crack 

propagation in the quasi-periodic materials. At the core 

of the work is also the development of a coarse-graining 

technique that requires no representative volume 

element.  

This technique allows for a physically consistent multi-

scale evaluation of the effective failure properties of the 

architectures. The inevitability of the consideration of a 

non-homogeneous effective medium to accurately 

model microstructural effects at larger scales is 

highlighted.  

In dynamics, the influence of the architectures on the 

stress-wave attenuation shows improved attenuation 

properties of the quasi-periodic lattices.  

Moreover, to understand the mechanism(s) governing 

the dynamic branching phenomenon in a homogeneous 

material, a criterion based on dynamic fracture 

mechanics is developed and validated on a novel 

experimental setup where Ultra-High-Speed-High-

Resolution imaging is combined with Digital Image 

Correlation to capture extraordinary phenomena.  The 

unquestionable role of T-stress in dynamic branching is 

put forth.  

This thesis brings forth the necessary tools towards a 

multi-scale analysis of dynamic failure of architectured 

materials. 
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